
www.allitebooks.com

http://www.allitebooks.org

P954_99781783265084_tp.indd 1 10/10/14 3:38 pm

www.allitebooks.com

http://www.allitebooks.org

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ICP

P954_99781783265084_tp.indd 2 10/10/14 3:38 pm

www.allitebooks.com

http://www.allitebooks.org

Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Muggleton, Stephen, author.
		 Latest advances in inductive logic programming / Stephen Muggleton, Imperial College London,
UK, Hiroaki Watanabe, Imperial College London, UK.
			 pages cm
		 Includes bibliographical references and index.
		 ISBN 978-1-78326-508-4 (hardcover : alk. paper)
	 1. Logic programming. 2. Induction (Logic) 3. Machine learning. I. Watanabe, Hiroaki, 1969–
author. II. Title.
	 QA76.63.M84 2014
	 006.3'1--dc23
 				 2014033096

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2015 by Imperial College Press

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore	

Catherine - Latest advances in inductive logic.indd 1 7/10/2014 5:03:11 PM

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page v

Preface

This book represents late-breaking papers associated with the 21st Inter-
national Conference of Inductive Logic Programming (ILP 2011) which
was held in Cumberland Lodge, Great Windsor Park and marked 20 years
since the first ILP workshop in 1991. During this period the conference has
developed into the premier forum for work on logic-based machine learning.
The submission procedure for the conference followed a similar format to
that of previous conferences, and was particularly close to that used in ILP
2006. Submissions were requested in two phases. The first phase involved
submission of short papers (six pages) which were then presented at the
conference and posted on the conference website prior to the conference
itself. In the second phase, reviewers selected papers for long paper sub-
mission (15 pages maximum). These were assessed by the same reviewers,
who then decided which papers to include in the Machine Learning Jour-
nal Special Issue and Proceedings. The post-conference proceedings of ILP
2011 has been published as Volume 7207 in the Springer Lecture Notes in
Artificial Intelligence.

An overview of this book is as follows. Part 1 contains Applications
of ILP in the domains of Game Theory, Robotics, Data Mining, Search
Engine, Cosmetic Product Selection, Mobile Phone, Biology, and Ecology.
This wide variety of applications characterises the diversity of real-world
applications of ILP.

In Part 2, attempts for extending ILP to Probabilistic Logical Learn-
ing are presented. Probabilistic extensions of ILP have been extensively
studied over the last decade. These five papers indicate some of the latest
developments in this sub-area.

Part 3 covers novel Implementations in ILP. This part starts from a
paper on a customisable multi-processor architecture and its application to
hardware-supported search within ILP. The strong speed-up results in the
paper indicate that such special-purpose hardware is a promising and excit-
ing new avenue of development within the area, and an indication of the
maturity of the field. The second paper proposes Multivalue Learning which

v

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page vi

vi Latest Advances in Inductive Logic Programming

makes hypothesis search more expressive by analysing statistical aspects of
the background knowledge. The third paper studies the learning of depen-
dent concepts in order to induce model-transformation rules in the automa-
tion of model-driven data warehouses. The last paper is on Graph Contrac-
tion Pattern Matching problems in a domain of graph mining. This paper
combines Information Theory tools with relational learning.

We turn to Theory papers in Part 4, in which a novel method to machine
learn patterns in formal proofs is discussed, using statistical machine learn-
ing methods. The second paper investigates the issue of whether ILP can
deal with incomplete and vague structured knowledge.

In Part 5, two attempts at Logical Learning are reported. The first
attempt concerns efficient higher-order logical learning. The authors empir-
ically show that the proposed class of higher-order logic outperforms
the existing higher-order machine learning system, λ-Progol. The second
paper studies automatic invention of functional abstractions. The authors’
approach is implemented in the KANDINSKY system using an algorithm
that searches for common subterms over sets of functional programs.

Part 6 contains a single paper on Constraints in learning roster prob-
lems. Finally, relational learning for football-related predictions is reported
from a Spacial and Temporal learning point of view in Part 7. Relational
data is derived from match statistics.

The variety of approaches and applications within the book gives an
insight into the vibrancy and maturity of the field.

S. H. Muggleton and Hiroaki Watanabe

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page vii

Acknowledgments

The 21st International Conference of Inductive Logic Programming 2011
was held at Cumberland Lodge in the UK from 31st July to 3rd August
2011 under the auspices of the Department of Computing, Imperial College
London. In addition to the many technical paper presentations, the invited
talks this year were given by a distinguished group of Artificial Intelligence
researchers, namely Hector Geffner, Toby Walsh and Richard Sutton.

We gratefully acknowledge Syngenta Ltd for supporting the applications
prize, and the Machine Learning Journal for supporting the theory prize.

vii

www.allitebooks.com

http://www.allitebooks.org

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page ix

Contents

Preface v

Acknowledgments vii

Part 1: Applications 1

1. Can ILP Learn Complete and Correct Game Strategies? 3
Stephen H. Muggleton and Changze Xu

1.1 Introduction . 3
1.2 ILP Representation of Games 4
1.3 Experiments . 5
1.4 Related Work, Conclusions and Future Work 9
Bibliography . 10

2. Induction in Nonmonotonic Causal Theories
for a Domestic Service Robot 11
Jianmin Ji and Xiaoping Chen

2.1 Introduction . 11
2.2 Nonmonotonic Causal Theories 12
2.3 Induction in Causal Theories 13
2.4 A Case Study in a Domestic Service Robot’s Domain . . 14
2.5 Discussion and Conclusion 17
Bibliography . 18

3. Using Ontologies in Semantic Data Mining with g-SEGS
and Aleph 19
Anže Vavpetič and Nada Lavrač

3.1 Introduction . 19
3.2 Related Work . 20

ix

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page x

x Latest Advances in Inductive Logic Programming

3.3 g-SEGS . 21
3.4 Problem Formulation in Aleph 22
3.5 Experimental Results . 23
3.6 Conclusion . 25
Acknowledgments . 25
Bibliography . 25

4. Improving Search Engine Query Expansion Techniques
with ILP 27

José Carlos Almeida Santos and Manuel Fonseca
de Sam Bento Ribeiro

4.1 Introduction and Motivation 27
4.2 Experiments . 29
4.3 Conclusions and Future Work 33
Acknowledgments . 34
Bibliography . 34

5. ILP for Cosmetic Product Selection 35

Hiroyuki Nishiyama and Fumio Mizoguchi

5.1 Introduction . 35
5.2 Previous Cosmetics Recommendation Service Using the

Smartphone . 37
5.3 Design and Implementation of Diagnosis System

by Smartphone . 39
5.4 Conclusion . 41
Bibliography . 41

6. Learning User Behaviours in Real Mobile Domains 43

Andreas Markitanis, Domenico Corapi,
Alessandra Russo and Emil C. Lupu

6.1 Introduction . 43
6.2 Background . 45
6.3 Towards an Adaptive System Using ILP 46
6.4 Real Mobile-Domain Applications 48
6.5 Conclusion . 50
Bibliography . 50

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xi

Contents xi

7. Discovering Ligands for TRP Ion Channels Using
Formal Concept Analysis 53

Mahito Sugiyama, Kentaro Imajo, Keisuke Otaki
and Akihiro Yamamoto

7.1 Introduction . 53
7.2 Methods . 55
7.3 Results and Discussion 58
Acknowledgments . 59
Bibliography . 59

8. Predictive Learning in Two-Way Datasets 61

Beau Piccart, Hendrik Blockeel, Andy Georges
and Lieven Eeckhout

8.1 Situating Two-Way Learning 61
8.2 The Effects of Transposition 64
8.3 Applications . 65
8.4 Conclusions . 67
Acknowledgment . 67
Bibliography . 68

9. Model of Double-Strand Break of DNA in Logic-Based
Hypothesis Finding 69

Barthelemy Dworkin, Andrei Doncescu,
Jean-Charles Faye and Katsumi Inoue

9.1 Introduction . 69
9.2 Double-Strand Break of DNA 70
9.3 Ampliative Reasoning in Biological Systems 71
9.4 Logical Model of a Double-Strand Break 72
9.5 Results . 73
9.6 Conclusion . 76
Bibliography . 76

Part 2: Probabilistic Logical Learning 77

10. The PITA System for Logical-Probabilistic Inference 79

Fabrizio Riguzzi and Terrance Swift

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xii

xii Latest Advances in Inductive Logic Programming

10.1 Introduction . 79
10.2 Probabilistic Logic Programming 80
10.3 The PITA System . 81
10.4 Experiments . 83
Bibliography . 85

11. Learning a Generative Failure-Free PRISM Clause 87
Waleed Alsanie and James Cussens

11.1 Introduction . 87
11.2 Scoring with Variational Free Energy 88
11.3 Building and Searching the Hypothesis Space 88
11.4 Experiment . 91
11.5 Conclusion and Future Work 93
Bibliography . 93

12. Statistical Relational Learning of Object Affordances
for Robotic Manipulation 95
Bogdan Moldovan, Martijn van Otterlo, Plinio Moreno,
José Santos-Victor and Luc De Raedt

12.1 Introduction . 95
12.2 Affordance-Based Models 96
12.3 Learning Relational Skills and Experiments 97
12.4 ProbLog Modeling and Results 99
12.5 Conclusion and Future Work 102
Acknowledgments . 102
Bibliography . 102

13. Learning from Linked Data by Markov Logic 105
Man Zhu and Zhiqiang Gao

13.1 Introduction . 105
13.2 Description Logic ALC 106
13.3 Learning from Linked Data 107
13.4 Experiments . 109
13.5 Conclusion and Remarks 110
Acknowledgment . 111
Bibliography . 111

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xiii

Contents xiii

14. Satisfiability Machines 113
Filip Železný

14.1 Introduction . 113
14.2 Probabilistic Model . 114
14.3 Comparing PM (c) and PS(c) 115
14.4 Discriminative Learning 118
14.5 Conclusion . 119
Acknowledgment . 119
Bibliography . 119

Part 3: Implementations 121

15. Customisable Multi-Processor Acceleration of Inductive
Logic Programming 123
Andreas K. Fidjeland, Wayne Luk
and Stephen H. Muggleton

15.1 Introduction . 123
15.2 Background: Sequential and Parallel ILP 124
15.3 The Arvand Processor 127
15.4 Multi-Processor Architecture for ILP 132
15.5 Multi-Processor Architecture Generation 134
15.6 Results . 135
15.7 Concluding Remarks . 139
Acknowledgments . 139
Bibliography . 139

16. Multivalue Learning in ILP 143
Orlando Muoz Texzocotetla and Ren Mac
Kinney Romero

16.1 Introduction . 143
16.2 Univalue Clauses . 145
16.3 Multivalue Clauses . 146
16.4 Experiments . 148
16.5 Conclusions and Future Work 149
Bibliography . 150

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xiv

xiv Latest Advances in Inductive Logic Programming

17. Learning Dependent-Concepts in ILP: Application to
Model-Driven Data Warehouses 151

Moez Essaidi, Aomar Osmani and Céline Rouveirol

17.1 Overview . 151
17.2 Background Definitions 153
17.3 Relational Learning of Dependent-Concept 156
17.4 Empirical Results . 160
17.5 Conclusion . 169
Bibliography . 169

18. Graph Contraction Pattern Matching for Graphs
of Bounded Treewidth 173

Takashi Yamada and Takayoshi Shoudai

18.1 Introduction . 173
18.2 Preliminaries . 175
18.3 A Pattern Matching Algorithm for GC-Patterns 177
Bibliography . 180

19. mLynx: Relational Mutual Information 181

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli
and Floriana Esposito

19.1 Introduction . 181
19.2 Feature Construction and Classification 182
19.3 Mutual Information Feature Selection 184
19.4 Experiments . 186
Bibliography . 188

Part 4: Theory 189

20. Machine Learning Coalgebraic Proofs 191

Ekaterina Komendantskaya

20.1 Background . 191
20.2 Methodology . 193
20.3 Agenda and Preliminary Results 195
Bibliography . 197

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xv

Contents xv

21. Can ILP Deal with Incomplete and Vague
Structured Knowledge? 199

Francesca A. Lisi and Umberto Straccia

21.1 Introduction . 199
21.2 Fuzzy Description Logics 200
21.3 ILP for Learning Fuzzy DL Inclusion Axioms 202
21.4 Final Remarks . 205
Bibliography . 205

Part 5: Logical Learning 207

22. Towards Efficient Higher-Order Logic Learning
in a First-Order Datalog Framework 209

Niels Pahlavi and Stephen H. Muggleton

22.1 Introduction . 209
22.2 HOLL with First-Order Datalog and Progol 211
22.3 Experiments . 213
22.4 Conclusion and Further Work 215
Bibliography . 215

23. Automatic Invention of Functional Abstractions 217
Robert J. Henderson and Stephen H. Muggleton

23.1 Introduction . 217
23.2 KANDINSKY’s Abstraction Invention Algorithm 218
23.3 Experiment . 222
23.4 Related/Further Work and Conclusion 223
Acknowledgments . 224
Bibliography . 224

Part 6: Constraints 225

24. Using Machine-Generated Soft Constraints
for Roster Problems 227

Yoshihisa Shiina and Hayato Ohwada

24.1 Introduction . 227
24.2 A Simple Roster Problem 228

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-fm page xvi

xvi Latest Advances in Inductive Logic Programming

24.3 Proposed Method . 230
24.4 Experiment . 232
24.5 Concluding Remarks . 233
Bibliography . 233

Part 7: Spacial and Temporal 235

25. Relational Learning for Football-Related Predictions 237
Jan Van Haaren and Guy Van den Broeck

25.1 Introduction . 237
25.2 Related Work . 238
25.3 Current Limitations and Challenges 239
25.4 Relational Representation 240
25.5 Learning Tasks . 241
25.6 Learning Example . 241
25.7 Conclusion . 243
Acknowledgments . 243
Bibliography . 243

Index 245

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 1

PART 1

Applications

1

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 3

Chapter 1

Can ILP Learn Complete
and Correct Game Strategies?

Stephen H. Muggleton and Changze Xu

Computing Department, Imperial College London, UK

While there has been a long history of applying machine learning to
game playing, our approach differs by attempting to provide a general
approach to learn complete winning strategies for a group of combinato-
rial games and the first time to apply ILP (inductive logic programming)
to learn complete and correct game strategies. Instead of learning the
winning moves under different game states, the learning problem we pro-
pose is to learn a classifier for P-positions, in which the next player has
at least one minimax winning move. Combining such a classifier with a
move generator produces a winning strategy. We report the predictive
accuracy curves of learning the positions for winning strategies of a range
of combinatorial games. In each of the six combinatorial games 100%
accurate prediction is achieved after presenting, at most, 26 randomly
sampled examples of play. These results were averaged over ten inde-
pendently sampled trials. We also report the predictive accuracy curves
of learning the positions for the winning strategy of Nim using artificial
neural network (ANN), support vector machine (SVM) and case-based
reasoning (CBR). Even with 200 randomly sample examples, 100% pre-
dictive accuracy is not achieved in any case by ANNs, SVMs and CBRs.

1.1 Introduction

Automated Game Playing, Machine Learning and Logical Reasoning are
each important sub-areas of research within Artificial Intelligence (AI) [Rus-
sell and Norvig (2010)]. This chapter combines these three aspects of AI. In
combinatorial game theory [Berlekamp et al. (2001)], an impartial game is
a game in which the allowable moves depend only on the position and not
on which of the two players is currently moving. Nim is an impartial game
in which two players take turns removing objects from different heaps. On

3

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 4

4 Latest Advances in Inductive Logic Programming

Table 1.1 A 3-Heap Nim game starting with 1, 2, 4 objects.

Heap1 Heap2 Heap3 Moves

1 2 4 Player1 removes one object from Heap 3
1 2 3 Player2 removes two object from Heap 2
1 0 3 Player1 removes two object from Heap 3
1 0 1 Player2 removes one object from Heap 1
0 0 1 Player1 removes the last object and wins

each turn, a player must remove at least one object, and may remove any
number of objects provided they all come from the same heap. The player
to take the last object wins. Table 1.1 shows an example of a 3-heap Nim.
The winning strategy of Nim is based on computing the xor sum of the
number of objects in each pile [Bouton (1902)] and was extended to impar-
tial games by Sprague and Grundy [Sprague (1936); Grundy (1939)]. The
Sprague–Grundy theory [Berlekamp et al. (2001)] shows that any impar-
tial game is isomorphic to a Nim game; in other words, despite appear-
ances, all impartial games are mathematically equivalent to Nim. Later,
Guy and Smith [Guy and Smith (1956)] applied this theory to obtain com-
plete, closed-form solutions to a wide variety of impartial games. However,
it is still non-trivial for humans to manually find an accurate mapping from
an impartial game to a Nim game. It is well known [Berlekamp et al. (2001);
Gardner (1988)] that each state of an impartial game must be classified to
one of two types of positions: P-positions and N-positions and there are
three theorems [Berlekamp (1988)] which form the basis of winning strate-
gies of impartial games: any move applied to a P-position turns the game
into an N-position; there is at least one move that turns the game from an
N-position into a P-position; the final position (when the game is over) is
a P-position. Our aim is to use the ILP system Progol 4.5 [Muggleton and
Firth (2001)] to learn the classifier for N-P positions of impartial games.
Then we use the learned N-P classifier to construct the winning move gen-
erator of these games. This approach can be easily extended for partisan
games (non-impartial combinatorial games) whose winning strategies are
based on N-P positions such as Northcott’s game [Berlekamp et al. (2001)].

1.2 ILP Representation of Games

An impartial game in a P-position is a positive example. An impartial game
in an N-position is a negative example. There is a set of mathematical

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 5

Can ILP Learn Complete and Correct Game Strategies? 5

operations {xor, mod, ×, /, +, −} regarded as general background knowl-
edge. There is some specific background knowledge that encodes the game
states. A classifier for N-P positions (target hypothesis) H which entails
all the positive and none of the negative examples. A winning strategy is
a function that takes as input the current state of the game, player (for
partisan games), AND outputs a winning move that the current player
can play.

1.2.1 Learning schema

Given
A set I+ of P-positions and A set I− of N-positions
General background knowledge (a set of mathematical functions) GB
Specific background knowledge for each impartial game SB
A space of N-P classifiers H
Find an N-P classifier p-Pos ∈ H such that
∀ i+ ∈ I+,GB ∪ SB∪ p-Pos |= i+ and ∀ i− ∈ I−,GB ∪ SB∪ p-Pos � i−

Construct the winning move generator
Input : CState-current game state Player-current player
Output : Action-winning move AState-the game state after taking the
action
If p-Pos(CState)
Return an Action ∈ LegalActions(Player) with the least change to CState.
Else

Forall Action ∈ LegalActions(Player)
If play(Player,CState,Action)
←updateState(Player,CState,Action,AState),p-Pos(AState)

Return Action and AState.

1.3 Experiments

Experiments for learning the N-P classifier for the winning strategies of six
different combinatorial games are performed in this section. We will analyse
the relationships between sample size and predictive accuracy of each game.

1.3.1 Learning N-P position of impartial games by ILP

We use Progol 4.5 [Muggleton (1995); Muggleton and Firth (2001)], as
the reference system. We use the minimax algorithm to generate exam-
ples assuming that both players are playing winning strategies. We fix the

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 6

6 Latest Advances in Inductive Logic Programming

sample size to 50 where 32 of them are positive examples and 18 of them
are negative examples. We use the qsample program in Progol 4.5 which
is based on the sampling algorithm [Knuth (1997)] to randomly generate
training and testing examples. If N examples are chosen from the total
sample dataset as training examples, then the remaining 50-N examples
are test examples. For each game, we conduct experiments by sampling 1
to 27 training examples and repeat the same experiment 10 times for each
size of training examples and calculate the mean predictive accuracy and
the standard deviation. For all impartial games, we use the same set of math
functions {xor, mod, ×, /, +, −} as general background knowledge. Fig-
ure 1.1 shows the relationships between sample size and predictive accuracy
of games: TakeAway, Nim, Turning Turtle, Nimble, Northcott’s, and Green
Hackenbush, respectively. For more details of the game rules see [Berlekamp
(1988)]. In general the predictive accuracy increases with the increase of
sample size for each of the six games. As we can see from the six graphs,
26 examples at most are required for a predictive accuracy of 100% in
each case.

1.3.2 Experiment to determine performance on Nim

of ANNs, SVMs and CBRs

We use MATLAB 2011B as the reference system, and the ANN tool-
box (contains the ANN method) and the Bioinformatics Toolbox (con-
tains the SVM method) in MATLAB, and implement a CBR system by
MATLAB to learn the N-P classifier of a 3-heap Nim. We use 200 ran-
domly generated examples (100 positive and 100 negative) as the total
sample dataset. Examples are represented in two forms: Decimal Form and
Binary Form. An example “3 4 5 1” in the Decimal Form, which means
a positive example of a 3-heap Nim with 3, 4, 5 objects, is represented as
“00011 00100 00101 1” in the Binary Form (the last digit represents the
class of the example: 1≡Positive and 0≡Negative). We randomly choose
20,40,60,80,100,120,140,160,180,200 examples (half positive and half nega-
tive) from the total sample dataset as the subsample and use 10-fold cross
validation to find the average predictive accuracy for each size of subsample.

Figure 1.2 shows the relationships between sample size and predictive
accuracy of Nim games under six different kinds of configurations. In gen-
eral, SVM has higher predictive accuracy than ANN under each sample
form, and for each machine learning technique, learning under Binary Form
has higher predictive accuracy. CBR has extremely high predictive accuracy
under Binary Form but extremely low predictive accuracy under Decimal

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 7

Can ILP Learn Complete and Correct Game Strategies? 7

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

TakeAway

(a) Take Away

0 2 4 6 8 10 12 14 16
30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Nim

(b) Nim

0 2 4 6 8 10 12
30

40

50

60

70

80

90

100

110

120

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Turing Turtle

(c) Turning Turtle

0 2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

110

120

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Nimble

(d) Nimble

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Northcot’s

(e) Northcott’s

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Green

(f) Green Hachenbush

Fig. 1.1

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 8

8 Latest Advances in Inductive Logic Programming

20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70

80

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ac

y
%

L1N5
L1N6
L1N7
L1N8
L1N9
L1N10
L2N5
L2N6
L2N7
L2N8
L2N9
L2N10

(a) Learn 3-heap Nim using ANN

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ac

y
%

linear
poly
quad
rbf

(b) Learn 3-heap Nim using SVM

60 80 100 120 140 160 180 200 220

40

45

50

55

60

65

70

75

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ar

y
%

L1N5
L1N6
L1N7
L1N8
L1N9
L1N10
L2N5
L2N6
L2N7
L2N8
L2N9
L2N10

(c) Learn 3-heap Nim using ANN
under Binary Form

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

85

90

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ac

y
%

linear
poly
rbf

(d) Learn 3-heap Nim using SVM
under Binary Form

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ac

y
%

Dice
Jaccard
L2
Naive

(e) Learn 3-heap Nim using CBR

20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

Sample Size

P
re

di
ct

iv
e

A
cc

ur
ac

y
%

Dice
Jaccard
L2
Naive

(f) Learn 3-heap Nim using CBR
under Binary Form

Fig. 1.2

Form. According to Fig. 1.2 the best results are achieved with SVMs using
kernel functions ′linear′ and ′poly′ (with max exponent 3) under Binary
Form which makes the predictive accuracy tend to 90% and with the CBR
using similarity measure ′L2′ under Binary Form which makes the predictive

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 9

Can ILP Learn Complete and Correct Game Strategies? 9

Table 1.2 L means Layers, N means Neuron, Train means Training Function,
Transfer means Transfer Function, R means the Learning Rate and more detail
about the meaning of the ANN Values at www.mathworks.com/help/toolbox/
bioinfo/ref/svmtrain and the SVM Values at www.mathworks.com/help/tool-
box/nnet/ and the CBR Values at [Liao et al. (1998)].

Fig. System Sample Form Parameter Value

1.2(a) ANN Decimal L/N/Train/ 2. . . 3/5. . . 10/
Transfer/R trainscg/tansig/e-4

1.2(b) ANN Decimal L/N/Train/ 2. . . 3/5. . . 10/
Transfer trainscg/tansig/e-4

1.2(c) SVM Binary Kernel linear/poly/quad/rbf
1.2(d) SVM Binary Kernel linear/poly/rbf
1.2(e) CBR Decimal Similarity Measure dice|| jaccard|| naive|| L2
1.2(f) CBR Binary Similarity Measure dice|| jaccard|| naive|| L2

accuracy up to 98%. Even though the predictive accuracies in these cases
are very high, they still cannot reach 100% which is the basis to construct
a winning-move generator. The settings of the experiments are shown in
Table 1.2.

1.4 Related Work, Conclusions and Future Work

In this chapter, four machine learning approaches (ILP, ANN, SVM and
CBR) for learning N-P positions of combinatorial games have been demon-
strated. Experiments have shown that ILP is able to learn the N-P classifier
for the winning strategy of each of 6 different combinatorial games given
with up to 26 examples and sufficient background knowledge. Even with 200
randomly sampled examples, 100% predictive accuracy is not achieved in
any case by ANNs, SVMs or CBRs. Another disadvantage of ANNs, SVMs
and CBRs compared with ILP systems is that they are unable to give the
players useful hints to play the Nim game as the learned N-P classifier is
not human readable. The proposed method can be applied for any parti-
san games whose winning strategies are based on P and N-positions. Mihai
Oltean uses the Multi-Expression Programming — a genetic programming
variant to compute the winning strategy for Nim [Oltean (2004)]. The idea is
to read the game tree, check N and P-positions during the traversing of the
game tree and count the number of configurations that violates the rules of
the winning strategy. However, the Genetic Programming is not guaranteed
to converge and the approach is only tested on a single game. By contrast,

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch01 page 10

10 Latest Advances in Inductive Logic Programming

our approach has been demonstrated to produce correct solutions across
a variety of combinatorial games. Bain and Muggleton [Bain and Muggle-
ton (1994)] applied the ILP system Golem to learn the optimal strategies of
certain the Chess endgame King-and-Rook-against-King but were only able
to learn a complete strategy for depths 0,1 and 2. Future work will aim to
extend our ILP approach to learn strategies across a broader range of com-
binatorial games, including impartial games under Misre play (the player
that is forced to take the last stone loses) and complex partisan games.
Future work will also apply multi-clause learning to learn game strategies.

Bibliography

M. Bain and S. H. Muggleton. Learning Optimal Chess Strategies. Oxford Uni-
versity Press, Oxford. 1994.

E. R. Berlekamp. Blockbusting and domineering. J. Comb. Theory Ser. A, 49(1),
67116. 1988.

E. R. Berlekamp, J. H. Conway and R. K. Guy. Winning Ways for your Mathe-
matical Plays, Volume 1. A K Peters/CRC Press, London. 2001.

C. L. Bouton. Nim, a game with a complete mathematical theory. Ann. Math.,
2, 35–39. 1902.

M. Gardner. Hexaflexagons and Other Mathematical Diversions: The First Sci-
entific American Book of Puzzles and Games. University of Chicago Press,
Chicago. 1988.

P. M. Grundy. Mathematics and games. Eureka, 2, 6–8. 1939.
R. K. Guy and C. A. B. Smith. The g-values of various games. Proc. Camb. Phi.

Soc., 52, 514–526. 1956.
D. E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley,

Boston. 1997.
T. W. Liao, Z. Zhang and C. R Mount. Similarity measures for retrieval in case-

based reasoning systems. Applied Artificial Intelligence, 12, 267–288. 1998.
S. H. Muggleton. Inverse entailment and Progol. New Generation Computing, 13,

245–286. 1995.
S. H. Muggleton and J. Firth. CProgol4.4: a tutorial introduction. In S. Dzeroski

and N. Lavrac (eds). Relational Data Mining, Springer-Verlag, Berlin, pp.
160–188. 2001.

M. Oltean. Evolving winning strategies for nim-like games. World Computer
Congress, 9(2), 353–364. 2004.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Pearson, New Jersey. 2010.

R. P. Sprague. Über mathematische kampfspiele. Tohoku Mathematical Journal,
41, 438–444. 1936.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 11

Chapter 2

Induction in Nonmonotonic Causal
Theories for a Domestic

Service Robot

Jianmin Ji

Department of CSE, The Hong Kong University of
Science and Technology, Hong Kong

Xiaoping Chen

School of CS, University of Science
and Technology of China, China

It is always possible to encounter an unexpected scenario which has not
been covered by a certain theory for an action domain. This chapter
proposes an approach to treating this problem. We reduce this learning
task to the problem of modifying a causal theory such that the interpre-
tations corresponding to new scenarios become a model of the updated
theory, while all the original models remain unchanged. We illustrate
our approach through a case study based on a domestic service robot,
KeJia.

2.1 Introduction

Nonmonotonic causal theories [Giunchiglia et al. (2004)] are designed to
be a nonmonotonic formalism for representing causal knowledge, which can
be used to formalize action domains, including indirect effects of actions,
implied action preconditions, concurrent actions, nondeterministic actions,
ramification and qualification constraints. However, in practice, it is hard to
model a complicated action domain completely and there always exist unex-
pected scenarios which are not covered by a specific theory. An important
problem for developing an intelligent agent is how to automatically modify
a causal theory for an action domain so that the updated theory can cover

11

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 12

12 Latest Advances in Inductive Logic Programming

a new scenario once it is encountered during the agent’s exploration of the
real world.

In this chapter, we attack the inductive learning problem in nonmono-
tonic causal theories. We take domestic service robots as the setting, though
the results apply to other applications. Our robot is initially equipped with
a causal theory as the model of its environment, with which it provides
services for its users. In order to get more complete causal theories, we
assume the robot gets one or more new scenarios through learning from
demonstration [Argall et al. (2009)], for each of which the robot recognizes
and remembers the entire history of its behaviors and relevant fluents of
the environment. Formally, this history is an interpretation of the causal
theory, but not a model of it. Therefore, we reduce the learning task into
the problem of modifying the causal theory such that this interpretation
becomes a model of the updated theory, while all the models of original
theory are still models of the updated theory. We illustrate our approach
through a case study based on a domestic service robot, KeJia [Chen et al.
(2009, 2010)]. Only the core part of this work will be described in this short
chapter.

2.2 Nonmonotonic Causal Theories

The language of nonmonotonic causal theories [Giunchiglia et al. (2004)] is
based on a propositional language with two zero-place logical connectives:
� for tautology and ⊥ for contradiction. We denote by Atom the set of
atoms, and Lit the set of literals: Lit = Atom ∪ {¬a | a ∈ Atom}. Given a
literal l, the complement of l, denoted by l̄, is ¬a if l is a and a if l is ¬a,
where a is an atom. A set I of literals is called complete if for each atom a,
exactly one of {a,¬a} is in I. In this chapter we identify an interpretation
with a complete set of literals.

A causal theory is a set of causal rules of the form: φ ⇒ ψ, where φ
and ψ are propositional formulas. For a causal rule r of such form, we let
head(r) be its head ψ and body(r) its body φ. Intuitively, the causal rule
reads as “ψ is caused if φ is true.”

Let T be a causal theory and I an interpretation. The reduction T I of
T w.r.t. I is defined as T I = {ψ | for some φ ⇒ ψ ∈ T and I |= φ }. T I

is a propositional theory. We say that I is a model of T if I is the unique
model of T I .

For example, given T1 = {p ⇒ p, q ⇒ q, ¬q ⇒ ¬q} whose signature is
{p, q}. Let I1 = {p, q}, T I1

1 = {p, q} and I1 is the unique model of T I1
1 , then

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 13

Induction in Nonmonotonic Causal Theories for a Domestic Service Robot 13

I1 is a model of T1. Let I2 = {¬p, q}, T I2
1 = {q}, both I1 and I2 are models

of T I2
1 , then I2 is not a model of T1. We can see that T1 has two models

{p, q} and {p,¬q}.
As a syntax sugar, a causal rule with variables is viewed as shorthand

for the set of its ground instances, that is, for the result of substituting
corresponding variable-free terms for variables in all possible ways.

2.3 Induction in Causal Theories

The induction problem considered in this chapter is defined as follows.
Given a causal theory T and an interpretation I, I is not a model of T , we
need to modify T to a new causal theory T ′ such that I is a model of T ′

and each model of T is still a model of T ′.
Before proposing one such modification, we consider the notion of rele-

vance. Following the intuition behind the work of Galles and Pearl [Galles
and Pearl (1997)], relevance is concerned with statements of the form
“Changing X will alter the value of Y , if Z is fixed.” In the setting of
nonmonotonic causal theories, the world is specified by a set of models, an
atom a is related to another atom b under a set S of literals, if changing
the value of a will alter possible evaluations of b given S.

Specifically, given a set M of models and a set S of literals, an atom a

is semantically related to another atom b under S w.r.t. M , if:

• there exists two models I1, I2 ∈ M s.t. S ∪ {la, lb} ⊆ I1 and S∪
{l̄a, l̄b} ⊆ I2,

• there does not exist a model I ′ ∈M s.t. S ∪ {l̄a, lb} ⊆ I ′,

where la ∈ {a,¬a} and lb ∈ {b,¬b}. Note that given M and S, the defined
relevance relation is reflexive, symmetric and transitive.

Given a causal theory T , an atom a is semantically related to an atom
b in T , if there exists a set S of literals such that a is semantically related
to b under S w.r.t. the set of models of T . However, it is NP-hard to decide
where two atoms are semantically related in a causal theory. Now, based
on syntactic properties, we propose a relaxed definition of relevance which
can be computed easily.

Given a causal theory T , an atom a is syntactically related to an atom b

in T if (1) a = b, (2) both a and b occurs in a causal rule of T , or (3) both a
and b are syntactically related to another atom c. Note that the syntactical
relevance relation is also reflexive, symmetric and transitive.

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 14

14 Latest Advances in Inductive Logic Programming

Proposition 2.1. Given a causal theory T and two atoms a and b. If a is
semantically related to b in T, then a is syntactically related to b.

Now, based on syntactical relevance, we propose an approach for the
induction problem. Given a causal theory T and an interpretation I which
is not a model of T , let tr(T, I) be the causal theory obtained from T by:

(1) modifying each causal rule r ∈ T to body(r) ∧ head(r) ⇒ head(r), if
I |= body(r) and I �|= head(r); and

(2) adding a causal rule L⇒ l, for each literal l ∈ I such that T I �|= l, where
L is the conjunction of literals which belong to I and in which occurred
atoms, are syntactically related to the atom which occurred in l.

The number of causal rules generated by the conversion is polynomial for
an interpretation in the number of literals.

Proposition 2.2. Given a causal theory T and an interpretation I which
is not a model of T, I is a model of tr(T, I) and every model of T is a model
of tr(T, I).

Note that we assume that the relevance relation in the domain has been
revealed by the original causal theory. With the help of such relevance
relation, not limited to I, some other interpretations might become the
models of tr(T, I). Consider the causal theory T1 in Section 2.2, I2 = {¬p, q}
is not a model of T1, p is not related to q, then tr(T1, I2) = T1∪{¬p⇒ ¬p}.
In addition to I2, tr(T1, I2) has another new model {¬p,¬q}.

Every new causal rule L ⇒ l added in tr(T, I) can be generalized by
substituting variables for some constants occurring in the rule. Note that
every model of T is still a model of the new theory. Generally, the robot can
be taught with multiple examples, which leads to some common inductive
learning issues investigated in the literature.

2.4 A Case Study in a Domestic Service Robot’s Domain

In this section, we demonstrate the inductive approach by a case study in
a domestic service robot’s domain.

As shown in Fig. 2.1, there is a board on the edge of a table, with one
end sticking out. There is also a can on each end of the board, keeping it
balanced. The task is to pick up the can on the inside end. Note that the
outside can may fall if the robot picks up the inside-end can.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 15

Induction in Nonmonotonic Causal Theories for a Domestic Service Robot 15

Fig. 2.1 Setting of the case study.

First, following the approach in [Giunchiglia et al. (2004)], we use causal
rules to formalize the action domain. The atoms are expressions of the form
at and ft, where a, f , and t are action, fluent, and time names, respectively.
Intuitively, at is true if and only if the action a occurs at time t, and ft is
true if and only if the fluent f holds at t.

In this setting, we focus on the robot’s ability of “grasp” and the corre-
sponding properties of the environment. The action names and fluent names
used in the specification follow, where X and Y are variables ranging over
possible objects in the environment:

• grasp(X): the action of gripping object X and picking it up.
• holding(X): the fluent that object X is held in, in the grip of the robot.
• on(X,Y): the fluent that object X has on object Y .
• falling(X): the fluent that object X is falling on the floor.

In addition, σ is a meta-variable ranging over {on(X,Y),¬on(X,Y),
holding(X),¬holding(X), falling(X),¬falling(X)}.

The effect of executing the action grasp(X) is described as follows:

grasp(X)t ⇒ holding(X)t+1 (2.1)

grasp(X)t ∧ on(X,Y)t ⇒ ¬on(X,Y)t+1 (2.2)

The precondition of grasping requires the grip holds nothing:

grasp(X)t ∧ holding(Y)t ⇒ ⊥ (2.3)

The occurrence of the action is exogenous to the causal theory:

grasp(X)t ⇒ grasp(X)t (2.4)

¬grasp(X)t ⇒ ¬grasp(X)t (2.5)

The initial state (at time 0) can be arbitrary:

σ0 ⇒ σ0 (2.6)

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 16

16 Latest Advances in Inductive Logic Programming

There are some restrictions among these fluents:

holding(X)t ∧ falling(X)t⇒ ⊥ (2.7)

on(X,Y)t ∧ falling(Y)t ⇒ falling(X)t (2.8)

Rule (2.8) specifies that falling(X) is an indirect effect of some action that
causes falling(Y) while X is on Y . The frame problem is overcome by the
following “inertia” rules:

σt ∧ σt+1 ⇒ σt+1 (2.9)

The causal theory formed by rules (2.1)–(2.9) represents the action
domain for the robot’s ability of “grasp.” Let 0 ≤ t ≤ m, the models
of such causal theory correspond to the histories of the action domain
whose length is m. In particular, an interpretation I is a model if and
only if the state si+1 is a successor state of the state si after the concur-
rent execution of actions Ai, where si = {fi ∈ I | f is a fluent name} and
Ai = {ai ∈ I | a is an action name}.

During the development of our robot, there are some real scenarios
that have not been captured by a certain version of the causal theory.
Particularly, in one execution the robot recognizes that s1 is a successor
state of an initial state s0 after the occurrence of an action a0, but the
interpretation I = s0 ∪ {a0} ∪ {¬a′0 | action name a′ different from a} ∪ s1
is not a model of the causal theory with 0 ≤ t ≤ 1. In this case, we can use
our inductive approach to modify the causal theory so that I becomes its
model and all other models remain unchanged.

In the setting, with the current causal theory, the robot cannot pre-
dict the end state in that the outside will fall after the action “grasp the
inside can” is executed. This new scenario is formally represented by the
interpretation I:

{on(a, bd)0, on(b, bd)0,¬holding(a)0,¬holding(b)0,¬falling(a)0,

¬falling(b)0,¬falling(bd)0, grasp(b)0,¬grasp(a)0, falling(bd)1,

on(a, bd)1,¬on(b, bd)1,¬holding(a)1, holding(b)1, falling(a)1,

¬falling(b)1}
which is not a model of the causal theory T with two objects a, b, time names
0, 1, and the constant bd standing for the board. The interpretation I also
expresses the knowledge that a and bd will fall after the action grasp(b)
occurs in the setting.

Using our inductive approach, the robot obtains a new causal theory
tr(T, I), which contains all causal rules in T and the new rule:

∧
l∈I l ⇒

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 17

Induction in Nonmonotonic Causal Theories for a Domestic Service Robot 17

falling(bd)1. Note that every atom occurred in I is syntactically related to
falling(bd)1. Letting M be the set of models of T , we can see that none of
interpretations in M satisfy falling(bd)1 and falling(bd)1 ∈ I, then every
atom is semantically related to falling(bd)1 under some set of literals w.r.t.
M ∪ {I}.

The learned rule can be further generalized by changing 0 to t, 1 to t+1,
and some constants like a, b, and bd can be replaced by variables.

According to Proposition 2.2, I is a model of tr(T, I) and every model of
T is still a model of tr(T, I). Then the robot uses tr(T, I) as the new model
of the action domain and is aware that if it picks up b in the setting then
a has a possibility to fall. Thus, to accomplish the task, the robot would
compute a more cautious plan in which it removes a from the sticking-out
end of the board first before grasping b.1

2.5 Discussion and Conclusion

We use nonmonotonic causal theories to model the action domains of the
robot, mainly because:

• They are convenient to formalize action domains, including the frame
problem, indirect effects of actions, concurrent actions, nondeterministic
actions, ramification and qualification constraints.
• They can be easily computed by existing sophisticated solvers. The prob-

lem of computing models of a causal theory can be equivalently translated
to computing answer sets of a logic program with negative as failure [Lee
(2004)] and solved by ASP solvers. The causal theory can also be con-
verted to a propositional theory, whose models can be computed by SAT
solvers [Lee (2004); Giunchiglia et al. (2004)].
• More importantly, this effort provides evidence that the modification of a

theory for an action domain is convenient by using nonmonotonic causal
theories. Intuitively, an enlarged causal theory most likely covers new
interpretations and original models as its models this way: If no abnor-
mal features related to the service task are observed, then the original
knowledge still works. Otherwise, the newly generated knowledge from
the new scenario should be used. Both the original and the new knowledge

1A similar case study is featured in the video demo “Towards Robot Learning from
Comparative Demonstration” at http://ai.ustc.edu.cn/en/demo/, where the robot is
taught with a positive and a negative example in the same setting.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch02 page 18

18 Latest Advances in Inductive Logic Programming

are integrated conveniently into the enlarged theory as a whole due to
the nonmonotonicity of causal theories.

However, there is not much work on inductive learning in nonmono-
tonic causal theories. But the problem can be closely related to the
context of Nonmonotonic Inductive Logic Programming [Sakama (2001)].
Sakama [Sakama (2005)] proposed an inductive learning approach in non-
monotonic logic programs. Our approach differs from Sakama’s approach
in that we may need to modify rules in the original causal theory while
Sakama keeps the rules in the original program unchanged.

Bibliography

B. D. Argall, S. Chernova, M. Veloso and B. Browning. A survey of robot learning
from demonstration. Robot. Auton. Syst., 57, 469–483. 2009.

X. Chen, J. Jiang, J. Ji, G. Jin and F. Wang. Integrating NLP with reasoning
about actions for autonomous agents communicating with humans. Pro-
ceedings of IAT-09, 2, 137–140. 2009.

X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang and J. Xie. Developing high-level cog-
nitive functions for service robots. In W. van der Hoek, G. Kaminka, Y.
Lesperance, M. Luck and S. Sen (eds). Proceedings of AAMAS-10, 989–
996. 2010.

D. Galles and J. Pearl. Axioms of causal relevance. Artif. Intell., 97, 9–43. 1997.
E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain and H. Turner. Nonmonotonic

causal theories. Artif. Intell., 153, 49–104. 2004.
J. Lee. Nondefinite vs. Definite Causal Theories. Proceedings of LPNMR-04,

141–153. 2004.
C. Sakama. Nonmonotonic Inductive Logic Programming. Proceedings of

LPNMR-01, 62–80. 2001.
C. Sakama. Induction from answer sets in nonmonotonic logic programs. ACM

T. Comput. Log., 6, 2, 203–231. 2005.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 19

Chapter 3

Using Ontologies in Semantic Data
Mining with g-SEGS and Aleph

Anže Vavpetič and Nada Lavrač

Department of Knowledge Technologies,
Jožef Stefan Institute, Slovenia

This chapter describes a prototype semantic data mining system called
g-SEGS, which uses ontologies as background knowledge in the learn-
ing process. The system is a generalization of an existing system SEGS,
which is limited just to the field of functional genomics. Also, the chap-
ter describes how to formulate the problem of semantic data mining
in the inductive logic programming system Aleph. Both approaches are
experimentally evaluated on two real-life biological domains.

3.1 Introduction

The knowledge discovery process can significantly benefit from the domain
(background) knowledge, as successfully exploited in relational data mining
and Inductive Logic Programming (ILP). Additional means of providing
more information to the learner is by providing semantic descriptors to the
data.

Usually, there is abundant empirical data, while the background knowl-
edge is scarce. However, with the expanding of the Semantic Web and
the availability of numerous ontologies which provide domain background
knowledge and semantic descriptors to the data, the amount of semantic
data (e.g. ontologies and annotated data collections) is rapidly growing.1

The data mining community is now faced with a paradigm shift: instead
of mining the abundance of empirical data supported by the background
knowledge, the new challenge is to mine the abundance of knowledge

1See the Linked Data site http://linkeddata.org/

19

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 20

20 Latest Advances in Inductive Logic Programming

encoded in domain ontologies, constrained by the heuristics computed from
the empirical data collection. This paper uses the term semantic data min-
ing to denote this new data mining challenge and approaches in which
semantic data are mined.

As a step towards the described paradigm shift, we have developed
g-SEGS, which still focuses on exploiting ontologies as background knowl-
edge, using them to form a language bias. System g-SEGS is a successor
of SEGS, a system for Searching of Enriched Gene Sets [Trajkovski et al.
(2008)] designed specifically for functional genomics tasks. While SEGS
is a special purpose system for analysing microarray data with biological
ontologies as background knowledge, g-SEGS is a general purpose semantic
data mining system.

The described semantic data mining task requires a level of expres-
siveness that cannot be adequately represented in propositional logic. The
reason is that ontologies can encode extremely complex relations. Since
this clearly becomes a relational data mining problem, we find it useful to
employ an inductive logic programming system Aleph to this task as well.2

In this paper we describe the procedure to formulate the semantic data
mining task in Aleph.

In order to empirically compare both approaches we evaluated them on
two real-life problems from the field of functional genomics.

The paper is organized as follows. We describe the related work in Sec-
tion 3.2. In Section 3.3 we present the prototype system g-SEGS. Section 3.4
describes the problem formulation in Aleph. In Section 3.5 we present the
experimental results. Section 3.6 concludes the chapter and gives some ideas
for further work.

3.2 Related Work

The idea of using hierarchies is not new. It was proposed by Michalski
in 1983 [Michalski (1980)], where a methodology which enables the use of
hierarchies for generalizing terms in inductive rule learning is described.
In [Garriga et al. (2008)], the use of taxonomies (where the leaves of the
taxonomy correspond to attributes of the input data) on paleontological
data is studied.

In [Aronis et al. (1996)], background knowledge is presented in the stan-
dard inheritance network notation and the KBRL algorithm performs a
general-to-specific heuristic search for a set of conjunctive rules that satisfy

2http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 21

Using Ontologies in Semantic Data Mining with g-SEGS and Aleph 21

user-defined rule evaluation criteria. A domain-specific system that uses
ontologies and other hierarchies as background knowledge for data mining
is SEGS [Trajkovski et al. (2008)]. Given ranked gene expression data and
several biomedical ontologies as input, the SEGS system finds groups of
differentially expressed genes, called enriched gene sets.3

The main differences of system g-SEGS, described in this paper, com-
pared to the related approaches is that these (1) use non-standard ontology
formats [Garriga et al. (2008); Trajkovski et al. (2008)], (2) are domain
specific [Garriga et al. (2008); Trajkovski et al. (2008)] and (3) perform
non-symbolic classification tasks [Garriga et al. (2008)].

3.3 g-SEGS

This section describes a prototypical semantic data mining system, called
g-SEGS, which can be used to discover subgroup descriptions both for
labelled or ranked data with the use of input OWL ontologies as back-
ground knowledge. The ontologies are exploited in a similar manner as in
SEGS (i.e. ontological concepts are used as terms that form rule conjuncts),
with the important difference that they can be (1) from any domain and
(2) in a standard OWL format.

Input. Apart from various parameters (e.g. for controlling the mini-
mum support criterion and maximum rule length) the main inputs are: (1)
background knowledge in the form of ontologies in OWL or in the legacy
SEGS format, (2) training data, which is a list of class-labelled or ranked
examples (each example has a numeric value associated to it) and (3) an
example-to-ontology map which associates each example with one or more
concepts from the given ontologies. We say that an example is annotated
with these concepts.

Hypothesis language. The hypothesis language consists of rules
class(X)← Conditions, where Conditions is a logical conjunction of terms
which represent ontological concepts. If we put this into a more illustra-
tive context, a possible rule could have the following form: class(X) ←
doctor(X) ∧ germany(X). Both doctor and germany are terms which
represent the ontological concepts doctor and germany. If our input

3A gene set is enriched if the genes that are members of this gene set are statistically
significantly differentially expressed compared to the rest of the genes.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 22

22 Latest Advances in Inductive Logic Programming

examples are people, we can say that this rule describes a subgroup of
people who are doctors and live in Germany.

Rule construction. A set of rules which satisfies the size constraints
(minimum support and maximum number of rule terms) is constructed
using a top-down bounded exhaustive search algorithm, which enumerates
all such possible rules by taking one term from each ontology. Due to the
properties of the subClassOf relation between concepts in the ontologies,
the algorithm can employ an efficient pruning strategy. If the currently
evaluated rule does not satisfy the size constraints, the algorithm can prune
all the rules which would be generated if this rule was further specialized.

Additionally, the user can specify another relation between the input
examples — the interacts relation. Two examples are in this relation if
they interact in some way. For each concept that the algorithm tries to
conjunctively add to the rule, it also tries to add its interacting counter-
part. For example, the antecedent of the rule of the form class(X) ←
c1(X) ∧ interacts(X,Y) ∧ c2(Y) can be interpreted as: all the examples
which are annotated by concept c1 and interact with examples annotated
by concept c2.

Rule selection. As the number of generated rules can be large, unin-
teresting and overlapping rules have to be filtered out. In g-SEGS, rule
filtering is performed using wWRAcc (Weighted Relative Accuracy with
example weights) [Lavrač et al. (2004)], which uses example weights as
means for considering different parts of the example space when selecting
the best rules during rules post-processing by a weighted covering algorithm
used for rule selection.

Implementation. g-SEGS is implemented as a web service in the
Orange4WS environment which upgrades the freely available Orange
[Demšar et al. (2004)] data mining environment. Additionally, we devel-
oped an easy-to-use user interface for our system in Orange, allowing simple
experimentation with g-SEGS by using it in workflows together with the
existing Orange widgets.

3.4 Problem Formulation in Aleph

In order to solve similar semantic data mining tasks in Aleph as with g-
SEGS, we need to encode (1) the ontologies, (2) the given examples and
(3) the example-to-ontology map (annotations).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 23

Using Ontologies in Semantic Data Mining with g-SEGS and Aleph 23

In Aleph, each ontological concept c, with child concepts c1,c2,..,cm,
is encoded as a unary predicate c/1:

c(X) :- c1(X) ; c2(X) ; ... ; cm(X).

Each child concept is defined in the same way. To encode the whole ontology,
we need to start this procedure at the root concept. All these predicates
are allowed to be used in the rule body and are tabled for faster execution.

If the k-th example is annotated by concepts c1,c2,..,cm (defined by
the example-to-ontology map), we encode it as a set of ground facts:

instance(ik). c1(ik). c2(ik). ... cm(ik).

Additional relations (if available) can also be trivially added to the back-
ground knowledge.

In order to encode the input examples, we transform the ranked or
labelled problem into a two-class problem (the positive class is the class
which interests the user) and split the examples accordingly.

3.5 Experimental Results

We tested both approaches on two publicly available4 biological microar-
ray datasets: acute lymphoblastic leukemia (ALL) [Chiaretti et al. (2004)]
and human mesenchymal stem cells (hMSC) [Wagner et al. (2008)]. Both
datasets encode gene expression data for two classes. The challenge is to
produce descriptions of sets of differentially expressed genes involved in the
process of each domain.

First, we preprocessed the datasets by following the SegMine [Podpečan
et al. (2011)] methodology. Genes were first ranked using the ReliefF
[Robnik-Šikonja and Kononenko (2003)] algorithm and then filtered using
the logarithm of expression fold change (logFC). All genes g with
|logFC(g)| < 0.3 were removed from the set, resulting in 8,952 genes in
the ALL domain and 11,389 genes in the hMSC domain.

The ranked genes were annotated by Gene Ontology5 (GO) and Kyoto
Encyclopedia of Genes and Genomes6 (KEGG) concepts by using the
Entrez database7 to map between gene identifiers and the ontology con-
cepts. The top 300 were used as the positive class examples and from the

4http://segmine.ijs.si
5http://www.geneontology.org/
6http://www.genome.jp/kegg/
7http://www.ncbi.nlm.nih.gov/sites/gquery

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 24

24 Latest Advances in Inductive Logic Programming

remaining examples we randomly selected 300 examples, which we labelled
as negative.

Experiments on both datasets were repeated 20 times. Both systems
were applied on the same sets of positive/negative examples. Finally we
selected the top 20 rules produced by each algorithm, calculated the
selected measures and statistically validated the results. We applied the
Wilcoxon test [Wilcoxon (1945)] using significance level α = 0.05 for each
measure separately. This approach is proposed as an alternative to the
paired t-test, which proves to be less appropriate for such a comparison
[Demšar (2006)].

Table 3.1 presents the performance of both approaches on the two
domains. The discovered rule sets were evaluated using the descriptive mea-
sures of rule interestingness as proposed in [Lavrač et al. (2004)]: the average
rule coverage (AvgCov), the overall support (OvSup), the average signifi-
cance (AvgSig), the average unusualness (AvgWRAcc) and the area under
the convex hull (AUC). Additionally, we also measured the execution time
(t).

The results show that g-SEGS produces more significant rules, with
statistically significantly higher WRAcc (interestingness) and AUC scores
and in much less time. Other measures indicate that a rule discovered by
Aleph (on average) covers more examples and that the rule set covers a
higher percentage of all positive examples. An interesting fact is also that
g-SEGS produces the resulting rule set approximately 20–30 times faster
than Aleph, which is due to the fact that g-SEGS exploits the hierarchical

Table 3.1 Experimental results. Values in bold represent statistically signif-
icantly better performance.

ALL

System AvgCov OvSup AvgSig AvgWRAcc AUC t[s]

g-SEGS 0.094 0.532 17.371 0.023 0.587 10.700
Aleph 0.110 0.727 9.792 0.020 0.575 230.550

hMSC

System AvgCov OvSup AvgSig AvgWRAcc AUC t[s]

g-SEGS 0.060 0.542 9.772 0.015 0.569 7.750
Aleph 0.092 0.646 2.577 0.008 0.535 232.050

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 25

Using Ontologies in Semantic Data Mining with g-SEGS and Aleph 25

properties of the ontologies. Of course we need to take into account that it
is not necessary that these measures reflect a better rule set, which would
in fact provide novel and interesting knowledge for the domain expert. Such
an analysis by the domain expert is planned in future work.

3.6 Conclusion

This paper presented g-SEGS, a general-purpose semantic data mining sys-
tem, based on the successful system SEGS, which was designed exclusively
for functional genomics. The paper also shows how to solve a similar task
with the general purpose ILP system Aleph. Both approaches were experi-
mentally evaluated on two real-life biological domains. The evaluation shows
that, although g-SEGS produces more significant rules with higher interest-
ingness and AUC, Aleph can also be successful in this type of task and its
potential should necessarily be further exploited in building of the system
for semantic data mining of linked data, whose development is planned in
our future work.

Acknowledgments

The research presented in this paper was supported by the Slovenian Min-
istry of Higher Education, Science and Technology (grant no. P-103) and
the EU-FP7 projects e-LICO and BISON.

Bibliography

J. M. Aronis, F. J. Provost, and B. G. Buchanan. Exploiting background knowl-
edge in automated discovery. Proceedings of the 2nd International Confer-
ence on Knowledge Discovery and Data Mining, pp. 355–358. AAAI Press,
Menlo Park, California, 1996. KDD 1996: Portland, Oregon, 2–4 August
1996.

S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz and
R. Foa. Gene expression profile of adult t-cell acute lymphocytic leukemia
identifies distinct subsets of patients with different response to therapy and
survival. Blood, 103, 2771–2778. 2004.

J. Demšar. Statistical comparison of classifiers over multiple data sets. J. Mach.
Learn. Res., 7, 1–30. 2006.

J. Demšar, B. Zupan and G. Leban. Orange: From experimental machine
learning to interactive data mining, white paper. Faculty of Computer
and Information Science, University of Ljubljana, 2004. Available online:
www.ailab.si/orange. Accessed 8 August 2014.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch03 page 26

26 Latest Advances in Inductive Logic Programming

G. C. Garriga, A. Ukkonen and H. Mannila. Feature selection in taxonomies with
applications to paleontology. Proceedings of the 11th International Confer-
ence on Discovery Science, pp. 112–123. Springer-Verlag, Berlin, 2008. DS
2008: Budapest, Hungary, 13–16 October 2008.

N. Lavrač, B. Kavšek, P. A. Flach and L. Todorovski. Subgroup discovery with
CN2-SD J. Mach. Learn. Res., 5, 153–188. 2004.

R. S. Michalski. Pattern recognition as rule-guided inductive inference. IEEE T.
Pattern Anal., 2(4), 349–361. 1980.

V. Podpečan, N. Lavrač, Igor Mozetič, P. K. Novak, I. Trajkovski, L. Langohr, K.
Kulovesi, H. Toivonen, M. Petek, H. Motaln and K. Gruden. SegMine work-
flows for semantic microarray data analysis in Orange4WS. BMC Bioinfor-
matics, 12. 2011.

M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of Reli-
efF and RReliefF. Mach. Learn., 53, 23–69. 2003.

I. Trajkovski, N. Lavrač and J. Tolar. SEGS: Search for enriched gene sets in
microarray data. J Biomed. Inform., 41(4), 588–601. 2008.

W. Wagner, P. Horn, M. Castoldi, A. Diehlmann, S. Bork, R. Saffrich, V. Benes,
J. Blake, S. Pfister, V. Eckstein and A. D. Ho. Replicative senescence of
mesenchymal stem cells: A continuous and organized process. PLoS ONE,
3(5), e2213. 2008.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1, 80–83.
1945

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 27

Chapter 4

Improving Search Engine Query
Expansion Techniques with ILP

José Carlos Almeida Santos and Manuel Fonseca de Sam Bento Ribeiro

Microsoft Language Development Center
Tagus Park, Portugal

and
ISCTE-Lisbon University Institute, Portugal

Query expansion is the process in which a query is augmented so that
it matches more documents, thus potentially increasing the number of
relevant results. This is frequently done by spell correcting the query
and adding synonyms, morphological variations or other type of relevant
data. Query expansion would, for example, expand “automobile” with
“car” or “car” with “cars”.

Given a concrete set of queries and particular words within these
queries, it is relatively simple to generate lists of candidates that would
later reflect as good or bad alterations. However, generalizing from a
ground truth set, which is a list of alterations considered to be good, to
a model which allows the generation of good alterations to an unseen set
of words is a challenging task.

In the present work we provide such a model for the English language,
discovered with Inductive Logic Programming (ILP). The model induced
by ILP is a set of Prolog rules. An important aspect of having the model
as rules in Prolog is that, instead of merely being able to classify a given
pair 〈term, candidate〉 as good or bad, we are now able to generate good
alterations for a given word, which is the main goal of this investigation.

4.1 Introduction and Motivation

Having a search engine return relevant links for an arbitrary query is a
complex task involving the work of several components, most importantly:
indexing, query expansion, matching and ranking.

27

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 28

28 Latest Advances in Inductive Logic Programming

The indexing component crawls the web, updating and annotating a
database of valid URLs. The query expansion component focuses on spell
correcting and augmenting the query with synonyms, morphological vari-
ations and other related terms. The matching component is given an aug-
mented query and has to find all the documents in the index that match
at least one of the query words. Finally, the ranking component is given a
list of documents that match the query and ranks them according to their
relevance, trying to maximize the Normalized Discounted Cumulative Gain
(NDCG) [Järvelin and Kekäläinen (2002)] of the results list.

Since matching only returns documents that match the tokens in the
query, query expansion attempts to intelligently add elements that return
more relevant documents. For instance, the query “used automobiles” may
be expanded to “used word:(automobiles cars)”, meaning that the words
“automobiles” and “cars” are equivalent when returning documents to the
ranker.

In this paper we consider Term to be a token which may be extended
with another token. Candidate refers to a token which will augment an
original token and Alteration is a 〈Term, Candidate〉 pair that may be
used to extend a query. Using the previous example, the term automobile
can be expanded with the candidate cars, thus producing the alteration
〈automobiles, cars〉.

An important aspect of query expansion is thus to be able to gener-
ate good alterations for certain terms in a query. An alteration is consid-
ered good if it increases the NDCG value of the query. Generating good
alterations for an arbitrary word in a query is not a trivial task. The cur-
rent approach uses a range of techniques, from manually supervised lists of
alterations to synonyms extracted from online repositories such as WordNet
[Fellbaum (1998)].

In this chapter we explore a machine learning approach in which we aim
to learn rules that identify common patterns for good alterations. Since the
creation of new good alterations is a costly process, it is our goal to use the
identified rules to generate good candidates for a given term.

From the query expansion component perspective, the aspect of being
able to generate new candidates from the learned rules is more important
than predictive accuracy. An ILP approach is thus particularly suitable for
this problem as the model an ILP system learns, a set of Prolog rules, can
also be easily used to construct new alterations.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 29

Improving Search Engine Query Expansion Techniques with ILP 29

4.2 Experiments

In this section we describe the whole experimentation procedure, starting
from processing the raw data to learning an ILP model, and finally using
the model to construct putative new good alterations.

4.2.1 Materials

We have gathered from internal resources five data files that were used
for these experiments. The first is an English lexicon consisting of roughly
340,000 words. The other four files are query sets gathered from Bing search
engine users in Great Britain, which were named Head1, Tail1, Head2, Tail2.
The numerical suffix refers to the period from which the queries were sam-
pled.

Head queries are randomly sampled from the top 100,000 queries per-
formed by users, whilst Tail queries are randomly sampled from queries
which have been issued fewer than 500 times during the time period 1 or 2.

Each of the four query sets is a tab separated file where each line has
the format Query<tab>Term<tab>Candidate. Previous experimentation
has determined that changing the word Term to Candidate in query Query
increases the overall NDCG value and is, therefore, a good alteration.

In this investigation we are considering query-independent alterations
only. Thus, we processed the four query sets to consider only the 〈Term,
Candidate〉 pair. The alteration list was restricted to those in which
both Term and Candidate occur in the English lexicon. We combined the
query sets from the same period (Head1+Tail1 and Head2+Tail2) into two
datasets HT1 and HT2. The number of positive alterations in these datasets
is 6,508 and 5,832, respectively.

Opposing the positive alterations, the negative ones will decrease or
maintain the NDCG score of a query. Since our original sets do not contain
negative alterations, we have randomly generated them from all the lexicon
entries. Considering there are no more than 10 to 20 good alterations per
Term, a randomly selected pair 〈Term, Candidate〉 is highly likely to be a
bad alteration.

We used a ratio of 100 negatives to 1 positive to ensure the rules found
would be specific. To generate the 100 negative examples per positive exam-
ple, we fixed the Term to be the same as in the positive example and selected
the 100 Candidates randomly from the full English lexicon.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 30

30 Latest Advances in Inductive Logic Programming

Table 4.1 Background knowledge predicates.

Predicate type Background Knowledge Predicates

unary word properties word length/2, num vowels/2,
num glides/2, num consonants/2,
is possessive/2

〈word, alteration〉 edit distance/3, len common prefix/3,
properties len common suffix/3,

len longest common substr/3,
len longest common subseq/3,
is substr/3, is prefix/3, is suffix/3

integer comparison lteq/2, gteq/2

4.2.2 Problem modeling

To model this problem we used the features described in Table 4.1, whose
names should be self explanatory.

The unary word properties features take a word as input and output
an integer. An important 〈word, alteration〉 feature is the edit distance,
also known as the Levenshtein distance [Levenshtein (1966)], the minimum
number of edits needed to transform one string into the other.

On a previous experiment we focused on purely linguistic features, look-
ing at grammatical and lexical (part-of-speech) categories. This, however,
did not produce relevant results. Therefore we opted to focus on features
that work at the pure string level, disregarding more language-specific or
linguistic information. This also simplifies the process, limiting the input
data to a valid word list of a given language and not being dependent on
any type of linguistic annotation.

So instead of simply looking for general linguistic rules to define good
alterations, such as “singular to plural”, these features will attempt to look
deeper at the way the alteration is being built. This approach allows the
ILP system not to be dependent on linguistic restraints and to be free, for
example, to identify specific plural morphemes as good alterations, while
ignoring others.

4.2.3 Rule learning

We have implemented a program to generate the ILP background knowledge
file containing ground facts for all the features of Table 4.1 applied to all
the positive and negative alterations in our two datasets, HT1 and HT2.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 31

Improving Search Engine Query Expansion Techniques with ILP 31

Note that all the predicates in Table 4.1 are determinate. That is, given
the input, there is only one possible output. This determinism makes the
hypothesis space relatively small and the coverage computation efficient,
thus well suited to ILP systems like Aleph [Srinivasan (2007)] and FOIL
[Quinlan and Cameron-Jones (1995)]. We employed both Aleph 5 and FOIL
6.4, with default settings, using HT1 as training set and HT2 as test set.

We selected the top two rules each system induced from the training
set. Table 4.2 presents the rules and respective precision and recall on the
training and test sets. Analyzing these results, we note that the precision
and recall in the test set are identical to the ones in the training set, signal-
ing that the rules generalize well. Also, Aleph rules tend to be more general
and FOIL more specific.

A further analysis of the positive matches proved to be interesting in
the sense that the rules grouped several linguistic processes. Thus, we were
able to identify alterations that fall under specific linguistic rules. The most
frequent cases are alterations that expand singular to plural (“ace to aces”,
“captain to captains”) and add the possessive clitic −’s (“car to car’s”,
“video to video’s”). But we also note that these matches are not absolute,

Table 4.2 Rules found by ILP. The first two rules were found by Aleph, last two
by FOIL.

Training set Test set
An alteration from a term

Rule A to a candidate B is good if: Precision Recall Precision Recall

1 edit distance(A,B,C), lteq(C, 3), 98.9% 56.6% 98.4% 55.6%
is substr(A,B,1)

2 edit distance(A,B,C), lteq(C, 3), 98.5% 86.6% 98.2% 84.9%
len common prefix(A,B,D),
gteq(D,3), is possessive(A,0)

3 edit distance(A,B,C), C≤2, 97.7% 77.5% 97.4% 75.5%
len longest common
subseq(A,B,D), D>2,
is possessive(A,0),
num consonants(B,E), E>1

4 num vowels(B,C), 99.4% 59.5% 99.5% 58.3%
edit distance(A,B,D),
len common prefix(A,B,E),
D≤E, D≤2, C>D

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 32

32 Latest Advances in Inductive Logic Programming

meaning that they do not cover all that a singular to plural or a form
possessive rule would.

We observe that we also encounter matches with denominal adjectives
(“intelligence to intelligent”, “gnosticism to gnostic”, “apocalypse to apoca-
lyptic”, “angola to angolan”). Other interesting results extend the lemma of a
verbto itspresentcontinuous(“access toaccessing”,“edit toediting”)or tothe
regular past tense (“eye to eyed”) or match contractions (“cannot to can’t”).
So each rule the system found is not specific to one phenomenon and covers
different linguistic processes and that is what makes these rules relevant.

The relevance of these rules can therefore be justified by being inde-
pendent of any linguistic background. We can, of course, always write this
information in such a way that it would generate alterations based on the
word formation rules of a given language, but by applying these rules, we
identify specific occurrences of the patterns that were matched. Also rel-
evant is the fact that the patterns that these rules match also allow the
quick generation of alterations based on a simple list of words, instead of
being dependent on annotated lexica. To find alterations with these rules,
all that is required is a lexicon of valid words of a given language. This pro-
cess will not only find alterations based on morphological rules, but others
that would not necessarily be annotated within a list, such as orthograph-
ical variants (“ann to anne”, “whisky to whiskey”, “majorca to mallorca”)
or even, if it is the case, of misspelled words.

4.2.4 From ILP rules to new alterations

To test the rules found by ILP on the full lexica, we compiled a fresh list
of 36 sample words and provided these as terms to the rules of Table 4.2 so
that new candidates would be generated. The list of sample words compiled
attempted to match lexical and grammatical categories: adjectives, nouns
(loan words, singular, plural, possessive singular, possessive plural) and
verbs (present participles, past tenses, infinitives). We have also selected
test words by length, ranging from two to eight characters. While analyz-
ing the results, and since we are only looking at query independent alter-
ations, a generated alteration was considered to be relevant if the candidate
maintained a semantic approximation to the term. Due to space restrictions,
Table 4.3 shows only the coverage of one word category per rule. Not all
the alterations are sensible but most are.

It was noted that rule behavior is not specific to lexical or grammatical
categories. Word length, however, seems to be important when it comes

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 33

Improving Search Engine Query Expansion Techniques with ILP 33

Table 4.3 Candidates generated from all lexicon for a sample list of words.

Rule Word Candidates

1 financer financer’s, financers, financers’, refinancer, refinancers

2 acrylic acrid, acrolect, acrolith, acromia, acronymic, acrostic,
acryl, acrylate, acrylic’s, acrylics, acrylics’

3 Moldavian moldavia, moldavians

4 pianos’ pianism, pianist, piannas’, piano, piano’s, pianola,
pianolas’, pianos

to generating new candidates. Lengthier words (i.e. ≥ five characters) will
return more relevant alterations than smaller words. This is explained by
all rules computing the edit distance of the current term to a low value (two
or three). The larger the word, the more likely it is that an arbitrary string
at an edit distance of one to three will be an invalid word and thus not
belong to the lexicon. It is interesting though, that neither Aleph nor FOIL
captured the constraint on the word length. This is because the remaining
constraints of the rule were enough to discriminate between the positive and
negatives. However, if we were to further increase the ratio of negatives to
positives, it would be more likely that the word length constraint would be
learned by the ILP systems.

4.3 Conclusions and Future Work

In this chapter we have shown how ILP was used to learn a model which
can generate relevant alterations. The learned model has both high pre-
dictive accuracy and recall and, more importantly, has been shown to be
easily reversed in order to generate new good alterations. In future work
we would attempt lifting the no-context restriction and consider the neigh-
boring tokens of the query term, as well as determining the impact of these
generated alterations on the overall NDCG. Improving the quality of both
rules and generated alterations might pass from manipulating the lexicon
so that it can contain more morphological variations or so that it can be
stripped of specific lexical categories (such as articles, preposition or other
groups of entries that could be considered stop words).

A more in-depth linguistic analysis would also be of relevance with the
generated data, in which we would attempt to understand the relation
between the rules and the linguistic coverage they support.

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch04 page 34

34 Latest Advances in Inductive Logic Programming

Currently, we are able to construct the candidates for a given term
by running the rule against the background knowledge file. However, this
process takes about one minute of central processing unit (CPU) time per
term, for all the four rules, which limits scalability. We should look at the
ILP rules as constraints over the good alterations and, using Constraint
Logic Programming techniques and a constructive Prolog implementation
of the predicates in Table 4.1, we would be able to generate the alterations
in a more efficient way.

Acknowledgments

The authors would like to thank the Software Developer Engineers at the
Microsoft Search Technology Center in Munich, especially Jonas Barklund,
for the motivation to this problem.

Bibliography

C. Fellbaum (ed.). WordNet: An Electronic Lexical Database. The MIT Press,
Cambridge, Massachusetts. 1998.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst., 20, 4, 422–446. 2002.

Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Doklady Akademii Nauk SSSR, 163(4), 845–848. 1965.

J. R. Quinlan and R. M. Cameron-Jones. Induction of Logic Programs: FOIL and
Related Systems. New Generat. Comput., 3&4(13), 287–312. 1995.

A. Srinivasan. The Aleph Manual. University of Oxford, Oxford.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 35

Chapter 5

ILP for Cosmetic Product Selection

Hiroyuki Nishiyama and Fumio Mizoguchi

Faculty of Science and Technology, Tokyo University of Science, Japan

In this chapter, we design a real-world machine learning system using
a smartphone. This system can acquire images taken with the camera
of a smartphone using learners (ILP and SVM) and automatically diag-
nose the new image. To develop this system, we implement an image
analysis function and a classifier function using learning rules (learned
ILP) and learning data (learned SVM) in the smartphone. With this
system, the user can collect image data with a smartphone camera and
diagnose the new image data according to the learning rules and data
in the smartphone. In this chapter, we apply this system to a cosmetics
recommendation service and demonstrate its effectiveness by improving
the user service.

5.1 Introduction

Recently, many multifunctional cellular phone terminals, such as smart-
phones (e.g., Android and iPhone), have been developed as a result of the
evolution of the computer and of network infrastructure. Thus, the num-
ber of users is rapidly increasing. The smartphone is equipped with various
sensors (e.g., an acceleration sensor, an infrared sensor, and a luminosity
sensor), besides the camera function. Various researches and services can be
performed with a smartphone using such features. Examples are the study
of a service that recommends cosmetics appropriate for a skin condition
by transmitting the skin image from the camera function to an analysis
server [Hiraishi and Mizoguchi (2003); Nishiyama and Mizoguchi (2011)]
and a navigation service using location information. With these services,
information obtained from various sensors of the smartphone is transmit-
ted to a server via the network; next, the server performs analysis and
calculations; and finally, the result is displayed on the smartphone. Thus,

35

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 36

36 Latest Advances in Inductive Logic Programming

the server should have sufficient computational performance and commu-
nication performance even if many requests are received at the same time
[Hiraishi and Mizoguchi (2003)], as well as the ability to strengthen the
server environment as the number of users increases. Moreover, the calcu-
lation ability of the smartphone and the portable terminal personal digital
assistant (PDA) has advanced more rapidly than that of previous cellular
phones such that these devices now have the same processing performance
as a small notebook computer. Therefore, interest in research into data
mining with a portable terminal has also increased [Stahl et al. (2010)].

Considering this background, we have designed a real-world machine
learning system using a smartphone. This system can acquire images taken
with a smartphone camera using learners (ILP and SVM) and automatically
diagnose the new image. To develop this system, we implement an image
analysis function and a classifier function using learning rules (learned ILP)
and learning data (learned SVM) in the smartphone. With this system, the
user can collect image data with a smartphone camera and diagnose the
new image data according to the learning rules and data in the smart-
phone. To demonstrate its effectiveness, we apply this system to a user
interface of a cosmetics recommendation service [Hiraishi and Mizoguchi
(2003); Nishiyama and Mizoguchi (2011)]. With this service, users can pho-
tograph their own skin and transmit the skin picture to a diagnosis server
by e-mail. The server analyzes the picture and judges the texture, tone,
pores, and dryness of the skin, and recommends suitable cosmetics within
one minute. The smartphone should be able to access the Internet to use
this service [Hiraishi and Mizoguchi (2003)]. We also seek to enable the
diagnosis of the skin image and the recommendation of cosmetics with a
smartphone alone. To achieve this purpose, we have designed a system with
the following three functions in a smartphone.

• Analyze skin images acquired by the user.
• Judge if a skin image can be diagnosed by using learning data obtained

with an SVM [Vapnik (1995)].
• Diagnose skin by using learning rules obtained by ILP [Mizoguchi and

Ohwada (1995)]. Finally, recommend cosmetics.

With these functions, a user can obtain recommended cosmetics appropriate
for their skin even if the diagnosis server is not used through the Internet
after user takes a picture of the skin.

In this chapter, we apply the learning data obtained with an SVM to
judge whether the learning rules obtained with ILP for collected information

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 37

ILP for Cosmetic Product Selection 37

can be applied. This method differs from Muggleton’s research [Muggleton
et al. (2005)] that combines SVM technology with ILP.

5.2 Previous Cosmetics Recommendation Service Using
the Smartphone

Figure 5.1 depicts the process of a cosmetics recommendation service using
a smartphone. First, the user takes a skin photo using a smartphone’s cam-
era (Fig. 5.1(1)). The picture will be displayed on the smartphone mon-
itor, and the user chooses the domain of the skin photo to be diagnosed
by tapping the rectangle on the monitor with a finger (Fig. 5.1(2)). The
selected skin area is transmitted to the diagnosis and analysis server (refer
to Fig. 5.2). In addition, the skin photograph is transmitted by e-mail.
When the diagnosis is complete, the result is displayed on the monitor of
the user’s smartphone (refer to Fig. 5.1(3)). A radar chart indicates the

Fig. 5.1 Process of cosmetics recommendation service using a smartphone.

Camera
Module

Communication
Module

Display

Smartphone

Module

ILP Learning
Module

Skin

Image Analysis
Module

Diagnosis
Module

Cosmetic

Fig. 5.2 Structure of a previous cosmetics recommendation service system.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 38

38 Latest Advances in Inductive Logic Programming

texture, tone, pores, and dryness of the skin. This result involves compre-
hensive evaluation in five stages. After determining the condition of the
skin, this service recommends suitable cosmetics. In addition, the result
is displayed in the smartphone’s browser. A homepage for the result of
every diagnosis is created after diagnosis is completed by the diagnosis and
analysis server [Hiraishi and Mizoguchi (2003)]. Thus, the user can check
the diagnostic result at any time. (Each user’s diagnostic result page is
protected by a password.)

This cosmetics recommendation service system was to be executed skin
diagnosis that applies learning rules created by ILP [Mizoguchi and Ohwada
(1995)] in the diagnosis server as shown in Fig. 5.2. About 10,000 skin
images evaluated by a skin specialist are used for ILP learning of the skin
images. The following rule is an example rule for skin-grading:

1. grade(A, every goodf):- %rule(1)

2. sex(A, efemalef),

3. age(A, e40f),

4. int_num(A, NI), 80<NI<90,

5. int_depth(A, DI), 120<DI<130,

6. line_thick(A, LT), 3.1<LT<5.1,

7. line_depth(A, LD), 20<LD<130,

8. line_strength(A, LS), 9.1<LS<12.5.

The grade in line 1 indicates that this rule (1) is for the grade “very good.”
This rule means that “If the sex is female (line 2), the age is in the 40s
(line 3), the number of the intersections (NI) is between 80 and 90 (line 4),
the image depth of the intersections (DI) is between 120 and 130 (line 5),
the line thickness (LT) is between 3.1 and 5.1 (line 6), the image depth
of the lines (LD) is between 20 and 130 (line 7), and the strength of the
line direction (LS) is between 9.1 and 12.5 (line 8), then the skin is graded
three stars.” This system executes skin diagnosis based on the learning rules
and recommends cosmetics appropriate for the state of the skin based on
the diagnostic outcome [Hiraishi and Mizoguchi (2003)]. Actually, a total
of 64 rules are created, and cosmetics have been selected for each rule by a
cosmetics specialist.

Two problems of this system are that the learning rules may not be
applied accurately depending on the state of the skin image acquired
and the rules were created without using images of the smartphone. For
instance, accurate diagnosis is impossible if the images are fake (images

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 39

ILP for Cosmetic Product Selection 39

other than skin) or the image is out of focus. To resolve this problem, this
system’s Image Analysis Module judges whether a skin image can be diag-
nosed by extracting 45 parameters by image analysis. In addition, we need
to create rules suitable for the camera function of the smartphone.

5.3 Design and Implementation of Diagnosis System
by Smartphone

In this chapter, we diagnose a skin image in a smartphone with two learn-
ing tools (SVM and ILP). The structure of our system is illustrated in
Fig. 5.3. In this system, the user takes a picture of the skin, and then the
Image Analysis Module analyzes the skin image. Next, the SVM Prediction
Module predicts whether the skin image can be diagnosed by using SVM
learning data. This system requests the user to retake the photograph when
the image is judged unfit for diagnosis. If this system judges that the image
can be diagnosed, the Diagnosis Module applies the learning rule created
by ILP to the parameters the Image Analysis Module extracted, diagnoses
the parameters, and recommends cosmetics.

5.3.1 Application of SVM learning data

The Prediction Module uses learning data created by SVM learning. We
used HTC Desire X06HT as the Android smartphone, and the Java version
of LIBSVM1 so that the SVM can be implemented on the Android.

Figure 5.4 presents data when collected parameters are learned by the
SVM. The parameters of one line mean one image. The left-hand number

Camera
Module

Display
Module

SVM Predict
Module

Image Analysis
Module

SVM
Learned

Data

Diagnosis
Module

Cosmetic
Simple

Fig. 5.3 System structure that implements the classification function by SVM
and ILP.

1LIBSVM: A library for support vector machines. http://www/csie.ntu.edu.tw/∼
cjlin/libsvm/

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 40

40 Latest Advances in Inductive Logic Programming

Fig. 5.4 Parameters used for SVM learning (before scaling).

(+1 or −1) indicates whether the skin image can be diagnosed (+1) or
not (−1). The parameters are NI, DI, LD, LT, LS (refer to the foregoing
paragraph), RGB parameter and etc. (13 parameters). After scaling, these
parameters can be learned by the SVM, and learning data is created. We
used the Gaussian kernel as the kernel function for SVM learning. The
average time necessary for the Image Analysis Module to extract parameters
by image analysis was 2.18 seconds. The average time necessary for the
judgment using the learning data of the SVM of the extracted parameter
was 0.46 seconds. Cross validation indicated that the learning accuracy of
156 images (78 images that can be diagnosed and 78 images that cannot
be diagnosed) used for learning was 86.54%.

5.3.2 Application of the ILP rules

The Diagnosis Module uses ILP learning rules [Hiraishi and Mizoguchi
(2003)] similar to those in Fig. 5.2 in the foregoing paragraph. However,
the ILP rules were created without using smartphone images, so we modi-
fied the rules to make them suitable for the smartphone. We first corrected
8,083 skin images acquired by 1,482 users with cellular phones and smart-
phones. Next, we adjusted the parameters of the ILP rules with relative
and statistical methods because we could not obtain a specialist’s diagnos-
tic result of the new images. In this method, we calculated the deviation
of each parameter of the ILP rules from the old skin images (about 10,000
images) and the range of parameters of the new images (8,083 images).
A suitable rule for a smartphone is thus generated from rule (1) in the
foregoing paragraph as follows.

1. grade(A, every goodf):- %rule(1’)

2. sex(A, efemalef),

3. age(A, e40f),

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 41

ILP for Cosmetic Product Selection 41

4. int_num(A, NI), 20<NI<31,

5. int_depth(A, DI), 101<DI<120,

6. line_thick(A, LT), 2.03<LT<3.10,

7. line_depth(A, LD), 113<LD<125,

8. line_strength(A, LS), 45.6<LS<75.5.

We adjusted all the ILP rules and realized skin diagnosis by the smartphone.
Our system uses the learning data created by the SVM to exclude skin

images that cannot be diagnosed, and then diagnoses the remaining skin
images using the learning rules created by ILP. We can take a picture,
diagnose the skin image, and recommend cosmetics with a smartphone alone
into the cosmetics recommendation service system illustrated in Fig. 5.3.

5.4 Conclusion

In this chapter, we designed a real-world machine learning system using
a smartphone. This system can acquire images taken with a smartphone
camera using learners (ILP and SVM) and automatically diagnose the new
image. To develop this system, we implemented an image analysis function
and a classifier function using ILP learning rules and SVM learning data
in the smartphone. With this system, the user can collect image data with
a smartphone camera and diagnose the new image data according to the
learning rules and data in the smartphone. In this study, we applied this
system to a user interface of a cosmetics recommendation service, diagnosed
the skin image with the smartphone, and recommended cosmetics in an
environment without Internet access, and demonstrated its effectiveness by
improving the user service.

Bibliography

H. Hiraishi and F. Mizoguchi. A cellular telephone-based application for skin-
grading to support cosmetic sales, IAAI2003, 19–24. 2003.

F. Mizoguchi and H. Ohwada. Constrained relative least general generalization
for inducing constraint logic programs, New Generation Computing, 13,
335–368. 1995.

S. H. Muggleton, H. Lodhi, A. Amini and M. J. E. Sternberg. Support vector
inductive logic programming, Discovery Science, 2005, 163–175. 2005.

H. Nishiyama and F. Mizoguchi. Cognitive support by smartphone — human
judgment on cosmetic skin analysis support. The 10th IEEE International
Conference on Cognitive Informatics & Cognitive Computing, pp. 175–180.
2011. ICCI&CC 2011: Banff, Alberta, 18–20 August 2011.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch05 page 42

42 Latest Advances in Inductive Logic Programming

F. Stahl, M. M. Gaber, M. Bramer and P. S. Yu. Pocket Data Mining. Towards col-
laborative data mining in mobile computing environments, The Proceedings
of the 22nd International Conference on Tools with Artificial Intelligence,
pp. 323–330. 2010. ICTAI 2010: Arras, 27–29 October 2010.

V. Vapnik. The Nature of Statistical Learning Theory, Springer-Verlag, Berlin.
1995.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 43

Chapter 6

Learning User Behaviours in Real
Mobile Domains

Andreas Markitanis, Domenico Corapi, Alessandra Russo
and Emil C. Lupu

Department of Computing, Imperial College London, UK

With the emergence of ubiquitous computing, innovations in mobile
phones are increasingly changing the way users lead their lives. To make
mobile devices adaptive and able to autonomously respond to changes
in user behaviours, machine learning techniques can be deployed to
learn behaviour from empirical data. Learning outcomes should be rule-
based enforcement policies that can pervasively manage the devices,
and at the same time facilitate user validation when and if required.
In this chapter we demonstrate the feasibility of non-monotonic Induc-
tive Logic Programming (ILP) in the automated task of extraction of
user behaviour rules through data acquisition in the domain of mobile
phones. This is a challenging task as real mobile datasets are highly
noisy and unevenly distributed. We present two applications, one based
on an existing dataset collected as part of the Reality Mining group,
and the other generated by a mobile phone application called ULearn
that we have developed to facilitate a realistic evaluation of the accuracy
of the learning outcome.

6.1 Introduction

In the past few years, companies such as Apple and Samsung have really
managed to develop cutting-edge mobile systems revolutionising the mobile
phone industry. Often, the complexity of these systems prevent the user
from utilising the device to its full potential. A more pervasive approach
requires systems to be able to continuously adapt to the user’s preferences
and behaviour with near-to-zero intervention. Rules are an effective way of

43

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 44

44 Latest Advances in Inductive Logic Programming

specifying how these systems should adapt in different contexts. Rule-based
enforcement policies that govern system choices are increasingly becom-
ing more popular in pervasive systems. Information about user behaviours
can be collected through their phone usage and used together with past
data and background knowledge about contextual information to com-
pute new rule-based enforcement policies and/or make changes in existing
ones. Such scenarios suggest the use of Inductive Logic Programming (ILP)
[DeRaedt and Muggleton (1994)] as an appropriate learning mechanism. To
our knowledge no existing ILP techniques have so far been applied to large
and real data in the mobile phone domain.

In this context, to provide accurate solutions, the ILP technique has
to make use of heuristics to guide the search in a (potentially large)
search space to minimise computation time, cater for noise in the data
and for uneven distribution of data. This chapter demonstrates that the
non-monotonic inductive programming tool, TAL (Top-directed Abductive
Learning) [Corapi et al. (2010)] can be appropriately customised to learn
new mobile-user behaviours as well as revise existing rules with approx-
imately 80% level of accuracy. TAL’s main features suited this problem
as it overcomes the completeness problems but also the expressiveness of
learning in the context of learning logic programs. It is the first system
that allows background theories and hypotheses to be normal logic pro-
grams. In particular, it handles negation during the learning process, has
the ability to learn non-monotonic hypotheses and is complete, allowing
to find a solution, if one exists. The key difference, which made it deal
in this context, lies in its applicability to derive rules by handling large
datasets and to perform a complete search over a large space and infinite
domains.

A learning framework is presented where domain knowledge about con-
textual information and language bias are defined as normal logic programs,
and applied to two real datasets. The former uses the mobile dataset col-
lected as part of the Reality Mining group [Eagle et al. (2007)] whereas
the latter has been collected through a proof-of-concept mobile phone
application we have developed, called ULearn. The application collects con-
textual information about user mobility as well as user behaviour in terms
of interactions with the device (e.g. accepting a call, rejecting a call, etc.).
Additionally, it allows users to specify a language bias, and computes rule-
based enforcement policies. These are presented to the user in the form of

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 45

Learning User Behaviours in Real Mobile Domains 45

English text for validation purposes and the user can refine the learning out-
comes by selecting rules to revise and enforce constraints on the language.
The evaluation of the learning outcomes in both applications shows that
the learning accuracy changes according to the heuristics and considerably
improves with the use of a standard cover loop.

The chapter is structured as follows. Section 6.2 summarises basic
background notions used throughout the chapter. Section 6.3 presents our
learning framework and introduces main parts of its background knowledge
and language bias modelled in the specific domain of phone calls. Section 6.4
illustrates the application of the framework to two real mobile-domain
datasets presenting some accuracy results of the learning outcomes. Finally,
Section 6.5 concludes with final remarks and directions for future work.

6.2 Background

We assume the reader is familiar with basic notions and terminologies of
Inductive Logic Programming. ILP is regarded as a machine learning tech-
nique that is used to enrich a knowledge base with rules that discriminate
between positive and negative examples. Specifically, ILP is concerned with
the computation of hypotheses H that together with a background knowl-
edge B explain a given set of examples E, namely B ∪H |= E under given
semantics. In this chapter we consider the case when B and H are normal
logic programs, E is a set of ground literals and |= is the entailment relation
under the stable model semantics.

The space of possible solutions is inherently large, particularly in real-
domain applications with large datasets, so different levels of constraints
can be imposed to restrict the search for hypotheses. A structure on the
hypothesis can be employed to impose an instance-specific language bias S.
Mode declarations are a common tool to specify a language bias [DeRaedt
and Muggleton (1994)]. These define which predicates are to be used in the
head and in each of the body conditions of the rules that form a hypoth-
esis as well as how their arguments are unified or grounded. In the TAL
system [Corapi et al. (2010)], the mode declarations are mapped into a top
theory � that constrains the search by imposing a generality upper bound
on the inductive solution. The system uses an abductive proof procedure
instantiated on this top theory together with the background theory. The
abductive derivation identifies the heads of the rules (of a hypothesis solu-
tion) and the conditions needed to cover positive examples and to exclude

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 46

46 Latest Advances in Inductive Logic Programming

negative examples, ensuring consistency. The abductive solution is guaran-
teed to have a corresponding inductive hypothesis H that is a solution with
respect to the examples. For further details on the ILP system, TAL, the
reader is referred to [Corapi et al. (2010)].

6.3 Towards an Adaptive System Using ILP

In this section we briefly describe our learning framework for learning and
revising mobile-user behaviour rules, with a brief overview of the concepts
modelled in the background knowledge and language bias. As shown in
Fig. 6.1, our learning framework includes a modelling step where back-
ground knowledge and examples are encoded as normal logic programs
and a language bias is defined. The TAL learning system is then applied.
Following that, rule refinement can be performed on the learned outcomes
based on a subsequent collection of data. The framework also includes cross-
validation mechanisms for assessing the accuracy of the rules learned.

In the application domain of mobile phones, as well as in many context-
sensitive applications, the concept of time plays an important role in defin-
ing user behaviours. We answer phone calls at a particular point in time and
we are at location Y at a time point X . These are often not instantaneous
and have a certain time duration. Events are therefore modelled in our back-
ground knowledge using a notion of timestamp span defined in terms of a
start-time and an end-time. A basic notion of time as [Day, Month, Y ear]
has been defined together with ordering relations over time (e.g. before
and after). These have been used to define different notions of duration

Inductive Logic
Programming

Training Data

Background
Knowledge +

Language Bias

Cross
Validation

Rule
Refinement

Modelling

Fig. 6.1 The learning framework.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 47

Learning User Behaviours in Real Mobile Domains 47

span which allow inference of specific knowledge from our collected data.
Examples related to the domain of mobile phones include:

• Activity span: defines the period of a user’s activity on the phone.
• Application span: denotes the period as well as the type of applica-

tion a user is using. Application types are defined in the background
knowledge.
• Device span: represents the period of time for which a device is present

in the user’s vicinity. Devices are also typed and defined in the back-
ground knowledge.
• Cell span: indicates the period in which the user is at a certain loca-

tion. All locations traversed by the user are typed and included in the
background knowledge.
• On span: Shows the period that the phone is switched on.

More abstract notions are defined in the background knowledge in terms
of basic notions of time and duration span to allow the learning of user-
behaviour rules that refer to more “high-level” concepts. These include
concepts of time like weekend, morning, afternoon and evening, as well
as the location of user, device proximity, user activity, application usage
events, charge event, etc., each at a time point [D, T]. These are defined
in terms of their respective span notions described above. For example,
device proximity at time [D, T] is defined in the background knowledge in
terms of the existence of a device span such that [D, T] is after [D1, T 1]
but before [D2, T 2]. As location also plays a crucial role in defining mobile-
user behaviours, sufficient contextual information about a user’s transition
from one location to another can be collected through the device and is
used to define a predicate that expresses the user being at a location X at
time [D, T].

Different language bias can be defined to specify the structure of the
user-behaviour rules that we might be interested to learn. As proof of
concept we have considered the task of learning when a user answers
or rejects a phone call. The head declaration for such a task can be
as rich as needed in order to compute rules that are dependent on few
or many contextual aspects. An example of such head declaration is
modeh(accept(+date, +time, +contact)) with a corresponding body bias
declaration of the form modeb(weekend(+date)), modeb(evening(+time)),
modeb(= (+contact, #contact), [no ground constants]), and modeb(\ +
(= (+contact, #contact)), [no ground constants]), where the argument

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 48

48 Latest Advances in Inductive Logic Programming

[no ground constants] defines the number of ground constants allowed in
the search. For lack of space we omit the full definition of our language bias.

6.4 Real Mobile-Domain Applications

We have applied our framework to two different mobile-domain datasets.
Each learning outcome has been cross validated using five folds1 and we
perform ROC2 analysis on each fold in order to compute the total error
estimate. We show, below, the solutions in English that have been produced
automatically from the output of TAL by means of a translation mechanism
that we have implemented.

The first dataset is the Reality Mining [Eagle et al. (2007)] dataset. This
represents the largest mobile phone experiment attempted in the academic
word. It consists of a large amount of data on human behaviour and group
interactions collected using 100 Nokia 6600 smartphones with pre-installed
software developed at the University of Helsinki. The information collected
includes call and message logs, Bluetooth devices in proximity, cell tower
IDs, application usage and phone status. The dataset has been anonymised
and made available online to the general public.3 We have selected a wide
range of users, but ultimately focussed on studying the most problematic
cases in terms of user’s actions. Due to space constraints we only give an
example of the most accurate user-behaviour rules that we have computed
from this dataset. User #96 has a total number of 142 positive examples
and 35 negative examples. The average error estimate turned out to be
19.2%. Listing 6.1 illustrates the best solutions while Table 6.1 shows some
of the performance metrics of the ROC analysis.

Listing 6.1

solution (−106 , [(accept (, ,C) :−$\+C=200)$])
solution (−104 , [(accept (A,B,) :−not nearDev i ce (A,B,413)) , (accept (, ,H) :−$\+H

=200)$])
solution (−104 , [(accept (, ,C) :−C= −1) , (accept (, ,G) :−$\+G=200)$])

Accept ca l l s : not from contact 200
Accept ca l l s : when you ’ re not near devi c e 413 , OR not from contact 200
Accept c a l l s : when the contact i s not in your addres s book , OR not from

contact 200

1We used five folds, as opposed to ten, due to the incredible amount of runtime taken
to process each fold over large datasets.
2ROC: Receiver Operating Characteristic
3The Reality Mining Dataset: http://reality.media.mit.edu/dataset.php

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 49

Learning User Behaviours in Real Mobile Domains 49

Table 6.1 Performance measure results for
user #96.

Fold Accuracy Error Precision(PPV)

Fold 1 0.8571 0.1429 0.8529
Fold 2 0.9429 0.0571 0.9429
Fold 3 0.7143 0.2857 0.7143
Fold 4 0.6857 0.3143 0.6857
Fold 5 0.8378 0.1622 0.8378

Accuracy is the proportion of true results (both true positives and true
negatives), and the accuracy of the above rule lies between 70% and 95%, a
measure which is very promising. Precision is defined as the proportion of
the true positives against all positive results (both true positives and false
positives). In many cases, precision is equal to accuracy meaning that our
results are both accurate and close to each other, showing that in each fold,
the user’s behaviour does not change much. Overall, the majority of the
rules learned have one or two literals in the body and the best solutions
always include the negation of a contact as the condition for accepting a
call. This illustrates that the users’ decision of accepting/rejecting calls is
based on who the caller is, a result which is largely intuitive.

For the second dataset, we have developed a comprehensive client-server
application called ULearn where data acquisition and user interaction takes
place on an Android phone whilst the processing of data and execution of
the learning algorithm happens on the server side. The rules, as a result of
the training examples, background knowledge and language bias, are dis-
played to the user for validation. One of the main benefits of ULearn is the
user’s involvement in the learning process. The user can select any number
of integrity constraints to impose restriction on the search space, or select
already-learned rules for theory revision. We make use of the algorithm pre-
sented in [Corapi et al. (2008)] so that the existing rules are able to reflect
and account for newly seen instances of examples and background knowl-
edge. We have collected data from two users over a period of approximately
two months. Here we present the best solutions for both users and also show
how the results immediately improve when the cover loop approach is used.
The score for each solution represents the accuracy of each rule.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 50

50 Latest Advances in Inductive Logic Programming

User #2

/% Wi t h o u t c o v e r l o o p %/
solution (−0.7065 , [
(accept (P,Q,R, , , , , , ,Y,):−\+ us e r i s a c t i v e (P,Q) ,\+R=7517429133,\+Y=1280)

,
(accept (A,B,C, , , , , , , ,) :−\+ us e r i s a c t i v e (A,B) ,\+C=7517429133 ,

t imex a f t e r h (B,1 0))])

Accept ca l l s : When you ’ re not ac t ive , not from contact 7517429133 , not when
your phone ’ s l i g h t l e v e l i s 1280 , OR when you ’ re not act ive , not from
contact 7517429133 , a f t e r 10 :00 o ’ c l o ck

/% With c o v e r l o o p %/
solution (−0.7717 , [
(accept (A,B, , , , , , , , J ,) :−not a t (A,B,1071 .8253461) , J=225) ,
(accept (, ,Q, , , , , , , ,) :−Q=1200490800) ,
(accept (, ,C1 , , , , , , , ,) :−C1=447515692890) ,
(accept (, , , , , , , ,U1, ,) :−U1=0) ,
(accept (Y1 , Z1 ,A2, , , , , , ,H2 ,):−\+u s e r i s a c t i v e (Y1, Z1) ,\+A2=7517429133,\+

H2=1280)])

Accept ca l l s : anywhere un l e s s you ’ re at 1071.8253461 , when your l i g h t l e v e l i s
225 , OR from contact 1200490800 , OR from contact 447515692890 , OR when
your sc r een i s o f f , OR when you ’ re not act ive , not from contact
7517429133 , not when your l i g h t l e v e l i s 1280

6.5 Conclusion

The work presented in this chapter demonstrates the applicability of the
TAL system to real mobile domains for supporting the learning of mobile-
user behaviours. With appropriate definition of a relevant domain of dis-
course, language bias and background knowledge, our evaluation results
indicate that the system performs well when dealing both with large
domains and large amounts of data. In particular, it has proven to be a
powerful non-monotonic ILP system that tolerates noise and scales well
with large domains and data because of its use of finite domain constraints
that are not available in other systems. Further work includes enriching
the background knowledge and language bias further. For example, using
light-level information we can enrich the inference of context information,
whether the user’s mobile phone is inside their pocket or handbag. We can
further use information about location to predict the user’s next location.
Last, but not least, we can explore the use of bagging, boosting together
with bootstrapping datasets, in order to compute potentially richer rules
with even higher accuracy.

Bibliography

D. Corapi, O. Ray, A. Russo, A. Bandara and E. C. Lupu. Learning rules from
user behaviour, 2nd International Workshop on the Induction of Process
Models, September. 2008.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch06 page 51

Learning User Behaviours in Real Mobile Domains 51

D. Corapi, A. Russo, and E. C. Lupu. Inductive logic programming as abductive
search, Technical Communications of the 26th International Conference on
Logic Programming, pp. 54–63. 2010. ICLP 2010: Edinburgh, 16–19 July
2010.

L. DeRaedt and S. H. Muggleton. Inductive logic programming: theory and
methods, J. Logic Program., 19/20, 629–680. 1994.

N. Eagle, A. Pentland and D. Lazer. Inferring social network structure using
mobile phone data, PNAS, 106(36), 15274–15278. 2007.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 53

Chapter 7

Discovering Ligands for TRP
Ion Channels Using Formal

Concept Analysis

Mahito Sugiyama, Kentaro Imajo, Keisuke Otaki
and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University, Japan

In this chapter, we propose an inductive approach to find candidates
of ligands for transient receptor potential (TRP) ion channels from
databases, which play crucial roles for sensory transduction of living
things and are actively studied in biology and biochemistry. To study
properties of TRP channels biologically, ligands are key tools. Ligands
are chemical substances and activate or inhibit TRP channels by docking
to them. However, finding a new ligand is difficult; choosing candidates of
ligands relies on expert knowledge of biologists, and test experiments in
vitro and in vivo cost high in terms of time and money. Thus an in silico
approach to find candidates of ligands helps biologists. Here we achieve
this task by treating as semi-supervised learning from ligand databases
and using SELF (SEmi-supervised Learning via FCA) (recently proposed
by two of the authors). SELF finds classification rules from mixed-type
data including both discrete and continuous variables using FCA (Formal
Concept Analysis). We show that SELF works well compared to other
learning methods, and find candidates of ligands for TRP channels from
more than a thousand ligands stored in a database.

7.1 Introduction

Transient receptor potential (TRP) ion channels form a class of ion
channels, which are usually located on the plasma membrane. They play a
crucial role for sensory transduction. In particular, ThermoTRPs, a subset
of TRP channels, are activated by changes in temperature [Dhaka et al.
(2006)]. Each channel has its own thermal thresholds and is considered

53

www.allitebooks.com

http://www.allitebooks.org

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 54

54 Latest Advances in Inductive Logic Programming

Outside cell

Inside cell

Ligand binds
Channel opensIons

Fig. 7.1 Ligand-gated ion channels.

as a “gate” of temperature sensation, such as cold or hot [Bautista et al.
(2007)]. To experimentally analyze TRPs (in biological sense), biologists use
ligands, which are chemical substances and activate (called agonist or acti-
vator) or inhibit (called antagonist or inhibitor) TRPs’ response (Fig. 7.1).
Interestingly, each ligand has selectivity; i.e., binding cites of ion channels
to which it can dock is limited and this is why they are convenient for
experiments. However, finding ligands is difficult. Choosing candidates of
ligands relies on expert knowledge of biologists, and experiments for testing
ligands in vitro and in vivo are costly in terms of time and money. Thus an
in silico approach to find candidates of ligands will help biologists.

In this chapter, we adopt an inductive data mining approach to find
ligand candidates for TRPs from databases, and we use the framework of
semi-supervised learning [Chapelle et al. (2006); Zhu and Goldberg (2009)]
mainly studied in the machine-learning community. Semi-supervised learn-
ing is a special form of classification, where a learning algorithm uses both
labeled and unlabeled data to obtain a classification rule (a label is an
identifier of a class). Commonly, only few labeled data are available since
labeling data costs high in a real situation. Currently, only few ligands for
TRPs are discovered, and lots of ligands for other receptors are available.
Thus if we use ligands for TRPs and the other ligands as labeled and unla-
beled data, respectively, semi-supervised learning fits our goal.

Information about TRPs (and other ion channels) and ligands is donated
to various databases, such as KEGG1, and in this paper we use the
IUPHAR database2 [Sharman et al. (2011)]. In the database we can know
which receptor each ligand binds to. Moreover, every ligand is character-
ized by seven attributes: hydrogen bond acceptors, hydrogen bond donors,

1http://www.genome.jp/kegg/
2http://www.iuphar-db.org/index.jsp

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 55

Discovering Ligands for TRP Ion Channels Using Formal Concept Analysis 55

rotatable bonds, topological polar surface area, molecular weight, XLogP,
and number of Lipinski’s rules broken. Here, the forth, fifth, and sixth
attributes are real-valued features, and the others are nominal features.
Thus to learn classification rules for ligands from this database using the
above seven attributes, a learning algorithm is required to handle mixed-
type data including both discrete and continuous variables.

Various semi-supervised learning methods are available, but most of
them are for learning from data with real-valued features. Moreover, to
the best of our knowledge, only the semi-supervised learning method SELF
[Sugiyama and Yamamoto (2011)], proposed by two of the authors, can
directly handle mixed-type data. We therefore use SELF in this chapter
to obtain classification rules and discover ligand candidates from ligand
databases.

To date, no study treats mining of classification rules for ligands from
databases. Some studies focus on predicting affinity of ligands, the strength
of docking. Recently, the literature [Ballester and Mitchell (2010)] pro-
posed a machine learning approach to predict affinity, but we cannot know
whether or not a ligand binds to a receptor. Another approach was per-
formed by King et al. [King et al. (1996)] for modeling structure-activity
relationships (SAR), which can be applied to ligand finding. However,
their goal is to understand the chemical model by describing relations
using inductive logic programming (ILP), thus their approach is different
from ours. Most studies have tried to construct a predictive model using
domain-specific knowledge, such as the potential energy of a complex, the
two-dimensional coordinates, and the free energy of binding [Moitessier
et al. (2008)]. However, to use such a method, some special background
knowledge is required and results depend on them. Our approach relies on
only databases, hence the user do not need any background knowledge and
can easily understand results.

This chapter is organized as follows: Section 7.2 gives methods: an
overview of FCA and SELF, and experimental settings. Section 7.3 des-
cribes results and discussion of experiments.

7.2 Methods

SELF algorithm. SELF [Sugiyama and Yamamoto (2011)] learns clas-
sification rules from ligand data using FCA. SELF allows missing values
and labels in databases; this is why it can be viewed as a semi-supervised
learning method.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 56

56 Latest Advances in Inductive Logic Programming

FCA [Davey and Priestley (2002); Ganter and Wille (1998)] is a mathe-
matical and algebraic method used to derive a lattice structure, called a
concept lattice, from a binary relation between objects and their attributes,
called a context and given as a cross-table. In this study, each object corre-
sponds to a ligand, and SELF translates features of ligands into attributes
of the context in the data preprocessing phase. Each concept obtained by
FCA is a pair of objects and attributes with the closed property; i.e., objects
in a concept share a common subset of attributes and all attributes shared
by the objects are in the concept. Many studies used FCA and the closed
property for machine learning and knowledge discovery, such as classifica-
tion [Ganter and Kuznetsov (2003)] and association rule mining [Pasquier
et al. (1999)].

First, SELF makes a context from a given mixed-type database using
both labeled and unlabeled data, where we use level-wise discretization
for continuous variables. Next, it constructs the concept lattice from the
context with FCA. Then SELF finds maximal concepts that are consistent
with given class labels. Intuitively, their attributes correspond to the most
general classification rules that explain a given labeled training data. We
show a flowchart of SELF in Fig. 7.2.

To efficiently find all concepts, we use the algorithm proposed by
Makino and Uno [Makino and Uno (2004)], which is known to be one of
the fastest algorithms. Their algorithm enumerates all maximal bipartite
cliques in a bipartite graph that coincide with the concept. Its time com-
plexity is O(∆3), where ∆ denotes the maximum degree of a given bipartite
graph. For empirical experiments, we use the program LCM3 [Uno et al.
(2005)] to enumerate all concepts. As a result, time complexity of SELF is
O(nd) + O(∆3) + O(Λ), where n is the number of objects, d the number
of attributes, and Λ the number of concepts at discretization level 1, since
data preprocessing takes O(nd), making concepts takes O(∆3), and judging
consistency of concepts takes less than O(Λ).

Environment. All experiments were performed in R version 2.12.2
[R Development Core Team (2011)] since SELF was implemented in R.
Note that LCM was implemented in C. We used Mac OS X version 10.6.5
with two 2.26-GHz Quad-Core Intel Xeon CPUs and 12 GB of memory.

Databases. We collected the entire 1,782 ligand data in the IUPHAR
database4 [Sharman et al. (2011)]. In the database, there are 44 ligands

3http://research.nii.ac.jp/∼uno/codes-j.htm
4http://www.iuphar-db.org/index.jsp

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 57

Discovering Ligands for TRP Ion Channels Using Formal Concept Analysis 57

Input labeled and
unlabeled ligands

Discretize real-valued
features at level k

Preprocess for nominal features

k ← 0

Extract a classification rule
using labeled ligands

All labeled
ligands are contained

in consistent
concepts

Classify unlabeled ligandsOutput results

Make a context and concepts by FCA k ← k + 1

YES

NO

Remove ligands contained
in consistent concepts

Fig. 7.2 A flowchart of classification by SELF. SELF learns classification rules
from both labeled and unlabeled ligands (training data), and classifies unlabeled
ligands. We say that a concept is consistent if all labels contained in the concept
are the same.

that bind to TRPs, where seven TRPs exist: TRPA1, TRPC2, TRPM4,
TRPM8, TRPV1, TRPV3, and TRPV4. From these ligands, we picked
up nine ligands for labeled data, shown in Table 7.1, which are known as
famous and convenient ligands of TRPs for biological experiments. Other
ligands for TRPs are used as test data to evaluate performance of SELF.
In the first experiment, we tested SELF in a transductive setting [Chapelle
et al. (2006)], that is, we used both labeled and unlabeled data to obtain
classification rules by SELF and predicted labels of unlabeled data. To mea-
sure the effectiveness of unlabeled ligand data, we performed three cases:
using all ligands as unlabeled data, using the subset of ligands that bind
to TRPs as unlabeled data, and using no unlabeled data. Moreover, to find
new candidates of ligands for TRPs, we used all 44 ligands that bind to
TRPs as labeled data in the second experiment.

Control Methods. As a control method for evaluation of SELF, we
adopted the decision tree-based method implemented in R [Ripley (1996)]

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 58

58 Latest Advances in Inductive Logic Programming

Table 7.1 A subset of ligand database used for labeled data. Each ligand has
seven attributes; hydrogen bond acceptors (HBA), hydrogen bond donors (HBD),
rotatable bonds (RB), topological polar surface area (TPS), molecular weight
(MW), XLogP, and number of Lipinski’s rules broken (NLR), and has a receptor
to which it binds as a class label.

HBA HBD RB TPS MW XLogP NLR Receptor

allicin 1 0 5 61.58 162.02 0.24 0 TRPA1
allyl isothiocyanate 1 0 2 44.45 99.01 1.72 0 TRPA1
DOG 5 1 18 72.83 344.26 5.80 2 TRPC2
phosphatidylinositol 19 8 44 332.00 1022.49 9.87 4 TRPM4
menthol 1 1 1 20.23 156.15 3.21 0 TRPM8
eucalyptol 1 0 0 9.23 154.14 2.60 0 TRPM8
capsaicin 2 2 10 58.56 305.20 4.23 0 TRPV1
camphor 1 0 0 17.07 152.12 2.13 0 TRPV3
epoxyeicosatrienoic 3 1 14 49.83 320.24 6.58 2 TRPV4

acid

Table 7.2 Results of accuracy (%). We used all ligands as unla-
beled data (SELF (ALL)), the subset of ligands which binds to
TRPs (SELF (TRP)), or no unlabeled data (SELF). We used the
decision tree-based method (Tree), SVM, and kNN (k = 1, 5).

SELF SELF SVM SVM
(ALL) (TRP) SELF Tree (RBF) (Pory) 1NN 5NN

0.52 0.48 0.37 0.18 0.39 0.43 0.50 0.34

since it can apply to mixed-type data. Note that this is a supervised learning
method that cannot use unlabeled data in the learning phase. Moreover,
we applied SVM with the RBF and the polynomial kernels and k near-
est neighbor method (k = 1 and 5) for reference by using only real-valued
features.

7.3 Results and Discussion

Results are summarized in Table 7.2. These results show that unlabeled
ligand data can be used effectively in the learning of classification rules.
Moreover, if we use the all ligands for learning, SELF shows the best result
compared to other learning methods, and the accuracy is more than 50%,

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 59

Discovering Ligands for TRP Ion Channels Using Formal Concept Analysis 59

despite there being seven classes. Notice that even though the nearest neigh-
bor also records good results, we cannot obtain any classification rules. Our
results are therefore valuable for finding new ligands by biological experi-
ments.

In the second experiment, 79 classification rules were obtained by using
all ligands that bind to TRPs as labeled data and, by applying the rules, 762
candidates of ligands for TRPs were discovered from 1,782 ligands. These
candidates are a novel result and can contribute to biological studies of TRP
ion channels. Checking these candidates by actual biological experiments is
a future work. Furthermore, this approach can be applied to any receptors,
thereby discovering ligands for other receptors is an another interesting
future work.

Acknowledgments

This work is inspired by the insightful ideas of Professor Shigeo Kobayashi.
This work was partly supported by Grant-in-Aid for Scientific Research (A)
22240010 and for JSPS Fellows 22·5714.

Bibliography

P. J. Ballester and J. B. O. Mitchell. A machine learning approach to predict-
ing protein–ligand binding affinity with applications to molecular docking.
Bioinformatics, 26(9), 1169–1175. 2010.

D. M. Bautista, J. Siemens, J. M. Glazer, P. R. Tsuruda, A. I. Basbaum,
C. L. Stucky, S. E. Jordt, and D. Julius. The menthol receptor TRPM8 is
the principal detector of environmental cold. Nature, 448(7150), 204–208.
2007.

O. Chapelle, B. Schölkopf and A. Zien (eds). Semi-Supervised Learning. MIT
Press, Cambridge, Massachusetts. 2006.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order, 2nd edition.
Cambridge University Press, Cambridge. 2002.

A. Dhaka, V. Viswanath, and A. Patapoutian. TRP ion channels and temperature
sensation. Annu. Rev. Neurosci., 29, 135–161. 2006.

B. Ganter and S. Kuznetsov. Hypotheses and version spaces. In A. de Moor, W.
Lex, and B. Ganter (eds). Conceptual Structures for Knowledge Creation
and Communication. LNCS, vol. 2746. Springer, Berlin, pp. 83–95. 2003.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin. 1998.

R. D. King, S. H. Muggleton, A. Srinivasan and M. J. E. Sternberg. Structure
activity relationships derived by machine learning: The use of atoms and

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch07 page 60

60 Latest Advances in Inductive Logic Programming

their bond connectivities to predict mutagenicity by inductive logic pro-
gramming. P. Natl. Acad. Sci. USA, 93(1), 438–442. 1996.

K. Makino and T. Uno. New algorithms for enumerating all maximal cliques.
Algorithm Theory-SWAT 2004, 260–272. 2004.

N. Moitessier, P. Englebienne, D. Lee, J. Lawandi and C. R. Corbeil. Towards the
development of universal, fast and highly accurate docking/scoring meth-
ods: a long way to go. Brit. J. Pharmacol., 153(S1), S7–S26. 2008.

N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems 24(1), 25–46. 1999.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. 2011.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge. 1996.

J. L. Sharman, C. P. Mpamhanga, M. Spedding, P. Germain, B. Staels, C. Dac-
quet, V. Laudet, and A. J. Harmar and NC-IUPHAR: IUPHAR-DB: New
receptors and tools for easy searching and visualization of pharmacological
data. Nucleic Acids Res., 39(Database Issue), D534–D538. 2011.

M. Sugiyama and A. Yamamoto. Semi-supervised learning for mixed-type data
via formal concept analysis. In S. Andrews, S. Polovina, R. Hill and B.
Akhgar. (eds). Conceptual Structures for Discovering Knowledge. LNCS,
vol. 6828. Springer, Berlin, pp. 284–297. 2011.

T. Uno, M. Kiyomi and H. Arimura. LCM 1 ver. 3: Collaboration of array, bitmap
and prefix tree for frequent itemset mining. Proceedings of the 1st Inter-
national Workshop on Open Source Data Mining: Frequent Pattern Min-
ing Implementations, pp. 77–86. 2005. KDD 2005: Chicago, Ilinois, 21–24
August 2005.

X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning. Morgan
and Claypool Publishers, San Rafael, California. 2009.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 61

Chapter 8

Predictive Learning in
Two-Way Datasets

Beau Piccart

Department of Computer Science,
Katholieke Universteit Leuven, Belgium

Hendrik Blockeel

Department of Computer Science,
Katholieke Universteit Leuven, Belgium

and Leiden Institute of Advanced Computer Science,
Universteit Leiden, The Netherlands

Andy Georges and Lieven Eeckhout

Electronic and Information Systems Department,
Universiteit Gent, Belgium

We introduce a new learning setting, called two-way predictive learning,
as a special case of relational learning. We demonstrate that this learning
setting has some properties that make an alternative learning approach,
which we refer to as transposed learning, possible. We show how existing
tasks fit this setting, discuss related work, and demonstrate experimen-
tally that transposed learning can yield better results in multi-target
learning.

8.1 Situating Two-Way Learning

Consider the following relational learning context: we have two types of
objects A and B, and a relation R between them. The objects of type A
have attributes Ai, i = 1, . . . , nA; the objects of type B have attributes Bi,
i = 1, . . . , nB; and the tuples in R have attributes Ri, i = 1, . . . , nR as well
as a special attribute T called the target attribute. We denote the set of

61

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 62

62 Latest Advances in Inductive Logic Programming

A BR

A1

A2 A3 B1 B2

B3

R2

R1 T

...

...

...
|B| |A|

Fig. 8.1 ER diagram summarizing the data types available for learning. T is the
target attribute.

attributes of A, B, R as Attr(A), Attr(B), Attr(R), and their respective
extensions as A, B, R. The relation R is complete: there is a relationship
between each a ∈ A and each b ∈ B. Figure 8.1 summarizes this in an
entity-relationship (ER) diagram.

The task is to predict T from the other available information. This
task is an instance of relational learning [De Raedt (2008)]: we predict an
attribute of a relation from information about the participating objects.
Propositionalization (representing the data using a single table) would
cause redundancy (each object from A and B is described multiple times)
and loss of information (the case where two rows refer to the same a can no
longer be distinguished from that where two rows describe different objects
with the same attribute values). Yet it is special, in the sense that the rela-
tion is complete (each a is linked to each b), so there is no information in
the structure of the relation itself.

This two-way learning setting is relevant for many applications; includ-
ing molecular biology microarray data, recommender systems, multi-target
prediction [Aho et al. (2009)], and the related problem of multi-task learn-
ing [Caruana (1997)]. Several toy examples in statistical relational learning,
such as the student-course-grade example [Getoor et al. (2001)], essentially
describe a two-way prediction problem.

We can consider multiple specific settings, depending on what attributes
are available. Table 8.1 provides an overview. The settings covered by
the ER diagram can be called “relational learning with deterministic
background” (since each instance of R is linked to exactly one A and B).
Two-way learning, as defined here, covers the cases where Attr(R) = {T }.

In the remainder of this chapter, we focus on bare two-way learning.
Since, in this setting, R is complete, Attr(A) = Attr(B) = ∅, and Attr(R) =
{T }, the dataset D is simply a matrix. For each ai and bj , we denote the
corresponding T value as tij .

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 63

Predictive Learning in Two-Way Datasets 63

Table 8.1 Overview of two-way learning settings. In the table, * means
“non-empty”.

Attr(A) Attr(B) Attr(R)\{T}

∅ ∅ ∅ bare two-way learning
** ∅ ∅ single-decorated two-way learning
∅ * ∅ single-decorated two-way learning
** * ∅ double-decorated two-way learning
∅/* ∅/* * relational learning with

deterministic background

This is the type of data we get in microarray data and in the context
of recommender systems [Adomavicius and Tuzhilin (2005)].

It may seem strange that we want to predict tij from no information
at all, since Attr(A) = Attr(B) = ∅, but the point is that the values of T

themselves carry information. We can predict tij from the information in
the tik, k �= j, or from the tkj , k �= i, or even from the tkl, k �= i, l �= j.

Bare two-way predictive learning can be addressed in different ways.
Suppose we need to predict a single Tij element. We distinguish the follow-
ing main approaches:

Row-based: We learn a function f that predicts T.j from T.k, k �= j. That
is, we reduce the task to a standard learning task, treating the rows as
instances and the columns as attributes. The target attribute is T.j, and
the predictive attributes are T.k with k �= j.

Column-based: This is the same as above, except that we treat the
columns as instances and the rows as attributes; the target attribute is
Ti., and the predictive attributes are Tk., k �= i. We call this transposed
learning, as it really corresponds to transposing the matrix that represents
the dataset and then using a standard learning method.

These two alternatives also exist in single-decorated and double-
decorated two-way learning, as shown on Fig. 8.2.

Matrix factorization [Lee and Seung (2000)]: In this approach, we
try to find two matrix factors W and H such that T ≈W ·H . Each column
T.i is then approximated by a linear combination of the columns of W ,
weighted by the components of H.i. W forms a set of vectors optimized for
the linear approximation of T , which will only give a good approximation
if these basis vectors discover latent structure in the data. This method

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 64

64 Latest Advances in Inductive Logic Programming

Fig. 8.2 We can learn a function f that generalizes over A, predicting target
values t.i from a.j and t.k or we can learn a function f that generalizes over B,
predicting target values ti. from bj. and tk.. In the second case, the ti. targets will
only become available when the new example becomes available.

predates the approaches proposed in this paper, and has been successfully
applied in the field of recommender systems [Zhang et al. (2006)].

8.2 The Effects of Transposition

In the two-way learning setting, rows and columns are to some extent inter-
changeable. Consider again Fig. 8.2. Given a new object a, we need to pre-
dict the Tj values for it. First consider the user’s point of view: rows are
examples, columns are attributes. We get a new example and need to fill in
some target values. If we have already learned a function f in the standard
(row-based) way we can now apply it to predict those values.

Alternatively, we can consider a learner using the transposed view on
the data. To this learner, a is a new (target) attribute. Since a is unknown
during training, it is not possible to learn a function f till prediction time.
At prediction time, f can be learned using the known components of a as
known target values. In the column-based approach, our inductive learner
is thus used lazily (or, transductively).

This transposition also turns a multi-target problem into a single-
target problem and vice versa. This can be seen in the example in
Fig. 8.2. The row-based approach results in a multi-target function f which
predicts (t.4, t.5, t.6) given (a.1, a.2, a.3, t.1, t.2, t.3) while the column-based

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 65

Predictive Learning in Two-Way Datasets 65

approach results in a single-target function which predicts t5. given
(b1., b2., a1., t2., t3., t4.).

8.3 Applications

8.3.1 Microprocessor-data

For this application [Hoste et al. (2006)], the data consists of a set of per-
formance numbers obtained by executing 26 benchmark programs1 on a
number of (different) machines. Based on these data, we wish to predict
the performance of each of the machines for new programs. When a new
program becomes available, the idea is to execute it on a limited number of
machines (“predictive machines”) and use this information together with
the data about the benchmark programs to predict the performance of the
remaining machines (“target machines”). Figure 8.3 illustrates the task.
Since we use no descriptors of the machines or the programs, besides the
performance numbers, this is a bare two-way learning problem.

We here compare row-based and column-based inductive learning. Our
goal is to see whether the less natural column-based approach can offer an
advantage over straightforward row-based learning.

Fig. 8.3 Problem statement and terminology.

1From the SPEC CPU2006 suite, http://spec.org/cpu2006.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 66

66 Latest Advances in Inductive Logic Programming

Table 8.2 Spearman’s rank correlation for the pre-
dicted microprocessor data.

Row-based Column-based

Neural Network 0.82 0.93
SVM 0.77 0.90
Linear Regression 0.82 0.91
Matrix Factorization 0.85 0.85

We used three different machine learning algorithms from the Weka
collection [Hall et al. (2009)]: a multi-layer perceptron (MLP), a Support
Vector Machine using Sequential Minimal Optimization (SVM-SMO), and
linear regression (Linear Regression). Each algorithm was run both row-
based and column-based. The fourth algorithm to which we compare our
results consist of a matrix factorization algorithm [Lee and Seung (2000)].

Default parameters were used for each algorithm and the performance
is estimated using cross validation.

Table 8.2 shows that column-based prediction yields much better results
than row-based prediction. One way to interpret this is that generalization
over machines is easier than generalization over programs.

Of particular interest is the result of the Matrix Factorization (MF),
which can only be applied to two-way datasets. As can be seen in Table 8.2,
the MF algorithm outperforms all other algorithms for the row-based
approach but the MF method is outperformed by the other algorithms
in the column-based approach. The MF method does not benefit from a
transposition.

8.3.2 Ecological data

Next, we consider an ecological application [Blockeel et al. (1999)]. Biolo-
gists take samples of river water to measure its quality, recording quantities
of a number of micro-organisms, and physico-chemical parameters (such as
oxygen concentration) in these samples. The goal is to learn to predict the
physico-chemical parameters (PCP) from the micro-organism quantities.
This problem corresponds to a standard multi-target problem on which we
can perform both row-based and column-based learning.

We use the same four algorithms as for the micro-processor data. Results
are shown in Table 8.3. Here, column-based prediction outperforms row-
based prediction for the MLP and SVM, while row-based prediction works

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 67

Predictive Learning in Two-Way Datasets 67

Table 8.3 Mean Squared Error (MSE) for the eco-
logical dataset.

Row-based Column-based

Neural Network 1.127 0.9
SVM-SMO 2.43 1.46
Linear Regression 3.07 4.04
Matrix Factorization 1.40 1.40

better for linear regression. This indicates that the optimal learning direc-
tion can depend on the learning algorithm.

8.4 Conclusions

We propose a new setting for machine learning that we call two-way pre-
dictive learning. The setting is characterized by the existence of two types
of data elements, pairs of which are labeled with target values to be pre-
dicted. The two-way learning setting is encountered in many application
domains. It covers multi-target learning as a special case, and is itself a
special case of relational learning. It has some pecularities that motivate a
separate study of this setting. In particular, it raises interesting questions
about the interchangeability of examples and attributes, which itself sheds
new light on the difference between inductive and transductive learning.

Experiments on two different application domains demonstrate the use-
fulness of this discussion: by running an inductive learner on the transposed
data matrix, one can obtain better predictive results. While this approach
is practically very simple, it is not straightforward to practitioners, partially
because it requires a view of the data that is often unnatural (thinking of
attributes as examples and vice versa), and partially because it requires
one to use an inductive learner transductively (the learning process can
only be started once a new test instance has arrived). Our experimental
results show, however, that this alternative approach can yield important
performance gains.

Acknowledgment

The work was funded by the Research Foundation: Flanders (FWO-
Vlaanderen), project G.0255.08, “Efficient microprocessor design using
machine learning”.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch08 page 68

68 Latest Advances in Inductive Logic Programming

Bibliography

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE T.
Knowl. Data En., 17(6), 734–749. 2005.

T. Aho, B. Zenko and S. Dzeroski. Rule Ensembles for Multi-target Regression.
The Ninth IEEE International Conference on Data Mining, pp. 21–30. 2009.
ICDM 2009: Miami, Florida, 6–9 December 2009.

H. Blockeel, S. Dzeroski and J. Grbovic. Simultaneous Prediction of Multiple
Chemical Parameters of River Water Quality with TILDE. Principles of
Data Mining and Knowledge Discovery: Proceedings of the Third Euro-
pean Conference, LNCS, vol. 1704. Springer-Verlag, Berlin, pp. 32–40. 1999.
PKDD 1999: Prague, 15–18 September 1999.

R. Caruana. Multitask Learning. Mach. Learn., 28, 41–75. 1997.
L. De Raedt. Logical and Relational Learning. Springer, Berlin. 2008.
L. Getoor, N. Friedman, D. Koller and A. Pfeffer. Learning probabilistic relational

models. In S. Džeroski and N. Lavrač, N. (eds). Relational Data Mining.
Springer-Verlag, Berlin, 307–334. 2001.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten. The
WEKA data mining software: An update. SIGKDD Explorations, 11(1),
10–18. 2009.

K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De Boss-
chere. Performance prediction based on inherent program similarity. Pro-
ceedings of the 15th International Conference on Parallel Architectures and
Compilation Techniques, 9, 114–122. 2006. PACT 2006: Seattle, Washing-
ton, 16–20 September 2006.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization.
Adv. Neural Info. Proc. Syst., 13, 556–562. 2001.

S. Zhang, W. Wang, J. Ford and F. Makedon. Learning from incomplete rat-
ings using non-negative matrix factorization. Proceedings of the 6th SIAM
Conference on Data Mining, pp. 549–553. SDM 2006: Bethesda, Maryland,
20–22 April 2006.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 69

Chapter 9

Model of Double-Strand Break
of DNA in Logic-Based

Hypothesis Finding

Barthelemy Dworkin

National Institute of Informatics, Japan and
University of Toulouse, France

Andrei Doncescu

National Institute of Informatics, Japan and
Cancer Institute of Toulouse, France

Jean-Charles Faye

Cancer Institute of Toulouse, France

Katsumi Inoue

National Institute of Informatics, Japan

9.1 Introduction

Today the conception of artificial systems tries to imitate the natural sys-
tems by developing new concepts of reasoning able to handle a high level
of heterogeneity and uncertainty. These complex systems have a dynam-
ical evolution in terms of structure and organization. In order to model
and control these systems there is a need to observe and reconstruct their
behavior and make sense of large amounts of heterogeneous data gathered
on various scales.

The science of complex systems (CSS) offers a theoretical framework
for this holistic behavior by borrowing concepts from Statistical Physics,
Dynamical System Theory, Theory of Computation and Machine Learning.

69

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 70

70 Latest Advances in Inductive Logic Programming

The main characteristic of a complex system is the emergent property
which arises from the interactions of low-level entities and which cannot
be deduced from or explained by the properties of low-level entities. Some
of the most complex systems are the biological systems: if they cannot
be reduced to the description of the properties of their elements, it is the
manner of their evolution which modifies the characteristics of the consti-
tuting elements. Systems biology is expanding to cover almost all biological
science, from protein interaction to whole organ and organism-level biomed-
ical studies. Systems biology thus attempts to understand a life process as a
whole system rather than as a collection of the parts considered separately.
Understanding the interconnections among subsystems or elements involves
a closed-loop thinking of causality, and also a great part of modeling. Model-
ing is the process of generating mathematical or computational theories that
satisfy specifications or goals. Hence, a candidate model is a hypothesis for a
theory of the system. The modeling and verification involve inference meth-
ods, hypothesis generation/update and hypothesis verification. Similarly, in
biology and any scientific field, development of a scientific theory consists of
a continuous cycle of observation explanation prediction experiment. Expla-
nation of observed data is led by hypothesis generation, and experiments
lead to data that could test inferred hypotheses. Over the course of this
cycle, scientific models are frequently revised whenever discrepancies are
encountered between observed and predicted results. In this chapter we
propose an integrated framework for reasoning on a (partially observable)
signaling pathway, possibly in the presence of global inconsistencies.

9.2 Double-Strand Break of DNA

A cell’s response to a double-strand break of DNA (DSB) has been studied
for some years, but the ATM-dependant signaling pathway has only been
clarified since the discovery of γH2AX [Paull et al. (2000)], the phospho-
rylated form of histone H2AX. All the protein interactions of this pathway
have been reported [Pommier et al. (2005)], including the signalization of
the double-strand break (involving important proteins such as: γH2AX,
MDC1, BRCA1 and the MRN complex), but also for the checkpoint mech-
anisms (involving p53, the Cdc25s and Chk2). In a general way, the cell can
receive information by protein interactions that will transduce signals. First,
the information is discovered by sensor proteins, which will recruit some
other mediator proteins whose function will be to help all the interactions

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 71

Model of Double-Strand Break of DNA in Logic-Based Hypothesis Finding 71

between the sensors and the transducers. These transducers are proteins
that will amplify the signal by biochemical methods such as phosphory-
lation. In the end, the signal will be given to effectors that will engage
an important cell process. In this pathway, the DSB is recognized by the
MRN complex, which in turn will recruit ATM in its inactive dimer form,
and then ATM will phosphorylate itself and dissociate to become an active
monomer. This active form of ATM will phosphorylate many mediators
such as γH2AX, MDC1, BRCA1 or 53BP1. Then, the signal is transduced
by important proteins such as Chk2, p53 (a very important protein, which
can cause cancer if mutated) or the Cdc25s. The effectors can be differ-
ent with the context: some will induce the cycle arrest, whereas others will
induce the cell apoptosis.

9.3 Ampliative Reasoning in Biological Systems

Understanding genetic and metabolic networks is of the utmost impor-
tance. These networks control essential cellular processes and the produc-
tion of important metabolites in microorganisms, and modeling such net-
works from model organisms will drive applications to other less charac-
terized organisms, which have a high biotechnological potential. The log-
ical approach provides an intuitive method to provide explanations based
on an expressive relational language. For example, logic can represent
biological networks such as gene regulation, signaling transduction, and
metabolic pathways. Unlike other approaches, this method allows a back-
ground theory, observations and hypotheses within a common declarative
language, and provides the basis for the three main forms of inference,
i.e., deduction (prediction), abduction (explanation) and induction (gen-
eralization). Deduction has traditionally been used for proving theorems
of a given axiom set, but here we need to find new consequences (con-
sequence finding), which is more general than theorem proving. Interest-
ingly, the hypothesis-finding problem (abduction and induction) can be
translated into consequence-finding problems, so that we can realize all
three modes of inference using a deductive, consequence-finding procedure.
We mention Inductive Inference as a type of reasoning that justifies some
modification from one state of absolute belief to another, by adding new
information to the initial assumes that is consistent with it but does not
entail it.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 72

72 Latest Advances in Inductive Logic Programming

9.3.1 Hypothesis finding from first-order full

clausal theories

The importance of hypothesis generation has recently been recognized more
and more for many innovative applications. SOLAR [Siegel] [Nabeshima
et al. (2003)] is the state-of-the-art consequence-finding system in this
field, whose performance is comparable with high-speed theorem provers
when applied to theorem proving. It is the only system which is sound
and complete for consequence finding in full clausal theories. SOLAR and
CF-induction [Inoue (2004)] are the unique abductive and inductive rea-
soning systems, respectively, which are sound and complete for first-order
full clausal theories. No other abductive or inductive system is comparable.

We will first present the case study and some behavioral rules. Next,
we will present the limits of the classical logic and why we need the non-
monotonic logic. We will explain the formalization of the behavioral rules
with default logic. We use only normal defaults and Horn clauses in order
to simplify the program, though we could extend this work to other case
studies, with more complicated rules. Then, we explain the choice between
the extensions thanks to preferences with simple probabilistic techniques.

9.4 Logical Model of a Double-Strand Break

Transfer reactions such as phosphorylation (and autophosphorylation),
ubiquitination and methylation are specific cases of enzymatic stimulation.
The mechanism is simple: an enzyme takes a substrate and makes a covalent
bound with a marker.

Reaction(enzyme, substrate)→ product(marked − substrate) (9.1)

Phosphorylation is a transfer of an inorganic phosphate and autophos-
phorylation is a special case where a protein can phosphorylate itself.

Phosphorylation(enzyme, substrate)→ product(P − substrate) (9.2)

Ubiquitination is a transfer of a small peptide called ubiquitin and
methylation is a transfer of a methyl component (CH3).

Ubiquitination(enzyme, substrate)→ product(Ub − substrate) (9.3)

Methylation(enzyme, substrate)→ product(CH3 − substrate) (9.4)

Unlike the other reactions, the transcription activation is not a transfer
reaction, but still a very important one. It means that a protein will bind
on a specific location of DNA and will induce the transcription of the tar-
get gene in RNA (along with a complex of other important proteins). After

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 73

Model of Double-Strand Break of DNA in Logic-Based Hypothesis Finding 73

translation of the mRNA, a raw peptide will be produced and will even-
tually be modified by post-translational reactions such as phosphorylation,
methylation or even glycosylation, which will give the protein related to
this gene. We decided to model the transcription activation this way:

Activation(factor , promoter)→ product(translated− protein)

(9.5)

9.5 Results

This logical model contains two significant points for biological applica-
tions. On the first hand, nine different predicates are used to describe
the biological interactions: enzymatic stimulation (general or not pre-
cise), phosphorylation, autophosphorylation, ubiquitination, binding,
transcriptionactivation, dissociation and product. We precise that the
“product” predicate describes the production of a protein following a reac-
tion. It can be surprising but we did not choose to include a predicate for
inhibition reactions, for in biology “inhibition” does not always describe
the same mechanism. So we chose another way to say “if A exists, then B
will not exist” (where A and B could be proteins or pathways). In order to
still include inhibition without a specific predicate in our model, we decided
to find another way: instead of the clause product(A) → inhibition(A,B)
we use product(A) → ¬(product(B)). This method has been revealed to
have a good potential, and can be checked. Here is an example: nor-
mally in a cell, the protein Cdc25A exists and prevents the cell cycle
arrest. But if this protein is phosphorylated (by Chk1 for instance), it will
be recognized by degradation effectors and will be dismantled. Without
Cdc25A the cell cycle stops. In the data, we modeled all the information
this way:

(1) stimulation(cdc25a, cell)→ ¬(product(cell cycle arrest))
(2) product(p chk1)→ phosphorylation(p chk1, cdc25a)
(3) phosphorylation(p chk1, cdc25a)→ product(p cdc25a)
(4) product(p cdc25a)→

stimulation(p cdc25a, cdc25a degradation effectors)
(5) stimulation(p cdc25a, cdc25a degradation effectors)→

product(cdc25a degradation)
(6) product(cdc25a degradation)→ ¬(stimulation(cdc25a, cell)).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 74

74 Latest Advances in Inductive Logic Programming

We used this top clause and production field for our inhibition test:

(1) cnf(tp1, topclause, [−stimulation(cdc25a,X),
− product(cell cycle arrest), ans(X)]).

(2) pf([−stimulation(cdc25a,),−product(cell cycle arrest), ans()]).

It means we want to ask SOLAR to find all the Cdc25A substrates
(by a simple stimulation) that will induce the cell cycle arrest. The only
answer is:

(1) conseq([+ans(0),−stimulation(cdc25a, 0),
− product(cell cycle arrest)]).
No other consequence was found, but that is normal as Cdc25A prevents

the cell cycle arrest. We then asked SOLAR to find all the substrates of the
phosphorylated Cdc25A on the same method:

(1) cnf(tp1, top clause, [−stimulation(p cdc25a,X),
− product(cell cycle arrest), ans(X)]).

(2) pf([−stimulation(p cdc25a,),−product(cell cycle arrest), ans()]).

And here are the answers:

(1) conseq([+ans(cdc25a degradation effectors),
− product(cell cycle arrest)]).

(2) conseq([+ans(0),−product(cell cycle arrest),
− stimulation(pcdc25a, 0)]).

We can see that the Cdc25A degradation effectors will induce cell cycle
arrest, which is true because if Cdc25A is brought into degradation (after
is phosphorylation), the cell cycle is stopped. In conclusion, our inhibition
method by not creating a specific predicate is efficient.

We performed an experiment to see if our model could fix relations
between proteins if we excluded a single protein. In a simple example of
four proteins connected to each other by a series of simple implications
A→ B → C → D, we wanted to prove that our model could find a relation
from B to D if C was excluded. Here is the case of interactions with RNF8:

RNF8→ RNF8 bound→ RNF8/UBC13→ Ub H2A

In biological words, RNF8 binds with the phosphorylated form of
MDC1, thus allowing UBC13 to bind on RNF8. And finally, the com-
plex RNF8/UBC13 can make an ubiquitination on the H2A histone,
thus creating the ubiquitinated form Ub H2A. We decided to delete the

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 75

Model of Double-Strand Break of DNA in Logic-Based Hypothesis Finding 75

RNF8/UCB13 complex to see if SOLAR could find a way to make a rela-
tionship between RNF8 bound and Ub H2A: RNF8 → RNF8 bound →
Ub H2A. In our model, we structured the data biological data into SOLAR:

(1) cnf(rnf 02, axiom, [−binding(p mdc1, rnf8), product(rnf8 bound)]).
(2) cnf(rnf 03, axiom, [−product(rnf8 bound),

binding(rnf8 bound, ubc13)]).
(3) cnf(rnf 04, axiom, [−binding(rnf8 bound, ubc13),

product(rnf8 ubc13)]).
(4) cnf(rnf 05, axiom, [−product(rnf8 ubc13),

ubiquitination(rnf8 ubc13, h2a)]).
(5) cnf(rnf 06, axiom, [−ubiquitination(rnf8 ubc13, h2a),

product(ubc h2a)]).

Then we deleted the predicate product(rnf8 ubc13) present in two
clauses:

(1) cnf(rnf 02, axiom, [−binding(p mdc1, rnf8),
product(rnf8 bound)]).

(2) cnf(rnf 03, axiom, [−product(rnf8 bound),
binding(rnf8 bound, ubc13)]).

(3) cnf(rnf 06, axiom, [−ubiquitination(rnf8 ubc13, h2a),
product(ub h2a)]).

The idea was to prove that RNF8 bound → Ub H2A was true. We
wanted to search all the products that would lead to the production of
Ub H2A in order to see if RNF8 bound was among these products. We
used this top clause and this production field:

(1) cnf(tp1, top clause, [−product(X),−product(ub h2a), ans(X)]).
(2) pf([−product(),−product(ub h2a), ans()]).

This experiment was tested on a computer under Windows 7, with an
Intel Core i5 2.66GHz processor and 4096 of RAM . It lasted 163 seconds.
As an answer, 527 new consequences have been found (with no time limit
and no other parameters). Among these consequences, we found three of
them that had the predicate product(rnf8 bound):

(1) conseq([+ans(rnf8 bound),−product(ub h2a),
− product(p mdc1)]).

(2) conseq([+ans(rnf8 bound),−product(ub h2a),
− product(h2ax mdc1)]).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch09 page 76

76 Latest Advances in Inductive Logic Programming

(3) conseq([+ans(rnf8 bound),−product(ub h2a),
− product(gamma h2ax)]).

These results show that, as we expected, RNF8 bound → Ub H2A is
true, and the production of the ubiquitinated histone is the consequence of
the production of γH2AX , of MDC1 bound to H2AX and of the phos-
phorylated form of MDC1(P MDC1).

9.6 Conclusion

We propose a complete logical model, respecting the protein interactions
and biological veracity. Its first use is to act like a database: for instance, a
biologist working on this pathway can ask all the proteins phosphorylated
by Chk2, or all the proteins necessary for the ubiquitination of HA2 histone
by RNF8 and UBC13. Depending on the SOLAR top clause, the question
may be simple or complicated in biological terms. The other hypothetical
use of our model is to give information of a new protein that would interact
with proteins from this pathway. For instance, if a new protein is discovered
and known to interact with a specific protein of the cell response to the DSB
pathway, our model could find consequences of this interaction.

Bibliography

K. Inoue. Induction as consequence finding. Machine Learning, 55, 109–135. 2004.
H. Nabeshima, K. Iwanuma, and K. Inoue. SOLAR: A consequence finding system

for advanced reasoning. Proceedings of the 11th International Conference,
LNAI, vol. 2796, pp. 257–263, Springer, Berlin. 2003. TABLEAUX 2003:
Rome, 9–12 September 2003.

T. T. Paull, E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W.
M. Bonner. A critical role for histone H2AX in recruitment of repair factors
to nuclear foci after DNA damage. Curr. Biol., 10(15), 886–895. 2000.

Y. Pommier, O. Sordet, V. A. Rao, H. Zhang and K. W. Kohn. Targeting chk2
kinase: molecular interaction maps and therapeutic rationale. Curr. Pharm.
Design, 11(22), 2855–2872. 2005.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 77

PART 2

Probabilistic Logical Learning

77

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 79

Chapter 10

The PITA System for
Logical-Probabilistic Inference

Fabrizio Riguzzi

ENDIF, University of Ferrara, Italy

Terrance Swift

CENTRIA, Universidade Nova de Lisboa, Portugal

10.1 Introduction

Probabilistic Inductive Logic Programming (PILP) is gaining interest due
to its ability to model domains with complex and uncertain relations among
entities. Since PILP systems generally must solve a large number of infer-
ence problems in order to perform learning, they rely critically on the sup-
port of efficient inference systems.

PITA [Riguzzi and Swift (2010)] is a system for reasoning under uncer-
tainty on logic programs. While PITA includes frameworks for reasoning
with possibilistic logic programming, and for reasoning on probabilistic
logic programs with special exclusion and independence assumptions, we
focus here on PITA’s framework for reasoning on general probabilistic logic
programs following the distribution semantics, one of the most prominent
approaches to combining logic programming and probability. Syntactically,
PITA targets Logic Programs with Annotated Disjunctions (LPADs) [Ven-
nekens et al. (2004)] but can be used for other languages that follow the
distribution semantics, such as ProbLog [Kimmig et al. (2008)], PRISM
[Sato (1995)] and ICL [Poole (2000)], as there are linear transformations
from one language to the others [De Raedt et al. (2008)].

PITA is distributed as a package of XSB Prolog and uses tabling along
with an XSB feature called answer subsumption that allows the combination
of different explanations for the same atom in a fast and simple way. PITA

79

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 80

80 Latest Advances in Inductive Logic Programming

works by transforming an LPAD into a normal program and then querying
the program.

In this chapter we provide an overview of PITA and an experimental
comparison of it with ProbLog, a state-of-the-art system for probabilistic
logic programming. The experiments show that PITA has very good per-
formances, often being faster than ProbLog.

10.2 Probabilistic Logic Programming

The distribution semantics [Sato (1995)] is one of the most widely used
semantics for probabilistic logic programming. In the distribution semantics
a probabilistic logic program defines a probability distribution over a set
of normal logic programs (called worlds). The distribution is extended to
a joint distribution over worlds and queries; the probability of a query is
obtained from this distribution by marginalization.

The languages based on the distribution semantics differ in the way they
define the distribution over logic programs. Each language allows probabilis-
tic choices among atoms in clauses. As stated above, PITA uses LPADs
because of their general syntax. LPADs are sets of disjunctive clauses in
which each atom in the head is annotated with a probability.

Example 10.1. The following LPAD T1 captures a Markov model with
three states of which state 3 is an end state

s(0,1):1/3 ∨ s(0,2):1/3 ∨ s(0,3):1/3.
s(T,1):1/3 ∨ s(T,2):1/3 ∨ s(T,3):1/3 ←

T1 is T-1, T1>=0, s(T1,F), \+ s(T1,3).

The predicate s(T, S) models the fact that the system is in state S at time
T . As state 3 is the end state, if s(T, 3) is selected at time T , no state
follows.

We now present the distribution semantics for the case in which a
program does not contain function symbols so that its Herbrand base is
finite.1

An atomic choice is a selection of the i-th atom for a grounding Cθ of
a probabilistic clause C and is represented by the triple (C, θ, i). A set of
atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j.

1However, the distribution semantics for programs with function symbols has been
defined as well [Sato (1995); Poole (2000); Riguzzi and Swift (2011)].

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 81

The PITA System for Logical-Probabilistic Inference 81

A composite choice κ is a consistent set of atomic choices. The proba-
bility of composite choice κ is P (κ) =

∏
(C,θ,i)∈κ P0(C, i) where P0(C, i) is

the probability annotation of head i of clause C. A selection σ is a total
composite choice (one atomic choice for every grounding of each clause).
A selection σ identifies a logic program wσ called a world. The probability
of wσ is P (wσ) = P (σ) =

∏
(C,θ,i)∈σ P0(C, i). Since the program does not

have function symbols the set of worlds is finite: WT = {w1, . . . , wm} and
P (w) is a distribution over worlds:

∑
w∈WT

P (w) = 1.
We can define the conditional probability of a query Q given a world:

P (Q|w) = 1 if Q is true in w and 0 otherwise. The probability of the
query can then be obtained by marginalizing over the query P (Q) =
∑

w P (Q,w) =
∑
w P (Q|w)P (w) =

∑
w|=Q P (w).

10.3 The PITA System

PITA computes the probability of a query from a probabilistic program in
the form of an LPAD by first transforming the LPAD into a normal program
containing calls for manipulating Binary Decision Diagrams (BDDs). The
idea is to add an extra argument to each literal to store a BDD encoding
the explanations for the answers of the subgoal. The extra arguments of
these literals are combined using a set of general library functions:

• init, end : initialize and terminate the extra data structures necessary for
manipulating BDDs;
• zero(−D), one(−D), and(+D1,+D2,−DO), or(+D1,+D2, −DO), not

(+D1,−DO): Boolean operations between BDDs;
• get var n(+R,+S,+Probs,−Var): returns the multi-valued random vari-

able associated to rule R with grounding substitution S and list of prob-
abilities Probs ;
• equality(+Var,+Value,−D): D is the BDD representing Var=Value, i.e.

that the random variable Var is assigned Value in D;
• ret prob(+D,−P): returns the probability of the BDD D.

The PITA transformation applies to atoms, literals and clauses. The trans-
formation for a head atom H , PITAH(H), is H with the variable D

added as the last argument. Similarly, the transformation for a body atom
Aj , PITAB(Aj), is Aj with the variable Dj added as the last argument.
The transformation for a negative body literal Lj = ¬Aj , PITAB(Lj),
is the Prolog conditional (PITA′B(Aj) → not(DNj , Dj); one(Dj)), where
PITA′B(Aj) is Aj with the variable DNj added as the last argument.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 82

82 Latest Advances in Inductive Logic Programming

In other words, the input data structure, DNj , is negated if it exists;
otherwise the data structure for the constant function 1 is returned.

The disjunctive clause Cr = H1 : α1∨. . .∨Hn : αn ← L1, . . . , Lm. where
the parameters sum to 1, is transformed into the set of clauses PITA(Cr):

PITA(Cr, i) = PITAH(Hi)← one(DD0),
P ITAB(L1), and(DD0, D1, DD1), . . . ,
P ITAB(Lm), and(DDm−1, Dm, DDm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, i,DD), and(DDm, DD,D).

for i = 1, . . . , n, where V C is a list containing each variable appearing in Cr.
PITA uses tabling and a feature called answer subsumption available in XSB
that, when a new answer for a tabled subgoal is found, combines old answers
with the new one according to a partial order or (upper semi-) lattice. For
example, if the lattice is on the second argument of a binary predicate
p, answer subsumption may be specified by means of the declaration table
p(,or/3-zero/1) where zero/1 is the bottom element of the lattice and or/3
is the join operation of the lattice. Thus if a table has an answer p(a, d1)
and a new answer p(a, d2) is derived, the answer p(a, d1) is replaced by
p(a, d3), where d3 is obtained by calling or (d1, d2, d3).

In PITA various predicates of the transformed program should
be declared as tabled. For a predicate p/n, the declaration is table
p(1,. . . , n,or/3-zero/1), which indicates that answer subsumption is used
to form the disjunction of BDDs. At a minimum, the predicate of the goal
and all the predicates appearing in negative literals should be tabled with
answer subsumption. However, it is usually better to table every predicate
whose answers have multiple explanations and are going to be reused often.

In Prolog systems that do not have answer subsumption, such as Yap, its
behavior can be simulated on acyclic programs by using the transformation

PITA(Cr, i) = PITAH(Hi)← bagof (DB,EV ˆ(one(DD0),
P ITAB(L1), and(DD0, D1, DD1), . . . ,
P ITAB(Lm), and(DDm−1, Dm, DDm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, i,DD), and(DDm, DD,DB)), L),
or list(L,D).

where EV is the list of variables appearing only in the body except DB
and or list/2 computes the or-join of all BDDs in the list passed as the
first argument.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 83

The PITA System for Logical-Probabilistic Inference 83

Fig. 10.1 Hidden Markov model.

10.4 Experiments

PITA was tested on six datasets: a Markov model from [Vennekens et al.
(2004)], the biological networks from [De Raedt et al. (2007)] and the four
testbeds of [Meert et al. (2009)]. PITA was compared with the exact version
of ProbLog [Kimmig et al. (2008)] available in the git version of Yap as of 15
June 20112. This version of ProbLog can exploit tabling, but as mentioned
above, it cannot exploit answer subsumption which is not available in Yap.

The first problem is modeled by the program in Example 10.1. For this
experiment, we query the probability of the model being in state 1 at time
N for increasing values of N. For both PITA and ProbLog, we did not use
reordering of BDDs variables3 and we tabled the s/2 predicate. The graph
of the execution times (Fig. 10.1) shows that PITA achieves a large speedup
with respect to ProbLog.

The biological network programs compute the probability of a path
in a large graph in which the nodes encode biological entities and the
links represent conceptual relations among them. Each program in this
dataset contains a non-probabilistic definition of path plus a number of
links represented by probabilistic facts. The programs have been sampled
from a very large graph and contain 200, 400, . . . , 10,000 edges. Sampling
was repeated ten times, to obtain ten series of programs of increasing size.
In each program we query the probability that the two genes HGNC 620
and HGNC 983 are related. For PITA, we used the definition of path from

2All experiments were performed on Linux machines with an Intel Core 2 Duo E6550
(2333 MHz) processor and 4 GB of RAM.
3For each experiment we used either group sift automatic reordering or no reordering

of BDDs variables depending on which gave the best results.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 84

84 Latest Advances in Inductive Logic Programming

(a) Number of successes. (b) Average execution times on
the graphs on which both algo-

rithms succeeded.

Fig. 10.2 Biological graph experiments.

[Kimmig et al. (2008)] that performs loop checking explicitly by keeping
the list of visited nodes. For ProbLog, we used a definition of path in which
tabling is exploited for performing loop checking. path/2, edge/2 and arc/2
are tabled in ProbLog, while only path/2 is tabled in PITA. We found these
to be the best performing settings for the two systems. Figure 10.2(a) shows
the number of subgraphs for which each algorithm was able to answer the
query as a function of the size of the subgraphs, while Fig. 10.2(b) shows
the execution time averaged over all and only the subgraphs for which both
algorithm succeeded. Here there is no clear winner, with PITA faster for
smaller graphs and ProbLog solving slightly more graphs and faster for
larger graphs.

The four datasets of [Meert et al. (2009)] are: bloodtype, that encodes
the genetic inheritance of blood type; growingbody, that contains pro-
grams with growing bodies; growinghead, that contains programs with
growing heads; and uwcse, that encodes a university domain. The best
results for ProbLog were obtained by using tabling in all experiments
except growinghead. For PITA, all the predicates are tabled. The execu-
tion times of PITA and ProbLog are shown in Figs. 10.3(a), 10.3(b), 10.4(a)
and 10.4(b).4 In these experiments PITA is faster and more scalable than
ProbLog.

4For the missing points at the beginning of the lines a time smaller than 10−6 was
recorded. For the missing points at the end of the lines the algorithm exhausted the
available memory.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 85

The PITA System for Logical-Probabilistic Inference 85

(a) bloodtype. (b) growingbody.

Fig. 10.3 Datasets from [Meert et al. (2009)].

(a) growinghead. (b) uwcse.

Fig. 10.4 Datasets from [Meert et al. (2009)].

Bibliography

L. De Raedt, A. Kimmig and H. Toivonen. ProbLog: A probabilistic Prolog and
its application in link discovery. Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pp. 2462–2467. 2007. IJCAI 2007:
Hyderabad, 6–12 January 2007.

L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kimmig,
N. Landwehr, T. Mantadelis, W. Meert, R. Rocha, V. Santos Costa, I.
Thon and J. Vennekens. Towards digesting the alphabet-soup of statistical
relational learning. NIPS*2008 Workshop on Probabilistic Programming.
2008. NIPS 2008: Whistler, 13 December 2008.

A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen and L. De Raedt. On the
efficient execution of ProbLog programs. International Conference on Logic
Programming, LNCS vol. 5366, Springer, pp. 175–189. 2008.

W. Meert, J. Struyf and H. Blockeel. CP-Logic Theory inference with contex-
tual variable elimination and comparison to BDD based inference methods.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch10 page 86

86 Latest Advances in Inductive Logic Programming

International Conference on Inductive Logic Programming. LNCS vol. 5989,
Springer, Berlin, pp. 96–109. 2009.

D. Poole. Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. Log. Prog., 44(1–3), 5–35. 2000.

F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic
programs with annotated disjunctions. In Technical Communications of the
International Conference on Logic Programming, LIPIcs, vol. 7. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 162–171. 2010.

F. Riguzzi and T. Swift. Well-definedness and efficient inference for probabilis-
tic logic programming under the distribution semantics. Theor. Prac. Log.
Prog., 13(2), 279–302. 2011.

T. Sato. A statistical learning method for logic programs with distribution seman-
tics. In L. Sterling (ed.). Proceedings of the 12th International Conference
on Logic Programming. MIT Press, Cambridge, Massachusetts, pp. 715–
729. 1995.

J. Vennekens, S. Verbaeten and M. Bruynooghe. Logic programs with annotated
disjunctions. International Conference on Logic Programming. LNCS vol.
3131, Springer, Berlin, pp. 195–209. 2004.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 87

Chapter 11

Learning a Generative Failure-Free
PRISM Clause

Waleed Alsanie and James Cussens

Department of Computer Science, University of York, UK

PRISM is a probabilistic logic programming formalism which allows
learning parameters from examples through its graphical EM algorithm.
PRISM is aimed at modelling generative processes in the compact first-
order logic representation. It facilitates model selection by providing
three scoring functions: Bayesian Information Criterion (BIC), Cheese-
man–Stutz (CS) and variational free energy. This chapter considers
learning a failure-free single clause PRISM program by searching and
scoring possible models built from observations and Background Knowl-
edge (BK).

11.1 Introduction

PRISM is a probabilistic logic programming formalism in which a probabil-
ity distribution is defined over possible worlds [Sato and Kameya (1997)].
Given a logic program DB = F ∪R where F is a set of ground facts and R
is a set of rules (definite clauses), a probability distribution PF is defined
over all possible assignments of truth values of the ground facts in F . Sam-
pling from PF will lead to a set F ′ ⊆ F where the least Herbrand model
of F ′ ∪R represents a sample from all true ground atoms in DB. Thus PF
can be extended to PDB which is known as Distribution Semantics [Sato
and Kameya (1997, 2008)]. With this semantic, generative models can be
represented in such a way that each sample of the ground atoms in DB

explains a generation process of an observation. PRISM allows learning
parameters from observations through its graphical EM algorithm. It also
facilitates model (structure) scoring with three scoring functions: BIC, CS
and variational free energy. However, general structure learning of PRISM
has not been addressed much.

87

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 88

88 Latest Advances in Inductive Logic Programming

When learning generative models like Probabilistic Logic Programs
(PLP), variables in the head are assumed to be an output of some predi-
cates in the body, so each observation is fully explained by the program.
This is different from learning predictive models where, typically, the aim is
to learn the simplest (most general) model that is complete and consistent
according to the positive E+ and negative E− examples, which is normally
the setting in learning with Inverse Entailment (IE) [Muggleton and De
Raedt (1994); Muggleton (1995)].

In subsequent sections we explain a technique to learn generative failure-
free single clause PRISM programs. Such programs can represent static
Bayesian networks. In Section 11.2, we briefly explain the variational
free energy scoring function. Section 11.3 explains the formulation of the
hypothesis space and the search strategies. Section 11.4 shows an exper-
iment of learning the Asia network. Finally, we conclude with discussion
and future directions.

11.2 Scoring with Variational Free Energy

In the Variational Bayesian (VB) approach, the marginal log-likelihood
L(M) is used in models scoring where L(M) def= log p(D|M). As explana-
tions Z of goals are hidden, the marginal log-likelihood can be written as:

L(M) = log
∑

Z

∫

θ

p(D,Z, θ|M)dθ (11.1)

L(M) ≥ F [q] def=
∑

Z

∫

θ

q(Z, θ|D,M) log
p(D,Z, θ|M)
q(Z, θ|D,M)

dθ (11.2)

F [q] is the variational free energy and it is a lower bound of L(M).
The full derivation of approximating the distribution p by maximis-
ing the variational free energy is explained by Sato et al. [Sato et al.
(2008)]. In VB learning, a further assumption is made that q(Z, θ|D,M) ≈
q(Z|D,M)q(θ|D,M). It can be noticed from this assumption and from the
integral above that this score penalises complex models (ones that have a
large parameter space). This trade-off between the complexity of the model
and fitting the data is needed to avoid overfitting.

11.3 Building and Searching the Hypothesis Space

11.3.1 Building the hypothesis space

The search space is defined with respect to the observations and some
BK. The BK considered so far is the PRISM switch definitions only. The

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 89

Learning a Generative Failure-Free PRISM Clause 89

outcomes of a switch are then added along with the switch separately as
facts. For example, given the following BK:

values(smoking,[0,1]).

values(visitAsia,[0,1]).

BK will be transformed into facts as follows:

msw(smoking,0).

msw(smoking,1).

msw(visitAsia,0).
msw(visitAsia,1).

The transformed BK constitutes the base for building the search space.
The search space is built by first approximating the relative least gen-
eral generalisation (RLGG) of the first two observations relative to the
BK. Then, after deleting all observations explained by the RLGG, an
approximation of the least general generalisation (LGG)1 of the result-
ing clauses (RLGG at first) and the clause formed by the first unex-
plained observation as a head and the BK as a body is built. The
steps are repeated until all observations are explained. The LGG is
approximated and not built exactly because some resulting predicates
violate the PRISM condition that switches must be ground terms. For
example, lgg(msw(smoking, 1),msw(visitAsia, 1)) = msw(X, 1) which is
not acceptable in PRISM. Some heuristics can also be used to approximate
the LGG in order to reduce the resulting clause. Building the hypothesis
space goes as follows:

(1) Build the LGG of the two clauses Obs1:-Conj(BK) and Obs2:-
Conj(BK), where Obs1 is the first observation, Obs2 is the second
observation and Conj(BK) is a conjunction of the facts in BK. The
result of the LGG is a clause Head:-Body.

(2) Delete all observations that are explained by the resulting clause
(Head:-Body).

(3) Build the LGG of the resulting clause (Head:-Body) and the clause
Obsn−m:-Conj(BK), where n is the number of observations, m is the
number of observations explained by the previously resulting clause and
Obsn−m is the first unexplained observation.

(4) Repeat step 3 until all observations are explained.

1The idea of approximating the LGG was proposed by Idestam-Almquist [Idestam-

Almquist (1997)] in solving ILP problems

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 90

90 Latest Advances in Inductive Logic Programming

Though the final clause explains all observations, it is extremely large
and contains many predicates which would cause failures in most of the
samples drawn from it. However, it defines a search space in which more
salient clauses are contained which can be reached either by deleting literals
or selecting some literals in a way that a generative process is achieved. This
is the basic idea of the search algorithms which work on reducing the final
clause resulting from the steps above until they reach a clause which gives
the highest score amongst the visited clauses.

11.3.2 Search

The search algorithms aim at finding a clause with the highest score. As
the aimed clause is assumed to be generative, two main conditions need to
be met:

• All variables are range restricted.
• All switches are ground when they are invoked (this condition is imposed

by PRISM).

11.3.2.1 Greedy hill climbing

The hill climbing search works by choosing the best candidate in the neigh-
bourhood which is constituted by clauses with one literal deleted from the
current clause. First it takes the massive clause generated by the steps
described in Section 11.3.1, and then starts searching by selecting the best
choice according to the variational free energy score. Given n literals in the
body, hill climbing finds the best choice by deleting each one in turn, thus
it runs VB learning n times and then n − 1 times, and so on. So the cost
of the search is O(n2) (this does not include the cost of the VB learning).
Due to the large number of literals at the start of the search, this search
strategy is considerably inefficient for big problems.

11.3.2.2 Random generation search

The random generation search takes the output of the steps in
Section 11.3.1. It works by building generative clauses randomly. First,
it considers the head of the resulting clause, and then it samples on body
literal at a time until a generative clause is built. This clause is then scored
and the process is repeated a pre-specified number of times. Finally, it pro-
duces the clause that has the best score. At each sampling stage, the set
of body literals that are considered should not include any none ground

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 91

Learning a Generative Failure-Free PRISM Clause 91

switch. For example, the literal msw(s(A),V) must not be considered for
sampling unless a literal that generates A has been sampled before in order
for the switch s(A) to be ground. So the first sampling step works on literals
with only ground switches (and other none msw predicates). Next, switches
that are grounded by the sampled literal are added to the list that the
algorithm will sample from, and the process is repeated until a generative
clause is produced.

11.4 Experiment

In order to test the learning algorithms, we sampled 300 observations from
the PRISM program shown in Table 11.2, representing the Asia network
shown in Fig. 11.1(a). The observations were fed to the learning algorithm
as training data along with the switch declaration part in Table 11.2 as

(a) The Asia Bayesian network from
which 300 observations were sampled

(b) The Bayesian network learned
with greedy hill climbing

(c) The Bayesian network learned
with random generation

Fig. 11.1 Learning Bayesian network encoded as a PRISM program.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 92

92 Latest Advances in Inductive Logic Programming

Table 11.1 Result of learning a single-clause PRISM program encoding a
Bayesian network with two search strategies.

Variational free energy Learning time

Original Net −1459 N/A
Net learned by greedy hill climbing −1464 >3 hours
Net learned by random generation −1475 ≈5 minutes

Table 11.2 A PRISM program encoding the Bayesian network where the
training data was sampled from. The switch declaration part was used as a
BK fed to the learning algorithm.

%Part of the switches declaration which also served as BK in learning
Bayesian network:

values(a,[0,1]). values(s,[0,1]). values(t a(0),[0,1]).

values(t a(1),[0,1]). values(l s(0),[0,1]). values(l s(1),[0,1]).

values(e tl(0,0),[0,1]). values(e tl(0,1),[0,1]).

.

.
%Bayesian network modelling part:

asia(A,T,E,S,L,B,X,D):-

msw(a,A),

msw(s,S),

msw(t a(A),T),

msw(l s(S),L),

msw(b s(S),B),

msw(e tl(T,L),E),

msw(d eb(E,B),D),

msw(x e(E),X).

background knowledge. The learning algorithm is run twice with the two
search strategies greedy hill climbing and random generation. The random
generation search was set to generate 1,000 sample programs and return
the program that with the highest score. The result is shown in Table 11.1.
The greedy hill climbing search scored slightly higher than the random
generation search. However, the time taken by the greedy hill climbing
search is unsatisfactory. Taken into account that random generation search
is completely random, this strategy could be improved with some guiding
mechanisms.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch11 page 93

Learning a Generative Failure-Free PRISM Clause 93

11.5 Conclusion and Future Work

Probabilistic Inductive Logic Programming (PILP) is a challenging prob-
lem. PRISM is a well-developed formalism which generalises probabilistic
models (e.g. Hidden Markov Model (HMM), Bayesian network, Stochastic
Context-free Grammar (SCFG), etc) and Logic Programming (LP). This
chapter presents a technique to learn single-clause failure-free PRISM pro-
grams and shows promising results. However, a challenging problem has
yet to be solved. As the presented technique is based on constructing the
LGG, though LGG is approximated and not constructed exactly, it could
be problematic for big problems due to the combinatoric explosion of the
number of literals. This problem needs further investigation.

There are different areas of improvement. One of which is learning recur-
sive definitions as some models cannot be represented without recursive
HMM with variable length. Predicate Invention (PI) can also be addressed
as in some problems new predicates need to be invented to build the final
theory.

Bibliography

P. Idestam-Almquist. Generalization of clauses relative to a theory. Mach. Learn.,
26(2–3), 213–226. 1997.

S. H. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. J. Logic Program., 19, 629–679. 1994.

S. H. Muggleton. Inverse entailment and Progol. New Generat. Comput., Special
issue on Inductive Logic Programming, 13, 245–286. 1995.

T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling.
Proceedings of the 15th International Joint Conference on Artificial Intel-
ligence, pp. 1330–1339. 1997. IJCAI 1997: Nagoya, 23–29 August 1997.

T. Sato and Y. Kameya. New advances in logic-based probabilistic modeling by
PRISM. In L. De Raedt, P. Frasconi, K. Kersting and S. H. Muggleton (eds).
Probabilistic Inductive Logic Programming. Springer, Berlin, pp. 222–243.
2008.

T. Sato, Y. Kameya and K. Kurihara. Variational Bayes via propositionalized
probability computation in PRISM. Ann. Math. Artif. Intel., 54, 135–158.
2008.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 95

Chapter 12

Statistical Relational Learning
of Object Affordances

for Robotic Manipulation

Bogdan Moldovan, Martijn van Otterlo and Luc De Raedt

Department of Computer Science,
Katholieke Universiteit Leuven, Belgium

Plinio Moreno and José Santos-Victor

Electrical & Computer Engineering, Instituto Superior Técnico, Portugal

We present initial results of an application of statistical relational learn-
ing using ProbLog to a robotic manipulation task modeled using affor-
dances. Affordances encompass the action possibilities on an object, so
previous works have presented models for just one object. However, in
scenarios where there are multiple objects that interact, it is very useful
to consider the advantages of the statistical relational learning (SRL).

12.1 Introduction

Robotics is a vast and active area seeking to develop mobile, physi-
cal agents capable of reasoning, learning and manipulating their envi-
ronment. Early approaches such as those in Shakey used logical rep-
resentations such as STRIPS, and many more approaches use various
other kinds of symbolic knowledge representation [Hertzberg and Chatila
(2008); Stulp and Beetz (2008)]. In addition to symbolic (or semantic)
methodologies, the physical aspect of robots requires dealing with vari-
ous kinds of uncertainty typically not handled by symbolic formalisms.
These aspects include interpreting noisy sensors, processing image streams
from cameras, controlling noisy physical actuators for manipulation and,
in general, solving many grounding and anchoring problems. Therefore,

95

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 96

96 Latest Advances in Inductive Logic Programming

much of current robotics research is concerned with probabilistic reasoning
and learning techniques [Thrun et al. (2005)] instead of symbolic rep-
resentations. Statistical relational learning (SRL) [De Raedt (2008); De
Raedt and Kersting (2008)] combines logical representations, probabilis-
tic reasoning and machine learning. Several recent works have explored
the use of SRL and have shown how to effectively combine probabilis-
tic and logical methods in robotics domains, e.g. see the kitchen scenario
in [Jain et al. (2009)].

We outline initial results of using SRL, in particular ProbLog [De Raedt
et al. (2007)], in a manipulation scenario with an iCub robot. We extend
recent results in imitation learning in which (video) demonstrations of
object manipulation (e.g. by a human) are used to learn affordances [Krunic
et al. (2009); Lopes et al. (2007); Montesano et al. (2008)]. Affordances are
a way to structure the robot’s environment in terms of what it can do with
specific objects. We extend this model by proposing an initial approach
towards generalization, using probabilistic logical affordance models. This
can be done by the use of SRL in a multiple-object scenario, which allows for
the generalization over objects and actions by allowing the use of already-
learned one- and two-object models together with known logical rules to
be used for inference. This allows for a greater flexibility in modeling com-
plex multi-object environments for robot manipulation than the previous
approaches [Krunic et al. (2009); Lopes et al. (2007); Montesano et al.
(2008)] of modeling the scene with a specific Bayesian network (BN). Next,
we explain the one-object case and in Section 12.3 we discuss the learn-
ing of manipulation skills. Section 12.4 describes the relational extension
and initial results after which we conclude with planned extensions, mostly
carried out in the context of the EU project on Flexible Skill Acquisition
and Intuitive Robot Tasking for Mobile Manipulation in the Real World
(First-MM).

12.2 Affordance-Based Models

We first discuss the affordance learning setting of [Krunic et al. (2009);
Lopes et al. (2007); Montesano et al. (2008)]. Affordances capture action
opportunities (e.g. what can one do with an object?) to structure the envi-
ronment. The typical setup involves a robot (with an arm) and a table with
physical objects (cubes, balls, etc.). Three main aspects of the approach are
actions (A), object properties (O) and effects (E). These, and their rela-
tionships, are presented in Fig. 12.1. Actions are physical manipulation
skills that can be applied to objects and include grabbing (and releasing),

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 97

Statistical Relational Learning of Object Affordances for Robotic Manipulation 97

Fig. 12.1 Affordances model: relations between objects, actions, effects [Lopes
et al. (2007); Montesano et al. (2008)].

pushing (in a plane away from the robot), and tapping (sideways). Object
properties are aspects that can be measured from perceptual devices (such
as vision) and involve color, shape and size. Effects are measurable features
that change once an action is performed, e.g. the velocity of the hand,
the velocity (or distance between) between the hand and the object, etc.
Depending on which data is available to the robot and which aspects need
to be predicted, the model can also be used for planning and other tasks,
see the table in Fig. 12.1.

Learning to imitate manipulation actions is accomplished through sev-
eral steps. First, data is collected from the robot performing several actions
on different objects. All features for A, O and E are measured for each
demonstration, and then processed, discretized and aggregated to acquire
a dataset where all features have a relatively small (ordinal) set of val-
ues. A probabilistic model can then be learned that captures the depen-
dencies between the three types of features. This can be used for various
purposes; e.g. for imitation learning; the robot observes a human manip-
ulating an object (with properties O), observes the effects of the demon-
strated action (E) and computes the most likely action causing E and O,
i.e. arg maxA P (A|E, O). Note that the robot has now computed how to
imitate a certain effect on an object in terms of his own action repertoire
which is obviously different from that of the human.

12.3 Learning Relational Skills and Experiments

The setting we have just described focuses on learning to manipulate a
single object. The data (E, A and O) is used to learn a (propositional)

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 98

98 Latest Advances in Inductive Logic Programming

Fig. 12.2 Relational interactions on a shelf, with colored objects and possible
goal locations.

BN and single actions for each object (e.g. large cubes should always be
tapped to the left). We envision a more general setting in which manipula-
tion skills involve (i) multiple objects, (ii) object interactions while manip-
ulating, (iii) behaviors depending on spatial configurations of objects, and
(iv) sequential actions.

A typical example in the First-MM project is the shopping scenario.
Part of it is depicted in Fig. 12.2. The robot is given a shelf, where several
objects are already present and their object properties (e.g. shape, location,
orientation, etc.) are known. An additional object is present in front of the
shelf, and the task of the robot is to place this object onto it, in a context
of multiple other objects. We set up experiments where an iCub robot
has to interact with one or two objects on the shelf. The active object
is the one the robot acts upon, and the passive object may interact with
the active one through the robot’s actions. Once the setting is extended
to more than one object, object interactions occur (e.g. pushing an object
into another object), and the (spatial) relationships between objects have
to be taken into account. We ran 87 experiments, 37 replicating the one
object experiment in [Krunic et al. (2009); Lopes et al. (2007); Montesano
et al. (2008)] and 50 involving two objects. Figure 12.3(l) illustrates the two
objects setting. On the left is the robot’s hand (white) and on the black
table there is a yellow rectangular prism (active), and a blue rectangular
prism (passive). The experiments were recorded using a top-view camera.
The videos were processed in order to extract features (e.g. object shape,
color, location, etc.), to compute the feature values for groups of frames,
and then to cluster and discretise the values. From this data we first learn
a BN using the K2 algorithm (using MATLAB), and then similar to [Lopes
et al. (2007); Montesano et al. (2008)], we learn the parameters (i.e. the
probabilities) of this BN. Figure 12.3(r) shows a subset of the BN, involving

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 99

Statistical Relational Learning of Object Affordances for Robotic Manipulation 99

Fig. 12.3 (l) video still of the data showing the robot hand and two objects, (r)
part of the Bayesian network obtained from structured learning.

the relations between the action, the magnitude of the displacement of the
active object, and the displacement orientation of the two objects.

Learning an affordance model for these situations and the correspond-
ing BN, the use of SRL allows us to achieve a generalization over multiple
objects in this setting. Using SRL for affordances allows the robot to learn
high-level skills, including motion planning, from low-level components such
as the actions and their effects on objects with given properties. The ulti-
mate goal of this research is the temporal aspect of the setting, in which
a plan consists of a set of actions. To imitate the plan and learn necessary
manipulation skills, the robot needs to recognize individual actions in the
plan. The rest of the chapter will focus on recognizing individual actions.

12.4 ProbLog Modeling and Results

SRL [De Raedt and Kersting (2008)], a subfield of AI, studies the com-
bination of logical representations, probabilistic reasoning mechanisms and
machine learning. Probabilistic programming languages (PPL) are program-
ming languages specially designed to describe and infer with probabilistic
relational models. The PPL ProbLog is a probabilistic extension of the
Prolog logic programming language, where facts are annotated with prob-
abilities and for which several inference methods are available [De Raedt
et al. (2007)]. Additionally, Prolog style logical rules can be used for defining
(general) background knowledge to answer probabilistic queries.

We continue with the obtained experimental data described in Sec-
tion 12.3, and add relational properties between objects (e.g. initial relative
distance or orientation between two objects) in the two-object scenario as
well as relational effects (e.g. final relative distance or orientation between

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 100

100 Latest Advances in Inductive Logic Programming

two objects), and model it using ProbLog. The model supports inference
for action recognition in this relational extension of [Krunic et al. (2009);
Lopes et al. (2007); Montesano et al. (2008)]. Our approach has the advan-
tage that data obtained from the one-object experiments can already be
generalized to multiple objects through the use of variables that refrain
from referring to specific, hardcoded objects. ProbLog rules generalize over
the object displacement magnitude and orientation. Thus later this learn-
ing setting can be extended to more than the one and two objects that the
experiments investigated, to the full-shelf scenario. Knowing that grabbing
and moving an object does not involve a second object, the displacement
of this main object can be generalized by using the data already obtained
from the one-object experiment. ProbLog can be used for modeling the
relations of the learned BN and parameters. As an example, in the subnet
from Fig. 12.3(r), the following ProbLog statement using annotated dis-
junctions and the learned parameters models part of the relation between
robot action and the magnitude of the displacement of the main object and
the displacement orientation of that object:

0.8947 :: dispOri(ObjMain, 5); 0.1053 :: dispOri(ObjMain, 7)
← action(ObjMain, , 3), dispMag(ObjMain, 1).

This says that if the action type is tap (“3”) and the displacement magni-
tude of the main object is small (“1”), then there is a probability of 0.8947
of the displacement orientation of the main object to be in a North (N)
direction (“5”), while there is a probability of 0.1053 of it being in an East
(E) direction (“7”).

The full relation between the robot action and the displacement orien-
tation of the secondary object is modeled as:

0.0345 :: dispOri(ObjSec, 1); 0.9655 :: dispOri(ObjSec, 7)

← action(, ObjSec, 3).

0.0476 :: dispOri(ObjSec, 1); 0.0952 :: dispOri(ObjSec, 3);

0.6190 :: dispOri(ObjSec, 5); 0.1429 :: dispOri(ObjSec, 6);

0.0952 :: dispOri(ObjSec, 7)← action(, ObjSec, 4).

Logical rules are used to specify general behavior. In the example, when
an object is grabbed and moved, any other object in the scene remains

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 101

Statistical Relational Learning of Object Affordances for Robotic Manipulation 101

unchanged (displacement magnitude and orientation are 0), which is mod-
eled as:

dispMag(ObjSec, 0)← action(ObjMain, ObjSec,1).

dispOri(ObjSec, 0)← action(ObjMain, ObjSec,2).

General logical rules keep the relations as generic as possible. Similar to
the examples presented above, the whole two-object model can be modeled
using ProbLog. Because of limited data, not every relation is caught by
structured learning. But using ProbLog is effective here too, as additional
relations between objects, actions and effects, or constraints in the system
can be modeled additionally with the use of logical rules.

After modeling the whole setting in ProbLog, we performed inference in
order to do action recognition. It is assumed that the robot has knowledge
of the object properties (O), and it can observe the effects (E), and it needs
to infer which action (A) was performed. This resumes to querying for the
condiditonal probabilities P (A|O, E) in the ProbLog model for each of the
four possible actions. As an example, an instance of action recognition that
we ran had:

O: Object1=Cube Object2=Cylinder
Initial Relative Distance=Big Initial Relative Orientation=NE

E: Displacement Object1=Medium Displacement Object2=Small
Displacement Orientation Object1=N
Displacement Orientation Object2=E Contact Area=Medium

Predicted Action: Grasp, Release: 0% Tap: 86.588% Push: 13.412%

In this case, the action would be recognized by the robot as being a Tap.
One of the main advantages of using a probabilistic logic language is

that it makes learning and inference so flexible by generalizing over the
specific objects. Given that most object interactions in this setting involve
two objects, the existing two-object model is a good approximation for the
general shelf setting. Assuming no multi-way (> 2) interactions at the same
time, extending this model to more than two-object on the shelf is easy,
being enough to add all the new object property values to the model, and
then do inference. Eventually, multi-way interactions can also be learned
from experiments, just as the two-object interactions were, and this added
to the model for it to become more exact. This can be used to find the best
action the robot can do to place an object at the desired location given a
configuration of objects around it.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 102

102 Latest Advances in Inductive Logic Programming

12.5 Conclusion and Future Work

We described an initial approach towards generalization of robotic affor-
dance model learning in a probabilistic relational setting. Moving to multi-
object scenes requires expressive representation schemes to generalize over
specific configurations of objects. Future work will involve the learning of
full manipulation skills and generalization over more than two objects in a
multiple-object scenario, and planning given partial knowledge about the
environment. One direction in the multiple-object setting is that of activ-
ity recognition and imitation learning. Here, the robot detects the object
properties and effects and tries to predict which action was performed. This
involves recognizing the low-level “atomic actions” involving just one or two
objects, by employing the learned models (for either one or two blocks). The
whole demonstrated behavior consists of sequences of such actions, which
would allow learning high-level manipulation strategies from demonstration
by first distinguishing between their component low-level actions. A second
interesting direction is to use the affordance models for planning of manip-
ulation strategies. The long-term goal is to go towards a full-shelf/shopping
scenario, in which the robot is instructed where and how to place objects
by a human.

Acknowledgments

Bogdan Moldovan is supported by the IWT (agentschap voor Innovatie door
Wetenschap en Technologie). This work is supported by the European Com-
munity’s 7th Framework Programme, grant agreement First-MM-248258.

Bibliography

L. De Raedt. Logical and Relational Learning. Springer, Berlin. 2008.
L. De Raedt and K. Kersting. Probabilistic inductive logic programming. In L.

De Raedt, P. Frasconi, K. Kersting, S. H. Muggleton (eds). Probabilistic
Inductive Logic Programming. Springer, Berlin, pp. 1–27. 2008.

L. De Raedt, A. Kimmig and H. Toivonen. Problog: a probabilistic prolog and
its application in link discovery. Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pp. 2462–2467. IJCAI 2007: Hyder-
abad, 6–12 January 2007.

J. Hertzberg and R. Chatila. AI reasoning methods for robotics. In B. Siciliano
and O. Khatib (eds). Springer Handbook of Robotics. Springer, Berlin. 2008.

D. Jain, L. Mösenlechner and M. Beetz. Equipping robot control programs
with first-order probabilistic reasoning capabilities. IEEE International

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch12 page 103

Statistical Relational Learning of Object Affordances for Robotic Manipulation 103

Conference on Robotics and Automation, pp. 3626–3631. 2009. ICRA 2009:
Kobe, 12–17 May 2009.

V. Krunic, G. Salvi, A. Bernardino, L. Montesano and J. Santos-Victor. Affor-
dance based word-to-meaning association. IEEE International Conference
on Robotics and Automation, pp. 4138–4143. 2009. ICRA 2009: Kobe, 12–17
May 2009. In ICRA, 2009.

M. Lopes, F. S. Melo and L. Montesano. Affordance-based imitation learning in
robots. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 1015–1021. 2007. IROS 2007: San Diego, California, 29 October–2
November 2007.

L. Montesano, M. Lopes, A. Bernardino and J. Santos-Victor. Learning object
affordances: From sensory-motor coordination to imitation. IEEE T. Robot.,
24, 15–26. 2008.

F. Stulp and M. Beetz. Combining declarative, procedural, and predictive knowl-
edge to generate, execute, optimize robot plans. Robot. Auton. Syst., 56,
967–979. 2008.

S. Thrun, W. Burgard and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
Massachusetts. 2005.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 105

Chapter 13

Learning from Linked Data
by Markov Logic

Man Zhu and Zhiqiang Gao

School of Computer Science & Engineering,
Southeast University, P.R. China

Semantic Web, with the vision of “Web of Linked Data”, is becoming the
data-holder for Description Logics learning algorithms. However, noise
arises as an unavoidable issue to the effectiveness of these algorithms. To
cope with this problem, we make use of the advantages of the Markov
logic in handling uncertainties and modeling rich relations, and propose
an ALC inclusion axioms learning algorithm. In this chapter, we describe
the approach in detail and report the evaluations using a small illustra-
tive data set, and four larger data sets. Experimental results show that
the approach performs well on noisy data.

13.1 Introduction

As the “Web of Linked Data” vision of the Semantic Web is coming
true, the size of Linked Data has kept growing over the last few years.1

Although the Linked Data can provide plenty of examples for learning algo-
rithms, as argued by Auer and Lehmann [Auer and Lehmann (2010)], many
data sets on the Linked Data lack rich knowledge representation and con-
tain noise.2 Recent years have seen an increasing interest on this problem

1According to the 2009 report, there have been over 6 billion RDF triples, and over 148
million links in Linked Data [Bizer (2009)].
2We are particularly interested in handling two types of noise — partiality and error

[Zhu (2011)] — in complement with the noise analyzed in [Hogan et al. (2010)]. Par-
tiality means that concept assertions or the relationships between named individuals are
actually true but missed, and error means that the RDF triples are not correct.

105

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 106

106 Latest Advances in Inductive Logic Programming

[Auer and Lehmann (2010); d’Amato et al. (2010)]. Learning from Linked
Data is both worth investigating and challenging.

An important body of previous work has enlightened this chapter. In
[Niepert et al. (2011)], Niepert proposed log-linear description logics, inte-
grating description logics with log-linear models, to learn coherent Descrip-
tion Logic EL++ concept inclusions. Lehmann et al. have written a series
of works on learning description logics, which have been implemented in
the Description Logics learning tool DL-Learner. DL-Learner includes four
class description learning algorithms, namely CELOE, a random guesser
learning algorithm, and ISLE, a brute force learning algorithm. These algo-
rithms select class expressions according to various heuristics [Lehmann
et al. (2011)]. Völker and Niepert proposed a statistical approach, to be
specific, an association rule mining, to learn OWL 2 EL from Linked Data
in [Völker and Niepert (2011)].

We propose to learn ALC inclusion axioms inductively from Linked
Data based on Markov logic [Richardson and Domingos (2006)]. As a com-
bination of first-order logic and Markov network, Markov logic is able to
handle Description Logic ALC (subsumed by first-order logic) in terms of
expressivity. Using Markov logic, two challenges of learning from Linked
Data can be easily handled: (1) Linked Data are highly structured due
to the relations between entities and the underlying ontology; (2) Linked
Data contains noises, here; we refer particularly to partiality and error. We
make contributions in the following aspects: firstly, we tried to handle the
noise issue in Linked Data, and explored the use of Markov logic to pro-
vide representation for Linked Data, and learn ALC inclusion axioms in a
probabilistic way. Secondly, we adopted ALC downward refinement opera-
tor [Lehmann and Hitzler (2008)] to organize the hypotheses space during
inclusion axioms learning with Markov logic.

13.2 Description Logic ALC
Interpretation I (c.f. Table 13.1) consists of a non-empty set ∆I and an
interpretation function.3 In this chapter, the inclusions we learn are of the
form A � C, where A is an atomic concept, and C is a complex con-
cept description (built from atomic concepts and atomic roles with ALC

3Interpretation function assigns to every atomic concept A a set AI ⊆ ∆I and to every
atomic role R a binary relation RI ⊆ ∆I × ∆I .

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 107

Learning from Linked Data by Markov Logic 107

Table 13.1 Syntax and semantics of Description Logic ALC [Baader and Nutt
(2003)].

Construct Syntax Semantics

atomic concept A AI ⊆ ∆I

atomic role r rI ⊆ ∆I ×∆I

top concept � ∆I

bottom concept ⊥ ∅
conjunction C �D (C �D)I = CI ∩DI

universal restriction ∀r.C (∀r.C)I = {a|∀b.(a, b) ∈ rI implies b ∈ CI}
U disjunction C 	D (C 	D)I = CI ∪DI

C negation ¬C (¬C)I = ∆I \ CI

E existential restriction ∃r.C (∃r.C)I = {a|∃b.(a, b) ∈ rI and b ∈ CI}

constructors). An interpretation I satisfies A � C, if AI ⊆ CI . Equiva-
lence A ≡ C holds, if both A � C and C � A holds.

13.3 Learning from Linked Data

Given concept A, the algorithm will ideally learn an inclusion axiom of
the form A � C. Similar to the SEQUENTIAL-COVERING algorithm, the
ALC learning algorithm we proposed contains a loop. Inside the loop, two
operations are conducted. Firstly, the algorithm generates candidate con-
cepts with ALC constructors for the current concept Ccurrent (c.f. Sec-
tion 13.3.1) using ALC downward refinement opeartor [Lehmann and Hit-
zler (2008)]. Secondly, according to a performance evaluating function which
selects the “best” one from the candidates according to the performance
measure (c.f. Section 13.3.2). The loop breaks when the performance of the
new candidate stops increasing.

13.3.1 Generating candidate specializations

We use the ALC downward refinement operator proposed by Lehmann
[Lehmann and Hitzler (2008)] to generate candidate specializations. The
refinement operator is a mapping S �→ 2S on a quasi-ordered space S. Sub-
sumption is a quasi-ordering (reflexive and transitive) relation. An ALC
downward refinement operator maps anALC concept C to the ALC concept
specializations of C. The learning algorithm conducts a general-to-specific
search over the hypotheses space. According to our observations, the

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 108

108 Latest Advances in Inductive Logic Programming

Fig. 13.1 Learning algorithm.

refinement operator is particularly suitable for generating candidate spe-
cializations because it is well founded, and its good properties (for example,
completeness) ensure the learning process will return the result if it exists.

The candidates are generated by an iterative process, which starts from
a base set B. B includes most general atomic concepts, negates most specific
atomic concepts {∃r.�|r is an atomic role}, and {∀r.C|r is an atomic role,
and C ∈ B}. We denote the set of atomic concepts as CA, and for A ∈ CA,
the direct atomic subconcept of A can be defined as dc↓(A) = {A′|A′ ∈
CA, there is no A′′ ∈ CA with A′ � A′′ � A}, the set of direct atomic
superconcepts dp↑(A) can be defined vice versa. The details of the ALC
downward refinement operator ρ↓(C) can be found from Table 13.2.

13.3.2 Guiding the search

At each step, candidate inclusions of the form A � Ci are assumed
to be uncertain, that is, each inclusion is associated with a weight
(< A � Ci, wi >). They construct a Markov logic network (MLN). Given
the RDF triples in Linked Data, the MLN can be instantiated to be a
Markov network ML,C, in which each binary value node is a grounding
of a predicate and each feature fi,j is a grounding of one of the con-
cept descriptions. ML,C therefore encodes the joint probability distribution
P (X = x) = 1

Z exp(
∑

i wini), where ni =
∑

j 1{fi,j is true}. In order to
make both inferencing and learning tractable, this joint probability distri-
bution is always approximated by pseudo-log-likelihood:

logP ∗w(X = x) =
n∑

l=1

logPw(Xl = xl|MBx(Xl)) (13.1)

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 109

Learning from Linked Data by Markov Logic 109

Table 13.2 ALC downward refinement operator ρ↓(C)
[Lehmann and Hitzler (2008)].

if C is ρ↓(C)

⊥ ∅
� {C1 	 . . . 	 Cn|Ci ∈ B(1 ≤ i ≤ n)}

A(A ∈ AC) {A′|A′ ∈ dc↓(A)} ∪ {A �D|D ∈ ρ′↓(�)}
¬A(A ∈ AC) {¬A′|A′ ∈ dp↑(A)} ∪ {¬A �D|D ∈ ρ′↓(�)}

∃r.D {∃r.E|E ∈ ρ′↓(D)} ∪ {∃r.D �E|E ∈ ρ′↓(�)}
∀r.D {∀r.E|E ∈ ρ′↓(D)} ∪ {∀r.D �E|E ∈ ρ′↓(�)}

∪{∀r.⊥D = A ∈ AC and dc↓(A) = ∅}
C1 � . . . � Cn

(n ≥ 2)
{C1 � . . . � Ci−1 �D � Ci+1 � . . . � Cn|
D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}

C1 	 . . . 	 Cn

(n ≥ 2)

{C1 	 . . . 	 Ci−1 	D 	 Ci+1 	 . . . 	 Cn|
D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}
∪{(C1 	 . . . 	 Cn) �D|D ∈ ρ′↓(�)}

After taking the derivative of (13.1), we get

∂

∂wi
logP ∗w(X = x) =

n∑

l=1

[ni(x)− Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])

−Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])] (13.2)

In MLN, the weight represents the relative strength or importance of
the class description (rule) [Richardson and Domingos (2006)]. The higher
the weight, the greater the difference in log probability between a world
that satisfies the concept description and the one that does not [Richard-
son and Domingos (2006)]. At each step, the concept description with the
highest weight is selected. To select the most promising candidate from the
candidates generated at each step, the weight vector is learned by L-BFGS
algorithm [Liu and Nocedal (1989)], a quasi-Newton method suitable for
large-scale optimization. Inasmuch as the joint probability distribution is
a good indicator of the performance of the selected concept description,
the iteration stops when the pseudo-log-likelihood stops increasing when a
more specific description is selected.

13.4 Experiments

We adopt the measures frequently used in the information retrieval domain
for the evaluations, namely precision, recall and F1-score. The experiments

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 110

110 Latest Advances in Inductive Logic Programming

are conducted on two types of data sets. With the illustrative data sets,
we focus on analyzing the capability of the approach on handling noises.
As an illustrative example, we choose a small data set from the examples
of DL-Learner,4 and perform small modifications on it to show the noisy
cases, which are difficult to illustrate on large data sets. As for the real-
world ontology, we use four ontologies, namely, the Semantic Bible ontology,
Adhesome ontology, financial ontology (obtained from DL-Learner), and SC
ontology.

Learning Concept Definitions. To show the performance on noisy cases,
we modify the ontology and add two positive examples, father(anna) and
father(heinz), separately to correspond to error and incompleteness cases,
and build two ontologies named family error and family incomplete.5 Using
DL-Learner GUI (version 2010-08-07) with CELOE algorithm under default
settings for the class learning problem, the concept description for father can
be correctly learned from family.owl to be male
 ∃hasChild.Thing, but
from family error.owl and family incomplete.owl the concept description
cannot be learned correctly. However, our learner is able to learn the correct
concept definition for concept father from all of these ontologies.

Learning Concept Inclusions. The evaluation results are shown in Table
13.3. We use positive examples for the target concept to learn inclusions.
On Adhesome, the recall is only 0.1852, which can be explained from two
views: on the one hand, Adhesome ontology contains more concepts with
zero instances, thus data are not sufficient for the learner to go. On the
other hand, the Adhesome ontology is expressive and contains number
restrictions, which cannot be expressed by ALC. Since SC ontology con-
tains a large amount of instances compared with the amount of concepts,
our learner tends to select restrictions prior to atomic concepts, which have
led to a very low precision.

13.5 Conclusion and Remarks

To handle the noises that generally exist in Linked Data, we propose a naive
but simple approach for learning Description Logic ALC inclusion axioms
inductively by Markov logic. We use ALC downward refinement operator

4http://aksw.org/Projects/DLLearner
5http://research.aturstudio.com/family\ noisy/

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 111

Learning from Linked Data by Markov Logic 111

Table 13.3 Learning results.

Data sets Precision Recall F1-score

Adhesome 0.8333 0.1852 0.3030
Semantic Bible 0.8958 0.9302 0.9127
SC 0.2121 0.7000 0.3256
financial 0.7895 0.5455 0.6452

[Lehmann and Hitzler (2008)] to conduct a general-to-specific search. Dur-
ing the candidate selection process, we transform the problem by finding
the candidate with the highest weight, which can be viewed as an indicator
of the degree of consistency between the candidates and the facts in the
Linked Data. Compared to other works of learning description logic, our
approach is more insensitive to noise.

We note two issues here. (1) At first sight, we learn the “most” specific
concept C to form A � C. We know from Table 13.2 that other axioms
A � C ′ with the fact C ′ � C (that are obtained by reasoners) can be
easily reached. (2) Semantic Web languages generally make an open world
assumption (OWA). We maintain OWA, and only take into account the
facts that are known to be true.

Acknowledgment

We gratefully acknowledge funding from the National Science Foundation
of China under grants 60873153, 60803061 and 61170165.

Bibliography

S. Auer and J. Lehmann. Making the web a data washing machine — creating
knowledge out of interlinked data. Semantic Web Journal, 1(1), 97–104.
2010.

F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D. McGuiness, D. Nardi and P. Patel-Schneider (eds). The Description
Logic Handbook. Cambridge University Press, Cambridge, pp. 43–95. 2003.

C. Bizer. The emerging web of linked data. IEEE Intell. Syst., 24(5), 87–92.
2009.

C. d’Amato, N. Fanizzi and F. Esposito. Inductive learning for the semantic web:
What does it buy? Semantic Web Journal, 1(1–2), 53–59. 2010.

A. Hogan, A. Harth, A. Passant, S. Decker and A. Polleres. Weaving the pedan-
tic web. In C. Bizer, T. Heath, T. Berners-Lee and M. Hausenblas (eds.).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch13 page 112

112 Latest Advances in Inductive Logic Programming

Proceedings of the WWW2010 Workshop on Linked Data on the Web. 2010.
Available online: http://ceur-ws.org/Vol-628/. Accessed 12 August
2014.

J. Lehmann and P. Hitzler. A refinement operator based learning algorithm for
the alc description logic. In H. Blockeel, J. W. Shavlik and P. Tadepalli
(eds). Proceedings of the 17th International Conference on Inductive Logic
Programming (ILP), LNCS, vol. 4894. Springer, Berlin, pp. 147–160. 2008.

J. Lehmann, S. Auer, Lorenz Bühmann and Sebastian Tramp. Class expression
learning for ontology engineering. Web Semantics: Science, Services and
Agents on the World Wide Web, 9(1), 71–81, 2011.

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Math. Program., 45(1), 503–528. 1989.

M. Niepert, J. Noessner and H. Stuckenschmidt. Log-linear description logics.
22nd International Joint Conference on Artificial Intelligence, pp. 2153–
2158. IJCAI 2011: Barcelona 16–22 July 2011.

M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1),
107–136. 2006.

J. Völker and M. Niepert. Statistical schema induction. In L. Aroyo, P. Traverso,
F. Ciravegna, P. Cimiano, T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren, M.
Sabou and E. Simperl (eds). The Semantic Web: Research and Applications
(Proceedings of the 6th European Semantic Web Conference), Springer,
Berlin, pp. 124–138. 2011.

M. Zhu. Dc proposal: Ontology learning from noisy linked data. In Proceedings of
the 10th International Semantic Web Conference Part II, LNCS, vol. 7032.
Springer, Berlin, pp. 373–380. 2011

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 113

Chapter 14

Satisfiability Machines

Filip Železný

Department of Cybernetics, Czech Technical University in Prague,
Czech Republic

We propose a probabilistic model for formulas, in which a formula’s
probability decreases with the number of pre-defined constraints it con-
tradicts. Probability of ground conjunctions can be computed by a series
of subsumption checks. The probability is equivalent (up to a multiplica-
tive constant) to that computed by a Markov logic network (MLN) for
conjunctions that fully describe a possible world. An experiment indi-
cates that the two quantities correlate also for other conjunctions, with
less variance for larger conjunctions. The proposed framework suggests
a simple classification principle.

14.1 Introduction

In MLNs [Richardson and Domingos (2007)], the probability of an interpre-
tation (possible world) decreases with the number of pre-defined constraints
it violates. The probability of a formula is then the sum of probabilities
of the worlds in which it holds. This quantity is intractable to calculate
and sampling is usually adopted to approximate it. Here we explore an
alternative probabilistic model enabling fast computation of a formula’s
probability. We embrace the key concept of MLNs but formalize it without
regards to possible worlds: the probability of a formula decreases with the
number of pre-defined constraints it contradicts. Instead of general formu-
las, we focus here specifically on ground conjunctions. Having a parametric
probability model for ground conjunctions can be useful since they often
represent learning examples (they correspond to partial interpretations

113

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 114

114 Latest Advances in Inductive Logic Programming

[De Raedt (1997)]). In the sequel we explore how such probabilities can
be computed, how they relate to probabilities in the MLN framework, and
how our framework can be used for classification.

14.2 Probabilistic Model

We consider a first-order logic language with Herbrand base (set of all
ground atoms in the language) H. As in most treatments of MLNs, we
do not allow functions in the language so that H is finite. Extensions to
the infinite case (e.g. along the lines of [Singla and Domingos (2007)]) are
possible but not dealt with here. Given a finite set of formulas F1, F2, . . . Fn
with real weights w1, w2, . . . wn, the probability of an interpretation x ⊆ H
in the MLN framework is

PM (x) =
1
ZM

exp
n∑

i=1

wini(x) (14.1)

where ni is the number of groundings of Fi that are true in x, i.e. denoting
the set of all its grounding substitutions possible in the language as GS(Fi),

ni(x) = |{θ ∈ GS(Fi) | x |= Fiθ}| (14.2)

ZM is a normalizer ensuring that the above probability sums to 1 over all
2|H| interpretations x. As in most MLN studies, we shall assume that the
Fis are clauses.

The probability of a formula ϕ in the MLN framework is the sum of
probabilities of ϕ’s models

PM (ϕ) =
∑

x|=ϕ
PM (x) =

1
ZM

∑

x|=ϕ
exp

n∑

i=1

wini(x) (14.3)

Computing this probability is not tractable except for minimalistic lan-
guages, and in practice it is estimated through sampling. Particular atten-
tion has been devoted to approximative methods for the case when ϕ = c is
a ground conjunction [Richardson and Domingos (2007)]. Here we instead
aim at a conceptual simplification. Specifically, we maintain the Fis and
wis but we propose that

PS(ϕ) =
1
ZS

exp
n∑

i=1

wimi(ϕ) (14.4)

where

mi(ϕ) = |{θ ∈ GS(Fi) | ϕ ∧ Fiθ � ⊥}| (14.5)

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 115

Satisfiability Machines 115

So the probability of a formula decreases with the number of constraints
(groundings of the Fis) it contradicts. Calculating the normalizing constant
ZS is less obvious than calculating ZM in the MLN case, however, it
becomes straightforward if we again constrain ourselves to ϕ = c being
ground conjunctions (we will maintain the assumption throughout the
paper). Then ZS is such that PS(c) sums to 1 over all 3|H| possible ground
conjunctions c (each atom from H can either be positive, negative, or
absent in c).

Note that c ∧ Fiθ � ⊥ is equivalent to Fiθ � ¬c. Since c is a ground
conjunction, ¬c is a ground clause and thus, unless Fi is self-resolving,
Fiθ � ¬c can be reduced to the subsumption check lits(Fiθ) ⊆ lits(¬c).
Equation 14.5 can now be expressed as

mi(c) = |{θ ∈ GS(Fi) | lits(Fiθ) � lits(¬c)}| (14.6)
Equivalently, mi(c) = |GS(Fi)| − |{θ ∈ GS(Fi) | lits(Fiθ) ⊆ lits(¬c)}|. The
first summand is not significant since it does not depend on c and can
simply be removed and reflected in the weight wi. Thus, what remains to
compute towards obtaining mi(c) is just the set of solutions to a subsump-
tion check. This is particularly appealing due to extremely fast subsump-
tion testers under energetic research that now achieve order-of-magnitude
speed-ups by employing CSP algorithms [Maloberti and Sebag (2004)] or
other heuristic approaches [Santos and Muggleton (2010)], language-biases
[Kuzelka and Zelezny (2011)] or randomized search [Kuzelka and Zelezny
(2008a,b)]. The approach [Kuzelka and Zelezny (2008a)] seems particularly
relevant in the present context since it uses randomization to estimate the
number of subsumption solutions, i.e. the mi(c) numbers directly.

14.3 Comparing PM(c) and PS(c)

The relationship between PM (c) and PS(c) is clear for model conjunctions
(conjunctions that have a single model). The model conjunction for an
interpretation x is cx =

∧
a∈x a

∧
b∈H\x ¬b. We have that

ZSPS(cx) = ZMPM (cx) (14.7)
for any model conjunction cx. Comparing Eqs (14.4) and (14.3), we see that
the above is true if

exp
n∑

i=1

wimi(cx) =
∑

y|=cx

exp
n∑

i=1

wini(y)

However, since the only model of cx is x, the first summation on the
right-hand side vanishes and we only need to check that for each i,

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 116

116 Latest Advances in Inductive Logic Programming

mi(cx) = ni(x). As follows from Eqs (14.5) and (14.2), this is the case if the
relation cx ∧ Fiθ � ⊥, i.e. lits(Fiθ) � lits(¬cx) is equivalent to the relation
x |= Fiθ. Since ¬cx =

∨
a∈x ¬a

∨
b∈H\x b, the former relation means that

either for some negative literal ¬a of Fiθ, a is not in x, or some positive
literal of Fiθ is not in H \ x, i.e. (since x ⊆ H), is in x. That, however, is
precisely the definition of the latter relation and we have thus proven the
equivalence of both relations. Thus Eq. (14.7) indeed holds.

For ground conjunctions c other than model conjunctions, the relation-
ship between PS(c) and PM (c) is less clear. For this general case, we have
not yet been able to relate the quantities analytically as in Eq. (14.7) and
so we approached the question empirically. To this end, we implemented in
YAP Prolog both MLNs inference, and the herewith proposed subsumption-
based inference, both exact and sampling-based.1

For this particular experiment, we considered the following four clauses
from a toy university domain, each with weight wi = 1

F1 = false← studies(P,C) ∧ teaches(P,C) (14.8)

F2 = false← teaches(john, C) ∧ teaches(jack, C) (14.9)

F3 = teaches(john, C) ∨ teaches(jack, C)← studies(P,C) (14.10)

F4 = studies(john, C) ∨ studies(jack, C)← teaches(P,C) (14.11)

We used a typed Herbrand base H, which consists of atoms made of one of
teaches/2 and studies/2 predicate symbols with the first argument being
either jack or john and the second argument being one of {math, cs, ai}. H
contained exactly 12 atoms. We randomly generated 500 ground conjunc-
tions. Each one was sampled independently from the others, by going over
all atoms in H. Each atom in H had 1/2 probability of being included in
the conjunction; if it was included, it produced a positive (negative) lit-
eral with 1/2 probability. For each such conjunction c we computed both
ZMPM (c) and ZSPS(c). The 500 value pairs are shown diagrammatically
in Fig. 14.1. The main insight provided by the experiment is that the two
quantities are clearly correlated and the satisfiability framework is charac-
terized by a rougher probability scale. As expected, the conditional variance
var(PM (c)|PS(c)) is smaller for large conjunctions c (red marks in the fig-
ure) than for arbitrary conjunctions; this is because large conjunctions are

1The implementation (sporadically commented) is available at http://labe.felk.

cvut.cz/∼zelezny/sm.yap

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 117

Satisfiability Machines 117

ZSP S(c) (log scale)

Z
M

P
M

(c
) (

lo
g

sc
al

e)

Fig. 14.1 MLN-probabilities vs. SM-probabilities of random ground conjunc-
tions. The mean length of a conjunction is six literals, conjunctions of this or
greater length are shown in red.

closer to model conjunctions for which we have already established the
deterministic relationship (Eq. (14.7)).

While PS(c) has its own intuitive meaning (as worded in introducing
the quantity), the experiment shows that it can be also viewed as an esti-
mator of PM (c). Note that unlike PM (c), PS(c) is reasonable for modeling
only those domains where the constraints Fi are independent of each other;
otherwise it may fail intuition. For example, given F1 = p← q, F2 = q ← r,
and c = r∧¬p, then PS(c) is a mode of the PS distribution since c does not
violate any of the two constraints. The fact that it contradicts their con-
junction is not reflected by PS(c). We think, however, that the said indepen-
dence assumption is not problematic for modeling real-world domains, as
essentially the same assumption is made by the generally successful propo-
sitionalization systems.

The natural question is what benefits PS(c) brings us in comparison to
PM (c). The key advantage lies in the fact that the exact computation of
ZMPM (c) takes time exponential in the size ofH and this size in turn grows
combinatorially with the number of constants in the language. To appre-
ciate this complexity, we calculated ZMPM (c) for the (randomly drawn)
conjunction c = ¬teaches(john,math)∧ teaches(john, ai)∧¬teaches(jack, ai)
∧¬studies(john,math)∧¬studies(jack,math)∧ ¬studies(jack, ai) for the pre-
viously shown Fis and for different numbers of constants in H, obtaining
the following runtimes:

number of course-constants in H 2 3 4 5
time to compute ZMPM (c) [s] 0.02 0.47 10.25 242.67

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 118

118 Latest Advances in Inductive Logic Programming

In contrast, the time to exactly calculate ZSPS(c) is zero (below measur-
ability) in all these cases. This is understandable since the runtime here
does not depend on the size of H. Indeed, the computation is just a series
of subsumption checks between the Fi’s and ¬c, wherein the complexity is
only given by the sizes of these clauses.

Of course, exact probability inference is replaced by faster sampling-
based approximative methods in the MLN framework. On the other hand,
the unification-based algorithm for subsumption checking that we used
above can also be replaced by much faster subsumption testers as we have
already commented. An experimental comparison including such features
is left for an extended version of the chapter.

Lastly, the comparison above regarded the computation of the unnor-
malized quantities ZMPM (c) and ZSPS(c). Exact computation of PS(c)
would obviously be intractable since it would involve a loop over 3|H| con-
junctions. This could be remedied by Monte-Carlo sampling (independent
of any randomization possibly adopted in the subsumption-checking step)
as in the MLN framework, except that each atom would be in one of three
(positive, negative, absent) rather than two states. Nevertheless, we will
now exemplify a situation where we can simply rely on the unnormalized
quantity.

14.4 Discriminative Learning

In the MLN context, discriminative learning usually refers to the situation
where the probabilistic model is used to predict the truth value of some
atoms given the truth value of other atoms. Here we adopt a view more usual
in supervised machine learning, where examples (here, ground conjunctions)
are partitioned into classes (here we assume exactly two classes) and the
model is used to predict the classes of given examples. A straightforward
way to classification, based on likelihood odds, is to predict class one if
P 1
S(c)/P 2

S(c) > τ , where P 1
S and P 2

S are two class-specific distributions in
the form (14.4) and τ is a real threshold. The inequality can be rewritten
as

Z1
SP

1
S(c)

Z2
SP

2
S(c)

> τ
Z1
S

Z2
S

≡ τ ′ (14.12)

From the training set, we would estimate the structure (Fis) and parameters
(wis) for both distributions as well as the parameter τ ′ with the objective
of maximizing training-set accuracy (modulo overfitting counter-measures).
As follows from the expression above, we only need the unnormalized

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 119

Satisfiability Machines 119

quantities Z1
SP

1
S(c) and Z2

SP
2
S(c) along with the learned parameter τ ′ to

classify c.
Perhaps a more pragmatic way to classification learning, however, is

to drop the exponential form while maintaining the proposed mi(c) con-
cept. We would classify c into class 1 iff

∑n
i=1 wimi(c) > τ . This form

gives a simple clue for structure learning, in particular, we would search for
clauses Fi that contradict as many (few) as possible training examples of
class 1 (2). Then, parameters wi and τ would be tuned. This approach in
fact corresponds to a sort of propositionalization with subsequent learning
of a linear classifier. The kind of propositionalization entailed by the present
framework differs from current propositionalization approaches mainly in
that (1) full (function-free) clausal logic is used to express features Fi (in
current propositionalization systems, features are usually queries or Horn
clauses), and (2) rather than a Boolean value, a feature is assigned an inte-
ger for a given example, capturing the number of the feature’s groundings
that contradict the example.

14.5 Conclusion

We have proposed satisfiability machines, a conceptual simplification of
MLNs. A full discussion of its relationships to propositionalization as well
as classification experiments on gene expression data under gene-ontology
background knowledge is left for an extended version of this paper.

Acknowledgment

This work was supported by the Czech Science Foundation project
P103/10/1875 “Learning from Theories”.

Bibliography

L. De Raedt. Logical settings for concept-learning. Artif. Intell. 95(1), 187–201.
1997.

O. Kuzelka and F. Zelezny. Fast estimation of first-order clause coverage through
randomization and maximum likelihood. In A. McCallum and S. Rowies.
Proceedings of the Twenty-Fifth International Conference on Machine
Learning, pp. 504–511. 2008a. ICML 2008: Helsinki, 5–9 July 2008. Avail-
able online: http://icml2008.cs.helsinki.fi/papers/503.pdf. Accessed
12 August 14.

O. Kuzelka and F. Zelezny. A restarted strategy for efficient subsumption testing.
Fund. Inform., 89(1), 95–109. 2008b.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch14 page 120

120 Latest Advances in Inductive Logic Programming

O. Kuzelka and F. Zelezny. Block-wise construction of tree-like relational features
with monotone reducibility and redundancy. Mach. Learn., 83(2), 163–192.
2011.

J. Maloberti and M. Sebag. Fast theta-subsumption with constraint satisfaction
algorithms. Mach. Learn., 55(2), 137–174. 2004.

M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1–2),
107–136. 2007.

J. Santos and S. H. Muggleton. Subsumer: A Prolog theta-subsumption engine. In
M. Hermenegildo and T. Schaub (eds). Technical Communications of the
26th International Conference on Logic Programming, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, pp. 172–181. 2010.

P. Singla and P. Domingos. Markov logic in infinite domains. 23rd Conference on
Uncertainty in Artificial Intelligence, pp. 368–375. 2007. UAI 2007: Van-
couver, 19–22 July 2007.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 121

PART 3

Implementations

121

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 123

Chapter 15

Customisable Multi-Processor
Acceleration of Inductive

Logic Programming

Andreas K. Fidjeland, Wayne Luk, and Stephen H. Muggleton

Imperial College London, UK

Parallel approaches to Inductive Logic Programming (ILP) are adopted
to address the computational complexity in the learning process. Exist-
ing parallel ILP implementations build on conventional general-purpose
processors. This chapter describes a different approach, by exploiting user-
customisable parallelism available in advanced reconfigurable devices such
as Field-Programmable Gate Arrays (FPGAs). Our customisable parallel
architecture for ILP has three elements: a customisable logic program-
ming processor, a multi-processor for parallel hypothesis evaluation, and
an architecture generation framework for creating such multi-processors.
Our approach offers a means of achieving high performance by producing
parallel architectures adapted both to the problem domain and to specific
problem instances. The coverage test in Progol 4.4 is performed up to 56
times faster using our multi-processor.

15.1 Introduction

Inductive Logic Programming (ILP) is a powerful paradigm for symbolic
machine learning, since it can incorporate existing theories and produce
human-readable output. ILP systems have been successfully applied in a
number of areas. For example, in molecular biology they have been used
for learning rules for prediction of protein fold signatures [Turcotte et al.
(2001)], mutagenesis [Srinivasan et al. (1994)], toxicity [Lodhi et al. (2010)],
and structure activity relationships for pharmacaphores [Sternberg and
Muggleton (2003)]. However, ILP systems are computationally demand-
ing. Several approaches to speeding up ILP have been developed with
parallelisation being exploited at different levels [Dehaspe and De Raedt

123

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 124

124 Latest Advances in Inductive Logic Programming

(1995); Fidjeland and Luk (2003); Fonseca et al. (2005, 2009); Ohwada
et al. (2000); Skillicorn and Wang (2001); Wielemaker (2003)]. Common to
these approaches is the reliance on conventional general-purpose processors,
with parallel processing units either being nodes in a distributed computer
or cores in a multi-core processor.

This chapter describes a different approach, based on advanced recon-
figurable hardware such as FPGAs, to provide multi-processors with a cus-
tomisable architecture. Similar approaches have been used in speeding up
various demanding applications, such as those in financial modelling [Jin
et al. (2009)] and in medical imaging [Tsoi et al. (2009)]. Our approach is
developed for speeding up the ILP system Progol [Muggleton (1995)], using
customised instruction processors and multi-processors. Its unique features
include:

(1) Arvand, an instruction processor for logic programming, which can be
customised to particular classes of data sets for learning (Section 15.3);

(2) a Progol multi-processor, which exploits data parallelism in hypothesis
evaluation (Section 15.4);

(3) a multi-processor architecture generation framework for logic pro-
gramming, which is used to create customised multi-processors (Sec-
tion 15.5).

Reconfigurable hardware has been used in emulating Intel architec-
tures [Schelle et al. (2010)]. Such emulation, however, does not exploit the
reconfigurability of FPGAs to provide a customisable architecture. More-
over, our research demonstrates how fine-grained parallelism on an FPGA
can significantly enhance ILP performance.

15.2 Background: Sequential and Parallel ILP

Inductive logic programming [Muggleton and De Raedt (1994)] is a learning
paradigm based on first-order logic. Such systems learn predicate hypothe-
ses from background information and examples. This approach has the
advantages that both the specified background knowledge and the gener-
ated hypotheses are in a human-readable format, and that the system can
build on partial theories by incorporating existing background knowledge.

ILP systems come in several variations, but in general they take as
input a set of positive (E+) and negative (E−) examples, some background
knowledge (B), and a language bias defining the hypothesis space. From this
it produces a theory (H) explaining the examples. ILP algorithms employ

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 125

Customisable Multi-Processor Acceleration of Inductive Logic Programming 125

different strategies for constructing and searching through the hypothesis
space and in assessing the quality of each hypothesis.

The ILP system Progol [Muggleton (1995)] is based on the method
mode-directed inverse entailment. For each positive example it constructs
a lattice bounded by the most and least general hypothesis. This hypoth-
esis space is explored using an A*-like algorithm, where the quality of a
hypothesis is determined by a combination of the number of positive and
negative examples as well as the clause length.

To illustrate ILP, Fig. 15.1 shows a hypothesis, part of the background
knowledge, and some examples taken from a data set for learning mutagenic
activity for nitro-aromatic compounds [Srinivasan et al. (1994)]. The

(a) Hypothesis (b) Examples (c) Background

Fig. 15.1 A small part of the mutagenesis data set [Srinivasan et al. (1994)]
showing the Prolog form (top) and VAM/Arvand code (bottom, hypothesis and
two clauses of background only).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 126

126 Latest Advances in Inductive Logic Programming

Table 15.1 Parallelisation strategies for ILP.

Strategy Unit of work Granularity Examples

Search whole or part of
search tree

coarse [Dehaspe and De Raedt (1995);
Ohwada et al. (2000);
Wielemaker (2003)]

Data search tree based
on part of
example set

coarse [Fonseca et al. (2005); Skillicorn
and Wang (2001)]

Evaluation hypothesis test fine [Fidjeland and Luk (2003);
Skillicorn and Wang (2001)],
this work

background contains a number of facts (12,000+) regarding atoms and
bonds in chemical compounds of interest. The examples specify the com-
pounds which are known to be mutagenically active. There may be hundreds
of such examples. The hypothesis in Figure 15.1(a) is a rule that specifies
that an atom A is mutagenically active provided it contains atoms and
bonds with certain properties and relationships. The number of hypotheses
depends on how the hypothesis space is defined, but may be numbered in
the tens of thousands. The computationally demanding nature of ILP is a
result of the size of this hypothesis space.

The parallelisation strategies in the literature come in different levels.
Fonseca et al. [Fonseca et al. (2009)] identify three levels, summarised in
Table 15.1. First, search parallelism can be exploited by running sequential
versions of independent learning tasks in parallel, performing the cross-fold
validation in parallel, learning independent concepts in parallel, or, at a finer
level, by searching the hypothesis space in parallel [Dehaspe and De Raedt
(1995); Ohwada et al. (2000); Wielemaker (2003)]. Second, data parallelism
can be exploited by partitioning the data set and learning in parallel based
on subsets [Fonseca et al. (2005); Skillicorn and Wang (2001)]. Third, in
evaluation parallelism the coverage tests, i.e. the scoring of hypotheses,
are performed in parallel [Fidjeland and Luk (2003); Skillicorn and Wang
(2001)]. We take the third of these approaches in this chapter. Previous
approaches to evaluation parallelism have shown limited speedups com-
pared with other parallelisation strategies [Fonseca et al. (2009)]. However,
we make use of a much larger number of processors which have a low over-
head in task creation.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 127

Customisable Multi-Processor Acceleration of Inductive Logic Programming 127

15.3 The Arvand Processor

Our approach to accelerating ILP is built around a customisable processor,
Arvand. The processor is specialised for performing coverage tests in Progol.
A coverage test involves evaluating candidate hypotheses by determining
how well each hypothesis explains the example set. Background knowledge
in the form of domain-specific rules and facts provides a program, and
each example test provides a program call whose return status (success or
failure of the test) is used in the scoring of the hypothesis. The execution
of each example test involves heavy use of unification and backtracking, the
support for which is reflected in the instruction set and microarchitecture
of Arvand. The processor is distinguished by a small high-level data-centric
instruction set, a two-stream architecture, and hardware support for special
stack operations. The processor microarchitecture can be customised to
particular types of background knowledge, with the aim of reducing the
resource usage which can be a limiting factor when the core is used in a
chip multi-processor.

15.3.1 Instruction set

The Arvand processor is based on the Vienna Abstract Machine (VAM)
[Krall and Neumerkel (1990)], an execution model for Prolog. The basic
instructions and the two-stream model are taken from the VAM, but
with adaptations for use in a hardware implementation, aiming to simplify
instruction decoding and reducing the number of branches. The VAM model
was chosen over the more common Warren Abstract Machine [Warren
(1983)] for two reasons. First, the two-stream model naturally lends itself
to a dual-issue processor implementation, which can easily be exploited in
a hardware implementation. Second, the model affords more opportunities
for simplifying microarchitecture customisations, in that less data require
heap storage. This is because when both the goal and head streams are
ground structures, the one-stream model creates data on the heap, whereas
the two-stream model does not. A direct implementation of an abstract
machine has advantages over compilation to a ‘traditional’ instruction set
(which could be used in optimized off-the-shelf soft processor cores) in that
programs are much smaller. This means that more data can be cached in the
limited embedded memories available on the target devices and that fewer
(albeit potentially more complex) instructions are required to execute a
given program.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 128

128 Latest Advances in Inductive Logic Programming

Instructions can broadly be divided into control and data instructions.
Prolog clauses are encoded in this instruction set by having control instruc-
tions delineating the structure of the clause (see c-goal, c-nogoal, c-call,
and c-lastcall in Fig. 15.1), while data instructions encode the constant
and variables terms in the clause (see g-const, g-fstvar, and g-nxtvar

in the same figure).
Two instruction streams are active at the same time (for the head and

goal), so the true instruction set of the processor is the set of all valid basic
instruction pairs. Combinations of data instructions are unified, resulting
in either failure or success with possible variable bindings. Combinations
of control instructions result in a procedure call or return with a possible
follow-up procedure call. The necessary stack operations are implicit in
these combined control instructions.

Data instructions are divided into variable and non-variable data. Vari-
able data instructions refer to a slot in the current activation record, pos-
sibly residing in a register, whose contents are either read from or written
to, depending on the type of variable instruction. Variables fall into one
of several classes depending on its position within a data structure and
the number of times it is referenced. The variable opcode dictates, along
with the opcode from the other instruction stream, whether the variable
requires a write operation, a read operation, or can be ignored, and further-
more whether it requires any stack space. Non-variable data instructions
use an immediate operand. Data can be simple (a symbolic constant, inte-
ger, or fixed-point number), or compound structures. Compound structures
are expressed as flattened trees in prefix order.

Execution can be non-deterministic, in that a computation can have
several valid execution paths. Alternative execution paths are dealt with
by prefixing the code for each clause with offsets to the code for alterna-
tive clauses to try on backtracking (see c-alt instructions in Fig. 15.1).
There are three such offsets to deal with different situations. In highly non-
deterministic programs the number of potential execution paths can be very
large. As an optimisation, clauses are grouped according to the first data
instruction (the indexing argument). Execution paths which can be guaran-
teed to fail can thus simply be skipped. Run-time first-argument indexing
is handled via a special index goal instruction which dispatches to a table
of possible procedures, and switches the processor to a special execution
mode to find the correct table entry.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 129

Customisable Multi-Processor Acceleration of Inductive Logic Programming 129

15.3.2 Microarchitecture

The Arvand processor executes the above instruction set on a two-stream
pipelined architecture. Figure 15.2 shows the data flow in the Arvand pro-
cessor in its most basic form. There are four stages: two for fetch (combined
in the figure), one for decode/read, and one for write. For the fetch and
decode stages the head and goal instruction streams are treated separately,
with the head stream shown in the top half of Fig. 15.2, and goal stream
shown in the bottom half.

Fig. 15.2 Arvand processor in a typical configuration.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 130

130 Latest Advances in Inductive Logic Programming

The two instruction streams are cached independently in direct-mapped
caches. On a cache miss, data are fetched from an off-chip memory unit
which is typically shared with other processors. The instruction streams
alternate between data instructions and control instructions.

The register file holds the activation record (local variables and contin-
uation) for the current head, as well as the topmost choice point. The stack
buffer holds the top part of the stack, which includes the current activation
record for the goal. The stack buffer holds a window of the full stack con-
taining the goal frame pointer. Both the register file and stack buffer are
dual-ported, so both a head and a goal variable can be read (in the decode
stage) in a single cycle, while also potentially updating another head and
goal variable (in the execute stage). Executing (combinations of) control
instructions move activation records between the register file and the stack
buffer.

Variables referred to in data instructions are read from the register file
or stack buffer during the decode stage. Such references to data in either the
head or the goal frame, and may or may not be bound at run-time. Bound
head frame variables reside in the register file. Bound goal frame variables
reside in the stack buffer which contains the top of the stack. Both head and
goal variables may contain a reference to data on the heap, possibly through
a chain of references. If a variable instruction contains such a reference and
the value is required (which depends on the exact instruction combination),
the instruction pipeline stalls while the reference is resolved. Such reference
chains are typically short and the processor can perform one dereference
operation per cycle, so the execution time overhead of this is usually small.

Unification is done on two terms, i.e. on two instruction sequences. On a
per-instruction basis the unification unit determines whether unification is
a success or a failure and may, depending on the instruction combination,
do a combination of: writing to a data register, writing to an entry in the
goal activation record in the stack buffer, or creating a new entry on the
heap. These operations are performed in a single cycle for non-compound
data. The processor contains forwarding and hazard detection logic to deal
with read-after-write (RAW) hazards.

In order to handle backtracking, the stack contains non-determinate
activation records (choice points), in addition to the regular activation
records (environments). There are therefore two interleaved stacks. A non-
determinate activation record contains the information necessary to restart
computation from a previous state, which is done if unification fails. The
topmost choice point is stored in a special register file in order to speed

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 131

Customisable Multi-Processor Acceleration of Inductive Logic Programming 131

up backtracking. Four registers point into the local stack to, respectively,
the next available slot, the most recent choice point, the head environment,
and the goal environment.

15.3.3 Customisation

The Arvand processor can be customised for a particular program type,
or to exploit different run-time characteristics of a program. The processor
customisations affect the usage of both programmable fabric space (used for
processor logic) and embedded memory (used for caches and buffers), and
can additionally affect execution time, and the class of programs supported
(Table 15.2). Customisations come in four different forms: microarchitec-
ture, memory interface, memory size, and data width.

First, the microarchitecture of Arvand can be customised to cater for
subsets of the full instruction set. The processor can thus be customised for
particular (classes of) data sets. These are defined with respect to the mini-
mal processor of interest, which can only support programs where all terms
are ground, and all clauses except for the initial goal are unit. Instructions
for non-ground terms and non-unit clauses allow execution of a larger set of
programs. Dynamic indexing instructions can be added to avoid unneeded
non-deterministic branches of execution. A general-purpose ALU is not
required for programs which use symbolic data exclusively. Most data are
stored on the stack, so a heap is not included by default. Heap support is
required if the program contains certain combinations of variable instruc-
tions or structured data. Data instructions for structures are required if the
program contains compound terms.

Second, memory interface customisations make some memory units
(goal program code, stack, or heap) purely local units rather than being
caches/buffers backed by off-processor data. This simplifies the processor

Table 15.2 Arvand processor customisation types.

Effect on

Type Space Memory Execution

Microarchitecture Major None limits types of supported programs
Memory interface Minor Major possibility of overflow
Memory size None Major cache performance
Data width Minor Minor arithmetic, number of

supported symbols

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 132

132 Latest Advances in Inductive Logic Programming

control logic. If the data set is small enough, the head and goal instruc-
tion caches can be replaced by local buffers, eliminating cache miss over-
heads and shortening the fetch stage. In particular, when the unit clause
customisation is used, the only goal code is the initial goal. The goal cache
can be used as a local memory buffer which is loaded during processor
initialisation. For data sets where the execution depth is limited (e.g. no
recursion allowed, depth limitation in the language bias), the local stack can
be implemented as a buffer. Where the heap is enabled the data cache can
either be global, caching a larger heap in main memory, or can be local only.

Third, memory size customisations modify the size of the different
caches and buffers. Such customisations can be applied to all types of pro-
grams, but affect both the performance and the resource usage of the pro-
cessor. While conceptually straightforward this type of customisation leads
to interesting trade-offs between the total number of processors and the
performance of each.

Fourth, data width customisations adapt the word width to the require-
ments of particular data sets. Where the programs contain arithmetic
instructions, this raises issues of precision. Where only symbolic data are
used, the data width can be set based on the number of distinct symbols
in the program, and on the size of the program.

15.4 Multi-Processor Architecture for ILP

The Arvand processor requires only a fraction of the resources found on a
modern reconfigurable device, even when using one of the more demanding
processor configurations. It is therefore possible to place a large number
of processors on a single chip, creating a customised multi-core processor
for ILP. Our multi-processor (Fig. 15.3) acts as an accelerator for a host
system which directs the search through the hypothesis space.

The multi-processor receives a stream of candidate hypotheses over the
system bus via the IO unit. For each hypothesis, a number of queries for
the positive and negative coverage tests are generated in the ‘Job gen’ unit,
which stores the example set locally. These queries are distributed to the
available processors using the ‘Fork’ unit, which writes the relevant query
(a short program) to a designated per-processor input buffer in RAM, and
signals for the next available processor (one of Pi in the figure) to process
the query. The results (successes or failures) from all the queries related
to a hypothesis are collected via the ‘Join’ unit, summed, and returned
to the host system via the IO unit. The multi-processor fully completes

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 133

Customisable Multi-Processor Acceleration of Inductive Logic Programming 133

P0

RAM0

P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

RAM1

RAM2

RAM3

Fig. 15.3 Arvand multi-processor architecture for parallel evaluation of hypothe-
ses. Each processor is a unit as described in Fig. 15.2.

the coverage test for a hypothesis before starting a new coverage test. The
maximum parallelism is thus limited by the cardinality of the example set.

Parallelisation is done at the level of coverage testing, rather than at a
higher level, for three reasons. First, this approach is conceptually simple,
thus obviating the need for complex changes to the overall search algorithm.
Second, the coverage test is a computationally demanding part common to
ILP systems, so this approach to acceleration could be applied to other
ILP systems, not just Progol. Third, the level of parallelism attainable in
this way is a good match with the level of parallelism attainable on modern
FPGAs. On a general-purpose processor the fine task granularity of the par-
allel coverage test could be an issue due to task creation overheads. This is
not an issue in this multi-processor since we can design the communication
architecture to match the problem at hand.

The single-processor customisations affect the configuration of the
multi-processor. For a given device, there is a fixed amount of resources
(both programmable fabric and memory). There is thus a general trade-off
between the resource usage of a single processor and the number of con-
stituent processors in a multi-processor. For a given data set, the processor
architecture, memory interface, and data width can be fixed. The amount of
local memory dedicated to caches and buffers can be varied, however. The
trade-off is therefore in practice between the number of processors and the

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 134

134 Latest Advances in Inductive Logic Programming

cache sizes of each processor. The single-processor performance will typi-
cally be better if caches are larger, but a multi-processor with more nodes
may better exploit the available parallelism.

Figure 15.3 shows that there are dedicated connections to each pro-
cessor from the Fork element, while the results from each processor are
also sent by dedicated connections to the Join element. In practice, how-
ever, multiple dedicated connections can be implemented by a bus which
enables processors along a row or along a column to share communica-
tion resources to the Fork and Join elements. While this method reduces
the number of connections, additional bus controllers are required which
complicates the implementation. The need to share connection resources
depends on the specific FPGA used: many advanced FPGAs are rich in
connection resources, so even a large number of dedicated connections may
not be an issue.

15.5 Multi-Processor Architecture Generation

To facilitate generation of multi-processor systems based around Arvand,
we have developed an architecture-description language, Archlog, which
ties together software compilation, processor configuration and instantia-
tion, and multi-processor configuration and generation [Fidjeland and Luk
(2006)]. Archlog includes a domain-specific language in Prolog that cov-
ers multi-processor architectures using a number of primitives (including
Arvand) and communication streams between them.

The Archlog system (Fig. 15.4) takes an architecture description and a
Prolog program, and generates a hardware configuration tailored for this

Fig. 15.4 The Archlog system for multi-processor architecture generation.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 135

Customisable Multi-Processor Acceleration of Inductive Logic Programming 135

combination of architecture and software. Analysis of the input Prolog pro-
gram(s) provides part of the processor configuration, by specifying the min-
imal processor configuration that can support the program. An architecture
description may not fully specify all parameters of the design, for example
the level of parallelism in a multi-processor design. The system explores
the space of possible designs, and can return a number of pareto-optimal
designs. The user can choose between these, although in an extended system
run-time reconfiguration could be used to determine the optimal architec-
ture dynamically.

15.6 Results

15.6.1 Data sets

We use two ILP data sets to evaluate the multi-processor performance:
mutagenesis [Srinivasan et al. (1994)] and protein folding [Turcotte et al.
(2001)]. The two data sets have different features (Table 15.3). The for-
mer uses a smaller processor than the latter due to simpler background
knowledge and lack of arithmetic.

Mutagenesis is a well-known ILP application for learning mutagenic
activity for nitro-aromatic compounds [Srinivasan et al. (1994)]. The back-
ground knowledge for this data set contains the structural descriptions of
the chemical compounds of interest, a number of relevant properties of these
compounds, as well as rules describing ring concepts. For benchmarking
we use the structural descriptions only, which means that the background
knowledge contains ground unit clauses only and no arithmetic. Conse-
quently, a simple processor configuration can be used. A high degree of
non-determinacy in this data set leads to an example test dominated by
shallow backtracking. We extract a benchmark suite consisting of all the
hypotheses explored when generalising from the first example. We use only
the 188 “regression-friendly” examples.

The protein folding data set is based on a study by Turcotte et al. [Tur-
cotte et al. (2001)] into discovering rules governing protein folds. We use the

Table 15.3 Data sets used for evaluation.

Name |B| |E+| |E−| |H | Notes

Mutagenesis 12203 125 63 846 Ground unit clauses only,
no arithmetic

Protein folding 2780 42 40 1498 No structures

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 136

136 Latest Advances in Inductive Logic Programming

part of the data set referring to immunoglobulin. The background knowl-
edge is described using 2,780 clauses, describing structures and properties of
proteins, as well as high-level rules. These benchmarks use the full range of
control instructions, including dynamic indexing instructions. There are no
structures and some use of arithmetic. Again we extract a benchmark suite
consisting of all the hypotheses explored when generalising from the first
example.

15.6.2 Resource usage

Resource usage for both programmable fabric and embedded memory can
vary greatly with processor customisation. Figure 15.5(a) shows the usage
of both these kinds of resources for processors in various configurations. We
use all valid combinations in microarchitecture customisation for a total of
17 different processor architectures. For each of these we use the smallest
stack and heap (both 1K words), and vary the two instruction cache sizes
independently over the sizes 1K, 2K, and 4K words. The programmable
fabric usage is measured in device-independent flip-flops as reported by the
Handel-C compiler (v5.3.2). Both the programmable fabric usage and the
memory usage vary by a factor of around three. The potential resource
savings realised by customisation translate into increased parallelism, since
more small processors can fit on a particular chip.

0 500 1000 1500 2000

Space (FF)

0

36

72

108

144

180

216

252

288

324

360

396

M
em

or
y

(k
b)

(a) (b)

Fig. 15.5 Arvand resource usage. (a) Single processor configurations for varia-
tions in architecture, data width, and cache sizes. (b) Optimal multi-processor
configurations for selected architectures.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 137

Customisable Multi-Processor Acceleration of Inductive Logic Programming 137

Figure 15.5(b) shows the resource usage of multi-processor configura-
tions which optimally exploit the available resources on a Xilinx Virtex 6
(LX550T) device.1 The resource usage is shown for multi-processor config-
urations optimised for the two data sets described above. For the simple
processor architecture up to 152 processors can fit on a chip, whereas for
the more complex architecture up to 82 processors can fit. The designs
can run at 100 MHz. Each configuration maximally exploits either the pro-
grammable fabric or the embedded memory. The resource usage results are
acquired based on a simple resource model and place-and-route results from
Xilinx ISE 13.2.

15.6.3 Performance

We measure the performance of several different multi-processor configura-
tions on the two data sets described above using a detailed multi-processor
simulator, and compare this with Progol 4.4 (Fig. 15.6). The performance is
for the coverage test only, rather than the full application. Results are taken
from multi-processor configurations which maximally exploit the resources,
as well as several smaller configurations (single processor and multiples
of 16 nodes). These smaller multi-processors require less area (and could
therefore fit on a smaller chip) and consume lower power.

Fig. 15.6 Speedup w.r.t. Progol 4.4 for different multi-processor configurations
for two different data sets.

1Virtex 6 Family Overview. Xilinx, Inc., San Jose, CA. 2011.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 138

138 Latest Advances in Inductive Logic Programming

The performance results of the Arvand multi-processors are compared
with run-time results from Progol 4.4. The time required for the coverage
test in Progol is estimated based on total execution time and CPU uti-
lization (as reported by system timing tools) and profiling results (using
gprof) when running on an Intel i7-950 processor (3.07 GHz, 25.6 GB/s).
A comparison could have been made with other systems with additional
optimizations such as query transformations [Santa Costa et al. (2003)]
and demand-driven indexing [Santa Costa et al. (2007)]. However, compar-
ing with Progol 4.4 gives an indication of the kinds of speedup that can
be attained by using custom hardware. Optimisations could be applied to
software and custom hardware alike.

Even a single Arvand processor performs the coverage test faster than
Progol, although it is clocked at a much lower frequency. This is to a large
extent due to the specialised architecture of the processor, which needs to
execute far fewer instructions. Progol performs the coverage test by running
its built-in Prolog interpreter. Prolog implementations based on byte-code
or native-code compilation outperform Progol’s built-in interpreter, and
can be slightly, but not significantly, faster than a single Arvand processor
[Fidjeland (2007)].

Part of the speedup achieved by the Arvand multi-processor is
due to software optimisations. In particular we employ a variation of
the cut-transformation [Santa Costa et al. (2003)] which reduces non-
determinacy at run-time by removing choice points to which backtracking
would not alter the final result (due to not having any output variables).
This is a valid optimization in the coverage test, although it is not appli-
cable in general Prolog programs. This optimization could in principle be
applied in Progol as well, but there it would incur an overhead to check if
choice points can be removed. In the hardware implementation there is no
overhead in execution time as the test is done in parallel with the rest of the
decode stage, and only a small space overhead. With this optimisation the
speedup for the mutagenesis is around 56 times, but even without this opti-
misation the speedup is around 8.3 times. The effect of this optimisation
on the protein folding data set is not significant.

The overall speedup of the Arvand multi-processor with respect to Pro-
gol is around 56 times (mutagenesis) and 26 times (protein folding), both
results showing the promise of this approach to accelerating ILP. Multipro-
cessors scale only up to a point, after which performance plateaus. This hap-
pens for two reasons. First, the sequential nature of the overall hypothesis
search algorithm imposes a natural limit to parallelisation. Each hypothesis
results in a batch of related jobs all of which are run to completion before

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 139

Customisable Multi-Processor Acceleration of Inductive Logic Programming 139

a new batch is started, with the result that some processors end up hav-
ing to wait for long-running jobs to complete. Relaxing the sequentiality
constraint would reduce this problem. Second, congestion on the shared
memory buses provides a second limit to parallelisation. The very large
number of processors in question means that even fairly modest cache miss
rates can result in congestion. This limit could be reduced by more refined
job dispatch methods which improve temporal locality and by amending
the existing instruction caches with scratchpad memory to hold commonly
used parts of the background knowledge.

15.7 Concluding Remarks

Customisable architectures show good promise in speeding up demanding
ILP applications. Our building blocks and architecture generation frame-
work other than Progol can be adapted to enable ILP systems to exploit
this technology, without the need for hardware design expertise. Moreover,
to realise the full potential of our approach, we are integrating the multi-
processor design tools seamlessly with Progol, targeting the latest high-
performance FPGA systems.

Another theme of ongoing research involves studying how variations
in run-time characteristics of inductive logic programming can be used
in optimising performance and energy consumption. Such variations can
be exploited by adapting the resources in a multi-processor system to
match the run-time characteristics, making use of hardware reconfigura-
bility. A key challenge is to automate such exploitation for realistic appli-
cations while minimising overheads in run-time reconfiguration, such that
efficient designs can be produced cost-effectively.

Acknowledgments

The research leading to these results has received funding from EPSRC
awards EP/F033516/1 and EP/I012036/1, and from the European Union
Seventh Framework Programme under grant agreement no. 257906 and
287804.

Bibliography

V. Santa Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens,
J. Struyf, H. Vandecasteele and W. Van Laer. Query transformations for
improving the efficiency of ILP systems. J. Mach. Learn. Res., 4, 465–491.
2003.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 140

140 Latest Advances in Inductive Logic Programming

V. Santa Costa, K. Sagonas and R. Lopes. Demand-driven indexing of Prolog
clauses. In V. Dahl and I Nimelä. Proceedings of the 23rd International
Conference on Logic Programming, LNCS, vol. 4670. Springer, Berlin, pp.
395–409. 2007.

L. Dehaspe and L. De Raedt. Parallel Inductive Logic Programming. In Y.
Kodratoff, G. Nakhaeizadeh and G. Taylor (eds). Proceedings of the MLnet
Familiarization Workshop on Statistics, Machine Learning and Knowledge
Discovery in Databases, pp. 112–117. 1995.

A. Fidjeland. Custom Architectures for Logic Programming. PhD Thesis. 2007.
A. Fidjeland and W. Luk. Customising parallelism and caching for machine

learning. Proceedings of the IEEE International Conference on Field-
Programmable Technology, pp. 204–211. 2003. FPT 2003: Tokyo, 15–17
December 2003.

A. Fidjeland and W. Luk. Archlog: High-level Synthesis of Reconfigurable Multi-
processors for Logic Programming. Proceedings of the IEEE International
Conference on Field-Programmable Logic and Applications, pp. 335–340.
2006. FPL 2006: Madrid, 28–30 Aug. 2006.

N. A. Fonseca, F. Silva and R. Camacho. Strategies to Parallelize ILP Systems.
Proceedings of the 15th International Conference on Inductive Logic Pro-
gramming, LNAI, vol. 3625. Springer-Verlag, Berlin, pp. 136–153. 2005.

N. A. Fonseca, A. Srinivasan, F. Silva and R. Camacho. Parallel ILP for
distributed-memory architectures. Mach. Learn., 74, 257–279. 2009.

Q. Jin, D. Thomas, W. Luk and B. Cope. Exploring Reconfigurable Architectures
for Tree-Based Option Pricing Models. ACM T. Reconf. Tech. Syst., 4(2),
1–17. 2009.

A. Krall and U. Neumerkel. The Vienna abstract machine. Proceedings of the
International Workshop on Programming Language Implementation and
Logic Programming, LNCS, vol. 456, 121–135, Springer-Verlag, Berlin. 1990.

H. Lodhi, S. H. Muggleton and M. J. E. Sternberg. Multi-class mode of action
classification of toxic compounds using logic based kernel methods. Molec-
ular Informatics. 2010.

S. H. Muggleton. Inverse entailment and Progol. New Generat. Comput., 13,
245–286. 1995.

S. H. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and
Methods. J. Logic Program., 19,20, 629–679. 1994.

H. Ohwada, H. Nishiyamai and F. Mizoguchi. Concurrent execution of optimal
hypothesis search for inverse entailment. Proceedings of the 10th Inter-
national Conference on Inductive Logic Programming, LNAI, vol. 1866.
Springer, Berlin, pp. 165–173. 2000.

G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya, R. Plate, T.
Mattner, F. Olbrich, P. Hammarlund, R. Singhal, J. Brayton, S. Steibl,
and H. Wang. Intel Nehalem processor core made FPGA synthesizable.
Proceedings of the 18th Annual ACM/SIGDA Internaional Symposium on
Field Programmable Gate Arrays, pp. 3–12. 2010. FPGA 2010: Monterey,
California, 21–23 February 2010.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch15 page 141

Customisable Multi-Processor Acceleration of Inductive Logic Programming 141

D. B. Skillicorn and Y. Wang. Parallel and Sequential algorithms for data mining
using inductive logic. Knowl. Inf. Syst., 3, 405–421. 2001.

A. Srinivasan, S. H. Muggleton, R. King and M. Sternberg. Mutagenesis: ILP
experiments in a non-determinate biological domain. Proceedings of the
4th International Workshop on Inductive Logic Programming, pp. 217–234,
1994.

M. J. E. Sternberg and S. H. Muggleton. Structure activity relationships (SAR)
and pharmacophore discovery using inductive logic programming (ILP).
QSAR Comb. Sci., 22, 527–532. 2003.

K. H. Tsoi, D. Rueckert, C. H. Ho, and W. Luk. Reconfigurable acceleration of
3D image registration. Proceedings of the IEEE 5th Southern Programmable
Logic Conference, pp. 95–100. 2009. SPL 2009: Sao Paolo, 1–3 April 2009.

M. Turcotte, S. H. Muggleton and M. J. E. Sternberg. Automated discovery
of structural signatures of protein fold and function. J. Mol. Biol., 306,
591–605. 2001.

D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI Inter-
national. 1983.

J. Wielemaker. Native preemptive threads in SWI-Prolog. Proceedings of the 19th
International Conference on Inductive Logic Programming, pp. 331–345.
2003. ICLP 2003: Mumbai, 9–13 December 2003.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 143

Chapter 16

Multivalue Learning in ILP

Orlando Muoz Texzocotetla and Ren Mac Kinney Romero

Departamento de Ingenieŕıa Eléctrica,
Universidad Autónoma Metropolitana, México

In this chapter we present an approach to make more expressive the
hypotheses searched by ILP algorithms. This approach allows us to use
more than one value in literals. We propose the construction of new
clauses using information obtained analysing values in literals, which
will allow multivalue learning. In order to discover such information, we
draw from techniques used in inducing tree algorithms.

16.1 Introduction

Learning can be viewed as a search for a hypothesis H which satisfies some
quality criteria [Mitchell (1997)]. In Inductive Logic Programming (ILP),
the learning task can be described as follows: given a set of positive and
negative examples (E+ and E−), and a background knowledge B, an ILP
learner searches for an hypothesis H such that B ∧H |= E+.

The learner, in general, “can be described in terms of the structure
of its search space, its search strategy and search heuristics” [Lavrac and
Dzeroski (1994)]. Regarding search space, ILP is determined by the lan-
guage of logic programs, which are formed with program clauses of the form
T ← Q, where T is an atom p(X1, . . . , Xn) and Q is a conjunction of literals
L1, . . . , Lm. Also, the search space’s clauses are syntactically restricted by
a bias language. This bias determines which clauses are searched from the
vocabulary of predicates, function symbols and constants that are in the
background knowledge [Lavrac and Dzeroski (1994)]. When bias language
is stronger (and therefore lacks expressiveness), the search space becomes
smaller and more efficient, but it is likely that the final hypothesis cannot

143

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 144

144 Latest Advances in Inductive Logic Programming

represent an appropriate solution for the target problem. For instance, if
the language restricts the use of the target atom into the clause’s body
then no hypothesis will represent an appropriate solution to any recursive
problem.

Each ILP algorithm defines a language in order to construct theories
with the highest expressiveness degree. However, current algorithms test
only a single value in constructing literals, thus forcing the hypothesis search
space to be constructed with lots of rules. If the background knowledge is
large then it is more likely that the final theory contains many rules, hence
making it more difficult to interpret the solutions found.

In this chapter we present an approach to make the hypotheses con-
structed by ILP algorithms more expressive. It allows us to build literals
that use sets of values instead of single ones. It constructs new clauses using
information obtained discretizing values in literals, which are selected by
the user. This discretizing is binary, thus obtaining two possible sets for
values present in literals with multivalue learning.

To discover and extract that information, we implemented and adapted
the algorithm of selection of split point used by two decision tree inducers:
QUEST (Quick Unbiased Efficient Statistical Tree) [Loh and Shih (1997)]
and CRUISE (Classification Rule with Unbiased Interaction Selection and
Estimation) [Kim and Loh (2001)]. To choose the best attribute those algo-
rithms use analysis of variance (ANOVA) or Levene’s test for numeric
attributes and Pearson chi-square test for categorical attributes.1 In the
case of CRUISE, this algorithm performs a BOX-COX transformation
before Quadratic Discriminant Analysis (QDA). To find the split point, we
use QDA.

These new clauses (we call them multivalue clauses) are added to the
background knowledge, thus allowing new literals to be used by the ILP
algorithm search. This, we believe, allows ILP algorithms to construct
hypotheses with fewer rules.

This chapter is organised as follows: in Section 16.2 we describe, with
an example, the problematic that we want to address; in Section 16.3, we
present the approach to create new multivalue clauses and to make more

1A categorical attribute takes values unordered, and a numerical attribute takes values
on the real line.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 145

Multivalue Learning in ILP 145

literals available; in Section 16.4 we show the experiments performed and
the results obtained. Finally our conclusions and future work are presented
in Section 16.5.

16.2 Univalue Clauses

To describe our main goal, we present a pattern recognition problem
from [Bongard (1970)]. This problem consists of finding a theory which
describes a pattern that relates the positive examples, all of which contain
at least a triangle which points to some of the following directions: west (w),
northwest (nw) and north (n). The target literal is: bongard (Example)←.
Hypotheses will be created from each value of following literals contained in
the background knowledge:

• triangle (Example, NumT). circle (Example, NumC). square (Example,
NumS)
• direction (NumT,Direction) where Direction ∈{w, nw, n, ne, e, sw, s, se}

In this case Aleph [Srinivasan (2004)] (a program that implements
Stephen Muggleton’s Progol [Muggleton and De Raedt (1994)] algorithm)
returns the following theory, consisting of three rules:

(1) bongard(A) : −triangle(A,B), direction(B,w).
(2) bongard(A) : −triangle(A,B), direction(B,nw).
(3) bongard(A) : −triangle(A,B), direction(B,n).

To create this theory, ILP algorithms use clauses whose literals declare
a single value to each literal. For instance, the second argument of the
literal direction, Direction, is a categorical attribute with eight possible
values. Each time that direction appears in some of the clauses which are
contained in the search space, Direction uses only one of its values. This
type of clauses, we’ll call them univalue. Namely, if all the arguments of
each literal within a clause’s body declare only one value, then this is a
univalue clause. If at least one argument presents more than one value,
then we will call it multivalue clause.

Thus if the number of values for attributes (categorical and/or numeric)
increases significantly, then hypotheses may have lots of rules, therefore
making these hypotheses more difficult to interpret. We can see that it
would be very helpful to create multivalue clauses which would allow ILP

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 146

146 Latest Advances in Inductive Logic Programming

algorithms to create smaller hypotheses. Therefore we can ask: is it possible
that ILP algorithms can test more than one value (a set of values) at a
time? How should each set of values be created? Will multivalue clauses
help to create hypotheses with fewer rules? We believe that the approach
we propose answers these questions. It is given in detail in the following
section.

16.3 Multivalue Clauses

The proposed approach discovers information at the examples. This infor-
mation is used to create new clauses. These clauses will be added to the
background knowledge to allow the ILP algorithms to use them adding the
necessary literals to the search space. We will use the most popular ILP
algorithms FOIL [Quinlan (1990)] and [Muggleton and De Raedt (1994)]
Progol. Our approach has the following steps:

(1) Creation of subsets of values. In this step we make a binary split
on the set of all values for the given literal. For this we implemented
the split point selection algorithm presented in Section 16.1. Thus for
each categorical value with a set C = {v1, . . . , vm}, we will obtain two
disjoint subsets C1 y C2 such that C1 ∩C2 = φ. We also use this when
we have a small number of discrete numeric values. For each numeric
value we will obtain a split point d, which will divide the full set of
values in two subsets. The first one will contain values less than or
equal to d (C1 = {x • x ≤ d}), and the second one will contain values
greater than d (C1 = {x • x > d}). C1 ∩ C2 = φ.

(2) Creation of multivalue clauses. The subsets of values will be used to
create multivalue clauses. For categorical attributes, each subset of val-
ues will be declared in the appropriate literal rather than a single value.
Thus we will create two multivalue clauses. For numeric attributes, we
will also create two clauses. In the first one the split point will deter-
mine the values less than or equal to d. In the second one the split point
will determine the values greater than d.

(3) Background knowledge modification. In this step we add the mul-
tivalue clauses to the background knowledge.

(4) Learning. The new information is used by the ILP algorithm. The
literals for the new clauses are made available to the ILP search.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 147

Multivalue Learning in ILP 147

16.3.1 Example

In order to better explain our approach, we present a simple ILP example.
We must find a theory on the number of sides that must have a figure that
belongs to one of the following classes: quadrilateral or non quadrilateral.
The target literal is class (Fig,Class)←. The background knowledge
declares the relation side (F,S), which indicates the number of sides S
of the figure F .

Aleph returns the following theory:

• class (A, quadrilateral)← sides (A, 4)
• class (A, non quadrilateral)← sides (A, 3)
• class (pentagon, non quadrilateral)← sides (A, 5)
• class (hexagon, non quadrilateral)← sides (A, 6)

Now let’s compare the above theory to our approach. In the next steps
we show how the proposed approach is used for this problem.

(1) Creation of subsets of values. This problem has a small number of
discrete numeric values so we work on it as a categorical value which
indicates the number of sides of each figure. We obtain two subsets of
categories: A = {4} and B = {3, 5, 6}.

(2) Creation of multivalue clauses. For each subset of categorical values
our approach creates multivalue clauses, the corresponding pair is:

sidesA (F)← sides (F,L),member (L, [4])

sidesB (F)← sides (F,L),member (L, [3, 5, 6])

(3) Background knowledge modification. In this step the new clauses
are added to the background knowledge.

(4) Learning. Finally, this new background knowledge is used by adding
literals sidesA and sidesB to the possibilities of constructing hypothe-
ses the ILP algorithms. In this example the final theory (with
Aleph) is:

class (A, quadrilateral)←sides (A,L),member (A, [4]).

class (A, non quadrilateral)← sides (A,L),member (A, [3, 5, 6]).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 148

148 Latest Advances in Inductive Logic Programming

16.4 Experiments

The databases analysed were obtained from the UCI Repository [Frank
and Asuncion (2010)], and each one was divided tenfold to perform a cross
validation analysis. In order to compare our approach with univalue learn-
ing, we analysed each problem with the following ILP systems:

• Aleph. This is the ILP system created by Ashwin Srinivasan [Srinivasan
(2004)]. Aleph implements the Progol algorithm ([Muggleton (1995)]).
• multivalue FOIL. FOIL adapted [Quinlan (1990)] with our approach.
• multivalue Aleph. Aleph adapted with our approach.

For each problem, we compared the number of rules for each theory,
percentage of the covered examples, and the running time. We also com-
pared the results from Aleph and multivalue Aleph. All experiments were
performed on a modern multicore PC machine. In the following subsections
we present the experiments that were carried out.

16.4.1 Student loan and Japanese credit

For the Student Loan Problem the goal is to create a logic program
which indicates if a student must repay a loan. The goal predicate is
no payment due (Student)←. The declared predicates in the back-
ground knowledge provide information about gender, longest absence from
school, school, employment, etc. This problem has two numeric attributes
and two categorical attributes.

The second database is Japanese Credit Screening Dataset and con-
tains information about people who were granted bank credit. This
database was generated from Japanese enterprises which granted bank
credits. The goal relation is creditscreen (Person)←. In order to grant a
credit the following information is taken into account: employment, type
of good purchased for credit, gender, marital status, age, problematic
region, etc. This database has five numeric attributes and one categorical
attribute.

Results. Table 16.1 shows the results for these databases. We can observe
that the number of rules decreases with our approach. We can also see that
by using multivalue clauses the percentage of covered examples increases.
Although our experience has been very positive, a deeper analysis is neces-
sary in order to confirm that our approach increases accuracy.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 149

Multivalue Learning in ILP 149

Table 16.1 Student loan and Japanese credit results.

Student Loan
Student Loan Avg Percentage of covered Avg
Number of rules === examples ===

Aleph without multivalue
clauses

9 rules Aleph without multivalue
clauses

71%

Aleph with multivalue
clauses

6.2 rules Aleph with multivalue
clauses

89%

FOIL with multivalue
clauses

5 rules FOIL with multivalue
clauses

87%

Running time ===

Aleph without multivalue
clauses

1.658 sec.

Aleph with multivalue
clauses

2.8868 sec.

Japanese Credit
Japanese Credit Avg Percentage of covered Avg
Number of rules === examples ===

Aleph without multivalue
clauses

17.8 rules Aleph without multivalue
clauses

79.87%

Aleph with multivalue
clauses

14.7 rules Aleph with multivalue
clauses

82.23%

FOIL with multivalue
clauses

10.1 rules FOIL with multivalue
clauses

96.66%

Time of performance ===

Aleph without multivalue
clauses

1.39 sec.

Aleph with multivalue
clauses

1.97 sec.

16.5 Conclusions and Future Work

With the creation of the subsets of values (categorical or numerical) the ILP
algorithms identify significant information which is contained in the examples
and background knowledge. This information is the split point d, which, as
seen from the results, we can use to reduce the number of rules for the theories
induced. In order to confirm that the accuracy is improved with our approach,
we need to analyse more ILP databases with multivalue clauses.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch16 page 150

150 Latest Advances in Inductive Logic Programming

It must be noted that not all values can be processed with our approach.
Only those attributes on literals whose values are applicable for all the
objects in the domain. For instance, an attribute like name or surname is not
applicable for all persons, and therefore it can not be used by our approach.
A value like age is applicable for all persons, making it appropriate to use
with our approach. It is left to the user to choose the literals.

Regarding future work, there are many avenues to explore. We can per-
form some improvements in the implemented algorithm in order to improve
the results obtained to create new clauses. We can go further, on one hand,
by obtaining more than one split point, thus dividing the values into more
than two subsets. Or, on the other hand, in addition to the multivalue
clauses, we could also design a method which creates multivariate clauses.
It might be productive to look into other decision tree inducer techniques
that extract significant information.

Finally it would be interesting to implement all ILP algorithms in one
system like Weka [Bouckaert and Frank (2008)] to make the comparison on
them simpler.

Bibliography

M. M. Bongard. Pattern Recognition. Hayden Book Co./Spartan Books, Rochelle
Park, New Jersey. 1970.

R. R. Bouckaert and E. Frank. WEKA Manual for Version 3-6-0. University of
Waikato, Hamilton, New Zealand. 2008.

A. Frank and A. Asuncion. UCI Machine Learning Repository. University of
California, School of Information and Computer Sciences, Irvine, California.
2010.

H. Kim and W. Y. Loh. Classification trees with unbiased multiway splits. J. Am.
Stat. Assoc., 96, 589–604. 2001.

N. Lavrac and Saso Dzeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood Harlow. 1994.

W. Y. Loh and Y. S. Shih. Split selection methods for classification trees. Statistica
Sinica, 7(4), 815–840. 1997.

T. M. Mitchell. Machine Learning. McGraw-Hill, New York. 1997.
S. H. Muggleton and L. De Raedt. Inductive logic programming: Theory and

methods. J. Logic Program., 19, 629–684. 1994.
S. H. Muggleton. Inverse Entailment and Progol. New Generat. Comput., 13,

245–286. 1995.
R. Quinlan. Learning Logical Definitions from Relations. Mach. Learn., 5, 239–

266. 1990.
A. Srinivasan. The Aleph Manual. 2004. Available online: http://www.cs.ox.ac.

uk/activities/machinelearning/Aleph/. Accessed 11 August 2014.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 151

Chapter 17

Learning Dependent-Concepts
in ILP: Application to

Model-Driven Data Warehouses

Moez Essaidi, Aomar Osmani and Céline Rouveirol

LIPN – UMR CNRS 7030, Université Paris-Nord,
France

This chapter studies a new machine learning application with a possi-
ble challenging benchmark for relational learning systems. We are inter-
ested in the automation of a model-driven data warehouse using machine
learning techniques. The main goal is to automatically derive the trans-
formation rules to be applied in the model-driven process. This aims
to reduce the contribution of transformation designers, thereby reduc-
ing the time and cost of development. We propose to express the model
transformation problem as an Inductive Logic Programming (ILP) one:
existing project traces (or project experiences) are used to define the
background knowledge and examples. The Aleph ILP engine is used to
learn best transformation rules. In our application, we need to deal with
several dependent-concepts. Taking into account the work in Predicate
Invention, Layered Learning, Cascade Learning and Context Learning,
we propose a new methodology that automatically updates the back-
ground knowledge of concepts to be learned. Experimental results sup-
port the conclusion that our approach is suitable to solve this kind of
problem.

17.1 Overview

Model-driven engineering [Bézivin (2005, 2006)] is an approach that orga-
nizes the development of a system around the design of models (con-
form to metamodels) and the definition of transformations to gener-
ate required components. The model-driven data warehouse represents
approaches [Zepeda et al. (2008); Mazón and Trujillo (2008); Essaidi and

151

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 152

152 Latest Advances in Inductive Logic Programming

Osmani (2010a)] that apply the MDA1 standard for the development of
the data warehouse systems [Wrembel and Koncilia (2007)]. The approach
presented in [Zepeda et al. (2008)] describes derivation of Online-Analytical-
Processing (OLAP) schemas from Entity-Relationship (ER) schemas. The
source and target schemas respectively conform to ER and OLAP meta-
models of the Common-Warehouse-Metamodel (CWM). Authors describe
how an ER schema is mapped to an OLAP schema and provide, also, a set
of Query-View-Transformation rules (e.g., EntityToCube, AttributeToMea-
sure, RelationShipToDimension) to ensure this. The approach presented
in [Mazón and Trujillo (2008)] extends the Unified-Modeling-Language
(UML) and the CWM to multidimensional modeling with MDA. Authors
focus on the transformation of the multidimensional conceptual model (i.e.,
conceptual OLAP schema) to the multidimensional logical model (i.e., log-
ical OLAP schema). They provide, using the Query-View-Transformation
language, transformations (e.g., Fact2Table, Dimension2Table, etc.) to
derive the logical schema from the conceptual one.

We provide in [Essaidi and Osmani (2010a)] a unified model-driven
data warehouse approach including an integrated design framework and
transformation process. We propose the UML CORE metamodel to design
the operational source-model and the CWM OLAP metamodel to design
the multidimensional target-model. However, model transformation def-
inition requires serious skill within metamodel and transformation lan-
guages. In this context, the model transformation by example approach
[Balogh and Varró (2009); Strommer and Wimmer (2008); Dolques et al.
(2009); Garćıa-Magariño et al. (2009)] proposes to automatically cre-
ate model transformation from pairs of source and target model exam-
ples. Then, in [Essaidi and Osmani (2010b)], we extend our proposal by
a conceptual transformation-by-example framework for the model-driven
data warehouse context. For example, the ClassToCube relation repre-
sents a mapping of Class, Property and RelationShip elements of the
UML CORE into Cube, Measure and CubeDimensionAssocition ele-
ments of the CWM OLAP. The input instances (i.e., a, p, rse) of Class,
Property and Relationship define elements of a candidate source model;
this input-pattern gives the context in the source model when a class is
transformed into Cube. The output instances (i.e., c, m, cda) of Cube,
Measure and CubeDimensionAssocition define the generated elements of

1The Object Management Group (http://www.omg.org/mda) proposes the Model-
Driven Architecture (MDA) as standard implementation of the model-driven engineering.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 153

Learning Dependent-Concepts in ILP 153

a target-model; this output-pattern states the context in the target-model
where a Cube is generated from a Class.

This work extends the proposed method (in previous works) by machine
learning in order to reduce expert contribution in the transformation
process. We propose to express the model transformation problem as an
ILP [Lavrac and Dzeroski (1994); Muggleton and De Raedt (1994)] one
and to use existing projects trace to find the best transformation rules. To
the best of our knowledge, this work is the only one that has been devel-
oped for automating model-driven data warehouse with relational learning
and it is the first effort that provides real experimental results in this con-
text. In the model-driven data warehouse application, we find dependencies
between transformations. We investigate a new machine learning methodol-
ogy stemming from the application needs: learning dependent-concept. Fol-
lowing work about Layered Learning [Gustafson and Hsu (2001); Nguyen
et al. (2004); Stone and Veloso (2000)], Predicate Invention [Muggle-
ton and Road (1994); Stahl (1994, 1995)], Context Learning [Bieszczad
and Bieszczad (2006); Turney (1993); Varró (2006)] and Cascade Learn-
ing [Gama and Brazdil (2000); Ting and Witten (1997); Xie (2006)], we
propose a Dependent-Concept Learning (DCL) approach where the objec-
tive is to build a pre-order set of concepts on this dependency relation-
ship: first learn non-dependent concepts, then at each step, the theories of
learned concepts are added as background knowledge to the future concepts
to be learned with the respect to this given pre-order, and so on. This DCL
methodology is implemented and applied to our transformation learning
problem using Aleph.2 The experimental evaluation shows that the DCL
system gives significantly better results.

The remainder of the chapter is structured as follows. Section 17.2
provides background definitions and presents the application domain. Sec-
tion 17.3 details the machine learning algorithms used and introduces the
DCL approach. Section 17.4 reports experimental results. Section 17.5 gives
our conclusions and future work.

17.2 Background Definitions

Definition 1 (Model). A model M = (G,MM,µ) is a tuple where: G =
(NG, EG,ΓG) is a directed multigraph,3 MM is itself a model called the

2http://www.cs.ox.ac.uk/activities/machlearn/Aleph/
3A directed multigraph G = (NG, EG, ΓG) consists of a finite set of nodes NG, a finite

set of edges EG, and a function ΓG : EG → NG × NG mapping edges to their source
and target nodes [Jouault and Bézivin (2006)].

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 154

154 Latest Advances in Inductive Logic Programming

reference model of M (i.e., its metamodel) associated to a graph GMM =
(NMM , EMM ,ΓMM), and µ : NG ∪ EG → NMM is a function associating
elements (nodes and edges) of G to nodes of GMM .

The relation between a model and its reference model (metamodel)
is called conformance and is noted conformsTo. Elements of MM are
called meta-elements (or meta-concepts). µ is neither injective (several
model elements may be associated to the same meta element) nor sur-
jective (not all meta-elements need to be associated to a model element)
[Jouault and Bézivin (2006)]. In the ILP framework (regarding the back-
ground knowledge and examples), a model Mi is characterized by its
description MDi, i.e., a set of predicates that correspond to the con-
tained elements. The predicates used to represent Mi as logic programs
are extracted from its metamodel ωi. For example, consider a data model
used to manage customers and invoices. The classes Customer and Invoice
are defined respectively by class(customer) and class(invoice). The one-
to-many association that relate Customer to Invoice is mainly defined by
association(customer− invoice, customer, invoice) (other predicates, pre-
sented next, are used to define multiplicities of the association). Then, the
logical description of models from the project’s traces constitutes the gen-
erated background knowledge program in ILP.

Definition 2 (Metamodel and Meta-Metamodel). A meta-meta-
model is a model that is its own reference model (i.e., it conforms to itself).
A metamodel is a model such that its reference model is a meta-metamodel
[Jouault and Bézivin (2006)]. The metamodeling architecture (part of the
MDA standard) is based on meta-levels: M3, M2, M1 and M0. M3 is the
meta-metamodel level and it forms the foundation of the metamodeling
hierarchy (the Meta-Object-Facility is an example of meta-metamodel). M2
consists of the metamodel level and the UML and the CWM are examples
of metamodels. M1 regroups all user-defined models and M0 represents the
runtime instances of models.

The basic idea is to specify the relations among source and target ele-
ment types using constraints. However, declarative constraints can be given
executable semantics, such as in logic programming. In fact, logic program-
ming with its unification-based matching, search, and backtracking seems a
natural choice to implement the relational approach, where predicates can
be used to describe the relations [Czarnecki and Helsen (2006)]. For exam-
ple, in [Gerber et al. (2002)] the authors explore the application of logic pro-
gramming. In particular Mercury, a typed dialect of Prolog, and F-logic, an

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 155

Learning Dependent-Concepts in ILP 155

object-oriented logic paradigm, implement transformations. In [Rutle et al.
(2008)] authors discuss a formalization of modeling and model transforma-
tion using a generic formalism, the Diagrammatic Predicate Logic (DPL).
The DPL [Diskin and Wolter (2008); Rutle et al. (2009)] is a graph-based
specification format that takes its main ideas from both categorical and
first-order logic, and adapts them to software engineering needs.

Definition 3 (Model Transformation). A model transformation con-
sists of a set of transformation rules which are defined by input and output
patterns (denoted by P) in M2 level. Formally, a model transformation is
associated to a relation R(MM,MN) ⊆ P(MM)×P(MN) defined between
two metamodels which allows obtainment of a target model N conforming
to MN from a source model M that conforms to metamodel MM [Stevens
(2010)].

Definition 4 (Transformation Example). A transformation example
(or trace model) R(M,N) = {r1, . . . , rk} ⊆ P(M)×P(N) specifies how the
elements of M and N are consistently related by R. A base of examples is a
set of transformation examples. The transformation examples represent the
project’s traces or they can be collected from different experts [Kessentini
et al. (2010)].

For instance, we are interested in the transformation of the Data-Source
PIM (denoted DSPIM) to the Multidimensional PIM (denoted MDPIM).
The DSPIM represents a conceptual view of a data-source repository and
its conformsTo the UML CORE metamodel (part of the Unified-Modeling-
Language). The MDPIM represents a conceptual view of a target data
warehouse repository and its conformsTo the CWM OLAP metamodel
(part of the CWM). The (i) definitions and examples of DSPIM/MDPIM,
(ii) their respective metamodels (UML CORE and CWM OLAP) and
(iii) details about the proposed transformation-by-example framework for
Model-Driven Data Warehouse are provided in our recent work [Essaidi
et al. (2011)]. The predicates extracted from the UML CORE metamodel
to translate source models into the logic program are: type(name), multi-
plicity(bound), class(name), property(name, type, lower, upper), associa-
tion(name, source, target), associationOwnedAttribute(class, property),
and associationMemberEnds(association, property). Then, according to
the CWM OLAP metamodel, the predicates defined to describe target
models are: cube(Name), measure(Name, Type, Cube), dimension(Name,
isTime, isMeasure), cubeDimensionAssociation(Cube, Dimension), level

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 156

156 Latest Advances in Inductive Logic Programming

(Name), levelBasedHierarchy(Name, Dimension), and hierarchyLevelAsso-
ciation(LevelBasedHierarchy, Level).

By analyzing the source and target models, we observe that struc-
tural relationships (like aggregation relation, composition relation, seman-
tic dependency, etc.) define a restrictive context for some transformations.
For INSTANCE, let us consider the concept PropertyToMeasure. We know
there is a composition relation between Class and Property and there is
also a composition relation between Cube and Measure in the metamod-
els. This implies that the concept PropertyToMeasure must be considered
only when the concept ClassToCube is learned. Therefore, the ClassToCube
concept must be added as background knowledge in order to learn the Prop-
ertyToMeasure concept. This domain specificity induces a pre-order on the
concept to be learned and defines a dependent-concept learning problem.
Therefore, in our approach, concepts are organized in order to defined a
structure called dependency graph. In [Esposito et al. (2000)], Esposito
et al. use the notion of dependency graph to deal with hierarchical the-
ories. Authors define the dependency graph as a directed acyclic graph
of concepts, in which parent nodes are assumed to be dependent on their
offspring.

Definition 5 (Dependency Graph). A dependency graph is a directed
acyclic graph of predicate letters, where an edge (p, q) indicates that atoms
with predicate letter q are allowed to occur in the hypotheses defining the
concept denoted by p [Esposito et al. (2000)].

17.3 Relational Learning of Dependent-Concept

The data warehouse is a database used for reporting; therefore a candidate
language used to describe data is a relational database language. This lan-
guage is close to datalog language used in relational learning (or ILP). In
addition, the conceptual models are defined in term of relations between
elements of different types (properties, classes and associations). There-
fore, it is natural to use supervised learning techniques handling concept
languages with the same expressive level as manipulated data in order to
exploit all information provided by the relationships between data. Even if
there are quite a number of efficient machine learning algorithms that deal
with attribute-value representations, relational languages allow encoding
structural information fundamental for the transformation process. This is
why ILP algorithms [Lavrac and Dzeroski (1994); Muggleton and De Raedt
(1994)] have been selected to deal with this learning problem. As ILP suffers

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 157

Learning Dependent-Concepts in ILP 157

from a scaling-up problem, the proposed architecture [Essaidi and Osmani
(2010a,b)] is designed in order to take into account this limitation. Thus,
it is organized as a set of elementary transformations such that each one
concerns a few number of predicates only, to reduce the search space. This
section revisits the relational learning theory, introduces the DCL approach
and compares it to related concept-search approaches.

17.3.1 Relational learning setting

We consider the machine learning problem as defined in [Mitchell (1982)].
A (single) concept learning problem is defined as follows. Given (i) a train-
ing set E = E+ ∪ E− of positive and negative examples drawn from an
example language Le, (ii) a hypothesis language Lh, (iii) optionally, some
background knowledge B described in a relational language Lb and (iv) a
generality relation ≥ relating formulas of Le and Lh, learning is defined
as search in Lh for a hypothesis h such that h is consistent with E. A
hypothesis h is consistent with a training set E if and only if it is both
complete (∀e+ ∈ E+, h, B ≥ e+) and correct (∀e− ∈ E−, h, B �≥ e−). In an
ILP setting, Le, Lb and Lh are Datalog languages, and most often, exam-
ples are ground facts or clauses, background knowledge is a set of ground
facts or clauses and the generality relation is a restriction of deduction.
As explained in [Mitchell (1982)], there are two main strategies for search-
ing Lh: either generate-and-test or data-driven, and following any of those
strategies, algorithms may proceed either top-down or bottom-up, or any
combination of those. We used in our experiments the well-known Aleph
system, because of its ability to handle rich background knowledge, made of
both facts and rules. Aleph follows a top-down generate-and-test approach.

It takes as input a set of examples, represented as a set of Prolog facts
and background knowledge as a Datalog program. It also enables the user to
express additional constraints C on the admissible hypotheses. Aleph tries
to find a hypothesis h ∈ Lh, such that h satisfies the constraint C, which
is complete and partially correct. We used Aleph default mode; in this
mode, Aleph uses a simple greedy set cover procedure and constructs a
theory H step by step, one clause at a time. To add a clause to the current
target concept, Aleph selects an uncovered example as a seed, builds a most
specific clause from this seed as the lowest bound of its search space and
then performs an admissible search over the space of clauses that subsume
this lower bound according to the user clause length bound. In the next
section, we show the reduction of the source model, the target model and
the mapping between them as an ILP problem.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 158

158 Latest Advances in Inductive Logic Programming

17.3.2 Dependent concept learning problem

Let {c1, c2, . . . , cn} be a set of concepts to be learned in our problem. If we
consider all the concepts independently, each concept ci defines an inde-
pendent ILP problem, i.e., all concepts have independent training sets Ei

and share the same hypothesis language Lh and the same background
knowledge B. We refer to this framework as the Independent-Concept
Learning (ICL). The second framework, DCL, takes into account a pre-
order relation4 � between concepts to be learned such that ci � cj if the
concept cj depends on the concept ci or in other term, if ci is used to define
cj (Definition 5). More formally, a concept cj is called parent of the concept
ci (or ci is the child or offspring of cj) if and only if ci � cj and there exists
no concept ck such that ci � ck � cj. ci � cj denotes that cj depends on
ci for its definition. A concept ci is called root concept if there exists no
concept ck such that ck � ci (in other words, a root concept ci does not
depend on any concept ck, for k �= i). The DCL framework uses the idea
of decomposing a complex learning problem into a number of simpler ones.
Then, it adapts this idea to the context of ILP multi-predicate learning.

A dependent-concept ILP learning algorithm is an algorithm that
accepts a pre-ordered set of concepts, starts with learning root concepts,
then child (or offspring) concepts, and propagates the learned rules to the
background knowledge of their parent concepts and continues recursively
the learning process until all dependent-concepts have been learned. Within
this approach, we benchmark two settings: (i) the background knowledge
Bj of a dependent-concept (parent) cj is extended with the child concept
instances (as a set of facts — this framework is referred to as DCLI) and (ii)
Bj is extended with child concept intensional definitions: all child concepts
are learned as sets of rules and are added to Bj — this framework is referred
to as DCLR in the following sections. In both cases, DCLI or DCLR, all
predicates representing child of cj can be used in the body of cj ’s definition.
Our claim here is that the quality of the cj ’s theory substantially improves
if all its child concepts are known in Bj , extensionnally or intensionnally.
Section 17.4 provides results concerning the impact of child concepts’ rep-
resentation (extensional vs. intensional) on the quality of the cj . Finally,
the task of empirical DCL in ILP, which is concerned with learning a set
of concepts based on a dependency graph and given a set of examples and
background knowledge, can be formulated as follows:

4A pre-order is a reflexive and transitive binary relationship.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 159

Learning Dependent-Concepts in ILP 159

Given : A dependency graph Gd = (Cd, Ed) where Cd = {c1, c2, . . . , cn}
the set of concepts to learn such that ∀ci ∈ Cd:

• A set of transformation examples (i.e., examples) E = {E1, E2, . . . , En}
is given; and defined as (where |TM | is the number of training models):

Ei = {Rj
i (M j, N j) | Rj(M j , N j) ⊆ P(M j)× P(N j), j ≤ |TM |}

• Background knowledge B which provide additional information about
the examples and defined as:

B = {P(M j) ∪ P(N j) |M j conformsTo MM, N j conformsTo MN)}
Find : ∀ci ∈ Cd, based on Ed and following a BFS strategy,5 learn a trans-
formation rule Ri(MM,MN) ⊆ P(MM) × P(MN); where MM is the
reference source-metamodel and MN is the reference target-metamodel.

17.3.3 Comparison with related concept search problems

Stone et al. introduce in [Stone and Veloso (2000)] the layered learning
machine learning paradigm. In [Nguyen et al. (2004)] the authors study the
problem of constructing the approximation of higher-level concepts by com-
posing the approximation of lower-level concepts. Authors in [Gustafson
and Hsu (2001); Jackson and Gibbons (2007)] present an alternative to
standard genetic programming that applies layered learning techniques to
decompose a problem. The layered learning approach presented by Muggle-
ton in [Muggleton (1993)] aims at the construction of a large theory in small
pieces. Compared to layered learning, the DCL approach aims to find all
concept theory using the theories of concepts on which they depend. Then,
while the layered learning approach exploits a bottom-up, hierarchical task
decomposition, the DCL algorithm exploits the dependency relationships
between specific concepts of the given dependency graph. The dependency
structure in [Stone and Veloso (2000)] is a hierarchy, whereas our depen-
dency structure is a directed acyclic graph. A breadth-first search algorithm
is used to explore the dependency graph.

Within the field of ILP the term Predicate Invention is introduced [Mug-
gleton (1991)] and it involves the decomposition of predicates being learned
into useful sub-concepts. Muggleton [Muggleton and Road (1994)] defines
Predicate Invention as the augmentation of a given theoretical vocabu-
lary to allow finite axiomatization of the observational predicates. In [Stahl

5Start by an offspring and non-dependent concept (i.e., a root concept), then follow its
parent dependent-concepts.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 160

160 Latest Advances in Inductive Logic Programming

(1994, 1995)], Stahl studies the utility of predicate invention task in ILP and
its capabilities as a bias shift operation. Rios et al. investigate in [Rios and
Matwin (1998)] on specification language extension when no examples are
explicitly given of the invented predicate. The DCL and Predicate Invention
approaches share the fact they correspond to the process of introducing new
theoretical relationships. However, in the case of Predicate Invention, the
approach is usually based on decomposition of the theory to learn simple
sub-theories. The DCL approach is based on the composition of a theory
from the learned theories.

In [Gama and Brazdil (2000)], authors introduces the Cascade Gen-
eralization method. This approach is compared to other approaches that
generate and combine different classifiers like the Stacked Generalization
approach [Ting and Witten (1997, 1999); Wolpert (1992)]. In [Xie (2006)],
Xie proposes several speed-up variants of the original cascade generalization
and shows that the proposed variants are much faster than the original one.
As with Cascade Generalization, the DCL approach extends the background
knowledge at each level by the information on concepts of the sub-level
(according to the dependency graph). But, within the proposed DCL, we
use the same classifiers for all iterations. In our experiments, we report the
results of the extension of the background knowledge by instances (first set-
ting named DCLI) and the learned theory (second setting named DCLR).

The model transformation by example approach aims to find contextual
patterns in the source model that map contextual patterns in the target
model. This task is defined as Context Analysis in [Varró (2006)]. The
machine learning approaches that exploit context to synthesize concepts
are proposed in [Bieszczad and Bieszczad (2006); Turney (1993)]. In [Tur-
ney (1993)] the author provides a precise, formal definition of context and
lists four general strategies for exploiting contextual information. Authors
in [Bieszczad and Bieszczad (2006)] introduce an enhanced architecture that
enables contextual learning in the Neurosolver (a problem-solving system).
Nevertheless, the notion of context is different in DCL. In fact, in DCL, con-
textual information is the result of the learning process (which will form
the transformation rule); while within the Contextual Learning strategy the
context is part of input information that improves the performance of the
learner.

17.4 Empirical Results

This section describes the experimental setup and compares the results of
the two tested methods: ICL and DCL.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 161

Learning Dependent-Concepts in ILP 161

17.4.1 Materials and methods

For the experimentations presented in [Essaidi et al. (2011)], we use a set of
real-world data models provided by an industrial partner. Concerning the
experimentations of this chapter, we used the Microsoft AdventureWorks
2008R2 sample database family6 reference databases. The AdventureWork-
sOLTP is a sample operational database used to define the source model
(i.e., DSPIM). The AdventureWorksDW is a sample data warehouse schema
used as target model (i.e., MDPIM). AdventureWorksOLTP, Adventure-
WorksDW and the mapping between them (evaluated by the expert) is
considered as a reference project trace. This will allow us to benchmark
our approach on a new extended schema (that generates more examples)
and a new dependency graph. The database elements (i.e., classes, prop-
erties and associations) are encoded as background knowledge (B) and
the mapping instances between their elements allows us to define positive
(E+) and negative (E−) examples. Concerning the number of examples, we
have ‖EClassToCube‖ = 71 denoting the number of examples (positives and
negatives) used to learn ClassToCube concept, ‖EPropertyToMeasure‖ =
249, ‖EPropertyToDimension‖ = 245, ‖ERelationShipToDimension‖ = 93,
‖EElementToHierarchyPath‖ = 338, and ‖EElementToDimensionLevel‖ = 338.

We used the Aleph ILP engine to learn first-order rules. We ran
Aleph in the default mode, except for the minpos and noise parameters:
:- set(minpos, p) establishes as p the minimum number of positive exam-
ples covered by each rule in the theory (for all experiments we fix p = 2);
and :- set(noise, n) is used to report learning performance by varying the
number of negative examples allowed to be covered by an acceptable clause
(we use two setting n = 5 and n = 10). Then, a Prolog compiler is needed to
run Aleph. We use YAP (Yet Another Prolog),7 an optimized open-source
Prolog platform. We propose to compare the following approaches:

(1) The ICL approach, which proposes to learn the set of considered con-
cepts independently.

(2) The DCL approach, which considers a dependency graph to learn the
concepts. Within this approach, we benchmark two settings: (i) the
background knowledge B of dependent-concepts (parent concepts) is
updated with their child instances (denoted DCLI); and (ii) with their
child intensional definitions (denoted DCLR). We identify the concept

6http://msftdbprodsamples.codeplex.com/
7http://www.dcc.fc.up.pt/∼vsc/Yap/

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 162

162 Latest Advances in Inductive Logic Programming

Fig. 17.1 The considered dependency graph.

dependencies illustrated by the graph in Fig. 17.1:
• ClassToCube � PropertyToMeasure: The PropertyToMeasure con-

cept depends on the concept ClassToCube. In general, the context of
transforming properties depends on contextual information of trans-
forming classes, and the context of obtaining measures is part of
the context of obtaining cubes. In fact, Properties that become Mea-
sures are numeric properties of classes that become cubes. So, we
need information about the context of ClassToCube transformation
in order to find the context of PropertyToMeasure.
• ClassToCube � PropertyToDimension: This defines dependency

between classes transformed into cubes and their properties that can
be transformed into dimensions. Regarding the UML CORE meta-
model, we find a structural dependency between Class and Property
elements (a Class includes attributes, represented by the ownedAt-
tribute role that defines a set of properties). Then regarding the CWM
OLAP metamodel, we have a structural dependency between the
Cube and Dimension elements. Current experiments confirm that
structural dependencies in the metamodel act on ways to perform
learning.
• ClassToCube � RelationShipToDimension: Indeed, dimensions are

also obtained from relationships of the Class that is transformed
into Cube. The CubeDimensionAssociation meta-class relates a Cube
to its defining dimensions as shown by the CWM OLAP metamodel
in [Essaidi et al. (2011)]. These relationships define the axes of anal-
ysis in the target multidimensional schema [Wrembel and Koncilia
(2007)].
• (PropertyToDimension, RelationShipToDimension) � ElementTo-

HierarchyPath: A Dimension has zero or more hierarchies.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 163

Learning Dependent-Concepts in ILP 163

A Hierarchy is an organizational structure that describes a traver-
sal pattern through a Dimension, based on parent/child relation-
ships between members of a Dimension. Then, elements that are
transformed into dimensions (properties and relationships) extend
the background knowledge used to find hierarchy paths.
• (PropertyToDimension, RelationShipToDimension) � ElementToDi-

mensionLevel : A LevelBasedHierarchy describes hierarchical rela-
tionships between specific levels of a Dimension (e.g., Day, Month,
Quarter and Year levels for the Time dimension). So, rules of trans-
forming elements into Dimension are used to find rules of obtaining
the levels.

17.4.2 Results and discussion

The first goal of this benchmark is to examine how the number of training
models and examples influence the performances. Accuracy is commonly
used for comparing the performances in machine learning and it is defined
as Accuracy = TP+TN

P+N , where P (N) is the number of examples classified
as positive (negative), and TP (TN) is the number of examples classified
as positive (negative) that are indeed positive (negative). In [Essaidi et al.
(2011)], we examined the accuracy of the learned rules to show the impact
of the number of training models and examples. We reported the obtained
test accuracy curves for ClassToCube and PropertyToDimension. The accu-
racy of current experiments based on the new dataset (of AdventureWorks)
confirm the results reported in [Essaidi et al. (2011)].

The second goal of the analysis is to study the performances of the
DCL approach (with the two settings DCLI and DCLR) compared to
the ICL approach. The Receiver-Operating-Characteristics (ROC) graphs
are a useful technique for visualizing, organizing and selecting classifiers
based on their performance [Fawcett (2004)]. We report in this section the
ROC curves of the tested approaches (ICL, DCLI and DCLR) based on
the new dataset and the new enhanced dependency graph. The following
metrics are used to report the ROC graphs: The true − positive − rate

(also called hit rate and recall = sensitivity) is estimated as tp rate = TP
P

and the false− positive− rate (also called false alarm rate = 1 − speci-
ficity) as fp rate = FP

N
. ROC graphs are two-dimensional graphs in which

tprate(sensitivity) is plotted on the Y axis and fprate(1 − specificity)
is plotted on the X axis. In order to assess the impact of a child con-
cept rule’s quality on the learning performances of a parent concept, we

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 164

164 Latest Advances in Inductive Logic Programming

experiment the case where the child concept is noisy. This experiment is
made within the DCL approach. We add noise to the non-dependent con-
cept (i.e., ClassToCube) and we observe results of learning dependent-
concepts with different acceptable noise settings (n = 5 and n = 10).
We report the cases where 10% (denoted N-DCLI and N-DCLR) and 20%
(denoted N2-DCLI and N2-DCLR) of the examples are noisy (to add noise,
we swap positive and negative examples).

The area under the ROC curve, abbreviated AUC, is the common mea-
sure used to compare the tested methods. The AUC represents, also, a
measure of accuracy (results are reported by Figs. 17.2, 17.3, 17.4, 17.5

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

ICL DCLI DCLR N-DCLI N-DCLR/N2-DCLR N2-DCLI

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

False-Positive Rate

ICL DCLI DCLR/N-DCLR/N2-DCLR N-DCLI N2-DCLI

Fig. 17.2 Learning PropertyToMeasure (n = 5 for left) and (n = 10 for right).

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 165

Learning Dependent-Concepts in ILP 165

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

ICL DCLI DCLR/N-DCLR/N2-DCLR N-DCLI N2-DCLI

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

ICL DCLI DCLR N-DCLI N-DCLR/N2-DCLR N2-DCLI

Fig. 17.3 Learning PropertyToDimension (n = 5 for left) and (n = 10 for right).

and 17.6). Figures show that the n = 10 setting (right-hand part of each
figure) gives best performances compared to n = 5. This confirms that
the choice of this parameter is important to deal with noisy information of
database models in general. Comparing ICL, DCLI and DCLR approaches,
results show that the DCLI has greater AUC than other tested methods.
The DCLI curves follow almost the upper-left border of the ROC space.
Therefore, it has better average performance compared to the DCLR and
ICL (AUCDCLI > AUCDCLR > AUCICL). The ICL curves almost fol-
low the 45-degree diagonal of the ROC space, which represents a random
classifier. The DCLR setting exhibits good results with respect to the ICL

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 166

166 Latest Advances in Inductive Logic Programming

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

False-Positive Rate

ICL DCLI DCLR/N-DCLR/N2-DCLR N-DCLI N2-DCLI

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

ICL DCLI DCLR N-DCLI N-DCLR/N2-DCLR N2-DCLI

Fig. 17.4 Learning RelationshipToDimension (n = 5 for left) and (n = 10 for
right).

approach, which are nevertheless slightly worse than results of the DCLI
setting.

The AUCDCLI > AUCDCLR > AUCICL result is expected, because
the DCLI configuration, when learning a parent concept, uses in its back-
ground knowledge offspring concepts as a set of facts (extensional defini-
tion), as opposed to DCLR, which previously learns, as sets of rules, a def-
inition for offspring concepts. In case lower-level concepts (i.e., offspring
concepts) are not perfectly identified, the errors for offspring concepts

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 167

Learning Dependent-Concepts in ILP 167

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

False-Positive Rate

ICL DCLI/N2-DCLI DCLR N-DCLI N-DCLR/N2-DCLR

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

ICL DCLI/N2-DCLI DCLR N-DCLI N-DCLR/N2-DCLR

Fig. 17.5 Learning ElementToHierarchyPath (n = 5 for left) and (n = 10 for
right).

propagate to parent concepts. We assume here that examples are noise
free, which explains why DCLI has a better behavior than DCLR. Thus,
for PropertyToMeasure, PropertyToDimension and RelationshipToDimen-
sion, results integrate the error rate from ClassToCube learned rules.
For the parent concepts ElementToHierarchyPath and ElementToDimen-
sionLevel that depend on (PropertyToDimension and RelationshipToDi-
mension), results are influenced by the error rate propagation from
learning ClassToCube and then PropertyToDimension and RelationshipTo-
Dimension.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 168

168 Latest Advances in Inductive Logic Programming

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

T
ru

e
-P

o
si

ti
v
e
 R

a
te

T
ru

e
-P

o
si

ti
v
e
 R

a
te

False-Positive Rate

False-Positive Rate

ICL DCLI/N-DCLI/N2-DCLI DCLR N-DCLR/N2-DCLR

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

ICL DCLI/N-DCLI/N2-DCLI DCLR N-DCLR/N2-DCLR

Fig. 17.6 Learning ElementToDimensionLevel (n = 5 for left) and (n = 10 for
right).

Then, considering the N-DCLI/N2-DCLI and N-DCLR/N2-DCLR,
we have mainly: AUCN−DCLI > AUCN2−DCLI and AUCN−DCLR >

AUCN2−DCLR. Curves show that the obtained performances depend
on the concept to learn and its degree of dependence on ClassToCube
(the noisy non-dependent concept of this configuration). For instance, in
Figs. 17.3 and 17.4, PropertyToDimension and RelationshipToDimension
are more impacted than PropertyToMeasure (in Fig. 17.2). The Property-
ToDimension and RelationshiptoDimension concepts are highly dependent

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 169

Learning Dependent-Concepts in ILP 169

on ClassToCube. This can be observed on most schemas (remarks pro-
vided in [Essaidi et al. (2011)]) and is confirmed by the expert point of
view. For example, in the case of RelationshipToDimension, the N2-DCLI
curve seems to reach the 45-degree diagonal. This gives us an idea on the
noise that we can accept when learning specific dependency relationships.
The ElementToHierarchyPath and ElementToDimensionLevel concepts are
impacted by the noisy data of ClassToCube, but less than PropertyToDi-
mension and RelationshipToDimension. We observe that ElementToHierar-
chyPath and ElementToDimensionLevel are not in direct dependence with
ClassToCube.

17.5 Conclusion

This chapter studies a real complex machine learning application: model-
driven data warehouse automation using machine learning techniques. It
includes the use of standard algorithms and a design of architecture to
limit the impact of machine learning to the regions where learning from
experience is needed. In addition, from our application needs, we found an
interesting machine learning problem: learning dependent-concept. Exper-
imental results show that the proposed DCL approach to derive trans-
formation rules in context of model-driven data warehouse gives signifi-
cant performance improvement compared to the standard approach. From
the business point of view, the learned theories are, in general, close to
the ones given by human experts. Our future work will experiment the
case when a business goals model is considered during transformations. For
example, the derivation of the MDPIM from the pair (DSPIM, MDCIM),
where MDCIM defines the organization requirements/goals. We plan also
to extend the approach to new application domains that provide a large
dependency graph (for example, the Extraction, Transformation and Load-
ing process in the data warehousing architecture).

Bibliography

Z. Balogh and D. Varró. Model transformation by example using inductive logic
programming. Software and System Modeling, 8(3), 347–364. 2009.

J. Bézivin. On the unification power of models. Software and System Modeling,
4(2), 171–188. 2005.

J. Bézivin. Model driven engineering: An emerging technical space. Genera-
tive and Transformational Techniques in Software Engineering, LNCS, vol.
4143. Springer, Berlin, pp. 36–64. 2006.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 170

170 Latest Advances in Inductive Logic Programming

A. Bieszczad and K. Bieszczad. Contextual learning in the neurosolver. In S. Kol-
lis, A. Stafylopatis, W. Duch and E. Oja (eds). Artifial Neural Networks:
Proceedings of the 16th International Conference on Artificial Neural Net-
works 2006. Springer, Berlin, pp. 474–484. 2006.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45, 621–645. 2006.

Z. Diskin and U. Wolter. A diagrammatic logic for object-oriented visual model-
ing. Electr. Notes Theor. Comput. Sci., 203(6), 19–41. 2008.

X. Dolques, M. Huchard and C. Nebut. From transformation traces to trans-
formation rules: Assisting model driven engineering approach with formal
concept analysis. In Proceedings of the 17th International Conference on
Conceptual Structures, pp. 93–106. ICCS 2009: Moscow, 26–31 July 2009.

F. Esposito, G. Semeraro, N. Fanizzi and S. Ferilli. Multistrategy theory revi-
sion: Induction and abduction in inthelex. Mach. Learn., 38(1–2), 133–156,
2000.

M. Essaidi and A. Osmani. Model driven data warehouse using MDA and 2TUP.
J. Comput. Methods Sci. Eng., 10, 119–134. 2010a.

M. Essaidi and A. Osmani. Towards model-driven data warehouse automation
using machine learning. Proceedings of the International Conference on Evo-
lutionary Computation, pp. 380–383. 2010b. ICEC 2010: Valencia, 24–26
October 2010.

M. Essaidi, A. Osmani, and C. Rouveirol. Transformations learning in context of
model-driven data warehouse: An experimental design based on inductive
logic programming. Proceedings of the 23rd IEEE International Conference
on Tools with Artificial Intelligence, pp. 693–700. 2011. ICTAI 2011: Boca
Raton, Florida, 7–9 November 2011.

T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Tech-
nical report, HP Laboratories, 2004.

J. A. Gama and P. Brazdil. Cascade Generalization. Mach. Learn., 41, 315–343.
2000.

I. Garćıa-Magariño, J. J. Gómez-Sanz and R. Fuentes-Fernández. Model trans-
formation by-example: An algorithm for generating many-to-many trans-
formation rules in several model transformation languages. In A. Vallecillo,
J. Gray and A. Pierantonio (eds). Proceedings of the First International
Conference on Theory and Practice of Model Transformations, LNCS, vol.
5063. Springer, Berlin, pp. 52–66. 2009.

A. Gerber, M. Lawley, K. Raymond, J. Steel and A. Wood. Transformation:
The missing link of mda. In A. Corradini, H. Ehrig, H. -J. Kreowski, and
G. Rozenberg, G. (eds). Proceedings of the 1st International Conference on
Graph Transformation, LNCS, vol. 2505. Springer, Berlin, pp. 90–105. 2002.

S. M. Gustafson and W. H. Hsu. Layered Learning in Genetic Programming
for a Cooperative Robot Soccer Problem. Proceedings of the 4th European
Conference on Genetic Programming, pp. 291–301. EuroGP 2001: Milan,
18–20 April 2001.

D. Jackson and A. P. Gibbons. Layered learning in boolean GP problems. In
M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi and A. Esparcia-Alcázar

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 171

Learning Dependent-Concepts in ILP 171

(eds.). Proceedings of the 10th European Conference on Genetic Program-
ming, LNCS, vol. 4445. Springer, Berlin, pp. 148–159. 2007.

F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification. Proceed-
ings of the 8th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems, pp. 171–185. FMOODS 2006: Bologna,
14–16 June 2006.

M. Kessentini, M. Wimmer, H. Sahraoui and M. Boukadoum. Generating trans-
formation rules from examples for behavioral models. Proceedings of the
Second International Workshop on Behaviour Modelling: Foundation and
Applications, pp. 2:1–2:7. 2010. BM-FA 2010: Paris, 14 June 2010.

N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, New York. 1994.

J.-N. Mazón and J. Trujillo. An mda approach for the development of data ware-
houses. Decis. Support Syst., 45, 41–58. 2008.

T. M. Mitchell. Generalization as search. Artif. Intell., 18, 203–226, 1982.
S. H. Muggleton. Inductive Logic Programming. New Generat. Comput., 8, 295–

318. 1991.
S. H. Muggleton. Optimal layered learning: A PAC approach to incremental sam-

pling. Proceedings of the 4th Conference on Algorithmic Learning Theory,
pp. 37–44. ALT 1993: Tokyo, 8–10 November 1993.

S. H. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. J. Log. Program., 19/20, 629–679. 1994.

S. H. Muggleton and K. Road. Predicate invention and utilisation. J. Exp. Theor.
Artif. In., 6, 6–1. 1994.

S. H. Nguyen, J. G. Bazan, A. Skowron and H. S. Nguyen. Layered learning for
concept synthesis. T. Rough Sets, 3100, 187–208. 2004.

R. Rios and S. Matwin. Predicate invention from a few examples. In R. E. Mercer
and E. Neufeld (eds). Advances in Artificial Intelligence: Proceedings of
the 12th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, LNCS, vol. 1418. Springer-Verlag, Berlin, pp. 455-
466. 1998.

A. Rutle, A. Rossini, Y. Lamo and U. Wolter. A diagrammatic formalisation of
mof-based modelling languages. TOOLS, 47, 37–56. 2009.

A. Rutle, U. Wolter, and Y. Lamo. A diagrammatic approach to model transfor-
mations. Proceedings of the 2008 Euro American Conference on Telematics
and Information Systems. EATIS 2008: Aracaju 10–12 September 2008.

I. Stahl. On the utility of predicate invention in inductive logic programming. In F.
Bergadano and L. De Raedt (eds). Proceedings of the European Conference
on Machine Learning, LNCS, vol. 784. Springer, Berlin, pp. 272–286. 1994.

I. Stahl. The appropriateness of predicate invention as bias shift operation in ILP.
Mach. Learn., 20, 95–117. 1995.

P. Stevens. Bidirectional model transformations in QVT: semantic issues and
open questions. Software and System Modeling, 9(1), 7–20. 2010.

P. Stone and M. M. Veloso. Layered learning. In R. López de Mántaras and
E. Plaza (eds). Proceedings of the 11th European Conference on Machine
Learning, LNCS, vol. 1810. Springer-Verlang, Berlin, pp. 369–381. 2000.

October 10, 2014 14:24 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch17 page 172

172 Latest Advances in Inductive Logic Programming

M. Strommer and M. Wimmer. A framework for model transformation by-
example: Concepts and tool support. Proceedings of the 46th International
Conference, TOOLS EUROPE 2008, pp. 372–391. 2008. TOOLS 2008:
Zurich, 30 June–4 July 2008.

K. M. Ting and I. H. Witten. Stacked generalization: when does it work? Pro-
ceedings of the Fifteenth International Joint Conference on Artificial Intel-
ligence, pp. 866–871. 1997. IJCAI 1997: Nagoya, 23–29 August 1997.

K. M. Ting and I. H. Witten. Issues in stacked generalization. J. Artif. Intell.
Res., 10, 271–289. 1999.

P. D. Turney. Exploiting context when learning to classify. In P. Brazdil (ed.).
Proceedings of the European Conference on Machine Learning, LNCS, vol.
667. Springer-Verlag, Berlin, pp. 402–407. 1993.

D. Varró. Model transformation by example. In O. Nierstrasz, J. Whittle, D. Harel
and G. Reggio (eds.). Proceedings of the 9th International Conference Model
Driven Engineering Languages and Systems, LNCS, vol. 4199. Springer-
Verlag, Berlin, pp. 410–424. 2006.

D. H. Wolpert. Stacked Generalization. Neural Networks, 5, 241–259. 1992.
R. Wrembel and C. Koncilia. Data Warehouses and OLAP: Concepts, Architec-

tures and Solutions. IGI Global, Hershey, Pennsylvania. 2007.
Z. Xie. Several speed-up variants of cascade generalization. In L. Wang, L. Jiao, G.

Shi, X. Li, J. Liu (eds). Proceedings of the Third International Conference
on Fuzzy Systems and Knowledge Discovery, LNCS, vol. 4223. Springer-
Verlag, Verlin, pp. 536–540. 2006.

L. Zepeda, M. Celma and R. Zatarain. A mixed approach for data warehouse
conceptual design with MDA. In O. Gervasi, B. Murgante, A. Laganà, D.
Taniar and Y. Mun (eds). Proceedings of the International Conference on
Computational Science and Its Applications, LNCS, vol. 5072. Springer-
Verlag, Berlin, pp. 1204–1217. 2008.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 173

Chapter 18

Graph Contraction Pattern
Matching for Graphs
of Bounded Treewidth

Takashi Yamada and Takayoshi Shoudai

Department of Informatics, Kyushu University, Japan

A graph contraction pattern is a triplet h = (V,E,U) where (V,E) is a
connected graph and U is a distinguished subset of V . The graph con-
traction pattern matching problem is defined as follows. Given a graph
contraction pattern h = (V,E,U) and a graph G, can G be transformed
to (V,E) by edge contractions so that for any v ∈ V\U , only one vertex in
G can be mapped to v? We show that this problem is solvable in polyno-
mial time if (1) (V,E) is of bounded treewidth, (2) U is an independent
set of (V,E), and (3) all vertices in U are of bounded degree.

18.1 Introduction

Large amounts of data with graph structures — such as map data, CAD,
biomolecular, chemical molecules, the World Wide Web — are stored in
databases. Almost all chemical compounds stored in the NCI chemical
dataset1 are known to be expressed by outerplanar graphs. Horváth et al.
[Horváth et al. (2010)] proposed an efficient frequent subgraph mining algo-
rithm for a dataset expressed by outerplanar graphs. We have developed
general graph patterns with structured variables which can be replaced
with arbitrary connected graphs, in order to represent expressive patterns
appearing in a given dataset of graphs. In [Yamasaki et al. (2009)], we intro-
duced a general concept of block-preserving graph patterns and presented
a frequent graph pattern mining algorithm on outerplanar graphs.

1http://cactus.nci.nih.gov.

173

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 174

174 Latest Advances in Inductive Logic Programming

Toward a graph mining on more general classes of graphs, Horváth
and Ramon proposed a frequent subgraph mining algorithm for a dataset
of graphs of bounded treewidth [Horváth and Ramon (2010)]. Some NP-
completeness problems on graphs are solvable in polynomial time if the
input can be restricted to graphs of bounded treewidth. From a practi-
cal viewpoint, 99.97% of 250, 251 chemical compounds in the NCI chem-
ical dataset are expressed by graphs of treewidth at most three [Horváth
and Ramon (2010)]. We proposed a graph pattern of bounded treewidth
and a polynomial time pattern matching algorithm on the graph pat-
terns [Yamada and Shoudai (2011)]. On the other hand, the pattern match-
ing problem on graph patterns is computationally expensive unless a graph
pattern is essentially two-connected [Miyahara et al. (2000)]. In this paper,
in order to discover more than two-connected graph patterns in a target
dataset, we define a new graph pattern expression, called a graph contrac-
tion pattern, by using a concept of edge contractions on connected graphs.

The H-contractibility problem takes as input two graphs G and H , and
asks whether G can be transformed into H by edge contractions. Based
on the H-contractibility problem, we define a graph contraction pattern
as a triplet h = (V,E, U) where (V,E) is a connected graph and U is a
distinguished subset of V . The graph contraction pattern matching prob-
lem is defined as follows. Given a graph contraction pattern h = (V,E, U)
and a graph G, can G be transformed to (V,E) by edge contractions so
that for any v ∈ V \ U , only one vertex in G can be mapped to v? In
Fig. 18.1, G1 is transformed to (V,E) by edge contractions so that only
one vertex in G1 is mapped to each vertex in V \U . G2 is also transformed
to (V,E) in such a way. In this chapter, we show that this problem is
solvable in polynomial time if (1) (V,E) is of bounded treewidth, (2) U is

ab

f

n

m

e

i

l

c

k

g
j

d

h
G1 G2

Fig. 18.1 Let h = (V,E,U) be a graph contraction pattern, where (V,E) is a
connected graph of treewidth 2 and U = {b, c, d, g, j, k}. h is a common pattern
of G1 and G2.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 175

Graph Contraction Pattern Matching for Graphs of Bounded Treewidth 175

an independent set of (V,E), and (3) all vertices in U are of bounded
degree.

18.2 Preliminaries

18.2.1 Normalized tree decomposition

All graphs in this chapter, are simple and loopless. For a graphG, we denote
by V (G) and E(G) the vertex set and the edge set of G, respectively. We
denote by N(v) the set of neighbors of a vertex v. For U1, U2 ⊆ V (G),
we say that U1 and U2 are adjacent if there is an edge {v, w} such that
v ∈ U1 and w ∈ U2. For U ⊆ V (G), we denote by G[U] the subgraph of G
induced by U .

A tree-decomposition of a graph G is a 2-tuple (T,X) where T is a tree
and X = {X (α) | X (α) ⊆ V (G) for all α ∈ V (T)} that satisfies the follow-
ing three conditions: (1)

⋃
α∈V (T) X (α) = V (G), (2) ∀v, w ∈ V (G) [{v, w} ∈

E(G)⇒ ∃α ∈ V (T) [{v, w} ⊆ X (α)]], and (3) ∀α, β, γ ∈ V (T) [β is on the
path from α to γ in T ⇒ X (α) ∩ X (γ) ⊆ X (β)]. The width of a tree-
decomposition (T,X) is maxα∈V (T) |X (α)|− 1. The treewidth of a graph G
is the minimum width over all possible tree-decompositions of G. We say
that a tree-decomposition of a graph G is optimal if its width equals to the
treewidth of G.

Thereafter, to distinguish from a vertex of graph G, we call a vertex of T
a node. Below we assume that the tree T of a tree-decomposition (T,X) is a
rooted tree by specifying a node of T . For a tree-decomposition (T,X), we
denote by T ↓a the maximal subtree rooted at a node α ∈ V (T), by X (T ↓α)
the union of elements of nodes of T ↓α, i.e., X (T ↓α) =

⋃
β∈V (T↓α) X (β).

A tree-decomposition (T,X) is smooth if ∀{α, β} ∈ E(T)[|X (α)\X
(β)| = |X (β)\X (α)| = 1]. A tree-decomposition (T,X) has a subtree con-
nected characteristic if ∀{α, β} ∈ E(T)[β is a child of α and G[X (T ↓β)\
X (α)] is connected]. A tree-decomposition (T,X) is normalized if it sat-
isfies the following three conditions: (1) (T,X) is optimal, (2) (T,X) is
smooth, and (3) T is a rooted tree and (T,X) has a subtree connected
characteristics. Nagoya et al. [Nagoya et al. (2002)] gave a polynomial time
algorithm for constructing a normalized tree-decomposition from any tree-
decomposition.

Theorem 18.1. [Nagoya et al. (2002)] A normalized tree-decomposition of
G of treewidth k is obtained from any optimal tree-decomposition of G in
O(kn2) time, where n = |V (G)|.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 176

176 Latest Advances in Inductive Logic Programming

18.2.2 Graph contraction pattern

Let G and H be connected graphs. An H-witness structureW = {W (u)|u ∈
V (H)} is a partition of V (G) satisfying the following conditions:
(1) ∀W (u) ∈ W [G[W (u)] is connected], and (2) ∀u, u′ ∈ V (H)[{u, u′} ∈
E(H) ⇔ ∃{v, w} ∈ E(G)[v ∈ W (u), w ∈ W (u′)]]. We call each set
W (u) ∈ W the H-witness set of u. When G has an H-witness structure,
G can be transformed to H by contracting each of H-witness sets into one
vertex by edge contractions.

A graph contraction pattern h (GC-pattern, for short) is a triplet
h = (V,E, U) where (V,E) is a connected graph and U is a subset of V . We
denote by V (h) and E(h) the vertex set and the edge set of h, respectively.
And for V ′ ⊆ V (h), we denote by h[V ′] the graph contraction subpat-
tern (GC-subpattern, for short) induced by V ′, i.e., h[V ′] = (V ′, E(h)∩
{{v, w}|v, w ∈ V ′}, U ∩ V ′).

We say that a GC-pattern h matches a graph G if G has a (V (h),
E(h))-witness structure W = {W (u)|u∈V (h)} satisfying ∀v ∈V (h)\U
[|W (v)| = 1]. We call an element of U a contractible vertex , and an element
of V (h)\U an uncontractible vertex . And for a GC-pattern h, a (V (h),
E(h))-witness structure of h is called an h-witness structure.

18.2.3 Main results

The graph contraction pattern matching problem is to decide whether or
not a given GC-pattern h matches a given graph G. Our main result is the
following theorem.

Theorem 18.2. Given a GC-pattern h = (V,E, U) and a graph G, the
GC-pattern matching problem is solvable in polynomial time if h satisfies
the following three conditions: (1) (V,E) is of bounded treewidth, (2) U is
an independent set of (V,E), and (3) all vertices in U are of bounded degree.

U is an independent
set of (V (h), E(h))

F [Brouwer and
Veldman
(1987)]

* T

All vertices in U are
of bounded degree

* F [this paper] T

(V (h), E(h)) is of a
bounded treewidth

* * F T

Time Complexity NP-complete GI-hard P [this paper]

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 177

Graph Contraction Pattern Matching for Graphs of Bounded Treewidth 177

We show a polynomial time algorithm that solves this problem in the
next section. Our algorithm is based on the idea of the graph isomorphism
algorithm for a graph with bounded treewidth in [Nagoya et al. (2002)].
A GC-pattern matching problem becomes intractable if it does not satisfy
the condition of Theorem 18.2.

Theorem 18.3. For inputs G and h, the GC-pattern matching problem
is NP-complete if the degree of a vertex in U is not bounded by a fixed
constant.

Moreover, we can show the time complexities of this problem in the cases
whether or not each condition of Theorem 18.2 is satisfied. We summarize
them in the next table. “T” means that the condition is satisfied and “F”
means not satisfied. And “*” may be either “T” or “F”. The class GI is the
set of problems with a polynomial-time reduction to the graph isomorphism
problem.

18.3 A Pattern Matching Algorithm for GC-Patterns

We assume that a given GC-pattern h satisfies the conditions of Theorem
18.2. And let (T,X) be a normalized tree-decomposition of (V (h), E(h)).

In our algorithm, we construct a whole witness structure from a union
of partial witness structures. So we need the following definition.

Definition 18.1. For two GC-subpatterns h1, h2 of h, let W1 and W2 be
h1- and h2-witness structures, respectively. Then, we say that W1 does not
contradict W2 if it satisfies the following conditions. (1) W1(v) = W2(v)
for any v ∈ V (h1) ∩ V (h2), (2) for any u ∈ V (hi) and v ∈ V (h2), {u, v} ∈
E(h)⇔W1(u) and W2(v) are adjacent.

And, we construct a partial witness structure from an injection.

h G

dom
(α)

ψ
ψ Dα,ψ

Isψ an element
of ISO(α)?

h G

ψ1∈ ISO(β1)
dom
(β1)

dom
(β2)

D1

D2ψ2∈ ISO(β2)

Fig. 18.2 The algorithm incrementally decides whether a node mapping ψ is an
element of ISO(α) or not.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 178

178 Latest Advances in Inductive Logic Programming

Definition 18.2. Let dom be a set of contractible vertices, all of those
neighbors, and some uncontractible vertices of h. Then, for an injection
ψ : dom → V (G), we construct a ψ-structure Wψ = {Wψ(v)|v ∈ dom} as
follows: (1) Wψ(v) = {ψ(v)} if v is uncontractible, (2) otherwise, Wψ(v)
is the vertex set of the connected component in G[V (G) \ ψ(N(v))] that
includes ψ(v).

If ψ is suitable, then Wψ becomes one of h[dom]-witness structures.

Definition 18.3. For a node α ∈ T , let dom(α) be a vertex set X (α) ∪
{N(v)|v ∈ X (α) ∩ U}. And, we say that a mapping ψ : dom(α)→ V (G) is
a node mapping of α if Wψ is an h[dom(α)]-witness structure.

Let α′ be the parent node of α. Then h[X (T ↓α)\X (α′)] is connected.
We define Dα,ψ corresponding to h[X (T ↓α) \X (α′)] as follows. Dα,ψ is the
connected component in the graph obtained from G by removing Wψ(h)
for each h ∈ X (α) ∩ X (α′) that includes Wψ(v) where v ∈ X (α) \ X (α′).
Moreover we define ISO(α) as the set of all node mappings ψ satisfying
the following condition. G[V (Dα,ψ)∪⋃

v∈dom(α)Wψ(v)] has an h[X (T ↓α)∪
dom(α)]-witness structure such that does not contradict Wψ. From these
definitions, we can easily see the following lemma.

Lemma 1. A GC-pattern h matches a graph G if and only if ISO(rT)
= ∅
where rT is the root of T .

Let β1, . . . , βm be the children of α. Then the GC-pattern obtained from
h[X (T ↓α) \ X (α′)] by removing X (α) has m connected components. Simi-
larly, the graph obtained from Dα,ψ by removing Wψ(v) for each v ∈ X (α)
has m′ connected components Di (i = 1, . . . ,m′). If m
= m′, G has no
h-witness structure that does not contradict Wψ. Afterwards, we assume
that m = m′. For each βi, we assume that there is a node mapping
ψβi ∈ ISO(βi) such that Wψβi

does not contradict Wψ. Let Wβi be a
witness structure that makes ψβi an element of ISO(βi). Then we con-
struct a witness structure W as the union of Wψ and each Wβi . Then, the
constructed W makes ψ an element of ISO(α) (Fig. 18.1).

Lemma 2. ψ ∈ ISO(α) if and only if there is an injection from β1, . . . , βm
to D1, . . . , Dm satisfying the following condition. If βi is mapped to Dj,

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 179

Graph Contraction Pattern Matching for Graphs of Bounded Treewidth 179

there is a node mapping ψβi of βi such that Wψβ
does not contradict Wψ

and (Dβi,ψi = Dj) ∧ (ψβi ∈ ISO(βi)).

For deciding whether ψ ∈ ISO(α) or not, we construct a bipartite graph
defined as follows and solve the perfect matching problem on the bipartite
graph.

Definition 18.4. For node α, let B be the set of all children of α. And let C
be the set of all connected components of the graph obtained from Dα,ψ by
removing Wψ(h) for each h ∈ X (α). And, let E = {{β,D}|(β ∈ B) ∧ (D ∈
C) ∧ (∃ψβ ∈ ISO(β,G)[(Wψβ

does not contradict Wψ) ∧ (D = Dβ,ψβ
)]}.

Then we define a bipartite graph Q(α, ψ) = (B,C,E).

Lemma 3. The bipartite graph Q(α, ψ) has a perfect matching if and only
if ψ ∈ ISO(α).

We give a formal description of our algorithm in Fig. 18.3. The correct-
ness of our algorithm is shown from Lemmas 1 and 3. Our algorithm runs
in O(Nk(d+1)+1.5) time, where N is the number of vertices of G and d is
the maximum degree of the vertices of U . Then we can show Theorem 18.2.

Fig. 18.3 GC-pattern matching algorithm.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch18 page 180

180 Latest Advances in Inductive Logic Programming

Bibliography

A. E. Brouwer and H. J. Veldman. Contractibility and NP-completeness. J. Graph
Theor., 11, 71–79. 1987.

T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci., 411(31–33), 2784–2797. 2010.

T. Horváth, J. Ramon and S. Wrobel. Frequent subgraph mining in outer-planar
graphs. Data Min. Knowl. Disc., 21(3), 472–508. 2010.

T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi and H. Ueda. Polynomial
time matching algorithms for tree-like structured patterns in knowledge
discovery. In T. Terano, H. Liu and A. L. P. Chen (eds). Proceedings of
the Fourth European Conference on Principles and Practice of Knowledge
Discovery in Databases, LNAI vol. 1805. Springer, Berlin, pp. 5–16. 2000.

T. Nagoya, S. Tani and S. Toda. A polynomial-time algorithm for counting graph
isomorphisms among partial k-trees (in Japanese). IEICE T. Inf. Syst.,
J85-D1(5), 424–435. 2002.

T. Yamada and T. Shoudai. Efficient pattern matching on graph patterns of
bounded treewidth. Electron. Notes Discrete Math., 37, 117–122. 2011.

H. Yamasaki, Y. Sasaki, T. Shoudai, T. Uchida and Y. Suzuki. Learning block-
preserving graph patterns and its application to data mining. Mach. Learn.,
76(1), 137–173. 2009.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 181

Chapter 19

mLynx: Relational
Mutual Information

Nicola Di Mauro, Teresa M.A. Basile,
Stefano Ferilli and Floriana Esposito

Department of Computer Science,
LACAM laboratory University of Bari “Aldo Moro”, Italy

This paper represents a further steps in combining Information Theory
tools with relational learning. We show how mutual information can be
used to find relevant relational features.

19.1 Introduction

According to Tishby et al. [Tishby et al. (1999)], Information Theory pro-
vides a natural quantitative approach to the question of relevant informa-
tion and an alternative view for Machine Learning because of the abstract
and principled concept of mutual information (MI). For instance, they pro-
vided the Information Bottleneck (IB) method taking in mind that any
learning process has to deal with the basic tradeoff between the complex-
ity of the available data representation and the best accuracy that this
complexity enables. The first approach using the IB method for Statistical
Relational Learning (SRL) [Getoor and Taskar (2007)] has been proposed
in [Riguzzi and Di Mauro (2012)] and this chapter is a new step forward
for information theoretic relational learning. We use the MI descriptor from
Information Theory to propose an SRL method that learns the model by
finding the most relevant features. Given a training dataset D = {xi, ci}ni=1

of n relational examples, characterized by a set of m relational features

181

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 182

182 Latest Advances in Inductive Logic Programming

X = {fi}mi=1, and a target discrete random variable c, generating class
labels ci, the aim of this chapter is to find a subset of X that optimally
characterizes the variable c, minimizing the classifier’s probability error.
We want to find the maximal statistical dependency of the target class c on
the data distribution in the selected subspace (maximal dependency), that
usually corresponds to the maximal relevance of the features to the target
class c.

Most of the Inductive Logic Programming (ILP) learning approaches
build models by searching for good relational features guided by a scoring
function, such as in FOIL. In many SRL systems this feature construc-
tion process is combined with a discriminative/generative probabilistic
method in order to deal with noisy data and uncertainty, such as in
kFOIL [Landwehr et al. (2006)], rsLDA [Taranto et al. (2011)], and Markov
Logic Networks (MLNs) [Richardson and Pedro (2006)]. The combination
may be static or dynamic. In the former case (static propositionalization),
the constructed features are usually considered as boolean features and
used offline as input to a propositional statistical learner; while in the lat-
ter case (dynamic propositionalization), the feature construction and prob-
abilistic model selection are combined into a single process. We propose
the mLynx system that, after a feature construction phase, stochastically
searches, guided by the mutual information criterion, the set of the most
relevant features, minimizing a Bayesian classifier’s probability error.

19.2 Feature Construction and Classification

This section reports the first components of the mLynx system, extending
Lynx [Di Mauro et al. (2011)], that implements a probabilistic query-based
classifier based on mutual information. Specifically, we start to report its
feature construction capability and the adopted query-based classification
model. The adopted mutual information feature selection approach will be
presented in Section 19.3.

The first step of mLynx carries out a feature construction process by
mining frequent Prolog queries (relational features), adopting an approach
similar to that reported in [Kramer and De Raedt (2001)]. The algorithm
for frequent relational query mining is based on the same idea as the generic
level-wise search method, performing a breadth-first search in the lattice of
queries ordered by a specialization relation �. The algorithm starts with
the most general Prolog queries. At each step it tries to specialize all the
candidate frequent queries, discarding the non-frequent ones and storing

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 183

mLynx: Relational Mutual Information 183

those whose length is less or equal to a user-specified input parameter.
Furthermore, for each new refined query, semantically equivalent patterns
are detected, by using the θOI-subsumption relation, and discarded. In the
specialization phase the specialization operator, basically, adds atoms to
the query.

Now, having a set of relational features, we need a way to use them
in order to correctly classify unseen examples. Given the training set
D = {xi, ci}ni=1 of n relational examples, where c denotes the discrete class
random variables taking values from {1, 2, . . . , Q}, the goal is to learn a
function h : x→ c from D that predicts the label for each unseen instance.
Let Q, with |Q| = d, be the set of features obtained in the first step of
the mLynx system (the queries mined from D). For each example xk we can
build a d-component vector-valued xk = (x1

k, x
2
k, . . . , x

d
k) random variable

where each xi
k ∈ xk is 1 if the query qi ∈ Q subsumes example xk , and 0

otherwise, for each 1 ≤ i ≤ d.
Using the Bayes’ theorem, if p(cj) describes the prior probability of class

cj , then the posterior probability p(cj|x) can be computed from p(x|cj) as

p(cj |x) =
p(x|cj)p(cj)

∑Q
i=1 p(x|ci)p(ci)

.

Given a set of discriminant functions {gi(x)}Qi=1, a classifier is said to assign
the vector x to class cj if gj(x) > gi(x) for all j �= i. Taking gi(x) = P (ci|x),
the maximum discriminant function corresponds to the maximum a poste-
riori (MAP) probability. For minimum error rate classification, the follow-
ing discriminant function will be used: gi(x) = ln p(x|ci) + ln p(ci). Given
x = (x1, . . . , xd), we define pij = Prob(xi = 1|cj) with the components of
x being statistically independent for all xi ∈ x. The estimator p̂ij of the
factor pij corresponds to the frequency counts on the training examples:
p̂ij = ηi,j(D,Q) = |{xk, ck ∈ D|ck = j∧qi ∈ Q subsumes xk}|/ηj(D), where
ηj(D) = |{xk, ck ∈ D|ck = j|. The estimator p̂(cj) of p(cj) is ηj(D)/|D|.
By assuming conditional independence p(x|cj) =

∏d
i=1(pij)xi(1− pij)1−xi ,

yielding the discriminant function

gj(x) = ln p(x|cj) + ln p(cj) =
d∑

i=1

xi ln
pij

1− pij
+

d∑

i=1

ln(1− pij) + ln p(cj).

The minimum probability error is achieved by deciding ck if gk(x) ≥ gj(x)
for all j and k.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 184

184 Latest Advances in Inductive Logic Programming

19.3 Mutual Information Feature Selection

A formalization of the uncertainty of a random variable is the Shannon’s
entropy. Let x be a discrete random variable and p(x) its probabilistic den-
sity function, then the entropy of x, a measure of uncertainty, is defined as
usual by H(x) = E(I(x)) =

∑
i p(xi)I(x) = −∑

i p(xi) log p(xi), assuming
p(xi) log p(xi) = 0 in case of p(xi) = 0. For two random variables x and y,
their joint entropy is defined as H(x, y) = −∑

i,j p(xi, yj) log p(xi, yj), and
the conditional entropy is defined as H(x|y) = −∑

i,j p(xi, yj) log p(xi|yj).
From the last definition, the chain rule for conditional entropy is H(x, y) =
H(x) +H(y|x).

The mutual information I(x; y) measures how much (on average) the
realization of the random variable y tells about the realization of x:

I(x; y) = H(x)−H(x|y) =
∑

i,j

p(xi, yj) log
p(xi, yj)
p(xi)p(yj)

. (19.1)

Given a set X of M features, mutual information feature selection cor-
responds to find a set S = {fi}mi=1 ⊂ X whose elements jointly have the
largest dependency on the class c, corresponding to optimize the maximum
dependency condition:

max
S⊂X

I(S; c). (19.2)

Directly computing (19.2) has some difficulties [Peng et al. (2005)], and
different approaches to approximate it have been proposed. The approach
we used in this chapter is the minimal redundancy and maximal relevance
criterion (mRMR) [Peng et al. (2005)]. An approximation of (19.2) can be
obtained by optimizing the maximal relevance criterion:

max
S⊂X

1
|S|

∑

fi∈S

I(fi; c). (19.3)

In maximizing the relevance, the selected features fi are required to have
the largest mutual information I(fi; c) with the class c (i.e., the largest
dependency on the class). Combinations of individually good features do
not necessarily lead to good classification performance. Selecting features
according to (19.3) could lead to a set containing high redundant features.
Hence, in order to have mutually exclusive features the criterion of minimal
redundancy should be optimized:

min
S⊂X

1
|S|2

∑

fi,fj∈S

I(fi; fj). (19.4)

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 185

mLynx: Relational Mutual Information 185

The mRMR combines these two last criteria by simultaneously optimizing
(19.3) and (19.4). A possible technique may be to incrementally search near-
optimal features as follows. Assume S is the subset of m features already
selected. The incremental algorithm selects the next feature fj ∈ X\S to
be added to S by optimizing the following condition:

max
fj∈X\S



I(fj ; c)− 1
|S|

∑

fi∈S

I(fj ; fi)



. (19.5)

Starting from an empty set and using (19.5) to incrementally select the
features to add, a first problem is how to determine the optimal number of
features m. Furthermore, even fixing in advance the number m of features
to be selected, another problem is that this incremental approach does not
assure to find the global optimal solution, and repeated executions could
lead the search to be trapped in the same local optimum solution.

One way to decrease the probability of being stuck in a local maximum
and avoiding to test all the 2M − 1 possible subset solutions, is to con-
sider the use of a stochastic local search (SLS) procedure. In this paper we
propose a new SLS procedure, similar to the Randomized Iterative Improve-
ment method, able to solve the above problems, as reported in Fig. 19.1.
Given X the set of available features, the algorithm starts by randomly
selecting a feature fs ∈ X , and setting S = {fs}. Then, it iteratively adds
a new feature fi ∈ X\S to S according to (19.5) until the new information
for the class variable c contributed by the feature fj given S is greater
than a threshold α. This helps the search to be immunized against noisy
data, to overcome over-fitting problems, and to solve the problem of how
to choose the number m of features to be selected. Furthermore, to imple-
ment diversification in the algorithm, the iterative construction phase can
choose to make a random walk (by adding a random feature) with a walking
probability wp.

After each construction phase, the found solution is evaluated according
to the classifier’s probability error, and the process is restarted hoping to
find a better solution. Given S the selected features, for each example ej we
let the classifier find the MAP hypothesis ĥP (xj) = arg maxi gi(xj) accord-
ing to the Bayesian discriminant function reported in Section 19.2 where
xj is the feature-based representation of the example ej obtained using
the queries in S. Hence the optimization problem corresponds to minimize
the expectation E[1bhP (xi) �=ci

] where 1bhP (xi) �=ci
is the characteristic function

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 186

186 Latest Advances in Inductive Logic Programming

Fig. 19.1 The learning framework.

of the training example ei returning 1 if ĥP (xi) �= ci, and 0 otherwise.
Finally, the number of classification errors made by the Bayesian classifier
using the queries S is errD(S) = |D|E[1bhP (xi) �=ci

].

19.4 Experiments

We tested the proposed mLynx approach on the well-known Mutagenesis
ILP dataset, and on the widely used UW-CSE SRL dataset [Parag and
Pedro (2005)]. The Mutagenesis dataset regards the problem to predict
the mutagenicity of a set of compounds. As in [Landwehr et al. (2006)]
we used atom and bond information only. mLynx has been compared to
kFOIL [Landwehr et al. (2006)], whose results with a tenfold cross validation
are listed in Table 19.1. For mLynx we set α = 10−2, restarts = 100, and
wp = 0.05. The accuracy obtained with mLynx is higher than that obtained

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 187

mLynx: Relational Mutual Information 187

Table 19.1 Average accuracy on the Mutagenesis
dataset for mLynx and kFOIL.

Dataset mLynx kFOIL

Mutagenesis r.f. 83.94 ± 6.2 77.64 ± 6.5
Mutagenesis r.u. 80.90 ± 15.7 77.50 ± 18.44

Table 19.2 AUC for ROC and PR on the UW-CSE dataset
for mLynx and Alchemy.

mLynx Alchemy

AUC ROC AUC PR AUC ROC AUC PR

ai 0.929 0.295 0.903 0.286
graphics 0.960 0.697 0.967 0.313
language 0.980 0.797 0.823 0.188
systems 0.933 0.252 0.914 0.224
theory 0.922 0.427 0.867 0.184

mean 0.945 0.494 0.895 0.239

with kFOIL with a difference that is statistically significant with p-value of
0.0455 for the Mutagenesis r.f. dataset.

The UW-CSE dataset [Parag and Pedro (2005)] regards the Depart-
ment of Computer Science and Engineering at the University of Wash-
ington, describing relationships among professors, students, courses and
publications with 3,212 true ground atoms over 12 predicates. The task is
to predict the relationship advisedBy(X,Y) using in turn four of the five
research areas (ai, graphics, language, theory and systems) for training and
the remaining one for testing as in [Parag and Pedro (2005)]. For mLynx

we set α = 10−4, restarts = 100, and wp = 0.05. For Alchemy [Richard-
son and Pedro (2006)] we used the hand-coded MLN reported in [Parag
and Pedro (2005)] including formulas stating regularities, and the applying
Alchemy to discriminative learn the weights and testing the resulting MLN
on the testing set using the MC-SAT. Table 19.2 shows the AUC for ROC
and Precision-Recall (PR) for mLynx and Alchemy. The results show that
mLynx generally improves on Alchemy with a difference that is statistically
significant with p-value of 0.095 for ROC and with p-value 0.052 for PR.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch19 page 188

188 Latest Advances in Inductive Logic Programming

Bibliography

N. Di Mauro, T. M. A. Basile, S. Ferilli and F. Esposito. Optimizing probabilistic
models for relational sequence learning. 19th International Symposium on
Methodologies for Intelligent Systems, LNAI, vol. 6804 pp. 240–249. 2011.
ISMIS 2011: 28–30 June 2011.

L. Getoor and B. Taskar. Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge, Mas-
sachusetts. 2007.

S. Kramer and L. De Raedt. Feature construction with version spaces for biochem-
ical applications. In C. E. Brodley and A. P. Danyluk (eds). Proceedings of
the 18th International Conference on Machine Learning, pp. 258–265. Mor-
gan Kaufmann, Burlington, Massachusetts. 2001.

N. Landwehr, A. Passerini, L. De Raedt and P. Frasconi. kFOIL: Learning sim-
ple relational kernels. In A. Cohn (ed.). Proceedings of the Twenty-First
National Conference on Artificial Intelligence. AAAI Press, Boston, Mas-
sachusetts, pp. 389–394. 2006.

H. Peng, F. Long and C. Ding. Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE T.
Pattern Anal., 27(8), 1226–1238. 2005.

M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1–2),
107–136. 2006.

F. Riguzzi and N. Di Mauro. Applying the information bottleneck to statistical
relational learning. Mach. Learn., 86, 89–114. 2012.

P. Singla and P. Domingos. Discriminative training of Markov logic networks.
Proceedings of the Twentieth National Conference on Artificial Intelligence.
AAAI Press, Boston, Massachusetts, pp. 868–873. 2005.

C. Taranto, N. Di Mauro and F. Esposito. rsLDA: A Bayesian hierarchical model
for relational learning. In J. Zhang and G. Livraga (eds). Proceedings of the
23rd International Conference on Data and Knowledge Engineering. IEEE
Press, New York, pp. 68–74. 2011.

N. Tishby, F. C. Pereira and W. Bialek. The information bottleneck method. In
B. Hajek and R. S. Sreenivas (eds). Proceedings of the 37th Annual Aller-
ton Conference on Communication, Control, and Computing. University of
Illinois Press, Chicago, Illinois, pp. 368–377. 1999.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 189

PART 4

Theory

189

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 191

Chapter 20

Machine Learning Coalgebraic Proofs

Ekaterina Komendantskaya

Department of Computing, University of Dundee, UK1

This chapter argues for a novel method to machine learn patterns in
formal proofs using statistical machine learning methods. The method
exploits coalgebraic approach to proofs. The success of the method is
demonstrated on three applications allowing to distinguish well-formed
proofs from ill-formed proofs, identify families of proofs and even families
of potentially provable goals.

20.1 Background

Research in formal logic has always aspired to design a formal theory based
upon a language expressive enough to allow formalisation of complex math-
ematical theories and (later) programming tasks. Once a given problem is
formulated in the language of such a theory, one can use the theory to prove
or verify various statements, theorems and properties.

One of the major steps towards this goal was made in the mid 1960s,
when Logic Programming — a family of programming languages based upon
first-order logic — was designed and implemented. The two major meth-
ods used in logic programming were first-order unification and resolution
[Robinson (1965)]; first-order unification is decidable and SLD-resolution
based on it yields efficient implementations. Many state-of-the art tools
currently used in formal methods are based on this methodology.

1The work was supported by the Engineering and Physical Sciences Research Council,
UK; Postdoctoral Fellow research grant EP/F044046/2.

191

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 192

192 Latest Advances in Inductive Logic Programming

Over the past decade, higher-order proof assistants (also called Inter-
active Theorem Provers, or ITPs), such as ACL2, AGDA, Coq and
Isabelle(HOL) have proven to be suitable for expressing and solving sophis-
ticated mathematical problems (e.g. verification of the Four-Colour Theo-
rem in Coq), and industrial-scale verification of very complex computer
systems (e.g. verification of computer micro-processors in ACL2).

However, currently, ITPs require considerable programming skills,
constant interaction between the prover and the programmer, and over-
all are time-consuming and hence expensive. Some aspects of higher-order
theorem proving may never be fully automated due to their hardness: for
example, higher-order unification is undecidable; termination of functions
cannot be automatically decided in the general case due to the Halting
Problem.

Programs in ITPs contain thousands of lemmas and theorems of vari-
able sizes and complexities; each proof is constructed by combining a finite
number of tactics. Some proofs may yield the same pattern of tactics, and
can be fully automated, and others may require programmer’s intervention.
In this case, a manually found proof for one problematic lemma may serve
as a template for several other lemmas needing a manual proof. Automated
discovery of common proof-patterns using tools of statistical machine learn-
ing is the goal of the method ML-CAP (for Machine-Learning Coalgebraic
Automated Proofs).

Another feature of theorem proving is that unsuccessful attempts at
proofs, although discarded when the correct proof is found, play an impor-
tant role in proof discovery. This kind of “negative” information finds no
place in mathematical textbooks or libraries of automated proofs. Con-
veniently, analysis of both positive and negative examples is inherent in
statistical machine learning [Bishop (2006); Duda et al. (2001)]; and the
ML-CAP method we propose exploits this.

Figure 20.1 shows other AI methods that may eventually serve for var-
ious automation or optimisation tasks in ITPs. ML-CAP is one possible
proof-pattern recognition method in this figure.

Many related attempts to exploit the inductive nature of formal rea-
soning are related to methods of Inductive Logic, (e.g. [Basin et al. (2005);
Colton (2002); Ireland et al. (2010); Johansson et al. (2010); Kersting et al.
(2006); Sorge et al. (2008); De Raedt (2008)]). In contrast to them, we
propose to enrich the inductive logic methods with the tools of statisti-
cal machine learning [Bishop (2006); Duda et al. (2001)], such as neural

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 193

Machine Learning Coalgebraic Proofs 193

Fig. 20.1 Possible extensions of formal methods coming from AI.

networks or kernels/SVMs, known for applications in statistical pattern
recognition.

Unlike logic programming that has been successfully adapted to AI pur-
poses, higher-order theorem proving and ITPs are commonly seen as areas
completely disjointed from AI. Our ML-CAP method is intended to fill
this gap. A related attempt to apply machine learning methods in higher-
order logics was the application of kernel methods to manipulate terms of
λ-calculus [Gartner et al. (2004); Lloyd (2003); Passerini et al. (2006)].

20.2 Methodology

The method ML-CAP we propose here is a pilot attempt to advance imple-
mentation of formal proofs by employing methods from Machine Learning
and Coalgebra; see Fig. 20.2.

There are some serious constraints on merging machine-learning and
formal methods. The first constraint is zero-tolerance to “noise” in the syn-
tax of ITPs (which made them so valuable for formal verification), whereas
noise is part of statistical approximation and is endemic in machine learn-
ing methods. This makes for a clash in approaches to the syntax. Neuro-
symbolic systems often solve this problem by “propositionalising” the syn-
tax and working with (vectors of) truth values instead. This solution, how-
ever, does not work for some fragments of first-order logics or for higher-
order logics.

Fig. 20.2 Methods used in ML-CAP.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 194

194 Latest Advances in Inductive Logic Programming

The second obstacle is that many conventional algorithms used in for-
mal methods and involving variable dependencies tend to be implemented
sequentially, while statistical machine learning lends itself to concurrency,
with many algorithms coming from linear algebra.

These two obstacles can be avoided if we use coalgebraic representation
of proofs, [Komendantskaya and Power (2011a,b)]. Coalgebraic representa-
tion of formal proofs facilitates extraction of important proof features that
can be classified and “learned” using statistical machine learning methods,
see also Fig. 20.2.

Coalgebraic methods occur in different areas of computer science, and
range from categorical (structural) semantics of programming languages,
[Jacobs and Rutten (1997); Komendantskaya and Power (2011a,b); Plotkin
(2004); Rutten (2000); Turi and Plotkin (1997)] and models of concur-
rent systems [Milner (1989)] to programming with infinite data-structures
in Type Theory [Bertot and Komendantskaya (2008); Coquand (1994)] or
in Logic Programming [Gupta et al. (2007); Simon et al. (2007); Komen-
dantskaya and Power (2011a,b)]. However, the potential of coalgebraic
methods in statistical machine learning has not yet received equal attention.
See [Chaput et al. (2009)] for a relation between coalgebra and probabilistic
systems.

Generally, the coalgebraic approach to computation brings two advan-
tages: coinductive proofs and programs are often concurrent and/or poten-
tially infinite. Coalgebraic methods offer ways to reform the classical
approach to (semantics of) computations in terms of input/output in favour
of an approach that pays attention to structure, repeating patterns in
computations, and observables of program execution. The main hypoth-
esis of the ML-CAP method is that these properties of coalgebraic meth-
ods make it possible to tackle some problematic aspects of formal reason-
ing using machinery developed by statistical pattern recognition [Bishop
(2006); Duda et al. (2001)].

The method ML-CAP arose from the work on coalgebraic semantics
for logic programming [Komendantskaya and Power (2011a)], which gave
rise to the novel algorithm for performing coinductive concurrent deriva-
tions in logic programs [Komendantskaya and Power (2011b)]. Our recent
experiments have shown that these coalgebraic proofs yield excellent results
in statistical pattern recognition. All experiments we report here concern
first-order logic programs corresponding to inductive and coinductive types
in ITPs.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 195

Machine Learning Coalgebraic Proofs 195

20.3 Agenda and Preliminary Results

In this section, we summarise some of the results concerning data-mining
proofs in logic programming. When working with automated proofs, we
use their representation as coinductive proof trees, [Komendantskaya and
Power (2011a)]. We have identified four benchmark problems for machine
learning formal proofs, as follows.

Problem 1. Classification of well-formed and ill-formed proofs.
Given a set of examples of well-formed and ill-formed coinductive trees,
classify any new example of a coinductive tree in either of the two
classes.

This task is one of the most difficult for pattern recognition (see
Table 20.1), and at the same time, perhaps the least significant for practical
purposes, as automated proof methods already work well for such tasks.

A more interesting task in practical terms is recognition of various proof
families among well-formed proofs, as this is something that may help to
optimize proof search.

Problem 2. Discovery of proof families. Given a set of positive
and negative examples of well-formed coinductive proof trees belonging to
a proof family, classify any new example of a coinductive tree, whether it
belongs to the given proof family.

This problem has practical applications: finding that some unfinished
proof belongs to a family of successful proofs may save intermediate deriva-
tion steps; and knowing that some unfinished proof belongs to the family
of failed proofs, may serve as a hint to abandon any future attempts.

Table 20.1 Summary of the results of classification of coinductive derivation
trees for the four main classification problems, performed in neural networks
(first four columns), and in SVMs with kernel functions (columns five and
six); the latter is only tested for the derivation trees for Stream.

ListNat ListNat Stream Stream SVM SVM
best best best best best best
test average test average test average

Problem 1 88.2% 76.4% 85 84.3 % 100 % 89 %
Problem 2 100 % 92.3% 100 % 99.1 % n/a 88 %
Problem 2′ n/a n/a 100 % 90.6 % n/a 88%
Problem 3 100 % 99 % n/a n/a n/a n/a
Problem 4 n/a n/a 100 % 85.7 % n/a 90%

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 196

196 Latest Advances in Inductive Logic Programming

The next problem is discovery of the proof families comprised of coin-
ductive proof trees that may potentially lead to successful proofs — success
families.

Problem 3. Discovery of potentially successful proofs. Given
a set of positive and negative examples of well-formed coinductive trees
belonging to a success family, classify any new example of a coinductive
tree, whether it belongs to the given success family.

Finally, when it comes to coinductive logic programs defining infinite
data structures, such as streams, detection of success families is impossible.
In such cases, detection of well-typed and ill-typed proofs within a proof
family will be an alternative to determining success families.

Problem 4. Discovery of ill-typed proofs. Given a set of positive
and negative examples of ill-typed coinductive trees belonging to a given
proof family, classify any new example of a coinductive tree, whether it is
ill-typed or well-typed.

To machine learn classes of proof trees using statistical pattern recog-
nition, we used several well-known tools, such as neural networks and
SVMs. All experiments involving neural networks were made in MATLAB
Neural Network Toolbox (a pattern-recognition package), with a standard
three-layer feed-forward network, with sigmoid hidden and output neurons.
The network was trained with scaled conjugate gradient back-propagation.
Such networks can classify vectors arbitrarily well, given enough neurons
in the hidden layer, we used 40, 50, 60, 70, 90 hidden neurons for various
experiments. All experiments involving SVMs were performed in MATLAB
Bioinformatics toolbox (an SVM package with Gaussian Radial Basis ker-
nel).

We used datasets of coinductive proof trees of various sizes — from 120
to 400 examples of coinductive derivation trees for various experiments; we
tested all four problems stated above using proof trees for two distinct logic
programs — ListNat defining lists of natural numbers and Stream defining
infinite streams of bits. Table 20.1 shows the results.

Overall, the success rate of the classification results well exceeded our
initial expectations. Only Problem 1 results were somewhat disconcerting,
but we think this problem has less practical impact. The results indicate
that well-founded coinductive proof trees possess a number of strongly cor-
related features that determine the variety of meta-properties of the trees
given by Problems 1–4, and such properties can be detected by the state-
of-the-art pattern-recognition methods.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 197

Machine Learning Coalgebraic Proofs 197

Bibliography

D. Basin, A. Bundy, D. Hutter and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, Cambridge. 2005.

Y. Bertot and E. Komendantskaya. Inductive and coinductive components of
corecursive functions in Coq. Electr. Notes Theor. Comput. Sci., 203(5),
25–47. 2008.

C. Bishop. Pattern Recognition and Machine Learning. Springer, Berlin. 2006.
P. Chaput, V. Danos, P. Panangaden and G. D. Plotkin. Approximating labelled

Markov processes again! Proceedings of the Third International Conference
of Algebra and Coalgebra in Computer Science, LNCS, vol. 5728. Springer,
Berlin, pp. 145–156. 2009.

S. Colton. Automated Theory Formation in Pure Mathematics. Springer-Verlag,
Berlin. 2002.

T. Coquand. Infinite objects in type theory, types for proofs and programs. In
H. Barendregt and T. Nipkow (eds). Selected Papers from the International
Workshop on Types for Proofs and Programs, LNCS, vol. 806. Springer-
Verlag, Berlin 62–78. 1994.

L. De Raedt, Logical and Relational Learning. Springer, Berlin. 2008.
R. Duda, P. Hart and D. Stork. Pattern Classification. John Wiley, Hoboken,

New Jersey. 2001.
T. Gartner, J. Lloyd and P. Flach. Kernels and distances for structured data.

Mach. Learn., 57(3), 205–232. 2004.
G. Gupta, A. Bansal, R. Min, L. Simon and A. Mallya. Coinductive logic pro-

gramming and its applications. In V. Dahl and I. Niemelä (eds). Proceedings
of the 23rd International Conference, LNCS vol. 4670. Springer, Berlin, pp.
27–44. 2007.

A. Ireland, G. Grov and Michael Butler. Reasoned modelling critics: turning failed
proofs into modelling guidance, In M. Frappier, U. Glässer, S. Khurshid, R.
Laleau and S. Reeves. Proceedings of the Second International Conference
Abstract State Machines, Alloy, B and Z, LNCS, vol. 5977. Springer, Berlin,
pp. 189–202. 2010.

B. Jacobs and J. Rutten. A tutorial on coalgebras and coinduction. EATCS Bul-
letin, 62, 222–259. 1997.

M. Johansson, L. Dixon and Alan Bundy. Case-analysis for rippling and inductive
proof. In M. Kaufmann and L. C. Paulson. Proceedings of the First Interna-
tional Conference Interactive Theorem Proving, LNCS, vol. 6172. Springer,
Berlin, pp. 291–306. 2010.

E. Komendantskaya and J. Power. Coalgebraic derivations in logic pro-
gramming. In M. Bezem (ed.). Proceedings of the 25th International
Workshop/20th Annual Conference of the EACSL. Dagstuhl Publishing,
Saarbrücken/Wadern, pp. 352–366. 2011a. Available online at: http://www.
dagstuhl.de/dagpub/978-3-939897-32-3. Accessed. 13 August 2014.

E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic
programming. In A. Corradini, B. Klin and C. Ĉırstea (eds). Proceedings
of the 4th International Conference on Algebra and Coalgebra in Computer

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch20 page 198

198 Latest Advances in Inductive Logic Programming

Science, LNCS, vol. 6859. Springer, Berlin, pp. 268–282. 2011b.
K. Kersting, L. De Raedt and T. Raiko. Logical Hidden Markov Models. J. Artif.

Intell. Res., 25, 425–456. 2006.
J. W. Lloyd. Logic for Learning: Learning Comprehensible Theories from Struc-

tured Data, Springer, Berlin. 2003.
R. Milner. Communication and Concurrency, Prentice Hall, Upper Saddle River,

New Jersey. 1989.
A. Passerini, P. Frasconi and L. De Raedt. Kernels on Prolog proof trees: Statis-

tical learning in the ILP setting. J. Mach. Learn. Res., 7, 307–342. 2006.
G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60–61, 17–139. 2004.
J. A. Robinson. A machine-oriented logic based on resolution principle. J. ACM,

12(1), 23–41. 1965.
J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.

Sci., 249, 3–80. 2000.
L. Simon, A. Bansal, A. Mallya and G. Gupta. Co-logic programming: extending

logic programming with coinduction. In L. Arge, C. Cachin, T. Jurdziński
and A. Tarlecki (eds). Proceedings of the 34th International Colloquium
Automata, Languages and Programming, LNCS, vol. 4596. Springer, Berlin,
pp. 472–483. 2007.

V. Sorge, A. Meier, R. L. McCasland and S. Colton. Automatic construction and
verification of isotopy invariants. J. Autom. Reasoning, 40(2–3), 221–243.
2008.

D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In E.
Merelli and I. Petre (eds). Proceedings of the 5th International Workshop
on Interactions between Computer Science and Biology, Electronic Notes in
Theoretical Computer Science, vol. 306. Elsevier, Amsterdam, pp. 280–291.
1997.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 199

Chapter 21

Can ILP Deal with Incomplete
and Vague Structured Knowledge?

Francesca A. Lisi

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”,
Italy

Umberto Straccia

ISTI — CNR, Pisa, Italy

21.1 Introduction

Ontologies are currently a prominent source of structured knowledge. The
logical languages known as Description Logics (DLs) [Baader et al. (2003)]
play a key role in the design of ontologies as they are essentially the
theoretical counterpart of the Web Ontology Language OWL 21 — the
current standard language to represent ontologies — and its profiles.2 For
example, DL-Lite [Calvanese et al. (2006)] is the DL behind the OWL 2
QL profile and is especially aimed at applications that use very large vol-
umes of instance data, and where query answering is the most important
reasoning task.

Incompleteness and vagueness are inherent properties of knowledge in
several real-world domains. DL-based ontology languages were born to
address the former. Indeed, the Open World Assumption (OWA) holds in
DLs. Fuzzy extensions of DLs have been more recently devised to address
the latter (see the survey in [Lukasiewicz and Straccia (2008)]). They
include, among others, a fuzzy DL-Lite like DL which has been implemented
in the SoftFacts3 system [Straccia (2010)].

1http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.
2http://www.w3.org/TR/owl2-profiles/.
3http://www.straccia.info/software/SoftFacts/SoftFacts.html.

199

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 200

200 Latest Advances in Inductive Logic Programming

In this chapter, we sketch the results of our preliminary investigation
of the issue of whether ILP can deal with incomplete and vague structured
knowledge. More precisely, we provide the ingredients for learning fuzzy DL
inclusion axioms with ILP. The resulting method adapts known results in
ILP concerning the induction of crisp rules, notably FOIL [Quinlan (1990)],
to the novel context of ontologies.

The chapter is organized as follows. Section 21.2 introduces fuzzy DLs.
Section 21.3 describes our preliminary contribution to the problem in hand,
also by means of an illustrative example. Section 21.4 concludes the chapter
with final remarks and comparison with related work.

21.2 Fuzzy Description Logics

For computational reasons, the logic we adopt is based on a fuzzy exten-
sion of the DL-Lite DL without negation [Straccia (2010)]. It supports at
the intentional level unary relations (called concepts) and binary relations
(called roles), while also supporting n-ary relations (relational tables) at
the extensional level.

Formally, a knowledge base K = 〈F ,O,A〉 consists of a facts component
F , an ontology component O and an abstraction component A. Information
can be retrieved from K by means of an appropriate query language.

In order to deal with vagueness, Gödel logic [Hájek (1998)] is adopted,
where

a⊗ b = min(a, b),

a⊕ b = max(a, b),

a⇒ b =
{

1 if a ≤ b

b otherwise
, and � a =

{
1 if a = 0
0 otherwise

.

Facts Component. F is a finite set of expressions of the form

R(c1, . . . , cn)[s], (21.1)

where R is an n-ary relation, every ci is a constant, and s is a degree of
truth (or score) in [0, 1] indicating to which extent the tuple 〈c1, . . . , cn〉 is
an instance of relation R. We may omit the score component and in such
case the value 1 is assumed. Facts are stored in a relational database.

Ontology Component. O is a finite set of inclusion axioms having the
form

Rl1 � . . . �Rlm 	 Rr, (21.2)

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 201

Can ILP Deal with Incomplete and Vague Structured Knowledge? 201

where m ≥ 1, all Rli and Rr have the same arity and each Rli is a so-called
left-hand relation and Rr is a right-hand relation. We assume that relations
occurring in F do not occur in inclusion axioms (and so we do not allow
that database relation names occur in O). The intuitive semantics is that
if a tuple c is instance of each relation Rli to degree si then c is instance
of Rr to degree min(s1, . . . , sm).

The exact syntax of the relations appearing on the left-hand and right-
hand side of inclusion axioms is specified below:

Rl −→ A | R[i1, i2]
Rr −→ A | R[i1, i2] | ∃R.A

(21.3)

where A is an atomic concept and R is a role with 1 ≤ i1, i2 ≤ 2. Here
R[i1, i2] is the projection of the relation R on the columns i1, i2 (the order
of the indexes matters). Hence, R[i1, i2] has arity 2. Additionally, ∃R.A is a
so-called qualified existential quantification on roles which corresponds to
the FOL formula ∃y.R(x, y)∧A(y) where ∧ is interpreted as the t-norm ⊗
in the Gödel logic.

Abstraction Component. A is a finite set of abstraction statements of
the form

R �→ (c1, . . . , cn)[cscore].sql, (21.4)

where sql is an SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n ≤ 2)
with score determined by the cscore column. The tuples have to be ranked
in decreasing order of score and, as for the fact component, we assume that
there cannot be two records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with
s1 �= s2 (if there are, then we remove the one with the lower score). The
score cscore may be omitted and in that case the score 1 is assumed for
the tuples. We assume that R occurs in O, while all of the relational tables
occurring in the SQL statement occur in F . Finally, we assume that there
is at most one abstraction statement for each abstract relational symbol R.

Query Language. The query language enables the formulation of con-
junctive queries with a scoring function to rank the answers. More precisely,
a ranking query is of the form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h))

(21.5)

where

(1) q is an n-ary relation, every Ri is a ni-ary relation (1 ≤ ni ≤ 2). Ri(zi)
may also be of the form (z ≤ v), (z < v), (z ≥ v), (z > v), (z = v),

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 202

202 Latest Advances in Inductive Logic Programming

(z �= v), where z is a variable, v is a value of the appropriate concrete
domain;

(2) x are the distinguished variables ;
(3) y are existentially quantified variables called the non-distinguished vari-

ables. We omit to write ∃y when y is clear from the context;
(4) zi, z′j are tuples of constants or variables in x or y;
(5) s, s1, . . . , sl are distinct variables and different from those in x and y;
(6) pj is an nj -ary fuzzy predicate assigning a score pj(cj) ∈ [0, 1] to each

nj-ary tuple cj of constants;
(7) f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the scores

of the l relations Ri(c′i) and the n fuzzy predicates pj(c′′j) into an overall
score s to be assigned to q(c).

We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)) the scoring atom. We also
allow the scores [s], [s1], . . . , [sl] and the scoring atom to be omitted. In
this case we assume the value 1 for si and s instead. The informal meaning
of such a query is: if zi is an instance of Ri to degree at least or equal to si,
then x is an instance of q to degree at least or equal to s, where s has been
determined by the scoring atom.

The answer set ansK (q) over K of a query q is the set of tuples 〈t, s〉
such that K |= q(t)[s] with s > 0 (informally, t satisfies the query to non-
zero degree s) and the score s is as high as possible, i.e. if 〈t, s〉 ∈ ansK (q)
then (i) K �|= q(t)[s′] for any s′ > s; and (ii) there cannot be another
〈t, s′〉 ∈ ansK (q) with s > s′.

21.3 ILP for Learning Fuzzy DL Inclusion Axioms

In this section we consider a learning problem where:

• the target concept H is a DL-Lite atomic concept;
• the background theory K is a DL-Lite-like knowledge base 〈F ,O,A〉

of the form described in Section 21.2;
• the training set E is a collection of fuzzy DL-Lite-like facts of the form

(21.1) and labeled as either positive or negative examples for H . We
assume that F ∩ E = ∅;
• the target theory H is a set of inclusion axioms of the form

B 	 H (21.6)

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 203

Can ILP Deal with Incomplete and Vague Structured Knowledge? 203

where H is an atomic concept, B = C1 � . . . � Cm, and each concept
Ci has syntax

C −→ A | ∃R.A | ∃R.�. (21.7)

We now show how we may learn inclusion axioms of the form (21.6). To
this aim, we define for C �= H

IILP |= C(t) iff K ∪ E |= C(t)[s] and s > 0. (21.8)
That is, we write IILP |= C(t) if it can be inferred from K and E that t is
an instance of concept C to a non-zero degree.

Now, in order to account for multiple fuzzy instantiations of fuzzy pred-
icates occurring in the inclusion axioms of interest to us, we propose the
following formula for computing the confidence degree of an inclusion axiom:

cf(B 	 H) =
∑

t∈P B(t)⇒ H(t)
|D| (21.9)

where

• P = {t | IILP |= Ci(t) and H(t)[s] ∈ E+}, i.e. P is the set of instances
for which the implication covers a positive example;
• D = {t | IILP |= Ci(t) and H(t)[s] ∈ E}, i.e. D is the set of instances for

which the implication covers an example (either positive or negative);
• B(t)⇒ H(t) denotes the degree to which the implication holds for the

instance t;
• B(t) = min(s1, . . . , sn), with K ∪ E |= Ci(t)[si];
• H(t) = s with H(t)[s] ∈ E .

Clearly, the more positive instances supporting the inclusion axiom, the
higher the confidence degree of the axiom.

Note that the confidence score can be determined easily by submitting
appropriate queries via the query language described in Section 21.2. More
precisely, proving the fuzzy entailment in (21.8) for each Ci is equivalent
to answering a unique ranking query whose body is the conjunction of the
relations Rl resulting from the transformation of Cis into FOL predicates
and whose score s is given by the minimum between sls.

HotelTable
id rank noRooms

h1 3 21
h2 5 123
h3 4 95

RoomTable
id price roomType hotel

r1 60 single h1
r2 90 double h1
r3 80 single h2
r4 120 double h2
r5 70 single h3
r6 90 double h3

Tower
id

t1

Park
id

p1
p2

DistanceTable
id from to time

d1 h1 t1 10
d2 h2 p1 15
d3 h3 p2 5

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 204

204 Latest Advances in Inductive Logic Programming

For illustrative purposes we consider the case involving the classification
of hotels as good ones. We assume to have a background theory K with a
relational database F storing facts such as an ontology O4 encompassing
the following inclusion axioms

Park 	 Attraction, T ower 	 Attraction, Attraction 	 Site

and a set A of abstraction statements such as:
Hotel �→ (h.id). SELECT h.id

FROM HotelTable h

cheapPrice �→ (h.id, r.price)[score]. SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.id = r.hotel
ORDER BY score

closeTo �→ (from, to)[score]. SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

where cheap(p) is a function determining how cheap a hotel room is given
its price, modelled as e.g. a so-called left-shoulder function (defined in
Fig. 21.1). We set cheap(p) = ls(p; 50, 100), while closedistance(d) =
ls(d; 5, 25).

Assume now that our target concept H is GoodHotel, and that

• E+ = {GoodHotel+(h1)[0.6], GoodHotel+(h2)[0.8]}, while
E− = {GoodHotel−(h3)[0.4]};
• GoodHotel+ 	 GoodHotel and GoodHotel− 	 GoodHotel occur in K .

As an illustrative example, we compute the confidence degree of

r : Hotel � ∃cheapPrice.�� ∃closeTo.Attraction 	 GoodHotel

i.e. a good hotel is one having a cheap price and close proximity to an
attraction. Now, it can be verified that for K ′ = K ∪ E

Fig. 21.1 Left shoulder function ls(x;a, b).

4http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 205

Can ILP Deal with Incomplete and Vague Structured Knowledge? 205

(1) The query

q(h)[s]← GoodHotel
+

(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2],

Attraction(a), s = min(s1, s2)

has answer set ansK ′(qP) = {(h1, 0.75), (h2, 0.4)} over K ′;

(2) The query

q(h)[s]← GoodHotel(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2],

Attraction(a), s = min(s1, s2)

has answer set ansK ′(qD) = {(h1, 0.75), (h2, 0.4), (h3, 0.6)} over K ′;

(3) Therefore, according to (21.9), P = {h1, h2}, while D = {h1, h2, h3};
(4) As a consequence,

cf(r) =
0.75⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 1.0

3
= 0.5333.

21.4 Final Remarks

In this chapter we have briefly presented the core ingredients for inducing
ontology inclusion axioms within the KR framework of a fuzzy DL-Lite-like
DL. These ingredients can be used to extend FOIL as shown in [Lisi and
Straccia (2011)]. Related FOIL-like algorithms [Shibata et al. (1999); Dro-
bics et al. (2003); Serrurier and Prade (2007)] can only learn fuzzy rules.
The formal study of fuzzy ILP contributed by [Horváth and Vojtás (2007)]
is also relevant but less promising than our proposal in practice. Closer to
our application domain, [Iglesias and Lehmann (2011)] extends an existing
ILP system for learning ALC DL concepts (DL-Learner) with some of the
most up-to-date fuzzy ontology tools whereas [Konstantopoulos and Char-
alambidis (2010)] is based on an ad-hoc translation of fuzzy �Lukasiewicz
ALC DL constructs into logic programs.

Bibliography

F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F. Patel-Schneider
(eds). The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, Cambridge. 2003.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and R. Rosati. Data com-
plexity of query answering in description logics. In P. Doherty, J. Mylopou-
los and C. A. Welty (eds). Proceedings of the Tenth International Con-
ference on Principles of Knowledge Representation and Reasoning. AAAI
Press, Boston, Massachusetts, pp. 260–270. 2006.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch21 page 206

206 Latest Advances in Inductive Logic Programming

M. Drobics, U. Bodenhofer and E.-P. Klement. FS-FOIL: an inductive learning
method for extracting interpretable fuzzy descriptions. Int. J. Approximate
Reasoning, 32(2–3), 131–152. 2003.

P. Hájek. Metamathematics of Fuzzy Logic. Springer, Berlin. 1998.
T. Horváth and P. Vojtás. Induction of fuzzy and annotated logic programs. In

S. H. Muggleton, R. P. Otero, and A. Tamaddoni-Nezhad (eds). Revised
Selected Papers from the 16th International Conference on Inductive Logic
Programming, LNCS, vol. 4455. Springer, Berlin, pp. 260–274. 2007.

J. Iglesias and J. Lehmann. Towards Integrating Fuzzy Logic Capabilities into an
Ontology-based Inductive Logic Programming Framework. In Proceedings
of the 11th International Conference on Intelligent Systems Design and
Applications. IEEE Press, Piscataway, New Jersey, pp. 1323–1328. 2011.

S. Konstantopoulos and A. Charalambidis. Formulating description logic learn-
ing as an inductive logic programming task. In Proceedings of the IEEE
International Conference on Fuzzy Systems. IEEE Press, Piscataway, New
Jersey, pp. 1–7. 2010.

F. A. Lisi and U. Straccia. An inductive logic programming approach to learning
inclusion axioms in fuzzy description logics. In F. Fioravanti (ed.). Proceed-
ings of the 26th Italian Conference on Computational Logic. CEUR-WS.org,
pp. 57–71. 2011.

T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in descrip-
tion logics for the semantic web. J. Web Semant., 6, 291–308. 2008.

J. R. Quinlan. Learning logical definitions from relations. Mach. Learn., 5, 239–
266. 1990.

M. Serrurier and H. Prade. Improving expressivity of inductive logic programming
by learning different kinds of fuzzy rules. Soft Comput., 11(5), 459–466.
2007.

D. Shibata, N. Inuzuka, S. Kato, T. Matsui and H. Itoh. An induction algo-
rithm based on fuzzy logic programming. In N. Zhong and L. Zhou (eds).
Methodologies for Knowledge Discovery and Data Mining, LNCS, vol. 1574.
Springer, Berlin, pp. 268–273. 1999.

U. Straccia. SoftFacts: A top-k retrieval engine for ontology mediated access to
relational databases. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, pp. 4115–4122. IEEE Press, Piscataway,
New Jeresey. 2010.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 207

PART 5

Logical Learning

207

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 209

Chapter 22

Towards Efficient Higher-Order
Logic Learning in a First-Order

Datalog Framework

Niels Pahlavi and Stephen H. Muggleton

Department of Computing, Imperial College London, UK

Within inductive logic programming (ILP), the concepts to be learned
are normally considered as being succinctly representable in first-order
logic. In a previous chapter the authors demonstrated that increased pre-
dictive accuracy can be achieved by employing higher-order logic (HOL)
in the background knowledge. In this chapter, the flexible higher-order
Horn clauses (FHOHC) framework is introduced. It is more expressive
than the formalism used previously and can be emulated (with the use
of “holds” statements and flattening) in a fragment of Datalog. The
decidability, compatibility with ILP systems like Progol and positive
learnability results of Datalog are then used towards efficient higher-
order logic learning (HOLL). We show with experiments that this
approach outperforms the HOLL system λProgol and that it can learn
concepts in other HOLL settings like learning HOL and using HOL for
abduction.

22.1 Introduction

Within ILP, it is usual to assume that all concepts to be learned can be suc-
cinctly represented in FOL. However, in [Pahlavi and Muggleton (2010)] the
authors demonstrated that in certain learning problems, increased predic-
tive accuracy can be achieved by employing HOL in background knowledge,
thus advocating HOLL. In this chapter we explore whether some of the
learning advantages provided by a HOL framework can be achieved within
FOL. In particular, we introduce and explore a HOL formalism, FHOHC.

209

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 210

210 Latest Advances in Inductive Logic Programming

Table 22.1 HOLL settings in ILP.

Setting
Background
Knowledge Hypothesis Examples Learning

1 HOL, Given FOL, To be learned FOL, Given Induction
2 FOL, Given HOL, To be learned FOL, Given Induction
3 HOL, Given FOL/HOL, Given FOL/HOL, To be learned Abduction

We also show that statements in FHOHC can be emulated in a fragment
of Datalog FOL using “holds” statements (as suggested in [McCarthy and
Hayes (1969)]) and flattening (as defined in [Rouveirol (1994)]). This frag-
ment of FOL, called flattened holds Datalog programs (FHDP), has the
advantage of being decidable and of having positive ILP learnability results.
Figure 22.1 presents two examples of such HOL clauses (lines 1 and 3).

Using the power of expressivity of HOL in logic-based machine learning
(thus realizing HOLL) to outperform first-order logic learning (FOLL) has
been advocated in an ILP context, as in [Pahlavi and Muggleton (2010)]
and [Feng and Muggleton (1992)] but also with a different logic in [Lloyd
(2003)]. Figure 22.1 summarizes three settings of interest for HOLL in ILP.

In [Pahlavi and Muggleton (2010)], the HOLL system λProgol was
introduced. It is based on the ILP system Progol [Muggleton and Bryant
(2000)], and its underlying logic is HOL as it is based on Miller and
Nadathur’s higher-order Horn clauses (HOHC), defined in [Nadathur and
Miller (1990)]. The paper experimentally compared λProgol with Progol in
Setting 1 (see Figs. 22.1 and 22.2). It was demonstrated that λProgol can
achieve considerably higher accuracy in this setting than Progol, however,
several issues still need to be addressed. The HOL formalism HOHC was
chosen for its supposed expressivity and soundness. Yet, several limitations

Fig. 22.1 Flexible higher-order Horn clauses programs representing transitivity
for binary relations and mathematical induction for Peano numbers (lines 1 and 3,
respectively) and their corresponding flattened holds Datalog programs (lines 2
and 4, respectively).

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 211

Towards Efficient Higher-Order Logic Learning 211

Fig. 22.2 Left: Comparison between Progol, Progol with FHDP and λProgol on
the Ancestor example (upper graph: predictive accuracy; lower graph: running
times). Right: Part (around one third) of the Romanov dynasty tree used in the
experiment.

are intrinsic to it. Clauses with flexible heads (atoms whose predicate is
a variable [Nadathur and Miller (1990)]) are not allowed for decidability
reasons, which limits the expressivity and may be a problem in Settings
2 and 3. There is an issue with complexity. The system has not yet been
adapted to handle abduction as in Progol5 [Muggleton and Bryant (2000)]
and the Progol theoretical results remain to be proved for HOHC. We will
see how the use of FHOHC and FHDP may overcome these issues.

In Section 22.2, the frameworks FHOHC and FHDP are described. Sec-
tion 22.3 presents results in three different HOLL settings and develops the
experiment detailed in [Pahlavi and Muggleton (2010)]. Finally, Section
22.4 concludes and suggests further work.

22.2 HOLL with First-Order Datalog and Progol

In Definition 22.1, we introduce FHOHC, which is based on first-order Horn
clauses and allows for predicate (at least second-order) variables.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 212

212 Latest Advances in Inductive Logic Programming

Definition 22.1. (FHOHC). A represents atomic formulas (or atoms),
G goal formulas and D program formulas (or definite formulas, or clauses).
Horn clauses are defined by the following grammar.G ::= A|G∧G and D ::=
A|G ⊃ A|∀xD. An atomic formula is P (t1, . . . , tk) where P is a either
a predicate symbol or higher-order variable of arity k and t1, . . . , tk are
terms. A term is either a variable or f(t1, . . . , tj) where f is a functor of
arity j and t1, . . . , tj are terms. A functor of arity 0 is a constant.

Compared with HOHC [Nadathur and Miller (1990)], FHOHC allows
for flexible heads and therefore for more expressivity. These were prevented
in HOHC because of decidability issues but we will now show how FHOHC
can be emulated with a fragment of first-order Datalog. Datalog [Ceri et
al. (1989)] is a restriction of Logic Programming that allows only variables
and constants as terms (and hence avoids the use of function symbols). It
has the advantage of being decidable. It has a declarative semantics and
one can benefit from some positive ILP learnability results within it, as
summarized in [Kietz and Dzeroski (1994)] and [Cohen and Page (1995)].
The use of “holds” statements as suggested in [McCarthy and Hayes (1969)]
allows us to turn a higher-order atom into a first-order one. Moreover the
flattening/unflattening procedures [Rouveirol (1994)] can translate generic
Horn clauses into Datalog ones and vice versa, without loss of generality.
This is why we introduce FHDP in Definition 22.2 to emulate HOL and
FHOHC.

Definition 22.2. (FHDP). An FHDP is a flexible higher-order Horn
clause program which has been transformed as follows. First, every atom
P (t1, . . . , tk), P being a predicate symbol or a higher-order variable, is
replaced by the atom holds(P, t1, . . . , tk) of arity k+ 1. Then the flattening
algorithm, defined in [Rouveirol (1994)], is applied to the modified program.

In Fig. 22.1, two examples of such FHDP programs are presented (lines 2
and 4). With such an underlying framework, we can obviously use any of the
first-order ILP systems available. Progol [Muggleton and Bryant (2000)] is
a popular implementation, which allows us to learn in the HOLL Settings 1
and 2 requiring inductive reasoning but also in Setting 3 requiring abductive
reasoning with Progol5 (see Fig. 22.1). Developing HOLL with the Datalog
fragment FHDP and Progol enables us to directly use an ILP system like
Progol and its results (including Progol5), to benefit from the efficiency of
deduction of Datalog and its decidability, and to have more expressivity

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 213

Towards Efficient Higher-Order Logic Learning 213

than HOHC with flexible heads to handle more learning settings. In terms
of learnability and predictability, the existing positive results for Datalog
can be used but the higher-order nature of the programs may also provide
more complex and better choices of features, as analyzed in [Cohen and
Page (1995)].

22.3 Experiments

In this section, we show how our Datalog approach can be applied on three
examples covering the three HOLL settings defined in Section 22.1. All the
corresponding files and experiments can be found at [Pahlavi (2011)]. In
Examples 1,2 and 3, (. . .) corresponds to omitted parts.

HOLL Setting 1: Inductive learning of FOL hypothesis with HOL
background. This follows the experiment fully described in [Pahlavi
and Muggleton (2010)], about the learning of the predicate ancestor given
the predicate parent. Progol rarely finds the definition (either returning
incorrect recursive definitions, non-recursive definitions or not being able
to induce clauses that compress the data). On the other hand, λProgol
learns the correct definition in all the cases, which is non-recursive and can
be learned from any given positive example. This is due to the presence
of the higher-order predicate trans closure, which represents the transi-
tive closure of any binary relation. Here we use our FHDP approach in the
comparison. The λProgol files (see Example 22.1) are totally emulated (with
the exception of the addition of a prune statement to prevent higher-order
tautologies in Progol). Hence the same learned hypothesis and the same
predicative accuracy results (see Fig. 22.2). In Fig. 22.2, the running times
are also added, which show that the FHDP approach is considerably faster
compared to standard Progol and λProgol (both being similar), which illus-
trates the efficiency of the Datalog framework. This type of learning can be
used with multiple higher-order predicates and with non-IID problems.

Example 22.1. Setting 1: Input file for learning ancestor.
:- modeh(*,holds(ancestor,+person,+person))?
:- modeb(*,holds(#predso,#predpp,+person,+person))?
predso(trans clos). predpp(parent). predpp(married).
person(X) :- male(X). person(X) :- female(X).
holds(trans clos,R,X,Y) :- holds(R,X,Y).
holds(trans clos,R,X,Z) :- holds(R,X,Y), holds(trans clos,R,Y,Z).

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 214

214 Latest Advances in Inductive Logic Programming

prune(holds(P,A,B),Body) :- in(holds(trans clos,P,A,B),Body).
holds(married,michael I,eudoxia stresh). (...) holds(parent,michael I,alexis I).

(...)
:-holds(ancestor,maria 1,nat narysh). (...) holds(ancestor,alex II,maria 6).

(...)
Learned clause: holds(ancestor,X,Y) :- holds(trans clos,parent,X,Y).

HOLL Setting 2: Inductive learning of HOL hypothesis with FOL
background knowledge. In Example 22.2, a higher-order clause repre-
senting the transitivity of any binary relation (as in Fig. 22.1) is learned
from examples of two binary relations (one being transitive, the other not).
The running time is under a second. This learning could not be done with
λProgol, as it involves a clause with a flexible head. This type of learning
can be used for transfer learning.

Example 22.2. Setting 2: Input file for learning transitivity.
:- modeh(*,holds(+predicate,+argument,+argument))?
:- modeb(*,holds(#predicate,+predicate))?
:- modeb(*,holds(+predicate,+argument,+argument))?
predicate(trans). predicate(cause). predicate(pred). argument(a). (...)
holds(trans,cause). :- holds(trans,pred).
holds(cause,a,b). (...) holds(pred,c,d). (...)
:- holds(cause,b,a). (...) :- holds(pred,a,c). (...)
Learned clause: holds(R,X,Y) :- holds(trans,R),holds(R,X,Z),holds(R,Z,Y).

HOLL Setting 3: Abductive learning of FOL hypothesis with HOL
background knowledge. In Example 22.3, we follow the approach in
[Darlington (1968)], to formulate and adapt the general (second-order)
concept of mathematical induction for Peano numbers (f(0) ∧ (f(x) →
f(Sx))→ f(y)) in the FHOHC and FHDP frameworks (as in Fig. 22.1). It
is included with the less than predicate and is used to abduce the “base
case” of a particular (first-order) predicate f . We also have to include the
Clark completion of the “step case” of the definition of f for mathemati-
cal induction to be utilized. The running time is under five seconds. This
learning can be adapted to structural induction, to predicate invention and
to abduce higher-order hypothesis.

Example 22.3. Setting 3: Input file for abduction with mathematical
induction.

:-modeh(*,holds(lt,#peano int,+peano int))?
:-modeb(*,holds(s,+peano int,+peano int))? :-observable(holds/2)?
peano int(0). peano int(s(X)) :- peano int(X). holds(s,W,s(W)).
holds(F,sko x). holds(F,X) :- holds(F,0),holds(s,sko x,Y),holds(F,Y).

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 215

Towards Efficient Higher-Order Logic Learning 215

holds(lt,U,V) :- holds(s,X,U),holds(s,Y,V),holds(lt,X,Y).
holds(f,X) :- holds(s,X,Y),holds(lt,X,Y). holds(lt,X,Y) :-

holds(s,X,Y),holds(f,X).
holds(f,s(s(s(s(0))))). (...) :- holds(lt,s(0),0). (...)
Learned clause: holds(lt,0,Y) :- holds(s,X,Y).

22.4 Conclusion and Further Work

In this chapter, the HOL framework FHOHC is introduced, which is more
expressive than HOHC and can be emulated (with the use of “holds” state-
ments and flattening) in the FHDP fragment of Datalog, which is decidable,
efficient, can be directly used by ILP systems like Progol and has posi-
tive learnability results. We have showed on concrete experiments that this
approach learns as well as λProgol (based on HOHC) on HOLL Setting1
(learning of FOL with HOL background) but with better running times.
Moreover, it can learn examples in HOLL Settings 2 (learning of HOL with
FOL background) and 3 (abduction of FOL with HOL background), in
which λProgol cannot be used or has not yet been implemented to learn.
We are currently finishing more experiments in order to have more insight
on the performance of this new approach (including one about the learn-
ing of the move of a bishop in chess involving multiple HOLL settings).
We are also completing the formalization of the emulation of FHOHC in
FHDP with respect to the semantics of the considered clauses, the infer-
ences involved and the learning algorithm. We think that this approach
could be used further, including in more complex situations, to abduce
HOL, for predicate invention and for transfer learning.

Bibliography

S. Ceri, G. Gottlob and L. Tanca, What you always wanted to know about datalog
(and never dared to ask). IEEE T. Knowl. Data En., 1, 146–166. 1989.

W. Cohen and C. D. Page. Polynomial learnability and Inductive Logic Program-
ming: methods and results. New Generat. Comput., 13, 369–409. 1995.

J.L. Darlington. Automatic Theorem Proving with Equality Substitutions and
Mathematical Induction. Mach. Intell., 3, 113–127. 1968.

C. Feng and S. H. Muggleton. Towards inductive generalisation in higher order
logic. In D. Sleeman and P. Edwards (eds). Proceedings of the Ninth Inter-
national Workshop on Machine Learning. Morgan Kauffman, San Francisco,
California, pp. 154–162. 1992.

J. -U. Kietz and S. Dzeroski. Inductive Logic Programming and Learnability.
SIGART Bull., 5(1), 22–32. 1994.

J. W. Lloyd. Logic for Learning. Springer, Berlin. 2003.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch22 page 216

216 Latest Advances in Inductive Logic Programming

J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Mach. Intell., 4., 463–504. 1969.

S. H. Muggleton and C. Bryant. Theory completion using inverse entailment.
In J. Cussens and A. Frisch (eds). Proceedings of the 10th International
Workshop on Inductive Logic Programming, LNCS, vol. 1866. Springer-
Verlag, Berlin, pp. 130–146. 2000.

G. Nadathur and D. Miller. Higher-order horn clauses. J. ACM., 37(4), 777–814.
1990.

N. Pahlavi. ILP11 Experiments. Available online: http://www.doc.ic.ac.uk/

namdp05/ILP11. Accessed 13 August 2014.
N. Pahlavi and S. H. Muggleton. Can HOLL Outperform FOLL? In P. Frasconi

and F. A. Lisi (eds). Proceedings of the 20th International Conference on
Inductive Logic Programming, LNCS, vol. 6489. Springer-Verlag, Berlin, pp.
198–205. 2010.

C. Rouveirol. Flattening and saturation: two representation changes for general-
ization. Mach. Learn., 14(1), 219–232. 1994.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 217

Chapter 23

Automatic Invention
of Functional Abstractions

Robert J. Henderson and Stephen H. Muggleton

Department of Computing, Imperial College London, UK

We investigate how new elements of background knowledge can be
abstracted automatically from patterns in programs. The approach is
implemented in the KANDINSKY system using an algorithm that
searches for common subterms over sets of functional programs. We
demonstrate that KANDINSKY can invent higher-order functions such
as map, fold, and sumBy from small sets of input programs. An exper-
iment shows that KANDINSKY can find high-compression abstrac-
tions efficiently, with low settings of its input parameters. Finally, we
compare our approach with related work in the inductive logic program-
ming and functional programming literature, and suggest directions for
further work.

23.1 Introduction

Can background knowledge be learned automatically through problem-
solving experience? This would be a form of meta-learning [Vilalta and
Drissi (2002)], distinct from base learning which is concerned simply with
solving problem instances. We propose that a general strategy for acquir-
ing new background knowledge can be found in the abstraction principle
of software engineering. Abstractions [Abelson and Sussman (1996)] are
re-usable units obtained by separating out and encapsulating patterns in
programs. We define abstraction invention as the process of formulating
useful abstractions in an inductive programming context, and when these
abstractions take the form of functions, functional abstraction invention
(FAI). Some forms of predicate invention may be regarded as FAI (since
predicates are functions).

217

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 218

218 Latest Advances in Inductive Logic Programming

Fig. 23.1 To abstract over the commonality manifest in the above two programs
requires quantification over predicate symbols, which is impossible in first-order
logic.

We have implemented KANDINSKY1, a system which performs FAI
over sets of functional (λ-calculus) programs by Inverse β-Reduction (IβR),
an analogue of inverse resolution [Muggleton (1987); Muggleton and Bun-
tine (1988)]. This move from first-order logic to λ-calculus is crucial because
it allows our system to invent higher-order functional abstractions, an
ability that is necessary in order to generalise on arbitrary patterns in
programs. See Fig. 23.1 for an example where first-order methods fail.

KANDINSKY is set within a larger inductive programming framework
called compression-based learning (CBL). CBL takes advantage of the gen-
eral correspondence that exists between learning and compression (mini-
mum description length [Grünwald (2005)]), to allow both base learning
and meta-learning to be understood in a unified manner in terms of trans-
formation operators. See Fig. 23.2 for an illustration of CBL. We shall leave
further discussion of CBL for a future chapter; the rest of this chapter is
concerned only with the FAI meta-learning technique.

23.2 KANDINSKY’s Abstraction Invention Algorithm

Given a set of k λ-calculus terms, each with at most n subterms, the number
of possible combinations of two or more subterms with at most one subterm
taken per term is of the order of (n + 1)k. Any of these combinations can
potentially be anti-unified by IβR to form an abstraction, but enumerating
all of them by brute force is intractable for even moderately large values of
k and n. To cope with this, we have designed a heuristic search procedure
auSearch (anti-unification search) whose running time is polynomial in both
k and n.

To prepare a set of terms for auSearch, all their subterms are gener-
ated, converted to a tree representation (Defn. 23.1), and each subterm
paired with a ‘tag’ (Defn. 23.2) marking its origin. auSearch itself (Fig. 23.3)
searches the space of ‘common parts’ (Defn. 23.1) that are obtainable

1Source code available at: http://ilp.doc.ic.ac.uk/kandinsky

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 219

Automatic Invention of Functional Abstractions 219

Fig. 23.2 An illustration of CBL. The top line represents the input in a learning
problem: there is numerical data with some values missing, and there is back-
ground knowledge consisting here of an ‘arithmetic progression’ operator. From
top to bottom, the learner performs a succession of transformations, each of which
involves compression (reducing the width of the entire horizontal block), and some
of which also involve generalisation (prediction of the missing data values).

Fig. 23.3 The auSearch algorithm. findOne is a non-deterministic procedure
that returns many auSearch results on backtracking. findOne and auSearch are
mutually recursive. Owing to lack of space we defer a specification of findOne to
a longer paper.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 220

220 Latest Advances in Inductive Logic Programming

by anti-unifying combinations of two or more subterms. It makes use
of a heuristic ‘score’ function (Defn. 23.3) in order to guide the search.
Each auSearch result represents one candidate abstraction, which can be
constructed from the subterms marked by the result’s tag-set.

Definition 23.1 (tree, node, common part, mismatch point, size).
A tree is a pair 〈h,B〉 where h is a node and B is a list of trees. In the rep-
resentation of λ-terms as trees, each node is a symbol representing either a
variable, a function application, or an anonymous function (λ-abstraction).
A common part is either a mismatch point •, or a pair 〈h,B〉 where h is
a node and B is a list of common parts. The size of a tree or common
part is equal to the number of nodes it contains. A mismatch point has
zero size.

Definition 23.2 (tag, term index, subterm index). A tag consists of
a pair of integers called the term index and the subterm index. It represents
a reference to a particular subterm within a particular term, given a list of
terms.

Definition 23.3 (auSearch result, score). An auSearch result is a pair
of the form 〈γ, T 〉, where γ is a common part and T is a tag-set (set of
tags). Its score, an approximation to the degree of compression that can be
obtained by deriving an abstraction from this result, is given by (n− 1)c−
(n+2)m−n, where n is the number of unique term indices contained in T ,
c is the size of γ, and m is the number of mismatch points contained in γ.

auSearch has two beam-size parameters σ and τ which limit how many
intermediate results are stored during the search. When these parameters
are both infinite, the search is complete but has exponential time complexity
in the size of the input; when they are finite, the search is incomplete but
the time complexity is polynomial.

Equipped with auSearch, KANDINSKY can perform a process called
exhaustive greedy abstraction invention. Here, a set of programs is provided
as input, and KANDINSKY constructs the most compressive abstraction
that it can find, adds it to the set, and re-expresses the other programs
in terms of it. This process repeats continually, halting only when no fur-
ther compression is possible. A demonstration on two (hand-constructed)
datasets Map-Fold (MF) and Sum-Means-Squares (SMS) is shown in
Fig. 23.4.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 221

Automatic Invention of Functional Abstractions 221

(a)

(b)

Fig. 23.4 (a) KANDINSKY’s output trace on the MF dataset, which consists
of three list-processing programs. In stage 1, KANDINSKY antiunifies incElems
with doubleElems to produce an abstraction g1 which we may recognise as map, a
higher-order function which maps an arbitrary unary operation over the elements
of a list. In stage 2, KANDINSKY antiunifies length with a subterm of g1 to pro-
duce g2, a form of fold which accumulates over a list using a binary operation. (b)
Summary of results for the SMS dataset. The input programs (inside dashed rect-
angle) express various actions over the elements of a list. KANDINSKY succeeded
in finding six abstractions, which we inspected and assigned suitable names. sumBy
is a higher-order analogue of sum which maps an arbitrary function over a list
before summing its elements; meanBy is a generalisation of mean along similar
lines. fold0 is a specialisation of fold.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 222

222 Latest Advances in Inductive Logic Programming

23.3 Experiment

In this section we ask: in practice, can we expect KANDINSKY to find near-
optimally compressive abstractions in polynomial time? As discussed in
Section 23.2, auSearch can always find an optimally compressive abstraction
when the beam-size parameters σ and τ are infinite, because under those
conditions it generates every abstraction in the entire search space. How-
ever, finite values of the beam-size parameters are necessary for a tractable
polynomial-time search. By studying the effect on compression of varying
these parameters, we wish to determine if one can expect to achieve near-
optimal compression even when using relatively small finite values.

We ran exhaustive greedy abstraction invention on the MF and SMS
datasets, at values of σ of 1, 2, 3, 5, 10, and 50, for all values of τ between
0 and 50, and recorded the overall compression for each run (Fig. 23.5a).
We also measured the time taken at the same values of σ and for values of
τ at 0, 5, 10 . . .50 (Fig. 23.5b). To reduce the effects of measurement error,

(a) (b)

(c)

Fig. 23.5 Experimental results. The two datasets are MF and SMS. σ and τ
are the beam-size parameters of KANDINSKY’s search algorithm. In (a), the
compression-τ curves for MF are all identical for the six values of σ that were
tested; for SMS they are all different but lie very close together, so we have only
plotted those for the lowest and highest σ values. In (b), we have plotted the
curves for SMS only; the curves for MF show a somewhat similar pattern. The
experiment was run on a 2.8 GHz desktop PC with 4 GB of RAM.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 223

Automatic Invention of Functional Abstractions 223

each timing measurement was averaged over 200 identical runs for MF and
20 identical runs for SMS.

From the results, we see that as tau increases, compression increases.
However, the vast majority of compression is achieved for both datasets
by τ = 4: the compression curves reach a ‘plateau’ very rapidly. For larger
values of σ, a larger value of τ tends to be needed to reach the maximum
achievable level of compression (Fig. 23.5c). Time taken increases with both
τ and σ.

The ‘plateau’ phenomenon that we observe supports the hypothesis that
low beam-size parameters are adequate for achieving near-optimal com-
pression. For the datasets studied here, it seems unlikely that the plateau
is a ‘false-summit’, because the invented abstractions capture almost all
of the obvious commonality manifest in the input programs. However,
whether this plateau effect will occur for arbitrary input programs is an
open question; ultimately it would be worth trying to obtain a theoretical
justification.

23.4 Related/Further Work and Conclusion

Our FAI technique is inspired by a standard ‘recipe’ which human pro-
grammers use to derive functional abstractions from patterns in programs,
described by, for example, Abelson and Sussman [Abelson and Sussman
(1996)]. One previous attempt to automate this kind of recipe is due to
Bakewell and Runciman [Bakewell and Runciman (1999)]; they imple-
mented an abstraction construction algorithm for Haskell programs, how-
ever they did not address the problem of searching for a compressive
abstraction. In inductive logic programming, the Duce [Muggleton (1987)]
and CIGOL [Muggleton and Buntine (1988)] systems use inverse resolu-
tion to perform FAI in propositional and first-order logic, respectively;
KANDINKSY shares a lot with these systems, both its inverse deduction
approach (IβR), as well as its use of a compression-guided search algorithm.

For further work, we hope shortly to combine KANDINSKY with a base
learning system so as to realise a full CBL framework. Many improvements
can also be made to KANDINSKY itself; most significantly it is currently
limited to deriving abstractions from syntactic commonality in programs,
whereas a more powerful system could search the space of all semantic
equivalences via β-η-δ transformations.

To conclude, we have defined the term abstraction invention to mean
the derivation of new knowledge from patterns in programs. We have

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch23 page 224

224 Latest Advances in Inductive Logic Programming

demonstrated and experimentally justified an efficient algorithm for func-
tional abstraction invention over λ-calculus programs in the KANDINSKY
system. KANDINSKY invented, without any prior knowledge of such con-
cepts, higher-order functions such map, fold, sumBy, and meanBy. Some of
these functions are strikingly similar to ones in the Haskell standard library
[Peyton Jones (1987)], so KANDINSKY is clearly able to invent abstrac-
tions that are natural from a human perspective.

Acknowledgments

Thank you to Dianhuan Lin, Alireza Tamaddoni-Nezhad, and Jianzhong
Chen, for their helpful comments on an earlier draft of this chapter.

Bibliography

H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Massachusetts. 1996.

A. Bakewell and C. Runciman. Automated Generalisation of Function Defini-
tions. In A. Middeldorp, T. Sato (eds). Proceedings of the 4th Fuji Interna-
tional Symposium on Functional and Logic Programming, LNCS, vol. 1722.
Springer-Verlag, Berlin, pp. 225–240. 1999.

P. Grünwald. Minimum Description Length Tutorial. Advances in Minimum
Description Length: Theory and Applications. MIT Press, Cambridge, Mas-
sachusetts, pp. 23–79. 2005.

S. H. Muggleton. Duce, an oracle based approach to constructive induction. Pro-
ceedings of the 10th International Joint Conference on Artificial Intelli-
gence, pp. 287–292. Morgan Kauffman, San Francisco, California. 1987.

S. H. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. Proceedings of the 5th International Conference on
Machine Learning, 339–352. Morgan Kaufmann, San Francisco, California.
1988.

S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall, Upper Saddle River, New Jersey. 1987.

R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artif.
Intell. Rev., 2(18), 77–95. 2002.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 225

PART 6

Constraints

225

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 227

Chapter 24

Using Machine-Generated Soft
Constraints for Roster Problems

Yoshihisa Shiina and Hayato Ohwada

Faculty of Science and Technology,
Tokyo University of Science, Japan

This chapter describes a method for generating rules that classify good
rosters and bad rosters using Inductive Logic Programming (ILP). The
obtained rules can be regarded as general conditions of good rosters
in which preferred shifts are assigned for workers, and thus are con-
verted into soft constraints in Constraint Logic Programming (CLP).
The proposed method automatically generates such constraints from
past good rosters, providing a new solution to optimization problems
such as scheduling and layout. In this chapter, we demonstrate how to
generate and apply classification rules (soft constraints) based on ILP
through a simple roster example.

24.1 Introduction

Constraint Logic Programming (CLP) provides a solution to combinato-
rial problems (e.g. scheduling and layout) in Operations Research [Jaffar
(1987)]. CLP uses hard constraints that must be satisfied and soft con-
straints specifying preferred solutions, and finds a best solution by mini-
mizing the number of soft constraints violated. Owing to the declarative
nature of CLP, such constraints can be easily put into a CLP program.
However, soft constraints are usually situation-oriented, and thus it is hard
to set up soft constraints manually.

This chapter describes a method for generating rules that classify good
rosters and bad rosters using ILP. The obtained rules can be regarded as
general conditions of good rosters in which preferred shifts are assigned for
workers. In this sense, these conditions can be viewed as soft constraints
that may be satisfied to find preferred solutions.

227

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 228

228 Latest Advances in Inductive Logic Programming

The chapter is organized as follows. Section 24.2 describes a simple
roster example and how to specify the example using CLP. Section 24.3
presents how to learn rules that classify good and bad rosters in ILP. Sec-
tion 24.3 also provides how learned rules are converted into soft constraints
that can be solved in CLP. Section 24.4 describes an initial experiment
result, and the final section provides concluding remarks.

24.2 A Simple Roster Problem

A simple roster program for a single worker is taken from [Wallace et al.
(2004)]. A 5 × 7 matrix is employed when there are five weeks and seven
days per week. There are five possible shift patterns to be assigned for
each day:

1 Day-off shift 2 Morning shift 3 Evening shift

4 Mid-day shift 5 Supplementary shift

Each number indicates a shift pattern.
Constraints are usually categorized into hard constraints and soft con-

straints in CLP. Hard constraints must be satisfied to obtain feasible solu-
tions. Soft constraints are desirable but not obligatory, and thus may be
violated. In this sense, soft constraints are used to present preferences for
the workplace and worker in the roster problem.

The problem has the following four hard constraints:

HC-1 This is a constraint for indicating the times of each shift pattern for
each day and is described as follows:

1: week(2,0,2,2,1,2,5), % Day-off shift

where the function week has seven arguments that indicate the
day-off times for each day. In this case, there are two day-off
Mondays (first argument).

HC-2 A day-off shift must be assigned at least once within consecutive
seven days.

HC-3 A day-off shift must not be assigned more than once every three
days.

HC-4 A supplementary shift must not be assigned more than once every
two days.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 229

Using Machine-Generated Soft Constraints for Roster Problems 229

HC-1: Two variables of 5 must be assigned to 1(day-off) .
HC-2: At least one variable of 7 must be assigned to 1(day-off).
HC-3: No more than three consecutive variables must be

assigned to 1(day-off) .
HC-4: No more than two consecutive variables must be assigned

day

week

HC-1 HC-2

HC-3
HC-4

to 5(supplementary) .

Fig. 24.1 Hard constraints.

Figure 24.1 illustrates typical hard constraints, where each cell is a log-
ical variable to be instantiated in a shift pattern.

The problem also has the following soft constraints.

SC-1 A morning shift (shift:2) should not follow an evening shift (shift:3).
SC-2 A day-off shift (shift:1) should not be isolated.
SC-3 A supplementary shift (shift:5) should be isolated.

These soft constraints can be described as follows using CLP:

Viol1 #= (SomeDay #= 3 and NextDay #= 2)

Viol2 #= (Someday #= 1 and Before #\= 1 and After #\= 1)

Viol3 #= (SomeDay #= 5 and NextDay #= 5)

where the variables Viol1, Viol2 and Viol3 are Boolean variables indicat-
ing whether the corresponding constraints on the right-hand side can be
satisfied or not. The infix notation #= (#\=) on the right-hand side denotes
equality (inequality).

Given a set of soft constraints, CLP minimizes the number of soft con-
straints violated using a branch-and-bound search. Figure 24.2 depicts the
solution of the simple roster problem where a worker’s shift entry is satisfied
under given hard and soft constraints.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 230

230 Latest Advances in Inductive Logic Programming

SC-2

SC-3

SC-1

1: week(2,0,2,2,1,2,5), % Day-off shift
2: week(0,1,1,0,1,0,0), % Morning shift
3: week(1,2,1,0,0,2,0), % Evening shift
4: week(1,2,1,2,0,0,0), % Mid-day shift
5: week(1,0,0,1,3,1,0) % Supplementary shift

Fig. 24.2 Soft constraints.

CLP

ILP

Classification rules

Bad rostersGood rosters

Hard constraints Soft constraints

CLP

Search for preferred solutions

Fig. 24.3 The proposed method.

24.3 Proposed Method

The proposed method consists of the following two processes:

(1) ILP generates rules that classify good rosters and bad rosters.
(2) Learned rules are converted into soft constraints that are added to the

soft constraint set in CLP.

Figure 24.3 illustrates these processes.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 231

Using Machine-Generated Soft Constraints for Roster Problems 231

24.3.1 Rule generation

Suppose that we have the following positive examples:

+good(r1). +good(r7). +good(r8). +good(r9). +good(r10).

where +good(r1) means that roster r1 is a good roster.
We also have the following negative examples:

-good(r2). -good(r3). -good(r4). -good(r5).

-good(r6). -good(r11).

We set up the background knowledge as follows:

week1(r1,Monday,1). week1(r1,Tuesday,3).

week1(r1,Wednesday,1). week1(r1,Thursday,1).

week1(r1,Friday,3). week1(r1,Saturday,1).

week1(r1,Sunday,1).

where week1 indicates the first week in the roster, and this predicate means
a shift pattern of a specific day in the first week with respect to a specific
roster.

Mode declarations that are the same as Progol [Muggleton (1995)] are
given as follows:

:- modeh(*,good(+roster)).

:- modeb(*,week1(+roster,#day,#shift)).

Here, the first declaration is the target hypothesis, and the second is for
background knowledge.

Given such information, we obtained the following rules:

good(A) :- week1(A,Saturday,1), week5(A,Monday,1).

good(A) :- week1(A,Thursday,5).

The first rule means that the shift on Saturday of the first week is a day-
off shift(1), and the shift on Monday of the fifth week is a day-off shift(1).
The second rule means that the shift on Thursday of the first week is a
supplementary shift(5). These two rules represent a general condition of
good rosters due to the ILP facility classifying good and bad rosters.

24.3.2 Applying learned rules

In order to apply learned rules, we automatically generate soft constraints
from them. The notation R[week,day] is introduced to specify a logical

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 232

232 Latest Advances in Inductive Logic Programming

R[1,6] #= 1 and R[5,1] #= 1

R[1,4] #= 5

R[week,day]

R[1,6] #= 1 and R[5,1] #= 1

R[1,4] #= 5

Fig. 24.4 Roster obtained using the learned rules.

variable in the roster matrix. The condition week1(A,Saturday,1) in the
first rule above can be denoted as the equality R[1,6] #= 1. The conjunc-
tive condition on the right-hand side of the first rule is negated because
soft constraints should be added to the constraint set as the negation of
the conjunctive condition. Therefore, the above rules are converted into the
following expressions:

Viol4 #= (R[1,6] #\= 1 or R[5,1] #\= 1)

Viol5 #= (R[1,4] #\= 5)

The roster obtained using the learned rules is depicted in Fig. 24.4.

24.4 Experiment

We conducted an experiment by overlaying 50 good rosters and 50 bad
rosters using our ILP system (GKS) [Mizoguchi and Ohwada (1995)] on
top of the CLP system (ECLiPSe) [Wallace et al. (1997)]. Seventeen rules
were produced. Typical rules are as follows:

(1) good(A) :- week1(A,Friday,3), week1(A,Sunday,1), week3(A, Satur-
day,5).

(2) good(A) :- week1(A,Tuesday,1), week2(A,Saturday,1), week4(A, Fri-
day,1).

These rules were converted into the following soft-constraint expressions:

Viol8 #= (R[1,5] #\= 3 or R[1,7] #\= 1 or R[3,6] #\= 5)
Viol15 #= (R[1,2] #\= 1 or R[2,6] #\= 1 or R[4,5] #\= 1])

These soft constraints were used to obtain a preferable solution for the
roster problem. In contrast, soft constraints derived from residual rules

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch24 page 233

Using Machine-Generated Soft Constraints for Roster Problems 233

were violated under the given hard constraints. This means that a hard
constraint checking component is needed for the learning procedure.

24.5 Concluding Remarks

We used ILP to generate rules that classify good rosters and bad rosters.
The learned rule represents the preference for workers in a roster. The
generated rule is converted into soft constraints that are added to a soft
constraint set in CLP. A newly obtained roster is constrained by the con-
verted soft constraints. We demonstrated a proposed method through a
simple roster problem.

In future work, we will apply our proposed method to a practical nurse
scheduling problem that demonstrates the usefulness of combining CLP
and ILP.

Bibliography

J. Jaffar and J. -L Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Programming Languages. ACM,
New York, pp. 111–119. 1987. POPL 1987: Munich, 21–23 January 1987.

F. Mizoguchi and H. Ohwada. Using inductive logic programming for constraint
acquisition in constraint-based problem solving. In D. Page (ed.). Proceeding
of the 15th International Workshop on Inductive Logic Programming, LNAI,
vol. 1446. Springer-Verlag, Berlin, pp. 297–332. 1995.

S. H. Muggleton. Inverse entailment and progol. New Generat. Comput., 13(3–4),
245–286. 1995.

M. Wallace, J. Schimpf, K. Shen and W. Harvey. On Benchmarking constraint
logic programming platforms. Response to Fernandez and Hill’s “A Com-
parative Study of Eight Constraint Programming Languages over the
Boolean and Finite Domains”, Constraints, 9, 5–34. 2004.

M. Wallace, S. Novello and J. Schimpf: ECLiPSe: A platform for constraint logic
programming. ICL Syst. J., 12, 159–200. 1997.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 235

PART 7

Spacial and Temporal

235

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 237

Chapter 25

Relational Learning for
Football-Related Predictions

Jan Van Haaren and Guy Van den Broeck

Department of Computer Science
Katholieke Universiteit Leuven, Belgium

Association football recently undersaw some radical changes, leading
to higher financial stakes, further professionalization and technical
advances. This gave rise to overwhelming amounts of data becoming
available for analysis. Therefore, we propose football-related predictions
as an interesting application for relational learning. We argue that foot-
ball data are highly structured and naturally represented in a relational
way. Furthermore, we identify interesting learning tasks that require
a relational approach, such as link prediction and structured output
learning. Early experiments show that this relational approach is com-
petitive with a propositionalized approach for the prediction of individ-
ual football matches’ goal difference.

25.1 Introduction

Association football is becoming increasingly competitive and the financial
stakes of football clubs have dramatically increased. Over the past 25 years
club budgets have grown enormously due to gate sale revenues, broadcast-
ing revenues, merchandising and prize money [Lago et al. (2006)]. As a
result, football clubs and football leagues have become more professional.
Football clubs have to adopt a well-thought out selling and buying policy,
and their managers have to exploit the capabilities of their players in the
best possible manner. Recently introduced player tracking systems produce
overwhelming amounts of data, which are being used by experts to analyze
matches and players’ performance [Xu et al. (2005)].

237

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 238

238 Latest Advances in Inductive Logic Programming

Current approaches to football-related predictions do not use the rich
structured data that are available nowadays. We will show that machine
learning techniques can be applied to this data. The techniques applied
until now come from statistical modeling, not machine learning. We will
argue that football-related data are relational and that relational learn-
ing is particularly suited for football-related predictions. The rise of the
Internet has made football betting increasingly popular. Therefore, the pre-
diction of football match results is an interesting learning task. However,
despite the simplicity of both rules and objectives, football match results
are highly uncertain and difficult to predict. Typically, football matches are
low-scoring, which makes it hard to identify events that have an immediate
impact on the final result. We report on early experiments with kLog [Fras-
coni et al. (2011)] that show that our relational approach is competitive
with a propositionalized approach for the prediction of the goal difference
for individual matches in a domestic football league.

25.2 Related Work

Football analytics has been given little attention in academic literature
due to the limited availability of publicly available match statistics. Nev-
ertheless, a number of descriptive and predictive models for football match
results have been proposed over the years. The first generation of football-
related models was mainly concerned with the distribution of the num-
ber of goals scored in a football match. Moroney [Moroney (1956)] shows
that both the Poisson distribution and the negative binomial distribu-
tion provide an appropriate fit to football match results. Maher [Maher
(1982)] presents a technique for modeling outcomes of football matches
between two specific teams. This technique represents each team’s individ-
ual score by means of an independent Poisson variable. As a consequence,
the resulting model is able to take each team’s strength into account.
Dixon and Coles [Dixon and Coles (1997)] propose a number of adap-
tations to Maher’s model. They show that there exists a strong depen-
dency between the individual scores in low-scoring football matches, which
an independent Poisson distribution is not able to account for. There-
fore, Dixon and Coles suggest directly modifying the marginal Poisson
distributions for low-scoring football matches. Baio and Blangiardo [Baio
and Blangiardo (2010)] propose a Bayesian hierarchical model for each
team’s individual score. They show that there is no need for bivariate Pois-
son variables to capture the correlation between individual scores. This

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 239

Relational Learning for Football-Related Predictions 239

correlation is automatically taken into account when assuming two condi-
tionally independent Poisson variables for the number of goals scored. This
is the case because the observable variables influence each other at a higher
level.

25.3 Current Limitations and Challenges

Most of the available techniques for predicting football match results are
applications and extensions of well-known statistical methods. These tech-
niques learn models that have limited expressivity and they do not lever-
age the full range of rich data that are currently available. Typically, these
techniques are limited to learning from match results of previously played
football matches. We can distinguish two clear reasons for this limitation:

(1) Until recently, match statistics were usually not publicly avail-
able. In contrast, for popular American sports (e.g., basketball and
baseball) it is common that detailed match statistics are available both
in print and online. Consequently, there has been an explosion in inter-
est for analytics in these sports by academic researchers and fans alike.

(2) It is not obvious how to derive meaningful measures and
statistics from football matches. Football has a very complex struc-
ture, which cannot easily be captured by a fixed set of parameters. Foot-
ball teams have a lot of freedom in the tactics they use and football
players are nearly unrestricted in their movement on the pitch. There-
fore, it was not until the late 1990s that the large-scale registration
of match statistics became possible. Nowadays, modern camera-based
tracking systems are used for high-accuracy measurements of player and
ball movements. These measurements enable the calculation of detailed
match statistics for both football players and football teams.

However, the discussion in the previous section shows that the current
approaches for modeling football matches are unable to handle the huge
amounts of data made available by camera-based tracking systems. Despite
the immense popularity of football, little research has been conducted on
more sophisticated models. These models have to deal with two major chal-
lenges:

(1) A model should account for the numerous aspects that
influence the result of a football match. Match statistics are not
limited to final scores, but also hold interesting details on the way these

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 240

240 Latest Advances in Inductive Logic Programming

final scores came about. For example, knowing that the referee in a par-
ticular football match pulled a red card for the home team might help
explain an unexpected win for the away team.

(2) A model should account for time-dependent and positional
information. Player forms are one example of time-dependent infor-
mation that is worth keeping track of because football players are rarely
able to maintain the same level of performance throughout an extended
period of time. At a lower level, the passes and tackles performed during
a football match are another example of time-dependent information.

25.4 Relational Representation

Relational models have many interesting properties that allow them to
address the challenges outlined in the previous section in a straightfor-
ward way. A relational model’s most important asset is the flexibility
with which it can represent data. The parameter set of such a model is not
fixed beforehand but can vary according to the events that occur during
a football match. As a result, special events such as a red card or an own
goal can be stressed. Furthermore, the definition of relations among objects
(e.g., football players and football teams) can represent complexly struc-
tured data such as team lineups and player transfers between football clubs.
All of this is less obvious or even impossible in a propositional structure
such as the attribute-value format.

Current approaches for modeling football matches keep their knowledge
in a limited set of model parameters. Consequently, these approaches have
difficulties taking time-dependent and positional information into
account. The resulting models implicitly assume that football teams and
football players constantly maintain the same level of performance, but
football players rarely perform at the same level over an extended period of
time. Furthermore, a team’s current form may help explain an apparently
anomalous result. Therefore, the ability to represent each player, team and
match explicitly is an important asset of a relational model. The definition
of relations between pairs of matches preserves the order in which these
matches have been played. Hence, the model can easily capture a team’s
performance gaps and form fluctuations.

Furthermore, relational models also allow for learning from interpre-
tations, which is a key concept in many machine learning techniques. An
interpretation comprises a set of objects and the relations that exist among
these objects. A typical learning approach is to represent each individual

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 241

Relational Learning for Football-Related Predictions 241

football match as a single interpretation. A more sophisticated learning
approach is to represent all football matches in one football season as one
large interpretation. An important advantage of the latter approach is its
support for the definition of relations between pairs of football matches.

25.5 Learning Tasks

Relational models can tackle both descriptive and predictive learning tasks.
Descriptive learning tasks focus on assessing past performances (e.g., to
identify who was the most efficient player in a football match), whereas
predictive learning tasks are mainly concerned with analyzing past perfor-
mances to predict future behavior (e.g., to predict how many goals a team
will score in its next match). Traditional learning tasks include:

• Regression: e.g., to predict the number of yellow or red cards a referee
will pull during a football match;

• Classification: e.g., to classify a football match as a win for the home
team, a win for the away team or a draw.

Besides these traditional learning tasks, relational models also allow for
more complex learning tasks that require rich structured data representa-
tions. Moreover, relational models support structured output learning tasks,
which are very common in football. Entities and relations provide an intu-
itive way to represent the output of these learning tasks. Some interesting
learning tasks made possible by relational models include:

• Collective regression: e.g., to jointly predict the individual statistics
of players in a football match;

• Collective classification: e.g., to identify which players will be
selected in a team’s starting lineup;

• Link prediction: e.g., to predict who will pass the ball to whom during
a football match.

25.6 Learning Example

In this section, we will illustrate the applicability of relational models for
football-related predictions by means of a simple learning task of predicting
individual football matches’ goal difference. The goal difference for a foot-
ball match is given as the difference between the number of goals scored by
the home team and the number of goals scored by the away team.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 242

242 Latest Advances in Inductive Logic Programming

Football has a very complex structure, which allows for a large number
of possible relational topologies. The relational model that we discuss here
represents each football match explicitly by means of its goal difference
as well as a set of 26 performance measures, which are derived from match
statistics. We consider 13 performance measures that cover relevant aspects
such as ball possession, discipline, defending, crossing and passing for both
football teams involved in a match. A performance measure can take five
different values (very low, low, average, high or very high) to indicate a
football team’s level of performance in this particular aspect of football.

We use kLog [Frasconi et al. (2011)] to implement this relational model.
kLog is a language for kernel-based relational learning that builds upon
several simple but powerful concepts such as learning from interpretations,
data modelling through entities and relationships, deductive databases
and graph kernels. Unlike other models based on probabilistic logic, kLog
derives features from a ground entity-relationship diagram and is therefore
not directly concerned with the representation of probability distributions.
An extensive series of statistical techniques is available to fit the model
parameters.

Since no comparable models exist, we use two propositionalizations of
our relational model to assess the model’s performance in predicting goal
differences for football matches. The first model represents each football
match by means of its goal difference and its 26 performance measures
(Weka 1). The second model extends this model with the performance mea-
sures and goal differences for each team’s previous two matches (Weka 2).
We make use of Weka [Holmes et al. (1994)] to conduct experiments with
these two models. We use the match statistics for the 2010–2011 English
Premier League that are available at The Guardian’s website.1

Figure 25.1 shows a comparison of the mean absolute error values for
the relational model and the propositionalized models, which have been
obtained with support vector regression and tenfold cross validation. Exper-
iments with both a linear kernel function and a sigmoid kernel function
have been performed. The comparison shows that the kernel function has
no impact on the error values for the kLog model and that the sigmoid
function clearly outperforms the linear function for the Weka models.

These preliminary experiments show that the relational approach
that we propose is competitive with a propositional approach for our
learning task. However, we expect the relational approach to outperform

1http://www.guardian.co.uk/football/chalkboards

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 243

Relational Learning for Football-Related Predictions 243

Fig. 25.1 Comparison of the mean absolute error values obtained for the rela-
tional kLog model (blue) and the propositionalized Weka models (light and dark
green).

propositional learners once more structured data, such as team formations
and individual player statistics, are added to the model.

25.7 Conclusion

We have proposed football-related predictions as an interesting application
for relational learning. We have argued that football data are highly struc-
tured and naturally represented in a relational way. We have identified
interesting learning tasks that require a relational approach such as link
prediction and structured output learning. Experiments with a relational
model yield competitive results.

Acknowledgments

Guy Van den Broeck is supported by the Research Foundation-Flanders
(FWO-Vlaanderen). The authors wish to thank Vinicius Tragante do Ó,
Hendrik Blockeel and Jesse Davis for their valuable feedback.

Bibliography

G. Baio and M. Blangiardo. Bayesian hierarchical model for the prediction of
football results. J. Appl. Stat., 32, 253–264. 2010.

M. Dixon and S. Coles. Modelling association football scores and inefficiencies
in the football betting market. J. Roy. Stat. Soc. C-App., 46(2), 265–280.
1997.

October 10, 2014 14:25 Latest Advances in Inductive Logic Programming 9in x 6in b1798-ch25 page 244

244 Latest Advances in Inductive Logic Programming

P. Frasconi, F. Costa, L. De Raedt and K. De Grave. kLog — A Lan-
guage for Logic-Based Relational Learning with Kernels. Technical report.
2011. Available online: http://www.dsi.unifi.it/∼paolo/ps/klog.pdf.
Accessed 13 August 2014.

G. Holmes, A. Donkin and I. Witten. Weka: A machine learning workbench.
Proceedings of the 1994 Second Australian and New Zealand Conference on
Intelligent Information Systems, pp. 357–361. 1994. ANZIIS 1994: Brisbane
29 November–2 December 1994.

U. Lago, R. Simmons and S. Szymanski. The financial crisis in European football.
J. Sport. Econ., 7(1), 3–12. 2006.

M. Maher. Modelling association football scores. Statistica Neerlandica, 36(3),
109–118. 1982.

M. Moroney. Facts from Figures. Penguin, London. 1956.
M. Xu, J. Orwell, L. Lowey, and D. Thirde. Architecture and algorithms for

tracking football players with multiple cameras. IEE P-Vis. Image Sign.,
152, 232–241. 2005.

October 10, 2014 14:26 Latest Advances in Inductive Logic Programming 9in x 6in b1798-index page 245

Index

abductive learning, 216

abstractions, vi, 219, 223–226

ACL2, 192

Adhesome ontology, 110

AdventureWorks, 161, 163

AGDA, 192

Aleph, 20, 22, 24, 31, 33, 145,
147–149, 151, 153, 157, 161

analysis of variance, 144

Android smartphone, 39

annotated disjunctions, 100

answer subsumption, 79, 82, 83

Artificial Intelligence, v, vii, 3

artificial neural network (ANN), 3, 6,
9

ASP, 17

authors, 113

background knowledge, vi, 5, 6, 9,
19–21, 30, 34, 44, 46, 47, 49, 50, 55,
92, 99, 119, 124, 127, 135, 136, 139,
143–147, 149, 151, 154, 156–161,
211, 212, 216, 219, 233

Bayesian classifier, 182, 186

Bayesian discriminant, 185

Bayesian network, 88, 91–93, 96, 99

Binary Decision Diagrams (BDD),
81–83

cascade learning, 151

causal theories, 11–13, 17, 18

classification rules, 53–59, 144

classification rules (soft constraints),
229

clauses, 72, 80–82, 87, 89, 90, 114,
116, 118, 119, 125, 128, 131, 135,
136, 143–149, 157, 211–215, 217

Coalgebra, 193

coalgebraic, 191, 194

coalgebraic proofs, 194

coinductive proofs, 194

Common-Warehouse-Metamodel, 152

Constraint Logic Programming
(CLP), 229–232, 234, 235

Cosmetic Product, v

customisable multi-processor, v

customisations, 131–133

CWM OLAP metamodel, 152, 155,
162

Datalog FOL, 212

dependent-concept learning (DCL),
153, 156–161, 163, 164, 169

dependent-concepts, 151, 158, 159,
161, 164

diagrammatic predicate logic (DPL),
155

DL-Learner, 106, 110, 205

DL-Learner GUI, 110

DNA, 70, 72

docking, 53, 55

domain knowledge, 44

double-strand, 70, 72

Field-Programmable Gate Arrays
(FPGAs), 123, 124, 133, 134, 139

first-order logic (FOL), 106, 114, 155,
191, 193, 194, 201, 203, 211–217,
220, 225

245

October 10, 2014 14:26 Latest Advances in Inductive Logic Programming 9in x 6in b1798-index page 246

246 Latest Advances in Inductive Logic Programming

flattened hole Datalog program
(FHDP) frameworks, 216

flexible higher-order Horn clauses
(FHOHC), 211–214, 216, 217

FOL/HOL, 212
football-related predictions, vi, 239,

240, 243, 245
Formal Concept Analysis, 53
formal proofs, vi, 191, 193, 194

games, 3–6, 9, 10
GC-patterns, 177
gene-ontology, 23, 119

hard constraints, 229–231, 235
H-contractibility, 174
Herbrand base, 80, 114, 116
higher-order logic (HOL), vi, 192,

211, 212, 214–217
higher-order logic learning (HOLL),

211–217
HOL clauses, 212

image analysis, 39–41
Image Analysis Module, 40
Inductive Logic Programming (ILP),

v–vii, 3–5, 9, 10, 19, 20, 25, 27–41,
43–46, 50, 89, 123, 124, 126, 127,
132, 133, 135, 138, 139, 143–151,
154, 156–159, 161, 182, 199, 200,
202, 205, 211, 212, 214, 217, 225,
229, 230, 232–235
ILP background knowledge, 30
ILP learnability, 212, 214

Interactive Theorem Provers (ITPs),
192–194

KANDINKSY, 225
KBRL algorithm, 20
Kyoto Encyclopedia of Genes and

Genomes (KEGG), 23, 54

L-BFGS algorithm, 109
layered learning, 151, 153, 159
learning rate, 9
ligands 53–59

linked data, 19, 25, 105–108, 110

logic learning, 211

logic programming, 34, 79, 80, 93,
124, 154, 191, 193–195, 214

Logic Programs with Annotated
Disjunctions (LPADs), 79, 80, 81

machine learning, v–vii, 3, 6, 9, 35,
41, 43, 45, 55, 56, 66, 67, 70, 96, 99,
118, 123, 151, 153, 156, 157, 159,
163, 169, 181, 193, 212, 240, 242

machine learning coalgebraic proofs,
191

machine learning formal proofs, 195

machine-learning, 193

Machine-Learning Coalgebraic, 192

Markov Logic Networks (MLNs), 113,
114, 116, 119, 182

MC-SAT, 187

measurable features, 97

metamodel, 152, 154–156, 159, 162

microarchitecture, 127, 129, 131, 136

microarchitecture customisations, 127

microarray data, 20, 62, 63

mobile-user behaviour, 44, 46

model-driven data warehouse, vi,
151–153, 155, 169

mutagenesis, 123, 125, 135, 138, 186,
187

Mutagenesis ILP, 186

N-DCLI, 164, 168

N-P classifier, 4–6, 9

N-positions, 4, 5, 9

neural networks, 193, 195, 196

neurosolver, 160

Nonmonotonic Inductive Logic
Programming, 18

NP-completeness, 174

Online-Analytical Processing
(OLAP), 152

OLAP metamodel, 152, 155

ontologies, 19–22, 25, 110, 199, 200

optimisations, 138

October 10, 2014 14:26 Latest Advances in Inductive Logic Programming 9in x 6in b1798-index page 247

Index 247

P-positions, 3–5, 9
parallelism, 123, 124, 126, 133, 135,

136
Peano numbers, 216
Pearson chi-square test, 144
phosphorylation, 71–74
PITA System, 81
possibilistic logic programming, 79
PRISM, 79, 87–89, 91–93
Probabilistic Inductive Logic

Programming (PILP), 79, 93
probabilistic logic programming, 80,

87
ProbLog, 79, 80, 83, 84, 95, 96,

99–101
product, 72–76
Progol, 4–6, 123–125, 127, 133,

137–139, 145, 146, 148, 211–217,
233

Prolog, 27, 28, 34, 79, 81, 82, 99, 116,
125, 127, 134, 154, 157, 161, 182

Prolog clauses, 128
Prolog logic programming, 99

Quadratic Discriminant Analysis
(QDA), 144

query expansion, 27, 28

relational data mining, 19, 20
RGB parameter, 40
Robotics, v, 95, 96
ROC curve, 163, 164
roster problems, 229

semantic data mining, 19–22, 25
semi-supervised learning, 53–55
smartphone, 35–41, 48
soft-constraint, 234, 229–235
SOLAR, 72, 74–76
Sprague–Grundy theory, 4
statistical machine learning, 191, 192,

194
statistical physics, 69
statistical relational learning, 62, 95
structure learning, 87, 119
subsumption, 107, 113, 115, 116, 118,

183
support vector machine (SVM), 3 6,

8, 9, 35–37, 39–41, 58, 66, 67, 193,
195, 196

tabling, 79, 82–84
Top-directed Abductive Learning

(TAL) system, 50
transient receptor potential (TRP)

ion channels, 53

UML CORE metamodel, 152, 155
user behaviours, 43, 44, 46, 47

Variational Bayesian, 88
Vienna Abstract Machine (VAM),

125, 127

Warren Abstract Machine, 127
Web Ontology Language OWL, 199
winning strategies, 3–5, 9
WordNet, 28

	Contents
	Preface
	Acknowledgments
	Part 1: Applications
	1. Can ILP Learn Complete and Correct Game Strategies?
	1.1 Introduction
	1.2 ILP Representation of Games
	1.2.1 Learning schema

	1.3 Experiments
	1.3.1 Learning N-P position of impartial games by ILP
	1.3.2 Experiment to determine performance on Nim of ANNs, SVMs and CBRs

	1.4 Related Work, Conclusions and Future Work
	Bibliography

	2. Induction in Nonmonotonic Causal Theories for a Domestic Service Robot
	2.1 Introduction
	2.2 Nonmonotonic Causal Theories
	2.3 Induction in Causal Theories
	2.4 A Case Study in a Domestic Service Robot’s Domain
	2.5 Discussion and Conclusion
	Bibliography

	3. Using Ontologies in Semantic DataMining with g-SEGS and Aleph
	3.1 Introduction
	3.2 Related Work
	3.3 g-SEGS
	3.4 Problem Formulation in Aleph
	3.5 Experimental Results
	3.6 Conclusion
	Acknowledgments
	Bibliography

	4. Improving Search Engine Query Expansion Techniques with ILP
	4.1 Introduction and Motivation
	4.2 Experiments
	4.2.1 Materials
	4.2.2 Problem modeling
	4.2.3 Rule learning
	4.2.4 From ILP rules to new alterations

	4.3 Conclusions and Future Work
	Acknowledgments
	Bibliography

	5. ILP for Cosmetic Product Selection
	5.1 Introduction
	5.2 Previous Cosmetics Recommendation Service Using the Smartphone
	5.3 Design and Implementation of Diagnosis System by Smart phone
	5.3.1 Application of SVM learning data
	5.3.2 Application of the ILP rules

	5.4 Conclusion
	Bibliography

	6. Learning User Behaviours in Real Mobile Domains
	6.1 Introduction
	6.2 Background
	6.3 Towards an Adaptive System Using ILP
	6.4 Real Mobile-Domain Applications
	6.5 Conclusion
	Bibliography

	7. Discovering Ligands for TRP Ion Channels Using Formal Concept Analysis
	7.1 Introduction
	7.2 Methods
	7.3 Results and Discussion
	Acknowledgments
	Bibliography

	8. Predictive Learning in Two-Way Datasets
	8.1 Situating Two-Way Learning
	8.2 The Effects of Transposition
	8.3 Applications
	8.3.1 Microprocessor-data
	8.3.2 Ecological data

	8.4 Conclusions
	Acknowledgment
	Bibliography

	9. Model of Double-Strand Break of DNA in Logic-Based Hypothesis Finding
	9.1 Introduction
	9.2 Double-Strand Break of DNA
	9.3 Ampliative Reasoning in Biological Systems
	9.3.1 Hypothesis finding from first-order full clausal theories

	9.4 Logical Model of a Double-Strand Break
	9.5 Results
	9.6 Conclusion
	Bibliography

	Part 2: Probabilistic Logical Learning
	10. The PITA System for Logical-Probabilistic Inference
	10.1 Introduction
	10.2 Probabilistic Logic Programming
	10.3 The PITA System
	10.4 Experiments
	Bibliography

	11. Learning a Generative Failure-Free PRISM Clause
	11.1 Introduction
	11.2 Scoring with Variational Free Energy
	11.3 Building and Searching the Hypothesis Space
	11.3.1 Building the hypothesis space
	11.3.2 Search
	11.3.2.1 Greedy hill climbing
	11.3.2.2 Random generation search

	11.4 Experiment
	11.5 Conclusion and Future Work
	Bibliography

	12. Statistical Relational Learning of Object Affordances for Robotic Manipulation
	12.1 Introduction
	12.2 Affordance-Based Models
	12.3 Learning Relational Skills and Experiments
	12.4 ProbLog Modeling and Results
	12.5 Conclusion and Future Work
	Acknowledgments
	Bibliography

	13. Learning from Linked Data by Markov Logic
	13.1 Introduction
	13.2 Description Logic ALC
	13.3 Learning from Linked Data
	13.3.1 Generating candidate specializations
	13.3.2 Guiding the search

	13.4 Experiments
	13.5 Conclusion and Remarks
	Acknowledgment
	Bibliography

	14. Satisfiability Machines
	14.1 Introduction
	14.2 Probabilistic Model
	14.3 Comparing PM(c) and PS(c)
	14.4 Discriminative Learning
	14.5 Conclusion
	Acknowledgment
	Bibliography

	Part 3: Implementations
	15. Customisable Multi-Processor Acceleration of Inductive Logic Programming
	15.1 Introduction
	15.2 Background: Sequential and Parallel ILP
	15.3 The Arvand Processor
	15.3.1 Instruction set
	15.3.2 Microarchitecture
	15.3.3 Customisation

	15.4 Multi-Processor Architecture for ILP
	15.5 Multi-Processor Architecture Generation
	15.6 Results
	15.6.1 Data sets
	15.6.2 Resource usage
	15.6.3 Performance

	15.7 Concluding Remarks
	Acknowledgments
	Bibliography

	16. Multivalue Learning in ILP
	16.1 Introduction
	16.2 Univalue Clauses
	16.3 Multivalue Clauses
	16.3.1 Example

	16.4 Experiments
	16.4.1 Student loan and Japanese credit

	16.5 Conclusions and Future Work
	Bibliography

	17. Learning Dependent-Concepts in ILP: Application to Model-Driven Data Warehouses
	17.1 Overview
	17.2 Background Definitions
	17.3 Relational Learning of Dependent-Concept
	17.3.1 Relational learning setting
	17.3.2 Dependent concept learning problem
	17.3.3 Comparison with related concept search problems

	17.4 Empirical Results
	17.4.1 Materials and methods
	17.4.2 Results and discussion

	17.5 Conclusion
	Bibliography

	18. Graph Contraction Pattern Matching for Graphs of Bounded Treewidth
	18.1 Introduction
	18.2 Preliminaries
	18.2.1 Normalized tree decomposition
	18.2.2 Graph contraction pattern
	18.2.3 Main results

	18.3 A Pattern Matching Algorithm for GC-Patterns
	Bibliography

	19. mLynx: Relational Mutual Information
	19.1 Introduction
	19.2 Feature Construction and Classification
	19.3 Mutual Information Feature Selection
	19.4 Experiments
	Bibliography

	Part 4: Theory
	20. Machine Learning Coalgebraic Proofs
	20.1 Background
	20.2 Methodology
	20.3 Agenda and Preliminary Results
	Bibliography

	21. Can ILP Deal with Incomplete and Vague Structured Knowledge?
	21.1 Introduction
	21.2 Fuzzy Description Logics
	21.3 ILP for Learning Fuzzy DL Inclusion Axioms
	21.4 Final Remarks
	Bibliography

	Part 5: Logical Learning
	22. Towards Efficient Higher-Order Logic Learning in a First-Order Datalog Framework
	22.1 Introduction
	22.2 HOLL with First-Order Datalog and Progol
	22.3 Experiments
	22.4 Conclusion and Further Work
	Bibliography

	23. Automatic Invention of Functional Abstractions
	23.1 Introduction
	23.2 KANDINSKY’s Abstraction Invention Algorithm
	23.3 Experiment
	23.4 Related/Further Work and Conclusion
	Acknowledgments
	Bibliography

	Part 6: Constraints
	24. Using Machine-Generated Soft Constraints for Roster Problems
	24.1 Introduction
	24.2 A Simple Roster Problem
	24.3 Proposed Method
	24.3.1 Rule generation
	24.3.2 Applying learned rules

	24.4 Experiment
	24.5 Concluding Remarks
	Bibliography

	Part 7: Spacial and Temporal
	25. Relational Learning for Football-Related Predictions
	25.1 Introduction
	25.2 Related Work
	25.3 Current Limitations and Challenges
	25.4 Relational Representation
	25.5 Learning Tasks
	25.6 Learning Example
	25.7 Conclusion
	Acknowledgments
	Bibliography

	Index

