
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Contents..vii

About the Author ... xxix

About the Technical Reviewer ... xxix

Preface ... xxx

■ Chapter 1: Getting Started ...1

■ Chapter 2: HTML5 in Short ...21

■ Chapter 3: CSS3 and iOS Styling ..41

■ Chapter 4: JavaScript and APIs ...65

■ Chapter 5: Mobile Frameworks..85

■ Chapter 6: Usability, Navigation, and Touch..103

■ Chapter 7: GPS and Google Maps...121

■ Chapter 8: Animation and Effects ..141

■ Chapter 9: Canvas ..157

■ Chapter 10: Audio and Video..175

■ Chapter 11: Integrating with Native Services ..185

■ Chapter 12: Offline Apps and Storage..195

■ Chapter 13: Mobile Testing ..203

■ Chapter 14: Advanced Topics ..219

■ Chapter 15: Going Native with PhoneGap ..229

www.allitebooks.com

http://www.allitebooks.org

vi

■ Appendix: Companion Site References ..249

Index...263

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 1

■ ■ ■

1

Getting Started

Congratulations! You are building your first web application for your iOS device (iPhone, iPad, or iPod
Touch) using HTML5 and JavaScript.

You might think that you can pick up one of your HTML or JavaScript books from years past and
then just scale it down to the size of your target device and you’ll be good to go. You’d be wrong. A lot
has changed.

In this chapter we lay the groundwork for building a mobile web app. Here we cover things like
getting familiar with your browser, setting up your mobile project, architecting the site, and creating a
site map as well as selecting the tools you’ll use to build it.

All you need is an idea, and I’ll help you take care of the rest.
You purchased this book to get started building a mobile web app. I won’t beat around the bush and

tell you about the history of the Internet or the history of browsers. Instead, let’s just jump in.

Your Browser (Mobile Safari)
The browser we’ll focus on is Mobile Safari—a WebKit-based browser engine that does an excellent job
of parsing HTML5 and interpreting JavaScript.

■ Note Browsers use different rendering engines. Safari and Google Chrome use WebKit, Opera uses Presto,
Firefox uses Gecko, and Internet Explorer uses Trident. In later chapters we’ll need to use specific features of

WebKit to achieve a more native-looking mobile web application.

Mobile Safari acts and renders in many ways similar to regular Safari, but it has a smaller screen, of
course, and responds to gestures and touches as opposed to clicks. It also has noticeable performance
differences and does not support Adobe Flash.

One of mobile Safari’s most important screens is its Settings screen. You can get to it by clicking on
Settings, and then Safari on the iPhone or iPad home screen. You’ll see a screen like the one shown in
Figure 1-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

2

Figure 1-1. Safari Settings screen

Many of the settings here are straightforward and familiar to you from your desktop or laptop
browser. Above all, I’d recommend that you set your Advanced ➤ Debug Console to On. This will help in
debugging your app from within your simulator or on your phone. You can see this in Figure 1-2 below.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

3

Figure 1-2. Debug settings for Safari

Planning Your Project
Before embarking on a mobile project, you need to have certain things in place, which I’ll talk about
next. If you’re a seasoned web developer you probably know all of this stuff and can skip ahead;
otherwise, keep in mind this is just an overview. If you have detailed questions, you can ask me via my
site: http://www.learnhtml5book.com.

First, I’ll talk about setting up your environment.

Local Environment
Fortunately, OS X comes with Apache built in. To enable Apache to work with your site, go to System
Preferences ➤ Sharing, and then enable Apache by clicking on the Web Sharing box, as shown in Figure 1-3.
You now have an Apache web server serving content from /Users/{username}/Sites.

www.allitebooks.com

http://www.learnhtml5book.com
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

4

Figure 1-3. Enabling Apache in OSX

Remote Environment (Hosting)
If you don’t have a web host for your site, you’ll eventually need to get one. You have plenty to choose
from. In the past I’ve had good luck with Host Gator (http://www.hostgator.com). You can get a site there
starting at around $4 per month for Linux hosting.

Bug and Feature Tracking
Your site will not be perfect at launch, and you’ll want to add features to it over time. For this, I’d
recommend a ticketing and feature-tracking system.

If you want, you can start out with a spreadsheet or a text file, but for more elaborate projects you
can use online sites like:

• http://16bugs.com

• http://www.lighthouseapp.com

Two other options, which even integrate with your version control system, are:

• Trac (http://trac.edgewall.org/)

www.allitebooks.com

http://www.hostgator.com
http://16bugs.com
http://www.lighthouseapp.com
http://trac.edgewall.org/
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

5

• Redmine (http://www.redmine.org/)

Redmine is my current favorite.

Version Control
Every project needs version control software and there are two main version control systems out there.
Basically, the two version control systems do the same thing—they keep track of your code:

• Subversion (SVN) keeps track of all your code in a single repository or server. SVN
has been around a lot longer than Git (the other option), there’s more
documentation, and it’s a little easier to learn and understand. You can find free
online SVN providers including http://www.beanstalkapp.com and
http://www.springloops.com.

• Git keeps track of everything locally and on a server. Git is newer and faster than
SVN but is a little more difficult to understand. There are also free online providers
like: http://www.github.com, and http://www.springloops.com.

If you don’t know either, then pick Git; the investment is well worth it.

Deployments
At some point, you’ll want to push your code to your host. You can do this in one of two ways:

• Manually, by uploading via FTP to your host

• Automatically, from your version control provider via online tools

Springloops (http://www.springloops.com) gives you the SVN or Git version control system, and
then, based on schedule or commit, automatically deploys to your host. This will save you a lot of time
and prevent you from overwriting files accidently.

Editor (IDE or Text Editor)
The editor is where you do all your work in building your site. You can choose to use either an IDE
(integrated development environment) or a text editor.

• An IDE (like Xcode, Eclipse, Dreamweaver, PHPStorm, and RubyMine) has the
added benefits of code/content assist, version control Integration, and color
coding, all of which make your programming easier and you more productive.

• A text editor like TextMate, Vim, or Emacs can have the same features and there
are extensions that allow some to come close to an IDE, but often the learning
curve is a little steeper.

Site Integration
How do you want to integrate with your site? You can do this in one of two ways:

• Fully integrate: Everything all together in the same web project including the
database code, your MVC framework, and your mobile site. The benefits of a fully
integrated approach is you have less JavaScript and can build your pages on the fly.

www.allitebooks.com

http://www.redmine.org/
http://www.beanstalkapp.com
http://www.springloops.com
http://www.github.com
http://www.springloops.com
http://www.springloops.com
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

6

• Service layer integration: You have your mobile site with HTML, CSS, and
JavaScript, and all calls for data and interaction to your MVC framework are done
via Ajax (asynchronous JavaScript and XML).

The benefits of the service layer integration is that you can add different mobile sites optimized for
different browsers without changing your back end. You can also change your back end, for example
from CakePHP to Ruby on Rails, and you won’t need to change your mobile site at all. The last benefit is
that turning your mobile site into a native app will be very easy.

I will use both these approaches for the sample mobile web app and native app. You will see the
benefits of both methods as you progress through the building of your app.

Site Maps
There are two kinds of site maps:

• The first is what a web crawler like Google uses to better index a web site.

• The second is a high-level block diagram or outline of your site that shows all the
pages and how they link together. That’s the site map you need to create before
you start your project.

You can create a sitemap either in a block diagram or with plain text. Sometimes block diagrams are
better for explaining site structure to customers. A text version might look something like this:

• Home

• Page 1 (get data from web API)

• Page 1 Detail 1 (get more data from web API)

• Page 1 Detail 2

• Detail 2 Info

• Page 2

• Contact

• Link to Twitter

• Link to Facebook

• About

Wireframes
A wireframe is a rough sketch of a page or screen without any colors or details. For this I recommend
that you just take a blank iPhone or iPad template and start drawing what you want your app to look like.

Figure 1-4 shows a sample wireframe of a simple mobile web app with tabbed navigation at the
bottom.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

7

Figure 1-4. Sample wireframe

I created the above wireframe using a free Firefox plugin called Pencil.
You can find more about The Pencil Project here: http://pencil.evolus.vn.

Project Tracking and Management
Finally, to put everything together, especially if you’re getting paid by someone to build this mobile web
app, you need a project-tracking and management system. While this isn’t a requirement for any of the
programming in this book, it could aid you in communicating about the development of your
application.

This can be as simple as using a spreadsheet or using a project management software product like
Base Camp (http://basecamphq.com/).

The other tools I mentioned (Redmine, Trac, Springloops, and Lighthouse) also do a good job of
tracking milestones, and some even come close to becoming full project management systems.

Application Components
Now you’re almost ready to start building your mobile web app. But before we write any code, we need
to put all the major parts of your application on the table to see how they fit together.

This will also form the large buckets for your project plan. This will help you estimate how long your
project will take and at the same time give you a product launch checklist.

Your app will have several parts, each of which is detailed below and in Figure 1-5:

• Site core – The HTML pages of your web site

• CSS – The style sheets for your site that will determine it’s look and feel

• JavaScript – The part of your site that allows it to interact with the APIs and to
dynamically pull content from your site’s database and API

http://pencil.evolus.vn
http://basecamphq.com/

CHAPTER 1 ■ GETTING STARTED

8

• External libraries – The parts of your site like a mobile framework, jQuery, or
plugins

• Template components –The parts of your site that are repeated over and over, like
the header and footer and the navigation

• External data –The data your application will use—either on your server or stored
locally on your iOS device

• Phone data –The data from your phone like your GPS or accelerometer data

Figure 1-5. The parts of your mobile web app

Knowing these large buckets of your app beforehand will help you define and plan your project.
Now we are ready to start coding.

Organizing Your Files
If you are working with a web project sometimes your files will be organized automatically for you via
the web framework you’ve chosen. I’ve seen two methods for creating mobile sites:

• One is to give the mobile site its own subdomain like http://m.domain.com. This is
the approach I took with the sample application in this book.

• The other is to have it run off a subdirectory like http://www.domain.com/mobile.

Subdomain (m.domain.com)
Using this structure allows you to create your own stand-alone mobile web application. The files do not
need to mingle with the other files of your app.

http://m.domain.com
http://www.domain.com/mobile

CHAPTER 1 ■ GETTING STARTED

9

Separating your code is important because your mobile web app might be using a different version
of a JavaScript framework like jQuery, and having two versions of the same library on your site isn’t a
habit you want to start.

Subdirectory /m or /mobile
Sometimes you might want to reuse parts of your standard web site within your mobile site, or your
mobile site is so simple that you don’t need to create an entire web application and subdomain. If you
have only a few pages in your mobile site or are experimenting with a few things, then just put your files
in a subdirectory off the main web root.

Using a subdirectory is also more convenient if you want to create a mobile site for iPhone and iPad
but share resources like images, CSS, and JavaScript frameworks from the main site.

Files to Organize
For a static web project there are really only four kinds of files to organize: cascading style sheets (CSS),
JavaScript (JS), images (GIF, PNG, and JPG), and HTML.

To keep things organized I’d create a directory structure like this:

• / - for all HTML files

• /css - for all CSS

• /js - for all JavaScript

• /images - for all images Or, if your application structure is in a subdirectory:/m -
for all HTML files

• /m/css - for all CSS

• /m/js - for all JavaScript

• /m/images - for all images.

How to link your files
You can use two mechanisms for linking files, relative and absolute linking.

• Relative linking uses a reference relative to the current file. For example if you
have an image in /images or /m/images and your html is in either / or /m, you can
create the following tag to reference this file:

• Absolute linking creates two different links:

or

From the above example you can see that relative linking is more flexible if you’ll be refactoring the
entire directory structure like all of the .html, .css and .js together, then you wouldn’t need to make any
changes since everything is relative. But absolute linking is easier to work with if your HTML files exist in
multiple subdirectories.

For example, let’s say you have four files:

CHAPTER 1 ■ GETTING STARTED

10

• /index.html

• /subdir/index.html

• /subdir/subdir2/index.html

• /images/someimage.jpg

If you wanted image tags for the header and everything was relative, your tags would look
like this:

This is a mess if you want to use a common file for the header or navigation. It would be much easier
to use:

for all three images.

What about multiple devices?
This directory structure might work for a single mobile web site, but eventually you may want to manage
multiple devices like an iPhone and an iPad, and you will need a directory structure to facilitate that.

It’s also a little complicated because you need to balance two things code duplication and minimal
regression testing.

Let’s say that you don’t believe in having duplicate copies of code on your site. For example, you’re
using jQuery 1.4 and don’t want to upgrade to a newer version because it’s also used on your main web
site and there’s already a lot of code using it.

So you chug along and build your mobile web site only to find that the mobile framework you’ve
chosen works best only with jQuery 1.6. What do you do?

• Option A: You live with two versions of jQuery on your site.

• Option B: You replace 1.4 with 1.6 and then retest everything to ensure that
nothing broke.

• Option C: You replace 1.4 with 1.6 and don’t retest because it shouldn’t break
anything.

Option A is the path we’ll take for separate devices: an iPhone and an iPad. Option A has a directory
structure that looks like this:

• /, /js, /css, /images – for all common assets

• /iphone, /iphone/css, /iphone/js, /iphone/images – for iPhone-only assets

• /ipad, /ipad/css, /ipad/js, /ipad/images – for iPad-only assets

This option allows for isolation and prevents large regression tests when working to enhance your
site for a single device. The only thing it adds to the project is a few more files and, if they are needed, a
few additional copies of libraries.

Now that we have a directory structure in mind, let’s see how to make a change to your main web
site’s home page or root directory to point the mobile device to your new mobile web site.

CHAPTER 1 ■ GETTING STARTED

11

Browser Redirection
When iPhone or iPad users come to your site, you don’t want them to have to search for the mobile site
button and you don’t want to rely on them to know your mobile URL. To address this, you need to
automatically send them there.

You can do this via Apache or JavaScript.

Companion Site Reference

Example 1-1: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter1/redirect.php

Apache Redirection
Apache redirection first looks at the USER_AGENT sent in the HEADER of the request and then looks for a
cookie if the user requests to be taken to the full site and not the mobile site. I’ve added the cookie
because sometimes your mobile web site user might want to visit the normal, non-optimized site.

This method is preferred over JavaScript because it’s done outside of code and you don’t need to
worry about overwriting or breaking it by mistake.

The example below redirects your user to the new domain m.domain.com, unless the nomobile cookie
is set.

RewriteEngine On
RewriteCond %{HTTP_USER_AGENT} "iphone|ipod|ipad|googlebot-mobile" [NC]
RewriteCond %{HTTP_COOKIE} !^.*nomobile=true.*$
RewriteRule ^.*$ https://m.domain.com [R=301]

The next example redirects your user to the /m directory of your site, unless the nomobile cookie is set.

RewriteCond %{REQUEST_URI} !^/m/.*$
RewriteCond %{HTTP_USER_AGENT} "iphone|ipod|ipad|googlebot-mobile" [NC]
RewriteCond %{HTTP_COOKIE} !^.*nomobile=true.*$
RewriteRule ^(.*)$ /m/ [L,R=301]

JavaScript Redirection
If you don’t have access to the Apache config, or mod_rewrite is not enabled on your server, you can use
client-side redirection, as shown here. Just make sure to place this code in the <head> of your web page.

<script type="text/javascript">
 var isiPhone = navigator.userAgent.match(/iPhone/i);
 var isiPod = navigator.userAgent.match(/iPod/i);
 var isiPad = navigator.userAgent.match(/iPad/i);
 // check for mobile iOS device
 if(isiPhone || isiPod || isiPad) {
 if (!bypassRedirect()) {
 alert("redirecting user here");
 // window.location = '/m';

http://www.learnhtml5book.com/chapter1/redirect.php
https://m.domain.com

CHAPTER 1 ■ GETTING STARTED

12

 } else {
 alert("user bypass message is true");
 }
 } else {
 alert("not a mobile device");
 }

 function bypassRedirect() {
 return false;
 // this logic will be added later in Chapter 12.
 }
</script>

Next, let’s look at some vital tags that we’ll use in our mobile app later in the chapter—and some
that we won’t use in this chapter, but that you may find useful in the future.

<meta>
Mobile Safari uses a few specific <meta> tags to optimize the mobile browser—things like viewport,
scrolling, and whether or not to hide the address or status bar.

Here’s a short description and the syntax.

apple-mobile-web-app-capable
Sets whether the web application runs in full-screen mode.

• Syntax:

<meta name="apple-mobile-web-app-capable" content="yes">

• Description: When set to yes, the web application runs in full-screen mode
outside of Safari. You also need to have saved this web app on the home screen of
your iOS device.

apple-mobile-web-app-status-bar-style
Sets the style of the status bar if the web application is run in full screen mode.

• Syntax:

<meta name="apple-mobile-web-app-status-bar-style" content="black">

• Description: Optional values are default, black, and black-translucent.

format-detection
Automatically detects the format of telephone numbers in a web page.

• Syntax

<meta name="format-detection" content="telephone=no">

• Description: This is enabled by default; to disable this, set it to no.

CHAPTER 1 ■ GETTING STARTED

13

viewport
The viewport is the area in a browser that contains the content of a web page; this area can be larger or
smaller than the visible area. As it contains the contents of the web page, the size of the viewport affects
how the contents are displayed and how text wraps. I’ll show you how to work with the viewport in the
next section.

The viewport meta tag sets the width and scale of the viewport. Normally, the iPhone will try to
format the entire web site on the screen, and you have to zoom and scroll to read it on your mobile
device. Using a combination of the values below, you can change how the site is rendered.

• Syntax

<meta name="viewport" content="width=device-width">

• width: The width in pixels. The default is 980.

• height: The height in pixels. The default is calculated based on the width.

• initial scale: The default is calculated to fit the entire web page in the visible
area.

• minimum-scale: The default is .25.

• maximum-scale: The default is 1.6.

• user-scalable: Determines whether a user can zoom in and out.

• device-width & device-height: The width and height of the device in pixels.

Screen Size and Viewport
One thing you’ll note about the different screen sizes and viewports of the iPhone, iPhone4, and iPad is
the DPI. While your iPhone4 with retina display has a higher resolution and DPI, your web site is still
best viewed at 320 480. The iPad is optimized for the same working area as an older laptop or PC. I’ll
talk more about scaling for the retina display in Chapter 3.

While you might think you have the entire pixel size to work with, you really don’t because the
address, status, and button bars take up substantial room. In portrait orientation on an iPhone, the
address and status bars take up 80 pixels at the top, and the button bar takes up 44 pixels at the bottom,
so the working area is smaller than the actual screen, as summarized in Table 1-1.

Table 1-1. Example Screen Size Matrix

Device Resolution DPI Working Area

iPhone 320 480 (portrait) 163dpi 320 356

iPhone4 640 960 (portrait) 326dpi 640 712

iPad 1024 768 (landscape) 132dpi 1024 674

The various bars take up slightly less room in landscape orientation, so here’s an example of an
iPhone turned on its side. The actual pixels you have to work with are 480 208. That’s 80 pixels for the
address and status bars and 32 pixels for the button bar, as shown in Figure 1-6.

CHAPTER 1 ■ GETTING STARTED

14

Figure 1-6. Landscape screen real estate

Let’s see how this affects a mobile web page: When viewing a web site on the iPhone in full screen
mode (no <meta> viewport is set), you get a screen like the one shown in Figure 1-7.

Companion Site Reference

Example 1-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter1/fullscreen.php

http://www.learnhtml5book.com/chapter1/fullscreen.php

CHAPTER 1 ■ GETTING STARTED

15

Figure 1-7. Full screen example (no viewport tag used)

The iPhone has a default viewport of 980 pixels. So if the site you are viewing is larger than that, it
will zoom out to fit, as is the case in Figure 1-7. If the site you are viewing is optimized for a smaller
width, then you might need to zoom in to read the site.

This means that a 320-pixel iPhone showing 980 pixels of space has a zoom level of .3.
All of this kind of calculation can give you a headache. Fortunately, there’s a way around this, and

that’s to specify the viewport the device should use.
Because we want to build a site optimized for mobile browsers, we’ll add the following meta tag and

change how the page is viewed and zoomed, with the results shown in Figure 1-8.

<meta name="viewport" content="width=device-width" />

CHAPTER 1 ■ GETTING STARTED

16

Companion Site Reference

Example 1-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter1/viewport.php

Figure 1-8. Same page with viewport <meta> tag

This takes care of auto-sizing your web site. All you need to do now is make sure your images and
styles support this height and width.

www.allitebooks.com

http://www.learnhtml5book.com/chapter1/viewport.php
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

17

The Sample App
This book follows the process of creating a mobile web site and iPhone app for www.grandviewave.com
(Grandview Avenue dot com). At the end of each chapter I’ll have a Putting It All Together section where
I’ll discuss my sample app and how to use the knowledge in that chapter to enhance and modify a real-
world application.

Grandview is a small community a few miles from downtown Columbus and The Ohio State
University. It has a main drag called Grandview Avenue on which there are 50-plus businesses ranging
from dance studios and movie theaters to coffee shops and bars.

Living just a few blocks away I always wanted to have a way to contact a local restaurant for
reservations, or I’d want to know what band was playing at Grandview Café that evening. But none of the
social apps seemed to have the data all in one place or with sufficient detail to get this information. So I
created www.grandviewave.com and a simple iPhone app called Grandview Ave.

Figure 1-9. The web version of grandviewave.com

http://www.grandviewave.com
http://www.grandviewave.com

CHAPTER 1 ■ GETTING STARTED

18

I also need to mention that I had a lot of help on the project from a local business on Grandview
Avenue called Iannarino Dexter Creative. Joe helped me spread the word about the site and app, Mike
helped with the logo design, and Kate helped design the site.

Until this year the site was rather basic and just listed names of businesses and had a few features
like Near Me using GPS. But upon deciding to write this book, I thought why not enhance Grandview Ave
and at the same time provide an app and framework for others to use to build their own community
sites. You can see the web version in Figure 1-9.

You can see from the web site it’s rather simple. It has a business directory, events, news, and
specials as well as information about the site and parking. Throughout this book we are going to
enhance this site and reinvent the mobile experience. In fact, we’re going to start from scratch
completely. Table 1-2 shows the various tools I used when creating the mobile web app.

Table 1-2. Project Checklist

Project Item Sample App Solution

Hosting Local and VPS (virtual private server)

Bug and feature tracking Redmine

Version control Subversion (SVN)

Deployments Custom scripts

Editor Textmate and PHPStorm

Data and site integration Service calls via Ajax & JSON

Sitemap To be done later

Wireframes To be done later

Project tracking Spreadsheet

Because we’re starting from scratch, the first development version of the mobile app you’ll see will
be very plain (see Figure 1-10). It will have a filler image, followed by normal-looking HTML with a
default font.

The only thing applied will be the <meta> viewport discussed earlier in this chapter. It will have no
HTML5, JavaScript, CSS, or anything resembling an iPhone app. Hopefully, this is exactly what you are
starting with since you’re learning how to build an app from scratch.

CHAPTER 1 ■ GETTING STARTED

19

Figure 1-10. Skeleton of new site for http://www.grandviewave.com/m

This site will have the directory structure shown in Figure 1-11.

Figure 1-11. Directory structure of m.grandviewave.com

Since we are going to build the app as we go, this content will gradually change and might grow
rather large, so you won’t see some of the code from the previous sections described too much. I’ll
include the <meta> information below, but you might not see that same header markup in later chapters.

http://www.grandviewave.com/m

CHAPTER 1 ■ GETTING STARTED

20

Companion Site Reference

Example 1-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter1/samplehome.php

<html>
<head>
 <title>Sample Header?</title>
 <meta name="viewport" content="width=device-width" />
</head>
<body>
<h1>Sample Header?</h1>
<hr><div></div>
<p>Navigation?</p>

 Businesses
 Near Me
 Sales & Specials
 Parking
 The Avenue Hunt
 Audio & Video
 About
 Contact

</body>
<html>

Now if you look at this page it’s like you’d expect: just regular HTML. I recommend you open up your
favorite editor and create a simple page that you want to be the base for your new mobile web app.

Summary
The main thing I want you to take away from this chapter is knowing where to start and creating a very
simple viewported web site using nothing more than an extra <meta> tag and simple HTML.

To save you some time later on, I showed you a few ways to set up your project and organize your files.
Finally, I talked a little bit about a sample application we are going to build through the chapters in

this book.
Before moving on to the next chapter, you should know how to do the following:

• Configure Mobile Safari for development.

• Create a plan for your mobile web app, including a local environment & version control.

• Know if you’re going to use a subdomain or subdirectory.

• Know how to redirect a user from the main site to your mobile site.

• Know how to use the <meta> tags to create a viewport for your iOS device.

I also introduced you to the sample app I’m going to create throughout this book.
Next I’ll give a short overview of HTML5—mainly the parts you’ll want to use to start building your

own web app.

http://www.learnhtml5book.com/chapter1/samplehome.php

C H A P T E R 2

■ ■ ■

21

HTML5 in Short

This chapter is not a complete reference on HTML5, but it teaches you enough about HTML5 to be
dangerous.

This chapter also does not go into detail on some of the most popular elements of HTML5 such as
<canvas>, <audio>, and <video>. Those elements require an entire chapter of discussion, which will come
later in this book.

Instead, this chapter provides an overview of some HTML5-based APIs including web workers, web
sockets, and geolocation.

So what do I talk about in this chapter? Mainly three things:

• What HTML5 is and isn’t

• The new HTML5 structural elements and attributes

• The new HTML5 form input types and attributes

Then I show you how I applied those new features to my sample app, Grandview Avenue, to show
you how you would use some of these HTML5 features in a real-world application. Figure 2-1 shows the
official logo of HTML5.

Figure 2-1. Official HTML5 Logo

CHAPTER 2 ■ HTML5 IN SHORT

22

What Is HTML5?
First and foremost HTML5 is still in DRAFT state. That means that nothing I tell you today is 100%
guaranteed to be in the official specification when it’s released. That being said, all of the current
browsers, Internet Explorer, Firefox, Chrome, Safari, and Opera, are all racing as fast as they can to get as
much of the HTML5 “DRAFT” in their desktop and mobile browsers.

If you ask someone about HTML5 you’ll either hear something about the official specification by
the W3C or you’ll hear about some of the features that are new and cool but not yet finalized, such as
web workers.

I talk about all of the new cool stuff and am not completely strict on what’s in the HTML5
specification. But ironically I think the best way to tell you about HTML5 is to start by telling you what
it’s not.

It’s Not XHTML
This means that it does not need to follow XML validation as the following statements are equivalent.

1: <div id=container>This is a div
</div>

and

2: <div id="container">This is another div
</div>

So although clearly statement 1 would not pass an XML/XHTML validation, HTML5 ensures that
both of these statements are rendered in exactly the same way.

It’s Not HTML4 +1
You have to admit the previous versions of HTML and XHTML were a little lofty in their goals. The idea
was a standards body would create a specification for how to mark up a page and all the browser
vendors would follow this standard 100% and we’d all be living in the land of unicorns and rainbows
right? Wrong!

What happened was that you’d end up with one browser that would implement some subset of the
specification, and create its own stuff. Then you’d get another browser to implement a different subset
of the specification and add its own stuff, which basically vetoed the W3C’s specification.

HTML5 needed to start and work differently. So what happened? Basically they started the other
way around. They went to each of the major browser vendors, Microsoft, Mozilla, Google, Apple, and
Opera and asked, “What do you want in the specification? What can you all agree on?” They ended
up with:

• A set of tags

• A set of attributes

• A set of new form input types and form attributes

• A set of new APIs

So now you could still have the browser vendors going out doing their own thing, but if they didn’t
agree on the tags/attributes/APIs it would not go into the specification. That meant that the
specification was now supported by everyone.

4

CHAPTER 2 ■ HTML5 IN SHORT

23

HTML5 Is Not Just Markup
HTML5 is not just tags but it’s also a set of JavaScript APIs to provide a richer user experience. The APIs
also tried to enhance the core foundations of the browser APIs. So rather than having to use a JavaScript
framework for selector features, the document now has selectors. Now rather than having to access
native custom written APIs for geolocation, the document has functions such as getCurrentPosition.

Here’s a short summary of the new API features you will have with your new HTML5 document.

Selectors
This is document.getElementById on steroids, or all the goodness of jQuery at your fingertips in native
JavaScript. By expanding the criteria in which you can select a document element, you make it much
easier to access the elements in your page either individually or grouped.

<script type="text/javascript">
var elts1 = document.getElementsByClassName("someclass");
var elts2 = document.querySelectorAll("ul li:first-child");
var elt1 = document.querySelector("#someid");
</script>

Canvas and Drawing
This gives you the ability to draw in the page. I talk more about this element in Chapter 9. This example
draws a red square.

Companion Site Reference

Example 2-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter2/canvas.php

<canvas id="simplecanvas"></canvas>
<script type="text/javascript">
var canvas = document.querySelector('#simplecanvas');
var ctx = canvas.getContext('2d');
ctx.fillStyle='rgb(255,0,0)';
ctx.fillRect(0,0,100,100);
</script>

Media Playback
This gives you greater control over the audio and video playback. I talk more about this in Chapter 10.
This example loads a test video and plays it within the video tag.

http://www.learnhtml5book.com/chapter2/canvas.php

CHAPTER 2 ■ HTML5 IN SHORT

24

Companion Site Reference

Example 2-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter2/video.php

<video width="400" height="225" controls="controls" id="myvid">
<source src="grandviewave-test.m4v" type="video/mp4;" >
</video>
<script type="text/javascript">
var v = document.querySelector('#myvid');
v.play();
</script>

Offline Storage
This does not have a JavaScript component, but it allows images or other assets to be stored offline, for
example, by adding this to the <html> tag:

<html manifest="/cache.manifest">

your browser receives a manifest file which looks like:

CACHE MANIFEST
/css/grandview.css
/js/grandview/js
/images/grandview.png

allowing these files to be retrieved locally in the event that you’re offline. I talk more about this feature in
Chapter 12.

Local and Session Storage
Local and session storage allows you to store items in your web browser as Name–Value pairs versus an
SQL database as in Web SQL Storage. You can think of this as a really powerful client-side cookie.

Local storage stores data forever until you delete it. Session stores it for one session. Both have
methods for setItem and removeItem allowing you to store and retrieve. I talk more about this in
Chapter 12.

Document Editing
Editing elements is now very easy and you do this by just specifying the attribute:

contenteditable="true"

This allows a particular part of the page to be editable but by itself it’s rather limited, so to make use
of it you need to access the element’s edited content.

http://www.learnhtml5book.com/chapter2/video.php

CHAPTER 2 ■ HTML5 IN SHORT

25

Companion Site Reference

Example 2-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter2/edits.php

So if you’re editing the following markup, all you need to do is click on the content section, then the
“Save” button.

<div id="test" contenteditable="true">This is some silly text.</div>
<button onclick="save()">Save</button>
<script type="text/javascript">
function save() {
var content = document.querySelector("#test").innerHTML;
alert(content); // or do something else
}
</script>

Document Messaging
Prior to HTML5, web browsers prevented sites from accessing each other if they had different origins or
were on different domains (aka “Cross-Site Scripting”). This was a preventive security measure.

This means that one part of the document that lived on www.domain1.com could not talk to a
document that lived on www.domain2.com. The cross-document messaging API in HTML5 allows this
while also providing security. I talk more about document messaging in Chapter 14.

Web Sockets
Web sockets are amazing. They eliminate the need for polling so that if, for example, you have some data
that are changed on the server, instead of polling the server every few seconds or minutes to look for an
update, your server can send a message to the client with the update (note: link only for example
purposes):

var ws = new WebSocket("ws://m.grandviewave.com/test");
ws.send("anything new?");

Web sockets will allow your mobile web application and your server to communicate in real time. I
talk more about this in Chapter 14.

Drag and Drop
HTML5 provides the ability to drag and drop elements by adding two attributes, draggable and dropzone.
Unfortunately it’s not supported by Mobile Safari. My guess is that it was difficult to get this to work with
a multitouch interface and it works best with a mouse and buttons.

http://www.learnhtml5book.com/chapter2/edits.php
http://www.domain1.com
http://www.domain2.com

CHAPTER 2 ■ HTML5 IN SHORT

26

History Management
Prior to HTML5 the best way to know your history in a rich (Ajax-based) web page was to poll the
location.hash property on a timer.

HTML5 now provides an API that allows you to access the location.hash and in fact gives you a more
robust mechanism for accessing the entire history of a session.

The event fires when the hash has changed as onHashChange. The methods added to the history
object are pushDate() and replaceState() allowing you to put items into and retrieve items from the
history object. I talk more about this in Chapter 14.

Microdata
Microdata are used to give semantic meaning to a web page. For example, how’s the web or a system
supposed to know that the text on a page is an “Event” that takes place at a specific time and place? Well
it can’t, unless you parse through and look for data and times and geolocation data. But then what might
work for one website won’t work for another because the HTML would be in a different format.

Microdata add the following attributes to provide this kind of semantic meaning to the content on a
page: itemscope, itemtype, itemid, itemprop, and itemref. Unfortunately Microdata are not supported in
Safari Mobile at this time.

Geolocation
Geolocation is the ability of your mobile browser to identify its position using a GPS (global positioning
system). The mechanism is basically defined by the following example.

navigator.geolocation.getCurrentPosition(successFunction, errorFunction);

function successFunction(pos) {
 // do something here with pos
}

function errorFunction(err) {
 // do something with the error
}

I talk extensively about geolocation and interaction with Google Maps in Chapter 7.

File API
HTML5 now provides a mechanism for working with local files. Specifically the specification talks about
the following kinds of local files.

• FileList: This is an array of files in the local system.

• Blob: This represents raw binary data.

• File: This is read-only and is a collection of information attributes such as name
and date of last modification.

• FileReader: Provides methods to read a File or Blob.

• FileError: Provides for error conditions that occur when using the File API.

Unfortunately Mobile Safari does not support the File API at this time.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ HTML5 IN SHORT

27

Web Workers
Web workers are used for JavaScript-based threading and running JavaScript in the background. The
worker interface has two methods, terminate() and postMessage(). Let’s say I wanted to load some data
in the background; I might create a worker like this:

<script type="text/javascript">
var dataWorker = new Worker('data.js');
dataworker.onmessage = function(event) {
 // enable navigation
};
</script>

I talk more about web workers in Chapter 14.

HTML5 Support
If you plan on using HTML5 for all mobile browsers, know that all browsers don’t support HTML5 in the
same way as Mobile Safari. Mobile Safari on the iPhone, iPod Touch, and iPad don’t completely support
everything that’s in HTML5 either. Table 2-1 gives a summary. Although they grade out at over 90% you
might want to keep some of these things in mind when designing your mobile web app.

Table 2-1. HTML5 Features with Limited or No Support in Mobile Safari

Limited / No Support Description
Audio and Video Codecs No support for Ogg, WebM

Text Markup Missing support for certain elements at this time

Form Attributes Missing support for certain input types and related tags

Drag and Drop Touch interface not conducive to Drag/drop interactions built for mouse

Microdata No support at this time

3D Canvas Battery and resource constraints

Files API No support at this time

Webcam No support at this time

Web Notifications No support at this time

For a complete list of how much HTML5 support you have in your browser, go to HTML5 Test
(http://html5test.com), where it will tell you how much of HTML5 tags and APIs are supported.

You can also stay tuned for later versions of iOS as support for many of these features will be
available.

http://html5test.com

CHAPTER 2 ■ HTML5 IN SHORT

28

HTML5 Overview
This is a quick-reference guide to how to use HTML5 for your mobile website.

DOCTYPE and UTF-8
To use HTML5 all you need are the following three lines.

<!doctype html>
<html>
<meta charset="utf-8">

Because you can also use <meta charset=utf-8 /> or even <meta CHARSET='utf-8'>, your
programming style is important for readability and maintainability. So pick a style and stick with it.

New Attributes
These are some new global attributes added to HTML5; you can add these attributes to any element.

• Contenteditable ="true|false": Allows you to a make an element editable.

• contextmenu="menu_id": Associates the element with a menu element.

• draggable="true|false|auto": Specifies whether you can drag an element.

• dropzone="copy|move|link": Specifies what happens when an item is dragged on
this element.

• Hidden: Hides an element.

• spellcheck="true|false": Specifies whether an element needs its spelling or
grammar checked.

New Structural Tags
All of these new tags are designed to give more semantic meaning and replace all of the custom CSS
classNames and IDs given to <div> tags.

<article>
This is like a <div> or <section> element but can be used for content like a blog entry or in a forum post
to give more semantic meaning.

<article>
 <h1>This is an article.</h1>
 <p>Article Content...</p>
</article>

CHAPTER 2 ■ HTML5 IN SHORT

29

<aside>
This is content that is aside from the content in which it’s placed. It should be related to the surrounding
content.

<aside>
 <p>This is content aside from the main part.</p>
</aside>

<details>
This is used to describe the parts or details of a document (not currently supported by Mobile Safari).

<details>
 <p>All rights reserved.</p>
</details>

<figure> and <figcaption>
This is an image within a document and its caption.

<figure>
 <figcaption>This is a nice picture!</figcaption>

</figure>

<footer>
This is the footer of a document.

<footer>
 Footer of page.
</footer>

<header>
And this is the header of a document.

<header>
 Header of page
</header>

<hgroup>
This is a section of headings grouped together: <h1>, <h2>, and so on.

<hgroup>
 <h1>Heading1</h1>
 <h2>Heading2</h2>
</hgroup>

<mark>
This is text that should be highlighted.

<p>The quick brown <mark>fox</mark> jumped over the lazy dog.</p>

CHAPTER 2 ■ HTML5 IN SHORT

30

<nav>
This is the navigation section of a document.

<nav>
 Site navigation
</nav>

<progress>
This is an indicator of work in progress (not supported by Mobile Safari).

<progress value="2" max="5">
</progress>

<ruby>
These are Chinese notes or characters (limited support).

<rp>
This is what to show browsers instead of the <ruby> element.

<rt>
This is used for explanation of the ruby element.

<section>
This is a section of a document such as <header> or <footer> but more generic.

<section>
 <h1>This is a section.</h1>
 <p>Section Content...</p>
</section>

<time>
This is used for defining a time or date (not supported).

<p>Hours of operation are from: <time>10AM<time> to <time>10PM</time>.</p>

<wbr>
This is used for defining a good place for a word break.

<p>The name of the book web site is http://www.<wbr>learnhtml5book<wbr>.com.</p>

Figure 2-2 shows a simple page built from some of these new structural elements. I’ve used the
following bit of CSS to highlight the different elements.

<style>
header,nav,footer,article,section {margin:5px;}
header,nav,footer {border:1px solid #000;}
section {border:1px dotted green;}
</style>

CHAPTER 2 ■ HTML5 IN SHORT

31

Companion Site Reference

Example 2-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter2/structure.php

Figure 2-2. New Elements with Simple CSS

New Media Tags
Audio and video, along with <source> and <embed>, get their own chapter later in the book (Chapter
10), so I don’t say much about them here. I just quickly summarize the files and attributes they support.

http://www.learnhtml5book.com/chapter2/structure.php

CHAPTER 2 ■ HTML5 IN SHORT

32

<audio> and <video>
The <audio> tags support .wav, .mp3, and .acc files, and the attributes autoplay, controls, loop, preload,
and src. iOS supports only MPEG4 and H.264 video codecs, but it supports all these attributes: audio,
autoplay, controls, height, width, loop, poster, preload, and src.

<source>
Used in conjunction with either the <audio> or <video> tags, this child element helps to define the source
of the media. It has the attributes media, src, and type.

<embed>
This tag defines embedded content such as a .swf file. It has the attributes height, src, type, and width.

New Form Tags
Here’s a list of some of the new form tags available to you in HTML5.

<datalist>
The datalist element defines a list of options. You can think of this as a predefined auto-complete (not
supported).

<datalist id="categories">
<option value="Restaurant">
<option value="Personal Services">
<option value="Night Life">
</datalist>

<fieldset>
This defines a logically grouped set of field elements (limited support).

<form>
<fieldset>
<legend>Form:</legend>
 Name: <input type="text">
 Email: <input type="text">
</fieldset>
</form>

<keygen>
This generates a public–private key pair.

Encryption: <keygen name="securityKey" />

<meter>
This defines a measurement within a known range (not supported).

<meter value="5" min="0" max="10">5 of 10</meter>

CHAPTER 2 ■ HTML5 IN SHORT

33

<output>
This represents the result of a calculation.

New Form Input Types
There is a whole range of new input types provided by HTML5.

type='tel'
This allows for the input of a phone number. On the iPhone it will also display a phone dial pad for
input.

Tel: <input type="tel" required="required">

type='search'
This is used for search fields such as Google or site search.

Search: <input type="search" required="required">

type='url'
This is used for fields that should contain a URL address.

URL: <input type="url" required="required">

type='email'
This is used for fields that should contain an email address.

Email: <input type="email" required="required">

type='datetime'
This is used for fields that should contain a date and time.

DateTime: <input type="datetime" required="required">

type='date'
This is used for fields that should contain a date. What’s really nice is that in some of these fields Mobile
Safari will provide you automatic date select widgets, as you can see in Figure 2-3.

Date: <input type="date" required="required">

CHAPTER 2 ■ HTML5 IN SHORT

34

Figure 2-3. Example of Date Input Type

type='month'
This is used for fields that should contain a month.

Month: <input type="month" required="required">

type='week'
This is used for fields that should contain a week (no customized user-interface).

Week: <input type="week" required="required">

type='time'
This is used for fields that should contain a time.

Time: <input type="time" required="required">

CHAPTER 2 ■ HTML5 IN SHORT

35

type='datetime-local'
This is used for fields that should contain a time in the local time zone of the user.

DateTime: <input type="datetime-local" required="required">

type='range'
This is a slider used for fields that are within a numerical range.

Range: <input type="range" required="required">

type='color'
This is used for fields that should contain a color.

Color: <input type="color" required="required">

When you put all these form elements together you get the following sample page. Most of these
fields look like <input type="text">, however, from Figure 2-3 you can see that there’s sometimes a
custom user-interface designed to allow for easier input.

Sample Form Code
Here’s an example of a form using the new input types. This form will prompt you for valid inputs (such
as a valid URL), but doesn’t do anything with the data.

Companion Site Reference

Example 2-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter2/form.php

<form id="test" action="form.php" >
Number: <input type="number" name="number" placeholder="Enter a number"
 autofocus="autofocus" required>

Email: <input type="email" required="required" placeholder="Enter an email">

URL: <input type="url" required="required">

Date: <input type="date" required="required">

Week: <input type="week" required="required">

Month: <input type="month" required="required">

DateTime: <input type="datetime" required="required">

Time: <input type="time" required="required">

Range: <input type="range" required="required">

Search: <input type="search" required="required">

Tel: <input type="tel" required="required">

<input type="submit">
</form>

http://www.learnhtml5book.com/chapter2/form.php

CHAPTER 2 ■ HTML5 IN SHORT

36

Figure 2-4. All form elements

Additional Form Element Attributes
HTML5 provides some useful additional attributes for the input types in your forms (see Figure 2-4). For
example, this is the markup for an email input type with autofocus and placeholder text:

Email: <input type="email" required="required" placeholder="Enter your email"
 autofocus required>

These new attributes assist in form behavior and form validation.

• autocomplete: Specifies that the field should have an autocomplete function

• autofocus: Specifies that the field should be focused on

• loadform: Specifies one or more forms to which the field belongs

• formaction: An override for the action property of the elements form

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ HTML5 IN SHORT

37

• formenctype: An override for the type property of the elements form

• formmethod: An override for the method of the elements form

• formnovalidate: An override of the elements form telling it not to validate

• formtarget: An override from the elements form specifying a different target

• height and width: Used in conjunction with the image input type, specifying its
height and width

• list: Used in conjunction with the datalist field, specifying the ID of the datalist

• min, max, and step: These are used to specify restrictions to the input types
containing numbers or dates

• multiple: Like the select tag, other input types such as input type=file can now
contain multiple values so that multiple files can be uploaded

• novalidate: Tells the form not to validate on submission

• pattern: A regular expression pattern to be used when validating a particular
input type

• placeholder: Placeholder text instead of a blank field

• required: Tells the form that the current element is required and must be
validated prior to submission

Removed Tags
I wrap up this quick reference to HTML5 with a list of some of the tags that have been removed from the
HTML specification. To be honest, some of them are tags I’ve never even used!

• <acronym>

• <applet>

• <basefont>

• <big>

• <center>

• <dir>

•

• <frame>

• <frameset>

• <noframes>

• <strike>

• <tt>

• <u>

• <xmp>

CHAPTER 2 ■ HTML5 IN SHORT

38

Choosing HTML5 Features to Use in Your Apps
The main thing to remember about HTML5 is that it’s still a draft. Although most of the elements and
APIs surrounding the HTML5 specification are still under review, a vast majority of everything you see
today will be there when it becomes official.

Because browser vendors have the ultimate veto power of what gets in the spec, I would look to
future browser releases and their support of certain HTML5 features as a means of determining whether
you should implement that particular part of the spec.

Putting It All Together
This chapter just focused on structural and form elements, and so that’s what I created in the sample
app to show you how you might use some of these elements in a real-world project.

I left the sample app with a standard viewport HTML page, but there was no DOCTYPE, or HTML5-
based structural elements. The header was:

<html>
<head>
<title>Sample Header?</title>
<meta name="viewport" content="width=device-width" />
</head>
<body>

But now with our new HTML5 tags, that page looks a little different.

<!doctype html>
<html>
<head>
<title>Sample Header?</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width" />
</head>
<body>

This now tells our browser to start rendering the page with HTML5 specific tags. This header
appears in the source code for every example in the book, so I just assume you’ve got it and I won’t
repeat it each time I start a new example.

Adding the New Structural Elements to the Homepage
The only part of the HTML5 spec I currently use in the sample app is the new structural elements;
specifically, I use these new elements in my mobile app:

• <header>: For the header of the app.

• <nav>: For the site navigation. I think I’ll use two kinds of navigation, in-page list
navigation and tabbed navigation (discussed in Chapter 6).

• <footer>: For the site footer.

• <section>: For the sections of the page.

• <figure> and <figcaption>: I use these for the photos on the site of the businesses
or of the events.

CHAPTER 2 ■ HTML5 IN SHORT

39

Here is the markup for my sample home page so far, including these new elements.

<!doctype html>
<html>
<head>
<title>Sample Header?</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width" />
<link rel="stylesheet" href="css/chapter2.css" type="text/css" />
</head>
<body>
<header>
<h1>Sample Header?</h1>
</header>
<section>
<div></div>
</section>
<nav>
<p>Navigation?</p>

Businesses
Near Me
Sales & Specials
Parking
The Avenue Hunt
Audio & Video
About
Contact

</nav>
<footer>
Nothing Yet
</footer>
</body>
<html>

So although not that impressive, it gives us the hooks we need for styling in the next chapter and
functionality throughout the rest of the book.

Next I want to have a way to capture email addresses on the new app. So for that I use the email type
and I also want to perform some basic validation.

A Sample Contact Form with Validation
The form uses just the email type, but I also use required and placeholder attributes. I could do more
with the form upon validation, but for now I just want to print an alert on the page.

<form id="test" action="stay.php" >
Email: <input type="email" required placeholder="Enter an email">

<input type="submit">
</form>
<script type="text/javascript">
 var f = document.querySelector("form");
 f.onsubmit = function() {

CHAPTER 2 ■ HTML5 IN SHORT

40

 if (f.checkValidity()) {
 alert("form ok");
 } else {
 alert("form not ok");
 }
 };
</script>

Chapter Summary
This chapter talked about three major areas of HTML5:

• API Overview: These are the new JavaScript APIs available to you including
Geolocation, web workers, web sockets, and so on.

• Structural Elements: Items intended to replace CSS IDs and ClassNames, such as
<header>, <footer>, <section>, and so on.

• Form Input Type Attributes: These are extensions of the <input> tag to include a
broader form datatype including date, email, range, and so on.

There are other parts of HTML5 that I only mentioned briefly because I go over those in greater
detail in later chapters. They include:

• Geolocation (Chapter 7)

• Canvas (Chapter 9)

• Audio and video (Chapter 10)

• Offline apps and local storage (Chapter 12)

• Web workers and web sockets (Chapter 14)

I also updated the sample app to include the basic HTML5 structural elements, started to sketch out
the home page, and added a form with basic form processing.

Before moving on to the next chapter you should know how to do the following.

• Know how make your document an HTML5 document with the DOCTYPE.

• Be able to create and use HTML5 structural elements and attributes.

• Be able to create and use HTML5 form input types and attributes.

• Know enough about the API components to start thinking of how you want to use
these features in your mobile web app.

Next, I discuss how to make your app look like a native iPhone app.

C H A P T E R 3

■ ■ ■

41

CSS3 and iOS Styling

If you want your mobile site to look like a native app you’ll need to spend some time learning the new
features of CSS3. In particular there are new features that allow your lists to take on a native look and feel
and new features to create awesome buttons as well as novel ways to use backgrounds or create
stunning effects.

One way to create these effects is with query selectors and learning how to optimize your CSS for
Retina Displays or optimizing for orientation. You might even want to be able to save your web
application to the home screen of your iPad or iPhone.

Because CSS3 is a lot different than CSS1 or CSS2 I spend a little bit of time telling you about the
differences. This will allow you to navigate the documentation and specification on the web to find
exactly what you need if you don’t find it here.

What is CSS3?
First and foremost CSS stands for cascading stylesheets.

CSS Level 1 (or CSS1) was first published in December of 1996. This version of the CSS is no longer
maintained.

CSS Level 2 (or CSS2) was first published in 1998 and is a superset of CSS1; it added features
including positioning and z-index. Again this version of the CSS is no longer maintained.

CSS Level 2 revision 1 (or CSS2.1) was first published in 2005. It was only published as a
recommendation on June 7th, 2011.

CSS Level 3 (or CSS3) is a little different. It uses CSS2.1 as its core and builds upon this core module
by module rather than an entire set of specifications.

For a complete list of CSS modules you can visit the W3C here:

http://www.w3.org/Style/CSS/current-work

We are talking about only the following modules for this book.

• Media Queries

• Backgrounds and Borders

• Font

• 2D/3D Transformations

• Transitions and Animations

• Text Effects

• Overflow

http://www.w3.org/Style/CSS/current-work

CHAPTER 3 ■ CSS3 AND IOS STYLING

42

CSS Basics
Before we talk about anything new there are a few fundamentals we need to take care of, such as how to
place CSS on your site and how to select specific styles for specific devices (iPhone or iPad).

Using Your CSS
Question: Do you embed your CSS in your page or externalize it (put it in a separate .css file)?

Answer: Sometimes for testing I put the CSS in my page where I can have visibility to all the rules
and properties, but this generally isn’t a good idea because it makes CSS rules less reusable and more
difficult to maintain. Inline CSS looks like this:

<head>
<style>
header,nav,footer,article,section {margin:5px;}
header,nav,footer {border:1px solid #000;}
section {border:1px dotted green;}
</style>
</head>

When you want to externalize your CSS there are two ways: one is to link your document via the
<link> tag, and the second is to import your document via the @import rule.

<link>
As a good practice you externalize your CSS via a <link> tag. The <link> tag must be embedded in the
<head> of your document and has the three main attributes:

• rel: Specifies the relationship between the linked document and the current one.

• type: Specifies the mime type of the linked document.

• href: Specifies the URL of the linked document.

• media: Specifies on what kind of device the linked document will be displayed.

Companion Site Reference

Example 3-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/basics1.php

An example of a linked CSS document for all media can be seen below:

<head>
<link rel="stylesheet" href="/css/basic.css" type="text/css" media="all">
</head>

As a side note, when documents are linked you can reduce the amount of data your browser will
need to download via minification and gzip compression.

http://www.learnhtml5book.com/chapter3/basics1.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

43

■ Note Minification and compression allow you to shrink the content sent to the browser. So rather than sending
a 100k CSS file to your browser the server sends a 3k css.gz (Gzip) file to your browser.

Mobile Safari supports compressed formats for both JavaScript and CSS files. You can search on “apache

mod_deflate” as a means of automatically compressing CSS files.

@import
Another way to externalize your CSS files is to reference other CSS sheets from within a master
stylesheet.

Companion Site Reference

Example 3-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/basics2.php

<style type="text/css">
 @import url("css/basic.css") </style>

I would avoid using this if you can, mainly because of performance. It takes longer for the import
method to render than the link tag.

Most of the CSS in the examples in this chapter can be found in the files sample.css and
chapter3.css, except for Example 3-4, where I’ve put all the CSS in the main file so you can see it all side
by side.

The Structure of CSS
CSS always has the following structure.

selector {property: value;}

• Selectors are alphanumeric and can be an element ID (#ID), an element className
(.class), an element name (table), or a combination (h1.title).

• Properties identify what rule is being set. The list of properties is large, and
includes things such as border, color, padding, margin, and the like.

• Values are assigned to each property. But only certain values are appropriate for
certain elements and properties. So you would not be able to set the color to a
value of 10 px (10 pixels).

CSS Browser Extensions
A lot of times in CSS you’ll see strange prefixes in front of normal selectors; for example, instead of:

border-radius:10px;

http://www.learnhtml5book.com/chapter3/basics2.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

44

you’ll see:

-webkit-border-radius:10px;

These are called browser-specific extensions. The extensions for the browser rendering engines and
their associated browsers are shown in Table 3-1.

Table 3-1. CSS Browser Extensions

Extension Rendering Engine Browsers

-ms- Trident Internet Explorer

-moz- Mozilla Firefox

-webkit- Webkit Safari, Mobile Safari, Chrome

-o- Presto Opera

■ Special Extensions for Mobile Safari There are almost a hundred –webkit extensions for iOS. One that you
might want to use on your iOS device is –webkit-tap-highlight-color. This overrides the highlight color when a user

taps a link or other clickable element.

You can get a complete list of –webkit extensions for iOS at a website called: CSS Infos. (http://css-infos.net
/properties/webkit.php)

Media Queries and Media Selectors
If you can tell what device or media your site is being viewed on, you can use that information to assign a
customized stylesheet. Back in HTML4 there were the following media types that could be listed as part
of the <link> tag. So, for instance, you could assign different style rules for displaying your site on a TV
screen versus a handheld device. These media types are still in use and they are:

• all

• aural

• braille

• handheld

• projection

• print

• screen

• tty

• tv

http://css-infos.net/properties/webkit.php
http://css-infos.net/properties/webkit.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

45

With HTML5, you can go a step further and specify rules within the media attribute to detect more
specific information such as screen size and orientation. We access this information about the browser
via a media query. The following tags are available.

• width

• height

• device-width

• device-height

• orientation

• aspect-ratio

• device-aspect-ratio

• color

• color-index

• monochrome

• orientation

• resolution

• scan

• grid

• min-device-pixel-ratio

The bold-face query properties in this list are the ones we use when determining whether we’re on
an iPhone, iPhone4 (Retina), or an iPad, so we use these later in the book.

orientation
This media query option allows you to link different CSS documents based on the orientation of your
device. The two orientations available are portrait and landscape.

Companion Site Reference

Example 3-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/orient.php

For portrait you would use the following media query.

<link rel="stylesheet" media="all and (orientation:portrait)" href="portrait.css">

http://www.learnhtml5book.com/chapter3/orient.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

46

Table 3-2. Display sizes (portrait)

Device Device W H Working W H
iPhone 320 480 320 356

iPhone4 (retina) 640 960 320 356*

iPad 768 1024 768 928

* See note on Retina Display

For landscape you would use the following media query.

<link rel="stylesheet" media="all and (orientation:landscape)" href="landscape.css">

Table 3-3. Display sizes (landscape)

Device Device W H Working W H
iPhone 480 320 480 208

iPhone4 (retina) 960 640 480 208*

iPad 1024 768 1024 672

* See note for Retina display.

So if you would like to change styles based on portrait or landscape, you would use an HTML header
such as the following.

<head>
 <title>Some Title</title>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" media="all and (orientation:portrait)" href="portrait.css">
 <link rel="stylesheet" media="all and (orientation:landscape)" href="landscape.css">
</head>

Optionally you could create a single <link> to a CSS and then modify the CSS to contain the media
query such as

header,nav,footer {border-radius:5px;border:1px solid #000;margin:5px;}
@media (orientation:portrait) {
 header {background-color:silver;color:black;}
}
@media (orientation:landscape) {
 header {background-color:black;color:silver;}
}

For my own app, the grandviewave mobile site, I’ve decided to use only portrait styles.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CSS3 AND IOS STYLING

47

device-width
Although not mentioned above there are two additional subproperties of device-width. Those are: min-
device-width, and max-device-width. The min-device-width for an iPhone is 320 px, because while in
portrait orientation its width is 320 px and when in landscape it’s 480 px.

You might think that an iPhone with Retina Display would show up differently, however, both the
iPhone and iPhone4 give the same value from the media query.

@media screen and (min-device-width: 320px) {…}

But because this query will also work for the iPhone4, you will need to use another media query to
investigate the pixel ratio. This is a -webkit- specific property selector.

-webkit-min-device-pixel-ratio
So just as there are special extensions for webkit for CSS properties, there are also extensions for media
queries. These will give you the ability to detect if you’re on an iPhone or iPod Touch with a Retina Display.

<link rel="stylesheet" media="screen and (-webkit-min-device-pixel-ratio:2)"
 href="hires.css">

or

@media screen and (-webkit-min-device-pixel-ratio:2){
...
}

Now in order to tell if you are on each of the following it gets a little tricky because some of these will
hold true for multiple media devices.

Media Selector Example
The first two media selectors highlight if the device is in portrait or landscape mode.

The third set of css properties sets the display of the <div> tags to none.
The remaining media queries select for the iPhone4, iPad, and iPhone, respectively.

Companion Site Reference

Example 3-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/iosselect.php

If you run this on the companion site, you’ll see text highlighted that will tell you what device you’re
on and what orientation you’re in.

<!doctype html>
<html>
<head>
<meta charset=”utf-8”>
<title>Some Title</title>

http://www.learnhtml5book.com/chapter3/iosselect.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

48

 <meta name="viewport" content="width=device-width" />
<style>

@media (orientation:portrait) {
 .portrait {display:block;}
 .landscape {display:none;}
}

@media (orientation:landscape) {
 .landscape {display:block;}
 .portrait {display:none;}
}
// default display none
.iphone4 {display:none;}
.iphone {display:none;}
.ipad {display:none;}
// iphone4
@media screen and (-webkit-min-device-pixel-ratio:2) {
 .iphone4 {display:block;}
}
// ipad
@media screen and (min-device-width: 768px){
 .ipad {display:block;color:green;}
}
// regular i
@media screen and (-webkit-max-device-pixel-ratio : 1.5) and (max-device-width: 480px){
 .iphone {display:block;}
}
</style>
</head>
<body>
<div class="landscape">Landscape</div>
<div class="portrait">Portrait</div>
<div class="ipad">iPad</div>
<div class="iphone">iPhone</div>
<div class="iphone4">iPhone4</div>
</body>
</html>

Normally you would put these in an external CSS, but I just put everything in one document so you
can see it all together.

NOTE ON THE RETINA DISPLAY

The retina display is a little confusing. The iPhone media selectors still return a max-device-width of 480
px even though the device has a pixel count of 960 when in landscape mode.

With the Retina Display it’s not the pixels on the screen that matter, it’s the resolution or the DPI of those
pixels. The DPI of the iPhone and iPod Touch is 163. The DPI of the Retina Display is 326. The DPI of the
iPad is 132.

CHAPTER 3 ■ CSS3 AND IOS STYLING

49

So how do you program this on your web app? Actually it’s very easy. Let’s say you want to display a 300
pixel image on the home page; rather than creating a 300 300 pixel image you just create a 600 600
pixel image then scale it down to 300 300 via the height and width properties of the image or a CSS rule
for that element. Because of the pixel density, your 600 600 pixel image will be remarkably clear
compared to the 300 pixel version.

You can view an example of this by going to the following page with your iPhone Retina Display or iPhone
simulator (Retina). This is Example 3-5 on the companion site.

http://www.learnhtml5book.com/chapter3/retina.html

You can also find out more about the Retina Display on the Apple site.

Next we go over the important parts of CSS3 and iPhone-specific styling to make our app look and
feel like a native app.

Saving to the Home Screen
In order to add your web app to the iOS home screen you will need four things.

• Home Screen Icon

• Start-Up/Splash Image

• Metatag for “Full Screen”

• Metatag for the style bar color

First we need to add some icons via specialized link and rel attributes.

<link rel="apple-touch-icon" href="/my-icon.png">

This icon will need to be 57 57 pixels for the iPhone, 114 114 for the iPhone (Retina), and 72
72 for the iPad.

This tells iOS to use my-icon.png as the icon for the home screen. Next we need to add a start-up
image.

<link rel="apple-touch-startup-image" href="/startup-image.png">

This image will need to be 320 460 for the iPhone, 640 920 for the iPhone (Retina), and 768
1004 for the iPad Portrait, or 1024 748 for the iPad Landscape. This is the image that will be displayed
on the start-up/splash screen when the web app loads.

Next we need to tell the web app to use the entire screen by removing the address bar and coloring
the status bar. (We talked about these in Chapter 1.)

<meta name="apple-mobile-web-app-capable" content="yes" />

and

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

There are three options for the content value (default, black, black-translucent).
Now in order to add your app to the home screen you just need to press the bookmark icon in the

center of the Safari, or click the plus sign next to the address bar.

http://www.learnhtml5book.com/chapter3/retina.html

CHAPTER 3 ■ CSS3 AND IOS STYLING

50

Figure 3-1. Add to Home Screen

A Short Overview of CSS3
Next I provide a short reference to CSS3. Mobile Safari supports most of these attributes natively so
there’s no need for the -webkit- prefix.

Animation
In CSS3 you can create animations without the need for Flash or JavaScript. To use animations you must
use the CSS @keyframes rule, then specify the properties on the element that is doing the animation.

The example below sets the animation to run after two seconds and repeat forever. For example,

@-webkit-keyframes mytest {
 from {background: #ccc;} to {background: #000;}
 }

CHAPTER 3 ■ CSS3 AND IOS STYLING

51

div {
 -webkit-animation-name: mytest;
 -webkit-animation-duration: 3s;
 -webkit-animation-timing-function: linear;
 -webkit-animation-delay: 2s;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
}

I can see animations being used when creating effects, and what’s really nice is that it does not
require JavaScript or a JavaScript framework like jQuery.

Backgrounds
There are a few changes as to how backgrounds are handled in CSS3 some of which will really help you
when styling your iOS app.

Multiple Backgrounds
You can now specify multiple backgrounds for an element by adding comma-delimited background
images.

background:url('img1.png'),url('img2.png');

You might typically use multiple backgrounds when you want a really nice effect or would like to
combine a gradient with an image.

Clipping Backgrounds
This allows you to specify the painted area of the background of the element based on one of three
settings:

• padding-box: Clipped to the padding

• border-box (the default): Clipped to the border

• content-box: Clipped to the content

background-clip:(content-box|border-box|content-box);

You would typically use the clipping property of a background when you need some customization
on the placement of your background from within an element.

Background Origin
This specifies the positioning of the background image.

background-origin: padding-box|border-box|content-box;

As with clipping, you would typically use the origin property when you need to customize the
placement of your background.

Background Size
This specifies the size of the background images.

f

CHAPTER 3 ■ CSS3 AND IOS STYLING

52

background-size:width height;

In addition, it gives you the ability to resize a background just as you would do with an image.

Webkit Properties
There are also some webkit-based functions that allow you to create backgrounds dynamically,
specifically, -webkit-gradient. For instance:

background: -webkit-linear-gradient(left, #ccc, #000);

This allows you to specify a linear gradient from top to bottom with the colors #ccc (gray) to #000
(black).

There are other webkit properties you can choose, each with a similar syntax.

Borders
With CSS3 you can add shadows to boxes, use an image as a border, or just round the edges.

Border Shadow
To create a shadow around an element use the following.

box-shadow: 5px 5px 5px #ccc;

The first two attributes are required. These are the horizontal and vertical positions of the shadow.
Optionally you can select the blur distance, shadow size, shadow color, and if the shadow is outer or
inner to the element.

Border Image
This allows you to use an image as a border.

border-image:url(border_img.png) 25 25 round;

Where the source is a url(), the image slice is the inward offset to the image, the width of the image
border, or the outset of the border image beyond the border box, and repeat specifies whether it should
be repeated, stretched, or rounded.

Rounded Borders
You can just simply round out the borders of your elements. You can also specify corners with border-
top-left-radius, border-top-right-radius, border-bottom-left-radius, and border-bottom-right-
radius.

border-radius:10px;
-webkit-border-radius-top-left:8px;

You would typically use this either by itself or with a custom selector to round part of an element (as
within an iPhone-styled list shown later).

Fonts
Prior to CSS3 websites had to use the installed fonts on the user’s computer. That’s no longer the case;
by creating the font-face rule you can specify the font to download. For example:

CHAPTER 3 ■ CSS3 AND IOS STYLING

53

@font-face {
 font-family: testFont;
 src: url('myFont.ttf');
}

.class {
 font-family:testFont;
}

Additional font descriptors are:

• font-stretch: Normal (default), condensed, ultra-condensed, extra-condensed,
semi-condensed, expanded, semi-expanded, extra-expanded, ultra-expanded

• font-style: Normal (default), italic, oblique

• font-weight: Normal (default), bold, 100–900

2D/3D Transforms
Now you can move, stretch, rotate, and scale elements via CSS. Some of the methods you can use on
your elements are defined below.

Matrix
This combines all the transform methods into one by using six values that take the form of the top two
rows, mathematically a 3 3 matrix.

A matrix of:

a b c
d e f
0 0 1

would take the form:

.class {
 transform: matrix (a,b,c,d,e,f);
 transform: matrix3d (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p);
}

This gets rather complicated unless you’re a math geek. Rather I move on to a few examples that are
a little more intuitive. For 3D the matrix is 4 4 and has 16 values.

Rotate
This rotates an element.

.class {
 transform: rotate (45deg);
 transform: rotate3d (30,30,30,30deg);
}

Here you can rotate 2D by specifying the degrees of rotation, or for 3D you need to specify a unit
vector of x, y, and z, followed by a degree of rotation.

CHAPTER 3 ■ CSS3 AND IOS STYLING

54

Scale

This scales an element either larger or smaller and takes the form scale (1.5,2) which would increase the
x component by 1.5 times and the y component by 2 times. You can also specify an individual axis with
skewX, skewY, and skewZ. Or all three axes via scale3d(x,y,z).

Skew

Skew requires a little more imagination to comprehend. The following method skew(30deg,45deg) will
rotate the element 30 degrees around the x-axis and 45 degrees around the y-axis.

Translate

This essentially moves your element by an x- and y-coordinate. You can either combine them or call
them separately. An example takes the form:

.myClass {
 transform:translate(100px,100px); // 2d
 transform:translate3d(100px,100px,100px); // 3d
 transform:translateX(100px); // x coordinate
 transform:translateY(100px); // y coordinate
 transform:translate(100px); // z coordinate
}

Transitions
Transitions allow us to create an effect when transitioning from one style to the next. Let’s say, for
example, you’re wanting to create a :hover effect on an element so that when the mouse is over an
element you may change its color in some cases, or may even change its height or width.

The original element would be, let’s say 50 pixels, but on :hover it might stretch to 100 pixels. Rather
than having this element snap to 100 pixels we create a transition between element and element:hover.

You can either use the transition() property for everything, or you can use the properties
individually.

• transition (property duration timing-function delay)

• transition-property: The name of the CSS property to which the transition is
applied

• transition-duration: The duration of the transition

• transition-timing-function: The speed of the transition

• transition-delay: The delay before the transition starts

An example of use is:

.class {
 width:50px;
 transition: width 1s linear 2s;
}
.class:hover {
 width:100px;
}

CHAPTER 3 ■ CSS3 AND IOS STYLING

55

Text Effects
There are many new text properties with CSS3; the ones we care most about when styling our iOS app
are the text shadow and word wrap properties.

Text Shadow

The text shadow simply adds a shadow to the text with the following format,

text-shadow: horz-shadow vert-shadow blur color;

where the horz-shadow and vert-shadow represent the horizontal and vertical shadows, the blur
represents the blur distance, and the color is the color of the shadow.

h1.title {text-shadow:2px 2px #ccc;}

Typically I would use a text shadow for text in a header or a button to give it a more native look and
feel.

Word Wrap

This permits you to allow an element that might have unbreakable words broken so that content does
not scroll unintentionally.

Article {word-wrap:break-word;}

There are other text properties defined in CSS3 including: hanging-punctuation, punctuation-trim,
text-align-last, text-emphasis, text-justify, text-outline, text-overflow, text-wrap, and word-break.

This concludes a short reference of what’s new in CSS3. Next we take what we’ve learned from CSS3
and apply it to making our ugly web app look like an iOS app.

Styling for iOS
Making our web app look like a native iPhone or iPad app is critical to its design. The main reason is that
users are used to interacting with these devices in a certain way. Although you could make your
application “work” without any iOS styling whatsoever, your adoption curve will take a serious hit.

What I do over the remainder of the chapter is show you how to perform some basic iOS styling
techniques such as styling a list and button, or making use of the overflow and fixed positioning.

Styling a Header
All you need to do to create a header is add some CSS. I’ve added this to the file
/chapter3/css/sample.css.

Companion Site Reference

Example 3-6: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/sample_header.php

http://www.learnhtml5book.com/chapter3/sample_header.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

56

header {
 text-align: center;
 height: 50px;
 background-image: -webkit-gradient(linear, left top, left bottom, from(#444), to(#000));
}

header h1 {
 color: #fff;
}

This will add a dark background with a gradient, and center an H1 with a white font.

Styling a List
Take a look at Figure 3-2. How do you make a list go from a plain list (on the left) to an iPhone-styled list
(on the right)?

Figure 3-2. Plain Navigation List (left) to iPhone-Styled List (right)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CSS3 AND IOS STYLING

57

Companion Site Reference

Examples 3-7 and 3-8: Follow the links below to run these example on the companion site.

http://www.learnhtml5book.com/chapter3/sample_list.php and

http://www.learnhtml5book.com/chapter3/sample_list2.php

Step 1: Create the HTML
First the HTML: I’m using the <nav>, , and elements.

<nav>

 <li class="arrow">Businesses
 <li class="arrow">Near Me
 <li class="arrow">Sales & Specials
 <li class="arrow">Parking
 <li class="arrow">Game
 <li class="arrow">Audio & Video
 <li class="arrow">About
 <li class="arrow">Contact
</nav>

Step 2: Format the List
To format the and elements I use the following CSS rules. I have added these to
/chapter3/css/sample.css.

nav ul { // remove list style
 list-style:none;
 margin:10px;
 padding:0;
}
nav ul li a { // give some color and a border
 background-color:#fff;
 border: 1px solid #999;
 color:#222;
 display:block;
 font-weight:bold;
 margin-bottom:-1px;
 padding: 12px 10px;
 text-decoration:none;
}
nav ul.num2 li:first-child a { // create a rounded border on top
 border-top-left-radius:8px;
 border-top-right-radius:8px;
}
nav ul.num2 li:last-child a { // create a rounded border on the bottom
 border-bottom-left-radius:8px;

http://www.learnhtml5book.com/chapter3/sample_list.php
http://www.learnhtml5book.com/chapter3/sample_list2.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

58

 border-bottom-right-radius:8px;
}

Step 3: Add the Chevron
Second we just need to add the chevron to the right of the image. For that I need to create a background
image on the <a> tag because that’s the element that was positioned. Then I just size the background and
position it.

li.arrow a {
 background-image: url(chevron_36.png);
 background-size:22px;
 background-position: right center;
 background-position-x: 98%;
 background-position-y: 50%;
 background-repeat: no-repeat;
 background-repeat-x: no-repeat;
 background-repeat-y: no-repeat;
}

That’s it. You can do more with the colors of the list and add transition effects, but we talk about that
later on. Next we create a button.

Creating a Button
Now I show you how to convert a plain button (on the left of Figure 3-3) to an iPhone-styled button (on
the right).

Companion Site Reference

Example 3-9: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/sample_buttons.php

http://www.learnhtml5book.com/chapter3/sample_buttons.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

59

Figure 3-3. Plain button and link (left) iPhone-styled button (right)

Step 1: Create the HTML
This is the basic HTML for Figure 3-3. You can see from the CSS below how you go from PLAIN to iOS.

<div style="padding:10px;">
<h2>Button</h2>
<button class="button">Checkout</button>
<h3>Links</h3>
Back

</div>

Step 2: Size, Color, and Shadow the Buttons
This is the easy part; we just size and color the button and link, then apply a text-shadow to the text.

CHAPTER 3 ■ CSS3 AND IOS STYLING

60

.button,.back {
 font-size:16px;
 line-height:18px;
 text-shadow: #333 1px 1px 2px;
 color:white;
 font-weight:bold;
 text-decoration:none;
 border-width:10px;
 padding:5px 10px;
}

Step 3: Add Border Images
Next I use the -webkit-border-image property to apply the round.png image to the border of the entire
element. This means I can now stretch this image over the entire element. For the button, I just take a
round image and stretch it until it fits the entire length of the text within the element. For the back
button I need to do a little modification of the size so that it fits neatly inside the image.

.button {
 -webkit-border-image: url("round.png") 0 14 0 14 stretch;
}
.back {
 height:30px;
 line-height:14px;
 font-weight:normal;
 font-size:12px;
 padding:5px;
 color:#fff;
 -webkit-border-image: url("back.png") 0 14 0 14 stretch;
}

Overflow (iOS5)
In versions previous to iOS5 you had to perform a three-finger swipe to activate an area with overflow.
This made it very difficult or impossible to get fixed positioning of elements from within the window of
Mobile Safari but, more important, it was not intuitive.

iPhone Fixed Footer Example
All you need to do now is measure your working area and add the overflow properties to your element.

nav {
 height: 250px;
 overflow-y: auto;
 -webkit-overflow-scrolling:touch;
}

footer {
 position: absolute;
 top: 300;
 border: 1px solid red;

CHAPTER 3 ■ CSS3 AND IOS STYLING

61

 width: 300px;
 margin: 10px;
 height: 40px;
}

The example above creates an overflow for the navigation and a fixed footer.

iPad Split View Example
Here’s an example on the iPad of how to create a split-view page. This allows you to take the navigation
and put it on the left 30% of the page and then take the main content and display it on the right 70%. You
can even add the overflow and webkit-content-scrolling properties to the <nav> element to give it a
more native look and feel.

In Figure 3-4 I’ve added a border and a few more contact links to show you how it is scrolling on an
iPad. When you touch this part of the screen it actually shows you a scrollbar as you’re moving your finger.

Companion Site Reference

Example 3-10: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter3/ipad.php

Figure 3-4. iPad Split View

http://www.learnhtml5book.com/chapter3/ipad.php

CHAPTER 3 ■ CSS3 AND IOS STYLING

62

Putting It All Together
We left off with the Grandview Web App in a rather ugly state. It was nothing more than some HTML5
mark-up and a few ideas about how we wanted the navigation to work. But now thanks to CSS3 we can
start to make it look like a native iPhone or iPad app.

There are two main things we want to take from this section and apply to your app: device and
orientation selection and how to make our web app act like an app and add it to our home screen.

Device and Orientations
You can have up to six different combinations of devices and orientations for your mobile web app. For
Grandview Ave I just pick two: iPhone Portrait and iPad Landscape. I also add a special selector for
Retina Display devices so that the images and icons that I use can have twice the resolution.

I chose these two after reviewing the log statistics from my site and finding that those two profiles
were responsible for over 90% of my mobile views. Because of this I won’t need to create a separate
stylesheet and I also don’t want to incur the additional network call. I just put everything in a single
stylesheet called grandviewave.css like this:

<link rel="stylesheet" href="/css/grandviewave.css" type="text/css" media="all">

This means that I need to create the following media selectors.

/** iphone **/
@media screen and (-webkit-max-device-pixel-ratio : 1.5) and (max-device-width: 480px){
}
/** iphone 4 **/
@media screen and (-webkit-min-device-pixel-ratio:2) {
}
/** ipad **/
@media screen and (min-device-width: 768px){
}

With these media selectors I can have a common area of CSS at the top and the device-specific
selectors down below within the media query sections defined above.

Full Screen Web App
Next because I want to add my app as a full-screen web app I need to add the metatags and images to
my site. I use the <meta> tags to say this is web app capable and then use the <link> tags in combination
with the media selectors to pick the right images.

<link rel="apple-touch-startup-image"
media="(max-device-width: 480px) and not (-webkit-min-device-pixel-ratio: 2)"
href="iphone.png" />

<link rel="apple-touch-startup-image"
media="(max-device-width: 480px) and (-webkit-min-device-pixel-ratio: 2)"
href="iphone4.png" />

<link rel="apple-touch-startup-image"
media="(max-device-width: 1024px) and (orientation: portrait)"
href="ipad-portrait.png" />

CHAPTER 3 ■ CSS3 AND IOS STYLING

63

<link rel="apple-touch-startup-image"
media="(max-device-width: 1024px) and (orientation: landscape)"
href="ipad-landscape.png" />

The remaining item I need to finish (in addition to the content and data) is the navigation. I put the
finishing touches on that in Chapter 6.

Chapter Summary
In this chapter I gave you an overview of CSS3 and iPhone-/iPad-specific media-kit-based rendering
tricks to make your web app look like a native iPhone or iPad app.

This list is not comprehensive. In fact for Grandview Ave I actually use a Mobile Framework
discussed in Chapter 5, but what you’ve learned in this chapter will allow you to roll your own mobile
framework or modify an existing one.

Before moving on to the next chapter you should know how to do the following.

• Externalize your CSS.

• Use Media Queries to better customize your CSS for properties such as orientation
or device-width.

• Save your iPhone or iPad web app to the home screen.

• Use some of the basics of the new features in CSS3.

• Style a native-looking list and buttons.

• Take advantage of overflow for iOS 5.

Now that we know how to make your web app look good, it’s time to talk about how to make it
functional and get data from our web site. That will involve JavaScript and that’s what I talk about next.

C H A P T E R 4

■ ■ ■

65

JavaScript and APIs

There’s a lot to know about JavaScript and the APIs of HTML5. So much so it’s not really possible to go
over everything. However, there’s a lot we can cover that’s important to mobile development. Many of
the things I talk about can be achieved by using a JavaScript framework such as jQuery, which is
introduced at the end of the chapter, but first you need to know the basics of what’s under the hood so
you can deviate from a framework or fix problems when they come up.

The first thing to look at is the basics of JavaScript: things such as how to include and reference
external JavaScript files as well as some basics for creating JavaScript objects and methods. Next I go into
some of the JavaScript events you’ll use over and over.

Finally I talk about how to roll your own AJAX objects and a little about JSON (JavaScript Object
Notation) for retrieving remote data. We use PHP to handle the remote data in Grandview Ave, but you
could use HTML, Ruby, JSON, Python, .NET, anything really. The important thing is that we’re getting
remote data and bringing them in via AJAX.

Before getting into the APIs and items above, I will stray a little bit into the history of JavaScript
because the structure of the language is vital to everything we want to do and it’s especially important
when comparing JavaScript to a server-side language.

About JavaScript
JavaScript is a unique language. I will give you a little bit of an overview of JavaScript because I think it
goes a long way in understanding the way frameworks and things work in JavaScript as compared to
Objective-C, C, C++, Java, Ruby, PHP, or .C# languages. When frameworks break or a problem comes up,
many web developers get stuck because they ignore much of this information.

JavaScript was originally developed by Brendan Eich of Netscape in 1995, and is an implementation
of the ECMAScript language standard. Other dialects of ECMAScript include Jscript and ActionScript.
The current edition of ECMAScript is 5 and the current JavaScript version is 1.8.5.

JavaScript is a scripting language. Scripting languages control one or more applications. There are
many types of scripting languages. Some are for shells such as bash or batch files. Other languages
including Perl started out as scripting languages but became more powerful. But because scripting
languages by definition control one or more applications, JavaScript controls the web browser application.

JavaScript is dynamic as opposed to static. Dynamic languages are a class of programming
languages that execute at runtime and can change their composition while running. This is more than
just modifying the state of certain variables: dynamic languages can add code and extend objects, all
during the course of program execution making the distinction between code and data difficult.

JavaScript is weakly typed as opposed to strongly typed. Weakly typed languages essentially just
allow you to not specify the type for a variable. So the variable foo can be set to an integer, a string, a
double, or an array and can change during the course of program execution.

CHAPTER 4 ■ JAVASCRIPT AND APIS

66

JavaScript is object-oriented. This is a style of programming performed with objects or complex data
structures that are composed of variables and methods. Those variables and methods provide an object
with certain behavior.

JavaScript is prototype-based. Prototype-based means that you create objects by cloning other
objects rather than instantiating objects from a class (template).

JavaScript is a functional language. A functional language is one that treats computer programs
similar to mathematical functions. This is a 10-dollar word for a 10-cent concept. Basically it just means
that if you pass a variable to a function, it returns another variable. All states are contained within the
function’s input variables.

JavaScript has first-class functions. A first-class function basically means you can pass in a function
to another function. This can best be seen in the example below.

Companion Site Reference

Example 4-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/jsfunction.php

// normal function
function foo(a, b) { return a + b; }
// normal function as variable
var foo2 = function(a,b) { return a+b; }
// function as parameter to another function
function foo3(foo2,a,b) {
 return foo2(a,b);
}
// outputs 3,3,3
alert(foo(1,2)+","+foo2(1,2)+","+foo3(foo2,1,2));

Based on your style of programming and background you may prefer to use an object-oriented
approach or a functional approach. This is known as multiparadigm. Some JavaScript libraries might be
entirely function-based, whereas others will be more object-oriented. Either way there’s a lot to learn
about the language; next I talk about a few useful parts.

Using JavaScript
There’s a lot to talk about in JavaScript. I recommend getting one of the fine Apress books on just
JavaScript by itself to learn all the ins and outs of the language. But in lieu of that I touch on some of the
most useful parts of the language, specifically the parts we need for creating our mobile web app.

Externalizing JavaScript
Just as in Chapter 3 when we externalized, minified, and gzipped CSS, we can do the same with JavaScript.

Inline JavaScript would look like this:

<script type="text/javascript">
function foo() {...}
</script>

http://www.learnhtml5book.com/chapter4/jsfunction.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

67

Externalized JavaScript would look like this:

<script type="text/javascript" src="external.js"></script>

It’s important to note that JavaScript executes as soon as it’s loaded, so the order of loading is
important. If you have two JavaScript files and one is dependent on the other, say you have function
foo() in external.js, you can’t call foo before it’s loaded; you’ll get an object not found error.

Creating Objects and Using Namespaces
There are a few ways to design a JavaScript library: one is to create a bunch of global functions, and
another is to create JavaScript objects or namespaces for your custom functions. Take a look at the
following example.

Companion Site Reference

Example 4-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/objects.php

var a = 0;
function add_a() {
 a=a+1;
}
add_a();
add_a();
alert("a = " + a);

function something() {
 a = "a string";
}
something();
alert("a = " + a);

In the example above, the global variable a starts off as an integer, and ends up as a string. Now
imagine if this function or global variable were used inside an external library or rather what if you had
name collisions from two different external libraries? This would get quite difficult to debug. To avoid
this we create objects or use namespaces.

■ Note The variable $ is used by many JavaScript frameworks including jQuery. Make sure you don’t use this

variable if you’re using a JavaScript framework.

var b = new Object();
b.count = 0;
b.add = function() {

www.allitebooks.com

http://www.learnhtml5book.com/chapter4/objects.php
http://www.allitebooks.org

CHAPTER 4 ■ JAVASCRIPT AND APIS

68

 this.count = this.count+1;
}
b.add();
b.add();
alert("b = "+b.count);

In the above example, we just create an object and set a property of count on that object and
increment it by the method add.

Now we can do whatever we want to b and it will just be for b and we don’t need to worry about this
unless b is a global variable used in an external library that we’ve imported. As you can see the method of
creating objects is rather easy; you just need to declare a variable as an object and then add properties to
it, followed by methods (functions).

Events
Events are actions that can be detected such as scrolling your window, clicking a button, or focusing on
an element. I talk about a few below that you’ll want to make use of when building your mobile web app.

The first events I talk about are how to recognize when your page is done being loaded, because
most of the time this is when you’ll want to start doing things.

window.onload and DOMContentLoaded
I have not been able to tell the difference in timing between the two, but don’t use window.onload, even if
you’re just using mobile safari. The reason is that some browsers fire the window.onload event when
everything is loaded just like document.body.onload, but mobile safari seems to fire this event when the
DOM is ready.

The preferred method of checking to see whether the DOM is ready for manipulation is to check to
see if it’s loaded. You can do that via the following event handler function.

document.addEventListener('DOMContentLoaded', domready());

If you are using external JavaScript or waiting for images to load so you can manipulate them, this
event will fire too early. In these cases, you’ll want to use the onload attribute in the <body> tag instead.

body.onload
The body.onload event fires when all of the items on a page are finished loading. This means all external
files including CSS, JavaScript, and Images.

■ Note Be careful when calling third-party APIs. The onload event will not fire until these are done loading,

which could take some time.

The following example demonstrates the difference in timing between body onload and
DOMContentLoaded by printing an alert when each event occurs. Because of the speed of today’s browsers
I’ve used a 10-megabyte image file to slow things down.

CHAPTER 4 ■ JAVASCRIPT AND APIS

69

Companion Site Reference

Example 4-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/load.php

<body onload="bodyload()">

</body>
<script type="text/javascript">
document.addEventListener('DOMContentLoaded', domready());
function bodyload() {
 alert('body load');
}
function domready() {
 alert('dom ready');
}
</script>
</body>

■ Note The iOS is limited to 10-megabyte files for images, CSS, or other resources. Make sure you limit your files

to this size otherwise they will not be downloaded.

window.onhashchange
What’s the hash? Well the hash is the part of your URL after the # sign. So if your URL is
http://domain.com/resource.php#123, the location.hash would be 123. This is a useful feature when you
are using the location.hash as a means of maintaining state on your web page and you’re dynamically
loading parts of the page via AJAX.

In the URL Example http://domain.com/business.php#123, the 123 could be the primary key in the
database row of businesses. If your user clicked the back button and it was 122, you might want to load
the content again for business 122.

Before JavaScript included this event we had to create a timer that would look for changes in the
location.hash value every few hundred milliseconds.

window.onorientationchange
In Chapter 3 we showed you how to detect your browser’s orientation via a media query in the <link>
tag. But what if you want to do more with your app besides change the style of the web page? Well, you
use this event window.onorientationchange.

http://www.learnhtml5book.com/chapter4/load.php
http://domain.com/resource.php#123
http://domain.com/business.php#123

CHAPTER 4 ■ JAVASCRIPT AND APIS

70

Companion Site Reference

Example 4-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/orient.php

window.onorientationchange = function() {
 alert("orientation = " + window.orientation);
}

The following are the orientation values and position of the iOS device.

• 0 – Portrait mode

• 90 – Landscape mode (button on the right)

• –90 – Landscape mode (button on the left)

The orientation does not read upside-down orientations (button on the top).

Dialogs
The following three dialog types work in iOS (see Figure 4.1).

Companion Site Reference

Example 4-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/dialog.php

• alert(string) – This returns a void and allows the user to press OK to
acknowledge the alert. You might use this to display simple confirmation
messages or feedback to your user.

• confirm(string) – This also displays a message but returns a true if OK is clicked
and a false if Cancel is clicked. You might use this to ask for Boolean feedback,
without the fanciness of an HTML dialog.

• prompt(string) – This also displays a message but returns a string depending on
what the user has entered. You might use this in place of an HTML form for simple
input.

http://www.learnhtml5book.com/chapter4/orient.php
http://www.learnhtml5book.com/chapter4/dialog.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

71

Figure 4-1. Different dialogs as displayed on the iPhone

I often use the alert box to show some debugging information, but there’s another way to get even
more detailed information and that’s by using the JavaScript console.

Safari JavaScript Console
First and foremost make sure your debugging console is turned on (see Chapter 1, Figure 1-2.

Next there are four kinds of messages that will appear on your debugging console:

• log – General log messages

• info – Informational messages

• warning – Warnings that do not cause breakage

• error – Errors that could cause the page to break and stop working.

Companion Site Reference

Example 4-6: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/console.php

http://www.learnhtml5book.com/chapter4/console.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

72

You can see how those messages look in the code below and in Figure 4-2.

console.log("this is a log message");
console.info("this is an info message");
console.warn("this is a warning message");
console.error("this is an error message");

Figure 4-2. Console messages

Creating an API
When creating an API it’s important to think how you’re going to use it. For our app, Grandview Ave, I
use it for two things, simplifying application design for multiple devices and to publish data to multiple
web sites and apps. Let’s list these below.

CHAPTER 4 ■ JAVASCRIPT AND APIS

73

Device-Centric Usage
• Mobile iPad site

• Mobile iPhone site

• Other mobile site (Android and Blackberry)

• Native iPhone app

• Native iPad app

• Native Android app

Data-Centric Usage
• Publish HTML content to mobile site

• Publish business category data

• Publish business detail data

• Sales and specials

• Near Me functionality

• Parking data

The back-end for your API can be anything you want; for my examples I use PHP to create a RESTful
web service or API.

■ REST (Representation State Transfer) REST basically means that you have a URL where you can GET, PUT,
POST, and DELETE data. The URL defines the data, and the methods define what you want to do with them.

An example could be: http://domain.com/resource.html or

http://domain.com/resource/business.php?id=1.

Once you lay out the URLs and files you’re going to use to provide these data to your mobile site or
app, you’ll need a way to get the data, and we do that with AJAX.

Getting Remote Data with AJAX
AJAX stands for Asynchronous JavaScript and XML and it was first implemented by Microsoft in Internet
Explorer 5 as an ActiveX object named XMLHttpRequest. The idea behind this was simple: provide rich
functionality to a browser by requesting XML from a URL and then parsing this XML on the browser with
VBScript or JavaScript to spice up the interface so developers would not need to run ActiveX or Java in
their browsers.

This object was later added to Safari and has the syntax:

var httpReq = new XMLHttpRequest();

The XMLHttpRequest object has the following methods.

http://domain.com/resource.html
http://domain.com/resource/business.php?id=1

CHAPTER 4 ■ JAVASCRIPT AND APIS

74

• open(method(GET | POST), url, true(asynchronous) | false (synchronous),
username, password) – Opens the request and makes the request if a GET

• send() – Sends the request

• abort() – Cancels the current request

• getAllResponseHeaders() – Returns all HTTP headers as a string

• setRequestHeaders(label,value) – Sets the request headers to be sent in the
request

This object also has an event listener called onreadystatechange; this event fires for each of the ready
states below:

• 0 – Uninitialized.

• 1 – Opened, but send not called.

• 2 – Opened, send has been called.

• 3 – Receiving; this is when response is being downloaded.

• 4 – Loaded, or finished receiving response.

The object also has the following properties containing the downloaded response.

• responseText – Just a string of the response.

• responseXML – The response as XML.

• responseBody – The response as a binary encoded string.

• status – The status code of the response: 200 indicates OK; 404 would be “file not
found”.

• statusText – The status text such as “not found” or “ok”.

Here’s a simple AJAX example that makes a call to a local file called simple.txt, and it will alert the
contents of this file to the screen.

Companion Site Reference

Example 4-7: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/ajax.php

 var req = new XMLHttpRequest();
 var url = "sample.txt";
 req.open("GET", url);
 req.onreadystatechange = function() {
 if (req.readyState == 4) {
 var txt = req.responseText;
 alert(txt);
 }
 };
 req.send();

http://www.learnhtml5book.com/chapter4/ajax.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

75

Since AJAX was invented there have been other kinds of data in addition to XML that have been sent
back via XMLHttpRequest: Plain Text, HTML, CSV (Comma Separated Values), and JSON (JavaScript
Object Notation).

It’s also important to note that all the major JavaScript frameworks use this object for their AJAX
functions.

Response Data Matrix
Table 4-1 shows a few sample data types with pros and cons of each.

Table 4-1. Pros and Cons of Different Response Data

Data Type Mime Type Pro Con

Plain Text text/Plain Simple, good for simple
messages.

Not readily parsed for complicated
data types.

HTML text/HTML Good for injecting as dynamic
content.

Not good for data as its markup is
not descriptive.

CSV text/CSV Good for tables or large lists. Not well suited for hierarchical
data.

XML text/XML Can suit flat or hierarchical data,
easily parsed.

Quite verbose and deeply nested
data structures require lots of
syntax to get a single item.

JSON application/JSON It’s JavaScript, not as verbose as
XML, and can easily map to
existing objects or flat data
structures.

Requires separate decorating
markup, as this is just data and
structure.

I think that each of these return types has its place in a RESTful API, but next we need to understand
a little bit more about JSON.

JSON (JavaScript Object Notation)
JSON is basically structured text that transmits data in a form easily digestible and evaluated by
JavaScript using eval() or JSON.parse(). Although most of the time you end up using JSON with
JavaScript, it’s actually a language-independent data format like XML or YML. For a detailed overview of
JSON, Wikipedia has a nice example comparing it to XML: http://en.wikipedia.org/wiki/JSON

■ Note Although you could use the eval() method for evaluating JSON text, this makes your application vulner-

able to injection or kinds of attacks. JSON.parse() is the new JSON object available as a safer alternative to eval.

http://en.wikipedia.org/wiki/JSON

CHAPTER 4 ■ JAVASCRIPT AND APIS

76

When thinking about JSON just think of it as a class or an object but without a name. So rather than
creating a class named Person, with properties of id and name, just create the object with those
properties; it can be named whatever you want it to be.

Companion Site Reference

Example 4-8: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/json.php

{
 "id" : 1,
 "name": "Scott"
}

Then to evaluate or parse this object (named JSON) just follow the steps below.

 var json = '{"id":1,"name":"Scott"}';
 var obj1 = eval("("+json+")");
 var obj2 = JSON.parse(json);
 alert(obj1.name + ", id= " + obj2.id);

JSON has the following basic types.

• String

• Number

• Boolean

• Array

• Object

• Null or Empty

JSON does not support the following native types.

• Date

• Error

• Math

• Regular expressions

• Function

So although it’s JavaScript, it’s best for representing JavaScript data, and that means you will not
need to parse XML. Now that we can get JSON or HTML data from our API how do we get it on the page?
That’s where DOM manipulation comes into play.

http://www.learnhtml5book.com/chapter4/json.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

77

DOM Manipulation
Before HTML5 if you wanted to work with an element you would need to use the trusty getElementById
method.

<div id="foo"></div>
<script>
var elt = document.getElementById("foo");
elt.innerHTML = "this is cool";
</script>

If you recall in Chapter 2 I talked about some new selectors made possible by HTML5; you could
select this same element or you could select by either a class name or an id, or something else.

<div id="foo"></div>
<div class="someclass"></div>
<script>
var elt1 = document.getElementsByClassName("someclass");
var elt2 = document.querySelector("#foo");
</script>

Now once you have an element you can manipulate it in many ways; usually you’ll change its style
or modify its contents.

<script>
var elt = document.getElementById("foo");
elt.innerHTML = "this is cool";
elt.style.color = "red";
elt.className = "newClass";
</script>

When you combine AJAX, JSON, and DOM manipulation you get an externalized data file in the
form of JSON, retrieved through AJAX (XMLHttpRequest) and populated on the page via DOM
manipulation.

In the example below I have to use placeholder tags populated from a JSON file requested
through AJAX.

Companion Site Reference

Example 4-9: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/combo.php

ID:

Name:

<script>
 var req = new XMLHttpRequest();
 var url = "sample.json";
 var nameElt = document.getElementById("name");
 var idElt = document.getElementById("id");
 var obj;

http://www.learnhtml5book.com/chapter4/combo.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

78

 req.open("GET", url);
 req.onreadystatechange = function() {
 if (req.readyState == 4) {
 var json = req.responseText;
 obj = JSON.parse(json);
 idElt.innerHTML = obj.id;
 nameElt.innerHTML = obj.name;
 }
 };
 req.send();
</script>

■ Note Keep in mind that safari follows HTTP/1.1 and allows only four concurrent requests at a time, meaning
that if you have five objects on a page, the fifth object will be loaded once the first one is finished from the

first four.

Creating Elements and Adding Events
Another way to inject HTML into a document is just to create it with JavaScript. This has some benefit if
you don’t want to create the HTML from a JSON returned from an AJAX request.

This is an example of creating a red <div> with an onclick event handler that creates an alert box.

Companion Site Reference

Example 4-10: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/creating.php

<body></body>
<script>
 var elt = document.createElement("div");
 elt.onclick = function () {alert("new element")};
 elt.style.border = "1px solid red";
 elt.style.width = "200px";
 elt.style.height = "200px";
 elt.innerHTML = "click me";
 document.body.appendChild(elt);
</script>

All of this is done with JavaScript and this kind of functionality will come in very handy later on.

JavaScript Frameworks
Up until now we’ve been doing everything manually: selecting the elements from the DOM we want to
work with, adding our event handlers, creating XMLHttpRequest objects, and looking for their ready state
to fire off events. But there’s another way to do this, which I mentioned back at the start of this chapter.

http://www.learnhtml5book.com/chapter4/creating.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

79

There are a bunch of great developers doing all this work so you don’t need to! I’m talking about
JavaScript Frameworks.

What’s a JavaScript Framework?
A JavaScript framework is more than just a library that allows you to do Ajax or has UI widgets; it has a
full stack of functionality, for example:

• Cross browser support

• Ajax support

• DOM manipulation and traversal

• Event handling

• JSON

• Selectors

• Animation and effects

So you won’t need to code any of this yourself. And in addition, you will find that more developers
know how to create a jQuery Ajax request than know how to create an XMLHttpRequest object and wait
for the result to pass to a function.

■ Note The Magic Dollar Sign $: All of the frameworks use a special character or words to denote usage of this

object/function. For jQuery, Prototype, and MooTools it’s a dollar sign $, Yahoo! UI uses YAHOO and ExtJS uses Ext.

Some of the most popular JavaScript Frameworks include:

• jQuery – The most popular JavaScript framework and talked about more in
subsequent pages.

• Prototype – A very popular framework created by Sam Stephenson in February of
2005.

• MooTools – Originally an extension of the Prototype framework created by Valerio
Proietti in September of 2006.

• YUI – The Yahoo! user interface library created in 2005 for use in creating user
interface components.

• ExtJS – Originally created as an extension to YUI, it also includes interoperability
with jQuery and Prototype.

jQuery
jQuery was first released in January 2006 by John Resig and is the most popular JavaScript framework in
use today. We use this framework throughout the book. jQuery is free and open sourced, and dual
licensed under MIT License and GPL v2.

CHAPTER 4 ■ JAVASCRIPT AND APIS

80

The current version of jQuery is 1.6.2 and it has a zipped size of 31Kb, and a minified size of 84K.The
web site for learning more about jQuery is http://jquery.com.

To get jQuery to work all you need to do is download it from the web site and place it on your page
like in the example below.

Companion Site Reference

Example 4-11: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/jquery.php

<script type="text/javascript" src="jquery-1.6.2.min.js"></script>
<script type="text/javascript">
$().ready(function(){
 alert("jquery ready");
 });

</script>

jQuery uses the syntax $(). This is the selector function to the jQuery library. Inside the () you put a
“selector” where a selector can be a CSS-style selector such as "#id" or ".class", or even an entire
element type "a". An empty selector defaults to document so $() is the same as $(document).

After the selector you have methods that range from ready() for determining if the document is
ready, to effects such as hide or show.

Putting It All Together
Previously we figured out how to take a normal HTML page and frame it, style it, and use some HTML5
tags to organize it, but it’s still just a shell. The steps we need to take from this chapter are:

• Creating a data API to access server data

• Using Ajax to retrieve and populate the pages of our mobile app

• Using the jQuery JavaScript framework for all the heavy work

Let’s look again at the data that we want to get from our API. Table 4-2 outlines our API components
along with their data types and URLs. I’ve used PHP to retrieve server-side data for Grandview Ave, but
you can use anything you want in your own apps, even HTML.

Table 4-2. API Overview of GrandviewAve

API Component Data Type Resource

Business Categories List/JSON or HTML /api/categories.php

Business List List/JSON or HTML /api/list.php?catid

Business Details JSON or HTML /api/detail.php?busid

http://jquery.com
http://www.learnhtml5book.com/chapter4/jquery.php

CHAPTER 4 ■ JAVASCRIPT AND APIS

81

API Component Data Type Resource

Business Near Me List/JSON or HTML /api/nearme.php?latlong

Sales and Specials List/JSON or HTML /api/sales.php

Parking List/JSON or HTML /api/parking.php

The Avenue Hunt TBD —

Audio and Video TBD —

About HTML /api/about.php

Contact Text /api/contact.php

So far my directory structure looks like that shown in Figure 4-3.

Figure 4-3. Current GrandviewAve directory structure

I’ve got HTML files and I’ve put the associated PHP files that will handle the data in the /api
directory. You could put everything in the same location and just have .php files for everything, but I’m
organizing it like this because I will need the data-only parts in Chapter 15 when we convert Grandview

CHAPTER 4 ■ JAVASCRIPT AND APIS

82

Ave to a native app. Now to bring in the data for an example page, say about.html, I need to add some
code like this.

<!doctype html>
<html>
<meta charset="utf-8">
<head>
<title>About Grandview Ave</title>
<meta name="viewport" content="width=device-width" />
<script type="text/javascript" src="/js/jquery-1.6.2.min.js"></script>
<script type="text/javascript">

$().ready(function(){
 $("#about").load('/api/about.php').delay(500).fadeIn('slow');
});

</script>
</head>
<body>
<div id="about" style="display:none;"></div>
</body>
</html>

When you run this page in the ‘Putting It All Together’ section on the companion site, you’ll see I’ve
added a 500-millisecond delay and decided to fade-in the content slowly.

Now if this is not HTML and I want to bring in JSON for the list of categories, I might do something
such as this, with a JSON formatted PHP page returning dynamic data called categories.php. This is the
next example on the companion site.

<!doctype html>
<html>
<meta charset="utf-8">
<head>
<title>Categories</title>
<meta name="viewport" content="width=device-width" />
<script type="text/javascript" src="/js/jquery-1.6.2.min.js"></script>
<script type="text/javascript">

 $().ready(function(){
 $.getJSON('/api/categories.php', function(data) {
 var items = [];
 $.each(data, function(key, val) {
 items.push('<li id="' + key + '">' + val + '');
 });
 $('', {
 'class': 'my-new-list',
 html: items.join(")
 }).appendTo('#cats');
 });
 });

</script>
</head>
<body>
<div id="cats"></div>

CHAPTER 4 ■ JAVASCRIPT AND APIS

83

</body>
</html>

Now iterating through the JSON is a little more complicated than just returning the HTML. You
might find that creating the HTML in JavaScript is a little awkward. If that’s the case then just create
HTML from your API and return it.

Now because I don’t want to have all of my JavaScript on each page I need to externalize it and
create some functions and device detection variables.

<script type="text/javascript" src="/js/grandviewave.js"></script>

Note that I put the grandviewave.js file after jQuery. This is very important because there are
dependencies on jQuery and your page could show errors if reversed. So far my external JavaScript looks
like this.

/js/grandviewave.js as of Chapter 4

var isiPhone = navigator.userAgent.match(/iPhone/i);
var isiPod = navigator.userAgent.match(/iPod/i);
var isiPad = navigator.userAgent.match(/iPad/i);

window.onhashchange = function() {}
window.onorientationchange = function() {}
function load_content() {
 var url = document.location.toString();
 if (url.match(/about/i)) {
 $("#content").load('/api/about.php');
 }
 if (url.match(/index/i)) {
 $("#content").load('/api/categories.php');
 }
 // .. do for remainder of pages
}

// will use this for all load events
$().ready(function(){
 load_content();
});

So far we have placeholders for onHashChange and onOrientationChange as well as some preliminary
loading content steps based on the URL. We can load the contents of each .html page with the
associated API data page (about.php). The page /api/about.php will just provide plain HTML derived
from the site’s Content Management System.

Chapter Summary
In this chapter we talked about how to create an API and some basics of JavaScript such as Ajax and
DOM manipulation. Some of the items (including the XMLHttpRequest object or
document.querySelector) you might never use because you’ll be using a JavaScript framework such as
jQuery.

Nevertheless, if you find yourself debugging a framework, or wanting to just experiment, I thought it
would be nice to show you what’s underneath the covers of a powerful framework such as jQuery
because nothing is worse than being dependent on something about which you know little.

Before moving on to the next chapter you should know how to:

CHAPTER 4 ■ JAVASCRIPT AND APIS

84

• Create and structure your data API.

• Have an idea for what kind of data your API will use: HTML, XML, Plain Text,
JSON, or a combination.

• Know how to retrieve these data via AJAX using either XMLHttpRequest or jQuery.

• Know how to display these data on your page via DOM manipulation either
manually or via jQuery.

• Know where to find some useful information on events, debugging, and dialogs.

But still we don’t have styling or any cool effects and it might take a long time to code them, so
although jQuery is great and saves us a lot of time there’s still a piece missing. This is why we need to talk
about mobile frameworks next.

C H A P T E R 5

■ ■ ■

85

Mobile Frameworks

Mobile frameworks put together three things.

• Common JavaScript APIs and libraries

• CSS and themes (natively styled)

• Effects

So although we did all this work by ourselves in the previous chapters, now we have a mobile
framework that will do most of the work for us. In this chapter I talk about jQuery Mobile. There are
other Mobile Web Frameworks out there such as iUI, Sencha Touch, jQTouch, and iWebKit to name a
few. They all do basically the same thing: give you a CSS and JS framework for making your mobile web
apps look and feel like a native app. Or in some cases provide you the ability to convert your web app to
a native app via a framework such as Phonegap (which I talk about in Chapter 15).

Although we’re focused on iPhone and iPad apps it’s worth noting that jQuery Mobile supports
Blackberry, Android, Palm, and Windows phones. So should you want to expand your mobile footprint
you won’t need to do much and if you already know jQuery the learning curve is rather small. By the end
of the chapter we’ll be ready to code the home page of our sample web app, Grandview Avenue.

Companion Site Reference

Example 5-1: Follow this link to see an alternative mobile framework in action (iUI).

http://www.learnhtml5book.com/chapter5/iui/index.html

Overview of jQuery Mobile
To get a basic jQuery mobile page you will need three things:

• Latest copy of jQuery – (http://jquery.com)

• Latest copy of jQuery Mobile CSS

• Latest copy of jQuery Mobile JS

http://www.learnhtml5book.com/chapter5/iui/index.html
http://jquery.com

CHAPTER 5 ■ MOBILE FRAMEWORKS

86

■ Note At the time of writing this book the current version of jQuery Mobile is 1.0 beta3.

To use jQuery Mobile on your page, the <head> of your document should look like the code below.

Companion Site Reference

Example 5-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter5/jquerymobile/index.html

<head>
 <title>JQuery Mobile</title>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="jquery.mobile-1.0b3.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script src="jquery.mobile-1.0b3.min.js"></script>
</head>

■ Note You will need to add location prefixes to the href and src attributes, depending on your directory
structure. The example assumes that everything is in the same directory.

In the next sections I talk about the details of jQuery mobile. You can find out more from
http://jquerymobile.com.

Working with Pages
The first thing to discuss is some of the conventions associated with the page structure. These are the
rules that allow the framework to do things as intended. These rules consist of CSS class names, element
IDs, and structural conventions. So although you might think you can just name some stuff according to
the class names or ID names, if you’re missing the structure, things won’t work.

This is because this mobile framework (actually all mobile frameworks) in order to be efficient uses
nested CSS selectors for layout and CSS element selectors in the JS logic to do certain things. If you don’t
follow a convention rule the framework might not work and therefore your page won’t work.

■ Note Convention over Configuration is a design paradigm that allows programmers to stick to a set of rules

rather than making decisions about how their code needs to be configured. jQuery Mobile, like many of today’s

frameworks, uses this design approach.

http://www.learnhtml5book.com/chapter5/jquerymobile/index.html
http://jquerymobile.com

CHAPTER 5 ■ MOBILE FRAMEWORKS

87

I suggest that if you want to modify the convention, that’s fine; just use the convention first, then
tweak and test as you go rather than creating something you want and trying to do it the other way around.

Page Data-Role
The first meta-element attribute you’ll use is data-role. This tells the framework that the contents of the
element should be a page.

What’s a Page?
The term page can be used in these ways:

• A file associated with some HTML such as about.html or about.php or a view
generated by a framework like /about.

• It can be a screen the user sees.

In most mobile frameworks you have what’s called a multiple-page template. These templates allow
your mobile application’s HTML, PHP, or other files to serve multiple screens as viewed from the
perspective of the user, all being contained within a master page and rendered via Ajax. This gives you
the ability to have nice transitions between user-viewed pages, rather than the refreshes you typically
experience on normal web sites.

More Data-Roles
From within the data-role="page", you have three other data roles.

• Data-role="header" – This is the section of the document used as the page header.

• Data-role="content" – This is the section of the document used as the page
content area.

• Data-role="footer" – This is the section of the document used as the page footer.

■ Note These do not correspond to the associated new elements such as <header>, <footer>, and <section> in
HTML5. Rather these are element-level attributes and can be interchanged with the <div> tags specified on the

demo web site.

When you put these together you end up with the sample page shown in Figure 5-1.

CHAPTER 5 ■ MOBILE FRAMEWORKS

88

Figure 5-1. Sample page

So just as before, this page is rather simple and plain; the markup for this page is as follows.

Companion Site Reference

Example 5-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter5/jquerymobile/headers.html

<!doctype html>
<html>
<head>
 <meta charset="utf-8">
 <title>JQuery Mobile</title>

http://www.learnhtml5book.com/chapter5/jquerymobile/headers.html

CHAPTER 5 ■ MOBILE FRAMEWORKS

89

 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="jquery.mobile-1.0b3.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script src="jquery.mobile-1.0b3.min.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">
 <h1>Page Title</h1>
 </header>
 <section data-role="content">
 <p>Page content goes here.</p>
 </section>
 <footer data-role="footer">
 <h4>Page Footer</h4>
 </footer>
</div>
</body>
</html>

Multipage Templates
This is a single page with multiple sections where content is shown. In reality it’s just a hidden element
that gets unhidden and moved around via a CSS transition, but to the user it looks like a new page or
screen.

Companion Site Reference

Example 5-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter5/jquerymobile/twopage.html

<div data-role="page" id="one" data-title="page one">
 <header data-role="header">
 <h1>Page Title</h1>
 </header>
 <section data-role="content">
 <p>Page 1</p>
 <p>To Page 2</p>
 </section>
 <footer data-role="footer">
 <h4>Page Footer</h4>
 </footer>
</div>
<div data-role="page" id="two" data-title="page two">
 <header data-role="header">
 <h1>Page Title</h1>
 </header>

http://www.learnhtml5book.com/chapter5/jquerymobile/twopage.html

CHAPTER 5 ■ MOBILE FRAMEWORKS

90

 <section data-role="content">
 <p>Page 2</p>
 <p>To Page 1</p>
 </section>
 <footer data-role="footer">
 <h4>Page Footer</h4>
 </footer>
</div>

You can see that moving between pages or screens all within the same file is rather easy. By default,
your pages will all have the same <title>. To avoid this, use an element called data-title, as shown in
the example above.

Linking to Other Pages/Files
Normally you would just need to set your page/file name in the href attribute of your <a> tag. But in
jQuery mobile this behavior is overridden or Hijaxed and converted to an Ajax request. So actually makes an Ajax call to retrieve the page, and then it’s loaded into the DOM.

To disable this behavior you can add one of these two attributes to your element:

Rel="external"

or

data-ajax="false"

You would want to use this if you’re linking to a page with multiple internal pages such as a
multipage template.

Moving Back
To move back to a previous page you just need to create a link with the attribute data-rel="back".

We talk more about the back button later when we discuss buttons.

Page Transitions
Unlike traditional page transitions, where your page jumps to a new set of contents, with jQuery Mobile
you have six different page transitions or effects. These are created via the element attribute called data-
transition.

• Slide (default) – Causes the new page to slide in from the left

• Slideup – Causes new pages to slide in from the top

• Slidedown – Causes new pages to slide in from the bottom

• Pop – Causes new pages to pop in

• Fade – Causes new pages to fade in

• Flip – Causes new pages to flip in

You can also change the direction of the page transition by adding the attribute data-
direction="reverse".

CHAPTER 5 ■ MOBILE FRAMEWORKS

91

Dialogs
Sometimes you don’t want to take the user to a new page. You want the context and focus of the user to
be on the current page, but you need to display new information relevant to a user action. For these you
use dialogs.

To use a dialog instead of a page just add the element data-rel="dialog" to your <a> tag. The same
transitions apply to how the dialog will appear as they do for page transitions.

To close the dialog just use the same data-rel="back" attribute we used for back button links. Again,
we talk about using a nicer close button when we talk about buttons.

Scripting Pages
jQuery Mobile has the following mechanism for prefetching pages.

$.mobile.loadPage(pageurl);

■ Note Be careful when continuously appending and adding to the page DOM. This has to do with the memory of

your iOS device and the more pages loaded into memory the slower your mobile app will run.

For changing pages, use

$.mobile.changePage(to, transition, back, changeHash)

The arguments are defined as

• to – The page to which you want to change

• transition – The transition effect you would like

• back – A Boolean where true is forward and false is back

• changeHash – A Boolean to whether you’d like the URL’s hash to be updated on
success

A simple example of an anchor calling JavaScript with a transition either in HTML or called from
JavaScript.

About
- or
About
...
function toAbout() {
 $.mobile.changePage("about.html", { transition: "pop"});
}

Toolbars and Buttons
Toolbars are used usually in headers and footers of your application. There’s more detail on footer and
navbars in the next chapter but for now we can talk about the basics and how to configure the header.

CHAPTER 5 ■ MOBILE FRAMEWORKS

92

Header Toolbars
The default header is created by the following markup.

<header data-role="header">
 <h1>Page Title</h1>
</header>

To add a few buttons to the header we just use the following convention with three attributes: data-
icon="back", data-rel="back".

<div data-role="header" data-position="inline">
 <a data-icon="back" data-rel="back" back-btn="true">Back
 <h1>Header</h1>
 Save
</div>

This gives you a button called “Save” and a functioning “Back Button” for your mobile app.

Figure 5-2. Header bar with buttons

CHAPTER 5 ■ MOBILE FRAMEWORKS

93

Creating Buttons
From the previous example you saw that making a back button and a save button was nothing more
than using the data-icon attribute. See Figure 5-2.

To make a normal <a> tag a button, use the data-role attribute.

Companion Site Reference

Example 5-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter5/jquerymobile/buttons.html

<a data-role="button">button text

Or use normal form elements.

<button>button</button>
<input type="button" value="button">
<input type="submit" value="button">
<input type="image" src="img.jpg">

Button Icons
Button icons are all derived from an image in the jQuery Mobile download and have names such as
arrow-r, gear, grid, star, and the like. You can review all of these from the jQuery Mobile site.

You can position the icon via the attribute: data-iconpos="right|top|bottom|notext". If you don’t
want text on the button you just need to specify notext instead of a position.

If you want your button to be compact just use the data-inline="true" attribute.
If you want to group your buttons, wrap all your buttons in an element with the attribute: data-

role="controlgroup".
You can view a few examples of these attributes in Figure 5-3.

http://www.learnhtml5book.com/chapter5/jquerymobile/buttons.html

CHAPTER 5 ■ MOBILE FRAMEWORKS

94

Figure 5-3. Button examples

The full code for Figure 5-3 is shown below.

<section data-role="content">
 <p>Normal</p>
 <p>Compact</p>
 <div data-role="controlgroup" data-type="horizontal">
 A
 B
 C
 </div>
</section>

List Views
All lists on jQuery Mobile take the form of the and tags with the attribute data-role="listview"
for the tag.

CHAPTER 5 ■ MOBILE FRAMEWORKS

95

There are several ways to create lists with jQuery Mobile. In some of the examples shown in Figure
5-4 you can include: Basic List, List with Counts, and List with Thumbnails. You need to decide which list
is best for you and it all depends on how much information you want or need to show.

In the mobile app in the Putting It All Together section I use all three list types, but not all of them in
the same context. Be consistent but also try to remain flexible as you design your pages.

Companion Site Reference

Example 5-6: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter5/jquerymobile/lists.html

Figure 5-4. Basic and count lists

http://www.learnhtml5book.com/chapter5/jquerymobile/lists.html

CHAPTER 5 ■ MOBILE FRAMEWORKS

96

Here is the full HTML markup for the examples shown in Figure 5-4.

<h1>Basic List</h1>
 <ul data-role="listview">
 Link 1
 Link 2

<h1>List with Counts</h1>
<ul data-role="listview">
 Link 1<span class="ui-li-count ui-btn-up-c ui-btn-
corner-all">11
 Link 2<span class="ui-li-count ui-btn-up-c ui-btn-
corner-all">22

<h1>List with Thumbnails</h1>
 <ul data-role="listview">

 <h3 class="ui-li-heading">Staufs</h3>
 <p class="ui-li-desc">Staufs Coffee</p>

 <h3 class="ui-li-heading">Vino Vino</h3>
 <p class="ui-li-desc">Vino Vino Restaurant</p>

■ Note Keep in mind that showing a lot of information on a long list can cause a performance hit.

A Short Note on Themes
One thing I’ve not mentioned yet are the different themes offered with jQuery Mobile. There are five
themes:

• Theme A (default) – Black and dark grey background and white text

• Theme B – Blue background and white text

• Theme C – Light gray background with black text

• Theme D – White background with black text

• Theme E – Yellow background with black text

To use any of these themes just apply the data-theme attribute to pages, toolbars, content, buttons,
and list as in:

<header data-role="header" data-theme="b">

CHAPTER 5 ■ MOBILE FRAMEWORKS

97

■ Note Soon jQuery Mobile will have a custom theme roller similar to jQuery UI that will allow you to create your

own themes and use them on your mobile site.

Putting It All Together
Now that we have our mobile framework we’re ready to create the home page of GrandviewAve.com
mobile edition.

First we’ll need to add our jQuery mobile JS and CSS files to the header.

<head>
 <title>Welcome To Grandview Ave.</title>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="css/jquery.mobile-1.0b3.min.css" />
 <link rel="stylesheet" href="css/grandviewave.css" />
 <script src="js/jquery-1.6.2.min.js"></script>
 <script src="js/jquery.mobile-1.0b3.min.js"></script>

Next we need to load the content from the API for the business categories.

 <script type="text/javascript">
 $().ready(function(){
 $.mobile.pageLoading();
 $.get('api/cats.php', function(data) {
 $('#cats').html(data);
 $('#cats ul').listview();
 $.mobile.pageLoading(true);
 });
 preload();
 });
 function preload() {
<?php
for ($i=0;$i<7;$i++) {
?>
 $.get('api/profiles.php?id=<?=$i?>', function(data) {
 $('#list_<?=$i?>').html(data);
 $('#cat_<?=$i?>').page();
 });
<? }?>
 }
</script>
</head>

Note that I used a little PHP in this file. I did this to build the loop of preloaded profile list
dynamically into the DOM. I could have hard-coded it but my file would be rather large.

Next we create the first mobile “page”. This will be the home page as seen by users.

<div data-role="page">
 <header data-role="header">
 <div class="header1">

 </div>

CHAPTER 5 ■ MOBILE FRAMEWORKS

98

 </header>
 <section data-role="content">
 <div id="cats"></div>
 </section>
</div>

Finally we create the subsequent pages, again using a little PHP:

<?
for ($i=0;$i<7;$i++) {
?>
<div data-role="page" id="cat_<?=$i?>">
 <header data-role="header">
 <a data-icon="back" data-rel="back" back-btn="true">Back
 <div class="header2">

 </div>
 </header>
 <div data-role="content">
 <div id="list_<?=$i?>"></div>
 </div>
</div>
<? }?>

The API side of this call looks like this:

<ul data-role="listview" data-inset="true" data-theme="c" data-dividertheme="a">
<li data-role="list-divider">Business Directory
All
<? foreach ($cats as $cat) { ?>
<a href="#cat_<?=$cat->id?>"><?=$cat->name?>
<? } ?>

You might notice that we’re not using JSON at this time because that makes the page a little more
complicated and the data set is not that large.

Figure 5-5 shows a simple home page made by creating and decorating a list of business categories.
This takes you to a more detailed list of businesses.

CHAPTER 5 ■ MOBILE FRAMEWORKS

99

Figure 5-5. Grandview Ave home page

This is followed by the next page with a smaller logo, back button, and a list with icons (Figure 5-6).

CHAPTER 5 ■ MOBILE FRAMEWORKS

100

Figure 5-6. Next page of detailed listings

The site is already taking shape. But notice that although we are using the mobile framework for
controlling our pages and getting the information dynamically, there are still some things that are missing.

• Fixed tabbed navigation to navigate between all the pages of the site

• Touch events such as scrolling and swiping

• No mention of design for the iPad

Summary
This chapter talked about using the jQuery Mobile framework rather than creating all the CSS and JS
yourself. We used some of concepts from the previous chapters but due to the conventions and the out-
of-the-box functionality we didn’t need to do much.

Before moving on to the next chapter you should know how to:

CHAPTER 5 ■ MOBILE FRAMEWORKS

101

• Create a basic jQuery mobile page.

• Create a multipage template.

• Add dynamic content to your pages via AJAX.

• Create headers and buttons with various themes.

These items above give us a great start to completing our mobile web application, however, there
are still a few pieces missing, mainly revolving around navigation, touch interactions, and how to take
advantage of the extra screen real estate with the iPad. That’s what I talk about next.

C H A P T E R 6

■ ■ ■

103

Usability, Navigation, and Touch

This is the chapter where I focus on how your user will interact with your mobile site. It’s the glue that
holds everything else together. Because you’re designing for a mobile site and not a native app, you
need to keep in mind the usage paradigm for your users has been affected not by websites, but by
native apps. So this means they’ll want to interact with your mobile site in the same way they do with
their favorite apps.

Another thing you need to decide is whether you want to be orientation sensitive. You need to ask
the question: does your navigation change based on whether you’re in landscape or portrait mode?

Of course this begs a larger question. How do users interact with your mobile site? Or what do you
want the user experience (UX) to be like for your site? How do you want users to navigate, or use touch
interaction?

I talk about a little of everything starting with user experience or usability.

Usability
What’s usability? Basically it’s the ease of use and learnability of a system, in our case a mobile website
built with HTML5 and JavaScript. Much has been done to enhance user experience in the past five years
with technologies such as Ajax, user-centered design, and page-as-an application metaphors. In fact I
would say user experience is probably the best it’s ever been, but that translates differently to the iPhone
and iPad because you have the following additional constraints.

• Small screen size

• Smaller memory

• Slower performance

• Slower download

• Awkward input

Sometimes constraints are good because they cause you to focus on the essentials; other times they
make things downright difficult to work. Here are some tips to help you out.

Small Form Factor Tips
The following are some things to think about when programming for 320 pixels versus 1,024 or larger.

• Limit Content to the Essential: Because you can focus your target users on exactly
what they need.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

104

• Limit Navigation Areas: Because you might have less content to navigate to and
from, creating a small flat navigation will allow users to get to the content on your
site fast.

• Limit the Physical Size of Content: Because using large images or lots of text
requiring scrolling will make your user’s fingers get tired.

Performance Tips
The following are some things to think about when your user has a slower network connection and
slower processor.

• Minify your CSS and JS: Because this will allow your site to download faster and
appear as snappy as a native app. See Chapter 3 (mod_deflate).

• Optimize away from frameworks or plugins: Because as your app gets more
sophisticated lightening up the script and HTML footprint of your site/app has a
surprising effect on performance.

• Prefetch and cache content locally: Because this will allow your site to download
everything on first load as opposed to loading it as you go.

Input Tips
Here are some things to think about when users don’t have a keyboard.

• Limit forms and text searches because keyboards are a little awkward on touch
devices; having large forms or requiring search is probably not a good thing.

• Use custom form widgets from HTML5.

• Use custom buttons from jQuery Mobile.

• Try to use swipe or other touch gestures for navigation versus having users hunt
for navigation.

Other Tips
Finally, the following are just a few other usability tips you might try as you develop your site.

• If you use Ajax or jQuery Mobile to load your pages, make sure to use a loading
image to show that the system is working.

• Try to use common places in the header or footer for things such as settings or
home icons.

• Don’t try to reinvent the mobile paradigm. Users are accustomed to using mobile
apps in a certain way; if they have to think, then you’re going to make your site less
usable.

• Link your images.

• Put your app in front of your parents or kids and then ask them to use it without
giving them any instructions.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

105

Site Navigation
A natural byproduct of making your mobile site usable is to make it easy to navigate. So for that I’ll now
talk about some common navigation design patterns.

• Tree Drill Down: This is where you take a large collection of data, classify it, and
refine what you’re looking for as you drill down, usually in the form of a list.

• Header Menus: This is where you provide tabs, buttons, or tools in the header to
assist in navigation.

• Footers and Tab Bars: This is where you provide tabs for your user to move
horizontally across your site rather than having to use the back button to move
back to the home page in order to drill back down to another area of the site.

• Overlays and Modals: This is where instead of navigating to a page you just
provide an overlay of information. This is useful when you don’t want the user to
lose context but the information is not sufficient for an entire page.

All of these types of navigation are supported by jQuery Mobile. Let’s look at them in more detail.

Tree Drill-Down and Headers
This kind of navigation works best if you are filtering through information that’s naturally organized and
grouped. To use this kind of navigation, just create a list view and link it.

In Figure 6-1, the right image has a back button which is in the header providing easy navigation to
the previous page.

Companion Site Reference

Examples 6-1 and 6-2: Follow the links below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter6/drill1.php

http://www.learnhtml5book.com/chapter6/drill2.php

http://www.learnhtml5book.com/chapter6/drill1.php
http://www.learnhtml5book.com/chapter6/drill2.php

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

106

Figure 6-1. Tree Drill-Down

The source code for this example is insanely easy:

<ul data-role="listview">
 Link 1
 Link 2

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

107

And for the second page, I just added a back button:

<header data-role="header" data-theme="b">
<a data-icon="back" data-add-back-btn="true" data-rel="back">Back
<h1>Drill Page 2</h1>
</header>
<section data-role="content">
<h1>Drill Down List</h1>
<ul data-role="listview">
 More 1
 More 2

</section>

Tabbed Navigation
You can add tabs to your site in a few ways. Top tabs can be designed very similarly to traditional web
navigation with a top navigation.

Bottom navigation can be a little more complicated in that sometimes you might want to fix the
navigation at the bottom so it looks like a native tab bar. Fortunately with iOS5, you can specify a scroll
size and fix your navigation as opposed to having to do JavaScript to move your navigation as you scroll,
although I’ve not shown that in this chapter.

This kind of navigation works best if you have a limited number of areas you want to take your user,
usually five or less, where you can then apply other navigation styles from within a tab.

In Figure 6-2, I’ve created a two-tab footer navigation. Note the styles and that the buttons are
evenly spaced. This is done automatically by jQuery Mobile, saving you from having to space them or
alternate CSS based on orientation changes.

jQuery also provides image icons for these images to make them appear very close to the iOS tab bar
design pattern.

Companion Site Reference

Example 6-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter6/tabs.php

http://www.learnhtml5book.com/chapter6/tabs.php

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

108

Figure 6-2. Tab bar from Native iOS App

Again the code for this is really easy with jQuery Mobile. I just added the following attributes to the
footer, data-role, data-position="fixed", then created another data-role called navbar with some
more list.

The colors and states are maintained through convention via the class names ui-btn-active and
ui-state-persist.

<footer data-role="footer" data-position="fixed">
<div data-role="navbar">

 <a href="drill1.html" class="ui-btn-active ui-state-persist"
 data-transition="fade">one
 two

</div>
</footer>

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

109

Dialogs and Modals
With jQuery Mobile creating a dialog is as simple as adding the attribute data-rel="dialog" to your <a>
or <button>. Then when you click the (X) of the dialog you will be taken back to your original page.

Companion Site Reference

Example 6-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter6/modals.php

I have some simple content in the screenshot shown in Figure 6-3.

Figure 6-3. Sample Dialog Window

http://www.learnhtml5book.com/chapter6/modals.php

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

110

Simple content is the best for dialogs as you don’t want them to be larger than two-thirds of the
screen. Although the example above is plain, usually it’s overlaying a page of information or providing
other functionality to support the underlying page.

Navigating for the iPad
I wanted to talk a little bit about how you would use your current framework with the iPad. In general
you have three options:

• Option 1. Modify your current site to be iPad-compatible. This can be little or no
work, but if your site is optimized for a mouse it might not work that well for touch
interaction.

• Option 2. Modify your mobile navigation for the iPad. This should work out of the
box, but it will look strange on a larger surface.

• Option 3. Create a completely new site just for the iPad. You can have a lot of
additional work and some mobile frameworks are not optimized for tablet
interfaces.

In the example below I’ve hacked together a little jQuery Mobile, and although it works, it’s not as
nice an experience as the native site. Good thing I talked about how to roll your own CSS and JS in the
previous chapters because Option 3 will require you do just that.

Figure 6-4. Sample iPad Navigation using jQuery Mobile

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

111

iPad Tips
• jQuery Mobile does not work too well with iPad, so although this mobile

framework works great for your iPod Touch or iPhone, you will find it lacking in
several areas for the iPad.

• You have some more area, so your content will need to scale to this area. One way
is to use the navigation metaphor pictured in Figure 6-4 and combine the
landscape mode of your iPhone project for body content on the right.

• You can make better use of the toolbar not only because it’s longer but because
you can have more icons and even a menu on the right to drop down and provide
context.

• On an OrientationChange event, hide the navigation so that your body content
remains roughly the same size.

• You might have better performance on the iPad because most usage will be
without 3G and over WiFi. So think about where users will be using their iPad
when considering performance and content size.

Working with a Larger Body Area
With the iPad you have roughly 65% of 1,024 pixels or just over 650 px of body area. This content size
might roughly equate to the same area you’re using on your normal website.

So rather than starting from your mobile content, I’d suggest that you just use what content you
have on your main site. You can then adapt the content by adding some iPad navigation features.

Creating a Header
The header was very similar to the iPhone version as you can see below.

<header data-role="header">
 <a data-icon="home" href="/ipad/index.php" data-iconpos="notext">Home
 <div class="header2">
 <img src="/m/images/logo.png" alt="welcome to
 grandviewave.com" border="0">
 </div>
 </header>

Creating a Left Nav
The very first thing I did was create a container and float it to the left. Next I changed the navigation a
little so that it was continued by jQuery Mobile and such that I changed the theme to the selected page
to a different theme so that it stood out.

■ Note The PHP in the page does nothing more than check for the name of the page so that it can modify the

style. There are many ways to do this but I thought I’d just show you something rather simple and easy to follow.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

112

<div style="width:30%;float:left;">
 <ul data-role="listview" data-theme="c" data-dividertheme="d">
 <li data-role="list-divider">Grandview Ave for the iPad
 <li <? if (PAGE_NAME == "/ipad/directory.php") echo 'data-theme="a"';?>>
 <a href="directory.php" data-transition="fade" class=
"ui-state-persist">Business Directory
 <li <? if (PAGE_NAME == "/ipad/sales.php") echo 'data-theme="a"';?>>
 <a href="sales.php" data-transition="fade" class=
"ui-state-persist">Sales & Specials
 <li <? if (PAGE_NAME == "/ipad/parking.php") echo 'data-theme="a"';?>>
 <a href="parking.php" data-transition="fade" class=
"ui-state-persist">Parking
 <li <? if (PAGE_NAME == "/ipad/audvid.php") echo 'data-theme="a"';?>>
 <a href="audvid.php" data-transition="fade" class=
"ui-state-persist">Audio & Video
 <li <? if (PAGE_NAME == "/ipad/about.php") echo 'data-theme="a"';?>>
 <a href="about.php" data-transition="fade" class=
"ui-state-persist">About The Avenue
 <li <? if (PAGE_NAME == "/ipad/contact.php") echo 'data-theme="a"';?>>
 <a href="contact.php" data-transition="fade" class=
"ui-state-persist">Contact
 Visit Normal Site

</div>

For the right part (or body) of the page I again just wrapped it in a <div> and floated it right.

<div style="width:65%;float:left;margin-left:35px;">
 <h1 style="text-align:center;">Some Title<h1>
</div>

Creating a Footer
Again, as with the header I was able to create a footer in much the same way as I did with the iPhone.

<div data-role="footer" data-position="fixed">
 <h1>©2010-2012 CodeGin LLC.</h1>
</div>

Touch Interactions
So although the constraints presented earlier make programming your site a little more difficult there’s
something you get with iOS devices you don’t readily get from the computer, and that’s touch
interactions. Touch interactions, if done correctly, can really improve the usability of your site.

One-Finger Events
These events just require a single finger and can be used to tap (vs. click), swipe left or right, or scroll up
or down.

• Tap: Just like a single click.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

113

• Double Tap: Just a like a double click.

• Swipe (Left, Right, Up, Down): Tap then drag your finger in a certain direction.

Multitouch Events
These events happen when two or more fingers are used to interact with the surface of your iPhone or
iPad.

• Pinch: Usually to zoom out in the case of a larger website or Google map

• Spread: Usually to zoom in in the case of a nonviewport website or Google map

• Rotate: To rotate an object clockwise or counterclockwise

Supported Events by Mobile Safari
• TouchStart: Happens every time a finger is placed on the surface.

• TouchEnd: Happens every time a finger is removed from the surface.

• TouchMove: Happens when a finger is on a surface and is moved.

• TouchCancel: Not really a practical event, but this is when the system cancels the
tracking for a touch.

• GestureStart: When two or more fingers touch the surface.

• GestureEnd: When the gesture ends or just one or no more fingers are touching the
surface.

• GestureChange: When both fingers move while touching the surface.

An example of coding your own swipe left or swipe right gesture events would look something like
this.

Companion Site Reference

Examples 6-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter6/events.php

<div data-role="page">
<header data-role="header" data-theme="b">
<h1>Touch Example</h1>
</header>
<div id="testarea" style="width:200px;height:200px;background:#ccc;"></div>
</div>
<script type="text/javascript">

 var box = document.querySelector("#testarea");
 var startX = 0;

5

http://www.learnhtml5book.com/chapter6/events.php

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

114

 var startY = 0;
 var endX = 0;
 var endY = 0;

 box.ontouchstart=function(evt){
 startX = evt.pageX;
 startY = evt.pageY;
 }

 box.ontouchend=function(evt){
 var endX = evt.changedTouches[0].pageX;
 var delta = (startX-endX);
 var deltaY = Math.abs(startY - endY);
 endY = evt.pageY;
 if (delta > 40 && endX > 0 && startX > 0 && deltaY < 20) {
 alert ("left swipe")
 }
 if (delta < -40 && endX > 0 && startX > 0 && deltaY < 20) {
 alert ("right swipe")
 }
 startX=0;
 endX=0;
 startX = 0;
 startY = 0;
 }

</script>

By measuring the pageX at the start and end of the event, you can calculate whether the finger was
swiped to the left or to the right with a little math. But you don’t need to work this out yourself: jQuery
Mobile has it built in.

jQuery Mobile Events
Underneath the covers of jQuery Mobile these events encapsulate touch- and click-related events.

• Tap: After a complete touch event.

• Taphold: Touching the screen for about a second.

• Swipe: Triggers when there’s a drag of more than 30 px within a one-second
duration.

• Swipeleft: Triggers when a swipe is done in the left direction.

• Swiperight: Triggers when a swipe is done in the right direction.

• ScrollStart: Triggers when an item is scrolled up or down.

• ScrollStop: Triggers when the scroll stops.

Below I show you how to execute the gestures via some JavaScript. The swipe event will always fire
in the case of swipeleft and swiperight.

The tap event will also be fired if you just touch the screen and will always fire before the taphold
event. So comment out the ones you don’t want to use.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

115

Companion Site Reference

Example 6-6: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter6/events2.php

<script type="text/javascript">
 $('body').live('swipe', function(e) {
 alert('You swiped!');
 e.stopImmediatePropagation();
 return false;
 });
 $('body').live('swipeleft', function(e) {
 alert('You swiped left!');
 e.stopImmediatePropagation();
 return false;
 });
 $('body').live('swiperight', function(e) {
 alert('You swiped right!');
 e.stopImmediatePropagation();
 return false;
 });
 $('body').live('tap', function(e) {
 alert('You tapped!');
 e.stopImmediatePropagation();
 return false;
 });
 $('body').live('taphold', function(e) {
 alert('You are touching the screen!');
 e.stopImmediatePropagation();
 return false;
 });

</script>

Putting It All Together
So far for GrandviewAve we’ve just built a basic directory structure. Now it’s time to link these files
together into a cohesive navigation. I use a combination of navigation metaphors for the site: drill-down,
a tab bar footer, and a header with some buttons.

The drill-down allows users to navigate the business directory by category and the tabbed footer
allows users to move to different parts of the site without having to go back home.

I didn’t know quite how I wanted to do it, so let me show you some of the options I created during
the design.

http://www.learnhtml5book.com/chapter6/events2.php

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

116

Option 1
The first option I thought about was a plain list (Figure 6-5). This did everything I needed it to do: display
a list of the navigational areas and allow users to drill down to everything all the way to the individual
business.

But this didn’t quite have the kind of usability I wanted because every time I would need to look for
parking or find out sales and specials I’d have to go back or click the top logo.

Figure 6-5. Nav Drill Down (Option #1)

Option 2
The second option (Figure 6-6) was a bit closer mainly because of the footer navigation. This navigation
allowed me to jump between businesses and parking.

But like Option 1 it was still a little plain.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

117

Figure 6-6. Footer Tabbed Navigation (Option 2)

Option 3
With Option 2 I had all the navigation elements I wanted users to access in the footer, except for the
directory. So I just added the business directory to the home page via a single link and the rest of the
application could now be accessed via the footer.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

118

Figure 6-7. Combined Footer & Drill-down (Final)

In Figure 6-7 the left screen is the home page, the middle one is the business directory drill-down,
followed by a business detail page, in this case Iannarino Dexter Creative.

To explain the code for each let’s start with the header. There are two: one for the home page and
the second with the back button and home icon. The class names header1 and header2 just define some
of the parameters such as the background and size of the logo. You can ignore them as they contain no
conventional aspects.

Header 1—Home Page
This is just a plain vanilla header with the attribute data-role=”header”.

<header data-role="header">
<div class="header1">
<img src="images/logo.png" alt="welcome to
 grandviewave.com" border="0">
</div>
</header>

Header 2—Subsequent Pages
This is slightly different because we have two buttons: one the back button specified by an <a> tag with
data-add-back-btn, data-rel, and data-icon attributes, and the second with another <a> tag for the
home icon with the data-iconpos="notext" attribute specifying no text.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

119

<header data-role="header">
<a data-icon="back" data-add-back-btn="true" data-rel="back">Back
<div class="header2">
<img src="images/logo.png" alt="welcome to
 grandviewave.com" border="0">
</div>
<a data-icon="home" href="#home" data-iconpos="notext">Home
</header>

The combination of these two headers is used in the entire mobile site and swapped out
dynamically on the pages via some crude PHP:

<? if ($_SERVER['SCRIPT_NAME'] == "/m/index.php") {?>.

Footer Navigation
The second part of the navigation is what’s in the footer. First it’s sticky to the bottom of the page via the
two attributes data-role="footer" and data-position="fixed".

The colors are added via the class names: ui-btn-activeui-state-persist, and the fade transition is
created via the attribute: data-transition="fade".

I chose the fade transition because it seemed to look a little better on my iPhone than the “slide”
transition that’s there by default. I seemed to get a shrinking flash effect that just seemed a little odd.

<div data-role="footer" data-position="fixed">
<div data-role="navbar">

<a href="/m/index.php" class="ui-btn-active ui-state-persist"
 data-transition="fade">Home

<a href="/m/near.php" class=" ui-state-persist"
 data-transition="fade">Near Me

<a href="/m/sales.php" class=" ui-state-persist"
data-transition="fade">Sales
<a href="/m/parking.php" class=" ui-state-persist"
data-transition="fade">Parking
<a href="/m/more.php" class=" ui-state-persist"
data-transition="fade">More

</div>
</div></div>

So far I’ve not had the need for any touch effects so I’m not going to add any of those at this time.

Chapter Summary
This chapter combined all the pieces and parts we’ve discussed up until now and put it all together into
a usable navigation and talked about how to add touch events to your mobile web app.

Before moving on to the next chapter you should know how to do the following.

• Understand the constraints of building a mobile web app compared with a
desktop web app.

• Understand the main mobile navigation patterns: drill-down, header, footer, and
modal windows.

CHAPTER 6 ■ USABILITY, NAVIGATION, AND TOUCH

120

• How to use touch interactions on your mobile web app.

• How to use jQuery Mobile to navigate, transition, and glue your site together.

Next I begin filling in some of the content areas of the Grandview Ave web app such as Parking, Near
Me functionality, and business locations.

C H A P T E R 7

■ ■ ■

121

GPS and Google Maps

Of all the mobile web development I’ve done, I’ve had the most fun working with the Global Positioning
System (GPS). GPS gives you as the developer a lot of power to connect the real world to a web site or
mobile app that provides a connection to your user that is far more intimate than technologies such as
user preferences or personalization.

To make things even better, what if you had the entire world that could be viewed through either
road maps or satellite photos and everything could be interfaced via JavaScript? Hey, we have something
for that, and it’s called Google Maps.

The one thing about having both of these at your disposal is you can add incredibly powerful
functionality with very little code.

Getting GPS Coordinates
GPS coordinates are measured with longitude and latitude.

• Longitude: The vertical lines on the globe. The longitude of 0.0 is the Prime Meridian
and runs through Greenwich, England. Changes in longitude often correspond to
time zone changes. When you move east, the longitude goes +, or east, and if you go
west of Greenwich, longitude goes –, or west. For example, Columbus, Ohio, would
be -83 (or 83 west), and Seattle, Washington, would be -122 (or 122 west).

• A degree of longitude is approximately 69 miles at the equator, but gradually goes
to zero as you move closer to a pole. So, if you’re on the equator and drive 69 miles
east, you’ll be at longitude 1 degree east.

• Latitude: The horizontal lines on the globe. The latitude of 0.0 degrees is the
equator. Changes in latitude would be how far north or how far south of the
equator you move, where 90 is the North Pole and -90 is the South Pole. The
latitude of 39 would be Columbus, Ohio (or 39 north).

• A degree of latitude is approximately 69 miles. So, once again, if you’re at the
equator and drive 69 miles north, your latitude would be 1 degree north.
Furthermore, a minute, or 1/60th of a degree, is approximately 1.15 miles, and a
second of latitude is 1/3600th of a degree or just over 100 feet.

The GPS function that’s built into iOS is the navigator.geolocation object. There are two methods
for getting the GPS:

• getCurrentPosition: This will get the GPS position once.

• watchCurrentPosition: This will get the GPS position on a timed interval.

CHAPTER 7 ■ GPS AND GOOGLE MAPS

122

Companion Site Reference

Example 7-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter7/basics.php.

Both of these methods take as parameters a success function, an error function, and options in the
form of JSON syntax. In the following example, I just create a button that calls the getGPS function that
invokes the navigator.geolocation.getPosition method (see Figure 7-1).

■ Note The enableHighAccuracy option provides you with the highest accuracy. However, this option as well as

watchCurrentPosition will consume a lot of battery life because GPS is a high-power activity.

<script>
function getGPS(){
 navigator.geolocation.getCurrentPosition(successGPS, errorGPS,
 {enableHighAccuracy : true});
}
function successGPS(position) {
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var curHTML = $('#gps_coords').html() + "lat="+lat + ",lon="+lon+"
";
 $('#gps_coords').html(curHTML);
}

function errorGPS() {
 alert('GPS Error');
}
</script>
<button onclick="getGPS()">Get GPS Coordinates</button>
<h2>GPS Coords Below</h2>
<div id="gps_coords"></div>

http://www.learnhtml5book.com/chapter7/basics.php

CHAPTER 7 ■ GPS AND GOOGLE MAPS

123

Figure 7-1. Simple GPS app

If you want to poll the GPS coordinates or get continuous feedback, you can use the watchPosition
method. This returns the GPS coordinates to your callback function approximately once per second.

var updateLocation;

function watchGPS() {
 updateLocation = navigator.geolocation.watchPosition(
 successGPS, errorGPS,{enableHighAccuracy : true});
}

function clearWatch() {
 navigator.geolocation.clearWatch(updateLocation);
}

CHAPTER 7 ■ GPS AND GOOGLE MAPS

124

Using Google Maps
The Google Maps API gives you the ability to interact with road and satellite maps accessible via Google
and use Google Maps on your mobile site; all you need are a few lines of code.

A Simple Map Example
In this simple example, we reference the Google Maps JavaScript file from Google and then create an
initialize() function. This function name is just arbitrary; it can be anything you want. It either can be
initialized via body.onload or via jQuery in $().ready or can be initialized manually via some button click
or other kind of event.

The first thing you do is create a LatLng object with a latitude and longitude in the constructor
followed by some options, specifically:

• zoom: This is the zoom scale of the map you are displaying.

• center: This is a LatLng object that centers your map.

• mapTypeId: This is whether you are displaying a ROADMAP, HYBRID, SATELLITE, or
TERRAIN.

Finally, you just create a Map object, assigned to a variable for reference, with a constructor of an
element from which it needs to reside. Based on the width and height of this element, the Google map
will autosize and center.

Companion Site Reference

Example 7-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter7/gmap.php.

<script type="text/javascript" src="http://maps.googleapis.com/maps/
api/js?sensor=false">
</script>
<script type="text/javascript">
 function initialize() {
 var latlng = new google.maps.LatLng(39.985764, -83.044776);
 var myOptions = {
 zoom: 10,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById("basic_map"),
 myOptions);
 }
 $().ready(function(){
 initialize();
 });
</script>
<div id="basic_map" style="width:320px;height:240px;"></div>

http://www.learnhtml5book.com/chapter7/gmap.php
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00%00
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00%00

CHAPTER 7 ■ GPS AND GOOGLE MAPS

125

Figure 7-2 shows the resulting page and map.

Figure 7-2. Simple Google Maps usage

Geocoding and Markers
Sometimes you don’t have a longitude and latitude, so what do you do? Well, here’s where something
called geocoding comes into play. Geocoding is the process of finding a longitude and latitude via such
data as street address and ZIP or postal codes.

The Google Geocoder class takes a GeocoderRequest object (JSON Address object) and returns a
LatLng object.

To use this instead of the LatLng variable, just create the GeoCoder object, pass in a valid
GeocoderRequest, and pass the resultant LatLng object to the initialize function.

It is also helpful to show the LatLng you’re centering on. You do that with Google Maps via a Marker.
The Marker object takes as part of its constructor MarkerOptions (more JSON), and in the following

example I’ve added two properties:

• position: The LatLng coordinate of the marker

CHAPTER 7 ■ GPS AND GOOGLE MAPS

126

• map: The Map object you’re applying the marker

The following example shows you how to use both geocoding and a marker with a basic Google
map. You can see the results in Figure 7-3.

Companion Site Reference

Example 7-3: Follow the link below to run this example on the companion site.

www.learnhtml5book.com/chapter7/gmap2.php.

<h2>Address Map</h2>
<script type="text/javascript" src="http://maps.googleapis.com/maps/
api/js?sensor=false">
</script>
<script type="text/javascript">
 function initialize(location) {
 var myOptions = {
 zoom: 17,
 center: location,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 var map = new google.maps.Map(document.getElementById("basic_map"), myOptions);
 var marker = new google.maps.Marker({
 position: location,
 map: map
 });
 }
 $().ready(function(){
 var geocoder = new google.maps.Geocoder();
 geocoder.geocode({ 'address': '1373 grandview ave. columbus ohio 43212'},
 function(results, status) {
 initialize(results[0].geometry.location);
 });
 });
</script>
<div id="basic_map" style="width:320px;height:240px;"></div>

http://www.learnhtml5book.com/chapter7/gmap2.php
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00%00
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00%00

CHAPTER 7 ■ GPS AND GOOGLE MAPS

127

Figure 7-3. Simple geocoding example

Static Maps
Sometimes you just need a picture of a map and might want to place markers on it. You can do this with
Google Maps API v3, but you will have a lot of JavaScript, and it’s performance-intensive for a phone,
even if it’s a dual- or quad-core iOS device.

For this Google has given you the ability to create a map via a URL that you can place as an image
source.

Companion Site Reference

Example 7-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter7/static.php.

http://www.learnhtml5book.com/chapter7/static.php

CHAPTER 7 ■ GPS AND GOOGLE MAPS

128

Static Google Map URL Pattern
Here’s an example of the URL pattern and the parameters you might use when requesting a static
Google map:

http://maps.googleapis.com/maps/api/staticmap?

Center
In this case, an address will automatically be geocoded to a latitude and longitude.

center=1373%20grandview%20ave,columbus,oh%2043212

Options
Here I’m setting the zoom level, size of the image, and type of map.

&zoom=14&size=320x240&maptype=roadmap

Marker
Finally, I set the color of the label, its text as *, and its location in latitude and longitude.

markers=color:red%7Ccolor:red%7Clabel:*%7C39.985764,-83.044776

Full Example
Here’s the full example (Figure 7-4):

<img src="http://maps.googleapis.com/maps/api/staticmap?center=1373%20grandview%20ave,
columbus,oh%2043212&zoom=14&size=320x240&maptype=roadmap&markers=color:red%7Ccolor:
red%7Clabel:*%7C39.985764,-83.044776&sensor=false">

http://maps.googleapis.com/maps/api/staticmap?
http://maps.googleapis.com/maps/api/staticmap?center=1373%20grandview%20ave

CHAPTER 7 ■ GPS AND GOOGLE MAPS

129

Figure 7-4. Simple static maps example

Interacting with Google Maps via GPS
So, you’ve been able to get GPS coordinates from your phone, and you’ve been able to create a few basic
Google maps, but how do you connect the two?

First, you will be moving on a map, so you’ll need a way to update your position on a map. Next, you
will want to identify where you want to go. To designate those two places, use two markers.

The first marker will be a blue dot that will represent your current location. For the second marker
you’ll just use a standard red pin. For the blue dot, I’ve used a custom MarkerImage (blue_dot.png file). In
Chapter 8, I’ll use pure CSS.

After you create the markers, create the initialize function to take the coordinates of your position
(a LatLng object) and place that marker created earlier to the position on your Google map.

When the page loads (implemented by JQuery $.ready), you can call watchPosition, which invokes
the successGPS function. The successGPS function in turn creates a new marker with this location, which
will show you your current location relative to your goal location (the red pin marker). If this occurs each
second, you’ll get a lot of markers if you don’t reuse the variable name.

CHAPTER 7 ■ GPS AND GOOGLE MAPS

130

Companion Site Reference

Example 7-5: Follow the link below to run this example on the companion site.

www.learnhtml5book.com/chapter7/currentlocation.php.

<script type="text/javascript" src="http://maps.googleapis.com/maps/
api/js?sensor=false">
</script>

<h2>Current Location</h2>

<script type="text/javascript">
 var map;
 var bluedot = new google.maps.MarkerImage('blue_dot.png',
 new google.maps.Size(38, 38),
 new google.maps.Point(0, 0),
 new google.maps.Point(19, 19)
);

 function initialize(location) {
 var myOptions = {
 zoom: 17,
 center: location,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }

 map = new google.maps.Map(document.getElementById("basic_map"), myOptions);

 var marker = new google.maps.Marker({
 position: location,
 map: map,
});
 }
 $().ready(function() {
 var geocoder = new google.maps.Geocoder();
 geocoder.geocode({ 'address': '1373 grandview ave. columbus ohio 43212'},
 function(results, status) {
 initialize(results[0].geometry.location);
 });
 updateLocation = navigator.geolocation.watchPosition(successGPS, errorGPS,
 {enableHighAccuracy : true});
 });

 function successGPS(position) {
 var latlng = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);
 var myLocation = new google.maps.Marker({
 position: latlng,
 map: map,

http://www.learnhtml5book.com/chapter7/currentlocation.php
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00

CHAPTER 7 ■ GPS AND GOOGLE MAPS

131

 icon: bluedot,
 title:"Me"
 });
 }
 function errorGPS() {
 alert('GPS Error');
 }
</script>

<div id="basic_map" style="width:320px;height:240px;"></div>

When I run this example in my own location, I get the screen shown in Figure 7-5. However, if you
use this code example directly, your goal will be a long way from your current position (unless you
happen to be near Grandview Avenue!), so update the geocoder to a location near you to try this for
yourself.

Figure 7-5. Combining Google GPS

CHAPTER 7 ■ GPS AND GOOGLE MAPS

132

Now you’ve combined everything with one simple example, including using geolocation, using
geocoding, and putting two markers on a dynamic Google map. Now let’s apply it to the example web
app, Grandview Avenue.

Putting It All Together
So far, for our mobile Grandview Ave site we’ve started putting things together. We have navigation, we
have a business directory, but we don’t have features like near-me, parking, or the actual location of a
business on the avenue. Now we are ready to do that.

Parking
Grandview Avenue has very few parking spaces for the number of businesses, and all the off-street
parking might be difficult to find for new visitors to the area. So, one of the things I wanted on the site
was to show people the different places to park. I visited the six largest off-street parking spots near the
avenue and tagged their GPS locations with my iPhone.

For this I had two options. Option 1 was to just show a static map. It was easy and fast (since it was
only an image being served from Google), and it would also keep things simple.

Option 1: Static Map
Let’s create a static map by constructing a URL with six markers, all representing parking locations. Let’s
keep it simple by reusing objects we already know, LatLng, and just using those objects to create a string.

function loadParking() {

var p1 = new google.maps.LatLng(39.98376667, -83.04541944);
var p2 = new google.maps.LatLng(39.98540278, -83.04531944);
var p3 = new google.maps.LatLng(39.98600278, -83.04510000);
var p4 = new google.maps.LatLng(39.98670000, -83.04495833);
var p5 = new google.maps.LatLng(39.98721389, -83.0455);
var p6 = new google.maps.LatLng(39.98236111, -83.04553056);

var marker = '&markers=color:red|label:P|'+ p1.lat() + ',' + p1.lng();
marker += "&markers=color:red|label:P|" + p2.lat() + "," + p2.lng();
marker += "&markers=color:red|label:P|" + p3.lat() + "," + p3.lng();
marker += "&markers=color:red|label:P|" + p4.lat() + "," + p4.lng();
marker += "&markers=color:red|label:P|" + p5.lat() + "," + p5.lng();
marker += "&markers=color:red|label:P|" + p6.lat() + "," + p6.lng();

var url = http://maps.google.com/maps/api/staticmap?zoom=16&size=
310x415&maptype=roadmap&sensor=true
+marker;
document.getElementById('map').setAttribute('src',url);

}

http://maps.google.com/maps/api/staticmap?zoom=16&size=%ED%AF%80%ED%B0%81

CHAPTER 7 ■ GPS AND GOOGLE MAPS

133

Option 2: Dynamic Map
This option combines the dynamic map created earlier with adding multiple markers. Not only did it
allow me to show where the user was relative to the nearest parking location, but users could zoom in
and out relative to their current location.

This example is similar to the previous “Interacting with Google Maps via GPS” example, except
now it has multiple markers set via GPS location versus the one marker that just used geocoding.

■ Note This might not work unless you’re near Grandview Avenue. I suggest you update the following markers

with a single one near your current location.

<script
 type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
<script type="text/javascript">

 var map;
 var bluedot = new google.maps.MarkerImage('/m/images/blue_dot.png',
 new google.maps.Size(38, 38),
 new google.maps.Point(0, 0),
 new google.maps.Point(19, 19)
);

 function loadParking() {
 var latlng = new google.maps.LatLng(39.98574444, -83.04474722);

 var myOptions = {
 zoom : 16,
 center : latlng,
 draggable: true,
 mapTypeId : google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById("map_canvas"), myOptions);
 addMarker(new google.maps.LatLng(39.98376667, -83.04541944));
 addMarker(new google.maps.LatLng(39.98540278, -83.04531944));
 addMarker(new google.maps.LatLng(39.98600278, -83.04510000));
 addMarker(new google.maps.LatLng(39.98670000, -83.04495833));
 addMarker(new google.maps.LatLng(39.98721389, -83.04514444));
 addMarker(new google.maps.LatLng(39.98236111, -83.04553056));
 updateLocation = navigator.geolocation.watchPosition(successGPS, errorGPS,
 {enableHighAccuracy : true});
 $("#more a").css("display","none");
 }

 function successGPS(position) {
 var latlng = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);

CHAPTER 7 ■ GPS AND GOOGLE MAPS

134

 var myLocation = new google.maps.Marker({
 position: latlng,
 map: map,
 icon: bluedot,
 title:"Me"
 });
 }

 function errorGPS() {
 alert('GPS Error');
 }

 var markerCount = 1;

 function addMarker(latlon) {
 var marker = new google.maps.Marker({
 position : latlon,
 map : map,
 icon : "http://www.google.com/mapfiles/markerP.png",
 title : "Parking "
 });
 markerCount++;
 }

 $(document).ready(function($) {
 loadParking();
 });

</script>
<div style="text-align:center;margin-bottom:50px;">
 <div id="map_canvas" style="width:320px;height:410px;margin-left:-15px;
margin-top:-10px;"></div>
</div>

You can see the blue dot in Figure 7-6 at the intersection of Grandview Avenue and 3rd Avenue.

http://www.google.com/mapfiles/markerP.png

CHAPTER 7 ■ GPS AND GOOGLE MAPS

135

Figure 7-6. GrandviewAve.com parking example

Near Me
The near-me functionality is a little more difficult; here what I wanted to do was pass in the longitude
and latitude, calculate the distance of each of the businesses in the database, and then sort them by
closest distance.

For performance reasons I’ve decided to implement the near-me functionality on the server.
Basically this function takes two parameters, the latitude and longitude of your current location, and
then returns a result set of businesses sorted by distance.

The first variables, $lat and $lon, represent the request variables of longitude and latitude.
The function getDistance takes as parameters two GPS coordinates and then does some

mathematical calculations to return the distance in meters.
The function getFeet() converts the meters returned in getDistance to feet.
The loop sorts through the entire list of business profiles creating two arrays and then sorts the

distance array by shortest number of feet.
Because the profile Array has the same index (profile_id) as the distance array, I can then print the

profile information from the same key as indexed via the distance array.

CHAPTER 7 ■ GPS AND GOOGLE MAPS

136

Because the JavaScript will know the GPS and the server will know how to calculate, I just changed
the location to the new URL once the position was known, to have a semi-interactive page. To update this
near-me functionality, you can set a timeout on the page or just click Near Me again in the navigation.

$lat = $_GET("lat");
$lon = $_GET("lon");
if ($lat == "") {
?>
<script type="text/javascript">
 $().ready(function() {
 updateLocation = navigator.geolocation.watchPosition(successGPS, errorGPS,
 {enableHighAccuracy : true});
 });
 function successGPS(position) {
 var url = "near.php?lat="+ position.coords.latitude + "&lon=" +
 position.coords.longitude;
 location.href=url;
 }

 function errorGPS() {
 alert('GPS Error');
 }

</script>
<?
} else {
function getDistance($lat1,$lon1,$lat2,$lon2) {
 $dlat = ($lat2-$lat1)*pi() / 180;
 $dlon = ($lon2-$lon1)*pi() / 180;
 $a= sin($dlat/2)*sin($dlat/2)+cos($lat1 * pi()/180) * cos($lat2 *pi()/180) *
 sin($dlon/2) * sin ($dlon/2);
 $c=2 * atan2(sqrt($a),sqrt(1-$a));
 $meters = 6378140 * $c; // in meters
 return $meters;
}

function getFeet($lat1,$lon1,$lat2,$lon2) {
 $feet = getDistance($lat1,$lon1,$lat2,$lon2) * 3.28;
 return round($feet,0);
}

foreach ($profiles as $profile) {
 if (floatval($profile->gps_lat) != 0 && floatval($profile->gps_long) != 0) {
 $distance = getFeet($lat,$lon,$profile->gps_lat,$profile->gps_long);
 $distanceData[$profile->id] = $distance;
 $profileData[$profile->id] = $profile;
 }
}
asort($distanceData);

<ul data-role="listview" data-inset="true" data-theme="c" data-dividertheme="a">
<?
 foreach ($distanceData as $id => $dist) {
 $tmpProfile = $profileData[$id];

CHAPTER 7 ■ GPS AND GOOGLE MAPS

137

 $name = htmlentities($tmpProfile->name,ENT_QUOTES);
 if ($dist > 500) {
 $dist = $dist/5280;
 $dist = round($dist,1) . " mi";
 } else {
 $dist = $dist . " ft";
 }
?>
<a href="#profile" onclick="loadProfile(<?=$id?>)"><?=stripslashes($name)?>
<?=$dist?>
<? } ?>

In Figure 7-7, you see the same list page as before, except this time all the businesses are listed in
order by distance.

Figure 7-7. Grandview Ave. Near Me

CHAPTER 7 ■ GPS AND GOOGLE MAPS

138

Business Markers
The final thing to add on the site are business markers or some way to identify a business via Google Maps.

To make this work, I needed to do the following:

1. Go to each business and tag the GPS location. This was much more accurate
than geocoding.

2. I also needed a dynamic Google map with marker capability.

For this you can copy the code from the previous example using the dynamic map.

<script type="text/javascript" src="http://maps.googleapis.com/maps/
api/js?sensor=false">
</script>
<script type="text/javascript">
 function initialize() {
 var latlng = new google.maps.LatLng(<?=$profiles->gps_lat?>,
 <?=$profiles->gps_long?>);
 var myOptions = {
 zoom: 16,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById("basic_map"),
 myOptions);
 addMarker(latlng,map);
 }
 $().ready(function() {
 initialize();
 });

 function addMarker(latlon,map) {
 var marker = new google.maps.Marker({
 position : latlon,
 map : map,
 icon : "http://www.google.com/mapfiles/marker.png",
 title : "Location "
 });
 }
</script>
<div id="basic_map" style="width:320px;height:240px;margin-left:-15px;"></div>

Figure 7-8 is a view of the business profile page towards the bottom. It shows the location of the
business on the map, and you can scroll and zoom this map just like you can with a native app.

http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00
http://maps.googleapis.com/maps/%ED%AF%80%ED%B0%81api/js?sensor=false%00
http://www.google.com/mapfiles/marker.png

CHAPTER 7 ■ GPS AND GOOGLE MAPS

139

Figure 7-8. Business profile marker example

Chapter Summary
This concludes the chapter on GPS and Google Maps. There’s a lot more to Google Maps than the few
areas I’ve touched on in this chapter. You can find out more from the official Google API web site:
http://code.google.com/apis/maps/.

Before you move on to the next chapter, you should now know how to do the following:

• Capture a longitude and latitude from your iOS device

• Create a basic Google (road) map

• Geocode your location

• Add a marker or two via GPS and geocoding to your basic Google map

http://code.google.com/apis/maps/

CHAPTER 7 ■ GPS AND GOOGLE MAPS

140

In the next chapter, I break away a little from building GrandviewAve.com and focus on some of the
newer features in CSS3 and JavaScript that have to do with animation and effects.

These things will add some coolness to the existing part of the mobile site we’ve been building and
show you how to create some exciting things with your mobile app you probably didn’t think were
possible.

C H A P T E R 8

■ ■ ■

141

Animation and Effects

Animations, transitions, transforms, effects: they are all really about the same thing. They get stuff to
move on your screen without JavaScript.

Transitions are the transition from one CSS rule to another. So a CSS can specify position, color, size
of elements; the transition or movement from one color or position to another can be done purely in
CSS without the need for JavaScript to manage the values.

Transforms perform 2D and 3D rotation or movement of an element in the space of the browser’s
window. These are especially powerful when combined with transitions because you can get simple
effects such as rotating a box or more complicated transitions in 3D.

Animations, notably key frame animations are specially designed CSS meta elements that
encapsulate the entity of a transition and with specific frames and specific start and stop times. These
allow for custom starting and stopping of transitions and allow for greater control with more elements.

The term effects is a broad term for anything fancy you might want to do with the UI some of which
you could only use with images, or in the case of jQuery might involve some fadeIn() or fadeOut() type
of action, causing an element to fade into or out of view.

CSS Tricks
There are a few CSS tricks we’ll want to use in our iOS app because they save us from having to create
images, save in number of downloads, and get us closer to a native app. To give you a taste of some of
the things you can do I’ll show you how to create linear and radial gradients as well as how to create a
reflection of some text. You can see all of these examples in Figure 8-1.

Companion Site Reference

Example 8-1: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter8/tricks.php

Linear Gradients
Linear gradients allow you to specify the gradual changing of one color to the next without the need for
an image. In the example below I create a gradient from a color of gray (#999) to white (#fff). This is done
inside a 50 × 50 pixel box with a solid black border.

http://www.learnhtml5book.com/chapter8/tricks.php

CHAPTER 8 ■ ANIMATION AND EFFECTS

142

<style>
 .grad1 {
 background: -webkit-linear-gradient(top, #999, #fff);
 }
 .demobox {
 height: 50px;
 width: 50px;
 border: 1px solid #000;
 }
</style>
<h2>Linear Gradients</h2>
<div class="demobox grad1"></div>

Radial Gradients
Radial gradients are similar to linear in that they save you from having to create an image, but the syntax
can get tricky. Refer to the following site for a detailed explanation: http://dev.w3.org/csswg/css3-
images/#ltradial-gradient .

In the example below I create a 100-pixel DIV with a radius of 50 px. This makes a blue colored
sphere.

<style>
 .big_sphere {
 width: 100px;
 height: 100px;
 border-radius: 50px;
 background: -webkit-radial-gradient(silver, #0066cc, #000066);
 }
</style>
<h2>Radial Grandients</h2>
<div class="big_sphere"></div>

Reflections
Reflections can be done with images or text. In the example below I apply a linear gradient to the
reflection, causing it to fade out the farther away it gets from the top of the screen.

<style>
 .reflect1 {
 -webkit-box-reflect: below 0px -webkit-linear-gradient(transparent,
 transparent 10%, silver 90%);;
 }
</style>
<h2>Reflections</h2>
<h3 class="reflect1">Reflection of Text</h3>

http://dev.w3.org/csswg/css3-images/#ltradial-gradient
http://dev.w3.org/csswg/css3-images/#ltradial-gradient

CHAPTER 8 ■ ANIMATION AND EFFECTS

143

Figure 8-1. CSS Tricks

CSS Transitions
CSS transitions are the most basic kind of animation. They transition the change of state from one CSS
rule to another, so if that rule is a position rule, such as top:0px to top:100px, then the transition will
move the element from 0 px to 100 px without the need for JavaScript.

To use a transition you need to use the css property -webkit-transition. You can either use
shorthand (in the example below) or you can specify each of the properties.

• -webkit-transition-property: This specifies the name of the property that is
transitioning, such as top or left or background.

• -webkit-transition-duration: This is the amount of time in seconds the
transition takes.

CHAPTER 8 ■ ANIMATION AND EFFECTS

144

• -webkit-transition-timing-function: This specifies how the transition is timed: it
can move at the same rate, it can accelerate towards the end, or slow down
towards the end. Examples are: linear, ease, ease-in, ease-out, ease-in-out, and
cubic-bezier(n,n,n,n).

• -webkit-transition-delay: The delay in seconds before the transition starts.

The thing you need to remember about transitions is that they can only occur on a CSS change, so
something needs to force the className property of an element to change. Let’s see how this works in the
examples below.

Companion Site Reference

Example 8-2: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter8/transitions.php

Simple Hover Transition
The first transition is to replace the typical :hover selector over an <a> tag. The first class demo1a, just does
a standard hover. The second one demo1b, performs a transition to the new color over a one-second period.

<style type="text/css">
 .demo1a, .demo1b {
 color: red;
 }
 .demo1a:hover {
 color: blue;
 }
 .demo1b {
 -webkit-transition: color 1s ease-in;
 }
 .demo1b:hover {
 color: blue;
 }
</style>
<h2>Transition Demo 1</h2>
<div>
 Link Hover
 Link Transition
</div>

Simple Animation via Transition
The second transition I show moves this image from its start position at 0,0 to a new position 300,300
within the #demo2 box (Figure 8-2).

In the following transition I use the blue dot created via CSS previously versus an image. Also, rather
than using JavaScript to set the new CSS className, I just use the :hover property.

http://www.learnhtml5book.com/chapter8/transitions.php

CHAPTER 8 ■ ANIMATION AND EFFECTS

145

■ Note This will not work on the iOS device because there’s no concept of a mouse hover. To get this to work

with iOS you need to use JavaScript to change the className.

<style>
#demo2 {
 width: 300px;
 height: 300px;
 border: 1px solid #000;
 }
 #demo2 img {
 position: relative;
 top: 0px;
 left: 0px;
 -webkit-transition: top 2s ease-in, left 2s ease-in;
 }
 #demo2:hover img {
 top: 280px;
 left: 280px;
 }
 .bluedot {
 width: 10px;
 height: 10px;
 border-radius: 5px;
 background: -webkit-radial-gradient(silver, #0066cc, #000066);
}
</style>

<h2>Transition Demo 2</h2>
<div id="demo2" class="change2"></div>

CHAPTER 8 ■ ANIMATION AND EFFECTS

146

Figure 8-2. CSS Transition Example

So although this example is simple it requires no JavaScript.

■ Note CSS animations are faster than JavaScript animations because the CSS extensions are native to your

browser and they don’t have to be interpreted by your browser via JavaScript.

Flashing Image
Because we can’t use the :hover property for iOS I’ll actually add a single line of JavaScript to create a
pulsating blue dot. For this example I just toggle the blue dot’s opacity between 0 and 1 and because of
the –webkit-transition property applied, this pulsates between visible and invisible every half a second.

<style>
 .bluedot {
 width: 10px;

CHAPTER 8 ■ ANIMATION AND EFFECTS

147

 height: 10px;
 border-radius: 5px;
 background: -webkit-radial-gradient(silver, #0066cc, #000066);
 opacity:1;
 -webkit-transition-property: opacity;
 -webkit-transition-duration: .5s;
 }
</style>
<script>
 var bit = 0;
 setInterval(function() {document.querySelector(".bluedot").style.opacity=
bit%2;bit++},1100);
</script>
<h2>Transition Demo 3</h2>
<div id="demo3" class="change3">
 <div class="bluedot"></div>
</div>

CSS Transforms
The next kind of thing we do with our HTML elements is transform them from their normal position to a
new one. There are two kinds of transforms we do: 2D and 3D.

CSS transforms are all about math, specifically co-ordinate systems. The 2D co-ordinate systems
consist of X- and Y-co-ordinates with the X-axis running along the top of an element to the right and the
Y-axis running down from the top left of the element.

For the 3D co-ordinate system we just add a third axis coming out from the page. You can think of
this like the z-index CSS property where the higher the z-index, the farther out from the page an
element resides.

Companion Site Reference

Example 8-3: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter8/transforms.php

Simple 2D Rotation
In the example below I just take a normal box and rotate it 45 degrees. See Figure 8-3. To build on
transitions from the previous section, I rotate it to 0 degrees when I hover over the element.

<style>
 .demobox {
 height: 100px;
 width: 100px;
 border: 1px solid #000;
 float: left;
 margin: 40px;
 }
 .rot45 {
 -webkit-transform: rotate(45deg);
 -webkit-transition: -webkit-transform 1s ease-in;

http://www.learnhtml5book.com/chapter8/transforms.php

CHAPTER 8 ■ ANIMATION AND EFFECTS

148

 }
 .rot45:hover {
 -webkit-transform: rotate(0deg);
 }
</style>
<h2>2D Transforms - Rotation</h2>
<div class="demobox"></div>
<div class="demobox rot45">45</div>

Figure 8-3. Simple 2D Transform w/Transition

3D Transforms
3D transforms are just as easy as 2D but you need to be cognizant of your co-ordinate system and what
you want to accomplish. If you’re not careful, the effect you are trying to achieve will look strange until
you get your bearings.

Next you take an image and rotate it in the 3D space, specifically 80 degrees around both the x- and
the y-axes and then straighten it again on the transition out. See Figure 8-4.

CHAPTER 8 ■ ANIMATION AND EFFECTS

149

<style>
.rotate {
 height: 200px;
 width: 300px;
 border: 1px solid #000;
 padding: 0px;
 }
 .rotate img {
 -webkit-transform: perspective(500px) rotate3d(1, 1, 0, 80deg);
 -webkit-transition: -webkit-transform 3s;
 }
 .rotate img:hover {
 -webkit-transform: rotate3d(1, 1, 0, 0deg);
 }
</style>
<h2>3D Transforms - Rotating</h2>
<div class="rotate"></div>

Figure 8-4. 3D Rotate Example

CHAPTER 8 ■ ANIMATION AND EFFECTS

150

When you mouse over the image in Figure 8-4, the image moves in 3D. Although it might be difficult
to visualize, remember you can go to the companion site to see the effect in action.

3D Flipping
The final thing we’re going to do is create the “flip” effect using a transition and a transform. I’ve added
the additional CSS properties -webkit-perspective which creates the vantage point of viewing the 3D
transform.

So by rotating an element around the Y-axis (moving top and bottom on the page) an element will
appear to be flipping from front to back around its center.

<style>
 .flip,.flipped {
 height: 210px;
 width: 310px;
 border: 1px solid #000;
 padding: 5px;
 background: red;
 -webkit-perspective: 800;
 -webkit-transition: -webkit-transform 1s;
 }
 .flipped {
 background: blue;
 -webkit-transform: rotateY(180deg);
 }
</style>
<h2>3D Flip</h2>
<div class="flip" onclick='this.className="flipped"'></div>

Key Frame Animations
Key frame animations allow for finer control of transitions into multiple steps and allow you to call
transitions by name versus having to specify them by individual CSS classNames. To use these CSS
declarations you use the following syntax.

@-webkit-keyframes THE-NAME-OF-YOUR-ANIMATION {
 0% or from {css rules}
 100% or to {css rules}
}

Then inside your CSS use the following property.

#elementid {-webkit-animation: THE-NAME-OF-YOUR-ANIMATION }

Now try a few examples such as changing background colors and moving elements, both of which I
did earlier with a transition.

Companion Site Reference

Example 8-4: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter8/animations.php

http://www.learnhtml5book.com/chapter8/animations.php

CHAPTER 8 ■ ANIMATION AND EFFECTS

151

Changing a Background
The following example creates an animation named bgchange, and applies to the #demo1,change1 box and
is set to start one second after the page loads.

<style type="text/css">
#demo1 {height:100px;width:100px;border:1px solid #ccc;}
@-webkit-keyframes bgchange {
 from {background: #fff;}
 to {background: #999;}
}
#demo1.change1 {
 -webkit-animation-name: bgchange;
 -webkit-animation-duration:2s;
 -webkit-animation-timing-function:ease;
 -webkit-animation-delay:1s;
 -webkit-animation-iteration-count:5;

</style>
<h2>Animation Demo 1</h2>
<div id=”demo1” class="change1"></div>

Moving a Blue Dot
This example has five different keyframes, the start and final followed by three stops in between.
Specifically, this animation takes the blue dot and follows the perimeter of the square and does it five
times in four seconds.

<style type="text/css">
.demobox {height:100px;width:100px;border:1px solid #ccc;}
@-webkit-keyframes outside {
 0% {top: 0px;left:0px;}
 25% {top:0px;left:100px;}
 50% {top:100px;left:100px;}
 75% {top:100px;left:0px;}
 100% {top:0px;left:0px;}
}
.bluedot {
 width: 10px;
 height: 10px;
 border-radius: 5px;
 background: -webkit-radial-gradient(silver, #0066cc, #000066);
 position:relative;
 -webkit-animation-name: outside;
 -webkit-animation-duration:4s;
 -webkit-animation-timing-function:ease;
 -webkit-animation-delay:1s;
 -webkit-animation-iteration-count:5;
 -webkit-animation-direction:normal;
}
</style>
<h2>Animation Demo 4</h2>
<div class="demobox">

CHAPTER 8 ■ ANIMATION AND EFFECTS

152

 <div class="bluedot"></div>
</div>

Adding a Little JavaScript
Because the hover CSS selector does not work in iOS, in order to be effective with using our animations
we need to use a little JavaScript. Specifically we can use JavaScript and its events such as tap or swipe to
initiate a className change, which can start an animation.

Companion Site Reference

Example 8-5. Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter8/addingjs.php

Zooming
The first thing I want to test is zooming into an element when I tap it. This can be extremely useful given
the size of an iOS device when it comes to viewing high-resolution images.

The example below sets two classNames, scaledimg is the default class name and scaledimg2 is the
image when it’s zoomed.

For this example I’ve created a double resolution image to be scaled; this way the image does not
pixelate when zoomed.

The JavaScript just uses a bit variable to toggle back and forth. In the final site I’d probably just use
the jQuery toggleClass function, but the code below uses pure JavaScript.

<style>
 .zoom {
 width: 300px;
 height: 200px;
 border: 1px solid #000;
 overflow: hidden;
 }
 .scaledimg {
 -webkit-transform: scale(1);
 -webkit-transition: -webkit-transform 1s ease-in;
 }
 .scaledimg2 {
 -webkit-transform: scale(3);
 -webkit-transition: -webkit-transform 1s ease-in;
</style>
<script>
 var zoombit = 0;
 function zoom() {
 if (zoombit == 0) {
 document.querySelector("#zoomimg").className = "scaledimg2";
 document.querySelector("#zoombutton").innerHTML = "Zoom Out";
 zoombit = 1;

http://www.learnhtml5book.com/chapter8/addingjs.php

CHAPTER 8 ■ ANIMATION AND EFFECTS

153

 } else {
 document.querySelector("#zoomimg").className = "scaledimg";
 document.querySelector("#zoombutton").innerHTML = "Zoom In";
 zoombit = 0;
 }

 }
</script>
<h2>Zooming w/JS</h2>
<button onclick="zoom()" id="zoombutton">Zoom In</button>
<div class="zoom"></div>

Transforming (Rotating)
The second use of JavaScript is to rotate an image 360 degrees. For that you can just dynamically add the
transform to the element each time you click the button Start. Also note that the added transition tells
this to occur in two seconds.

You can change the number of times you want it to rotate by changing the angle size and change the
speed of the rotation by changing the transition duration.

<style>
 .demobox {
 height: 100px;
 width: 100px;
 border: 1px solid #000;
 margin: 40px;
 -webkit-transition: -webkit-transform 2s;
 }
</style>
<script>
 var angle = 0;
 function rotateme() {
 angle = angle + 360;
 var box1 = document.querySelector("#box1");
 var asize = "rotate(" + angle + "deg)";
 box1.style.webkitTransform = asize;
 }
</script>
<h2>2D Transforms w/JS</h2>
<button onclick="rotateme()">Start</button>
<div class="demobox" id="box1"></div>

■ Note To know when your transition or animation is over add the event listeners called webkitAnimationEnd

and webkitTransitionEnd. These can be added to an element or the document.

CHAPTER 8 ■ ANIMATION AND EFFECTS

154

Effects with jQuery
Both jQuery and jQuery Mobile have effects and animations. All of these take the form of what’s been
previously described, but if you already have these frameworks on your site, it might be easier to use
them rather than crafting your own transitions, transforms, and keyframe animations.

A Few jQuery Effects
These are just a few jQuery effects I’ve used on the present site.

• .animate(): A mapping of CSS properties towards which an animation will move.
You combine these properties with the animation’s duration, ease and what to do
when it’s complete.

• .fadeIn() : Fades the opacity of an element to one.

• .fadeOut(): Fades the opacity of an element to zero.

• .hide(): Sets the display property of an element to “none”.

• .show(): Sets the display property of an element to “block”.

• .slideDown(): Sets the element to slide down out of view.

• .slideUp(): Sets the element of the page to slide up into view.

There are also many plugins available that provide other animated functionalities you may want to
use on your mobile site. Check them out at jQuery.com.

jQuery Mobile Effects
We borrowed the effects for jQuery Mobile from jQtouch with minor modifications. To invoke these tran-
sitions on a link or button just add the attribute data-transition=”value”. Those transitions are as follows.

• slide: Slides to the left.

• slideup: Slides up into view.

• slidedown: Slides down out of view.

• pop: Pops into view.

• fade: Fades out of view.

• flip: Flips into view.

You can also change the direction of these by adding the attribute data-direction="reverse".

Putting It All Together
For the Grandview.Com mobile site most of the functionality for effects is going to be provided by jQuery
and jQuery Mobile. I won’t write much in the way of custom animations for the site currently except for
zooming of business profile images.

Right now the initial photo of a specific business is just the view of the business as it is on the street.
But sometimes these images can overlap, especially if these businesses are close together.

CHAPTER 8 ■ ANIMATION AND EFFECTS

155

Take, for example, Mohr Wealth Management. It’s in a building shared by three other businesses, so
to highlight this business I thought adding a zoom feature by tapping the photo would be a nice way to
make this business stand out. For that I added the same zoom feature discussed earlier in the chapter; in
fact it’s the same code but with the image from the business versus the static image in the previous
snippet. On the left of Figure 8-5 you see the standard picture, and on the right you see the image zoomed.

Figure 8-5. Zoom Feature Added to Profile

Chapter Summary
In this chapter I talked about all of the stuff generally classified as animation and effects. This is mostly
CSS3 with a few JavaScript hooks allowing things to happen from specific events that occur inside the
user interface of your mobile site.

Before moving on to the next chapter you should know how to do the following.

• Use some CSS tricks to make your site faster and slicker without using images.

• Create CSS transitions to change properties of your page elements.

CHAPTER 8 ■ ANIMATION AND EFFECTS

156

• Use CSS transforms to rotate or move page elements in 2D or 3D space.

• Combine multiple transitions with keyframe animations.

• Hook these together with some JavaScript.

You should also be familiar with some predefined effects from jQuery and jQuery Mobile.
Of course moving predefined or fake images (via CSS tricks) can be a lot of fun. We’ve only scratched

the surface of what you can do with HTML5. Next I’m going to talk about taking graphics to a whole new
level by exploring the <canvas>.

C H A P T E R 9

■ ■ ■

157

Canvas

Think of canvas as an image you can write on with shapes, lines, text, or other images. But not only can
you write on it, but you can position, transform, manipulate, rotate, and do many other kinds of things,
all with JavaScript. The <canvas> tag itself is only a container for graphics, the way a <div> or <header> is
a container for text for structural or textual elements on a web page.

The <canvas> HTML element supports all the global attributes including ID and class, but adds two
other attributes: width and height. These attributes take pixels as the type so a tag <canvas id="can"
width="300" height="300"></canvas>, will produce a canvas of 300 300 pixels.

In this chapter I talk about how to do the following.

• Draw shapes and text.

• Work with images by performing real-time image processing.

• Animate those images to create the foundations for a 2D Game.

• Update the GrandviewAve.com mobile site with a 2D Game for Sales & Specials
and provide for a better footer navigation.

The <canvas> element itself is very powerful, but let’s start with something basic.

Canvas Basics
First in Chapter 2 I created a simple canvas element and drew a rectangle and as long as your DOCTYPE
was HTML5 you were able to paste this code into any HTML page and your browser would show you a
red square.

<canvas id="simplecanvas"></canvas>
<script type="text/javascript">
var canvas = document.querySelector('#simplecanvas');
var ctx = canvas.getContext('2d');
ctx.fillStyle='rgb(255,0,0)';
ctx.fillRect(0,0,100,100);
</script>

You can see from this example you need two basic objects, the canvas and the context.

CHAPTER 9 ■ CANVAS

158

Canvas Object
This object is a standard HTML element. You can reference it via document.getElementById or
document.querySelector(ELEMENT_ID). This object has two properties outside the global attributes called
height and width. It has three methods:

• toDataURL(): Returns string data representing the image in the canvas.

• toBlob(): Returns a blob object representing the image in the canvas.

• getContext(): Returns the drawing context, currently either 2D or Experimental-
WebGL (3D).

2D Context Object
This is the drawing context. It contains all the methods used to draw, rotate, and otherwise manipulate
the drawing space. Some of the method categories are:

• State: Methods like save() and restore() change the state of the context; this is
useful when transforming or clearing the context.

• Transformations: Methods like scale(), rotate(), translate(), transform(), and
setTransform() all allow you to transform the objects in the context. Much as CSS
transitions allow you to move objects on the screen, these allow you to move
around the stuff you’ve drawn.

• Rectangles: Methods like clearRect(), fillRect(), and strokeRect() allow you to
work with rectangles in the context.

• Paths: Methods like beginPath(), moveTo(), arc(), fill(), and so on are all
designed to allow you to draw on your context from pixel to pixel.

• Images: Methods like drawImage(), createImageData(), and getImageData() allow
you to get images from the browser or a URL, put them into your context at
specific positions, and work with and manipulate them.

There are a slew of other methods and properties; for a more detailed explanation of those I’d
recommend you check them out from the W3C.

http://www.w3.org/TR/html5/the-canvas-element.html

Now on to some examples.

Drawing Examples
The first set of examples focuses on some basic drawing. We create a few different canvas elements on
the page for the different things we want to draw: rectangle, triangle, circle, and text.

Next we want to draw these when the page is done loading, and for that we specify a function in the
window.onload event, but to start we need to add a little CSS and some HTML markup for the different
example <canvas> elements.

http://www.w3.org/TR/html5/the-canvas-element.html

CHAPTER 9 ■ CANVAS

159

Companion Site Reference

Example 9-1: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter9/drawing.php

<style>
 .workarea {border: 1px solid #000;}
</style>
<h2>Rectangle</h2>
<canvas id="rectangle" class="workarea" width="150" height="150"></canvas>
<h2>Triangle</h2>
<canvas id="triangle" class="workarea" width="150" height="150"></canvas>
<h2>Circle</h2>
<canvas id="circle" class="workarea" width="150" height="150"></canvas>
<h2>Text</h2>
<canvas id="txt" class="workarea" width="300" height="50"></canvas>
<script type="text/javascript">
 window.onload = function() {
 drawRectangle();
 drawTriangle();
 drawCircle(75, 75, 50);
 drawText();
 }

</script>

Drawing a Rectangle
The first function draws a rectangle via the drawRectangle() function. This creates the canvas object
from the document.querySelector and creates a context object which it derives from the canvas. Add this
function between the <script> tags in your markup.

Once we have a context, specify the fillStyle which lets you set the color of the context, in this case
red. Next you can call fillRect(xStart, yStart, xEnd, yEnd) with the parameters of the co-ordinates
starting at the top left and ending at the bottom right. In the example below it creates a red square
starting at 25,25, and ending at 100,100 (<canvas> co-ordinates are measured from top-left). You can see
the results in Figure 9-1, along with the next example.

function drawRectangle() {
 var canvas = document.querySelector('#rectangle');
 var ctx = canvas.getContext('2d');
 ctx.fillStyle = 'rgb(255,0,0)';
 ctx.fillRect(25, 25, 100, 100);
}

http://www.learnhtml5book.com/chapter9/drawing.php

CHAPTER 9 ■ CANVAS

160

Figure 9-1. Drawing a Rectangle and Lines

Drawing with Lines
Let’s draw the triangle next. Note there’s no “draw shape” method available as in drawRectangle above;
here we actually need to draw three lines.

As with the rectangle we need to grab the canvas object from the DOM and derive a context object.
Next, set the color of the strokes with the strokeStyle method, in this case green. We start the path with
beginPath, then move it to our first co-ordinate. This is followed by lineTo our second and third co-
ordinates. Finally we close the path with closePath then stroke the line to create the triangle in Figure 9-1.

function drawTriangle() {
 var canvas = document.querySelector('#triangle');
 var ctx = canvas.getContext('2d');
 ctx.strokeStyle = 'rgb(0,255,0)';
 ctx.beginPath();
 ctx.moveTo(25, 125);
 ctx.lineTo(75, 25);

w

CHAPTER 9 ■ CANVAS

161

 ctx.lineTo(125, 125);
 ctx.closePath();
 ctx.stroke();
 }

Drawing Circles
Drawing a circle is a little bit of a combination of the two techniques we’ve just used. You have a method
called arc which lets you specify the center in x–y co-ordinates, a radius and size of the arc in radians, as
well as whether it should be filled or stroked. I’ve created a drawCircle method to shorten the amount of
ceremony required to create a circle by eliminating most of it and just passing the x–y and radius
parameters to a single function. You can also specify a lineWidth, and strokeStyle with additional
parameters or constant values.

In the example below I just specify a blue circle with a line width of three pixels.

function drawCircle(x, y, radius) {
 var canvas = document.querySelector('#circle');
 var ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.arc(x, y, radius, 0, Math.PI * 2, false);
 ctx.lineWidth = 3;
 ctx.strokeStyle = "rgb(0,0,255)";
 ctx.stroke();
 ctx.closePath();
}

Drawing Text
To draw text on the screen is very easy. It’s so easy you might even consider this as opposed to creating
images or using Flash for text. It will dramatically improve the speed of your mobile web app while
maintaining the fonts you want to show.

In the example below I specify the font with the font method on the context. The text alignment and
color are set using textAlign and fillStyle. The final method fillText() is where you put the text you
want to draw followed by its position.

Because the example has text alignment of center, just place the text in the middle of the <canvas>
plus a little buffer of 10 pixels. (You can remove this by using the textBaseline property.) You can see the
result in Figure 9-2.

function drawText() {
 var canvas = document.querySelector('#txt');
 var ctx = canvas.getContext('2d');
 ctx.font = "30px Arial";
 ctx.textAlign = "center";
 ctx.fillStyle = "blue";
 ctx.fillText("This is text.", canvas.width / 2, (canvas.height / 2) + 10);
}

CHAPTER 9 ■ CANVAS

162

Figure 9-2. Drawing Circles and Text

Interaction Example
The next example uses a little bit from Chapter 6. Here we track a touch event and calculate a swipe
event all from within the <canvas> 300 300 pixel element. The effect is a page that paints dots on the
screen and erases them with a swipe. You can see this in Figure 9-3 or try the interaction for yourself on
the companion site.

CHAPTER 9 ■ CANVAS

163

Companion Site Reference

Example 9-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter9/interact.php

First, we need to set up the <canvas>.

<style>
 .workarea {border: 1px solid #000; }
</style>
<h2>Touch Canvas</h2>
<p>Touch to make a dot. Swipe left to clear.</p>
<canvas id="touch_canvas" width="300" height="300" class="workarea"></canvas>
<script type="text/javascript">

 var canvas = document.querySelector("#touch_canvas");
 var ctx = canvas.getContext("2d");
 var curX,curY;

 var startX = 0;
 var startY = 0;
 var endX = 0;
 var endY = 0;

</script>

Next we add two events ontouchstart and ontouchend, which modify some page variables called
startX, startY, endX, and endY. These variables are used to calculate whether a swipe motion was
detected.

■ Note I’m using 40 pixels to be sensitive to the swipe event. You might try adjusting this based on your own

testing and type of interaction you prefer.

If a swipe motion is detected from within the ontouchend function, then it will clear the canvas.
Otherwise the example will place a circle. You can easily adjust this to draw lines or change pen sizes
and colors. The way this works is just by measuring the distance captured between touchStart and
touchEnd events.

canvas.ontouchstart = function(evt) {
 startX = evt.pageX;
 startY = evt.pageY;
 touchXY(evt);
}

canvas.ontouchend = function(evt) {
 endX = evt.pageX;

http://www.learnhtml5book.com/chapter9/interact.php

CHAPTER 9 ■ CANVAS

164

 endY = evt.pageY;
 if ((startX - endX) < -40) {
 clearCanvas()
 }
}

The helper function touchXY() allows us to update the curX and curY co-ordinates, then calls the
drawCircle() function to place the circle on the canvas, Whereas drawCircle() performs the same
function as the earlier example but without the radius parameter.

 function touchXY(e) {
 curX = e.pageX - canvas.offsetLeft;
 curY = e.pageY - canvas.offsetTop;
 drawCircle(curX, curY);
 }

function drawCircle(x, y) {
 ctx.beginPath();
 ctx.arc(x, y, 10, 0, Math.PI * 2, false);
 ctx.lineWidth = 3;
 ctx.strokeStyle = "rgb(0,0,255)";
 ctx.fillStyle = "rgb(0,0,255)";
 ctx.stroke();
 ctx.closePath();
 ctx.fill();
 }

To clear the canvas I just need to call clearRect from the 0,0 (top-left) to the canvas width and
canvas height (bottom-right), then pop this state to the top of the canvas with the restore method.

function clearCanvas() {
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 ctx.restore();
}

CHAPTER 9 ■ CANVAS

165

Figure 9-3. Interaction Example

Image Manipulation Example
JavaScript always had the ability to work with images as objects via the Image() object, like this:

var img = new Image();
img.src = "/images/some.png";

Using the same mechanism you can grab an image and set it to a specific location within your
<canvas>.

In the following example I’ll show you how you can do more with the <canvas> elements and
images than just draw things. I’ll show you how to do some basic image manipulation with JavaScript, so
you can manipulate images without using offline or server side logic or Flash.

CHAPTER 9 ■ CANVAS

166

Companion Site Reference

Example 9-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter9/images.php

The first part of this example sets everything up. First create the original image called the-cangle-
lab.jpg. Add a couple of buttons: clear which will clear the canvas and gray which will cause the entire
source image to be converted to grayscale.

To make things a little more interactive we can create a slider which will allow us to view certain
colors of gray with a range from 0 to 255.

<h2>Original Image</h2>

<h2>Processed Image</h2>
<button onclick="clearCanvas()">Clear</button>
<button onclick="gray()">Grayscale</button>
<form>
 Threshold <input type="range" min="0" max="255" onchange=
"threshhold(this.value)" id="slider"/><span
 id="thresh">
</form>

<canvas id="processor" width="300" height="200" class="workarea"></canvas>

Some Set-Up Stuff
Once the basics are set up we need to do a little housekeeping on the JavaScript and create a few global
variables such as the img, canvas, and ctx.

Next, so that we populate the slider value onload we specify the innerHTML of the
tag.

<script type="text/javascript">
 var img = new Image();
 img.src = "images/the-candle-lab.jpg";
 var canvas = document.querySelector("#processor");
 var ctx = canvas.getContext("2d");

 window.onload = function() {
 document.querySelector("#thresh").innerHTML = document.querySelector("#slider").value;
 }

</script>

Next, let’s create a method called gray() to create the gray effect. This method just calls the
threshold function because that’s where we put all the logic for making an image gray.

function gray() {
 threshhold(0);
}

http://www.learnhtml5book.com/chapter9/images.php

CHAPTER 9 ■ CANVAS

167

In addition to clearing the canvas we also want to reset the value of the slider text and reset the
slider to halfway.

function clearCanvas() {
 document.querySelector("#slider").value = 128;
 document.querySelector("#thresh").innerHTML = 128;
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 ctx.restore();
}

Grayscale and Thresholding
Before getting into how to grayscale an image I want to talk a little bit about the color components of
images.

First, the images we use on the web are RGB images. RGB stands for red-green-blue and it’s the
combination of these three colors that gives us all the colors we see. Images that have less green and less
red are more blue, but images that have equal amounts of all three colors appear to be gray.

Just as in CSS3 you can create a color of a class by specifying green to be a rgb(0,255,0) value. You
can also grab each pixel of an image and by specifying the x- and y-co-ordinates of the image you can get
its component colors if you know how to look.

In addition, by knowing how to get each of these color values you can perform basic image
processing such as converting an image to grayscale or creating a threshold filter. Converting the
grayscale images might be trivial, however, you use the same kinds of logic if you’re writing face
recognition or augmented reality applications.

To create a threshold filter you just need to take a value of a color and say that you’re going to do
something with anything above or below this value. In the example below I first take the gray value. This
is the average of the red, green, and blue components of a single pixel. Then I compare this value to a
number called a threshold. Based on the numerical comparison I just convert that pixel to white or leave
it alone.

The process I use below is first to grab the image data via the getImageData method, then to create a
new imageData object via createImageData. Next I get these data as an array and loop through them. The
array contains all the RGB information in this order.

• Data[i] = red color

• Data[i+1] = green color

• Data[i+2] = blue color

• Data[i+3] = alpha color (opacity channel)

To get the gray value I just add the RGB colors together, and then average them to get the gray value.
Finally to show the converted image, I just need to place these data into the newData array followed

by the invoking putImageData method on the context.

function threshhold(val) {
 document.querySelector("#thresh").innerHTML = val;
 document.querySelector("#slider").value = val;
 ctx.drawImage(img, 0, 0);
 var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
 var newImageData = ctx.createImageData(300, 200);
 var data = imageData.data;
 var newData = newImageData.data;
 for (var i = 0; i < data.length; i += 4) {
 var red = data[i]; // red

CHAPTER 9 ■ CANVAS

168

 var green = data[i + 1]; // green
 var blue = data[i + 2]; // blue
 var alpha = data[i + 3];
 var gray = (red + green + blue) / 3
 if (gray < val) {
 gray = 255; // white
 }
 newData[i] = gray;
 newData[i + 1] = gray;
 newData[i + 2] = gray;
 newData[i + 3] = alpha; // not used
 }
 ctx.putImageData(newImageData, 0, 0);
 }

In Figure-9-4 I slid the threshold to 88 and you can see the effect this value has on the original image
above it.

Figure 9-4. Working with Images

CHAPTER 9 ■ CANVAS

169

Animation Example
Next we try animating a few images. Specifically, I want to create a “slot-machine” effect for three
images. This example just shows one image moving, but I complete the effect for three images in
“Putting It All Together.”

Companion Site Reference

Example 9-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter9/animation.php

For this example we have a button that tells the spin animation to start. The <canvas> is a 300 80
pixel canvas on which we place three images an equal distance apart. We can place the three images on
the page initially via the window.onload event.

To set up for the spin effect we need to create a few global variables: y for the dynamic position of
the moving image, counter to determine how many times around the canvas my image travels, and
spacing which determines how many pixels the image travels per interval.

<style>
 .workarea {border: 1px solid #000;}
</style>
<h2>Slot Machine Example</h2>
<button onclick="callSpin()">Spin</button>

<canvas id="slot_canvas" width="300" height="80" class="workarea"></canvas>

<script type="text/javascript">
 var canvas = document.querySelector("#slot_canvas");
 var ctx = canvas.getContext("2d");
 var delay = 1000 / 30; // 30 FPS

 var img1 = new Image();
 img1.src = "images/grandview-cafe_thumb.jpg";

 var img2 = new Image();
 img2.src = "images/the-candle-lab_thumb.jpg";

 var img3 = new Image();
 img3.src = "images/staufs_thumb.jpg";

 window.onload = function() {
 ctx.drawImage(img1, 10, 10);
 ctx.drawImage(img2, 110, 10);
 ctx.drawImage(img3, 210, 10);
 }

 function clearCanvas() {
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 ctx.restore();

http://www.learnhtml5book.com/chapter9/animation.php

CHAPTER 9 ■ CANVAS

170

 }

 var y,counter,spacing;
 function callSpin() {
 y = 10;
 counter = 0;
 spacing = 10;
 spin();
 }
</script>

Spinning the Images
First let’s simplify some terms. The slot machine has three wheels that spin with different images. We
call those w1, w2, and w3. Each wheel has the same number of images, i1, i2, and i3. Each wheel has all
the images.

Spinning the wheels is nothing more than changing the position of the images i1 to i3 as time
increases. To move the wheels around we just need to call the setTimeout function once. It then calls
itself on every delay (which in our case is 30 frames per second or about 33 milliseconds).

Because on each call to the timeOut it increases y by 10, the images i1–i3 look as if they are moving
around and around on a wheel.

In Figure 9-5 the first wheel is halfway between i1 and i2.

function spin() {
 clearCanvas();
 // slot 1
 ctx.drawImage(img1, 10, y);
 ctx.drawImage(img2, 10, y - 80);
 ctx.drawImage(img3, 10, y - 160);
 ctx.drawImage(img1, 10, y - 240);
 // slots 2&3
 ctx.drawImage(img2, 110, 10);
 ctx.drawImage(img3, 210, 10);
 // slot 1
 if (y > 240) {
 y = 0;
 counter ++;
 }else{
 y = y + spacing;
 }
 if (counter < 2) setTimeout('spin()', delay);
 }

CHAPTER 9 ■ CANVAS

171

Figure 9-5. Slot Machine Example

Putting It All Together
So far Grandview Avenue is coming along rather nicely but it’s missing something fun: it’s missing a
game. I had to think a little bit on what I wanted to do for a game because I’ve not gone and asked any of
the businesses if they wanted to participate. I had ideas such as “The Avenue Hunt” which would
combine with GPS in a virtual scavenger hunt. I had even thought about doing something with
augmented reality, but given that it’s almost winter in Ohio, I decided against spending long hours
outside for testing.

So I started looking at the functionality and content that I already had on the site that needed a little
spicing up and the first thing that came to mind was Sales & Specials. Currently I had nothing to make this
page stand out and get noticed. It was just a plain old list with some information, but it did not have the
coolness factor. So that was it, I needed to add the slot machine game created earlier with Sales & Specials.

The structure of the game is like this.

• Three wheels and three canvases: each slot is either a Grandview Avenue icon, or
an image from one of the businesses offering a Sale & Special.

CHAPTER 9 ■ CANVAS

172

• The default icon for each of the wheels is the Grandview Ave Icon.

• There is a button that says spin at the bottom.

• Spinning causes each slot to display a random set of icons until they all stop.

• They always hit a business selected at random and “win” the Sale & Special.

One way to create these wheels is with a little Ajax to retrieve all Sales & Specials from the server and
a Random() function. I’ve encapsulated the Sales & Specials information inside a JavaScript object called
SalesSpecial.

<script type="text/javascript">
 var ss = [];
 function SalesSpecial(id, img) {
 this.id = id;
 this.img = img;
 }

 $().ready(function() {
 $.getJSON('/api/sales.php', function(data) {
 $.each(data, function(id, img) {
 ss.push(new SalesSpecial(id, img));
 });
 });
 });

 function getRandom() {
 return Math.floor(Math.random() * ss.length + 1);
 }

 var winner = getRandom();
 var i1 = new Image().src = ss[getRandom()];
 var i2 = new Image().src = ss[getRandom()];
 var i3 = new Image().src = ss[getRandom()];

 </script>

CHAPTER 9 ■ CANVAS

173

Figure 9-6. Sales & Specials Game using Canvas

Figure 9-6 shows the finished game. To get the code for the game, go to the mobile site at
http://www.grandviewave.com/m, click on Sales and view the page source.

Chapter Summary
The goal of this chapter was to introduce you to the <canvas> element I’ve used to draw on and even for
controlled animation via a simple slot machine game.

Before moving on to the next chapter you should know how to do the following.

• Draw lines, rectangles, circles, and images with the canvas element.

• Be able to use the canvas as a way to interact with the touch interface.

• Be able to animate with the canvas.

http://www.grandviewave.com/m

CHAPTER 9 ■ CANVAS

174

• Optionally you might be interested in knowing how to inspect an image for colors
or be able to perform image processing.

The final piece of interactive code you need to make your mobile application complete is audio and
video, and that’s what I talk about next.

1

C H A P T E R 10

■ ■ ■

175

Audio and Video

This is perhaps the simplest of all the chapters so far; the information here will enable you to program
your HTML5 web application to render audio and video without Adobe Flash or other custom code, by
using the <audio> and <video> tags and their elements.

The examples in this section are short and to the point, but the features provided by these new tags
will allow you to combine a little bit of GPS to create an interactive tour for the Grandview Avenue
sample app.

First I’ll provide you with a short overview of these new tags.

Overview of the Audio and Video Tags
Let’s take a look at the elements and attributes of the new <audio>, <video>, <source> and <embed>
elements.

<audio>
The <audio> tag supports .wav, .mp3, .m4a and .acc files.

Table 10-1. Attributes of the <audio> tag.

Attribute Value Description

autoplay - Autoplays the audio when the page is ready.

controls - Displays the controls for the player.

loop - Run the audio in a loop.

preload - Loads the audio when the page loads.

src url Identifies the source of the audio to be played.

You’ll see some examples incorporating the <audio> tag in iOS applications later in the chapter.

CHAPTER 10 ■ AUDIO AND VIDEO

176

<video>
iOS supports only MPEG4 and H.264 video.

Table 10-2. Attributes of the <video> tag.

Attribute Value Description

audio muted Mutes the audio portion of the video.

autoplay - Autoplays the video when the page is ready.

controls - Displays the controls for the player.

height pixels Specifies the height of the player in pixels.

width pixels Specifies the width of the player in pixels.

loop - Runs the video in a loop.

poster url Specifies the URL of an image for the video.

preload - Loads the video when the page loads.

src url Identifies The source of the video to be played.

The following code snippet is a simple example of how to play an mp4 video file using the <video>
tag. This example also uses the source child element, which we'll look at next.

<video width="300" controls="controls" id="myvid">
 <source src="media/grandviewave-test.m4v" type="video/mp4;" >
</video>

Attributes like controls don’t have to take values in HTML5, but I've added them for consistency. All
you need to do is enter <video controls>, and that’s sufficient for the tag. Remember, this isn’t XHTML.

<source>
Used in conjunction with either the <audio> or <video> tags, this child element helps to defines the
source of the media.

Table 10-3. Attributes of the <source> tag.

Attribute Value Description

media CSS Media Query (See
Chapter 3)

Specifies what media resource is optimized for giving
multiple media types for different devices.

src url The URL of the media.

type Mime Type: video/mp4 The Mime type of src.

CHAPTER 10 ■ AUDIO AND VIDEO

177

There are many different types of source media you can use with your audio and video tags.

■ Note You may wonder why you need to include the Mime Type. This is so the browser can determine whether

it can play the video without having to download it.

<embed>
This tag can be used to define other types of embedded content, like a .swf file.

Table 10-4. Attributes of the <embed> tag.

Attribute Value Description

height pixels Specifies the height of the embedded content.

src url The URL of the embedded content.

type Mime Type The Mime type of src.

width Pixels Specifies the width of the embedded content.

Audio and Video Examples
Before we add the audio and video elements to the Grandview Avenue sample app, here are some simple
examples that will allow you to get started right away.

Using the <audio> Tag
The use of the <audio> tag is very easy.

Companion Site Reference

Example 10-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter10/audio.php

Just specify the following tag in your HTML page and that’s it; you get audio played through your
browser with no plugins or special software. It’s as simple as that!

<audio src="media/audio-test-1.m4a" controls="controls" />

http://www.learnhtml5book.com/chapter10/audio.php

CHAPTER 10 ■ AUDIO AND VIDEO

178

This tag includes the controls as a parameter. You can see the results in Figure 10-1.

Figure 10-1. The <audio> Tag in Action

An Example Using <video> and <source>
Video is just as easy as audio, but you have more options for the video player controls and a few more
attributes you can use. You can also see that in this example I used the <source> tag to specify a little bit
more about the video type used, and I’ve used JavaScript to play it automatically on loading (onload).

Companion Site Reference

Example 10-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter10/video.php

http://www.learnhtml5book.com/chapter10/video.php

CHAPTER 10 ■ AUDIO AND VIDEO

179

<video width="300" controls="controls" id="myvid">
<source src="media/grandviewave-test.m4v" type="video/mp4;" >
</video>
<script type="text/javascript">
var v = document.querySelector('#myvid');
v.play();
</script>

Figure 10-2 shows the resulting video page. The video is set to autoplay, and the image on the right
is what you will see after touching Done.

Figure 10-2. The <video> Tag in Action

CHAPTER 10 ■ AUDIO AND VIDEO

180

Putting It All Together
To demonstrate audio and video with the Grandview Avenue app, I’d like to combine GPS with audio
and video to give virtual tours. For this we’ll create a number of tour locations for both audio and video
elements and tag each of them to specific GPS coordinates. When the user reaches a tagged location, the
appropriate tour element will play.

The basic structure of all the tours will go like this:

1. Tour Overview

2. Tour Detail (Audio and Video)

3. Tour Map (All Locations with Clickable Markers)

Creating the Tour Landing Pages
To create a tour page we’ll need to use a little HTML and list functionality provided from jQuery mobile.
You can see in the Landing Page 1 code that I had to modify the CSS a little bit to get it to look good
(shown in bold). You might do the same or just modify the CSS of the site for the page you’re on. In this
section we’ll also write the code that links to a map of the audio or video tour stops.

Landing Page 1
The first page just lays out and separates the audio from the video tours. Again to work around some
jQuery Mobile features, I had to add
 tags so the text would show. The links to atours.php and
vtours.php are pages that represent the code in Landing Page 2.

<h3>Audio & Video Tours</h3>
<p style="font-size:10px;padding-bottom:10px;">Click below to take a tour of The
 Avenue.</p>
<ul data-role="listview" data-theme="c" data-dividertheme="a">

 <h3 class="ui-li-heading">Audio Tours</h3>
 <p>Five audio tours of Grandview
Avenue either sequential
or by nearest
 location.</p>

 <h3 class="ui-li-heading">Video Tours</h3>
 <p class="ui-li-desc">Three video tours of Grandview
Avenue either sequential

or by nearest location.</p>

You can see the results on the left side in Figure 10-3.

CHAPTER 10 ■ AUDIO AND VIDEO

181

Landing Page 2
The second landing page, once the user has chosen between audio and video tours, links to a map view
of the audio or video detail.

<h3 class="ui-li-heading">South Avenue</h3>
<p class="ui-li-desc">A short description of
Grandview Avenue looking
north
 from First Avenue.</p>

This code displays the page shown on the right side of Figure 10-3.

Figure 10-3. Tour Landing Pages

CHAPTER 10 ■ AUDIO AND VIDEO

182

When you click any link on the second landing page, you’ll be taken to a map view of the page
(Figure 10-4), and it will automatically play the audio file associated with the location clicked.

Tagging the Audio Tour Spots
At the end of this example, you’ll see that playing the associated audio files is a fairly simple step. But
before I discuss that, let’s add a little GPS to identify where these tours will originate. I’m going to show
you how I set up the audio tour spots, but you can see both audio and video tours in action by following
the links on the companion site.

1. 1st Avenue & Grandview Avenue

2. Staufs Coffee (On Grandview Avenue)

3. 3rd Avenue & Grandview Avenue

4. Caribou Coffee (On Grandview Avenue)

5. 5th Avenue & Grandview

Figure 10-4. All Audio Spots on Google Map

CHAPTER 10 ■ AUDIO AND VIDEO

183

To set-up everything to work, I’ll just reuse some of the code I created in Chapter 7 (for the parking
markers. All I need to do here is adjust the following addMarker statements to the locations I’ll be talking
about in the audio tour.

■ Note If you’re trying this example for yourself, remember to adjust these coordinates to some place close to
you or someplace generic to the center of your map, otherwise unless you’re in Grandview Heights, Ohio, the

example won’t work as intended.

addMarker(new google.maps.LatLng(39.98213, -83.0451)); // South Grandview
addMarker(new google.maps.LatLng(39.983769,-83.044948)); // Staufs Coffee
addMarker(new google.maps.LatLng(39.985027,-83.044707)); // Grandview Cafe
addMarker(new google.maps.LatLng(39.986901,-83.044939)); // Caribou Coffee
addMarker(new google.maps.LatLng(39.988613,-83.044334)); // North Grandview

The next important part is to link the audio files to markers on a Google map. To keep the
programming simple, I’ll just use the same sequence as the location markers just shown to match the file
names I’ll want to load and play. So as a part of the addMarker() function, I’ll bind a click event to the
marker so that when it’s clicked or touched it will play the audio.

var markerCount = 1;
function addMarker(latlon) {
 var marker = new google.maps.Marker({
 position : latlon,
 map : map,
 icon : "http://www.google.com/mapfiles/markerA.png",
 title : "Audio Spot",
 clickable: true
 });

 google.maps.event.addListener(marker, 'click', function() {
 playAudio(markerCount);
 });
 markerCount++;
 }

 function playAudio(audioFile) {
 var audioControl = document.querySelector("#audio_control");
 audioControl.src = 'media/tour_' + audioFile + '.m4a';
 audioControl.play();
 }

Finally, because you will originally navigate to this page via the audio list from Figure 10-4, it will
need to read the location.hash and then correctly load the audio or video file.

$(document).ready(function() {
 loadMap();
 playAudio(location.hash);
 });

http://www.google.com/mapfiles/markerA.png

CHAPTER 10 ■ AUDIO AND VIDEO

184

Chapter Summary
The goal of this chapter was to introduce you to some new media elements for audio and video.

While using these elements was simpler than the topics covered in previous chapters, in this chapter
I’ve started to show how you can incorporate features covered in previous chapters, like GPS, to provide
some really neat functionality for your mobile web app.

Before moving on to the next chapter you should know how to

• Use the <audio> element to load audio.

• Use the <video> element to load video.

• Dynamically load and play media based on user input or other information like
GPS.

While you can’t take photos, video, or record voice recordings as of the current versions of iOS and
Mobile Safari, there are some native services you can take advantage of, like making your iPhone beep or
reading the accelerometer, and that’s what I’m going to talk about next.

C H A P T E R 11

■ ■ ■

185

Integrating with Native Services

In Chapter 7 I talked about interacting with GPS and Google Maps. But did you know in addition to GPS
you can interact with the Compass, Gyroscope, and the Accelerometer on your iOS device?

What about using your web app to interact with twitter or send a text message?
This chapter tells you how to do this. Although you can’t interact with your camera via Mobile

Safari, I show you how to do that with a native app in Chapter 15.

Orientation
The orientation API allows you to interact with the Compass, Gyroscope, and Accelerometer on your iOS
device through Mobile Safari. This makes it possible to interact with the world around you relative to the
direction your device is facing and how it’s moving (rotating or accelerating).

So whether you need to know what direction you’re facing, or something as simple as to whether
your iPhone is facing up, down, or portrait or landscape, the orientation API gives you the ability to
access this information with simple JavaScript.

To access this information you need to capture the event onorientationchange. It is fired each time
the device changes orientation. This is more complicated than the landscape or portrait orientation
defined earlier via CSS3 media selectors. It contains a lot more information.

■ Note For pictorial representations of the different axes please refer to the following reference.

http://dev.w3.org/geo/api/spec-source-orientation.html.

Properties
iOS provides five read-only properties that are passed when the onorientationchange event fires. Some
are intuitive, like compass direction, but others are more complicated relative measurements based on
feedback from the iPhone’s gyroscope as the phone is moved.

webkitCompassHeading
This displays the direction the iOS device is pointing as you are holding it, relative to north.

• 0 degrees is North,

http://dev.w3.org/geo/api/spec-source-orientation.html

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

186

• 90 degrees is East,

• 180 degrees is South

• 270 degrees is West.

webkitCompassAccuracy
This provides the accuracy of the webkitCompassHeading reading. I’ve personally not seen it get any better
than within 10 degrees of the true compass direction.

alpha (z-axis)
The alpha property is the rotation of the phone, in degrees, around its z-axis. This is the axis
perpendicular to the screen (where the positive is out of the screen). The alpha property is not a
compass direction; it is a relative measurement, usually based on the phone’s starting position before
the onorientationchange event fired.

beta (x-axis)
The beta property works in the same way as the alpha property, but it gives the rotation of the phone
around its x-axis, which is the axis that runs from the left to the right of the screen.

gamma (y-axis)
Similarly, the gamma property gives the rotation of the phone around its y-axis, which is the axis running
from the bottom of the screen to the top.

An Example Using Orientation
The following example updates a set of tags onorientationchange. The properties are read-only
and the event fires very fast.

Companion Site Reference

Example 11-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter11/orientation.php

<h2>Compass</h2>
<div>Current Heading is </div>
<div>Compass Accuracy is </div>
<div>Z-Axis(alpha) is </div>
<div>X-Axis(beta) is </div>
<div>Y-Axis(gamma) is </div>
<script type="text/javascript">
window.ondeviceorientation = function(e) {
 var heading = e.webkitCompassHeading;
 var accuracy = e.webkitCompassAccuracy;

http://www.learnhtml5book.com/chapter11/orientation.php

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

187

 var alpha = e.alpha;
 var beta = e.beta;
 var gamma = e.gamma;
 document.querySelector("#heading").innerHTML = heading;
 document.querySelector("#accuracy").innerHTML = accuracy;
 document.querySelector("#alpha").innerHTML = alpha;
 document.querySelector("#beta").innerHTML = beta;
 document.querySelector("#gamma").innerHTML = gamma;
}
</script>

■ Note I ran this same code on my MacBook Pro and under Google Chrome I was able to receive readings from
the beta and gamma elements. Try it and you can get orientation information from your MacBook Pro, but it does

not work in Safari or the iOS Simulator.

Acceleration
Acceleration defines how fast your iOS device is accelerating through space. From physics, acceleration
is defined as the rate of change of velocity. So even if you’re going very fast this value will not change
unless you’re changing velocity, that is, speeding up or slowing down.

Like onorientationchange, the event ondevicemotion allows for reading the motion of your iOS device.

Properties
iOS provides four read-only properties that are passed when the ondevicemotion event fires. These are as
follows.

acceleration
This object returns data in meters per second squared using the following parameters. The axes are the
same ones we met earlier when looking at the alpha, beta, and gamma rotations.

• x: This is positive towards the right of the screen.

• y: This is positive towards the top of the screen.

• z: This is positive out of the screen.

accelerationIncludingGravity
This works the same way as the acceleration property, except with gravity factored into the result.

Interval
This is the interval in milliseconds since the last motion event.

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

188

RotationRate
This is the rate of rotation around the three axes. It uses the properties alpha, beta, and gamma like the
orientation event, but measures how fast they are changing, rather than giving an overall change in
degrees.

An Example Using Acceleration
This example measures the acceleration for each axis. I have also created another variable called MaxX
which records the maximum acceleration in the x-direction. Most of the time while you’re holding your
iOS device each of these properties (acceleration.x, acceleration.y, and acceleration.z) will be below one.

Companion Site Reference

Example 11-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter11/motion.php

<p>Acceleration</p>
<div>X Acceleration </div>
<div>Y Acceleration </div>
<div>Z Acceleration </div>
<div>Rotation Rate </div>
<div>Max X </div>
<script type="text/javascript">
var maxX = 0;
window.ondevicemotion = function(e) {
 var x = e.acceleration.x;
 if (x > maxX) maxX = x;
 var y = e.acceleration.y;
 var z = e.acceleration.z;
 var rotationRate = e.rotationRate;
 document.querySelector("#x").innerHTML = x;
 document.querySelector("#y").innerHTML = y;
 document.querySelector("#z").innerHTML = z;
 document.querySelector("#rotationRate").innerHTML = rotationRate.alpha + "," +
 rotationRate.beta + "," + rotationRate.gamma;
 document.querySelector("#maxX").innerHTML = maxX;
}
</script>

Some of the ways you could use this information would be with games or augmented reality mobile
web apps. Although the information above is basic, combining it with some other aspects of interactivity
can be quite powerful.

http://www.learnhtml5book.com/chapter11/motion.php

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

189

Custom Links
Let’s say that you want to integrate with a native app on your iOS device. What do you do? Custom APIs?
Write a Native App? No. You can use custom URLs.

I show you several examples below on how to integrate with other apps such as mail, Facebook, or
twitter and all you need to do is create a custom URL scheme with a few request parameters. If you’ve
used mailto: then you’re already familiar with these and don’t even know it.

■ Note Custom URL schemes are not APIs and can change or be updated at any time. For a complete list of URL
schemes go to http://handleopenurl.com/.

Some of the examples are built in; others you will need to have the associated applications installed
on your iOS device.

Companion Site Reference

Example 11-3: Follow the link below to run these examples on the companion site.

http://www.learnhtml5book.com/chapter11/links.php

Mail
This allows you to send mail from your website via iOS Mail.

<p>mailto:</p>

Additional URL parameters are:

?cc=asecond@email.com
&subject=subject_of_email
&body=body_of_email

For more information refer to RFC 2368; this is the URL specification guideline for mailto links.

SMS
The following example sends an SMS (text message) to a specific phone number. So by adding this URL
link, your device will open an SMS window ready for you to write a message.

<p>sms:</p>

MMS
The following sends a multimedia message to a specific phone number, so like SMS it opens a window,
except now you have access to your multimedia SMS window.

<p>mms:</p>

http://handleopenurl.com/
http://www.learnhtml5book.com/chapter11/links.php
mailto:info@learnhtml5book.com
mailto:asecond@email.com

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

190

Telephone

The following allows you to call a phone number.

<p>tel:</p>

■ Note iOS will do this automatically if it detects a sequence of numbers resembling a phone number. To turn

this off you must use the following meta tag, <meta name = "format-detection" content = "telephone=no">.

Printing

The following line prints a page.

<p>print</p>

Music

The following opens your music library.

<p>Music</p>

Maps

The following opens Google Maps.

<p>maps.google.com</p>

YouTube

The following opens a video on YouTube.

<p>www.youtube.com</p>

iTunes

The following opens an app in iTunes.

<p><a href="itms://itunes.apple.com/us/app/grandview-ave/id393904245?mt=
8">iTunes</p>

Facebook

The following opens up your Friends in Facebook.

<p>Facebook</p>

Twitter

The following opens up a specific user in twitter.

<p>Twitter</p>

http://maps.google.com?q=43212
http://www.youtube.com/v/video

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

191

Putting It All Together
I would like to have a little augmented reality (AR) in the Grandview Avenue mobile site, but I don’t quite
have enough data to pull off a full-blown AR app and I can’t really interact with the Camera the way I’d
like to. However, I do have one idea: a hidden feature called an Easter Egg.

The Easter Egg
1. You are on the home screen and standing in the parking lot of the Grandview

Avenue Carry Out on Third and Grandview Ave.

2. You point your phone towards Grandview Café.

3. The page will change to a panoramic photo of Grandview Avenue from the
corner of Third and Grandview Avenue.

The Technical Parts
• I need a few images to create my panoramic shot. Assuming I get a 30-degree view

per image, I need nine images for a complete 360-degree view. I then stitch these
together for a single JPG and make sure that when I connect the first and ninth
image they line up perfectly.

• I need to use either CSS or Canvas to move the image based on the direction in
which the phone and camera are pointing (the “heading”).

• I need to use the onorientationchange event to move my image and keep it in sync
with the heading of the camera.

• To escape you can just use the “back” button.

The AR Code
In the following example I use the heading and tilt around the x-axis (beta) to move my image.

The first part of the code sets up the planner <div> with a background called pan1.jpg. This is the
image I created: a single panorama background image of 3,072 × 673 pixels. I set the initial background
positions to be 0% and 0%.

As part of the dynamic update of the CSS position I just normalize the headings and the tilt and then
reset the positions using percentages.

<style>
 body {margin:0;}
 #panner {
 height: 480px;
 width: 320px;
 background-size: 3072px 673px;
 background-repeat: repeat-x;
 background-position: 0% 0%;
 background-image: url('images/pan1.jpg');
 }
</style>
<div id="panner"></div>

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

192

Next I need to create a few variables, one a global variable called heading that I can check on each
GPS location to find the direction in which the phone is pointing. The second, showEgg, is a Boolean that
decides whether to show the Easter Egg.

This is followed by the panImg function which changes the background position of the image as the
orientation changes.

The rest of the JavaScript checks for orientation and GPS location to fire the egg when the user is in
the correct position and pointing his phone towards Grandview Café.

<script type="text/javascript">
var heading;
var showEgg = false;

function panImg(x,y) {
 var panElt = document.querySelector("#panner");
 panElt.style.backgroundPosition = x + "% " + y + "%";
}

window.ondeviceorientation = function(e) {
 heading = Math.round(e.webkitCompassHeading);
 if (showEgg) {
 var headingAsPercent = (heading/360) * 100;
 var beta = Math.round(e.beta);
 var betaAsPercent = (Math.abs(90-beta) / 30) * 100;
 panImg(headingAsPercent,betaAsPercent);
 }
}

function successGPS(position) {
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var isNearEgg = testDistance(39.98600278, -83.04510000, lat, lon);
 if (isNearEgg & (heading > 90 && heading < 180) {
 showEgg = true;
 }
}

function testDistance(lat1, lon1, lat2, lon2) {
 var lat = lat1 * 10 ^ 6 - lat2 * 10 ^ 6; // increased size to avoid rounding
 var lon = lon1 * 10 ^ 6 - lon2 * 10 ^ 6; // increased size to avoid rounding
 if ((lat ^ 2 + lon ^ 2) ^ .5 < 100) { // close to area
 return true;
 }
 return false;
}

function errorGPS() {
 alert('GPS Error');
}

function watchGPS() {
 navigator.geolocation.getCurrentPosition(successGPS, errorGPS,
{enableHighAccuracy : true});

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

193

 setTimeout("watchGPS()",30000);
}

</script>

Figure 11-1. Grandview Avenue Easter Egg

To test this without being near Grandview and Third you can go to the URL,
http://www.grandviewave.com/m/egg.php. You can view source and get all the code or just cut and paste
what’s above, replacing your co-ordinates with those above. Or if you just want to view the Easter Egg,
you could hard-code the showEgg variable to always return true.

Chapter Summary
In this chapter I was able to show you how to use a few more native features of your iOS device to
capture and use the orientation and acceleration via JavaScript. I also showed you how to integrate with
external apps via URL Schemes.

http://www.grandviewave.com/m/egg.php

CHAPTER 11 ■ INTEGRATING WITH NATIVE SERVICES

194

Before moving on to the next chapter you should know how to do the following.

• Use the ondeviceorientation event to detect the heading of your iOS device.

• Use the ondevicemotion event to detect your iOS device moving through space.

• Use a URL scheme to integrate with some native feature or native application on
your device.

Up until now we’ve done everything online and retrieved everything we need from the network. But
sometimes the network is not going to be available or not going to be as fast as we would like it, so
offloading some of the storage to the client might be a good idea, and that’s what I talk about next.

C H A P T E R 12

■ ■ ■

195

Offline Apps and Storage

There’s a variety of ways to speed up your application by cacheing certain amounts of data on the client.
Before HTML5 you could only store cookies or rely on the browser’s cacheing mechanism. Now you can
implement a variety of ways, by storing long-term data via the localStorage object, session data via the
sessionStorage object, or even an entire application via applicationCache. Depending on the kind of
application you are writing you may use none or all of these features.

The first mechanism I discuss is how to take your entire application offline, or in the case of no
network, a way to make your web app work entirely in offline mode. Some HTML5 books talk about
WebSQL, or the ability to access SQLite via JavaScript. I do not talk about Web SQL because this API is no
longer active. If you want to find out more about this API you can reference it at:
http://www.w3.org/TR/webdatabase/. Personally I found this a very complicated means for accessing
data on the client when compared to local and session storage options discussed later in the chapter.

The Cache Manifest
This is the name of the file you create when you want your application to be permanently cached or you
want it to run in offline mode. So just as with an HTML, CSS, or JS file, you need to create a .manifest file
that you can place on your local system. Now this file can either be static or you can “fake” it by just
specifying a MIME type. This way your browser knows how to treat it. Your web server may or may not
have the MIME type installed. If it doesn’t, add this to your apache configuration.

AddType text/cache-manifest .appcache

Remember, a manifest file is just plaintext as far as a text editor is concerned, nothing fancy. You
can cut and paste the contents from the companion site right into your own sample application with
minor modifications to file names and paths. Creating a manifest is really easy, just add the manifest
attribute to your <html> tag such as: <html manifest="chapter12.manifest">.

This file has three sections: CACHE, FALLBACK, and NETWORK.

• The CACHE section is default and all the files under this section will be cached.

• The FALLBACK section is a list of optional pages in case a resource is not available.

• The NETWORK section is a whitelist of all files that require a network connection.

■ Note The page where the manifest is specified is always cached regardless of the .manifest file.

http://www.w3.org/TR/webdatabase/

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

196

A Manifest Example
Below I show you a number of example files that allow for local application cacheing. After you’ve
specified your manifest in your <html> tag you can use the information below to implement it yourself.

The next file is the manifest file, which is specified in the HTML tag of the document. This file tells
the browser which files to cache and is divided into sections.

chapter12.manifest

CACHE MANIFEST
v3 - 2011-11-25
This is a comment.

CACHE:
/chapter12/index.php
/chapter12/css/ch12.css
/chapter12/js/ch12.js
/chapter12/images/akada-salon_thumb.jpg
/chapter12/images/grandview-cafe_thumb.jpg
/chapter12/images/jenis-ice-cream_thumb.jpg
/chapter12/images/the-candle-lab_thumb.jpg
/chapter12/images/the-grandview-theater_thumb.jpg

The problem with this is that in order to force your browser to get a new file, even if it’s a dynamic
page, you need to update your manifest file for each and every request. To do that I modified the
manifest to be a dynamically created PHP file. For this make sure to change the name of your dynamic
file, in my case chapter12.manifest.php. You can see that I’ve done this on the companion site example.

I’m still sending out the MIME type of text/cache-manifest, and I’m immediately expiring the file by
setting the expires header to a date in the past; also I’m dynamically creating a comment in the file to
keep it different each and every time.

Now if the user is offline, the next time that a browser tries to access this manifest file the dynamic
update won’t retrieve an update, and the content/application will come exclusively from the cache.

■ Note This is the same as the previous file, but I’m using PHP to set/update the cache of the manifest file.

chapter12.manifest.php

<?
header("Cache-Control: max-age=0, no-cache, no-store, must-revalidate");
header("Pragma: no-cache");
header("Expires: Sat, 01 Jan 2011 00:00:00 GMT");
header('Content-type: text/cache-manifest');
?>
CACHE MANIFEST
#comment - date is <?=date('c')?>
CACHE:
/chapter12/index.php
/chapter12/css/ch12.css
/chapter12/js/ch12.js
/chapter12/images/akada-salon_thumb.jpg
/chapter12/images/grandview-cafe_thumb.jpg
/chapter12/images/jenis-ice-cream_thumb.jpg

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

197

/chapter12/images/the-candle-lab_thumb.jpg
/chapter12/images/the-grandview-theater_thumb.jpg

Application Cache
This is the actual DOM object you access programmatically via JavaScript. A brief overview of the API of
this object follows.

Update Statuses (read-only attribute status)
• UNCACHED = 0

• IDLE = 1

• CHECKING = 2

• DOWNLOADING = 3

• UPDATEREADY = 4

• OBSOLETE = 5

Updates
• update():Tells browser to invoke application download process.

• abort(): Tells browser to stop downloading and cancel updating cache.

• swapCache(): Tells browser to check the manifest and swap accordingly.

Events
• onchecking: Browser is checking for an update.

• onerror: Manifest error, or 404 of manifest file.

• onnoupdate:Manifest has not changed.

• ondownloading: Found an update and is downloading.

• onprogress: Downloading files in manifest.

• onupdateready: Files in manifest have been redownloaded.

• oncached: All files downloaded and cached.

• onobsolete: Manifest no longer exists so cache is being deleted.

An example of how to access and use this API follows. Here I am just setting up an event listener
to the event updateready, and then I prompt the user to see if he would like to load the new cache into
the page.

Companion Site Reference

Example 12-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter12/manifest.php

http://www.learnhtml5book.com/chapter12/manifest.php

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

198

<script type="text/javascript">
 function reload() {
 window.location.reload();
 }
 // example of how to use applicationCache
 var cache = window.applicationCache;
 cache.addEventListener('updateready', function(e) {
 if (cache.status == window.cache.UPDATEREADY) {
 cache.swapCache();
 if (confirm('load new cache?')) {
 reload();
 }
 }
 });
</script>

In Figure 12-1 I show an example file of Chapter 12 along with all of the events that are fired from
the JavaScript Console.

Figure 12-1. Application Cache View with Google Chrome

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

199

You use this if your application relies heavily on images or might be used frequently in a
nonnetworked mode.

Cookies
In addition to the application cache there are other ways to store information on the client. The oldest
way to do this is with cookies. Cookies allow you to store up to 2,048 bytes of data for a specific domain.
You can set these programmatically via your server side code or via JavaScript.

Companion Site Reference

Example 12-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter12/cookies.php

In the example below I set two cookies. Cookie A is going to be a session cookie. Cookie B is going to
be a semi-permanent cookie that expires in 30 days.

<button onclick="setCookie('test1','A')">Set Cookie A</button>
<button onclick="setCookie('test2','B',30)">Set Cookie B</button>
<script type="text/javascript">
 function setCookie(name, value, expire_days) {
 var expire = new Date();
 expire.setDate(expire.getDate() + expire_days);
 var value = escape(value) + ((expire_days == null) ? "" : "; expires=" +
 expire.toUTCString());
 document.cookie = name + "=" + value;
 }
</script>

Figure 12-2 shows you these two cookies: one with an expiration date and another which is a session
cookie.

Figure 12-2. Cookies with Google Chrome

http://www.learnhtml5book.com/chapter12/cookies.php

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

200

Local Storage
A better way of storing content on the client is with the localStorage object. Here instead of 2 k of
information we have up to 5 MB of data we’re allowed to store locally. Also we’re not limited to just
storing strings; we can store objects just as easily.

• To put objects into local storage just use localStorage.setItem(key,value).

• To get objects from localStorage just use getItem(key).

• To remove objects from localStorage just use removeItem(key).

In the example below I’m storing one string and one object, and on loading of that object, I’m
alerting it to the screen.

Companion Site Reference

Example 12-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter12/local.php

<button onclick="localStorage.setItem('test1','this is a test');">Set Local A</button>
<button onclick="localStorage.setItem('test2',new TestObject());">Set Local B</button>
<script type="text/javascript">
 function TestObject() {
 this.id = 1;
 this.name = "test object";
 this.description = "this is a test object i am going to put into local storage";
 }

 window.onload = function() {
 alert(localStorage.getItem('test1'));
 }
</script>

In Figure 12-3, I show the resource view of the localStorage object, where the key test2 is an object
and the key test1 is just a string.

Figure 12-3. Local Storage with Google Chrome

http://www.learnhtml5book.com/chapter12/local.php

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

201

Session Storage
To store only items per session, just use sessionStorage instead of localStorage. The methods are the
same: setItem, getItem, removeItem, and the only difference is we store these per user session instead of
over multiple sessions.

In the example below I do the same thing, except this time if you close your browser and come back
you won’t be greeted by the alert message until you’ve set it from within the current session.

Companion Site Reference

Example 12-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter12/session.php

<button onclick="sessionStorage.setItem('test1','this is a test');">Set Session
 A</button>
<button onclick="sessionStorage.setItem('test2',new TestObject());">Set Session
 B</button>
<script type="text/javascript">
 function TestObject() {
 this.id = 1;
 this.name = "test object";
 this.description = "this is a test object i am going to put into local storage";
 }

 window.onload = function() {
 alert(sessionStorage.getItem('test1'));
 }
</script>

Likewise in Figure 12-4 I view session storage from the resources menu from within Google Chrome,
where key test2 is an object and test1 is just a string.

Figure 12-4. Session Storage with Google Chrome

http://www.learnhtml5book.com/chapter12/session.php

CHAPTER 12 ■ OFFLINE APPS AND STORAGE

202

Putting It All Together
Currently the Grandview Avenue app has relied exclusively on the network for everything and although
the Avenue is in a 3G/4G area it might be a good idea to cache some stuff locally for better performance.

The only really data-intensive part of the application comes at the beginning where I’m getting all
the profiles and associated data. So perhaps if I cache all the information for each of the business
profiles it would speed up rendering of each of the profile pages. This file is perhaps about 120 k but it
makes retrieval of the profile information near instantaneous versus a few seconds per profile.

To solve this problem I like to use sessionStorage over localStorage because the data update often
enough (daily) but not so often that I constantly need to check for updates and maintain synchronization.

Because I’m using jQuery, I just use the $().ready() function to be consistent in usage versus
window.onload from some of the previous examples. Then it’s just a matter of checking for null to see if
the profile data have been loaded into memory.

<script type="text/javascript">
 var profileData;
 if (sessionStorage.getItem('profileData') != null) {
 profileData = sessionStorage.getItem('profileData');
 }

 $().ready(function() {
 if (sessionStorage.getItem('profileData') == null) {
 $.getJSON('api/allprofiles.php', function(data) {
 sessionStorage.setItem('profileData'),data);
 });
 }
 });
</script>

■ Note I’m not able to use JSON in the Example Application because of jQuery Mobile. The framework is
problematic in its current version as it does not like to reapply styles to list from dynamically created elements.
Please note this is a work in progress and should a solution present itself after the publication of this book, I’ll

make sure to note it on the companion website.

Chapter Summary
In this chapter I showed you how to leverage some client-side storage to make your application perform
faster or even work while it’s offline. Before moving on to the next chapter you should know how to:

• Create and use the manifest for taking applications offline.

• Use the applicationCache object for managing your cached application.

• Use localStorage for storing simple data or objects.

• Use sessionStorage for storing simple data or objects.

Until now we’ve dived right into building our application and all of it was against my nature because
I’ve not written a single test for any of this code. However, I plan on fixing that in the next chapter by
talking about testing your mobile app. This covers topics such as unit testing with Jasmine and
simulating a slow network through the iOS simulator.

C H A P T E R 13

■ ■ ■

203

Mobile Testing

A few years back at a conference I heard this analogy between modern software engineers and civil
engineers. The story went something like this: suppose you were building a bridge that had never been
built before and you were using a new architecture on which the previous equations you used to solve
bridge problems did not apply. How would you know if the bridge could support the proposed weight?

One group of people began solving the problem by going about trying to refactor their equations to
solve the problem.

A second group of people solving the problem went about it slightly differently. They built a sample
of the bridge, and they loaded it until it broke. They repeated this over and over until they found the
capacity of the bridge.

In software we like to use the second way too; we like to test. These tests range from unit-testing
custom APIs to testing the performance of your web server and API. This testing provides valuable
insight into your application and you should not launch or even start building your application without
setting up your test.

Before writing this book I debated whether to make this the first chapter in the book because “test-
driving code” has been a practice I use to make my code better and myself a better programmer. In this
chapter I talk about the following kinds of testing.

• Unit testing with Jasmine

• Performance testing with benchmarking, load testing, and simulating a mobile
network

• Automated testing with Watir

• A/B testing

But first I’d like to talk about a few terms: TDD, or test-driven development, and BDD, behavior-
driven development.

Test-Driving Code
Long before the practice of TDD the practice of creating software went something like this.

• Write some code.

• Write some more code.

• If you have time write a test for your code.

• If it breaks fix it fast, and push it live.

CHAPTER 13 ■ MOBILE TESTING

204

Developers didn’t write test because code usually worked or they used an excuse such as “they had
if statements” in the code to check for errors. Other reasons for not testing might be “testing would slow
me down” because it would often take less time to fix a bug than to write a comprehensive test for a
piece of code.

But what happens if you can’t have downtime? What happens if you need to refactor a lot of your
code and can’t afford to find out where it breaks because you can’t have downtime?

For these cases you write a test. The practice of writing test-first was introduced as test-driven
development.

TDD or Test-Driven Development
Test-driven development or TDD is the practice of:

1. Write a test.

2. Watch it fail.

3. Fix your code so test will pass.

4. Refactor your code.

5. Repeat Step 1.

By writing your test first you truly understand the acceptance criteria or requirements of your
component or application. I use TDD in the example below.

Step 1
The first thing I write is a function assertString(). This takes two parameters: an expected value and an
actual value; it compares the two and returns a true if they are the equal.

Step 2
Next, I write a testHello function and drop it into the onload event.

The first time I run this it fails.

Step 3
Next, I write the hello function with nothing in it, and guess what, it fails again.

Finally, I write the hello function with a string parameter so that it returns hello followed by the
hello string plus the name variable passed in. Now when I run the test or refresh the page the test passes.
This is TDD.

Companion Site Reference

Example 13-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/tdd.php

http://www.learnhtml5book.com/chapter13/tdd.php

CHAPTER 13 ■ MOBILE TESTING

205

<script type="text/javascript">
// step 1
 function assertString(expected, actual) {
 return (expected == actual);
 }

// step 2
 window.onload = function testHello() {
 if (assertString("hello scott", hello("scott"))) {
 alert("hello works");
 } else {
 alert("hello fails");
 }
 }
// step 3
 function hello(name) {
 return "hello " + name;
 }
</script>

Sometimes these tests are very developer-centric and their meaning can get lost in translation
(translation to your business team). To compensate for this, a different type of semantics would be
needed to cross boundaries of developers, quality assurance, and business. Along came behavior-driven
development or BDD.

BDD or Behavior-Driven Development
Behavior-driven development or BDD is very close to TDD except the language and semantics normally
used in TDD are replaced with business- and user-centric terms that make sense to everyone on your
team, not just developers. An example of the previous “hello” example would look like this as a BDD
test case:

Given a user visits a page named "scott",
Then the user should be greeted with an alert called "hello scott".

In order to provide consistency a language was created for this called Gherkin. Gherkin is used in
Cucumber for Ruby, Lettuce for Python, Speclow for .NET, and behat for PHP. All of these are BDD unit-
testing frameworks that allow for automated integration and unit testing.

Gherkin consists of the following.

• Features that describe a single characteristic of a piece of software.

• Scenarios that are comprised of steps to test a feature.

• Steps consisting of Givens, Whens, and Thens.

• Givens are designed to put the system into a known state and are where your
assumptions are created.

• Whens describe key actions such as when I click a button or enter certain text.

• Thens describe the outcomes or what to expect.

For more information on Gherkin, view its website at

https://github.com/cucumber/cucumber/wiki/Gherkin

https://github.com/cucumber/cucumber/wiki/Gherkin

CHAPTER 13 ■ MOBILE TESTING

206

In the previous example I wrote my own assertion and test but it provided no means to actually test
anything. So how do you get from a few English sentences in Gherkin to doing behavior-driven
development? Fortunately there is a JavaScript unit testing framework that provides both kinds of
assertions I want to use for my JavaScript unit test as well as BDD Gherkin interpreters that allow for real
unit tests and that’s called Jasmine.

Unit Testing with Jasmine
Jasmine is a BDD framework for testing JavaScript. You can download and read more about Jasmine at:
http://pivotal.github.com/jasmine/. To install just unzip the files and follow the instructions below,
moving the files into the relevant directory for your project.

Companion Site Reference

Example 13-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/jasmine.php.

To get started I show you a simple example. First the basics: you need to include the jasmine.css,
jasmine.js, and jasmine-html.js files at the top of your test harness. A test harness is just a web page
where you can include the files you’re going to test.

<link rel="stylesheet" type="text/css" href="js/jasmine.css">
<script type="text/javascript" src="js/jasmine.js"></script>
<script type="text/javascript" src="js/jasmine-html.js"></script>

Next I add my function (it’s the same hello() function as before).

<script type="text/javascript">
 // the function part (your code)
 function hello(name) {
 return "hello " + name;
 }
</script>

Now I write my spec, short for specification. This has three parts: describe, it, and expect.

• The describe part is a way to group different specs together.

• The it part is the specification.

• The expect is short for expectations. This is for expressing what you expect from
the code.

In the code below we’re expecting the call to hello('scott') to return a string "hello scott".

<script type="text/javascript">
 // the spec part
 describe('hello()', function() {
 it('says hello', function() {
 expect(hello('scott')).toEqual("hello scott");
 });

http://pivotal.github.com/jasmine/
http://www.learnhtml5book.com/chapter13/jasmine.php

CHAPTER 13 ■ MOBILE TESTING

207

 });

</script>

As before in TDD, our first test should fail, so to implement it in Jasmine, we write some code to
execute our specification defined above. After running it we get the output shown in Figure 13-1.

<script type="text/javascript">
 jasmine.getEnv().addReporter(new jasmine.TrivialReporter());
 jasmine.getEnv().execute();
</script>

Figure 13-1. Showing failing test

Next I add the hello function and get a passing test, shown in Figure 13-2.

CHAPTER 13 ■ MOBILE TESTING

208

Figure 13-2. Showing a passing test

To use Jasmine with your mobile site, build a suite of test harnesses for all of your custom
JavaScript. We look at using Jasmine with Grandview Ave later, in “Putting It All Together.”

Performance Testing
Performance testing or page performance testing is different from load testing in that it measures the
performance of the page load and JavaScript running on the client browser, not the speed at which your
web server can serve text, images, or other media.

Performance testing becomes important because your iOS device will run JavaScript a little to a lot
slower than the MacBook with which you’re developing your website. Before I talk about the test I
actually show you some results; they might surprise you.

First I create a few different kinds of test:

• Simple Test: Counting a million times in a loop

• Native JavaScript: DOM Traversal

CHAPTER 13 ■ MOBILE TESTING

209

• JQuery: DOM Traversal

Second, in Table 13-1 we compare them on the iPad v1, iPhone4, Chrome 15, and Safari 5.1.2. This
will give you relative feel for how they compare against one another.

Table 13-1. Performance Comparison

Test iPad v1 (ms) iPhone4 (ms) Chrome v15 (ms) Safari 5.1.2 (ms)

Simple 13 19 2 2

Native JS 432 541 87 183

jQuery 1.6.4 567 705 83 213

The Benchmark Object
Before taking benchmarks, I create a simple JavaScript object to calculate the time between two events,
start and stop. The benchmarking object will need to measure time in milliseconds. The following
example creates a benchmark object with properties startTime and endTime and has the methods, start,
stop, and get.

Companion Site Reference

Example 13-3: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/benchmark.php

<script type="text/javascript">
 function Benchmark() {
 this.startTime = "";
 this.endTime = "";
 this.start = function() {
 this.startTime = new Date().getTime();
 };
 this.stop = function() {
 this.endTime = new Date().getTime();
 };
 this.get = function() {
 return this.endTime - this.startTime;
 };
 }
</script>

Now I’ll talk about three separate performance tests: one is for a simple loop and the other two
compare native selectors and the jQuery selector as I iterate through and update the DOM.

http://www.learnhtml5book.com/chapter13/benchmark.php

CHAPTER 13 ■ MOBILE TESTING

210

Simple Loop
This is a simple loop that counts 1 million times and does nothing else.

<script type="text/javascript">
 function test1() {
 var foo = new Benchmark();
 foo.start();
 for (var i = 0; i < 1000000; i++) {
 // do nothing
 }
 foo.stop();
 alert("1,000,000 loops take " + foo.get() + "ms.");
 location.reload();
 }
</script>

DOM Traverse and Modify
The DOM traversal iterates through 10,000 <div> elements. To set up the DOM Traversal test I create the
following HTML and 10,000 <div> elements using PHP.

<script src="/js/jquery-1.6.4.min.js"></script>
<button onclick="test1()">Simple Test</button>
<button onclick="test2()">Native Selector</button>
<button onclick="test3()">jQuery Selector</button>
<?php for ($i=0;$i<10000;$i++){?>
<div id="<?=$i?>" class="foo"><?=$i?></div>
<?}?>

First I use the native querySelector to grab all classes then modify all the innerHTML of these
elements. I then alert the time and reload the page so as to avoid any browser caching.

<script type="text/javascript">
function test2() {
 var foo = new Benchmark();
 foo.start();
 var divs = document.querySelectorAll(".foo");
 for (var i = 0; i < divs.length; i++) {
 var elt = divs[i].innerHTML = "foo"+i;
 }
 foo.stop();
 alert("native selector time is " + foo.get() + "ms");
 location.reload();
 }
</script>

DOM Traverse and Modify w/jQuery
This does the same thing as the previous example and makes use of the .each() function from within
jQuery.

<script type="text/javascript">
function test3() {
 var foo = new Benchmark();

CHAPTER 13 ■ MOBILE TESTING

211

 foo.start();
 $('.foo').each(function(index, elt) {
 elt.innerHTML = "foo"+index;
 });

 foo.stop();
 alert("jquery selector time is " + foo.get() + "ms");
 location.reload();
 }
</script>

A Short Note on Network Throttling
One thing that it will be difficult to test your web app with will be to simulate 3G or slower speeds.

To get around this your Mac has the ipfw command, which is short for IP Firewall. To get your Mac
to slow down the speed at which it accesses a network resource, just open a terminal then enter the
following commands.

sudo ipfw pipe 1 config bw 4KBytes/s
sudo ipfw add 1 pipe 1 src-port 80

To remove this restriction enter the following command.

sudo ipfw delete 1

To test this out I created the following large file (~100 k). This can be any random file name; I used
large.php.

<?php
for ($i=0;$i<100000;$i++) {
echo 'a';
}
?>

Using this file, try executing the following Ajax Request using jQuery. This test loads a large file via
AJAX (previous file called large.php) and measures the time between starting the download and
document.ready. It verifies that slower download speed when the firewall rules are in place.

<script type="text/javascript">
function networkTest() {
 var bench = new Benchmark();
 bench.start();
 $.ajax({
 url: "large.php",
 success: function() {
 bench.stop();
 alert("Time to download is:" + bench.get());
 }
 });
 }
</script>

CHAPTER 13 ■ MOBILE TESTING

212

A Short Note on Load Testing
Load testing is designed to measure the performance of your web server. I would recommend this kind
of testing if you have lots of HTTP requests or are expecting lots of traffic. Some shared hosting providers
(mentioned in Chapter 1) will limit the number of HTTP requests per second to their servers to avoid
server crashes, and so on.

There are many tools for this kind of testing but the one we use is already installed on your Mac and
it’s called Apache Bench, or ab. So open a terminal and navigate to the Apache home/bin.

Companion Site Reference

Example 13-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/network.php

A sample command looks like this:

ab -n 100 -c 10 http://dev.learnhtml5book.com/index.php

where –n represents the number of requests, –c represents the number of concurrent connections, and
the last parameter is a URL, in this case my development server for this book’s companion website.

The output looks like this:

Server Software: Apache/2.2.14
Server Hostname: dev.learnhtml5book.com
Server Port: 80
Document Path: /index.php
Document Length: 1732 bytes
Concurrency Level: 10
Time taken for tests: 0.308 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 194500 bytes
HTML transferred: 173200 bytes
Requests per second: 324.54 [#/sec] (mean)
Time per request: 30.813 [ms] (mean)
Time per request: 3.081 [ms] (mean, across all concurrent requests)
Transfer rate: 616.43 [Kbytes/sec] received
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 1 26 13.0 24 58
Processing: 0 4 11.4 0 40
Waiting: 0 3 10.8 0 40
Total: 14 30 11.0 28 58

Percentage of the requests served within a certain time (ms)
 50% 28
 66% 37
 75% 40
 80% 41

http://www.learnhtml5book.com/chapter13/network.php
http://dev.learnhtml5book.com/index.php

CHAPTER 13 ■ MOBILE TESTING

213

 90% 43
 95% 52
 98% 56
 99% 58
 100% 58 (longest request)

The full documentation for Apache Bench (v 2.2) is available from

http://httpd.apache.org/docs/2.2/programs/ab.html

Performance Test Conclusions
If you notice from Table 13-2 the iOS devices in mobile Safari, the native JavaScript querySelector is
much faster than using jQuery. If you are doing a lot of DOM manipulation and performance is a
concern you might want to build your own components using these functions as they are on average
30% faster and don’t require an additional download of the jQuery library.

Table 13-2. Performance Comparison Revisited

Test iPad v1 (ms) iPhone4 (ms) Chrome v15 (ms) Safari 5.1.2 (ms)

Simple 13 19 2 2

Native JS 432 541 87 183

jQuery 1.6.4 567 705 83 213

You should test your application’s network performance as well as benchmark your site and APIs to
see if they are going to be bottlenecks to your overall application performance.

Automated Testing
Testing your application over and over can be quite time consuming. Also as you modify your
application, even though you have a unit test you still want to have eyes on your application to know
that things are still working from end to end. There is a variety of products and tools out there that can
do this but the one I’m most fond of is a library created for the Ruby programming language called Watir
(pronounced “water”).

Because Ruby is installed out of the box on your Mac there are just a few things you need to do to
automate testing through Safari.

■ Note Although there are some native apps and third-party libraries that allow you to test through the iPhone,
I’ve found that I can do about 90% plus of my testing through my desktop browser.

sudo gem update—system
sudo gem install rb-appscript
sudo gem install safariwatir

http://httpd.apache.org/docs/2.2/programs/ab.html

CHAPTER 13 ■ MOBILE TESTING

214

Second, you need a page to access and do something for my sample set-up. I use the companion site
and create a simple page with a button I can click. The HTML for this is below.

Companion Site Reference

Example 13-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/watir.php

<button name="test" onclick="test()">Test Button</button>
<script type="text/javascript">
function test() {
 alert("this is a test alert");
}
</script>

Finally, I create a simple test in Ruby that opens Safari, and navigates to this page, and clicks this
button:

//to run type from the command prompt: ruby script.rb
require 'rubygems'
require 'safariwatir'

browser = Watir::Safari.new
browser.goto("http://dev.learnhtml5book.com")
browser.link(:text, "Chapter 13 - Mobile Testing").click
browser.link(:text, "Watir").click
browser.button(:name, "test").click

That’s it. You can now automate until your heart’s content. To make things even better there’s a
package that allows you to integrate your BDD test mentioned earlier with your automated testing called
Cucumber.

You can find out more about Cucumber at: http://cukes.info/.

■ Other Testing Tools This is not the only automated testing tool. There are others like Selenium and Windmill.
Just enter a Google search for “automated web testing,” browser plugins that will record your steps, or stand-

alone proxy tools, but none I would recommend at this time just because I always use Watir.

A/B Testing
The final kind of testing I discuss in this chapter is going to solve the problem of “What do you do when
you have two or more designs and you want to measure the conversion or click-through rate?” These
AB tests or experiments are often used on websites to measure whether a particular photo or placement
of a button gets users to buy something and increase the value of their purchase, or click through to
another page.

http://www.learnhtml5book.com/chapter13/watir.php
http://dev.learnhtml5book.com
http://cukes.info/.%E2%96%A0OtherTestingToolsThisisnottheonlyautomatedtestingtool.ThereareotherslikeSeleniumandWindmill.JustenteraGooglesearchfor%E2%80%9Cautom
http://cukes.info/.%E2%96%A0OtherTestingToolsThisisnottheonlyautomatedtestingtool.ThereareotherslikeSeleniumandWindmill.JustenteraGooglesearchfor%E2%80%9Cautom
http://cukes.info/.%E2%96%A0OtherTestingToolsThisisnottheonlyautomatedtestingtool.ThereareotherslikeSeleniumandWindmill.JustenteraGooglesearchfor%E2%80%9Cautom

CHAPTER 13 ■ MOBILE TESTING

215

For our AB test I show you how to use a simple cookie to show content dynamically for your mobile
page. First you need to decide what version you want to be represented as A (this is usually your existing
site), and what version you want for B (this is usually your test case).

Companion Site Reference

Example 13-6: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter13/abtest.php

In the example below I just use a CSS to hide both of the <div> tags.

<style>
 .abtest {
 display: none;
 }
</style>
<div id="a" class="abtest">Usually this is the original version (Version A).</div>
<div id="b" class="abtest">Usually this is the new version (Version B).</div>

Next, you need a way to get and set cookies:

<script type="text/javascript">
 function getCookie(name) {
 var result = "";
 var start = document.cookie.indexOf(name + "=");
 var end;
 if (start != -1) {
 start += (name.length + 1);
 end = document.cookie.indexOf(";", start);
 if (end == -1)
 end = document.cookie.length;
 result = unescape(document.cookie.substring(start, end));
 }
 return result;
 }

 function setCookie(name, value, expire_days) {
 var expire = new Date();
 expire.setDate(expire.getDate() + expire_days);
 var value = escape(value) + ((expire_days == null) ? "" : "; expires=" +
 expire.toUTCString());
 document.cookie = name + "=" + value;
 }
</script>

Then you need a way to set a random cookie and then, based on this random cookie, pick which
version to show:

<script type="text/javascript">
var random = Math.floor(Math.random() * 100) + 1;

http://www.learnhtml5book.com/chapter13/abtest.php

CHAPTER 13 ■ MOBILE TESTING

216

 var abcookie = getCookie("abtest");
 if (abcookie == "") {
 // if greater than 50 set to version 'a' otherwise 'b'
 (random > 50) ? setCookie("abtest", "a", 30) : setCookie("abtest", "b", 30);
 }
 if (abcookie == "a") {
 document.querySelector("#a").style.display = 'inline';
 } else {
 document.querySelector("#b").style.display = 'inline';
 }
</script>

If you don’t want to roll your own, Google even has a tool for this called Website Optimizer, which
you can find out more about at: http://www.google.com/websiteoptimizer.

In addition, you can set these in Google Analytics via custom attributes or append them to your
Apache logs so you can get a good measure of performance of each of these cookies as they relate to your
site. You can’t do that with local storage.

Putting It All Together
I use a lot of GPS in the Grandview Avenue app. One of the common functions I use is to validate GPS
coordinates. So I write a GPS validation function for the area in which my app will be active.

First, Create the Test Harness
This is the HTML that will run your test. It contains the Jasmine zip files you downloaded earlier as well
as the spec JavaScript file of your new code and the library you’ve written.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Jasmine Test Runner</title>
 <link rel="stylesheet" type="text/css" href="jasmine/jasmine.css">
 <script type="text/javascript" src="jasmine/jasmine.js"></script>
 <script type="text/javascript" src="jasmine/jasmine-html.js"></script>
 <script type="text/javascript" src="/m/js/grandviewave-mobile.js"></script>
 <!-- include spec files here... -->
 <script type="text/javascript" src="gps-spec.js"></script>
</head>
<body>

<script type="text/javascript">
 jasmine.getEnv().addReporter(new jasmine.TrivialReporter());
 jasmine.getEnv().execute();
</script>
</body>
</html>

After you’ve created this file it does not do much so now we need to write our specification. (You do
this first in TDD.)

http://www.google.com/websiteoptimizer
http://www.w3.org/TR/html4/loose.dtd

CHAPTER 13 ■ MOBILE TESTING

217

Second, Create the SPEC
The spec first verifies invalid co-ordinates. Second, it verifies good co-ordinates.

describe('getCurrentPosition()', function() {
 it('test for invalid coordinates', function() {
 expect(validateGPS(0, 0)).toBeFalsy();
 expect(validateGPS(39, 83)).toBeFalsy();
 expect(validateGPS(39, -99)).toBeFalsy();
 expect(validateGPS(-100, 100)).toBeFalsy();
 });

 it('returns a set of VALID coordinates', function() {
 expect(validateGPS(39, -83)).toBeTruthy();
 });
});

Because we have a failing test, we can write the implementation.

Third, Create the Validation Function
The validator just checks for valid latitude (lat) and longitude (lon). I want to return only a certain grid so
in this case I just choose a few co-ordinates for latitude (38 and 41) and longitude (–82 and –84) and
validate against those.

function validateGPS(lat,lon) {
 if (lat == 0 || lon == 0) return false;
 if (lat < 38 || lat > 41) return false;
 if (lon > -82 || lon < -84) return false;
 if (!isNaN(lat) && !isNaN(lon)) return true;
 return false;
}

Now that you’ve been able to see a passing test, you’re good to go. Just remember as you write your
custom classes and functions in your JavaScript code you create good test coverage. This way if
something changes you can catch yourself.

Chapter Summary
In this chapter I talked about a number of ways to test your mobile web application.

• TDD and BDD test for unit testing your custom JavaScript

• Performance and load testing to gain a better idea of your application’s
responsiveness even with simulated slower network speeds

• Means to automate testing and optimize your web app’s content

Although this chapter on testing is at the end of the book I highly recommend you think about
testing every step of the way. It will make you a better developer and ensure the quality of your code is at
its best.

The next chapter is a catch-all chapter, talking about things such as web workers (threads for
JavaScript) and web sockets and a lot more things you didn’t think you could do with plain old
JavaScript.

C H A P T E R 14

■ ■ ■

219

Advanced Topics

This chapter is pretty much a catch-all for the HTML5 APIs I didn’t talk about in much detail in Chapter
2 (HTML5 in short). It touches on some useful technology, but perhaps not technology you’ll use in the
first version of your mobile web app.

The heart of this chapter is about the communications API of HTML5 with topics including cross-
domain communication, server-sent events, and web sockets. This gives you the ability to send and
receive messages within your web app without the constant polling that’s typically used via
setInterval() or setTimeout().

I then talk about multithreading via web workers and the additional management of your history
object with some new methods and events.

Cross-Domain Communication
Before HTML5, it was difficult to get a browser to communicate between DOMs on different source
URLs, specifically different domains, because of something called the same origin policy.

The same origin policy was introduced as a security feature as a part of Netscape Navigator 2.0 in
March of 1996. The basic concept ensured that only scripts running on pages from within the same
domain were allowed to access the objects, methods, and properties of other pages within the same
domain. This created a number of problems for web developers trying to add features and create mash-
ups, but it was also a good thing because of security. To get around the same origin policy, HTML5
added a document messaging API. Yes, it really did take about 15 years to create a workaround.

Let’s start by looking at the options that were open to developers before HTML5.

Before HTML5
Let’s say your page is http://www.learnhtml5book.com/index.php. How would the URLs in Table 14-1
react to the same origin policy?

Table 14-1. Same Origin Policy Overview

URL Success Reason

http://www.learnhtml5book.com/index2.php Success Same site, same domain

https://www.learnhtml5book.com/index2.php Failure Different protocol

http://www.learnhtml5book.com/index.php
http://www.learnhtml5book.com/index2.php
https://www.learnhtml5book.com/index2.php

CHAPTER 14 ■ ADVANCED TOPICS

220

URL Success Reason

http://www.learnhtml5book.com:8080/page2 Failure Different port

http://www2.learnhtml5book.com/index.php Failure Different subdomain

http://www.grandviewave.com/index.php Failure Different domain

Although the same origin policy proved inconvenient for web developers trying to create something,
it prevented predatory sites from grabbing DOM objects such as your Amazon session cookie and
ordering a bunch of things on your account or grabbing other personal information.

Before document messaging, there were three main ways to get around this:

• Subdomains via document.domain

• Proxy request via a server-side language

• Including third-party scripts

Let’s talk about subdomains first.

document.domain
On both the origin domain and the alternate domain, set the document.domain property on each of these
pages. This allows both DOMs to share data.

document.domain = "learnhtml5book.com";

Using a Proxy
If your site is on another hosted server you can create a proxy to these data by requesting them via a
server-side call from your own domain. Here’s a sample proxy used to access remote resources using PHP.

<?php
$url = "http://www.grandviewave.com/api/remote.php";
$remote_page = file_get_contents($url.'&auth_token=
d0803e5ec8aee58801c548c1c0356a94f4dd4c73');
echo $remote_page;
?>

This page will take the URL specified via the $url variable and output it on your page. So if the
page above was http://yourdomain.com/proxy.php, the actual HTML displayed would be that of the
specified URL.

I’ve used this method when accessing JSON from third-party sites. It also allows me to cache it,
which improves my page’s latency (time to load).

Including Scripts from Other Domains
A lot of third-party APIs rely on allowing third-party script access by including remote scripts on the
origin domain. The example below is the way Google collects analytics information.

http://www.learnhtml5book.com:8080/page2
http://www2.learnhtml5book.com/index.php
http://www.grandviewave.com/index.php
http://www.grandviewave.com/api/remote.php
http://yourdomain.com/proxy.php

CHAPTER 14 ■ ADVANCED TOPICS

221

<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'UA-aaaaaaa-x']);
 _gaq.push(['_trackPageview']);

 (function() {
 var ga = document.createElement('script'); ga.type = 'text/javascript';
 ga.async = true;
 ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') +
 '.google-analytics.com/ga.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga,
 s);
 })();
</script>

■ Note Because PhoneGap uses local files and the file:// protocol, it’s not subject to the same origin policy. Read

more about this in Chapter 15.

So to get around having to hack your way to a useful web application, HTML5 added the cross-
document messaging API.

Document Messaging
The document messaging API has the following method.

window.postMessage(message)

The receiver of the message just needs to have an event listener called:

window.onmessage(event)

Companion Site Reference

Example 14-1: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter14/messaging.php

One way to implement this is to use an <iframe> to include the contents of a remote DOM. For this
example I create a simple HTML file on my domain called
http://www.scottpreston.com/messagetest.html. When this page’s onmessage event fires I alert the
contents of the message via the event.data property.

<p>This <iframe> is from scottpreston.com.</p>
<p id="msg">Send message!</p>
<script type="text/javascript">

http://www.learnhtml5book.com/chapter14/messaging.php
http://www.scottpreston.com/messagetest.html

CHAPTER 14 ■ ADVANCED TOPICS

222

 window.onmessage = function(e) {
 if (e.origin == "http://dev.learnhtml5book.com" || e.origin ==
 "http://www.learnhtml5book.com") {
 alert(e.data);
 }
 };
</script>

Next on the origin domain’s source file I have a <textarea>, <iframe> and a button to initialize the
event. In the postMessage method, I send the contents of the <textarea> along with the domain to which
I want to post the message. After clicking the button I get an alert pop-up, executed from the remote
domain. I could even read cookies or anything if I decide to put that logic inside the onmessage function.

<textarea id="msg_txt" name="msg"></textarea>
<button onclick="send()">Send</button>

<iframe src="http://www.scottpreston.com/messagetest.html" height="100" width="300"
 id="remote_win"></iframe>
<script type="text/javascript">
 function send() {
 var win = document.querySelector("#remote_win").contentWindow;
 var elt = document.querySelector("#msg_txt");
 win.postMessage(
 elt.value, "http://www.scottpreston.com"
);
 elt.value = ";
 }
</script>

You can use any of these methods to assist in cross-domain messaging or to improve performance,
which I’ve done with a proxy. The onmessage event is used throughout this chapter including something
really powerful: server-sent events.

Server-Sent Events
The first kinds of communication we covered in this chapter were from browser to browser across
different domains. The second kind of messages I talk about are server-sent events.

These events occur directly from server to browser (client). Previous to this specification a
JavaScript would need to poll a server on some interval creating a lot of overhead and unneeded traffic.
So rather than polling every one or two seconds for an update you can just open a connection and then
when something updates you can send an event.

To implement this you first need some server-side code that sends an event-stream. This example
just sends the time ($time variable) every five seconds. See Figure 14-1.

<?php
header('Content-Type: text/event-stream');
header('Cache-Control: no-cache');
while (true) {
 $time = time();
 echo "data: ". $time . PHP_EOL;
 echo PHP_EOL;
 ob_flush();
 flush();

http://dev.learnhtml5book.com
http://www.learnhtml5book.com
http://www.scottpreston.com/messagetest.html
http://www.scottpreston.com

CHAPTER 14 ■ ADVANCED TOPICS

223

 sleep(5); // wait 5 seconds
}
?>

Next, you need to open a connection in the client to the server and a way to update the page
contents. Again, just as with document messaging, we use the onmessage event. The remainder of the
script just contains a few more events and a specialized append() function to update the innerHTML of
the <div>.

Companion Site Reference

Example 14-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter14/serverevents.php

<p>See messages below:</p>
<div id="sse_txt"></div>
<script type="text/javascript">
 var source = new EventSource('sse.php');
 var elt = document.querySelector("#sse_txt");
 source.onopen = function(e) {
 append("opening connection");
 };
 source.onmessage = function(e) {
 append(e.data);
 };
 source.onerror = function(e) {
 append("error");
 };
 function append(txt) {
 elt.innerHTML = elt.innerHTML + txt + "—" + new Date() + " --
";
 }
</script>

In the example below I’m receiving an event every five seconds. You can program this to poll a
database or use whatever interval you want.

http://www.learnhtml5book.com/chapter14/serverevents.php

CHAPTER 14 ■ ADVANCED TOPICS

224

Figure 14-1. Server-Side Events

Web Sockets
Another kind of communication between a server and a browser is a web socket, which is a bidirectional
protocol that travels over a TCP socket. It’s not HTTP, but an entirely different socket-based protocol.
This means you can’t use Apache to send out data without a custom module or proxy to another server.

If you are looking for a way to implement a chat program or other real-time application where
you’re constantly sending and receiving data from a server or other users, you might use web sockets
over traditional http/web programming.

For a list of server implementations see the following.

http://en.wikipedia.org/wiki/Comparison_of_WebSocket_implementations

Now even though I’m not going to implement a server solution here I’d like to invoke a current web
socket at WebSocket.org. Here just like the other message implementations we write an event handler
called onmessage, to take care of the response.

http://en.wikipedia.org/wiki/Comparison_of_WebSocket_implementations

CHAPTER 14 ■ ADVANCED TOPICS

225

To send a message to the web socket, we simply call the method send with our message as the
payload. Additional event handlers (not shown) for a WebSocket include, onopen, onerror, and onclose.

Companion Site Reference

Example 14-3: Follow the link below to run this example on the companion site.

http://www.learnrhtml5book.com/chapter14/websocket.php

<button onclick="test()">Web Socket Test</button>
<script language="javascript" type="text/javascript">
 var websocket = new WebSocket('ws://echo.websocket.org/');
 function test() {
 websocket.send("This Book Rocks!");
 }

 websocket.onmessage = function(evt) {
 alert('RESPONSE: ' + evt.data);
 websocket.close();
 };
</script>

To write your own WebSocket server in PHP use:

http://code.google.com/p/phpwebsocket/

To write your own WebSocket server in node use:

https://github.com/miksago/node-websocket-server

To write your own WebSocket server in Ruby use:

https://github.com/igrigorik/em-websocket

For more information on the Web Socket protocol see

http://dev.w3.org/html5/websockets/

Web Workers
Web workers give your JavaScript the ability to multithread. You do this because often times you will
want to do things in the background without wanting to interfere with your user interface.

However, because of thread safety, workers do not have access to:

• The DOM

• window object

• document object

However, a worker can still access the following.

• navigator object

http://www.learnrhtml5book.com/chapter14/websocket.php
http://code.google.com/p/phpwebsocket/
https://github.com/miksago/node-websocket-server
https://github.com/igrigorik/em-websocket
http://dev.w3.org/html5/websockets/

CHAPTER 14 ■ ADVANCED TOPICS

226

• location object

• XMLHttpRequest

• setTimeout/clearTimeout, setInterval/clearInterval functions

• applicationCache

To use a web worker it’s as simple as creating a new Worker() object with the source of the
JavaScript in the constructor. Then as with the other communication functions mentioned previously,
just add an onmessage event to capture data returned from the worker. But to send data to the worker we
use the postMessage method. The example below sends nothing.

Companion Site Reference

Example 14-4: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter14/webworker.php

<button onclick="callWorker()">Worker Example</button>

<div>Worker Count: </div>
<script type="text/javascript">
 var worker = new Worker("js/worker.js");
 worker.onmessage = function(evt) {
 document.querySelector("#count").innerHTML = evt.data;
 };

 function callWorker() {
 worker.postMessage();
 }
</script>

In the worker.js file the role of this function is to loop in a one-second interval and post information
back to the original source file; then after five seconds stop.

 onmessage = function(event) {
 startMe();
}
var count = 0;
function startMe() {
 self.postMessage(count);
 count++;
 if (count<5)
 setTimeout("startMe()",1000);
}

You can also use web workers to load scripts via:

importScripts("js/newscript.js");

Places where you might use a web worker would include:

• Background number crunching

http://www.learnhtml5book.com/chapter14/webworker.php

CHAPTER 14 ■ ADVANCED TOPICS

227

• Working with client-side data such as local or session storage

• Performing some background task such as server-side events, WebSockets, or
AJAX

The main things you want to think about when using a worker is something you want to happen
without it affecting the user interface.

History Management
Before HTML5 the only way you could access the history would be to set a timer and monitor the
location.hash property. This constant polling consumes valuable CPU cycles and can be problematic.
The preferred method would be to have an event fire when it changes.

The example below sets a timeout and changes the document.location to change every two seconds;
then based on the firing of the event onhashchange, I change the innerHTML of a <div> element.

Companion Site Reference

Example 14-5: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter14/history.php

<button onclick="changeHash()">Web Socket Test</button>
<div id="something">This is some content...</div>
<script type="text/javascript">
var counter = 0;
function changeHash() {
 document.location = "history.php#"+counter;
 if (counter < 5) setTimeout("changeHash()",2000);
 counter++;
}

window.onhashchange = function() {
 var elt = document.querySelector("#something");
 if (counter == 2) {
 elt.innerHTML = "This us something else completely...";
 }

 if (counter == 4) {
 elt.innerHTML = "Yet, something else you might want to read...";
 }
}
</script>

Other things you can do with this include:

• history.length: This returns the number of items in the session history.

• history.state: This returns the current state of the history object.

http://www.learnhtml5book.com/chapter14/history.php

CHAPTER 14 ■ ADVANCED TOPICS

228

• history.go(n): This allows you to go in any positive or negative direction in this
history.

• history.back(): This goes back one in the history (like the back button).

• history.forward(): This goes forward one in the history (like the forward button).

• history.pushState(state, title, url): This allows you to set a state into the
browser’s history.

• history.replaceState(state, title, url): This allows you to replace a state in
the browser’s history by the URL.

■ Note The state object is just any object you want to put into the history. This object can be any object you

want that is bound to the DOM at the point in history where you happen to be.

Chapter Summary
This chapter was a catch-all chapter that included some details on messaging.

This messaging ranged from how to get around the same origin policy in JavaScript by using the
window.postMessage method and window.onmessage event listener.

But we later found out that the onmessage event listener could also be applied to the EventSource for
web workers for multithreading and for server-side events and web sockets for allowing realtime server-
to-browser communication without the need for polling.

If you’re implementing some rather intensive background task or are looking to speed up the
rendering of your interface, then consider using web workers to perform some of these tasks.

If you want to have direct server-to-browser communication such as with a chat client or maybe an
interactive GPS-related app, maybe you can use server-side events or web sockets.

This concludes just about everything you can think of doing with Mobile Safari and JavaScript and
HTML5. But there’s still more to do and that’s to take all you’ve learned and turn it into a Native App via
PhoneGap, and that’s what we talk about next.

C H A P T E R 15

■ ■ ■

229

Going Native with PhoneGap

You can do a lot with Mobile Safari, but there’s always room for improvement. In particular you might
want native controls or even want to take video or photos using your camera, but you can’t do that with
Mobile Safari. Enter PhoneGap.

PhoneGap was created at an iPhoneDevCamp in San Francisco in 2005.
I started using PhoneGap a few years ago and was amazed at how by just using JavaScript I could

access all the basic functions I needed without knowing Objective-C. Basically PhoneGap renders your
app using what’s called a UIWebView. This allows a native app to basically render local HTML, CSS, and
JavaScript files in a window using Mobile Safari while allowing access to all the native functions you
can’t normally access.

Because you’re going to create a native app you’ll need Xcode. You might find it a larger learning
curve to understand Xcode (Apple’s Integrated Development Environment) than to understand
PhoneGap. Once you build your first app you will be amazed at how simple it is!

For this chapter you probably won’t need your trusty browser or the companion site (unless you just
want to download the sample app). In fact it might be helpful to download it at the beginning so you can
follow along, but first you need to install Xcode and PhoneGap.

Installing PhoneGap
To start using PhoneGap you need an Intel-based Mac with OSX 10.6 or greater.

Next you need to install Xcode from the Apple Developer Portal: http://developer.apple.com.
Third you need to download and install PhoneGap from http://phonegap.com. This is a .zip file you

need to open. After you download the file navigate to iOS and double click the .dmg. You should see the
installer shown in Figure 15-1.

http://developer.apple.com
http://phonegap.com

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

230

Figure 15-1. Installing the .dmg

Once you install the disk image you are ready to start with your first PhoneGap application. So just
open Xcode then select a PhoneGap-based application (see Figure 15-2).

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

231

Figure 15-2. Phone Gap Project Type

After your project opens just click run and you should see your PhoneGap application open an
iPhone simulator with an alert message. The output just displays a simple alert letting you know the
event fired (Figure 15-3).

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

232

Figure 15-3. Plumbing Test App

■ Note I had a problem the first time running. It said it could not find the folder www. To fix this make sure you

run PhoneGap at least once and it builds. Then import this project into PhoneGap and ensure you select Copy files.

If you look at the source code for your first app you will see there’s not much to it, just some
formatting for the viewport in the <meta> tag and a custom event listener called "deviceready". That’s it.

<!DOCTYPE html>
<html>
<head>
<title></title>
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=
1.0, user-scalable=no;" />

http://www.To

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

233

meta charset="utf-8">
script type="text/javascript" charset="utf-8" src="phonegap-1.2.0.js"></script>
<script type="text/javascript">
 function onBodyLoad(){
 document.addEventListener("deviceready", onDeviceReady, false);
 }
 function onDeviceReady() {
 navigator.notification.alert("PhoneGap is working")
 }
</script>
</head>
<body onload="onBodyLoad()">
<h1>Phone Gap Test</h1>
</body></html>

Take some time to look around and experiment with your app.

Enhancing Your App
Next you want to enhance your PhoneGap app to do some of the things your mobile app can do and
some of the things it can’t do, such as access your phone’s camera.

■ Note You might want to target your iPhone or iPad device when you try these as the simulator might give

you errors.

Geolocation
PhoneGap uses the same objects as Mobile Safari; there’s no need to change any syntax as PhoneGap
just overrides these functions to call native code.

function testGeo({
navigator.geolocation.getCurrentPosition(geoSuccess, allError);
}

function geoSuccess(position) {
 alert('Latitude: ' + position.coords.latitude + '\n' +
 'Longitude: ' + position.coords.longitude + '\n' +
 'Altitude: ' + position.coords.altitude + '\n' +
 'Accuracy: ' + position.coords.accuracy + '\n' +
 'Altitude Accuracy: ' + position.coords.altitudeAccuracy + '\n' +
 'Heading: ' + position.coords.heading + '\n' +
 'Speed: ' + position.coords.speed + '\n' +
 'Timestamp: ' + new Date(position.timestamp) + '\n');
 }

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

234

Accelerometer
Again as with geolocation you can either use built-in Safari functions discussed in Chapter 11 or you can
use the PhoneGap object. Here are the two examples side by side.

//mobile web
window.ondevicemotion = function(evt) {
 accelSuccess(evt.acceleration);
};

// phonegap
function testAccel() {
 navigator.accelerometer.getCurrentAcceleration(accelSuccess, allError);
}

function accelSuccess(acceleration) {
 alert('Acceleration X: ' + acceleration.x + '\n' +
 'Acceleration Y: ' + acceleration.y + '\n' +
 'Acceleration Z: ' + acceleration.z + '\n' +
 'Timestamp: ' + acceleration.timestamp + '\n');
}

Vibrate or Beep
Making the phone vibrate is something you can’t do in Mobile Safari. You can also make your phone beep.

function vibrate() {
 navigator.notification.vibrate(2000); //milliseconds
 navigator.notification.beep(2); // numbr of times
}

You can use this to notify a user when a message arrives, for feedback during a game, or maybe even
to provide an audio cue to do something else.

Using the Camera
So finally you can access your camera using JavaScript. Just call the getPicture method and you can
return data in a Base64 encoded string for rendering in the UIWebView of PhoneGap.

function testCamera() {
 clearPhoto();
 navigator.camera.getPicture(camSuccess, allError, { quality: 50 });
}

function camSuccess(imageData) {
 var image = document.querySelector('#myImage');
 image.src = "data:image/jpeg;base64," + imageData;
}

function clearPhoto() {
 var image = document.querySelector('#myImage');
 image.src = "";
}

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

235

There are a few things you can do with a camera in your application. Although designing a photo-
editing application might be a little bit heavy in terms of processing, you could do it with some of the
examples from Chapter 9, “Canvas.”

Augmented reality apps might also be a little heavy in terms of processing but you could create a
game where you tag locations of various things and upload them to a server for further processing.

Or how about interacting with the camera to augment an existing content management system?
Imagine taking pictures for your blog or CMS right from the same device on which you’re entering your
text? That could be your next app!

PhoneGap API Overview
The PhoneGap API is the complete API that’s installed by default after you install PhoneGap. So out of
the box you can do quite a bit, all with a little JavaScript.

I go over a short summary of the API below along with some methods and properties of these
objects as this could give you a taste of what’s possible with a little JavaScript and a powerful native
library (PhoneGap).

Accelerometer
This allows you to capture motion in the x-, y-, and z-directions. You can use the accelerometer object
with PhoneGap or use native Safari.

• accelerometer.getCurrentAcceleration

• accelerometer.watchAcceleration

• accelerometer.clearWatch

Camera
This object gives you the ability to interact with your phone’s camera. There are options to save your
photo to your photo library, or an album. The image is returned as a Base64 encoded string, however,
you can still save locally and then use a method to return a string of the file’s location for future
processing.

To implement just pass a few functions and a set of options to the method.

• camera.getPicture

Capture
These give you the ability to capture audio, images, and video from your device.

• capture.captureAudio

• capture.captureImage

• capture.captureVideo

• MediaFile.getFormatData

Compass
These allow you to capture compass-related data via the PhoneGap object versus native.

• compass.getCurrentHeading

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

236

• compass.watchHeading

• compass.clearWatch

• compass.watchHeadingFilter

• compass.clearWatchFilter

Connection
This is a property that allows you to test the connection type: either WiFi, 2G, 3G, 4G, or NONE.

• connection.type

Contacts
These provide access to the contacts database.

• contacts.create

• contacts.find

Device
This gives you the ability to read information on the device such as name, platform, UUID, and version,
among others.

Events
These give you the ability to interact with other parts of the device.

• deviceready

• pause

• resume

• online

• offline

• backbutton

• batterycritical

• batterylow

• batterystatus

• menubutton

• searchbutton

• startcallbutton

• endcallbutton

• volumedownbutton

• volumeupbutton

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

237

File Objects
These give you the ability to interact with the device file system.

• DirectoryEntry

• DirectoryReader

• File

• FileEntry

• FileError

• FileReader

• FileSystem

• FileTransfer

• FileTransferError

• FileUploadOptions

• FileUploadResult

• FileWriter

• Flags

• LocalFileSystem

• Metadata

Geolocation
These give access to the GPS on your device.

• geolocation.getCurrentPosition

• geolocation.watchPosition

• geolocation.clearWatch

Media
These give the ability to record or play back media on the device.

• media.getCurrentPosition

• media.getDuration

• media.play

• media.pause

• media.release

• media.seekTo

• media.startRecord

• media.stopRecord

• media.stop

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

238

Notification
These give you the ability to access the native notification mechanism, specifically beep and vibrate.

• notification.alert

• notification.confirm

• notification.beep

• notification.vibrate

Storage
This function utilizes WebSQL databases. I’ve not talked about these databases as they are deprecated
and are no longer active.

• openDatabase

Plugins
Outside of the standard APIs discussed above there are a number of third-party plugins to PhoneGap.
These plugins give you the ability to do much more, such as iAds, NativeControls, or Google Analytics.

For a complete list of plugins please visit GitHub:

https://github.com/phonegap/phonegap-plugins

A Plugin Example—NativeControls
One of the features you might want to add to your PhoneGap app is native controls for features such as
tabbed navigation. This involves downloading the control from the plugin site and placing the .h and .m
files in the Plugins folder in Xcode, and the .js file in your /www directory.

You also need to ensure that you update your PhoneGap.plist (Figure 15-4) because this tells your
project to which plugins it has access. I added a NativeControls key-value pair.

https://github.com/phonegap/phonegap-plugins

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

239

Figure 15-4. PhoneGap.plist

After adding this all you need to do is clean and build from the Product Menu in Xcode. Just be sure
to include your NativeControls.js file like so:

<script type="text/javascript" charset="utf-8" src="js/phonegap-1.2.0.js"></script>
<script type="text/javascript" charset="utf-8" src="js/NativeControls.js"></script>

Your directory structure might look something like Figure 15.5 with your NativeControls.h and
NativeControls.m files in the Plugins directory and your JavaScript file in /www/js.

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

240

Figure 15-5. X-Code Project Structure

■ Note Create your /www directory just as you would your mobile directory; put your CSS, images, and js files in

separate folders for better organization.

To access the functionality of the native controls you just need to call the methods on the
NativeControls object you’ve added.

I create a global variable called nativeControls so I can access and update this object later; then
inside loadTabs() I create the tab bar, then start creating the tabs one by one. Finally, I set the location
and order of the tabs as well as the default-selected tab.

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

241

■ Note Don’t be confused by the case of the object name; it can be anything you want.

var nativeControls;
function loadTabs() {
 nativeControls = new NativeControls();
 nativeControls.createTabBar();
 nativeControls.createTabBarItem("tab1","The Ave", "www/images/city.png",
 {onSelect : function() {}});
 nativeControls.createTabBarItem("tab2","Near Me", "www/images/location.png",
 {onSelect : function()
 {}});
 nativeControls.createTabBarItem("tab3","Specials", "www/images/tag.png",
 {onSelect : function() {}});
 nativeControls.createTabBarItem("tab4","Parking", "www/images/parking.png",
 {onSelect : function()
 {}});
 nativeControls.createTabBarItem("tab5","More", "tabButton:More", {onSelect :
 function() {}});
 nativeControls.showTabBar("bottom");
 nativeControls.showTabBarItems("tab1","tab2","tab3","tab4", "tab5");
 nativeControls.selectTabBarItem("tab1");
}

After you compile and build you see the native controls at the bottom of your screen (see Figure 15-6).

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

242

Figure 15-6. Sample Tabs Using Native Controls

If you want to learn more about PhoneGap online the http://phonegap.com is a great resource!
If you want to learn more about PhoneGap plugins, you can download them from:

https://github.com/phonegap/phonegap-plugins.

Mobile Web App Versus Native App
So far we’ve talked about some of the ways PhoneGap can help you enhance your app, and we’ve seen
some more of PhoneGap’s features in overview. To put all this in context and to sum up why you should
take this final step with your app, I’ve put a little chart together in Table 15-1 to compare and contrast
the mobile web, PhoneGap, and Native apps.

http://phonegap.com
https://github.com/phonegap/phonegap-plugins

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

243

Table 15-1. App Comparison

 Mobile Web PhoneGap Native

Network Access Yes Yes Yes

Display Web Content Yes Yes Yes

Performance Good Better Best

Graphics HTML5 HTML5 Full 3D GL

Hardware Access Accelerometer, Gyroscope,
Compass, GPS

Accelerometer, Gyroscope,
Compass, GPS, Camera

Full

Native Controls No Limited Yes

File No Yes Yes

One last time, let’s see what happens when we put it all together.

Putting It All Together
We already have a mobile site, but now it’s time to take everything we’ve done and adapt it to a Native
App. The first thing we do is add a splash screen.

In Xcode there is a Resources directory off the main project folder, and two subfolders: icons and
splash. Your icons will be 57 57 pixels and 114 114 pixels for the icon@2x.png file, and your splash
screens will be 480 320 and 960 640 for the Default@2x.png. By just overwriting the default files then
cleaning and rebuilding your app, you will get your icon and splash screen set.

mailto:icon@2x.png
mailto:Default@2x.png

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

244

Figure 15-7. Grandview Avenue Mobile App Splash

This splash (Figure 15-7) will show for a few seconds then it will take you to your home page
(index.html).

The Home Page
The page that’s loaded after the splash will be index.html.

This page is just an HTML page using jQuery Mobile mainly for the effects and styling. The sequence
of loading is the CSS, followed by PhoneGap libraries, PhoneGap plugins, jQuery core, and Mobile,
followed by application-specific code in grandviewave.js.

Next up is some standard jQuery mobile mark-up.

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0,

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

245

 maximum-scale=1.0, user-
 scalable=no;" />
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/jquery.mobile-1.0.min.css" />
 <script type="text/javascript" charset="utf-8" src="js/phonegap-1.2.0.js"></script>
 <script type="text/javascript" charset="utf-8" src="js/NativeControls.js"></script>
 <script type="text/javascript" charset="utf-8" src="js/jquery-1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8" src="js/jquery
.mobile-1.0.min.js"></script>
 <script type="text/javascript" charset="utf-8" src="js/grandviewave.js"></script>
</head>
<body onload="onBodyLoad()">
 <div data-role="page" data-theme="a" id="home">
 <div data-role="header">
 <div class="header1">

 </div>
 </div>
 <div data-role="content">

 <ul data-role="listview" data-inset="true" data-theme="c" data-dividertheme="a">
 Business Directory

 </div>
 </div>
</body>
</html>

■ Note I’ve also not included every data-role="page" in the code above but the application will have one of

these for each of the pages/screens the user will visit.

You can see from the screen capture of the home page in Figure 15-8 that it’s very close to the mobile
site, but rather than using the jQuery Mobile tabs, I have native looking tabs at the bottom of the app.

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

246

Figure 15-8. Grandview Avenue—Start Screen

In order to access the data from www.grandviewave.com, I just use AJAX to load the content into page
elements, some of which I preload and cache in sessionStorage when the app starts up.

To see how I preload all the content from my API I have the following function I call onLoad().
The base_url is my API URL consisting of http://sitename/directory/. And because I can update

the content on my server dynamically, I don’t need to publish a new app each time I want to update the
database.

function loadPages() {
 $.get(base_url + 'cats.php', function(data) {
 sessionStorage.put("category_data",data);
 $("#cats").html(data);
 });
 $.get(base_url + 'specials.php', function(data) {
 sessionStorage.put("special_data",data);
 $('#specials_info').html(data);
 });
}

http://www.grandviewave.com

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

247

Finally to make my navigation a little more native I use the custom controls such as this for my
specials tab.

nativeControls.createTabBarItem("tab3","Specials", "www/images/tag.png", {
 onSelect : function() {
 $.mobile.changePage("#specials", "pop");
 }
});

This would cause the tab to change the page to #specials (a hidden <div> with an id="specials")
via the pop transition.

Publishing to the App Store
There are several steps you need to follow to publish an app to the App Store. On a high level, you need
to do the following.

1. Create a developer account.

2. Create a certificate signing request .

3. Download a certificate.

4. Create a provisioning profile (developer and for distribution on App Store).

5. Add an AppID (this links your binary file via Info.plist of your app with your
provisioning profile at Apple.

6. Build your app for distribution.

7. Submit your app as a Zip file via iTunesConnect.

8. Wait for approval (up to a week).

For more information on publishing to the App Store please follow the detailed information on the
Apple Developer website. There’s a lot of information there and there are many steps to follow.

https://developer.apple.com/ios/manage/distribution/index.action

If you don’t want to submit via the App Store and would rather just install your app to a handful of
devices you just need to create a developer provisioning profile.

Also, when submitting to the App Store it’s important to keep in mind performance and iOS human
interface guidelines. I’ve personally not had any issues using jQuery mobile and PhoneGap, but please
take some time to review this link:

https://developer.apple.com/appstore/guidelines.html

You should also take some screenshots of your app so you can submit it to the App Store. If your app
is a paid app make sure you have the proper banking and financial steps in place; if it’s free you can just
submit the app with nothing to worry about financially.

Finally when submitting your app, be sure to include links to your website and make sure you have
a way for users to contact you in case of any bugs or if they have any questions.

Once your app goes live, make sure to send a link to all your friends so they can download the app
and give it a high rating. This will ensure others will try it out!

https://developer.apple.com/ios/manage/distribution/index.action
https://developer.apple.com/appstore/guidelines.html

CHAPTER 15 ■ GOING NATIVE WITH PHONEGAP

248

Chapter Summary
In this chapter we installed PhoneGap and used it to convert our mobile app to a native app. This allows
us to make use of native controls for a snappier response to user input and better aesthetics.

This concludes all of the work of building a Mobile Web application or iOS app. As you can see there
are many differences between the apps discussed in this and previous chapters and a traditional web
application, but there’s also a lot of overlap. Some parting advice I’d give to anyone creating something:

“Ship First, Refine Second.”

So many times developers “gold-plate”: they get to a point where they think something is done and
they are ready to ship, then a little doubt creeps in and they add a little bit more, then a little bit more,
and then a little bit more. You will have plenty of time to perfect your craft and enhance your product.
Don’t try to be perfect with version #1.

If you have any questions about the subjects in this book, please feel free to contact me via
http://www.learnhtml5book.com. You can also follow me on twitter via @scottpreston. I’ll do my best to
throw out tips and future code examples using the #learnhtml5book hash tag.

Have Fun!

http://www.learnhtml5book.com

A P P E N D I X

■ ■ ■

249

Companion Site References

Overview of Companion Site
The companion website www.learnhtml5book.com is designed so you can view examples as you
navigate this book and start building your own mobile web app. You can either click along on your iOS
device or via Safari or Chrome.

Chapter 1 – Getting Started
The goal of this chapter is to get your project started and cover some of the basics you’ll need in the later
chapters.

Example 1-1 Redirecting
Ways you can redirect users to your mobile site. Examples include JavaScript and Apache-level redirects.

http://www.learnhtml5book.com/chapter1/redirect.php

Example 1-2 Full Screen Mode
Viewing a page without the <meta> viewport attribute.

http://www.learnhtml5book.com/chapter1/fullscreen.php

Example 1-3 Viewport Mode
The same page with the <meta> viewport attribute.

http://www.learnhtml5book.com/chapter1/viewport.php

Example 1-4 Sample Mobile App Home Page
A sample Grandview Avenue Home page.

http://www.learnhtml5book.com/chapter1/samplehome.php

http://www.learnhtml5book.com
http://www.learnhtml5book.com/chapter1/redirect.php
http://www.learnhtml5book.com/chapter1/fullscreen.php
http://www.learnhtml5book.com/chapter1/viewport.php
http://www.learnhtml5book.com/chapter1/samplehome.php

APPENDIX ■ COMPANION SITE REFERENCES

250

Chapter 2 – HTML5 In Short
This chapter is a short overview or quick-reference guide to HTML5 .

Example 2-1 Canvas
Demonstrates <canvas>, one of the new elements of HTML5.

http://www.learnhtml5book.com/chapter2/canvas.php

Example 2-2 Video
Video taken from Grandview Avenue.

http://www.learnhtml5book.com/chapter2/video.php

Example 2-3 Simple Edit
A sample editable <div>.

http://www.learnhtml5book.com/chapter2/edits.php

Example 2-4 Structural Elements
Shows you how you might use some of the new structural elements like <header> or <footer>.

http://www.learnhtml5book.com/chapter2/structure.php

Example 2-5 Form Example
A sampling of the new <form> fields and attributes.

http://www.learnhtml5book.com/chapter2/form.php

Putting It All Together
In this section I show you how to format a basic mobile site using the new HTML5 structural elements.

http://learnhtml5book.com/chapter2/pag1.php

 I also demonstrate a sample contact form using validation.

http://learnhtml5book.com/chapter2/pag2.php

http://www.learnhtml5book.com/chapter2/canvas.php
http://www.learnhtml5book.com/chapter2/video.php
http://www.learnhtml5book.com/chapter2/edits.php
http://www.learnhtml5book.com/chapter2/structure.php
http://www.learnhtml5book.com/chapter2/form.php
http://learnhtml5book.com/chapter2/pag1.php
http://learnhtml5book.com/chapter2/pag2.php

APPENDIX ■ COMPANION SITE REFERENCES

251

Chapter 3 – CSS3 and iOS Styling
This chapter shows you how to style your iOS mobile web app from scratch, using CSS3 to make it look
like a native app. It also shows you some of the newer features of CSS3 and provides an overview of
the subject.

Example 3-1 CSS Linked
Load times using a linked style sheet. (Remember to use your web developer tools to view load times.)

http://www.learnhtml5book.com/chapter3/basics1.php

Example 3-2 CSS Imported
Load times using the @import to bring in a style sheet. (Remember to use your web developer tools to
view load times.)

http://www.learnhtml5book.com/chapter3/basics2.php

Example 3-3 Orientation Selection
How to detect for orientation via CSS.

http://www.learnhtml5book.com/chapter3/orient.php

Example 3-4 iOS Selector
How to select for different iOS devices using CSS.

http://www.learnhtml5book.com/chapter3/iosselect.php

Example 3-5 Retina Sample
Two images—one optimized for the Retina display.

http://www.learnhtml5book.com/chapter3/retina.php

Example 3-6 Sample Header
A sample iOS-styled header.

http://www.learnhtml5book.com/chapter3/sample_header.php

Example 3-7 Sample Simple Style
A sample list showing basic styling.

http://www.learnhtml5book.com/chapter3/sample_list.php

http://www.learnhtml5book.com/chapter3/basics1.php
http://www.learnhtml5book.com/chapter3/basics2.php
http://www.learnhtml5book.com/chapter3/orient.php
http://www.learnhtml5book.com/chapter3/iosselect.php
http://www.learnhtml5book.com/chapter3/retina.php
http://www.learnhtml5book.com/chapter3/sample_header.php
http://www.learnhtml5book.com/chapter3/sample_list.php

APPENDIX ■ COMPANION SITE REFERENCES

252

Example 3-8 Sample iPhone Style
The same list as the previous example but with some iOS styling enhancements.

http://www.learnhtml5book.com/chapter3/sample_list2.php

Example 3-9 Sample Buttons
Sample iOS–styled buttons using CSS3.

http://www.learnhtml5book.com/chapter3/sample_buttons.php

Example 3-10 iPad Sample
Sample navigation using CSS for the iPad.

http://www.learnhtml5book.com/chapter3/ipad.php

Putting It All Together
Elements of this chapter are used throughout the Grandview Avenue mobile site.

Chapter 4 – JavaScript and APIs
The goal of this chapter is to provide an overview of JavaScript and include a number of examples using
both classic Ajax and jQuery Ajax to give you a feel for how to do something without a mobile framework.

Example 4-1 First Class Functions
First Class Functions in the JavaScript language.

http://www.learnhtml5book.com/chapter4/jsfunction.php

Example 4-2 JavaScript Objects
Object-oriented JavaScript.

http://www.learnhtml5book.com/chapter4/objects.php

Example 4-3 Load Events
Load times of two “load” events.

http://www.learnhtml5book.com/chapter4/load.php

http://www.learnhtml5book.com/chapter3/sample_list2.php
http://www.learnhtml5book.com/chapter3/sample_buttons.php
http://www.learnhtml5book.com/chapter3/ipad.php
http://www.learnhtml5book.com/chapter4/jsfunction.php
http://www.learnhtml5book.com/chapter4/objects.php
http://www.learnhtml5book.com/chapter4/load.php

APPENDIX ■ COMPANION SITE REFERENCES

253

Example 4-4 Events Sample
Using the onOrientationChange event. This gives you an alternative to using the CSS3 media queries in
Chapter 3.

http://www.learnhtml5book.com/chapter4/orient.php

Example 4-5 Dialogs
How to use the different dialog options.

http://www.learnhtml5book.com/chapter4/dialog.php

Example 4-6 Console Logs
Different console logs.

http://www.learnhtml5book.com/chapter4/console.php

Example 4-7 Ajax
An Ajax request using the XMLHttpRequest object (Old-School).

http://www.learnhtml5book.com/chapter4/ajax.php

Example 4-8 JSON
A JSON example.

http://www.learnhtml5book.com/chapter4/json.php

Example 4-9 Ajax Example #1
Classic Ajax example with JSON loads data on a screen.

http://www.learnhtml5book.com/chapter4/combo.php

Example 4-10 Creating Elements
How to create DOM elements.

http://www.learnhtml5book.com/chapter4/creating.php

Example 4-11 Simple jQuery
An overview of using the jQuery ready() event to create an alert().

http://www.learnhtml5book.com/chapter4/jquery.php

http://www.learnhtml5book.com/chapter4/orient.php
http://www.learnhtml5book.com/chapter4/dialog.php
http://www.learnhtml5book.com/chapter4/console.php
http://www.learnhtml5book.com/chapter4/ajax.php
http://www.learnhtml5book.com/chapter4/json.php
http://www.learnhtml5book.com/chapter4/combo.php
http://www.learnhtml5book.com/chapter4/creating.php
http://www.learnhtml5book.com/chapter4/jquery.php

APPENDIX ■ COMPANION SITE REFERENCES

254

Putting It All Together
Elements of this chapter are used throughout the Grandview Avenue mobile site. Two examples are
included on the companion site.

Content-loading example using jQuery with a fade-in effect.

http://www.learnhtml5book.com/chapter4/about.php

An Ajax example with JSON and jQuery.

http://www.learnhtml5book.com/chapter4/cats.php

Chapter 5 – Mobile Frameworks
The goal of this chapter is to provide you an overview of the various benefits of using a mobile web
framework versus doing everything manually.

Example 5-1 Using the iUI
A sample page showing the iUI framework—an alternative to jQuery Mobile.

http://www.learnhtml5book.com/chapter5/iui/index.html

Example 5-2 Using jQuery Mobile (JQM)
A sample page using the jQuery Mobile framework.

http://www.learnhtml5book.com/chapter5/jquerymobile/index.html

Example 5-3 JQM Headers
A sample jQuery Mobile header with buttons.

http://www.learnhtml5book.com/chapter5/jquerymobile/headers.html

Example 5-4 JQM Multiple Pages
A multi-page template that uses jQuery mobile.

http://www.learnhtml5book.com/chapter5/jquerymobile/twopage.html

Example 5-5 JQM Buttons
A variety of buttons you can use in jQuery Mobile.

http://www.learnhtml5book.com/chapter5/jquerymobile/buttons.html

http://www.learnhtml5book.com/chapter4/about.php
http://www.learnhtml5book.com/chapter4/cats.php
http://www.learnhtml5book.com/chapter5/iui/index.html
http://www.learnhtml5book.com/chapter5/jquerymobile/index.html
http://www.learnhtml5book.com/chapter5/jquerymobile/headers.html
http://www.learnhtml5book.com/chapter5/jquerymobile/twopage.html
http://www.learnhtml5book.com/chapter5/jquerymobile/buttons.html

APPENDIX ■ COMPANION SITE REFERENCES

255

Example 5-6 JQM List
A variety of lists you can use in jQuery Mobile.

http://www.learnhtml5book.com/chapter5/jquerymobile/lists.html

Putting It All Together
I’ve chosen to use the jQuery mobile framework for the Grandview Avenue Mobile Web App. Although
it’s not perfect it does most of what I want from a styling perspective.

Chapter 6 – Usability, Navigation, and Touch
The goal of this chapter is to highlight various means of navigating your mobile site, touch on some
usability concerns, and summarize some events related to a touch versus a click interface.

Example 6-1 JQM Drill Down #1
How to implement a traditional drill-down navigation metaphor using jQuery Mobile.

http://www.learnhtml5book.com/chapter6/drill1.php

Example 6-2 JQM Drill Down #2
This is the same example as the previous one, but this time it has a different header with a back button.

http://www.learnhtml5book.com/chapter6/drill2.php

Example 6-3 JQM Tabbed Footers
How to implement a tabbed footer navigation using jQuery Mobile.

http://www.learnhtml5book.com/chapter6/tabs.php

Example 6-4 JQM Modal Dialogs
How to use modal dialogs using jQuery Mobile.

http://www.learnhtml5book.com/chapter6/modals.php

Example 6-5 JQM Events #1
How to use the various supported events in jQuery mobile like swipe and touch.

http://www.learnhtml5book.com/chapter6/events.php

http://www.learnhtml5book.com/chapter5/jquerymobile/lists.html
http://www.learnhtml5book.com/chapter6/drill1.php
http://www.learnhtml5book.com/chapter6/drill2.php
http://www.learnhtml5book.com/chapter6/tabs.php
http://www.learnhtml5book.com/chapter6/modals.php
http://www.learnhtml5book.com/chapter6/events.php

APPENDIX ■ COMPANION SITE REFERENCES

256

Example 6-6 JQM Events #2
How to do the same thing as the previous example but manually with JavaScript.

http://www.learnhtml5book.com/chapter6/events2.php

Putting It All Together
In this section I decided on a navigation metaphor for the mobile site and created a sample iPad left
navigation.

Chapter 7 – GPS and Google Maps
The goal of this chapter is to show you how to interact with the GPS sensor in your phone and integrate
that sensor with Google Maps.

Example 7-1 GPS Basics
How to get the GPS coordinates from your device.

http://www.learnhtml5book.com/chapter7/basics.php

Example 7-2 Google Maps Basics
How to create a basic Google Map using a little HTML and JavaScript.

http://www.learnhtml5book.com/chapter7/gmap.php

Example 7-3 Google Maps Geocoding
How to place a marker and use geocoding to turn an address into a set of GPS coordinates.

http://www.learnhtml5book.com/chapter7/gmap2.php

Example 7-4 Static Google Maps
How to do the same thing as the previous example but with a URL versus JavaScript.

http://www.learnhtml5book.com/chapter7/static.php

Example 7-5 Current Location Map
Combines getting GPS coordinates from your device and interacting via Google Maps.

http://www.learnhtml5book.com/chapter7/currentlocation.php

http://www.learnhtml5book.com/chapter6/events2.php
http://www.learnhtml5book.com/chapter7/basics.php
http://www.learnhtml5book.com/chapter7/gmap.php
http://www.learnhtml5book.com/chapter7/gmap2.php
http://www.learnhtml5book.com/chapter7/static.php
http://www.learnhtml5book.com/chapter7/currentlocation.php

APPENDIX ■ COMPANION SITE REFERENCES

257

Putting It All Together
For Grandview Avenue I use a lot of Google Maps and GPS. Each business has a GPS location as well
as parking locations. I’ve combined all of these to provide some awesome functionality on the mobile
website.

Chapter 8 – Animation and Effects
The main goal of this chapter is to show you how to manually create some effects and animation with
your CSS and a little JavaScript. Most of the time a framework or plug-in might do this for you, but often
it’s easier and requires less code to write it yourself.

Example 8-1 CSS Tricks
There are three examples here. Two show sample gradients and one shows reflection of an element.

http://www.learnhtml5book.com/chapter8/tricks.php

Example 8-2 Transitions
The transition between two different CSS states via hover.

http://www.learnhtml5book.com/chapter8/transitions.php

Example 8-3 Transforms
Rotations, zooms, and some examples of 3D transforms.

http://www.learnhtml5book.com/chapter8/transforms.php

Example 8-4 Animations
Four sample animations done through key frames, which start automatically.

http://www.learnhtml5book.com/chapter8/animations.php

Example 8-5 Adding JavaScript
How to automatically invoke transitions, transforms, and animations via JavaScript.

http://www.learnhtml5book.com/chapter8/addingjs.php

Putting It All Together
I use some CSS tricks from this chapter in the Grandview Ave app. These were done automatically via
jQuery Mobile and a 2D Transition that provides a “Zoom” feature for the website’s business profile
detail page.

http://www.learnhtml5book.com/chapter8/tricks.php
http://www.learnhtml5book.com/chapter8/transitions.php
http://www.learnhtml5book.com/chapter8/transforms.php
http://www.learnhtml5book.com/chapter8/animations.php
http://www.learnhtml5book.com/chapter8/addingjs.php

APPENDIX ■ COMPANION SITE REFERENCES

258

Chapter 9 – Canvas
This chapter shows you the various ways you can use the <canvas> element.

Example 9-1 Drawing Stuff
How to draw shapes like circles, squares, triangles, and text.

http://www.learnhtml5book.com/chapter9/drawing.php

Example 9-2 Interacting
Drawing on the canvas based on an ontouch event.

http://www.learnhtml5book.com/chapter9/interact.php

Example 9-3 Images
How to load images, do some image processing by converting an image to grayscale, and then add a
slider to create a threshold filter effect on the image.

http://www.learnhtml5book.com/chapter9/images.php

Example 9-4 Animation
How to animate an image using <canvas>.

http://www.learnhtml5book.com/chapter9/animation.php

Putting It All Together
In this section, I decided to modify the Sales & Specials from an ordinary list to a game utilizing the slot
machine code from the animation example. You can view this by going to http://grandviewave.com/m
and clicking on Sales.

Chapter 10 – Audio and Video
This chapter touches on how to use the audio and video elements of HTML5.

Example 10-1 Audio Example
How to use the audio element.

http://www.learnhtml5book.com/chapter10/audio.php

http://www.learnhtml5book.com/chapter9/drawing.php
http://www.learnhtml5book.com/chapter9/interact.php
http://www.learnhtml5book.com/chapter9/images.php
http://www.learnhtml5book.com/chapter9/animation.php
http://grandviewave.com/m
http://www.learnhtml5book.com/chapter10/audio.php

APPENDIX ■ COMPANION SITE REFERENCES

259

Example 10-2 Video Example
How to use the video element.

http://www.learnhtml5book.com/chapter10/video.php

Putting It All Together
I decided to create audio and video tours of Grandview Avenue and integrate these tours with GPS. View
these on http://grandviewave.com/m.

Chapter 11 – Native Services
This chapter shows you how to integrate with some of the other features on your iOS device like the
compass, gyroscope, accelerometer, and even interact with native apps from your mobile web app.

Example 11-1 Orientation
How to use the orientation sensor to get readings from the compass and the device’s orientation in space.

http://www.learnhtml5book.com/chapter11/orientation.php

■ Note This even works on your Mac-Book Pro with Google Chrome.

Example 11-2 Motion
How to use the accelerometer in your iOS device to detect motion.

http://www.learnhtml5book.com/chapter11/motion.php

Example 11-3 Links
How to use custom links to integrate with other apps already installed on your iOS device.

http://www.learnhtml5book.com/chapter11/links.php

Putting It All Together
I decided to use the orientation feature to create an “Easter egg” in the Grandview Avenue mobile site. If
you happen to be in a certain place, you’ll get an interactive panorama augmented reality treat. You’re
unlikely to be in the right place as you read this book, so go ahead and grab this code to build your own.
Make sure you view it in your editor.

http://learnhtml5book.com/chapter11/pag1.html

http://www.learnhtml5book.com/chapter10/video.php
http://grandviewave.com/m
http://www.learnhtml5book.com/chapter11/orientation.php
http://www.learnhtml5book.com/chapter11/motion.php
http://www.learnhtml5book.com/chapter11/links.php
http://learnhtml5book.com/chapter11/pag1.html

APPENDIX ■ COMPANION SITE REFERENCES

260

Chapter 12 – Offline Apps and Storage
This chapter shows you various means for taking your application offline and adding storage to your
mobile web app.

Example 12-1 Application Manifest
How to allow your sites to work in offline mode (without a network).

http://www.learnhtml5book.com/chapter12/manifest.php

Example 12-2 Cookies
How to set and retrieve cookies using JavaScript.

http://www.learnhtml5book.com/chapter12/cookies.php

Example 12-3 Local Storage
How to set and retrieve items from LocalStorage.

http://www.learnhtml5book.com/chapter12/local.php

Example 12-4 Session Storage
How to set and retrieve items from SessionStorage.

http://www.learnhtml5book.com/chapter12/session.php

Putting It All Together
In this chapter I decided to use SessionStorage to improve the web application’s performance.

Chapter 13 – Mobile Testing
This chapter introduces you to the different kinds of testing you can do with your mobile web app.

Example 13-1 Test Driven Development
This simple JavaScript shows you how to dive into Test Driven Development (TDD).

http://www.learnhtml5book.com/chapter13/tdd.php

http://www.learnhtml5book.com/chapter12/manifest.php
http://www.learnhtml5book.com/chapter12/cookies.php
http://www.learnhtml5book.com/chapter12/local.php
http://www.learnhtml5book.com/chapter12/session.php
http://www.learnhtml5book.com/chapter13/tdd.php

APPENDIX ■ COMPANION SITE REFERENCES

261

Example 13-2 Jasmine
How to extend your TDD with BDD and Jasmine for JavaScript Unit Testing.

http://www.learnhtml5book.com/chapter13/jasmine.php

Example 13-3 Benchmarking
How to benchmark your APIs using some DOM manipulation versus pure JavaScript & jQuery.

http://www.learnhtml5book.com/chapter13/benchmark.php

Example 13-4 Network Testing
How to test the speed of your download with a simple JavaScript. This is useful when throttling your
local bandwidth to simulate 2G or 3G speeds.

http://www.learnhtml5book.com/chapter13/network.php

Example 13-5 Automated Testing
How to automate testing with some Ruby and a Ruby Gem called WATIR.

http://www.learnhtml5book.com/chapter13/watir.php

Example 13-6 A/B Testing
How to do A/B split testing with cookies.

http://www.learnhtml5book.com/chapter13/abtest.php

Putting It All Together
All of the libraries created for Grandview Avenue and for this book are located at
http://www.learnhtml5book.com/test.

Chapter 14 – Advanced Topics
This chapter introduces you to various other new HTML5-related technologies.

Example 14-1 Messaging
Cross-Domain scripting using the new messaging APIs for HTML5.

http://www.learnhtml5book.com/chapter14/messaging.php

http://www.learnhtml5book.com/chapter13/jasmine.php
http://www.learnhtml5book.com/chapter13/benchmark.php
http://www.learnhtml5book.com/chapter13/network.php
http://www.learnhtml5book.com/chapter13/watir.php
http://www.learnhtml5book.com/chapter13/abtest.php
http://www.learnhtml5book.com/test
http://www.learnhtml5book.com/chapter14/messaging.php

APPENDIX ■ COMPANION SITE REFERENCES

262

Example 14-2 Server Side Events
Technology you can use to notify the web browser of an event on the server side via an event stream.

http://www.learnhtml5book.com/chapter14/serverevents.php

Example 14-3 Web Sockets
How to use web sockets with an example echo script from WebSocket.org.

http://www.learnhtml5book.com/chapter14/websocket.php

Example 14-4 Web Workers
This is a multi-threading example using JavaScript.

http://www.learnhtml5book.com/chapter14/webworker.php

Example 14-5 History Object
How to use the new history object and onHashChangei event.

http://www.learnhtml5book.com/chapter14/history.php

Putting It All Together
The Grandview Avenue app does not use these any of these technologies at this time.

Chapter 15 – Going Native
There are no examples for this chapter—just a download of the PhoneGap sample application.

http://www.learnhtml5book.com/chapter15/

http://www.learnhtml5book.com/chapter14/serverevents.php
http://www.learnhtml5book.com/chapter14/websocket.php
http://www.learnhtml5book.com/chapter14/webworker.php
http://www.learnhtml5book.com/chapter14/history.php
http://www.learnhtml5book.com/chapter15/

263

Index

A
Animation and effects. See Cascading style

sheets (CSS)
API

AJAX, 73–75
data matrix, 75
directory structure, 81
DOM manipulation, 77–78
elements and adding events, 78
HTML and PHP files, 81–83
JSON, 75–76
overview, GrandviewAve, 80–81
web sites and apps, 72

Asynchronous JavaScript and XML (AJAX), 73–75
Audio and video

attributes
<audio>, 175
<embed>, 177
<source>, 176
<video>, 176

Grandview Avenue
addMarker() function, 183
audio tag, 182–183
basic structure, 180
tour landing pages, 180–182

use of
<audio> tag, 177–178
<video> and <source>, 178–179

B
Behavior-driven development (BDD), 205–206

C
Cache

application, 198–199
events, 197
manifest

files, 196–197

MIME type, 195
section files, 195

read-only attribute status, 197
updates, 197

Canvas
animation

images, 169–170
setTimeout function, 170
slot machine, 171
spinning image, 170–171
window.onload event, 169

basics, 157
<canvas> tag, 157
clearRect, 164
2D context object, 158
drawCircle() function, 164
drawing

<canvas> elements, 158–159
circles, 161
drawRectangle() function, 159
fillText() method, 161
font method, 161
lines, 160–161
rectangle, 159–160
text, 161–162
triangle, 160

game structure, 171
getContext() method, 158
Grandview Avenue, 171–173
image mainpulation

array, 167
clear and gray, 166
getImageData method, 167
gray() method, 166
Image() object, 165
putImageData method, 167
RGB images, 167
set-up stuff, 166–167
the-cangle-lab.jpg, 166
threshold filter and grayscale, 167–168

images, 158
interaction, 162–165

■ INDEX

264

Canvas (continued)
object, 158
ontouchend function, 163
paths, 158
random() function, 172
rectangles, 158
slot machine game, 173
state, 158
toBlob() method, 158
toDataURL() method, 158
touchXY() function, 164
transformations, 158

Cascading style sheets (CSS)
animation, 141
effects, 141
Grandview.Com mobile site, 154–155
JavaScript

rotating, 153
zooming, 152–153

jQuery mobile effects, 154
key frame animations

bgchange, 151
blue dot, 151–152
multiple steps, 150

transforms, 141
2D rotation, 147–148
3D transforms, 148–150
flip effects, 150

transitions, 141
flashing image, 146–147
hover, 144
properties, 143–144
transforms, 147–150
kinds, 147

tricks
linear gradients, 141
radial gradients, 142
reflections, 142–143

zoom feature, 155
Cookies, 199
Cross-domain communication

document messaging, 221–222
HTML5

document.domain, 220
documents, 220
origin policy, 219
proxy, 220
scripts, 220–221

origin policy, 219
CSS3, 41

animations, 50–51
backgrounds

clipping backgrounds, 51
multiple backgrounds, 51
origin, 51

size, 51
webkit properties, 52

basics
@import, 43
inline CSS, 42
<link>, 42–43

borders
image, 52
rounded borders, 52
shadow, 52

browser extensions, 43–44
2D/3D transforms

matrix, 53
rotate, 53
scale, 54
skew, 54
translate, 54

device and orientations, 62
differences and modules, 41
fonts, 52–53
full-screen web app, 62–63
grandviewave.css, 62
media

device-width, 47
landscape orientation, 46
orientation, 45–46
portrait orientation, 45
queries, 45
selectors:, 47–48
types, 44
-webkit-min-device-pixel-ratio, 47

retina display, 48
structure, 43
text effects

text shadow, 55
word wrap, 55

transitions, 54

D, E, F
DOM manipulation, 77–78

G
Global positioning system (GPS)

functions, 121
getPosition method, 122–123
longitude and latitude, 121
watchPosition method, 123

Google maps
array function, 135
blue dot, 129
business markers, 138–139
center, 128

■ INDEX

265

combined GPS, 131
geocoding and markers, 125–127
getDistance function, 135
getFeet() function, 135
GPS coordinates, 121–123
initialize function, 129
marker, 128
near-me function, 135–137
options, 128
parking spaces

dynamic map, 133–134
GrandviewAve, 134–135
off-street parking, 132
static map, 132

profile marker, 139
static maps, 127–129
successGPS function, 129
use of, 124–125
via GPS interaction, 129–132

H
History management, 227–128
HTML5

API features
canvas and drawing, 23
document editing, 24–25
document messaging, 25
drag and drop, 25
file API, 26
geolocation, 26
history management, 26
local and session storage, 24
media playback, 23
microdata, 26
offline storage, 24
selectors, 23
web sockets, 25
web workers, 27

apps, 38
attributes, 28
date input type, 34
DOCTYPE and UTF-8, 28
document.domain, 220
documents, 220
DRAFT state, 22
element attributes, 36
features, 27
form code, 35–36
form tags, 32
header and DOCTYPE, 38
HTML4 +1, 22
input types, 33–35
new media tags, 31–32

official logo, 21
origin policy, 220
proxy, 220
removed tags, 37
scripts, 220–221
structural elements, 38–39
structural tags

<article>, 28
<aside>, 29
CSS elements, 30–31
<details>, 29
<figure> and <figcaption>, 29
<footer>, 29
<header>, 29
<hgroup>, 29
<mark>, 29
<nav>, 30
<progress>, 30
<rp> and <rt>, 30
<ruby>, 30
<section>, 30
<time>, 30
<wbr>, 30

validation, 39
XML/XHTML validation, 22

I
iOS styling

button creation
border images, 60
HTML, 59
plain button and list, 58–59
size, color, and shadow, 59

header, 55–56
home screen, 49–50
iOS5, 60
iPad split view, 61
iPhone fixed footer, 60
iPhone-styled list

chevron, 58
HTML creation, 57
list format, 57
plain navigation, 56–57

iPad split view, 61
iPhone fixed footer, 60

J, K, L
Jasmine

BDD framework, 206
failing test, 207
hello('scott'), 206
hello() function, 206

■ INDEX

266

Jasmine (continued)
passing test, 207–208
specification, 206

JavaScript
debugging console, 71–72
dialogs, 70–71
dynamic languages, 65
elements and adding events, 78
events

body.onload, 68–69
window.onhashchange, 69
window.onload and

DOMContentLoaded, 68
window.onorientationchange,

69–70
externalization, 66
first-class function, 66
framework, 79
functional language, 66
jQuery, 79–80
multiparadigm, 66
object-oriented, 66
objects and namespaces, 67–68
prototype-based, 66
scripting languages, 65
unique language, 65
weakly typed languages, 65

JavaScript Object Notation (JSON), 75–76
jQuery mobile, 85–86

animation, 154
effects, 154

M
Mobile frameworks

API, 97, 98
buttons

creation, 93
different themes, 96
icons, 93–94
list views, 94–96

CSS files and jQuery, 97
Grandview Ave, 98–99
header toolbars, 91–92
jQuery mobile, 85–86
list icons, 99–100
page structure

convention, 86
data roles, 87–89
dialogs, 91
meta-element attribute, 87
moving back, 90
multipage templates, 89–90
page transitions, 90
pages/files, 90

scripting pages, 91
PHP, 97–98
steps, 85

Mobile testing
A/B test, 214–216
automate testing, 213–214
BDD, 205–206
benchmark object

DOM traverse and modify, 210
properties, 209
simple loop, 210
w/jQuery, 210

Cucumber, 214
<div> tags, 215
get and set cookies, 215
Gherkin, 205
GPS

Grandview Avenue, 216
SPEC, 217
test harness creation, 216
validation function, 217

Jasmine, unit testing, 206–208
kinds, 203
performance test

Apache Bench, 212
benchmarks, 209–211
conclusions, 213
kinds, 208–209
load testing, 212–213
network throttling, 211

random cookie, 215
TDD

assertString()function, 204
hello function, 204–205
testHello function, 204

test-driving code, 203
Watir, 213

Mobile web application, 1
App, 17–20
browser, 1–3

Apache redirection, 11
JavaScript redirection, 11–12

bug and feature-tracking system, 4
components, 7–8
deployments, 5
enabling apache, OSX, 4
file organization

absolute linking, 9–10
code duplication, 10
minimal regression testing, 10
multiple devices, 10
relative linking, 9
subdirectory /m or /mobile, 9
subdomain (m.domain.com), 8
types, 9

■ INDEX

267

Git, 5
Grandview Avenue

directory structure, 19
skeleton, 19
web version, 17

IDE/text editor, 5
local environment, 3–4
<meta> tags

apple-mobile-web-app-capable, 12
apple-mobile-web-app-status-bar-

style, 12
format-detection, 12
viewport, 13

mobile Safari, 1
parts, 8
project-tracking and management

system, 7
remote environment, 4
screen sizes and viewports

full screen mode, 14–15
landscape orientation, 13–14
matrix, 13
<meta> tag, 15–16

site integration, 5
site maps, 6
subversion (SVN), 5
tools, 18
version control software, 5
versus native app, 242–243
wireframe, 6–7

N
Navigation

combined elements, 117–118
design types, 105
dialogs and modals, 109–110
footer navigation, 116–117, 119
header, 118
iPad

body area, 111
footer, 112
framework option, 110
header creation, 111
jQuery mobile, 110
left nav, 111–112
tips, 111

nav drill down, 116
subsequent pages, 118
tabs, 107–108
tree drill-down and headers,

105–107

O
Offline applications and storage, 195

applicationCache, 195
cache

application, 198–199
events, 197
manifest file, 196–197
MIME type, 195
read-only attribute status, 197
section files, 195
updates, 197

cookies, 199
Grandview Avenue, 202
local storage, 200
$().ready() function, 202
session storage, 201

P, Q, R
PhoneGap

API overview
accelerometer, 235
camera, 235
capture, 235
compass, 235
connection, 236
contacts, 236
device, 236
events, 236
file objects, 237
geolocation, 237
media, 237
notification, 238
storage, 238

enhancing application
accelerometer, 234
camera, 234–235
geolocation, 233
vibrate/beep, 234

installation
deviceready, 232–233
Intel-based Mac, 229–230
PhoneGap-based application, 230–231
plumbing test, 231–232

mobile web app versus native app, 242–243
NativeControls

App store, 247
directory structure, 239–240
index.html, 244–247
jQuery mobile, 244–245
loadTabs(), 240–241

■ INDEX

268

PhoneGap (continued)
NativeControls (continued)

onLoad() function, 246
PhoneGap.plist, 238–239
splash screen, 243–244
tabs, 241–242

plugins
iAds/google analytics, 238
NativeControls, 238–242

UIWebView, 229

S
Server-sent events

append() function, 223
browser, 222
database, 223–224
event-stream, 222

Service integration
acceleration

accelerationIncludingGravity, 187
interval, 187
iOS device, 187
MaxX, 188
properties, 187
rotationRate, 188

augmented reality (AR), 191–193
custom links

facebook, 190
iTunes, 190
mail, 189
maps, 190
MMS, 189
music, 190
printing, 190
SMS, 189
telephone, 190
twitter, 190
YouTube, 190

Easter Egg, 191
orientation

alpha (z-axis), 186

beta (x-axis), 186
gamma (y-axis), 186
interaction, 185
properties, 185–186
 tags, 186–187
webkitCompassAccuracy, 186
webkitCompassHeading, 185

technical parts, 191
Site navigation. See Navigation

T
Test-driven development (TDD)

assertString()function, 204
hello function, 204–205
testHello function, 204

Touch interactions
jQuery mobile, 114–115
multitouch, 113
one-finger events, 112
supported events, 113–114

U, V
Unit test. See Jasmine
Usability

constraints, 103
input, 104
mobile site, 104
performance, 104
small form factor tips, 103
user experience, 103

W, X, Y, Z
Web sockets, 224–225
Web workers

multithread, 225–226
postMessage method, 226
worker.js file, 226–227

WebKit-based browser, 1

i

Learn HTML5 and
JavaScript for iOS

■ ■ ■

Scott Preston

■ CONTENTS

vii

Contents

Contents at a Glance...v
About the Authors.. xxix
About the Technical Reviewer .. xxx

■ Chapter 1: Getting Started ...1
Your Browser (Mobile Safari) ...1
Planning Your Project...3

Local Environment ...3
Remote Environment (Hosting) ..4
Bug and Feature Tracking ...4
Version Control ..5
Deployments ..5
Editor (IDE or Text Editor)...5
Site Integration ..5
Site Maps...6
Wireframes ..6
Project Tracking and Management..7

Application Components...7
Organizing Your Files ...8

Subdomain (m.domain.com)..8
Subdirectory /m or /mobile..9
Files to Organize ..9
How to link your files ...9
What about multiple devices? ...10

Browser Redirection...11
Apache Redirection..11
JavaScript Redirection...11

■ CONTENTS

viii

<meta>...12
Screen Size and Viewport...13
The Sample App..17
Summary ..20

■ Chapter 2: HTML5 in Short ...21
What Is HTML5?..22

It’s Not XHTML22
It’s Not HTML4 +1..22
HTML5 Is Not Just Markup ..23

Selectors. ..23
Canvas and Drawing..23
Media Playback ...23
Offline Storage...24
Local and Session Storage ..24
Document Editing ..24
Document Messaging..25
Web Sockets..25
Drag and Drop ...25
History Management ...26
Microdata ..26
Geolocation..26
File API...26
Web Workers ...27

HTML5 Support ...27
HTML5 Overview...28

DOCTYPE and UTF-8 . ..28
New Attributes28
New Structural Tags ..28
New Media Tags . ..31
New Form Tags. ..32
New Form Input Types...33

Sample Form Code . ..35
Additional Form Element Attributes...36
Removed Tags37
Choosing HTML5 Features to Use in Your Apps...38

■ CONTENTS

ix

Putting It All Together ..38
Adding the New Structural Elements to the Homepage ..38
A Sample Contact Form with Validation ..39

Chapter Summary...40

■ Chapter 3: CSS3 and iOS Styling ..41
What is CSS3?...41
CSS Basics..42

Using Your CSS ..42
<link>..42
@import...43

The Structure of CSS ...43
CSS Browser Extensions..43

Media Queries and Media Selectors ...44
orientation..45
device-width ..47
-webkit-min-device-pixel-ratio ...47
Media Selector Example ..47

Saving to the Home Screen ..49
A Short Overview of CSS3...50

Animation...50
Backgrounds..51
Borders ..52
Fonts ..52
2D/3D Transforms..53
Transitions ...54
Text Effects ..55

Styling for iOS...55
Styling a Header ..55
Styling a List ..56

Step 1: Create the HTML..57
Step 2: Format the List ..57
Step 3: Add the Chevron..58

■ CONTENTS

x

Creating a Button...58
Step 1: Create the HTML..59
Step 2: Size, Color, and Shadow the Buttons ..59
Step 3: Add Border Images..60

Overflow (iOS5) ..60
iPhone Fixed Footer Example ..60
iPad Split View Example ..61

Putting It All Together ..62
Device and Orientations...62
Full Screen Web App..62

Chapter Summary...63

■ Chapter 4: JavaScript and APIs ...65
About JavaScript ..65
Using JavaScript ..66

Externalizing JavaScript ..66
Creating Objects and Using Namespaces..67
Events ..68

window.onload and DOMContentLoaded...68
body.onload ...68
window.onhashchange..69
window.onorientationchange ..69

Dialogs ...70
Safari JavaScript Console..71

Creating an API...72
Getting Remote Data with AJAX...73
Response Data Matrix..75
JSON (JavaScript Object Notation) ..75
DOM Manipulation ...77
Creating Elements and Adding Events...78

JavaScript Frameworks ...78
What’s a JavaScript Framework?..79
jQuery ..79

Putting It All Together ..80
Chapter Summary...83

■ CONTENTS

xi

■ Chapter 5: Mobile Frameworks..85
Overview of jQuery Mobile..85
Working with Pages ...86

Page Data-Role ..87
What’s a Page?..87

More Data-Roles ..87
Multipage Templates ...89
Linking to Other Pages/Files..90

Moving Back..90
Page Transitions..90
Dialogs...91
Scripting Pages ...91

Toolbars and Buttons..91
Header Toolbars ..92

Creating Buttons ..93
Button Icons...93
List Views ..94
A Short Note on Themes..96

Putting It All Together ..97
Summary ..100

■ Chapter 6: Usability, Navigation, and Touch..103
Usability..103

Small Form Factor Tips..103
Performance Tips...104
Input Tips ...104
Other Tips ..104

Site Navigation ...105
Tree Drill-Down and Headers...105
Tabbed Navigation ...107
Dialogs and Modals ...109

Navigating for the iPad...110
iPad Tips ..111
Working with a Larger Body Area ..111

■ CONTENTS

xii

Creating a Header ..111
Creating a Left Nav ..111
Creating a Footer ...112

Touch Interactions..112
One-Finger Events ...112
Multitouch Events ..113

Supported Events by Mobile Safari ...113
jQuery Mobile Events ...114

Putting It All Together ..115
Option 1 ...116
Option 2 ...116
Option 3 ...117

Header 1—Home Page..118
Header 2—Subsequent Pages ..118
Footer Navigation ..119

Chapter Summary...119

■ Chapter 7: GPS and Google Maps...121
Getting GPS Coordinates...121
Using Google Maps ...124

A Simple Map Example..124
Geocoding and Markers...125
Static Maps..127

Static Google Map URL Pattern..128
Interacting with Google Maps via GPS...129

Putting It All Together ..132
Parking...132

Option 1: Static Map ..132
Option 2: Dynamic Map ...133

Near Me ...135
Business Markers ..138

Chapter Summary...139

■ CONTENTS

xiii

■ Chapter 8: Animation and Effects ..141
CSS Tricks ..141

Linear Gradients...141
Radial Gradients...142
Reflections ...142

CSS Transitions ..143
Simple Hover Transition...144
Simple Animation via Transition ..144
Flashing Image ..146

CSS Transforms ..147
Simple 2D Rotation ..147
3D Transforms ...148
3D Flipping...150

Key Frame Animations ...150
Changing a Background...151
Moving a Blue Dot..151

Adding a Little JavaScript ..152
Zooming ...152
Transforming (Rotating) ...153

Effects with jQuery ...154
A Few jQuery Effects..154
jQuery Mobile Effects...154

Putting It All Together ..154
Chapter Summary...155

■ Chapter 9: Canvas ..157
Canvas Basics ..157

Canvas Object ..158
2D Context Object ..158

Drawing Examples..158
Drawing a Rectangle..159
Drawing with Lines ..160
Drawing Circles..161

■ CONTENTS

xiv

Drawing Text..161
Interaction Example..162
Image Manipulation Example ...165

Some Set-Up Stuff ...166
Grayscale and Thresholding ..167

Animation Example...169
Spinning the Images ..170

Putting It All Together ..171
Chapter Summary...173

■ Chapter 10: Audio and Video..175
Overview of the Audio and Video Tags ...175

<audio>...175
<video> ...176
<source>...176
<embed>...177

Audio and Video Examples ...177
Using the <audio> Tag ..177
An Example Using <video> and <source>..178

Putting It All Together ..180
Creating the Tour Landing Pages...180

Landing Page 1..180
Landing Page 2..181

Tagging the Audio Tour Spots..182
Chapter Summary...184

■ Chapter 11: Integrating with Native Services ..185
Orientation..185

Properties ..185
An Example Using Orientation ...186

Acceleration ...187
Properties ..187
An Example Using Acceleration ...188

Custom Links ..189

■ CONTENTS

xv

Putting It All Together ..191
The Easter Egg...191
The Technical Parts ...191
The AR Code ..191

Chapter Summary...193

■ Chapter 12: Offline Apps and Storage..195
The Cache Manifest ..195

A Manifest Example ...196
Application Cache ..197

Update Statuses (read-only attribute status)...197
Updates ...197
Events..197

Cookies ...199
Local Storage..200
Session Storage..201
Putting It All Together ..202
Chapter Summary...202

■ Chapter 13: Mobile Testing ..203
Test-Driving Code ...203

TDD or Test-Driven Development ..204
Step 1 ..204
Step 2 ..204
Step 3 ..204

BDD or Behavior-Driven Development...205
Unit Testing with Jasmine ...206

Performance Testing ..208
The Benchmark Object ..209

Simple Loop...210
DOM Traverse and Modify ...210
DOM Traverse and Modify w/jQuery..210

A Short Note on Network Throttling...211
A Short Note on Load Testing ..212
Performance Test Conclusions ..213

■ CONTENTS

xvi

Automated Testing..213
A/B Testing ...214
Putting It All Together ..216

First, Create the Test Harness ...216
Second, Create the SPEC...217
Third, Create the Validation Function...217

Chapter Summary...217

■ Chapter 14: Advanced Topics ..219
Cross-Domain Communication ...219

Before HTML5 ..219
document.domain..220
Using a Proxy...220
Including Scripts from Other Domains ..220

Document Messaging ..221
Server-Sent Events ...222
Web Sockets ...224
Web Workers ..225
History Management ..227
Chapter Summary...228

■ Chapter 15: Going Native with PhoneGap ..229
Installing PhoneGap..229
Enhancing Your App ...233

Geolocation ..233
Accelerometer ...234
Vibrate or Beep ..234
Using the Camera ..234

PhoneGap API Overview ...235
Plugins..238

A Plugin Example—NativeControls..238
Mobile Web App Versus Native App..242
Putting It All Together ..243

The Home Page..244

■ CONTENTS

xvii

Publishing to the App Store..247
Chapter Summary...248

■ Appendix: Companion Site References ..249

Index...897

xix

About the Author

■ Scott Preston is a software craftsman from Columbus, Ohio. Over the past
decade he has worked for some of the largest companies in the world and worked
on lots of web and mobile sites. When he’s not speaking at conferences, working
on a new web or mobile project, or writing, he’s busy solving hard problems for
his customers at his company CodeGin LLC, which he founded in 2010. You can
find out more about Scott on his blog http://www.scottpreston.com or follow
him on twitter @scottpreston.

http://www.scottpreston.com

■ PREFACE

xx

About the Technical Reviewer

■ Peter Whitmore is a software engineer with over fifteen years in the business.
His experience has mostly been gained through his years with several
manufacturing industry leaders. His development skills range from writing
server side applications using Java to creating front end web applications written
using frameworks and technologies such as spring, JSF, JSR 286 Portlets, dojo,
jquery and standard JavaScript. Peter is also a registered Apple Developer for the
iOS Developer Program.

Peter gained his Master of Science in software engineering at the University of
Liverpool and currently manages a team of developers. He is married with two
grown children and enjoys riding his bike, taking in the fresh air, listening to
music, reading books and watching good dramas on television.

xxi

Preface

This book is designed to be used in conjunction with two sites. The first includes live working examples
to accompany every chapter, and the second is a real world application that uses nearly every HTML5 or
JavaScript feature discussed in the book, so you can see how it looks and works in practice.

The Companion Site
www.learnhtml5book.com

This site features a series of examples for every chapter. Look at the site on your desktop, iPad or iPhone
as you read the book. Click “View Source” in your browser or go to the Apress download zip to see the
source code for each e×ample.

Whenever a companion site e×ample is available, you will see a note that looks like this.

Companion Site Reference

Example 4-2: Follow the link below to run this example on the companion site.

http://www.learnhtml5book.com/chapter4/objects.php

You can navigate straight to the actual example on the companion site, view the source or “Save As”
to see exactly what I’m talking about in real time.

If you have an eBook reader, you can click on the example link and go directly to the example on the
companion site.

What you see in the book might only be part of the code needed to demonstrate an idea or concept,
but the companion site has everything you need, like additional JS, or CSS, or rendered HTML. I also use
a bit of PHP to glue together the HTML on the site, but you don't need to worry about that.

The Real World Example Site
www.grandviewave.com/m

The Grandview Avenue site was written in 2010 and continues to evolve. It’s a real site designed to give
local businesses an app and mobile site presence.

Each chapter in the book ends with a section called “Putting It All Together”, in which I show you
how I apply the concepts in the chapter to this real world application.

Hopefully you can see how this site works and either build one like it yourself, or do something
completely different.

http://www.learnhtml5book.com
http://www.learnhtml5book.com/chapter4/objects.php
http://www.grandviewave.com/m

■ PREFACE

xxii

Downloading the code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link
can be found on the book’s information page (http://www.apress.com/9781430240389) under the Source
Code/Downloads tab. This tab is located underneath the Related Titles section of the page.

Contacting the Author
Should you have any questions or comments—or even spot a mistake you think we should know
about—you can contact the author at scott@learnhtml5book.com.

http://www.apress.com
http://www.apress.com/9781430240389
mailto:scott@learnhtml5book.com

Learning HTML5 and JavaScript for iOS
Copyright © 2012 by Scott Preston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4038-9

ISBN-13 (electronic): 978-1-4302-4039-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Developmental Editor: Gwenan Spearing, Matthew Moodie
Technical Reviewer: Peter Whitmore
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Brent Dubi
Copy Editors: Valerie Greco, Jill Steinberg, James Compton, Kim Wimpsett
Compositor: Mary Sudul
Indexer: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

iii

This book is dedicated to my wife Emily & daughter Lilu.
Thanks for your patience, support and love.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	The Companion Site
	The Real World Example Site
	Downloading the code
	Contacting the Author

	Getting Started
	Your Browser (Mobile Safari)
	Planning Your Project
	Local Environment
	Remote Environment (Hosting)
	Bug and Feature Tracking
	Version Control
	Deployments
	Editor (IDE or Text Editor)
	Site Integration
	Site Maps
	Wireframes
	Project Tracking and Management

	Application Components
	Organizing Your Files
	Subdomain (m.domain.com)
	Subdirectory /m or /mobile
	Files to Organize
	How to link your files
	What about multiple devices?

	Browser Redirection
	Apache Redirection
	JavaScript Redirection

	<meta>
	Screen Size and Viewport
	The Sample App
	Summary

	HTML5 in Short
	What Is HTML5?
	It’s Not XHTML
	It’s Not HTML4 +1
	HTML5 Is Not Just Markup

	HTML5 Support
	HTML5 Overview
	DOCTYPE and UTF-8
	New Attributes
	New Structural Tags
	New Media Tags
	New Form Tags
	New Form Input Types
	Additional Form Element Attributes
	Removed Tags
	Choosing HTML5 Features to Use in Your Apps

	Putting It All Together
	Adding the New Structural Elements to the Homepage
	A Sample Contact Form with Validation

	Chapter Summary

	CSS3 and iOS Styling
	What is CSS3?
	CSS Basics
	Using Your CSS
	The Structure of CSS
	CSS Browser Extensions

	Media Queries and Media Selectors
	orientation
	device-width
	-webkit-min-device-pixel-ratio
	Media Selector Example

	Saving to the Home Screen
	A Short Overview of CSS3
	Animation
	Backgrounds
	Borders
	Fonts
	2D/3D Transforms
	Transitions
	Text Effects

	Styling for iOS
	Styling a Header
	Styling a List
	Creating a Button
	Overflow (iOS5)

	Putting It All Together
	Device and Orientations
	Full Screen Web App

	Chapter Summary

	JavaScript and APIs
	About JavaScript
	Using JavaScript
	Externalizing JavaScript
	Creating Objects and Using Namespaces
	Events
	Dialogs
	Safari JavaScript Console

	Creating an API
	Getting Remote Data with AJAX
	Response Data Matrix
	JSON (JavaScript Object Notation)
	DOM Manipulation
	Creating Elements and Adding Events

	JavaScript Frameworks
	What’s a JavaScript Framework?
	jQuery

	Putting It All Together
	Chapter Summary

	Mobile Frameworks
	Overview of jQuery Mobile
	Working with Pages
	Page Data-Role
	More Data-Roles
	Multipage Templates
	Linking to Other Pages/Files

	Toolbars and Buttons
	Creating Buttons

	Putting It All Together
	Summary

	Usability, Navigation, and Touch
	Usability
	Small Form Factor Tips
	Performance Tips
	Input Tips
	Other Tips

	Site Navigation
	Tree Drill-Down and Headers
	Tabbed Navigation
	Dialogs and Modals

	Navigating for the iPad
	iPad Tips
	Working with a Larger Body Area
	Creating a Header
	Creating a Left Nav
	Creating a Footer

	Touch Interactions
	One-Finger Events
	Multitouch Events
	jQuery Mobile Events

	Putting It All Together
	Option 1
	Option 2
	Option 3

	Chapter Summary

	GPS and Google Maps
	Getting GPS Coordinates
	Using Google Maps
	Geocoding and Markers
	Static Maps
	Interacting with Google Maps via GPS

	Putting It All Together
	Parking
	Near Me
	Business Markers

	Chapter Summary

	Animation and Effects
	CSS Tricks
	Linear Gradients
	Radial Gradients
	Reflections

	CSS Transitions
	Simple Hover Transition
	Simple Animation via Transition
	Flashing Image

	CSS Transforms
	Simple 2D Rotation
	3D Transforms
	3D Flipping

	Key Frame Animations
	Changing a Background
	Moving a Blue Dot

	Adding a Little JavaScript
	Zooming
	Transforming (Rotating)

	Effects with jQuery
	A Few jQuery Effects
	jQuery Mobile Effects

	Putting It All Together
	Chapter Summary

	Canvas
	Canvas Basics
	Canvas Object
	2D Context Object

	Drawing Examples
	Drawing a Rectangle
	Drawing with Lines
	Drawing Circles
	Drawing Text

	Interaction Example
	Image Manipulation Example
	Some Set-Up Stuff
	Grayscale and Thresholding

	Animation Example
	Spinning the Images

	Putting It All Together
	Chapter Summary

	Audio and Video
	Overview of the Audio and Video Tags
	<audio>
	<video>
	<source>
	<embed>

	Audio and Video Examples
	Using the <audio> Tag
	An Example Using <video> and <source>

	Putting It All Together
	Creating the Tour Landing Pages
	Tagging the Audio Tour Spots

	Chapter Summary

	Integrating with Native Services
	Orientation
	Properties
	An Example Using Orientation

	Acceleration
	Properties
	An Example Using Acceleration

	Custom Links
	Putting It All Together
	The Easter Egg
	The Technical Parts
	The AR Code

	Chapter Summary

	Offline Apps and Storage
	The Cache Manifest
	A Manifest Example
	Application Cache

	Cookies
	Local Storage
	Session Storage
	Putting It All Together
	Chapter Summary

	Mobile Testing
	Test-Driving Code
	TDD or Test-Driven Development
	BDD or Behavior-Driven Development
	Unit Testing with Jasmine

	Performance Testing
	The Benchmark Object
	A Short Note on Network Throttling
	A Short Note on Load Testing
	Performance Test Conclusions

	Automated Testing
	A/B Testing
	Putting It All Together
	First, Create the Test Harness
	Second, Create the SPEC
	Third, Create the Validation Function

	Chapter Summary

	Advanced Topics
	Cross-Domain Communication
	Before HTML5
	Document Messaging

	Server-Sent Events
	Web Sockets
	Web Workers
	History Management
	Chapter Summary

	Going Native with PhoneGap
	Installing PhoneGap
	Enhancing Your App
	Geolocation
	Accelerometer
	Vibrate or Beep
	Using the Camera

	PhoneGap API Overview
	Plugins
	A Plugin Example—NativeControls

	Mobile Web App Versus Native App
	Putting It All Together
	The Home Page

	Publishing to the App Store
	Chapter Summary

	Companion Site References
	Overview of Companion Site
	Chapter 1 – Getting Started
	Example 1-1 Redirecting
	Example 1-2 Full Screen Mode
	Example 1-3 Viewport Mode
	Example 1-4 Sample Mobile App Home Page

	Chapter 2 – HTML5 In Short
	Example 2-1 Canvas
	Example 2-2 Video
	Example 2-3 Simple Edit
	Example 2-4 Structural Elements
	Example 2-5 Form Example
	Putting It All Together

	Chapter 3 – CSS3 and iOS Styling
	Example 3-1 CSS Linked
	Example 3-2 CSS Imported
	Example 3-3 Orientation Selection
	Example 3-4 iOS Selector
	Example 3-5 Retina Sample
	Example 3-6 Sample Header
	Example 3-7 Sample Simple Style
	Example 3-8 Sample iPhone Style
	Example 3-9 Sample Buttons
	Example 3-10 iPad Sample
	Putting It All Together

	Chapter 4 – JavaScript and APIs
	Example 4-1 First Class Functions
	Example 4-2 JavaScript Objects
	Example 4-3 Load Events
	Example 4-4 Events Sample
	Example 4-5 Dialogs
	Example 4-6 Console Logs
	Example 4-7 Ajax
	Example 4-8 JSON
	Example 4-9 Ajax Example #1
	Example 4-10 Creating Elements
	Example 4-11 Simple jQuery
	Putting It All Together

	Chapter 5 – Mobile Frameworks
	Example 5-1 Using the iUI
	Example 5-2 Using jQuery Mobile (JQM)
	Example 5-3 JQM Headers
	Example 5-4 JQM Multiple Pages
	Example 5-5 JQM Buttons
	Example 5-6 JQM List
	Putting It All Together

	Chapter 6 – Usability, Navigation, and Touch
	Example 6-1 JQM Drill Down #1
	Example 6-2 JQM Drill Down #2
	Example 6-3 JQM Tabbed Footers
	Example 6-4 JQM Modal Dialogs
	Example 6-5 JQM Events #1
	Example 6-6 JQM Events #2
	Putting It All Together

	Chapter 7 – GPS and Google Maps
	Example 7-1 GPS Basics
	Example 7-2 Google Maps Basics
	Example 7-3 Google Maps Geocoding
	Example 7-4 Static Google Maps
	Example 7-5 Current Location Map
	Putting It All Together

	Chapter 8 – Animation and Effects
	Example 8-1 CSS Tricks
	Example 8-2 Transitions
	Example 8-3 Transforms
	Example 8-4 Animations
	Example 8-5 Adding JavaScript
	Putting It All Together

	Chapter 9 – Canvas
	Example 9-1 Drawing Stuff
	Example 9-2 Interacting
	Example 9-3 Images
	Example 9-4 Animation
	Putting It All Together

	Chapter 10 – Audio and Video
	Example 10-1 Audio Example
	Example 10-2 Video Example
	Putting It All Together

	Chapter 11 – Native Services
	Example 11-1 Orientation
	Example 11-2 Motion
	Example 11-3 Links
	Putting It All Together

	Chapter 12 – Offline Apps and Storage
	Example 12-1 Application Manifest
	Example 12-2 Cookies
	Example 12-3 Local Storage
	Example 12-4 Session Storage
	Putting It All Together

	Chapter 13 – Mobile Testing
	Example 13-1 Test Driven Development
	Example 13-2 Jasmine
	Example 13-3 Benchmarking
	Example 13-4 Network Testing
	Example 13-5 Automated Testing
	Example 13-6 A/B Testing
	Putting It All Together

	Chapter 14 – Advanced Topics
	Example 14-1 Messaging
	Example 14-2 Server Side Events
	Example 14-3 Web Sockets
	Example 14-4 Web Workers
	Example 14-5 History Object
	Putting It All Together

	Chapter 15 – Going Native

	Appendix
	Index
	A
	B
	C
	D, E, F
	G
	H
	I
	J, K, L
	M
	N
	O
	P, Q, R
	S
	U, V
	W, X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

