Everything You Need to Know
to Become an Objective-C Guru

Learn Objective-C
on the Mac

Mark Dalrymple | Scott Knaster

Apress’

Learn Objective-C
on the Mac

Penciled by MARK DALRYMPLE
Inked by SCOTT KNASTER

Apress’

Learn Objective-C on the Mac
Copyright © 2009 by Mark Dalrymple and Scott Knaster

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1815-9
ISBN-13 (electronic): 978-1-4302-1816-6
Printed and bound in the United States of America98765432

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the US
and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without
endorsement from Sun Microsystems, Inc.

Lead Editors: Clay Andres and Dave Mark

Technical Reviewer: Jeff LaMarche

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Denise Santoro Lincoln

Copy Editor: Heather Lang

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor/Artist/Interior Designer: Diana Van Winkle

Proofreader: Greg Teague

Indexer: Toma Mulligan

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm. com,
orvisithttp://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com/
mailto:info@apress.com
http://www.apress.com/
http://www.apress.com/info/bulksales
http://www.apress.com/

For Jerri Shertzer—teacher, mentor, friend
—Mark

Contents at a Glance

About the AUTNOTIS . .. et e e et XV
About the Technical Reviewer XVii
Acknowledgments ...t e Xix
Preface ... o XXi
CHAPTER 1 BeforeYou Start.ovirinii i 1
CHAPTER 2 EXtensionsto C ...t e 5
CHAPTER 3 Introduction to Object-Oriented Programming 19
CHAPTER 4 Inheritanceo e 57
CHAPTER 5 COMPOSIION. Lt e et i e 73
CHAPTER 6 Source FileOrganization ..ot 87
CHAPTER 7 More About Xcode.ooiiiii e 101
CHAPTER 8 A Quick Tour of the FoundationKitcoouet 131
CHAPTER 9 Memory Managementot 161
CHAPTER 10 ObjectInitialization ...ttt 179
CHAPTER T1 Propertiesuuu ittt ettt 201
CHAPTER T2 Calegories . et teiit ettt it i et 217
CHAPTER 13 Protocolsouiiiii e 235
CHAPTER 14 Introductiontothe AppKit.....ccoviiiiiiiiiiiiiiii i 249
CHAPTER 15 FileLoadingand Saving........coviiiiiiiiiiiiiniinnnnnn. 265
CHAPTER 16 Key-ValueCoding......cooinuiiiiiiiiiiii i 277
CHAPTER 17 NSPredicateccouiiriiiii it 295
APPENDIX Coming to Objective-C from Other Languages................ 307

Contents

Aboutthe AUuthors oo e XV
About theTechnical Reviewer e XVii
Acknowledgments ... e e e Xix
PrEfaCE oo XXi

CHAPTER 1 BeforeYouStart........ccoveeeeeeneeccccoscesnossl

Where the Future Was Made Yesterday.......................... 2
What's Coming Up ..ot 2
SUMMIAIY . ettt e et e e e i aaeens 3

CHAPTER 2 Extensionsto C....cooieivveeecneccsscensacecnnsed

The Simplest Objective-CProgramcooviiiiinn.... 5
Building Hello Objective-Ccciiiiiiiiiiin... 5
Deconstructing Hello Objective-C..........ccooviiiiiiiiina.... 8
That Wacky #importThing. ..o, 9
NSLog() and @"strings”coovvveiiiiiiii i, 10
AreYoutheBooleanType?oiuiiriiiii i 13
Mighty BOOLin Action........ccooiiiiiiiiiininninnnn.. 14
The Comparisonltself.........cooiiiiiiiiiiiiiiini . 17
SUMMANY . .o e e 18

CHAPTER 3 Introduction to Object-Oriented Programming19

It's All Indirection ... e 20
Variables and Indirection................ ...t 21
Indirection Through Filenames 24

Using Indirection in Object-Oriented Programming 30
Procedural Programming.............cooiiiiiiiiiina.... 30
Implementing Object Orientation 37

Time Out forTerminologycoeviini it 42

OOP InObjective-C ...t e 43
The @interface Section..........cooviiiiiiii i, 43
The @implementation Section............................ 47
Instantiating Objects........cooiiii i 50
Extending Shapes-Objectcoviiiiiiiiiiine. 52

SUMMANY . .o e i 55

vii

CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Inheritancecccoveeveeeeeeseesseescesseaess 57

Why Use Inheritance? 57
Inheritance Syntax.........c.ooviiiiiiiiiii i 62
Time Out forTerminologyc.coviviiiiii i 64
How Inheritance Works ... 65
Method Dispatching ..o 65
InstanceVariables........... ..o i 67
OverridingMethods ...t 69
[Feel Super! ... e 70
SUMMIAIY . ettt e et e e 72

Compositioncocevvveiieeccecsccncsscanenes 73

What Is Composition?. e 73
CarTalk. .o 74
Customizing for NSLOg(). .. cvvvvvie e 75

AccessorMethods ... 78
SettingtheEngine ...t 80
Settingthe Tires. ... e 81
TrackingChangestoCar.........coiiiiiii ... 82

Extending CarPartscoviiiniiiiiiii i 84

Composition or Inheritance?cooiii i, 85

SUMIMANY . .o e e 86

Source File Organization.............ccc00eve.. 87

Split Interface and Implementation..........................e 87
Making New FilesinXcodecoiiiiiiiiiiiin, 88
Breaking AparttheCar. ..o 91
Using Cross-File Dependencies............c.cooiiiiiiinean... 93
Recompiling on a Need-to-Know Basis.................... 94
Makingthe CarGOcoviiii e 96
Importation and Inheritancel 97
SUMMANY . .o e ieeas 100

More About Xcode.ccveevveeeeeneeneeeeees 101

Changing the Company Namecooiviiininenn.. 102
Using Editor Tipsand Tricks. ..., 103
Writing Your Code with a Little Help from Xcode............. 105

Indentation (Pretty Printing)................coooiaa... 105

Code Completion (Code Sense)..........cvvvveevnn.... 106

CHAPTER 8

CONTENTS

Kissing Parentheses ..., 108
Mass Edits . ..o 108
Navigating AroundinYourCode........................ 113
emacsisNotaMac..........cooiiiiiiiiiiiiiiiienn. 113
Search Your Feelings, Luke. ...t 114
OpenSesameSeed!. ... 115
Bookmarks. ... 115
FocusYourEnergy........ccoiiiiiiiiiii i, 116
The NavigationBarlsOpen..........ccoiiiiiiiiin... 118
Getting Information. ... 121
Research Assistance,Please.............cooiiiiiiin. 121
Is There a Documentor in the House? 122
Debugging ... e 123
Ooongawal ... e e 123
Xcode'sDebugger. ..o 123
Subtle Symbolism........ ... i 124
Let'sDebug!oiiiiii i 124
TakingalLook-See. ... 128
CheatSheet ...t e e 129
SUMMANY . .o e ieeas 130

A Quick Tour of the Foundation Kit 131

Some Useful Types. ..o 132
HomeontheRange..............oiiiiiiiiiiit, 132
GeometriCTYPeS ..o 133

Stringing Us AlONg. ..o 134
BuildThatString ... 134
ClassMethodscoiuiiiii i 134
Size Matters. . ..ot e 135
Comparative Politicscovviiiiii i 136
Insensitivity Training ...t 137
ISItInside?. ..o e 138

Mutabilityooi 139

Collection AQENCY .. v vt 141
NSAITAY. . e 141
Mutable Arrays.o.oe i 146
Enumeration Nation.............. ..o oo it 147
Fast Enumeration ... i 148
NSDiIctionary.cooueiii e 148

Use but DontEXtend.covveineee i, 150

CONTENTS

CHAPTER 9

CHAPTER 10

FamilyValueso e 151
NSNumber. ... 151
NSValue 152
NSNUIL. .. 153

Example: Looking forFiles. ..., 154
Behind the Sign That Says “Beware of the Leopard”...... 158

SUMMIAIY . .ttt et et e 159

Memory Management...........cccceeveeeee.. 161

ObjectLife Cycle. .o e 162
Reference Counting.......ccooviiiiiiiiiiin .. 162
Object Ownership. ... 165
Retaining and Releasing in Accessors 165

Autorelease.t e 167
EveryoneintothePooll il 168
The Eve of Our Destruction..........covvieviniien... 169
Poolsin Action...... ..ot 169

The Rules of Cocoa Memory Management................... 171
Transient Objectsccvviiiiiiii e 172
HangingontoObjects ...t 173
Take OutThose Papersand theTrash.................... 176

SUMMANY . . e aeeas 177

Object Initializationcccvvveeveeeess 179

Allocating Objectscoviii e 179
Initializing Objects.o 180
Writing Initialization Methods 180
What to Do When You're Initializing..................... 182
Isnt That Convenient?.oviei it ee e 183
More PartsIsParts ... 184
NIt TOrTireS .o e e 184
Updatingmain()cooiiiiiiii i 187
CleaningUptheCar......coovviiiiiin i 189
CarCleaning, GCStyleot 193
Making a Convenience Initializer 194
The Designated Initializer ..o, 195
The Subclassing Problem........... ..., 196
Fixing Tire’s Initializers...........cccoiiiiiiiiia.. 198
Adding the AllWeatherRadial Initializer 199
InitializerRules ... e 200

SUMMIAIY . et e et e 200

CHAPTER 11

CHAPTER 12

CHAPTER 13

CONTENTS

Propertiesccociviieriinecccncnncncneess 201

Shrinking PropertyValues.............cooiiiiiiiiiiiiia... 202
Shrinking theInterface............cccooiiiiiiiiiiin..t. 203
Shrinking the Implementation.......................... 204
DotsiIncredible ... 206

Objecting to Propertiesoovuiiiiiiiiii it 208
Appellation Spring ... 212
Read-Only AboutIt........cooiiiii e 214
Alas, Properties Don’t Do Everything.................... 214

SUMMAIY . .ttt e et e s 215

Categories . ..cccvveierececncsccsccncsncnness 217

Creatinga Category. .. o.v v 217
@INterfaceo 218
@implementation..........c.cooiiiiiii i 218
Bad Categories. ..o v e 220
GoOd Categories . oottt e 221

Splitting an Implementation with Categories 221
Using Categoriesinour Project..............covvun... 222

Making Forward References with Categories................. 226
CategoriestotheRescuel. ..., 227

Informal Protocols and Delegation Categories 227
The ITunesFinder Project ..., 228
Delegates and Categoriesc.covviiiiiniinnnnn.. 231
Respondsto Selectors........c.oovvviiiiiiiiiiininnnn.. 232
Other Uses for Selectors.ccovviiiiiiinnan.... 233

SUMMANY . .o e ieeas 234

Protocolscoivvierieereeesecnnenccenness 235

Formal Protocols.o 235
Declaring Protocolscooiiiiiiiiii i 236
AdoptingaProtocol. ..ot 237
Implementinga Protocol...............cooiiiiiiiil, 237

(@1 oo o @o o =T3S 237
CopyingEngines.......ouiiiiiiiiiii i 238
Copying Tires .. 240
Copyingthe Car.....oiiii i 242
Protocolsand DataTypes.........ovvuinininininennnnnn. 245

Objective-C 2.0 GOOdiI€S . ..vvvviii i iiaeans 246

SUMMIAIY . .ttt et e 247

CONTENTS

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

Introduction to the AppKit.................... 249

Making the Project. ...t 249
Making the AppController @interface 252
Interface Builder.........cooiiiiini i 253
Laying Outthe Userlinterfacecoiviiiiiinin, 256
Making Connections.ooviiiiii i 258

Hook UptheOQutlets ..., 258

Hook Upthe Actionsccoviiiiii i 260
AppController Implementation...................coooiiiat.. 262
SUMMIAIY . .ttt e et e 264

File Loadingand Savingc.ce0000v0ee.. 265

Property Lists. ...t e 265
NSDate ...t e 266
NSData . ..ot e 266
Writing and Reading Property Lists 267

EncodingObjects.coviiiii i 269

SUMMIAIY . .ttt e et et 276

Key-ValueCodingcccocvvvevnnecnenccnnees 277

AStarter Project ... e e 277
Introducing KVC . ..o e e 280
APath! APathl. ... e 281
Aggregated Assault.........ccouiiiiiiiii i e 282

Pt StOp . e 284

Smooth Operatorcoooiiiiii i 288
Life'saBatch.o e 290
TheNilsAre Aliveo e 292
HandlingtheUnhandled.......... i, 292
SUMMANY . . e e aeens 294

NSPredicate......ccoievveereecsecnccnccnnaees 295

CreatingaPredicateccoiiiiiiiiiii i 296
Evaluate the Predicate.............cooiiiiiiiiiiiit, 297
Fuel Filters. . ..o e e 298
Format Specifierscouviv i 299
Hello Operator, Give Me Number9coouea... 301
Comparison and Logical Operators 301

Array Operators. ..o it 302

APPENDIX

CONTENTS

SELF Sufficient.ottt e 304
String Operations. ..o e e 305
Like, Fer Sure ... e 306
That'sAll, Folks. 306

Coming to Objective-C from Other Languages .. 307

Coming from C ..o e e e 308
Coming from G oo e 309

C++ vtable vs. Objective-C Dynamic Dispatch........... 309

Objective-CH+ ..o e e e 312
Coming fromlJavac.oiiiiiii i 314
Coming fromBASIC. ... e 316
Coming from Scripting Languagesccoevivinn... 316
SUMMIAIY . .ttt et ettt e 317

About the Authors

Mark Dalrymple is a longtime Mac and Unix programmer who

has worked on cross-platform toolkits, Internet publishing tools,
high-performance web servers, and end-user desktop applications.
He's also the principal author of Advanced Mac OS X Programming
(Big Nerd Ranch 2005). In his spare time, he plays trombone and
bassoon and makes balloon animals.

Scott Knaster is a legendary (that is, very old) Mac programmer and
author of such best-selling books as Take Control of Switching to the
Mac (TidBITS Publishing Inc. 2008) and Macintosh Programming
Secrets (Addison-Wesley 1992). His book How to Write Macintosh
Software (Addison-Wesley 1992) was required reading for Mac
programmers for more than a decade. He lives in a house with

other people and a dog.

XV

About the
Technical Reviewer

Jeff LaMarche is a longtime Mac developer and certified Apple iPhone
developer with more than 20 years of programming experience. He's
written on Cocoa and Objective-C for MacTech Magazine, as well as
articles for Apple’s Developer Technical Services web site. He has
experience working in enterprise software as both a developer for
PeopleSoft, starting in the late 1990s, and later as an independent
consultant.

XVii

Acknowledgments

If you've ever read a technical book, you've seen the acknowledgments and understand that
even though there are (in this case) two names on the front cover, a lot of other folks behind
the scenes make the whole process work.

In particular, we'd like to single out Denise Santoro Lincoln, who was our primary wrangler.
We gave her “polenta” of problems, which she handled with taste, grace, and humor. Thanks
also to Clay Andres and Jeff LaMarche, who helped make sure we didn’t tell you any lies.
Zillions of thanks to Laura Esterman, our production editor, for turning mere piles of text into
this awesome tome that you're reading and to Heather Lang for warping (temporarily, we
hope) her mind sufficiently to think like we do and still perform a masterful copy editing job.

Mark would like to thank Aaron Hillegass for introducing him to all of this Objective-C and
Cocoa stuff many moons ago and for introducing him to Scott and Dave. Without Aaron,
none of this would have happened. Also, Mark gives a shout out to Greg Miller for introduc-
ing him to the coolness of KVC and NSPred1icate. And Scott just wants to thank Mark for
doing all the real work.

Finally, impossibly enormous thanks go out to Dave Mark. Without his vision, dogged persis-
tence, and awesome nagging, this book would not have seen the light of day.

XiX

Preface

One of the dangers of being a programmer for a long time is that you can lose that spark of
delight that got you interested in programming the first place. Luckily, shiny new technolo-
gies come along all the time that can reignite that interest, and Mac OS X is chock full of
shiny stuff.

Objective-C is a programming language that blends C's speed and ubiquity with an elegant
object-oriented environment and provides a buzzword-laden cornucopia of programming

good times. Objective-C is the gateway drug for many of Apple’s niftiest technologies, such
as the Cocoa toolkit and the iPhone SDK. Once you've mastered the Objective-C language,

you're well on your way to conquering the rest of the platform. And from there, you can try

to take over the world.

XXi

Chapter

Hello

elcome to Learn Objective-C on the Mac! This book is designed to teach you
the basics of the Objective-C language. Objective-C is a superset of C and
is the language used by many (if not most) applications that have a true
Mac OS X look and feel.

This book teaches you the Objective-C language and introduces you to its
companion, Apple’s Cocoa toolkit. Cocoa is written in Objective-C and contains
all the elements of the Mac OS X user interface, plus a whole lot more. Once
you learn Objective-C in this book, you'll be ready to dive into Cocoa with

a full-blown project or another book such as Learn Cocoa on the Mac or Begin-
ning iPhone Development, both by Dave Mark and Jeff LaMarche (Apress 2009).

In this chapter, we'll let you know the basic information you need before you get
started with this book. We'll also serve up a bit of history about Objective-C and
give you a thumbnail sketch of what's to come in future chapters.

Before You Start

Before you read this book, you should have some experience with a C-like
programming language such as C++, Java, or venerable C itself. Whatever the
language, you should feel comfortable with its basic principles. You should
know what variables and functions are and understand how to control

your program'’s flow using conditionals and loops. Our focus is the features
Objective-C adds to its base language, C, along with some goodies chosen
from Apple’s Cocoa toolkit.

Are you coming to Objective-C from a non-C language? You'll still be able to
follow along, but you might want to take a look at Appendix A or check out
Learn C on the Mac by Dave Mark (Apress 2009).

CHAPTER 1: Hello

Where the Future Was Made Yesterday

Cocoa and Objective-C are at the heart of Apple’s Mac OS X operating system. Although Mac
OS Xiis relatively new, Objective-C and Cocoa are much older. Brad Cox invented Objective-C
in the early 1980s to meld the popular and portable C language with the elegant Smalltalk
language. In 1985, Steve Jobs founded NeXT, Inc., to create powerful, affordable workstations.
NeXT chose Unix as its operating system and created NextSTEP, a powerful user interface
toolkit developed in Objective-C. Despite its features and a small, loyal following, NextSTEP
achieved little commercial success.

When Apple acquired NeXT in 1996 (or was it the other way around?), NextSTEP was
renamed Cocoa and brought to the wider audience of Macintosh programmers. Apple gives
away its development tools—including Cocoa—for free, so any Mac programmer can take
advantage of them. All you need is a bit of programming experience, basic knowledge of
Objective-C, and the desire to dig in and learn stuff.

You might wonder, “If Objective-C and Cocoa were invented in the ‘80s—in the days of Alf and
The A-Team, not to mention stuffy old Unix—aren’t they old and moldy by now?” Absolutely
not! Objective-C and Cocoa are the result of years of effort by a team of excellent programmers,
and they have been continually updated and enhanced. Over time, Objective-C and Cocoa
have evolved into an incredibly elegant and powerful set of tools. Objective-C is also the

key to writing applications for the iPhone. So now, twenty-some years after NeXT adopted
Objective-C, all the cool kids are using it.

What’s Coming Up

Objective-C is a superset of C. Objective-C begins with C, and then adds a couple of small
but significant additions to the language. If you've ever looked at C++ or Java, you may be
surprised at how small Objective-C really is. We'll cover Objective-C’s additions to C in detail
in this book’s chapters:

B Chapter 2, “Extensions to C,” focuses on the basic features that Objective-C introduces.

® In Chapter 3, “An Introduction to Object-Oriented Programming,” we kick off the
learning by showing you the basics of object-oriented programming.

B Chapter 4, “Inheritance,” describes how to create classes that gain the features of
their parent classes.

B Chapter 5, “Composition,” discusses techniques for combining objects so they can
work together.

B Chapter 6, “Source File Organization,” presents real-world strategies for creating your
program’s sources.

CHAPTER 1: Hello

B Chapter 7, “More about Xcode,” shows you some shortcuts and power-user features
to help you get the most out of your programming day.

® We take a brief respite from Objective-C in Chapter 8, “A Quick Tour of the Founda-
tion Kit,” to impress you with some of Cocoa'’s cool features using one of its two
primary frameworks.

B You'll spend a lot of time in your Cocoa applications dealing in Chapter 9, “Memory
Management” (sorry about that).

B Chapter 10, “Object Initialization,” is all about what happens when objects are born.

B Chapter 11, “Properties,” gives you the lowdown on Objective-C's new dot notation
and an easier way to make object accessors.

B Chapter 12, “Categories,” describes the supercool Objective-C feature that lets you
add your own methods to existing classes—even those you didn’t write.

B Chapter 13, “Protocols,” tells about a form of inheritance in Objective-C that allows
classes to implement packaged sets of features.

B Chapter 14, “Introduction to the Application Kit,” gives you a taste of the gorgeous
applications you can develop in Cocoa using its other primary framework.

B Chapter 15, “File Loading and Saving,” shows you how to save and retrieve your data.
B Chapter 16, “Key-Value Coding,” gives you ways to deal with your data indirectly.
B And finally, in Chapter 17, “NSPredicate,” we show you how to slice and dice your data.

If you're coming from another language like Java or C++, or from another platform like Win-
dows or Linux, you may want to check out Appendix A, “Coming to Objective-C from Other
Languages,” which points out some of the mental hurdles you'll need to jump to embrace
Objective-C.

Summary

Mac OS X programs are written in Objective-C, using technology from way back in the 1980s
that has matured into a powerful set of tools. In this book, we'll start by assuming you know
something about C programming and go from there.

We hope you enjoy the ride!

Chapter

Extensions to C

bjective-C is nothing more than the C language with some extra features
drizzled on top—it’s delicious! In this chapter, we'll cover some of those key
extras as we take you through building your first Objective-C program.

The Simplest Objective-C Program

You've probably seen the C version of the classic Hello World program, which
prints out the text “Hello, world!” or a similar pithy remark. Hello World is usu-
ally the first program that neophyte C programmers learn. We don’t want to
buck tradition, so we're going to write a similar program here called Hello
Objective-C.

Building Hello Objective-C

As you work through this book, we're assuming you have Apple’s Xcode tools
installed. If you don't already have Xcode, or if you've never used it before, an
excellent section in Chapter 2 of Dave Mark’s Learn C on the Mac (Apress 2009)
walks you through the steps of acquiring, installing, and creating programs
with Xcode.

In this section, we'll step through the process of using Xcode to create your
first Objective-C project. If you are already familiar with Xcode, feel free to
skip ahead; you won't hurt our feelings. Before you go, be sure to expand the
Learn ObjC Projects archive from this book’s archive (which you can download
from the Source Code/Download page of the Apress web site). This project is
located in the 02.07 - Hello Objective-C folder.

To create the project, start by launching Xcode. You can find the Xcode appli-
cation in /Developer/Applications. We put the Xcode icon in the Dock for easy
access. You might want to do that too.

CHAPTER 2: Extensions to C

Once Xcode finishes launching, choose New Project from the File menu. Xcode shows you

a list of the various kinds of projects it can create. Use your focus to ignore most of the intrigu-
ing project types there, and choose Command Line Utility on the left-hand side of the window
and Foundation Tool on the right-hand side, as shown in Figure 2-1. Click the Choose button.

Choose a template for your new project:

B B

ﬂ Mac O5 X C++ Tool CoreFoundation CoreServices
Tool Tool

Application

Audio Units
Automator Action W ’&,
Bundle =% -

Foundation Tool Standard Tool

Dynamic Library
Framework

Java r i
Kernel Extension Description This project builds a command-line tool that links
Standard Apple Plug-in against the Foundation library.

Static Library

Other ¥

(Cancel) E‘ﬁwﬂa

Figure 2-1. Making a new foundation tool

Xcode drops a sheet and asks you to name the project. You can choose any name you want,
but as you can see in Figure 2-2, we called it Hello Objective-C. We're putting it into one of
our Projects directories here to keep things organized, but you can put it anywhere you want.

After you click Save, Xcode shows you its main window, called the project window (see
Figure 2-3). This window displays the pieces that compose your project along with an edit-
ing pane. The highlighted file, Hello Objective-C.m, is the source file that contains the code
for Hello Objective-C.

Hello Objective-C.m contains boilerplate code, kindly provided by Xcode for each new proj-
ect. We can make our Hello Objective-C application a little simpler than the sample Xcode
supplies. Delete everything in Hello Objective-C.m and replace it with this code:

#import <Foundation/Foundation.h>
int main (int argc, const char *argv[])
{

NSLog (@"Hello, Objective-C!");

return (0);

} // main

Save As: Hello Objective-C

= /M) | @ Learn Objective-C

n (Q search

S

) E

K= ‘Foundation.framework
» [Source M@ Hello Objective-C
»] Documentation || Hello Objective-C.1
» [External Frameworks anc _ﬁ ctive-C.m
» [Products | W[Helio Objective-C_Prefix.nch
» @ Targets |
» <4 Executables !
» /® Errors and Warnings 4 » |4 Hello Objective-C.m:1 4 <No selected symbol: 5, |™, [C, | #,| =
w Q Find Results #import Foundat ton/Foundat ion.hs I.
»L[f Bookmarks i int main {int argc, const char * arge[]) {
» Esom NShutorelensePonl * pool = [[NSAutoreleasePool alloc] init];
@ Project Symbols) I
» [Implementation Files i “'3"31_" cods hare..;
ﬁum Flies NSLoa{@"Hello, World!");
k [pool drain];
return @;
}

Figure 2-3. XCode’s main window

If you don’t understand all the code right now, do
program in excruciating, line-by-line detail soon.

Source code is no fun if you can’t turn it into a runn

by clicking the Build and Go button or pressing $R.
Xcode compiles and links your program and then runs it. Open the Xcode console window

|

n't worry about it. We'll go through this

ing program. Build and run the program

If there aren’t any nasty syntax errors,

CHAPTER 2: Extensions to C

(by selecting Console from the Run menu or pressing 384*R), which displays your program’s
output, as shown in Figure 2-4.

e00 [Hello Objective-C - Debugger Console =)

[Session started at Z008-07-18 16:21:51 -0400.]
2008-07-18 16:21:51.999 Hello Objective-C[16826:10b] Hello, Objective-C!

The Debugger has exited with status 0.

Debuaging of "Hello Objective-C" ended normally. B Succeeded 4

Figure 2-4. Running Hello Objective-C

And there you have it: your first working Objective-C program. Congratulations! Let’s pull it
apart and see how it works.

Deconstructing Hello Objective-C

Here, again, are the contents of Hello Objective-C.m:

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{
NSLog (@"Hello, Objective-C!");
return (0);

} // main

Xcode uses the .m extension to indicate a file that holds Objective-C code and will be pro-
cessed by the Objective-C compiler. File names ending in .c are handled by the C compiler,
and .cpp files are the province of the C++ compiler. (In Xcode, all this compiling is handled
by the GNU Compiler Collection [GCC], a single compiler that understands all three varia-
tions of the language.)

The main.m file contains two lines of code that should be familiar to you already if you know
plain C: the declaration of main() and the return (0) statement at the end. Remember that
Objective-C really is C at heart, and the syntax for declaring main() and returning a value

is the same as in C. The rest of the code looks slightly different from regular C. For example,
what is that wacky #import thing? To find out, read on!

CHAPTER 2: Extensions to C

OTE

The .m extension originally stood for “messages” when Objective-C was first introduced, referring to a
central feature of Objective-C that we’ll talk about in future chapters. Nowadays, we just call them
dot-mfiles.

That Wacky #import Thing

Just like C, Objective-C uses header files to hold the declarations of elements such as
structs, symbolic constants, and function prototypes. In C, you use the #include statement
to inform the compiler that it should consult a header file for some definitions. You can

use #include in Objective-C programs for the same purpose, but you probably never will.
Instead, you'll use #import, like this:

#import <Foundation/Foundation.h>

#import is a feature provided by the GCC compiler, which is what Xcode uses when you're
compiling Objective-C, C, and C++ programs. #import guarantees that a header file will be
included only once, no matter how many times the #import directive is actually seen for
that file.

OTE

In C, programmers typically use a scheme based on the #1 fdef directive to avoid the situation where
one file includes a second file, which then, recursively, includes the first.

In Objective-C, programmers use #import to accomplish the same thing.

The #import <Foundation/Foundation.h> statement tells the compiler to look at the
Foundation.h header file in the Foundation framework.

What'’s a framework? We're glad you asked. A framework is a collection of parts—header
files, libraries, images, sounds, and more—collected together into a single unit. Apple ships
technologies such as Cocoa, Carbon, QuickTime, and OpenGL as sets of frameworks. Cocoa
consists of a pair of frameworks, Foundation and Application Kit (also known as AppKit),
along with a suite of supporting frameworks, including Core Animation and Core Image,
which add all sorts of cool stuff to Cocoa.

The Foundation framework handles features found in the layers beneath the user interface,
such as data structures and communication mechanisms. All the programs in this book are
based on the Foundation framework.

CHAPTER 2: Extensions to C

OTE

Once you finish this book, your next step along the road to becoming a Cocoa guru is to master Cocoa’s

Application Kit, which contains Cocoa’s high-level features: user interface elements, printing, color and
sound management, AppleScript support, and so on. To find out more, check out Learn Cocoa on the Mac by
Dave Mark and Jeff LaMarche (Apress 2009).

Each framework is a significant collection of technology, often containing dozens or even
hundreds of header files. Each framework has a master header file that includes all the
framework’s individual header files. By using #import on the master header file, you have
access to all the framework’s features.

The header files for the Foundation framework take up nearly a megabyte of disk storage,
and contain more than 14,000 lines of code, spread across over a hundred files. When you
include the master header file with #import <Foundation/Foundation.h>, you get that
whole vast collection. You might think wading through all that text for every file would take
the compiler a lot of time, but Xcode is smart: it speeds up the task by using precompiled
headers, a compressed and digested form of the header that'’s loaded quickly when you
#import it.

If you're curious about which headers are included with the Foundation framework, you
can peek inside its Headers directory (/System/Library/Frameworks/Foundation.framework/
Headers/). You won't break anything if you browse the files in there; just don’t remove or
change anything.

NSLog() and @"strings”

Now that we have used #import on the master header file for the Foundation framework,
you're ready to write code that takes advantage of some Cocoa features. The first (and only)
real line of code in Hello Objective-C uses the NSLog () function, like so:

NSLog (@"Hello, Objective-C!");

This prints “Hello, Objective-C!" to the console. If you've used C at all, you have undoubtedly
encountered printf()in your travels. NSLog () is a Cocoa function that works very much like
printf().

Just like printf (), NSLog()takes a string as its first argument. This string can contain format
specifiers (such as %d), and the function takes additional parameters that match the format
specifiers. printf () plugs these extra parameters into the string before it gets printed.

CHAPTER 2: Extensions to C

As we've said before, Objective-C is just C with a little bit of special sauce, so you're wel-
come to use printf() instead of NSLog() if you want. We recommend NSLog (), however,
because it adds features such as time and date stamps, as well as automatically appending
the newline (‘\n’) character for you.

You might be thinking that NSLog () is kind of a strange name for a function. What is that
“NS” doing there? It turns out that Cocoa prefixes all its function, constant, and type names
with “NS”. This prefix tells you the function comes from Cocoa instead of some other toolkit.

The prefix helps prevent name collisions, big problems that result when the same identi-
fieris used for two different things. If Cocoa had named this function Log (), there’s a good
chance the name would clash with a Log () function created by some innocent programmer
somewhere. When a program containing Log () is built with Cocoa included, Xcode com-
plains that Log () is defined multiple times, and sadness results.

Now that you have an idea why a prefix is a good idea, you might wonder about the specific
choice: why “NS” instead of “Cocoa,” for example? Well, the “NS” prefix dates back from the
time when the toolkit was called NextSTEP and was the product of NeXT Software (formerly
NeXT, Inc.), which was acquired by Apple in 1996. Rather than break compatibility with code
already written for NextSTEP, Apple just continued to use the “NS” prefix. It's a historical curi-
osity now, like your appendix.

Cocoa has staked its claim on the NS prefix, so obviously, you should not prefix any of your
own variables or function names with “NS”. If you do, you will confuse the readers of your
code, making them think your stuff actually belongs to Cocoa. Also, your code might break
in the future if Apple happens to add a function to Cocoa with the same name as yours.
There is no centralized prefix registry, so you can pick your own prefix. Many people prefix
names with their initials or company names. To make our examples a little simpler, we won't
use a prefix for the code in this book.

Let’s take another look at that NSLog () statement:

NSLog (@"Hello, Objective-C!");

Did you notice the at sign before the string? It's not a typo that made it past our vigilant edi-
tors. The at sign is one of the features that Objective-C adds to standard C. A string in double
quotes preceded by an at sign means that the quoted string should be treated as a Cocoa
NSString element.

So what's an NSString element? Peel the “NS” prefix off the name and you see a familiar term:
“String”. You already know that a string is a sequence of characters, usually human-readable, so
you can probably guess (correctly) that an NSString is a sequence of characters in Cocoa.

CHAPTER 2: Extensions to C

NSString elements have a huge number of features packed into them and are used by
Cocoa any time a string is needed. Here are just a few of the things an NSString can do:

B Tell youits length
B Compare itself to another string
m Convert itself to an integer or floating-point value

That'’s a whole lot more than you can do with C-style strings. We'll be using and exploring
NSString elements much more in Chapter 8.

WATCH THOSE STRINGS

One mistake that'’s easy to make is to pass a C-style string to NSLog () instead of one of the fancy
NSString @"strings" elements. If you do this, the compiler will give you a warning:

main.m:46: warning: passing arg 1 of 'NSLog’ from
incompatible pointer type

If you run this program, it might crash. To catch problems like this, you can tell Xcode to always treat warn-
ings as errors. To do that, select the top item in the Xcode Groups & Files list, choose File » Get Info, select
the Build tab, type error into the search field, and check the Treat Warnings as Errors checkbox, as shown in
the following image. Also make sure that the Configuration pop-up menu at the top says All Configurations.

—[General | Buwild | Configurations Comments]-

Configuration: [All Configurations l-q Q- error 0)

Show: [All Settings kﬁq

Setting Value
|_¥Cade Signing
Code Signing ldentity

|_¥Linking

Display Mangled Names =
|_¥GCC 4.0 - Code Generation

No Common Blocks =]

|_YGEC 4.0 - Warnings
Treat Missing Function Prototypes as Errors _|:|
Treat Monconformant Code Errors as War... | [

Treat Warnings as Errors _
Based On: | Nothing) @

CHAPTER 2: Extensions to C

Here’s another cool fact about NSString: the name itself highlights one of the nice features of
Cocoa. Most Cocoa elements are named in a very straightforward manner, striving to describe
the features they implement. For instance, NSArray provides arrays; NSDateFormatter helps
you format dates in different ways; NSThread gives you tools for multithreaded programming;
and NSSpeechSynthesizer lets you hear speech.

Now, we'll get back to stepping through our little program. The last line of the program is
the return statement that ends the execution of main() and finishes the program:

return (0);

The zero value returned says that our program completed successfully. This is just the way
return statements work in C.

Congratulations, again! You've just written, compiled, run, and dissected your first
Objective-C program.

Are You the Boolean Type?

Many languages have a Boolean type, which is, of course, a fancy term for variables that
store true and false values. Objective-C is no exception.

C has a Boolean data type, boo1, which can take on the values true and false. Objective-C
provides a similar type, BOOL, which can have the values YES and NO. Objective-C’s BOOL type,
incidentally, predates C’s boo1 type by over a decade. The two different Boolean types can
coexist in the same program, but when you're writing Cocoa code, you'll be using BOOL.

OTE

BOOL in Objective-Cis actually just a type definition (typedef) for the signed character type
(signed char), which uses 8 bits of storage. YES is defined as 1 and NO as O (using #def1ine).

Objective-Cdoesn’t treat BOOL as a true Boolean type that can hold only YES or NO values. The com-
piler considers BOOL to be an 8-bit number, and the values of YES and NO are just a convention. This
causes a subtle gotcha: if you inadvertently assign an integer value that’s more than 1 byte long, such as
ashortoranintvalue, toa BOOL variable, only the lowest byte is used for the value of the BOOL. If
that byte happens to be zero (as with 8960, which in hexadecimal is 0x2300), the BOOL value will be
zero, the NO value.

CHAPTER 2: Extensions to C

Mighty BOOL in Action

To show mighty BOOL in action, we move on to our next project, 02.02 - BOOL Party, which
compares pairs of integers to see if they're different. Aside from main (), the program defines
two functions. The first, areIntsDifferent (), takes two integer values and returns a BOOL:
YES if the integers are different and NO if they are the same. A second function, boo1String(),
takes a BOOL parameter and returns the string @"YES" if the parameter is YES and @"NO" if

the parameter is NO. This is a handy function to have around when you want to print out

a human-readable representation of BOOL values. main() uses these two functions to
compare integers and print out the results.

Creating the project for BOOL Party is exactly the same process as making the project for
Hello Objective-C:

1. Launch Xcode, if it's not already running.

2. Select New Project from the File menu.

3. Choose Command Line Utility on the left and Foundation Tool on the right.
4. Click Choose.

5. Type BOOL Party as the Project Name, and click Save.

Edit BOOL Party.m to make it look like this:

#import <Foundation/Foundation.h>

// returns NO if the two integers have the same
// value, YES otherwise

BOOL arelIntsDifferent (int thingl, int thing2)
{
if (thingl == thing2) {
return (NO);
} else {
return (YES);
}

} // areIntsDifferent

// given a NO value, return the human-readable
// string "NO". Otherwise return "YES™

NSString *boolString (BOOL yesNo)
{
if (yesNo == NO) {
return (@"NO");

CHAPTER 2: Extensions to C

} else {
return (@Q"YES");
}

} // boolString
int main (int argc, const char *argv[])
{

BOOL areTheyDifferent;

areTheyDifferent = areIntsDifferent (5, 5);

NSLog (@"are %d and %d different? %@",
5, 5, boolString(areTheyDifferent));

areTheyDifferent = areIntsDifferent (23, 42);

NSLog (@"are %d and %d different? %@",
23, 42, boolString(areTheyDifferent));

return (0);
} // main

Build and run your program. You'll need to bring up the Console window to see the output,
by choosing Console from the Run menu, or using the keyboard shortcut 384*R. In the Run
Debugger Console window, you should see output like the following:

2008-07-20 16:47:09.528 02 BOOL Party[16991:10b] are 5 and 5 different? NO
2008-07-20 16:47:09.542 02 BOOL Party[16991:10b] are 23 and 42 different?
YES

The Debugger has exited with status O.

Once again, let’s pull this program apart, function by function, and see what'’s going on. The
first function in our tour is areIntsDifferent():

BOOL areIntsDifferent (int thingl, int thing2)
{
if (thingl == thing2) {
return (NO);
} else {
return (YES);
3

} // arelntsDifferent

CHAPTER 2: Extensions to C

The areIntsDifferent() function that takes two integer parameters and returns a BOOL
value. The syntax should be familiar to you from your C experience. Here you can see thingl
being compared to thing2. If they're the same, NO is returned (since they're not different). If
they're different, YES is returned. That'’s pretty straightforward, isn't it?

WON'T GET BOOLED AGAIN

Experienced C programmers might be tempted to write the areIntsDi fferent () function as a single
statement:

BOOL areIntsDifferent_faulty (int thingl, int thing2)

{
return (thingl - thing2);
} // arelntsDifferent_faulty

Theyd do so operating under the assumption that a nonzero value is the same as YES. But that’s not the
case. Yes, this function returns a value, as far as Cis concerned, that is true or false, but callers of functions
returning BOOL will expect either YES or NO to be returned. If a programmer tries to use this function as
follows, it will fail, since 23 minus 5 is 18:

if (arelntsDifferent_faulty(23, 5) == YES) {
// ...
ks

While the preceding function may be a true value in G, it is not equal to YES (a value of 1) in Objective-C.

It's a good idea never to compare a BOOL value directly to YES, because too-clever programmers sometimes
pull stunts similarto areIntsDifferent_faulty().Instead, write the preceding i f statement
like this:

if (arelntsDifferent_faulty(5, 23)) {
/] ...
h

Comparing directly to NO is always safe, since falsehood in Chas a single value: zero.

The second function, boo1String(), maps a numeric BOOL value to a string that’s readable
by mere humans:

NSString *boolString (BOOL yesNo)
{
if (yesNo == NO) {
return (@"NO");
} else {
return (Q@"YES");
h

} // boolString

CHAPTER 2: Extensionsto C

The i f statement in the middle of the function should come as no surprise. It just compares
yesNo to the constant NO, and returns @"'NO" if they match. Otherwise, yesNo must be a true
value, so it returns @"YES".

Notice that the return type of boo1String() is a pointer to an NSString. This means the
function returns one of the fancy Cocoa strings that you saw earlier when you first met
NSLog(Q). If you look at the return statements, you'll see the at sign in front of the returned
values, a dead giveaway that they’re NSString values.

main() is the final function. After the preliminaries of declaring the return type and argu-
ments for main(), there is a local BOOL variable:

int main (int argc, const char *argv[])
{
BOOL areTheyDifferent;

The areTheyDi fferent variable holds onto the YES or NO value returned by
areIntsDifferent().We could simply use the function’s BOOL return value directly in

an 1if statement, but there’s no harm in adding an extra variable like this to make the code
easier to read. Deeply nested constructs are often confusing and hard to understand, and
they’re a good place for bugs to hide.

The Comparison Itself

The next two lines of code compare a couple of integers with areIntsDifferent() and
store the return value into the areTheyD1ifferent variable.NSLog() prints out the numeric
values and the human-readable string returned by boo1String():

areTheyDifferent = arelntsDifferent (5, 5);

NSLog (@"are %d and %d different? %@",
5, 5, boolString(areTheyDifferent));

As you saw earlier, NSLog () is basically a Cocoa-flavored printf () function that takes a for-
mat string and uses the additional parameters for values to plug in the format specifiers. You
can see that the two fives will replace the two %d format placeholders in our call to NSLog ().

At the end of the string we're giving to NSLog (), you see another at sign. This time, it’s %@.
What's that all about? boo1String() returns an NSString pointer. printf() has noidea
how to work with an NSString, so there is no format specifier we can use. The makers of
NSLog () added the %@ format specifier to instruct NSLog () to take the appropriate argu-
ment, treat it as an NSString, use the characters from that string, and send it out to the
console.

CHAPTER 2: Extensions to C

OTE

We haven't officially introduced you to objects yet, but here’s a sneak preview: when you print the values
of arbitrary objects with NSLog (), you'll use the %@ format specification. When you use this specifier,
the object supplies its own NSLog () format via a method named description.Thedescription
method for NSStr1ing simply prints the string’s characters.

The next two lines are very similar to those you just saw:

areTheyDifferent = areIntsDifferent (23, 42);

NSLog (@"are %d and %d different? %@",
23, 42, boolString(areTheyDifferent));

The function compares the values 23 and 42. This time, because they're different,
arelIntsDifferent() returns YES, and the user sees text stating the monumental fact
that 23 and 42 are different values.

Here’s the final return statement, which wraps up our BOOL Party:

return (0);
} // main

In this program, you saw Objective-C’s BOOL type, and the constants YES and NO for indicat-
ing true and false values. You can use BOOL in the same way you use types such as int and
float: as variables, parameters to functions, and return values from functions.

Summary

In this chapter, you wrote your first two Objective-C programs, and it was fun! You also met
some of Objective-C’s extensions to the language, such as #import, which tells the compiler to
bring in header files and to do so only once. You learned about NSStr1ing literals, those strings
preceded by an at sign, such as @"he110". You used the important and versatile NSLog (),

a function Cocoa provides for writing text to the console, and the NSLog () special format spec-
ifier, %@, that lets you plug NSStr1ing values into NSLog () output. You also gained the secret
knowledge that when you see an at sign in code, you know you're looking at an Objective-C
extension to the Clanguage.

Stay tuned for our next chapter, in which we'll enter the mysterious world of object-oriented
programming.

Chapter

Introduction to
Object-Oriented
Programming

f you've been using and programming computers for any length of time,
you've probably heard the term “object-oriented programming” more than
once. Object-oriented programming, frequently shortened to its initials,
OOP, is a programming technique originally developed for writing simulation
programs. OOP soon caught on with developers of other kinds of software,
such as those involving graphical user interfaces. Before long, “OOP” became
a major industry buzzword. It promised to be the magical silver bullet that
would make programming simple and joyous.

Of course, nothing can live up to that kind of hype. Like most pursuits, OOP
requires study and practice to gain proficiency, but it truly does make some
kinds of programming tasks easier and, in some cases, even fun. In this book,
we'll be talking about OOP a lot, mainly because Cocoa is based on OOP con-
cepts, and Objective-C is a language that is designed to be object oriented.

So what is OOP? OOP is a way of constructing software composed of objects.
Objects are like little machines living inside your computer and talking to each
other in order to get work done. In this chapter, we'll look at some basic OOP
concepts. After that, we'll examine the style of programming that leads to
OORP, describing the motivation behind some OOP features. We'll wrap up
with a thorough description of the mechanics of OOP.

CHAPTER 3: Introduction to Object-Oriented Programming

OTE

Like many “new” technologies, the roots of 00P stretch way back into the mists of time. 00P evolved
from Simula in the 1960s, Smalltalk in the 1970s, Clascal in the 1980s, and other related languages.

Modern languages such as (++, Java, Python, and of course, Objective-C draw inspiration from these
older languages.

As we dive into OOP, stick a Babel fish in your ear, and be prepared to encounter some
strange terminology along the way. OOP comes with a lot of fancy-sounding lingo that
makes it seem more mysterious and difficult than it actually is. You might even think that
computer scientists create long, impressive-sounding words to show everyone how smart
they are, but of course, they don't all do that. Well, don't worry. We'll explain each term as we
encounter it.

Before we get into OOP itself, let’s take a look at a key concept of OOP: indirection.

It’s All Indirection

An old saying in programming goes something like this, “There is no problem in computer
science that can’t be solved by adding another level of indirection.” Indirection is a fancy
word with a simple meaning—instead of using a value directly in your code, use a pointer to
the value. Here’s a real-word example: you might not know the phone number of your favor-
ite pizza place, but you know that you can look in the phone book to find it. Using the phone
book like this is a form of indirection.

Indirection can also mean that you ask another person to do something rather than doing it
yourself. Let’s say you have a box of books to return to your friend Andrew who lives across
town. You know that your next-door neighbor is going to visit Andrew tonight. Rather than
driving across town, dropping off the books, and driving back, you ask your friendly neigh-
bor to deliver the box. This is another kind of indirection: you have someone else do the
work instead of doing it yourself.

In programming, you can take indirection to multiple levels, writing code that consults other
code, which accesses yet another level of code. You've probably had the experience of calling

a technical support line. You explain your problem to the support person, who then directs you
to the specific department that can handle your problem. The person there then directs you to
the second-level technician with the skills to help you out. And if you're like us, at this point,
you find out you called the wrong number, and you have to be transferred to some other
department for help. This runaround is a form of indirection. Luckily, computers have infinite
patience and can handle being sent from place to place to place looking for an answer.

CHAPTER 3: Introduction to Object-Oriented Programming

Variables and Indirection

You might be surprised to find out that you have already used indirection in your programs.
The humble variable is a real-world use of indirection. Consider this small program that
prints the numbers from one to five. You can find this program in the Learn ObjC Projects
folder, in 03.07 Count-1:

#import <Foundation/Foundation.h>
int main (int argc, const char *argv[])

{
NSLog (@"The numbers from 1 to 5:");

int i;

for (i =1; i <= 5; i++) {
NSLog (@"%d\n", 1i);

3

return (0);
} // main

Count-1 has a for loop that runs five times, using NSLog () to display the value of i each
time around. When you run this program, you see output like this:

2008-07-20 11:54:20.463 03.01 Count-1[17985:10b] The numbers from 1 to 5:
2008-07-20 11:54:20.466 03.01 Count-1[17985:10b]
2008-07-20 11:54:20.466 03.01 Count-1[17985:10b]
2008-07-20 11:54:20.466 03.01 Count-1[17985:10b]
2008-07-20 11:54:20.467 03.01 Count-1[17985:10b]
2008-07-20 11:54:20.467 03.01 Count-1[17985:10b]

vl A W N R

Now, suppose you want to upgrade your program to print the numbers from one to ten. You
have to edit your code in two places, which are highlighted in bold in the following listing,
and then rebuild the program (this version is in the folder 03.02 Count-2):

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
NSLog (@"The numbers from 1 to 10:");

int i;

for (i =1; i <= 10; i++) {
NSLog (@"%d\n", 1i);

3

CHAPTER 3: Introduction to Object-Oriented Programming

return (0);
} // main

Count-2 produces this output:

2008-07-20 11:55:35.909 03.02 Count-2[18001:10b] The numbers from 1 to 10:
2008-07-20 11:55:35.926 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.927 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.928 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.935 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.936 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.936 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.939 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.939 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.940 03.02 Count-2[18001:10b]
2008-07-20 11:55:35.940 03.02 Count-2[18001:10b]

O oo NOYUVIDA WIN R

=
o

Modifying the program in this way is obviously not a very tricky change to make: you can
do it with a simple search-and-replace action, and only two places need to be changed.
However, doing a similar search and replace in a larger program, consisting of, say, tens of
thousands of lines of code would be a lot trickier. We would have to be careful about simply
replacing 5 with 10: no doubt, there would be other instances of the number five that aren’t
related to this and so shouldn’t be changed to ten.

Solving this problem is what variables are for. Rather than sticking the upper loop value (five
or ten) directly in the code, we can solve this problem by putting the number in a variable,
thus adding a layer of indirection. When you add the variable, instead of telling the program
to“go through the loop five times,” you're telling it to “go look in this variable named count,
which will say how many times to run the loop.” Now, the program is called Count-3 and
looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

int count = 5;
NSLog (@"The numbers from 1 to %d:", count);

int 1;

for (i = 1; i <= count; i++) {
NSLog (@"%d\n", 1);

3

CHAPTER 3: Introduction to Object-Oriented Programming

return (0);
} // main

The program’s output should be unsurprising:

2008-07-20 11:58:12.135 03.03 Count-3[18034:10b] The numbers from 1 to 5:
2008-07-20 11:58:12.144 03.03 Count-3[18034:10b]
2008-07-20 11:58:12.144 03.03 Count-3[18034:10b]
2008-07-20 11:58:12.145 03.03 Count-3[18034:10b]
2008-07-20 11:58:12.146 03.03 Count-3[18034:10b]
2008-07-20 11:58:12.151 03.03 Count-3[18034:10b]

Ui DN W N R

OTE

The NSLog () time stamp and other information take up a lot of space, so for clarity, we'll leave that

information out of future listings.

If you want to print the numbers from 1 to 100, you just have to touch the code in one obvi-
ous place:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
int count = 100;

NSLog (@"The numbers from 1 to %d:", count);

int 1;

for (i = 1; i <= count; i++) {
NSLog (@"%d\n", 1i);

3

return (0);
} // main

By adding a variable, our code is now much cleaner and easier to extend, especially when
other programmers need to change the code. To change the loop values, they won't have to
scrutinize every use of the number five to see if they need to modify it. Instead, they can just
change the count variable to get the result they want.

CHAPTER 3: Introduction to Object-Oriented Programming

Indirection Through Filenames

Files provide another example of indirection. Consider Word-Length-1, a program that prints
a list of words along with their lengths; it is in the 03.04 Word-Length-1 folder. This vital pro-
gram is the key technology for your new Web 2.0 start-up, Length-o-words.com. Here’s the
listing:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
const char *words[4] = { "aardvark", "abacus",
"allude", "zygote" };
int wordCount = 4;

int 1;
for (i = 0; i < wordCount; i++) {
NSLog (@"%s is %d characters long",
words[i], strlen(words[i]));

}

return (0);
} // main

The for loop determines which word in the words array is being processed at any time. The
NSLog () function inside the loop prints out the word using the %s format specifier. We use
%s, because words is an array of C strings rather than of @'NSString" objects. The %d format
specifier takes the integer value of the strlen() function, which calculates the length of the
string, and prints it out along with the word itself.

When you run Word-Length-1, you see informative output like this:

aardvark is 8 characters long
abacus is 6 characters Tlong
allude is 6 characters Tong
zygote is 6 characters Tlong

OTE

We're leaving out the time stamp and process ID that NSLog () adds to the output of Word-Length-1.

CHAPTER 3: Introduction to Object-Oriented Programming

Now suppose the venture capitalists investing in Length-o-words.com want you to use a dif-
ferent set of words. They've scrutinized your business plan and have concluded that you can
sell to a broader market if you use the names of country music stars.

Because we stored the words directly in the program, we have to edit the source, replacing
the original word list with the new names. When we edit, we have to be careful with the
punctuation, such as the quotes in Joe Bob’s name and the commas between entries. Here is
the updated program, which can be found in the 03.05 Word-Length-2 folder:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{
const char *words[4]
= { "Joe-Bob \'"Handyman\" Brown",
"Jacksonville \"STy\" Murphy",
"Shinara Bain",
"George \"Guitar\" Books" };
int wordCount = 4;
int 1;
for (i = 0; i < wordCount; i++) {
NSLog (@"%s is %d characters long",
words[i], strlen(words[i]));
3
return (0);
} // main

Because we were careful with the surgery, the program still works as we expect:

Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "S1ly" Murphy is 25 characters long
Shinara Bain is 12 characters Tlong

George "Guitar" Books is 21 characters long

Making this change required entirely too much work: we had to edit Word-Length-2.m, fix
any typos, and then rebuild the program. If the program runs on a web site, we then have to
retest and redeploy the program to upgrade to Word-Length-2.

Another way to construct this program is to move the names completely out of the code
and put them all into a text file, one name on each line. Let’s all say it together: this is indirec-
tion. Rather than putting the names directly in the source code, the program looks for the
names elsewhere. The program reads a list of names from a text file and proceeds to print

CHAPTER 3: Introduction to Object-Oriented Programming

them out, along with their lengths. The project files for this new program live in the 03.06
Word-Length-3 folder, and the code looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{
FILE *wordFile = fopen ("/tmp/words.txt", "r");
char word[100];

while (fgets(word, 100, wordFile)) {
// strip off the trailing \n
word[strlen(word) - 1] = ‘\0’;

NSLog (@"%s is %d characters long",
word, strlen(word));

3
fclose (wordFile);
return (0);

} // main

Let’s stroll through Word-Length-3 and see what it’s doing. First, fopen () opens the words.
txt file for reading. Next, fgets () reads a line of text from the file and places it into word. The
fgets() call preserves the newline character that separates each line, but we really don't
want it: if we leave it, it will be counted as a character in the word. To fix this, we replace the
newline character with a zero, which indicates the end of the string. Finally, we use our old
friend NSLog () to print out the word and its length.

OTE

Take a look at the path name we used with fopen (). It's /tmp/words.txt. This means that words. txt is
afile that lives in the /tmp directory, the Unix temporary directory, which gets emptied when the com-

puter reboots. You can use /tmp to store scratch files that you want to mess around with but really don’t
care about keeping. For a real, live program, you'd put your file in a more permanent location, such as the
home directory.

Before you run the program, use your text editor to create the file words.txt in the /tmp
directory. Type the following names into the file:

Joe-Bob "Handyman" Brown
Jacksonville "Sly" Murphy
Shinara Bain

George "Guitar" Books

CHAPTER 3: Introduction to Object-Oriented Programming

To save a file to the /tmp directory from a text editor, type the file’s text, choose Save, press
the slash key (/), type tmp, and press Enter.

If you prefer, instead of typing the names, you can copy words.txt from the 03.06
Word-Length-3 directory into /tmp. To see /tmp in the Finder, choose Go » Go to Folder.

TIP

If you're using our prebuilt Word-Length-3 project, we've done a little Xcode magic to copy the words.

txt file to /tmp for you. See if you can discover what we did. Here’s a hint: look in the Targets area in the
Groups & Files pane.

When you run Word-Length-3, the program’s output looks just as it did before:

Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "S1ly" Murphy is 25 characters long
Shinara Bain is 12 characters long

George "Guitar" Books is 21 characters Tlong

Word-Length-3 is a shining example of indirection. Rather than coding the words directly
into your program, you're instead saying, “Go look in /tmp/words.txt to get the words.” With
this scheme, we can change the set of words anytime we want, just by editing this text file,
without having to change the program. Go ahead and try it out: add a couple of words to
your words.txt file and rerun the program. We’'ll wait for you here.

This approach is better, because text files are easier to edit and far less fragile than source
code. You can get your nonprogrammer friends to use TextEdit to do the editing. Your
marketing staff can keep the list of words up to date, which frees you to work on more inter-
esting tasks.

As you know, people always come along with new ideas for upgrading or enhancing a pro-
gram. Maybe your investors have decided that counting the length of cooking terms is the
new path to profit. Now that your program looks at a file for its data, you can change the set
of words all you want without ever having to touch the code.

Despite great advances in indirection, Word-Length-3 is still rather fragile, because it insists
on using a full path name to the words file. And that file itself is in a precarious position: if
the computer reboots, /tmp/words.txt vanishes. Also, if others are using the program on your
machine with their own /tmp/words.txt file, they could accidentally stomp on your copy. You
could edit the program each time to use a different path, but we already know that that’s no
fun, so let’s add another indirection trick to make our lives easier.

CHAPTER 3: Introduction to Object-Oriented Programming

Instead of looking in /tmp/words.txt to get the words, we'll change the program and tell it to
“go look at the first launch parameter of the program to figure out the location of the words
file” Here is the Word-Length-4 program (which can be found in the 03.07 Word-Length-4
folder). It uses a command-line parameter to specify the file name. The changes we made to
Word-Length-3 are highlighted:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{
if (argc == 1) {
NSLog (@"you need to provide a file name");
return (1);
}

FILE *wordFile = fopen (argv[l], "r');
char word[100];

while (fgets(word, 100, wordFile)) {
// strip off the trailing \n
word[strlen(word) - 1] = ‘\0’;

NSLog (@"%s is %d characters long",
word, strlen(word));

3
fclose (wordFile);
return (0);

} // main

The loop that processes the file is the same as in Word-Length-3, but the code that sets

it up is new and improved. The i f statement verifies that the user supplied a path name
as a launch parameter. The code consults the argc parameter to main(), which holds the
number of launch parameters. Because the program name is always passed as a launch
parameter, argc is always 1 or greater. If the user doesn’t pass a file path, the value of argc
is 1, and we have no file to read, so we print an error message and stop the program.

If the user was thoughtful and provided a file path, argc is greater than one. We then look in
the argv array to see what that file path is. argv[1] contains the filename the user has given
us. (In case you're curious, the argv[0] parameter holds the name of the program.)

If you're running the program in Terminal, it’s easy to specify the name of the file on the com-
mand line, like so:

CHAPTER 3: Introduction to Object-Oriented Programming

$./Word-Length-4 /tmp/words.txt

Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "Sly" Murphy is 25 characters long
Shinara Bain is 12 characters long

George "Guitar" Books is 21 characters long

UPPLYING A FILE PATH IN XCODE

If you're editing the program along with us in Xcode, supplying a file path as you run it is a little more compli-
cated. Launch arguments, also called command-line parameters, are a little trickier to control from Xcode
than from Terminal. Here’s what you need to do to change the launch arguments:

First, in the Xcode files list, expand Executables, and double-click the program name (Word-Length-4), as
shown in the following screen shot:

Groups & Files ({0 | p
v [word-Length-4 B | ® Word-Length-4
F_i| words.txt
»|] Source
»|__| Documentation
W || External Frameworks anc
> Products int main (int argc, const char * argv[])
> @ Targets
¥ ¢ Executables

S I — e)
« » | |[mWord-Length-4.m:6 § do = C ¥ W @
#import <Foundation/Foundation b "

&

if (orge == 1) {
WiLog (@"wou need to provide o file nome");

return {17
» /B Errors and Warnings L 1 &
w ({ Find Results
» L1 Bookmarks FILE #wordFile = fopen (argv[1], "r");
» : SCM char word[1887];
@ Project Syrebals while (fgets(word, 180, wordFileYy {
b (3 Implementation Files ¢/ strip off the trailing 'n
b (3 NIB Files word[str len{word) - 1] = '48';

WSLog (@"Ms iz d choracters long",
word, strlen(word));

Next, as shown in the following screen shot, click the plus sign in the Arguments section, and type the launch
argument—in this case, the path to the words.txt file:

—[General Arguments | Debugging Comments

Arguments to be passed on launch:

_'| Argument

El_,ftmpfwords.m Y

[+]=]
.
Variables to be set in the environment:
| Name |value 1
= @

(Continued)

CHAPTER 3: Introduction to Object-Oriented Programming

Now, when you run the program, Xcode passes your launch argument into Word-Length-4's argv array.
Here’s what you'll see when you run the program:

800 | Word-Length-4 - Debugger Console =

- =

[Session started at 2005-07-20 13:59:12 -0400.]

2008-07-20 13:59:12.815 Hord-Length-3[19205:10b] Joe-Bob "Handyman" Brown is 24 characters long
2008-07-20 13:59:12.821 Hord-Length-4[19205:10b] Jacksomville "Sly" Morphy is 25 characters lomg
Z008-07-20 13:59:12.826 Hord-Length-4[19205:10b] Shimara Bain is 12 characters lomg

2008-07-20 13:59:12.845 Hord-Length-4[19205:10b] George "Gmitar" Books is 21 characters long

The Debugger has exited with status O

Debugging of “Word-Length-4" ended normally. @ Succeeded

Just for fun, run your program with /usr/share/dict/words, which has over 230,000 words in it.
Your program can handle huge amounts of data! When you get tired of watching words whiz
by in the Xcode console window, click the red stop sign to make the program stop.

Because you're supplying arguments at runtime, everybody can use your program to get the
length of any set of words they want to, even absurdly large sets of words. Users can change
the data without changing the code, just as nature intended. This is the essence of indirection:
it's telling us where to get the data we need.

Using Indirection in Object-Oriented
Programming

Object-oriented programming is all about indirection. OOP uses indirection for accessing
data, just as we did in the previous examples by employing variables, files, and arguments.
The real revolution of OOP is that it uses indirection for calling code. Rather than calling

a function directly, you end up calling it indirectly.

Now that you know that, you're an expert in OOP. Everything else is a side effect of this
indirection.

Procedural Programming

To complete your appreciation of the flexibility of OOP, we'll take a quick look at proce-
dural programming, so you can get an idea of the kinds of problems that OOP was created
to solve. Procedural programming has been around a long, long time, since just after the
invention of dirt. Procedural programming is the kind typically taught in introductory pro-
gramming books and classes. Most programming in languages like BASIC, C, Tcl, and Perl is
procedural.

CHAPTER 3: Introduction to Object-Oriented Programming

In procedural programs, data is typically kept in simple structures, such as C struct elements.
There are also more complex data structures such as linked lists and trees. When you call

a function, you pass the data to the function, and it manipulates the data. Functions are the
center of the procedural programming experience: you decide which functions you want to
use, and then you call those functions, passing in the data they need.

Consider a program that draws a bunch of geometric shapes on the screen. Thanks to the
magic of computers, you can do more than consider it—you'll find the source code to this
program in the 03.08 Shapes-Procedural folder. For simplicity’s sake, the Shapes-Procedural
program doesn’t actually draw shapes on the screen, it just quaintly prints out some
shape-related text.

Shapes-Procedural uses plain C and the procedural programming style. The code starts out
by defining some constants and a structure.

After the obligatory inclusion of the foundation headers is an enumeration that specifies the
different kinds of shapes that can be drawn: circle, square, and something vaguely egg-shaped:

#import <Foundation/Foundation.h>
typedef enum {

kCircle,

kRectangle,

kObTateSpheroid
} ShapeType;

Next is an enum that defines the colors that can be used to draw the shape:

typedef enum {
kRedColor,
kGreenColor,
kBTueColor

} ShapeColor;

After that, we have a structure that describes a rectangle, which specifies the area on the
screen where the shape will be drawn:

typedef struct {
int x, y, width, height;
} ShapeRect;

Finally, we have a structure that pulls all these things together to describe a shape:

typedef struct {
ShapeType type;
ShapeColor fillColor;
ShapeRect bounds;

} Shape;

CHAPTER 3: Introduction to Object-Oriented Programming

Next up in our example, main() declares an array of shapes we're going to draw. After
declaring the array, each shape structure in the array is initialized by assigning its fields.
The following code gives us a red circle, a green rectangle, and a blue spheroid:

int main (int argc, const char * argv[])
{
Shape shapes[3];
ShapeRect rect0 = { 0, 0, 10, 30 };
shapes[0] .type = kCircle;
shapes[0].fiT11Color = kRedColor;
shapes[0] .bounds = rectO;
ShapeRect rectl = { 30, 40, 50, 60 };
shapes[1].type = kRectangle;
shapes[1].fi11Color = kGreenColor;
shapes[1] .bounds = rectl;
ShapeRect rect2 = { 15, 18, 37, 29 };
shapes[2].type = kOblateSpheroid;
shapes[2].fil11Color = kBlueColor;
shapes[2] .bounds = rect2;

drawShapes (shapes, 3);
return (0);

} // main

HANDY C SHORTCUT

The rectangles in the Shapes-Procedural program’s main () method are declared using a handy little C trick:
when you declare a variable that’s a structure, you can initialize all the elements of that structure at once.

ShapeRect rect0 = { 0, 0, 10, 30 };

The structure elements get values in the order they're declared. Recall that ShapeRect is declared like this:

typedef struct {
int x, y, width, height;
} ShapeRect;

The preceding assignment to rectO means that rect0. x and rect0. y will both have the value 0;
rect0.width will be 10;and rect0.height will be 30.

This technique lets you reduce the amount of typing in your program without sacrificing readability.

CHAPTER 3: Introduction to Object-Oriented Programming

After initializing the shapes array, main() calls the drawShapes () function to draw the
shapes.

drawShapes () has a loop that inspects each Shape structure in the array. A swi tch state-
ment looks at the type field of the structure and chooses a function that draws the shape.
The program calls the appropriate drawing function, passing parameters for the screen area
and color to use for drawing. Check it out:

void drawShapes (Shape shapes[], int count)
{

int 1;
for (i = 0; i < count; i++) {
switch (shapes[i].type) {

case kCircle:
drawCircle (shapes[i].bounds,
shapes[i].fiTl1Color);
break;

case kRectangle:
drawRectangle (shapes[i].bounds,
shapes[i].fiT1Color);
break;

case kOblateSpheroid:
drawbEgg (shapes[i].bounds,
shapes[i].fiT1Color);
break;
}
3

} // drawShapes

Here is the code for drawCircle(), which just prints out the bounding rectangle and the
color passed to it:

void drawCircle (ShapeRect bounds,
ShapeColor fillColor)
{
NSLog (@"drawing a circle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // drawCircle

CHAPTER 3: Introduction to Object-Oriented Programming

The colorName () function called inside NSLog () simply does a switch on the passed-in
color value and returns a literal NSString such as @"red" or @"blue":

NSString *colorName (ShapeColor colorName)
{
switch (colorName) {
case kRedColor:
return @"red";
break;
case kGreenColor:
return @"green'";
break;
case kBlueColor:
return @"blue";
break;

}
return @"no clue";

} // colorName

The other draw functions are almost identical to drawCi rcle, except that they draw a rectangle
and an egg.

Here is the output of Shapes-Procedural (minus the time stamp and other information
added by NSLog()):

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 18 37 29) 1in blue

This all seems pretty simple and straightforward, right? When you use procedural program-
ming, you spend your time connecting data with the functions designed to deal with that
type of data. You have to be careful to use the right function for each data type: for example,
you must call drawRectangle() for a shape of type kRectangle. It’s disappointingly easy to
pass a rectangle to a function meant to work with circles.

Another problem with coding like this is that it can make extending and maintaining the
program difficult. To illustrate, let’s enhance Shapes-Procedural to add a new kind of shape:
a triangle. You can find the modified program in the 03.09 Shapes-Procedural-2 project. We
have to modify the program in at least four different places to accomplish this task.

CHAPTER 3: Introduction to Object-Oriented Programming

First, we'll add a kTriangle constant to the ShapeType enum:

typedef enum {
kCircle,
kRectangle,
kObTateSpheroid,
kTriangle

} ShapeType;

Then, we'llimplement a drawTriangle() function that looks just like its siblings:

void drawTriangle (ShapeRect bounds,
ShapeColor fillColor)

{
NSLog (@"drawing triangle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // drawTriangle

Next, we'll add a new case to the switch statement in drawShapes (). This will test for
kTriangle and will call drawTriangle() if appropriate:

void drawShapes (Shape shapes[], int count)

{

int 1;
for (i = 0; i < count; i++) {
switch (shapes[i].type) {

case kCircle:
drawCircle (shapes[i].bounds,
shapes[i].fiT1Color);
break;

case kRectangle:
drawRectangle (shapes[i].bounds,
shapes[i].fiT1Color);
break;

case kOblateSpheroid:
drawbEgg (shapes[i].bounds,
shapes[i].fiTl1Color);
break;

CHAPTER 3: Introduction to Object-Oriented Programming

case kTriangle:
drawTriangle (shapes[i].bounds,

break;
b
3

shapes[i].fil11Color);

} // drawShapes

Finally, we'll add a triangle to the shapes array. Don't forget to increase the number of

shapes in the shapes array:

int main (int argc, const char *

{

}

argvlD)

Shape shapes[4];

ShapeRect
shapes[0]
shapes[0]
shapes[0]

ShapeRect
shapes[1]
shapes[1]
shapes[1]

ShapeRect
shapes[2]
shapes[2]
shapes[2]

ShapeRect
shapes[3]
shapes[3]
shapes[3]

.type
.fi11Color = kRedColor;
.bounds = rectO;

.type
.fiT11Color = kGreenColor;
.bounds = rectl;

.type
.fi11Color = kBlueColor;
.bounds = rect2;

.type
.fi11Color = kRedColor;
.bounds = rect3;

rect0 = { 0, 0, 10,
kCircle;

30 };

rectl = { 30, 40,
kRectangle;

50, 60 };

rect2 = { 15, 18, 37, 29 };
kObTateSpheroid;

rect3 = { 47, 32, 80,
kTriangle;

50 };

drawShapes (shapes, 4);

return (0)

// main

CHAPTER 3: Introduction to Object-Oriented Programming

OK, let’s take a look at Shapes-Procedural-2 in action:

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 18 37 29) 1in blue
drawing a triangle at (47 32 80 50) 1in red

Adding support for triangles wasn’t too bad, but our little program only does one kind of
action—drawing shapes. The more complex the program, the trickier it is to extend. For
example, let’s say the program does more messing around with shapes; suppose it com-
putes their areas and determines if the mouse pointer lies within them. In that case, you'll
have to modify every function that performs an action on shapes, touching code that has
been working perfectly and possibly introducing errors.

Here’s another scenario that’s fraught with peril: adding a new shape that needs more
information to describe it. For example, a rounded rectangle needs to know its bounding
rectangle as well as the radius of the rounded corners. To support rounded rectangles, you
could add a radius field to the Shape structure, which is a waste of space, because the field
won't be used by other shapes, or you could use a C union to overlay different data layouts
in the same structure, which complicates things by making all shapes dig into the union to
get to their interesting data.

OOP addresses these problems elegantly. As we teach our program to use OOP, we'll see
how OOP handles the first problem, modifying already-working code to add new kinds of
shapes.

Implementing Object Orientation

Procedural programs are based on functions. The data orbits around the functions. Object
orientation reverses this point of view, placing a program’s data at the center, with the
functions orbiting around the data. Instead of focusing on functions in your programs, you
concentrate on the data.

That sounds interesting, but how does it work? In OOP, data contains references to the code
that operates on it, using indirection. Rather than telling the drawRectangle () function
to“go draw a rectangle using this shape structure,”you instead ask a rectangle to “go draw
yourself” (gosh, that sounds rude, but it’s really not). Through the magic of indirection, the
rectangle’s data knows how to find the function that will perform the drawing.

CHAPTER 3: Introduction to Object-Oriented Programming

So what exactly is an object? It's nothing more than a fancy C struct that has the ability to find
code it’s associated with, usually via a function pointer. Figure 3-1 shows four Shape objects:
two squares, a circle, and a spheroid. Each object is able to find a function to do its drawing.

drawSquare {

} // drawSquare

drawCircle {

} // drawCircle

drawEgg {

spheroid } // drawkgg

Figure 3-1. Basic Shape objects

Each object has its own draw() function that knows how to draw its specific shape. For
example, a Circle object’s draw() knows to draw a circle. A Rectangle’s draw() knows to
draw four straight lines that form a rectangle.

The Shapes-Object program (available at 03.70 - Shapes-Object) does the same stuff as
Shapes-Procedural but uses Objective-C’s object-oriented features to do it. Here’s
drawShapes () from Shapes-Object:

void drawShapes (id shapes[], int count)

{

int 1;

for (i = 0; i < count; i++) {
id shape = shapes[i];
[shape draw];

}

} // drawShapes;

CHAPTER 3: Introduction to Object-Oriented Programming

This function contains a loop that looks at each shape in the array. In the loop, the program
tells the shape to draw itself.

Notice the differences between this version of drawShapes () and the original. For one thing,
this one is a lot shorter! The code doesn’t have to ask each individual shape what kind it is.

Another change is shapes[], the first argument to the function: it's now an array of id
objects.What s an id? Is it a psychological term referring to the part of the mind in which
innate instinctive impulses and primary processes are manifest? Not in this case: it stands for
identifier, and it's pronounced “eye dee” An id is a generic type that’s used to refer to any
kind of object. Recall that an object is just a C struct with some code attached, soan id is
actually a pointer to one of these structures; in this case, the structures make various kinds
of shapes.

The third change to drawShapes () is the body of the loop:

id shape = shapes[i];
[shape draw];

The first line looks like ordinary C. The code gets the id—that is, a pointer to an object—
from the shapes array and sticks it into the variable named shape, which has the type id.
This is just a pointer assignment: it doesn’t actually copy the entire contents of the shape.
Take a look at Figure 3-2 to see the various shapes available in Shapes-Object. shapes[0]
is a pointer to the red circle; shapes[1] is a pointer to a green rectangle; and shapes[2] is
a pointer to a blue egg.

0, 0,

30, 40,
. Green
(Circle) (Rectangle)

T

Figure 3-2. The shapes array

Now we've come to the last line of code in the function:

[shape draw];

CHAPTER 3: Introduction to Object-Oriented Programming

This is seriously weird. What's going on? We know that C uses square brackets to refer to
array elements, but we're don’t seem to be doing anything with arrays here. In Objective-C,
square brackets have an additional meaning: they're used to tell an object what to do. Inside
the square brackets, the firstitem is an object, and the rest is an action that you want the
object to perform. In this case, we're telling an object named shape to perform the action
draw. If shape is a circle, a circle is drawn. If shape is a rectangle, we'll get a rectangle.

In Objective-C, telling an object to do an action is called sending a message (although
some folks also say “calling a method”). The code [shape draw] sends the message draw to
the object shape. One way to pronounce [shape draw] is“send drawto shape.”How the
shape actually does the drawing is up to the shape’s implementation.

When you send a message to an object, how does the necessary code get called? This hap-
pens with the assistance of behind-the-scenes helpers called classes.

Take a look at Figure 3-3 please. The left side of the figure shows that this is the circle
object at index zero of the shapes array, last seen in Figure 3-2. The object has a pointer to
its class. The class is a structure that tells how to be an object of its kind. In Figure 3-3, the
Circle class has a pointer to code for drawing circles, for calculating the area of circles, and
other stuff required in order to be a good Circle citizen.

- (void) draw

—— draw a circle in the bounds
filled with fillColor
} 7/ draw

0, 0,
10, 30
Red
(Circle)

- (float) area
code

calculate the area of the circle
} // area

- (BOOL) hitTestWithPoint: (Point) point

see if point is inside the circle
} 7/ hitTestWithPoint:

Figure 3-3. A circle and its class

What's the point of having class objects? Wouldn't it be simpler just to have each object
point directly to its code? Indeed, it would be simpler, and some OOP systems do just that.
But having class objects is a great advantage: if you change the class at runtime, all objects
of that class automatically pick up the changes (we’'ll discuss this more in later chapters).

Figure 3-4 shows how the draw message ends up calling the right function for the circle
object.

CHAPTER 3: Introduction to Object-Oriented Programming

- (void) draw
PRAdR
- — draw a circle in the bounds
-~ filled with fillColor
P < } // draw
\
AY
N
N
0, 0, N - (float) area
10, 30 code
.Red -—-" calculate the area of the circle
(Circle) } // area
/
7 - (BOOL) hitTestWithPoint: (Point) point
[shape draw]; see if point is inside the circle
} // hitTestWithPoint:

Figure 3-4. A circle finds its draw code.

Here are the steps illustrated in Figure 3-4:

1. The object that is the target of the message (the red circle in this case) is consulted to
see what its class is.

2. The class looks through its code and finds out where the draw function is.
3. Onceit’s found, the function that draws circles is executed.

Figure 3-5 shows what happens when you call [shape draw] on the second shape in the
array, which is the green rectangle.

- (void) draw
- -
- draw a rectangle in the bounds
-7 filled with fillColor
.7 } // draw
\
\
N
N
Rectangle \\ - (float) area
30, 40, class code
50, 60 ---= | =--- calculate the area of the rectangle
® Gtreen1) , } // area
ectangle
/
/
Vi - (BOOL) hitTestWithPoint: (Point) point
L
[shape draw]; see if point is inside the rectangle
} /7 hitTestWithPoint:

Figure 3-5. A rectangle finds its draw code.

CHAPTER 3: Introduction to Object-Oriented Programming

The steps used in Figure 3-5 are nearly identical those in the previous image:

1. The target object of the message (the green rectangle) is consulted to see what its
class is.

2. The rectangle class checks its pile of code and gets the address of the draw function.
3. Objective-C runs the code that draws a rectangle.

This program shows some very cool indirection in action! In the procedural version of the
program, we had to write code that determined which function to call. Now, that decision is
made behind the scenes by Objective-C, as it asks the objects which class they belong to. This
reduces the chance of calling the wrong function and makes our code easier to maintain.

Time Out for Terminology

Before we dig into the rest of the Shapes-Object program, let’s take a moment to go over
some object-oriented terminology. We've already talked about some of these terms; others
are brand new.

B A class is a structure that represents an object’s type. An object refers to its class to
get various information about itself, particularly what code to run to handle each
action. Simple programs might have a handful of classes; moderately complex ones
will have a couple of dozen. Objective-C style encourages developers to capitalize
class names.

B An object is structure containing values and a hidden pointer to its class. Running
programs typically have hundreds or thousands of objects. Objective-C variables that
refer to objects are typically not capitalized.

B Instance is another word for “object.” For example, a circle object can also be
called aninstance of class Circle.

B A message is an action that an object can perform. This is what you send to an object
to tell it to do something. In the [shape draw] code, the draw message is sent to the
shape object to tell it to draw itself. When an object receives a message, its class is
consulted to find the proper code to run.

B A method is code that runs in response to a message. A message, such as draw, can
invoke different methods depending on the class of the object.

B The method dispatcher is the mechanism used by Objective-C to divine which method
will be executed in response to a particular message. We'll get out our shovels and dig
a lot more into the Objective-C method dispatch mechanism in the next chapter.

CHAPTER 3: Introduction to Object-Oriented Programming

Those are the key OOP terms you'll need for the rest of this book. In addition, there are
a couple of generic programming terms that will soon become very important:

B The interface is the description of the features provided by a class of objects. For
example, the interface for class Circle declares that circles can accept the draw
message.

OTE

The concept of interfaces is not limited to OOP. For example, header files in C provide interfaces for librar-

ies such as the standard 1/0 library (which you get when you #include <stdio.h>), and the math
library (#incTude <math.h>).Interfaces do not provide implementation details, and the general
idea is that you shouldn’t care about them.

B The implementation is the code that makes the interface work. In our examples,
the implementation for the circle object holds the code for drawing a circle on the
screen. When you send the draw message to a circle object, you don’t know or care
how the function works, just that it draws a circle on the screen.

OOP in Objective-C

If your brain is starting to hurt now, that’s OK. We've been filling it up with a lot of new stuff,
and assimilating all the terms and technology will take awhile. While your subconscious

is chewing on the previous couple of sections, let’s take a look at the rest of the code for
Shapes-Object, including some new syntax for declaring classes.

The @interface Section

Before you can create objects of a particular class, the Objective-C compiler needs some
information about that class. Specifically, it has to know about the data members of the
object (that is, what the C struct for the object looks like) and which features it provides.
You use the @interface directive to give this information to the compiler.

OTE

In Shapes-Object, we put everything into its Shapes-0bject.m file. In larger programs, you'll use multiple

files, giving each class its own set of files. We'll explore ways of organizing classes and files in Chapter 6.

CHAPTER 3: Introduction to Object-Oriented Programming

Here is the interface for the Circle class:

@interface Circle : NSObject

{
ShapeColor fillColor;
ShapeRect bounds;

(void) setFillColor: (ShapeColor) fillColor;

(void) setBounds: (ShapeRect) bounds;

(void) draw;
@end // Circle

This code includes some syntax we haven't talked about yet, so let’s do that. A lot of informa-
tion is packed into these few lines. Let’s pull them apart.

The first line looks like this:

@interface Circle : NSObject

As we said in Chapter 2, whenever you see an at sign in Objective-C, you're looking at an
extension to the C language. @interface Circle says to the compiler, “Here comes the
interface for a new class named Circle”

OTE

NSObject in the @interface line tells the compiler that the Ci rc1e class is based on the
NSObject class. This statement says that every Circleisalsoan NSObject, and every Circle
will inherit all the behaviors that are defined by class NSObject. We'll explore inheritance in much
greater detail in the next chapter.

After starting to declare a new class, we tell the compiler about the various pieces of data
that circle objects need:

{
ShapeColor fillColor;
ShapeRect bounds;

}

The stuff between the curly braces is a template used to churn out new Circle objects. It
says that when a new Circle object is created, it will be made up of two elements. The first,
fil1Color, of type ShapeColor, is the color used to draw the circle. The second, bounds, is

CHAPTER 3: Introduction to Object-Oriented Programming

the circle’s bounding rectangle. Its type is ShapeRect. This rectangle tells where the circle
will be drawn on the screen.

You specify fi11Color and bounds in the class declaration. Then, every time a Circle
object is created, it includes these two elements. So, every object of class Circle has its
own fil1Color and its own bounds. The fi11CoTlor and bounds values are called instance
variables for objects of class Circle.

The closing brace tells the compiler we're done specifying the instance variables for Circle.
What follows are some lines that look kind of like C function prototypes:

- (void) draw;

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bounds;

In Objective-C, these are called method declarations. They're a lot like good old-fashioned
C function prototypes, which are a way of saying, “Here are the features | support.” The
method declarations give the name of each method, the method'’s return type, and any
arguments.

Let’s start out with the simplest one, draw:

- (void) draw;

The leading dash signals that this is the declaration for an Objective-C method. That’s one
way you can distinguish a method declaration from a function prototype, which has no lead-
ing dash. Following the dash is the return type for the method, enclosed in parentheses. In
our case, draw just draws and won't be returning anything. Objective-C uses void to indicate
that there’s no return value.

Objective-C methods can return the same types as C functions: standard types (int, float,
and char), pointers, object references, and structures.

The next method declarations are more interesting:
- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bounds;

Each of these methods takes a single argument. setFil1Color: takes a color for its argu-
ment. Circles use this color when they draw themselves. setBounds : takes a rectangle.
Circles use this rectangle to define their bounds.

CHAPTER 3: Introduction to Object-Oriented Programming

GET YOUR INFIX HERE

Objective-C uses a syntax technique called infix notation. The name of the method and its arguments are all
intertwined. For instance, you call a single-argument method like this:

[circle setFillColor: kRedColor];

A method that takes two arguments is called like this:

[textThing setStringValue: @"hello there"
color: kBlueColor];

The setStringValue: and color: thingies are the names of the arguments (and are actually part of
the method name—more on that later), and @'hel11o there" and kBTueColor are the arguments
being passed.

This syntax differs from C, in which you call a function with its name followed by all its arguments, like so:

setTextThingValueColor (textThing, @"hello there",
kBTueColor);

We really like the infix syntax, although it does look a little weird at first. It makes the code very readable,
and it’s easy to match arguments with what they do. With Cand (++ code, you'll sometimes have four or five
arguments to a function, and knowing exactly which argument does what without consulting the documen-
tation can be difficult.

The setFil1Color: declaration starts out with the usual leading dash and the return type
in parentheses:

- (void)

As with the draw method, the leading dash says, “This is the declaration for a new method.”
The (void) says that this method will not return anything. Let’s continue with the code:

setFiTll1Color:

The name of the method is setFiT1CoTor:. The trailing colon is part of the name. It's a clue
to compilers and humans that a parameter is coming next.

(ShapeColor) fillColor;

The type of the argument is specified in parentheses, and in this case, it's one of our
ShapeColor values (kRedColor, kBlueColor, and so on). The name that follows,
fil1Color, is the parameter name. You use this name to refer to the parameter in the
body of the method. You can make your code easier to read by choosing meaningful
parameter names, rather than naming them after your pets or favorite superheroes.

CHAPTER 3: Introduction to Object-Oriented Programming

CALLIN"ALL COLONS

It's important to remember that the colon is a very significant part of the method’s name. The method

- (void) scratchTheCat;

is distinct from

- (void) scratchTheCat: (CatType) critter;

A common mistake made by many freshly minted Objective-C programmers is to indiscriminantly add a colon
to the end of a method name that has no arguments. In the face of a compiler error, you might be tempted to
toss in an extra colon and hope it fixes things. The rule to follow is this: If a method takes an argument, it has
a colon. If it takes no arguments, it has no colons.

The declaration of setBounds: is exactly the same as the one for setFil1Color:, except
that the type of the argument is ShapeRect rather than ShapeColor.

The last line tells the compiler we're finished with the declaration of the Circle class:

@end // Circle

Even though it’s not required, we advocate putting comments on all @end statements noting
the class name. This makes it easy to know what you're looking at if you've scrolled to the
end of a file or you're on the last page of a long printout.

That's the complete interface for the Circle class. Now anyone reading the code knows that
that this class has a couple of instance variables and three methods. One method sets the
bounds; one sets the color; and the third draws the shape.

Now that we have the interface done, it’s time to write the code that makes this class actually
do stuff. You didn’t think we were done, did you?

The @implementation Section

The @interface section, which we just discussed, defines a class’s public interface. The
interface is often called the API, which is a TLA for “application programming interface” (and
TLAis aTLA for“three-letter acronym”). The actual code to make objects work is found in the
@implementation section.

Here is the implementation for class Circle in its entirety:

@implementation Circle

- (void) setFillColor: (ShapeColor) c

{
fillColor = c;

CHAPTER 3: Introduction to Object-Oriented Programming

—

// setFillColor

(void) setBounds: (ShapeRect) b

bounds = b;
} // setBounds

(void) draw

NSLog (@"drawing a circle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));
} // draw

@end // Circle

Now we'll examine the code in detail, in our customary fashion. The implementation for
Circle starts out with this line:

@implementation Circle

@implementation is a compiler directive that says you're about to present the code for the
guts of a class. The name of the class appears after @implementation. There is no trailing
semicolon on this line, because you don't need semicolons after Objective-C compiler
directives.

The definitions of the individual methods are next. They don’t have to appear in the
same order as they do in the @interface directive. You can even define methods in an
@implementation that don’t have a corresponding declaration in the @interface. You
can think of these as private methods, used just in the implementation of the class.

OTE

You might think that defining a method solely in the @imp1ementation directive makes it inacces-
sible from outside the implementation, but that’s not the case. Objective-C doesn’t really have private
methods. There is no way to mark a method as being private and preventing other code from calling it.
This is a side effect of Objective-C's dynamic nature.

CHAPTER 3: Introduction to Object-Oriented Programming

setFiT1Color: is the first method defined:

- (void) setFillColor: (ShapeColor) c

{
fillColor = c;
} // setFillColor

The first line of the definition of setFi11Color: looks a lot like the declaration in the
@interface section. The main difference is that this one doesn’t have a semicolon at the
end. You may notice that we renamed the parameter to simply c. It’s OK for the parameter
names to differ between the @interface and the @impTementation. In this case, if we had
left the parameter name as fi11Color, it would have hidden the fi11Color instance vari-
able and generated a warning from the compiler.

OTE

Why exactly do we have to rename fi11Co10r? We already have an instance variable named

fi11CoTor defined by the class. We can refer to that variable in this method—it’s in scope.

So, if we define another variable with the same name, the compiler will cut off our access from the
instance variable. Using the same variable name hides the original variable. We avoid this problem by
using a new name for the parameter. We could have named the instance variable something else, like
myFi11CoTor, and then we could have kept i11Co1or as the parameter name. As you'll see
later in Chapter 16, Cocoa can do some magic if we name our instance variable similar to how we name
our methods.

In the @interface section, we used the name fi11Color in the method declaration
because it tells the reader exactly what the argument is for. In the implementation, we have
to distinguish between the parameter name and the instance variable name, and it’s easiest
to simply rename the parameter.

The body of the method is one line:

fillColor = c;

If you're extra curious, you might wonder where the instance variables are stored. When
you call a method in Objective-C, a secret hidden parameter called self is passed to the
receiving object that refers to the receiving object. For example, in the code [circle
setFil1Color: kRedColor], the method passes circle asits self parameter. Because
selfis passed secretly and automatically, you don’t have to do it yourself. Code inside

a method that refers to instance variables works like this:

self->fil1Color = c;

CHAPTER 3: Introduction to Object-Oriented Programming

By the way, passing hidden arguments is yet another example of indirection in action (bet
you thought we were all done talking about indirection, huh?). Because the Objective-C run-
time can pass different objects as the hidden self parameter, it can change which objects
get their instance variables changed.

OTE

The Objective-C runtime is the chunk of code that supports applications, including ours, when users

are running them. The runtime performs important tasks like sending messages to objects and passing
parameters. You'll learn more about the runtime in future chapters, starting with Chapter 9.

The second method, setBounds:, is just like our setFil11Color: method:

- (void) setBounds: (ShapeRect) b
{

bounds = b;
} // setBounds

This code sets a circle object’s bounding rectangle to be the rectangle that'’s passed in.

The last method is our draw method. Note that there’s not a colon at the end of the method'’s
name, which tells us that it doesn’t take any arguments:

- (void) draw
{
NSLog (@"drawing a circle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // draw

The draw method uses the hidden self parameter to find the values of its instance vari-
ables, just as setFil1Color: and setBounds: did. This method then uses NSLog() to
print out the text for all the world to see.

The @interface and @implementation for the other classes (Rectangle and
OblateSphereoid) are nearly identical to those for Circle.

Instantiating Objects

Now we're ready for the final, meaty part of Shapes-Object, in which we create lovely shape
objects, such as red circles and green rectangles. The big-money word for this process is
instantiation. When you instantiate an object, memory is allocated, and then that memory
is initialized to some useful default values—that is, something other than the random values

CHAPTER 3: Introduction to Object-Oriented Programming

you get with freshly allocated memory. When the allocation and initialization steps are done,
we say that a new object instance has been created.

OTE

Because an object’s local variables are specific to that instance of the object, we call them instance vari-
ables, often shortened to “ivars.”

To create a new object, we send the new message to the class we're interested in. Once the
class receives and handles the new message, we'll have a new object instance to play with.

One of the nifty features of Objective-C is that you can treat a class just like an object and send
it messages. This is handy for behavior that isn’t tied to one particular object but is global to
the class. The best example of this kind of message is allocating a new object. When you want
a new circle, it's appropriate to ask the Ci rcle class for that new object, rather than asking an
existing circle.

Here is Shapes-Object’s main () function, which creates the circle, rectangle, and spheroid:

int main (int argc, const char * argv[])
{
id shapes[3];

ShapeRect rect0 = { 0, 0, 10, 30 };
shapes[0] = [Circle new];

[shapes[0] setBounds: rectO];
[shapes[0] setFillColor: kRedColor];

ShapeRect rectl = { 30, 40, 50, 60 };
shapes[1] = [Rectangle new];
[shapes[1] setBounds: rectl];
[shapes[1] setFillColor: kGreenColor];

ShapeRect rect2 = { 15, 19, 37, 29 };
shapes[2] = [OblateSphereoid new];
[shapes[2] setBounds: rect2];
[shapes[2] setFillColor: kBlueColor];
drawShapes (shapes, 3);

return (0);

} // main

CHAPTER 3: Introduction to Object-Oriented Programming

You can see that Shapes-Object’s main() is very similar to Shapes-Procedural’s. There are

a couple of differences, though. Instead of an array of shapes, Shapes-Object has an array of
id elements (which you probably remember are pointers to any kind of object). You create
individual objects by sending the new message to the class of object you want to create:

shapes[0]

= [Circle new];
shapes[1] = [Rectangle new];
shapes[2] = [OblateSphereoid new];

Another difference is that Shapes-Procedural initializes objects by assigning struct members
directly. Shapes-Object, on the other hand, doesn’t muck with the object directly. Instead,
Shapes-Object uses messages to ask each object to set its bounding rectangle and fill color:

[shapes[0] setBounds: rect0];
[shapes[0] setFillColor: kRedColor];

[shapes[1] setBounds: rectl];
[shapes[1] setFillColor: kGreenColor];

[shapes[2] setBounds: rect2];
[shapes[2] setFillColor: kBlueColor];

After this initialization frenzy, the shapes are drawn using the drawShapes () function we
looked at earlier, like so:

drawShapes (shapes, 3);

Extending Shapes-Object

Remember when we added triangles to the Shapes-Procedural program? Let’s do the same
for Shapes-Object. The task should be a lot neater this time. You can find the project for this
in the 03.77 Shapes-Object-2 folder of Learn ObjC Projects.

We had to do a lot of stuff to teach Shapes-Procedural-2 about triangles: edit the ShapeType
enum, add a drawTriangle() function, add a triangle to the list of shapes, and modify the
drawShapes () function. Some of the work was pretty invasive, especially the surgery done
to drawShapes (), in which we had to edit the loop that controls the drawing of all shapes,
potentially introducing errors.

CHAPTER 3: Introduction to Object-Oriented Programming

With Shapes-Object-2, we only have to do two things: create a new Triangle class, and then
add a Triangle object to the list of objects to draw.

Here is the TriangTe class, which happens to be exactly the same as the Circle class with
all occurrences of “Circle” changed to “Triangle”:

@interface Triangle : NSObject

{
ShapeColor fillColor;
ShapeRect bounds;

(void) setFillColor: (ShapeColor) fillColor;
(void) setBounds: (ShapeRect) bounds;

(void) draw;

@end // Triangle

@implementation Triangle
- (void) setFillColor: (ShapeColor) c
fillColor = c;
} // setFillColor
- (void) setBounds: (ShapeRect) b
bounds = b;
} // setBounds
- (void) draw
NSLog (@"drawing a triangle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,

colorName(fill1Color));
} // draw

@end // Triangle

CHAPTER 3: Introduction to Object-Oriented Programming

OTE

One drawback to cut and paste programming, like our TriangTe class, is that it tends to create a lot of
duplicated code, like the setBounds : and setFiT11CoTlor: methods. We'll introduce you to inheri-
tance in the next chapter, which is a fine way to avoid redundant code like this.

Next, we need to edit main() so it will create the new triangle. First, change the size of the
shapes array from 3 to 4 so it will have enough room to store the new object:

id shapes[4];
After that, add a block of code that creates a new Triangle, just like we create a new

Rectangle or Circle:

ShapeRect rect3 = { 47, 32, 80, 50 };
shapes[3] = [Triangle new];
[shapes[3] setBounds: rect3];
[shapes[3] setFillColor: kRedColor];

And finally, update the call to drawShapes (O with the new length of the shapes array:

drawShapes (shapes, 4);

And that’s it. Our program now understands triangles:

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 19 37 29) 1in blue
drawing a triangle at (47 32 80 50) 1in red

Note that we were able to add this new functionality without touching the drawShapes ()
function or any other functions that deal with shapes. That’s the power of object-oriented
programming at work.

OTE

The code in Shapes-Object-2 provides an example of object-oriented programming guru Bertrand Meyer’s
Open/Closed Principle, which says that software entities should be open for extension but closed for
modification. The drawShapes () function is open to extension: just add a new kind of shape object to
the array to draw. drawShapes () is also closed to modification: we can extend it without modifying it.
Software that adheres to the Open-Closed Principle tends to be more robust in the face of change, because
you don't have to edit code that’s already working correctly.

CHAPTER 3: Introduction to Object-Oriented Programming

Summary

This is a big, head-space chapter—one with lots of concepts and ideas—and it’s a long
chapter, too. We talked about the powerful concept of indirection and showed that you've
already been using indirection in your programs, such as when you deal with variables and
files. Then we discussed procedural programming and showed you some of the limitations
caused by its “functions first, data second” view of the world.

We introduced object-oriented programming, which uses indirection to tightly associate
data with code that operates on it. This permits a “data first, functions second” style of pro-
gramming. We talked about messages, which are sent to objects. The objects handle these
messages by executing methods, the chunks of code that make the object sing and dance.
You also learned that every method call includes a hidden parameter named self, which
is the object itself. By using this self parameter, methods find and manipulate the object’s
data. The implementation for the methods and a template for the object’s data are defined
by the object’s class. You create a new object by sending the new message to the class.

Coming up in our next chapter is inheritance, a feature that lets you leverage the behavior of
existing objects so you can write less code to do your work. Hey, that sounds great! We'll see
you therel!

Chapter

Inheritance

hen you write an object-oriented program—and we hope you're going to
write a lot of them—the classes and objects you create have relationships
with each other. They work together to make your program do its thing.

Two aspects of OOP are most important when dealing with relationships
between classes and objects. The first is inheritance, the subject of this chap-
ter. When you create a new class, it’s often useful to define the new class in
terms of its differences from another, already existing class. Using inheritance,
you can define a class that has all the capabilities of a parent class: it inherits
those capabilities.

The other OOP technique used with related classes is composition, in which
objects contain references to other objects. For example, a car object in a racing
simulator might have four tire objects that it uses during game play. When your
object keeps references to others, you can take advantage of features offered by
the others: that’s composition. We'll cover composition in the next chapter.

Why Use Inheritance?

Remember our old friend the Shapes-Object program from the previous
chapter? It contained several classes that had very similar interfaces and
implementations. And, of course, they're similar because we created them
by cutting and pasting.

We'll jog your memory by presenting the interfaces for the Circle and
Rectangle classes:

@interface Circle : NSObject

{
ShapeColor fillColor;
ShapeRect bounds;

CHAPTER 4: Inheritance

(void) setFillColor: (ShapeColor) fillColor;
- (void) setBounds: (ShapeRect) bounds;

- (void) draw;

@end // Circle

@interface Rectangle : NSObject

{
ShapeColor fillColor;
ShapeRect bounds;

(void) setFillColor: (ShapeColor) fillColor;
(void) setBounds: (ShapeRect) bounds;

- (void) draw;

@end // Rectangle

The interfaces for these classes are much alike, very, very much alike. In fact, except for the
class names, they're identical twins.

The implementations of Circle and Rectangle are also very similar. Recall from the previ-
ous chapter that setFil11Color: and setBounds: are identical in the two classes:

@implementation Circle
(void) setFillColor: (ShapeColor) c

{
fillColor = c;
// setFillColor

—

(void) setBounds: (ShapeRect) b

bounds = b;
} // setBounds

// ...
@end // Circle

@implementation Rectangle
- (void) setFillColor: (ShapeColor) c
{

CHAPTER 4: Inheritance

fillColor = c;
} // setFillColor

- (void) setBounds: (ShapeRect) b
{

bounds = b;
} // setBounds

// ...

@end // Rectangle

These methods do exactly the same job; they set the fi11Color and bounds instance
variables. However, the implementations of Circle and Rectangle are not identical. For
example, the draw method’s signature, that is, the method’s name and parameters, is the
same in both classes, but the implementations differ:

@implementation Circle

// ...

- (void) draw
{
NSLog (@"drawing a circle at (%d %d %d %d) in %@",

bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // draw

@end // Circle

@implementation Rectangle

// ...

- (void) draw
{
NSLog (@"drawing rect at (%d %d %d %d) in %@",

bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // draw

@end // Rectangle

CHAPTER 4: Inheritance

Shapes-Object clearly duplicates a lot of code and behavior between the Circle and
Rectangle classes. Figure 4-1 is a diagram of the classes.

Circle Rectangle
fillColor fillColor
bounds bounds
setFillColor: setFillColor:
setBounds: setBounds:
draw draw

Figure 4-1. Shapes-Object architecture without inheritance

OTE

In Figure 4-1, the name of the class is at the top of each box. The middle section gives the instance vari-
ables, and the bottom shows the methods provided by the class. This kind of diagram is defined by the

Unified Modeling Language (UML), which is a common way to diagram classes, their contents, and their
relationships.

There’s a lot of duplication in Figure 4-1, and that just smells like inefficiency. When you're
programming, duplication like this suggests bad architecture. You have twice as much code
to maintain, and you have to make changes in two (or more) places when you modify code,
which greatly increases your chances of introducing errors. If you forget to make a change in
one of these places, weird bugs can occur.

Wouldn't it be nice if all this duplicated stuff could be consolidated in one place? And it
would be nicer still if we could maintain the ability to have custom methods where we need
them, such as when we have to draw circles and rectangles. We need a system that allows
us to tell the compiler,“The Circle class is just like this other thing, with a couple of tweaks
here and there!” Well, you probably already figured out that the powerful OOP feature for
exactly this is inheritance.

Figure 4-2 shows how our architecture looks after we sprinkle in some inheritance. We have
created Shape, a brand new class, to hold the common instance variables and declare the
methods. Class Shape holds the implementation of setFil1Color: and setBounds:.

Take a look (in Figure 4-2) at our spiffy new Circle and Rectangle classes. They're a lot
smaller than they were before. All the common elements got pulled up into Shape. The only
things left in Circle and Rectangle are elements that make them unique, the draw method
in particular. We now say that Circle and RectangTe inherit from Shape.

CHAPTER 4: Inheritance

Shape
fillColor
bounds
setFillColor:
setBounds:
draw

1

Circle

Rectangle

draw

draw

Figure 4-2. Improved Shapes-Object architecture using inheritance

OTE

A'line with an arrow on the end, as shown in Figure 4-2, is the UML way to indicate inheritance. This

line shows the inheritance relationship between Circle and Shape and between Rectangle
and Shape.

Just as you might have inherited features like your hair color, shape of your nose, or your
desire to use a Mac from your biological parents, inheritance in OOP means that a class
acquires features from another class, its parent or superclass. Circle and Rectangle,
because they inherit from Shape, pick up Shape’s two instance variables.

OTE

Directly changing the value of inherited instance variables is considered bad form. Be sure to use methods
to change them.

In addition to instance variables, inheritance also brings methods along for the ride. Every

Circleand every Rectangle knows how to respond to setFil1Color: and setBounds:.
They inherit that ability from class Shape.

CHAPTER 4: Inheritance

Inheritance Syntax

Let’s take a look at the syntax we've been using to declare a new class:

@interface Circle : NSObject

The identifier following the colon is the class you're inheriting from. You can inherit from no
class in Objective-C, but if you're using Cocoa, you'll want to inherit from NSObject, because
it provides a lot of useful features (you also get those features when you inherit from a class
that inherits from NSObject). We'll cover more of NSObject’s features when we talk about
memory management in Chapter 9.

NHERIT THE ONE

Some languages, such as (++, include a feature called multiple inheritance, in which a class can inherit
directly from two or more classes. Objective-C does not support multiple inheritance. If you tried to use mul-
tiple inheritance in Objective-C, which might look something like the following statement, you would make
the compiler very unhappy:

@interface Circle : NSObject, PrintableObject

You can get many of the benefits of multiple inheritance by using other features of Objective-C, such as cat-
egories (see Chapter 12) and protocols (see Chapter 13).

Now that you've discovered inheritance and we're fixing up our architecture so that our
classes inherit from Shape, the interfaces for Circle and Rectangle change to look like the
following listing (you can find the code for this program in 04.07 Shapes-Inheritance):

@interface Circle : Shape
@end // Circle

@interface Rectangle : Shape
@end // Rectangle

You can't get much simpler than that. When code is simple, bugs have no place to hide.

Notice that we don'’t declare the instance variables any more: we get them from Shape

as part of our inheritance. You'll notice we didn't include the curly braces for the missing
instance variables: if you don’t have any ivars, you can omit the braces. We also don’t declare
the methods we get from Shape (setBounds: and setFil1Color:).

CHAPTER 4: Inheritance

Now lets look at the code that makes Shape do its thing. Here’s the declaration of Shape:

@interface Shape : NSObject

{
ShapeColor fillColor;
ShapeRect bounds;

(void) setFillColor: (ShapeColor) fillColor;
- (void) setBounds: (ShapeRect) bounds;

- (void) draw;

@end // Shape

You can see that Shape ties up in one neat package all the stuff that was duplicated in differ-
ent classes before.

The implementation of Shape is lovely and unsurprising:

@implementation Shape
- (void) setFillColor: (ShapeColor) c

fillColor = c;
} // setFillColor

- (void) setBounds: (ShapeRect) b

bounds = b;
} // setBounds

- (void) draw
{

} // draw
@end // Shape

Although the draw method doesn’t do anything, we define it anyway so that all of Shape’s
subclasses can implement their versions. It's OK to have an empty body, or one that returns
a dummy value, for a method definition.

Now let's examine the implementation of Circle. As you probably figured out, it’s a lot sim-
pler now:

@implementation Circle
- (void) draw
{
NSLog (@"drawing a circle at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

CHAPTER 4: Inheritance

} // draw
@end // Circle

Here’s the new, simplified Rectangle implementation:

@implementation Rectangle
- (void) draw
{
NSLog (@"drawing rect at (%d %d %d %d) in %@",
bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // draw
@end // Rectangle

The Triangle and ObTateSpheroid classes are similarly skinnier. Take a look at the 04.01
Shapes-Inheritance folder for details.

You can now run Shapes-Inheritance and see that it works exactly as it did before. Notice
this fascinating fact: we didn’t have to touch any of the code in main() that sets up and uses
the objects. That’s because we didn’'t change which methods the objects respond to, and we
didn’t modify their behavior.

OTE

Moving and simplifying code this way is called refactoring, a subject which is quite trendy in the 00P
community. When you refactor, you move code around to improve the architecture, as we did here to
eliminate duplicate code, without changing the code’s behavior or results. A typical development cycle
involves adding some features to your code and then refactoring to take out any duplication.

You might be surprised to learn that object-oriented programs often become simpler after new features
are added, which is exactly what happened when we added the Shapes class.

Time Out for Terminology

What would new technology be without new terms to learn? Here are the words you'll need
to be fully inheritance literate:

B The superclass is the class you're inheriting from. The superclass of Circle is Shape.
The superclass of Shape is NSObject.

B Parent class is another word for “superclass.” For example, Shape is the parent class
of Rectangle.

CHAPTER 4: Inheritance

B The subclass is the class doing the inheriting. Circle is a subclass of Shape, and
Shape is a subclass of NSObject.

B Child class is another word for “subclass.” Circle is a child class of Shape. It's your
choice whether to use subclass/superclass or parent class/child class. You'll come
across both pairs in the real world. In this book, we use superclass and subclass, pos-
sibly because we're more nerdy than parental.

B You override an inherited method when you want to change its implementation.
Circle hasits own draw method, so we say it overrides draw. Objective-C makes
sure that the appropriate class’s implementation of an overridden method is called
when the code runs.

How Inheritance Works

We did major surgery to Shapes-Object, taking all that code out of Circle and Rectangle
and moving it into Shape. It’s very cool that the rest of the program still works, without mod-
ification. Creating and initializing all the different shapes in main() didn’t change, and the
drawShapes () function is the same, yet the program still works:

drawing a circle at (0 0 10 30) in red
drawing a rect at (30 40 50 60) in green
drawing an egg at (15 19 37 29) 1in blue
drawing a triangle at (47 32 80 50) 1in red

Here, you can see another aspect of the power of OOP: you can make radical changes to a pro-
gram, and if you're careful, things will still work when you're done. Of course, you can do that
with procedural programming, but your chances of success are usually higher with OOP.

Method Dispatching

How do objects know which methods to run when they receive messages? For example,
setFil1Color:’s code has been moved out of the Circle and Rectangle classes, so how
does the Shape code know what to do when you send setFill1Color: to a Circle object?
Here’s the secret: when code sends a message, the Objective-C method dispatcher searches
for the method in the current class. If the dispatcher doesn’t find the method in the class of
the object receiving the message, it looks at the object’s superclasses.

CHAPTER 4: Inheritance

Figure 4-3 shows how method dispatching works for code sending the setFiT1CoTlor:
message to a Circle object, using the old, pre-Shape version of our program. To handle
code like [shape setFil1Color: kRedColor], the Objective-C method dispatcher looks
at the object receiving the message; in this case, it’s an object of class Circle. The object has
a pointer to its class, and the class has a pointer to its code. The dispatcher uses these point-
ers to find the right code to run.

- (void) setFillColor: (ShapeColor) c
-
- - fillColor = c;
P } // setFillColor
’
[
\
N
S - (void) setBounds: (ShapeRect) b
0, 0, NN
10, 30 code bounds = b;
Red I } // setBounds
(Circle)
/
/ - (void) draw
{
[shape setFillColor: kRedColor]; NSLog (@"drawing a circle at (%d %d %d %d) in %@",
— bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));
} // draw

Figure 4-3. Method dispatch without inheritance

Check out Figure 4-4, which shows our snazzy new inheritance-enhanced structure. In this
code, class Circle has a reference to its superclass, Shape. The Objective-C method dis-
patcher uses this information to find the right implementation of a method when a message
comes in.

- (void) setFillColor: (ShapeColor) c

fillColor = c;
} // setFillColor

code - (void) setBounds: (ShapeRect) b

bounds = b;
} // setBounds

- (void) draw

} // draw
0, 0,
10, 30 code
Red - (void) draw

(Circle)

NSLog (@"drawing a circle at (%d %d %d %d) in %@",
— bounds.x, bounds.y,
bounds.width, bounds.height,
colorName(fillColor));

} // draw

Figure 4-4. Inheritance and class code

CHAPTER 4: Inheritance

Figure 4-5 shows the method dispatch process when inheritance is involved. When you send
the setFil1Color: message to the Circle object, the dispatcher first consults the Circle
class to see if it can respond to setFi11Color: with its own code. In this case, the answer is
no: the dispatcher discovers that Circle has no definition for setFil1Color:, soit’s time to
look in the superclass, Shape. The dispatcher then roots around in Shape and finds the defi-
nition of setFi11CoTor:, and it runs that code.

This action of saying, “l can’t find it here, I'll go look in the superclass,” is repeated for every
class in the inheritance chain, as necessary. If a method can’t be found in either the Circle
or Shape class, the dispatcher checks class NSObject, because it's the next superclass in the
chain. If the method doesn’t exist in NSObject, the most super of the superclasses, you'll get
a runtime error (and you would also have gotten a compile-time warning).

- (void) setFillColor: (ShapeColor) c

/ fillColor = c;
/ } // setFillColor

code '/ - (void) setBounds: (ShapeRect) b

- —

bounds = b;
} // setBounds

- (void) draw

} // draw
0, 0,
10, 30 code
R,ed - (void) draw
(

(Circle)

NSLog (@"drawing a circle at (%d %d %d %d) in %@",
— bounds.x, bounds.y,
bounds.width, bounds.height,
/ colorName(fillColor));
} 7/ draw

[shape setFillColor: kRedColor];

Figure 4-5. Method dispatch with inheritance

Instance Variables

We've spent time discussing how methods are called in response to messages. Now, let’s
look at how Objective-C accesses instance variables. How does Circle’s draw method find
the bounds and fi11CoTor instance variables declared in Shape?

When you create a new class, its objects inherit the instance variables from its superclasses,
and then (optionally) add their own instance variables. To see how instance variable inheri-
tance works, let’s invent a new shape that adds a new instance variable. This new class,

CHAPTER 4: Inheritance

RoundedRectangle, needs a variable to hold the radius to use when drawing the corners of
the rectangle. The class definition goes a little something like this:

@interface RoundedRectangle : Shape
{

int radius: isa (NSObject)
} fillColor

(Shape)

@end // RoundedRectangle bounds
Figure 4-6 shows the memory layout of radius (RoundedRectangle)
a rounded rectangle object. NSObject

declares one instance variable, called isa,
which holds the pointer to the object’s class.
Next are the two instance variables declared by Shape: fi11Color and bounds. Finally,

Figure 4-6. Object instance variable layout

there’s radius, the instance variable that RoundedRectangle declares.

OTE

The NSObject instance variable is called i sa because inheritance sets up an “is a” relationship between
the subclass and the superclass; that is, a Rectangle isa Shape,anda Circleisa Shape. Code that
uses a Shape can also use a Rectangle or Ci rcle instead.

The ability to use a more specific kind of object (a RectangTe or Circle) instead of a general type
(Shape) is called polymorphism, a Greek word meaning “many shapes,” appropriately enough.

Remember that every method call gets
a hidden parameter, called se1f, which is self o
a pointer to the object that receives the isa
message. Methods use the sel1f parame- fillColor
ter to find the instance variables they use.

bounds
Figure 4-7 shows self pointing to)
a rounded rectangle object. sel1f points radius
to the first instance variable of the first

class in the chain of inheritance. For Figure 4-7. The self parameter pointing to a circle
RoundedRectangle, the inheritance object

chain starts with NSObject, then con-

tinues with Shape, and finally ends with RoundedRectangTe, so self points to isa, the first
instance variable. The Objective-C compiler knows the layout of the instance variables in an
object because it has seen the @interface declarations for each of these classes. With this

important knowledge, the compiler can generate code to find any instance variable.

CHAPTER 4: Inheritance

CAUTION: FRAGILE!

The compiler works its magic by using a “base plus offset” mechanism. Given the base address of an object—
that is, the memory location of the first byte of the first instance variable—the compiler can find all other

instance variables by adding an offset to that address.

For example, if the base address of the rounded rectangle object is 0x1000, the i sa instance variable is
at0x1000 + 0, whichis 0x1000. i sa is a 4-byte value, so the next instance variable, fi11Color,
starts at an offset of four, at 0x1000 + 4, or 0x1004. Every instance variable has an offset from the
object’s base.

When you access the fi11CoTor instance variable in a method, the compiler generates code to take the
value that sef holds and add the value of the offset (4, in this case) to point to the location where the vari-
able’s value is stored.

This does lead to problems over time. These offsets are now hard-coded into the program generated by the
compiler. Even if Apple’s engineers wanted to add another instance variable to NSObject, they couldn’t,
because that would change all of the instance variable offsets. This is called the fragile base class problem.
Apple has fixed this problem with the new 64-bit Objective-C runtime introduced with Leopard, which uses
indirection for determining ivar locations.

Overriding Methods

When you're making your own fresh subclasses, you often add your own methods. Sometimes,
you'll add a new method that introduces a unique feature to your class. Other times, you'll
replace or enhance an existing method defined by one of your new class'’s superclasses.

For instance, you could start with the Cocoa NSTab1eView class, which shows a scrolling list
of stuff for users to click, and add a new behavior, such as announcing the contents of the
list with a speech synthesizer. You might add a new method called speakRows that feeds the
contents of the table to the speech synthesizer.

Or, instead of adding an entirely new feature, you might create a subclass that tweaks

an existing behavior inherited from one of its superclasses. In Shapes-Inheritance, Shape
already does most of what we want a shape to do by setting the fill color and bounds of the
shape, but Shape doesn’t know how to draw anything. And it can’t know how to draw: Shape
is a generic, abstract class, and every shape is drawn differently. So when we want to make

a Circle class, we subclass Shape and write a draw method that knows how to draw a circle.

When we created Shape, we knew that all its subclasses would have to draw, even though
we didn’t know exactly what they would do to implement their drawing. So we gave Shape
a draw method, but made it empty so that every subclass could do its own thing. When

CHAPTER 4: Inheritance

classes such as Circle and Rectangle implement their own draw methods, we say that they
have overridden the draw method.

When a draw message is sent to a circle object, the method dispatcher runs the overridden
method—Circle’s implementation of draw. Any implementation of draw defined by a super-
class, such as Shape, is completely ignored. That’s fine in this case—Shape has no code in its
implementation of draw. But other times, you might not want to ignore the superclass’s version
of a method. For more on this, read on.

| Feel Super!

Objective-C provides a way to override a method and still call the superclass’s implementation—
useful when you want to let the superclass do its thing and perform some additional work
before or after. To call the inherited method implementation, you use super as the target for
a method call.

For example, let’s suppose we just learned that some cultures are offended by red circles, and
we want to sell our Shapes-Inheritance software in those countries. Instead of drawing red
circles, as we've been doing all along, we want all the circles to be drawn in green. Because
this limitation affects only circles, one way to do this is to modify Circle so that all circles are
drawn green. Other shapes drawn in red aren't a problem, so we don’t need to eliminate them.
Why not just bash Ci rcle’s fill color methods directly? Here, we could. You don't always have
this luxury, though; for example, you don’t have the code for the class you want to modify.

Remember that setFil1Color: is defined in class Shape. We can therefore fix the problem
for circles only by overriding setFi11Color: in the Circle class. We'll look at the color
parameter, and if it's red, we'll change it to green. We'll then use super to tell the superclass
(Shape) to store this changed color into the fi11Color instance variable (the complete code
listing for this program is in 04.02 Shapes-Green-Circles).

The @interface section of Circle doesn't change, because we're not adding any new
methods or instance variables. We only need to add code to the @impTementation section:

@impTlementation Circle
- (void) setFillColor: (ShapeColor) c
{
if (c == kRedColor) {
c = kGreenColor;

}

[super setFillColor: c];
} // setFillColor
// and the rest of the Circle @implementation
// is unchanged
@end // Circle

CHAPTER 4: Inheritance

In this new implementation of setFil1Color:, we examine the ShapeColor parameter to
see if it’s red. If so, we change it to green. Next, we ask the superclass to do the work of put-
ting the color in the instance variable with the code [super setFil1Color: c].

Where does super come from? It’s not a parameter or an instance variable, but instead a bit
of magic provided by the Objective-C compiler. When you send a message to super, you're
asking Objective-C to send the message to the class’s superclass. If it’s not defined there,
Objective-C continues looking up the inheritance chain in the usual fashion.

Figure 4-8 shows the flow of execution for Circle’s setFillColor:.The circle object is
sent the setFil1Color: message. The method dispatcher finds the custom version of
setFil1Color: that'simplemented by class Circle.

After Circle’s version of setFil1Color: does its check for kRedColor and changes the
color if needed, the superclass’s method is invoked by calling [super setFillColor: c].
The super call runs Shape’s version of the setFi11Color: method.

- (void) setFillColor: (ShapeColor) c < — N

-

fillColor = c;
} // setFillColor

code - (void) setBounds: (ShapeRect) b
(
L

bounds = b;
} // setBounds

e

- (void) draw 1
} /7 draw I
I
1
. . 1
0,00 \ L Tiia.)T [F==—2=1 L — - % (void) setFillColor: (ShapeColor) c !
10, 30
Red code if (c == kRedColor) { /
(Circle) ¢ = kGreenColor; /
} /
— -,

[super setFillColor: c]; = = = -

} // setFillColor

[shape setFillColor: kRedColor];

Figure 4-8. Calling the superclass method

OTE

When you override a method, invoking the superclass method is almost always a good idea, in case it’s
doing more work than you're aware of. In this case, we have access to the source for Shape, so we know
that all Shape doesinits setFil1Color: is stick the new color into an instance variable. But if

we weren’t so well versed in Shape, we wouldn’t know if Shape was doing something else. And even
though we know what Shape does now, we might not if the class is changed or enhanced later. By calling
the inherited method, we make sure we get all the features it implements.

CHAPTER 4: Inheritance

Summary

Inheritance is a vital concept in object-oriented programming, as many advanced tech-
niques of OOP involve it. In this chapter, you met inheritance and saw how it was used

to beautify and simplify the Shapes-Object code. We discussed how new classes can be
made from existing classes, and you saw how instance variables of a superclass appear in
subclasses.

We went over the Objective-C method dispatch machinery and noted how it crawls up the
inheritance chain looking for the method to run in response to a particular message. Finally,
we introduced the super keyword and showed how you can use it to take advantage of

a superclass’s code in an overridden method.

You'll get to know composition in the next chapter, which is another way of having different
objects collaborate to get work done. It might not be quite as geeky-cool as inheritance, but
it's very important, so we'll see you there.

Che

Composition

/

n the previous chapter, you got hip to inheritance, a way to set up a relation-

ip between two classes that removes the need for a lot of duplicated code.
And we (briefly) mentioned that you can also set up relationships using
composition, which is the subject of this chapter. You can use composition to
combine objects so they can work together. In a typical program, you'll use
both inheritance and composition when creating your own classes, so it’s
important to have a good handle on both concepts.

What Is Composition?

Composition in programming is like composition in music: you're bringing
individual components together and making them work to build something
bigger. In music, you might bring together a bassoon part and an oboe part
in creating a symphony. In software, you might bring together a pedal object
and a tire object as part of a virtual unicycle.

In Objective-C, you compose by including pointers to objects as instance
variables. So, our virtual unicycle would have a pointer to a Pedal object and
a pointer to a Tire object and would look something like this:

@interface Unicycle : NSObject

{
Pedal *pedal;
Tire *tire;

}
@end // Unicycle

Through composition, a Unicycle consists of a Pedal and a Tire.

CHAPTER 5: Composition

OTE

You've already seen a form of composition in the Shapes-Object program: the Shape class makes use of
rectangles (a struct) and colors (an enum). Strictly speaking, only objects are said to be composed.
More primitive types like int, f1oat, enum, and struct are considered to just be part of the object.

CarTalk

Let’s put the Shapes program aside for awhile (are those sighs of relief we hear?) and take
a look at modeling an automobile. A car, in our simplified model, has an engine and four
tires. Rather than wading through the physics modeling of actual tires and engines, we'll
use a couple of classes that have only a method to print out which part they represent: tire
objects will say that they're tires, and the engine object will say that it’s an engine. In a real
program, the tires would have attributes like air pressure and handling ability, and the
engine would have variables like horsepower and gas mileage. The code for this program
can be found in 05.07 CarParts.

Like the Shapes program, CarParts has everything in its mainCarParts.m. CarParts starts out
by importing the Foundation framework header:

#import <Foundation/Foundation.h>

The Tire class follows; there’s not much to it except a description method:

@interface Tire : NSObject
@end // Tire
@implementation Tire

- (NSString *) description
{

return (@"I am a tire. I last a while");
} // description

@end // Tire

OTE

You can leave out the curly braces in your class definitions if you don’t have any instance variables.

The only method in Tireis description, and it wasn’t declared in the interface. Where did
it come from? How can anybody know to use description with a Tireif it's not included in
the interface? It happens with the help of a little Cocoa magic.

CHAPTER 5: Composition

Customizing for NSLog()

Remember that NSLog () lets you use the %@ format specifier to print objects. When NSLog ()
processes the %@ specifier, it asks the corresponding object in the parameter list for its
description. Speaking technically, NSLog () sends the description message to the object, and
the object’s description method builds an NSString and returns it. NSLog () then includes
that string in its output. By supplying a description method in your class, you can custom-
ize how your objects are printed by NSLog ().

In your description methods, you can return a literal NSString, suchas@"I am a cheese
Danish object", or you can construct a string that describes all sorts of information about
the object, such as the fat content and calories for the cheese Danish.The description
method for Cocoa’s NSArray class, which manages a collection of objects, provides informa-
tion about the array itself, such as the number of objects it contains and descriptions of each
object it contains. These descriptions, naturally, are acquired by sending the description
message to each of the objects the array contains.

Getting back to CarParts, let’s have a look at the Engine class. Like Tire, it has just a description
method. In a real program, your engine would have methods such as start and accelerate
and instance variables like RPMs. But we're here to see a simple example of composition at work,
so we've given Engine just a description:

@interface Engine : NSObject
@end // Engine

@implementation Engine

- (NSString *) description
{

return (@"I am an engine. Vrooom!");
} // description

@end // Engine

The last part is the car itself, which has an engine and a C array of four tires. The car uses
composition to assemble itself. Car also has a method called print that uses NSLog() to
print out the tires and engine:

@interface Car : NSObject
{

Engine *engine;
Tire *tires[4];

3
- (void) print;

@end // Car

CHAPTER 5: Composition

The engine and tires instance variables are the composition, because tires and engine are
instance variables of Car. You can say that Car is composed of four tires and an engine. Of course,
people don’t usually talk like that, so you can also say that Car has four tires and an engine.

Each car object allocates memory for pointers to the engine and tires. An entire engine and four
tires aren’'t embedded into the car, just references to other objects floating around in memory.
When a new Car is allocated, these pointers are initialized to ni1 (a zero value) indicating that the
car does not have an engine or any tires. You can picture it just sitting up on blocks.

Let’s take a look at the implementation of the Car class. First is an init method, which initializes
the instance variables. The init method creates an engine and four tires to outfit the car. When
you create a new object with new, two steps actually happen under the hood. First, the object is
allocated, meaning that a chunk of memory is obtained that will hold your instance variables. The
init method is then called automatically to get the object into a workable state.

@implementation Car

- (id) 1init
{
if (self = [super init]) {
engine = [Engine new];
tires[0] = [Tire new];
tires[1l] = [Tire new];
tires[2] = [Tire new];
tires[3] = [Tire new];
}
return (self);
} // init

The init method for Car makes a new engine and assigns it to the engine instance variable.
init then creates four new tires and assigns them to the tires array.

Next comes Car’s print method:

- (void) print

{
NSLog (@"%@", engine);
NSLog (@"%@", tires[0]);
NSLog (@"%@", tires[1l]);
NSLog (@"%@", tires[2]);
NSLog (@"%@", tires[3]);
} // print

@end // Car

CHAPTER 5: Composition

BOUT THAT IF STATEMENT...

This line of code in the 1 ni t method looks a little odd:

if (self = [super init]) {

We'll explain what’s happening here. You need to call [super 1init] sothat the superclass (NSObject,
in this case) can do any one-time initialization that it needs to do. The i ni t method returns a value (of type
id, a generic object pointer) representing the object that was initialized.

Assigning the result of [super init] backto selfisa standard Objective-C convention. We do this in
case the superclass, as part of its initialization work, returns a different object than the one originally cre-
ated. We'll explore this in depth in a later chapter when we cover i ni t methods in more detail, so for now,
please just nod and smile over this line of code, and we’ll move on.

The print method uses NSLog () to print out the instance variables. Remember that %@
simply calls the description method of each object, and the results are displayed. In a real
program, you would use the tires and the engine to figure out how well the car was holding
the road.

The last part of CarParts.m is the main() function, the driver of this program. (Sorry about
that.) main() creates a new car, tells it to do its thing by asking the car to print itself, and
then exits.

int main (int argc, const char * argv[])

{
Car *car;
car = [Car new];
[car print];
return (0);

} // main

Build and run CarParts, and you should see output similar to this:

am an engine. Vrooom!

am a tire. I last a while.
am a tire. I last a while.
am a tire. I last a while.
am a tire. I last a while.

H - H H

It won't win any car awards, but it works!

CHAPTER 5: Composition

Accessor Methods

Programmers are rarely satisfied with the programs they write, because software is never fin-
ished. There’s always one more bug to fix, one more feature to add, or one more way to make
the program bigger, stronger, or faster. So it’s no surprise that CarParts isn't perfect yet. We
can improve it and make its code more flexible by using accessor methods. The code for this
new version can be found in the 05.02 CarParts-Accessors folder.

An experienced programmer looking at Car’s init method might say, “Why is the car creat-
ing its own tires and engine?”The program would be much better if you could customize the
car to use different kinds of tires (such as snow tires for the winter months) or various types
of engines (fuel injected rather than carbureted).

It would be nice if we could instruct the car to use a particular tire or engine. We could then
let users mix and match car parts to create custom vehicles.

We can make this happen by adding accessor methods. An accessor method is one that reads
or changes a specific attribute for an object. For instance, setFi11Color: in Shapes-Object is
an accessor method. If we added a new method to change the engine in a Car object, it would
be an accessor method. This particular kind of accessor method is called a setter method,
because it sets a value on an object. You might hear the term mutator used for a method that
changes an object state.

You've probably already guessed that another kind of accessor method is a getter. A getter
method provides a way for code that uses an object to access its attributes. In a racing game,
the physics logic would want to access attributes of the car’s tires to figure out if the car will
skid on wet pavement at its current speed.

OTE

You should always use any provided accessor methods when manipulating another object’s attributes—

never reach into an object and change values directly. For example, main () should not directly access
the Car’s engine instance variable (using car->eng1ine) to change its engine. Instead, your code
should use a setter method to make the change.

Accessor methods are yet another example of indirection at work. By accessing the car’s engine indirectly
via an accessor method, you're allowing for flexibility in the car’s implementation.

Let’s add some setter and getter methods to Car so the code that uses it has control over the
kinds of tires and engine used. Here is the new interface for Car, with the new items in bold:

CHAPTER 5: Composition

@interface Car : NSObject

{
Engine *engine;
Tire *tires[4];
3
- (Engine *) engine;
- (void) setEngine: (Engine *) newEngine;
- (Tire *) tireAtIndex: (int) 1index;
- (void) setTire: (Tire *) tire
atIndex: (int) 1index;
- (void) print;
@end // Car

The set of instance variables hasn’t changed, but there are two new pairs of methods: engine
and setEngine: deal with the engine attributes, and tireAtIndex: and setTire:atIndex:
work with the tires. Accessor methods almost always come in pairs, one to set the value and
one to get it. Occasionally, having only a getter (for a read-only attribute, like the size of a file
on disk) or only a setter (like setting a secret password) might make sense, but most often,
you'll be writing both setters and getters.

Cocoa has conventions for naming accessor methods. When you're writing accessor meth-
ods for your own classes, you should follow these conventions so that you and other people
reading your code won't get confused.

Setter methods are named after the attribute they change, preceded by the word “set.”
Here are examples of names of setter methods: setEngine:, setStringValue:, setFont:,
setFill1Color:, and setTextLineHeight:.

Getter methods are simply named after the attribute they return. The getters corresponding
to the preceding setters would be named engine, stringValue, font, fil1Color, and
textLineHeight. Don't use the word “get” in the name of the method. For example, meth-
ods named getStringValue and getFont would violate the convention. Some languages,
such as Java, have different conventions that use “get” in the name of accessor methods, but
if you're writing Cocoa code, don't use it.

CHAPTER 5: Composition

OTE

The word “get” has a special meaning in Cocoa: in a Cocoa method name, it means the method returns
a value via a pointer that you pass in as a parameter. For example, NSData (a Cocoa class for objects that

store an arbitrary sequence of bytes) has a method called getBytes :, which takes a parameter that is
the address of a memory buffer for holding the bytes. NSBez1ierPath (used for drawing) has a method
called getLineDash: count:phase:, which takes a pointer to a float array for the line dash pat-
tern, a pointer to an integer for the number of elements in the dash pattern, and a pointer to a float for
the place in the pattern to start drawing.

If you use “get” in your accessor method names, experienced Cocoa programmers using your code will
expect to provide pointers as arguments to your method and will then be confused when they discover
that it’s just a simple accessor. It's best not to confuse the programmers.

Setting the Engine

The first pair of accessor methods affect the engine:

- (Engine *) engine;
- (void) setEngine: (Engine *) newEngine;

Code that uses Car objects calls engine to access the engine and setEngine: to change it.
Here is what the implementation of these methods look like:

(Engine *) engine

return (engine);
} // engine

(void) setEngine: (Engine *) newEngine

engine = newEngine;
} // setEngine

The getter method engine returns the current value of the engine instance variable.
Remember that all object interaction in Objective-C happens via pointers, so the engine
method returns a pointer to the engine object that the Car contains.

Similarly, the setter method setEngine: sets the value of the engine instance variable to
the value that’s pointed in. The actual engine itself is not copied, just the value of the pointer
that points to the engine. Here’s another way to say this: after you call setEngine: on a car
object, only one engine exists in the world, not two engines.

CHAPTER 5: Composition

OTE

In the interests of full disclosure, we'll state that there are a couple of problems with the Engine getter
and setter in the areas of memory management and object ownership. Throwing memory and object life
cycle management at you right now would be both confusing and frustrating, so we’ll defer the discussion
of the absolutely correct way to write accessor methods until Chapter 8.

To actually use these accessors, you write code like this:
Engine *engine = [Engine new];

[car setEngine: engine];

NSLog (@"the car's engine is %@", [car engine]);

Setting the Tires
The accessor methods for the tires are a little more sophisticated:
- (void) setTire: (Tire *) tire

atIndex: (int) index;

- (Tire *) tireAtIndex: (int) index;

Because a car has multiple spots for tires (one on each of the four corners of the vehicle),
Car objects contain an array of tires. Rather than exposing the tires array to the world, an
indexed accessor is used. When setting a tire for a car, you tell the car not only which tire to
use but also which position on the car to use for each tire. Likewise, when accessing a tire for
a car, you ask for the tire in a particular location.

Here is the implementation of tire accessors:

- (void) setTire: (Tire *) tire
atIndex: (int) index

if (index < 0 || index > 3) {
NSLog (@"bad index (%d) in setTire:atIndex:",
index);
exit (1);

tires[index] = tire;

} // setTire:atIndex:

- (Tire *) tireAtIndex: (int) 1index

CHAPTER 5: Composition

if (index < 0 || index > 3) {
NSLog (@"bad index (%d) in tireAtIndex:",
index);
exit (1);

return (tires[index]);
} // tireAtIndex:

The tire accessors have some common code that checks to make sure the array index for the
tires instance variable is a valid value. If it's outside of the range of 0 through 3, the pro-
gram prints a complaint and exits. This code is what’s known as defensive programming,
and it’s a good idea. Defensive programming catches errors, such as using a bad index for

a tire location, early in the development cycle.

We have to check the validity of the array index because tires is a C-style array, and the
compiler doesn’'t do any error checking on the index used when accessing the array. We
could write tires[-5] or tires[23] without a compiler complaint. Of course, the array has
only four elements, so using -5 or 23 for the index will access random memory and lead to
bugs and program crashes.

After the index check, the tires array is manipulated to put the new tire in its proper place.
Code that uses these accessors looks like this:

Tire *tire = [Tire new];

[car setTire: tire
atIndex: 2];

NSLog (@"tire number two is %@",
[car tireAtIndex: 2]);

Tracking Changes to Car

There are a couple of details left to clean up before we can declare CarParts-Accessors to be
done.

The first detail is Car’s init method. Because Car now has accessors for its engine and tires,
its init method doesn’t need to create any. The code that creates the car is responsible for
outfitting the engine and tires. In fact, we can remove the init method entirely, since there’s
no need to do that work in Car any more. People who get a new car will get one without

CHAPTER 5: Composition

tires or an engine, but these can easily be made (sometimes, life in software is so much
easier than it is out here in the real world).

Because Car no longer creates its own moving parts, main() must be updated to create
them. Change your main() function to look like this:

int main (int argc, const char * argv[])

{
Car *car = [Car new];
Engine *engine = [Engine new];
[car setEngine: enginel;
int 1i;
for (i =0; i < 4; i++) {
Tire *tire = [Tire new];
[car setTire: tire
atIndex: 1i];
ks
[car print];
return (0);
} // main

main() creates a new car, as it did in its previous incarnation. Then, a new Engine is made
and placed in the car. Then a for loop spins around four times. Each time through the loop,
a new tire is created, and the car is told to use the new tire. Finally, the car is printed and the
program exits.

From the user’s point of view, the program hasn’'t changed at all:

am an engine. Vrooom!

am a tire. I last a while.
am a tire. I last a while.
am a tire. I last a while.
am a tire. I last a while.

H - H H

As with Shapes-Object, we've refactored the program, improving the internal structure but
leaving the external behavior the same.

CHAPTER 5: Composition

Extending CarParts

Now that Car has accessors, let’s take advantage of them. Instead of the stock engine and
tires, we'll implement variations on these parts. We'll use inheritance to make the new kinds
of engines and tires, and then use Car’s accessors (that's composition) to give the car its new
moving pieces. The code for this program can be found in the 05.03 CarParts-2 folder.

First is a new kind of engine, a S1ant6 (if you prefer a V8 or a ThreeFi ftyOneWindsor, go for it).

@interface Slant6 : Engine
@end // Slant6

@implementation Slant6

- (NSString *) description
{
return (@"I am a slant-6. VROOOM!™);

} // description
@end // Slanté6

A Slanté6is a kind of engine, so it makes sense for us to subclass Engine. Remember that
inheritance sets up a relationship that allows us to pass subclasses (STant6) where the super-
class (Engine) is expected. Because Car takes an argument of type Engine for the setEngine:
method, we can safely pass ina STanté6.

ST1ant6 overrides description to make it print a new message. Because STant6 does not invoke
the superclass’s description method (thatis, it doesn’tinclude [super description]),itcom-
pletely replaces its inherited description.

The steps for implementing a new class of tires, called A11WeatherRadial, are a lot like the
ones we used for STant6. We subclass an existing class (T1 re) and provide a new description
method:

@interface AllWeatherRadial : Tire
@end // AllWeatherRadial

@implementation AllWeatherRadial

- (NSString *) description
{

return (@"I am a tire for rain or shine.");
} // description

@end // AllWeatherRadial

CHAPTER 5: Composition

And finally, we tweak main() to use the new engine and tire types (the changed code is in

int main (int argc, const char *

Car *car = [Car new];

=0; 1< 4; i++) {
Tire *tire = [Al1WeatherRadial new];

[car setTire: tire
atIndex: i];

bold):

{
int 1;
for (i
%
Engine *engine =
[car print];
return (0);

} // main

argvlD)

[STant6 new];
[car setEngine: enginel;

We added two new classes and slightly changed two lines of code. We didn’t touch Car at
all. Our Car happily uses whatever kind of engine and tires you devise without having to
change Car itself. The behavior of the program is now radically different:

am
am
am
am
am

H - H H

Composition or Inheritance?

AP DR I <D I)

slant-6.

tire
tire
tire
tire

for
for
for
for

VROOOM!

rain
rain
rain
rain

or
or
or
or

shine.
shine.
shine.
shine.

CarParts-2 uses both inheritance and composition, the two new tools in your utility belt
introduced here and in the previous chapter. A good question—no, a great question—to

ask is,“When do | use inheritance, and when do | use composition?”

Inheritance sets up an “is a”relationship. A triangle is a shape. ST1ant6 is an engine.
AllwWeatherRadial is a tire. When you can say, “X is a Y,"you can use inheritance.

CHAPTER 5: Composition

Composition, on the other hand, sets up a“has a” relationship. A shape has a fill color. A car
has an engine, and it has a tire. In contrast, a car is not an engine, and a car is not a tire. When
you can say, “X has a Y, you should use composition.

Programmers new to object-oriented programming often make the mistake of trying to use
inheritance for everything, such as having Car inherit from Engine. Inheritance is a fun new
toy, but it’s not appropriate for every situation. You can create a working program with such
a structure, because you can access stuff that makes an engine work from inside the Car
code. But it doesn’t make sense to people reading the code. A car is an engine? Huh? So, use
inheritance only when it's appropriate.

Here’s an example of how your thinking might go when designing your data structures:
when creating new objects, take some thinking time to figure out when inheritance should
be used and when composition should be used. For instance, in designing car stuff, you
might think, “A car has tires, and an engine, and a transmission.” So you'd use composition
and make instance variables in your Car class for all of those.

In other circumstances, you would use inheritance. For instance, you might need the idea
of a licensed vehicle, that is, one requires some kind of license before it is legal to use. An
automobile, motorcycle, and tractor-trailer rig would all be licensed vehicles. An automo-
bile is a licensed vehicle, and a motorcycle is a licensed vehicle—sounds like a good job
for inheritance. So you'd probably have a LicensedVehicle class that holds things like the
municipality and license number (using composition!), and Automobile, MotorCycle, and
so on would inherit from LicensedVehicle.

Summary

Composition, the technique of creating objects that have references to other objects, is

a fundamental concept of OOP. For instance, a car object has references to the engine object
and four tire objects. During this chapter’s discussion of composition, we introduced acces-
sor methods, which provide a way for outside objects to change attributes while keeping
the instance variables shielded.

Accessor methods and composition go hand in hand, because you usually write acces-

sor methods for each object that’s being composed. You also learned about two types of
accessor methods: setter methods tell an object what to change an attribute to, and getter
methods ask an object for the value of an attribute.

In this chapter, you also heard about Cocoa rules for naming accessor methods. In particular, we
cautioned you to not use “get”in the name of accessor methods that return an attribute value.

In the next chapter, we'll take a breather from all this fabulous OOP theory so we can look at
how to split classes among multiple source files, rather than keeping everything in one big file.

Chapter

Source File
Organization

o far, every project we've talked about has had all its source code crammed into its
main.m file. The main () function and all the @interface and @implementation
sections for our classes are piled into the same file. That structure’s fine for small
programs and quick hacks, but it doesn’t scale to larger projects. As your program
gets bigger, you'll have a ponderous file to scroll through, making it harder to find
stuff. Back in your school days (assuming you're finished with them), you didn't put
every term paper into the same word processing document (assuming you had
word processors). You kept each paper in its own document, with a descriptive
name. Likewise, it's a good idea to split your program’s source code into multiple
files, and you can give each one a helpful name. Compartmentalizing your pro-
gram into smaller files gives you a chance to find important bits of code more
quickly, and it helps others get a quick overview when they look at your project.
Putting your code in multiple files also makes sending the source for an interest-
ing class to a friend easier: you just pack up a couple of files rather than your entire
project. In this chapter, we'll discuss strategies and ideas for keeping various bits of
your program in separate files.

Split Interface and Implementation

As you've seen, the source code for Objective-C classes is divided into two
parts. One part is the interface, which provides the public view of the class.
The interface contains all the information necessary for someone to use the
class. By showing the compiler the @interface section, you'll be able to use
objects of that class, call class methods, compose objects into another class,
and make subclasses.

CHAPTER 6: Source File Organization

The other part of a class’s source is the implementation. The @impTlementation section tells
the Objective-C compiler how to make the class actually work. This section contains the
code that implements the methods declared in the interface.

Because of the natural split in the definition of a class into interface and implementation,
a class’s code is often split into two files along the same lines. One part holds the interface
components: the @interface directive for the class, any public struct definitions, enum
constants, #defines, extern global variables, and so on. Because of Objective-C’s C heri-
tage, this stuff typically goes into a header file, which has the same name as the class with
a.h at the end. For example, class Engine’s header file would be called Engine.h, and
Circle’s header file would be Circle.h.

All the implementation details, such as the @implementation directive for the class, defini-
tions of global variables, private structs, and so on, go into a file with the same name as the
class and a.m at the end (sometimes called a dot-m file). Engine.m and Circle.m would be
the implementation files for those classes.

OTE

If you use .mm for the file extension, you're telling the compiler you've written your code in
Objective-C++, which lets you use (++ and Objective-C together.

Making New Files in Xcode

When you build a new class, Xcode makes your life easier by automatically creating the .h

and.m files for you. When you choose File » New File in Xcode, you get a window like the

one shown in Figure 6-1 that presents you with a list of the kinds of files that Xcode knows
how to create.

Select Objective-C class, and click Next. You'll get another window asking you to fill in the
name, as shown in Figure 6-2.

You can see a bunch of other things in that window. There’s a checkbox you can use to have
Xcode create Engine.h for you. If you had multiple projects open, you could use the Add to
project pop-up menu to choose which project should get the new files. We won't discuss
the Targets section right now, except to say that complex projects can have multiple targets,
each having its own configuration of source files and different build rules.

Cocoa Touch Classes
Code Signing
Settings

| User Interfaces

=

Main Menu XIB

Data Model

>

Mapping Model

Objective-C class

Description An Objective-C class file, with an optional header
which includes the <Cocoa/Cocoa.h> header.

(“Previous) (S Nexte)

File Name: |Engine.m

™ Also create “Engine.h”

Location: |~/Writing/LoC/Projects/Learn Objective-C/CarPari®] { Choose...)

Add to Project: | CarParts

Targets: & [CarParts

Figure 6-2. Naming the new files

CHAPTER 6: Source File Organization

Once you click the Finish button, Xcode adds the appropriate files to the project and displays
the results in the project window, as shown in Figure 6-3.

‘Groups & Files | _ A |Code L I

v 15 CarParts B! [Engineh
] Source |—1‘| Engine.m v)
E_‘; CarParts_Prefix.pch
i_.ﬂ CarParts.m ! - . - - 5 e
] Engine.h g Engine.nl 3 <Noselected symbol . "% [C, #. @ @
._E—I Engioem ¢ Engine.h -
> — Documentation /¢ CarParts
» | External Frameworks anc i
»] Products /¢ Created by morkd on 7/21/85.
b@Tangts (] /¢ Copyright 2885 __MyComponyMame__. ALl rights reserved.
» {4 Executables 14
3? Errors and Warnings #mport <LoconsCocon. b
¥ '{ Find Results
» LIfl Bookmarks
>; scM @interface Engine : M30bject {
@ Project Symbols }
» & Implementation Files
» [NIB Files @end

Figure 6-3. The new files displayed in the Xcode project window

Xcode puts the new files into the selected folder in the Groups & Files pane (if you had Source
selected before creating the files, the files would go into that folder). These folders (called
Groups by Xcode) provide a way to organize the source files in your project. For example, you
can make one group for your user interface classes and another for your data-manipulation
classes to make your project easier to navigate. When you set up groups, Xcode doesn’t
actually move any files or create any directories on your hard drive. The group relationship

is just a lovely fantasy maintained by Xcode. If you want, you can set up a group so that it
points to a particular place in the file system. Xcode will then put newly created files into
that directory for you.

Once you've created the files, you can double-click them in the list to edit them. Xcode helpfully
includes some of the standard boilerplate code, stuff you'll always need to have in these files,
such as #import <Cocoa/Cocoa.h>, as well as empty @interface and @implementation sec-
tions for you tofill in.

OTE

So far in this book, we've had #import <Foundation/Foundation.h> inour programs because

we're using only that part of Cocoa. But it’s OK to use #import <Cocoa/Cocoa.h> instead. That
statement brings in the Foundation framework headers for us, along with some other stuff.

CHAPTER 6: Source File Organization

Breaking Apart the Car

CarParts-Split, found in the 06.01CarParts-Split project folder, takes all the classes out of the
CarParts-Split.m file and moves them into their own files. Each class lives in its own header
(.h) and implementation (.m) files. Let’s see what it takes to create this project ourselves. We'll
start with two classes that inherit from NSObject: Tire and Engine. Choose New File, and
then pick Objective-C Class, and enter the name Tire. Do the same with Engine. Figure 6-4
shows the four new files in the project list.

'Q~ String Match

Groups & Files

¥ B3 CarParts-Split
w1 Source v L
|'_H_‘: CarParts-Split_Prefix.| E] Tire.h
@ CarParts-Split.m E‘] Tire.m v L)
B Engine.h
ﬁ Engine.m
E Tire.m
> .__: Documentation
] Bxternal Frameworks x
P'_:: S bl b 4 » [hTireh:1 % <No selected symbols> == | C. | #,. | ®m |2
» [Products I W R T T T -
» (@) Targets /¢ Tire.h I
» 4 Executables i /¢ CorParts-Split
» /B Errors and Warnings o
vC{Fmd Results s Creutgd by markd on 7/21/88. .
/¢ Copyright 2865 __MyCompanyMame__. All rights reserved.
» LI Bookmarks
> A
=fs"
- Project Symbaols #import Locoo Cocoa.h=
» (@ Implementation Files
> (& NIB Files ginterface Tire : NSObject {
+
dend
A

Figure 6-4. Tire and Engine added to the project

Now, cut Tire’s @interface from CarParts-Split.m, and paste it into Tire.h. The file should look
like this:

#import <Cocoa/Cocoa.h>

@interface Tire : NSObject
@end // Tire

Next, we'll cut the Tire @implementation from CarParts-Split.m and paste it into Tire.m. You'll
also need to add an #import "Tire.h" at the top. This is what Tire.m should look like:

#import "Tire.h"

CHAPTER 6: Source File Organization

@implementation Tire

- (NSString *) description
{

return (@"I am a tire. I last a while");
} // description

@end // Tire

The first #import of the file is interesting. It’s not importing the Cocoa.h or Foundation.h
header files, as we've done before. Instead, it imports the header file for the class. This is
standard procedure, and you'll end up doing this in virtually every project you create. The
compiler needs the layout of instance variables in the class so it can generate the proper
code, but it doesn’t automatically know there is a header file to go along with this source
file. So, we need to inform the compiler by adding the #import "Tire.h" statement. When
compiling, if you encounter an error message like “Cannot find interface definition for Tire,”
that usually means you forgot to #import the class’s header file.

OTE

Notice that there are two different ways of doing imports: with quotation marks and with angle brackets.
For example, there’s #import <Cocoa/Cocoa.h>and #import "Tire.h".The version with
angle brackets is used for importing system header files. The quotes version indicates a header file that’s
local to the project. If you see a header file name in angle brackets, it’s read-only for your project, because
it'’s owned by the system. When a header file name is in quotes, you know that you (or someone else on
the project) can make changes to it.

Now, do the same procedure for class Engine. Cut the Engine @interface out of
CarParts-Split.m, and paste it into Engine.h. Engine.h now looks like this:

#import <Cocoa/Cocoa.h>

@interface Engine : NSObject
@end // Engine

Next, cut the @implementation from Engine, and paste it into Engine.m, which should now
look like the following:

#import "Engine.h"
@implementation Engine

- (NSString *) description
{

CHAPTER 6: Source File Organization

return (@"I am an engine. Vrooom!'");
} // description

@end // Engine

If you try to compile the program now, CarParts-Split.m will report errors due to the missing
declarations of Tire and Engine. Those are pretty easy to fix. Just add the following two
lines to the top of CarParts-Split.m, just after the #import <Foundation/Foundation.h>
statement:

#import "Tire.h"
#import "Engine.h"

OTE

Remember that #import is like #incTude, a command that’s handled by the C preprocessor. In this

case, the C preprocessor is essentially just doing cut and paste, sticking the contents of Tire.h and Engine.h
into CarParts-Split.m before continuing.

You can build and run CarParts-Split now, and you'll find its behavior unchanged from the
original version, which is the one that uses Al11WeatherRadials and Slanté:

I am a tire for rain or shine
I am a tire for rain or shine
I am a tire for rain or shine
I am a tire for rain or shine
I am a slant-6. VROOOM!

Using Cross-File Dependencies

A dependency is a relationship between two entities. Issues with dependencies pop up
frequently during program design and development. Dependencies can exist between two
classes: for example, STant6 depends on Engine because of their inheritance relationship. If
Engine changes, such as by adding a new instance variable, STant6 will need to be recom-
piled to adapt to the change.

Dependencies can exist between two or more files. CarParts-Split.m is dependent on Tire.h and
Engine.h. If either of those files change, CarParts-Split.m will need to be recompiled to pick up
the changes. For instance, Tire.h might have a constant called kDefaultTirePressure with

a value of 30 psi. The programmer who wrote Tire.h might decide that the default tire pressure

CHAPTER 6: Source File Organization

should be changed to 40 psi in the header file. CarParts-Split.m now needs to be recompiled
to use the new value of 40 rather than the old value of 30.

Importing a header file sets up a strong dependency relationship between the header

file and the source file that does the importing. If the header file changes, all the files
dependent on that header file must be recompiled. This can lead to a cascade of changes
in the files that need to be recompiled. Imagine you have a hundred .m files, all of which
include the same header file—let’s call it UserinterfaceConstants.h. If you make a change to
UserInterfaceConstants.h, all 100 of the .m files will be rebuilt, which can take a significant
amount of time, even with a cluster of souped-up, Intel-based Xserves at your disposal.

The recompilation issue can get even worse, because dependencies are transitive: header
files can be dependent on each other. For example, if Thing1.h imports Thing2.h, which in
turn imports Thing3.h, any change to Thing3.h will cause files that import Thing1.h to be
recompiled. Although compilation can take a long time, at least Xcode keeps track of all
dependencies for you.

Recompiling on a Need-to-Know Basis

But there’s good news: Objective-C provides a way to limit the effects of dependency-caused
recompilations. Dependency issues exist because the Objective-C compiler needs certain
pieces of information to be able to do its work. Sometimes, the compiler needs to know
everything about a class, such as its instance variable layout and which classes it ultimately
inherits from. But sometimes, the compiler only needs to know the name of the class, rather
than its entire definition.

For example, when objects are composed (as you saw in the last chapter), the composi-
tion uses pointers to objects. This works because all Objective-C objects use dynamically
allocated memory. The compiler only needs to know that a particular itemis a class. It then
knows that the instance variable is the size of a pointer, which is always the same for the
whole program.

Objective-C introduces the @class keyword as a way to tell the compiler, “This thing is a class,
and therefore I'm only going to refer to it via a pointer” This calms the compiler down: it doesn’t
need to know more about the class, just that it's something referred to by a pointer.

We'll use @class while moving class Car into its own file. Go ahead and make the Car.h and
Car.m files with Xcode, just as you did with Tire and Engine. Copy and paste the @interface
for Car into Car.h, which now looks like this:

#import <Cocoa/Cocoa.h>

@interface Car : NSObject
{

CHAPTER 6: Source File Organization

Tire *tires[4];
Engine *engine;

(void) setEngine: (Engine *) newEngine;

(Engine *) engine;

(void) setTire: (Tire *) tire
atIndex: (int) index;

(Tire *) tireAtIndex: (int) index;

(void) print;
@end // Car

If we now try using this header file, we'll get errors from the compiler stating that it doesn’t
understand what Tire or Engine is. The message will most likely be error: parse error
before "Tire", whichis compiler-speak for “l don’t understand this.”

We have two choices for how to fix this error. The first is to just #import Tire.h and Engine.h,
which will give the compiler oodles of information about these two classes.

But there’s a better way. If you look carefully at the interface for Car, you'll see that it only
refers to Tire and Engine by pointer. This is a job for @c1ass. Here is what Car.h looks like
with the @class lines added:

#import <Cocoa/Cocoa.h>

@class Tire;
@class Engine;

@interface Car : NSObject
{

Tire *tires[4];
Engine *engine;

(void) setEngine: (Engine *) newEngine;

(Engine *) engine;

(void) setTire: (Tire *) tire
atIndex: (int) index;

CHAPTER 6: Source File Organization

- (Tire *) tireAtIndex: (int) index;
- (void) print;
@end // Car

That'’s enough information to tell the compiler everything it needs to know to handle the
@interface for Car.

OTE

@class sets up a forward reference. This is a way to tell the compiler, “Trust me; you'll learn eventually
what this class is, but for now, this is all you need to know.”

@classis also useful if you have a circular dependency. That is, class A uses class B, and class B uses
class A. If you try having each class #import the other, you'll end up with compilation errors. But if you
use @class BinA.hand @class AinB.h, the two classes can refer to each other happily.

Making the Car Go

That takes care of Car’s header file. But Car.m needs more information about Ti res and
Engines. The compiler has to see which classes Tire and Engine inherit from so it can do
some checking to make sure the objects can respond to messages sent to them. To do this,
we'll import Tire.h and Engine.h in Car.m. We also need to cut the @implementation for Car
out of CarParts-Split.m. Car.m now looks like this:

#import "Car.h"

#import "Tire.h"

#import "Engine.h"

@implementation Car

- (void) setEngine: (Engine *) newEngine
engine = newEngine;

} // setEngine

- (Engine *) engine
return (engine);

} // engine

- (void) setTire: (Tire *) tire
atIndex: (int) index

CHAPTER 6: Source File Organization

if (index < 0 || index > 3) {
NSLog (@"bad index (%d) in setTire:atIndex:",
index) ;
exit (1);
3

tires[index] = tire;

} // setTire:atIndex:

- (Tire *) tireAtIndex: (int) 1index

if (index < 0 || index > 3) {
NSLog (@"bad index (%d) in setTire:atIndex:",
index) ;
exit (1);
3

return (tires[index]);

} // tireAtIndex:

- (void) print

NSLog (@"%@", tires[0]);
NSLog (@"%@", tires[1l]);
NSLog (@"%@", tires[2]);
NSLog (@"%@", tires[3]);

NSLog (@"%@", engine);
} // print
@end // Car

You can build and run the program again and get the same output as before. Yep, we're
refactoring again (shh, don't tell anybody). We've been improving the internal structure of
our program while keeping its behavior the same.

Importation and Inheritance

We need to liberate two more classes from CarParts-Split.m: STant6 and Al1WeatherRadial.
These are a little trickier to handle because they inherit from classes we've created: STant6
inherits from Engine, and Al11WeatherRadial inherits from T1ire. Because we're inheriting

CHAPTER 6: Source File Organization

from these classes rather than just using pointers to the classes, we can’'t use the @class
trick in their header files. We'll have to use #import "Engine.h" in Slant6.h and #import
"Tire.h" in AllWeatherRadial.h.

So why, exactly, can't we just use @class here? Because the compiler needs to know all
about a superclass before it can successfully compile the @interface for its subclass. The
compiler needs the layout (types, sizes, and ordering) of the instance variables of the super-
class. Recall that when you add instance variables in a subclass, they get tacked onto the
end of the superclass’s instance variables. The compiler then uses that information to figure
out where in memory to find instance variables, starting with the hidden self pointer that
comes with each method call. The compiler needs to see the entire contents of the class to
correctly calculate the location of the instance variables.

Next on the operating table is STant6. Create the Slant6.m and Slanté.h files in Xcode, and
then cut S1ant6’s @interface out of CarParts-Split.m. If you've done your carving and glu-
ing properly, Slant6.h should look like this now:

#import "Engine.h"

@interface Slant6 : Engine
@end // Slant6

The file only imports Engine.h and not <Cocoa/Cocoa.h>. Why? We know that Engine.h
already imports <Cocoa/Cocoa.h>, so we don't have to do it ourselves here. However, it's OK
if you want to put #import <Cocoa/Cocoa.h> in this file, because #import is smart enough
not to include any file more than once.

Slant6.m is just a cut-and-paste of the @implementation section from CarParts-Split.m, with
the customary #import of the Slant6.h header file:

#import "Slant6.h"
@impTlementation Slant6

- (NSString *) description
{

return (@"I am a sTant-6. VROOOM!");
} // description

@end // Slant6

Do the same steps to move Al1WeatherRadial to its own pair of files. No doubt you've got
the hang of this by now. Here’s a look at AllWeatherRadial.h:

#import "Tire.h"

@interface AllWeatherRadial : Tire
@end // AllWeatherRadial

And here’s AllWeatherRadial.m:

#import "AllWeatherRadial.h"
@implementation AllWeatherRadial
- (NSString *) description
{
return (@"I am a tire for rain or shine");

} // description

@end // AllWeatherRadial

CHAPTER 6: Source File Organization

Poor CarParts-Split.m is just a shell of its former self. It's now a bunch of #imports and one

lonely function, like so:

#import <Foundation/Foundation.h>

#import "Tire.h"

#import "Engine.h"

#import "Car.h"

#import "Slant6.h"

#import "AllWeatherRadial.h"

int main (int argc, const char * argv[])
{
Car *car = [Car new];
int 1;
for (i =0; i < 4; i++) {
Tire *tire = [AlTWeatherRadial new];

[car setTire: tire
atIndex: 1i];
Engine *engine = [Slant6 new];
[car setEngine: engine];
[car print];

return (0);

} // main

CHAPTER 6: Source File Organization

If we build and run the project now, we’ll get exactly the same output as before we started
spreading stuff around into various files.

Summary

In this chapter, you learned the essential skill of using multiple files to organize your source
code. Typically, each class gets two files: a header file that contains the @interface for the
class and a dot-m file that holds the @impTementation. Users of the class then import (using
#import) the header file to gain access to the class’s features.

Along the way we encountered cross-file dependencies, in which a header file or source file
needs information from another header file. A tangled web of imports can increase your
compile times and can cause unnecessary recompilations. Judicious use of the @class
directive, in which you tell the compiler “trust that you'll see a class by this name eventually,”
can reduce compile time by cutting down on the number of header files you have to import.

Next up is a tour of some interesting Xcode features. See you there.

Chapter

More About Xcode

ac programmers spend most of their time writing code inside Xcode. Xcode is
a nice'tool with a lot of wonderful features, not all of which are obvious. When
you're going to be living inside a powerful tool for a long time, you'll want to
learn as much about it as you can. In this chapter, we'll introduce you to some
Xcode editor tips and tricks that are useful when you're writing and navigating
your code and locating information you need. We'll also touch on some ways
Xcode can help you debug your code.

Xcode is a huge application, and it is extremely customizable, sometimes
ridiculously so. (Did we mention that it's huge?) Entire books can be (and have
been) written about just Xcode, so we'll stick to the highlights to get you pro-
ductive quickly. We recommend using the Xcode defaults when you're starting
out. When something bugs you, though, you can probably find a setting that
can be tweaked to your liking.

When faced with a big tool like Xcode, a good strategy is to skim through
the documentation until just about the point when your eyes glaze over. Use
Xcode for a while, and then skim the documents again. Each time you read,
more will make sense. Lather, rinse, repeat, and you’ll have terrific hair.

We'll be talking about Xcode 3.1, the current version at the time of this writing.
Apple loves adding new things and moving old things around between Xcode
versions, so if you're using Xcode 42.0, the screen shots are probably out of
date. Now, on to the tips!

CHAPTER 7: More About Xcode

Changing the Company Name

One thing you may have noticed when you create a new Objective-C source file is the com-
ment block that Xcode generates for you:

//
// TapDance.h
// Groovilicous

//
// Created by markd on 7/25/08.

// Copyright 2008 __MyCompanyName__ . A1l rights reserved.
//

Xcode includes the file name and the project name, as well as the creation user and time,
which is because this information lets you know at a glance which file you're looking at and
who was responsible for its creation, as well as giving you a clue as to its general vintage. The
default company name, though, is unfortunate. Last time | checked, _ MyCompanyName___
wasn’'t hiring Mac programmers, only TPS report creators.

For inexplicable reasons, Xcode 3.1 does not include any user interface for changing the
__MyCompanyName___ placeholder. You need to drop down into Terminal to change it.
Because you're going to be creating a lot of new source files, let’s go ahead and change the
company name to something more reasonable. It can be your own name, your company’s
name, or something totally made up.

First, open the Utilities folder in the Finder. You can use 84*U to navigate directly to it. Look
for the Terminal application and run it. In Terminal, enter the following command exactly as
it's printed, all on one line, except use your company name instead of “Length-O-Words.com”.

defaults write com.apple.Xcode PBXCustomTemplateMacroDefinitionsw
'{"ORGANIZATIONNAME" = "Length-O-Words.com";}"

After you type that on one line, press enter. If it works, you won't see any output reply. Luck-
ily, you have to run this command only once. Quit and restart Xcode, and now the generated
file comments for new files look much better:

//
// HulaDance.h

// Untitled3

//
// Created by markd on 7/25/08.

// Copyright 2008 Length-0O-Words.com. A1l rights reserved.
//

And we promise that you won't see any more of Terminal for the rest of this chapter.

Using Editor Tips and Tricks

Xcode provides you with a couple of basic ways of organizing the project and source code
editors. The way we've shown so far is the default interface, which is mostly an all-in-one
window for your minute-by-minute project and coding tasks. Some auxiliary windows are
also hanging around, like the run log shown in Figure 7-1. A single editing pane is used for
all source files, and the contents of the editor change based on which source file is selected
in the left-hand Groups & Files pane.

~ [vlCarPans-splitm
] CarParts-Split_Prefix.{
E Engine.h |
;1 Engine.m

] Slanté.h

E‘l Slant6.m

m_.‘.‘| Tire.h

E Tire.m

»| | Documentation

»| | Products
> @ Targets
P {4 Executables
» [Errors and Warnings
v O Find Results
- [J1] Bookmarks
» = scm

. Project Symbols

[3 ﬁ Implementation Files
» (&5 NI Files

wi| CarParts-Split.m

< | » ||WCarParts-Splitm:1 §

<Mo selected symbol>

[| External Frameworks anc

#Hmport "Tire.h"
#import “Engine.h"
#import "Car.h”
#Fimport "Slantc.h"
#Fimport "AlWeatherRodial .h"

1
Cor *car = [Car new];
int i

for 1 =8; 1 <4; i+4d 4

[car setTire: tire
atIndex: 1];

[Session started
2008-07-20 14:28:
2008-07-20 14:28:
2008-07-20 14:28:
Z008-07-20 14:28:
Z008-07-20 14:2%:

The Debugger has

#import Foundation/Foundation.h=

at 2003-07-20 14:2Z5:2Z0 -0400.]

20.493 CarParts-Split[1235:10b] I am a slant-6.
20.496 CarParts-Split[1235:10b] I am a tire for
20.497 CarParts-Split[1235:10b] I am a tire for
20.497 CarParts-Split[1235:10b] I am a tire for
20.497 CarParts-Split[1235:10b] I am a tire for
exited with status 0.

int main {int arge, const char # argv[]}

Tire *tire = [AllWeatherRadial new];

shine.
shine.
shine.
shine.

:' mvl-vlcvl#vlli
=

A4 don't really have to #import this or the next header file.
/¢ since they 're brought in by Slant6.h and &l lWeatherRadial.h

Figure 7-1. Xcode’s default user interface: soure code and debugger

CHAPTER 7: More About Xcode

Xcode also has a mode in which each of your source files open in its own window as you edit
it. If you have a lot of screen real estate and don't mind dealing with many windows, then that
may be the work style for you. Here, we're going to assume you'll be using the code editor
embedded in the Project window, because it makes taking screen shots a whole lot easier.

On the left side of the window is the Groups & Files list, which shows you all the moving parts
of your project: your source files, the frameworks you link to, and the Targets that describe
how to actually build your individual programs. You'll also find some utilities like the book-
marks in your project (we'll cover bookmarks in a little bit), access to source code control
repositories (handy if you're collaborating with other programmers), all your project sym-
bols, and some smart folders.

At the top of the window, underneath the toolbar, is a browser, which shows you selected
files from Groups & Files. You can use the search box to narrow down the list of files shown.
Figure 7-2 shows a search for the letter n after we selected the Source folder.

_slc_odi | e | A !__@_I

.E Engine.h

[] Slants.h
[m] Slants.m 5K]

Figure 7-2. Narrowing down the list of files

The browser shows each of the matching source files with “n”in its name. You can click files
in the browser to put them into the editor. Because larger projects may have over a hundred
source files, the browser is a handy way to navigate around if you have lots of files. We'll talk
a bit more about navigating through your source files later in this chapter.

When you're working on code, you'll want to hide the browser so that you get more verti-
cal screen real estate. One of the default tool bar icons on the far right side of the window
(not shown in these screen shots) is called Editor; it toggles the browser on and off. 38<E is
a quick shortcut for this toggle.

Even when you're using the single-window mode, having a source file or two in its own
window can be useful, especially if you're comparing two different files. Double-clicking
a source file in the Groups & Files pane opens the file in a new window. You can have the
same file open in two windows, but be warned that sometimes the two windows can get
out of sync until you click each of them.

CHAPTER 7: More About Xcode

Writing Your Code with a Little Help from Xcode

Many programmers write code all day. Many programmers write code all night, too. For all of
those programmers, Xcode has some features that make writing code easier and more fun.

Indentation (Pretty Printing)

You've probably noticed that all the code in this book is nicely indented, with bodies of i f
statements and for loops shifted over so they're indented farther than surrounding code.
Objective-C does not require you to indent your code, but doing so is a good idea because it
makes seeing the structure of your code easier at a glance. Xcode automatically indents your
code as you type it.

Sometimes, heavy editing can leave the code in a messy state. Xcode can help here, too.
Control-click (or right-click) to see the editor’s contextual menu, and then choose Re-indent
selection. Xcode will go through the selection, tidying everything up. There’s no built-in
hot-key for this, but you can add one in Xcode’s preferences Key Bindings pane.

38[and 88] shift the selected code left or right, which is handy if you just put an if statement
around some code.

Let’s say you have this in the editor:

Engine *engine = [STant6 new];
[car setEngine: engine];

Later, you decide you only want to create a new engine if the user set a preference:

if (userWantsANewEngine) {
Engine *engine = [STant6 new];
[car setEngine: engine];

}

You can select the two middle lines of code and press 3] to shift them over.

You can infinitely tweak Xcode's indentation engine. You might prefer spaces to tabs. You
might like your braces to be put on a new line instead of having them up on the same line
with the i f statement. Whatever you want to do, chances are you can tailor Xcode to abide
by your One True Code formatting style. Here’s a handy tip: if you want to quickly and easily
start a heated Internet discussion among programmers, begin talking about code format-
ting preferences.

CHAPTER 7: More About Xcode

Code Completion (Code Sense)

You may have noticed that Xcode sometimes offers suggestions while you're typing code.
This is Xcode’s Code Sense feature, often just called code completion. As you're writing
your program, Xcode builds an index of a whole lot of stuff, including names of variables
and methods in your projects and the frameworks you include. It knows about local variable
names and their types. It probably even knows if you've been naughty or nice. As you're typ-
ing, Xcode is constantly comparing what you're typing with its index of symbols. If there’s

a match, Xcode will offer a suggestion, as shown in Figure 7-3.

®00 Im| CarParts-Split.m - CarParts-Split —3

Groups & Files

< | » | @ CarParts-Split.m:15
A

w 9 CarParts-Split |] r
;: —5 4 Fimport "Slonto.h"
i) ~ource - #import "All¥eatherRadial.h"
[k AllweatherRadial.
@ AllweatherRadial. int main {int argc, const char * argv[])
@ Car.h { "
Bl Car.m Car *car = [Car new]; N
! CarParts-5Split.m int i3
[1i] CarParts-Split_Pref for (1= 8; i <45 ies) § I
E| Engine.h Tire *tire = [AllpeatherRadinl
@ Engine.m - i)
D Slants.h [car setTire: tire
. L atIndex: i];
@ SlantG.m 1
[w] Tire.h
@ Tire.m Engine *engine = [Slantt new];

» [| Documentation [car setEngine: engine];

b | | External Frameworks

[car print];
» || Products : "
¥ (&) Targets return (@);
B <4 Executables o
r] — 1A main
b__@ Errors and Warnings v «F 3)r
@ Succeeded

Figure 7-3. Xcode code completion

Here, we've started typing [All, and Xcode thinks we might be wanting to send a message
to the Al11WeatherRadial class. Xcode happened to guess correctly, so we can press tab to
accept AllWeatherRadial as the completion.

But you say, “Aww, that’s too easy! We only have one class that starts with ‘All'l". That's true,
but Xcode will offer the completion menu even if there are many possibilities, and, in any
case, you can press the escape key to have Xcode open a menu with all possible comple-
tions, as shown in Figure 7-4.

You can see there are quite a few possibilities that start with “all”. Xcode realizes that the cur-

rent project contains a class that starts with “all”and assumes that’s the logical first choice.
The colored boxes next to the name indicate what the symbol is: E for an enumerated sym-

bol, f for a function, # for a #define, m for a method, C for a class, and so on.

If you don’t want to bring up the menu, you can use control-period to cycle through the options
or shift-control-period to cycle backward. Don’t worry if you don't catch all the shortcuts as we go
along.There’s a handy cheat sheet at the end of this chapter.

AR

w B CarParts-Split
w[_] Source

| AllWeatherRadial.
w| AllWeatherRadial.

H Car.h
w| Car.m
I -

| Engine.h

@ Engine.m

1] Slant6.h

E] Slant6.m

E] Tire.h

EI Tire.m
PQ Documentation

» [External Frameworks

» [Products
> @ Targets
b < Executables
» [® Errors and Warnings

I (‘aer—Spilt_

¥

i g i 0

- I':-WL!_WM:I.S : @pmain) & o= c.[#s | ® @
#nport "Slanté b L]
#import “Al IWeatherRadial .h" 2

int main {int argc, const char * argv[])
Car *car = [Car new];
int 13 I

for (i =83 i <4; isad {
Tire *tire = [All

al Devices
Lear ;?1: 159 allbevicesBit
3 alllnit
alloca
Engine *enginé@l Allocate
(Cur==ctEmail Allocfontig
[car print]; B AllocCursor
ALLOW_OBSOLETE_CARBON_MACMEMOR'Y
return (@) ALLOW_DBSOLETE_CARBON_OSUTILS
B AllowPurgePixels +
4 | >
A

Figure 7-4. Possible completions for “all”

You can use the completion menu as a quick API reference for a class. Consider NSDictionary,

which has a method that lets you specify a list of arguments representing the keys and objects

used to build a dictionary. Is it +dictionaryWithKeysAndObjects, oris it +dictionaryWithe

ObjectsAndKeys? Who can remember? One easy way to find out is to start a method call to

[NSDi ctionary, type a space to indicate you've finished typing the class name, and press

escape. Xcode will realize that you're going to be putting the name of a method there and will

display all the methods that NSD1i ctionary responds to, and sure enough, there’s dictionaryw=
WithObjectsAndKeys, shown near the top of the menu in Figure 7-5.

< » @ CarParts-Split.m:16

w| Tire.m
B[] Documentation

b [| External Frameworks

> m Products

int i;
for {i=08; 1 <4; i) { I

Tire *tire = [4llWeatherRadial new]y

[NsDictionary |
dictionaryWithObjects forkeys:
dictionaryWithibjectsforkeys icount 2
dictionaryWithObjectsandkeys:
exposeBinding:
initialize
instanceMethodForSelector:
instanceMethodSignatureForSe lector:
instoncesRespondToSe lector:
igSubcloss0fCloss:
keyPathsForvalussdffectingYalusForkey:
Load
nutableCopyWithZone :

1+ /44 main

nek

NSDictionary

Figure 7-5. Exploring a class with Code Sense

CHAPTER 7: More About Xcode

Sometimes, when you use code completion, you'll get strange little boxes in among your
completion, as illustrated in Figure 7-6. What's going on there?

Engine *engine = [Slantt new];
[cor setfire: {Tire ¥itire otlndex: {intjindex

Figure 7-6. Code completion placeholders

Notice that Xcode is suggesting -setTire:atIndex:, which takes two parameters. Xcode’s
Code Sense goes farther than just filling out names. The two parameters shown there are
actually placeholders. If you press tab again, the method will complete to setTire, as shown
in Figure 7-7.

Engine *engine = [Slantt new];
[cor setTire:HEFEE e,k - atIndex: {int)index

Figure 7-7. Selecting a placeholder

The first placeholder is highlighted. Type anything to replace it with a real argument. You can
click the second placeholder and replace it too. You don’t even have to take your hands off
the keyboard. You can move to the next placeholder by typing control-forward slash.

Kissing Parentheses

As you type your code, you might sometimes notice the screen flash a little when you type
certain characters, such as),], or .. When this happens, Xcode is showing you what the clos-
ing symbol matches, as shown in Figure 7-8.

for i =8; 1 <4; i+t 4
Tire *#tire = [AllWeatherRadial new];
[mr setTire: tire atlndex: i]|

¥

Figure 7-8. Kissing the parentheses

This feature is sometimes called “kissing the parentheses” and can be really handy when
you're closing up a complex set of delimiters. Make sure that every closing character you
type matches with the opening character you expect. If you cross the streams, like trying to
type] when should really type), Xcode will beep at you and not show the kissy-kissy stuff.

You can also double-click one of those delimiters, and Xcode will select all the code between
it and its mate.

Mass Edits

Sometimes, you have a code change that you want to make in a couple of places, but you
don’t want to do every edit individually. Making a lot of similar edits manually is fraught with

CHAPTER 7: More About Xcode

peril, since humans aren’t typically very good at boring repetitive work. Luckily for us, com-
puters thrive on boring and repetitive work.

The first Xcode feature to help us here doesn’t actually manipulate code but installs a safety
net. Chose File » Make Snapshot (or its handy shortcut, command-control-S) and Xcode will
remember the state of your project. You're now free to edit source files and fold, spindle, and
mutilate your stuff all you want. If you realize you've made a terrible mistake, you can use the
snapshots window, which you can access from File » Snapshots, to recover from a previous
snapshot. It’s a good idea to take a snapshot before doing anything too adventurous.

OTE

The snapshots are actually stored in a disk image that lives in ~/Library/Application Support/Developer/
Shared/SnapshotRepository.sparseimage. Sometimes, this disk image can become corrupted (from too
much hard living?), and Xcode will give you a mysterious “Snapshot Failed: A project snapshot cannot be
created” error. If you get this error, try deleting the sparse image and rebooting.

Of course, Xcode has search-and-replace functionality. There is an Edit » Find submenu with
several handy choices. Find in Project lets you do search and replace across the files in your
project. Figure 7-9 shows the projectwide search and replace window.

e = . . -

Find: |car H [In Project Ilﬂ (Find)
Replace: |automobie = [Textual) (Rreplace)
[Display Results in Find Smart Group E lgnore case

¥ |] CarParts-Split.1 "
Dt CarParts-Split 1 \" Program name and manual section number
Nm CarParts-5plit,

v [CarPants-Split.m
Zimport "Car.h”

Car *car = [Car new];
Car *car = [Car new]; k
[car setTire: tire atindex: i;
[car print]; e

T yii

< > @CaPans-Splitm:ll § Emain0 :

int main (int argec, const chor ® arav[])
Car *cgr = [Car new];

int i;
for (i =8; 1 «4; i++3 {

BT = wIsC10l

Found "car” - 17 occurrences

Figure 7-9. Projectwide search and replace

CHAPTER 7: More About Xcode

Let’s say we're thinking of changing “car” to “automobile.” After filling in the blanks and click-
ing Find, you can see that there are references to the Car class and car local variable. You
could uncheck the Ignore case checkbox and just change the local variables inside of main.
You can click Replace All to make the change globally.

Search and replace functionality is a blunt instrument for doing this kind of surgery, how-
ever. It does too much if you're just trying to rename a variable in a function (because it
might clobber stuff in the whole file), and it doesn’t do enough if you're trying to rename
a class. Specifically, it doesn’'t rename the source file.

Xcode has two features to fill those gaps. The first has the svelte moniker of “Edit all in Scope.”
You can choose a symbol, like a local variable or a parameter, and select Edit » Edit all in
Scope. Then, as you type, all the occurrences of that symbol are instantly updated. Not only
is it a fast way to make a lot of changes, it looks really cool while you're doing it.

Figure 7-10 shows “car” being edited in scope. Notice that all of the car local variables have
a box around them. Once you start typing Automobile, all of the boxes will change, like in
Figure 7-11.

Groups & Files Ul e > @ CarPans-Splitmil & @main0 3 - 3, 1™ Cy| #s]
v [CarParts-Split L] #import "Tire.h" // don't really have to #import thiz or the next header file. |
¥ |] Source A #import “Engine.h" /7 since they're brought in by Slonté.h and AllWeatherRadial .h '.',
] AllWeatherRadial.h :mpwrt gt:r:E . |
= i import "Slant6.h"
W] AlnWiestharRadisl.m #import. “AlWeatherRadial .h*
] Car.h |
] Car.m int main {int argc, const char * argv[])
| CarParts-Split.m { J—
] CarParts-Split_Prefix. Car *gari= [Car new];
] Engine h int i3
m] Engine.m for (i =0; i <4; i++) {
u] Slantb.h Tire *tire = [AllWeatherRadial new];
] Slanté.m
;'I Tire.h [cor =etTire: 1.:ire
= atIndex: i];
m] Tire.m 3
» || Documentation
»[| External Frameworks an Engine *engine = [Slantd new];
p[_:] Products [cor| setEngine: engine];
> © Targets [ear! print];
» # Executables
» /B Errors and Warnings return (8);
» 4 Find Results]
» [%] Bookmarks Faltiruain
» = scMm | i
B Project Symbols. b4 .
)

Figure 7-10. Starting to edit all in scope; changing the car to an automobile

CHAPTER 7: More About Xcode

‘Groups & Files (=

< > BCafans-Splitm:ll $ @Emain0 % L, [=|c. | #]
‘#‘J.mport "Tire.h" /7 don't reully have to #lmport thiz or the next header file.
#import "Engine.h” /¢ since they 're brought in by Slantt.h and Al lWeotherRadial.h
#Hmport "Cor.h"

#mport "Slanté.h"

Himport "All¥eotherRadial .h"

v P CarPans-Split
| Sourl:e
i| AllWeatherRadial.h
| AllweatherRadial.m
] Carh
|m] Car.m
B carParts-spiitm
;| CarParts-Split_Prefix.

|@

IL:

int main {int argc, const char * arge[])

{

int i;
for {i=08; 1 <4; i++) {
Tire *tire = [AllWeatherRadial new];

[outomo setTire: tire
atIndex: i];

= +
»|_ | Documentation

»| | External Frameworks an

» [| Products [automo: =etEngine: engine];

> @ Targsts [autona: print];
b 4 Executables
(B Errors and Warnings return (8);
» 4, Find Results
» L[] Bookmarks Fo i main
EscMm

BB EERER R [BUERE
4o wvw
- Eg
155833
1 =35
e —— - —— ——— — — - — —— ——yeen
T - £ o
[l
g
3(:
g
5*
{2}
]
=
g
-
%
Y e e - - - -~ — - ————— BT

Engine *engine = [Slantt new];

8 Project Symbols

N

Figure 7-11. Editing all in scope

When you're done, just click elsewhere in the source editing window, and you'll get out of
Edit all in Scope mode.

Sometimes, you'll go to make a change like this and find the Edit all in Scope menu item dis-
abled. This feature is tied closely to the syntax coloring in Xcode, so if you have that feature
turned off or have twiddled with it a lot, Edit all in Scope may refuse to work. To fix it, go
back to the preferences and twiddle with syntax coloring again until it works—there’s a bit
of voodoo involved.

Recall our use of the term “refactoring”in previous chapters? It’s not just a word we made up
to sound really smart. Xcode has some refactoring tools built in. One of the refactoring help-
ers lets you easily rename a class. Not only does it rename the class but it does fancy things
like renaming the source files to match. And if you have a GUI program, it even digs into the
nib files and changes things there. (Don’t worry if that last sentence is total gibberish to you
right now. It’s a really cool feature, and we'll explain more about nib files in Chapter 14.)

Let’s try changing all of our Car classes to Automob1ile ones. Open Car.h in the editor, and
put your insertion point in the word Car. Choose Edit » Refactor. You'll see a dialog like the
one shown in Figure 7-12, where we've entered Automobile as the replacement for Car.

CHAPTER 7: More About Xcode

[Rename H-] Car to iAulomobi le I

["] Rename related KVC/Core Data members. E Rename related files

snapshot (7)

Figure 7-12. Starting to refactor

You'll want to make sure the Snapshot checkbox is checked, just as a safety net. Xcode fig-
ures out what it will do after you click Preview and presents it to you as shown in Figure 7-13.

[Rename H Car to :Aulomobile
[C] Rename related KVC/Core Data members. g Rename related files
o Snapshor (@) (ppiy)
[—
g—@ Car.h (will be Automobile.h} 1 change
Wi @ Car.m (will be Automobile.m) 2 changes
™ @ CarParts-Split.m 2 changes
+-=
<No selected symbol> 3 i | <Noselected symbol> ; |4
#import. FoundationFoundation.hs Fimport Foundation Foundation.h= |
#import "Tire.h" A don't really haw #import "Tire.h" S don't really ha
#import "Engine.h" /7 since they're br| | #import "Engine.h" /7 since they're b
#import "Car.h" 1 #import "Automobile.h"
#Fmport "Slante.h" #Fimport "Slanto.h"
#import "Al WeatherRodial (k" Fimport "AllWeatherRadial k"
int main {int argec, const char * arge[] int main {int argc, const chor * urgv[.\
Cor *car = [Car new]; 2 Automobile *cor = [Automobile new]:'
E y > [« J v
2|

Figure 7-13. Xcode telling us what it wants to do in the refactoring

You can see that Xcode will rename Car.h and Car.m to the corresponding Automobile-style
names. You can click a source file to see what changes Xcode will make in the file merge viewer
at the bottom of the window. Looking there, you'll see that Xcode has changed Car to Automo-
bile in the #import, as well as the class name in the proper places.

Sadly, refactoring does not rename things in comments, so end-of-class comments, file
header comments generated by Xcode, or any documentation comments you may have
written will need to be fixed manually. You can search and replace to make this a bit easier.

CHAPTER 7: More About Xcode

Navigating Around in Your Code

Most source files have a familiar life cycle. They're created new and get a lot of code added
to them quickly to make them do their magic. Next, they go into a mode where additions
and modifications are about fifty-fifty and then into a maintenance mode, in which you
have to read a lot of the file before you add new code or make changes. Finally, after a class
has matured, you end up browsing its code to figure out how the class works before using
it elsewhere in your program. This section explores various ways of navigating around your
code as it lives its life.

emacs is Not a Mac

An ancient text editor called emacs, invented in the 1970s, is available on modern Macs.
Some throwbacks (including Mark Dalrymple) use it on a daily basis. We won't talk about
emacs much here, except to describe some of its key bindings—and we’ll even tell you what
that means.

The phrase “emacs key bindings” describes keystrokes that let you move the text cursor
without taking your hand off the main part of the keyboard. Just as many folks prefer arrow
keys over reaching for the mouse, emacs users prefer these cursor movement keys instead of
reaching for the arrow keys. And here’s the punch line: amazingly enough, these same move-
ment keys work in any Cocoa text field, including not just Xcode but also TextEdit, Safari’s
URL bar and text fields, Pages and Keynote text areas, and many more. Here they are:

B control-F: Move forward, to the right (same as the right arrow).

B control-B: Move backwards, to the left (same as the left arrow).

B control-P: Move to the previous line (same as the up arrow).

B control-N: Move to the next line (same as the down arrow).

B control-A: Move to the beginning of a line (same as the as command-left arrow).
B control-E: Move to the end of a line (same as the as command-right arrow).

m control-T: Transpose (swap) the characters on either side of the cursor.

B control-D: Delete the character to the right of the cursor.

m control-K: Kill (delete) the rest of the line. This is handy if you want to redo the end of
a line of code.

B control-L: Center the insertion point in the window. This is great if you've lost your text
cursor or want to quickly scroll the window so the insertion point is front and center.

If you get these keystrokes into your head and under your fingers, you can make small cursor
movements and editing operations much faster—not just in Xcode.

Search Your Feelings, Luke

At the upper-right corner of the Xcode project window is a search box. Xcode filters the con-
tents of the browser based on what you type there. To use the search box, select something in
the Groups & Files list, such as your Source folder. The browser shows all your source files. Type
something, like Car, and you would see the list filtered down to as shown in Figure 7-14.

4 » [@Carh:l % <Noselected bol & L, == Cy | #s]
#Fimport <Locog/Cocod.h=

dcloss Tire;
@closs Engines

[=== LI

dinterfoce Car : NSObject
Tire *tirez[4]:
Engine *engine;

¥

- {woid} setEngine: (Engine ¥} newEngine;

w [] External Frameworks anc
» = Foundation.framewor
» [| Products

:H(

Figure 7-14. Filtering the cars

You can also look into frameworks you're using. Select Foundation Framework in the External
Frameworks and Libraries folder, and you'll see a list of header files provided by the frame-
work. You can trim this down by putting text into the search box, such as typing array and
getting both of the array-related Foundation headers, as shown in Figure 7-15.

4 » @NSA 4 <No selected symbol & L, (= e, 4, W
/% NSArray.h
E‘I Engine_h Copyright {c) 1994-26@7, Apple Inc. All rights reserved.

(=0

Engine.m */
+] Slants.h)) i
S ql i #import -Foundation/MS0bject .he
] Slamt6i. #import <Foundation/NSEnumerator.hx
u] Tire.h #inport Foundation/NSRange b=

@closs NSDota, N3IndexSet, NSString, NSURL;

Aotooiobotoiolobobokolokok Immutable A—rruy Atckstobdokookdokookbokok

e R R S R S S S S S S S S W

Figure 7-15. Searching framework files

CHAPTER 7: More About Xcode

Open Sesame Seed!

You're looking at one of your source files, and you see #import at the top. Wouldn't it be great
if you could open that header file quickly without having to do a lot of mousing around? You
can! Just select the file name (you can even leave off the .h), hold down the Option key, and
choose File » Open Quickly. You can use the shortcut 8™_4£*D. Xcode opens the header file
foryou.

If you don't have any text selected, choosing Open Quickly opens a dialog box, which is
another way of finding a file to look at, with the shortcut 84+D. It’s a very simple window
containing just a search field and a table, but it is a very quick way to do searches across the
contents of your project. Type tire in the search box to look for things tire-related, as shown
in Figure 7-16. You can also put in other terms, like NSArray to see the NSArray header files.

Tire

Tire.h:3

U tires
Car.h:8

[tireAtindex:
Car.h:20

Y markd + @ & - @ - @& DCarFans—Split' El Tire.m

(Cancel)

Figure 7-16. The Open Quickly dialog

If all you want is to see the counterpart to a file—Blah.h if you're looking at Blah.m, or vice
versa—you can do that by pressing 8. T (command-option-up arrow).

Bookmarks

Xcode lets you place bookmarks in your code. You may have some interesting places in
your code, like a line you want to fix later, or you might want to mark the definition of a very
important class. To create a bookmark, put your insertion point in a source file, or select

a region of text. Then choose Edit » Add to Bookmarks, or use the default shortcut of 8D
(same as in Safari) and when prompted, type the name of the bookmark.

CHAPTER 7: More About Xcode

You will see your bookmarks in the Bookmarks section in the Groups & Files pane, as shown in

Figure 7-17.

Groups & Files (e |

»| | Documentation |B
v : External Framewo | 4
» §2 Foundation.frar
»] Products
v @Target_s
» BB CarParts-Split
» (J Executables
» /B Errors and Warnings
w O Find Results
w | ¥ Bookmarks
@ slant-6 desc
E double-check setl

E tire creation
»Eiscm
@ Project Symbols i
» [@ Implementation Files
» {35 NIB Files |

a | » @G}Pm—Spllt.m:M ¢+ BEmaind % v |™% | Cy | BB

| S"I.WUI_L_ R REE R}
#Fimport "AllWeotherRadial .h"

int main {int argc, const char * argv[])

{

Car *car = [Car new];

s
a
7
int i3
for {i=08; 1 <4; i+ {
Tire *Lire = [All!ﬂ_:it!’mﬁgd_'mi newl;
|

[car setTire: tire otlndex: i];
*

Enging *engine = [Slantt new];
[car print]:

return {8);

|\

== — — — — — — — — PO

-

@Succeeded |

Figure 7-17. Xcode’s bookmarks

Focus Your Energy

You may have noticed the two empty columns immediately to the left of your source code.
The wider column to the left is known as the gutter, and we'll have our minds there later
when we discuss debugging. The narrower one is known as the focus ribbon, and as its
name implies, it allows you to focus your attention on different parts of your code.

Notice the shades of gray in the focus ribbon: the more deeply nested a bit of code is, the
darker the gray next to it in the ribbon. This color-coding gives you a hint of the complexity
of your code at a glance. You can hover over different gray regions of the focus bar to high-
light the corresponding hunk of code, as in Figure 7-18.

You can click in the focus ribbon to collapse chunks of code. Say you're convinced that the
if statement and the for loop shown in Figure 7-18 are correct and you don’t want to look
at them anymore, so you can concentrate (focus your attention, as it were) on the rest of the
code in the function. Click to the left of the i f statement, and its body will collapse as shown
in Figure 7-19.

You can see now that the body of the 1f statement has been replaced by a box with an ellip-
sis in it. Double-click the box to expand the code back the way it was, or click the disclosure
triangle in the focus ribbon. The code isn’t gone; it’s just hidden, so your file should compile
and work fine even like this. Code folding is another name for this kind of feature. Check out
the View » Code Folding menu for a lot of additional options.

4~ String Ma

A (theskylsblue)
int i e
for {i=08; 1 <4; i++) {

Tire *tire = [Al WeatherRadial new];

[car setTire: tire atlndex: 1];

.
5':}
Engine ¥engine = [Slanté new];

4 » mCarParts-Splitm:23] =% m |2
#import "Cor.h"
#inport "Slanté.h"

#inport "AllWeotherRodial .h"

int main {int orgc, const char * argv[])
i

Car *car = [Car new]:

if (theSkylshlue) {73

Engine *engine = [Slanté new];:

[eor print];

return {873

¥ 4/ nain

Figure 7-19. Folding code

CHAPTER 7: More About Xcode

The Navigation Bar Is Open

At the top of the code editor is a little ribbon of controls, shown in Figure 7-20, known as the
navigation bar. Many of its controls are there to let you quickly bounce around your source

files in the project.

| 4 » [WCarm48 & [@ -setTire:atindex: & = C.|#, -]
E '.

ragma mark - A

#prag 2

#proagmna mark Tire Setting goodness

- (woid) setTire: (Tire *) tire
atIndex: {int) index

| if {index <@ || index = 3) {
WSLog {@"bad index (%d) in setTire:atIndex:",

Figure 7-20. The navigation bar

From left to right, you have backward and forward buttons that cycle you through the his-
tory of files you've had open during this editing session. They work like Safari’s back and
forward arrows. Next to those buttons is a pop-up menu that shows the current file (Car.m)
and line number in the file where the insertion point is located (48). Click this menu to see
your file history, and choose a file to open in the editor if you so desire.

Next is the function menu. It shows that the insertion point is currently in the method
-setTire:atIndex:, and that’s what's in the menu. Click the menu to see all the interesting

symbols, as shown in Figure 7-21.

- m| Car.m - CarParts-Split

@implementation Car

800

B -init
: - Tadi s [-engine
Groups & Files (e {4 h [-setEngine:
v B CarParts—Spiit |8 & carm
v | Source 4 ; Tire Setting goodness L
T3 Alweatherradialhfll | <+ mcarm4s : SIS C. #. ® &
| AllWeatherRadial. | ¥ /¢ setEngine TODO: do some more groovy stuff. ® . =
[Carh e m _urgAtlndex. ’,:
[] Car.m #orogna mark Tire Se B s]
u] CarParts-Split.m e ——
[si] CarParts-Split_Pre - {void) setTire: (Tire *) tire
S Enaine.h atIndex: (int) index
1] Engine [
] Engine.m - | if (index <@ || index = 33 {
u] Slant6.h MSLog (@"bad index (#d) in setTireiatIndex:",
wi] Slant.m index); |
E Tire.h exit (1)
;_‘: Tire.m b
»] Documentation tires[index] = tire; |

w|_| External Frameworks
> ﬁ Foundation.framew
> il Products A4 TODD: do zome more groowy stuff.
Y@ Targets e
b B CarParts-5plit P b
b4 Fyecutahles b4

T 44 setTireatIndes:

@ Succeeded

Figure 7-21. Symbols in the file

CHAPTER 7: More About Xcode

-setTire:atIndex: is highlighted, because that’s where the cursor is. You can see the other
methods above and below it, sorted by the order in a file. Option-click the function menu sort
it alphabetically. You'll also notice a couple of extra things in there, like Tire Setting goodness
and a TODO. Where did those come from?

You can stick stuff into this menu in a couple of ways. One way is to use #pragma mark stuff
to put the string stuff into the menu. This is handy for adding human-readable anchors for
other humans to see and use. #pragma mark - (minus sign) puts a separator line into the
menu. Xcode also looks in comments that begin with words like MARK : (behaves the same as
#pragma mark), TODO:, FIXME:, ! ! I :,and ???:, and puts that text into the function menu, too.
These are all programmer signals for “better come back and look at this before you inflict this
program on an unsuspecting public”

OTE

“Pragma” comes from a Greek word meaning “action.” #pragma is a way to pass on information or

instructions to compilers and code editors that are outside of the usual lines of Objective-C code. Pragmas
are usually ignored, but they may have meaning to tools used in software development. If a tool does not
understand a pragma, the tool should nod, smile, and ignore it, without generating a warning or an error.

The next control, the one that looks like a little book, shows any bookmarks that have been
set in the current file. You'll notice this icon is the same as the Bookmarks icon in the Groups
& Files pane.

The next control has all the breakpoints in the file. We'll talk about breakpoints more in the
“Debugging” section later in this chapter.

The C menu lets you navigate up and down the class hierarchy. If you have Superclasses
E NSObject
Engine.m displaying in the code editor and you bring up the class menu, ;

you'll see something like Figure 7-22. §

Subclasses
= Slant6

Engine is the highlighted item in Figure 7-22. You can see that Xcode knows
Slant6 is a subclass and NSObject is the superclass. Selecting STant6
opens Slant6.m. Selecting NSObject brings up NSObject.h from the Founda-
tion headers. We don’t have access to NSObject.m, because that belongs to
Apple, so Xcode does the next best thing and brings up the header. If you
choose NSObject, which opens the NSObject.h header file, and then open the class menu
again, you'll see all the subclasses of NSObject. There are lots of them! As you can see, this

Figure 7-22,
The navigation
bar class menu

menu is very handy for navigating around your code’s inheritance tree.

CHAPTER 7: More About Xcode

The next menu, labeled with a #, is the included files menu; the included Engine.h
files menu shown in Figure 7-23 will appear if you're looking at Slanté.h.

CarParts-Split.m
This shows that Slant6.h #imports (or #includes) Engine.h. Xcode also Slant6.m

knows that two other files, CarParts-Split.m and Slant6.m, include this Figure 7-23
Slanté6.h. This menu is another way to quickly move around the depen- The included

dencies of your project. files menu
The overlapping squares icon opens the counterpart for this file, just like the shortcut 38\ T.

The last icon on the row, the lock, lets you make a file read only. If you're just browsing a file,
you can mark it as read only so you don't accidentally introduce any changes, in case (for
example) the cat jumps up and walks on the keyboard.

Right below the lock, at the top of the scrollbar, is the split button. Click it to split the source
window in half, allowing you to see two places of your file at once, as in Figure 7-24. You can
resize each with the split bar.

¥ [Source |8 [slame.n
n] AllWeatherRadial.h| 4 - . B .
| AllWeatherRadial.mgm | 4 | * | @CarParts-Splitm:11 § Emain0 3 e e N
= || #import <Foundation/Foundation. b= i_l
1] Car.h m
;—I Car.m #Himport "Tire.h" /F don't really have to #import this or the next header file. "‘
] CarParts-Split.m #import "Engine.h" /¢4 since they're brought in by Slantt.h and &l lWeatherRadial.h
w] CarParts-Split_Pref #import "Car.h”
=y : #import "Slant6.h"
En .h
] Engine #import "All¥eatherRodial .h" ke
\m| Engine.m L4
] Slant6._h | b
) Slant6.m ' : . <+
L < | » |[WCarParts-Splitm:1l 3 Fmain) $ = |c. | # =&
] Tire.h ' for (i=8; i <43 i++) { B
w] Tire.m Tire *tire = [AllWeatherRadial new];]
p:[)ocumemmjgn [car setTire: tire atIndex: i]; x
w|_ External Frameworks ¥ r
_I-ﬁFoundatfon.frame Engine *engine = [Slantd new];
¥| | Products
M CarParts-Split [car print]; m
‘r@ Targets I l";'
b BB CarParts-Split [LA AR L
Lo ey | : =
B&m!ﬂﬂ'é

Figure 7-24. Splitting the code editor

Each editing pane gets its own navigation bar, which you can use to point each pane at a dif-
ferent file. Option-clicking the split box makes the split vertical instead of horizontal. You can
continue this to an extreme, as shown in the ridiculous Figure 7-25. You can get rid of a pane
by clicking the rectangle button underneath the split button.

CHAPTER 7: More About Xcode

Croups & Files

g v String Matct

|Code | | |® |

@end /7 Slanté

w |, Find Results

w [1% Bookmarks
@ slant-6 desc
@ double-check setTire
@ tire creation

w Ed crpa

4 '_("

w[_]Source I |:| Slant6.h
ﬂ AllWeatherRadial.h| : = =
E AllWeatherRadial. nf‘ il @pnfam-s;:llt mll = C, |4, _ﬂ_i [afr] BICB”’BT.“."SN" m:l = (C. [#, R
j Car.h Fimport éoundutlonHFoundutmn k- 'li | —‘ #1mp0rt Joundutmnx’Foundutwn h> 'l
H . I~ i
= A &
|m] Car.m #import "Tire.h" A4 don't really have to #mpogm) | #import "Tire.h" A4 don't really have to
wm| CarParts-Split.m #import "Engine.h" S/ zince they're brought in #import "Engine.h" SF since they 'te brought
w 1
ﬂ-’ CarParts-Split_Pre #import "Car.h" | #import “Car.h" l...-
(4] Engine.h #import "Slanté.h" __IE] #import "Slanté.h" 5 _B
= : m =B m o
|m| Engine.m pE— L%
o | < |, |-l [|8, == CH <[> [MCarhl 5 <Noselect U, [™ [C LS ﬂ
|| Slant6.h . il i i o s
s = =N = #import <Cocoa/Cocod.hs IA
_ﬂs_amﬁ.m ire.h" 2 don(g - {idinutablelm
_1‘] Tire.h ngine.h" /4 s1nCA| ["A dclazs Tire;
ﬂ‘] Tire.m ar.h" @end - aclass Engineg; 'v
[| Documentation 1 :T$t6£:" — ﬂ‘ ‘:b B
= eatherRadia @protocol NSC =
w| | External Frameworks ‘ | I m a 1 || I
A I 4 |+ | {JINSPointerArray.h:l 3 LA, ™= Ce | #5 'rﬂ_
» i Foundation.frame int argec, const o - {void)encode. i |4
vr_—l Products | - {idyinitWith ¥ * NSPointerdrray.h m
M CarParts-Split e (B .] ;7 | Y - * Copyright {c) 2085-2087, Apple Inc.. ALl rightsl\-’
A, L B i, - A A i |
V@ e ST (Bsemehs 3 S, =lc. £, B @ ' '
» [CarParts-Split #import "Engine.h” = | —Q-m—'j
» o Executables | > '
» B Errors and Warnings @interfoce Slanté : Engine | cobidhes ﬂ”mPJECLh 65 5 BE-S. = |C.l#.| @

SRR Base closs AR =
A
@interface NSObject -NSObjects 4 Ql
Class iza;
¥
L =

Figure 7-25. Splitting the code editor too many times

Getting Information

Bouncing around your code and the Cocoa header files is all fine and dandy, but sometimes

you need to get some information from outside your own code. Luckily, Xcode comes with
a treasure trove of documentation and reference material (what is a trove, anyway?).

Research Assistance, Please

The little floating Research Assistant window updates
itself based on what you're interacting with in Xcode.
Open the Research Assistant by choosing Help » Show
Research Assistant.

For instance, say you have your insertion point inside of
the word NSString. The Research Assistant will look like
Figure 7-26.

There’s a huge amount of information available. The
first two items bring up the NSString class reference
documentation in the documentation window. The
NSString.h item brings up the header file in the editor.

. NSStrlng
|+] NSString Class Reference
|:| NSStnng h

The M55tring class declares the programmatic
interface for an object that manages immutable
strings. (An immutable string is a text string that
Is defined when it is created and subsequently
cannot be changed. N55tring is implemented to
represent an array of Unicode characters (in other
words, a text string).

> Availability 10.0 and later
P Related API 0 items
¥ Related Documents 2 iterns

Property List Programming Guide for Cocoa
String Programming Guide for Cocoa

¥ Sample Code 3 items
Quartz Composer WWDC 2005 TextEdit
StickiesExample

TextEditPlus

Figure 7-26. The Research Assistant

CHAPTER 7: More About Xcode

The Abstract pane describes the class. If you had your cursor in the middle of a method
call, the Abstract would describe the method, along with related calls. There are pointers to
higher level documentation and some sample code that use a NSString a lot.

The Research Assistant is incredibly useful when you are looking at the different build set-
tings you can tweak. Just select the build setting in the project information panel and see
the explanation in the Research Assistant.

Is There a Documentor in the House?

If you want to go directly to Apple’s official documentation for an API, a very fast way to do
that is to option—-double-click a symbol; this is simply a shortcut for doing a documentation
search for that symbol.

Say you had a line of code like [someString UTF8String], which converts someString (an
NSString) into a C-style string expressed in Unicode. If you option—-double-click UTF8String,
the documentation browser opens and searches for UTF8String, as shown in Figure 7-27.

@D Title Full-Text | All Doc Sets T Rl | ObjC, C+4,1S,€ | Starts With @ELIELED Exact

DOC SETS | Mcms |Language | Type | Dacumentation
v Apple Mac 05 X 10.5 m initWithUTF85tring: NSString Objective-C Method Core Library
Core Librarv [K] NSU‘I‘FBS:’IngEsncod]ng Cb Constadnr Core Lr:rarv
t WithUTF85ti MS55tri Objective-C Meth Lo Li
= string ring: r!ng jective etho ore Library
T m UTF8String NSString Objective-C Method Core Library
1 1.4 GET
1 Library { GEE__)
VebObjec.. (cex) « [» é NSStnng Class Refererlce _ : Jn]ﬂ“thLFI’FSS:trmg r c.,
+ Apple Xcode 3.1 A initWithUTF8String: &
Devel Tools Lib
PRRrROns el NSString Class Returns an N:i:tring object initialized by copying the characters a given C array
» Apple iPhone S 2.0 Reference of UTF8-encoded bytes.
BOOKMARKS @ PDF - Cid)iritWithUTFEString: (const char *)bytes
Xcode 3.1 Release Motes
Xcode User Default Ref... Y Querview Z:::smeters
Animation Overview: In... 2skring Ubjects A HULL-terminated C array of bytes in UTF-8 encoding. This value must not
= Subclassing Notes be MULL.
= Methods to Override |
h ?lufg;?;r:; L Important: Raises an exception if bytes is NULL. | m
Adopted Protocols
oeks Return Value
E: An N3String object initialized by copying the bytes from bytes. The returned
+ Class Methods object may be different from the original receiver.
» Instance Methods Availability
» Constants Available in Mac OS X v10.0 and later.
» Appendix A: Deprecated | ¥
NSString Methods ¥ 5= A!so)) v
|+ Il Fa m Tl
Core Library + Cocoa + Data Management - NSString Class Reference - NSString Class Reference _Found 4 documents A

Figure 7-27. The Xcode documentation window

That's a mighty busy window, and it packs in a lot of information. In the upper-right corner is
a search box, which comes prepopulated with UTF8String. The ribbon of buttons underneath the
toolbar lets you refine which documentation sets are searched. You can look at all documentation

CHAPTER 7: More About Xcode

or documentation for just Mac OS X or the iPhone. Or you can limit your search by language, so if
you're only editing JavaScript, you don't need to wade through C++ information.

Below the button ribbon is a pane on the left that contains documentation sets and a set of
bookmarks. You can add bookmarks to specific chunks of documentation by using the trusty
38D shortcut. These bookmarks are distinct from the project bookmarks you might have
placed in your code. Documentation bookmarks are global to Xcode and are not limited to

a specific project.

On the right side of the window at the top is a browser showing all the search matches. In
Figure 7-27, it shows three methods and a constant. The most interesting is the last one,
UTF8, which is the call we're actually making here.

Below that is a browser that shows the documents. It’s kind of a small area for reading docu-
mentation, but it’s easy to open the documentation into another Xcode window or even into
a web browser. To open the documents in another window, control-click (or right-click) on
the documentation area to open a menu.

Debugging

Bugs happen. It’s a fact of life that errors creep into your programs, especially when you're
just starting out with a new language and a new platform. When faced with problems, take
a deep breath; take a sip of you favorite beverage; and systematically try to figure out what'’s
gone wrong. This process of figuring out program errors is called debugging.

Ooongawa!

The easiest kind of debugging is brute force, caveman debugging, in which you put in print
statements (like NSLog) to show the flow of control of your program, along with some data
values. You've probably been doing this all along without knowing its name. You may run
into some folks who look down on caveman debugging, but it can be an effective tool, espe-
cially if you're just learning a new system. So ignore those naysayers.

Xcode’s Debugger

In addition to everything else, Xcode includes a debugger. A debugger is a program that sits
between your program and the operating system and can interrupt your program, making it stop
in its tracks and allowing you to poke around the program’s data and even change things. When
you're done looking around, you can resume execution to see what happens. You can also single
step through code, running line by line to see precisely what effect the code is having on your data.

There are a couple of places in Xcode where you can use the debugger. The first is right in
your text editor, clicking in the gutter to set breakpoints. A breakpoint is a place where the
debugger should stop your program and let you see what’s going on.

CHAPTER 7: More About Xcode

Xcode provides a mini debugger, which is a floating window with some basic controls that
let you do simple debugging tasks without all of Xcode getting in your way.

Xcode also has a debugger window that provides a lot of information at a glance, and
a debugging console where you can type commands directly to the debugger.

OTE

The debugger used by Xcode is GDB, part of the GNU project. GDB is available on a zillion different plat-

forms, and you can run it from the command line if you want. GDB is very well documented, although it is
a bit opaque, and there are several GDB tutorials available on the web.

We'll discuss debugging inside the Xcode text editor. You should definitely play around with
the other debugging modes if you want to learn more.

Subtle Symbolism

When you're planning on debugging a program, you need to make sure you're using

a Debug build configuration. You can check this in the Active Build Configuration pop-up
menu in the Xcode toolbar. The Debug configuration tells the compiler to emit extra debug-
ging symbols, which the debugger uses to figure out what'’s where in your program.

Also, make sure you run with the debugger. There are a couple of ways to run your programs
from within Xcode. Selecting Run » Run, or pressing 38R, will run your program without using
the debugger. To use the debugger, choose either Run » Go (Debug), or Run » Debug, or use
the shortcut 88Y.

Let’s Debug!

Getting started with the debugger is a bit easier with a GUI program than with the command-line
programs we've been using so far. A GUI program is used to sitting around waiting for the user

to do something, so using it gives us lots of time to find the debugger buttons, interrupt the pro-
gram, and start poking around it. Our command-line programs, on the other hand, come and go
so fast you can't do much debugging on them. So let’s start by setting a breakpoint in main. We'll
be using 06.01 CarParts-split from the last chapter.

Open CarParts-Split.m, and click in the gutter, which, as you saw earlier, is the wide bar to the
left of the focus ribbon. You should get a blue arrow thingy (yes, that’s a technical term) indi-
cating your new breakpoint, as shown in Figure 7-28.

You can delete a breakpoint by dragging it out of the gutter, and you can disable it by click-
ing it. Opening its contextual menu will show a bunch of choices. Be sure to check out some
of the built-in breakpoints. For example, you can get Xcode to talk to you! Yeah, | know it’s

a common myth that programmers are loners, but sometimes you do need to hear a voice
that’s different from the voices in your head.

+ M mainQ -

#import "Tire.h"

#import "Car.h"
#import "Slanté.h"
#import "4l lWeatherRodial .h"

int main (int arge, const char * argv[])
i

Car *car = [Car new];

[wi] Engine.m int i3
u| Slant6.h for (i =0; 1 <45 44} {
5 Slanté.m Tire #tire = [AllWeatherRodial new];
EI [cor setTire: tire otIndex: 1];
] Tire.h 3
] Tire.m Engine *sngine = [Slanté new];
P@ Documentation [cor setEngine: engine]s

w (| External Frameworks

P §% Foundation.framew [print]s

w [Products return (8);
M CarParts-Split
‘r@Targels T A4 main

b B CarParts-Split
» (J Executables RS

Figure 7-28. Setting a breakpoint

A don't really hove to #import this or the next header file.
#import “Engine.h” // since they're brought in by Slant6.h and Al IWeatherRadial.h

Now, select Run » Debug to run your program. Your program should stop at the breakpoint,
as shown in Figure 7-29. Notice the red arrow pointing at a line of code. This is like the sign
on the mall map that says, “You are here!”

#inport "Tire.h"
L
[Carn
@ Car.m
|l CarParts-Splitm

|| CarParts-Spiit_Pref]

Fimport “Car.h"
#import “Slante.h"
#Himport "AllWeotherRadial .h"

int main {int argc, const char * argw[])

E‘] Engine.h

E‘] Engine.m

[s] Stants int i3

[Stants.m for (i=8; 1 <45 ise) {

[Tire.h Tire *tire = [4llWeatherRadial new];

| Tire.m [car =etTire: tire atIndex: i];
Pm Documentation

Engine *engine = [Slant6 new];

¥ [External Frameworks [car setEngine: engine];

b ﬂ Foundation.frame:

w [| Products [cor print];
M CarParts-Split
V@Ta.rgels return (8);

b [CarParts-Split

T A4 main
» (J Executables il

Figure 7-29. You are here.

A8 don't really have to #import this or the next header file.
Hmport “Engine.h” // since they're brought in by Slant6.h and Al lWeatherRadial.h

CHAPTER 7: More About Xcode

The status line at the bottom of the Xcode window says GDB: Stopped at breakpoint. .. You'll
see that you've grown a new control strip above the navigation bar, shown in Figure 7-30.

| Thread-1 :|— =4 % @E main
4 | » | [CarParts-Splim:18 3 Fmaind 3 |, |#,. | & |2
Fwport "ERGIRE.hT /7 §ince they Te brought 1h By Slanté.h and ATTWed g
ilmport "Car.h" T
import "Slonté.h" —
#import "AllWeatherRodial .h"

int main {int arge, const char * arge[])

i
[Car foar = [COr new];

int i;
for i =8: 1 4: j+4% L

Figure 7-30. Debugger controls

Starting from the left, the first pop-up lets you select which thread you want to look at. You
won't need to bother with threaded programming for a while, so you can ignore this for now.

OTE

Threaded programming is programming with multiple streams of execution happening at the same
time, and it is very difficult to do correctly. Threaded programming often creates bugs that are incredibly
difficult to chase down. If anyone tells you threaded programming is easy, they're either deluded or trying
to sell you something.

The next control looks like a breakpoint, and it toggles all breakpoints on or off. You might
decide, “Hey, | think | fixed everything.” Rather than deleting all your breakpoints, you can
just turn them off and let the program run. When you discover another bug, you can turn
them back on and get back to debugging.

The next four controls deal with what happens next, as far as program control goes. The first
looks like the play button from a CD player. (Recall those? If not, maybe ask your parents.)
This is the continue button; you could also us the shortcut 387 CP. After you click it, the pro-
gram runs until it hits a breakpoint, finishes, or crashes.

The next control, which looks like a dot with someone jumping over it, is the step over but-
ton (you could also press 38™°\C0). This one executes one line of code and then returns control
back to you. If you click the step over button three times, the “you are here” arrow will move
tothe -setTire:atIndex call, as shown in Figure 7-31.

The next button, the arrow pointing down into a dot, is the step into button (you can also
press £»88l). If you have the source code for the function or method you're currently sitting
on, Xcode will step into that function, bring up its code, and set the “you are here” arrow at
the beginning of it, as shown in Figure 7-32.

Tire.h
I:'j Tire.m
»] Documentation
w[_] External Frameworks
» §= Foundation.frame
w| | Products
M CarParts-Split
V@ Targets
b [CarParts-Split
b (4 Executables

Fimport "Tire.h" /¢ don't really have to #import thisz or the next h B
#import "Engine.h" /¢ zince they 're brought in by Slanté.h and Ml'.'.'eu

Fimport "Car.h"
Himport "Slanté.h"
#Himport "4l lWeatherRadial.h"

int main {int argec, const char * argv[])

i
Car *car = [Car new];

int ij
| for (i =851 <4; i++) {
I Tire *Lire = [4llWeatherRadial new];

i
Engine *engine = [Slantt new];
[car setEngine: engine];

[car print]:

return (B;

T A4 main

Figure 7-31. After single stepping

- -

] AllWeatherRadial.
Car.h
] Car.m

] CarParts-Split.m

Engine.h
|m] Engine.m
[1] Slants.n
m] Slant6.m
E Tire.h
'—!‘] Tire.m
Dﬁ Documentation
w [] External Frameworks
» = Foundation.frz
TH Products
M CarParts-Split
1'@ Targets
b BB CarParts-5plit
p <& Executables

R 8

#orogna mark -
#oragna mark Tire Setting goodness

| = {void) setTire: (Tire *) tire
atIndex: {int) index

NSLog (@"bod index (%d) in setTire:otIndex:",

index;
exit {1);

tires[index] = tire;

| > A setTireatIndes:

S TODO: do some more groovy Stuff.

N e S PPN A S PRV

Figure 7-32. After stepping into a method

CHAPTER 7: More About Xcode

The last button is step out (press 84*T), which will let the current function finish and then
return control to you on the next line of the calling function. If you're following along, don't
use this one just yet. We'll be looking at some data values in this method in a little bit.

Finishing up the tour, the next button (a box with a spray can in it) brings up the Xcode
debug window, and the button after that brings up the GDB console, where you can type
stuff into the debugger directly.

The final control is a pop-up menu that shows the call stack, which is the current set of
active functions. If A calls B, and B calls C, Cis considered to be at the top of the stack, with B
and A below it. If you open the call stack menu now, it will have -[Car setTire:atIndex:],
followed by main. That means that main called -setTire:atIndex:. With more complex
programs, this call stack, also called a stack trace, can have dozens of entries in it. Some-
times, the best fact learned during a debugging session is,“How the heck did this code get
called?” By looking at the call stack, you can see who called whom to get to the current state
(of confusion).

Taking a Look-See

Now that you're stopped, what should you do next? Usually, when you set a breakpoint or
single-step to a particular part of your program, you're interested in the program state—
the values of variables.

Xcode has datatips, similar to the tooltips that tell you what a button does you hover over it.
In the Xcode editor, you can hover over a variable, or a method argument, and Xcode pops
up a little window that shows the value, as shown in Figure 7-33.

#orogma mark -
#Fragma mark Tire Setting goodness

- {void) setTire: (Tire *) tire
atIndex: (int) index

1
[if findexi< B [T index = 33 {
H3L int index 0
index);
exit {17;

tires[index] = tire;

Figure 7-33. Xcode datatip

Figure 7-33 has us hovering over index. The datatip pops up and shows us the value is zero,
as we expect. You can change the value by clicking the zero and typing in a new value. For
example, you can type 37, and then do a couple of step over commands to see the program
exit from the out-of-bounds index.

While you're still in the loop, hover over tires, and you'll get an array. Scoot the mouse
down, and hover over the arrow until it expands, showing you all four tires. Next, move
down and over the first tire, and Xcode will show the guts of the tire to you. There are no

CHAPTER 7: More About Xcode

instance variables in our tires, so there’s not much to see. But if the class had instance vari-
ables, they would be displayed and editable. You can see the result of all this hovering and
mousing in Figure 7-34.

if{i"é-s-'[inde_x] = tire;
"""" ¥ Tire *[4] tires [4] [4] |
¥ setj:w:m: 0 0x104c00 Summary |
B | B NSObject NSOhject {oid
A7 TODO: dof g (TEyra e, i
b Tire* 3 0x104c70
= (Tirve *% tivestInder: (int" inde

Figure 7-34. Digging into the program’s data

And that’s the whirlwind tour of the Xcode debugger. This information, plus huge amounts
of your time, should be enough to let you debug any problems you come across. Happy
debugging!

Cheat Sheet

We mentioned a lot of keyboard shortcuts in this chapter. As promised, we've collected them
all in one easy place—Table 7-1. Feel free to tear out this page before you give the book to
someone else, unless you think that would be rude.

Table 7-1. Xcode Keyboard Shortcuts

Keystroke Description

#B4OE Expand the editor

B Shift the code block to the left
8] Shift the code block to the right
Tab Accept a completion

Esc Show the completion menu

Control-. (period)

(ycle through the completions

Shift-control-. (period)

(ycle backward through the completions

Control-/

Move to the next completion placeholder

Command-control-S

Make a snapshot

Control-F

Move the cursor forward

(ontrol-B Move the cursor backward

Control-P Move the cursor to the previous line
Control-N Move the cursor to the next line

Control-A Move the cursor to the beginning of the line
Control-E Move the cursor to the end of the line

(continued)

CHAPTER 7: More About Xcode

Table 7-1. (continued)

Keystroke Description

Control-T Transpose the characters adjacent to the cursor
Control-D Delete the character to the right of the cursor
(Control-K Delete the line
Control-L Center the cursor in the text editor
8B4LD Show the Open Quickly window
BX4LD Open the file named by the selected text
#’\T Open the counterpart file
3D Add a bookmark
Option—double-click Search in documentation
®’Y Run the program with the debugger
B\P Continue (in the debugger)
#$\X0 Step over
a8\l Step into
BNXT Step out
Summary

This chapter was pretty information-dense, and we really didn’t talk about Objective-C all
that much. What's the deal? Just like woodworkers needs to know more than just wood (for
example, they need to know all that stuff about tools), an Objective-C programmer needs
to know more than just the language. Being able to quickly write, navigate, and debug your
code in Xcode means that you spend less time wrestling with the environment and spend
more time doing the fun stuff.

Next up is a meaty introduction to some of the classes in Cocoa. That should be fun!

Chapter

A Quick Tour of the
Foundation Kit

ou've already seen that Objective-C is a pretty nifty language, and we haven't
even finished exploring all the features it has to offer. For now, we're going

to take a quick side trip and have a look at Cocoa’s Foundation framework.
Although strictly part of Cocoa and not built in to Objective-C, the Foundation
framework is so important that we thought it worth exploring in this book.

As you saw in Chapter 2, Cocoa is actually composed of two different frame-
works: Foundation and Application Kit. The Application Kit has all the user
interface objects and high-level classes. You'll get a taste of the AppKit (as the
cool kids call it) in Chapter 14.

Cocoa’s Foundation framework has a bunch of useful low-level, data-oriented
classes and types. We'll be visiting a number of these, such as NSString, NSArray,
NSEnumerator, and NSNumber. Foundation has more than a hundred classes,

all of which you can explore by looking at the documentation installed with
Xcode. These documents live at /Developer/ADC Reference Library/documentation/
index.html.

Before we continue, here’s a note about the projects for this chapter and for the
rest of this book. We'll still be making Foundation tool projects, but we'll leave in
the boilerplate code, which follows (slightly reformatted to fit on this page):

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool
= [[NSAutoreleasePool alloc] 1init];

CHAPTER 8: A Quick Tour of the Foundation Kit

// insert code here...
NSLog(@"Hello, World!");

[pool drain];
return 0;

}

Take a look through this code. main() starts by creating (via al1oc) and initializing (via init)
an NSAutoreleasePool.The pool is drained at the end. This is a sneak preview of Cocoa
memory management, which we’'ll discuss in the next chapter. For now, please just nod,
smile, and leave the NSAutoreleasePool stuff in there. If you take it out, you won't hurt
yourself, but you'll get some very strange messages when you run your programs.

Some Useful Types

Before digging into real live Cocoa classes, let’s take a look at some structs that Cocoa pro-
vides for our benefit.

Home on the Range

The first structure is NSRange:

typedef struct _NSRange {
unsigned int Tocation;
unsigned int length;

} NSRange;

This structure is used to represent a range of things, usually a range of characters in a string
or arange of items in an array. The Tocation field holds the starting position of the range,
and length is the number of elements in the range. For the string “Objective-C is a cool
language”, the word “cool” can be described by the range that starts at Tocation 17 and has
Tength 4. Tocation can have the value NSNotFound to indicate that the range doesn’t refer
to anything, probably because it’s uninitialized.

You can make a new NSRange in three different ways. First, you can assign the field values
directly:

NSRange range;
range.location

= 17;
range.length = 4;

CHAPTER 8: A Quick Tour of the Foundation Kit

Second, you can use the C aggregate structure assignment mechanism (doesn’t that sound
impressive?):

NSRange range = { 17, 4 };
Finally, Cocoa provides a convenience function called NSMakeRange ():

NSRange range = NSMakeRange (17, 4);

The nice thing about NSMakeRange () is that you can use it anywhere you can use a function,
such as in a method call as an argument:

[anObject flarbulateWithRange: NSMakeRange (13, 15)];

Geometric Types

You'll often see types that deal with geometry, such as NSPoint and NSSize. NSPoint repre-
sents an (x, y) point in the Cartesian plane:

typedef struct _NSPoint {
float x;
float y;

} NSPoint;

NSS1ize holds a width and a height:

typedef struct _NSSize {
float width;
float height;

} NSSize;

In the Shapes family of programs, we could have used an NSPoint and an NSS1ize instead
of our custom rectangle struct, but we wanted to keep things as simple as possible at the
time. Cocoa provides a rectangle type, which is a composition of a point and a size:

typedef struct _NSRect {
NSPoint origin;
NSSize size;

} NSRect;

Cocoa gives us convenience functions for making these bad boys too: NSMakePoint (),
NSMakeSize(), and NSMakeRect ().

CHAPTER 8: A Quick Tour of the Foundation Kit

OTE

Why are these things C structs instead of full-blown objects? It comes down to performance. A pro-

gram, especially a GUI program, uses a lot of temporary points, sizes, and rectangles to do its work.
Remember that all Objective-C objects are dynamically allocated, and dynamic allocation is a relatively
expensive operation, consuming a nontrivial amount of time. Making these structures first-class objects
would impose a lot of overhead in their use.

Stringing Us Along

The first real live class on our tour is NSString, Cocoa’s string handling class. A string is just
a sequence of human-readable characters. Since computers tend to interact with humans
on a regular basis, having a way to store and manipulate human-readable text is a fine idea.
You've met NSStrings before, with the special NSString literal, indicated by an at sign
before a double-quoted string, as in @"Hi ! . These literal strings are as much NSStrings as
the ones you create programmatically.

If you've ever done any string processing in C, such as the stuff covered in Learn C on the Mac
by Dave Mark (Apress 2009), you know it’s pretty painful. Cimplements strings as simple
arrays of characters that mark their end with a trailing zero-byte. Cocoa’s NSString has

a bunch of built-in methods that make string handling much easier.

Build That String

You've seen functions like printf () and NSLog () that take a format string and some argu-
ments and emit formatted output. NSString’s stringWithFormat: method creates a new
NSString just like that, with a format and arguments:

+ (id) stringWithFormat: (NSString *) format, ...;

And you make a new string like this:

NSString *height;
height = [NSString stringWithFormat:
@"Your height is %d feet, %d inches", 5, 11];

The resulting string is “Your height is 5 feet, 11 inches”.

Class Methods

A couple of interesting things are going on in stringWithFormat:’s declaration. The first is the
ellipses (. . .) at the end, which tells you (and the compiler) that this method will take any number
of additional arguments, specified in a comma-separated list, just like printf() and NSLog().

CHAPTER 8: A Quick Tour of the Foundation Kit

Another wacky and even more important fact about stringWithFormat: is the very special
leading character in the declaration: a plus sign. What's up with that? When the Objective-C
runtime builds a class, it creates a class object that represents the class. The class object
contains pointers to the superclass, class name, and to the list of the class’s methods. The
class object also contains a Tong that specifies the size, in bytes, for newly created instance
objects of that class.

When you declare a method with the plus sign, you've marked the method as a class
method. This method belongs to the class object (as opposed to an instance object of
the class) and is typically used to create new instances. Class methods used to create new
objects are called factory methods.

stringWithFormat: is a factory method. It creates a new object for you based on the argu-
ments you give it. Using stringWithFormat: to make a new string is a whole lot easier than
starting off with an empty string and building all the individual components.

Class methods can also be used to access global data. AppKit's NSCoTor class has some class
methods named after various colors, such as redColor and blueColor. To get hold of a blue
color to draw with, you write something like this:

NSColor *haveTheBlues = [NSColor blueColor];

The vast majority of methods you create will be instance methods and will be declared with

a leading minus sign (-). These methods will operate on a specific object instance, such as get-
tinga Circle’s color oraTire's air pressure. If the method performs a more general-purpose
function, such as creating an instance object or accessing some global class data, you'll likely
declare the method as a class method using the leading plus sign (+).

Size Matters

Another handy NSString method (an instance method) is Tength, which returns the num-
ber of characters in the string:

- (unsigned int) length;
You'd use it like this:

unsigned int length = [height Tength];

or in expressions like so:

if ([height length] > 35) {
NSLog (@"wow, you're really talll!l");
3

CHAPTER 8: A Quick Tour of the Foundation Kit

OTE

NSString’s length method does the right thing when dealing with international strings, such as those
containing Russian, Chinese, or Japanese characters, and using the Unicode international character stan-
dard under the hood. Dealing with these international strings in straight C is especially painful, because
an individual character might take more than 1 byte. This means that functions like str1en (), which
just counts bytes, can return the wrong value.

Comparative Politics

Comparison is a frequent operation with strings. Sometimes you want to see if two strings
are equal (for example, is username equal to "markd'?). Other times, you want to see how
two strings would be ordered against each other, so you can sort a list of names. NSString
provides several comparison functions to help you out.

isEqualToString: compares the receiver (the object that the message is being sent to)
with a string that’s passed in as an argument. isEqualToString: returns a BOOL (YES or NO)
indicating if the two strings have the same contents. It’s declared like this:

- (BOOL) 1isEqualToString: (NSString *) aString;

And this is how you use it:

NSString *thingl = @"hello 5";
NSString *thing2;
thing2 = [NSString stringWithFormat: @"hello %d", 5];

if ([thingl isEqualToString: thing2]) {
NSLog (@"They are the same!™);
b

To compare strings, use the compare: method, which is declared as follows:

- (NSComparisonResult) compare: (NSString *) string;

compare: does a character-by-character comparison of the receiving object against the
passed-in string. It returns an NSComparisonResult (which is just an enum) that shows
the result of the comparison:

typedef enum _NSComparisonResult {
NSOrderedAscending = -1,
NSOrderedSame,
NSOrderedDescending

} NSComparisonResult;

CHAPTER 8: A Quick Tour of the Foundation Kit

COMPARING STRINGS: DO IT RIGHT

When comparing strings for equality, you want to use i sEqualToString: rather than just comparing

their pointer values, for instance:

if ([thingl isEqualToString: thing2]) {
NSLog (@"The strings are the same!™);
3

is different from

if (thingl == thing2) {
NSLog (@"They are the same object!™);
3

That'’s because the == operator works on only the values of the thing1 and thing2 pointers, not what
they point to. Because thingl and thing?2 are different strings, the second comparison will think they’re
different.

Sometimes you do want to check for identity between two objects: is thing1 exactly the same object as
thing2?That's the time to use the == operator. If you want to check for equivalence (that s, do these two
strings represent the same thing?), use isEqualToString:.

If you've ever used the C functions gsort() or bsearch(), this might look familiar. If the
result from compare: is NSOrderedAscending, the left-hand value is smaller than the
right-hand one—that is, the target of compare sorts earlier in the alphabet than the string
that’s been passed in. For instance, [@"aardvark" compare: @"zygote"] would return
NSOrderedAscending:.

Similarly, [@"zoinks" compare: @"jinkies"] would return NSOrderedDescending. And,
as you'd expect, [@"fnord" compare: @"fnord"] would return NSOrderedSame.

Insensitivity Training

compare: does a case-sensitive comparison. In other words, @"Bork" and @"bork", when
compared, won't return NSOrderedSame. There’s another method, compare:options:, that
gives you more control:

- (NSComparisonResult) compare: (NSString *) string
options: (unsigned) mask;

CHAPTER 8: A Quick Tour of the Foundation Kit

The options parameter is a bit mask. You can use the bitwise-OR operator (|) to add option
flags together. Some common options follow:

B NSCaseInsensitiveSearch: Uppercase and lowercase characters are considered the
same.

B NSLiteralSearch: Perform an exact comparison, including case.

B NSNumericSearch: Numbers in strings are compared as numbers, rather than their
character values. Without this, “100” would sort before “99,” which strikes most non-
programmers as rather bizarre, or even wrong.

For example, if you want to perform a comparison ignoring case but ordering numbers cor-
rectly, you would do this:

if ([thingl compare: thing2
options: NSCaselInsensitiveSearch
| NSNumericSearch]
== NSOrderedSame) {
NSLog (@"They match!");

Is It Inside?

Sometimes you want to see if a string has another string inside it. For example, you might
want to know if a file name has“mov” at the end so you can open it in QuickTime Player, or
you could check whether it starts with “draft” to see if it’s a draft version of a document. Here
are two methods that help: the first checks whether a string starts with another string, and
the second determines if a string ends with another string:

- (BOOL) hasPrefix: (NSString *) aString;
- (BOOL) hasSuffix: (NSString *) aString;

And you'd use these methods as follows:

NSString *filename = @"draft-chapter.pages";

if ([fileName hasPrefix: @"draft") {
// this is a draft

3
if ([fileName hasSuffix: @".mov") {
// this is a movie

So draft-chapters.pages would be recognized as a draft version (because it starts with
“draft”), but would not be recognized as a movie (it has “.pages”at the end rather than“mov”).

CHAPTER 8: A Quick Tour of the Foundation Kit

If you want to see if a string is somewhere inside another string, use range0fString:
- (NSRange) rangeOfString: (NSString *) aString;

When you send range0fString: to an NSString object, you pass it the string to look for. It
then returns an NSRange struct to show you where the matching part of the string is and
how large the match is. So the following example

NSRange range;
range = [fileName rangeOfString: @"chapter"];

comes back with range.start at 6, and range.length set to 7. If the argument isn’t found
in the receiver, range. start will be equal to NSNotFound.

Mutability

NSStrings are immutable. That doesn’t mean you can’t keep them quiet; it refers to the fact
that once they're created, you can’t change them. You can do all sorts of stuff with them, like
make new strings with them, find characters in them, and compare them to other strings,
but you can’t change them by taking off characters or by adding new ones.

Cocoa provides a subclass of NSString called NSMutableString. Use that if you want to
slice and dice a string in place.

OTE

Programmers coming from Java should feel at home with this distinction. NSSt ring behaves like the

java String class, and NSMutableStringis like Java’s StringBuffer class.

You can create a new NSMutableString by using the class method stringwithCapacity:,
which is declared like so:

+ (id) stringWithCapacity: (unsigned) capacity;

The capacity is just a suggestion to NSMutableString, like when you tell your teenager
what time to be home. The string is not limited to the capacity you supply—it’s just an
optimization. For example, if you know you're building a string that’s 40 megabytes in size,
NSMutableString can preallocate a chunk of memory to hold it, making subsequent opera-
tions much faster. Create a new mutable string like this:

NSMutableString *string;
string = [NSMutableString stringWithCapacity: 42];

CHAPTER 8: A Quick Tour of the Foundation Kit

Once you have a mutable string, you can do all sorts of wacky tricks with it. Acommon oper-
ation is to append a new string, using appendString: or appendFormat:, like this:

- (void) appendString: (NSString *) aString;
- (void) appendFormat: (NSString *) format, ...;

appendString takes its aString parameter and copies it to the end of the receiving object.
appendFormat works like stringwithFormat:, butinstead of creating a new string object, it
appends the formatted string to the end of the receiving string, for example:

NSMutableString *string;

string = [NSMutableString stringWithCapacity: 50];
[string appendString: @"Hello there "];

[string appendFormat: @"human %d!", 39];

At the end of this code, string will have the friendly value “Hello there human 39!".

You can remove characters from the string with the deTeteCharactersInRange: method:

- (void) deleteCharactersInRange: (NSRange) range;

You'll often use deleteCharactersInRange: coupled with range0fString:. Remember
that NSMutableStringis a subclass of NSString. Through the miracle of object-oriented
programming, you also can use all the features of NSString with NSMutableStrings,
including range0fString:, the comparison methods, and everything else. For example, let’s
say you list all your friends, but then you decide you don't like Jack any more and you want
to remove him from the list:

First, make the list of friends:

NSMutableString *friends;
friends = [NSMutableString stringWithCapacity: 50];
[friends appendString: @"James BethLynn Jack Evan"];

Next, find the range of characters where Jack lives:

NSRange jackRange;
jackRange = [friends rangeOfString: @"Jack"];
jackRange.length++; // eat the space that follows

In this case, the range starts at 15 and has a length of 5. Now, we can remove Jack from our
Christmas card list:

[friends deleteCharactersInRange: jackRange];

This leaves the string as “James BethLynn Evan”.

CHAPTER 8: A Quick Tour of the Foundation Kit

Mutable strings are very handy for implementing description methods. You can use
appendString and appendFormat to create a nice description for your object.

We get a couple of behaviors for free because NSMutab1eStringis a subclass of NSString. The
first freebie is that anywhere an NSString is used, we can substitute an NSMutableString. Any
methods that take an NSString will also take an NSMutab1eString. The user of the string really
doesn't care if it's mutable or not.

The other free behavior comes from the fact that inheritance works just as well with class
methods as it does with instance methods. So, the handy stringwithFormat: class method
in NSString works for making new NSMutableStrings. You can easily populate a mutable
string from a format:

NSMutableString *string;
string = [NSMutableString stringWithFormat: @"jo%dy", 2];

string starts out with the value “jo2y”, but you can perform other operations, such as delet-
ing characters from a given range or inserting characters at a particular position. Check out
the documentation for NSString and NSMutableString to learn full details on the dozens
of methods available in these classes.

Collection Agency

Individual objects floating around is nifty, but frequently you'll want to get things organized.
Cocoa provides a number of collection classes such as NSArray and NSD1i ctionary whose
instances exist just to hold onto other objects.

NSArray

You've used arrays in C. In fact, earlier in this very book, we used an array to hold four tires
for a car. You might remember that we ran into some difficulties with that code. For instance,
we had to check to make sure the index into the array was valid: it couldn’t go below 0 or
beyond the end of the array. Another problem: the array length of 4 was hard-coded into the
Car class, meaning we couldn’t have a car with more than four tires. Sure, that doesn't seem
like much of a limitation, but you never know if the Flying Rocket Cars of the Future that
we've all been promised will need more than four tires for a smooth landing.

NSArray is a Cocoa class that holds an ordered list of objects. You can put any kind of objects
in an NSArray: NSString, Car, Shape, Tire, or whatever else you want.

CHAPTER 8: A Quick Tour of the Foundation Kit

Once you have an NSArray of objects, you can work with it in various ways, such as by having
an object’s instance variable point to the array, passing the array as an argument to a method
or function, getting a count of the number of objects stored inside it, grabbing an object at

a particular index, finding an object in the array, looping over the contents, or a zillion other
magic tricks.

NSArray has two limitations. First, it will hold only Objective-C objects. You can't have primi-
tive C types, like int, float, enum, struct, or random pointers in an NSArray. Also, you
can't store ni1 (the zero or NULL value for objects) in an NSArray. There are ways of working
around these limitations, as you'll see in a little while.

You can create a new NSArray by using the class method arrayWithObjects:.You give it
a comma-separated list of objects, with ni1 at the end to signal the end of the list (which, by
the way, is one of the reasons you can’t store ni1 in an array):

NSArray *array;
array = [NSArray arrayWithObjects:
@"one", @"two", @"three", nil];

This makes a three-element array composed of literal NSString objects. Once you have an
array, you can get a count of the number of objects it contains:

- (unsigned) count;

And you can fetch an object at a particular index:

- (id) objectAtIndex: (unsigned int) 1index;

You can combine these two to print out the contents of the array:

int 1;
for (i = 0; i < [array count]; i++) {
NSLog (@"index %d has %@.",
i, [array objectAtIndex: 1i]);

The output would look like this:

index 0 has one.
index 1 has two.
index 2 has three.

If you refer to an index that’s greater than the number of objects in the array, Cocoa prints
a complaint at runtime. For example, run this code:

[array objectAtIndex: 208000];

CHAPTER 8: A Quick Tour of the Foundation Kit

You'll see this:

**% Terminating app due to uncaught exception 'NSRangeException',
reason: '*** -[NSCFArray objectAtIndex:]: index (208000) beyond bounds (3)'

So there.

Because you'll probably see messages like this from time to time in your Cocoa programming
career, let's spend a moment taking a closer look. After giving you the smack down by saying
that it terminated your program, the message mentions this was because of an “uncaught
exception.” An exception is Cocoa’s way of saying “l don't know how to deal with this.” There
are ways to catch exceptions in code and handle them yourself, but you don’t need to do that
when you're just starting out. This particular exception is an NSRangeException, which means
there’s something wrong with a range parameter being passed to a method. The method in
particularis NSCFArray objectAtIndex:.NSCFArray looks a lot like NSArray, which is a hint
about what’s going wrong.

OTE

When you see the characters “CF” in Cocoa, you're looking at something related to Apple’s Core Foundation

framework. Core Foundation is like Cocoa but implemented in C, and much of it is open source if you want
to download it and poke around. Many Core Foundation objects and Cocoa objects are toll-free bridged,
meaning they can be used interchangeably. The NSCFArray you're seeing here is Apple’s implementa-
tion of NSArray but using CFArray to do the heavy lifting.

The last bits of information in the exception message are the most interesting. This part of
the message says we're asking for something at index 208000 in an array, but oops, the array
only has three items—missed it by that much. Using this information, you can trace back to
the offending code and find the error.

Tracking down the cause of an exception can be frustrating. All you get is this message

in the Run window. With a GUI program, the program keeps running. There’s a way to get
Xcode to break into the debugger when an exception happens, which is a bit better. To
make this happen, choose Run » Show » Breakpoints. You'll get a window that shows all
the current breakpoints (these are the places the Xcode debugger will stop your program
so you can poke around its innards), breakpoints specific to the current project, and break-
points that are applied globally, as shown in Figure 8-1.

Q- string Matching

v |Location |Condition |lgnore | Ie

. I e-Click for Symbol 1

B Proj kpoints
P Global Breakpoints

Figure 8-1. Xcode’s breakpoints window

We'll add two breakpoints that will make tracking down these exceptions easier. First, we'll
set a breakpoint on -[NSException raise]. Select Global Breakpoints. Double-click the
Double-Click for Symbol box; type -[NSException raise], and press return. Your breakpoint
window should look like the one shown in Figure 8-2.

—
—

IEI Q- String Matching

Groups & Files Breakpoim v |Location |Condition |lgnore | Ie
w "I Breakpoints e B =]

¥ [Double-Click for Symbaol]

P Project

Figure 8-2. After adding an -[NSException raise] breakpoint

Also, add a global breakpoint for objc_exception_throw. Now, when you run the pro-
gram and an exception is thrown, the debugger will stop and point to the offending line, as
shown in Figure 8-3. You might need to click in the stack trace pane (it’s the top-left pane of
Figure 8-3) to move the focus to the appropriate source file. In this example, we clicked the
main function in that list to see our code.

CHAPTER 8: A Quick Tour of the Foundation Kit

| Thread-13 | Variable | Summary

|
0 obijc_exception_throw ¥ Arguments I
1 +[NSException raise:-format:arguments:] arge 1
2 +[NSException raise:format:] W argv Oxbffff158
3 _NSArrayRaiseBoundException ¥ Locals
4 -[NSCFArray objectAtindex:] » pool Ox104ab0
b array 0x104af0 3 objects
» Globals
b Registers !":
-.m -l e B
_« » [Groovynessm:8 ; Eimain0 - = #. | E
Fimport Foundation/Foundation.he s
int moin {int argc, const char * arge[]) 4
HSAutore lensePool * pool = [[NSAutorelensePool alloc] init]s
NSArray *array;
array = [NSArray arrayidithObjects:
@"one", @"two", @"three", nil];
s Al
[pool drain]; L-
return 8: 34
GDB: Stopped at breakpoint 4 (hit count ! 1) - ‘objc_exception_throw' @Succeeded |

Figure 8-3. The XCode debugger pointing to the offending line

You might not be happy that Cocoa complains so vehemently if your program merely trans-
gresses the bounds of an array. But trust us: you'll come to realize it’s actually a great thing,
because it allows you to catch errors that otherwise might go undetected.

Like NSString, NSArray has a lot of features. For example, you can tell an array to give you
the location of a particular object, make a new array based on a range of elements in the
current array, join all the elements into a string with a given separator (that one is handy for
making comma-separated lists), or make a new array that’s a sorted version of the array you
already have.

OING THE SPLITS

If you've used scripting languages like Perl or Python, you're probably used to splitting a string into an array

and joining an array’s elements into a single string. You can do that with NSArray too.

To splitan NSArray, use -componentsSeparatedByString:, like this:

NSString *string = @"oop:ack:bork:greeble:ponies";
NSArray *chunks = [string componentsSeparatedByString: @":"];

And to join an NSArray and create a string of its contents, use componentsJoinedByString::

string = [chunks componentsJoinedByString: @" :-) "1;

The preceding line would produce an NSString with the contents “oop :-) ack :-) bork :-) greeble :-) ponies”.

CHAPTER 8: A Quick Tour of the Foundation Kit

Mutable Arrays

NSArray creates immutable objects, just as NSString does. Once you create an array with

a certain number of objects, that’s it for that array: you can’t add or remove any members.
The objects contained in the array are free to change, of course (like a Car getting a new set
of Tires after it fails a safety inspection), but the array object itself will stay the same forever.

To complement NSArray, NSMutab1eArray exists so that we can add and remove objects
whenever we want. It uses a class method, arraywithCapacity, to make a new mutable
array:

+ (id) arrayWithCapacity: (unsigned) numItems;

Like NSMutableString’s stringWithCapacity:, the array’s capacity is just a hint about its
eventual size. The capacity value exists so that Cocoa can perform some optimizations on
the code. Cocoa doesn’t prepopulate the array with objects, and it doesn’t use the capacity
value to limit the array. You create a new mutable array like this:

NSMutableArray *array;
array = [NSMutableArray arrayWithCapacity: 17];

Add objects to the end of the array by using addObject:.
- (void) addObject: (id) anObject;

You can add four tires to an array with a loop like this:

for (i =0; i < 4; i++) {
Tire *tire = [Tire new];
[array addObject: tire];

You can remove an object at a particular index. For example, if you don’t like the second tire,
you can use removeObjectAtIndex: to getrid of it. Here’s how the method is defined:

- (void) removeObjectAtIndex: (unsigned) index;
You use it like this:
[array removeObjectAtIndex: 1];

Note that the second tire lives at index 1. NSArray objects are zero-indexed, like C arrays.

There are now three tires left. No hole is created in the array after you remove an object.
The objects in the array that follow the removed object all get shifted down to fill the gap.

CHAPTER 8: A Quick Tour of the Foundation Kit

There are a bunch of cool things you can do with other methods of mutable arrays, like
inserting an object at a particular index, replacing an object, sorting the array, plus all the
goodies that NSArray provides as an ancestor.

Enumeration Nation

Performing an operation on each element of the array is a common NSArray operation. For
example, you might tell all the shapes in the array to change their color to green, if you really
liked green that much. Or you might want every tire in the car to go flat on the driver, for real-
ism in constructing your Pittsburgh-area driving simulator. You can write a loop to index from
0to [array count] and get the object at the index, or you can use an NSEnumerator, which
is Cocoa’s way of describing this kind of iteration over a collection. To use NSEnumerator, you
ask the array for the enumerator using objectEnumerator:

- (NSEnumerator *) objectEnumerator;

You use the method like this:

NSEnumerator *enumerator;
enumerator = [array objectEnumerator];

There’s also a reverseObjectEnumerator method if you want to walk the collection from
back to front. llooC

After you get an enumerator, you crank up a while loop that asks the enumerator for its
nextObject every time through the loop:

- (id) nextObject;

When nextObject returns nil, the loop is done. This is another reason why you can’t store
nil values in the array: there’s no way to tell whether a ni1 result was a value stored in the
array or the ni1 that signals the end of the loop.

The whole loop then looks like this:

NSEnumerator *enumerator;
enumerator = [array objectEnumerator];

id thingie;

while (thingie = [enumerator nextObject]) {
NSLog (@"I found %@", thingie);

3

CHAPTER 8: A Quick Tour of the Foundation Kit

There’s one gotcha if you're enumerating over a mutable array: you can’t change the container,
such as by adding or removing objects. If you do, the enumerator will become confused and
you'll get undefined results. “Undefined results” can mean anything from “Hey, it seems to have
worked!” to “Oops, it crashed my program.”

Fast Enumeration

In Mac OS X 10.5 (Leopard), Apple introduced a number of small tweaks to Objective-C as it
boosted the language version to 2.0. The first of these tweaks we'll examine is called fast enu-
meration, and it uses syntax familiar to users of scripting languages. Here’s what it looks like:

for (NSString *string in array) {
NSLog (@"I found %@", string);

The body of the loop will spin for each element in the array, with the variable string hold-
ing each array value. It's much more concise than the enumerator syntax and much faster.

Like all the new Objective-C 2.0 features, this is not available on Tiger (Mac OS X 10.4). If you
or your users need to run your programs on Tiger, you can't use this new syntax. Bummer.

OK, so now we have three ways to iterate through an array: by index, with NSEnumerator,
and now with fast enumeration. Which one do you use?

If you're only going to be running on Leopard or later OS versions, use fast enumeration. It’s
more succinct and much faster.

If you need to support Tiger, go the NSEnumerator way. Xcode includes a refactoring to
convert code to Objective-C 2.0 and will automatically convert NSEnumerator loops into fast
enumeration.

Only use -objectAtIndex if you really need to access things by index, like if you're skip-
ping around the array (for example, accessing every third object in it) or if you are iterating
through multiple arrays at the same time.

NSDictionary

No doubt you've heard of dictionaries. Maybe you even use one occasionally. In program-
ming, a dictionary is a collection of keywords and their definitions. Cocoa has a collection
class called NSDictionary that performs these duties. An NSD1i ctionary stores a value
(which can be any kind of object) under a given key (usually an NSString). You can then use
that key to look up the corresponding value. So, for example, if you have an NSDictionary
that stores all the contact information for a person, you can ask that dictionary “Give me the
value for the key home-address.” Or say, “Give me the value for the key email-address.”

CHAPTER 8: A Quick Tour of the Foundation Kit

OTE

Why not just have an array and look at the values inside it? A dictionary (which is also known as a hash
table or an associative array) uses a storage mechanism that’s optimized for key lookups. Rather than

scanning an entire array looking for an item, the dictionary can immediately put its electronic hands on
the data it’s after. For frequent lookups and for large data sets, a dictionary can be hundreds of times
faster than an array. That’s, like, really fast.

As you can probably guess, NSDictionary, like NSString and NSArray, is an immutable
object. However, the NSMutableDictionary class that lets you add and remove stuff at will.
To make a new NSD1i ctionary, you supply all the objects and keys that live in the dictionary
at creation time. The easiest way to get started with a dictionary is to use the class method
dictionaryWithObjectsAndKeys:.

+ (id) dictionaryWithObjectsAndKeys:
(id) firstObject, ...;

This method takes an alternating sequence of objects and keys, terminated by a ni1 value
(as you can probably guess, you can’t store a ni1 value in an NSDictionary). Let’s say we
want to make a dictionary to hold the tires of our car using human-readable labels rather
than arbitrary indexes in an array. You can create such a dictionary like this:

Tire *tl = [Tire new];

Tire *t2 = [Tire new];
Tire *t3 = [Tire new];
Tire *t4 = [Tire new];

NSDictionary *tires;

tires = [NSDictionary dictionaryWithObjectsAndKeys:
tl, @"front-Teft", t2, @"'front-right",
t3, @"back-left", t4, @"back-right", nil];

To access a value in the dictionary, use the objectForKey: method, giving it the key you
previously stored the value under:

- (id) objectForKey: (id) aKey;
So, to find the back-right tire, you can do this:

Tire *tire = [tires objectForKey: @"back-right"];

CHAPTER 8: A Quick Tour of the Foundation Kit

If there’s no back-right tire in the dictionary (if it’s a funky three-wheeler), objectForKey:
returnsnil.

To make a new NSMutableDictionary, send the dictionary message to the NSMutablew
Dictionary class. You can also create a new mutable dictionary and give Cocoa a hint of its
eventual size by using dictionaryWithCapacity: (have you started to notice that Cocoa
has a very regular naming system?).

+ (id) dictionaryWithCapacity: (unsigned int) numItems;

As we mentioned earlier with NSMutableString and NSMutableArray, the capacity is just
a hint, not a limit to the size of the dictionary,

You can add things to the dictionary by using setObject:forKey:.
- (void) setObject: (id) anObject forKey: (id) aKey;

Here’s another way to make the dictionary that holds the tires:

NSMutableDictionary *tires;
tires = [NSMutableDictionary dictionary];

[tires setObject: tl forKey: @"front-left"];
[tires setObject: t2 forKey: @"'front-right"];
[tires setObject: t3 forKey: @"back-left"];

[tires setObject: t4 forKey: @"back-right"];

If you use setObject:forKey: on akey that’s already there, it replaces the old value with the
new one. If you want to take a key out of a mutable dictionary, use the removeObjectForKey:
method:

- (void) removeObjectForKey: (id) aKey;
So, if we want to model one of our tires falling off, we can just remove it:

[tires removeObjectForKey: @"back-left"];

Use but Don’t Extend

Because you're inventive, you might be tempted to create subclasses of NSString, NSArray,
or NSD1ictionary. Resist the urge. In some languages, you do end up subclassing string and
array classes to get work done. But in Cocoa, many classes are actually implemented as class
clusters, which are a bunch of implementation-specific classes hidden behind a common
interface. When you make an NSString object, you might actually end up getting an
NSLiteralString, NSCFString, NSSimpleCString, NSBal10fString, or any number of

CHAPTER 8: A Quick Tour of the Foundation Kit

undocumented implementation-detail objects. As an example of how this works, recall that
earlier in this chapter, when we indexed past the array bounds and got an exception message,
the class in the listing was actually NSCFArray. Go back and take a look.

As a user of NSString or NSArray, you don't have to care which class is being used under the
hood. But trying to subclass a class cluster is an exercise in pain and frustration. Instead of sub-
classing, you can usually solve such programming problems by composing an NSString or
NSArray into one of your classes or by using categories (described in Chapter 12).

Family Values

NSArrays and NSDictionaries hold only objects. They can’t directly contain any primitive
types, like int, float, or struct. But you can use objects that embed a primitive value. For
example, stick an int into an object, and you can then put that object into an NSArray or
NSD1ictionary.

NSNumber

Cocoa provides a class called NSNumber that wraps (that is, implements as objects) the prim-
itive numeric types. You can create a new NSNumber using these class methods:

+ (NSNumber *) numberWithChar: (char) value;

+ (NSNumber *) numberWithInt: (int) value;

+ (NSNumber *) numberWithFloat: (float) value;

+ (NSNumber *) numberWithBool: (BOOL) value;

There are many more of these creation methods, including unsigned versions and varieties
for long and long long integers, but these are the most common ones. After you create an

NSNumber, you can then put it into a dictionary or an array:

NSNumber *number;

number = [NSNumber numberWithInt: 42];

[array addObject: number];

[dictionary setObject: number forKey: @"Bork"];

Once you have a primitive type wrapped in an NSNumber, you can get it back out by using
one of these instance methods:

(char) charValue;

(int) intValue;

(float) floatValue;
(BOOL) boolValue;
(NSString *) stringValue;

CHAPTER 8: A Quick Tour of the Foundation Kit

It's perfectly OK to mix and match the creation methods and the extraction methods. For
example, it’s all right to create an NSNumber with numberWithFloat: and get the value back
with intVaTlue. NSNumber will do the proper conversions for you.

OTE

The wrapping of a primitive type in an object is often called boxing, and taking the primitive type out is
unboxing. Some languages have an autoboxing feature that will automatically converts a primitive to its

corresponding wrapped type and back. Objective-C does not support autoboxing.

NSValue

NSNumber is actually a subclass of NSValue, which wraps arbitrary values. You can use
NSValue to put structures into NSArrays and NSD1ictionaries. Create a new NSValue using
this class method:

+ (NSValue *) valueWithBytes: (const void *) value
objCType: (const char *) type;

You pass the address of the value you want to wrap (such as an NSSize or your own struct).
Usually, you take the address (using the & operator in C) of the variable you want to save.
You also supply a string describing the type, usually by reporting the types and sizes of

the entries in the struct. You don't actually have to write code to build this string yourself.
There’s a compiler directive called @encode that takes a type name and generates the proper
magic for you. So, to put an NSRect into an NSArray, you do something like this:

NSRect rect = NSMakeRect (1, 2, 30, 40);

NSValue *value;

value = [NSValue valueWithBytes: &rect
objCType: @encode(NSRect)];

[array addObject: value];

You can extract the value using getValue:
- (void) getValue: (void *) value;

When you call getValue:, you pass the address of a variable that you want to hold the
value:

value = [array objectAtIndex: 0];
[value getValue: &rect];

CHAPTER 8: A Quick Tour of the Foundation Kit

OTE

Inthe getValue: example, you can see the use of get in the name of the method to indicate that
we're providing a pointer as the place to store the value the method generates.

Convenience methods are provided for putting common Cocoa structs into NSValues, and
we have conveniently listed them here:

+ (NSvValue *) valueWithPoint: (NSPoint) point;
+ (NSValue *) valueWithSize: (NSSize) size;
+ (NSValue *) valueWithRect: (NSRect) rect;

(NSPoint) pointValue;
(NSSize) sizeValue;
(NSRect) rectValue;

To store and retrieve an NSRect in an NSArray, you do this:

value = [NSValue valueWithRect: rect];
[array addObject: value];

NSRect anotherRect = [value rectValue];

NSNull

We've told you that you can’t put ni1 into a collection, because ni1 has special meaning

to NSArray and NSDictionary. But sometimes you really need to store a value that means
“there’s nothing here at all.” For example, let’s say you have a dictionary that holds a per-
son’s contact information, and under the key @'home fax machine", you store the user’s
home fax number. If that key holds a phone number value, you know that person has a fax
machine. But if there’s no value in the dictionary, does it mean that person has no home fax
machine or that you don't know if they have one or not? By using NSNu11, you can eliminate
the ambiguity. You can decide that a value of NSNu11 for the key @"'home fax machine"
means the person definitely does not have a fax machine, and no value for the key means
that you don't know if the person has one or not.

NSNu11 is probably the simplest of all Cocoa classes. It has but a single method:
+ (NSNull *) null;

And you add it to a collection like this:

[contact setObject: [NSNull null]
forKey: @"home fax machine"];

CHAPTER 8: A Quick Tour of the Foundation Kit

You access it as follows:

id homefax;
homefax = [contact objectForKey: @"home fax machine"];

if Chomefax == [NSNull null]) {
// ... no fax machine. rats.

[NSNu11 nu11] always returns the same value, so you can use == to compare it with other
values.

Example: Looking for Files

OK, enough with the theoretical blah blah, with details on NSB1ahB1ah. Here's an actual
working program that uses some of the classes found in this chapter. FileWalker (found in
the 08-01 FileWalker project folder) will paw through your home directory looking for .jpg
files and print a list of what it finds. It’s not terribly exciting, we admit, but it actually does
something.

FileWalker uses NSString, NSArray, NSEnumerator, and two other Foundation classes to
interact with the file system.

Our example also uses NSFileManager. The NSFileManager class lets you do stuff with the file
system, like create directories, remove files, move files around, and get information about files.
In this example, we're going to ask NSFileManager to make an NSDi rectoryEnumerator for
us, which we'll use to chug through a hierarchy of files.

This entire program resides in the main () function, because we're not making any of our
own classes. Hereismain() in its entirety:

int main (int argc, const char *argv[])
{

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

NSFileManager *manager;
manager = [NSFileManager defaultManager];

NSString *home;
home = [@"~" stringByExpandingTildeInPath];

NSDirectoryEnumerator *direnum;
direnum = [manager enumeratorAtPath: home];

NSMutableArray *files;

CHAPTER 8: A Quick Tour of the Foundation Kit

files = [NSMutableArray arrayWithCapacity: 42];

NSString *filename;
while (filename = [direnum nextObject]) {
if ([[filename pathExtension]
isEqualTo: @"jpg"]) {
[fiTes addObject: filename];

}

NSEnumerator *fileenum;
fileenum = [files objectEnumerator];

while (filename = [fileenum nextObject]) {
NSLog (@"%@", filename);

s
[pool drain];
return (0);

} // main

Now, let’s deconstruct this program bit by bit. At the top is the autorelease pool boilerplate
code (Chapter 9 covers this in detail, as you'll see):

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

Our next step is to get hold of an NSFileManager to play with. NSFileManager has a class
method named defaultManager that gives us an NSFileManager object of our very own:

NSFileManager *manager;
manager = [NSFileManager defaultManager];

This is a common idiom in Cocoa. There are a number of classes that have a singleton
architecture: only one of them is needed. You really need only one file manager, or one font
manager, or one graphics context. These classes provide a class method to give you access
to a single, shared object, which you then use to get your work done.

In this case, we need a directory iterator. But before we can ask the file manager for a direc-
tory iterator, we must figure out where in the file system to start looking at files. Starting
from the top level of your hard drive could take a long time, so let’s just look in your home
directory.

How do we specify this directory? We could start with an absolute path, like /Users/markd/,
but that has the limitation that it only works if your home directory is named markd. Luck-
ily, Unix (and Mac OS X) has a shorthand character for the home directory, which is ~ (also

CHAPTER 8: A Quick Tour of the Foundation Kit

known as the tilde). Yes, there really is a use for that character even when you're not typing in
Espanol). ~/Documents is the Documents directory, and ~/junk/oopack.txt would be found at
/Users/markd/junk/oopack.txt on Mark’s machine. NSString has a method that will take the
tilde and expand it. That method is used in the next two lines of code:

NSString *home;
home = [@"~" stringByExpandingTildeInPath];

stringByExpandingTildeInPath will replace ~ with the current user’s home directory. On
Mark’s machine, home would be /Users/markd. Next, we feed this path string to the file manager:

NSD1irectoryEnumerator *direnum;
direnum = [manager enumeratorAtPath: home];

enumeratorAtPath: returns an NSDirectoryEnumerator, which is a subclass of NSEnumerator.
Each time you call nextObject on this enumerator object, it returns another path to a file in that
directory. This method goes down into subdirectories too. By the time the iteration loop ends,
you have the path for every single file in your home directory. There are some extra features pro-
vided by NSD1i rectoryEnumerator, such as getting a dictionary of attributes for every file, but
we won't use those here.

Because we're looking for .jpg files (that is, path names that end in “jpg”), and we'’re going to
print their names, we need a place to store those names. We could just NSLog() them as we
come across them in the enumeration, but in the future, we might want to do some opera-
tion on all the files at a different spot in the program. An NSMutableArray is a dandy choice
here. We'll make a mutable array and add matching paths to it:

NSMutableArray *files;
files = [NSMutableArray arrayWithCapacity: 42];

We have no idea how many .jpg files will actually be found, so we just picked 42 because—
well, you know why. And because the capacity isn’t a limitation on the size of the array, we'll
be fine in any case.

Finally, we get to the real meat of the program. Everything else has been set up, and now it’s
time for the loop:

NSString *filename;
while (filename = [direnum nextObject]) {

The directory enumerator returns an NSString with the path to the file it’s pointing to. And,
just like NSEnumerator, it will return ni1 when it's done, which will stop the loop when
there’s nothing else to do.

CHAPTER 8: A Quick Tour of the Foundation Kit

NSString provides a number of convenience utilities for dealing with pathnames and file-
names. For example, the pathExtension method gives you the extension for the file (minus
the dot that precedes it). So, calling pathExtension on a file named oopack.txt would return
@"txt" and the pathExtension for VikkiCat.jpg would be @"jpg".

We use nested method calls to grab the path extension, and send that string the message
isEqualTo:. If that call returns YES, the filename is added to the array of files, like so:

if ([[filename pathExtension] isEqualTo: @"jpg"]) {
[files addObject: filename];
}

After the directory loop ends, the files array is enumerated and its contents are printed using
NSLog():

NSEnumerator *fileenum;
fileenum = [files objectEnumerator];

while (filename = [fileenum nextObject]) {
NSLog (@"%@", filename);
}

Next, we do some housekeeping, with more autorelease pool boilerplate code, and, finally,
we tellmain() to return 0 to indicate a successful exit:

[pool drain];
return (0);

} // main

Here’s the start of a sample run on Mark’s machine:

cocoaheads/DSCN0798. jpg
cocoaheads/DSCN0O804. jpg

cow. jpg
Development/Borkware/BorkSort/cant-open-file.jpg

Development/Borkware/BSL/BWLog/accident. jpg

It works! It might take a while to show results though, because it may have to dig through
many thousands of images to do its thing.

CHAPTER 8: A Quick Tour of the Foundation Kit

Behind the Sign That Says “Beware of the Leopard”

FileWalker uses the classic style of iteration. The project 08.02 FileWalkerPro shows how to
do this stuff with fast enumeration. One nifty feature of the fast enumeration syntax is that
you can feed it an already existing NSEnumerator or subclass. And it just so happens that
NSDirectoryEnumerator is a subclass of NSEnumerator, so we can happily send the results
of -enumeratorAtPath: to fast enumeration:

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] 1init];

NSFileManager *manager;
manager = [NSFileManager defaultManager];

NSString *home;
home = [@"~" stringByExpandingTildeInPath];

NSMutableArray *files;
files = [NSMutableArray arrayWithCapacity: 42];

for (NSString *filename
in [manager enumeratorAtPath: home]) {
if ([[filename pathExtension]
isEqualTo: @"jpg"]) {
[fiTes addObject: filename];
}
3
for (NSString *filename in files) {
NSLog (@"%@", filename);
3

As you can see, this version is simpler than the previous one: we've jettisoned two enumera-
tor variables and the supporting code for them.

CHAPTER 8: A Quick Tour of the Foundation Kit

Summary

We've covered a lot of stuff in this chapter! We introduced three new language features:

class methods, which are methods that are handled by the class itself instead of a particular
instance; the @encode () directive used for methods that need a description of a C type to do
their work; and fast enumeration.

We looked at a number of useful Cocoa classes, including NSString, NSArray, and
NSDictionary.NSString holds human-readable text, while NSArray and NSD1ictionary
hold collections of objects. These objects are immutable: they can’t change after you create
them. Cocoa provides mutable versions of these classes, which let you change their contents
at will.

Despite all our efforts (and despite the length of this chapter), we've just barely scratched
the surface of the hundreds of different classes in Cocoa. You can have fun and get smarter
by digging around and learning about more of these classes.

Finally, we used the classes we learned about to spin through our home directory looking for
groovy pictures.

In the next chapter, we dive into the mysteries of memory management, and you'll learn
how you can clean up after yourself if you make any messes.

Chapter

Memory
Management

ext on our plate is memory management using Objective-C and Cocoa (yum!).
Memory management is a part of a more general problem in programming
called resource management. Every computer system has finite resources for
your program to use. These include memory, open files, network connections,
and so on. If you use a resource, such as by opening a file, you need to clean
up after yourself (in this case, by closing the file). If you keep on opening files
but never close them, you'll eventually run out of file capacity. Think about
your public library. If everyone borrowed books but never returned them,
eventually the library would close because it would have no more books, and
everybody would be sad. Nobody wants that.

Of course, when your program ends, the operating system reclaims the
resources it used. But as long as your program is running, it uses resources,
and if you don't practice cleanliness, some resource will eventually be used up,
and your program will probably crash.

Not every program uses files or network connections, but every program uses
memory. Memory-related errors are the bane of every programmer who uses

a C-style language. Our friends in the Java and scripting worlds have it easy:
memory management happens automatically for them, like having their par-
ents clean up their rooms. We, on the other hand, have to make sure to allocate
memory when we need it and free that memory when we're done. If we allocate
without freeing, we'll leak memory: our program’s memory consumption will
grow and grow until we run out of memory and then the program will crash.
We need to be equally careful not to use any memory after we free it. We might
be using stale data, which can cause all sorts of errors, or something else might
have moved into that memory, and then we end up corrupting the new stuff.

CHAPTER 9: Memory Management

OTE

Memory management is a hard problem. Cocoa’s solution is rather elegant but does take some time to
wrap your mind around. Even programmers with decades of experience have problems when first encoun-

tering this material, so don’t worry if it leaves your head spinning for awhile.

If you know that your programs will only be run on Leopard or later, you can take advantage of Objective-C
2.0's garbage collection, which we'll discuss at the end of this chapter. We won't feel sad if you skip to the
end, really. If you want to run on older versions of Mac 0S X or you're doing iPhone development, you will
want to read the whole chapter.

Object Life Cycle

Just like the birds and the bees out here in the real world, objects inside a program have

a life cycle. They're born (via an alTloc or a new); they live (receive messages and do stuff),
make friends (via composition and arguments to methods), and eventually die (get freed)
when their lives are over. When that happens, their raw materials (memory) are recycled and
used for the next generation.

Reference Counting

Now, it's pretty obvious when an object is born, and we've talked a lot about how to use an
object, but how do we know when an object’s useful life is over? Cocoa uses a technique
known as reference counting, also sometimes called retain counting. Every object has an
integer associated with it, known as its reference count or retain count. When some chunk
of code is interested in an object, the code increases the object’s retain count, saying, “l am
interested in this object” When that code is done with the object, it decreases the retain
count, indicating that it has lost interest in that object. When the retain count goes to 0,
nobody cares about the object anymore (poor object!), so it is destroyed and its memory is
returned to the system for reuse.

When an object is created via alloc or new, or via a copy message (which makes a copy of
the receiving object), the object’s retain count is set to 1. To increase its retain count, send the
object a retain message. To decrease its retain count, send the object a release message.

When an object is about to be destroyed because its retain count has reached 0, Objective-C
will automatically send the object a dealloc message. You can override dealloc in your
objects. Do this to release any related resources you might have allocated. Don't ever call
dealloc directly. You can rely on Objective-C to invoke your dealloc method when it’s time
to kill your object. To find out the current retain count, send the retainCount message. Here
are the signatures for retain, release and retainCount:

CHAPTER 9: Memory Management

- (id) retain;
- (void) release;
- (unsigned) retainCount;

Retain returns an id. That way, you can chain a retain call with other message sends, incre-
menting its retain count and then asking it to do some work. For instance, [[car retain]
setTire: tire atIndex: 2]; asks cartobump up itsretain count and perform the
setTire action.

The first project in this chapter is RetainCount1, located in the 09.07 RetainCount-1 project
folder. This program creates an object (RetainTracker) that calls NSLog () when it’s initial-
ized and when it gets deallocated:

@interface RetainTracker : NSObject
@end // RetainTracker

@implementation RetainTracker

(id) 1init
if (self = [super init]) {

NSLog (@"init: Retain count of %d.",
[self retainCount]);

return (self);

} // init

- (void) dealloc

NSLog (@"dealloc called. Bye Bye.");
[super dealloc];

} // dealloc
@end // RetainTracker

The init method follows the standard Cocoa idiom for object initialization, which we'll explore
in the next chapter. As we mentioned earlier, the deal1oc message is sent (and, as a result, the
dealloc method called) automatically when an object’s retain count reaches 0. Our versions of
initand dealloc use NSLog() to write out a message saying that they were called.

main() is where a new RetainTracker object is created, and the two methods defined by
that class get called indirectly. When a new RetainTracker is created, retain and release

CHAPTER 9: Memory Management

messages are sent to increase and decrease the retain count, while we watch the fun, cour-
tesy of NSLog():

int main (int argc, const char *argv[])

{

RetainTracker *tracker = [RetainTracker new];
// count: 1

[tracker retain]; // count: 2
NSLog (@"%d", [tracker retainCount]);

[tracker retain]; // count: 3
NSLog (@"%d", [tracker retainCount]);

[tracker release]; // count: 2
NSLog (@"%d", [tracker retainCount]);

[tracker release]; // count: 1
NSLog (@"%d", [tracker retainCount]);

[tracker retain]; // count 2
NSLog (@"%d", [tracker retainCount]);

[tracker release]; // count 1
NSLog (@"%d", [tracker retainCount]);

[tracker release]; // count: 0, dealloc it
return (0);
} // main

In real life, of course, you wouldn’t be doing multiple retains and releases in a single function
like this. Over its lifetime, an object might see patterns of retains and releases like this from

a bunch of different places in your program over time. Running the program lets us see the
retain counts:

init: Retain count of 1.

R NNRERE N WN

dealloc called. Bye Bye.

CHAPTER 9: Memory Management

So, if you alloc, new, or copy an object, you just need to release it to make it go away and let
the memory get reclaimed.

Object Ownership

“So,”you're thinking, “didn’t you say this was hard? What'’s the big deal? You create an object,
use it, release it, and memory management is happy. That doesn’t sound terribly compli-
cated. It gets more complex when you factor in the concept of object ownership. When
something is said to “own an object,” that something is responsible for making sure the
object gets cleaned up.

An object with instance variables that point to other objects is said to own those other
objects. For example, in CarParts, a car owns the engine and tires that it points to. Similarly,
a function that creates an object is said to own that object. In CarParts, main() creates

a new car object, somain() is said to own the car.

A complication arises when more than one entity owns a particular object, which is why the
retain count can be larger than 1. In the case of the RetainCount1 program, main() owned
the RetainTracker object, somain() is responsible for cleaning up the object.

Recall the engine setter method for Car:
- (void) setEngine: (Engine *) newEngine;

and how it was called frommain():

Engine *engine = [Engine new];
[car setEngine: engine];

Who owns the engine now? Does main() own it or does Car? Who is responsible for mak-
ing sure the Engine gets a release message when it is no longer useful? It can't be main(),
because Car is using the engine. It can’t be Car, because main() might be using the engine
later.

The trick is to have Car retain the engine, increasing its retain count to 2. That makes sense,
since two entities, Car and main(), are now using the engine. Car should retain the engine
inside setEngine:, and main() should release the engine. Then Car releases the engine
when it’s done (in its dealloc method), and the engine’s resources will be reclaimed.

Retaining and Releasing in Accessors

A first crack at writing a memory management-savvy version of setEngine might look like
this:

- (void) setEngine: (Engine *) newEngine

{

CHAPTER 9: Memory Management

engine = [newEngine retain];

// BAD CODE: do not steal. See fixed version below.
} // setEngine

Unfortunately, that’s not quite enough. Imagine this sequence of callsin main():

Engine *enginel = [Engine new]; // count: 1
[car setEngine: enginel]; // count: 2
[enginel release]; // count: 1

Engine *engine2 = [Engine new]; // count: 1
[car setEngine: engine2]; // count: 2

Oops! We have a problem with enginel now:its retain countis still 1. main() has already
released its reference to enginel, but Car never did. We have now leaked enginel, and
leaky engines are never a good thing. That first engine object will sit around idling (sorry,
we'll stop with the puns for awhile) and consuming a chunk of memory.

Here’s another attempt at writing setEngine:.

- (void) setEngine: (Engine *) newEngine
{

[engine release];

engine = [newEngine retain];

// More BAD CODE: do not steal. Fixed version below.
} // setEngine

That fixes the case of the leaked enginel that you saw previously. But it breaks when
newEngine and the old engine are the same object. Ponder this case:

Engine *engine = [Engine new]; // count: 1
Car *carl = [Car new];
Car *car2 = [Car new];

[carl setEngine: engine]; // count: 2
[engine release]; // count 1

[car2 setEngine: [carl enginel]; // oops!

Why is this a problem? Here’s what's happening. [carl engine] returns a pointer to
engine, which has a retain count of 1. The first line of setEngineis [engine release],
which makes the retain count 0, and the object gets deallocated. Now, both newEngine and
the engine instance variable are pointing to freed memory, which is bad. Here’s a better way
to write setEngine:

CHAPTER 9: Memory Management

- (void) setEngine: (Engine *) newEngine
{

[newEngine retain];

[engine release];

engine = newEngine;

} // setEngine

If you retain the new engine first, and newEngine is the same object as engine, the retain
count will be increased and immediately decreased. But the count won't go to 0, and the
engine won't be destroyed unexpectedly, which would be bad. In your accessors, if you
retain the new object before you release the old object, you'll be safe.

OTE

There are different schools of thought on how proper accessors should be written, and arguments and

flame wars erupt on various mailing lists on a semiregular basis. The technique shown in the “Retaining
and Releasing in Accessors” section works well and is (somewhat) easy to understand, but don’t be sur-
prised if you see different accessor management techniques when you look at other people’s code.

Autorelease

Memory management can be a tough problem, as you've seen so far when we encountered
some of the subtleties of writing setter methods. And now it’s time to examine yet another
wrinkle. You know that objects need to be released when you're finished with them. In
some cases, knowing when you're done with an object is not so easy. Consider the case of

a description method, which returns an NSString that describes an object:

- (NSString *) description
{
NSString *description;

description = [[NSString alloc]
initWithFormat: @"I am %d years old", 4];

return (description);
} // description

Here, we're making a new string instance with al1oc, which gives it a retain count of 1, and
then we return it. Who is responsible for cleaning up this string object?

It can’t be the description method. If you release the description string before returning it,
the retain count goes to 0, and the object will be obliterated immediately.

CHAPTER 9: Memory Management

The code that uses the description could hang onto the string in a variable and then release
it when finished, but that makes using the descriptions extremely inconvenient. What
should be just one line of code turns into three:

NSString *desc = [someObject description];
NSLog (@"%@", desc);
[desc release];

There has got to be a better way. And luckily, there is!

Everyone into the Pool!

Cocoa has the concept of the autorelease pool. You've probably seen NSAutoreleasePool
in the boilerplate code generated by Xcode. Now it’s time to see what it’s all about.

The name provides a good clue. It’s a pool (collection) of stuff, presumably objects, that
automatically get released.

NSObject provides a method called autorelease:

- (id) autorelease;

This method schedules a release message to be sent at some time in the future. The return
value is the object that receives the message; retain uses this same technique, which
makes chaining calls together easy. What actually happens when you send autorelease to
an object is that the object is added to an NSAutoreleasePool. When that pool is destroyed,
all the objects in the pool are sent a release message.

OTE

There’s no magic in the autorelease concept. You could write your own autorelease pool by using an

NSMutableArray to hold the objects and send all those objects a re1ease message in the
dealToc method. But there’s no need for reinvention—Apple has done the hard work for you.

So we can now write a description method that does a good job with memory management:

- (NSString *) description
{
NSString *description;
description = [[NSString alloc]
initWithFormat: @"I am %d years old", 4];

return ([description autorelease]);

} // description

CHAPTER 9: Memory Management

So you can write code like this:

NSLog (@"%@", [someObject description]);

Now, memory management works just right, because the description method creates

a new string, autoreleases it, and returns it for the NSLog () to use. Because that description
string was autoreleased, it's been put into the currently active autorelease pool, and, some-
time later, after the code doing the NSLog () has finished running, the pool will be destroyed.

The Eve of Our Destruction

When does the autorelease pool get destroyed so that it can send a release message to all
of the objects it contains? For that matter, when does a pool get created in the first place?
In the Foundation tools we've been using, the creation and destruction of the pool has
been explicit:

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] init];

[pool release];

When you create an autorelease pool, it automatically becomes the active pool. When you
release that pool, its retain count goes to 0, so it then gets deallocated. During the dealloca-
tion, it releases all the objects it has.

When you're using the AppKit, Cocoa automatically creates and destroys an autorelease pool
for you on a regular basis. It does so after the program handles the current event (such as

a mouse click or key press). You're free to use as many autoreleased objects as you like, and
the pool will clean them up for you automatically whenever the user does something.

OTE

You may have seen in Xcode’s autogenerated code an alternate way of destroying an autorelease pool’s

objects: the -drain method. This method empties out the pool without destroying it. ~drainisonly
available in Mac 0S X 10.4 (Tiger) and later. In our own code (not generated by Xcode), we'll be using
-reTease, since that will work on versions of the 05 back to the beginning of time.

Pools in Action

RetainTracker2 shows the autorelease pool doing its thing. It’s found in the 09-02 RetainTracker-2
project folder. This program uses the same RetainTracker class we built in RetainTracker1,
which NSLog () s when a RetainTracker object is initialized and when it’s released.

CHAPTER 9: Memory Management

RetainTracker2's main () looks like this:

int main (int argc, const char *argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] init];

RetainTracker *tracker;
tracker = [RetainTracker new]; // count: 1

[tracker retain]; // count: 2
[tracker autorelease]; // count: still 2
[tracker release]; // count: 1

NSLog (@"releasing pool™);

[pool release];

// gets nuked, sends release to tracker
return (0);

} // main

To start, we create the autorelease pool:

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

Now, any time we send the autorelease message to an object, it jumps into this pool:

RetainTracker *tracker;
tracker = [RetainTracker new]; // count: 1

Here, a new tracker is created. Because it's being made with a new message, it has a retain
count of 1:

[tracker retain]; // count: 2

Next, it gets retained, just for fun and demonstration purposes. The object’s retain count
goes to 2:

[tracker autorelease]; // count: still 2

Then the object gets autoreleased. Its retain count is unchanged: it’s still 2. The important
thing to note is that the pool that was created earlier now has a reference to this object.
When pool goes away, the tracker object will be sent a release message.

[tracker release]; // count: 1

CHAPTER 9: Memory Management

Next, we release it to counteract the retain that we did earlier. The object’s retain count is
still greater than 0, so it’s still alive:

NSLog (@"releasing pool");
[pool release];
// gets nuked, sends release to tracker

Now, we release the pool. An NSAutoreleasePool is an ordinary object, subject to the same
rules of memory management as any other. Because we made the pool with an allogc, it has
a retain count of 1. The release decreases its retain count to 0, so the pool will be destroyed
and its dealloc method called.

Finally, main returns 0 to indicate that everything was successful:

return (0);

} // main

Can you guess what the output is going to look like? Which will come first, the NSLog ()
before we release the pool or the NSLog from RetainTracker’s dealloc method?

Here’s the output from a run of RetainTracker2:

init: Retain count of 1.
releasing pool
dealloc called. Bye Bye.

As you probably guessed, the NSLog () before releasing the pool happens prior to the
NSLog() from RetainTracker.

The Rules of Cocoa Memory Management

Now you've seen itall: retain, release, and autorelease. Cocoa has a number of memory
management conventions. They're pretty simple rules, and they’re applied consistently
throughout the toolkit.

OTE

Forgetting these rules is a common mistake, as is trying to make them too complicated. If you find yourself

scattering retainsand releases around aimlessly, hoping to fix some bug, you don’t understand the
rules. That means it’s time to slow down, take a deep breath, maybe go get a snack, and read them again.

CHAPTER 9: Memory Management

Here are the rules:

B When you create an object using new, alloc, or copy, the object has a retain count
of 1. You are responsible for sending the object a release or autorelease message
when you're done with it. That way, it gets cleaned up when its useful life is over.

B When you get hold of an object via any other mechanism, assume it has a retain
count of 1 and that it has already been autoreleased. You don’t need to do any fur-
ther work to make sure it gets cleaned up. If you're going to hang on to the object for
any length of time, retain it and make sure to release it when you're done.

B [f you retain an object, you need to (eventually) release or autorelease it. Balance
these retains and releases.

That'’s it—just three rules.

You'll be safe if you remember the mantra, “If | get it from new, alloc, or copy, | have to
release or autorelease it.’

Whenever you get hold of an object, you must be aware of two things: how you got it, and
how long you plan on hanging on to it (see Table 9-1).

Table 9-1. Memory Management Rules

Obtained Via... Transient Hang On

alloc/new/copy Release when done Releasein dealloc

Any other way Don‘t need to do anything | Retain when acquired, release in dealToc
Transient Objects

Let’s take a look at some common memory-management life cycle scenarios. In the first,
you're using an object, temporarily, in the course of some code, but you're not going to be
keeping it around for very long. If you get the object from new, alloc, or copy, you need to
arrange its demise, usually with a release:

NSMutableArray *array;

array = [[NSMutableArray alloc] init]; // count: 1
// use the array

[array release]; // count: O

If you get the object from any other mechanism, such as arrayWithCapacity:, you don't
have to worry about destroying it:

CHAPTER 9: Memory Management

NSMutableArray *array;

array = [NSMutabelArray arrayWithCapacity: 17];
// count: 1, autoreleased

// use the array

arrayWithCapacity: is not alloc, new, or copy, so you can assume that the object being
returned has a retain count of 1 and has already been autoreleased. When the autorelease pool
goes away, array is sent the release message, its retain count goes to 0, and its memory is
recycled.

Here's some code that uses an NSColor:

NSColor *color;
color = [NSColor blueColor];
// use the color

blueColor is not alloc, new, or copy, so you can assume it has a retain count of 1 and is
autoreleased. blueColor returns a global singleton object—a single object that’s shared by
every program that needs it—and won't actually ever get destroyed, but you don't need to
worry about those implementation details. All you need to know is that you do not need

to explicitly release the color.

Hanging on to Objects

Frequently, you'll want to keep an object around for more than a couple of lines of code.
Typically, you'll put these objects into instance variables of other objects, add them to a
collection like NSArray or NSD1ictionary, or more rarely, keep them as global variables.

If you're getting an object from 1ini t, new, or copy, you don't need to do anything special.
The object’s retain count will be 1, so it will stick around. Just be sure to release the object
in the dealloc method of the owner-object that’s hanging on to it:

- (void) doStuff
// flonkArray is an instance variable

flonkArray = [NSMutableArray new]; // count: 1
} // doStuff

- (void) dealloc

[flonkArray release]; // count: O
[super dealloc];
} // dealloc

CHAPTER 9: Memory Management

If you get an object from something other than alloc, new, or copy, you need to remember
to retain it. When you're writing a GUI application, think in event loops. You want to retain
autoreleased objects that will survive for longer than the current event loop.

So what’s an event loop? A typical graphical application spends a lot of time waiting on the
user to do something. The program sits twiddling its thumbs until the very slow human at
the controls decides to click the mouse or press a key. When one of these events does hap-
pen, the program wakes up and gets to work doing whatever is necessary to respond to the
event. After the event is handled, the application goes back to sleep waiting for the next
event. To keep your program’s memory footprint low, Cocoa creates an autorelease pool
before it starts handling the event and destroys the pool after the event is handled. This
keeps the amount of accumulated temporary objects to a minimum.

The previous methods would be written as follows when using autoreleased objects:

- (void) doStuff
{
// flonkArray 1is an instance variable
flonkArray
= [NSMutableArray arrayWithCapacity: 17];
// count: 1, autoreleased
[flonkArray retain]; // count: 2, 1 autorelease

} // doStuff

- (void) dealloc

[flonkArray release]; // count: O
[super dealloc];
} // dealloc

At the end of the current event loop (if it’s a GUI program) or when the autorelease pool gets
destroyed, flonkArray will be sent a release message, which will lower its retain count
from 2 to 1. Because the count is greater than 0, the object lives on. We still need to release
the objectin our dealloc so that it gets cleaned up. If we didn’t have the retain in doStuff,
flonkArray would get destroyed unexpectedly.

Remember that the autorelease pool is purged at well-defined times: when it’s explicitly
destroyed in your own code or at the end of the event loop when using the AppKit. You don't
have to worry about a demon that goes around destroying autorelease pools at random. You
also don't have to retain each and every object you use, because the pool won't go away in the
middle of a function.

CHAPTER 9: Memory Management

EEPING THE POOL CLEAN

Sometimes autorelease pools don’t get cleaned out as often as you would like. Here’s a common question

that comes up on Cocoa mailing lists: “I'm autoreleasing all the objects | use, but my program’s memory is

growing to absolutely huge levels.” That problem is usually caused by something like this:
int i;
for (i = 0; i < 1000000; i++) {
id object = [someArray objectAtIndex: i];
NSString *desc = [object description];
// and do something with the description
3

This program is running a loop that generates an autoreleased object (or two or ten) every time through

a whole bunch of iterations. Remember that the autorelease pool is only purged at well-defined times, and
the middle of this loop is not one of those times. Inside this loop, a million description strings are being cre-
ated, and all of them are put into the current autorelease pool, so we have a million strings sitting around.
Once the pool gets destroyed, the million strings will finally go away, but it won't happen before then.

The way to work around this is to create your own autorelease pool inside the loop. This way, every thousand
times through the loop, you can nuke the pool and make a new one (as follows, with new code in bold):

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] init];
int 1;
for (i = 0; i < 1000000; i++) {
id object = [someArray objectAtIndex: i];
NSString *desc = [object descrption];
// and do something with the description
if (i % 1000 == 0) {
[pool release];
pool = [[NSAutoreleasePool alloc] init];

¥
¥

[pool release]

Every thousand times through the loop, the new pool is destroyed and a newer one is created. Now, no more
than a thousand description strings will be in existence at one time, and the program can breathe easier.
Autorelease pool allocation and destruction are pretty cheap operations, so you could even make a new pool
in every iteration of the loop.

Autorelease pools are kept as a stack: if you make a new autorelease pool, it gets added to the top of the
stack. An autorelease message puts the receiver into the topmost pool. If you put an object into a pool,
and then make a new pool and destroy it, the autoreleased object will still be around, because the pool hold-
ing that object is still in existence.

CHAPTER 9: Memory Management

Take Out Those Papers and the Trash

Objective-C 2.0 introduces automatic memory management, also called garbage collection.
Programmers used to languages like Java or Python are well acquainted with the concept of
garbage collection. You just create and use objects and then, shockingly, forget about them.
The system automatically figures out what’s still being used and what can be recycled. Turning
on garbage collection is very easy, but it's an opt-in feature. Just go to the Build tab of the proj-
ect information window, and choose Required [-fobjc-gc-only], as shown in Figure 9-1.

{ General | Build | Configurations Comments]7

Configuration: [All Configurations H!I (Qv garb 3

Show: [All Settings hﬁq

Semng [value
¥ GCC 4.0 - Code Generation

Objective-C Garbage Collection ¥ Unsupported

3 Supported [-fohjc—gc]
Required [-fobjc-gc-only]
1 =

Based On: | Mothing S @

Figure 9-1. Enabling garbage collection

OTE

-fobjc-gcisfor code that supports both garbage collection and retain/release, such as library code

that can be used in both environments.

When you enable garbage collection, the usual memory management calls all turn into
no-op instructions; that’s a fancy way of saying they don't do anything.

The Objective-C garbage collector is a generational garbage collector. Newly created objects
are much more likely to turn into garbage than objects that have been hanging around for
awhile. At regular times, the garbage collector starts looking at your variables and objects
and follows the pointers between them. Any object it discovers without anything pointing
to it is garbage, which is fit to be thrown away. The worst thing you can do is keep a pointer
to an object that you're done with. So if you point to an object in an instance variable (recall
composition), be sure to assign ni1 to your instance variable, which removes your reference
to this object and lets the garbage collector know it can be purged.

Like the autorelease pool, garbage collection is triggered at the end of an event loop. You
can also trigger garbage collection yourself if you're not in a GUI program, but that’s beyond
the scope of what we want to talk about here.

CHAPTER 9: Memory Management

With garbage collection, you don’t need to worry too much about memory management.
There are some subtle nuances when using memory received from the malloc function or
with Core Foundation objects, but they’re obscure enough that we won't be covering them.
For now, you can just create objects and not worry about releasing them. We'll be discussing
garbage collection as we go along.

Note that you can't use garbage collection if you're writing iPhone software. In fact, in
iPhone programming, Apple recommends you avoid using autorelease in your own code
and that you also avoid convenience functions that give you autoreleased objects.

Summary

In this chapter, you learned about Cocoa’s memory management methods: retain,
release, and autorelease.

Each object maintains a retain count. Objects start their lives with a retain count of 1. When
the object is retained, the retain count increases by 1, and when the object is released, the
retain count is decreased by 1. When the retain count reaches 0, the object is destroyed. The
object’s dealloc message is called first, and then its memory is recycled, ready for use by
other objects.

When an object receives the autorelease message, its retain count doesn’t change
immediately; instead, the object is placed into an NSAutoreleasePool. When this pool is
destroyed, all the objects in the pool are sent a release message. Any objects that have
been autoreleased will then have their retain counts decremented by 1. If the count goes
to 0, the object is destroyed. When you use the AppKit, an autorelease pool will be created
and destroyed for you at well-defined times, such as when the current user event has been
handled. Otherwise, you are responsible for creating your own autorelease pool. The tem-
plate for Foundation tools includes code for this.

Cocoa has three rules about objects and their retain counts:

B If you get the object from a new, al1oc, or copy operation, the object has a retain
count of 1.

B If you get the object any other way, assume it has a retain count of 1 and that it has
been autoreleased.

B If you retain an object, you must balance every retain with a release.

Coming up next, we'll talk about init methods: how to make your objects hit the ground
running.

Chapter

Object
Initialization

ofar, we've created new objects in two different ways. The first way is
[SomeClass new], and the second is [[SomeClass alloc] init].These
two techniques are equivalent, but the common Cocoa convention is to use
alloc and initrather than new. Typically, Cocoa programmers use new as
training wheels until they have enough background to be comfortable with
allocand init.It's time for your training wheels to come off.

Allocating Objects

Allocation is the process by which a new object is born. It’s the happy time
when a chunk of memory is obtained from the operating system and desig-
nated as the location that will hold the object’s instance variables. Sending
the alToc message to a class causes that class to allocate a chunk of memory
large enough to hold all its instance variables. al1oc also conveniently initial-
izes all the memory to 0. That way, you don’t have the problem of uninitialized
memory causing all sorts of random bugs that afflicts many languages. All
your BOOLs start out as NO; all your ints are 0; all your floats become 0.0; all
your pointers are ni1; and all your base are belong to us (sorry, couldn’t resist).

A newly allocated object isn’t ready to be used right away: you need to ini-
tialize it before you can work with it. Some languages, including C++ and
Java, perform object allocation and initialization in a single operation using
a constructor. Objective-C splits the two operations into explicit allocation
and initialization stages. A common beginner’s error is to use only the alloc
operation, like this:

Car *car = [Car alloc];

CHAPTER 10: Object Initialization

This might work, but without the initialization, you can get some strange behavior (also known
as“bugs”) later on. The rest of this chapter is all about the vital concept of initialization.

Initializing Objects

The counterpart to allocation is initialization. Initialization takes a chunk of memory and
gets it ready to become a productive member of society. init methods—that is, methods
that do initialization—almost always return the object they're initializing. You can (and
should) chain your al1ocs and initializations like this:

Car *car = [[Car alloc] init];

and not like this:

Car *car = [Car alloc];
[car init];

This chaining technique is important because an initialization method might return an
object that’s not the same as the one that was allocated. If you think that’s pretty odd, you're
right. But it can happen.

Why might a programmer want an init method to return a different object? If you recall

the discussion on class clusters at the end of Chapter 8, you saw that classes like NSString
and NSArray are really just false fronts for a whole lot of specialized classes. An init method
can take arguments, so the method code gets a chance to look at the arguments and decide
that another class of object would be more appropriate. For example, let’s say a new string

is being made from a very long string, or maybe from a string of Arabic characters. Based on
this knowledge, the string initializer might decide to create an object of a different class, one
better suited to the needs of the desired string, and return that instead of the original object.

Writing Initialization Methods

Earlier, we asked you to endure some nod-and-smile moments when we presented initializa-
tion methods, mainly because they looked a little weird. Here’s the init method from an
earlier version of CarParts:

- (id) 1init
{
if (self = [super init]) {

engine = [Engine new];
tires[0] = [Tire new];
tires[1l] = [Tire new];
tires[2] = [Tire new];
tires[3] = [Tire new];

CHAPTER 10: Object Initialization

return (self);
Y // init
The main weirdness hits you on the very first line:
if (self = [super init]) {

This code implies that se1f might change. Change self in the middle of a method? Are

we crazy? Well, maybe, but not this time. The first bit of code that runs in that statement is
[super init].That code lets the superclass do its initialization work. For classes that inherit
from NSObject, calling on the superclass lets NSObject do any processing it needs to do so
that objects can respond to messages and deal with retain counts. For classes that inherit
from another class, this is their chance to do their own version of clean-slate initialization.

We just said that init methods like this one can return totally different objects. Remember
that instance variables are found at a memory location that’s a fixed distance from the hid-
den self parameter. If a new object is returned from an init method, we need to update
self so that any subsequent instance variable references affect the right places in memory.
That's why we need the self = [super init] assignment. Keep in mind that this assign-
ment affects the value of self only for this method. It doesn't change anything outside the
method’s scope.

An init method canreturn ni1 if there’s a problem initializing an object. For example, you
might be using an init method that takes a URL and initializes an image object using an
image file from a web site. If the network is down, or a redesign of the web site has moved
the picture, you won't get a useful image object. The init method would then return nil,
indicating the object couldn’t be initialized. The test if (self = [super init]) won't
run the body code if ni1 is returned from [super init]. Combining the assignment with
a check for a nonzero value like this is a classic C idiom that lives on in Objective-C.

The code to get the object up and running is in the braces of the if statement’s body. In the
original Car init method, the body of the i f statement creates an engine and four tires.
From the memory management perspective, this code does the right thing, because objects
returned via new start out with their reference counts set to 1.

Finally, the last line of the method is

return (self);

An init method returns the object that was just initialized. Since we assigned the return
value of [super init] to self, that's what we should return.

CHAPTER 10: Object Initialization

NITTO WINIT

Some programmers don't like the combined assignment and test for a nonzero value. Instead, they write
their init methods like this:

self = [super init];
if (self) {

}

return (self);

And that's fine. The key is that you assign back to se 1 f, especially if you're accessing any instance variables.
No matter which way you do it, be aware that combining the assignment and test is a common technique,
and you'll see it a lot in other people’s code.

Theself = [super init] styleisthe source of some controversy. One faction says you should always
do this, just in case the superclass changes something in the initialization. The other camp says that this
object changing is so rare and obscure that you need not bother—just use a plain [super init].Those
in this camp point out that if even if the i ni t changes the object, that new object probably doesn’t take any
new instance variables you have added.

This is a truly thorny problem in the abstract, but in the real world, it doesn’t happen very often. We recom-
mend always usingthe if (self = [super init]) technique just to be safe and to catch the

“in1 t returning ni1”behavior of some i nit methods. But if you choose to use a plain [super init],
that's fine too. Just be prepared to do a little debugging if you happen to catch one of the obscure corner cases.

What to Do When You're Initializing

What should you put in your init methods? This is the place to do your clean-slate initial-
ization work. You assign values to instance variables and create the other objects that your
object needs to do its work. When you write your init methods, you must decide how
much work you want to do there. The CarParts programs showed two different approaches
over the course of its evolution.

The first way used the init method to create the engine and all four tires. This made the Car
immediately useful out of the box: call alToc and init, and take the car out for a test drive.
We changed the next version to create nothing at all in the init method. We just left empty
spaces for the engine and tires. The code that created the object would then have to create
an engine and tires and set them using accessor methods.

Which way is right for you? The decision comes down to flexibility over performance, as do
many tradeoffs in programming. The original Car init method is very convenient. If the
intended use of the Car class is to create a basic car and then use it, that’s the right design.

CHAPTER 10: Object Initialization

On the other hand, if the car will often be customized with different kinds of tires and
engines, as in a racing game, we'll be creating the engine and tires just to have them thrown
away. Such a waste! Objects would be created and then destroyed without ever being used.

OTE

Even if you don’t provide calls to customize your object’s attributes, you can still wait to create them until

a caller asks for them. This is a technique known as lazy evaluation, and it can give you a performance
boost if you're creating complex objects in your -1 n1i t that might not actually be used.

Isn’t That Convenient?

Some objects have more than one method that starts with the word ini t. In fact, it's impor-
tant to remember that init methods are nothing special. They're just ordinary methods that
follow a naming convention.

Many classes have convenience initializers. These are init methods that do some extra
work, saving you the trouble of doing it yourself. To give you an idea of what we're talking
about, here’s a sampling of some of NSString’s init methods:

- (id) init;

This basic method initializes a new, empty string. For immutable NSStrings, this method
isn't terribly useful. But you can allocate and initialize a new NSMutableString and start
throwing characters into it. You'd use it like this:

NSString *emptyString = [[NSString alloc] init];
That code gives you an empty string.
- (id) initWithFormat: (NSString *) format, ...;

This version initializes a new string to the result of a formatting operation, just like we did
with NSLog () and with the stringWithFormat: class method you saw in Chapter 7. Here’s
an example that gives the flavor of using this init method:

string = [[NSString alloc]
initWithFormat: @"%d or %d", 25, 624];

This gives you a string with the value of "25 or 624".

- (id) initWithContentsOfFile: (NSString *) path;

CHAPTER 10: Object Initialization

The initWithContentsOfFile: method opens the text file at the given path, reads every-
thing there, and initializes a string with the contents. The following line of code reads the file
/tmp/words. txt:

string = [[NSString alloc]
initWithContentsOfFile: @"/tmp/words.txt"];

That's some pretty powerful stuff. This would take a whole bunch of code in C (you would
have to open the file, read blocks of data, append to a string, make sure the trailing zero-byte
is in the right place, and close the file). For us Objective-C devotees, it becomes a single line of
code. Nice.

More Parts Is Parts

Let’s revisit CarParts, last seen in Chapter 6 when we broke out each class into its own source
file. This time, we'll add some initialization goodness to the Tire class and clean up Car’s
memory management along the way. For those of you following along at home, the proj-
ect directory that has the finished program for this chapteris 710.01 CarPartslnit, or 10.01
CarPartsinit-GC for a garbage-collected version.

init for Tires

Tires in the real world are more interesting creatures than the ones we've simulated in
CarParts so far. In your real tires, you have to keep track of the tire pressure (don't want it to
get too low) and the tread depth (once it goes below a couple of millimeters, the tires aren’t
safe anymore). Let’s extend T1ire to keep track of the pressure and tread depth. Here’s the
class declaration that adds two instance variables and the corresponding accessor methods:

#import <Cocoa/Cocoa.h>

@interface Tire : NSObject
{

float pressure;
float treadDepth;

(void) setPressure: (float) pressure;
(float) pressure;

(void) setTreadDepth: (float) treadDepth;
(float) treadDepth;

@end // Tire

And here’s the implementation of Ti re, which is pretty straightforward:

#import "Tire.h"
@implementation Tire
- (id) init
if (self = [super init]) {
pressure = 34.0;

treadDepth = 20.0;
}

return (self);

} // init

- (void) setPressure: (float) p
pressure = p;

} // setPressure

- (float) pressure
return (pressure);

} // pressure

- (void) setTreadDepth: (float) td
treadDepth = td;

} // setTreadDepth

- (float) treadDepth
return (treadDepth);

} // treadDepth

- (NSString *) description
NSString *desc;
desc = [NSString stringWithFormat:

@"Tire: Pressure: %.1f TreadDepth: %.1f",
pressure, treadDepth];

CHAPTER 10: Object Initialization

return (desc);
} // description
@end // Tire

The accessor methods provide a way for users of the tire to change the pressure and the
tread depth. Let’s take a quick look at the init method:
- (id) 1init
{
if (self = [super init]) {
pressure = 34.0;
treadDepth = 20.0;
3

return (self);
} // init

There should be no surprises here. The superclass (NSObject, in this case) is told to initialize
itself, and the return value from that call is assigned to self. Then, the instance variables are
assigned to useful default values. Let’s make a brand new tire like this:

Tire *tire = [[Tire alloc] init];

The tire’s pressure will be 34 psi, and its tread depth will be 20 mm.

We should change the description method, too:

- (NSString *) description
{
NSString *desc;
desc = [NSString stringWithFormat:
@"Tire: Pressure: %.1f TreadDepth: %.1f",
pressure, treadDepth];
return (desc);

} // description

The description method now uses NSString’s stringWithFormat: class method to make

a string that includes the tire pressure and tread depth. Does this method follow our rules of
good memory management behavior? Yes, it does. Because the object was not created by
an alloc, copy, or new, it has a retain count of 1 and we can consider it to be autoreleased.
So, this string will get cleaned up when the autorelease pool is destroyed.

CHAPTER 10: Object Initialization

Updating main()
Here is the main.m file, which is a hair more complicated than it was before:

#import "Engine.h"

#import "Car.h"

#import "Slant6.h"

#import "AllWeatherRadial.h"

int main (int argc, const char * argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

Car *car = [[Car alloc] init];

int i;

for (i =0; i < 4; i++) {
Tire *tire;

tire = [[Tire alloc] init];

[tire setPressure: 23 + i];
[tire setTreadDepth: 33 - 1i];

[car setTire: tire
atIndex: 1i]l;

[tire release];
Engine *engine = [[Slant6 alloc] init];
[car setEngine: engine];

[car print];
[car release];

[pool release];
return (0);
} // main

Let’s pull main() apart, piece by piece. We start by making an autorelease pool for auto-
released objects to swim around in while they await the pool’s destruction:

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

CHAPTER 10: Object Initialization

Then, we create a new car using allocand init:

Car *car = [[Car alloc] init];

After that, a loop spins around four times (from 0 to 3).This is where the new tires are made:
int 1;
for (i =0; i < 4; i++) {
Each time through the loop, a new tire is created and initialized:
Tire *tire;

tire = [[Tire alloc] init];

Each tire starts out with its pressure and tread depth setin Tire's init method. But we're
going to customize the values, just for fun. Because no two tires are identical in the real
world, we're going to tweak the pressure and tread depths using the accessor methods:

[tire setPressure: 23 + 1i];
[tire setTreadDepth: 33 - i];

Next, we'll give the tire to the car:

[car setTire: tire
atIndex: i];

Now that we're done with the tire, we release it:

[tire release];

This code assumes that Car is doing the right memory management thing, arranging to
retain the object. Note that the Car as shown in Chapter 6 doesn’t follow our memory man-
agement guidelines—we were so young and naive then—but we’'ll show you how to fix that
in a little while.

After the tires are assembled, a new engine is created, just as before, and the engine is
placed in the car:

Engine *engine = [[STant6 alloc] init];
[car setEngine: engine];
[engine release];

As with the tires, the engine is released, because we're done using it. It’s up to the Car to
make sure the engine gets deallocated.

Finally, the Car is told to print itself out, and the Car is released because we're done with it:

[car print];
[car release];

CHAPTER 10: Object Initialization

Now the autorelease pool gets released, which causes its retain count to go to 0, deallocates
the pool, and sends the release message to every object in the pool. When this happens,
the NSStrings generated by the Tire description method get cleaned up:

[pool release];

And then main ends, at last. But before we can run the program, we need to fix up the Car
class so that it handles its memory management correctly. But first, here’s what main would
look like in a garbage-collected world:

int main (int argc, const char * argv[])
{

Car *car = [[Car alloc] init];

int i;

for (i =0; i < 4; i++) {
Tire *tire;
tire = [[Tire alloc] init];

[tire setPressure: 23 + i];
[tire setTreadDepth: 33 - 1i];

[car setTire: tire
atIndex: 1i];
Engine *engine = [[Slant6 alloc] init];
[car setEngine: engine];
[car print];
return (0);

} // main

As you can see, it’s a fair bit shorter and simpler without the extra memory management calls.

Cleaning Up the Car

Instead of using a regular C array in Car, let’s use an NSMutableArray. Why? Because that
will give us bounds checking for free. To do this, we'll change the @interface section of the
Car class to use a mutable array (the changed line of code is in bold):

#import <Cocoa/Cocoa.h>

@class Tire;
@class Engine;

CHAPTER 10: Object Initialization

@interface Car : NSObject

{
NSMutableArray *tires;
Engine *engine;

(void) setEngine: (Engine *) newEngine;

(Engine *) engine;

(void) setTire: (Tire *) tire
atIndex: (int) index;

(Tire *) tireAtIndex: (int) index;

(void) print;
@end // Car

We've upgraded pretty much every method of Car to follow the memory management
rules. Let’s start with init:

- (id) 1init
{
if (self = [super init]) {
tires = [[NSMutableArray alloc] init];
int 1;
for (i =0; 1 < 4; i++) {
[tires addObject: [NSNull null]];
}
h

return (self);
} // init

You've seen self = [super init] a bajillion times already; you've practically memorized
it. As you know by now, it just makes sure that the superclass gets the object up and run-
ning.

Next, we create an NSMutableArray. There’s a handy NSMutableArray method called
replaceObjectAtIndex:withObject: that's perfect forimplementing setTire:atIndex:.
To use replaceObjectAtIndex:withObject:, we need to have an object at the given index
so it can be replaced. A fresh NSMutableArray doesn’t have any contents, so we need some
object as a placeholder. NSNu11 is great for that kind of thing. So, we put four NSNu11 objects

CHAPTER 10: Object Initialization

(which you first saw in Chapter 8) into the array. In general, you don’t have to prepack your
NSMutableArrayS with NSNu1Ts, but in this case, doing so makes things a little easier later on.

At the end of init, we return self, because that’s the object we just finished initializing.

Next come the accessor methods for the engine. These are setEngine: and engine.
setEngine: uses the“retain the object passed in and release the current object” technique
that we showed earlier:

- (void) setEngine: (Engine *) newEngine
{

[newEngine retain];

[engine release];

engine = newEngine;
} // setEngine

And the engine accessor method simply returns the current engine:

- (Engine *) engine
{

return (engine);
} // engine

Now let’s do the tire accessors. First comes the setter:

- (void) setTire: (Tire *) tire
atIndex: (int) index

[tires replaceObjectAtIndex: index
withObject: tire];

} // setTire:atIndex:

This method uses replaceObjectAtIndex:withObject: to remove the existing object
from the collection and replace it with the new object. We don’t have to do any explicit
memory management with the tire, because NSMutableArray will automatically retain the
new tire and release the object that lives at the index, whether it’s an NSNu11 placeholder
or a previously stored tire object. NSMutableArray will release all of its objects when it gets
destroyed, so the tire will get cleaned up.

The tireAtIndex: getter uses the objectAtIndex: method provided by NSArray to get
the tire from the array:

- (Tire *) tireAtIndex: (int) index
{

Tire *tire;

CHAPTER 10: Object Initialization

tire = [tires objectAtIndex: 1index];
return (tire);

} // tireAtIndex:

APID RETURN

It’s perfectly legal to make the following method a one-liner by directly returning the result value of
objectAtIndex:

- (Tire *) tireAtIndex: (int) index
{

return ([tires objectAtIndex: index]);
} // tireAtIndex:

The extra variable in the original makes the code a little easier to read (at least, to us) and setting a breakpoint
easier, so we can see which object is being returned. This technique also makes it easier for the caveman debug-
gers to stickan NSLog () between the objectAtIndex: call and the end of the method when we return
the tire object.

We still need to make sure the car cleans up after the objects it's hanging onto—specifically,
the engine and the tires array. The dealloc method is the place to do this:

- (void) dealloc

{
[tires release];
[engine release];

[super dealloc];

} // dealloc

That’s enough to make sure all memory is reclaimed when this car gets sent to the junkyard.
Be sure to call the superclass’s dealloc method! Leaving that out is a common mistake.

Finally, there’s the print method for the car, which prints out the tires and the engine:

- (void) print
{
int i;
for (i =0; i < 4; i++) {
NSLog (@"%@", [self tireAtIndex: i]);
3

CHAPTER 10: Object Initialization

NSLog (@"%@", engine);
} // print

The print method loops through the tires and logs each one. It’s interesting that the loop
uses the tireAtIndex: method rather than poking at the array itself. If you want to touch
the array directly, you're welcome to do so. However, if you use the accessors, even in the
implementation of a class, you'll insulate that code from any changes. For example, if the tire
storage mechanism changes again in the future (say, back to a C-style array), you won't have
to change the print method.

Now (finally!), we can run CarPartsInit.The results look like this:

Tire: Pressure: 23.0 TreadDepth: 33.0
Tire: Pressure: 24.0 TreadDepth: 32.0
Tire: Pressure: 25.0 TreadDepth: 31.0
Tire: Pressure: 26.0 TreadDepth: 30.0
I am a slant-6. VROOOM!

Car Cleaning, GC Style

OK, so what about garbage collection? What does this class look like in that world?
setEngine gets simpler.

- (void) setEngine: (Engine *) newEngine
{

engine = newEngine;
} // setEngine

We change the engine instance variable. When Cocoa'’s garbage collection machinery runs,
it realizes nobody else is pointing to the old engine, so the garbage collector makes that
engine go away. On the other hand, because we have an instance variable pointing to the
newEngine, it won't be collected; the garbage collector knows somebody is using it.

The dealloc method goes away completely: there is no use for dealloc in the GC world. If
you need to do some work when an object goes away, you can override -finalize, which
is called when the object is finally collected, but there are some subtleties associated with
finalize. But for the kind of programming you'll be doing in Cocoa, you won't need to
worry about finalize.

CHAPTER 10: Object Initialization

Making a Convenience Initializer

No code is created perfect. You can always make improvements. Think back to the main()
function and how we created the tires:

tire = [[Tire alloc] init];
[tire setPressure: 23 + 1i];
[tire setTreadDepth: 33 - i];

That'’s four message sends and three lines of code. Doing that in one operation would be
nice. Let’s make a convenience initializer that takes both the pressure and tread depth at the
same time. Here’s T1i re with a convenience initializer added (in bold):

@interface Tire : NSObject
{

float pressure;
float treadDepth;

- (id) 1initWithPressure: (float) pressure
treadDepth: (float) treadDepth;

- (void) setPressure: (float) pressure;
- (float) pressure;

- (void) setTreadDepth: (float) treadDepth;
- (float) treadDepth;

@end // Tire

The implementation of that method is pretty plain, with no new surprises:

- (id) initWithPressure: (float) p
treadDepth: (float) td

if (self = [super init]) {
pressure = p;
treadDepth = td;

h;

return (self);
} // initWithPressure:treadDepth:

Now, allocating and initializing a tire is a single-step operation:

Tire *tire;

tire = [[Tire alloc]
initWithPressure: 23 + i
treadDepth: 33 - 1i];

CHAPTER 10: Object Initialization

The Designated Initializer

Unfortunately, not all is well in initialization land. A couple of subtleties crop up when we
start adding convenience initializers. Let’s add two more convenience initializers to Tire:

@interface Tire : NSObject
{

float pressure;
float treadDepth;

- (id) 1initWithPressure: (float) pressure;
- (id) 1initWithTreadDepth: (float) treadDepth;

- (id) initWithPressure: (float) pressure
treadDepth: (float) treadDepth;

- (void) setPressure: (float) pressure;
- (float) pressure;

- (void) setTreadDepth: (float) treadDepth;
- (float) treadDepth;

@end // Tire

The two new initializers, initWithPressure: and initWithTreadDepth:, are for folks who
know they want a tire with either a particular pressure or a particular tread depth but don’t

care about the value of the other attribute and are happy to accept the default. Here’s a first
attempt at an initialization (which we’'ll be fixing later):

- (id) initWithPressure: (float) p
{
if (self = [super init]) {
pressure = p;
treadDepth = 20.0;
3

return (self);

} // initWithPressure

- (id) initWithTreadDepth: (float) td

if (self = [super init]) {
pressure = 34.0;
treadDepth = td;

CHAPTER 10: Object Initialization

3
return (self);
} // initWithTreadDepth

We now have four init methods: init, initWithPressure:, initWithTreadDepth:,
and initWithPressure:treadDepth:. Each of these knows the default pressure (34),
the tread depth (20), or both. That works out OK, and the code is correct.

The problems come when we start subclassing Tire.

The Subclassing Problem

We already have a subclass of Tire named Al1WeatherRadial. Now, suppose that
AllwWeatherRadial wants to add two new instance variables, rainHand1ing and
snowHand11ing, which are floating point values that indicate how the tire handles on
wet and on snowy roads. We need to make sure these get set to reasonable values when
anew AllWeatherRadial is made.

So, here is the new interface for A11WeatherRadial, with the new instance variables and
accessors:

@interface AllWeatherRadial : Tire
{

float rainHandling;
float snowHandling;

(void) setRainHandling: (float) rainHandling;
(float) rainHandling;

(void) setSnowHandling: (float) snowHandling;
(float) snowHandling;

@end // AllWeatherRadial

And the accessor methods are trés boring:

- (void) setRainHandling: (float) rh
{

rainHandling = rh;
} // setRainHandling

- (float) rainHandling

CHAPTER 10: Object Initialization

return (rainHandling);
} // rainHandling

- (void) setSnowHandling: (float) sh

snowHandling = sh;
} // setSnowHandling

- (float) snowHandling

return (snowHandling);
} // snowHandling

We updated the description method to show the various tire parameters:

- (NSString *) description
{
NSString *desc;
desc = [[NSString alloc] initWithFormat:
@"AlTWeatherRadial: %.1f / %.1f / %.1f / %.1f",
[self pressure], [self treadDepth],
[self rainHandling],
[self snowHandling]l];

return (desc);
} // description

Here’s the for loop in main(), which creates new Al1WeatherRadials with their default
values:
int 1;
for (i =0; i < 4; i++) {
AllWeatherRadial *tire;

tire = [[AllWeatherRadial alloc] init];

[car setTire: tire
atIndex: 1i];

[tire release];

CHAPTER 10: Object Initialization

When we run the program, though, there’s a problem:

AllWeatherRadial: 34.
AllWeatherRadial: 3
AllWeatherRadial: 3
AllWeatherRadial: 3
I am a slant-6. VROOO

0

0
.0

0

M!
The Al1WeatherRadial attributes didn't get set to reasonable default values. What happened?
We need to set the values in an init method, so we'll have to override init. But Tire also has
initWithPressure:, initWithTreadDepth:,and initWithPressure:treadDepth:. Do we
have to override all of those? And even if we do, what happens if Ti re adds a new initializer? It
would be bad if a change in Tire breaks AT1WeatherRadial.

Luckily, the folks who brewed up Cocoa anticipated this problem. They came up with

the concept of the designated initializer. One init method in a class is the designated
initializer. All the initializer methods of the class use the designated initializer to do the ini-
tialization work. Subclasses use their superclass’s designated initializer for their superclass
initialization. The init method that takes the most arguments usually ends up being the
designated initializer. If you're using someone else’s code, be sure to check the documenta-
tion to see which method is the designated initializer.

Fixing Tire’s Initializers
First, we need to decide which of Tire’s initializers should be dubbed the designated initial-

izer. initWithPressure:treadDepth: is a good choice. It has the most arguments, and it’s
the most flexible of the initializers.

To fulfill the promise of the designated initializer, all other initializers should be implemented
in terms of initWithPressure:treadDepth:. It looks something like this:
- (id) 1init
{
if (self = [self initWithPressure: 34

treadDepth: 20]) {
b

return (self);

} // init

CHAPTER 10: Object Initialization

- (id) initWithPressure: (float) p
if (self = [self initWithPressure: p

treadDepth: 20.0]) {
3

return (self);

} // initWithPressure

- (id) initWithTreadDepth: (float) td
if (self = [self initWithPressure: 34.0

treadDepth: td]) {
}

return (self);

} // initWithTreadDepth

OTE

You don't really need the empty bodies for the i f statements, asin initWithPressure:treadDepth:.

We like to do that so that all the 1 nit methods have a consistent look.

Adding the AllWeatherRadial Initializer

Now, it’s time to add an initializer to A11WeatherRadial. The only method we need to add is
an override of the designated initializer:

- (id) initWithPressure: (float) p
treadDepth: (float) td
{
if (self = [super initWithPressure: p
treadDepth: td]) {
23.7;
42.5;

rainHandling
snowHandl1ing

}
return (self);

} // initWithPressure:treadDepth

CHAPTER 10: Object Initialization

Now, when we run the program, the proper defaults are set:

AlTWeatherRadial: 34.0 / 20.0 / 23.7 / 42.5
AlTWeatherRadial: 34.0 / 20.0 / 23.7 / 42.5
AlTWeatherRadial: 34.0 / 20.0 / 23.7 / 42.5
AlTWeatherRadial: 34.0 / 20.0 / 23.7 / 42.5
I am a slant-6. VROOOM!

VROOM, indeed!

Initializer Rules

You're not required to create an initializer method for your class. If you don’t have any state
you need to set up or the default behavior of alloc in clearing everything out to zero is
good enough, you might choose not to bother with an init.

If you do write an initializer, be sure you call the superclass’s designed initializer in your own
designated initializer.

If you have more than one initializer, pick one to be the designated initializer. That method
will be the one that calls the superclass’s designated initializer. Implement all of your other
initializers in terms of your designated initializer, as we did previously.

Summary

In this chapter, you learned all about object allocation and initialization. In Cocoa, these

are two separate operations: alloc, a class method that comes from NSObject, allocates

a chunk of memory and clears it to zero. init methods, which are instance methods, get an
object up and running.

A class can have more than one init method. These init methods are usually convenience
methods that make getting the object configured the way you want easier. You'll choose
one of these init methods to be the designated initializer. All other init methods are
coded in terms of the designated initializer.

In your own init methods, you need to call either your own designated initializer or the
superclass’s designated initializer. Be sure to assign the value of the superclass’s initialzer to
self and return that value from your init method. It’s possible for a superclass to decide
to return an entirely different object.

Coming next are properties, a quick and easy way to make your accessor methods.

Chapt

Properties

emember back in the mists at the dawn of time when we wrote accessor
methods for our instance variables? We wrote a lot of boilerplate code, creat-
ing both a -setB1ah method to set the object’s b1ah attribute (obviously) and
a -bl1ah method to retrieve it. If the attribute is an object, we needed to retain
the new one and release the old one. There are utilities out there that will

turn your class definition into method declarations and definitions that you
can paste into your files. But still, writing accessor methods is a lot of mind-
numbing work that can better be applied to doing the cool stuff that’s unique
to your program.

In Objective-C 2.0, Apple introduced properties, a combination of new
compiler directives and a new attribute accessor syntax. The new proper-
ties feature greatly reduces the amount of mindless code you have to write.
Throughout this chapter, we'll be modifying 70.07 CarParts-Init to use proper-
ties. The final code for this chapter can be found in the 71.07 CarProperties
project.

Remember that Objective-C 2.0 features can only be used on Mac OS X 10.5
(Leopard) or later. Properties are used heavily in newer parts of Cocoa (espe-
cially the snazzy Core Animation features) and are also used a lot in iPhone
development, so they’re worth getting familiar with.

CHAPTER 11: Properties

Shrinking Property Values

First off, we're going to convert one of the simpler classes, A11WeatherRadial, to use prop-
erties. To make the discussion a little more interesting, we’'ll add a couple of calls in main to

change some values on the Al1WeatherRadials we create. We're simulating someone buy-
ing four tires on sale from different stores, so all four have different handling characteristics.

Here is main again, with the new lines in bold:

int main (int argc, const char * argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

Car *car = [[Car alloc] init];

int 1i;
for (i =0; i < 4; i++) {
Al1WeatherRadial *tire;

tire = [[AllWeatherRadial alloc] 1init];
[tire setRainHandling: 20 + 1i];
[tire setSnowHandling: 28 + 1il;
NSLog(@"the tire's handling is %.f %.f",
[tire rainHandling],
[tire snowHandling]);

[car setTire: tire
atIndex: 1i]l;

[tire release];

}

Engine *engine = [[STant6 alloc] init];
[car setEngine: engine];

[car print];
[car release];

[pool release];
return (0);

} // main

If you run the program now, you'll get this output, showing our newly changed tire handling
values:

CHAPTER 11: Properties

tire 0's handling
tire 1's handling
tire 2's handling
tire 3's handling
AllweatherRadial:
AllwWeatherRadial:
AllwWeatherRadial:

is
is
is
is
34.
34.
34.

20 28
21 29
22 30
23 31

OOOO
~N N NN
NN NN
OOOO
OOOO
~N N NN

AllWeatherRadial: 34.
I am a slant-6. VROOOM!

Shrinking the Interface

Now let’s look at A11wWeatherRadial’s class interface:

#import <Foundation/Foundation.h>

#import "Tire.h"

@interface AllWeatherRadial
float rainHandling;
float snowHandling;

(float) rainHandling;

(float) snowHandling;

@end // AllWeatherRadial

This should be old hat for you. Let’s clean it up, property-style:

#import <Foundation/Foundation.h>

#import "Tire.h"

@interface AllWeatherRadial
float rainHandling;
float snowHandling;

}

@property float rainHandling;
@property float snowHandling;

@end // AllWeatherRadial

NN NN
w N RO
o O O O
~N N NN
o O O O

w w NN
R O O

(void) setRainHandling: (float) rainHanding;

(void) setSnowHandling: (float) snowHandling;

A bit simpler, isn't it? No need for the four method definitions. Notice that we've grown two
keywords preceded by at signs. Recall that the at sign is a signal for “Objective-C weirdness

CHAPTER 11: Properties

coming your way”! @property is a new compiler feature that says that a new object attribute
is being declared.

@property float rainHandling; says that objects of the class A11WeatherRadial have

an attribute, of type float, called rainHand11ing. It also says that you can set the property by
calling -setRainHanding: and that you can access the attribute by calling -rainHand11ing.
You can run the program now, and it behaves just as it did before. All @property is doing is
automatically declaring the setter and getter methods for the attribute. The attribute doesn’t
actually have to match the name of the instance variable, but it will in most cases. We'll talk
about this a bit later. There are also some additional knobs you can turn on the properties; we'll
talk about them later too, so please hang on.

Shrinking the Implementation

Now, let’s look at the AT11WeatherRadial implementation again:

#import "AllWeatherRadial.h"
@implementation AllWeatherRadial

- (id) initWithPressure: (float) p
treadDepth: (float) td
{
if (self = [super initWithPressure: p
treadDepth: td]) {
23.7;
42.5;

rainHandl1ing
snowHand11ing

}
return (self);

} // initWithPressure:treadDepth

- (void) setRainHandling: (float) rh
rainHandling = rh;

} // setRainHandling

- (float) rainHandling
return (rainHandling);

} // rainHandling

- (void) setSnowHandling: (float) sh

CHAPTER 11: Properties

snowHand1ing = sh;
} // setSnowHandling

(float) snowHandling

return (snowHandling);
} // snowHandling

(NSString *) description

NSString *desc;
desc = [[NSString alloc] initWithFormat:
@"AlTWeatherRadial: %.1f / %.1f / %.1f / %.1f",
[self pressure], [self treadDepth],
[self rainHandling],
[self snowHandling]];

return (desc);
} // description
@end // AllWeatherRadial

In the previous chapter, we discussed the init method, the designated initializer, all the set-
ter and getter methods, and the description. We're now going to ruthlessly eliminate of all
the setter and getter methods and replace them with two lines of code:

#import "AllWeatherRadial.h"
@implementation AllWeatherRadial

@synthesize rainHandling;
@synthesize snowHandling;

- (id) initWithPressure: (float) p
treadDepth: (float) td
{
if (self = [super initWithPressure: p
treadDepth: td]) {
23.7;
42.5;

rainHandling
snowHand11ing

}

return (self);

CHAPTER 11: Properties

} // initWithPressure:treadDepth

- (NSString *) description
{
NSString *desc;
desc = [[NSString alloc] initWithFormat:
@"AlTWeatherRadial: %.1f / %.1f / %.1f / %.1f",
[self pressure], [self treadDepth],
[self rainHandling],
[self snowHandling]];

return (desc);
} // description
@end // AllWeatherRadial

@synthesize is a new compiler feature that says “create the accessors for this attribute.” For
the line of code @synthesize rainHand1ling;, the compiler emits the compiled code for
-setRainHandling: and -rainHandling.

OTE

You may be familiar with code generation: Cocoa accessor-writing utilities and Ul builders on other
platforms generate source code, which is then compiled. But @synthes1i ze is not code generation. You
won’t ever see the code thatimplements -setRainHand11ing: and -rainHand11ing, but these
methods will exist and will be callable. This gives Apple the flexibility of changing the way accessors are
generated in Objective-C, possibly leading to saferimplementations or better performance.

If you run the program now, you'll get the same results as we got before the changes.

Dots Incredible

Objective-C 2.0 properties introduce a new bit of syntactic sugar that makes accessing
object attributes easier. These new features also make Objective-C a bit more approachable
for folks who are used to languages like C++ and Java.

Recall the two new lines we added to main to change the tire’s handling values:

[tire setRainHandling: 20 + i];
[tire setSnowHandling: 28 + i];

CHAPTER 11: Properties

We can replace that code with this:

20 + 1;
28 + 1;

tire.rainHandling
tire.snowHandl1ing

If you run the program again, you'll see the same results. We use NSLog to report the han-
dling values of the tires:

NSLog(@"tire %d's handling is %.f %.f", 1,
[tire rainHandling],
[tire snowHandling]);

We can now replace that code with this:

NSLog(@"tire %d's handling is %.f %.f", 1,
tire.rainHandling,
tire.snowHandl1ing);

The “dot notation” looks a lot like structure access in C and object access in Java—on pur-
pose. When you see a dot on the left-hand side of an equal sign, the setter for that attribute
name (-setRainHandling: and -setSnowHand11ing:) will be called. Otherwise, if you see
a dot next to an object variable, the getter for that attribute name (-rainHand1ling and
-snowHand11ing) is called.

OTE

Dot notation is just shorthand for calling accessor methods. No additional magicis happening under

the hood. In Chapter 15, we'll talk about key-value coding, which actually uses some hard-core runtime
magic. There is no connection between the property dot notation and the cool stuff key-value coding does
behind the scenes.

If you're using properties, and you get strange error messages about accessing something
thatis not a struct, make sure you've included all the necessary header files for the classes
you're using.

That's pretty much it for the new stuff that properties introduce. Of course, we have some
additional cases to discuss for the proper handling of object attributes and for avoiding the
exposure of both setters and getters. Let’s talk about those next.

CHAPTER 11: Properties

Objecting to Properties

So far we've looked at properties for scalar types—float in particular, but the same
techniques apply for int, char, BOOL, and struct. For example, you can have an NSRect
property if you want.

Objects bring some added complications. Recall that we retain and release objects as they
flow through our accessors. For some object values, particularly string values, you want to

always -copy them. Yet for other object values, like delegates (which we'll talk about in the
next chapter), you don't want to retain them at all.

OTE

Whoa, wait a minute. What's with that copying and not retaining?

You want to make copies of string arguments. A common error is to get a string from the user interface,
like a text field, and use that as something’s name. The strings you get from text fields are typically muta-
ble strings and will change when the user types something new. Making a copy of the string prevents the
value from changing unexpectedly.

Now, what about not retaining objects? There is a special case, called a retain cycle, in which reference
counting breaks down. If you have an owner/owned relationship, as between Car and Engine, you
want the car to retain (own) the engine but not the other way around. The engine should not retain the
car it has been installed in. If the car retains the engine, and the engine retains the car, then neither refer-
ence count will go to zero, and neither will ever be cleaned up. Car’s dea11oc won't get called until the
engine releases the car inits dealToc, and the engine’s dea11oc won't get called until car'’s dealToc
releases the Engine. They just sit there, staring at each other, waiting for the other to blink. The general
rule is that the owner object retains the ownee object, and not the other way around.

Lucky garbage collection users don’t need to worry about this case.

Let’s add a new feature to Car so that we can play with some new property syntax. That’s
gonna be exciting! We'll give the car a name. We'll start out old school and use traditional
accessor methods. Firstis Car.h, with the new goodies in bold:

#import <Cocoa/Cocoa.h>

@class Tire;
@class Engine;

@interface Car : NSObject {
NSString *name;
NSMutableArray *tires;
Engine *engine;

CHAPTER 11: Properties

- (void)setName: (NSString *) newName;
- (NSString *) name;

- (void) setEngine: (Engine *) newEngine;
- (Engine *) engine;

- (void) setTire: (Tire *) tire
atIndex: (int) index;
- (Tire *) tireAtIndex: (int) 1index;

- (void) print;
@end // Car
Now we add the implementation of the accessors (notice that we're copying the name),

along with choosing a default name for the car and displaying it in the description:

#import "Car.h"
@implementation Car

- (id) 1init
{
if (self = [super init]) {

name = @"Car";
tires = [[NSMutableArray alloc] init];

int 1;
for (i =0; 1 < 4; i++) {
[tires addObject: [NSNull null]];
3
h

return (self);

} // init

- (void) dealloc

{
[name release];
[tires release];
[engine release];

[super dealloc];

// dealloc

(void)setName: (NSString *)newName {
[name release];
name = [newName copy];

// setName

(NSString *)name {
return (name);
// name
(Engine *) engine
return (engine);
// engine
(void) setEngine: (Engine *) newEngine

[newEngine retain];
[engine release];

engine = newEngine;
// setEngine
(void) setTire: (Tire *) tire
atIndex: (int) index

[tires replaceObjectAtIndex: index
withObject: tirel;

// setTire:atIndex:

(Tire *) tireAtIndex: (int) index

Tire *tire;
tire = [tires objectAtIndex: index];

return (tire);

CHAPTER 11: Properties

} // tireAtIndex:

- (void) print

{
NSLog (@"%@ has:", name);
int 1i;
for (i =0; i < 4; i++) {
NSLog (@"%@", [self tireAtIndex: i]);
ks
NSLog (@"%@", engine);
} // print
@end // Car

And we'll set the name in main:

Car *car = [[Car alloc] init];
[car setName: @"Herbie'];

Run the program, and you'll see the car’s name at the beginning of the output. OK, let’s start
adding properties to Car. Here is Car.h in all its glory:

#import <Cocoa/Cocoa.h>

@class Tire;
@class Engine;

@interface Car : NSObject {
NSString *name;
NSMutableArray *tires;
Engine *engine;

}

@property (copy) NSString *name;
@property (retain) Engine *engine;

- (void) setTire: (Tire *) tire
atIndex: (int) index;
- (Tire *) tireAtIndex: (int) 1index;

- (void) print;

@end // Car

CHAPTER 11: Properties

You'll notice the declarations of the simple accessors are gone, and they have been replaced
by @property declarations. You can decorate @property with additional attributes to express
your exact intentions on how the property is to behave. By adding copy to name, the compiler
and users of the class know that name is going to be copied. This can simplify the life of pro-
grammers using this class, because programmers know they won't need to make a copy of
strings they get out of text fields. engine, on the other hand, is managed just by retain/release.
If you don't supply either one, the compiler will default to assign, which is generally not what
you want with objects.

OTE

You can use some other decorations, like nonatomi c, which makes accessors a bit faster if they won't be
used in a multithreaded environment. Desktop machines are so fast that there is no real performance gain
by making a property nonatomic, but iPhone developers frequently use it to eke out more performance
on that resource-constrained device. You can also use assign if you don't want the attribute object to be
retained, to help avoid retain cycles.

Car.m has two major changes. The name and engine accessors are deleted and two
@synthesize directives are added:

@implementation Car

@synthesize name;
@synthesize engine;

And finally, main uses dot notation to set stuff:

Car *car [[Car alloc] 1init];
car.name = @"Herbie";

car.engine = [[Slant6 alloc] init];

Appellation Spring

In all the code in this chapter, the name of the property has been the same as the name of
an instance variable that backs that property. This pattern is very common and probably one
you'll use most of the time. Sometimes, though, you may want one name for the instance
variable and another for the public attribute name.

Let’s say we want to call the name instance variable in Car something else, like appel1ation.
We just change the name of the instance variable in Car.h:

@interface Car : NSObject {
NSString *appellation;

CHAPTER 11: Properties

NSMutableArray *tires;
Engine *engine;

@property (copy) NSString *name;
@property (retain) Engine *engine;

and then change the synthesize directive:

@synthesize name = appellation;

The compiler will still create -setName: and -name but will use the appelTation instance
variable inside of their implementations.

But when you compile, you see a couple of errors. You may recall that we directly accessed
the name instance variable, which has been changed. We can choose to do a search and
replace on the name, or we can change direct ivar access to use accessors instead. In init,
change

nhame = @"Car";
to

self.name = @"Car";

What'’s that self-dot-name business? It's a bit of disambiguation to let the compiler know
that we want to vector through the accessors. If we just use a naked name, the compiler
assumes that we're directly modifying an instance variable. To go through the accessors, we
can write [se1f setName:@"Car"].Remember that the dot is just shorthand for making
this exact same call, so se1f.name = @"Car" is just another way of saying the same thing.

In dealloc, we'll pull a nifty trick:

self.name = nil;

This line says to call setName: with an argument of ni1. The generated accessor method
will automatically release the previous name and replace the name with ni1. This method
accomplishes the work of releasing the memory for the name. Of course, we could just
release name to clean up the memory. If you're clearing out a property outside of dealloc,
using the “assign to ni1” trick will set the property value to ni1, keeping us from having a
dangling reference to memory that might have been freed.

Finally, -description needs its first NSLog fixed:

NSLog (@"%@ has:", self.name);

CHAPTER 11: Properties

Now, we can rename appelTation to something else, like nickname or moniker. We just
need to change the instance variable name and the name used in @synthesi ze.

Read-Only About It

You might have an object with an attribute that is read-only. This attribute might be a value
that’s computed on the fly, like the surface area of a banana, or might be one that you want
other objects to read but not change, like your driver’s license number. You can code for
these situations with more attributes on @property:.

By default, properties are mutable: you can read and write them. Properties have a
readwrite attribute you can use. Since it's the default, you won't usually use it, but it's
there if you need it and you want to make your intentions clear. We could have used
readwrite in Car.h:

@property (readwrite, copy) NSString *name;
@property (readwrite, retain) Engine *engine;

But we didn’t, because we generally want to stamp out and abolish and get rid of redun-
dancy and repetition and saying the same thing over again.

Returning to our read-only property discussion, let’s say we have a property, such as our
license number or shoe size, that we don’t want to be changed by anybody. We can use the
readonly attribute on @property. An example class would be something like this:

@interface Me : NSObject {
float shoeSize;
NSString *1icenseNumber;

}

@property (readonly) float shoeSize;
@property (readonly) NSString *1icenseNumber;
@end

When the compiler sees that @property is readonly, it generates a getter but not a setter
for that attribute. Users of Me can call -shoeSize and -11i censeNumber, but if you try to call
-setShoeSize:, the compiler will complain. You'll get the same behavior when using dot
notation.

Alas, Properties Don’t Do Everything

You'll notice we didn’t convert Car’s tire methods to properties:

- (void) setTire: (Tire *) tire
atIndex: (int) index;
- (Tire *) tireAtIndex: (int) index;

CHAPTER 11: Properties

That'’s because these methods don't fit into the fairly narrow range of methods that prop-
erties cover. Properties will only let you replace -setBlah and -b1ah methods, but not
methods that take extra arguments, like the tire’s position on the car.

Summary

In this chapter, we discussed properties, which are a way to reduce the amount of code you
have to write (and read later) when doing common operations with object attributes. Use
the @property directive to tell the world, “Hey, this object has this attribute of this name

of this type.” Also use the directive to pass on some information about the property, like its
mutability (readonly or readwrite) and object memory management (retain, assign, or
copy). Behind the scenes, the compiler automatically generates the method declarations for
the setter and getter for the object’s attribute.

Use the @synthesi ze directive to tell the compiler to generate the implementation for the
accessors. You can control which instance variable is affected by the generated implementa-
tion. If you don't want to use Apple default behavior, you're free to write your own code for
the accessors.

Dot notation, although usually presented in the context of properties, is just shorthand for
calling the setter and getter for objects. For example, dealie.blah = greeble is exactly the
same as [dealie setBlah: greeble], and shronk = dealie.greebleis exactly the same
as shronk = [dealie greeble]. Dot notation reduces the amount of typing you have to
do and is a little more comfortable for folks coming from other languages.

Coming up next are categories, Objective-C’s way of letting you extend existing classes,
even if you don’t have the code for them! Don't miss that.

Chapter

Categories

hen you write object-oriented programs, you'll often want to add some new
behavior to an existing class: you can always create new hoops for objects to
jump through. For example, you might have designed a new kind of tire, so
you'd subclass Tire and add the new cool stuff. When you want to add behav-
ior to an existing class, you'll often create a subclass.

But sometimes, subclassing isn’t convenient. For example, you might want

to add some new behavior to NSString, but you remember that NSString is
really the front end for a class cluster, which makes it difficult to subclass. In
other cases, you might be able to make a subclass, but you're using a toolkit or
library that won't be able to handle objects of the new class. For example, your
new subclass of NSString won't be returned when you make a new string
with the stringwWithFormat: class method.

The dynamic runtime dispatch mechanism employed by Objective-C lets you
add methods to existing classes. Hey, that sounds pretty cool! The Objective-C
term for these new methods is “categories.”

Creating a Category

A category is a way to add new methods to existing classes. Want to add a
new method to a class? Go right ahead! You can do this to any class, even
classes you don’t have the source code for.

For example, let’s say you are writing a crossword puzzle program that takes a
series of strings, determines the length of each string, and puts those lengths
into an NSArray or NSDictionary. You'll need to wrap each length in an
NSNumber object before adding it into the NSArray or NSDictionary.

CHAPTER 12: Categories

You could write this code:

NSNumber *number;
number = [NSNumber numberWithUnsignedInt: [string lengthl];
// ... do something with number

But that would soon get tedious. Instead, you could add a category to NSString that does
this work for you. In fact, let’s do that. The LengthAsNSNumber project is located in the 72.01
LengthAsNSNumber project directory and contains the code that adds such a category to
NSString.

@interface

The declaration of a category looks a lot like the declaration for a class:

@interface NSString (NumberConvenience)
- (NSNumber *) TlengthAsNumber;
@end // NumberConvenience

You should notice a couple of interesting things about this declaration. First, an existing
class is mentioned, followed by a new name in parentheses. This means that the category
is called NumberConvenience, and it adds methods to NSString. Another way to say this is,
“We're adding a category onto NSString called NumberConvenience.”You can add as many
categories to a class as you want, as long as the category names are unique.

You indicate the class you're putting the category onto (NSString) and the name of the cat-
egory (NumberConvenience), and you list the methods you're adding, followed by @end. You
can't add new instance variables, so there is no instance variable section as there is with a
class declaration.

@implementation

It comes as no surprise that the @interface section has an @implementation companion.
You put the methods you're writing in @impTementation:

@impTementation NSString (NumberConvenience)
- (NSNumber *) lengthAsNumber
{ unsigned int length = [self Tength];
return ([NSNumber numberWithUnsignedInt: length]);
} // lengthAsNumber

@end // NumberConvenience

CHAPTER 12: Categories

Like the @interface for the category, the @implementation has the names of the class and
the category, along with the bodies of the new methods.

The TengthAsNumber method gets the length of the string by calling [se1f Tength].You
will send the TengthAsNumber message to this string. Then, a new NSNumber is created with
the length.

Let’s take a quick time-out for one of our new favorite topics: memory management. Is this
code correct? Yes! numberWithUnsignedIntis notan alloc, copy, or new method. Because
it's not one of those three, it will return an object that we can assume has a retain count of
1 and has been autoreleased. The NSNumber object we create will get cleaned up when the
currently active autorelease pool is destroyed.

And here is the new category in action. main() creates a new NSMutableDictionary, adds
three strings as the keys and the length of the strings as the values:

int main (int argc, const char *argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] init];

NSMutableDictionary *dict;
dict = [NSMutableDictionary dictionary];

[dict setObject: [@"hello" TengthAsNumber]
forKey: @"hello"];

[dict setObject: [@"iLikeFish" TengthAsNumber]
forKey: @"ilLikeFish"];

[dict setObject: [@"Once upon a time" TengthAsNumber]
forKey: @"Once upon a time"];

NSLog (@"%@", dict);
[pool release];
return (0);

} // main

Let’s pull this apart, piece by piece, in our usual fashion. First, we create an autorelease pool,
which you're probably tired of hearing about by now:

NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

CHAPTER 12: Categories

Just as a reminder, this pool is where all the autoreleased objects go. In particular, the
mutable dictionary will end up in here, as will all of the NSNumbers our category creates.

After making the pool, a new mutable dictionary is created. Recall that this handy Cocoa
class lets us store pairs of keys and objects.

NSMutableDictionary *dict;
dict = [NSMutableDictionary dictionary];

We can't put primitive types like ints into a dictionary, so we have to use a wrapper class
like NSNumber. Luckily, our shiny new category makes it easy to embed our string length into an

NSNumber. Here is the code that adds the value of 5 to the dictionary, using the key @"hel10

[dict setObject: [@"hello" TengthAsNumber]
forKey: @"hello"];

That code looks weird, but it’s actually doing the right thing. Remember that the @"string"
kind of strings are actually full-blown NSString objects. They react to messages just like any
other NSString object. Because we now have this category on NSString, any string will
react to TengthAsNumber, even literal strings like these.

This bears repeating. This bears repeating! Any NSStr1ing will respond to TengthAsNumber—
that includes literal strings, strings from description methods, mutable strings, strings from
other parts of the toolkit, strings loaded from files, strings fetched from across the vast reaches
of the Internet, and so on. This compatibility is what makes categories a hugely powerful idea.
There is no need to subclass NSString to get this behavior—it just works.

When you run the program, you'll get output like this:

{
"Once upon a time" = 16;
hello = 5;
iLikeFish = 9;

b

Bad Categories

Now that you're all high on categories, let’s bring you back to earth a bit. Categories have
two limitations. The first is that you can’t add new instance variables to a class. There’s
nowhere to put them.

The second limitation concerns name collisions, in which one of your category methods

has the same name as an existing method. When names collide, the category wins. Your
category method will completely replace the original method, with no way of getting the
original back. Some programmers add a prefix to their category methods to make sure there
won't be a conflict.

CHAPTER 12: Categories

OTE

There are techniques for getting around the inability to add new instance variables. For example, you can
use a global dictionary to store a mapping between objects and any extra variables you want to associate

with them. But you may want to consider if a category is really the best choice for what you're doing.

Good Categories

In Cocoa, categories are used mainly for three purposes: splitting a class’s implementa-
tion across multiple files or multiple frameworks, creating forward references for private
methods, and adding informal protocols to an object. Don’t worry if you have no idea what
“informal protocol” means. We'll cover that in a little bit.

Splitting an Implementation with Categories

As you saw in Chapter 6, you can put a class’s interface into a header file and the implemen-
tation into a.m file. But you can’t split an @implementation across multiple .m files. If you
have a single large class you want to split across multiple .m files, you can use categories to
do the job.

Take, for instance, the NSWindow class provided by the AppKit. If you look at the documenta-
tion for NSWindow, you'll find hundreds of methods. The NSWindow documentation is over 60
pages long when printed.

Putting all the code for NSWindow into one file would make it huge and unwieldy for the
Cocoa development team, not to mention us poor developers. If you look at the header file
(which lives at /System/Library/Frameworks/AppKit.framework/Headers/NSWindow.h) and
search for“@interface’, you'll see the official class interface:

@interface NSWindow : NSResponder

Then there are a whole bunch of categories, including these:

@interface NSWindow(NSKeyboardUI)
@interface NSWindow(NSToolbarSupport)
@interface NSWindow(NSDrag)

@interface NSWindow(NSCarbonExtensions)
@interface NSObject(NSWindowDelegate)

This use of categories allows all the keyboard user interface stuff to live in one source file, the
toolbar code in another file, drag-and-drop features in yet another, and so on. These catego-
ries also break the methods into logical groups, making it easier for folks who are reading
the header file. That’s what we're going to try but on a smaller scale.

CHAPTER 12: Categories

Using Categories in our Project

The CategoryThing project, found in the 712.02 CategoryThing folder, has a simple class that’s
spread across a couple of implementation files.

Firstis CategoryThing.h, which has the class declaration and some categories. This file starts
with the #import of the Foundation framework, and the class declaration with three integer
instance variables:

#import <Foundation/Foundation.h>
@interface CategoryThing : NSObject {
int thingl;
int thing2;
int thing3;
3

@end // CategoryThing

After the class declaration come three categories, and each category has accessor methods
for one instance variable. We'll put the implementation of these into separate files.

@interface CategoryThing (Thingl)

- (void) setThingl: (int) thingl;
- (int) thingl;

@end // CategoryThing (Thingl)

@interface CategoryThing (Thing2)

- (void) setThing2: (int) thing2;
- (int) thing2;

@end // CategoryThing (Thing2)

@interface CategoryThing (Thing3)

- (void) setThing3: (int) thing3;
- (int) thing3;

@end // CategoryThing (Thing3)

And that’s it for CategoryThing.h.

CategoryThing.m is pretty simple, containing a description method we can use with the %@
format specifier in NSLog Q:

CHAPTER 12: Categories

#import "CategoryThing.h"
@implementation CategoryThing

- (NSString *) description
{
NSString *desc;
desc = [NSString stringWithFormat: @"%d %d %d",
thingl, thing2, thing3];

return (desc);
} // description
@end // CategoryThing

Time for a memory management check. Is description doing the right thing? Yes, it is.
Because stringWithFormat is not an alloc, copy, or new, it returns an object we can assume
has a retain count of 1 and has been autoreleased, so it will be cleaned up when the current
autorelease pool goes away.

Now for the categories—Thing1.m has the implementation for the Thing1 category:

#import "CategoryThing.h"

@implementation CategoryThing (Thingl)

(void) setThingl: (int) tl

thingl = t1;
} // setThingl

(int) thingl

return (thingl);
// thingl

—

@end // CategoryThing

The interesting point to note is that a category can access the instance variables of the class
it has been put onto. Category methods are first-class citizens.

The contents of Thing2.m are very similar to those of Thing1.m:

#import "CategoryThing.h"

@implementation CategoryThing (Thing2)

CHAPTER 12: Categories

- (void) setThing2: (int) t2

thing2 = t2;
} // setThing2

- (int) thing2

return (thing2);
} // thing2

@end // CategoryThing

After reading this far, you can probably figure out what Thing3.m looks like (hint: cut; paste;
search; replace).

The main.m file contains main(), which actually uses these categories we've been construct-
ing. First come the #import statements:

#import <Foundation/Foundation.h>
#import "CategoryThing.h"
We need to import the header for CategoryThing so that the compiler can see the class defi-

nition and the categories. After that comes main():

int main (int argc, const char *argv[])
{
NSAutoreleasePool * pool;
pool = [[NSAutoreleasePool alloc] 1init];

CategoryThing *thing;
thing = [[CategoryThing alloc] init];

[thing setThingl: 5];

[thing setThing2: 23];

[thing setThing3: 42];

NSLog (@"Things are %@", thing);
[thing release];

[pool release];

return (0);

} // main

CHAPTER 12: Categories

The first two lines of main() are the standard autorelease pool code you've come to know
and, uh, love. This pool will end up holding the autoreleased description string that’s used
by NSLog Q).

Next, a CategoryThing object is allocated and initialized:
CategoryThing *thing;
thing = [[CategoryThing alloc] init];

Here's our obligatory report to the memory management police: because this is an alloc, its
retain count is 1, and it's not in the autorelease pool, we'll have to arrange to release it when
we're done.

Next, some messages are sent to the object to set the values of thingl, thing2, and thing3:

[thing setThingl: 5];
[thing setThing2: 23];
[thing setThing3: 42];

When you're using an object, it doesn’t matter if the methods are declared in the interface, in
a superclass, or in a category.

After the thing values have been set, NSLog() prints out the object. As you saw in the
description method for CategoryThing, this displays the values of the three thing instance
variables:

NSLog (@"Things are %@", thing);

Because we used alloc to create the thing, we're responsible for releasing it when we're
done with it. That happens right now:

[thing release];

And finally, the autorelease pool is released, and main() returns O:

[pool release];
return (0);

} // main

CHAPTER 12: Categories

That’s it for our little program. Running the program gives these results:

Things are 5 23 42

Not only can you split a class’s implementation across multiple source files, you can divide

it among multiple frameworks as well. NSString is a class that lives in the Foundation
framework, which has a lot of data-oriented classes, such as strings, numbers, and collec-
tions. All the eye candy (windows, colors, drawing, and the like) lives in the AppKit. Even
though NSString is declared in Foundation, the AppKit has a category on NSString called
NSStringDrawing, which lets you send draw messages to string objects. When you draw

a string, the method renders the string’s text on the screen. Because this is fancy graphics
stuff, it'’s an AppKit feature. But NSStrings are Foundation objects. The Cocoa designers used
categories to put the data functionality into Foundation and the drawing functionality into
AppKit. We, as programmers, just deal with NSStrings, and we generally won't care where a
particular method comes from.

Making Forward References with Categories

As we've mentioned before, Cocoa doesn’t have any truly private methods. If you know the
name of a method an object supports, you can call it, even if there is no declaration for that
method in a class’s @interface.

The compiler, though, tries to be helpful. If it sees you calling a method on an object, and it
hasn’t seen a declaration or definition for that method yet, it complains like this: warning:
'"CategoryThing' may not respond to '-setThing4:'.Generally, this kind of complaint
is good, because it will help you catch a lot of your typos.

But the compiler’s vigilance can cause problems if you have methods that your implementa-
tion uses that aren’t listed in the @interface section of your class. There are a lot of good
reasons why you don’t want to list all your methods there. The methods might be pure imple-
mentation details, or you might be playing around with method names to decide which ones
you want to use. But if you don’t declare your methods before using them, you'll get warnings
from the compiler. Fixing all compiler warnings is a good thing, so what can you do?

If you can arrange to define a method before you use it, the compiler will see your definition,
and it won'’t produce a warning. But if that’s not convenient to do, or if you're using a non-
published method in another class, you'll need to do something else.

CHAPTER 12: Categories

Categories to the Rescue!

Declaring a method in a category is enough for the compiler to say, “OK, this method exists.
I'm not going to complain if | see the programmer using it””You don’t actually have to imple-
ment it if you don’t want to.

Our technique is often to place a category at the top of the implementation file. Say that Car
has a method called rotateT1ires. We could implement rotateT1ires in terms of another
method called moveTireFromPosition:toPosition: to swap the tires at two locations.
This second method is an implementation detail and not something that we want to put
into the public interface of the car. By declaring it in a category, rotateTires can use move
TireFromPosition:toPosition: without generating any warnings from the compiler. The
category would look like this:

@interface Car (PrivateMethods)

- (void) moveTireFromPosition: (int) posl
toPosition: (int) pos2;

@end // Private Methods

When you implement this method, it doesn’t have to existin an @implementation Car
(PrivateMethods) block.You can leave itin the @impTementation Car section.This

lets you separate your methods into categories as an organizational and documentation
convenience, while still allowing you to keep all your methods in one big pile in the imple-
mentation file. When you're accessing private methods of other classes, you don’t even have
to supply an implementation of the method. Just having it declared in a category is enough
to keep the compiler happy (by the way, you really shouldn’t access private methods of
other classes, but sometimes, you must to work around bugs in Cocoa or other people’s
code or to write test code).

Informal Protocols and Delegation Categories

Now, it's time for more of those Big Words and Big Ideas that you often find in object-oriented
programming—you know, the ones that sound more complicated than they actually are.

Cocoa classes often use a technique that involves a delegate, which is an object asked by
another object to do some of its work. For example, the AppKit class NSApp1ication asks
its delegate if it should open an Untitled window when the application launches. NSWindow
objects ask their delegates if they should allow a window to be closed.

Most often, you will be the one writing the delegate object and giving it to some other
object, typically something provided by Cocoa. By implementing specific methods, you can
exert control over how the Cocoa object behaves.

CHAPTER 12: Categories

Scrolling lists in Cocoa are handled by the AppKit class NSTab1eView. When the tableView
is ready to do some work, such as selecting the row the user just clicked, the object asks its
delegate if it can select the row. The tableView sends a message to its delegate:

- (BOOL) tableView: (NSTableView *) tableView
shouldSelectRow: (int) row;

The delegate method can look at the tableView and the row and decide whether the row
should be selected. If the table includes rows that shouldn’t be selected, the delegate might
implement the concept of disabled rows that are not selectable.

The ITunesFinder Project

The Cocoa class that lets you find network services published by Bonjour (the technol-
ogy formerly called Rendezvous) is named NSNetServiceBrowser. You tell the net service
browser what service you're looking for and give it a delegate object. The browser object
then sends messages to the delegate object telling it when it sees new services.

[TunesFinder, which lives in the 12.03 ITunesFinder project folder, uses NSNetServiceBrowser
to list all the shared iTunes music libraries that it can find.

For this project, we'll start out with main(), which lives in main.m. The delegate object is an
instance of the class ITunesFinder, so we need to import its header file:

#import <Foundation/Foundation.h>
#import "ITunesFinder.h"

And then main() starts. We set up the autorelease pool:

int main (int argc, const char *argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] 1init];

Next, a new NSNetServiceBrowser is born:

NSNetServiceBrowser *browser;
browser = [[NSNetServiceBrowser alloc] init];

And then a new ITunesFinder is created:

ITunesFinder *finder;
finder = [[ITunesFinder alloc] init];

Because we're using alloc to create these, we must take responsibility for making sure
they’ll be released when we're done with them.

CHAPTER 12: Categories

Next, we tell the net service browser to use the ITunesFinder object as a delegate:

[browser setDelegate: finder];

Then, we tell the browser to go look for iTunes shares:

[browser searchForServicesOfType: @"_daap._tcp"
inDomain: @"local."];

The”_daap._tcp”string tells the net service browser to look for services of type daap (“daap”
is short for “Digital Audio Access Protocol”) using the TCP networking protocol. This incanta-
tion finds libraries published by iTunes. The domain Tocal. means to look for the services
on the local network. The Internet Assigned Numbers Authority (IANA) maintains a list of
Internet protocol families, which usually map to the Bonjour service name.

Next, main() logs the fact that it has begun browsing and starts a run loop:

NSLog (@"begun browsing");
[[NSRunLoop currentRunLoop] run];

A run loop is a Cocoa construct that blocks (that is, doesn’t do any processing) until some-
thing interesting happens. In this case, “interesting” means that the net services browser
discovers a new iTunes share.

In addition to listening for network traffic, run loops handle other things like waiting for user
events such as key presses or mouse clicks. The run method actually will not return; it will
keep running forever, so the code that follows it won't ever execute. However, we've left it

in anyway to let readers of the code know that we're aware of proper memory management
(we could construct a run loop that runs only for a specific amount of time, but that code is
more complicated and doesn’t really contribute to our discussion of delegates). So here’s the
clean-up code that won't actually get run:

[browser release];
[finder release];

[pool release];

return (0);
} // main

Now, we have the net service browser and a run loop. The browser sends out network pack-
ets looking for particular services, and packets come back saying, “Here | am.”When these
packets come back, the run loop tells the net service browser, “Here are some packets for
you."The browser then looks at the packets, and if they’re from a service it hasn't seen before,
it sends messages to the delegate object telling it what happened.

CHAPTER 12: Categories

Now, it's time to look at the code for our delegate, ITunesFinder. The interface for the
ITunesFinder class is minimal:

#import <Foundation/Foundation.h>

@interface ITunesFinder : NSObject
@end // ITunesFinder

Remember that we don’t have to declare methods in the @interface. To be a delegate
object, we just have to implement the methods we're interested in having called.

The implementation has two methods. First come the preliminaries:

#import "ITunesFinder.h"
@implementation ITunesFinder

and then the first delegate method:

- (void) netServiceBrowser: (NSNetServiceBrowser *) b
didFindService: (NSNetService *) service
moreComing: (BOOL) moreComing

[service resolveWithTimeout: 10];

NSLog (@"found one! Name 1is %@",
[service name]);

} // didFindService

When an NSNetServiceBrowser finds a new service, it sends the netServiceBrowser:
didFindService:moreComing: message to the delegate object. The browser is passed as
the first argument (which would be the same as the value of the browser variable in main). If
you have multiple service browsers doing searches at the same time, examining this param-
eter lets you figure out which one has found something.

The NSNetService object passed in the second argument is an object that describes the
service that was found, such as an iTunes share. The last argument, moreComing, is used

to signal when a batch of notifications is done. Why did the Cocoa designers include this
moreComing parameter? If you ran this program on a big college network with a hundred
iTunes shares, this method would get called 99 times with moreComing having the value YES
and then once with a value of NO. This information is handy to have when constructing the
user interface, so you know when to update your window. As new iTunes shares come and
go, this method will be called again and again.

CHAPTER 12: Categories

[service resolveWithTimeout: 10] tells the Bonjour system to go fetch all the interest-
ing properties about the service. In particular, we want the name of the share, like Scott’s
Groovy Tunes, so we can print it out. [service name] gets us the name of the share.

iTunes shares can come and go, as people put their laptops to sleep or move off the network.
The ITunesFinder class implements a second delegate method that gets called when a net-
work service vanishes:

- (void) netServiceBrowser: (NSNetServiceBrowser *) b
didRemoveService: (NSNetService *) service
moreComing: (BOOL) moreComing

[service resolveWithTimeout: 10];

NSLog (@"Tost one! Name is %@",
[service name]);

} // didRemoveService

This is exactly like the didFindService method, except that it logs when a service is no lon-
ger available.

Now, run the program, and see what happens. Mark’s network has an ancient G4 iMac called
iLamp that shares iTunes music around the house. That produces this output:

begun browsing
found one! Name is ilamp

We start up iTunes on a laptop and share the music under the name markd's music:

found one! Name 1is markd's music

After quitting iTunes on the laptop, [TunesFinder tells us

lost one! Name is markd's music

Delegates and Categories

OK, so what does all this delegate stuff have to do with categories? Delegates highlight
another use of categories: the methods that can be sent to a delegate are declared as a cat-
egory on NSObject. Here is part of the declaration of the NSNetService delegate methods:

@interface NSObject
(NSNetServiceBrowserDelegateMethods)

- (void) netServiceBrowserWillSearch:
(NSNetServiceBrowser *) browser;

CHAPTER 12: Categories

- (void) netServiceBrowser:
(NSNetServiceBrowser *) aNetServiceBrowser
didFindService: (NSNetService *) service
moreComing: (BOOL) moreComing;

- (void) netServiceBrowserDidStopSearch:
(NSNetServiceBrowser *) browser;

- (void) netServiceBrowser:
(NSNetServiceBrowser *) browser
didRemoveService: (NSNetService *) service
moreComing: (BOOL) moreComing;
@end

By declaring these methods as a category on NSObject, the implementation of
NSNetServiceBrowser can send one of these messages to any object, no matter what
class it actually is. This also means that any kind of object can be a delegate, as long as it
implements the method.

OTE

By putting a category on NSObject like this, any kind of object can be used as a delegate object. There
is no need to inherit from a specialized serviceBrowserDelegate class (like you do in C(++) or to
conform to a specific interface (as in Java).

Putting a category on NSObject is called creating an informal protocol. As

you know, a“protocol”in computer-speak is a set of rules that govern communication.

An informal protocol is simply a way to say, “Here are some methods you might want

to implement so you can do cool stuff with them.” There are methods declared in the
NSNetServiceBrowserDelegateMethods informal protocol that we haven't implemented
in the ITunesFinder. That’s OK. With informal protocols, you only implement what you want.

As you might guess, there’s also the concept of a formal protocol. We'll cover that in the next
chapter.

Responds to Selectors

You might be asking yourself,“How does NSNetServiceBrowser know if its delegate
can handle those messages that are being sent to it?” You've probably encountered the
Objective-C runtime error that appears when you try sending a message that an object
doesn’t understand:

-[ITunesFinder addSnack:]: selector not recognized

CHAPTER 12: Categories

So how does NSNetServiceBrowser get away with it? It doesn't. NSNetServiceBrowser
first checks with the object by asking it, “Can you respond to this selector?”If it can,
NSNetServiceBrowser sends the message.

What is a selector? It’s just the name of a method, but it’s encoded in a special way that’s
used by the Objective-C runtime for quick lookups. You indicate a selector by using the
@selector () compiler directive, with the name of the method nestled in the parentheses.
So, the selector for the Car method setEngine: would be

@selector(setEngine:)

And this would be the selector for the setTire:atIndex: Car method:

@selector(setTire:atIndex:)

NSObject provides a method called respondsToSelector: that queries an object to see if it
will respond to a given message. The following chunk of code uses respondsToSelector:

Car *car = [[Car alloc] init];

if ([car respondsToSelector: @selector(setEngine:)]) {
NSLog (@"yowza!™);

}

This code prints “yowza!”, because a Car object does indeed respond to the setEngine:
message.

Now, check out this block of code:

ITunesFinder *finder = [[ITunesFinder alloc] init];

if ([finder respondsToSelector:@selector(setEngine:)]) {
NSLog (@"yowza!");
}

n
!

There will be no“yowza!” this time. ITunesFinder does not have a setEngine: method.

To find out what it needs to know, NSNetServiceBrowser would call
respondsToSelector:@selector(netServiceBrowser:didFindService:moreComing:).
If the delegate can respond to that message, the browser will send the message. Otherwise,
the browser ignores that delegate for now and just goes on its merry way.

Other Uses for Selectors

Selectors can be passed around and used as arguments to methods and even stored as
instance variables. This can lead to some very powerful and flexible constructs.

CHAPTER 12: Categories

One of the classes in the AppKit is called NSTimer; it can send a message to an object repeat-
edly, which is very handy in games when you want to move a monster toward the player on
a regular basis. When you make a new NSTimer, you give it the object you want it to send a
message to and a selector saying which method you want it to call. For example, you could
have a timer call the moveMonsterTowardPlayer: method of your game engine. Or, you
could have another timer call an animateOneFrame: method.

Summary

We introduced you to categories in this chapter. Categories provide a way to add new
methods to existing classes, even if you don't have the source code for those classes.

In addition to adding functionality to existing classes, categories provide a way to split an
object’s implementation across multiple source files or even across multiple frameworks. For
example, think back to NSString’s data-handling methods, which are implemented in the
Foundation framework, separate from its drawing methods from the AppKit.

Categories let you declare informal protocols. An informal protocol is a category on
NSObject that lists methods that objects might be able to respond to. Informal protocols
are used to implement delegation, a technique that allows you to easily customize the
behavior of an object. Along the way, you also learned about selectors, which are a way
to indicate a particular Objective-C message in your code.

Coming up next are Objective-C protocols, the formal protocols that are the dressed-up
cousins of informal protocols.

Chapter

Protocols

n the previous chapter, we talked about the magic of categories and
informal protocols. When you use an informal protocol, as you saw in
Chapter 12, you implement only the methods you want to respond to. For
the NSNetServiceBrowser delegate in Chapter 12, we implemented only
the two methods that get called when a new service is added to or removed
from the network: we didn’t have to implement the six other methods in
the NSNetServiceBrowserDelegate informal protocol. We also didn’t

have to declare anything in our object saying that we're usable as an
NSNetServiceBrowser delegate. It all just worked with a minimum of fuss.

As you might guess, Objective-C and Cocoa also include the concept of a
formal protocol, and in this chapter, we'll take a look at how those work.

Formal Protocols

A formal protocol (like an informal protocol) is a named list of methods. But
unlike an informal protocol, a formal one requires that you explicitly adopt the
protocol. You adopt a protocol by listing the protocol’s name in your class’s
@interface declaration. When you do this, your class is said to conform to
the protocol (and you thought you were a nonconformist). Adopting a proto-
col means that you promise to implement all the methods of that protocol. If
you don't, the compiler yells at you by generating a warning.

OTE

Formal protocols are just like Java interfaces. In fact, Objective-C protocols were the

inspiration for Java’s interfaces.

CHAPTER 13: Protocols

Why would you want to create or adopt a formal protocol? It sounds like a lot of work is
required to implement every method. Depending on the protocol, some busywork may
even be involved. But, more often than not, a protocol has only a small number of methods
to implement, and you have to implement them all to gain a useful set of functionality any-
way, so the formal protocol requirements are generally not a burden. Objective-C 2.0 has
added some nice features that make using protocols much less onerous, which we’'ll talk
about at the end of this chapter.

Declaring Protocols

Let’s take a look at a protocol declared by Cocoa, NSCopy1ing. If you adopt NSCopy1ing, your
object knows how to make copies of itself:

@protocol NSCopying
- (id) copyWithZone: (NSZone *) zone;
@end

The syntax looks kind of the same as the syntax for declaring a class or a category. Rather
than using @interface, you use @protocol to tell the compiler,“I'm about to show you
what a new formal protocol will look like” That statement is followed by the protocol name.
Protocol names must be unique.

Next is a list of method declarations, which every protocol adopter must implement. The
protocol declaration finishes with @end. There are no instance variables introduced with a
protocol.

Let’s look at another example. Here’s the NSCod1ing protocol from Cocoa:

@protocol NSCoding

- (void) encodeWithCoder: (NSCoder *) aCoder;
- (id) initWithCoder: (NSCoder *) aDecoder;

@end

When a class adopts NSCod1ing, that class promises to implement both of these messages.
encodeWithCoder: is used to take an object’s instance variables and freeze-dry them

into an NSCoder object. initWithCoder: extracts freeze-dried instance variables from an
NSCoder and uses them to initialize a new object. These are always implemented as a pair;
there’s no point in encoding an object if you'll never revive it into a new one, and if you
never encode an object, you won’t have anything to use to create a new one.

CHAPTER 13: Protocols

Adopting a Protocol

To adopt a protocol, you list the protocol in the class declaration, surrounded by angle
brackets. For example, if Car adopts NSCopying, the declaration looks like this:

@interface Car : NSObject <NSCopying>
{

// instance variables

3
// methods

@end // Car

And if Car adopts both NSCopy1ing and NSCod1ing, the declaration goes like this:

@interface Car : NSObject <NSCopying, NSCoding>
{

// instance variables

3
// methods
@end // Car

You can list the protocols in any order; it makes no difference.

When you adopt a protocol, you're sending a message to programmers reading the class
declaration, saying that objects of this class can do two very important things: they can
encode/decode themselves and copy themselves.

Implementing a Protocol

That'’s about all there is to know regarding protocols (save a little syntactic detail when
declaring variables that we’ll discuss later). We'll spend the bulk of this chapter going
through the exercise of adopting the NSCopying protocol for CarParts.

Carbon Copies

Let’s all chant together the rule of memory management, “If you get an object from an
alloc, copy, or new, it has a retain count of 1, and you're responsible for releasing it” We've
covered alloc and new already, but we really haven't discussed copy yet. The copy method,
of course, makes a copy of an object. The copy message tells an object to create a brand new
object and to make the new object the same as the receiver.

CHAPTER 13: Protocols

Now, we'll be extending CarParts so that you can make a copy of a car (wait until Detroit hears
about this). The code for this lives in the 13. 07 - CarParts-Copy project folder. Along the way,
we'll touch on some interesting subtleties involved in implementing the copy-making code.

AKIN' COPIES

Actually, you can make copies in a bunch of different ways. Most objects refer to—that is, point at—other
objects. When you create a shallow copy, you don’t duplicate the referred objects; your new copy simply
points at the referred objects that already exist. NSArray’s copy method makes shallow copies. When you
make a copy of an NSArray, your copy only duplicates the pointers to the referred objects, not the objects
themselves. If you copy an NSArray that holds five NSSt i ngs, you still end up with five strings running
around your program, not ten. In that case, each object ends up with a pointer to each string.

A deep copy, on the other hand, makes duplicates of all the referred objects. If NSArray’s copy was a
deep copy, you'd have ten strings floating around after the copy was made. For CarParts, we're going to use a
deep copy. This way, when you make a copy of a car, you can change a value it refers to, such as a tire’s pres-
sure, without changing the pressure for both cars.

You are free to mix and match deep and shallow copies of your composed objects, depending on the needs of
your particular class.

To copy a car, we'll need to be able to make copies of engines and tires too. Programmers,
start (with) your engines!

Copying Engines
The first class we'll mess with is Engine. To be able to make a copy of an engine, the class
needs to adopt the NSCopy1ing protocol. Here is the new interface for Engine:

@interface Engine : NSObject <NSCopying>
@end // Engine

Because we've adopted the NSCopying protocol, we have to implement the copyWithZone:
method. A zone is an NSZone, which is a region of memory from which you can allocate
memory. When you send a copy message to an object, it gets turned into copyWithZone:
before reaching your code. Back in days of yore, NSZones were more important than they are
now, but we're still stuck with them like a small piece of baggage.

Here’s Engine’s copyWithZone: implementation:

- (id) copyWithZone: (NSZone *) zone
{
Engine *engineCopy;
engineCopy = [[[self class]
allocWithZone: zone]

CHAPTER 13: Protocols

init];
return (engineCopy);
} // copyWithZone

Engine has noinstance variables, so all we have to do is make a new engine object. How-
ever, that's not quite as easy as it sounds. Look at that complex statement on the right side of
engineCopy. The message sends are nested three levels deep!

The first thing this method does is get the class for se1f. Then, it sends that class an
allocWithZone: message to allocate some memory and create a new object of that class.
Finally, the init message is sent to this new object to get itinitialized. Let’s discuss why we
need that complicated nest of messages, especially the [se1f class] business.

Recall that alloc is a class method. allocWithZone: is a class method too, as you can tell by
the leading plus sign in its method declaration:

+ (id) allocWithZone: (NSZone *) zone;

WEe'll need to send this message to a class, rather than an instance. What class do we send it
to? Our first instinct is to send allocWithZone: to Engine, like this:

[Engine allocWithZone: zone];

That will work for Engine, but not for an Engine subclass. Why not? Ponder STant6, which
is a subclass of Engine. If you send a STant6 object the copy message, eventually the code
will end up in Engine’s copyWithZone:, because we ultimately use the copying logic from
Engine. And if you send allocWithZone: directly to the Engine class, a new Engine object
will be created, not a STant6 object. Things can really get confusing if STant6 adds instance
variables. In that case, an Engine object won't be big enough to hold the additional vari-
ables, so you may end up with memory overrun errors.

Now you probably see why we used [self class].Byusing [self class], the
allocWithZone: will be sent to the class of the object that is receiving the copy message.

If se1fisaSlant6,anew Slanté6 is created here. If some brand new kind of engine is added
to our program in the future (like a MatterAntiMatterReactor), that new kind of engine
will be properly copied, too.

The last line of the method returns the newly created object.

Let’s double-check memory management. A copy operation should return an object with a
retain count of one (and not be autoreleased). We get hold of the new object via an alloc,
which always returns an object with a retain count of one, and we're not releasing it, so we're
A-OK in the memory management department.

CHAPTER 13: Protocols

That's it for making Engine copy-capable. We don't have to touch STant6. Because S1ant6
doesn’t add any instance variables, it doesn’t have to do any extra work when making a copy.
Thanks to inheritance, and the technique of using [se1f class] when creating the object,
S1ant6 objects can be copied too.

Copying Tires
Tires are trickier to copy than Engines. Tire has two instance variables (pressure and
treadDepth) that need to be copied into new Tires, and the AT1WeatherRadial subclass

introduces two additional instance variables (rainHand11ing and snowHand11ing) that also
must be copied into a new object.

Firstup is Tire. The interface has grown the protocol-adoption syntax:

@interface Tire : NSObject <NSCopying>
{

float pressure;

float treadDepth;
h

// ... methods
@end // Tire

and now the implementation of copyWithZone::

- (id) copyWithZone: (NSZone *) zone
{
Tire *tireCopy;
tireCopy = [[[self class] allocWithZone: zone]
initWithPressure: pressure
treadDepth: treadDepth];

return (tireCopy);
} // copyWithZone

You can see the [[self class] allocWithZone: zone] pattern here, like in

Engine. Since we have to call init when we create the object, we can easily use Tire's
initWithPressure:treadDepth: to set the pressure and treadDepth of the new tire
to be the values of the tire we're copying. This method happens to be Tire’s designated
initializer, but you don’t have to use the designated initializer for copying. If you want, you
can use a plain init and use accessor methods to change attributes.

CHAPTER 13: Protocols

HANDY POINTER FOR YOU

You can access instance variables directly via the C pointer operator, like this:

tireCopy->pressure = pressure;
tireCopy->treadDepth = treadDepth;

Generally, we try to use init methods and accessor methods in the unlikely event that setting an attribute
involves extra work.

Now, it's time for Al1WeatherRadial.The @interface for Al1WeatherRadial is unchanged:

@interface AllWeatherRadial : Tire
{

float rainHandling;
float snowHandling;

}

// ... methods
@end // AllWeatherRadial

Wait—where’s the <NSCopying>? You don’t need it, and you can probably guess why. When
AllWeatherRadial inherits from Tire, it pulls all of Tire's baggage along, including the
conformance to the NSCopy1ing protocol.

We'll need to implement copyWithZone:, though, because we have to make sure
AlTWeatherRadial’s rain and snow-handling instance variables are copied:

- (id) copyWithZone: (NSZone *) zone

AllwWeatherRadial *tireCopy;
tireCopy = [super copyWithZone: zone];

[tireCopy setRainHandling: rainHandling];
[tireCopy setSnowHandling: snowHandling];

return (tireCopy);
} // copyWithZone

Because Al1WeatherRadial is a subclass of a class that can be copied, it doesn’t need to do
the allocWithZone: and [self class] jazz we used earlier. This class just asks its super-
class for a copy and hopes that the superclass does the right thing and uses [se1f class]
when allocating the object. Because Tire’s copyWithZone: uses [self class] to deter-
mine the kind of object to make, it will create a new Al1WeatherRadial, which is just what

CHAPTER 13: Protocols

we want. That code also handles copying the pressure and treadDepth values for us. Now,
isn't that convenient?

The rest of the work is to set the rain and snow-handling values. The accessor methods are
good for doing that.

Copying the Car

Now that we can make copies of engines and tires and their subclasses, it’s time to make the
Car itself copiable.

As you'd expect, Car needs to adopt the NSCopy1ing protocol:

@interface Car : NSObject <NSCopying>
{

NSMutableArray *tires;

Engine *engine;

}

// ... methods
@end // Car

And to fulfill its promise to NSCopy1ing, Car must implement our old friend copyWithZone:.
Here is Car’s copyWithZone: method:

- (id) copyWithZone: (NSZone *) zone
{
Car *carCopy;
carCopy = [[[self class]
allocWithZone: zonel]
init];

carCopy.name = self.name;
Engine *engineCopy;

engineCopy = [[engine copy] autorelease];
carCopy.engine = engineCopy;

int 1;
for (i =0; i < 4; i++) {
Tire *tireCopy;

tireCopy = [[self tireAtIndex: 1i] copy];
[tireCopy autorelease];

[carCopy setTire: tireCopy
atIndex: 1i];

CHAPTER 13: Protocols

return (carCopy);
} // copyWithZone

That’s a little more code than we've been writing, but all of it is a similar to what you've seen
already.

First, a new car is allocated by sending allocWithZone: to the class of the object that’s
receiving this message:

Car *carCopy;
carCopy = [[[self class]
allocWithZone: zonel]
init];

CarParts-copy contains no subclasses of Car, but it might someday. You never know when
someone will make one of those time-traveling DeLoreans. We can future-proof ourselves by
allocating the new object using the self’s class, as we’'ve done so far.

We need to copy over the car’s appellation:

carCopy.name = self.name;

Remember that the name property will copy its string, so the new car will have the proper
name.

Next, a copy of the engine is made, and the car copy is told to use that for its engine:

Engine *engineCopy;
engineCopy = [[engine copy] autorelease];
carCopy.engine = engineCopy;

See that autorelease? Is it necessary? Let’s think through memory management for a sec-
ond. [engine copy] will return an object with a retain count of 1. setEngine: will retain
the engine that'’s given to it, making the retain count 2. When the car copy is (eventually)
destroyed, the engine will be released by Car’s dealloc, so its retain count goes back to 1.
By the time that happens, this code will be long gone, so nobody will be around to give it
that last release to cause it to be deallocated. In that case, the engine object would leak. By
autoreleasing it, the reference count will be decremented some time in the future when the
autorelease pool gets drained.

Could we have done a simple [engineCopy release] instead of autoreleasing? Yes. Youd
have to do the release after the setEngine: call; otherwise, the engine copy would be
destroyed before being used. Which way you choose to do it is up to your own tastes. Some
programmers like to keep their memory cleanup in one place in their functions, and others

CHAPTER 13: Protocols

like to autorelease the objects at the point of creation so they don't forget to release them
later on. Either approach is valid.

After carCopy is outfitted with a new engine, a for loop spins around four times, copying
each tire and installing the copies on the new car:
int 1;
for (i =0; i < 4; i++) {
Tire *tireCopy;

tireCopy = [[self tireAtIndex: 1i] copy];
[tireCopy autorelease];

[carCopy setTire: tireCopy
atIndex: 1i];

The code in the loop uses an accessor method to get the tire at position 0, then position 1,
and so on each time through the loop. That tire is then copied and autoreleased so that its
memory is handled properly. Next, the car copy is told to use this new tire at the same posi-
tion. Because we constructed the copyWithZone: methods in Tire and AlTWeatherRadial
carefully, this code will work correctly with either kind of tire.

Finally, here’s main() in its entirety. Most of it is old code you've seen in previous chapters;
the groovy new code appears in bold:

int main (int argc, const char * argv[])
{
NSAutoreleasePool *pool;
pool = [[NSAutoreleasePool alloc] init];

Car *car [[Car alloc] init];
car.name = @"Herbie";

int 1i;

for (i =0; i < 4; i++) {
Al1WeatherRadial *tire;
tire = [[AllWeatherRadial alloc] init];

[car setTire: tire
atIndex: 1i];

[tire release];

Slant6 *engine = [[Slant6 alloc] init];

car.engine = engine;

[engine release]

[car print];

Car *carCopy = [car copyl;

[carCopy print];

[car release];

[carCopy release];

[pool release];
return (0);

} // main

CHAPTER 13: Protocols

After printing out the original car, a copy is made, and that one is printed out. We should there-

fore get two sets of identical output. Run the program and you'll see something like this:

Herbie has:
AllWeatherRadial: 34
AllWeatherRadial: 34
AllWeatherRadial: 34
AllWeatherRadial: 34
I am a slant-6. VROOO
Herbie has:
AllWeatherRadial: 34
AllWeatherRadial: 34
AllWeatherRadial: 34
AllWeatherRadial: 34

I am a slant-6. VROOO

Protocols and Data Types

= O O o o

~N N N N

20.
20.
20.
20.

20.
20.
20.
20.

o O O O
~N N N N

o O O O
~N N NN

23.
23.
23.
23.

23.
23.
23.
23.

NN NN
~N N N N

NN NN
~N N NN

42.
42.
42.
42.

42.
42.
42.
42.

vl U1 U1 Ul

vl U1 U1 U

You can specify protocol names in the data types you use for instance variables and method

arguments. By doing this, you give the Objective-C compiler a little more information so it

can help error-check your code.

Recall that the id type represents a pointer to any kind of object; it's the generic object type.

You can assign any object to an id variable, and you can assign an id variable to any kind of

object pointer. If you follow id with a protocol name, complete with angle brackets, you're

telling the compiler (and any humans reading the code) that you are expecting any kind of

object, as long as it conforms to that protocol.

CHAPTER 13: Protocols

For example, NSControl has a method called setObjectValue:, which requires an object
that conforms to NSCopying:

- (void) setObjectValue: (id<NSCopying>) obj;

When you compile this, the compiler checks the type of the argument and gives you a warn-
ing, like“class 'Triangle' does not implement the 'NSCopying' protocol” Handy!

Objective-C 2.0 Goodies

Apple never leaves well enough alone. Objective-C 2.0 adds two new modifiers for protocols:
@optional and @requi red. Wait a minute. Did we just say that if you conform to a protocol,
you're required to implement all of the protocol’s methods? Yes, that’s true, for older versions
of Objective-C. If you have the luxury of Objective-C 2.0, you can do groovy stuff like this:

@protocol BaseballPlayer
- (void)drawHugeSalary;

@optional

- (void)slideHome;
- (void)catchBall;
- (void)throwBall;

@required
- (void)swingBat;

@end // BaseballPlayer

So, a class that adopts the Basebal1Player protocol is required to implement
-drawHugeSalary and -swingBat but has the option of sliding home, catching the ball,
or throwing the ball.

Why would Apple do this, when informal protocols seem to work OK? It's one more tool in
our arsenal to explicitly express our intent in class declarations and our method declarations.
Say you saw this in a header file:

@interface CalRipken : Person <BaseballPlayer>

You know immediately that we're dealing with someone who gets paid a lot and can swing
a bat and who might slide home or catch or throw the ball. With an informal protocol, there’s
no way to say this. Likewise, you can decorate arguments to methods with a protocol:

-(void)draft: (Person<BaseballPlayer>);

CHAPTER 13: Protocols

This code makes it obvious what kind of person can get drafted to play baseball. And if you
do any iPhone development, you'll notice the things that are informal protocols in Cocoa
become formal protocols with a lot of @optional methods.

Summary

In this chapter, we introduced the concept of a formal protocol. You define a formal protocol
by listing a set of methods inside a @protocol block. Objects adopt this formal protocol by
listing the protocol name in angle brackets after the class name in an @interface state-
ment. When an object adopts a formal protocol, it promises to implement every required
method that’s listed in the protocol. The compiler helps you keep your promise by giving
you a warning if you don't implement all the protocol’s methods.

Along the way, we explored some of the nuances that occur with object-oriented program-
ming, particularly the issues that crop up when making copies of objects that live in a
hierarchy of classes.

And now, congratulations! You've covered a great majority of the Objective-C language and
have delved deeply into a number of topics that come up often in OOP. You have a good
foundation for moving on to Cocoa programming or jumping into your own projects. In the
next chapter of this book, you'll get a quick taste of writing a graphical Cocoa application
using Interface Builder and the AppKit. Interface Builder and AppKit are the soul of Cocoa
programming and are the central topic of most Cocoa books and projects—and they're also
a lot of fun. After that, we'll delve more into some of Cocoa’s lower-level features.

Chapter

Introduction
to the AppKit

ofar in this book, all our programs have used the Foundation Kit and have
communicated with us through the time-honored method of sending text
output to the console. That's fine for getting your feet wet, but the real fun
begins when you see a Mac-like interface that includes things you can click
and play with. We'll take a detour in this chapter to show you some highlights
of the Application Kit (or AppKit), Cocoa’s user-interface treasure trove.

The program we’'ll construct in eYe) Window.

this chapter is called CaseTool,

[I seem to be a Verb |

and you can find it in the 14.01

. i seem to be a verb
CaseTool project folder. CaseTool

puts up a window that looks (_UpperCase) (_ LowerCase)

like the screenshot shown in
Figure 14-1. The window has a text Figure 14-1. The finished product

field, a label, and a couple of but-

tons. When you type some text into the field and click a button, the text you
entered is converted to uppercase or lowercase. Although that’s very cool
indeed, you'll no doubt want to add additional useful features before you
post your application on VersionTracker with a $5 shareware fee.

Making the Project

You'll be using Xcode and Interface Builder, and we'll lead you though the
step-by-step process of building this project. The first thing to do is create
the project files. Then, we'll lay out the user interface, and finally, we'll
make the connections between the Ul and the code.

CHAPTER 14: Introduction to the AppKit

Let’s get started by going to XCode and

making a new Cocoa Application project. Run

XCode; choose New Project from the File menu; select Cocoa Application (as shown in
Figure 14-2); and give your new project a name (see Figure 14-3).

Choose a template for your new project:

. iPhone 0S ‘g

&

Application
* Mac 05 X Cocoa Dncq me_nt— Core Data Application
based Application
| Application |

Audio Units i
Aut i " 4

omator Action | S‘Q’C; f_,‘:
Bundle e | LA
Command Line Utility Core Data Document- Core Data Document- AppleScript
Dynamic Library based Application based Application with Application -
Framework Spotlight Importer v
Java
Kernel Extension Description This project builds a Cocoa-based application written in Objective-C.
Standard Apple Plug-ins
Static Library
Other

{ cancel) (Choose.)

Figure 14-2. Make a new Cocoa Application.

Now, we add a new Objective-C class file,

will be the controlling object for our appl

which we'll call AppController, so named because it
ication. Select the Sources folder in the Groups & Files

pane of the project window. Choose New File from the File menu. Figure 14-4 depicts XCode
asking for the kind of file you want to create (in this case, an Objective-C class), and Figure 14-5
shows naming the file. Make sure the Also create AppController.h checkbox is checked.

Save As: |Ca5eTO0I | @
[«[»][28] =[] [EHLearn ObJC Projects B (@search 3
¥ DEVICES '+ [02.01 - Hello Objective-C e

= borkbook ||| £l 02.02 - BOOL Party >
34 vikki & 03.01 - Count-1 [S
{3 03.02 - count-2 3
P SHARED 3 03.03 - Count-3 >
¥ PLACES {3 03.04 - Word-Length-1 (3
[Projects 3 03.05 - word-Length-2 2
{3 iphone | (& 03.06 - Word-Length-3 >
-’ Learn M |3 03.07 - Word-Length-4 »
[Developer [03.08 - Shapes-Procedural =
N markd {3 03.09 - Shapes-Procedural-2 ~ | .
[samplec... (&3 03.10 - Shapes-Object (b
o B no 19 Chamns Oisinee 0 il
ﬁ Applicati... v |
() Eey

Figure 14-3. Name the new project.

Choose a template for your new file:

Main Menu XIB Mapping Madel

Dbjective-C class

Description An Objective-C class file, with an optional header which includes the

m ok

m m

<Cocoa/Cocoa.h> header.

Creions) (N
_ 4

Figure 14-4. Create a new Objective-C class.

New Objective-C class
File Name: |AppController.m |
Also create "AppController.h"
Location: |~Mﬁﬁn1fspidemum10hj—c(ﬁn_a_liuarn ObjC Pru!_ (Choose... _)
Add to Project: | CaseTool ._D
Targets: (¥ o CaseTool

("Previous) ﬂ |

Figure 14-5. Name

the new class.

CHAPTER 14: Introduction to the AppKit

Making the AppController @interface

We'll use the Interface Builder application to lay out the window’s contents and hook up var-
ious connections between AppControlTer and the user interface controls. Interface Builder
is also used to lay out iPhone applications, so time in Interface Builder is well spent no mat-
ter which platform you’ll end up programming for. We'll add stuff to the AppController
class, and then Interface Builder will notice our additions and let us build the user interface.

First, we'll set up the header file for AppController:

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject {
IBOutlet NSTextField *textField;
IBOutTlet NSTextField *resultsField;

h

- (IBAction) uppercase: (id) sender;
- (IBAction) Towercase: (id) sender;

@end // AppController

There are two new quasi-keywords in there: IBOutlet and IBAction. These are actually just
#defines provided by the AppKit. IBOutTet is defined to be nothing, so it disappears when
we compile. IBAction is defined to be void, which means the return type of the methods
declared in AppController will be void (that is, returning nothing).

If IBOutTlet and IBAction don’t do anything, why are they even there? The answer is that
they’re not there for the compiler: IBOut1et and IBAction are actually flags to Interface
Builder, as well as the humans who read the code. By looking for IBOut1et and IBAction,
Interface Builder learns that AppControl1er objects have two instance variables that can
be connected to stuff, and AppController provides two methods that can be the target of
button clicks (and other user interface actions). We'll talk about how this works in a little bit.

In Interface Builder, we'll connect the textField instance variable to an NSTextField
object. This text field is where users will type strings to be converted, which is the typical
role for an NSTextField.

resultsField will be connected to a read-only NSTextField. When in read-only mode,
an NSTextField acts like a text label. This text label is where the uppercase or lowercase
version of the string will be displayed.

CHAPTER 14: Introduction to the AppKit

uppercase: will be the method that gets called when the UpperCase button is clicked.
The argument, sender, is the NSButton object the user clicked. Sometimes, you can look
at the sender argument for an action to get additional information about what happened.
But not this time: we'll be ignoring it for CaseTool.

Towercase: is the method that’s called when the LowerCase button is clicked.

Interface Builder

Now, it’s time to crank up Interface Builder, affectionately known as IB to its friends. We want
to edit the MainMenu.xib file that comes along with the project. This file is outfitted with
a menu bar, along with a window we can put user controls into.

In the Xcode project window, find and double-click MainMenu.xib (see Figure 14-6).

g FileMName A& |Code
v ™ CaseTool B[4 MainMenu.xib {English)

w|_|Classes

E AppController.h

E‘, AppController.m
» [Other Sources
v ; Resources

|—_—‘| Info.plist

» |=] InfoPlist.strings

e — Lo
4 | » |[hAppController.h:d ; <Noselectedsymb 2. ™% |C. [#. | @ &

> ,:: Frameworks

"—_— Products #import -Locoa/Cocoa.hs =
L2 @ Targets W []
> 4 Executables | | @interface AppController : NSObject {
» [® Errors and Warnings IBOut let NSTextField *textField;

- i *: i .
¥ O Find Results 3 IBOut let NSTextField *resultsField;
» LJfl Bookmarks Il
» £ som - {IBAction) uppercose: {id) sender;

@ Project Symbols - (IBAction) lowercase: (id) sender;
» [Implementation Files

@end AppContral |
b (i NIB Files end /7 AppControl ler
A

Figure 14-6. Open MainMenu.xib.

This launches Interface Builder to open the file. Even though the file extension is .xib, we call
these nib files. “Nib”is an acronym for NeXT Interface Builder, an artifact of Cocoa’s heritage
as part of a company called NeXT. Nib files are binary files that contain freeze-dried objects,
and .xib files are nib files in XML format. They get compiled into nib format at compile time.

CHAPTER 14: Introduction to the AppKit

Once IB opens the file, you'll see something like the four windows shown in Figure 14-7.
Looking first at the upper-left, we see the IB Dock window, which holds icons representing
the contents of the nib file. This is the main window for the nib file. Below that is the very
short (don't miss it!) menu bar for the application. You can add new menus and menu items
and edit existing items. We won't be messing with that for this program.

Below the menu bar is an empty window where we'll put the text fields and buttons. This real,
live window corresponds to the miniature window-shaped icon down in the Dock window.
Double-click that icon at any time to open the window. To the right of everything is the IB
Library palette. This palette contains objects you can drag out into your window. There’s a lot
of stuff in there. You can type some text in the search box at the bottom to pare down what’s
shown in the library. For your convenience, a description is provided for each kind of object

you can play with.

806 Library
> Li Library
A%
File's Owner First Responder Application by allowing you to set the color of ... Ix
__ . r
L
F ‘ .' . Label Label - Displays text that the user can |
e ™ select
R
MainMenu Window (Wind... Font Manager Text Field - Displays text that the user
| can select or edit and that sends its
| Coseooixcotepro)] Ko
Secure Text Field - Hides text from

|wsews | display or other access via the user

' * interface.

8,00 LM

i
Search Field - Implements a text field
Q control that is optimized for
performing text-based searches. ";‘

l_ NewApplication Edit Format View Window Help

Label

Label \oreifield

An NSTextField object is a kind of NSControl that
displays text that the user can select or edit and

that sends its action message to its target when

the user presses the Return key while editing.

(-) (0 fied)

Figure 14-7. Meet Interface Builder

CHAPTER 14: Introduction to the AppKit

Now, let’s start using Interface Builder to continue with our program. We're going to tell
Interface Builder to create one of our AppController objects. When the program runs,
Cocoa will load the nib file, and we'll have a new AppController object there for us to

work with. But first, we need to create the AppController.

Drag an NSObject from the library into the CaseTool.xib Dock window. It will have the very
creative name of Object, as shown in Figure 14-8.

: . 0 Search Field ¥ Class Identity
Class AppController
. ‘ %2_ E . t‘::ss-klien FirstResponder
File's Owner First Responder Application MainMenu JET‘TE! Ir::_rir:::rc:[)o::jectTemplate
| lowercase: 18Plugin
| UPPErCAsE: 1 cActionCell
I NSApplication
Window (Wind... Font Manager [Object] = | NSArrayController
= NSBox
T T
| CoscToolxcoseprol Ouet | sgurtoncell ¥
|_l#} AppCon —

. . . . l Id ield
Figure 14-8. After dragging an object from the library s e
Make sure your object is selected (has a gray box behind]
it), and choose Tools » Identity Inspector (or you can use e T
the keyboard shortcut 386. This brings up the inspector Name [|
window, which lets you tweak all sorts of attributes about SRt as0 |

. Lock [Nothing (Inherited) s,
the objects you have selected. We want to change the N St Wit S
class to AppController, so choose it from the drop-down
menu, as shown in Figure 14-9. =
If you look at the Dock window now, the object has
magically renamed itself to AppController, as shown in
Figure 14-10. Figure 14-9. Change the object’s

class.

B ¥ A

File's Owner First Responder Application MainMenu

Window (Wind... Font Manager App Controller

]

"

Figure 14-10. Poof! It's an AppController!

CHAPTER 14: Introduction to the AppKit

Laying Out the User Interface

Now, it's time to lay out the user interface. Find a Text Field (not a Text Field Cell) in the library,
and drag it into the window, as shown in Figure 14-11. As you drag things around in the
window, you'll see blue guidelines appear. These help you lay out your objects according to
Apple user interface specifications.

Figure 14-11. Drag out an editable text field.

Now, we'll drag out a Label. Grab a Label object from the library, and drag it into the window,
as shown in Figure 14-12. This is where the uppercase and lowercase results will go.

Figure 14-12. Drag out a label.

Next, find the push button in the Library, and drag that over. Position it under the label as
shown in Figure 14-13. This is pretty cool, isn't it?

Figure 14-13. Drag a button into the window.

Now, double-click the newly deposited button. The label becomes editable. Type UpperCase,
and press return to accept the edit. Figure 14-14 shows the button editing in action.

Figure 14-14. Edit the button’s label.

CHAPTER 14: Introduction to the AppKit

Now, drag another button from the palette and change its label to LowerCase. Figure 14-15
shows the window after the second button has been added.

Label

[: UpperCase) (LowerCase)

Figure 14-15. All the items have been added.

Next, we did a little interior decorating, resizing the text fields and the window itself to make
it a little nicer, as shown in Figure 14-16. We also resized the Label to span the width of the
window. The label must be wide enough to display whatever text you type into the field.
Now, the window is just the way we want it.

Label

[: UpperCase) (LowerCase)

Figure 14-16. The window is cleaned up.

Making Connections

In this section, we'll show you how to wire up your code to the lovely user interface elements
we just finished creating.

Hook Up the Outlets

Now, it's time to hook up some connections. First, we need to tell the AppController object
which NSTextFieldits textField and resultsField instance variables should point to.

First, arrange the windows so that both the MainMenu.xib Dock window and your window
with the text fields are visible at the same time. Next, hold down the control key and drag
from AppController to the text field. A blue line follows your mouse pointer. Drag over to the

CHAPTER 14: Introduction to the AppKit

text field, as shown in Figure 14-17. You should see a little Text Field label appear once you
drag over the text field.

He6a # MainMenu.xib (English) (=]
£ @)
View Mo de Info Search Field

= =
’_'__] ol
File's Owner First Responder Application MainMenu

Window (Wind... Font Manager

Label

(UpperCase) (LowerCase :]

Figure 14-17. Starting the connection

When you release the mouse button, a menu containing the possible IB Outlets appears.
Choose the textField option, as shown in Figure 14-18.

o6 #7 MainMenu.xib (English) =]
Al = m) || @Q)
View Mode Info Search Field
4 s
® ¥ A E
File's Owner First Responder Application MainMenu

Window (Wind... Font Manager [GlJsfell il

esultsField
textFiel

(UpperCase) (LowerCase)

Figure 14-18. Making the connection

CHAPTER 14: Introduction to the AppKit

Now, do the same thing, but this time, control-drag
from the AppController to the Label, and choose the
resultsField item to make that connection.

Double-check your work by choosing the Connections
panel of the inspector or by using the keyboard short-
cut 385. You should see both connections at the top of
the inspector, as shown in Figure 14-19.

Hook Up the Actions

Now, we're ready to wire the buttons to actions so
they’ll trigger our code. We'll control-drag again to
make our love connections, this time from the button
to the AppController.

OTE

¥ Outlets

(resultsField J—{® Static Text {Label) @)
(exiield (% TemFeld @
¥ Received Actions

lowercase: C

uppercasa:
¥ Referencing Outlets
Mew Referencing Outlet

A

Figure 14-19. Double-checking the
connections

about.

AppControlTer to the text field.

to AppController.

Knowing which way to drag the connection is a common source of confusion when using Interface Builder.
The direction of the drag is from the object that needs to know something to the object it needs to know

AppControlTler needs to know which NSTextF1ieTd to use for the user’s input, so the drag is from

The button needs to know which object to tell, “Hey! Someone pushed me!” So you drag from the button

Control-click the UpperCase button, and drag a wire to AppController, as shown in

Figure 14-20.

One you've drawn the wire from the button to AppController, select uppercase: in the

inspector, as shown in Figure 14-21.

Now, whenever the button is clicked, the uppercase: message will be sent to the
AppControTller instance, just like we always wanted it to. We can then do whatever

we want in our uppercase: method.

CHAPTER 14: Introduction to the AppKit

Oen # MainMenu.xib (English) =
(£ C))
CeEE B Search Field

o =
"__ el
File's Owner First Responder Application MainMenu

Window (Wind... Font Manager | App Contloller

File's Owner First Responder Application MainMenu

Window (Wind... Font Manager

uppercase:

(LowerCase)

Figure 14-21. Make the connection (again)

CHAPTER 14: Introduction to the AppKit

Finally, we make the last connection by hooking up the LowerCase button. Control-drag
from the LowerCase button to AppController, and select Towercase:. And now we're done in
Interface Builder. Save your nib file and, if you want, quit Interface Builder.

Chances are you moved along fairly slowly laying out the objects and making the connec-
tions. Don't worry about it—with practice, you'll get a lot faster. An experienced IB jockey
can zip through all these steps in less than a minute.

AppController Implementation

Now, let’s get back to coding. It’s time to implement AppController. But first, a little bit on
how IBOutlets work.

When a nib file is loaded—MainMenu.nib is loaded automatically when the application
starts, and you can create your own nib files and load them yourself—any objects that were
stored in the nib file are re-created. This means that an alloc and an ini t both take place
under the hood. So, when the application starts, an AppController instance is allocated and
initialized. During the init method, all the IBOutTet instance variables are nil. Only after

all the objects in the nib file are created (and this includes the window and text fields and
buttons) will all the connections be set up.

Once all the connections are made (which simply involves putting the address of

the NSTextField objects into the AppController’s instance variables), the message
awakeFromNib is sent to every object that was created. A very, very common error is to try
to do some work with IBOutlets in the init method. Because all the instance variables are
nil, all messages to them are no-ops, so any work you try to do in init will silently fail (this
is one of the places where Cocoa can let you down and cost you some debugging time). If
you're wondering, why this is not working, use NSLog to print the values of your instance
variables and see if they're all nil. There’s also no predefined order in which the objects are
created, and no predefined order in which awakeFromNib messages are sent.

Let’s get on with AppController’simplementation. Here are the necessary preliminaries:

#import "AppController.h"
@impTementation AppController

Next is an init method to show the value of the IBOutlet instance variables at init time
(they’ll be nil; trust us on this one):
- (id) 1init
{
if (self = [super init]) {
NSLog (@"init: text %@ / results %@",
textField, resultsField);

CHAPTER 14: Introduction to the AppKit

return (self);
} // init

To have a nicer user interface, we should set the text fields to some reasonable default value,
rather than Label. True, it's an accurate default value, but it’s not terribly interesting. We'll put
Enter text here into the text field, and the results field will be preset to Results. awakeFromNib
is the ideal place for this:

- (void) awakeFromNib

{
NSLog (@"awake: text %@ / results %@",
textField, resultsField);

[textField setStringValue: @"Enter text here"];
[resultsField setStringValue: @"Results"];

} // awakeFromNib

NSTextField has a method called setStringValue:, which takes an NSString as its param-
eter and changes the contents of the text field to reflect that string value. That’s the method
we're using to change the text fields to something more interesting for users to look at.

Now for the action methods—first is uppercase:
- (IBAction) uppercase: (id) sender

NSString *original;
original = [textField stringValue];

NSString *uppercase;
uppercase = [original uppercaseString];

[resultsField setStringValue: uppercase];

} // uppercase

We get the original string from the textField using the stringValue message, and we
make an uppercase version. NSString provides us with the handy uppercaseString
method, which creates a new string built from the contents of the receiving string, but with
every letter kicked to uppercase. That string is then set as the contents of the resuTltsField.

Time for our obligatory memory management check: is everything groovy? You betcha. Both
of the new objects that are created (the original string and the upper case string) come from
methods that are not alloc, copy, or new, so they're in the autorelease pool and will get

CHAPTER 14: Introduction to the AppKit

cleaned up. It’s the responsibility of setStringValue: to either copy or retain the incoming
string. What setStringValue: does is its own business. But we know our memory manage-
ment is correct.

Towercase: is just like uppercase:, but on the down-low:

- (IBAction) lowercase: (id) sender

{
NSString *original;
original = [textField stringValue];

NSString *lowercase;
lowercase = [original TowercaseString];

[resultsField setStringValue: Towercase];
} // Tlowercase

And that’s it! When you run the program, you'll see the window appear. Type in a string and
change its case, just like in Figure 14-22.

[I seem to be a Verb]

i seem to be a verb

[: UpperCase) [LowerCase]

Figure 14-22. The finished CaseTool
program does what it does.

Summary

This chapter has been a whirlwind tour that just touched the surface of Interface Builder and
the Application Kit. We used only one AppKit class directly (NSTextField) and a couple of
classes indirectly (NSButton, which powers the buttons, and NSWindow, which is the object
controlling the window). There are over 100 different classes in the AppKit for you to play
with, many of which appear in Interface Builder.

At this point, you're fully qualified to dive into a Cocoa book or project. We'll continue in the
next chapter with an exploration of some of the low-level features of the Foundation Kit.

Chapter

File Loading
and Saving

ost computer programs (applications) end up creating some kind of semi-
permanent artifact of the user’s work. Maybe it’s an edited photo. Maybe it’s a
chapter of a novel. Maybe it’s your band’s cover of “Free Bird.” In each of these
cases, the user ends up with a file on a disk.

The standard C library provides function calls to create, read, and write files,
such as open(), read (), write(), fopen(), and fread (). These functions are
well documented elsewhere, so we won't talk about them. Cocoa provides
Core Data, which handles all this file stuff behind the scenes for you. We won't
be talking about this either.

So what does that leave us? Cocoa provides two general classes of file handling:
property lists and object encoding, which we'll talk about here.

Property Lists

In Cocoa, there is a class of objects known as property list objects, frequently
abbreviated as plist. These lists contain a small set of objects that Cocoa
knows how to do stuff with, in particular, how to save them to files and load
them back. The property list classes are NSArray, NSDictionary, NSString,
NSNumber, NSDate, and NSData, along with their mutable counterparts if they
have any.

You've seen the first four before but not the last two. We'll chat about those
before we