“The best ActionScript book ever written.”

—Lee Brimelow, The FlashBlog.com

:-;_.P'_ 3

Learning ~
ActionScript 3.0

SECOND EDITION

Rich Shupe with Zevan Rosser

FAY | oee .
Adobe | Library O’REILLY

developers, and those new to ActionScript—what you need to know to use ActionScript

Teaches non-traditional programmers—including web designers, GUI-based Flash
to create dynamic websites, RIAs, and more.


http://www.allitebooks.org

Learning ActionScript 3.0

Second Edition

Rich Shupe with Zevan Rosser

O'REILLY®

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo

Iwvww.allitebooks.cond



http://www.allitebooks.org

Learning ActionScript 3.0, Second Edition
by Rich Shupe with Zevan Rosser

Copyright © 2011 Rich Shupe and Zevan Rosser. All rights reserved.
Printed in Canada.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http.//my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: MaryTreseler
Production Editors: Rachel Monaghan and Teresa Elsey
Development Editor: Linda Laflamme

Technical Reviewers: Anselm Bradford, Chrissy Rey-Drapeau, Tim Goss, Xingyi Guo, Sonia Garbes Putzel, and
Bentely Wolfe

Proofreaders: Nancy Kotary and Chris Niemiec
Indexer: Ron Strauss

Interior Designer: Ron Bilodeau

Cover Designer: Mark Paglietti

Compositor: Nancy Kotary

Print History:
December 2007: First Edition.
October 2010: Second Edition.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. This book's trade dress is a trademark of O'Reilly
Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39017-4
[T1]

Iwvww.allitebooks.cond



http://my.safaribooksonline.com
mailto:corporate@oreiUy.com
http://www.allitebooks.org

CONTENTS

Preface . . . . . .

Part | Getting Started

Chapter 1

What's New in ActionScript 3.0?

The Flash Platform

Procedural Versus Object-Oriented Programming
The Document Class

Legacy Code Compatibility

Hello World

What's Next?

Chapter 2

Core Language Fundamentals............... ... ...
Jump Right In
Miscellaneous Basics
Variables and Data Types
Operators
Conditionals
Loops
Arrays
Vectors
Functions
Custom Objects
this and parent
Absolute Versus Relative Addresses
Put It All Together
What's Next?

Iwvww.allitebooks.cond

14
14
17

21

22
23
27
29
34
37
39
40
44
45
45
46
48


http://www.allitebooks.org

Part I Graphics and Interaction

Chapter 3

Properties, Methods, and Events............ ... ... ..
Jump Right In
Properties
Events
Methods
Event Propagation
Frame and Timer Events
Removing Event Listeners

What's Next?

Chapter 4
The Display List ....... ... ... ... ... ...

Jump Right In

The Sum of Its Parts

Adding and Removing Children

Managing Object Names, Positions, and Data Types
Changing the Display List Hierarchy

A Dynamic Navigation Bar

What's Next?

Chapter 5

Timeline Control. ... ... .. ... .. ... .. ...
Jump Right In
Playhead Movement
Frame Labels
Frame Rate
A Simple Site or Application Structure
What's Next?

Iwvww.allitebooks.cond

49

52
53
54
60
62
65
67
70

72
73
81
87
90
93
95

101
106
108
111


http://www.allitebooks.org

Classes

Inheritance
Composition
Encapsulation
Polymorphism
Navigation Bar Revisited
What's Next?

Chapter 7
Motion. ... .. .. .

Basic Movement

Simple Physics

A Basic Particle System
Simple Collision Detection
Geometry and Trigonometry
Programmatic Tweening
What's Next?

Chapter 8

Drawing with Vectors. .. ... ... ... ... ...
The Graphics Class
The Geometry Package
9-Slice Scaling
Applied Examples
What's Next?

Chapter 9

Drawing with Pixels........... ... ... .. ... . ..
Bitmap Caching
The BitmapData Class
Blend Modes
Bitmap Filters
Color Effects
Image Encoding and Saving
Adding Functionality to Your Color Picker
What's Next?

Iwvww.allitebooks.cond

115
122
131
133
139
147
151

154
159
162
166
169
183
190

192
205
215
217
224

226
228
233
237
247
250
252
258

Contents


http://www.allitebooks.org

Part Il Text 259

Chapter 10

Text . .. 261
Creating Text Fields 262
Setting Text Field Attributes 262
Selecting Text 265
Formatting Text 266
Formatting with HTML and CSS 274
Triggering ActionScript from HTML Links 278
Loading HTML and CSS 279
Text Layout Framework 283
What's Next? 292

Part IV  Sound and Video 293

Chapter 11

Sound .. 295
ActionScript Sound Architecture 296
Internal and External Sounds 298
Playing, Stopping, and Pausing Sounds 301
Buffering Sounds 307
Changing Sound Volume and Pan 308
Reading ID3 Metadata from MP3 Sounds 311
Visualizing Sound Data 313
Visualizing Microphone Input 322
Recording, Playing, and Saving Microphone Input 327
What's Next? 333

Chapter 12

Video 335
Encoding 336
Components 340
Full-Screen Video 343
Captions 344
Writing Your Own Player 350
What's Next? 358

Contents

Iwvww.allitebooks.cond



http://www.allitebooks.org

Part V  Input/Output 359

Chapter 13

Loading Assets. . ... ... ... ... ... .. ... 361
Loading SWFs and Images 362
Loading Data 370
Communicating with Loaded SWFs 379
Additional Online Resources 381
What's Next? 384

Chapter 14

XML 385
Understanding XML Structure 386
Creating an XML Object 390
Using Variables in XML 391
Reading XML 392
Writing XML 399
Deleting XML 401
Loading External XML Documents 402
Sending to and Loading from a Server 404
An XML-Based Navigation System 405
What's Next? 420

Index ... 421

Iwvww.allitebooks.cond



http://www.allitebooks.org

LT
>

When deciding if the book in your hands will be a good resource for your
library it might help you to know why we, the authors, wrote this particular
book. We are both developers who use ActionScript extensively in our every-
day work, but we are also teachers. Collectively we have taught thousands of
students at multiple universities, training facilities, and conferences, and yet
we share one significant common experience. We were consistently told that
no feature-rich ActionScript book existed that didn't assume readers already
had extensive programming experience and an understanding of object-

oriented programming.

So, we started to research how we could fill this void and provide a book to
our students that would really help them beyond the classroom. We talked
with a lot of students, user groups, and instructors and began to sketch out a
book that would put what we learned into practice.

When ActionScript 3.0 was released, the interest in the language grew dra-
matically In the Flash community reactions ranged from excitement to
uncertainty to fear, as the ActionScript 3.0 learning curve became apparent.
Talk of the Flash Platform splintering into Flex ("developer") and Flash
("designer") camps left many designers and programmers more uncertain
than ever about their futures. When Flash CS3 Professional was released, the
need for a guiding resource increased, and we knew it was time to write the
book you hold in your hands.

We hope this book will help ActionScript coders of all kinds —from curious
to intimidated, from eager to experienced —embrace the power and perfor-
mance of ActionScript 3.0. We hope these pages will ease the transition from
whatever prior version of ActionScript you may have used (if any) to 3.0 —the
biggest architectural change to the language since its inception.

Iwvww.allitebooks.cond



http://www.allitebooks.org

Preface

Who This Book Is For

This book is aimed at designers and developers without extensive ActionScript
3.0 experience. Although we feel this volume covers the basics fairly well, both
a familiarity with the Flash interface and knowledge of programming funda-

mentals is assumed.

We've tried to explain the material herein clearly and concisely enough
for any reader with at least this minimal background. However, we recom-
mend that you skim Chapter 2 to see if you think we've provided enough
core programming fundamentals to fill any gaps in your knowledge base.
Throughout this book we cover relevant syntax with extensive comments,
but the first two chapters serve as a foundation upon which the rest of the
chapters are built.

Similarly, if you are a relatively experienced ActionScript 2.0 programmer,
you may wish to glance at a few chapters of interest before deciding whether
or not this book is for you. Migration from ActionScript 2.0-to-ActionScript
3.0 is not our primary focus, so we want you to be happy with the tone and
straightforward approach we've adopted before you decide to rely solely on
this book.

If you need additional support with the Flash Professional interface, want
solutions to specific problems, or would benefit from a quick look at migra-
tion issues, consider augmenting this book with the ActionScript Quick
Reference Guide by David Stiller, Rich Shupe, Jen deHaan, and Darren
Richardson (O'Reilly). The book is divided into two halves, starting with
interface-centric material and culminating with a series of recipe-style
problem-solving chapters, including one that focuses on ActionScript 2.0 to
3.0 migration.

push Yourself

Although this book was written for a reader still finding his or her way with
ActionScript 3.0, we've tried to include exercises throughout the book that
encourage you to push yourself. When exercises move somewhat beyond the
basics of a topic, we've identified them with this icon:

We've also tried to mention additional exercises and resources from the
companion website (which we'll talk about in a moment) that may help you
continue your explorations. In most cases, these exercises and notes are not
central to understanding syntax or a topic as a whole. If you find any of these
inclusions to be too much to digest, feel free to skip them and come back to
them later.

Between these two supplemental efforts, we hope this book will be useful to
a wide variety of scripters and allow you to progress along the ActionScript
3.0 learning curve quicker than expected.

Iwvww.allitebooks.cond



http://www.allitebooks.org

ActionScript Editors

Although we try to remain ActionScript-editor neutral whenever possible,
the examples in this book were created in Flash Professional. We've provided
source files that are compatible with the oldest version of Flash Professional
that the applicable feature will allow. Most are compatible with Flash CS3
Professional, some require later versions of the tool, and some require Flash
Player 101, the latest version as of this writing.

However, we've also tried to provide files for users that are working with
other ActionScript editors, like Adobe's Flash Builder, Powerflashers FDT, or
the open-source FlashDevelop (Windows-only). These class-based files may
also be useful to readers who already have experience with object-oriented
programming.

Despite these efforts, it's very important to understand that these supplemental
files will not be actively supported. You should buy this book knowing that
many of the source files are in FLA format and, even if you typed in the
scripts yourself, some rely on assets found in the libraries of these FLA files.
If you are not a Flash Professional user, you may need to recreate these scripts
and assets as best you can.

How This Book Is Organized

Unlike any other book on ActionScript 3.0 that we've seen, this book does
not rely extensively on object-oriented programming (OOP) principles. If you
are unfamiliar with this term, don't worry You have the correct book in your
hands, and you'll learn more with each successive chapter.

We demonstrate key chapter concepts using focused syntax that's executable
within the Flash Professional timeline and gradually introduce OOP con-
cepts along the way The first five chapters—including coverage of the new
ActionScript 3.0 event model and means of displaying content (the display
list)—do not introduce more than a modicum of content that is class- or
OOP-related. Starting in Chapter 6, we provide increased object-oriented
coverage, beginning with an OOP primer, and continuing for the remaining
chapters with select class- or OOP-based applied examples.

This book was designed to be read linearly Because later chapters build on
topics discussed early on, you may not always be able to jump right to a
specific topic without first reviewing earlier chapters. If you're looking for
specific solutions to specific problems, take a look at the ActionScript 3.0
Cookbook by Joey Lott, Darron Schall, and Keith Peters (O'Reilly).

Preface



Preface

What Is—and Isn't—In This Book

We've tried to design a book that covers as many ActionScript essentials as
we could include, even while being constrained by a page count designed to
keep the book affordable.

What's In

Part I. Getting Started

Part I begins with Chapter 1, discussing ActionScript 1.0, 2.0, and 3.0, and
how the different versions are used in the Flash Professional application
and Flash Player. It concludes with Chapter 2 looking at the building
blocks that are ActionScript's version-neutral core fundamentals.

Part II: Graphics and Interaction

Chapter 3 leads off Part II with explanations of the basic vocabulary of
ActionScript: properties, methods, and events (including ActionScript
3.0's significantly different event model). Chapter 4 focuses on displaying
content dynamically, which is also a big departure from prior versions of
the language. Chapter 5 covers timeline control, and Chapter 6 introduces
OOP. Chapter 7 discusses animating objects using ActionScript, and
Chapters 8 and 9 explain drawing with code.

Part III: Text

Chapter 10 is the only chapter in Part III and focuses on text formatting,
HTML support, and the use of Cascading Style Sheets.

Part 1V: Sound and Video

Chapter 11 opens Part IV with a discussion about sound. In addition to
manipulating internal and external sounds, it touches on parsing 1D3
metadata and culminates with a sound visualization exercise, drawing a
sound's waveform during live playback. Chapter 12 wraps up Part IV by
demonstrating how to play video both with and without components, as
well as how to subtitle your videos for accessibility

Part ' V: Input/Output

Part V focuses on loading assets into Flash and sending data out to a
server or another client. Chapter 13 covers loading SWF files, images,
text, URL variables, and binary data, as well as communicating between
loader and loadee SWFs. Chapter 14 covers XML and the new standard
for working with XML that makes the task as easy as working with other
ActionScript objects, methods, and properties.

Part VI: 3D (Download)

A special bonus chapter, available for download from the companion web-
site, takes a short look at the 3D capabilities built-in to ActionScript 3.0.



What's Not

As mentioned previously, this book focuses on ActionScript 3.0 (which
applies to most segments of the Flash platform), but is presented within a
Flash Professional context. As such, it does not include coverage of Flex, AIR,
Flash Media Server, or other evolving Flash platform technologies.

As a basic text, this book has understandable constraints that limit the extent
of coverage we can offer. Browsing through the Table of Contents will tell
you what we include and, in some cases, the depth in which we'll cover the
material. While it does include coverage of object-oriented programming
techniques, for example, it does not address this material in great depth. (For
more information about this point, please see the previous section, "How
This Book Is Organized.") When you want to continue your OOP studies,
we recommend Object-Oriented ActionScript 3.0 by Peter Elst, Todd Yard, and
Sas Jacobs (Friends of Ed).

We didn't intend this text to be a reference book, but rather a learning tool.
If you're looking for a comprehensive reference volume, we recommend
Essential ActionScript 3.0 by Colin Moock (O'Reilly). Our book may serve as
a useful companion to this title, particularly if you are not an advanced user,
but it's not a substitute.

Companion Website

All the exercises included in this book are available for download from
the book's companion website, httpy//www.LearningActionScript3.com.
Supplemental materials are also available, including additional exercises, self
quizzes, extended examples, ongoing learning suggestions, a list of additional
resources, reader comments, errata, and more. The source file archives for
each chapter are available from the Downloads page, and you can sort posts
by category or use the search feature to find posts by name. Both authors can
be reached directly through this website.

Typographical Conventions Used In
This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard modi-
fiers (such as Alt and Command).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions,
pathnames, and directories.


http://www.LearningActionScript3.com

NOTE

A note gives additional information,
such as resources or a more detailed
explanation.

WARNING

This box indicates a warning or caution

X' Preface

Constant width
Indicates ActionScript code, text output from executing scripts, XML tags,
HTML tags, and the contents of files.

Constant width bold
Shows commands or other text that should be typed literally

Constant width italic

Shows text that should be replaced with user-supplied values.

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks
of code from this book does not require permission. Selling or distribut-
ing a CD-ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code

from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, copyright holder, and ISBN. For example:
Learning ActionScript 3.0, Second Edition, by Rich Shupe with Zevan Rosser
(O'Reilly). Copyright 2011 Rich Shupe and Zevan Rosser, 978-1-449-39017-4.

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

We'd Like To Hear From You

Please address comments and questions concerning this book to the publisher:
O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http/fwww.oreilly.com/catalog/9781449396558


mailto:permissions@oreiUy.com
http://www.oreiUy.com/catalog/9781449396558

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O'Reilly Network, see our website at:

httpy/fwww.oreilly.com

Acknowledgments

We would like to give thanks to our talented O'Reilly team: Linda Laflamme,
Ron Bilodeau, Nellie McKesson, Rachel Monaghan, Teresa Elsey, Nancy
Kotary, Mary Treseler, Betsy Waliszewski, Anselm Bradford, Chrissy Rey-
Drapeau, Bentely Wolfe, Tim Goss, Robyn Thomas, Steve Weiss, Michele
Filshie, Matthew Roberts, Jill Steinberg, Joy Dean Lee, Phil Dangler, Linda
Seifert, Mark Paglietti, Karen Montgomery, and Laurie Petrycki. Extra thanks
to Linda, Ron, and Rachel for their endless patience and support.

Zevan would like to thank: Rich Shupe, The School of Visual Arts, Jesse
Reznick and the creative team at SOM, Ann Oren, all of his students, and his
family

Rich would like to thank: Zevan Rosser, Jodi Rotondo, Sally Shupe, Claire
Shupe, Mike Wills, Steven Mattson Hayhurst, Thomas Yeh, Anita Ramroop,
and his family.

Rich would also like to show his appreciation for:

* Bruce Wands, Joe Dellinger, Russet Lederman, Mike Barron, Jaryd
Lowder, Diane Field, Jenny Lin, Annie Wang, all at The School of Visual
Arts, and all my students.

* Mark Anders, Paul Burnett, Mike Chambers, Mike Downey, Richard
Galvan, Mally Gardiner, Stefan Gruenwedel, Jeff Kamerer, John Nack,
Michael Ninness, Pete Falco, Nivesh Rajbhandari, and all at Adobe.

* John, Jo, and Amy Davey, Joe Franklin, Hippy Wright, and everyone at
Flash on the Beach and Geeky By Nature; Dave Schroeder and everyone
at Flashbelt; Susan Horowitz, William Morrison, and the University of
Hawaii's Outreach program; Kelly Sanders, Tomo Kuriyama, and Julie
Loo of Sheraton Hotels.

* Alex Taylor (Eltima); Gaby Ciordas, Alin Dogar, Raul Popa (Jumpeye
Components); John Pattenden (Screentime Media); Coby Rich (Sorenson
Media); Jerry Chabolla, Richard Blakely, and Grant Garrett at Influxis
(the only streaming media host you'll ever need).

* Lynda Weinman, Bruce Heavin, and everyone at Lynda.com; everyone at
Flashcoders NYC.

Preface


mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface

e Aral Balkan, Pete Barr-Watson, Rob Bateman, Brendan Dawes, Julian
Dolce, Stephen (Tink) Downs, Joa Ebert, Hugh Elliot, Peter Elst, Hardy
Fox, Homer Flynn, Jared Ficklin, Jesse Freeman, Chris Georgenes, Hoss
Gifford, Bruce Gilbert, Brandon Hall, Ralph Hauwert, Robert Hodgin,
Thibault Imbert, Scott Janousek, Penn Jillette, Mike Jones, Lisa Larson-
Kelley, Philip Kerman, Mario Klingemann, Seb Lee-Delisle, Graham
Lewis, Richard Lord, Jobe Makar, Niqui Merret, André Michelle, Stacey
Mulcahey, Erik Natzke, Colin Newman, James Paterson, Chris Pelsor,
Keith Peters, Robert Reinhart, Lou Reed, Tim Saguinsin, Grant Skinner,
David Stiller, Craig Swann, Jared Tarbell, Teller, Jer Thorpe, Carlos Ulloa,
(and no doubt others that I'm forgetting) for support and/or inspiration.

* (Extra special thanks to) Hudson Ansley, Tim Beynart, Anselm Bradford,
Lee Brimelow, Veronique Brossier, Thaylin Burns, Xingyi Guo, Colin
Holgate, Tyler Larson, Chris Niemiec, Sonia Garbés Putzel, Kevin Suttle,
and Josh Tynjala.

* (Supreme nod to) Scotty and Kat Meltzer, Steve and Cindy Shupe, Dennis
and Elaine Rotondo, Mari Howard, and Brian and Abigail Shupe. You
know why

Welcome Lucas Robert Bilodeau! Best wishes to Tom Kelley I wish I could
say this book is for whomever Kyle Baker is going out with now, but that was
done long ago. This book is for Sally and Claire.

About the Authors

Rich Shupe is the founder and president of FMA — a full-service multimedia
development company and training facility in New York City Rich teaches
a variety of digital technologies in academic and commercial environments,
and has frequently lectured on these topics at conferences all over the world.
He is currently on the faculty of New York's School of Visual Arts in the
MFA Computer Art department. Rich has written or co-written multiple
books, including Learning Flash CS4 Professional, The ActionScript Quick
Reference Guide, and Flash 8: Projects for Learning Animation and Interactivity
(all O'Reilly), Flash CS3 Professional Video Training Book (Lynda.com/Peachpit),
and the CS3 Web and Design Workflow Guides (Adobe). He also presents video
training for Lynda.com. Visit Rich's website at httpy/www.fmaonline.com.

Zevan Rosser is a freelance designer/programmer/consultant and computer
artist. He teaches ActionScript and Flash animation at New York's School of
Visual Arts in the Undergraduate and Continuing Education programs, and
has acted as thesis advisor for a handful of Masters students. He also teaches
ActionScript and Flash at FMA in New York. When he's not working on
commercial projects, he works on his personal site, httpllwww.shapevent.com.


http://www.fmaonline.com
http://www.shapevent.com

Colophon

Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects. The text font is Linotype Birka; the heading font is
Adobe Myriad Pro.

Preface



GETTING STARTED

Part I starts this book off with a collection of basic overviews, spanning
Chapters 1 and 2. It begins with a survey of ActionScript, providing a list of
new feature highlights, a brief explanation of procedural versus object-oriented
programming, and gets you started right away with your first script.

It concludes with a review of core language fundamentals, most of which
remain consistent across all versions of ActionScript. The material at the out-
set of the book serves as an introduction to ActionScript for those new to the
language, or as a refresher for those already familiar with it, and allows you
to focus later on ActionScript 3.0-specific syntax.

PART
IN THIS PART
Chapter 1
ActionScript ~ Overview
Chapter 2
Core Language
Fundamentals



WHAT IS
st o e PT

While you likely know that ActionScript is the main scripting language of
the Flash Platform, and you're no doubt eager to begin working with the new
version, a brief overview of its development will give you some insight into
its use— particularly as related to Flash Player and how it handles different
versions of ActionScript. This brief introductory chapter will give you a quick
look at where ActionScript 3.0 fits into your workflow.

Before we get started, it might help to understand how you get from
ActionScript code to a finished file that you can put into a website. If this isn't
news to you, bear with us for just a paragraph or two.

When you publish a Flash file—using Flash Professional's File"Publish or
Control"Test Movie—all of the internal graphics and other assets used in
your movie, as well as all of the ActionScript code, are compiled into a final
file format called a SWF (pronounced "swiff" or "S-W-F"). That is, a part of
your Flash Platform application of choice (such as Flash Professional) con-
tains software called the compiler. This software converts all of your human-
readable scripts into an optimized, machine-readable format. It combines
that code with your assets into a single SWF file that Flash Player can decode
and play back for all to see.

Although your SWF can load external assets not already compiled into your
SWEF (such as an MP3 or a video), any asset that you imported or embedded
and all scripts—even if they originate outside the FLA (pronounced "flah"
or "F-L-A") file—must go through this compilation process to be included
in the SWF. This is why you must publish a new SWF every time you make
a change to your code. It's also why you don't have to distribute ActionScript
files with your SWF, even if you created external files, such as classes, when
coding. Distributing ActionScript files with your SWF won't affect playback,
but it may expose your source code to the public. This is fine when you're
contributing code for others to learn from, but it won't make a client happy
if you're doing work for hire!

CHAPTER

IN THIS CHAPTER

What's New in
ActionScript 3.07

The Flash Platform

Procedural Versus Object-
Oriented Programming

The Document Class
Legacy Code Compatibility
Hello World

What's Next?



For most users, the compilation process occurs behind the scenes and is
handled by Flash Professional. At the time of this writing, the current version
is Flash Professional CS5, but most of this book is compatible with versions
dating back to Flash Professional CS3.

Other applications, such as Adobe's Flash Builder (or its predecessor Flex
Builder), Power Flasher's FDT, the open source FlashDevelop, and even
text editors in combination with a command-line compiler, can transform
ActionScript into SWFs. However, this book focuses primarily on Flash
Professional as an ActionScript editor.

Many examples will work seamlessly in any ActionScript editor; other exam-
ples will rely on symbols found in the library of a sample Flash file (FLA).
This will be discussed briefly in the "Flash Platform" section of this chapter,
but be sure you're comfortable with this workflow before investing any time
in these examples. If your primary goal is to become a Flex developer, for
example, with an equal emphasis on that technology's MXML syntax, you
may want to pick up a companion to this text that focuses more significantly
on Flex, such as Learning Flex 4 (O'Reilly).

* What Is ActionScript 3.0? Every new version of ActionScript intro-
duces new features. ActionScript 3.0, however, was written from scratch
(not built on prior versions of the language) and is handled entirely
separately from previous versions of ActionScript anywhere the language
is used. This intentional branching allows for syntax improvements and
significantly improves performance, but also makes it more difficult to
use multiple versions of ActionScript at the same time.

* The Flash Platform. ActionScript 3.0 can be used in Flash, Flex projects,
and AIR (Adobe Integrated Runtime) desktop applications, each of which
are part of what is collectively known as the Flash Platform. Although
they affect only a small portion of the language, differences in these envi-
ronments prevent ActionScript 3.0 from working exactly the same way in
every application that is part of the Flash Platform. The fundamentals,
however —indeed, the bulk — of the language, are the same throughout.

* Procedural Versus Object-Oriented Programming. A lot of attention
has been focused on the object-oriented programming (OOP) capa-
bilities of ActionScript 3.0, and the language's power really shines in this
area. However, embracing ActionScript 3.0 doesn't mean that you must
become an expert in OOP. Using Flash, it is still possible to write scripts
in the timeline, using functions to organize more complex code. This is
commonly called procedural programming. If you prefer object-oriented
programming, enhancements to ActionScript's OOP structure make ver-
sion 3.0 more robust and bring it more in line with the features of other
OOP-based languages (such as Java). This also makes moving between
such languages a bit easier.

Iwvww.allitebooks.cond



http://www.allitebooks.org

* The Document Class. Object-oriented programming is not for every-
one, but for those starting on the OOP journey, Flash offers a simple step-
ping off point in the Document class. Using this feature, you need only
specify an external ActionScript class file as your starting point, and no

timeline script is required.

* Legacy Code Compatibility. Because ActionScript 3.0 cant mingle with
previous versions of the language in the same file, developing projects
that support older code is a challenge. We'll briefly introduce the issues
involved and point to a technique that makes possible some communica-
tion between ActionScript versions.

* Hello World. This chapter will conclude with you writing your first
ActionScript 3.0 application. We'll dive into some syntax for text manip-
ulation, but don't worry: we'll cover the material in more detail in a
later chapter. This exercise is just to get you started and build a little

confidence.

What's New in ActionScript 3.0?

If you're familiar with ActionScript or you're learning it based on experi-
ence with another programming language, you may want to know what
ActionScript 3.0 has to offer. Although the third major version of the Flash
Platform's primary scripting language contains much that will be familiar
to users of prior versions, it's probably best to think of ActionScript 3.0 as
entirely new, for a few simple reasons.

First, a few things are quite different, such as how events are handled and
the way assets are displayed. Second, subtle changes run throughout the lan-
guage. (These are usually small concerns, such as a slight change in the name
of a property, but if you are used to ActionScript 2.0, for example, old habits
can die hard.) Most importantly, ActionScript 3.0 has been rewritten from the
ground up and uses a different code base than prior versions of the language.
This optimization provides relatively dramatic performance increases, but it
means that ActionScript 3.0 code cannot be mixed with prior versions of the
language in the same file.

Regardless of your experience level, don't let the newness of ActionScript 3.0
intimidate you. It's true that its learning curve is steeper than that of prior ver-
sions, but that is usually a function of its robustness more than one of difficul-
ty Typically, whether you are coming to ActionScript 3.0 from a prior version
of ActionScript or another language altogether, there is an adjustment period
during which users must occasionally adapt to a new way of doing things.



Here's a look at some of the highlights of ActionScript 3.0. Keeping these
benefits in mind may help make it easier to learn a robust language, or accept
change — particularly when that change may initially seem tedious or overly
complicated. Select new features include:

Detailed error reporting

ActionScript 3.0 supports strict data typing of variables, arguments, values
returned from functions, and so on. Chapter 2 discusses data typing in
depth, but it boils down to telling the compiler and Flash Player which
kind of data you want to work with at different points within your proj-
ect code. This allows the compiler to warn you if you use the wrong data
type, catching related errors. ActionScript 3.0 supports static data type
checking, which occurs at compile time (when publishing your SWE),
and improves dynamic data type checking, which checks for errors at run-
time. In ActionScript 3.0, errors will no longer fail silently Understanding
this fully in this overview isn't important, and the benefits of data typing
will become apparent after reading Chapter 2—and even more so after
gaining a little experience with ActionScript 3.0. For now, just take heart
knowing that error checking and reporting are more vigilant than in any
prior version of ActionScript.

Syntax  improvements

Syntax issues have been unified and cleaned up throughout the language.
For instance, some property names have been clarified and made con-
sistent by removing leading underscores. (Setting the x coordinate of a
movie clip, for example, now uses X instead of _X.). Also, former multiple
and varying ways of approaching the same or similar tasks have been
simplified and made consistent.

New display architecture

The many previous approaches to displaying assets are now consolidated.
ActionScript 3.0 has simplified how visible assets, such as movie clips and
text fields, are handled, using a new display architecture called the display
list. Chapter 4 examines this major change introduced by ActionScript 3.0.

New event architecture

Still another example of improved consistency, all events—such as a
mouse click or key press—are handled by event listeners in ActionScript
3.0 —essentially listening for a specific event to occur, and then reacting
accordingly. The new event model is very powerful when combined with
the display list, allowing mouse and keyboard events to propagate through
multiple display objects. The event model is discussed in Chapter 3.

Improved XML  handling

Working with complex XML documents is a pleasure with ActionScript 3.0.
It allows you to reference XML data the same way you reference properties
of other objects, such as movie clips or buttons, using a similar syntax.



What's New in ActionScript 3.0?

You'll learn more about this in Chapter 14, but a simple example is refer-
ring to an XML node called phone, nested inside a node called user, as
user.phone. This is comfortable territory when you remember that a
movie clip called mc2, nested inside a movie clip called mcl, is referenced
as mcl.mc2.

Additional  text options

New text-processing options now allow for much finer control over text
manipulation. For example, you can now find the contents of a particular
line in a text field, the number of characters in that line, and the char-
acter at a specified point (such as under the mouse). Flash Professional
CS5 also introduces a brand new text feature called the Text Layout
Framework (TLF). This new engine provides a greater degree of text con-
trol, including traditional typographic features, automatic text flow, and
even support for right-to-left and vertical text layouts and double-byte
languages (such as Chinese, Japanese, and Korean, among others). Text is
discussed in Chapter 10.

More sound management options

ActionScript 3.0's sound capabilities are among the jazziest changes to
the language. On a practical level, they improve programmatic control
over both individual sounds and all sounds playing. Sounds are now
placed into separate channels, making it easier to work with more than
one discrete sound. Sounds are also funneled through a sound mixer for
collective control. You can get the amplitude and frequency spectrum data
from sounds during playback, as well as from microphone input. Chapter
11 covers sound in detail.

New access to raw data

For more advanced needs, you can access raw binary data at runtime.
Individual bytes of data can be read during download, during sound
playback, or from bitmap data, to name a few examples. These bytes can
be stored in a large list and still be accessed quickly and efficiently. We'll
show an example of this technique in Chapter 11 when discussing sound
visualization.

New automatic scope management

In a programming language, the word scope is sometimes used to define
the realm in which an object, such as a movie clip, lives. A movie clip
might exist in one part of a Flash movie but not another. For example, a
child movie clip might be nested inside one of two movie clips found in
the main timeline. That nested movie clip exists within one clip but not
the other. Its scope, therefore, is restricted to the movie clip in which it
lives, or its parent. Programming structures have specific scopes, as well,
and ActionScript 3.0 greatly simplifies this concept by automatically keep-
ing track of where a particular block of code was defined —so you don't
have to.

Chapter 1:What Is ActionScript?



The Flash Platform

NOTE

AIR projects can also be created from
HTML, JavaScript, and PDF, but
ActionScript 3.0 is a large part of its
appeal and the language most relevant
to this discussion.

NOTE

This book is written for readers who
have some familiarity with scripting
but are new to ActionScript 3.0, and it
assumes a working knowledge of the
Flash Professional interface. See the
Preface for more information about this
expectation.

While virtually all of the code in the
book applies to any tool that sup-
ports ActionScript 3.0, some of the
examples use assets that are embedded
within FLA files — the main document
format used by Flash Professional.
The companion website, http.//www.
LearningActionScript3.com, contains
information about using the examples
with applications other than Flash
Professional. See the "Using the Book
Examples" post as a starting point for
learning more about this process.

Part I: Getting Started

Improved  object-oriented  programming

If you're familiar with object-oriented programming, you'll be glad to
know that ActionScript 3.0 supports this structure well. If you're new to
OOP, don't worry: we'll introduce it in this book at a comfortable pace.
We'll focus on syntax throughout by using simple examples, and we'll
start to discuss OOP in greater detail in Chapter 6. If you're already
familiar with OOP, you may be happy to know that sealed classes and
new namespaces, among other things, have been added to ActionScript
3.0. Most classes are sealed by default, meaning the compiler recog-
nizes only those properties and methods defined at compile time. This
improves memory usage and performance. However, if you need to add
properties to an instance of a class at runtime (for example), you can still
use dynamic classes such as the MovieClip and Object, and you can make
your own custom classes dynamic. Additionally, namespaces, including
the ability to define custom namespaces, allow finer control over classes

and XML manipulation.

The Flash Platform

It's important to note that this book focuses primarily on developing
ActionScript 3.0 applications using the Flash Professional application (also
commonly referred to as an infegrated development environment, or IDE).
However, ActionScript 3.0 is the programming language used in Flash
Platform technologies, as well —notably AIR and Flex.

AIR is the Adobe Integrated Runtime application, a sophisticated way of
delivering your applications to the computer desktop, rather than through a
web browser. Flex is another technology for creating SWFs that includes not
only the ActionScript 3.0 language, but also MXML, a tag-based language that
is part of what is commonly called the Flex Framework. This book will not
discuss MXML or the Flex Framework at all, but most of the ActionScript
you learn herein can be used in ActionScript-only Flex projects.

The existence of AIR and Flex means that the scripting skills you develop
using Flash Professional will be largely applicable in other areas of the Flash
Platform, extending your reach as a programmer. There are, however, some
differences between these technologies that are important to understand
when examining the big picture of cross-application scripting.

For instance, each technology adds some features that are not available to
the others. Using a feature that is specific to AIR or Flex, for example, means
that your code may not compile in Flash Professional. The thing to keep in
mind is that the ActionScript 3.0 language skills you develop will ease your
move between these applications and even allow you to work with different
authoring tools or compilers to create your finished product.


http://www

Procedural Versus Object-Oriented Programming

Procedural Versus Object-Oriented
Programming

Much discussion has been made over the pros and cons of procedural and
object-oriented programming, and many who are new to ActionScript 3.0
have been led to believe that using OOP is the only way to program in
ActionScript 3.0. This is not the case. Object-oriented programming is very
powerful, and you'll probably want to use it when you're more comfortable
with the language. However, it's just one possible way to write ActionScript.
We'll introduce OOP slowly throughout the book, and we'll try to encourage
you to learn OOP by presenting some exercises that use its methodologies.
We'd like to reassure you, however, that OOP isn't required to program the
Flash Platform, or to use this book.

To put this into an ActionScript perspective, consider a little background on
the languages evolution. ActionScript started as a sequential programming
language, meaning that scripting was limited to a linear sequence of instruc-
tions telling Flash what to do in a step-by-step manner. This approach to
scripting was not very flexible and did not promote reuse.

As the language evolved, it became a procedural programming language. Like
sequential programming, procedural programming relied on a step-by-step
set of instructions, but introduced a more structured, modular approach to
scripting. Procedures, otherwise known as functions (or sometimes subroutines),
could be executed again and again as needed from different parts of a project,
without copying and pasting copies of the code into the ongoing sequence of
instructions. This modularity promoted reuse, and made the code easier to
edit and more efficient.

Scripters in search of an even greater degree of modularity and reuse
gravitated toward object-oriented programming. OOP languages create
programs that are a collection of objects. Objects are individual instances
of classes—collections of code that are self-contained and do not materially
alter or disrupt each other. Creating an instance of a class, also referred to as
instantiation, is much like creating an instance of a library symbol in Flash
Professional. Just like movie clips dragged from the library onto the stage,
multiple instances of that movie clip symbol can be altered without affecting
one another, and without affecting the original from which they were derived.

Using OOP, however, you can extend this idea much further. One example of
extending an object-oriented system is the use of inheritance—the ability to
derive classes from other classes, passing on specific characteristics from the
base class, or parent class.

Consider, for instance, designing an OOP application that simulates a set
of transportation vehicles. You might start with a generic Vehicle class that
includes traits common to all vehicles, such as the basic physics of movement.
You might then extend Vehicle to create three subclasses: GroundVehicle,

NOTE

The programming terms parent, child,
sibling, ancestor, and similar words and
phrases mean much the same as they do
when used to describe families.

One simple example occurs when refer-
ring to symbol instances such as movie
clips, which can be nested within each
other. The upper- or outermost movie
clip is sometimes referred to as the par-
ent (there is even an ActionScript 3.0
property called parent), and the clips
nested inside are sometimes called chil-
dren. Similarly, two movie clips at the
same hierarchical level are siblings, and
clips that are more than one parent

up the chain of nested clips are called
ancestors.

In general, ifyou liken these terms to
their everyday uses, referring to families,
you will readily grasp their meanings.

Chapter 1:What Is ActionScript?



Procedural Versus Object-Oriented Programming

WaterVehicle, and AirVehicle. These classes would alter or introduce
vehicle traits, making them specific to ground, water, and air travel, respec-
tively However, these classes might not yet be complete enough to represent
an actual vehicle. Further derived classes might be Car and Motorcycle
(descending from GroundVehicle), Boat, and Submarine (descending from
WaterVehicle), and Plane and Helicopter (descending from AirVehicle).
Depending on the complexity of your system, you can carry on this process,
creating individual models with individual settings for fuel consumption,

friction, and so on.

Vehicle
r
GroundVehicle WaterVehicle AirVehicle
Car Motorcycle Plane Helicopter Boat Submarine

Figure 1-1. An example of inheritance

As you can probably imagine, this approach to development adds additional
power, flexibility, and prospects for reuse. These benefits, among others,
sometimes position object-oriented programming as the best approach to a
problem. However, as we implied at the start of this section, there is a ten-
dency among some programmers to believe that OOP is the best solution to
all problems or, effectively, the only solution. This is flat-out untrue.

OOQP is often best for large projects or for working with a team of program-
mers, but it can be overkill for small projects. Additionally, for the uninitiated,
it can significantly increase the learning curve and distract from key topical
concepts during your studies. In short, OOP is not always the best tool for the
job. Procedural programming still has its place, and Flash Professional allows
you to explore and employ both programming paradigms.

This book attempts to introduce material using both procedural and OOP
approaches where appropriate. Using object-oriented practices is a fine goal,
and one that we will encourage. However, we will try first to use simple pro-
cedural syntax to focus on the material central to each chapter, highlighting
syntax and explaining how and why each topic should be addressed in code.



In general terms, we will focus on procedural programming prior to Chapter 6.
Chapter 6 introduces OOP using a simplified version of the vehicle metaphor
and serves as a transition chapter between procedural and OOP practices.
Beginning with Chapter 7, chapters will introduce new concepts using simple
timeline syntax and, when appropriate, include an applied OOP example.

This is our preferred approach to presenting material for all possible users—
in both procedural and OOP formats. It is our hope that, regardless of your
skill and experience, you will hone in on the topics at hand, and then choose
to work using the timeline or classes based on your comfort level.

The Document Class

If you want to start thinking in OOP terms right away, you can easily take a
step in that direction. Remember that this is not necessary to get started and
that you should feel free to skip this section if you don't want to be exposed
to classes yet. You wont lose any momentum if you decide to skip ahead, as
all of this material will be discussed again in Chapter 6.

Flash Professional introduced a new feature that simplifies associating a main
class, or primary entry point for your application, with your FLA. In Flash
Professional, this class is called the document class, and it does all the work
of instantiating the class for you. This means you don't need any code in the
timeline at all and can edit your code not only in Flash Professional, but also
in the external text editor or development environment of your choice.

Let's start with a simulated chapter example that you might use in the time-
line. It does nothing more than use the traceQ statement to display text in
your authoring environment. In Flash Professional, this text will appear in
the Output panel, an authoring-only panel that accepts text output from your
file for diagnostic purposes.

In Flash Professional, use File"New and create a new ActionScript 3.0 FLA
file. Select frame 1, and add the following to the Window”" Actions panel:

trace("Flash");

To accomplish this using a document class, you essentially need to create an
external file and enclose this instruction in the correct class syntax.

Users of Flash Professional CS3 and CS4 should use File"New and create a
new ActionScript File (rather than a new FLA document). Users of Flash CS5
Professional will see this option as ActionScript 3.0 Class and most of this will
be taken care of for you (Figure 1-2).

The Document Class

NOTE

Ifyou don't plan to start using OOP
until we roll it out in later chapters, feel
free to skip this section as the material
is discussed again in Chapter 6. We will
provide minimal explanation here just
to get you going using document classes,
and will explain these concepts in great-
er detail in later chapters throughout
the book.

NOTE

As discussed previously, this book focus-
es strictly on ActionScript and assumes
a familiarity with the Flash Professional
application. Ifyou are unfamiliar with
the Actions, Timeline, or Output panels,
please consult a reference on the Flash
Professional application, such as this
book's companion volume. Learning
Flash CS4 Professional (O'Reilly). If
you are using another script editor,
please consult similar references for your
editor of choice.

Chapter 1:WhatIs ActionScript?



The Document Class

NOTE

When creating a document class, you
can also extend the Sprite class,

which is essentially a movie clip with-
out a timeline. However, using the
MovieClip class for this purpose offers
more  flexibility.

For example, although it's not a good
idea to combine timeline code with a
document class (it's best to think of the
document class as replacing the time-
line), it is possible only when the docu-
ment class extends MovieClip.

For more information, see the "Sprite
versus MovieClip" post at the compan-
ion website.

Part I: Getting Started

Create ActionScript 3,0 Class

oK
Which application should create the ActionScript 3.0 class?

© Flash Professional Cancel

O Hash Builder

QJ Don'i Show Again

Class rtarne: | Main

Figure 1-2. Creating a new class in Flash CS5 Professional

In the new file, type or edit the following:

1 package {

2

3 import flash.display.MovieClip;
4

5 public class Main extends MovieClip {
6

7 public function Main() {

8

9 }

10

11 }

12}

The first line, along with the closing brace in line 12, defines the class's pack-
age. This is a mandatory structure that tells the compiler where your class
resides. For simplicity, you will save your file in the same directory as the FLA
that will use this class, so no further syntax is required.

Next, you must import any additional classes that your class will reference.
The import keyword doesn't actually import anything; it just provides the
location of a class to the compiler so it can validate your code and include
the class when creating the SWF. Ordinarily, because this simple example
uses only the traceQ statement, you wouldn't need any additional classes to
accomplish your goal. However, a document class is essentially a replacement
for your main timeline. Behind the scenes, the compiler will use an instance
of this class, instead of the main timeline, as the starting point for your
SWE. Therefore, your document class should extend, or be derived from, the
MovieClip class so that it inherits all the functionality of the main timeline.
So, as a result of extending the MovieClip class in line 5, you must import the
MovieClip class, as seen in line 3.

Line 5, along with its closing brace on line 11, is the class definition. What you
decide to call your class (in this case, "Main") is up to you, but when nam-
ing it you should follow a few basic rules and conventions. The name can't
contain spaces, it can't already exist in ActionScript, it should start with an



alpha character (rather than a number or other character), and it is typically
capitalized.

You must add public to line 5 when declaring the class, so that other parts of
your program can access it. We'll cover this in detail in Chapter 6, but you can
control which parts of your class are accessible to other areas of your project.
For example, if you make something private, it will be accessible only from
within the class. Doing so can protect portions of your class from outside
manipulation and reduce conflicts with similar functionality that may exist
elsewhere in your project. The class, itself, however, must be public so that it
can be instantiated.

Line 7, along with its closing brace on line 9, define what is called the class
constructor. This is the main function that automatically runs when creating
an instance of this class. It, too, must be public and must have the same name
as the class. Other functions (if any) can, and must, have unique names, but
using the same name as the class identifies this function as the class construc-
tor, so it is executed upon instantiation.

All that remains to complete this document class is to add the lone instruc-
tion required to replicate the timeline example discussed previously. The
constructor must trace "Flash" to the Output panel, so add the following to

line 8:
7 public function Main() {
trace("Flash")j
9 }

Now that you're finished writing your class, name your file Main, as and save
it to a location you'll remember. (In a moment, you'll need to save an FLA to
this same location.) When creating a class, you must give the class, construc-
tor, and file the same name —the notable exception being that the file must
bear the .as extension.

Now, in Flash Professional, use File"New and create a new ActionScript 3.0
FLA file. Because this simple example included no custom path instructions
in the package declaration in line 1 of your class, save your file in the same
directory as your class file. The name of the FLA is unimportant, so you may
as well call it main.fla.

Finally, open the Properties panel in the FLA and add the name of your class
to the document class field. (It's labeled "Class" and appears in the Publish
section of the panel.) Use the name of the class, not the name of the file. In
this case, type Main instead of Main, as, as seen in Figure 1-3.

Now compile your FLA file using the Control"Test Movie menu com-
mand in Flash Professional, or Cmd-Return (Mac)/Ctrl-Return (Windows).
(For Flash Professional CS5 users, the command is now Control*Test
Movie"Test.) When your SWF runs, you should see "Flash" appear in the
output panel, and your test application will be complete. You can compare

The Document Class

TROHRIES | oo | =

Document

Fl Untitled-1

T7 PUBLISH
Phyer: Foch Player 10
Saript: AdFiorSaipl 30
Class: Ve [
AR Setings

Figure 1-3. Adding a document class to
your FLA

Chapter 1 : What Is ActionScript?



your work to the files found in the document_class_example directory in the
accompanying source code.

Hereafter, you can try any of our timeline code in a document class of your
own. Initially, you probably wont know which classes to import or how to
make any possible changes to variables or similar structures to conform to
the class syntax. However, all the sample code will come with an accompany-
ing class file for testing. You can use those files whenever you wish until you
get used to the document class format.

Legacy Code Compatibility

If you've worked with ActionScript 1.0 or 2.0 in the past—or even if you find
yourself updating legacy code created by someone else—it's very impor-
tant to understand that you cannot mix ActionScript 1.0 or 2.0 code with
ActionScript 3.0 code in the same SWF. You are unlikely to do this if you're
learning from scratch, but you may run into this limitation if you attempt to
update legacy projects by adding ActionScript 3.0 code.

If you ever have the need to run a discrete mixture of ActionScript 3.0 and
a prior version of the language, such as showing a legacy file within a new
demo interface shell, you can do so by loading a SWF. An ActionScript 3.0
file can load a SWF created in ActionScript 1.0 or 2.0, but it cannot directly
access the older SWF's code. A SWF created in ActionScript 1.0 or 2.0, however,
cannot load an ActionScript 3.0 SWEF.

In Chapter 13, we will discuss how to communicate between these two dis-
crete SWFs using a special process. For now, however, just remind yourself
again that you cannot combine ActionScript 3.0 with older versions of the
language in the same file.

Hello World

Now it's time to write your first ActionScript 3.0 application. If you learned
about the document class earlier in this chapter, you've already done this.
That exercise, however, displayed text only within an authoring application
like Flash Professional—a technique used for testing and debugging, but
not for displaying text in your finished files. In this section, we'll expand the
example to show you how to display text in the SWF files you send out into
the world. Using a text field makes a small leap, because we won't discuss text
at length until Chapter 10, but our needs are meager for this example, and you
should have no problem at all. Our main goal is to give you a big-picture view
of the script-writing process and to give you some experience coding.

Iwvww.allitebooks.cond



http://www.allitebooks.org

Timeline Example

First you'll create your Hello World application using a simple timeline script
to focus on the basic syntax. Then we'll show you how to use a document
class to achieve the same result.

Create a new ActionScript 3.0 FLA file and type the following into a script in
frame 1 of the file.

Throughout this book, any time you want to create a timeline script, select a key-
frame in which you want the script to reside, open the Window -"Actions panel, and
write your code.

var txtFld:TextField =
addChild(txtFld);

1 new TextFieldQ;
2
3
4

txtFld.text = "Hello World!";

When you're finished, test your movie choosing Control”*Test Movie in Flash
Professional. You should see the phrase, "Hello World!" in the upper-left cor-
ner of your published file.

NOTE

Because you use variables to store information for later retrieval, naming them in a
clear and meaningful way is important. Ideally, the name you choose should convey
the purpose of the variable whenever practical. You have a lot of freedom when
determining what to call your variables, but there are a few simple guidelines to
follow. We'll discuss variables, including naming requirements and conventions, in
Chapter 2.

Line 1 of the script creates a new text field using the TextField class and
places a reference to that field into the variable txtFld. Note the colon and
reference to the TextField class immediately following the variable name.
This is called a data type and makes sure that only a compatible type of data
can be put into that variable—in this case, a TextField instance. If you try to
put something else into this variable, an error is displayed, which can help
you spot problems with your code. Using data typing will save you lots and
lots of time, and we'll talk about it in greater detail in Chapter 2.

Line 2 adds the text field to the display list so it can be seen at runtime.
Chapter 4 will explore this further, but put simply, the display list contains
everything you can see in your file. For example, a text field is a visual asset,
but a sound is not. For the user to see the text field, you must add it to the
display list, but this does not apply to the sound. Finally, line 4 puts the
phrase "Hello World!" into the text field. Default values for font, size, and
color are used to display the text in the field. You'll learn how to manipulate
those characteristics in Chapter 10.

Hello World

NOTE

When writing your own class files,
you'll see that other classes referenced
therein (such as MovieClip) must be
imported so the compiler knows where
to find them when publishing your
SWE. There are no import statements
in this script, however, because Flash
Professional does not require that you
import any class that is built into Flash
player when coding in the timeline.

In short, when referencing a class in the
timeline, if that class appears in a flash
package —such as the flash.text
package in which TextField resides — it
doesn't have to be imported. On the
other hand, classes in packages not
starting with flash—such as class you
write or a class used with a component
like f 1. controls. Button—must still
be imported, even in the timeline.

For brevity, we will follow this guideline,
but importing classes does no harm. In
fact, as an interface improvement. Flash
Professional CS5 will often automatically
add import statements to your scripts
when you use a class in the timeline —
including those from the flash package.
Ifyou are using CS5, consider these auto-
matic imports when comparing line num-
bers between your code and the book

Chapter 1:What Is ActionScript?



Document Class Example

To recreate this example using a document class, place the same code inside
the constructor of the class —the only function included in this example. Take
the following steps to create the files required:

First, create a new ActionScript 3.0 file and type or edit the following code.
Save the file as HelloWorld.as and remember where you saved it.

1 package {

2

3 import flash.display.MovieClip;

4 import flash.text.TextField;

5

6 public class HelloWorld extends MovieClip {
7

8 public function HelloWorldQ {

9 var txtFld:TextField = new TextFieldQ;
10 addChild(txtFld);

11

12 txtFld.text = "Hello World!";

13 }

14

15 }

16}

Next, create a new ActionScript 3.0 FLA and save it in the same directory
in which you saved your class. The name of the FLA is not critical. In the
Properties panel in that FLA, add HelloWorld to the document class field.

Finally, test your movie. You should see the small phrase, "Hello World!" on
the stage in the upper-left corner.

The class syntax here conforms to the syntax described in "The Document
Class" section of this chapter, with two small exceptions. (If you want to com-
plete this portion of the Hello World exercise, and haven't already read that
section, please do so now.) The main difference is that the code in the class
constructor differs because its purpose differs. Like the timeline code used to
create the first Hello World example, this code uses a text field to display text,
instead of the Output panel. The second difference results from this change.
Because you are now using the TextField class to create a new text field, you
must also import this class in line 4 so the compiler knows to include it.

Success

Congratulations! If you completed one or both of these Hello World exam-
ples, you just created an ActionScript-only application. You can compare your
work to the hello worldjtimelinefla file and/or the files in the hello_world_
document_class directory, both found in the accompanying source code at
httpy//fwww.LearningActionScript3.com.


http://www.LearningActionScript3.com

What's Next?

Now that you know a little more about ActionScript 3.0 and the Flash

Platform, it's time for a look at some of the fundamentals of the language.

By reviewing version-independent concepts at the outset, we can focus on

new syntax in subsequent chapters. If you have a lot of experience with

ActionScript 1.0 or 2.0, you may wish to skim Chapter 2.

In the next chapter, we'll discuss:

Basic concepts to bring you up to speed quickly, including using the
traceQ statement as a diagnostic tool to see immediate feedback from
your scripts

Using variables to store data (including arrays and custom objects that
allow you to easily manage more than one value) and data typing to
improve error reporting

Structures such as conditionals for decision making and loops for simpli-
fying repetitive tasks
Functions that can isolate code into convenient blocks that will be execut-

ed only when instructed

Ways to address Flash objects with ActionScript, including using absolute
and relative paths, and the identifier this



CORE LANGUAGE
If MENT

ActionScript 3.0 is a complete rewrite of the language—so much so that
ActionScript 3.0 doesn't even share the same Flash Player code base as
prior versions of ActionScript. But that's all behind the scenes. The truth is
that all versions of ActionScript to date have quite a bit in common. This
is because ActionScript is based on a scripting language standard (called
ECMA-262) that grew from the success of JavaScript, and ongoing versions of
ActionScript are as backward-compatible as possible in an effort to support
legacy projects.

Of course, each new update to ActionScript introduces new features and,
because the decision was made to create ActionScript 3.0 from scratch, an
opportunity presented itself to tidy up a few messy things that lingered from
previous versions. Among these improvements are tightening up and requir-
ing best practices that had been optional, and restructuring how events and
graphical assets are handled (the Event Model and Display List, respectively).
All of this progress, however, didn't steamroll over the standard upon which
ActionScript is based, and most of the language fundamentals remain intact.

With the intention to focus on new ActionScript 3.0 features later on, we want
to cover some of the more commonly used fundamentals up front. We do not
intend to ignore these ideas throughout the rest of the book. However, we
hope to explain them in sufficient detail here and spend less time on them
as we proceed.

This book doesn't assume that you're well versed in any prior version of
ActionScript, but its size and purpose requires that we assume a basic under-
standing of general scripting concepts. If you haven't already, please look over
the Preface for a good idea of whom this book is for, as well as a few alterna-
tive references if you need more background information.

If you're already comfortable with ActionScript and are reading this text as an
introduction to version 3.0, you may want to skim this chapter. In any case,
you can refer to it as a point of reference when an underlying programming
concept needs further explanation.

CHAPTER

IN THIS CHAPTER

Jump Right In
Miscellaneous Basics
Variables and Data Types
Operators
Conditionals

Loops

Arrays

Vectors

Functions

Custom Objects
this and parent

Absolute Versus Relative
Addresses

Put It All Together
What's Next?



Part I: Getting Started

You can also look at the source files, which can be downloaded from the

companion website at http;//www.LearningActionScript3.com. As we have not

yet discussed some of the essentials of ActionScript required to manipulate

assets, we'll use a common testing and debugging technique to display text

while reviewing each example.

In these pages, we'll look at the following topics:

Jump Right In. Add core logic to your Hello World! example with a

conditional, a loop, and random number generation.

Miscellaneous Basics. This section includes a few essential items and
techniques used throughout this book that don't necessarily warrant sec-
tions of their own.

Variables and Data Types. Information must be stored in containers
called variables if it is to be recalled for later use, and declaring which
type of data will be stored in each variable can help Flash check for errors
during development.

Operators. ActionScript uses characters called operators, such as plus
(+) and less than (<), that combine, compare, or modify values of objects,
properties, or expressions.

Conditionals. Often, when a decision must be made in the course of a
script's execution, a conditional is used to evaluate an outcome. We'll look
at the if and switch conditional statements.

Loops. When you must execute an instruction multiple times, it is some-
times handy to do so within a loop structure. We'll look at the commonly
used for and while loops and also at alternatives to explicit loops, includ-
ing frame and timer events.

Arrays. Although a basic variable can contain a single value only, it is fre-
quently efficient, or even necessary, to store more than one value at a time.
Imagine a shopping list, for example, with several items written on a single
piece of paper rather than many individual paper slips. In ActionScript,

you can use an array to store several values in a similar manner.

Functions. Functions are essential to just about any programming lan-
guage, and allow you to execute code only when you are ready to do so
and reuse that code efficiently.

Custom Objects. A custom object is essentially an advanced kind of
variable that allows you to store lots of information as well as to consis-
tently and easily retrieve it.


http://www.LearningActionScript3.com

o this and parent. The this keyword is used as a shorthand reference,
much like a self-referential pronoun, typically referring to the current
object or scope of a script. Similarly, parent refers to an object immedi-
ately higher up in the ActionScript family tree, if you will. These ideas
will become clearer in context, but understanding how these keywords
work can save you much repetitive typing and reduce the need for more
complex references in your scripts.

* Absolute versus Relative Addresses. ActionScript can reference objects
using absolute paths, such as starting from the root timeline and includ-
ing every object between it and your destination, or relative paths, such
as going up to a parent and down to a sibling, no matter where you are.

Again, this chapter is not meant to act as the only reference to bring you up
to speed if you have absolutely no experience with ActionScript. It will likely
serve the bulk of your needs, but other basics —such as reviewing where
scripts are created in Flash Professional or another application—require a
text dedicated to the editor of your choice.

For the most part, this chapter—along with the context and supplemental
explanations presented in subsequent chapters—should provide you with
enough to understand the topics and to get the sample exercises working.

Jump Right In

Before we cover some of the fundamental structure and logic of ActionScript
3.0, let's write another script to help get the feel of the language and build a
little confidence. Specifically, we'll build on the Hello World! exercise from
Chapter 1 to introduce some of the material explained in detail in this chap-
ter. We'll give you a brief explanation here and then expand on each relevant
topic as you read on. Create a new ActionScript 3.0 FLA file and type the fol-
lowing code into frame 1 using the Actions panel. You can compare your work
with the hello_world_if loop.fla source file.

var str:String = "Hello World!";

if (Math.randomQ < 0.5) {
var txtFld:TextField = new TextFieldQ;
addChild(txtFld);
txtFld.text = str;
} else {
for (var i:int = @; 1 < 3; i++) {
trace(str);

}

R 2 VLNV A WN R

- o

}

Line 1 creates a variable and tells the ActionScript compiler that it will con-
tain a String, which is simply text. Telling the compiler what kind of data you
intend to put into a variable will help it warn you if something attempts to
manipulate the data in an incompatible way later on —such as trying to treat
text as if it were a number.

Jump Right In

NOTE

As the Preface mentioned, we recom-
mend Learning Flash CS4 Professional
by Rich Shape (O'Reilly) for a starter
book on the Flash interface and
Essential ActionScript 3.0 by Colin
Moock (O'Reilly) for a more complete
ActionScript 3.0 resource. The latter is
decidedly an intermediate to advanced
reference but, at nearly three times the
size of this volume, it is also substan-
tially more comprehensive.

Chapter 2: Core Language Fundamentals



The if statement in line 3 does what its name implies. It tests to see if some-
thing is true and, if so, executes the code within its braces. In this case, the
braces are balanced on line 7, but the statement continues with an else. This
means that if the test is false, the next set of instructions, balanced with the
last brace on line 11 (lines 8 through 10), is executed. The test in this example,
added to show how easy it can be to randomize an outcome in ActionScript,
is whether a random number is less than 0.5. Math.random() will create a ran-
dom number between 0 and 1.

If that number is less than 0.5, the first block of code (lines 4 through 6) will
execute. This code creates a text field, makes it visible by adding it to the
display list, and puts the contents of the variable into the field —just as you
saw in Chapter 1. If the test fails, the second block (lines 8 through 10) will
execute. This code is a loop that will run through three times, tracing the
value of the string to the Window”Output panel.

We'll explain the syntax of this script in greater detail as this chapter pro-
gresses, but if you test your movie using Control"Test Movie, you'll see the
result immediately Based on the random number selection, you'll either see
text on the stage or in your Output panel. You can test your movie repeatedly
to see various outcomes. Now, let's dig in to some language fundamentals!

Miscellaneous Basics

Some basic topics don't require a section devoted to their discussion, but
should still be mentioned due to their use throughout the book. For example:

Case sensitivity

ActionScript 3.0 is a case-sensitive language, so you have to be careful with
capitalization. For example, the keyword true is all lowercase. If you type
TRUE or True, in the same context, you will get an error.

Use of the semicolon (;)

The official use of the semicolon in ActionScript is to execute more than
one statement on a single line. This is rare in the average script, but we
will look at this technique when discussing loops. The semicolon is also
used to indicate the end of a line. This is not typically required, but it is
recommended for clarity and to ease any possible transition into learning
other languages in which the semicolon at the end of a line is required.

Use of traceQ

As a means of getting quick feedback in an example, or as a testing and
debugging technique when writing scripts, trace() can be very helpful.
This instruction places text into the Output panel of the Flash Professional
interface. As such, this is an option that is available only when creating your
file, and has no use in your distributed SWF. ActionScript 3.0's version of
trace () supports tracing multiple items at once by separating them with
commas. These items are then traced with a space separating the content.



Typing the following into a script, for example, will display "Learning
ActionScript 3.0 Shupe Rosser" in Flash Professional's Output panel:

trace("Learning ActionScript 3.0", "Shupe", "Rosser");

Variables and Data Types

Variables are best described as containers into which you place information
for later recall. Imagine if you were unable to store any information for later
use. You would not be able to compare values against previously described
information (such as user names or passwords), your scripts would suf-
fer performance lags due to unnecessarily repeating calculations, and you
wouldn't be able to carry any prior experiences through to the next possible
implementation of a task. In general, you wouldn't be able to do anything
that required data that your application had to "remember."

Variables make all this and more possible. In the most basic terms, you need
only create a variable with a unique name and then populate it with a value.
However, for an ActionScript 3.0 compiler to know you are creating a vari-
able, rather than mistyping some other ActionScript keyword, you must also
declare the variable using the var keyword. A simple example is remembering
the number 1 with the following:

var myVariable = 1;
Keep in mind that variable names:
* Must not contain spaces

e Should not already be a keyword or reserved word in the ActionScript
language specification

¢ Should not start with a number

* Can include only alphanumeric characters along with the dollar sign ($)
or underscore (_)

To help ensure that you are using variables (and other ActionScript language
elements) appropriately, ActionScript can check your efforts and warn you
when you go awry Not every mistake can be detected, of course, but every
little bit helps. For example, your ActionScript compiler can warn you if you
try to perform a mathematical operation on a passage of text. Dividing the
text "Flash" by 17, for example, doesn't make much sense, and it really helps
when you are told of such errors.

To make this possible, you must use what is called data typing when you
write your code. That is, you must tell the compiler that a variable will con-
tain a specific type of data. To accomplish this, you must follow your variable
name with a colon (}) and then the type of data that you want to store in that
variable. For example, to data type the previous sample code write:

var horizontallLocation:Number = 4.5;

Variables and Data Types

NOTE

Throughout this book, code samples
will be presented in full color Most
ActionScript editors, including Flash
Professional, can apply colors, based on
your preference, to specific ActionScript
structures. As the average reader of this
book is likely to use Flash Professional,
we have adopted the default color
scheme used by that application. Other
editors may use different colors, but you
will rapidly adjust to any such differ-
ences. In this context, key ActionScript
terms are in blue, strings (or text values)
are in green, comments are in gray, and
more basic elements, (such as paren-
theses, semicolons, and the like) are in
black. Anything that is not already pre-
defined in ActionScript, such as names
of variables that we create, will also be
in black.

Chapter 2: Core Language Fundamentals



Variables and Data Types

This insures that any type of number, be it positive or negative, whole num-
ber or decimal value, is the only type of data that can ever be stored in hori-
zontal Location. (Injust a few moments, we'll show you what would happen
if you tried to put something other than a number into this variable.)

ActionScript supports several basic data types including, but not limited to,
those listed in Table 2-1.

Table 2-1. Variable types

Data type Example Description

Number 4.5 Any number, including floating-point values (decimals)

int -5 Any integer or whole number

uint 1 Unsigned integer or any nonnegative whole number

String "hello" Text or a string of characters

Boolean true Values true or false

Object {name:"Claire", age:2} The basic structure of every ActionScript entity, typically
used to store multiple name-value pairs of data

In addition to these basic data types, it's very common to store variable refer-
ences to ActionScript objects, such as a movie clip, text field, or sound, and to
use type checking to make sure your code contains fewer errors. For example,
the following instruction places a MovieClip into the variable logo. The data
type insures that the compiler will warn you if you do anything with this
variable that is not compatible with the MovieClip type,

var logo:MovieClip = new MovieClipQ;

Let's revisit our horizontallocation variable and see what happens if we try
to perform an operation on it that is incompatible with the Number data type.
Here's an example of trying to reassign the variable to a String:

horizontalLocation = "ActionScript"”;

Having told the compiler to expect only numbers in this variable, this will
yield the following error:

1067: Implicit coercion of a value of type String to an unrelated type
Number.

This means your code is trying to change a value of type Number to a value
of type String, without first explicitly telling the compiler you want to do so.
The compiler warns you about this because you may not have intended to
change the data type and it wants a clearer instruction before allowing the
switch. While this is usually a huge benefit, you may sometimes want a type
change to occur. In these cases, you just need to be more direct by casting the
data.

Part I: Getting Started



Casting

Casting is the overt act of telling the compiler to treat a value of one data
type as if it's a value of another data type. When discussing type conversion
previously we showed that trying to assign a String to a variable with a
Number data type would cause an error. This is pretty clear when you're trying
to overwrite a variable called horizontallLocation, which contains a value of
1, with a new value of 'ActionScript."

But what if you want to assign the text "300" to that variable? For example,
what if you want to create a horizontal location value from something a user
typed into a text field? Although text entered into a text field originates as
having a data type of String, you need to be able to tell the compiler to treat
that information as having a data type of Number.

There are two ways to cast data, both shown here, and both with pros and
cons.

horizontalLocation = Number("300");
horizontalLocation = "300" as Number;

The first example, using the format type(data), is simple and, best of all, will
generate an error if you try to cast to an incompatible data type. On the other
hand, it could be confusing because it resembles other ActionScript syntax
that we'll discuss a bit later (such as the name of a function or instantiation of
a class). There are also isolated cases where this approach won't work because
it conflicts with syntax reserved for another purpose. For example, later in
this chapter we'll discuss arrays (objects designed to contain multiple values),
and you'll learn that the Array () syntax creates a new array As such, this form
can't be used to cast data to an array

The second example, using the format data as type will work where the prior
syntax fails, but it won't generate an error if the casting fails. Instead, it will
simply return null as the resulting value.

You can check whether an object is of a certain type using the is operator.

var userName:String = "Aubrey";
trace(userName is String);
//traces true to the Output panel

Strict Mode

Once you start data typing your variables, you can be warned of related
errors when your application runs or, better yet, when you compile your
file—such as when testing your movie in Flash Professional. Whether you
check for errors at runtime or when compiling your code is determined by
your ActionScript compiler's Strict Mode setting.

Variables and Data Types

NOTE

Our personal preference is to use the
type (data) form of casting because we
want to take advantage of the error
reporting to correct any problems. Ifa
resulting error points to a conflict with
this format, we then switch to data as
type for specific needs.

Chapter 2: Core Language Fundamentals

Iwvww.allitebooks.cond



http://www.allitebooks.org

In Flash Professional, the Strict Mode setting is on by default and is a
per-file preference, rather than an application preference. As such, it's
found in the Publish Settings of each file (File®Publish Settings). Flash
Professional CS5 users will find shortcuts to this destination in the File menu
(File™ActionScript Settings) and in the Publish section of the Properties
panel. In the Flash option at the top of the Publish Settings dialog is a pull-
down menu that lets you choose which version of ActionScript to use in each
file. Next to that menu is a Settings button, as seen in Figure 2-1. Clicking
this button will reveal the Strict Mode option in the Advanced ActionScript
3.0 Settings dialog, as seen in Figure 2-2.

Publish Settings

Current profile: Default i_] it + SEIl 6

Formats Fas- HIML

Flayer:  Flash Player 10 i_l

Script:  ActionScript 3.0 iAj ( Settings... J

Figure 2-1. A detail from the Flash section of the Publish Settings dialog

Advanced ActionScript 3.0 Settings

Document class: |" [ 17] |

Export classes in frame: i

Errors: |v1 Strict Mode

Pj Warnings Mode
Stage. Automatically declare stage instances

Dialect: ActionScript 3.0 (Recommended) "t

Figure 2-2. A detail from the Advanced ActionScript 3.0 Settings dialog, where the Strict
Mode preference is found

If Strict Mode is enabled, you will be notified of errors when you compile
your file as well as when your SWF is running. If you disable Strict Mode,
you will rely solely on runtime error warnings to catch mistakes. We recom-
mend keeping Strict Mode enabled because the compiler will not only help
you catch problems as you code, but will even try to tell you where the prob-

lem is in your scripts.



Operators

Operators are characters that dictate how to combine, compare, or modify val-
ues of objects, properties, or expressions. Table 2-2 lists most of ActionScript
3.0 s operators, focusing on the operators you're likely to use when working
with this book's examples.

Operators

Table 2-2. A partial list of ActionScript 3.0 operators

Arithmetic
+ addition Adds numeric expressions.

subtraction Negates or subtracts numeric expressions.
’ multiplication Multiplies two numeric expressions.

division

Divides two numeric expressions.

++ increment (1) Adds 1 to a numeric expression.
decrement (1) Subtracts 1 from a numeric expression.
% modulo (2) Calculates remainder of expression! divided by expression2.
Assignment
- assignment Assigns value at right of operator to variable, array element, or object property at

left of operator.

Arithmetic compound assignment

+=

addition assignment (3)

Assigns expressionl the value of expressionl + expressionl.

subtraction assignment

Assigns expressionl the value of expressionl - expressionl.

multiplication assignment

Assigns expressionl the value of expressionl * expressionl.

division assignment

Assigns expressionl the value of expressionl / expressionl.

%=

modulo assignment

Assigns expressionl the value of expressionl % expressionl.

Comparison

equality (4)

Tests two expressions for equality

I= inequality Tests for the exact opposite of the equality (==) operator.

> greater than Compares two expressions and determines whether expressionl is greater than
expressionl; if so, the result is true.

>= greater than or equal to Compares two expressions and determines whether expressionl is greater than or
equal to expressionl; if so, the result is true.

< less than Compares two expressions and determines whether expressionl is less than
expressionl; if so, the result is true.

<= less than or equal to Compares two expressions and determines whether expressionl is less than or equal
to expressionl; if it is, the result is true.

Logical

& AND (4) Tests two expressions to see if both are true.

I OR Tests two expressions to see if either is true.

! NOT Inverts the Boolean value (truth) of a variable or expression.

Chapter 2: Core Language Fundamentals



Operators

Table 2-2. A partial list of ActionScript 3.0 operators

Type
as as Casts data to left of operator as data type to right of operator.
is is (5) Evaluates whether an object is compatible with a specific data type.
String
+ concatenation (6) Concatenates (combines) strings.
+= concatenation assignment Concatenates value to right of operator. Assigns stringl the value of stringl + string?2.

Part I: Getting Started

You're probably familiar with many of ActionScript 3.0's arithmetic, assign-
ment, and comparison operators. Other operators may be new to you, and
many will be explained and used throughout the coming chapters. Here are

some quick notes referred to in Table 2-2 covering some of the operators you

may be less familiar with:

1.

Increment and decrement operators add 1 to or subtract 1 from an expres-
sion. For example, i++ is the same as saying i = i + 1.They come in post-
fix (i++) and prefix (+i) flavors. The difference between them is that the
postfix version alters the value of the variable after a related expression is
evaluated, and the prefix version alters the value before the expression is
evaluated. This can be seen by tracing both operators at work:

var i:int = @;

trace(i++);

/10

trace(i);

/1N

var j:int = @;
trace(++3);

/11
trace(j);
/N

In the first example, the postfix increment operator is used within a
trace () statement. Because the postfix flavor of the operator increments
after the statement is executed, the first trace is 0 and the second is 1. The
prefix flavor of the operator increments before the trace () statement is
executed, so both traces show the value of 1.

Modulo calculates the remainder of a division, not how many times the
numerator goes into the denominator. In other words, 4 % 2 is 0 because
2 goes into 4 two times, and leaves no remainder. However, 5 % 2 is 1
because 2 goes into 5 two times and leaves a remainder of 1.



3. Compound assignment operators work a bit like increment and decre-
ment operators, but they are not restricted to altering an expression by a
value of 1. Instead, they alter the original based on whatever is to the right
of the equal sign. For example, 10 += 5 is 15 and is equivalent to saying
10 = 10 + 5.

4. Note the difference between the assignment operator (=, a single equal
sign) and the comparison equality operator (==, a double equal sign). The
first assigns a value to an expression; the second tests whether two values
are equal. Both comparison and logical operators are discussed later in
the "Conditionals" section of this chapter.

5. The as and is operators are discussed earlier in the "Casting" section of
this chapter.

6. When used in the context of strings, the plus symbol (+) is a concatena-
tion operator, which joins two strings together. The expression "Sally" +
"Claire" evaluates to "SallyClaire".

Arithmetic Operator Precedence

Arithmetic and arithmetic compound assignments are evaluated in order
of precedence. Multiplication, division, and modulo are executed first, and
addition and subtraction are executed second. For example, 1 + 2/ 3 + 4 is
equivalent to five and two-thirds because the division is evaluated before the
addition.

Parentheses can alter the order of precedence by evaluating their contents
first. Changing the previous expression to (1 + 2) / (3 + 4) is equivalent to
three-sevenths because the addition is evaluated before the division.

Conditionals

You will often need to make a decision in your script, choosing to do one
thing under one circumstance and another thing under a different circum-
stance. These situations are usually handled by conditionals. Put simply, a test
asks whether a condition is met. If the condition is met, the test evaluates to
true and specific code is executed accordingly If the condition is not met,
either no further action is taken or an alternate set of code is executed. We'll
now take a look at the if and switch conditional structures.

You can try this code for yourself, or look at the conditionals.fla source file
from the chapter archive found in the Downloads section of the companion
website. This section provides multiple examples of conditionals to teach the
logic behind their use. For an additional practical example, revisit the open-
ing of this chapter, which uses a conditional to perform one of two tasks
based on a random number value.

Conditionals

NOTE

Additional ActionScript 3.0 opera-

tors can be found at http;/fwww.
adobe,comy/livedocs/flash/9.0/
ActionScriptLangRefV3/operators.html.

Chapter 2: Core Language Fundamentals


http://www

Conditionals

NOTE

The test in this example uses a double
equal sign. This is a comparison opera-
tor that asks, "Is this equal to?" This
distinction is very important because the
accidental use ofa single equal sign will
cause unexpected results. A single equal
sign is an assignment operator and
assigns the value on the right side of the
equation to the object on the left side of
the equation. Because this assignment
naturally occurs when an assignment
operator is used, the test will always
evaluate to true.

Part I: Getting Started

The most common form of the conditional is the if statement. The state-
ment's basic structure is the if keyword, followed by parentheses in which
the conditional test resides, and braces that contain the code that is executed
when the statement evaluates to true. The first three lines in the following
example create and populate a set of variables. These variables will be used
for this and subsequent examples in this section, but will not be repeated.

var num:Number = 1;
var str:String = "hello";
var bool:Boolean = false;

if (num == 1) {
trace("num equals 1");

To evaluate the truth of the test inside the parentheses, conditionals often
make use of comparison and logical operators. A comparison operator com-
pares two values, such as equals (==), less than (<), and greater than or equal
to (>=), to name a few. See Table 2-2 for more examples of operators.

Logical operators allow you to build complex tests by combining multiple
conditional expressions. The AND (&&), and OR (| |) operators allow you to
combine two or more tests into one. They allow you to ask if "this and that"
are true, if "this or that" is true. The NOT (!) operator will negate the results
of a test, or ask if "this" is not true. Table 2-3 is a Boolean truth table that
shows several possible outcomes of conditional tests. The first two columns
represent the initial outcome of two separate conditional tests, 2 and b. Using
our given variables, these columns might represent the questions, "is num
equal to 1?" and "is str equal to 'hello'?" The rows show various permuta-
tions of true and false results of these tests. Column 3 shows the effect of
the NOT operator, negating the results for test b. Columns 4 and 5 show the
results of using the AND and OR operators on the outcomes in each row.

Table 2-3. A Boolean truth table

a b b a&&b lal|b
true true false true true
true false true false true
false true false false true
false false true false false

Looking at some ActionScript syntax, the following snippet uses the AND
operator and will evaluate to false because only one of the conditions is true.
When using the AND operator, both conditions must be true. As a result,
nothing would appear in the Output panel.



if (num == 1 && str == "goodbye") {
trace("both tests are true");

In the next example, the test will evaluate to true, because one of the two con-
ditions (the first) is true. As a result, "one test is true" will be traced.

if (num == || str == "goodbye") {
trace("one test is true");

Finally, the following would also evaluate to true, because the NOT operator
correctly determines that bool is not true. (Remember, that every if state-
ment, at its core, is testing for truth.)

if (Ibool) {
trace("bool is not true");

The logical NOT operator should not be confused with the != comparison
operator. The NOT operator reverses the truth of a test (returning false where
true was expected, or true instead of false); the != operator is the reverse of
the == operator, and tests whether something is "not equal to" a value. The
following will evaluate to false because num does equal 1, and nothing will be
traced.

if (num != 1) {
trace("num does not equal 1");

Additional power can be added to the if statement by adding an uncondi-
tional alternative. That is, an alternative set of code is executed any time the
main test fails, without a need for any additional evaluation. This is accom-
plished by adding an else to the if block. With the following new code
added to the previous example, the last trace will occur:
if (num != 1) {
trace("num does not equal 1");

} else {
trace("num equals 1");

Finally, the statement can be even more flexible by adding a conditional
alternative (or an additional test) to the structure. To add another test, you
must add an else if section to your conditional. In this example, the second
trace will occur:
if (num == 2) {
trace("num does not equal 1");

} else if (num == 1) {
trace("num equals 1");

The if statement requires one if, only one optional else can be used, and
any number of optional else if tests can be added. In all cases, however, only
one result can come from the structure.

Conditionals

Chapter 2: Core Language Fundamentals



Consider the following example, in which all three results could potentially
execute —the first two because they are true, and the last because it is an
unconditional alternative:

if (num == 1) {
trace("num equals 1");

} else if (str == "hello") {
trace("str equals ‘'hello'");
} else {

trace("other");

In this case, only "num equals 1" (the first option) would appear in the
Output panel. Because only one result is possible from an if statement,
the first time a test evaluates to true, the conditional is exited and the script
continues. If you need more than one execution to occur when using if state-
ments, you need to use two or more conditionals. The following structure
is based on the prior example in which all tests evaluate to true. However,
because the code has been broken into fwo separate if statements, the first
and second traces will occur.

if (num == 1) {
trace("num equals 1");

if (str == "hello") {
trace("str equals ‘'hello'");
} else {

trace("other");

Logical Operator Precedence

When more than one logical operator is used, they are evaluated in a par-
ticular order. NOT is evaluated first, then AND, and finally OR. For example,
considering the expressiona &&'b | | c, the expression would evaluate as, "are
both a and b true?" and then "is either the outcome of the 4 && b test or ¢
true?" Because of operator precedence, the following expression would evalu-
ate the same way: ¢ \ | a && b. That is, the operators are not evaluated from
left to right. In this last example, 2 && b would still be evaluated first, and the
outcome of that test would be compared with c.

It's possible to build more complex conditional tests by overriding this prece-
dence with parentheses. Table 2-4 contains all the possible outcomes of three
tests in the first three columns. Column 4 checks the outcome of two tests,
using operator precedence. Column 5 tests the outcome of the same tests, but
gives the OR test precedence using parentheses.



Table 2-4. Logical operator precedence truth table

a b C a&&bilc | a&& (b || c)
true true true true true
true true false true true
true false true true true
true false false false false
false true true true false
false true false false false
false false true true false
false false false false false
switch

An if statement can be as simple or as complex as you need. Long if struc-
tures can be difficult to read, however, and are sometimes better expressed
using the switch statement. In addition, switch has a unique feature that lets
you control which results are executed —even when a test evaluates to false —
and can be a simpler way to execute multiple results.

Imagine an if statement asking ifa variable is 1, else ifit's 2, else ifit's 3, else
ifit's 4, and so on. A test like that quickly becomes difficult to read, so use
switch instead:

switch (num) {

case 1 :
trace("one");
break;

case 2 :
trace("two");
break;

case 3 :
trace("three");
break;

default :
trace("other");
break;

}

A switch statement begins with an expression in the parentheses of its first
line. Because this is an expression, rather than a test, it does not have to
evaluate to true. For example, the contents of the parentheses could be 5 + 5.
Possible results of the expression are included in as many case statements as
necessary If the result of the expression matches the contents of a particular
case statement, the instructions following the colon of that case are executed.
Each break statement prevents any subsequent instructions from executing
once a test is successful. We'll talk more about break injust a moment.

Conditionals

Chapter 2: Core Language Fundamentals



Loops

NOTE

Ifyou need to evaluate the truth of
more than one expression in a switch
structure, you can restructure it by
swapping the result and expression
between switch and case. That is, you
can place a single result, true, in the
switch statement, and each expression
in the case statements. The following
example can be found in the switch_2.
fla source file.

switch (true) {

case num ==
trace("one");
break;

case str == "hello"
trace("two");
break;

case bool
trace("three");
break;

Part I: Getting Started

Meanwhile, the example code asks: is it the case that num equals 1 is true? Is
it the case that num equals 2 is true? This continues with all remaining case
statements. The equivalent of an unconditional alternative (or else, in an if
statement) is default. In other words, this is the default response in the event
that no case evaluations are true.

The result of the example is that the word "one" appears in the Output panel
because num is equal to 1 and a break follows the trace() statement.

Now back to the break feature. Use of break is optional and, when you don't
use break, the next instructions will execute regardless of the outcome of the
case evaluation. That is, the next instruction will execute even if the prior
case already evaluated to true and even if the following case evaluates to false.

For example, note the absence of break in the first case of the following code.
This structure will trace both "one" and "two" to the Output panel, even
though the first evaluation is true, and even though num does not equal 2.
switch (num) {
case 1 :
trace("one");
case 2 :

trace("two");
break;

}

This break feature does not exist with the if statement and, if used with care,
makes switch an efficient alternative to a more complex series of multiple
if statements. Switch statements must have one switch and one case, an
optional unconditional alternative in the form of default, and an optional
break for each case and default. The last break is not needed, but may be
preferred for consistency

Loops

It is quite common to execute many repetitive instructions in your scripts.
However, including them line by line, one copy after another, is inefficient as
well as difficult to edit and maintain. Wrapping repetitive tasks in an efficient
structure is the role of loops. A programming loop is probably just what you
think it is: it goes through the structure and then loops back to the start and
does it again until its task is concluded. There are a few kinds of loops, and
the type you choose to use can help determine how many times your instruc-
tions are executed. The examples in this section can be found in the loops,
fla file, which is downloadable from the companion website. This section
explains two kinds of loops: for and while. The first for loop example will
look familiar from the opening of this chapter.



for Loop

The for loop executes its contents a finite number of times of your choosing.
For example, you may wish to create a grid of 25 movie clips or check to see
which of 5 radio buttons has been selected. The first example here uses a for
loop to trace content to the Output panel three times.

To loop through a process, as in the case of our three traces, you must first
start with an initial value, such as 0, so you know you have not yet traced
anything to the Output panel. The next step is to test to see whether you have
exceeded the limit you set (in this case, 3). The first time through the loop,
0 does not exceed the prescribed limit. The next step is to trace the content,
and the final step is to increment your initial value, registering that you've
traced the desired content once. The process then starts over until, ultimately,
you exceed the limit of the loop. The syntax for a basic for loop is as follows:

for (var i:int = @; i < 3; i++) {
trace("hello");

The first thing you may notice is the declaration and typing of the counter,
i. This is a common technique because the i variable is often used only for
counting and is therefore created on the spot and not used again. If you have
already declared and typed the counter previously, that step can be omitted.
(This is true in the next example, as these code passages are in the same
source file.)

Next is the loop test. The counter variable must have a value that is less than
the limit, in this case 3, for the loop to execute. Finally, the double plus sign
(++) is the increment operator and is equivalent to i = i + 1, or adding 1 to
the current value of i.

The result is three occurrences of the word "hello" in the Output panel. The
first time through the loop the value of i is 0, that value is less than 3, a trace
occurs, and i is incremented by 1. The second time through the loop, i is 1,
that value is less than 3, a trace occurs, and i is again incremented. This con-
tinues until the value of i fails the loop test. The third time through the loop
1 is incremented to a value of 2. The fourth time through, the loop test fails
because 3 is not less than 3, and the loop concludes.

If desired, you also can count down by reversing the values in the test, starting
with a maximum initial value, and then decrementing the counter. In other
words, instead of starting with 0 start with 3, then test to be sure 1 is greater
than 0, and decrement by subtracting 1 each time through the loop using the
decrement operator (--) (which is equivalentto i = i - 1). Here's the code:

for (i =3; i >0; i--) {
trace("hello");

Loops

NOTE

As stated earlier, the variable i is inten-
tionally not declared (using the var
keyword) in this loop because it is in the
same source file as a loop that previ-
ously declared i. Once a variable has
been declared in a scope, it need not be
declared again. Ifit is declared a second
time, a duplicate variable declaration
warning will be displayed.

Chapter 2: Core Language Fundamentals

Iwvww.allitebooks.cond



http://www.allitebooks.org

Loops

NOTE

Use while loops with caution until you
are comfortable with them. It's very easy
to accidentally write an infinite loop
(a loop with no exit), which will cause
your code to loop continuously within
the while code block, stopping any fur-
ther execution of your program. Here is
a significantly simplified example of an
infinite loop:

var flag:Boolean = true;

while (flag) {

trace("infinite 1loop");
}

As you may notice, the flag variable is
never changed, and therefore remains
true, so the loop can never fail.

It's also possible to write an infinite for
loop, typically by reassigning the value
of the loop counter inside the loop:
for (var i:int; 1 < 3; i++) {
trace("infinite 1loop");
i=0;
}
Ifyou get caught in an infinite loop.
Flash Player fortunately will timeout
(after 15 seconds, by default) and abort
the script.

Part I: Getting Started

while Loop

The other kind of loop that you are likely to use is a while loop. Instead of
executing its contents a finite number of times, a while loop executes as long
as something remains true. As an example, consider a very simple case of
choosing a random number.

To create a random number, use the syntax Math.random(). Just like the
MovieClip class discussed in Chapter 1, Math is a class, or collection of code. It
contains instructions for performing mathematical tasks, including picking
a random number. This method always generates a decimal number greater
than or equal to 0 and less than 1. So, let's say you wanted to choose a random
number greater than or equal to 0.5. Because of the random factor in this
exercise, you may end up with the wrong choice several times in a row. To be
sure you get a qualifying number, you can use this code:

var num:Number = Math.randomQ;

while (num < ©.5) {

trace(num, "is less than ©.5");
num = Math.randomQ;

trace("final num:", num);

Starting with a default value of 0, num will be less than 0.5 the first time into
the loop, so the contents of the loop are executed. A random number is then
put into the num variable and, the structure loops back to test the new value.
The loop will continue to execute as long as the random numbers chosen are
less than 0.5. When that test fails, because a number chosen is greater than or
equal to 0.5 (and, although not material to the test, less than 1 by restrictions
of the Math.random() method) the loop concludes.

A Loop Caveat

It's very important to understand that loop structures, although compact
and convenient, are not always the best method to use to achieve a repetitive
outcome. This is because loops are very processor-intensive. Once a loop
begins its process, nothing else will execute until the loop has been exited. For
this reason, you may be wise to avoid for and while loops when you require
interim visual updates.

In other words, when a for or while loop serves as an initialization for a
process that is updated only upon the loop's completion (such as creating a
grid of 25 movie clips), you are less likely to have a problem. The script enters
the loop, 25 clips are created, the loop is completed, a frame update can then
occur, and you see all 25 clips.

If you want each of the 25 clips to appear one by one, however, those interim
visual updates cannot occur while the processor is consumed by the for or
while loop. In this situation, another type of looping—one that does not
interfere with the normal playhead updates—is desirable. Two such loops,
frame and timer loops, are commonly used for this purpose. A frame loop



is not a defined ActionScript structure, but rather simply a repeating frame
event, executing an instruction each time the playhead is updated. A timer
loop is similar, repeating a timer event, but is not tied to the frame tempo.
Instead, an independent timer triggers a timer event at a set frequency

In both cases, the events occur in concert with any other events in the ordi-
nary functioning of the file, so visual updates, as one example, can continue
to occur. Both frame and timer loops will be explained, complete with exam-
ples, in Chapter 3. The first exercise in that chapter is a great example of using
a frame event as an alternative to a loop.

Arrays

Basic variables can contain only one value. If you set a variable to 1 and then
set that same variable to 2 in the following line of code, the value would be
reassigned, and the value of the variable would be 2.

However, there are times when you need one variable to contain more than
one value. Think of a hypothetical set of groceries, including 50 items. The
standard variable approach to this problem would be to define 50 variables
and populate each with a grocery item. That is the equivalent of 50 pieces of
paper, each with one grocery item written on its face. This is unwieldy and
can be created only at authoring time —at which point the process is fixed —
and you'd have to recall and manage all variable names every time you wanted
to access the grocery items.

In real life, you handle the problem by writing a list of 50 grocery items
on one piece of paper. You can add to the list while at the store and cross
each item off once it is acquired, and you only have to manage one piece of
paper. In ActionScript, you handle the problem by creating an array, the code
equivalent of that sheet of paper.

Creating an array is quite easy Like many objects in ActionScript 3.0, you can
create an array using the new keyword — either prepopulating the array with a
comma-separated list of items, or as an empty array that you intend to popu-
late at runtime. You can also create an array by wrapping your list of items in
brackets. Creating an empty array with brackets requires only an empty set
of brackets. Both techniques are illustrated here:

var needToBuy:Array = new Array("eggs", "flour", "milk");
var impulseltems:Array = new ArrayQ;

var needToBuy2:Array = ["eggs", "flour", "milk"];

var impulseltems2:Array = [];

An array of comma-separated values is called a linear array because it con-
tains a series of items in linear order. Whether the array is prepopulated or
empty, you can add to, or remove from, the array at runtime. For example, you
can add a value to an array using the push() method, which pushes the value
into the array at the end.

Arrays

NOTE

A method is an action performed by an
object —in this case adding something
to an array — and will be discussed in
detail in the next chapter

Chapter 2: Core Language Fundamentals



Arrays

NOTE

Well further discuss the idea of
ActionScript returning values upon
receiving instructions when we get to
functions later in this chapter

NOTE

Methods (like push() and popQ) are
added to the end of objects (the cake
variable) with a dot separating the two
words. This is the syntax used to navi-
gate the ActionScript object model, and
is sometimes referred to as dot syntax
or dot notation. This describes a parent-
child relationship among the objects.

Consider an example where you may
wish to check the width of a movie clip
that is inside another movie clip. The
first, or most senior item in this familial
chain is the container movie clip, or
parent. Let's call itmcl. A reference to
the child clip nested inside, called mc2
in this example, follows, and the width
property concludes the statement:

mcl.mc2.width;

This dot syntax will be used in virtually
every example for the rest of the book,
and it will soon become quite easy to
understand just what each object refer-
ences along the way.

NOTE

A property describes an aspect of an
object —in this case how long the array
is, or how many items it contains —and
will be discussed in detail in the next
chapter

Part I: Getting Started

The pushQ method is a handy way to add something to an array because
it also tells you how long the new array is, and you can choose to use that
information or ignore it. In the following example, the second line of code
uses pushQ without any regard for the feedback the method returns. All that
matters is adding the item to the end of the array The second time pushQ
is used, however, the entire statement is placed inside a trace(). As a result,
when pushQ returns a value of 2 to indicate that there are now two items in
the array, that value will be traced. Finally, the resulting array is displayed in
the last executed instruction.

var cake:Array = new ArrayQ;

cake.push("sugar");

trace(cake);

// sugar appears in the Output panel

trace(cake.push("vanilla"));

// 2 appears in the Output panel

trace(cake);

// sugar,vanilla appears in the Output panel

You can remove an item from the end of an array in a similar manner, using
the popQ method. This method also returns a value that you may wish to
use but, instead of returning the new length of the array, it returns the item
removed from the array

The next code passage continues the previous example, in which the last
value of cake was "sugar, vanilla". The first line removes the last item in the
array and, because it does so from within the traceQ statement, the removed
item appears in the Output panel. Finally, the entire array is then traced.
trace(cake.pop());
// vanilla appears in the Output panel

trace(cake);

// the final one-item array, sugar, is traced

You can add values to or retrieve values from locations within the array by
using brackets and including the index, or position, of the array item you
need. To do so, you must understand that ActionScript uses what are called
zero-based arrays. This means that the first value is at position 0, the second
is at position 1, the next at position 2, and so on. As an example, to retrieve
the existing third value from an array, you must request the item at index 2:

var newArray:Array =
trace(newArray[2]);

["chocolate”, "lemon", "red velvet"];

//"red velvet" appears in the Output panel

To determine the number of items in an array, use the length property:
trace(newArray.length);

//"3" appears in the Output panel

You can also create arrays inside arrays. These are typically called multi-
dimensional arrays and are used to create multiple levels of data. A typical
database is a multidimensional array because it is a list of records (such as
users), each of which contains fields (such as name, phone, email). If such



a database had three records, it would be equivalent to one array of three
arrays.

Creating this arrangement is as simple as using an inner array as a value for
one of the indices of the outer array. You can do this at the outset, or add it
using pushQ—both of which are demonstrated here:

var mdArrayl:Array = ["a", "b", ["c", "d"]l;

var mdArray2:Array = ["e", "f"];

mdArray2.push(["g", "h"]);
To access values in a multidimensional array, you must use multiple brackets
to go into the nested arrays. For instance, continuing the prior example to
retrieve the first item in the array mdArrayl, you need only the standard single
bracket syntax:

trace(mdArrayl[e]);
//traces "a" to the Output panel

However, to access the values in the nested array requires two components.
First, you must identify the nested array as the third item of mdArrayl (at
index 2). Then you must reference the item within that nested array with
another pair of brackets. So, to retrieve "c", which is the first item in the nested
array, the syntax is as follows:

trace(mdArrayl[2][0]);
//traces "c" to the Output panel

This makes sense, if you think about it in steps, because not only is mdArrayl
an array requiring bracket syntax to retrieve an item therein, but mdArrayl [ 2]
is also an array requiring its own brackets to retrieve an item.

Vectors

Vectors (not to be confused with the precise lines, curves, and shapes created
by such object-drawing tools as Adobe Illustrator) are typed arrays. Arrays
like those in the previous section can contain data of any type. The following
example array includes a String, Number, and Boolean:

var arr:Array = new ArrayQ;
arr[@] = "avocado";
arr[0] = 2;

arr[@] = true;

A vector, however, can contain data of only one type, which is determined at
the time the vector was created. Although vector syntax may look a little odd
at first, its principle uniqueness is the addition of the data type to the vector
creation process. The following example vector contains only integers.

var vec:Vector.<int> = new Vector.<int>();
vec[@] = 1;
vec[@] = 2;
vec[0] = 3;

Vectors

NOTE

There is another kind of array, called
an associative array, which is often used
interchangeably with custom objects.
We'll discuss both in the "Custom
Objects" section later in this chapter.

Chapter 2: Core Language Fundamentals



Functions

NOTE

One thing to remember about data
type checking when populating vectors
is that content added with the push()

method will be type checked at runtime.

For this reason, you should use bracket
syntax when adding elements to a vec-
tor, as in the example in this section,

to receive the benefits of compile-time
error checking.

Part I: Getting Started

If you try to add an incompatible data type to a vector, you will receive a type
coercion error. The following example tries to add a String to the integer
vector from the previous snippet:

vec[3] = "guacamole"
//Error 1067: Implicit coercion of a value of type String
// to an unrelated type int.

From a syntax and use perspective, vectors function the same way arrays do.
Vector syntax is typically identical to array syntax. However, because they
can contain only one data type, they support more restrictive error checking.
When working with vectors, you can be certain that any data you retrieve
will be the correct data type for your needs, and any data you add will be
checked to be sure it conforms to the desired type. In addition, vectors can be
significantly faster than arrays—particularly with large data sets.

Functions

Functions are an indispensable part of programming in that they wrap code
into blocks that can be executed only when needed. They also allow code
blocks to be reused and edited efficiently, without having to copy, paste, and
edit repeatedly Without functions, all code would be executed in a linear
progression from start to finish, and edits would require changes to every
single occurrence of any repeated code. We'll look at functions in three parts:
minimal structure, use of arguments, and returning values. Figure 2-3 identi-

fies examples of each of the parts of a function that we'll discuss.

name parameter parameter return
data type data type

1 Il 4 4

function fahrenheitToCelsius(temp:Number):Number {
return (5 / 9) * (temp - 32);

t

value returned

Figure 2-3. Parts of a function

Creating a basic function requires little more than surrounding the code you
wish to trigger at will with a simple syntax that allows you to give the block
of code a name. Triggering that function later requires only that you call the
function by name.



The following syntax shows a function that traces a string to the Output
panel. The function is first defined and then, to illustrate the process, imme-
diately called. (In a real-world scenario, the function is usually called at some
other time or from some other place, such as when the user clicks a button
with the mouse.) The actual output is depicted in the comment that follows
the function call, without any added quotation marks. This code can be
found in the functions_simple.fla source file.

function showMsg() {
trace("hello");

showMsg();
//hello

If reusing code and executing code only when needed were the only advan-
tages of functions, youd already have a useful enhancement to the linear exe-
cution of ActionScript, because it would allow you to group your code into
subroutines that could be triggered at any time and in any order. However,
you can do much more with functions to gain even greater power.

Local Variables

For example, you can define a variable that exists only inside a function.
These are called local variables because they are local to the function. The
syntax to declare and use the variable is the same; to make it local, simply
declare the variable inside the function. These variants on the prior example
can be found in the functions_local_var.fla source file.

function showMsg() {

var msg:String =
trace(msg);

"hello";

showMsg();
//hello

If you tried to trace the value of msg at the end of this script, you would
receive an error because ActionScript thinks it doesn't exist outside the func-
tion. The following syntax is what the same example might look like using a
variable that is available to the entire script, not just a single function:

var msg2:String = "hello";

function showMsg2() {
trace(msg2);

showMsg2();
//hello

Declaring msg2 outside the function means it is not local to showMsg2(). In
this case, tracing msg2 at the end of the script would successfully show "hello"
in the Output panel of Flash Professional.

Functions

NOTE

Commenting your code to explain as
much about what it does as is practical
can help you greatly ifyou return to a
project after a prolonged absence. It's
also vital to projects with multiple pro-
grammers and when distributing your
code to others, like clients or the public.

You can comment a single line of code
using two slashes (//), and multiple
lines of code using a balanced pair of
slash-asterisk (/*) and asterisk-slash
/)e

//single-1line comment

/*
multi-line
comment

*/

NOTE

Unlike some other languages,
ActionScript 3.0 does not support block-
level local variables. That is, declaring a
variable within a logical block, such as a
conditional or loop, does not confine the
life of that variable to the block itself.

In ActionScript 3.0, variables are either
accessible to an entire script or restricted
to a function, depending on where
they're declared.

Chapter 2: Core Language Fundamentals 3



Parameters and Arguments

Even when defining a local variable to hold content, your function is still
"hard-wired." That is, it cant change from the effect of some outside influ-
ence. Let's say you need to trace ten different messages. To do that without
any new features, you'd have to create ten functions and vary the string that
is traced inside each function.

However, this can be more easily accomplished with the use of parameters
and arguments—words that are often used interchangeably but that have a
subtle distinction. Parameters are like local variables in that they exist only
inside a function, but they are easier to use because they do not have to be
declared. Instead, you just place them inside the function's parentheses and
use them inside the function as you see fit. Arguments are the values that are
passed into those parameters. By passing data into a function, you can vary
its execution.

When using parameters, it is a great idea to use the same data typing prac-
tices as you would with variables, so the ActionScript compiler knows how to
react and can notify you of errors. Simply follow the parameter name with a
colon and data type. The same rules that apply to naming variables, apply to
naming parameters. Furthermore, because parameters are local to a function,
you can reuse parameter names in different functions without ill effect. Just
be sure not to confuse yourself!

In the following example, the function no longer traces "hello" every time it is
called. Instead, it traces whatever text is sent into the function. To send data
in, you need only include the data in the parentheses used when calling the
function.

function showMsg(msg:String) {
trace(msg);

showMsg("goodbye™");

//goodbye
You can even use multiple parameters separated by commas and pass mul-
tiple arguments to the function. To avoid errors, the order of the arguments
must match the order of parameters. This example expands on the previous
code by adding a second parameter. In this case, the function uses the plus
operator (+) to concatenate, or join, strings together.

function showMsg2(msg:String, user:String) {

}

showMsg2("Welcome", "Sally");
//Welcome, Sally!

trace(msg + ", " + user + "I");

Default values can also be supplied for a parameter. This makes sending an
argument into the parameter optional because, if no value is sent, the default
will be used. When using parameter default values, you must place them at
the end of the parameter list so they always follow any parameters for which



values are required. For example, the following code requires a message but
the user name is optional. As a result, user must appear after msg in the order
of parameters.

function showMsg3(msg:String, user:String="User") {

}

showMsg3("Welcome", "Claire");
//Welcome, Claire!
showMsg3("Welcome");

//Welcome, User!

trace(msg + ", " + user + "I");

The code in this section is in the functions_parameters.fla source file.

Returning a Value from a Function

Finally, it is also possible to return a value from a function, increasing its
usefulness even further. Having the ability to return a value to the script
from which it was called means you can vary both the input and output of
a function.

The following examples are used to convert temperature values from Celsius
to Fahrenheit and Fahrenheit to Celsius. In both cases, a value is sent into the
function and the result of a calculation is returned to the script. The return
value is sent back to the exact same location as the function call.

For instance, in the first of the two following cases, the return keyword
returns the value to the inside of a traceQ statement, which consequently
traces the result. In the second case, the return keyword returns the value
to the right side of an equation, thereby populating a variable. This mimics
real-life usage in that you can immediately act upon the returned value or
store and process it at a later time. In both cases, the actual trace is shown
as a comment. This code can be found in the functions_return.fla source file.

function celciusToFarenheit(temp:Number):Number {
return (9 / 5) * (temp + 32);

trace(celciusToFarenheit(20));
/168

function farenheitToCelcius(temp:Number):Number {
return (5 / 9) * (temp - 32);

var temperature:Number = farenheitToCelcius(68);
trace(temperature);
/120

Note that when returning a value from a function, you should also declare
the data type of the return value. This is achieved the same way you type data
in variables or parameters —with a colon followed by the data type. This time,
the data type is placed between the closing parenthesis of the functions dec-
laration and its opening curly brace. This position symbolizes output, rather
than input, of the function.

Functions

NOTE

Values are returned from a function
immediately, so any code inside the
function that appears after the return
statement is not executed.

Chapter 2: Core Language Fundamentals

3



Custom Objects

NOTE

You will use objects later in the book, in
Chapter 10 when working with cascad-
ing style sheets and in Chapter 12 when
working with video.

Part I: Getting Started

Once you get used to this practice, it is best to specify void as a return data
type to indicate when your function does not return a value. By telling the
ActionScript compiler that nothing should be returned (by using void as a
data type), it can warn you if you inadvertently add a return statement later.

Custom Objects

After working with ActionScript for just a short while, you will realize that
you are immersed neck-deep in objects —whether you're using procedural or
object-oriented programming. In addition to the numerous objects that are
already predefined in the ActionScript language (such as movie clips, text
fields, sounds, and more), you can create your own objects and give them
properties—the adjectives of the ActionScript world, describing an object's
general characteristics, the way you might describe a movie clip's width, loca-
tion, rotation, and so on.

To demonstrate this, we'll create a custom object called villain, and give it
properties for health, armor, and lives. None of these terms— villain, health,
armor, or lives—are already part of the ActionScript language. However,
the syntax for using custom objects conforms to the same dot syntax used
throughout ActionScript, so it will seem like those properties have always
been there. The following snippet creates an object, and then creates and
populates properties:

var villain:Object = new ObjectQ;

villain.health = 100;

villain.armor = 100;
villain.lives = 3;

These values can be called up at any time, by querying the properties the
same way they were created.

trace(villain.health);

//100

Objects and Associative Arrays

Another way to create a custom object is type its properties and values explic-
itly at the time of definition:

var obj:@bject = {msg:"Hello", user:"Dodi"};

This structure is sometimes also called an associative array because it asso-
ciates a value with a property (also called a key in this context). The object
syntax to retrieve a key value is the same as described in the prior section.
Using associative array syntax, you substitute a string of the key, in place of
the integer index used with linear arrays. Both of the following examples trace
"Hello":



//object syntax
trace(obj.msg);
//associative array syntax
trace(obj["msg"]);

You can find both object examples in the custom_objects.fla source file.

this and parent

Although potentially a bit nebulous when you're starting with ActionScript,
this can be your friend. It is essentially a self-referential pronoun and is
shorthand for "whichever object or scope you're working with now." Scope is
the realm or space within which an object lives. For example, think of a movie
clip inside Flash's main timeline. Each of these objects (the movie clip and
main timeline) has a unique scope, so a variable or function defined inside
the movie clip will not exist in the main timeline, and vice versa.

It is easiest to understand the usage of this in context, but here are a couple
of examples to get you started. If, from the current scope, you wanted to check
the x location of a movie clip with the instance name mc, you might say:

this.mc.x;

Conversely, if you wanted to send the main timeline to frame 2, but do so
from within the movie clip, you might say:

this.parent.gotoAndStop(2);

The latter example uses the parent keyword, which refers to the object that
is immediately above the current scope in the object hierarchy In this case, it
refers to a movie clip (or main timeline) in which another movie clip resides,
and this will be discussed a wee bit more in the following section.

In both cases, this is a reference point from which you start your path. It's
very common to drop the this keyword when referencing properties and
methods in the current scope. Many programmers include the keyword for
clarity, but it's also sometimes particularly useful or even required —such
as when some ActionScript editors color various parts of your script for
improved legibility In any case, keeping this in your code will help you
remember that you're referencing an object—a concept easy to forget if you
frequently omit the friendly pronoun.

Absolute Versus Relative Addresses

Much like a computer operating system's directory, or the file structure of
a website, ActionScript refers to the address of its objects in a hierarchical
fashion. You can reference an object address using an absolute or relative
path. Absolute paths can be easy because you most likely know the exact
path to any object starting from the top of your application—such as Flash
Professional's main timeline. However, absolute paths are quite rigid and will

Absolute Versus Relative Addresses

NOTE

Depending on how you set up your

file, it is often necessary to specifically
declare what kind of parent you are ref-
erencing. For example, you may need to
explicitly say the parent is a movie clip
before you can work with its timeline.

A little more background is probably
needed to grasp this, as covered in detail
in the " Clarifying or Changing the Data
Type of a Display Object" section of
Chapter 4.

Chapter 2: Core Language Fundamentals

Iwvww.allitebooks.cond



http://www.allitebooks.org

Put It All Together

break if you change the nested relationship of any of the referenced objects.
Relative paths can be a bit harder to call to mind at any given moment, but
they are more flexible. Working from a movie clip and going up one level to
its parent and down one level to a child will work from anywhere—be that
in the root timeline, another movie clip, or nested even deeper —because the
various stages aren't referenced by name.

Tables 2-5 and 2-6 draw analogies to uses found in more familiar computer
operating system and website analogies.

Table 2-5. Absolute (from main timeline to mc3, a nested movie clip inside mc2)

ActionScript

Windows 0S

MacO0S Website

root.mc2.mc3

c:\ folder2\ folder3

Macintosh/folder2/folder3 http ://www.domain.com/dir/dir

Table 2-6. Relative (from a first-level movie clip called mcl, up to its root, and down to the child of a sibling)

ActionScript

Windows 0S

MacO0S Website

this.parent.mc2.mc3

..\folder2\ folder3 | ../folder 2/folder3 ./dir/dir

Part I: Getting Started

Put It All Together

To end this chapter, let's look at a script that brings together much of what
we've discussed to create a randomizing sentence builder. This code can be
found in the build_a_sentence.fla source file. To begin, lines 1 through 7 create
a series of arrays of adjectives, nouns, and verbs, imagined by my children,
Sally and Claire.

Lines 9 through 22 define the buildASentenceQ function, which takes the
adjective, noun, and verb arrays as arguments. Lines 10 through 12 store the
number of items in each array, and then the conditional in lines 13 through 15
check to make sure there is at least one item in each array If any array has 0
items, a warning is returned in line 14 and the function is at an end.

Lines 17 through 19 create a random number between 0 and 2. The Math,
random() method generates a random number between 0 and 1, which is then
multiplied by the length of each array The resulting numbers will be used in
line 21 as indices to retrieve values from the arrays that were passed into the
function. Because array indices must be integers, we must round the random
number created.

However, a random number between 0 and 3 might round to a value of 3.
Traditional rounding techniques round up when the number is 0.5 or above,
and round down for anything under 0.5. So, value of 2.9 would round up to
3. In this case, you'd receive an error because only items 0,1, and 2 exist in the
array There is no fourth item (that would be retrieved with an index of 3).


http://www.domain.com/dir/dir

To skirt this possibility, we force the rounding operation to round down,
using the Math.floorQ method, allowing only numbers 0,1, and 2.

n

The function then ends by returning a sentence. It combines "The ", a ran-
dom adjective, a space, a random noun, a space, a random verb, and " away!"
and returns it to the caller of the function. We'll look at that process, after

the code.

1 var adjsSally:Array = ["hairy", "funny", "bouncy"];

2 var nounsSally:Array = ["daddy", "mommy", "sister"];

3 var verbsSally:Array = ["drove", "swam", "ran"];

4

5 var adjsClaire:Array = ["tall", "snuggly", "clean"];

6 var nounsClaire:Array = ["duck", "birdy", "chipmunk"];

7 var verbsClaire:Array = ["ran", "jumped", "tip-toed"];

8

9 function buildASentence(adj:Array, noun:Array, verb:Array):String {

10 var aCount:int = adj.length;

11 var nCount:int = noun.length;

12 var vCount:int = verb.length;

13 if (aCount == || nCount == || vCount == @) {

14 return ("not enough words provided");

15 }

16

17 var a:int = Math.floor(Math.random() * aCount);

18 var n:int = Math.floor(Math.random() * nCount);

19 var v:int = Math.floor(Math.random() * vCount);

20

21 return "The " + adj[a] + " " + noun[n] + " " + verb[v] +

"away!";

22 }

23

24 for (var i:int = 0; 1 < 3; i++) {

25 var sallySays:String = makeASentence(adjsSally, nounsSally,
verbsSally);

26 trace(sallySays);

27

28 var claireSays:String = makeASentence(adjsClaire, nounsClaire,
verbsClaire);

29 trace(claireSays);

30}

To call the function, we use a for loop in lines 24 through 30. The loop
executes 3 times, calling the function with Sally's arrays (line 25) and Claire's
arrays (line 28). The function returns a sentence in each line, and the loop
then traces the results in lines 26 and 29. The results are random, but here
is a sample:

The funny mommy drove away!

The snuggly birdy ran away!

The funny sister swam away!

The tall duck tip-toed away!

The hairy daddy swam away!
The clean chipmunk jumped away!

Put It All Together

NOTE

Here are some examples of the round-
ing features of the Math class, with the
results listed as comments following
each method:
Math.round(0.8); //1
Math.round(0.2); //@
Math.floor(0.8); //0
Math.floor(0.2); //0
Math.ceil(0.8); //1
Math.ceil(0.2); //1

The Math.round() method rounds

up when the value is 0.5 and above
and down when the value is below 0.5.
Math.floorQ always rounds down,
andMath. ceil () (short for ceiling)
always rounds up to the nearest whole
number

Chapter 2: Core Language Fundamentals



What's Next?

Ideally, we've provided just enough background (or review) of key ActionScript
fundamentals to now focus on topical syntax. Although we won't entirely
ignore basic elements within the scripts of future chapters, we will spend
more time describing the collective goal of a script, and highlighting new
issues introduced or updated by ActionScript 3.0.

Next, we start off the ActionScript 3.0-specific material with a look at the
three essential building blocks of most ActionScript objects: properties,
methods, and events. Events are one of the most significantly changed ele-
ments of ActionScript with the introduction of version 3.0.

In the next chapter, we'll discuss:

e The descriptive properties, such as width, height, location, alpha (opaci-
ty), rotation, and more, of each object that define its major characteristics

* The actions you may exert on objects, or that objects may take on other
objects, in the form of methods

* The events issued by the user or aspects of your program or environment
and, perhaps more directly, the reactions to those events



GRAPHICS AND
INTERACTION

Part II represents the largest section of the book, spanning Chapter 3 through
Chapter 9. This part covers many significant features that distinguish
ActionScript 3.0 from prior versions. It focuses on graphics and interactions
and includes the new event model and display list.

Chapter 3 is a discussion of properties, events, and methods—the items
responsible for manipulating just about anything in Flash. Chapter 4 goes on
to explain the display list, a great new way to display visual assets in Flash.
Chapter 5 discusses timeline control, including various navigation techniques.

Chapter 6 marks an important transition in the book. Chapter 6 discusses
object-oriented programming and, while still introducing syntax in the
timeline, the remaining chapters in the book will focus increasingly on OOP.
Chapter 7 takes a look at various ways to animate graphics with ActionScript.
Chapters 8 and 9 round out the presentation of graphics and interactivity
with tutorials covering drawing with vectors and pixels. Included are demon-
strations for creating vectors with ActionScript and manipulating a variety of
bitmap properties in your projects.

PART

IN THIS PART

Chapter 3
Properties, Methods,
and Events

Chapter 4
The Display List

Chapter 5
Timeline Control

Chapter 6
ooP

Chapter 7
Motion

Chapter 8
Drawing with Vectors

Chapter 9
Drawing with Pixels

49



PROPERTIES, METHC

In addition to the core language fundamentals reviewed in the previous chap-
ter, you will find that the majority of your scripts are written using properties,
methods, and events. These are the basic building blocks of most scripted
tasks and allow you to get and set characteristics of, issue instructions to, and
react to input from, many assets.

This is what we'll be covering in this chapter:

* Jump Right In. Get your feet wet right away by starting the chapter with
a simple practical example. Adapt the Hello World! example by conveying
your greeting one character at a time.

* Properties. Properties are somewhat akin to adjectives, in that they
describe the object being modified or queried. For example, you can
check or set the width of a button. Most properties are read-write, in that
you can both get and set their values. Some properties, however, are read-
only, which means you can ask for, but not change, their values.

* Events. Events are the catalysts that trigger the actions you write, set-
ting properties and calling methods. For instance, a user might click the
mouse button, which would then result in a mouse event. If you write
code to react when that event is detected, the event can then cause a func-
tion to execute performing the desired actions.

* Methods. Methods are a bit like verbs. They tell objects to do something,
such as play and stop. In some cases, methods can be used to simplify
the setting of properties. You might use a method called setSizeQ, for
example, to simultaneously set the width and height of something. Other
methods are more unique, such as navigateTollRL(), which instructs a
browser to display a web page.

In this chapter, you will build a utility that will demonstrate each of these
ActionScript structures. Using mouse and keyboard events, you will manipu-
late several properties, as well as execute a few methods. The majority of
ActionScript objects —from visual assets like movie clips to code-only objects
like timers—have properties, methods, and events.

CHAPTER

IN THIS CHAPTER

Jump Right In

Properties

Events

Methods

Event Propagation

Frame and Timer Events
Removing Event Listeners

What's Next?

51



Jump Right In

NOTE

ActionScript 3.0 uses hexadecimal nota-
tion to express colors as numbers. The
format of a simple color is OxRRGGBB.
Ox tells the compiler the number is a
hexadecimal value and replaces the #
symbol used to express the same value
as a string, as in HTML. The next three
character pairs represent red, green, and
blue and must represent values from 0
to 255. To do this, hexadecimal num-
bers use basel6 (instead of baselO like
a decimal number) and each character
uses not only 0-9 but also A-F. 00 is

no color and FF is all color, for each
pair 0x000000 is black (no colors),
and OxFFFFFF is white (all colors). The
color used in this script is all red, no
green, and no blue.

Part II: Graphics and Interaction

For simplicity, we'll focus primarily on the movie clip. Using the movie clip to
centralize our discussion will make it easier for you to expand your examples
on your own, as you look for other attributes to manipulate. Once you are
comfortable with how properties, methods, and events work, it will be rela-
tively easy to learn about other objects.

Jump Right In

This chapter's first script again builds on the Hello World! theme, this time
concentrating on properties, methods, and events. In this example, we'll
display our salutation one character at a time. As with prior chapters, we'll
explain this code briefly, and elaborate as the chapter continues. This script
is found in the hello_world_prop_event.fla source file.

1 var txtFld:TextField = new TextFieldQ;

2 addChild (txtFld);

3

4 txtFld.textColor = OxFFO000;

5

6 var str:String = "Hello World!";

7 var len:int = str.length;

8 var i:int = o;

9

10 this.addEventl_istener(Event.ENTER_FRAME, onEnter, false, 0, true);
11 function onEnter(evt:Event):vold {

12 txtFld.appendText(str.charAt(i));

13 it++;

14 if (i > len) {

15 removeEventListener(Event.ENTER_FRAME, onEnter);
16 }

17 }

Lines 1 and 2 again create a text field and add it to the display list so the user
can see it. Line 4 sets textColor, a basic property of the text field, coloring
the text red. This approach to text coloring is a quick solution, but it colors
all text in the field. In Chapter 10, you'll learn how to exercise more precise
control over text, allowing you to color individual segments of text.

Lines 6 through 8 create and populate variables including a string, the num-
ber of characters in that string, and a counter's initial value. The remainder of
the script is an enter frame event listener to add the string text to the end of
the field, character by character. Each time the event is received, line 12 uses
the string method charAtQ to determine the character at position i in the
string, and the appendTextQ method to add that character to the field. The
i counter is then incremented and, if it exceeds the number of characters in
the field, the listener is removed, halting the process. The result is that "Hello
World!" is added to the field, one character at a time.



Properties

Properties

If you think of properties as ways of describing an object, they become sec-

ond nature. Asking where a movie clip is, for example, or setting its width, are
both descriptive steps that use properties.

In Chapter 2, we briefly discussed the object model and dot syntax that

bring order and structure to ActionScript as well as many other scripting and

programming languages. The first step in using a property is to determine box.x += 10;
which object you want to manipulate. For example, you might want to affect box.y += 10;
a movie clip on the stage with an instance name of box. The instance name is

important because there may be multiple movie clips on stage, but you may

want to alter only one. So you need to be able to differentiate which clip to

change.

It's easy to give a movie clip on the stage an instance name. Select it and
type the name in the upper portion of Flash Professional's Properties panel, box.scaleX = 0.5:
as seen in Figure 3-1. (You've also learned how to create objects, such as text box.scaleY = 0.5:
fields, entirely from code, and you'll be doing that more and more as the book

progresses.)

PROPERTIES

kl box ® box.rotation = 20;

Movie Clip

Instance of; Boh Swap.

Figure 3-1. Giving a movie clip an instance name in Flash Professional CS5's Properties

panel
box.alpha = 0.5;

The syntax for manipulating a property with ActionScript requires that you
follow the instance name with a dot (period) and the property name. To get
you started, we'll show you the syntax for making several changes to movie
clip properties in the following table. Then, when we demonstrate how to
handle events in the next section, we'll change these properties interactively
The following examples assume that a movie clip with an instance name of ; I
box is on the stage, and Figure 3-2 demonstrates the visual change made by box.visible = false;
each property The light-colored square is the original state before the movie
clip is affected. (The alpha property shows only the final state, and the dashed Figure 3-2. Changes to movie clip
stroke for the visible property is only to show that the box is not visible.) properties

Table 3-1 shows nine movie clip properties with sample syntax and notes on
each property's unit of measure and possible sample range of values.

Chapter 3: Properties, Methods, and Events



Events

Table 3-1. Movie clip properties

Description Property Syntax for Setting Value Units and/or Range
Location X, Yy box.x = 100; Pixels

box.y = 100;
Scale scaleX, scaleY box.scaleX = 0.5; Percent / 0-1

box.scaleY = 0.5;
Dimensions width, height box.width = 72; Pixels

box.height = 72;
Rotation rotation box.rotation = 45; Degrees / 0-360
Transparency alpha box.alpha = @.5; Percent / -1
Visibility visible box.visible = false; Boolean

If you have experience with prior versions of ActionScript, you may notice a

NOTE few changes in the property syntax. First, the properties do not begin with an

In Chapter 2, you learned that ++ adds
1 and - - subtracts 1 from a variable.
You can also use these operators with
properties.

The following code uses += to change
the rotation of the box movie clip.
Rather than adding just 1 to the left side
of the equation, += will add whatever
value is on the right side of the equa-
tion. The operators -=, *=, and /= func-
tion similarly — subtracting, multiplying,
or dividing the left side of an equation
by the value on the right of the operator
These are called compound assignment
operators because they simultaneously
alter and assign values.

This code will add 20 degrees to the
movie clip's rotation:

box.rotation += 20;
This is equivalent to, but shorter than:

box.rotation = box.rotation + 20;

Part II: Graphics and Interaction

underscore. This is a beneficial consistency introduced with ActionScript 3.0.
Rather than varying property syntax, some with and some without leading
underscores, in 3.0 no properties begin with the underscore character.

Second, some value ranges that used to be 0-100 are now 0-1. Examples
include scaleX, scaleY, and alpha. Instead of using 50 to set a 50% value,
specify 0.5.

Finally, the first scaling method uses properties scaleX and scaleY, rather
than _xscale and _yscale, which are their ActionScript 1.0 and 2.0 equiva-
lents. Typically, ActionScript 3.0 properties will cite the x and y version of a
property as a suffix to make referencing the property easier.

Table 3-1 shows syntax only for setting properties for the box movie clip.
Getting the value of a property is just as easy For example, if you wanted
to trace the movie clip's alpha value, or store it in a variable, you could write
either of the following, respectively:

trace(box.alpha);

var bAlpha:Number = box.alpha;

Events

Events make the Flash world go round. They are responsible for setting your
scripts in motion, causing them to execute. A button can be triggered by a
mouse event, text fields can react to keyboard events—even calling your own
custom functions is a means of issuing a custom event.

Events come in many varieties. In addition to the obvious events like mouse
and keyboard input, most ActionScript classes have their own events. For
example, events are fired when watching a video, working with text, and resiz-
ing the stage. To take advantage of these events to drive your application, you
need to be able to detect them.



In previous versions of ActionScript, there were a variety of ways to react to
events. You could apply a script directly to a button, for example, and use
the on (Release) approach. As the language matured, you could create event
handlers and apply them remotely using instance names—for example, using
myButton.onRelease. Finally, you could use event listeners, structures that listen
for the occurrence of an event and execute a function, primarily with compo-

nents or custom objects.

In the latest version of ActionScript, reacting to events is simplified by relying on
one approach for all event handling. The ActionScript 3.0 event model uses event
listeners regardless of the type of event or how it is used.

Using Event Listeners

The concept of event listeners is pretty simple. Essentially, you tell an object
to listen for an event and react if that event occurs. Imagine that you're sitting
in a busy airport. Lots of things are going on around you, all of which can be
thought of as events. If you had no particular reason to be at the airport, you
might ignore all of these events. They would still occur, but you would not listen
for them.

However, if you're scheduled to depart on an upcoming flight, you might establish
a few listeners. For example, you might listen for a loudspeaker announcement
about your flight number but ignore everything else. Or, you might also listen for
a loudspeaker announcement about your destination city You might even plan to

listen for a third event: the inclusion of your airline in an announcement.

In all cases, the reaction to these events would be to pay attention to the
announcement hoping to learn more about your flight. Other events might still
occur in the airport, including other announcements, but without listening for
those events, they would wash over you without reaction.

ActionScript 3.0 event listeners work much the same way Creating an event
listener, in its most basic form, is fairly straightforward. The first item needed
is the object that will listen for the event. A button is a good example to start
with. The addEventListenerQ method is then used to assign a listener to that
object. This method requires two arguments. The first argument is an event to
listen for —one that is appropriate for your goal. For example, it makes sense for
a button to listen for a mouse event, but less so to listen for the end of a video
or a resizing of the stage. The second argument is a function to execute when
the event is heard.

Here's an example of code that uses a button with the instance name rotate_
right_btn and a function called onRotateRightQ. This can be found in the
simple_event_listener.fla source file.

1 rotate_right_btn.addEventListener(MouseEvent.MOUSEJJP, onRotateRight);

2 function onRotateRight(evt:MouseEvent):void {
3 box.rotation += 20;
4

Chapter 3: Properties, Methods, and Events

Events



Events

NOTE

Separating mouse events into discrete
up and down events allows you to react
independently to each event. That is,
you can assign one listener to the down
event and another to the up event. This
can be useful when creating draggable
objects. You can start dragging on mouse
down, and then stop dragging on mouse
up, as you'll see later in this chapter.

You can also use a simpler mouse event
called CLICK, which requires both the
down and up stages of the user's click
process to trigger a listener

Part II: Graphics and Interaction

The event this code is listening for is a mouse up event—that is, when the
mouse button is released while over the button. In ActionScript 3.0 syntax,
events are typically grouped together in classes, and the event itself is usually
defined as a constant—a variable that cannot be changed after it's defined.
Using constants, when you know a value will never change, reduces errors
because the compiler will warn you if you try to change them. Constants
are usually typed in all uppercase letters, with multiple words separated by
underscores.

The MouseEvent class contains constants that refer to mouse events like
MOUSEJJP and MOUSE_DOWN. Other examples of events are ENTER_FRAME, found
in the Event class and used to react to playhead updates, and KEY_UP, found
in the KeyboardEvent class, for reacting to user keyboard input. We'll look at
both of these events later on in this chapter.

The second argument in the addEventListenerQ method, the function that is
called when the event is received, is listed by name only, without the trailing
parentheses. This is because you are referring to the function, not actually
calling it. The listener will do that for you when the event is received. In this
example, onRotateRight refers to the onRotateRightQ function, defined in
lines 2 through 4.

You will probably be familiar with the structure of this function from the
discussion about functions in Chapter 2. To review the syntax, the braces
define the function's contents. In this case, line 3 adds 20 degrees to the cur-
rent rotation value of the movie clip box. Also explained in Chapter 2, the
void that follows the function name and parentheses indicates that no value
is returned by the function.

However, new to our discussion of functions (see Chapter 2 if needed)
is the fact that when functions are used in event listeners, the function
requires a single parameter. This parameter receives information not from
any ActionScript you write, but rather from the event. In this case, we arbi-
trarily named the parameter evt. (You may also see e or event used in other
resources, but any valid parameter name will work.)

Without a parameter in place to receive that incoming data, you will get an
error that says something like, 'Argument count mismatch. Expected 0, got
1." It will also tell you which function has the problem to make it easier to
find. The error means that the function expected no arguments coming in,
because no parameters were defined. Instead, one argument was received,
resulting in a mismatch.

You'll get used to this quickly, and reap the benefits. The data received usually
contains useful information about the event and element that triggered the
event. You can parse this information for use in the function. In keeping with
good error reporting, the parameter should have a data type that matches the
type of data being sent into the function. In this case, the event that triggered
the listener was of type MouseEvent. Using this as the parameter data type will

Iwvww.allitebooks.cond



http://www.allitebooks.org

make sure that the listener receives only a MouseEvent, or the compiler will
warn you to the contrary

To illustrate the use of this argument data, let's look at another mouse event
example, found in the start_stop_drag.fla source file. This time, however, we'll
use two events, and use the incoming information to identify the target
of the event—speaking generically, the object at which the event occurred.
Specific to this case, the target is the object that was clicked.

1 myMovieClip.add EventListener(MouseEvent.MOUSE_DOWN, onStartDrag);
2 myMovieClip.add EventListener(MouseEvent.MOUSEJJIP, onStopDrag);

3 function onStartDrag(evt:MouseEvent):void {

4 evt.target.startDrag();

5 }

6 function onStopDrag(evt:MouseEvent): void {

7 stopDrag();

8 }

In this example, two event listeners are assigned to a movie clip in lines 1
and 2. One listens for a mouse down event, another listens for a mouse up
event. They each invoke different functions. In the first function, the target
property of the event, which is parsed from the function argument, is used
to identify which object received the mouse event. This allows the onStart-
Drag() function in lines 3 through 5 to start dragging the movie clip that
was clicked. The onStopDrag() function in lines 6 through 8 then stops all
dragging when the movie clip receives a mouse up event.

The best thing about this example is that the target property identifies the
movie clip without an instance name. This generic approach is very useful
because it makes the function much more flexible. The function can act
upon any appropriate object that is clicked and passed into its parameter.
In other words, the same function could start and stop dragging any movie
clip to which the same listener was added. The following additional lines,
adding the same functionality to a second movie clip called myMovieClip2,
demonstrate this:

9 myMovieClip2.addEventListener(MouseEvent.MOUSE_DOWN,
10 myMovieClip2.addEventListener(MouseEvent.MOUSEJJP,

onStartDrag);
onStopDrag);

Finally, this example's last modification demonstrates that more than one
object can also call the same listener function. It is possible, while dragging
an object, to move your mouse so quickly that the mouse up event occurs
outside the bounds of the object you're dragging. If that occurs, the object
would not receive the mouse up event, and the drag would not be stopped.

One way to get around this is to attach another listener to the stage, and set
that listener to also call the onStopDrag() function. This way, whether your
mouse up occurs over the movie clip or over the stage, the dragging will cease.

11 stage.addEventListener(MouseEvent.MOUSEJJIP, onStopDrag);

Events

NOTE

It is also possible to type an event lis-
tener parameter with the more generic
Event class, from which other built-

in ActionScript 3.0 event classes are
extended. This will allow more than one
type of event to call the same function.

NOTE

A similar event property is current-
Target, which references the object to
which the event listener is attached.
When a listener is attached to a single
movie clip (as in the cited example),
target and currentTarget are the
same because you click on the object
with the listener However, you'll learn
in the next chapter that events can
pass from a parent clip down to any
child clips within. When the listener is
attached to the parent and you click
on the child, target will still refer to
the child, because that's what you
clicked. The currentTarget prop-
erty, however, will refer to the parent
movie clip because that's the object to
which the listener is attached. For more
information, see "The Event Object,"
an event-related post at http./fwww.
LearningActionScript3.com.

Chapter 3: Properties, Methods, and Events


http://www

Events

Part II: Graphics and Interaction

Using Mouse Events to Control Properties

Now we can combine the syntax we've covered in the "Properties" and "Events"
sections to set up interactive control over properties. In the chapter03 direc-
tory of the accompanying source code for this book, you'll find a file called
props_events_methods_ui.fla. It contains nothing more than the example
movie clip box and two buttons in the library that will be used repeatedly to
change the five properties discussed earlier. The movie clip contains numbers
to show which of its frames is visible, and the instance name of each copy
of the button on the stage reflects its purpose. Included are move_up_btn,
scale_down_btn,  rotate_right_btn,fade_in_btn, and  toggle visibile_btn, among
others. Figure 3-3 shows the layout of the file.

PROPERTIES and MOUSE EVENTS

toggle visibility

AN move AA scale AA rotate AA fade
T .

Figure 3-3. Layout of the props_events_ui.fla file

Starting with movement, we need to define one or more functions to update
the location of the movie clip. There are two common approaches to this
task. The first is to create one function in the keyframe in frame 1 for all
movement that uses a conditional to decide how to react to each event. We'll
demonstrate that when we discuss keyboard events. For now, we'll use the
simpler direct approach of defining a separate basic function for each type of

movement, as shown in the following script:



Events

1 function onMoveleft(evt:MouseEvent):void {
2 box.x -= 20;

3}

4 function onMoveRight(evt:MouseEvent):void {
5 box.x += 20;

6

7 function onMovellp(evt:MouseEvent) :void {

8 box.y -= 20;

9 }

10 function onMoveDown(evt:MouseEvent):void {
11 box.y += 20;

12 1}

Once the functions are defined, all you have to do is add the listeners to the

appropriate buttons.

13 move_left_btn.add Event Listener(MouseEvent.MOUSEJJIP, onMovelLeft);
14 move_right_btn.add EventListener(MouseEvent.MOUSEJJP, onMoveRight);
15 move_up_btn.addEventListener(MouseEvent.MOUSEJJP, onMoveUp);

16 move_down_btn.add Event Listener(MouseEvent.MOUSEJJP, onMoveDown);

This simple process is then repeated for each of the buttons on stage. The
remaining script collects the aforementioned properties and event listeners
to complete the demo pictured in Figure 3-3. The resulting file wires up one
or more buttons for each property, all of which manipulate the movie clip in
the center of the stage. The finished script can be found in the prop_events.
fla source file.

17 scale_up_btn.addEventListener(MouseEvent.MOUSEJJP, onScaleUp);

18 scale_down_btn.add EventListener(MouseEvent.MOUSEJJP, onScaleDown);
19

20 rotate_left_btn.addEventListener(MouseEvent.MOUSEJJP, onRotatelLeft);
21 rotate_right_btn.addEventListener(MouseEvent.MOUSEJJP,

22 onRotateRight);

23

24 fade_in_btn.addEventListener(MouseEvent.MOUSEJJIP, onFadeln);

25 fade_out_btn.addEventListener(MouseEvent.MOUSEJJIP, onFadeOut);

26

27 toggle_visible_btn.add EventListener(MouseEvent.MOUSEJJP,
28 onToggleVisible);
29

30 function onScaleUp(evt:MouseEvent):void {

31 box.scaleX += 0.2;

32 box.scaleY += 0.2;

33}

34 function onScaleDown(evt:MouseEvent):void {
35 box.scaleX -= 0.2;

36 box.scaleY -= 0.2;

37}

38

39 function onRotateLeft(evt:MouseEvent):void {
40 box.rotation -= 20;

41 }

42  function onRotateRight(evt:MouseEvent):void {
43 box.rotation += 20;

44 }

45

46 function onFadeIn(evt:MouseEvent):void {

47 box.alpha += 0.2;

48 }

Chapter 3: Properties, Methods, and Events



6i -

Methods

Part II: Graphics and Interaction

49 function onFadeOut(evt:MouseEvent):void {

50 box.alpha -= 0.2;

51 }

52

53 function onToggleVisible(evt:MouseEvent):void {
54 box.visible = !box.visible;

55 }

Methods

Methods, the verbs of the ActionScript language, instruct their respective
objects to take action. For example, you can tell a movie clip to stop playing
by using its stop() method. Like properties, methods appear consistently in
the dot syntax that is the foundation of ActionScript, following the object
calling the method. One way to tell methods apart from properties is that
methods always end with parentheses —even when no values are required for
the method to work. For example, if the movie clip box in the main timeline
calls the stop() method, the syntax would be:

box.stop();

As they have properties, most ActionScript classes also have specific methods,
and you can define your own methods by writing functions in your own cus-
tom classes. For the following demonstration, we'll again focus on the movie
clip from the prior example. This time, however, we'll introduce another event
class and show you how to control your movie clips with the keyboard.

Using Keyboard Events to Call Methods

Listening for keyboard events is very similar to listening for mouse events,
with one significant exception: The target of the event listener is not always
the object you wish to manipulate. When working with text, the text field
may indeed serve well as the target of the keyboard events. When controlling
movie clips, however, the stage itself is often a useful, centralized recipient of
keyboard events.

Adding an event listener to the stage means that you can process all key
events with a single listener, and then isolate only the desired key events with
a conditional, issuing instructions accordingly To simplify the syntax of this
demonstration, we'll use the switch form of conditional statements. The switch
statement, discussed in Chapter 2, is simply a more easily readable if/else-if
conditional structure.

This script in the following example can be seen in the methods_events.fla
file in the accompanying source code. We'll start by adding the listener to the
stage. In this case, we'll be looking for the key down event, which is specified
using a constant like all predefined events, KEY_DOWN. This time, however, it's
part of the KeyboardEvent class. When the event is heard, our listener will call
the onKeyPressedQ function.

1 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPressed);



Next, we define the onKeyPressedQ function, being sure to type the incoming
argument value as KeyboardEvent. Finally, we parse the incoming event infor-
mation for the keyCode property The keyCode is a unique number assigned to
each key and allows you to determine which key was pressed.

To specify each key in our script, we'll use constants defined in the Keyboard
class that each contain key codes. Using these constants, when they suit your
purpose, is easier than having to know the keyCode value for each key For
example, you can reference the Enter/Return key as Keyboard.ENTER, the left
arrow key as Keyboard. LEFT, and so on.

We'll use five keys to execute five methods. When each desired key is pressed,
it will execute the appropriate method, and then break out of the switch state-
ment. We'll also add a default state that will trace the keyCode of any other
key pressed. The final script segment looks like this:

2 function onKeyPressed(evt:KeyboardEvent):void {
3 switch (evt.keyCode) {

4 case Keyboard.ENTER:

5 box.play();

6 break;

7 case Keyboard.BACKSPACE:
8 box.stop();

9 break;

10 case Keyboard.LEFT:

11 box.prevFrameQ;

12 break;

13 case Keyboard.RIGHT:

14 box.nextFrameQ;

15 break;

16 case Keyboard.SPACE:

17 box.gotoAndStop(3);
18 break;

19 default:

20 trace("keyCode:", evt.keyCode);
21 }

22}

The first four methods are basic movie clip navigation options: playing, stop-
ping, or sending the movie clip to the previous or next frame in its timeline.
The last method sends the movie clip to a specific frame and then stops
its playback. The methods are probably self-explanatory, with only the last
method even using an argument—in this case, the frame number. If you do
want additional information, however, we'll put these and other navigation
options to use in Chapter 5 when we discuss timeline control.

The combined source file, props_methods_events.fla, includes both the prop-
erties and methods examples in this chapter.

Methods

NOTE

One keyCode value is assigned to a key,
so this value can't be used directly for
case-sensitive key checking — that is,
uppercase "S" has the same keyCode as
lowercase "s." In case you need to analyze
case sensitivity, the charCode property
has a unique value for each character in
each case. Finally, not all keys trigger key-
board events, as some keys are reserved
for operating system use.

NOTE

Depending on your computer setup,
some key events may not function
properly in Flash Professional when
using the Control — * Test Movie com-
mand. This is probably not an error
but instead a result of Flash Player
using keyboard shortcuts just like the
Flash Professional application does.

To test your key events, simply use the
Control —  Disable Keyboard Shortcuts
menu command to disable keyboard
shortcuts in the Flash Professional
integrated player (that is, after invok-
ing Test Movie). Be sure to reenable the
shortcuts, or you won't be able to use
Cmd+W (Mac) or Ctrl+W (Windows)
to close the window, or use other famil-
iar shortcuts.

Alternatively, you can test the movie

in a browser using Cmd+F12 (Mac) or
Ctrl+F12 (Windows). Also, the keyboard
shortcut conflicts do not apply to the
standalone Flash Player, in case you
choose to use it for testing. Typically,
double-clicking an SWF will open the
SWEF in the standalone player, but your
system may be configured differently.

Chapter 3: Properties, Methods, and Events



Event Propagation

So far in this book, we've been working primarily with movie clips, which
are visual assets, or display objects. A display object is any ActionScript object
that can be seen by the eye. That is, a movie clip is a display object, but a
sound is not. For your audience to see a display object, it must be part of the
display list—a list of everything a user can see at any given time. That is, you
can create a display object (such as a text field), but not add it to the display
list. This means the text field will exist, but the user won't be able to see it.

The display list includes the stage, buttons, text fields, shapes, and bitmaps, as
well as visual assets loaded at runtime like images and other SWFs —every-
thing you can see, right down to the most deeply nested clip. We'll explain
the display list in greater detail in the next chapter, but we need a little
background to get the most from our introduction to events. (It's hard to talk
about one without the other!)

One of the best things about ActionScript 3.0 is the way that events and the
display list work together. This includes event propagation, in which events
flow through objects in the display list, making it possible for multiple dis-
play objects to react to the same event. Certain events, such as mouse and
key events, are not sent directly to the target of the event. That is, a button
doesn't immediately receive a mouse event when clicked. Instead, events are
dispatched to the start of the display list, and the event propagates down to
the event target, and then bubbles back up through the display list again. You
can react to the event anywhere along this path.

Consider two movie clips (mc2 and mc3) within another movie clip (mcl)
that is on the stage. Next, imagine that you click on the nested movie clip,
mc2, making it the target of the event. When the event occurs, it is not dis-
patched directly to mc2, but rather to the display list. For a simple look at the
route the event takes, the stage receives the event first, then the main timeline
(also called the root), then the parent movie clip, mcl, and then the target of
the event, mc2. After the target receives the event, it then propagates back up
through the display list to mcl, the main timeline (root), and stage. Figure 3-4
depicts the journey of the event.

Not every display object is a part of this path, however—only those in the
hierarchical line of the event flow. For example, mc3 is not a child or parent
of any of the objects between the stage and the event target. Therefore, it's
outside this event flow, as seen in Figure 3-4.



target

stage
root
mcl

mc2 mc3

Figure 3-4. Event propagation process

Event propagation can be used to great advantage with just a little bit of plan-

ning. For example, let's say both nested movie clips in Figure 3-4, mc2 and

mc3, were designed to react to mouse over and mouse out events. Whenever the

user rolled the mouse over either of the clips, it would change its alpha value.

In the most direct case, you would attach a listener for each event to each

movie clip. The following code shows the script for this scenario using two

movie clips, folderO and folderl, and Figure 3-5 depicts the result.

O oo NV AW N R

PR
N RO

folder0.add EventListener(MouseEvent.MOUSE_OVER, onFolderOver);
folder@.addEventListener(MouseEvent.MOUSE_OUT, onFolderOut);
folderl.add EventListener(MouseEvent.MOUSE_OVER, onFolderOver);
folderl.addEventListener(MouseEvent.MOUSE_OUT, onFolderOut);

function onFolderOver(evt:MouseEvent):void {

evt.target.alpha = 0.5;

function onFolderOut(evt:MouseEvent):void {
evt.target.alpha = 1;

-

Figure 3-5. The effect of the changing alpha values using mouse over and mouse out

events

Event Propagation

Chapter 3: Properties, Methods, and Events



Event Propagation

NOTE

It's important to note that not all

events propagate through the display
list. Frame events, for example, which
we'll discuss in the next section, are
dispatched directly to the event target.
Before relying on event propagation,
check the documentation to see how
the event behaves. In particular, the
bubbles property of an event class is a
Boolean that indicates whether an event
bubbles back up through the display list
after reaching its target.

For more information, see the compan-
ion website, which includes discussions
about event phases, priority of execu-
tion, stopping event propagation, and
more. Consult Essential ActionScript
3.0, Chapters 12 and 21, for more discus-
sions on event propagation.

NOTE

To see another example of the difference
between the target and currentTarget
event properties, change target in lines 5
and 9 to currentTarget in the code at
right. Because the listener is attached to
the parent movie clip, which contains all
the folders, currentTarget causes the
parent clip to fade, affecting all its chil-
dren. Used judiciously, these properties
could be used to highlight a single folder,
or all folders as a group.

Part II: Graphics and Interaction

—

Figure 3-6. Using the parent movie clip to propagate events

Now imagine having to use the same approach for many folders, as seen in
Figure 3-6. The code could get quite extensive with all those listeners for each
folder. However, with event propagation, it's possible to attach the listener to
the parent movie clip. In this example, all of the folders are inside a movie clip
called folder_group, symbolized by the dashed line in Figure 3-6. If we attach
the listener to the parent movie clip, the event will cascade through the dis-
play list, and the listener functions will be able to determine the object target
from the data sent into the function. The code that follows is significantly
simplified, thanks to event propagation, and can be seen in the source file
event_propagation2.fla.

-

folder_group.add Event Listener(MouseEvent.MOUSE_OVER,
folder_group.add Event Listener(MouseEvent.MOUSE_0UT,

onFolderOver);
onFolderoOut);

function onFolderOver(evt:MouseEvent):void {

evt.target.alpha = 0.5;

function onFolderOut(evt:MouseEvent):void {
evt.target.alpha = 1;
0}

= O N O B wN



Frame and Timer Events

We've been using mouse and keyboard events because you're almost certainly
familiar with them to some degree, and they are ideally suited to this tutorial
context. However, there are many events in the ActionScript language. While
it's not possible to cover every one, we would like to round out the chapter
with two other significant event types: frame and timer.

Frame Events

Frame events are not triggered by user input the way mouse and keyboard
events are. Instead, they occur naturally as the SWF plays. Each time the
playhead enters a frame, a frame script is executed. This means that frame
scripts execute only once for the life of the frame, making them an excellent
location for seldom executed tasks, such as initializations. In other words, for
a frame script to execute more than once, the playhead must leave the frame
and return—either because of an ActionScript navigation instruction, or a
playback loop that returns the playhead to frame 1 when it reaches the end
of the timeline. Single-frame FLA files, therefore, execute their single frame
scripts only once.

However, using an event listener, you can listen for a recurring enter frame
event that some display objects have, including the main timeline, movie
clips, and even the stage. An enter frame event is fired at the same pace as the
document frame rate. For example, the default frame rate of an FLA created
by Flash Professional CS4 and later is 24 frames per second, so the default
enter frame frequency is 24 times per second. Using the enter frame event
allows your file to update frequently—a handy thing for updating visual
assets.

The frame_cvents.fla file in the accompanying source code demonstrates
this event by updating the position of a unicycle every time an enter frame
event is detected. It places the unicycle at the location of the mouse and, as
a further review of properties, it rotates the child movie clip in which the
wheel resides. Figure 3-7 demonstrates the effect. As you move your mouse
to the right on the stage, the unicycle will move to the right, and the wheel
will rotate clockwise.

The code for this example follows. The first line adds an enter frame event
listener to the main timeline, specifying the event using the ENTER_FRAME
constant of the Event class. The function sets the unicycle's x coordinate and
rotation to the x coordinate of the mouse.

1 stage.addEventListener(Event.ENTER_FRAME, onFramelLoop);
2

3 function onFramelLoop(evt:Event):void {

4 cycle.x = mouseX;

5 cycle.wheel.rotation = mouseX;

6 |}

Frame and Timer Events

S o ;

Figure 3-7. Visual depiction of the unicycle
movements

NOTE

This example demonstrates a scripting
shortcut aided by ActionScript. When
specifying a rotation higher than 360
degrees, ActionScript will understand
the fact that an angle of rotation can-
not exceed 360 and use the correct
value. That is, 360 degrees is one full
rotation around a circle, bringing you
back to degree 0 (720 degrees is twice
around the circle and also equates to 0).
Similarly, 370 degrees is equivalent to 10
degrees, as it is 10 degrees past degree

0, and so on. This allows you to set the
rotation of the wheel movie clip to the x
coordinate of the mouse, without worry-
ing about rotation ceasing after moving
past the 360th pixel on the stage.

Chapter 3: Properties, Methods, and Events



Frame and Timer Events

NOTE

As described in Chapter 2, frame and
timer loops, such as those seen in the
previous examples, are often an attrac-
tive alternative to for loops because
they allow additional updates to occur
throughout the file. A code loop, such as
a for loop, is one of the most processor-
intensive structures and will execute
only the code inside the loop until the
loop is finished. This means that ani-
mation, sound, or video updates, for
example, will all be halted while the
loop is working.

Part II: Graphics and Interaction

Timer Events

An alternative to using enter frame events to trigger actions on a recurring
basis is to use time-based events. Although it's among the most straightfor-
ward options, using the enter frame event exclusively for this purpose has
disadvantages. For example, Flash Player can reliably achieve only moderate
frame rates —somewhere between the default 24 frames per second (fps) and
perhaps 60 or so fps on the high end. Your mileage may vary, but that's fairly
accurate when averaging the CPU population at large. More importantly, the
rate at which the enter frame fires is not always consistent.

On the other hand, time-based events are measured in milliseconds and can
therefore sometimes fire more quickly Further, time-based events don't vary as
much from scenario to scenario, so they are more reliable and consistent.

Previous versions of ActionScript used the setlntervalQ method for ongo-
ing recurring events and the setTimeoutQ method for finitely recurring
events. ActionScript 3.0 wraps up these approaches neatly behind the scenes
of the new Timer class, simplifying the process of using timers.

The first step in using the Timer class is to create an instance of the class.
Fortunately, creating instances in ActionScript 3.0 is very consistent, so this
may look familiar. A variable is declared and typed using a data type that
matches the class being instantiated. The new keyword creates a new instance
of the class and that instance is stored in the variable:

var timer:Timer = new Timer(delay, repeatCount);

In this case, the class constructor can take two arguments. The first is manda-
tory and specifies the delay, in milliseconds, before the timer event is fired.
The second is optional and is the number of times the event fires. Omitting
the second argument will cause the event to fire indefinitely, each time after
the specified delay Using a positive value, such as 3, will cause the event to
fire that finite number of times (again, after the specified delay).

In the sample timer_events.fla in the accompanying source code, the timer
event (consistently specified as the constant TIMER in the TimerEvent class),
occurs every second (or, in Timer units, every 1,000 milliseconds) and calls
a function that increases the rotation of a hand nested inside a watch
movie clip. The rotation increases 6 degrees every second, making one full
360-degree journey in 60 seconds.

var timer:Timer = new Timer(1000);

timer.addEventListener(TimerEvent.TIMER, onTimer);

timer.start();

function onTimer(evt:TimerEvent):void {

}

One important thing to note is line 3. The timer you instantiate does not start

watch.hand.rotation += 6;

o A wN R

automatically This gives you greater flexibility and control over your timer



events. You can also stop the timer using the stopQ method, and reset the
timer using the reset() method. The latter stops the timer and also resets the
repeat count to zero. For example, if you specified that the timer call a func-
tion five times, but reset it after the third call, the timer would begin counting
again from zero rather than picking up from three at the point when it was
reset. Figure 3-8 shows the watch used in timer_events.fla.

Removing Event Listeners

Though event listeners make most event handling easy to add and maintain,
leaving them in place when unneeded can wreak havoc. From a logic stand-
point, consider what could happen if you kept an unwanted listener in opera-
tion. Imagine a weeklong promotion for radio station 101 FM, which rewards
customer number 101 who enters a store each day of that week. The manager
of the store is set up to listen for "customer enter" events, and when customer
101 enters the store, oodles of prizes and cash are bestowed upon the lucky
winner. Now imagine if you left that listener in place after the promo week
was over. Oodles of prizes and cash would continue to be awarded at great,
unexpected expense.

Unwanted events are not the only problem, however. Every listener created
occupies a small amount of memory Injudiciously creating many event lis-
teners, without cleaning up after yourself, uses memory without releasing it,
which reduces available memory over time. This effect is called a memory
leak. Therefore, it's a good idea to remove listeners when you know they will
no longer be needed.

To do so, just use the removeEventListenerQ method. This method must
be invoked by the object to which the listener was originally attached and
requires two parameters: the event and function specified when the listener
was created. Specifying the correct object, event, and function is important
because you may have multiple listeners set up for the same object or event
and you'll want to remove the correct listener.

Let's show how this works by adding to the previous example and remov-
ing the timer event listener when the rotation of the watch hand meets or
exceeds 30 degrees of rotation. The new code is in bold and can be found in
the source file removingjisteners.fla.

var timer:Timer = new Timer(1000);

timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.start();

function onTimer(evt:TimerEvent):void {
watch.hand.rotation += 6;
if (watch.hand.rotation >= 30) {
timer.removeEventListener(TimerEvent.TIMER, onTimer);

}

O o0 NV AW N R

Removing Event Listeners

Figure 3-8. Use of the timer eventin a
stopwatch

Chapter 3: Properties, Methods, and Events



Checking ActionScript Angles

The code in the "Removing Event Listeners" section of this chapter is a simple
extension of the prior example, rotating a watch hand every second. However, it was
chosen to demonstrate one of the efficiencies of ActionScript: using the shortest
angle possible to get to a specific degree of rotation. This is best explained by
showing that 270-degrees is the same as -90 degrees.

Rotation angles in ActionScript start with 0 at East on the compass, or three o'clock on
a watch face. If you start at three o'clock on a watch face, and travel around a circle for
270 degrees, you'll move three-guarters of the way around the circle and end up at
twelve o'clock. However, ifyou start at the same original position and travel counter-
clockwise, or a negative angle, you need travel only -90 degrees, or one guarter of
the way around the circle to end up at the same location.

Setting an angle is easy because, as noted previously, ActionScript will automatically
adjust the value over 360 degrees to a compatible angle. However, getting an angle
can be more difficult. For example, if you changed the angle used in the conditional
in the cited example from 30 to 270, the listener would never be removed. Why?
Because ActionScript rotation angles span 0 to 180 degrees and 0 to -180 degrees, so
270 never occurs.

You can compensate for this in one of two ways. You can write functions that take
negative angles and convert them to their positive eguivalents (so you can ask for a
familiar 270 degrees but really ask ActionScript for -90 degrees behind the scenes),

or you can just use a variable, instead of checking the rotation property directly. This
variant of the existing example can be found in the removing_listeners_2.fla source file.

1 var angle:Number = 0;

2 var timer:Timer = new Timer(1000);

3 timer.addEventListener(TimerEvent.TIMER, onTimer);
4 timer.start();

5

6 function onTimer(evt:TimerEvent):void {

7 angle += 6;

8 watch.hand.rotation = angle;

9 if (angle >= 270) {

10 timer.removeEventListener(TimerEvent.TIMER, onTimer);
11 }

12}

This can be accomplished using a repeat count in the timer, like this:

var timer:Timer = new Timer(1000, 5);

However, the point of the example is to show you how to remove the listener
from your logic flow and, equally important, from memory, when it is no
longer needed. We briefly discuss an additional scenario for removing listen-
ers in the upcoming "Garbage Collection" sidebar, but in all cases, it's good
practice to remove any listeners that you know you'll no longer need.



Garbage Collection:

Removing Event Listeners

A Recommended Optional Parameter for Event Listeners

Garbage collection is the method by which Flash Player purges
from memory objects that you no longer need. Garbage
collection and memory management typically are not topics
you need to concern yourself with when just getting started
with ActionScript 3.0. However, garbage collection frees up
memory so it's available for your SWF to use throughout its
runtime life, so it's a good thing to be aware of There are some
coding practices that you can adopt immediately, and relatively
painlessly—even at the outset of your learning—that may prove
to be useful habits in the long run. Using weak references is such
a practice.

We want to just scratch the surface of this subject, laying
the groundwork for conventions that we'll use throughout
the remainder of this book, and then refer you to additional
resources for more information.

There are three optional parameters that you can add to the end
ofthe add Event Listener () method. Here is the syntax ofthe
method, which will look partly familiar.The optional parameters
we'll discuss are in bold.

eventTarget.addEventListener(EventType.EVENT_
NAME, eventResponse,
priority:int, weakReference:Boolean);

useCapture:Boolean,

The first two optional parameters control when the listener
function executes. You may never need to adjust these values
often, but here's a guick snapshot of what they do.

The first optional parameter, useCapture, allows you to handle
the listener event before it reaches its target (if set to true) or
once the event has reached its target (if set to false) and is
bubbling back up through the display list.The default (false)
behavior is to react to all events captured at or after the event
reaches the target, and this is the configuration you will use
most of the time. Using true is akin to clicking on a button

but capturing the event before it reaches the button. It will
appear as if nothing happened. (The only practical use of this
feature that we've found is preventing any mouse clicks from
registering, as in the case of a modal dialog.)

The second optional parameter, priority, allows you to order
the execution of multiple listeners set to respond to the same
event in the same phase. In other words, if the same button
used three mouse down listeners, you could set their order of
execution. This, too, is unlikely to be a common issue, and the
default parameter of 0 will serve you well in the vast majority of
circumstances. When you need this feature, the highest number
will execute first.

The third optional parameter, weakReference, is the option
we want you to understand and start using. In a nutshell, this

parameter helps with memory management in the event that
you're not careful about removing unneeded listeners.

Briefly, in ActionScript 3.0, memory management that you don't
explicitly control is handled behind the scenes by the garbage
collector, using the mark and sweep process. When you are no
longer referencing an object in your application, it is marked for
cleanup, and the garbage collector periodically sweeps through
your application discarding unneeded items, freeing up memory
along the way If a reference to an object remains, however, the
garbage collector can't know that the object should be purged
from memory

Try as we might to be good, it's not uncommon for developers
to forget to remove event listeners in their code (see the section
"Removing Event Listeners"earlier in this chapter). However, a
distant next-best thing is a weakly referenced listener. Simply
put, weakly referenced listeners aren't supervised by the
garbage collector and therefore don't have to be manually
marked for removal. If only weak references to an object remain
after you have finished using it, then the object is eligible for
collection.

Using this option is very simple. All you need to do is change
the weakReference setting of the addEventListener ()
method from its default value of false, to true. Because it's
the third optional parameter, values for the first and second
arguments must be included so that ActionScript knows which
parameter you are trying to set. You will rarely need to change
those values, so you can use their aforementioned defaults
(false for useCapture and O for priority).

So, our preference, and the convention we will use hereafter in
this book, is to use the addEventListener () method with
this syntax:

eventTarget.add Event Listener(EventType.EVENT_NAME,
eventResponse, false, 0, true);

If you get in the habit of using this syntax, you will be less likely
to run into memory management problems due to lax code
maintenance. Remember, this is not a substitute for removing
your unneeded listeners explicitly However, it's a backup plan
and a best practice that is easy to adopt.

Additional discussion ofthe event flow—including event
phases, setting listener priority, stopping propagation along the
way, manually dispatching events, and more—is featured on the
companion website. Flash developer Grant Skinner also wrote a
helpful series of articles on resource management on his blog
(.http://www.gskinner.com/blog) that got us thinking about this
in the first place. Finally, event flow is discussed in depth in
Chapters 12 and 21 of Essential ActionScript 3.0.

Chapter 3: Properties, Methods, and Events


http://www.gskinner.com/blog

What's Next?

This chapter has demonstrated ways to manipulate ActionScript objects, but
in the case of our example movie clip, we have assumed that the movie clip
already existed on the stage. This is an acceptable assumption for projects
authored primarily using the timeline, but it's limiting. If all files are to be
constrained by using only elements manually added to the stage at time
of authoring, and used only in the manner and order in which they were
originally added, the files cannot be as dynamic as the ActionScript language
allows.

Coming up, we'll talk more about the display list—an excellent means of
managing visual assets. Understanding the basics of the display list is instru-
mental not only in dynamically adding elements at runtime, but also inn
manipulating existing stage-bound objects to their fullest potential.

In the next chapter, we'll discuss:
* Adding new children to the display list
* Removing existing children from the display list

* Swapping depths of objects in the display list to change their visual stack-
ing order dynamically

* Managing the hierarchical relationship of display list objects and how to
change that relationship through reparenting



1M

THC ;i PLMY

One of the most dramatic changes introduced by ActionScript 3.0, par-
ticularly for designers accustomed to prior versions of ActionScript, is the
way in which visual elements are added to an application at runtime. In
prior versions of ActionScript, a separate approach was used to add most
kinds of visual assets at runtime, requiring varied syntax. Management of
those assets— particularly depth management—and creating and destroying
objects, were also fairly restrictive and could be relatively involved, depending
on what you were trying to accomplish.

ActionScript 3.0 brings with it an entirely new way of handling visual assets.
It's called the display list. It's a hierarchical list of all visual elements in your
file. It includes common objects such as movie clips, but also objects such as
shapes and sprites that either didn't previously exist or could not be created
programmatically

The biggest difference between the ActionScript 3.0 display list display tech-
niques used in prior versions of ActionScript is that the display list can't have
any gaps. If the display list contains 10 display objects (such as 10 movie
clips), you can't add a new display object to position 20. Furthermore, if
something is removed from the display list, any display objects at a higher
position will all drop down to fill in the gap.

That is, if display objects a, b, and ¢ were added to the display list in that
order, a would be at the bottom of the list (and, therefore, at the bottom of the
SWFEF's visual stacking order), and c would be at the top of the list. Their posi-
tions in the display list would be 0,1, and 2, respectively Objects with higher
indices are above objects with lower indices in the visual stacking order of the
SWE. If b were removed, ¢ would drop down and the new display list would
be a, c. This makes working with the display list much easier because you
don't have to worry about any empty positions in the list.

CHAPTER

IN THIS CHAPTER

Jump Right In
The Sum of Its Parts

Adding and Removing
Children

Managing Object Names,
Positions, and Data Types

Changing the Display List
Hierarchy

A Dynamic Navigation Bar

What's Next?

71



In this chapter, we'll look at the following topics:

Jump Right In. Say hello to the world using three separate display objects.

The Sum of Its Parts. Understanding the display list means understand-
ing its parts. In addition to knowing the kinds of objects that can be
part of the display list, it's also important to grasp the simple difference
between display objects and display object containers— objects that can
contain other display objects.

Adding and Removing Children. The best part of the display list is
how easy and consistent it is to add objects to, and remove objects from,
the list.

Managing Object Names, Positions, and Data Types. In addition to
adding and removing display objects, you will need to manipulate exist-
ing members of the display list. You will likely need to find an object,
either by name or position in the list, or even identify an object's data type
as a particular kind of display object.

Changing the Display List Hierarchy. It's also much easier than ever before
to manage asset depths (z-order, or the visual stacking order controlled by
ActionScript rather than timeline layers), and to change the familial relation-
ship of assets. Moving a child from one parent to another is a breeze.

A Dynamic Navigation Bar. As a quick demonstration of using the
display list, we'll show you how to dynamically generate a very simple
navigation bar.

Jump Right In

Adapting the Hello World! examples of previous chapters, this exercise

focuses on the display list and the very useful technique of relative position-

ing. It creates three text fields and positions them horizontally adjacent to

each other, using only the display list for references to the fields. As in prior

chapters, this script is provided up front just to get you started and give you

a little experience with the material you'll be covering. The code used in

these examples is designed to focus on the chapter at hand while presenting

as

in

little unfamiliar territory as possible. Content will be further explained
this chapter as well as later in the book. This script can be found in the

hello_world_display_list.fla  source file.

var I:int;
var parts:Array = ["Hello", "World", "I"];

var txtFld:TextField = new TextFieldQ;

1

2

3

4 for (1 = 0; 1 < 3; 1++) {
5

6 txtFld.text = parts[1];



7 txtFld.autoSize = TextFieldAutoSize.LEFT;

8 if (i > 0) {

9 txtFld.x = getChildAt(i-1).x + getChildAt(i-1).width;
10 }

11 addChild(txtFld);

12 }

Lines 1 and 2 create an integer counter and an array with three strings. Line
4 defines a for loop that executes three times. Lines 5 and 6 create and popu-
late a text field, using each string from the array, consecutively As the value
of / increases with each iteration, the next string in the array is used. Line 7
uses the autoSize property to automatically adjust the size of the field to the
minimum required to display the text, anchoring the resizing process to the
upper-left corner.

Line 8 ensures that the first field exists because / is incremented after the first
iteration of the loop. If the first field has already been added to the display
list, line 9 positions the remaining fields relative to the prior field's position
and width. The power of the display list allows us to do this without any
instance names or preexisting object references because we can get a child
from the any position in the list. For example, the second time through the
loop, line 9 positions the new field based on the position and width of the
display object at position 0 in the display list (/ equals 1, so / - 1 equals 0 in
the getChildAtQ method). Finally, line 11 adds each field to the display list
so the user can see it.

If you want to see the boundaries of the three separate text fields, you can add
the following bold line of code to your file:

1 txtFld.autoSize = TextFieldAutoSize.LEFT;

2 txtFld.border = true;

3 if (1 > @) {

4 txtFld.x = getChildAt(i-1).x + getChildAt(i-1).width;
5 }

The Sum of Its Parts

If you think about the display list by considering what you see in any given
application, you're halfway home. In addition to contributing to the structure
of the new event model, discussed in Chapter 3, the display list is responsible
for maintaining the visual assets in your file. You will use the display list to
create and destroy visual assets, and manage how they interrelate.

Let's take a look at the contents of the display list of a simple file. Figure 4-1
shows that this file has a shape, a text element, and a movie clip, and inside
the movie clip is a bitmap. You can see this example in the sample_display_list.
fla source file.

Figure 4-2 shows the display list of the same structure.

The Sum of Its Parts

NOTE

By default, text fields are 100 pixels
wide and 100 pixels tall. The autoSize
property can resize a field to match its
contents, based on the left, center, or
right edges of the field.

shape —p

text
element

Figure 4-1. The visual layout of the simple
file structure

Chapter 4: The Display List 5



The Sum of Its Parts

_root versus root

If you have experience with
ActionScript 1.0 or 2.0, you may have
heard that you should avoid using
the_root property That's because
the value of the property was subject
to change. Before ActionScript 3.0,
_root referred to the timeline of the
original host SWF no matter how
many SWFs got loaded.

_root was the eguivalent of an
absolute address, like referring to an
image in a website as http://www.
yourdomaln.com/Image, or a file

on your computer as C:\directory\
file, instead of a more flexible relative
address such as"image"(or "../image,"
for example).

Because _root was an absolute
address, ifa SWF using the property
was loaded into another SWF, _root
was redefined to become the
timeline doing the loading, rather
than your original SWF as intended.
This then broke any object path
references that originated with
_root.

In ActionScript 3.0, the display list
changed that prevailing logic, the
new root property is safer to use.
root is now relative to the context
in which it's used and doesn't always
refer to the main timeline. As a
result, it behaves more like a relative
address. The root ofa movie clip in
SWF A, is the same if it stands alone
or is loaded into SWF B.The same
goes for the root in SWF B, whether it
stands alone or is loaded into SWF C,
and so on.

Part Il: Graphics and Interaction

Stage
(Display Object Container)

MainTimeline A
(Display Object Container))

Shape MovieClip A Text
(Display Object) (Display Object Container)) (Display Object))

Bitmap A
(Display Object))

Figure 4-2. The display list of the sample file

At the top of the list is the stage. Although you can access the stage from
many objects in the display list, it's easiest to think of the stage as the foun-
dation on which everything is built. It also helps to think of the stage as the
ultimate container within which all your visual assets reside at runtime. The
container analogy is central to this discussion. The stage contains everything.

Next is the main timeline, which can also be referenced using the root prop-
erty (See the sidebar "_root versus root" for more information.) An FLA file
has a main timeline within which all other assets are contained. Because
of event propagation, it is common to use the main timeline as a location
to add event listeners when writing scripts in the timeline. In that context,
the main timeline is typically referenced using the this identifier, as in "this
object being currently referenced within the context of the script." (For more
information about event listeners and event propagation, see Chapter 3. For
more information about this, see Chapter 2.)

Below the main timeline in the display list hierarchy are all the visual assets
in the file. Included in our sample display list are the aforementioned shape,
text, and movie clip assets, and inside the movie clip is the bitmap.

You may notice in Figure 4-2 that everything is subtitled as a display object or
display object container. This is key to understanding and working with the
display list effectively It probably follows that everything in the display list is
a display object. However, some display objects can contain other elements
and therefore are also display object containers.

For example, a shape is a display object, as are bitmaps and videos. However,
none of these items can have children, so the display list lineage ends there.


http://www

That is, it doesn't make sense for a bitmap to have a nested object. A movie
clip can have children, however, so it is also a display object container.

Display List Classes

Injust a moment, we'll walk through a typical ActionScript display list that
demonstrates the distinction between display objects and display object con-
tainers. First, however, take a look at the individual classes that contribute to
the display list, as shown in Figure 4-3.

| DisplayObject |

The Sum of Its Parts

I
v v v v

v

v v

| Shape | I Bitmap | I Video | | InteractiveObject | |AVM1MovieI IMorphShapel I StaticText |

Vv 1

‘SimpleButton‘ ‘DisplayObjectContainer‘ ‘ TextField ‘

1

‘ Stage ‘ ‘ Sprite ‘ ‘ Loader

MovieClip

Figure 4-3. The display list classes

We discussed classes in Chapter 1, and we'll be using them extensively as
you delve deeper into the book. In this context, however, just think of these
classes as blueprints for objects that can be part of the display list. As you
look through Figure 4-3, for instance, you'll recognize Shape, Bitmap, Video,

and so on.

Note however, that, unlike Figure 4-2, this is not a depiction of an average dis-
play list. For example, it is possible for shapes, bitmaps, videos, and static text,
among other items, to exist inside movie clips. Figure 4-3 merely shows all the
possible object types that can be a part of any display list, and displays the
hierarchical relationship among display list classes. Here is a quick descrip-
tion of the classes in Figure 4-3, rearranged slightly for clarity of discussion:

DisplayObject

Anything that can exist in the display list is a display object, and more
specialized classes are derived from this class.

Chapter 4: The Display List

5



The Sum of Its Parts

NOTE

When using ActionScript to refer to an
image that has been manually added to
the stage, such as when dragging it to
the stage from the library, ActionScript
will see the object as a Shape. However,
you can still create a Bitmap object
from an imported image using the
BitmapData class.

Part Il: Graphics and Interaction

Shape

This is a rectangle, ellipse, line, or other shape created with drawing tools.
New to ActionScript 3.0, you can now create these at runtime.

Bitmap

This is an ActionScript bitmap created at runtime using the BitmapData
class.

Video

This is a video display object, the minimum required to play a video,
rather than using a video component for this task. This can also now be
created dynamically at runtime.

InteractiveObject

This class includes any display object the user can interact with using the
mouse or keyboard. You cant create an instance of this class. Instead, you
work with its descendants.

Skipping a bit, temporarily, and moving down a level:

SimpleButton

This class is used to manipulate buttons created in the Flash Professional
interface, so you don't have to rely solely on movie clips. Introduced in
ActionScript 3.0, this class also allows you to create a button with code.
You can assign display objects to properties of a SimpleButton instance to
serve as the button's up, over, down, and hit states, and the instance will
swap these states automatically as well as automatically show the finger
cursor state, when responding to mouse interaction. This class is differ-
ent from the Button class, which is used with Flash Professional's Button
component.

TextField

This class includes dynamic and input text fields. Both are controllable
from ActionScript and input fields can also be edited by the user.

DisplayObjectContainer

This class is similar to DisplayObject in that it refers to multiple display
object types. The difference here, however, is that this object can contain
children. All display object containers are display objects, but display
only objects that can have children are display object containers. For
example, a video is a display object, but it cannot have children. A movie
clip is a display object, and it can have children, so it's also a display
object container. Typically, you will work directly with this class when
traversing the display list, looking for children or ancestors. Usually, you
will manipulate one or more of its descendant classes.



There are four kinds of display object containers:

Stage

Remember, the stage itself is part of the display list. Any interactive object
can reference the stage, which is a display object container itself.
Sprite

New to ActionScript 3.0, a sprite is simply a movie clip without a timeline.
Many ActionScript manipulations typically performed using movie clips
require only one frame. So the size and administrative overhead of the
timeline is unnecessary As you become more accustomed to ActionScript
3.0, and begin to consider optimization more frequently, you may find
yourself using sprites more often.

Loader

This class is used to load external assets destined for the display list,
including images and other SWFs.

MovieClip

This refers to the movie clip symbol you might create using drawing tools
in Flash Professional. They can also be created with ActionScript.

We left three items from the second tier for last, as you will probably use these
classes least often:

AVM1Movie

This class is for working with loaded SWFs created using ActionScript
10 or 20. AVMI, (which stands for ActionScript Virtual Machine 1) is
reserved for SWFs that use ActionScript 1.0 and/or ActionScript 2.0, while
AVM2 is used for SWFs that use ActionScript 3.0. Because Flash Player
uses two discrete code bases, these virtual machines are not compatible.
The AVM1IMovie class provides a way of manipulating display properties of
legacy SWFs, but does not facilitate communication between ActionScript
3.0 and older SWFs. This must be accomplished by other means, such as a
LocalConnection. We will discuss this approach in Chapter 13.

MorphShape and StaticText

These two classes represent a shape tween and a static text element,
respectively You cant create a shape tween, or do very much with the text
in a static text element, with ActionScript. However, they are part of the
display classes because they inherit properties, methods, and events from
their DisplayObject parent class. This makes it possible to rotate a static
text element, for example.

Once you begin using the display list frequently, you will quickly become
enamored with its power, flexibility, and simplicity We will show you how to
perform several common display list tasks in this chapter but, if you take one
thing away from this initial discussion, it should be a basic understanding of
display object versus display object container. To demonstrate this effectively,



The Sum of Its Parts

Part Il: Graphics and Interaction

let's look at a short segment of code that traces display list content to the
output window.

Displaying the Display List

It's sometimes useful, especially when you're creating many display objects
with potentially complicated nested objects, to walk through the display list
and analyze its contents. The trace_display Jist.fla file from the companion
source code, will trace the contents of any display object that you pass into it,
and indent each child and successive grandchild to help convey its position
in the display list hierarchy

This function introduces our first display list property and method
numChildren and getChildAtQ, respectively—both used for retrieving
information. As the name implies, numChildren returns the number of chil-
dren within the object being analyzed. If, for example, there is one movie
clip in the main timeline, and that movie clip contains two nested but-
tons, the main timeline has one child and the movie clip has two children.
Grandchildren are not considered in this property

The getChildAtQ method retrieves a reference to a display object in the
desired scope. For example, myMovieClip.getChildAt(o) will return the first
child of the myMovieClip object, while getChildAt(1l) will return the second
display object of the current scope.

This source file also makes practical use of some of the skills we've discussed,
such as sending arguments into (and returning a value from) a function,

default argument values, and using a for loop, among others. Here's the code:

1 function showChildren(dispObj:*, indentLevel:int=0):void {
2 for (var i:int = @; 1 < dispObj.numChildren; i++) {
3 var obj:DisplayObject = dispObj.getChildAt(i);
4 trace(padIndent(indentLevel), obj.name, obj);

5 if (obj is DisplayObjectContainer) {

6 showChildren(obj, indentLevel + 1);

7 }

8 }

9 }

10

11 function padlndent(indents:int):String {

12 var indent:String = "";

13 for (var i:Number = @; i < indents; i++) {

14 indent += " ";

15 }

16 return indent;

17}

19 showChildren(stage);

Lines 1 through 9 define the function showChildrenQ, which has two param-
eters. The first receives the display object you want to inspect. This parameter
uses a special value for its data type. Specifying an asterisk as a data type
means the type will not be checked. This makes the function more flexible



and is required in this case because you may pass different data types into
the function: DisplayObject or DisplayObjectContainer (a display object
that can contain children).

The second parameter is used by the function itself, and its value will ulti-
mately indent each level of child objects, formatting the output to show the
hierarchical relationships in the file. Here is a sample output of a file that
contains two movie clips. We'll walk through another example after we dis-
cuss the code.

rootl [object MainTimeline]

myMovieClip [object MovieClip]
myMovieClip [object MovieClip]

Note that the second parameter of the showChildren() function has a default
value of 0, so you don't have to pass anything into the function for this param-
eter to work. Line 19 shows the syntax for calling the function and passes in
the stage for analysis, but no second argument. Therefore, the default value
of the argument will be used. In this example, the function will trace the
contents of all children of the stage.

Lines 2 through 8 of the function define a for loop, which will loop until
there are no more children in the display object passed to the function. The
number of loops is determined by the aforementioned numChildren property
Each time through the loop, line 3 populates the obj variable with the next
child in the display list using the getChildAt() method. This determines the
child object at the display list index indicated by the loop counter (i). The
first time through the loop, when i is 0, the first child will be returned —
equivalent to getChildAt(o). The second time, when i is 1, the second child
will be returned, and so on.

Once a display object reference is obtained, line 4 traces the object name
and the reference itself, as arguments 2 and 3 of the trace() statement.
The latter is handy because the type of object will also be displayed. For
example, if the object is a movie clip called logo, the output will say "logo
[object MovieClip]." But line 4 also does something else. The first item in
the trace() is a function call to padlndentQ and passes one argument to the
function: the level of indent desired. The first time showChildrenQ is called,
the initial value of this argument is 0, which comes from the default value of
the indentLevel parameter. You'll soon see that this value can change as the
function continues and progressive indents are needed for successive chil-
dren. But first, let's jump down to look at how padlndentQ works, in lines 11
through 17.

The padlndentQ function begins by initializing a local variable as an empty
string in line 12. It then enters a loop in lines 13 through 15 that adds four
spaces to this variable. The indent level desired determines the number of
loops. Once the loop is completed, this string of empty spaces is returned to
the showChildrenQ from line 16, so the spaces can be added to the beginning

The Sum of Its Parts

NOTE

You can also omit a data type to prevent
the compiler from testing an object's
type. However, using an asterisk is
considered a best practice because it
reminds you, and others who may read
your code, that preventing type checking
was intentional.

NOTE

See the "Functions" section in Chapter 2
for a review of argument default values.

Chapter 4: The Display List 5



8i -

The Sum of Its Parts

NOTE

Remember that variables that are
declared inside a function are local to
that function only and have no value
elsewhere. See the "Functions" section
in Chapter 2 for more about local vari-
ables.

NOTE

An advantage to using spaces for the
indent in this context is that you can
replace them with other characters to
create tab leaders —visual indicators
that draw the eye across to the farthest
indent. The period Q character is com-
monly used for this purpose.

Part Il: Graphics and Interaction

of every trace. The end result is that, for each level of indent, these accumu-
lated spaces push the output to the right, resulting in an outline format.

Lines 5 through 7 are what make this function powerful. Line 5 checks to see
whether the display object currently being analyzed is also a display object
container. It does so by using the is operator, which checks the data type of
the object in question, and comparing it against the DisplayObjectContainer
type. If the object is a container, the function calls itself again, in line 6. When
doing so, it passes in that current object, and increments the indent level so
any children found will be further indented during the trace.

This idea of a function calling itself is called recursion. It may seem redun-
dant, but it can be very useful. In this case, it's the most efficient way for the
showChildren() function to continue introspecting every display object it
finds, no matter how deeply nested. The result is a complete walkthrough of
all display objects, no matter how many children each may have.

The showChildrenO function in action

Take a look at the function in action. Figure 4-4 shows a sample file that will
be analyzed. The rectangle and circle movie clips, with their instance names,
are indicated in the figure. Within each rectangle, a shape is used to create
the fill and stroke appearance. Inside each circle, a shape again provides the
fill and stroke and a static text element is added to display the word "child."

<—|— largeContainer

childO

smallContainer

child2

child 1

Figure 4-4. A look at the stage oftrace_display_list.fla



When the function runs, the following is traced to the output window, show-
ing all children of the stage. Note that whenever a display object has no name,
"instance" is combined with an incrementing integer to create a unique name.
rootl [object MainTimeline]
largeContainer [object MovieClip]
instancel [object Shape]
smallContainer [object MovieClip]
instance2 [object Shape]
child2 [object MovieClip]
instance3 [object Shape]
instance4 [object StaticText]
childo [object MovieClip]
instances [object Shape]
instance6 [object StaticText]
childl [object MovieClip]
instance7 [object Shape]
instance8 [object StaticText]

Adding and Removing Children

The previous section described the parts of the display list and how to analyze
an existing list. But you'll also need to know how to add to, and remove from,
the display list at runtime. In previous versions of ActionScript, you needed to
rely on varying methods to add items to the stage. For example, you needed
to use separate methods for creating a movie clip, placing a library movie clip
on stage, or duplicating a movie clip. Using the ActionScript 3.0 display list,
you need only one approach to create a movie clip: new MovieClipQ. Even
adding a precreated movie clip from the library is consistent with this syntax,
as you'll soon see.

Using addChildO

Adding a display object to the display list requires just two simple steps. The
first is to create the object—in this case, an empty movie clip (a movie clip
created dynamically, but without content). Commonly, this reference to this
object is stored in a variable.

var mc:MovieClip = new MovieClipQ;

This creates the movie clip but does not display it. To display the movie clip,
you must add it to the display list using the addChild() method:

addChild(mc);

Without any additional syntax, this adds a child to the current scope of the
script. That is, if you typed this into a frame script in the main timeline, it
would add the movie clip to the main timeline. You can also add a child to
another display object container. So, if you instead wanted to add the mc
movie clip nested inside another movie clip called navBar, you would change
the second step to:

navBar.addChild(mc);

Adding and Removing Children

NOTE

Remember, you can't add children to
display objects like shapes, videos, text
elements, and so on, because they are
not display object containers.

Chapter 4: The Display List



Adding and Removing Children

NOTE

This improved approach to dynamically
creating custom symbol instances also
allows you to add classes easily later on
for these instances to use —without hav-
ing to edit your library. See the "Adding
Classes to Pre-Existing Symbols" post at
http/fwww.LearningActionScript3.com
for more information.

Part Il: Graphics and Interaction

We've been adding movie clips to the display list in our examples, but it's just
as straightforward to add other display objects. Two simple examples include
creating a sprite and a shape:

var sp:Sprite = new SpriteQ;
addChild(sp);

var sh:Shape = new ShapeQ;
addChild(sh);

You don't even have to specify a depth (visible stacking order) because the
display list automatically handles that for you. Remember, the display list
can't have any gaps, so the addChildQ method always adds the object to the
end of the display list no matter how long it is. You never need to know how
many items are in the display list to use this method.

Adding Custom Symbol Instances
to the Display List

In the previous examples, we created display objects without any visible con-
tent. In Chapter 8, we'll show you how to draw with code so you can create
art for these movie clips solely with code. This keeps file size down and allows
more dynamic control.

However, you will frequently need custom art in your files, which would be
difficult or virtually impossible to create with code. So we're going to show
you how to dynamically add movie clips that already exist to the display
list. In this chapter, we'll focus on adding instances of symbols that exist
in your Library, using Flash Professional. In the accompanying source file,
add_child_linkage.fla, you will find a unicycle in the library To add this movie
clip to the display list using ActionScript, you must first prepare the library
symbol for ActionScript use.

In prior versions of ActionScript, there were two ways of doing this. The
first approach was to assign the symbol a linkage identifier name —a name
unrelated to symbol and instance names, specifically for use in ActionScript.
The second way was to assign your own class to the movie clip so that it
could be created when you created an instance of the class.

In ActionScript 3.0, these two approaches are unified into a single linkage
class. This name allows you to create runtime instances of the symbol, but
also allows you to create a class of the same name that will give the movie
clip autonomous behavior. The most important thing to know at this point
is that you don't have to write your own class to control the symbol instance
if you don't want to. Before defining your own class, Flash will automati-
cally create an internal placeholder class for you, so you can use its name to
dynamically create the symbol when requested.

To prepare a movie clip for ActionScript use, select it in your library, and
then click the Symbol Properties button (it looks like an "i" at the bottom
of the library) to access the clip's properties, as shown in Figure 4-5. You can


http://www.LearningActionScript3.com

also right-click (Windows) or Ctrl-click (Mac) on the symbol and choose
Properties from the pop-up menu.

In the resulting dialog, seen in Figure 4-6, click to enable the Export for
ActionScript option (click the Advanced button if this option is not visible),
and add a name to the Class field. When naming classes, it's common prac-
tice to begin the name with an uppercase letter. This is a bit different from
naming a variable, where you might choose to use a lowercase first letter, so
it's a good idea to get into this practice now. In the provided source file, we've
already used the class name Unicycle.

Symbo! Properties

Name: Unicycle

Type: Movie Crip 1)

Advanced |
HI Erebe guiides for 9-stree scaling
Linlage
1 Bpart for AciorSaipt
i Bpat m frame 1
identifier: ; J
Class: iUnicycle 1 0 0

Bese Class: | flashdisplay MpvieClip I 0O

Sharing
F~1 Export for runtime sharing

Q Import for runtime sharing

URL; 3 1

Browse.. | Tile \uniorted\ Definitionslii

Symbol..  Symbd reme unicyde
L] Always update before publish

Figure 4-6. Entering a class name for a movie clip in the library Properties dialog

You will also likely notice that Flash adds the MovieClip class (in this case) to
the Base Class field for you. A base class is a class from which other classes
can be derived. A base class is also sometimes called a parent class because
this is a form of inheritance. You'll learn more about inheritance in Chapter 6,
but basically, this makes it possible for your new class to automatically inher-
it the accessible properties, methods, and events available to the MovieClip
class. For example, you can automatically manipulate the x and y coordinates

of your new custom movie clip.

Adding and Removing Children

LI B \

iddCMd.fla iT id

1 ltem

2] |

Name
Umtvcie

[, _1@*3&?1 [ 0

Properties...

Figure 4-5. Accessing a symbol's
Properties dialog

Chapter 4: The Display List



8|

Adding and Removing Children

Part Il: Graphics and Interaction

Now that youve given your movie clip a class name, you can create an
instance of that class the same way you created an instance of the generic
movie clip class. Instead of writing new MovieClipQ, however, you will write
new UnicycleQ to create the movie clip. The same call of the addChildQ
method is used to add the newly created unicycle to the display list, as seen
in the following code:

var cycle:MovieClip =
addChild(cycle);

new UnicycleQ;

Using addChildAtO

The addChildQ method adds the display object to the end of the display list,
which places the object at the top-most position in the visible stacking order.
This makes it very easy to place items on top of all other items. However, it's
also useful to be able to add a child at a specific position in the display list.
For example, you may wish to insert an item into the middle of a stack of
display objects.

To accomplish this, the addChildAtQ method takes as its arguments not only
the object to add, but also the position in the display list where you want the
object to appear. The following example, found in the add_child_at.fla source
file, adds a movie clip with the class name Ball to the start of the display list
(position 0) with every mouse click. The effect is that a new ball is added
below the previous balls (and positioned down and to the right 10 pixels
using additional code), every time the mouse is clicked.

Remember, you can't add an object to a position greater than the number of
items already in the display list because the display list can't have gaps.

var inc:int = 0;

stage.addEventListener(MouseEvent.CLICK, onClick, false, ©, true);

1

2

3

4

5 function onClick(evt:MouseEvent):void {
6 var ball:MovieClip = new Ball();
7

8

9

ball.x = 100 + inc * 10;
ball.y = 100 + inc * 10;
addChildAt(ball, o);

10 inc++;

1}

Line 1 creates a variable that will be incremented each time the mouse is
clicked. This variable will be used to help position each ball. Line 3 adds an
event listener to the stage, listening for a mouse click, so that any mouse click
will trigger the listeners function in lines 5 through 11

In line 6, a new movie clip is created, using a library symbol with a linkage
class of Ball. Lines 7 and 8 manipulate the x and y coordinates, setting x
and y to 100 and adding a 10-pixel offset for each ball added. The offset is
calculated using the incrementing variable. For example, when the first ball is
added, inc is 0 so the additional pixel offset is 0 multiplied by 10 or 0. Then
inc is incremented at the end of the function, in line 10. The next mouse click



will offset the new ball to 1 multiplied by 10 or 10 pixels. The third click offset
will be 2 multiplied by 10 or 20 pixels, and so on. Most importantly, line 9
adds the ball to the display list, but always at position 0, making sure the

Adding and Removing Children

newest ball is always on the bottom.

NOTE

It is possible to issue more than one assignment instruction in a single line. For
example, this code assigns 100 to both the x and y coordinate of a movie clip:

ball.x = 100;
ball.y = 100;

Because both values are 100, the same task can be expressed this way:

ball.x = ball.y = 100;

This is handy for making code shorter for less scrolling, but some may think this
form is harder to read or understand. The result is the same, whichever syntax you

choose, so use what is most comfortable for you.

Display Objects and References to Stage and Root

It's usually possible to manipulate display objects before or after
adding them to the display list. For example, you can set the x
coordinate of a display object before adding it to the display list
and the object will appear at the desired location when added.
You can also change the object's x coordinate any time after
appearing in the display list to update the object's position later.
However, some display object properties or methods may not
be valid when the object is not part of the display list. Good
examples of this scenario include the root and stage instances
of any display object.

Once a display object is added to the display list, its stage
and root properties are valid. However, ifthe object is not
part of the display list, these properties will return null.Try
the following example, in which trace output is shown in
comments:

var mc:MovieClip = new MovieClipQ;

trace(mc.stage); //null
trace(mc.root); //null

addChild(mc);

trace(mc.stage); //[object Stage]
trace(mc.root); //[object MainTimeline]

The first line creates a new movie clip. However, the clip is not
added to the display list, so the traces in the next two lines
return null. After adding the movie clip to the display list,
though, the properties return references to the Stage and
MainTimeline, respectively

Invalid stage and root properties can be a common problem
ifyou don't plan ahead. For example, the following code tries to
set the location of a movie clip to the center of the stage prior
to adding the object to the display list:

var mc:MovieClip = new MovieClipQ;
mc.Xx = mc.stage.stageWidth / 2;
addChild(mc);

This will fail, however, because the stage property is null.This
problem can be corrected by transposing the last two lines of
the script.

It's very easy to fall into this trap if you often code in the
timeline, because the stage appears to exist without referencing
a display object, as seen here without error:

var mc:MovieClip = new MovieClipQ;
mc.x = stage.stageWidth / 2;
addChild(mc);

However, this only works because the stage is referencing

a display object. It's just an implied reference. This can be
illustrated by rewriting the second line of the previous code this
way:

mc.x = this.stage.stageWidth / 2;

The code works only because, in this example, the this
keyword refers to the main timeline. In Flash Professional, the
main timeline is always automatically part of the display list. (See
Chapter 2 for more information on this.)The this keyword

is usually omitted when the scope ofthe script is obvious, but
its use here illustrates that stage must always be accessed
through a display object.

Chapter 4: The Display List



Adding and Removing Children

NOTE

For more information on for loops,
please review Chapter 2. For more infor-
mation on simultaneous assignment, as
seen in line 3 of this script, see the note
on page 85.

Part Il: Graphics and Interaction

Removing Objects from the Display List
and from Memory

It's just as important to know how to remove objects from the display list
after they've been added. The processes for adding to and removing from
the display list are similar. To remove a display object, you can use the
removeChild() method, which takes only one argument: a reference to the

child that must be removed:

removeChild(ball);

You can also remove a display object from a specific position in the display
list using removeChildAtQ. However, this method will remove any object
from the specified position, so, unlike removeChildQ, no object reference is

needed.

removeChildAt(o);

The following example, found in the remove_child_at.fla source file, is the
reverse of the addChildAtQ script discussed in the prior section. It starts by
using a for loop to add 20 balls to the stage, positioning them with the same
technique used previously It then uses the event listener to remove a child
with each click.

for (var inc:int = @; inc < 20; inc++) {

var ball:MovieClip = new Ball();

ball.x = ball.y = 100 + inc * 10;
addChildAt(ball, 0);

1
2
3
4
5 1}
6
7 stage.addEventListener(MouseEvent.CLICK, onClick, false, ©, true);
8
9

function onClick(evt:MouseEvent):void {
10 removeChildAt(o);
1}

This script works if something's in the display list because there is always
something at position 0. After removing the last ball, however, a click will
result in an error like, "the supplied index is out of bounds" because no

object is in position 0.

To avoid this problem, check to see if there are any children in the display
object container you are trying to empty Making sure that the number of
children exceeds zero will prevent the aforementioned error from occurring.
The following is an updated onClickQ function; it replaces lines 9 through
11 used in the previous code with a new conditional, which is shown in bold
here. (For more information on conditionals, please review Chapter 2.)

1 function onClick(evt:MouseEvent):void {
2 if (numChildren > @) {

3 removeChildAt(o);

4 }

5 1}



Managing Object Names, Positions, and Data Types

The numChildren property, in this scope, references the main timeline. You can
check the number of children in any display object container by preceding
the property with your object of choice.

Removing objects from memory

It's always a good idea to try to keep track of your objects and, when you're
sure you no longer need them, to remove them from memory This not only
uses less memory and helps keep your projects efficient, but can also prevent
unexpected errors that come from using old objects or values left in memory

This is particularly relevant when discussing the display list because remov-
ing an object from the display list does not remove it from memory The fol-
lowing script, found in the remove_child.fla source file, is a simplification of
the previous example and will both remove a movie clip from the display list

and from memory Trace outputs are shown here as comments.

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 stage.addEventListener(MouseEvent.CLICK, onClick, false, ©, true);
6

7 function onClick(evt:MouseEvent):void {

8 removeChild(ball);

9 trace(ball); //[object Ball]

10

11 ball = null;

12 trace(ball); //null

13

14 stage.removeEventListener(MouseEvent.CLICK, onClick);
15}

Lines 1 through 5 are derived from the previous example, creating and posi-
tioning the ball, adding it to the display list, and adding a mouse click listener
to the stage. The first line of the function, line 8, removes the ball from the
display list. Although it's no longer displayed, it's still in memory, as shown by
the trace in line 9. Line 11, however, sets the object to null, allowing it to be
removed from memory Line 12 shows that the ball variable is null.

Managing Object Names, Positions,
and Data Types

As any display list grows, it will likely become desirable to traverse its con-
tents and work with individual display objects. This may require simple tasks
such as identifying a display object by name or position in the list, or even
by referencing existing objects as a specific display object type. (For example,
you may need to refer to an existing object as a movie clip if you want to use
a movie clip method like play()).

NOTE

Ifyou want to use a for loop to remove
all children of a container (such as
everything in the display list or all chil-
dren of a specific movie clip), it is easiest
to remove the objects from the bottom,
as discussed here. This prevents out of
range errors that might be caused by
removing objects from a specific position
using the loop counter

For example, this code will cause an
error because the display list updates
itself to remove gaps and, after children
0 through 4 are removed, there are no
longer objects at positions 5 through 9.
for (var i:int = @; i < 10; i++) {

removeChildAt(i);

Use this approach, instead:
for (var i:int = @0; i < 10; i++) {
removeChildAt(o);

NOTE

As an added review of best practices,
line 14 emphasizes the concept of remov-
ing event listeners covered in Chapter 3.

Chapter 4: The Display List



Managing Object Names, Positions, and Data Types

Part Il: Graphics and Interaction

Finding Children by Position and by Name

In most of the example scripts in this chapter, references to the display objects
already exist and are known to you. However, you will likely need to find chil-
dren in the display list with little more to go on than their position or name.

Finding a child by position is consistent with adding or removing children
at a specific location in the display list. Using the getChildAtQ method, you
can supply a position in the list and retrieve a reference to that object. For
example, you can work with the first child found using this familiar syntax:

var dispObj:DisplayObject = getChildAt(o);

If you don't know the location of a needed child, you can try to find it by name
using its instance name (or value of its name property). Assuming a child had
a name of circle, you could store a reference to that child using this syntax:

var dispObj:DisplayObject = getChildByName("circle");

Finally, if you need to know the location of a display object in the display list,
but only have its name, you can add the getChildlndexQ method to accom-
plish your goal. The first line of the following snippet retrieves a reference to
the desired object, and the second line uses that reference to determine its
index in the display list.

var dispObj:DisplayObject = getChildByName("circle");
var doIndex:int = getChildlndex(dispObj);

Clarifying or Changing the Data Type
of a Display Object

Note that, in the preceding discussion, we used DisplayObject as the data
type when retrieving a reference to a display object—rather than MovieClip,
for example. This is because you may not know if a child found in the display
list is a movie clip, sprite, shape, and so on.

For example, if you call a function that adds a display object to the display
list, what is the data type of that item? Without knowledge of what the
function does, you can't know if the item is a movie clip, text field, or video.
Similarly, what if you reference the parent of a display object, without giving
the compiler any additional information? The only thing the compiler knows
is that the parent is a display object container (because it's part of the display
list and has children).

This can be a problem because the compiler can't know if a property or
method is legal if it doesn't know the object's data type. The following creates
a movie clip, adds it to the display list, and tells the movie clip's parent to go
to frame 20 and stop:

var mc:MovieClip = new MovieClipQ;
addChild(mc);

mc. parent.gotoAndStop(20);



Managing Object Names, Positions, and Data Types

However, the ActionScript compiler doesn't know if gotoAndStopQ is a legal
method of mc's parent because it doesn't know the parent's data type. For
example, the parent might be a sprite and a sprite doesn't have a timeline. As
such, you can't very well go to frame 20 of a sprite. If the data type of the par-
ent is unknown to the ActionScript compiler, you will get an error similar to:

Call to a possibly undefined method gotoAndStop through a reference with
static type flash.display:DisplayObjectContainer.

You can avoid this error by casting the object. Previously discussed in
Chapter 2, casting is particularly important when manipulating the display
list and warrants another mention. Casting means you are explicitly tell-
ing the ActionScript compiler the data type of the object—changing the
compiler's understanding of the data from one type to another. Casting
does not actually change data. In our example, to make sure the compiler
doesn't object to the gotoAndStop() method, you must cast the parent from
DisplayObjectContainer to MovieClip. You can do this by surrounding the
object of unknown type with the desired class name. The following syntax
tells the compiler that mc's parent is of data type MovieClip:

MovieClip(mc.parent).gotoAndStop(20);

NOTE

Another way to cast an object is by using the as operator Continuing the example on
this page, this syntax will also cast mc's parent as a movie clip:
var mc2:MovieClip =
mc2.gotoAndStop(20);

mc.parent as MovieClip;

Although this is more verbose, it has advantages. For example, the <ClassName>Q
syntax may be confusing because it looks like you are calling a function or instan-
tiating a class. Also, some conversion or creation functions takes precedence over
casting and prevents casting from working. For example, ArrayQ will not cast to
an array because that syntax is equivalent to new ArrayQ, which creates an array.
This means it's possible to cast an object to Array only using the as operator

One reason we like to use the <ClassName>Q syntax is that the compiler will dis-
play an error if the casting is incorrect. The as operator will return null in this case,
but not issue an error.

If you need to tell the compiler that a display object is of another type, the
syntax is consistent. The following syntax examples tell the compiler that a
variable named obj is a text field, and that an item retrieved from the display
list is a sprite, respectively:

TextField(obj);
Sprite(getChildAt(o));

NOTE

It's possible to change the data type of
an object implicitly, or even inadver-
tently. This is called coercion. You will
sometimes see this in error messages
similar to "Type Coercion failed," or
"Implicit coercion of type X to type Y"
When you see this, you should look in
your code for possible data type errors
or incompatible operations performed
on a specific data type.

Chapter 4: The Display List



9 -

Changing the Display List Hierarchy

Figure 4-7. In bring_to_top.fla, rolled-over
items pop to the top

Part Il: Graphics and Interaction

Changing the Display List Hierarchy

In addition to improving consistency over previous versions of ActionScript,
the display list also makes managing assets much easier. Particularly simpli-
fied are: changing the visual stacking order (depth management) and dynam-
ically changing the familial relationship between visual assets (reparenting, or
moving a display object from one parent to another).

Depth Management

Adding items to the display list does not require that you specify which level
the new child should occupy because all of that is handled for you automati-
cally. This also makes managing the depths of display objects much easier
than ever before.

To begin with, you can simply use the addChildQ or addChildAtQ methods
to alter the order of display list items. As we discussed, adding a child to a
display list position below other elements using the addChildAtQ method
will automatically push the other elements up in the list. But you can also
use the addChildQ method on an object that already exists in the display list.
This step will remove the object from its original position and move it to the
top of stack, pushing the other elements down.

For example, consider the following simple code, found in the source file
add_child_trace.fla. Lines 1 through 6 use the standard approach of creating
and adding movie clips to the display list, with the added step of giving each
clip an instance name. Lines 7 and 8 display the results at this point and, as
expected, the traces (indicated by comments here) show mcl, or "clipl," at
position 0, and mc2, or "clip2," at position 1.

1 var mcl:MovieClip = new MovieClipQ;
2 mcl.name = "clipl";

3 addChild(mcl);

4 var mc2:MovieClip = new MovieClipQ;
5 mc2.name = "clip2";

6 addChild(mc2);

7 trace(getChildAt(o).name); //clipl
8 trace(getChildAt(1l).name); //clip2

However, if you add mcl to the display list again, it is moved from position 0
to the end of the list, and mc2 gets pushed to position 0. Adding the following
lines to the script will demonstrate this process.

9 addChild(mcl);

10 trace(getChildAt(o).name); //clip2
11 trace(getChildAt(l).name); //clipl

This is demonstrated further in the following script, found in the bring_to_
top.fla source file (Figure 4-7). This example takes advantage of the event
propagation discussed in Chapter 3 to automatically bring any display object
that is rolled over with the mouse to the top of the visual stacking order:



1 addEventListener(MouseEvent.MOUSE_OVER, onBringToTop,
2 false, 0, true);

3

4 function onBringToTop(evt:MouseEvent):void {

5 addChild(MovieClip(evt.target));

6 }

If adding or moving an item to the top of all others is not specific enough for
your needs, there are also direct methods for swapping the depths of objects
that are already in the display list. The swapChildrenQ method will swap the
depths of two display objects regardless of where they are in the display list.
For example, the following code, found in the swap_children.fla source file,
will swap positions between the movie clip at the top of the display list—no
matter how many display objects exist—and the movie clip that is clicked —
no matter where in the display list that clip may be:

1 var gs:MovieClip = new GreenSquareQ;

2 gs.Xx = gs.y = 0;

3 addChild(gs);

4 var rs:MovieClip = new RedSquareQ;

5 rs.x = rs.y = 25;

6 addChild(rs);

7 var bs:MovieClip = new BlueSquareQ;

8 bs.x = bs.y = 50;

9 addChild(bs);

10

11 addEventListener(MouseEvent.CLICK, onClick, false, ©, true);
12 function onClick(evt:MouseEvent):void {

13 var clickedChild:MovieClip = MovieClip(evt.target);

14 var topChild:MovieClip = MovieClip(getChildAt(numChildren-1));
15 swapChildren(clickedChild, topChild);

16}

Lines 1 through 9 repeat the same process three times. First, new instances of
library symbols, using the GreenSquare, RedSquare, and BlueSquare linkage
classes, respectively, are created. (See the "Adding Custom Symbol Instances
to the Display List" section in this chapter for more information.) Next, the
x and y coordinates of each instance are set 25 pixels apart. Finally, each
instance is added to the display list.

Line 11 creates an event listener that is attached to the main timeline and
listens for a mouse click. Any time an object in the main timeline is clicked,
the onClickQ function is called. Line 13 casts whatever is clicked as a movie
clip, line 14 does the same with the last object in the display list, and line 15
swaps those display objects.

ActionScript identifies the bottom item in the display list using 0. Therefore,
Line 14 cant use the numChildren property by itself to identify the last item in
the display list. For example, if you have three items in the display list, num-
Children returns 3, but the indices (positions) of those items are 0,1, and 2.
So, to retrieve the last item in the list, you must use numChildren - 1, which
correctly identifies the last item in the list.

Changing the Display List Hierarchy

NOTE

This script is written in the main time-
line, so that is the script's scope. By
using methods like addChildQ and
addEventListenerQ without attach-
ing them to a specific object, the scope
of the script is the implied object. Using
the this keyword to refer to the cur-
rent scope is another way to make this
clear. Considering line 3 as an example,
the syntax is this.addChild(gs). See
Chapter 2 for more information.

Chapter 4: The Display List



Changing the Display List Hierarchy

Part Il: Graphics and Interaction

You can also swap the contents of any two depths, no matter what's in them,
using the swapChildrenAtQ method. This example snippet will swap which-
ever display objects are in display list positions 0 and 10:

swapChildrenAt(o, 10);

Finally, you can move a child to a specific depth using the setChildlndexQ
method. It requires two arguments: the child you want to move, and its
intended depth. The following code adjustment to the swap children exam-
ple, found in the set_child_index.fla source file, changes line 15 to set the
index of the clicked child to 0.

12 function onClick(evt:MouseEvent):void {

13 var clickedChild:MovieClip = MovieClip(evt.target);

14 var topChild:MovieClip = MovieClip(getChildAt(numChildren-1));
15 setChildIndex(clickedChild, 0);

16}

Reparenting Children

Another task made easy by the display list is moving a child from one parent
to another. In the reparenting.fla source file, a moon can be moved to either
of two night skies, just by clicking that sky (Figure 4-8). Both skies are also
draggable, demonstrating that the moon will automatically move with each
sky because it is a child object inside the parent.

Figure 4-8. In reparenting.fla, the moon becomes a child of the clicked sky

This exercise again demonstrates the bubbling of events by attaching both
listeners to a parent container once, instead of to each sky (See Chapter 3 for
more information.) However, a side effect of this efficiency is that the moon,
as a child of that parent container, will also react to the events. So, it's possible
to add the moon to itself, resulting in an error. To prevent this from happen-
ing, line 1 disables mouse interaction with the moon.



In the default layout of the file, the three siblings (moon and two skies) are
all on the stage. The first reparenting process is demonstrated in line 2 by
adding the moon to the first sky (on the left) as its starting position. Lines 4
and 5 then add two event listeners to the main timeline. Note that the listen-
ers are not attached to a specific object in lines 4 and 5. The this object is
the implied responsible party, indicating the current scope, or main timeline.
As a result, any child display object that receives a mouse down event will call
onDrag() and a child mouse up event will call onDropQ.

moon.mouseEnabled = false;
sky0.addChild(moon);

addEventListener(MouseEvent.MOUSE_DOWN, onDrag, false, @, true);
addEventListener(MouseEvent.MOUSE_UP, onDrop, false, 0, true);

function onDrag(evt:MouseEvent):void {
evt.target.addChild(moon);
evt.target.startDrag();

O 00 N O Ul A W N R

_
f==}

}

Line 8 then adds the moon to the sky that was clicked. This process removes
the moon from its previous parent and adds it to the clicked item, reparenting
the moon. The last line of the function then enables dragging of the clicked

item.

Finally, when the mouse up event is received, the onDropQ function disables

dragging.
11  function onDrop(evt:MouseEvent):void {
12 stopDragQ;
13}

As you can see, by using the addChildQ method, you can move a display
object from one parent container to another. As a result, the child will inherit
basic display attributes from its parent. For example, in addition to the x and
y coordinates demonstrated in this file, the child will also be affected by any
changes to rotation, scale, or alpha values of the parent.

A Dynamic Navigation Bar

Now it's time to tie much of this together and create a dynamic navigation
bar. This project will create a five-button navigation bar that will be centered
on the stage as shown in Figure 4-9. To simulate functionality, each button
will trace its name to the Output panel when clicked. Later in the book, you'll
combine additional skills to create a similar navigation bar that will use XML
and load external assets.

Figure 4-9. A dynamically generated navigation bar



A Dynamic Navigation Bar

NOTE

The SimpleButton class, used to create
custom buttons, is so named because a
Button class already existed. The latter
is used to create instances of the Button
component.

Part Il: Graphics and Interaction

This script can be found in the dyn_nav_bar.fla source file. Lines 1 and 2
initialize the number of buttons used and the space between each button (in
pixels). Line 4 creates a container that will hold not only the buttons, but also
background art. The container doesn't need a timeline, so for efficiency (and
practice), a sprite is used rather than a movie clip. Next, line 5 adds the sprite
to the display list.

1 var btnNum:int = 5;

2 var spacing:Number = 10;

3

4 var navBar:Sprite = new SpriteQ;
5 addChild(navBar);

Lines 6 through 15 create the buttons. Line 6 types a variable as SimpleButton,
which allows you to use (or create) button symbol instances, rather than rely-
ing solely on movie clips. The loop defined in line 7 creates five buttons,
based on the value of btnNum assigned in line 1.

6 var btn:SimpleButton;

7 for (var i:int = @; i < btnNum; i++) {

8 btn = new Btn();

9 btn.name = "button" + i;

10 btn.x = spacing + i * (btn.width + spacing);

11 btn.y = spacing / 2;

12 btn.addEventListener(MouseEvent.CLICK, onTraceName,
13 false, 0, true);

14 navBar.addChild(btn);

15}

Each time through the loop, a new button is created from a button symbol in
the library with the linkage class, Btn (line 8). The button is given a name by
combining the string "button" and the loop counter value (line 9). The first
button is called buttonO, the second is called buttonl, and so on.

Each button is positioned horizontally (line 10) using the spacing gap set
in line 2, plus the width of the button (in this case, 65 pixels) and another
spacing gap. Figure 4-10 shows the measurements in use. The first button is
positioned only 10 pixels to the right of the container's edge, while the second
button is positioned 85 pixels to the right of the container's edge. In both
cases, the spacing is 10, and the button width (65) plus spacing is 75. So, the
first result is 10 plus 0 * (65 + 10), or 10 + 0, or 10. The second result is 10 plus
1* (65 + 10), or 10 + 75, or 85. This process continues for each button. The
vertical position is also set for each button, moving the button down 10 / 2,

or 5 pixels.
10 65 10 65 10 65 10. 65 10 65 10
1 1 Il 11 IT
-—-.150
10 225

Figure 4-10. Object positioning in the dynamic navigation bar



The last lines in the loop add a mouse click event listener to the button (line
12) that will call the onTraceNameQ function when the event is received, and
add the button to the navBar parent container (line 14).
16 var bg:MovieClip =
17 bg.width =

18 bg.height =
19 navBar.addChildAt(bg,

new NavBarBackQ;

spacing + btnNum * (btn.width + spacing);
btn.height + spacing;

0);

Starting with line 15, a background is added to the navBar. Similar to the
calculation used to position each button, its width is set to an initial spacing
gap plus the total number of buttons times the sum of the button width and
spacing (line 16). It's height is set to the button height plus spacing (line 17).
The background is then added to the navBar at position 0, ensuring that it's
placed behind all the buttons (line 18). The result is, no matter how many
buttons you need, or what the button size is, the buttons will be spaced uni-
formly within the background, both horizontally and vertically

Finally, the last script block positions the finished navBar and creates the lis-
tener function. The bar is centered horizontally by subtracting its width from
the stage width, and dividing that value by two for a left and right margin
(line 19). It is also positioned vertically at a y coordinate of 20 pixels (line 20).
The onTraceNameQ function (lines 22 through 24) traces the name of each
button when the user clicks on it.

20 navBar.x = (stage.stageWidth - navBar.width) / 2;

21 navBar.y = 20;

22

23 function onTraceName(evt:MouseEvent):void {
24 trace(evt.target.name);

25}

This exercise demonstrates how to create a simulated navigation bar using
the display list, when no assets previously existed on the stage. Later in the
book, you'll also learn how to create the buttons and draw the background
shape entirely with ActionScript, removing the need to precreate these assets
as library symbols. You'll also learn how to create a class-based version of this
system to control the playhead of a movie clip (Chapter 6), and load images
or SWFs (Chapter 13).

What's Next?

The display list is among the most important new introductions to
ActionScript 3.0. It is worth the effort to explore the properties, methods,
and events of the various display list classes—starting with the contents of
this chapter, and then delving into the Flash help system, and additional
resources, as you gain experience. Experimenting with the display list will
show you that it is easy to use and, if you have experience with prior versions
of ActionScript, you will soon find that it's much simpler and more consistent
than equivalent methods in ActionScript 1.0 or ActionScript 2.0.

What's Next?

NOTE

Push Yourself: A bonus file in this chap-
ter's source archive expands on this
example. It's called dyn_nav_bar_urls.
fla and shows how to load web pages
based on this dynamic navigation bar
example. It uses information explained
in Chapter 13, but ifyou want to learn
more at the same time you put this
chapter into practice, give the file a look!

Chapter 4: The Display List



What's Next?

Part Il: Graphics and Interaction

Next, we'll discuss timeline control. Regardless of whether you are creat-
ing lengthy linear animations or single-frame applications, you are likely
to require some degree of control over the main timeline or movie clips.

ActionScript 3.0 offers a few new features for you to try out.
In the next chapter, we'll discuss:

* Controlling playback of your animations and applications by moving the
playhead with ActionScript

* Parsing frame label names from timelines and scenes

* Changing the frame rate of movie playback for the first time



TIMELINE CONTROL

In this chapter, you'll learn some basic approaches to controlling timelines —
both that of the main Flash movie and the movie clips it contains. We'll
divide our focus into three main areas:

* Jump Right In. Change the frame rate of your SWF at runtime.

* Playhead Movement. This includes stopping and playing the file, and
going to a specific frame.

* Frame Labels. Including improved playhead movement techniques with-
out relying on frame numbers.

* Frame Rates. Changing the movie's frame rate to increase or decrease
animation speed during playback.

* A Simple Site or Application Structure. We'll wrap up the chapter by
building a project that combines timeline animation with ActionScript
navigation. The project can be used as an example template for a multi-
state application or Flash-based website.

We'll also take a look at an undocumented feature that allows you to add
frame scripts to movie clips at runtime and show you a demo of how to create
a flexible structure for a Flash website or application.

Jump Right In

We'll start off with one of the most-desired features in the evolution of
ActionScript: the ability to adjust the frame rate of a file with code. Consider
a simple example that switches a SWF's frame rate between 1 and 24 frames
per second, with every click of the mouse. This script can be found in the
frame_rate_tracefla source file.

stage.frameRate = 24;
this.addEventListener(Event.ENTER_FRAME, onEnter, false, 0, true);

1
2
3
4 function onEnter(evt:Event):void {
5 trace(stage.frameRate);

6 }

CHAPTER

IN THIS CHAPTER

Jump Right In
Playhead Movement
Frame Labels
Frame Rate

A Simple Site
or Application Structure

What's Next?



Playhead Movement

NOTE

Real-world frame rates vary based on
many factors including the processing
power of your computer, how hard it's
working at any given moment, and what
your SWF is trying to do. Depending

on these circumstances, among others,
you're likely to achieve a maximum
frame rate between 60 and 120 frames
per second.

Although you're unlikely to see this
performance anytime soon, it's theoreti-
cally possible to assign a frame rate up
to 1000 fps. Any assignment above that
number will fall back to 1000.

NOTE

To review the basics of movie clips, con-
sult Chapters 3 and 4.

- Part ll: Graphics and Interaction

8 stage.addEventListener(MouseEvent.CLICK, onClick, false, ©, true);

9 function onClick(evt:MouseEvent):void {

10 if (stage.frameRate == 24) {
11 stage.frameRate = 1;

12 } else {

13 stage.frameRate = 24;

14 }

15}

Line 1 shows a new stage property called frameRate, which is assigned to
24 frames per second. Lines 3 through 6 contain an enter frame listener
that traces the current frame rate. Lines 8 through 15 contain a mouse click
listener that will toggle the frame rate between 1 and 24 frames per second.

Once you get this example working, experiment by adding visual assets, as in
frame_rate_timeline_tween.fla, and watch your animations change. A similar
example later in the chapter will show the speed of an animation change in
response to buttons that increase or decrease the frame rate.

Playhead Movement

One of the most basic ActionScript skills you need to embrace is the ability
to navigate within your Flash movies. You will often use these skills to control
the playback of movie clips nested within your main movies.

The code in this chapter is straightforward enough that you can create your
own examples to test the functionality discussed, if you want to use your own
assets. We'll cover the structural necessities for each example to make it easier
for you to follow along using your own assets. In each section, we'll also cite
the sample file we're using so you can consult that file if preferred.

Let's start by covering the basic concept of stopping and starting playback
of the main timeline or movie clip, and then add an initial jump to another
frame. If you're creating your own file, be sure it has a linear animation in
one layer of the main timeline, and four buttons in one or more other layers
that span the length of the animation. In other words, your buttons must be
visible throughout the animation. Alternatively, you can open the sample file
navigation_01.fla.

Figure 5-1 shows navigation_01.fla, which contains four timeline tweens of
black circles. For added visual impact, the circles use the Invert blend mode
(seen in the Display section of the Properties panel) to create an interesting
optical illusion of rotating cylinders. We'll be starting and stopping playback
at any point, as well as jumping to a specific frame to start and stop playback
(frame 1, in this example). Initially, we'll rely on frame numbers to specify
where to start and stop.



play

gotoAndStop(1)

gatoAndPlay(1)

Figure 5-1. navigation_01.fla demonstrates simple navigation

Placing a stop() action in any frame script is a means of halting playback of
that timeline without user interaction —perhaps at the end of an animation
or to support a menu or similar need to display a single frame. Only the
timeline in which the stopQ action is used will stop, so if the main timeline
is stopped, movie clips will continue to animate.

Let's take a more interactive approach and look at invoking the stop() action
via user input, such as clicking a button. Line 1 of the following script is an
event listener added to a button named stopBtn. It uses a mouse click to call
onStopClickQ, the function defined in Lines 3 through 5.

stopBtn.addEventListener(MouseEvent.CLICK, onStopClick,
false, 0, true);

1
2
3 function onStopClick(evt:MouseEvent):void {
4 stop();

5

}

All playback of the main timeline will cease when the user clicks the button.
Adding the following lines to the script will allow you to restart playback.
The new code is similar to the previous example, but invokes the play()
method from the playBtn instead. Using this pair of buttons, you can start
and stop playback at any time without relocating the playback head in the

process.
6 playBtn.addEventListener(MouseEvent.CLICK, onPlayClick,
7 false, 0, true);
8 function onPlayClick(evt:MouseEvent):void {
9 play();

10 }

Playhead Movement

NOTE

Ifyou don't know about event listeners
or typed arguments, consult Chapter
3 for more information. Be sure to
pay particular attention to the sidebar
"Garbage Collection" on weak refer-
ences.

Chapter 5: Timeline Control



Playhead Movement

NOTE

Organizing your code is a very personal
thing, subject to preference. Many cod-
ers group listener objects (like buttons)
together and place the corresponding
functions soon after. This allows you

to look at all the buttons at once with-
out scrolling through all the functions.
Others like to group the listener object
and function together so the functional-
ity of the object is immediately appar-
ent. This exercise demonstrates both
styles.

When defining the listeners, the order
in which these items exist in the same
script typically doesn't matter (After
you've programmed for a while, you
may find a need to create a listener at
a specific moment at runtime, such as
when you click a button. In these cases,
where you place your code will take on
additional importance.) Adopt a style
and organization that suits your habits
and makes your code easiest to read.

Part Il: Graphics and Interaction

Using stop() and play() in this fashion is useful for controlling a linear
animation, much in the same way a YouTube controller bar might control
video playback. However, it's less common when using interactive menus,
for example, because you typically want to jump to a specific point in your
timeline before stopping or playing.

For example, you might have generic sections that could apply to any project,
such as home, about, and help. If you were restricted to the use of stop() and
play(), you would be forced to play through one section to get to another.

Adding again to the previous script, the following content adds a slight varia-
tion. The buttons in the new script function in similar ways. However, instead
of stopping in (or playing from) the current frame, the new buttons move the
playhead to a specific frame first. For example, if you had previously stopped
playback in frame 20, triggering play() again would send the playhead to
frame 21. However, if you used gotoAndPlayQ and specified frame 1 as a
destination (as seen in line 16 of the script that follows), you would resume
playback at frame 1, rather than at frame 21. If you use gotoAndStopQ (as in
line 19), the playhead will go to that frame but not continue to play through
the rest of the timeline. There are no structural differences in this code, so
simply add the following content to your existing script:

11 gotoPlayBtn.addEventListener(MouseEvent.CLICK, onGotoPlayClick,
12 false, 0, true);

13 gotoStopBtn.addEventListener(MouseEvent.CLICK, onGotoStopClick,
14 false, 0, true);

15 function onGotoPlayClick(evt:MouseEvent):void {

16 gotoAndPlay(1l);

17 }

18 function onGotoStopClick(evt:MouseEvent):void {

19 gotoAndStop(1l);

20}

Once you get a navigation system working, it may sometimes be useful to
know where you are in a timeline, or how many frames the timeline contains.
For example, you can determine if you're in the last frame of a timeline by
checking to see if the current frame matches the total number of frames.
Tracing this information to the Output panel can help you track your move-
ments during development. Tracing totalFrames will display the number of
frames in the timeline, and tracing currentFrame will show the frame number
in which the playhead currently sits.

trace("This movie has", totalFrames, "frames.");

trace(current Frame);

The companion sample file, navigation_02.fli, demonstrates the use of these
properties, tracing totalFrames in frame 1, and currentFrame each time a but-
ton is clicked.



Frame Labels

Using frame numbers with goto methods has advantages, among them
simplicity and use in numeric contexts (such as with a loop or other type
of counter when an integer is at hand). However, frame numbers also have
disadvantages. The most notable disadvantage is that edits made to your file
after your script is written may result in a change to the number of frames, or

frame sequence, in your timeline.

For example, your help section may start at frame 100, but you may then
insert or delete frames in a section of your timeline prior to that frame. This
change may cause the help section to shift to a new frame. If your navigation
script sends the playhead to frame 100, you will no longer see the help section.

One way around this problem is to use frame labels to mark the location of a
specific segment of your timeline. As long as you shift content by inserting or
deleting frames to all layers in your timeline (maintaining sync among your

layers), a frame label will move with your content.

This is a useful feature when you are relying heavily on timeline tweens for
file structure or transitions (as we'll see in our demo site in a short while), or
when you think you may be adding or deleting sections in your file. Frame
labels remove the need to organize your content linearly and free you to

rearrange your timeline at any point.

The sample file, frame_labels_01.fla, demonstrates the use of frame labels
instead of frame numbers when using a goto method. It also illustrates
another important and useful concept, which is that you can use these meth-
ods to control the playback of movie clips as well as the main timeline.

Instead of controlling the playback of a linear animation, the sample file
moves the playhead between the frames of a movie clip called pages. This is a
common technique for swapping content in a Flash file because you can keep
your main timeline simple, and jump the movie clip from frame to frame to
reveal each new screen. Figure 5-2 displays the "pagel" frame of the pages
movie clip in frame_labels_01.fla, after jumping to the frame by specifying
the frame label. The timeline inset shows the frame labels.

The initial setup of this example requires that we prevent the movie clip
from playing on its own, so we can exert the desired control over its play-
back. There are several ways to do this. The first, and perhaps most obvious
approach, is to put a stopQ action in the first frame of the movie clip.

Frame Labels

NOTE

A frame number is always an integer

equal to, or greater than 1. A frame label

is always a string.

Chapter 5: Timeline Control

H



Frame Labels

Button one

Button two

Button three

TIWHLINE i

»ada pp s 10 15 20 25 3)
KJM1K M B K lipaffil  <page2 D *pageB 0

4] content L Ule Ue O

Figure 5-2. The "page!" frame of the pages movie clip in frame_labels_Ol .fla

The second technique is more flexible and easier to maintain because it cen-
tralizes your code into fewer frames. Use the stop() method, but in your main
timeline, targeting the movie clip instance. To do this, precede the method
with the object you wish to stop, as seen in line 1 of the following script.
In this case, we are stopping the movie clip called pages. Immediately upon
starting, the SWF stops the pages movie clip in line 1. Each button causes the
movie clip to change frames in lines 8,11, and 14.

1 pages.stop();

2

3 one.addEventListener(MouseEvent.CLICK, onOneClick, false, @, true);
4 two.addEventListener(MouseEvent.CLICK, onTwoClick, false, ©, true);
5 three.addEventListener(MouseEvent.CLICK, onThreeClick,

6 false, 0, true);

7 function onOneClick(evt:MouseEvent):void {

8 pages.gotoAndStop("pagel");

9 }

10 function onTwoClick(evt:MouseEvent):void {

11 pages.gotoAndStop("page2");

12 1}

13 function onThreeClick(evt:MouseEvent):void {

14 pages.gotoAndStop("page3");

15}

. Part II: Graphics and Interaction




To test the effectiveness of using frame labels, add or delete frames across
all layers before one of the existing frame labels. Despite changing the frame
count, you will find that the navigation still works as desired.

New Timeline ActionScript

ActionScript 3.0 provides a few new features relevant to timelines. The first
is an associative array of all frame labels in a file. This array is called labels,
and contains name and frame properties that provide the text of the frame
label and the frame number to which it is applied.

The second is a scenes array that contains each scene's name and number of
frames, stored in the array's name and numFrames properties, respectively The
scenes array also has its own labels object so you can check the label names
and frame numbers as described previously, in all the scenes in your file.

The sample ii\e,frame_labels_02.fla, demonstrates several of these features, as
well as illustrates a couple uses of the available frame label options. It uses the
same pages movie clip as in the prior file, but with adapted functionality and
buttons. Figure 5-3 shows the direct navigation to a frame that is four frames
after a specified label.

new frame art

Button onePlus

Button output

Button labelCheck

B
TI M LNE Li
viiQl i 0 IS 20 25 3l
xi labels Foox e ljjopigeZ [| | opage3 H
U SES Ulo nbo D
§J] content ool 1]e 1]

Figure 5-3. The pages movie clip of frame_iabeis_02.fia jumping to a frame relative to
the location of a label

Frame Labels

NOTE

In case you're unfamiliar with scenes,
they're essentially a way of organizing
very long timelines into smaller man-
ageable chunks. At runtime, all scenes
are treated as one giant timeline, and
the playhead can move freely between
scenes either automatically during linear
playback, or with ActionScript.

We don't use scenes much in the work
we do, but we've had students who rely
on scenes to tell long stories through
linear animation. Adding a new scene to
a file (Windows-Other Panels — »Scene)
effectively resets the interface to a new
timeline, making it easier to work with
the relevant frames without being dis-
tracted by prior or future scenes in your
file. Another advantage of scenes is that
you can test single scenes during devel-
opment, rather than having to test your
entire movie.

Chapter 5: Timeline Control H >5



Frame Labels

NOTE

In ActionScript 3.0, you can trace mul-
tiple items to the Output panel by sepa-
rating them with commas when using
the trace() statement. However, that
will automatically put a space between
each item in the trace. So, when you
want to build a string with adjacent
items, such as the single-quotation
marks that surround some of the values
in this script, it's better to use the string
concatenation operator (+) to join the
items together, rather than use commas.

. Part Il: Graphics and Interaction

We're going to start by highlighting the functionality of the second button,
output, which collects many of the features in one information dump to the
Output panel. Looking at the following script, the first new item you'll see is
a main movie stop() action on line 1. This has been added because this file
has a second scene to demonstrate the new scenes array and currentScene
property Line 3 stops the movie clip as in the prior example, and line 5 cre-
ates a mouse click listener for the button.

stop();
pages.stop();

onOutputClick,
false, 0, true);
function onOutputClick(evt:MouseEvent):void {

trace("The main movie has + scenes.length +

1

2

3

4

5 output.addEventListener(MouseEvent.CLICK,
6

7

8 scenes.");
9

trace("The current scene is ©" + currentScene.name + "0.");

10 trace("It has " + currentScene.numFrames + " frame(s),");

11 trace(" and " + currentScene.labels.length + " label(s). ");

12 trace("The second scene's first label is 0" +

13 scenes[1l].labels[@].name + "0,");

14 trace(" which is in frame " + scenes[1l].labels[@].frame + ".");
15 var numLabels:int = pages.currentLabels.length;

16 trace("Movie clip ‘'pages' has " + numLabels + " labels.");

17 trace("Its last label is @" +

18 pages.currentLabels[numLabels-1].name + "0.");

19 }

Lines 7 through 19 contain this button's goodies, tracing the number of scenes
(line 8), the name and number of frames of the current scene (lines 9 and
10), and the total number of labels in the current scene (line 11). The script
also traces the name and frame number of the first label of the second scene
(lines 12 through 14). Line 14 uses the array syntax discussed in Chapter 2,
with indices starting at 0 to represent the first item in an array Thus the code
targets the second scene, first label, frame number.

Finally, lines 15 through 18 look at the currentLabels array of the pages movie
clip, getting the number of labels through the length property, and the name
of the last label in the clip.

This series of trace commands offers a half dozen or so variants on the new
scene and label features and should stimulate your imagination. Try to figure
out interesting ways to make use of these properties. To get you started, we've
provided two examples, included on the other two buttons.

Attached to the first button, onePlus is a way of reaching a frame relative to
a frame label. For instance, you may want to revisit a section of your file, but
without retriggering an initialization routine found in the frame marked by
your frame label. For example, a section may have an intro animation that
you want to see the first time, but skip thereafter. In that case, you may want
to go to the "label frame plus one."



Perhaps more common is a uniformly structured file, such as a character
animation cycle (walk, run, jump, duck, and so on), or an interface of draw-
ers or tabs that slide in and out from off-stage. In these cases, each action
might consist of the same number of frames. You may want to interrupt one
sequence and jump to the same position in another sequence. Imagine, as an
example, interrupting a timeline tween of an interface drawer sliding open,
and wanting to jump to the same location in the timeline tween of the drawer
sliding closed.

To avoid relying strictly on frame numbers, it helps to be able to start from
a frame label and jump to a specific number of frames beyond that label. As
an addition to your ongoing script, look at the following. This code sends
the pages movie clip to a frame returned by the getFrameQ function. In Line
21, the script passes in a label and a movie clip. The function, which we'll
look at in just a moment, returns the frame number that matches the label
provided. In line 22, if the value returned is greater than zero (as all timelines
start with frame 1), the movie clip is sent to that frame plus a relative offset
of four additional frames.

20 onePlus.addEventListener(MouseEvent.CLICK, onOnePlusClick,
21 false, 0, true);

22 function onOnePlusClick(evt:MouseEvent):void {

23 var frameNum:int = getFrame("pagel", pages);

24 if (frameNum > @) {

25 pages.gotoAndStop(frameNum + 4);

26 }

27}

28

29 function getFrame(frLabel:String, mc:MovieClip):int {

30 for (var i:int = @; i < mc.currentLabels.length; i++) {
31 if (mc.currentLabels[i].name == frLabel) {

32 return mc.currentLabels[i].frame;

33 }

34 }

35 return -1;

36}

The aforementioned getFrameQ function appears in lines 27 through 34.
The function accepts a String parameter containing the name of the original
frame label, and the movie clip within which the label resides. Note the int
data type of the return value so the compiler knows to expect an integer from
the function. Lines 28 and 29 loop through all the labels in the referenced
movie clip, comparing the name of each label to the label desired. If a match
is found, the frame in which the label resides is returned in line 30. If no
match is found after looping through all the labels, -1 is returned in line 33.
The desired result, in our sample file, is that the playhead jumps to frame 5
instead of frame 1 where the "pagel" label resides.

A similar coding technique is to use these features to check whether a specific
frame exists. This option can be used for navigation error checking or simply
to make sure you're working with the correct movie clip among many that
may be available.

Frame Labels

NOTE

Although not universal, returning-1
when something isn't found is a common
technique. It may sound counterintuitive,
but it came into popular use because
zero is often a meaningful value. For
example, both the first item in an array
and the first character in a string have
an index of zero.

In this example, you might choose to
return 0 because you know there is no
frame 0. However, maintaining consis-
tency with other methods that return -1
when nothing is found will make things
easier the more you code.

Chapter 5: Timeline Control H

>5



Frame Rate

NOTE

For more information about referenc
ing the stage in ActionScript 3.0, see
Chapters 3 and 4.

H

Part II: Graphics and Interaction

The following code adds such a function and triggers it from a mouse click
listener defined in lines 35 through 39. As before, the function call passes a
label and movie clip to the function, as seen in line 38. The function itself is
defined in lines 41 through 48, and is explained following the code.

37 labelCheck.add Event Listener(MouseEvent.CLICK, onLabelCheckClick,

38 false, 0, true);

39 function onLabelCheckClick(evt:MouseEvent):void {

40 trace(frameLabelExists("page3", pages));

41 )

42

43  function framelLabelExists(frLabel:String, mc:MovieClip)jBoolean {
44 for (var i:int = @; i < mc.currentLabels.length; i++) {
45 if (mc.currentLabels[i].name == frLabel) {

46 return true;

47 }

48 }

49 return false;

50 }

The functionality of isFrameLabelQ is nearly the same as the getFrameQ
function discussed previously, except that this function returns true if a que-
ried frame label is found, or false if it is not found. In our sample file, the
third button will trace true to the Output panel, because the "page3" frame
label does exist in the pages movie clip. This subtle variant is just another
simple example of how you might use the frame label and scene arrays and
properties introduced in ActionScript 3.0.

Frame Rate

As seen in the chapter's opening script, you can now dynamically change the
frame rate at which your file plays at runtime. In Flash Professional CS5, the
default frame rate of an FLA is 24 frames per second, which can be adjusted
in the Properties panel. Prior to ActionScript 3.0, the frame rate you chose
was locked in for the life of your SWF. It is now possible to update the speed
at which your file plays by changing the frameRate property of the stage, as
demonstrated in the sample file frame_rate.fla.

Figure 5-4 shows the interface oi frame_rate.fla, which visualizes the runtime

reassigning of frame rates.



faster .

frame rale

: P

Figure 5-4. frame_rate.fia with buttons on the left that increase and decrease the frame
rate, which controls the speed of the animation on the right

The script in this file, shown in the following code block, increments or
decrements the frame rate by five frames per second with each click of a
button. You may also notice another simple example of error checking in
the onSlowerClickQ function, to prevent a frame rate of zero or below. Start
the file and watch it run for a second or two at the default frame rate of 24
frames per second. Then experiment with additional frame rates to see how
they change the movie clip animation.

1 info.text = stage.frameRate;

2

3 faster.addEventListener(MouseEvent.CLICK, onFasterClick,
4 false, 0, true);

5 slower.addEventListener(MouseEvent.CLICK, onSlowerClick,
6 false, 0, true);

7 function onFasterClick(evt:MouseEvent):void {

8 stage.frameRate += 5;

9 info.text = stage.frameRate;

10}

11 function onSlowerClick(evt:MouseEvent):void {

12 if (stage.frameRate > 5) {

13 stage.frameRate -= 5;

14 }

15 info.text = stage.frameRate;

16}

The frameRate property requires little explanation, but its impact should not
be underestimated. Other interactive environments have long been able to
vary playback speed, and this is a welcome change to ActionScript for many
enthusiastic developers—especially animators. Slow motion has never been
easier.

Frame Rate

Chapter 5: Timeline Control

H



A Simple Site or Application Structure

- Part Il: Graphics and Interaction

A Simple Site or Application Structure

As the final demo file in this chapter, we want to provide a very simple
example of one of our most commonly requested uses of navigation to add
visual interest. The demo_site.fla source file shows how to design a basic site
or application skeleton that gives you the freedom to combine your timeline
animation skills with ActionScript coding.

This file intentionally uses detailed, and varied, timeline tweens—with
inconsistent frame counts—to transition between three separate sections
of this sample site or application (Figure 5-5). The idea is to take advantage
of frame label navigation, but freely move from any section to any other
section without concern of interrupting (or matching) the entrance or exit
animations.

As you look through the sample file, you'll see that a virtual gamut of prop-
erty manipulations add visual interest. Section 1 rotates in and skews out,
section 2 bounces in and zooms out, and section 3 wipes in and fades out.
Each section stops in the middle of the transitions to display its placeholder
content. Moving unencumbered between any sections is achieved through a
combination of the playQ method and a variable.

SECTION 3

section 1

section 2

section 3

Figure 5-5. The file demo_site.fla demonstrates navigation with transitions

The first script of this file is in frame 1 of the main timeline. Line 1 initializes
the nextSection variable, typing it as a String. We will store the destination
frame label in this variable. Scripts in other keyframes (which we'll look at in
a moment) will use the gotoAndPlayQ method to jump to the frame stored
in this variable.



1 var nextSection:String = "";

/3

3 sectionl.add Event Listener(MouseEvent.CLICK, navigate,
4 false, @, true);

5 section2.add Event Listener(MouseEvent.CLICK, navigate,
6 false, @, true);

7 section3.add Event Listener(MouseEvent.CLICK, navigate,
8 false, @, true);

9 function navigate(evt:MouseEvent):void {

10 nextSection = evt.target.name;

11 playQ;

12

The remainder of the script is similar to the previous examples, creating three
buttons that all access the same listener. Line 10 populates the nextSection
variable using the name of the button that was clicked. Knowing that the
target property can identify the button that was clicked, we can further
query its name property to determine the name of the button. By naming but-
tons with names that match frame labels, we can set up our file cleanly and
efficiently Clicking the sectionl button will take us to the corresponding
"sectionl" frame label.

How, then, do we prevent the entry and exit animations from being interrupted
or from overlapping? First, each button click populates the nextSection vari-
able with the desired destination frame label. Then we use play() to play the
file from that point forward. This plays through the entry animation of the
first section, and then another script halts the playhead in the content key-
frame of the section with a stopQ action.

//at end of entry animation
stop();

Using the playQ method prevents repeated clicks on a button from start-
ing an entry animation over and over again—a possible side effect of using
gotoAndPlayQ. Instead of every click first jumping to a specific frame before
playing, each click just continues to tell the timeline to play, which it's already
doing, and so has no ill effect.

Having stopped at the content frame of the section, the user is free to view
that screen. Any subsequent button clicks will first populate the nextSection
variable and then again call the play() method. This sets the playhead in
motion, carrying it through the concluding animation until it hits the last
frame script in the section:

//at end of exit animation
gotoAndPlay(nextSection);

This script is the last piece of the puzzle. After playing the prior section outro
animation, this method sends the playhead to the new section entry anima-
tion. The cycle then repeats as the playhead dutifully stops at the content
frame of the new section.

This structure allows you to be as creative as you want with timeline tweens

and still move in and out of any section no matter how many frames each

A Simple Site or Application Structure

NOTE

Chapter 3 discussed the use of the event

arqument in event listeners, and the
ability to learn about the event trigger
by querying its target property.

Chapter 5: Timeline Control

H

>0



A Simple Site or Application Structure

animation requires. Because you're using frame labels, you can easily change
any sequence without having to adjust your scripts to update new frame

numbers.

f \
Undocumented: Adding Frame Scripts

to Movie Clips at Runtime

To finish off our discussion of timelines, we want to show you an undocumented
method for adding frame scripts to movie clips at runtime. As always, be careful using
undocumented ActionScript, testing your implementation thoroughly and trying not
to rely on its use for final production, if possible. In addition to making no warranties
as to current reliability, there's no guarantee that future versions of Flash Player will
support an undocumented feature.

To implement this feature, you need to create a movie clip with two or more frames,
and give it an instance name of rnc. Alternately, you can use the addFrameScript.fla
source file.The method we will use is:

<movieclip>.addFrameScript(<framenuml>, <functionl>,
<framenum2>, <function2>,
...rest);

By adding the method to a movie clip instance, you can dictate that any function be
called when the specified frame number is reached. The ellipsis followed by "rest"is a
special case that indicates this function will accept an unlimited number of comma-
delimited arguments. In this case, the structure reguires pairs of frame number,
function; frame number, function; and so on. In the following example, only one
frame script is added.

First, a function is defined that will stop the movie clip and trace the frame on which
it stopped.

function onStopMCQ {
mc.stop();
trace(mc.current Frame);
}
mc.addFrameScript(mc.totalFrames - 1, onStopMC);
Then the addFrameScriptQ method is used, specifying that the onStopMC()
function be added to the last frame. This can be a bit confusing because the
totalFrames property returns a number that corresponds with the last frame,
yet this script subtracts one from that value.The addFrameScript() method
consistently functions on the premise that a first item in most ActionScript
structures (such as an array, the display list, a string, and more) is item 0.Therefore,
totalFrames - 1 isthe last frame of the movie clip.
When you run the sample file, the movie clip animates and, when it reaches frame 40,
the script stops and traces 40 to the Output window.

. Part Il: Graphics and Interaction



What's Next?

By now you should have a relatively firm grasp of how to navigate timelines,
be able to manipulate display objects (including their properties and meth-
ods), and understand the fundamentals of the ActionScript 3.0 event model.
Up to this point, we've been focusing primarily on syntax and approaching
each task using simple procedural programming techniques.

As you'll read in Chapter 6, you may find this sufficient for many of the
projects you create. However, larger projects, and projects developed in a
workgroup environment with multiple programmers, can significantly ben-
efit from OOP techniques. From this point on, we'll be using a little OOP in
our demos, and you will eventually end up with a final project that is built
entirely using object-oriented programming. This content design allows you
to learn at your own pace, choosing when to use procedural programming
and when to use OOP.

In the next chapter, we'll introduce some basics of OOP, including;:
* Using encapsulation and polymorphism
* Writing your first class
* Creating a subclass that demonstrates inheritance

* Organizing your classes and packages

What's Next?

Chapter 5: Timeline Control



oor

Object-oriented programming (OOP) is an approach to coding that uses
classes to create individual objects and control how those objects interrelate.
It's sometimes described as a problem-solving technique—a programming
style that addresses issues that procedural programming (which is also
referred to as timeline programming in Flash Professional) can't handle well.
It's a way of organizing your code into small, specific, easily digestible chunks
to make project or application development more manageable. These objects
are typically designed to be as self-contained as possible, but are also usually
designed to play well with other objects.

Whether you know it or not, you've been flirting with object-oriented pro-
gramming for some time now, You've been creating objects from classes, call-
ing methods, getting and setting property values, and so on. Each time you
create a movie clip with ActionScript, for example, you're creating an object
by instantiating the MovieClip class. But although you may be using objects
fluently while coding in the timeline, this is only the tip of the OOP iceberg.
To really embrace OOP, you need to write your own custom classes, guided
by a few basic object-oriented principles that we'll discuss in this chapter. For
our discussions, we'll further define OOP as using classes primarily, if not
entirely, rather than simply using objects in procedural programming.

Choosing OOP as a programming methodology is a decision that is some-
times fairly obvious, such as when working with large projects or with
a team of collaborating programmers. At other times, however, adopting
OOP as a development strategy can be less obvious, and even debated.
In still other cases, using OOP can be like driving a finishing nail with
a sledgehammer —overkill that just doesn't make sense for quick experi-
ments or proofs of concept.

The goal of this chapter is to give you a high-level view of object-oriented
principles, as well as supporting examples, to help prepare you to make these
decisions on a project-by-project basis. Each subsequent chapter in this

CHAPTER

IN THIS CHAPTER

Classes

Inheritance

Composition
Encapsulation
Polymorphism
Navigation Bar Revisited

What's Next?

113



oor

Part Il: Graphics and Interaction

book will continue to introduce syntax in concise, timeline-based exercises,
but also make increasing use of classes. Ultimately, we hope you will con-
tinue your learning using the books companion website, where a cumulative
project will collect much of what you've created along the way into a "lab"
of experiments. The larger project will be OOP-based, but also will contain
exercises that you create throughout the book using procedural techniques,
exposing you to both programming paradigms.

Knowing when to opt for an object-oriented model depends largely on
understanding the benefits of OOP. Among the highlights we'll cover in this
chapter are:

* Classes. Classes are collections of related functions and variables (called
methods and properties, respectively, in class vernacular) gathered to facili-
tate one or more specific goals. They are the foundation of OOP, and we'll
look at a few ways to use them.

* Inheritance. Inheritance is one of OOP's greatest sources of power, espe-
cially in ActionScript 3, as it allows you to add functionality to an exist-
ing feature set without reinventing the wheel. This is known as extending
an existing class to create a subclass, rather than originating a new class.
Inheritance can save you time and labor, as well as improve project design.

* Composition. Inheritance isn't appropriate for every situation, and com-
position is often a useful alternative. Using composition, new classes are
assembled using other classes, rather than inheriting from parent classes.

* Encapsulation. It's usually not a good idea to expose all aspects of a class
to other classes or the surrounding application. Encapsulation isolates
most elements of a class from the outside world, allowing only a select
few elements, if any, to be seen by other classes.

* Polymorphism. Polymorphism is a design practice that allows you to use
objects of different types in a uniform manner. For example, it allows you
to have methods that share the same name but that behave differently (if
desired) when called. Considering a method responsible for motion, you
can name it moveQ everywhere instead of drive() for a car and fly() for a
plane. This makes it easier to document, write, and even change your code.

It's important to understand that OOP is not appropriate for everyone, and
it is not even appropriate for every situation. OOP can dramatically improve
the development cycle of large projects or projects to which more than one
programmer can contribute. OOP can even be ideal for smaller projects that
are particularly suited for object-based coding (such as some kinds of arcade
games, as one example).

The common thread is that object-oriented programming benefits from
economies of scale. The time, labor, and learning investments begin to pay off
over time. Procedural programming is often more appropriate for small tasks



and is sometimes less time-consuming for smaller-scale projects, resulting in

code that is simpler to maintain.

You don't need to learn OOP to use ActionScript 3.0. The benefits and buzz of
object-oriented programming— particularly the continuing swell of interest
in design patterns—sometimes lead to almost fetishistic adherence to their
principles, without context and at the cost of practicality

The key to adopting any programming paradigm is finding the right tool for
the job. It's certainly a good idea to learn OOP as soon as your schedule and
skill set permits, simply because it gives you more options to choose from.
Remember, however, that there is more than one way to skin an interface.
Before embracing your next significant project, try to set aside some time for
planning, information architecture, and programming design. You may find
that your goals will be more easily achieved by adopting an object-oriented
approach.

If your typical production schedule or project budget cannot allow the inevi-
table time and resource stumbles associated with attempting new challenges,
try learning OOP through a series of fun experiments or artistic endeavors.
You may find that the things you learn, the mistakes you make, and the
epiphanies you experience will improve your next project.

Having said all that, we'll hit the high points in this introduction to object-
oriented programming. This chapter is meant to be a transition between
prior and future chapters. As mentioned, we'll continue to show simple
procedural examples for syntax, but we'll make more frequent use of OOP
techniques — particularly in applied examples at the end of the chapters, and
even more so in the supplemental source code and enhanced learning avail-
able on the companion website.

Classes

In Chapter 1, we discussed the three most common programming paradigms:
sequential, procedural, and object-oriented. We described procedural pro-
gramming as an improvement over sequential programming because, instead
of being limited to a linear sequence of statements, you can group related
tasks together into procedures (called functions, in ActionScript).

Classes offer a similar improvement over procedural programming, in that
they collect related functions (methods), variables (properties), and other
relevant items. They are the foundation of object-based programming, yet
you have probably been working with them for some time. Even if you are
new to programming, if you have followed this book through to this chapter,
you already have some experience with classes but may not realize it. This is
because most of what goes on behind the scenes in ActionScript is accom-
plished through the use of classes.

Classes

Chapter 6: OOP



Classes

- Part Il: Graphics and Interaction

To start off with, Chapter 1 of this book gave you a quick peek at classes, and
introduced the first use of the document class. We'll look at that again injust

a moment, as a quick review.

Beyond that, you learned how to use events (using several event classes,
including Event, MouseEvent, and Timer in Chapter 3), how objects are
displayed (using a large number of display classes, including TextField,
MovieClip, DisplayObject, DisplayObjectContainer, and more in Chapter 4),
and how to control navigation and timelines (including FrameLabel, among
others in Chapter 5). Even in Chapter 2, when discussing basic language fun-
damentals, you were using classes when learning about data types.

If you're suddenly concerned that you've missed a lot of material, don't be. In
part, that's the point. All of these examples make use of classes. You just may
not be aware of it because it's happening behind the scenes.

Take a look at the movie clip, for example. Throughout the preceding chap-
ters, you've worked fairly extensively with movie clips. You've set numerous
properties (such as x, y, rotation, alpha, and more), called methods (playQ
and stop() among them), and handled events (like Event. ENTER_FRAME) —all
while making use of the MovieClip class. You even learned how to create a
movie clip dynamically by creating an instance of the class—a fundamental
step in working with classes:

var mc:MovieClip = new MovieClipQ;

So, with all that experience, what's the big deal about classes? A bit of a flip-
pant thought, perhaps, but not entirely off the mark. The fact is, you can
apply that history to learning OOP. You may not have a lot of experience
writing classes, but you do have some experience using them. In fact, it isn't
until you begin working with custom classes that things begin to look new.

Custom Class Review

Start by revisiting the structure of the first custom class introduced in this
book, all the way back in Chapter 1—a very basic use of Flash Professional's
document class. A document class is little more than a timeline replace-
ment—allowing you to move timeline code into a class. But it eases you into
OOP because it's a simple way to start using classes. Moving from timeline
to class not only points you in the direction of object-oriented programming,
it makes your code easier to reuse, share, and archive.

If you need to, you can review Chapter 1 for more information about the
document class, including how to create it and how to reference it in Flash
Professional's Properties panel. Here, however, we'd like to quickly review the
formatting of the class, as you'll use this format for many classes in the future.
Consider the following class code:

1 package {

2

3 import flash.display.MovieClip;



4
5 public class Main extends MovieClip {
6

7 public function Main() {

8 trace("Flash");

: }

10

11 }

12 }

Line 1 and the balancing brace in line 12 surround the class in a package.
Packages help organize your code and are the programming equivalent of
your computer's folders or directories. We'll discuss this in a moment or two,
but for now, think of a package as a wrapper for your class. While getting
started, you don't need to concern yourself with packages if you place all your
classes in the same directory as your fla file. The ActionScript compiler will
automatically look for classes in this location.

Line 3 is an import statement. It doesn't really import anything: itjust tells
the compiler where to find the classes needed by your code. The compiler
can then use the class to validate your code and add the needed class to your
SWEF when it is compiled. This gives your class access to all the properties,
methods, and events needed by your script.

Line 3 also demonstrates the use of a package. This document class requires
the MovieClip class, which is found in the flash.display package. In other
words, the MovieClip.as file is inside a "display" directory, which is inside
a "flash" directory, which is in a classpath, or location of classes known to
the compiler. Your ActionScript editor of choice, such as Flash Professional,
already knows about a few such locations, and you'll learn to create your own
in the next section of this chapter.

None of the timeline examples in the previous chapters included import
statements because the examples used only items found in flash packages.
Importing classes from these packages is not required when writing Flash
Professional timeline scripts, but you must import them in classes. As a rule
of thumb, import all classes used when writing your own classes.

Line 5 declares the class. The first thing you may notice about this is the word
public beginning the declaration. This is called an access control modifier and
determines how something can be accessed by code elsewhere in your project.
Using public makes the class available to the rest of your project. Additional
modifiers are covered in the "Encapsulation" section of this chapter.

The next thing you may notice is the phrase extends MovieClip following the
name of the class, Main. This is called inheritance and means that the publicly
accessible events, methods, and properties of the MovieClip class will also
be available to (are inherited by) this class. This use of the MovieClip class
requires the import in line 3. We'll talk more about extending classes in the
"Inheritance" section of this chapter.

NOTE

Classes

Some ActionScript editors, such as
Adobe's Flash Builder, PowerFlasher's
FDT, and even Flash Professional as

of version CS5, will automatically add
class import statements as you edit your

code.

Chapter 6: OOP



Classes

NOTE

We should reinforce from Chapter 1
that the name of an external class file
must match the name of the class and
constructor In the class being discussed,
the file must be called Main.as. It is
common practice to start class names,
and therefore their file and constructor
names, with a capital letter.

« Part II: Graphics and Interaction

Finally, lines 7 through 9 are the class constructor. This is a function that's
executed automatically when an instance of the class is created. Just as you
can create instances of a library symbol in the Flash Professional timeline,
you can create instances of a class. Although Flash Professional instantiates a
class for you when you use a document class, you can also do this manually:

var main:Main = new Main();

Does this manual instantiation look familiar? It should. This is the same
format used to instantiate the vast majority of classes in ActionScript 3.0,
including the recently cited example of creating a movie clip. So, you already
have some of the skills required for working with custom classes!

Classpaths

You have a few choices when deciding where to place your custom classes.
The ActionScript compiler will automatically look for a class in the same
directory as the file (FLA or other class) making use of the class. This is the
easiest way to store classes because it's easy to transport them with your proj-
ect by just moving the parent directory

However, you can also organize your classes into directories, grouping classes
of similar functionality for easier management. This technique was detailed
when using existing ActionScript classes, as in the cited movie clip example,
but applies to custom classes as well. When using classes in a package, you
must import them —including classes in the flash package.

It's usually a good idea to import every class needed so you can see all depen-
dencies of your class —other files your class relies on—at a glance. However,
you can also import all classes in a package by using an asterisk (*) as a wild-
card. This saves a little time and reduces the number of lines in your script so
you can focus more on your code. (We'll use this approach as a space-saving
technique from time to time in this book.) It's also no less efficient, because
the compiler will include only classes required by your code, rather than the
entire package, when compiling a SWF.

Here are examples of a full package and wildcard used with built-in
ActionScript 3 classes, as well as a full package for a custom class:
import flash.display.MovieClip;

import flash.events.*;
import com.mycompany.effects.Water;

Naming the parent directory of a class library com stems from what is called
reverse domain naming. It breaks your domain into folder names in reverse
order, starting with your domain extension (.com, .org, .edu), then the next
portion of your domain, and so on, until you want to stop. This is common
but only a convention. It's helpful to think of this when you work with other
programmers, but you can organize your package folders any way you like
and your code will still work.



Here is an example structure of the fictional Water class cited in the prior
import statement. Note the path—up to, but not including, the class name —
in the package declaration. Forgetting to include this will result in a compiler
error telling you that the package declaration of the class does not reflect the
location of the file.

package com.mycompany.effects {

public class Water {

?ublic function WaterQ {

}
}

Finally, the ActionScript compiler needs to know where to start looking for
these packages and classes. Because the compiler will automatically look in
the same folder as the file using the class, you can put package directories (as
well as individual classes) next to your FLA file. This is often called a local
or relative classpath (local or relative to your FLA). For most situations, this
is all you need to worry about. Figure 6-1 shows an example parent directory
for a project that uses the aforementioned Water class.

However, this approach can be somewhat impractical if you intend to build
a library of classes that you will reuse often. In this case, you can store fre-
quently reused classes in a centralized location, and add that location to the
list of classpaths your compiler will search.

You can add paths to folders, or SWCs if you have them (Flash Professional
CS4 and later) —the latter being compressed collections of classes and assets
that can be used for compilation but cant be edited. You can also add paths
of runtime shared libraries, which we'll demonstrate in Chapter 10 when we
discuss the Text Layout Framework, the new text options introduced in Flash
Professional CS5.

You can add your own classpath to Flash Professional either at the applica-
tion or project level. To make a classpath available to all projects, you can go
to Flash Professional's Preferences (Macintosh: Flash”Preferences; Windows:
Edit"Preferences), select ActionScript from the left menu, and click on the
ActionScript 3.0 button at the bottom of the ActionScript preferences. Using
the resulting dialog, seen in Figure 6-2, you can browse to the directory in
which you will be maintaining your class libraries, and Flash will thereafter
also search in that directory when importing your classes.

Classes

t Li com
e LL mycompany
t u, effects
AT Water.as
A myproject.fla

Figure 6-1. A sample directory structure
using the local classpath

Chapter 6: OOP



Classes

Part Il: Graphics and Interaction

ActionScript. 3.0 Advanced Settings
Flex SDK Path: J(AppConfig>/ActionScript 3.0/flex_sdk/4.0.0/
The folder containing bin, Frameworks, lib and other folders.

Source path: ® Ejf2EB

Folders containing ActionScript class files.

Library path:

yA53_Uhraries

SWC files or folders containing SWC files.

External library path: iAFilZIPLi="11"

SWC files used as runtime shared libraries.

( Cancel 1 ( OK "

Figure 6-2. Adding your own application-wide classpath to Flash Professional CS5's
ActionScript preferences

To add a file-specific classpath, the process is very similar and begins in
the dialog, File"Publish Settings™ActionScript 3.0 Settings. (In Flash
Professional CS5, the new menu item File” ActionScript Settings accesses this
dialog immediately.) As seen in Figure 6-3, choose the Source Path section of
the dialog and again browse to the directory you want to add.



Advanced ActionScript 3.0 Settings

Document class: ] O z

Export classes in frame: i

Errors: M Strict Mode
ft Warnings Mode
Stage Automatically declare stage Instances

Dialect:" ActionScript 3.0 (Recommended") 11\

f Soe Dth  Libary pah - Corfig corstanis

&. Bowse To Path.
iy /AS3 JJoaties

————— —— —— v IRIE

Folders containing ActionScript cfass files.

Cancel ) (  OK 1

Figure 6-3. Adding your own file-specific classpath to Flash Professional CS5's
ActionScript Settings dialog

Note to Flash Professional CS5 users

Flash Professional CS5 now offers code completion and color syntax
highlighting for custom classes as well as built-in ActionScript classes. It
accomplishes this by parsing all known classpaths and building a cache of
all classes in these paths. A side effect of this feature is that the process of
building the cache can become overwhelmed if there are too many classes
to analyze. Therefore, try not to collect every class you have into one giant
folder. Move applicable classes in and out of your folder, or create classpaths
for smaller folders on a project-by-project basis. See the companion website

for more information about this issue.

Classes

Chapter 6: OOP

M



Inheritance

- Part ll: Graphics and Interaction

Inheritance

Among the most easily explained concepts of an object-oriented program-
ming model is inheritance. This means that you can create a new class, typi-
cally called a subclass, which can inherit attributes from the original class,
also called the superclass. This is similar to the way you inherit characteristics
from your parents. You share many things in common with a parent but also
have several unique attributes. The same can be said of classes. Through
inheritance, a class can acquire from its parent useful methods and proper-
ties, as well as add entirely new methods and properties.

The source files for this section are found in the inheritance_mc folder in the
Chapter 6 archive—available from the Downloads page at the companion
website, httpy//www.LearningActionScript3.com. Ultimately, you'll test the FLA
file, inheritance_mc_01.fla, but you'll be working primarily with the Box.as
and Square.as class files.

The following script creates a class called Box, found in the Box.as source file,
that is a subclass of MovieClip. As a result, it has access to all the properties,
methods, and events accessible in a movie clip, including the x property seen
in line 22, and the graphics property used in lines 13 through 16 to draw a
blue box. We'll discuss drawing vectors with code in Chapter 8, but the script
sets a 1-pixel black line style, sets a fill color stored in the color variable,
draws a rectangle from x,y coordinate point (0, 0) to the coordinate point
(100,100), and ends the fill.

The color variable is declared in line 9. This is an example of a class property
As you can see, it uses the same syntax as the variables you create in the time-
line, with one exception. Like timeline programming, it is defined within the
scope of the script (inside the class just like inside a frame script), but outside
all methods, so it can be available to the entire script scope (in this case, the
entire class, similar to the entire frame script in the timeline). The declaration
uses a var keyword and data type and is given a color value that produces a
dark blue. The only exception is that here the public access modifier is added,
which makes the variable available to code outside the class. We'll continue
our explanation after the code.

1 package {

2

3 import flash.display.MovieClip;

4 import flash.display.Graphics;

5 import flash.events.Event;

6

7 public class Box extends MovieClip {

8

9 public var color:uint = 0x000099;
10

11 public function Box() {

12 this.graphics.lineStyle(l, ©x000000);
13 this.graphics.begin Fill(color);


http://www.LearningActionScript3.com

14 this.graphics.drawRect(0, ©, 100, 100);
15 this.graphics.endFill();

16

17 this.addEventListener(Event.ENTER_FRAME, on Loop,
18 false, 0, true);
19 }

20

21 public function onLoop(evt:Event):void {
22 this.x += 5;

23 }

24

25 }

26}

The Box() method is a special kind of method called a constructor. In the class,
it appears no differently than any other, but it's unique because this code will
automatically be executed the moment an instance of the class is created. A
class instance is created using the new keyword or, in the case of a document
class in Flash Professional, when a SWF is launched. In ActionScript 3.0, if
a constructor is used, it must always be available to other parts of your pro-
gram, so it must always use the public access control modifier.

In this class, the constructor draws a box at runtime and adds an event lis-
tener. The event listener created in lines 17 and 18 calls the on Loop () function
on every enter frame event, which adds five pixels to the current horizontal
location of the class.

But what does it draw the box into? This class extends MovieClip, so Box is,
essentially, a movie clip. Box is still unique, because it has visual content and
a new movie clip does not, but creating an instance of this class is just like
creating an instance of MovieClip.

As discussed in the "Classpaths" section of this chapter, the ActionScript
compiler must know where your class resides. The Box class does not include
a path in its package declaration, so if you place this class into the same
directory as your FLA, the compiler will find it. Therefore, all that is required
to create an instance of this class in the timeline is using the new keyword.
Finally, just like a movie clip, you must add the instance to the display list to
see the box on the stage. The inheritance_mc_01.fla source file demonstrates
this code, in the first keyframe:

var box:Box = new Box();
addChild(box);

With these two lines, an instance of the Box class will be created and added to
the display list, and the drawn square will move across the stage at 5 pixels
per enter frame event. Very much a benefit of OOP, this box is given autono-
mous behavior. With just the two preceding lines of code, the box can create
its own appearance and control its own movement. This class can also easily
be reused elsewhere with the same result.

Inheritance

Chapter 6: OOP

23



Inheritance

Symbol Base Classes

We can take further advantage of inheriting from the MovieClip class by
linking a class directly to a movie clip library symbol. You did this more than
once in Chapter 4 when adding symbol instances to the display list. (See
'Adding Symbol Instances to the Display List" in Chapter 4.) At that time,
however, you had not written a class to link up with the symbol instance, so
you let Flash create a placeholder class just for the purpose of supporting

runtime creation.

Now, you can make use of this existing link by providing the symbol with a
custom class to execute when instantiated. As described, creating an instance
of the symbol either by manually dragging it to the stage, or using the new
keyword, will execute the constructor in the linked class.

The following example is nearly identical to the previous class but excludes
visual content, focusing only on motion. Similarly, in the inheritance_mc_02.
fla source file, no timeline code is used to create the movie clip. This dem-
*VjJ'3nOtU~3IUpnStrates the automatic link between a linkage class assigned in the symbol's
-3iui} v Sigqooi Xq ui ssssup i(iiv ~ property dialog, and a custom class with the same name. Simply by adding
piOVAl/YI3A01U diupiui} 3.11}H3 3ip 335 OS§H instance of the symbol to the stage, the class is applied. This code is in the
umno/i '30U3.13j3.1 .1Sipmj UO] p3}73ffv Square.as class.

Jou SI SUipilll} 3ip piw S3iipSIU3ip
3Jvpdn sdip 31A01U t(Joq 'aylivvxa snp

iq essop }limumop sip via limp ,i3ipv.i

1 package {

3 import flash.display.MovieClip;
meid}/ Mau SiP Suisn P3}'Ui}iw}5”i 4 import flash.events.Event;
SIxog [(Ol(M Ul'VI]' PQ~9IU~39IW} s
—USip.il}VZfOO]VSAV}'itosuvdiuoj L[O] 6 public class Square extends MovieClip {
7
*JH3t3 3IUV.1j 131113 Kxsassp 8 public function SquareQ {
-xid gi 3.ivnbs Suiaoiu i(pdi}93fp 'uwSv 9 this.addEventListener(Event.ENTER_FRAME, onlLoop,
spxid N p3jupdn si 3.ivnbs usip piw sp le false, @, true);
-xid " psaoiu si (sdip siaoiu t(}oq snip) E }

SUipill}3.11}H3 3ip '}JH3t13 31UV .1j .13]U3 )
Lisas .iof'0§ essvp aienbs sip oi snp 14 this.x += 5;
'"HMO S}1 HO S3AO0IU OS]V 3.1Vnbs '.13/13MO]-f }
'XjSllipAODDYV S3AOIU J1 OS SUipilll} 3ip ;0
p\iifovsi Ji 'linvmwiu p30v\ d si 3.ivnbs 17 }
3Snm3Q 'USApilllO S}1 j;V pUV (ssop JH31U 18}
-mop) SUipill} 3ip SSAOIU 3}VUip.1009 X
S11 Supvpdf} ~3Uipilll}3.11}H3 3ip O} S.13p.1Can You F|gu re Out Why?

ssvp fimumop xog sip ui sii’). sous
-jLdfejL sip 'ifons sy ® fimud]V\ddJL diupiui}As a fun break, and a bit of review, take a look at the inheritance_mc_03.fla

v si ssop fimumop v Joif} .idgiudicwg  source file. This file combines both the Square class, instantiated by virtue of
sxoqjo p\iifo v si 3.ivnbs asnmaq ¢ (sn\q) the Square symbol placed on the stage, and the Box class, instantiated through
39UV}SUl xoq 3ip SV isvf SV 391M} 3AOIls use as a document class. Each class moves itself 5 pixels to the right every
(pS.1) 39UV }SUl 3.ivnbs 3ip S30p liliM ' V\ pnter frame. Why then does the square instance (red) move twice as fast as
TO~siu~ssuvp.i3i/ui 3\ijsipiq :H3MSNV  the box instance (blue)? Look for the answer to the left.

w

public function onLoop(evt:Event):void {

- Part ll: Graphics and Interaction



A More Traditional Look at Inheritance

Now that you have a basic idea of how a custom class inherits the attributes
of a movie clip, let's look at a more traditional example with a bit more
substance. The files in this section are found in the inheritance folder of this
chapter's source. We'll also build on this example throughout the remainder
of the chapter, adding features as we go, to demonstrate the various tenets of
object-oriented programming.

We described inheritance earlier by discussing how a child inherits from a
parent. The same analogy can be made from other real-world scenarios. A
Puppy class might inherit from a Dog class, a Ball class might inherit from a
Toy class, and a Car class might inherit from a Vehicle class.

Consider a very simple execution of the vehicle metaphor. Whether a vehicle
is a car or a truck—or even a plane or a boat, for that matter —it's still a
vehicle and shares much in common with other vehicles. It makes sense, then,
to create a class that contains basic methods and properties that are common
to all vehicles. For simplicity, think about fuel availability (the number of
gallons of fuel the vehicle has in its tank) and fuel efficiency (gas mileage, in
miles per gallon, for our purposes). Also, a calculation based on that informa-
tion could result in miles traveled and the resulting reduction in the amount
of fuel. Obviously not every vehicle uses gas (such as a glider or bicycle), but
this limited scenario will suit our purposes.

Vehicle class

Here is a basic class you can use to represent a generic vehicle. We'll call this
class Vehicle, so the document name will be Vehicle.as, and the class will
be saved in the same directory as your FLA. This class creates a vehicle and,
when activated (by calling the go() method), increases the number of miles
traveled and decreases the remaining gallons of gas after each enter frame
event, tracing the result. It will show in the Output window how many miles
the vehicle traveled, and how much fuel remains until it runs out of gas.

The class has four public properties, representing: gas mileage, available fuel,
miles traveled, and a Boolean property called moving. The latter will enable
functionality when true, and disable functionality when false. All the proper-
ties and methods in the class are public so other classes can see them. We'll
discuss that in further detail in a little while.

The constructor does only two things. It sets the properties for gas mileage
and available fuel to the arguments passed in when the class was instantiated,
and adds a listener to the vehicle that reacts to the enter frame event and calls
the onLoop() method. Here's what this portion of the class looks like:

1 package {

2

3 import flash.display.MovieClip;
4 import flash.events.Event;

5

NOTE

Inheritance

Note that default values have been
added to the parameters in the Vehicle
class constructor in line 13. If an
instance of the class is created without
passing in arguments, the default values

will be used.

Chapter 6: OOP

23



Inheritance

- Part Il: Graphics and Interaction

6 public class Vehicle extends MovieClip {

7

8 public var gasMileage:Number;

9 public var fuelAvailable:Number;

10 public var milesTraveled:Number = 0;

11 public var moving:Boolean;

12

13 public function Vehicle(mpg:Number=21, fuel:Number=18.5) {
14 gasMileage = mpg;

15 fuelAvailable = fuel;

16 this.add EventListener(Event.ENTER_FRAME,

17 onLoop, false, 0, true);
18 }

Now let's talk about the listener function in the next segment of the script.
When the moving property is true, the onLoopQ method first decrements the
fuelAvailable property and increases the milesTraveled property by the
value of the gasMileage property So, if a vehicle claims a gas mileage rating
of 21 miles per gallon, the car will travel 21 miles using 1 gallon of gas.

Next, the method checks to see if there's less than one gallon of gas remain-
ing. If so, the listener is removed. While the listener remains, the class will
trace the vehicle object, miles it's traveled, and remaining fuel to the output
panel. In addition, the x coordinate of the class instance will be set to the
current number of miles traveled, so any visual asset associated with this
class will move. Because Vehicle inherits from MovieClip, the x property is
accessible to Vehicle so it doesn't have to be added anew. The effect is that
a corresponding movie clip will move across the stage by pixels that corre-
spond to miles driven.

Finally, the go() method, when called from outside the class, sets the moving
Boolean property to true and allows the frame loop to work. This could be
likened to starting the engine of the vehicle and driving. A more complex
system might also provide a method for stopping the vehicle, as well as other
features, but let's keep this example simple.

1 public function onLoop(evt:Event):void {

2 if (moving) {

3 fuelAvailable--;

4 milesTraveled += gasMileage;

5 if (fuelAvailable < 1) {

6 this.removeEventListener(Event.ENTER_FRAME,
7 onLoop);

8 }

9 trace(this, milesTraveled, fuelAvailable);
10 this.x = milesTraveled;

11 }

12 }

13

14 public function go():void {

15 moving = true;

16 }

18 }

19 }



Simple example

To see this class in action, all you need to do is create an instance of the class,
and call the go() method from that instance. If desired, you can also pass in
a new value for gas mileage and available fuel. If there is a visual component
to the instance (and we'll see that soon), you would also add the instance to
the display list. Here is an example of all three steps, including new values
for the mpg and fuel parameters, as seen in the veh.icle_only.fla source file.
This is the last time in this chapter that we'll use the timeline. For future
examples, we'll use a document class, moving all aspects of each example
from the timeline to classes.

var vehicle:Vehicle =

addChild(vehicle);
vehicle.go();

new Vehicle(21, 18);

When testing this file, the resulting trace lists the Vehicle class instance, the
accumulating miles traveled, and the decreasing fuel available. After several
iterations (condensed with the ellipsis in the sample that follows), the trace
stops and shows the final number of miles traveled and less than one gallon

of gas remaining,

//output

[object Vehicle] 21 17
[object Vehicle] 42 16
[object Vehicle] 63 15
[object Vehicle] 336 2
[object Vehicle] 357 1
[object Vehicle] 378 ©

That's fine if every vehicle you ever create is exactly the same kind of vehicle.
However, the principle of inheritance allows you to subclass this Vehicle
class, inheriting the attributes of Vehicle, but customizing each subclass into
a specific kind of vehicle, like car and truck, as in the following examples.

The following two classes, Car (Car.as) and Truck (Truck.as), both extend
Vehicle, so they inherit the properties and methods of Vehicle. Because the
properties are inherited, they're not included in the subclasses. Although
these classes extend Vehicle, you can add unique properties and methods
to make each class further specialized. For simplicity, we'll add a method to
each class to control an accessory —a sunroof for the car and a tailgate for
the truck.

Car class
1 package {
2
3 public class Car extends Vehicle {
4
5 public function Car(mpg:Number, fuel:Number) {
6 gasMileage = mpg;
7 fuelAvailable = fuel;
8

Inheritance

NOTE

Although not used in these example
classes, both Car and Truck can take
advantage o/MovieClip properties
and methods by virtue of inheri-
tance because Vehicle inherits from
MovieClip and Car and Truck inherit
from Vehicle. This is just like passing
DNA on from grandfather to father to
son. The inheritance chain is not limited
to the immediacy of superclass and
subclass.

Chapter 6: OOP



Inheritance

NOTE

As shorthand, neither the Car class nor
the Truck class must import Vehicle
because all three classes are in the same
classpath. However, listing the import to
show all dependencies at a glance won't
hurt.

- Part ll: Graphics and Interaction

9

10 public function openSunroofQ : void {
11 trace(this, "opened sunroof");
12 }

13 }

14 }

Truck class
package {
public class Truck extends Vehicle {
public function Truck(mpg:Number, fuel:Number) {

1

2

3

4

5

6 gasMileage = mpg;
7 fuelAvailable = fuel;
8

9

1

0 public function lowerTailgateQ:void {
11 trace(this, "lowered tailgate");
12 }

13 }
14 }

Because of inheritance, the Vehicle class constructor is called implicitly when
you create instances of the Car and Truck classes. This adds the enter frame
listener so the cars and trucks can move, and then the Car and Truck class
instances redefine the gasMileage and fuelAvailable public properties from
the Vehicle class. It's also possible to explicitly call the constructor, or other
accessible method, of a superclass, which we'll demonstrate when we discuss
encapsulation.

Document class and revised FLA

Now we can revisit the FLA and, instead of instantiating the Vehicle class, we
can create instances of the new Car and Truck subclasses. We can also create
car and truck movie clips in the FLA's library and associate those symbols
with Car and Truck by adding their names as linkage classes in each symbol's
Library Properties dialog. The new symbols will add a visual element to the
example because they will be updated by the classes automatically Because
the Vehicle class extends MovieClip, and the x coordinate of Vehicle is
updated, any subclass of the Vehicle class will also update its x coordinate.

In this example, we're going to move away from the timeline and use
a document class instead. So start by creating a new ActionScript 3.0
file (ActionScript 3.0 Class file in the New Document window in Flash
Professional CS5). We'll discuss its contents in a moment, but first save the
file as Main.as in the same directory as your FLA file, and reference this class,
Main, as the FLA's document class. If you'd rather use the source file provided
to get you started, it's called car_truck.fla.

Lines 1 through 7 create the package, import the necessary class dependencies
and create this class. Remember a document class should extend MovieClip



so they can behave as a timeline. Lines 9 and 10 create two properties, com-
pact and pickup, and type them as Car and Truck, respectively

Lines 14 and 20 create instances to these classes, passing in values for gas mileage
and fuel available. Both compact and pickup are set to the same initial x value
(lines 15 and 21), and pickup is given a different y value (line 22) so you can easily
see both vehicles once they are added to the display list (lines 17 and 23).

The custom methods for both instances are called right away (lines 18 and
24), but the vehicles don't move because the go() method calls are inside an
event listener function (lines 38 through 41) waiting for you to click the stage.
Setting up the event listeners in lines 26 through 36 is very important, and
we'll discuss this after the code and a description of this example's output.

1 package {

2

3 import flash.display.MovieClip;

4 import flash.events.Event;

5 import flash.events.MouseEvent;

6

7 public class Main extends MovieClip {

8

9 public var compact:Car;

10 public var pickup:Truck;

11

12 public function Main() {

13

14 compact = new Car(21, 18);

15 compact.x = 0;

16 compact.y = 20;

17 addChild(compact);

18 compact.openSunroof();

19

20 pickup = new Truck(lé, 23);

21 pickup.x = 0;

22 pickup.y = 100;

23 addChild(pickup);

24 pickup. lowerTailgateQ;

25

26 this.addEventListener(Event.ADDED_TO_STAGE,
27 onAddedToStage,

28 false, 0, true);

29 }

30

31 public function onAddedToStage(evt:Event):void {
32 this.removeEventListener(Event.ADDED TO STAGE,
33 onAddedToStage)
34 stage.addEventlistener(MouseEvent.CLICK, onClick,
35 false, 0, true);

36 }

37

38 public function onClick(evt:MouseEvent):void {
39 compact.go();

40 pickup.go();

41 }

42 }

43}

Inheritance

Chapter 6: OOP

23



Inheritance

Part Il: Graphics and Interaction

The first thing to appear in the Output panel when testing your FLA is the
initial trace caused by the custom method calls:

[object Car] opened sunroof
[object Truck] lowered tailgate

When the stage is clicked, the go() methods start the car and truck moving,
and traces like the one seen in the vehicle-only example will now compare the
miles traveled by the car and truck instances. Which will travel the farthest
on a tank of gas? The car gets better gas mileage, but has a smaller gas tank.
Try it and see!

Accessing the Stage in a Class

In the document class from the preceding section, you may have noticed that
we didn't just add the mouse click event listener to the stage inside the class
constructor. This is because the stage usually doesn't yet exist in a constructor
and this technique will typically result in an error.

When referencing a display object outside this class, such as the stage or root,
the document class is a special exception to this rule. Because the document
class is a timeline replacement, it automatically becomes a part of the display
list. If the very same class is not used as a document class, however, this
exception will not apply Therefore, when referencing a display object outside
this class, it's important to set up your listeners as we are about to describe
to make your classes more flexible.

In the display list (the new display architecture of ActionScript 3.0 discussed
in Chapter 4), the stage is the senior-most item, and you must access it
through a display object. We discussed this in the Chapter 4 sidebar, "Display
Objects and References to Stage and Root," but this is particularly important
when writing classes. Remembering that you must access the stage through a
display object, knowing when the class is instantiated, and when the stage is
referenced in a class, play a big part in the success of your script.

Recall how to instantiate a display object class: you first use the new keyword
and then add the instance to the display list. The prior example of creating a
Vehicle instance is repeated here for reference:

var vehicle:Vehicle = new Vehicle(21, 18);
addChild(vehicle);

Earlier we told you that the class constructor executes immediately upon
instantiation. In other words, it executes before adding the instance to the
display list. As you may have read in the "Display Objects and References
to Stage and Root" sidebar, this means that you can't access the stage in the
constructor.



So, when we need to access a display object like the stage, we must add an
event listener to the constructor that listens for the ADDED_TO_STAGE event.
This listener will be executed when the class instance is added to the display
list, with the stage as its senior-most object. At that point, the class instance
is a part of the display list and access to the stage or root is possible.

Composition

Although inheritance is a common practice in object-oriented programming,
it's not the only way to build OOP projects. Composition is more appropriate
in some cases. Composition says that an object is composed of other objects,
rather than descending from other objects. The best way to decide when to
use inheritance or composition is to follow the "is a/has a" rule.

Consider how to add tires to the car example. You might be able to use inheri-
tance ("is a"), but composition ("has a") is likely better. A car "is a" vehicle,
meaning inheritance will work well, but tires don't fit the "is a" vehicle, or
car, or truck model. However, a car (or truck) "has a" set of tires, making this
model suited to composition. In a real-world scenario, this might be particu-
larly useful in an expanded version of our vehicle metaphor. For example,
land vehicles typically have tires, but water vehicles usually don't.

Composition makes it easier to switch out items that compose a class. If a
car is extended from a vehicle, you can't change that any more than you can
change your parents. However, if a car is composed of things, you can easily
remove one object and substitute another. Now let's use composition to put
tires onto our car and truck.

Continuing our work on our vehicle example, this time using the files in the
composition folder of the source archive, let's set up the process by adding a
tires property to the Car and Truck classes, as seen in line 5 of the following
code excerpts. This will hold an instance of the Tires class we'll create, and
is typed accordingly Next, we'll create an instance of the new Tires class.
The new class will be able to equip vehicles with different kinds of tires so
we'll pass in a different tire type for car and truck, as seen in line 10 of both
excerpts that follow. The class will also trace the kind of tire used, by query-
ing a public property called type, shown in line 11 of both excerpts.

Car class
3 public class Car extends Vehicle {
4
5 public var tires:Tires;
6
7 public function Car(mpg:Number, fuel:Number) {
8 gasMileage = mpg;
9 fuelAvailable = fuel;
10 tires = new Tires("highperformance")j
11 trace(this, "has", tires.type, "tires");
12 }

Composition

Chapter 6: OOP



Composition

Part II: Graphics and Interaction

Truck class
3 public class Truck extends Vehicle {
4
5 public var tires:Tires;
6
7 public function Truck(mpg:Number, fuel:Number) {
8 gasMileage = mpg;
9 fuelAvailable = fuel;
10 tires = new Tires("snow");
11 trace(this, "has", tires.type, "tires");
12 }

New Tires class

This basic Tires class simulates functionality by putting the type of tire
requested into a property In a real-world situation, the new class might affect
the performance of a car or truck object. For example, using snow tires might
reduce fuel efficiency, and upgrading to high-performance radials might
improve mileage. In our simplified example, the Car and Truck classes will
just trace the value of this property

1 package {

2

3 public class Tires {

4

5 public var type:String;

6

7 public function Tires(tire:String) {

8 //simulated functionality change based on tire type
9 switch (tire) {

10 case "snow"

11 type = "storm-ready snow";

12 break;

13 case "highperformance"

14 type = "high-performance radial";
15 break;

16 default

17 type = "economical bias-ply";
18 break;

19 }

20 }

21 }

22 }

As you try out the amended classes, the most important thing to understand
is that inheritance is not used to introduce the Tires class. Instead, the car
and truck are composed of objects. In this simplified case, only the tires were
added, but a complete car (for example) would consist of seats, windows,
and so on, all composed rather than inherited from Car or Vehicle. Again,
this satisfies the "is a/has a" rule, which should be your guide when deciding
whether inheritance or composition is optimal.



Document class

No change is required to the document class, but testing the car_truck.fla file
again will show a new element to the trace output. In addition to the use of
the accessories (sunroof and tailgate) and the resulting miles traveled until
fuel is depleted, the tires used will also be traced, as shown:

[object Car] has high-performance radial tires
[object Car] opened sunroof

[object Truck] has storm-ready snow tires
[object Truck] lowered tailgate

[object Car] 21 17

[object Truck] 16 22

[object Car] 42 16

[object Truck] 32 21

Encapsulation

In the preceding examples, all class properties and methods were public. This
is convenient in that it allows code outside the classes to see properties and
methods inside classes. However, this is also risky because other elements of
the application can change property values or execute methods —intentionally
or even accidentally —when not desired.

The way to avoid this possible problem is through encapsulation. Put simply,
encapsulation is the practice of hiding class properties and methods from
other areas of your project while still allowing you to manipulate them in a
controlled fashion.

There are a handful of built-in namespaces in ActionScript 3.0. They are
also called access control modifiers because they control how outside objects
access properties and methods. Although we'll focus primarily on private
and public modifiers in this book, Table 6-1 describes some of the other
access control modifiers available.

Table 6-1. ActionScript 3.0 access control modifiers

Encapsulation

NOTE

There is another access control modi-
fier, called static, which is a bit differ-
ent. The static modifier indicates that
a property or method is accessed from
a class reference, but not an instance
of the class. For example, random ()
is a static method of the Math class.
You call this method not from a class
instance, but from a reference to the
class directly. Compare this syntax of an
instance method, like play() from the
MovieClip class, and a static method,
like randomQ from the Math class.

var mc:MovieClip =

new MovieClip();
mc.play();

trace(Math.random());
In the first case, the method is called
from mc, the class instance. By contrast
no instance is created before invoking
the random() method. Instance methods
and properties are not aware of static
methods or properties, and vice versa.

Example Description

public Accessible to all objects, inside and outside the class

private Accessible to objects only inside the class

protected Accessible to objects inside the class and any derived class
internal Accessible to objects inside the class and all classes in the same

Aloosely related analogy might help describe the ideas behind encapsulation.
If you include your email address in the text of an HTML page, spam bots
will likely harvest it and flood you with unwanted solicitations. However, if
you keep your email entirely private, potential contacts won't be able to reach
you. One solution to this problem is to use a contact form that connects to a

Chapter 6: OOP



Encaps

NOTE

ulation

A property that a programmer can get,

but no

erty.

t set, is called a read-only prop-

Part Il: Graphics and Interaction

server that, in turn, sends information to your email address. This allows you
to keep your email address private, but provide some sort of public access.
This control is the basis of encapsulation.

Getters and setters

How, then, can you provide public access to private information? This is
accomplished with a special group of methods called getters and setters.
These public methods are used to retrieve from, or reassign values to, private
properties. In their simplest use, getters and setters can provide a friendly or
consistent public name for a possibly more obscurely named property For
example, a property named '"registeredUserEmail" could be referenced out-
side the class as "email."

Beyond that use case, getters and setters can also add functionality A simple
example includes wanting to allow a programmer to get, but not set, the
value of a property Or, you might want to convert a property value behind
the scenes when requested or supplied, without requiring a custom method
or two to do so. For instance, a currency value might be stored as a number
but, when retrieved with a getter, might be formatted as a string with a lead-
ing currency symbol (such as a dollar sign, $), commas, and a decimal point.
Neither example is possible when just exposing a property as public.

Getters and setters are also special because they behave like properties as far
as the rest of your application is concerned. This simplifies what is typically
called an application programming interface (API)—all the public properties
and methods of your class (and, by extension, all the classes that make up
your application) that a programmer can access.

Let's revisit our email address discussion to show how this works. The first
step in changing from using a public property to using getters and setters is
to change the property from public to private. This requires only changing
the access modifier, but a common naming convention advocates preceding
private properties with underscores. This is a personal choice, and some favor
it because you can see at a glance if access to the property is limited to the
class. We'll follow this convention in this book. This first snippet shows both
changes:

private var _registeredllserEmail:String = "personl§example.com";
Next, to provide access to the property, a getter/setter pair is added to the end
of the class. Let's discuss the content of the functions first. The public getter

will return the value of the private property, and the public setter will assign
a new value, sent in as an argument, to the private property:

public function get email():String {
return _registeredllserEmail;

public function set email(newEmail:String):void {

}

_registeredllserEmail = newEmail;



Note, however, that both methods are named "email." This would ordinarily
cause a conflict error because all methods within the same scope must have
unique names. However, this is part of how getters and setters work. The
matching method names are preceded by identifiers get and set, and both
methods work together to appear as a single property in the code that is ref-
erencing the class. That is, instead of having to remember and document two
functions, perhaps called getUserkmail() and setUsertEmailQ, all you need
is one property: email. Getting and setting are both shown in the following
snippet (assuming an example class instance called user):

user.email = "person2§example.com";
trace(user.email);

As you can see, property syntax, rather than method syntax, is used. Which
version of the method in the class is called is determined by usage. In the first
line, a value is being assigned to the property, so the class knows to call the set-
ter. In the second line, no value is assigned, so the class calls the getter, and the
property value is retrieved. Now that you have a brief background on imple-
mentation, let's put that information to use in our ongoing vehicle example.

Vehicle class

Let's move to the encapsulation folder of this chapter's source archive. The
first thing we'll do to adapt our existing code is make the properties in lines 8
through 11 and the method defined in line 20 in the Vehicle class private. All
constructors in ActionScript 3.0 must be public, and the go() method should
remain public so it can easily be executed from other areas of your project.

1 package {

3 import flash.display.MovieClip;

4 import flash.events.Event;

5

6 public class Vehicle extends MovieClip {

7

8 private var _gasMileage:Number;

9 private var _fuelAvailable:Number;

10 private var jtiilesTraveled:Number = 0;

11 private var jtioving: Boolean;

12

13 public function Vehicle(mpg:Number=21, fuel:Number=18.5) {
14 _gasMileage = mpg;

15 _fuelAvailable = fuel;

16 this.addEventListener(Event.ENTER_FRAME, onLoop,
17 false, 0, true);

18 }

19

20 private function onLoop(evt:Event):void {

21 if (_moving) {

22 _fuelAvailable--;

23 _milesTraveled += _gasMileage;

24 if (_fuelAvailable < 1) {

25 this.removeEventListener(Event.ENTER_FRAME,
26 onLoop);

27 }

Encapsulation

NOTE

The use of getters and setters, versus
using public properties, is often debated.
You may find it interesting to search
online resources for discussions about
this concept, and the companion website
may have additional information about
this and related topics in the future.

Chapter 6: OOP



Encapsulation

Part II: Graphics and Interaction

28 trace(this, _milesTraveled, _fuelAvailable);
29 this.x = _milesTraveled;

30 }

31 }

32

33 public function go():void {

34 _moving = true;

35 }

Now that the properties are private, getters and setters must be added to
access them. Lines 37 through 55 add a getter and setter pair for each of the
private properties in the class.

36 //new getters and setters

37 public function get gasMileage(): Number {
38 return _gasMileage;

39 }

40

41 public function set gasMileage(mpg:Number):void {
42 _gasMileage = mpg;

43 }

44

45 public function get fuelAvailable():Number {
46 return _fuelAvailable;

47 }

48

49 public function set fuelAvailable(fuel:Number):void {
50 _fuelAvailable = fuel;

51 }

52

53 public function get milesTraveled():Number {
54 return jtiilesTraveled;

55 }

56 }

57 }

Getters and setters are used to update properties, but subclasses can also
update properties of a superclass directly Remember that when Car and
Truck instances were created, the constructor of these subclasses updated the
gasMileage and f uelAvailable properties of Vehicle class. If those properties
are no longer public, this isn't possible using the same techniques.

A subclass uses the super () method to call the corresponding method in
its superclass. For example, placing super() in a subclass constructor will
call the constructor in the superclass. You can even pass arguments into the
superclass method, if the superclass constructor normally accepts the same
arguments. We will modify the Car and Truck classes to use this technique.

When building instances of these classes, you can pass arguments in to cre-
ate custom miles per gallon and available fuel values for each car or truck.
Because the classes inherit properties from Vehicle, these properties are not
recreated. However, now that we're exploring encapsulation, and the proper-
ties are private, a direct assignment is not possible. Instead, you can use the
syntax super() to pass the incoming values on to Vehicle where the proper-
ties are assigned. The object super refers to the superclass, and the super()



statement explicitly calls the constructor of the superclass. Line 8 in both of
the following excerpts uses this technique.

Also note that, just like in the Vehicle class, we've changed the property from
public to private (line 5 in both Car and Truck classes), and added an under-
score to the start of the property name (line 5, and again when used in lines
9 and 10, of both classes).

Car class
3 public class Car extends Vehicle {
4
5 private var _tires:Tires;
6
7 public function Car(mpg:Number, fuel:Number) {
8 super(mpg, fuel);
9 _tires = new Tires("highperformance");
10 trace(this, "has", _tires.type, "tires");
11 }
Truck class
3 public class Truck extends Vehicle {
4
5 private var _tires:Tires;
6
7 public function Truck(mpg:Number, fuel:Number) {
8 super(mpg, fuel);
9 _tires = new Tires("snow");
10 trace(this, "has", _tires.type, "tires");
11 }
Tires class

The Tires class (Tires.as) is adjusted in much the same way the Vehicle
class was altered, shown in the bold lines that follow. First, the lone property
becomes private, and its uses are updated to add the underscore reserved for
private properties. Next, a getter and setter pair is added to make the property
accessible outside the class.

1 package {

2

3 public class Tires {

4

5 private var _type:String;

6

7 public function Tires(tire:String) {

8 //simulated functionality change based on tire type
9 switch (tire) {

10 case "snow"

11 jtype = "storm-ready snow";

12 break;

13 case "highperformance"

14 jtype = "high-performance radial";
15 break;

16 default

17 jtype = "economical bias-ply";

Encapsulation

NOTE

Another way to access properties from a
superclass, without making them public,
is to use the protected access control
modifier For more information, see the
companion website.

Chapter 6: OOP



Encapsulation

Part II: Graphics and Interaction

18
19
20
21
22
23
24
25
26
27
28
29

public function get type():String {
return _type;

public function set type(tire:String):void {
_type = tire;

Document class

The only changes required to the document class to complete our encapsu-

lation example are to make the properties and methods private, and add an

underscore to the property names. Only the class and constructor remain

public. Note these changes in bold:

7

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

public class Main extends MovieClip {

public var _compact:Car;
public var _pickup:Truck;

public function Main() {

_compact
_compact.
_compact.

X
y

new Car(21, 18);
= 0;
= 20;

addChild(_compact);
_compact.openSunroof();

_pickup =
_pickup.x
_pickup.y

new Truck(l6, 23);
= 0;
= 100;

addChild(_pickup);
_pickup.lowerTailgate();

this.addEventListener(Event.ADDED_TO_STAGE,

}

onAddedToStage,
false, 0, true);

The property names also appear in the onClickQ method.

30
31
32
33
34

private function onClick(evt:MouseEvent):void {
_compact.go();
pickup.go();



Polymorphism

The last important concept of object-oriented programming that we want to
discuss is polymorphism. Although we'll expand the explanation as this sec-
tion evolves, you can start by thinking of polymorphism as a design practice
that allows you to use objects of different types in a uniform manner. For
example, for our vehicle exercise, you might create classes for land-, water-,
and air-based vehicles and write code to move each type of vehicle. In this
scenario, it's better to use one method name for moving all of these vehicle

non

types (such as "move"), instead of separate method names (like "drive," "pilot,"
and "fly," for moving a car, boat, and plane, respectively). Doing so makes your

code more flexible, more reusable, and easier to read and document.

In ActionScript 3.0, polymorphism is commonly used with inheritance and/or
interfaces. We'll work with interfaces in a moment but, for now, think of them
as rulebooks for classes. An interface is nothing more than a list of public
methods that must be present in any class that conforms to the interface. For
example, you might continue to develop our vehicle exercise and eventually
end up with vehicles that contain public methods that activate (start up), go,
stop, and deactivate (shut down) your vehicles. You can create an interface
that includes these method names and requires classes to adhere to that inter-
face. This makes certain all of those classes can be controlled consistently

An interface doesn't restrict your class to those methods, either. Classes can
have their own public methods that are not in the interface, without conse-
quence. As long as the interface methods are present, everyone will be happy
We'll discuss the further role that interfaces play in polymorphism a little
bit later. For now, let's extend what you already know and show how to use
polymorphism with inheritance.

Polymorphism and inheritance

Employing polymorphism with inheritance allows you to design subclasses
that can use the same method names as their superclasses, but without
creating a conflict. For example, a superclass can have a public method
called "turn," which multiple subclasses use. One subclass, however, might
also have a public method called "turn," that is either entirely different or
enhanced. Ordinarily, the fact that a subclass inherits public methods from a
superclass means that the subclass would effectively have two methods called
"turn" and a conflict would exist.

However, polymorphism allows the subclass method to replace or augment
the superclass method of the same name by overriding it. Overriding a meth-
od tells the compiler that the new version of the method (in the subclass)
takes precedence over the previous version of the method (in the superclass).

To demonstrate this process, let's begin by adding two methods to our
Vehicle class. If you want to look at the source files, they are in the polymor-
phism folder of the chapter archive. The new methods can be seen in lines

Polymorphism

NOTE

Only public and protected methods can
be seen by ActionScript 3.0 subclasses,
so they are the only kinds of methods
that can be overridden.

Chapter 6: OOP 39



Polymorphism

. Part

II: Graphics and Interaction

33 through 39 in the following excerpt, and are named useAccessoryQ and
changeGearQ. Both of the new methods are available to the Car and Truck
subclasses through inheritance and notice that the functionality of the use-
Accessory () method is to turn on a vehicle's lights.

Vehicle class

20 private function onLoop(evt:Event):void {

21 if (_moving) {

22 _fuelAvailable--;

23 _milesTraveled += _gasMileage;

24 if (_fuelAvailable < 1) {

25 this.removeEventListener(Event.ENTER_FRAME,
26 onLoop, false, 0, true);
27 }

28 trace(this, _milesTraveled, _fuelAvailable);
29 this.x = _milesTraveled;

30 }

31 }

32

33 public function changeGearQ: void {

34 trace(this, "changed gear");

35 }

36

37 public function useAccessoryQ :void {

38 trace(this, "vehicle lights turned on");

39 }

Next let's see how to override the useAccessoryQ method in the Car and
Truck classes so we can customize its functionality without having to change
our APL

Car class

Apublic method also named useAccessoryQ is added to the Car class, seen in
lines 17 through 19 of the following excerpt. Remember that this would ordi-
narily conflict with the method of the same name in the Vehicle superclass,
because of inheritance. As discussed previously, we avoid this by preceding
the method declaration, including its access control modifier, with the over-
ride keyword.

The functionality of the method is the same in both classes: to use an acces-
sory So the useAccessoryQ method in the Car class can call its existing
openSunroof () method.

13 public function openSunroofQ :void {

14 trace(this, "opened sunroof");

15 }

16

17 override public function useAccessoryQ:void {
18 openSunroofQ;

19 }

The beauty of this arrangement is that you've created an API that employs
the flexible "use accessory" idea to . . . er . . . use accessories. Hereafter, you
can write instancename.useAccessoryQ and be free to change your Car class



without having to change the rest of your application. For example, you might
have many method calls using the syntax useAccessoryQ that all open car
sunroofs. If you later decide to change the accessory to something else, you
would need to edit only the Car class, not the many existing method calls, to
update your application.

Truck class

Now we'll do the same thing with the Truck class, but with a twist. In some
cases when overriding, you may not want to entirely replace the original
behavior that exists in the superclass. When needed, you can execute the cus-
tom code in the subclass method and call the same method in the superclass.
To do this, add an instruction in the subclass method to explicitly call the
original superclass method, as seen in line 18 of the Truck class. In this case,
you can't simply use the superQ statement the way you did earlier, because
that only works in the constructor. Within a method, you must reference the
superclass using the super object, and follow it with the superclass method
you want to call. The edit is in bold.

13 public function lowerTailgateQ :void {

14 trace(this, "lowered tailgate");

15 }

16

17 override public function useAccessory():void {
18 super. useAccessoryQ;

19 lowerTailgateQ;

20 }

Tires class and Document class

No change to the Tires class is required, but we'll make two changes to the
document class Main to show the outcome of your efforts. First, in both Car
and Truck instances (compact and pickup), we'll call the other method we
added, changeGearQ (lines 18 and 25). This will show that the outcome of a
public method called from either car or truck will be the same if polymor-
phism is not in play.

Next, we'll follow the example discussed and change our code from calling
openSunroof() and lowerTailgateQ, for compact and pickup respectively, to
both instances calling useAccessoryQ (lines 19 and 26). This will make our
code a bit more flexible, as we can later change the accessories in one or both
classes and not have to change our FLA to benefit from the adjustment.

12 public function Main() {

13

14 compact = new Car(21, 18);
15 compact.x = 20;

16 compact.y = 20;

17 addChild(compact);

18 compact. changeGearQ;

19 compact.useAccessoryQ;

20



Polymorphism

m » Part Il: Graphics and Interaction

21 pickup = new Truck(l6, 23);

22 pickup.x = 20;

23 pickup.y = 100;

24 addChild(pickup);

25 pickup.changeGear();

26 pickup.useAccessory();

27

28 this.add EventListener(Event.ADDED_TO_STAGE,
29 onAddedToStage,
30 false, 0, true);
31 }

An abbreviated output follows. As you can see, the car class traced its tires,
the compact instance changed gear, and then used its accessory This opened
the sunroof, but nothing more because the Car class override replaced the
functionality of the Vehicle useAccessoryQ method, which turned on the
vehicle's lights. The pickup behaved similarly, but in addition to lowering its
tailgate, also turned on its lights. This is because the Truck class also called
the useAccessoryQ method in the superclass, rather than just overriding it.

[object Car] has high-performance radial tires

[object Car] changed gear

[object Car] opened sunroof

[object Truck] has storm-ready snow tires

[object Truck] changed gear

[object Truck] lowered tailgate

[object Truck] turned on lights

[object Car] 21 17

[object Truck] 16 22

[object Car] 42 16
[object Truck] 32 21

Polymorphism and interfaces

Earlier, we said there's another way to use polymorphism that doesn't focus
on inheritance. Because it's not based on method overriding between sub-
class and superclass, it's applicable to more situations. The general idea is
the same, in that your coding is simplified by using the same method names
across different object types. However, it's even more useful in that it adds
additional flexibility by not requiring that you type your object to a specific
class.

To help explain this, let's sideline a bit to revisit two important ActionScript
3.0 topics: compile-time error checking and the display list. The benefit of
using data typing with your objects is that the ActionScript compiler will
warn you if you do something that's incompatible with your stated data type.
By design, the simplest case means that you can only work with one data
type. (A look at Chapter 2 will reinforce this idea if you need a quick review.)

However, there are times when you may want things to be a bit more flexible.
For example, you may want to put either a MovieClip or Sprite into a vari-
able. If you type the variable as MovieClip, only a movie clip will be accepted.
To get around this, you can type a variable as the base class DisplayObject,



from which both MovieClip and Sprite descend (see Chapter 4 for more
information), and the compiler wont object.

The downside to this is that it can be a bit too generic. If, for example, you
used a movie clip method on an object that the compiler only understood as
a DisplayObject, an error would occur:

var thing:DisplayObject = new MovieClipQ;

thing. playQ;
Why? Because, although playQ is a legal movie clip method, the compiler
doesn't understand that thing is actually a movie clip. It might be a sprite
(and that flexibility is the very reason we're discussing this), and a sprite
doesn't have a timeline.

This can be addressed by casting (also discussed in Chapter 4), but that kind
of defeats the purpose of what we're doing. Instead, what if you could specify
a data type that was flexible enough to work with different kinds of objects,
but also knew which methods those objects supported? That's where inter-

faces come in.

As we explained earlier, an interface is simply a list of public methods that
must be present in a class. The following is an example of an interface that
might be used with classes for devices that play music (like a radio or CD
player). All of the code for this discussion can be found in the polymorphism_
interface source code directory The interface is called IAudible and is found
in the TAudible.as source file. It's a very common practice to start the name of
all interfaces with a capital I, to differentiate them from classes.

1 package {

3 public interface IAudible {

4

5 function turnOnQ : void;

6 function playSelection(preset:int):void;
7 function turnOff():void;

8

9 }

10 }

As you can see, not even the content of a method is included. Only the name,
parameters and data types, and return data type (which are collectively called
the method's signature) are included. Also, any import statements needed to
support included data types are required. (In this case, the compiler auto-
matically understands the int data type. However, if a data type represents a
class, such as MovieClip or Event, that class must be imported.)

Once you've created an interface, you can require a class to adhere to it by
implementing it using the implements keyword in the interface declaration, as
shown in line 3 of the following simple Radio class (Radio.as):

package {

1
2
3 public class Radio implements IAudible {
4



Polymorphism

- Part Il: Graphics and Interaction

5 public function RadioQ {

6 trace("radio added");

7 }

8

9 public function turnOnQ:void {

10 trace("radio on");

11 }

12

13 public function playSelection(preset:int):void {
14 trace("radio selection: channel”, preset);
15 }

16

17 public function turnOff():void {

18 trace("radio off");

19 }

20 }

21}

All this class does is trace appropriate diagnostic statements, identifying itself
as '"radio" each time. It complies with the interface because every method
required is present. Here is a CDPlayer class (CDPlayer.as) that also imple-
ments, and complies with, the same interface. The purpose of the class is
similar, but it identifies itself as "cd player" in each trace to demonstrate
unique functionality

1 package {

3 public class CDPlayer implements IAudible {
4

5 public function CDPlayerQ {

6 trace("cd player added");

7 }

8

9 public function turnOnQ :void {

10 trace("cd player on");

11 }

12

13 public function playSelection(preset:int):void {
14 trace("cd player selection: track", preset);
15 }

16

17 public function turnOff():void {

18 trace("cd player off");

19 }

20

21 public function eject():void {

22 trace("cd player eject");

23 }

25 }

26}

Although the Radio and CDPlayer classes do different things (demonstrated
simply by the unique traces), the method names required by the interface
are present in both classes. This means that you can write a full application
using a radio, later swap out the radio with a CD player, but not have to
change any of your basic method calls—a key benefit of polymorphism.



The CDPlayer class also demonstrates that additional methods, not referenced
by an interface, can appear in classes—as shown by the ejectQ method in
lines 21 through 23. An interface is only designed to enforce a contract with
a class, making sure the required methods are present. It doesn't restrict the
functionality of a class.

Simple example

All that remains is putting this into practice. The following basic implemen-
tation is found in the sound_system.fli source file. The key step in using
interfaces in this context is typing to the interface. If you type to Radio, you
can't switch to CDPlayer later. However, if you type to IAudible, the compiler
will nod approvingly at both Radio and CDPlayer. Also, because the interface
rigidly enforces that all public methods are present, you don't run into situa-
tions where the compiler is unsure if a method is legal. This is polymorphism
at its best. The following script starts with a radio and then switches to a CD
player, using methods in both cases without error.

var soundSystem:IAudible = new RadioQ;
soundSystem.turnOnQ;

soundSystem = new CDPlayerQ;
soundSystem.turnOnQ;
soundSystem.playSelection(1l);

Adding a sound system to your vehicles through composition

Now let's practice what you've learned by composing the sound system
example into the ongoing vehicle exercise. This will review encapsulation,
composition, and polymorphism.

First, add another private property to the Vehicle class to hold the sound
system, just like we did when we composed Tires into the exercise. It's typed
to the interface to allow a vehicle to have any sound system that implements
IAudible. The property can be seen in line 12 of the following excerpt from
the Vehicle.as source file:

8 private var _gasMileage:Number;

9 private var _fuelAvailable:Number;

10 private var _milesTraveled:Number = 0;
11 private var _moving:Boolean;

12 private var _soundSystem:IAudible;

Next, provide public access to this property by adding a getter and setter,
again typed to the IAudible interface. The following excerpt, still in the
Vehicle.as source file, shows this addition in lines 64 through 70:

60 public function get milesTraveledQ :Number {
61 return _milesTraveled;

62 }

63

64 public function get soundSystem():IAudible {
65 return _soundSystem;

66 }



Polymorphism

» Part Il: Graphics and Interaction

67

68 public function set soundSystem(device:IAudible):void {
69 _soundSystem = device;

70 }

The last class changes involve adding an instance of CDPlayer in the Car class,
and a Radio instance in the Truck class—just as we did when adding Tires in
the composition example. This excerpt from the Car class (Car.as) shows the
change at the end of the constructor:

7 public function Car(mpg:Number, fuelijNumber) {
8 super(mpg, fuel);

9 _tires = new Tires("highperformance");

10 trace(this, "has", _tires.type, "tires");
11 soundSystem = new CDPlayer();

12 }

This excerpt from the Truck class (Truck.as) also adds the sound system at
the end of the constructor. The edits in both classes appear in bold at line 11:

7 public function Truck(mpg:Number, fuel:Number) {
8 super(mpg, fuel);

9 _tires = new Tires("snow");

10 trace(this, "has", _tires.type, "tires");

11 soundSystem = new Radio();

12 }

Finally, the document class is modified to use the sound system in both the
Car instance (compact) and Truck instance (pickup) when you click the stage.
Shown in bold in the Main.as excerpt below, lines 42 through 44 access the
CD player and radio through the soundSystem property This triggers the get-
ter method in the respective classes and returns the car's CD player and the
truck's radio.

39 public function onClick(evt:MouseEvent):void {
40 compact.go();

41 pickup.go();

42 compact.soundSystem.turnen();

43 compact.soundSystem.playSelection(2);

a4 pickup.soundSystem.turnen();

45 }

The trace immediately reflects the fact that the car has a CD player and the
truck has a radio. Once you click the stage (shown by the gap in the output
that follows), the sound systems are used and the vehicles drive off into the
sunset.

[object Car] has high-performance radial tires
cd player added

[object Car] changed gear

[object Car] opened sunroof

[object Truck] has storm-ready snow tires
radio added

[object Truck] changed gear

[object Truck] lowered tailgate

[object Truck] turned on lights



cd player on

cd player selection: track 2

radio on
[object Car] 21 17
[object Truck] 16 22

Navigation Bar Revisited

Chapter 5 concluded with the start of a simple navigation bar created using
procedural programming techniques. We'll now step through a new exercise
to demonstrate one way to approach the same task using OOP. This exercise
combines the use of standalone classes with classes that are linked to movie
clips in the main Flash file, LAS3Lab.flai—found in the navjbar folder of the
chapter source archive.

This exercise is also the start of the navigation system for the cumulative
book/companion website collective project. In this chapter, we'll use a basic
array to create five main buttons. Later, in Chapter 14, we'll add submenus to
this system and load all the content dynamically through the use of XML.

The files and directories you create here will continue to be used and
enhanced throughout the remainder of this book, so establishing a logical
directory structure now will be very helpful. The FLA and document class
should reside in the top level of a new directory Adjacent to the FLA, you'll
eventually create two directories for classes. In later versions of the exercise,
you'll create a com folder for general packages that you may use in multiple
projects. At this point, you're ready to create an app folder for classes specific
to this project that you are less likely to reuse. As always, adopting naming
conventions and organization recommendations are personal choices that

you can adapt when your comfort increases.
The FLA requires two symbols in the library (included in the source):
MenuButtonMain

In our example, this is a movie clip that looks like a tab. (Its name was
influenced by the fact that submenus will be introduced to this example,
later in the book.) The symbol's linkage class is called MenuButtonMain,
too. However, we'll be using a custom class this time, rather than just rely-
ing on the automatic internal class created by Flash Professional for the
sole purpose of birthing the object with ActionScript. Therefore, the fully
qualified path name, which includes not only the class name but also
its package, is used as the symbol's linkage class: com.learningaction-
script3.gui.MenuButtonMain.

HLineThick

This is simply a thick line, approximately 8 pixels tall and the width of
your file. This serves as the horizontal plane on which the main menu but-
tons reside to form the navigation bar. Unlike the button symbol, there's no

Navigation Bar Revisited

NOTE

Push Yourself: A great way to make
sure you understand packages is to
reorganize the source files in the poly-
morphismjnheritance exercise by put-
ting the sound system files in their own
package. Pick a package name such as
app.Ias3. soundsystem, or try your
own reverse domain path. Don't forget
to revise the package declaration line
in each affected class, and add import
statements to the other classes referenc-
ing your sound systems. An example of
this kind of organization can be found
in the polymorphism _packages direc-
tory.

Chapter 6: OOP



Navigation Bar Revisited

- Part Il: Graphics and Interaction

external class for this line, as it has no functionality Still, we'll give it a linkage
class that includes a package location anyway: com.learningactionscript3.
gui.HLineThick. The result will be the same as using a class name without
package information; Flash Professional will still create a placeholder class
in the SWF. However, the nice thing about preplanning this way is that if
you ever want to add functionality to this asset, you can create a class in this
location and perhaps avoid additional edits to the FLA.

Document class

The entry point to this project is the document class, LAS3Main.as, which
follows. Lines 3 and 4 import the MovieClip class and custom NavigationBar
class, which you'll create in a moment. Line 6 declares the class and extends
MovieClip. Lines 8 through 14 contain the class constructor.

This navigation bar can feature a variable number of buttons, determined
by the contents of an array seen in lines 9 and 10. Lines 11 and 12 creates an
instance of the NavigationBar class and passes in the array of labels for the
new buttons. Finally, line 13 adds the navigation bar to the display list.

1 package {

3 import flash.display.MovieClip;

4 import com.learningactionscript3.gui.NavigationBar;
5

6 public class LAS3Main extends MovieClip {

7

8 public function LAS3Main() {

9 var menuData:Array = ["one", "two", "three",
10 "four", "five"];

11 var navBar:NavigationBar =

12 new NavigationBar(menuData);

13 addChild(navBar);

14 }

15 }

16}

NavigationBar

Next we need to create the NavigationBar class (NavigationBar.as), which will
be the home for our buttons. Here we'll focus on the times that are appreciably
different in purpose from the prior class, or are otherwise noteworthy Line
1, for example is the package declaration discussed several times previously
in the book, but is worthy of mention because it reflects the location of the
class —in the gui directory, within the com directory, found in the same folder
as the FLA. Lines 9 through 12 contain the class constructor, populate the
properties with the incoming argument data, and call the build() method:

package com.learningactionscript3.gui {

1
2
3 import flash.display.MovieClip;
4



5 public class NavigationBar extends MovieClip {

6

7 private var _navData:Array;

8

9 public function NavigationBar(navData:Array) {
10 _navData = navData;

11 build();

12 }

In the next code segment, the build () method uses a for loop to add
each button to the navigation bar. The loop first creates an instance of the
MenuButtonMain class, passing the name of the button as a string for the but-
tons label. This string comes from the button array passed into the construc-
tor from the document class, and can be seen in line 9 of the prior class. Next,
the button is positioned horizontally by starting with a 20-pixel offset, and
then multiplying the width of the button plus a 2-pixel space for each button.
That is, the first button starts at 20 pixels because / begins as 0 and no further
offset is added. The second button starts at 20 and then 1 * (button width + 2)
is added, and so on. A fixed y location is also used, and each button is added
to the display list.

Finally, the aforementioned horizontal bar from the FLA library is added to
the bottom of the menu buttons (lines 22 through 25). Two things are impor-
tant here. First, the line is typed as MovieClip to give you a bit more flexibility
We haven't yet created a dedicated class for this object, and it's a movie clip
in the FLA. Second, as a display object, this line movie clip can be a target of
mouse events. Because it has no active role in the navigation bar, we disable it
from interacting with the mouse by setting its mouseEnabled property to false.

13 private function build():void {

14 for (var i:uint; i < _navData.length; i++) {
15 var menuBtn:MenuButtonMain =

16 new MenuButtonMain(_navData[i]);

17 menuBtn.x = 20 + i * (menuBtn.width + 2);
18 menuBtn.y = 75;

19 addChild(menuBtn);

20 }

21

22 var hline:MovieClip = new HLineThickQ;

23 hline.y = 100;

24 hline.mouseEnabled = false;

25 addChild(hline);

26 }

27 }

28 }

MenuButtonMain

Finally, we present the MenuButtonMain class, which creates the button for each
menu added to the navigation bar. In addition to the previously explained
package declaration and imports, this class also uses two text classes origi-
nally discussed in Chapter 4 —the display list class TextField and the text
automatic sizing and alignment class, TextFieldAutoSize. The text field goes



Navigation Bar Revisited

Part Il: Graphics and Interaction

into a private property called _btnLabel, and the remainder of the functional-
ity will be explained after the code.

1 package com.learningactionscript3.gui {

2

3 import flash.display.MovieClip;

4 import flash.events.MouseEvent;

5 import flash.text.TextField;

6 import flash.text.TextFieldAutoSize;

7

8 public class MenuButtonMain extends MovieClip {

9

10 private var _btnLabel:TextField;

11

12 public function MenuButtonMain(labl:String) {

13 _btnLabel = new TextFieldQ;

14 JrtnLabel.autoSize = TextFieldAutoSize.CENTER;
15 JrtnLabel.textColor = OXFFFFFF;

16 JrtnLabel.text = labl;

17 _btnLabel.mouseEnabled = false;

18 addChild(_btnLabel);

19

20 buttonMode = true;

21 useHandCursor = true;

22 addEventListener(MouseEvent.CLICK, onClick,
23 false, 0, true);

24 }

25

26 private function onClick(evt:MouseEvent):void {
27 trace(_btnLabel.text);

28 }

29 }

30}

Lines 13 through 18 apply to the text label inside the button. When a button
is created, a string that will serve as the button text is passed into the labl
parameter (custom-named to differentiate it from an ActionScript property
called label). Line 13 creates a new text field and line 14 sizes the field to the
minimum dimensions required to display the text—reducing the field at left,
right, and bottom, effectively centering the text. Line 15 colors all text in the
field white, and line 16 places the string from labl into the field.

Line 17 is particularly important in this example. The default mouse behavior
for a dynamic text field is to display a standard I-beam text cursor and allow
a varying degree of text editing (depending on properties we'll discuss in
Chapter 10). As such, a text field used inside a button will follow this behavior
and intercept mouse events, preventing the button from behaving properly
Line 17 disables mouse interaction with the text field, so it won't interfere, and
so the mouse will display a pointer cursor when interacting with the button.
Line 18 adds the field to the button.

Lines 20 through 23 apply to the button itself. Although a movie clip will
react to mouse events, it will not exhibit the mouse cursor feedback associat-
ed with a button. For example, it won't switch from a pointer to a finger. Line



20 tells the movie clip to behave like a button, and line 21 enables the button
mouse cursor. Lines 22 and 23 assigns a mouse click listener to the button.

For simplicity, this exercise merely traces the text of each button clicked to
the Output panel. Later in the book, we'll show you how to format text and
load external assets using the next generation of this navigation bar. Figure
6-4 shows the final navigation bar.

Figure 6-4. The finished navigation bar

What's Next?

Although we've really just scratched the OOPy surface, this chapter presented
some key concepts of object-oriented programming. As the chapter unfolded,
and each section extended the vehicle/car/truck example, you addressed
inheritance, added composition, improved data security with encapsulation,
and simplified your method vocabulary with polymorphism. From a tutorial
standpoint, the final set of files demonstrated basic best practices in these
areas.

You also learned how to create a system that uses document classes as well as
standalone classes that require instantiation. Finally, you learned how to link
a class to a movie clip to give a symbol instance its own behavior.

In the next chapter, we'll look at animating with ActionScript. You'll learn:
* Movement using the x- and y-coordinate system, velocity, and acceleration

* Light geometry and trigonometry, including circular movement, angle
and distance calculation, and more

* Simplified physics, including gravity, friction, and springs
* ActionScript alternatives to timeline tweens, including easing

* Particle systems that put several of these principles into action while gen-
erating endless individual particles

What's Next?

NOTE

Practice Your Skills: Now would be

a great time to practice what you've
learned in the previous chapter Try to
replace the trace () statement in this
example with a navigation instruction
that would control a movie clip timeline.
An example of this change is included in
the source files in the movie_dip_navi-
gation directory.

Chapter 6: OOP



From your very first experiment to the umpteenth time you've performed a
familiar task, moving assets with code can be very gratifying. In addition to
creating more dynamic work by freeing yourself from the permanency of the
timeline, there is something very immediate and pleasing about controlling
the motion of an object purely with ActionScript.

Because programming motion can cover many concepts, we've chosen to
focus on a few key topics in this chapter. For each group of ideas we intro-
duce, we offer what we call simplified simulations—that is, we don't maintain
that our examples accurately reflect real-world scenarios. When discussing
physics, for example, we won't be accounting for every force that can act on
an object. On the contrary, we'll try to provide simple implementations that
you can easily integrate into your own projects.

We also hope to show that math can be your friend. To some of you, this
may be a given, but to others, math can be a little intimidating. If you're in
the latter group, we hope to reduce what may be a knee-jerk reaction to noth-
ing more than working with numbers. Understanding just a few practical
applications of mathematical or scientific principles can really go a long way
Before you know it, you'll be creating what seem like complex animations
with little effort. You'll be building grids of movie clips, animating planets
in elliptical orbits, shooting projectiles in games, building novel navigation
systems, and more.

In this chapter, we'll look at the following topics:

* Basic Movement. We'll start with simple movement, updating x and y
coordinates using velocity, acceleration, and easing.

* Physics. Gravity, friction, and elasticity add a bit of realism to anima-
tions, and you may be surprised how easy they are to simulate.

* A Basic Particle System. Learning by doing is important, so we'll com-
bine movement, physics, and object-oriented programming to create a
class-based particle system.

CHAPTER

IN THIS CHAPTER

Basic Movement

Simple Physics

A Basic Particle System
Simple Collision Detection

Geometry and
Trigonometry

Programmatic Tweening

What's Next?

153



Basic Movement

Part Il: Graphics and Interaction

* Collision Detection. Next we'll discuss how to detect collisions with
other objects, points, and the boundaries of the stage.

* Geometry and Trigonometry. Even basic geometric and trigonometric
principles can make animated objects move in wonderful ways. We'll
show you how to determine the distance between two points, how to
move an object along a specific angle, how to animate objects in a circu-
lar path, and how to rotate objects to point at a specific location. We'll
also combine some of these skills to create a novel navigation widget and
another basic particle system.

* Programmatic Tweening. Scripting movement entirely from scratch
affords the greatest flexibility but also requires a fair amount of labor.
Sometimes, a prewritten method or two can satisfy a basic need for
motion. We'll demonstrate ActionScript's Tween class and its occasional
partner in crime, the Easing package.

* Using a Tweening Engine: TweenLite. Finally, we'll show you an alter-
native to ActionScript's built-in tweening options (and, at the same time,
give you some experience using third-party ActionScript 3.0 packages) by
introducing the fabulous TweenLite tweening engine.

Basic Movement

When discussing scripted motion, a good place to begin is simple move-
ment through updating x and y coordinates of a display object. Whether
you realize it or not, you're probably already used to thinking of points in
two-dimensional space as x and y coordinates. However, you're probably used
to thinking about positive x values moving to the right and positive y values
moving up, the way simple graphs are usually expressed.

The Flash coordinate system differs a bit from the typical x-, y-coordinate
system with which you may be familiar. The x values still increase to the
right, but the (0, 0) point of the stage is in the upper-left corner, and the y
values increase when moving down. This becomes important when you want
an object to travel up, because you must subtract from the y property For
example, if a MovieClip starts at an x, y position of (100, 100), getting it to
move up by 10-pixel increments means changing its y property to 90, 80, 70,
and so on. This inverted y axis also makes a difference when creating practi-
cal user interface elements, such as sliders. We'll create a slider in Chapter 11
to control sound volume, in which the inverted y value plays a part.

To increase or decrease a value, you simply add to, or subtract from, the
previous value. You may recall from Chapter 2 that the increment operator,
two plus signs (++), are equivalent to value = value + 1, and two minus signs
(--) represent value = value - 1. We also discussed the compound assignment
operators += and -=, which add or subtract (respectively) whatever is on the
right of the equal sign from the existing value of the variable or property on



the left of the equal sign. Assuming two movie clips begin at (0, 0), where will
they be after this code?

mc.X++;
mc.y--;

mc2.x += 10;
mc2.y -= 10;

The mc movie clip ends up at (1, -1) and the mc2 movie clip ends up at (10,
-10). In this chapter, you'll be moving objects around the stage in this way,
as well as by using more involved formulas and variables. To give you some
perspective on what lies ahead, it will help to understand the terms speed,
velocity, and acceleration, which we use throughout the chapter:

Speed

Speed, or how fast an object is moving, is a scalar quantity, which means
it's a value that can be expressed with magnitude alone. That is, you can
drive your car at 60 miles per hour, but that speed doesn't imply a direc-
tion. We can create a variable or object property called speed, but it won't
help animate a display object until we add a direction to the mix.

Velocity

Velocity is a constant speed of motion, but adds direction. It's called a
vector quantity because it's expressed with both magnitude and direction.
One easy way to do this when animating objects in ActionScript is by
referring to the x and y properties of a display object. For example, mov-
ing a movie clip 20 pixels in the x direction sends it to the right, represent-
ing speed and direction.

Acceleration

Acceleration is the rate of change in velocity and is also a vector quantity,
requiring both magnitude and direction. For example, an object that
accelerates to the right has an ever increasing change in its x property

These distinctions may be subtle, but they are helpful when understanding
how to get from point a to point b. You certainly don't have to memorize
them, but understanding the basics of each term will help you plan, and
even troubleshoot, your code. If a display object is moving at a constant rate
of speed when it's meant to move faster over time, you may realize that you
forgot to add acceleration before updating your x or y values.

Velocity

Starting out, velocity will be expressed as an increase or decrease of x and y
coordinates. Later on, we'll show you how to move an object using an angle
but, for now, remember that incrementing the x property by 4 means a veloc-
ity of 4 pixels to the right. Breaking this update into separate components
for position and velocity can make this clearer and easier to work with —
particularly when additional factors enter the equation such as acceleration,
gravity, friction, and so on.

Basic Movement

Chapter 7: Motion

55



Basic Movement

NOTE

See the "Adding Custom Symbol
Instances to the Display List" section of
Chapter 4 to review how to use a link-
age class.

J
J

J

Figure 7- 7. Simulated movement of a
movie clip, at a constant velocity, down
and to the right

oJ

Figure 7-2. Acceleration increasing the
velocity over time, simulated by increased
movement in each frame

Part II: Graphics and Interaction

The following code, found in velocity.fla in the companion source files, cre-
ates a ball from a library movie clip with the linkage class, Ball. It then adds 4
pixels to the ball's x and y coordinates each time the enter frame event occurs.
This means the ball moves down and to the right, as depicted in multiple
frames in Figure 7-1.

=

var ball:MovieClip = new Ball();
ball.x = ball.y = 100;
addChild(ball);

var xVel:Number 4;
var yVel:Number 4;

addEventListener(Event.ENTER_FRAME, onLoop, false, ©, true);
function onLoop(evt:Event):void {

0 ball.x += xVel;

11 ball.y += yVel;

12 }

= v 0N o uUV P WwN

If the ball's x velocity is 4, how far does the ball move along the x axis in one
second? This an important question because the ball's speed is dependent
upon the FLAs frame rate. Because the function is executed every time an
enter frame event is received, a frame rate of 20 frames per second (fps) yields
a distance of 80 pixels per second —approximately one inch on a 72-pixel-
per-inch monitor —in the x direction. Next let's look at how to change that
ball's velocity

Acceleration

Changing the velocity over time accelerates or decelerates an object. Consider
a ball that moves 4 pixels in the x direction every time an enter frame event
occurs; you can easily calculate the ball's movement as 4 + 4 + 4 + 4 and
so on. In 3 seconds the ball would travel 240 pixels (4 pixels per frame * 20
frames per second * 3 seconds). If we accelerate the object 1 pixel per enter
frame event, however, the ball's changing velocity would be 4 + 5 + 6 + 7, and
so on. At the same frame rate of 20 frames per second, the ball would travel
2070 pixels in the same 3 seconds! Acceleration is the compound interest of

motion.

Figure 7-2 illustrates the effect of acceleration by depicting an increasing
distance traveled by a ball each time an update occurs. You can illustrate this
change more dramatically by changing acceleration in only one direction. All
you have to do is increment velocity by acceleration every time the function
executes. The source file acceleration.fla demonstrates this idea by adding
acceleration to the x velocity This file augments the velocity example by add-
ing lines 7 and 14, shown in bold:
var ball:MovieClip = new Ball();

ball.x = ball.y = 100;
addChild(ball);

var xVel:Number 4;
var yVel:Number 4;



var xAcc:Number = 1;
8
9 addEventListener(Event.ENTER_FRAME, onLoop, false, @, true);
10 function onLoop(evt:Event):void {

11 ball.x += xVel;
12 ball.y += yVel;
13
14 xVel += xAcc;
15}

Easing

One of the biggest challenges to creating good animated sequences is bring-
ing realism to your work. As any animator will tell you, this is a lifelong effort,
but adding easing to your animation is a very quick way to take a big step
towards that goal. Easing is so named because when used, an object appears
to "ease in" to an animation, accelerating as the animation progresses, or
"ease out" of an animation, decelerating as the animation finishes. As a crude
real-world example, think about merging onto a highway As you approach
the highway from the on ramp, you slowly increase your speed looking for a
chance to join the stream of vehicles. You continue to add acceleration, find
an opening, and ease into the highway traffic.

Later in this chapter we'll show you how to use preexisting easing equations
but it's very useful to first understand the basics behind easing. For one
thing, writing your own simple easing code helps you learn more about pro-
gramming motion. More importantly, however, integrating easing into your
scripts is also more flexible. The most common use of easing is when adding
it to fweens—sequences where the computer calculates the interim property
values between starting and finishing frames. However, these starting and
finishing values are typically preset in tweens. Writing your own easing code
means you can add it to any other scripted motion, even when values are
changing on the fly

The simplest easing equation is a formula akin to Zends paradox. This philo-
sophical idea says that, when moving from one point to another, you never
really reach your ultimate destination because you're dividing the remaining
distance with every movement. If you divide the distance between point a
and point b in half with every step, theoretically, you could never reach point
b. As a philosophical idea this may be interesting, but in practical terms,
objects reach their intended destinations all the time. In fact, we can use a
formula derived from Zeno's paradox in animation, to slow down an object
as it approaches its new location, as shown in Figure 7-3.

Figure 7-3. Zeno's paradox, a simple way to depict friction or easing

Basic Movement

Chapter 7: Motion



Basic Movement

NOTE

Although the examples in this book are
necessarily general and concise for tuto-
rial purposes, you may sometimes want
to add tolerance factors when applying
them to your own projects. When eas-
ing, for example, you may want to add
a conditional statement that removes an
event listener when your display object
comes close enough to your destination.
This will eliminate unnecessary activity
in your scripts, and you can also use the
opportunity to snap your display object
to your exact destination, if important.

The upcoming section "A Basic Particle
System" shows a variant of this
approach by removing a listener when a
particle leaves the stage.

Part Il: Graphics and Interaction

The following example, found in the easing.fla source file, demonstrates this
principle; it first creates a ball movie clip from the library, and then calls the
onloop () function every enter frame. This updates the movie clip's x and y
coordinates every enter frame by calling the zeno() function, where the eas-
ing equation does its work:

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 addEventLlstener(Event.ENTER_FRAME, onLoop, false, ©, true);
6 function onLoop(evt:Event):void {

7 ball.x += zeno(ball.x, mouseX, 2);

8 ball.y += zeno(ball.y, mouseY, 2);

9 1}

10

11 function zeno(orig:Number, dest:Number, reducer:Number):Number {
12 return (dest - orig) / reducer;

13}

The zenoQ function starts by subtracting the starting location (the ball's cur-
rent x or y location) from the ending location (the mouse x or y location) to
determine the distance that must be traveled. It then divides that distance by
an amount used to slow the progress. Finally, it adds that diminished value to
the current coordinates of the ball and the process begins again. The result is
that every time you move the mouse, the ball begins moving again and slows
down as it approaches the new mouse position.

In this example, the amount is cut in half every time simply to relate back to
the explanation of Zeno's paradox. Discussing only the horizontal position
for simplicity, if the ball must move from an x coordinate of 100 to an x coor-
dinate of 200, the first few updated positions are as follows. (Also shown are
the formula values used to calculate each position.) The effect is that the ball
eases in to the final destination.

starting point 1100

100 += (200 - 100) / 2 :150

150 += (200 - 158) / 2 :175
175 += (200 - 175) / 2 :187.5

You don't always have to cut the remaining distance in half, of course, when
using this formula. In fact, this is how you vary an animation's deceleration.
Numbers higher than 2 require more time for the object to reach its destina-
tion, and lower numbers finish the animation more quickly. The easing.fla
source file in the companion source code demonstrates this by passing 8 into
the reducer parameter of the zeno() function.

Best of all, every time you move the mouse in this example, the equation auto-
matically adjusts because the starting and ending locations are dynamic. The
starting point will always be the current location of the ball, and the ending
point will always be the mouse location.



Simple Physics

In the quest for more expressive animation, you will find that adding physics
to animations, games, and similar projects can really elevate them to another
level of user enjoyment. The visual appearance and, in interactive scenarios,
even the user experience of a project are sometimes dramatically enhanced
by surprisingly small code additions.

We're going to be discussing some basic physics principles in this section,
but it's more important for you to understand their effects than to focus
minutely on the math and science behind them. This is because the formulas
offered here are necessarily simplified, or even adapted, from their real-world
counterparts. Once you're comfortable with the principles in general, you can
refine formulas, account for additional variables, and so on, to improve their
realism. For example, it's often helpful to first simulate the simple orbit of
a planet before considering the orbit's decay, the gravitational attraction of
other bodies, and so on.

Gravity

What happens when you toss a ball into the air? It goes up, starts to slow
down as gravity affects its rate of ascent, it stops momentarily at the top of
its journey, and then the ball starts moving faster again as gravity starts to
accelerate its trip downward.

If you think about it carefully, a simple ActionScript simulation of gravity
requires little more than acceleration in the y direction. The following code,
found in the gravity.fla source file, requires only minor changes to the previ-
ous acceleration example. Here we'll focus on acceleration in the y direction,
and we'll start with a negative y velocity to start the ball moving upward:

1 var ball:MovieClip = new Ball();
2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 var xVel:Number = 4;

6 var yVel:Number = -10;

7 var yAcc:Number = 1;

8

9 addEventListener(Event.ENTER_FRAME, onLoop, false, 9, true);
10 function onLoop(evt:Event):void {
11 ball.x += xVel;

12 ball.y += yVel;

13

14 yVel += yAcc;

15 }

The ball begins moving at 10 pixels per enter frame event, but acceleration
adds 1 to the y velocity each iteration. As such, the velocity decreases from -10
to -9 to -8, and so on, slowing the ball's ascent, just as if gravity were coun-
teracting the upward force of the toss. Eventually, the y velocity reaches zero at
the height of the toss, where the upward force and gravity reach equilibrium.

Simple Physics

NOTE

Remember that, in the ActionScript
coordinate system, increasing y values
move an object downward.

Chapter 7: Motion



Simple Physics

-J

Figure 7-4. The effect of gravity on
acceleration

NOTE

To continue your exploration of gravity,
velocity, and acceleration, visit the book's
companion website. The "More Motion
(Gravity)" post includes a file called
wall_bounce.fla that demonstrates all
these concepts and adds several addi-
tional features. Included are condition-
als to change the ball's direction when
hitting a stage boundary (which we'll
discuss in a moment), bounce behavior,
and even a texture to simulate rotation
during bouncing.

. Part IlI: Graphics and Interaction

Then, as we continue to add 1 to the y velocity, its value becomes 1, then 2,
then 3, and so on, as the ball begins to accelerate downward due to the effect
of gravity Figure 7-4 shows the effect of the simulated gravity by depicting
several frames of the animation at once. When a ball is tossed in the air, grav-
ity slows its rate of ascent and then increases the rate at which it falls.

Friction

All other things being equal, if you slide a hockey puck along three surfaces —
a street, a marble floor, and an ice rink —the puck will travel three different
distances due to friction. Friction will be highest on the street, building up
resistance to motion between the puck and the street surface, limiting the
progress of the puck. Friction will be reduced on the marble surface, and low-
est on the ice, allowing the puck to travel the farthest.

A simple way to add friction to an animation is to create a friction coefficient.
A coefficient is a modifier that alters an object's property, the way friction
alters the speed of the hockey puck. It's often a multiplier, which we'll use in
this example, multiplying by a value less than 1 to reduce an effect, or by a
value grater than 1 to exaggerate an effect.

To demonstrate this, we'll adapt the prior velocity and gravity examples to
create the friction.fla source file. The example begins with x and y velocities
of 10 in lines 5 and 6. Like the gravity example, we'll update the velocity
before adding it to the ball's x and y properties. This time, however, instead
of accelerating the ball in the y direction only, we're going to decelerate the

ball's movement in both directions, as if friction was slowing its movement.

Remember that friction hinders movement, so you want to choose a friction
value between 0 and 1 to slow down the motion. If you choose a value greater
than 1, the motion would speed up, while a negative friction coefficient would
move an object in reverse. Depending on the application, you can vary the
number. Perhaps you might use 0.95 for ice, 0.90 for marble, and 0.60 for
asphalt. With a friction coefficient in place in line 7, we can then multiply the
x and y velocities by this value in lines 11 and 12. Then we can update the ball's
x and y positions in lines 13 and 14.

var ball:MovieClip = new Ball();

ball.x = ball.y = 100;
addChild(ball);

var xVel:Number =
var yVel:Number =

10;
10;

var frCoeff:Number = 0.95;

VW N OV A W R

addEventListener(Event.ENTER_FRAME,
function onLoop(evt:Event):void {
xVel *= frCoeff;
yVel *= frCoeff;
ball.x += xVel;
ball.y += yVel;

onLoop, false, 0, true);

e i el
O bh wiNvPRkRroe
—_



In addition to simulating friction, this formula is another type of easing. The
big difference here is that you don't need a final value for the formula to work.
That is, in the previous "Easing" section, the formula diminished the distance
between two known points by adding ever decreasing values to an object's
current location. In this case, all you need to know is the degree to which the
velocities of an object will be reduced. Where that object ends up depends on
the velocities and coefficients used.

Elasticity

The last simple physics principal we'll look at is elasticity. Elastic properties
can be applied to simulate springs, of course, but can also be used as yet
another easing method.

The following example uses elasticity to settle a movie clip into a new loca-
tion. The movie clip moves from a starting position to the mouse location,
bouncing around the destination until settled. Figure 7-5 simulates this by
showing that each successively larger position gets closer to the final location,

J

Figure 7-5. A basic depiction of easing using Hooke's law of elasticity

indicated by the red crosshairs.

origin

The ball in the figure overshoots the destination just like a spring, stopping
at position 1. It then bounces back, but not quite as far, to position 2. This
continues, bouncing to position 3, then 4, and ultimately settling at position 5.

Elasticity is calculated using Hooke's law. Hooke's law says that the force
exerted by a spring is linearly proportional to the distance it's stretched or
compressed. It's expressed with the formula F = —kx. F is the resulting force
of the spring, -k is a spring constant (the strength of the spring, so differ-
ent springs can have different elasticities), and x is the distance to which the
spring is stretched or compressed. This formula determines the power of the
spring but eventually all springs return to their original state due to conser-
vation of energy So we'll also add a damping factor to reduce the bounce of
the spring over time.

The following script, found in the elasticity.fla source file, starts as the prior
examples have begun, by creating and adding a movie clip to the display list
(lines 1 through 3), and initializing x and y velocity variables (lines 5 and 6).
It then creates a listener in line 8, which calls the listener function in lines 9
through 14, every enter frame. In turn, the velElasticQ function determines
the x and y velocity of the movie clip, and the clip's x and y properties are
updated.

Simple Physics

NOTE

Developer extraordinaire Seb Lee-
Delisle is developing an ActionScript
animation library called Tweaser, based
on easing coefficients that alter prop-
erty values over time. Other animation
libraries work by using the starting and
ending points of the motion. Tweaser, on
the other hand, works by using a start-
ing point and an easing coefficient so
you don't have to have a final destina-
tion for the animated object. This adds
a bit offreedom to the task of anima-
tion. Tweaser was in beta at the time of
this writing, but you can learn more at
http/fwww. tweaser.org.

>J

NOTE

Although not vital to this discussion,

the elasticity equation is expressed as a
negative because the force given off by
the spring is not in the same direction

as the force applied to the spring. This is
called a restorative force because it helps
restore a property to its prior value.

Chapter 7: Motion


http://www

A Basic Particle System

Part Il: Graphics and Interaction

Passed to the function in lines 10 and 11 are the movie clip's starting and end-
ing positions, the spring constant and damping factor, and the current veloci-
ties that will be changed by the formula. The last part of the listener function
includes updates to the x and y locations of the movie clip, using the newly
calculated velocities. The elasticity calculation follows in the velElasticQ
function, which we'll discuss after the code.

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 var xVel:Number = 0;

6 var yVel:Number = 0;

7

8 addEventListener(Event.ENTER_FRAME, onlLoop, false, ©, true);
9 function onLoop(evt:Event):void {

10 xVel = velElastic(ball.x, mouseX, ©.3, 0.8, xVel);
11 yVel = velElastic(ball.y, mouseY, 0.3, 0.8, yVel);
12 ball.x += xVel;

13 ball.y += yVel;

14 }

15 function velElastic(orig:Number, dest:Number,

16 springConst:Number,

17 damp:Number, vel:Number):Number {

18 var elasticForce:Number = -springConst * (orig - dest);
19 var newVelocity:Number = (vel + elasticForce) * damp;
20 return newVelocity;

21}

All that remains is the elasticity calculation itself. Line 18 uses Hooke's law
to calculate the force of the spring by multiplying the spring constant (the
strength of the spring) by the distance between the starting point and the
mouse location (the distance the metaphorical spring is stretched). Line 19
calculates the new velocity affected by the spring. It adds the newly calcu-
lated elastic force to the velocity, but reduces the value due to conservation of
energy If this dampening effect were not in place, the spring would bounce
infinitely

Both the strength of a spring (the spring constant), and the dampening effect
on its force, are arbitrary values that can be adjusted to fit the needs of your
projects. In this example, each successive force of the spring will be only 80
percent (0.8) of the prior force.

A Basic Particle System

Now let's combine several of the things you've learned —including velocity,
acceleration, gravity, and object-oriented programming—to create a class-
based project. Particle systems are a way of simulating complex objects or
materials that are composed of many small particles, such as fluids, fireworks,

explosions, fire, smoke, water, snow, and so on.

Complex systems are achievable because individual particles have their own
characteristics and behave autonomously Further, the particles themselves



are typically easy to adjust, or even replace, making it possible to alter the
appearance or functionality of the system relatively easily. These are also char-
acteristics of object-oriented programming, so it's not surprising that particle
systems are often written using this approach.

As you're just getting started, this is a simple particle system using only two
classes, which looks a little bit like a primitive water fountain. Blue circles
shoot up out of the "fountain" and then fall down under the effect of grav-
ity Figure 7-6 shows what the system looks like, and you can get a look for
yourself by testing the particle_system.fla source file.

The particle

The first step in creating the system is to create a Particle class, found in
the Particle.as class file. This class will give life to each individual particle.
Reviewing class syntax, line 1 creates the class package, lines 3 and 4 import
the required classes, and line 6 declares the class and extends Sprite to
inherit display object properties like x and y. Lines 8 through 12 declare the
position, velocity, and gravity properties that are private to this class,

1 package {

2

3 import flash.display.Sprite;
a4 import flash.events.Event;

5

6 public class Particle extends Sprite {
7

8 private var _xPos:Number;
9 private var _yPos:Number;
10 private var _xVel:Number;
11 private var _yVel:Number;
12 private var _grav:Number;

Next, the class constructor creates and initializes the particle. Lines 17
through 21 populate the private properties with values passed into the con-
structor when the particle is instantiated. These parameters all have default
values, but our example will vary their values when creating each particle.

Next, the constructor adds visual content to the particle by creating an
instance of the Ball class from the FLA library and adds it to the display list.
This ball movie clip is nothing more than a blue circle with a radius of 20
pixels. Five particle properties are then populated in lines 26 through 29: x, vy,
alpha, scaleX, and scaleY, their values coming into the class during instan-
tiation. The last line of the constructor adds an enter frame event listener to
the particle.

13 public function Particle(xPos:Number=100, yPos:Number=100,
14 scale:Number=1, opacity:Number=1,
15 xVel:Number=4, yVel:Number=-10,
16 grav:Number=1) {

17 _XPos = xPos;

18 _yPos = yPos;

19 _xVel = xVel;

20 _yVel = yVel;

A Basic Particle System

. m

Figure 7-6. A particle system simulating a
primitive water fountain

Chapter 7: Motion



A Basic Particle System

NOTE

Because particle systems can create
hundreds or even thousands of particles
a second, it's very easy to run out of
memory ifyou don't remove listeners,
display objects, and particle storage
(such as a variable or array).

Part Il: Graphics and Interaction

21 _grav = grav;

22

23 var balliSprite = new Ball();

24 addChild(ball);

25

26 x = xPos;

27 y = _yPos;

28 alpha = opacity;

29 scaleX = scaleY = scale;

30

31 addEventListener(Event.ENTER_FRAME
32 false, 0, true);
33 }

The event listener function, onRunQ, uses the techniques discussed in the
velocity and gravity examples of this chapter—first altering the y velocity
with the effect of gravity, and then updating the x and y properties of the par-
ticle every enter frame. It also adds one new thing. A conditional statement
determines whether the particle position is off the stage on the left or right
(line 41), or top or bottom (line 42). If so, the event listener is removed in line
43, and the particle is removed from the display list in line 44.

34 private function onRun(evt:Event):void {

35 _yVel += _grav;

36 _xPos += _xVel;

37 _yPos += _yVel;

38 x = _xPos;

39 y = _yPos;

40

41 if (_xPos < ®@ I I _xPos > stage.stageWidth

42 II _yPos < @ I I _yPos > stage.stageHeight) {
43 removeEventListener(Event.ENTER_FRAME, onRun);
44 parent.removeChild(this);

45

46

47 }

}

Note, in line 44, that an object cant directly remove itself using syntax like
removeChild (this). A display object to be removed must be a child of the
object calling the removeChildQ method, and an object cant be a child of
itself. One way to remind yourself about this is to precede the method call
with the optional this reference to clarify which object is calling the method.
Ideally, writing this.removeChild(this) shows that this cant be a child of
this. Instead, the object instructs its parent to remove itself and, as the object
is a child of its parent, the syntax works just fine.

The system

The following simple document class ParticleDemo is responsible for creating
the particles. It creates a particle every time an enter frame event is received
and adds it to the display list. The variance in the system comes from the
values passed into the Particle class in the listener method onLoopQ.



1 package {

2

3 import flash.display.MovieClip;

4 import flash.events.Event;

5

6 public class ParticleDemo extends MovieClip {

7

8 public function ParticleDemo() {

9 addEventListener (Event.ENTER_FRAME, onLoop,

10 false, 0, true);

11 }

12

13 private function onLoop(evt:Event):void {

14 var p:Particle = new Particle(mouseX,

15 mouseyY,

16 (Math.random()*1.8) + 0.2,
17 (Math.random()*0.8) + 0.2,
18 (Math.random()*10) - 5,
19 Math.random()*-10,

20 i);

21 addChild(p);

22 }

23 }

24}

Recalling the signature of the Particle class, its parameters are xPos, yPos,
scale, opacity, xVel, yVel, and grav. The corresponding order of arguments
passed into the class when a particle is instantiated (starting in line 14), deter-
mine its appearance and behavior. To begin with, the particle is born at the
mouse location (mouseX, mouseY).

The formulas for scale, opacity, xVel, and yVel are then randomized within
specific ranges. The randomQ method of the Math class always generates a
random number greater than or equal to 0 and less than 1. Therefore, to pick
a random value greater than or equal to 0 and less than a number other than
1, you must multiply the decimal value generated by the desired maximum
value. Jumping ahead to the y velocity, for example, the ultimate value will
be greater than or equal to 0 and less than -10. If a range that does not start
with 0 is desired, an offset must be applied.

For example, the scale value is notjust a random number times 2. This may
result in a scale of 0 and the particle would disappear. The 0.2 offset guaran-
tees this will not happen. If the random number selected is 0 or very near 0,
the minimum size of 0.2 will be used (0 + 0.2). If the random number chosen
is near 1, the ultimate outcome is 2 (1.8 + 0.2). The opacity of the particle is
determined the same way with the next formula, yielding a value between 0.2
and 1 (20 and 100 percent, respectively).

The x velocity is calculated in a similar manner, but this time the offset value
is subtracted from the possible range of random numbers. If the random
number is near 0, the resulting value is 0 minus 5, or -5. If the random num-
ber is near 1, the outcome will be 10 minus 5, or 5. Therefore, the possible x
velocity values are between -5 and 5.

The last argument represents gravity, for which a constant value of 1 is used.

NOTE

A Basic Particle System

A signature describes a constructor or

method by including its name; param-
eters, data types, and possible default

values; and return data type. This lets

a programmer know how to invoke the
constructor or method.

Chapter 7: Motion



Simple Collision Detection

Part Il: Graphics and Interaction

The FLA file

The particle_system.fla source file uses the ParticleSystem class as a docu-
ment class, so there is no additional code therein. If you prefer not to use
the document class approach, however, all you need to do is instantiate the
ParticleSystem class and add it to the display list.

1 var ps: ParticleSystem = new ParticleSystemQ;
2 addChild(ps);

Particle systems are a lot of fun and can lead to many fruitful experiments.
Run this system several times, modifying the values sent to the Particle
class. Increase the range of x and y velocities for a larger spread of particles,
or decrease the force of gravity to see what particle life is like on the moon.
Let your creativity flow.

Simple Collision Detection

Once you get your display objects on the move, you can add code that will
react when objects collide. For example, games like pool, pinball, and plat-
form scrollers wouldn't be possible without collisions. We'll show you three
collision types in this section: collisions between two objects, between an
object and a point, and between an object and the boundaries of the stage.

Collision with Objects

Collisions between two objects are detected using the hitTestObjectQ method.
It determines whether the object calling the method collides with another object
passed in as an argument in the method call. The following code, found in the
collision_objects.fla source file, will remove two objects from the display list
when they collide. This is handy, for example, when bullets hit spaceships and
they must disappear. Lines 1 through 11 give us two balls and an event listener
to work with. Every enter frame, line 12 moves the ball to the right, and line 13
checks to see if ball collides with ball2. If so, the listener is removed in line 14, and
both ball and ball! are removed from the display list in lines 15 and 16.

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 var ball2:MovieClip = new Ball();

6 ball2.x = 100;

7 ball2.y = 400;

8 addChild(ball2);

9

10 addEventListener(Event.ENTER_FRAME, onEnter, false, 0, true);
11  function onEnter(evt:Event):void {

12 ball.x += 5;

13 if (ball.hitTest@bject(ball2)) {

14 removeEventListener(Event.ENTER_FRAME, onEnter);



15
16
17
18

It's important to note that the hitTestObjectQ method uses the minimum
bounding rectangle of both objects to detect collisions. Figure 7-7 shows two
circles that appear to not collide. However, the minimum bounding rect-

angles

removeChild(ball);
removeChild(ball2);

}

of the circles overlap and, therefore, a collision is reported.

Figure 7-7. The pictured overlap of circles would cause a collision using

hitTestObject() because the method uses the minimum bounding rectangle

of each

object

Collision with Points

Similarly, collisions between an object and a point are detected using the
hitTestPoint() method. It determines whether the object calling the method
collides with a point specified in the method call. The script in the colli-
sion_points.fla source file, will move an object to a random location when it
comes in contact with the mouse. After creating the ball and listener in lines
1 through 6, line 7 checks to see if ball collides with the mouse, and sets the
optional shape flag to true. When true, the shape flag uses nontransparent
pixels to test for collisions with the point, rather than the minimum bound-

ing rectangle of the object. If a collision occurs, the ball is relocated.

R =0 00 N VP wNPR

- o

var ball:MovieClip = new Ball();
ball.x = ball.y = 100;
addChild(ball);

addEventl_istener(Event.ENTER_FRAME,
function onEnter(evt:Event):void {

if (ball.hitTestPoint(mouseX, mouseY,

onEnter, false,

true)) {

ball.x = Math.randomQ * stage.stageWidth;

ball.y = Math.randomQ * stage.stageHeight;

9,

true);

Simple Collision Detection

NOTE

Checking for more accurate collisions of
nonrectangular assets requires signifi-
cantly more advanced programming —
typically using precise pixel analysis
with the BitmapData class, which we'll
introduce in Chapter 9. Fortunately,
Corey O'Neil has done most of the
work for you by creating his fantastic
Collision Detection Kit. Now, instead of
programming all the collision detection
yourself, you only have to implement his
code in your projects. Documentation
and examples can be found at http;/
code.google.comy/p/collisiondetectionkit/.

NOTE

Any alpha value above 0 will register

a collision using the hitTestPointQ
method. Only when a pixel is com-
pletely transparent will no collision

be detected. To register collisions with
nontransparent alpha values, use Corey
O'Neil's Collision Detection Kit. See the
previous note,

NOTE

Placing a display object on the stage
within a given area ensures only that
the registration point of the object is in
the area prescribed. If, for example, the
object is placed adjacent to a stage edge,
part of the object may be out of view.
Later in the chapter, we'll show you how
to be sure the entire object is always vis-
ible, even with random placement.

Chapter 7: Motion



Simple Collision Detection

Figure 7-8. No collision is detected here
because only nontransparentpixels
collide with a point (such as the mouse
location) when the shape flag of the
hitTestPointQ method is true

half the width of the display object

stage width

A

Figure 7-9. When testing for boundary
collisions on display objects with a center
registration point, the collision value must
be inset by half the width of the object
from the stage dimensions

Part II: Graphics and Interaction

Figure 7-8 shows the mouse overlapping the bounding rectangle of the circle,
but not touching any nontransparent pixels. In this case, because the shape
flag is true, no collision would be detected.

Collision with Stage Boundaries

The following code, found in the collision_stage_boundaries.fla source file,
moves the movie clip instance, ball, to the right 5 pixels every enter frame. For
this example, the movie clip added in lines 1 through 3 has a center registra-
tion point. Before moving the ball, however, the conditional in line 7 checks
to make sure the ball hasn't passed the right side of the stage. If not, the ball's
position is updated. If it has passed that boundary, the listener is removed
and the ball stops moving.

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 addEventListener(Event.ENTER_FRAME, onEnter, false, 0, true);
6 function onEnter(evt:Event):void {

7 if (ball.x + 5 < (stage.stageWidth - ball.width / 2)) {
8 ball.x += 5;

9 } else {

10 removeEventListener(Event.ENTER_FRAME, onEnter);
11 }

12 1}

Notice that the right stage boundary is detected using the width of the stage,
but that's not the only value used in the conditional. Instead, half the width of
the ball is subtracted from the boundary value first to prevent the ball from
leaving the stage before the test fails. If this adjustment were not made, at
least half of the ball would need to leave the stage before its center registration
point caused the conditional to fail. Figure 7-9 shows the point at which a
boundary collision is detected without accounting for a display object's cen-
ter registration point (top) and when subtracting half the width of the object
from the test value (bottom).

A similar equation is used to detect movement beyond the bottom of the
stage, using stage.stageHeight in the conditional. To check whether an
object is about to leave the left or top of the stage, the test must start with a
value of 0, but add half the width of the display object to inset the boundary
from each edge. Later in this chapter, a more complete example will be used
to reverse the direction of a particle's movement before leaving the stage.

NOTE

Ifyou create a display object with a noncenter registration point, your collision
detection code will need to change. For example, using a registration point in the
upper-left corner of a display object, you will need to subtract the full width of the
object to see if it leaves the left or top sides of the stage, and subtract nothing to see if
it leaves the right or bottom sides of the stage.



Geometry and Trigonometry

Although many people find geometry and trigonometry intimidating, the
small investment required to understand a few basic principles in these
disciplines can pay large dividends. For example, what if you needed to find
the distance between two points, or rotate one object around another? These
small tasks are needed more often than you may think, and are easier to
accomplish than you may realize.

Movement Along an Angle

Earlier we discussed velocity as a vector quantity because it combined mag-
nitude and direction. However, the direction in the previous example was
determined by changing x and y coordinates. Unfortunately, such a direction
is easily identifiable only when moving along simple paths, such as along the
x or y axis. A much better way to indicate a direction is to specify an angle
to follow.

Before we discuss angles and their different units of measure, you need to
understand how angles are indicated in the ActionScript coordinate system.
As you might expect, angles are commonly referenced using degrees, but it's
important to note that 0 degrees is along the x axis pointing to the right. The
360-degree circle then unfolds clockwise around the coordinate system. This
means 90 degrees points down along the y axis, 180 degrees points left along
the x axis, and so on, as shown in Figure 7-10.

Now that you have a correct point of reference, the next important concept to
understand is that most of ActionScript, like most computer languages and
mathematicians, does not use degrees as its preferred unit of measurement for
angles. This is true for just about all common uses of angles, except for the
rotation property of display objects and one or two more obscure items also
related to rotation. Predominately, ActionScript uses radians as the unit of
measure for angles. A radian is the angle defined by moving along the outside
of the circle only for a distance as long as the circle's radius, as seen in Figure
7-4. One radian is 180/pi degrees, which is approximately 57 degrees.

Though some of you may find that interesting or helpful, memorizing this
definition isn't vital. Instead, all you need to do is remember a handy con-
version formula: radians = degrees * (Math.PI/180). Conversely, to convert
radians to degrees use: degrees = radians / (Math.PI/180). (You may also see
a degrees-to-radians conversion that looks like this: degrees = radians * (180/
Math.PI)). In the upcoming example, we'll write utility functions for this pur-
pose that you can use throughout the rest of the examples.

Now we're prepared to address the task at hand. We must send a movie clip
off in a direction specified by an angle (direction) at a specific speed (magni-
tude). This will be the resulting velocity This script, found in the movement_
along_angle.fla source file, starts by creating a movie clip and positioning it
on stage at point (100,100). It then specifies the speed and angle at which the

Geometry and Trigonometry

270°

rotation
angles in
degrees

18 f 0°  startat0r,
pointing right
along the x axis,
and increase
clockwise

Figure 7-10. How Flash angles are
referenced

length
/ \ of arc
A 1 = radius

radius
resulting
angle =
1 radian

Figure 7-11. How radians are calculated

Chapter 7: Motion 7



Geometry and Trigonometry

¢iiH Part II: Graphics and Interaction

movie clip will travel, and converts commonly used degrees to ActionScript-
preferred radians using the utility function at the end of the script.

1 var ball:MovieClip = new Ball();

2 ball.x = ball.y = 100;

3 addChild(ball);

4

5 var speed:Number = 12;

6 var angle:Number = 45;

7 var radians:Number = deg2rad(angle);

With both a direction (angle) and magnitude (speed), we can determine the
required velocities relative to the x and y axes. To do so, we use the sin() and
cos() methods of the Math class, which calculate the sine and cosine of an
angle, respectively If this dredges up bad memories of high school math class,
just relax and picture a right-angle triangle with one point at the origin of
the x/y axes (Figure 7-12).

hypotenuse -
‘opposite side

ypotenuse

\

b = sinlangle)
J

. «——— y coordinate
origin

origin \ x coordinate

_ardjacent side
hypotenuse

= cos(angle)

Figure 7-12. A pointon a circle can be determined by using the cosine and sine of an
angle andthe circle's radius

The sine of an angle is the length of the opposite side of the triangle (shown
in blue in Figure 7-12) divided by the length of the triangle's hypotenuse (the
longest side, opposite the triangle's right angle). The cosine of an angle is
the length of the adjacent side of the triangle (shown in red in Figure 7-12)
divided by the length of the triangle's hypotenuse. In terms more applicable
to our needs, the x component of the direction we're looking for is the cosine
of an angle (in radians), and the direction's y component is the sine of the

same angle.

Multiply each value by a speed and you get x and y velocities, as seen in lines
8 and 9 of the following script block, respectively All that remains is to add
those velocities to the x and y coordinates of the ball (in the listener function
at lines 13 and 14) and it's on the move.

8 var xVel:Number = Math.cos(radians) * speed;
9 var yVel:Number = Math.sin(radians) * speed;

10



11 addEventl_istener(Event.ENTER_FRAME, onLoop, false, 0, true);
12 function onLoop(evt:Event):void {

13 ball.x += xVel;

14 ball.y += yVel;

15}

16

17 function deg2rad(deg:Number):Number {
18 return deg * (Math.PI / 180);

19 }

Lines 17 and 18 contain the conversion function called in line 7. It takes an
angle in degrees and returns the same angle in radians.

Distance

Let's say you're programming a game in which a character is pursued by an
enemy and must exit through one of two doors to safety However, the enemy
is close enough that the character must choose the nearest exit to survive. The
player controls the character, but you must make sure the enemy catches the
character if the player makes the wrong decision. To do that, the enemy must
know which exit is closest.

To determine the distance between the enemy and a door, all you need to do
is imagine a right triangle between those points and use a formula called the
Pythagorean theorem. The theorem states that the square of the longest side
of a right triangle is equal to the sum of the squares of the other two sides.
This is illustrated in the top of Figure 7-13.

The bottom of Figure 7-13 shows this theorem in use, determining the dis-
tance between two movie clips, or, in our metaphorical case, between an
enemy and a door. The triangle appears beneath the two points, and the
differences between the x and y coordinates of points 1 and 2 are shown in
dotted lines. These lengths correspond to the a and b sides of the triangle,
so we need to square (x2 - x1) and square (y2 - yl) to satisfy the theorem.

The linear distance between the two points is shown as a solid red line. This
linear distance corresponds to the length of the longest side of the triangle,
but we don't want the square of this length. So we must take the square root
of both sides of the equation. In other words, we need the square root of
(x2 - x1) * (x2 -x1) + (y2 -yl) * (y2 - yl).

Once you determine the distance between the enemy and one door, you
repeat the process for the distance between the enemy and the other door. You
can then determine which door is closest.

In the source file, distance.fla, the getDistanceQ function calculates the dis-
tance between two balls and returns that value as a Number. Line 3 determines
the distance between the x coordinates, and line 4 determines the distance
between the y coordinates. Line 5 uses the sqrtQ method of the Math class to
calculate the square root of the sum of those squares.

Geometry and Trigonometry

¢ (hypotenuse)

__rightangle
1

a
c=al+b

Figure 7-13. Calculating the distance
between two points using geometry

Chapter 7: Motion 7



Geometry and Trigonometry

NOTE

In Chapter 8, well show you another
way to calculate the distance between
two points using a simple method of the
Point class.

¢iiH Part II: Graphics and Interaction

It compares the distance between ball0 and balll to the distance between
ballO and ball2:

1 function getDistance(x1l:Number, yl:Number,

2 x2:Number, y2:Number):Number {
3 var dX:Number = x2 - x1;

4 var dY:Number = y2 - yl;

5 return Math.sqrt(dX * dX + dYy * dv);

6 }

7

8 var distl:Number = getDistance(ball®.x, ballo.y,
9 balll.x, balll.y);
10 var dist2:Number = getDistance(balle.x, ballo.y,
11 ball2.x, ball2.y);
12

13 if (distl < dist2) {

14 trace("balll is closest to ball0");

15 } else {

16 trace("ball2 is closest to ball0");

17 }

More Particles: Collision and Distance

Now it's time for another project to put your latest knowledge to the test. This
second particle system, found in particles_angle.fla, will again create particles
that move around on their own. This time, however, they'll bounce off the
edges of the stage and a line will be drawn between any particles that are
within 100 pixels of each other.

This exercise will combine skills you've developed in moving objects along
angles, collision detection, and distance calculation. It also uses such lan-
guage fundamentals as for loops, conditionals, array structures, and random
numbers, as well as reviews the display list and event listeners.

Finally, it makes use of the Graphics class to draw lines at runtime. We'll cover
this class in greater depth in the next chapter, but briefly, it allows you to
draw vectors, including lines, curves, fills, and shapes, into display objects. In
this script, we'll just define line characteristics, connect points, and periodi-
cally clear what we've drawn.

Lines 1 through 4 of the following code create variables for use throughout
the script. Line 1 creates an array to hold all the particles created. Line 2
creates a single particle so its diameter (line 3) and radius (line 4) can be
determined. Lines 6 and 7 create a container sprite and add it to the display
list. This will be a container into which we'll draw lines that connect our
particles. Line 8 makes this process a bit easier and more efficient by storing a
reference to the graphics property of the container. This is the virtual canvas
into which we'll draw.

Lines 10 through 20 create 20 particles. Line 11 creates a new Particle
instance, and lines 12 and 13 position the particles randomly on stage. Like
the previous discussion about stage boundary collision testing, these lines



guarantee that the particle is placed wholly within the stage. They do so by
reducing the available area by the diameter of the particle, and insetting the
left- and topmost positions by the radius.

1 var particles:Array = new ArrayQ;

2 var particle:Particle = new ParticleQ;

3 var pD:Number = particle.width;

4 var pR:Number = particle.width / 2;

5

6 var container:Sprite = new SpriteQ;

7 addChild(container);

8 var g:Graphics = container.graphics;

9

10 for (var i:int = 0; i < 20; i++) {

11 particle = new ParticleQ;

12 particle.x = Math.randomQ * (stage.stageWidth - pD) + pR;
13 particle.y = Math.randomQ * (stage.stageHeight - pD) + pR;
14 particle.speed = Math.randomQ * 5 + 1;

15 particle.angle = Math.randomQ * 360;

16 updateParticleVelocities(particle);

17

18 container.addChild(particle);

19 particles[i] = particle;

20}

Line 14 creates a random speed, between 1 and 6, for each particle, and line
15 creates a random angle for movement, in degrees. This angle will be
converted later into radians. Note that these are properties specific to each
particle, not variables available to a function or the entire script. This is a
useful practice because the values are created randomly when the particle is
instantiated, and they are easily stored this way within each particle.

Line 16 calls the updateParticleVelocitiesQ function found in lines 57
through 61. In line 58, the function converts the particle's angle into radians
using the conversion function at the end of the script. It then uses the formu-
las from the "Movement Along an Angle" section in lines 59 and 60 to update
the x and y velocities for each particle. The particle is passed into the func-
tion as an argument, so these velocities can be stored in the particle object, as
described in the previous paragraph. The velocities are calculated using the
cosine and sine, respectively, of the angle, multiplied by the particle's speed.
Finally, the particle is added to the container (line 18), and to the array we'll
use to keep track of all the particles (line 19).

The remainder of the script is an event listener that's executed every time an
enter frame event is received. The listener function begins with line 23 by
clearing the graphics property of any previously dynamically drawn lines.
Next a loop executes once for every particle upon every enter frame. The
loop first stores a reference to the next instance in the particles array (line
26). Lines 28 through 37 then determine if the next location of the particle
is beyond the bounds of the stage; they check the current location plus the
current velocity to see if the resulting point is outside the area available for
placement.

Geometry and Trigonometry

Chapter 7: Motion



Geometry and Trigonometry

¢iiH Part II: Graphics and Interaction

The conditional uses the same technique explained in the "Collision with
Stage Boundaries" section of this chapter. It first takes the appropriate stage
edge (top or bottom in lines 28 and 29, or left and right in lines 33 and 34),
and then insets the radius of the particle from each edge to determine the
allowable values for particle movement. If a particle collides with a horizontal
plane (top or bottom stage edge), the angle of movement is turned into a neg-
ative of itself (multiplied by -1) (line 30). Table 7-1 shows a range of incoming
angles (angles of incidence) and after-bounce angles (angles of reflection), off
both bottom and top edges, using this formula.

Table 7-1. Angles before and after bounce off horizontal planes

Angle of incidence Angle of reflection
45 -45

90 -90

135 -135

225 -225

270 -270

315 -315

If a particle collides with a vertical plane (left or right stage edge), the angle
of movement is turned into a negative of itself and 180 is added to that value
(line 35). Table 7-2 shows a range of incidence and reflection angles, off both
right and left edges, using this formula. Remember that you don't have to
think in terms of radians because the conversion function takes care of that
for you.

Table 7-2. Angles before and after bounce off vertical planes

Angle of incidence Angle of reflection
45 135

135 45

180 0

225 -45

315 -135

360 180

The last step in handling the movement of each particle is to again call the
updateParticleVelocities() method (lines 31 and 36), to update the par-
ticle's x and y velocities after the collision, and, in turn, its x and y properties

21 addEventListener(Event.ENTER_FRAME, onEnter, false, 0, true);
22 function onEnter(evt:Event):void {

23 g.clearQ;

24

25 for (var i:int = @; 1 < particles.length; i++) {
26 var particle:Particle = particles[i];

27



28 if (particle.y + particle.velY < @ + pR ||

29 particle.y + particle.velY > stage.stageHeight - pR) {
30 particle.angle = -particle.angle;

31 updateParticleVelocities(particle);

32 }

33 if (particle.x + particle.velX < @ + pR ||

34 particle.x + particle.velX > stage.stageWidth - pR) {
35 particle.angle = -particle.angle + 180;

36 updateParticleVelocities(particle);

37 }

38

39 particle.x += particle.velX;

40 particle.y += particle.velyY;

41

42 for (var j:int = i + 1; j < particles.length; j++) {
43 var nextParticle:Particle = particles[j];

44

45 var dX:Number = particle.x - nextParticle.x;

46 var dY:Number = particle.y - nextParticle.y;

47 var distance:Number = Math.sqrt(dX * dX + dY * dY);
48 if (distance < 100) {

49 g.lineStyle(@, ©0x999999);

50 g.moveTo(particle.x, particle.y);

51 g.lineTo(nextParticle.x, nextParticle.y);

52 }

53 }

54 }

55}

56

57 function updateParticleVelocities(p:Particle):void {

58 var radians:Number = deg2rad(p.angle);

59 p.velX = Math.cos(p.angle) * p.speed;

60 p.velY = Math.sin(p.angle) * p.speed;

61 }

62

63 function deg2rad(degree):Number {

64 return degree * (Math.PI / 180);

65 }

Finally, the loop in lines 42 through 53 checks the distance between every
particle. Upon entering this nested loop, the current particle (particle,
assigned in the outer loop in line 26) is compared with every other particle
(.nextParticle, assigned in the inner loop in line 43). By nesting the loop this
way, each particle compares itself with the other remaining particles every
time an enter frame event is received. This way, we can determine whether
the distance between any two particles is less than 100 so we can draw a line
between them. Note, too, that the counter variable of the inner loop isj, not /.
This is necessary because if i were used again, it would conflict with the outer
loop, get reassigned, and wreak havoc.

This nested loop structure is also more efficient than it could be, because
the inner loop doesn't start with 0 every time. Instead, it starts at the next
particle in line (/ + 1), after the current particle (/). This is possible because
the relationships between the previous particles have already been examined.
Put another way, when the outer loop reaches 19, the inner loop need only
compare particle 19 (/) with particle 20 (/ + 1).

Geometry and Trigonometry

Chapter 7: Motion



Geometry and Trigonometry

Figure 7-14. During movement, particles
in close proximity to each other will be
connected.

¢iiH Partll: Graphics and Interaction

When making the comparisons, the loop checks the distance between every
two particles. If less than 100 (line 48), it readies a gray hairline stroke (line
49), moves to the location of the first point (line 50) and draws a line to the
location of the second point (line 51) being compared. We'll discuss drawing
vectors with code in the next chapter, but the effect is that only those particles
within close proximity of each other will be connected. As the positions of the
particles change, so do their connections. Figure 7-14 shows the file in action.

Circular Movement

Now that you know how to determine x and y coordinates from an angle,
circular movement is a snap. It will now be relatively trivial for you to move
an object in a circle, the way a moon revolves around a planet. With circular
movement, we are not interested in the velocity derived from direction and
magnitude, because the display object will not be traveling along that vector.
Instead, we want to calculate the x and y coordinates of many consecutive
angles. By plotting the sine and cosine of many angles, you can move the ball
in a circle.

If you think of the sine and cosine values of various angles, this technique
is easy to understand. (For simplicity, all angles will be discussed in degrees,
but assume the calculations are performed with radians.) The values of both
cosine and sine are always between -1 and 1. The x component, or cosine, of
angle 0 is 1, and the y component, or sine, of angle 0 is 0. That describes an
x, y point (1, 0), or straight out to the right. The cosine of 90 degrees is 0 and
the sine of 90 is 1. That describes (0,1), or straight down.

This continues around the axes in a recognizable pattern. Remembering that
we're discussing degrees but calculating in radians, the cosine and sine of 180
degrees are -1 and 0, respectively (point (-1, 0), straight to the left), and the
cosine and sine of 270 degrees are 0 and 1, respectively (point (0,1), straight

You must do only two more things to plot your movie clip along a circular
path. Because all the values you're getting from your math functions are
between -1 and 1, you must multiply these values by the desired radius of
your circle. A calculated value of 1 times a radius of 100 equals 100, and
multiplying -1 times 100 gives you -100. This describes a circle around the
origin point of the axes, which spans from -100 to 100 in both horizontal and
vertical directions.

Figure 7-15 illustrates these concepts in one graphic. Each color represents a
different angle shown in the legend in both degrees and radians. The x and y
values of the radians are expressed in the legend in standard cosine and sine
units (between -1 and 1). The resulting x and y coordinates determined by
multiplying these values by 100 are shown in the graph.



radians = degrees * (Math.Pl /180)
radius of circle = 100

deg = 50; rad = 0.87
x: Math.cos(rad) = 0.64
y: Math.sin(rad) = 0.77

deg = 140; rad = 2.44
x: Math.cos(rad) = -0.77
y: Math.sin(rad) = 0.64

deg = 230; rad = 4.01
x: Math.cos(rad) = -0.64
y: Math.sin(rad) = -0.77

deg = 320; rad = 5.59
x: Math.cos(rad) = 0.77 : {
y: Math.sin(rad) = -0.64 ~—

Figure 7-15. Four angles around a circle, expressed in degrees, radians, and as x and y
points on a circle with a radius of 100 pixels

Finally, you can position your invisible circle wherever you want it on the
stage. If you take no action, the object will rotate around the upper-left corner
of the stage, or x, y coordinates (0, 0). The following script centers the circle
on the stage.

The following example is found in the circular_movement.fla source file. The
first nine lines of the script initialize the important variables. Specified are a
starting angle of 0, a circle radius of 100, an angle increment of 10, and a circle
center that matches the center of the stage (its width and height divided by 2,
respectively). Also created is the satellite that will be orbiting the center of the
stage, derived from the Asteroid linkage class assigned to a library symbol
(line 7). It's initially placed offstage in line 8 before becoming a part of the
display list in line 9.

var angle:Number = 0;
var radius:Number = 100;
var angleChange:Number = 10;

stage.stageWidth / 2;
stage.stageHeight / 2;

var centerX:Number =
centerY:Number =

new AsteroidQ;
-200;

1
2
3
4
5 var
6
7 var satellite:MovieClip =
8 satellite.x = satellite.y =
9 addChild(satellite);
The last part of the script is the enter frame event listener and degree-to-
radian conversion utility discussed earlier. The listener function sets the x
and y properties of the asteroid by starting with the center of the circle, and
multiplying its radius by the x and y values calculated by the Math.cos()
and Math, sin() methods (lines 13 and 14). After each plot, the angle is incre-

mented in line 15.

Geometry and Trigonometry

NOTE

As discussed in Chapter 3, ActionScript
will automatically adjust incoming
rotation angles to create values most
efficient for Flash Player to handle.
Therefore, it doesn't matter if angle
continues to increment and exceed 360.
For example, ifyou set a display object's
rotation property to 370 degrees. Flash
Player will understand that this is
equivalent to 10 degrees.

Chapter 7: Motion 7



Geometry and Trigonometry

NOTE

The companion website discusses addi-
tional ways to convert rotation angles
to usable values. See the "Working with
Rotation Angles" post at http.//www.
LearningActionScript3.com.

Figure 7-16. A navigation system created
by positioning buttons in a circle

¢iiH Part II: Graphics and Interaction

10 addEventl_istener(Event.ENTER_FRAME, onLoop, false, @, true);
11 function onLoop(evt:Event):void {

12 var radian:Number = deg2rad(angle);

13 satellite.x = centerX + radius * Math.cos(radian);
14 satellite.y = centerY + radius * Math.sin(radian);
15 angle += angleChange;

16}

17

18 function deg2rad(deg:Number):Number {

19 return deg * (Math.PI / 180);

20}

A Circular Navigation System

Although this chapter is called Motion, you can do more with the skills you're
accumulating than move objects around the stage. You can use the same
math that animates an object along a circular path to position static elements
along a circle. The following script, found in the circle_navigation.fla source
file, automatically positions six buttons around a center draggable object, as
shown in Figure 7-16. The buttons, complete with labels, are children of the
center object. So, when the center object is dragged around, all the buttons
follow making a movable navigation system. Such a system could be very
useful for projects with large visual assets, or many user interface elements,
because the navigation widget could be moved around as needed to expose
underlying content.

Line 1 sets the number of satellite buttons positioned around the center
object. Line 2 sets the radius of the hidden outer circle, effectively setting
the distance each button rests from the center object. Line 3 sets the starting
angle of the first button. Remember that ActionScript angles begin at 0 to
the right (or 3:00 on a clock face) and increase clockwise. Therefore, the first
button appears straight up, or 12:00 on a clock face. Line 4 sets the amount
the angle will be incremented with each new button. The number of buttons
needed determines this. Our example uses six buttons, so they are positioned
60 degrees apart (360/6).

Lines 6 through 9 create the center button from the FLA library using the
MainButton linkage class, center the button in the middle of the stage, and add
it to the display list.

1 var numButtons:int = 6;

2 var radius:Number = 100;

3 var angle:Number = 270;

4 var angleChange:Number = 360/numButtons;

5

6 var mainButton:MainButton = new MainButtonQ;
7 mainButton.x = stage.stageWidth / 2;

8 mainButton.y = stage.stageHeight / 2;

9 addChild(mainButton);

The heart of this script is the positionButtonsQ function (lines 10 through
33). When called from line 34, it runs through a loop once for every button
requested —6 times, in this example. For each button, the loop begins by


http://www

storing the current angle in a variable (line 12) and incrementing the angle
to the next button position (line 13). The value of the angle is converted
from degrees to radians using deg2rad(), the utility function we've discussed
before, at the end of the script.

The button is then created using the library symbol with the SatelliteButton
linkage class, centered, and positioned on the circle defined by the mainButton
center point and radius. The same technique to move an object along a circu-
lar path is used here. The cosine of the current angle times the radius of the
circle determines the x coordinate, and the sine of the angle multiplied by the
circle's radius calculates the y coordinate (lines 16 and 17).

Each button is then given a name in line 18, consisting of an uppercase "B,"
and the number of the button, taken from the loop counter. The first button,
for example, will be BO, the second Bl, and so on. the last line of this code
block adds a mouse click listener to each button that calls the onClickQ
function found in lines 36 through 38. In this simple example, this function
just traces the button name. However, as discussed in Chapter 6, you can
change this instruction to update the playhead in a movie clip, and we'll teach
you how to load external assets in Chapter 13.

Because the buttons in this example have text labels, Line 21 is very impor-
tant. Setting the mouseChildren property of an object to false prevents the
content of that object from receiving mouse events. By default, the mouse
will automatically interact with the text fields in this example that display
the labels inside the buttons. This interaction includes text selection, cursor
feedback, and more. With mouseChildren set to false for each button, the text
field child of the button won't react to mouse events.

Line 22 is also important to this example because the navigation widget is
draggable. By adding each button as a child of mainButton, rather than the
main timeline, dragging the center button will also drag all its satellite but-
ton children.

The remainder of the function is consistent with our prior basic uses of text
fields in the Hello World! applications presented in earlier chapters. Line 24
creates the text field, line 25 sets the field's width to the width of the button,
and lines 26 and 27 center the button horizontally and vertically, respectively
Line 28 automatically scales the text field down to fit its text and is also a
simple way to center the text prior to learning more advanced formatting
options in Chapter 10. Line 29 is another formatting shortcut, making all text
in the field white. Finally, the button name is added to the text field in line 30
and the field is added as a child of the button to serve as its label.

10 function positionButtonsQ {

11 for (var i:int = @; i < numButtons; i++) {

12 var radian:Number = deg2rad(angle);

13 angle += angleChange;

14

15 var btn:SatelliteButton = new SatelliteButtonQ;
16 btn.x = Math.cos(radian) * radius;

NOTE

Geometry and Trigonometry

Although not strictly necessary in this
example, it's good practice to convert the
int data type of the loop counter to a
String data type before adding it to the

button name.

Chapter 7: Motion



Geometry and Trigonometry

¢iiH  Part II: Graphics and Interaction

17 btn.y = Math.sin(radian) * radius;

18 btn.name = "B" + String(i);

19 btn.addEventListener(MouseEvent.CLICK, onClick,
20 false, 0, true);
21 btn.mouseChildren = false;

22 mainButton.addChild(btn);

23

24 var tf:TextField = new TextFieldQ;
25 tf.width = btn.width;

26 tf.x = -btn.width / 2;

27 tf.y = -btn.height / 4;

28 tf.autoSize = TextFieldAutoSize.CENTER;
29 tf.textColor = OXFFFFFF;

30 tf.text = btn.name;

31 btn.addChild(tf);

32 }

33}

34 positionButtonsQ;

35

36 function onClick(evt:MouseEvent) {

37 trace(evt.target.name);

38 }

Lines 39 through 51 are responsible for creating the drag behavior of main-
Button. Lines 39 and 40 create a mouse down listener that triggers onStart-
Drag(), and lines 41 through 44 assign mouse up listeners to both mainButton
and the stage. The latter is important because it's possible while dragging for
a mouse up event to not register on the button. Without allowing the stage to
catch that event, the draggable object would be stuck to your mouse.

The onStartDrag() function (lines 46 through 48) is a great example of how
using currentTarget in an event listener function can be very helpful. As dis-
cussed in Chapter 3, the target property will tell you which button received
the mouse down event, but it will also make that single button draggable.
The currentTarget property, on the other hand, refers to the object to which
the listener is attached. That means that no matter which button you mouse
down upon, mainButton will move, dragging all its child buttons along.

Finally, the onStopDragQ function (lines 49 through 51) stops all dragging.

39 mainButton.addEventListener(MouseEvent.MOUSE_DOWN, onStartDrag,
40 false, 0, true);

41 mainButton.addEventListener(MouseEvent.MOUSE_UP, onStopDrag,
42 false, 0, true);

43 stage.addEventListener(MouseEvent.MOUSE_UP, onStopDrag,

44 false, 0, true);

45

46 function onStartDrag(evt:MouseEvent):void {

47 evt.currentTarget.startDrag();

48 }

49 function onStopDrag(evt:MouseEvent):void {

50 stopDragQ;

51}

52

53 function deg2rad(degree):void {

54 return degree * (Math.PI / 180);

55}



This example shows how a little math can spice up even a simple naviga-
tion system, but without being too difficult to master. Best of all, this script
automatically positions your satellite buttons for you, even if the number of
buttons changes. If you'd rather have nine buttons instead of six, so be it! Just
change the value in line 1 and the script will evenly space the buttons around
the circumference of the circle.

Rotation Toward an Object

Determining points on a circle when you start with an angle requires sine
and cosine, as seen in the previous example. However, the opposite of that
task requires a different trigonometric method. Determining an angle when
starting with point data requires atan2(). The atan2() method is a varia-
tion on the arctangent method and is especially useful when you want to
use rotation to point something at another location. For instance, the next
code example uses a frame event to continuously point a movie clip at the
mouse location, no matter where the mouse is on the stage, as simulated in
Figure 7-17.

The formula used to calculate the angle for the rotating object is:

Math.atan2(y2 - yl, x2 - x1)

There are two important issues to be aware of when using atan2(). As you
can see, the method always takes y point data as its first parameter (instead of
x, which is more commonly placed in the first position). Second, the method

returns its angle in radians, not degrees.

With that in mind, let's take a look at the following script, found in the
point_at_mouse.fla source file. It begins by creating a new instance of the Hand
linkage class from the library, placing the hand and forearm shown in Figure
7-17 in the center of the stage, and adding it to the display list. The listener
that follows in lines 6 through 11 calculates the angle of rotation in radians,
and then converts it to degrees, the unit required by the movie clip's rotation
property The conversion takes place in the utility function rad2deg() at the
end of the script.

The atan2() method in line 8 subtracts the mouse location from the hand
location (iny and x components) to get the angle the hand must use to point
at the mouse. Think of the location at which you want to point as the origin
of the system. In other words, point back to home base. That will help you
remember that the rotating object is point 2, and the mouse (in this case) is

point 1.
1 var hand:MovieClip = new Hand();
2 hand.x = stage.stageWidth / 2;
3 hand.y = stage.stageHeight / 2;
4 addChild(hand);
5

Geometry and Trigonometry

Figure 7-17. Using atan2 (), you can
continuously point a movie clip at the
mouse no matter where it's on the stage

Chapter 7: Motion 7



Geometry and Trigonometry

* *

t t

Figure 7-18. Detail ofgrid_point_mouse.

fla. Using atan2(), you can continuously

point a movie clip at the mouse no matter
where it is on the stage

¢iiH Part II: Graphics and Interaction

6 addEventListener(Event.ENTER_FRAME, onLoop, false, ©, true);
7 function onLoop(evt:Event):void {

8 var rotationRadians:Number = Math.atan2(hand.y - mouseY,
9 hand.x - mouseX);
10 hand.rotation = rad2deg(rotationRadians);

1}

12

13  function rad2deg(rad:Number):Number {

14 return rad / (Math.PI / 180);

5}

This example points one movie clip at the mouse, but the effect can be
adapted in many ways. One obvious variant is to point a movie clip at
another movie clip. Another visually interesting adjustment is to point many
instances of a movie clip at the same object. A grid of such pointers, for
example, looks interesting because each pointer rotates independently based
on its location. This can be seen in Figure 7-18, and will be demonstrated in
the next script. Finally, the ultimate effect need not be visual. You can use
this technique simply to track things, such as planning the trajectory of a
projectile toward a target.

Creating a grid using modulus

The following script, found in the grid point_mouse.fla source file, points
several independent objects at the mouse, but it also lays out the objects in a
grid. Using atan2() to point at the mouse has already been discussed in the
prior example, so let's focus on how to create the grid.

Line 1 stores the y position of the first row in the grid, and the variable in line
2 will hold instances of the FLA library linkage class, Arrow. Line 3 starts a
loop that increments 70 times to build a grid with as many arrows. Each arrow
is created in line 4 and added to the display list in line 10. But the grid layout
occurs in lines 5 through 9 through the magic of the modulo operator (%).

The modulo operator, often refer to as "mod," returns the remainder of a divi-
sion—any partial value left over when a number can't be divided into equal
parts. For example, 4 divided by 2 is 2, with no remainder. However, 5 divided
by 2 leaves a remainder of 1. Modulo can be used to test when a specific num-
ber of iterations has occurred, without the need for another variable.

It's tidy to arrange 70 items in a grid that contains 10 columns and 7 rows. To
do this, we can loop over a process 70 times, but we need to know when the
end of a row is reached if we are to advance down to the next row. We can't
rely solely on the loop counter because it increments from 0 to 70. However,
dividing the loop counter by 10, there will be no remainder at counter values
0,10, 20, and so on. Therefore, using the modulo operator, we can tell when
the remainder is 0 and when we've reached the end of a row. The header of
Table 7-3 shows the remainders of all numbers 0 through 69. For example,
the numbers in the first column all have a remainder of 0, the numbers in the

second column all have a remainder of 1, and so on.



Table 7-3. 70 values (i) listed by their remainder when dividing by 10 (i % 10)

0 1 2 3 4 5 6 7 18 19
0 1 2 3 4 5 6 7 18 19
10 11 12 13 14 15 16 ‘ 17 18 119
20 21 22 23 24 25 26 27 | 28 | 29
30 31 32 33 34 35 36 37 | 38 139
40 41 42 43 44 45 46 47 | 48 | 49
50 51 52 53 54 55 56 57 | 58 159
60 61 62 63 64 65 66 67 | 68 | 69

Line 6 sets the x coordinate of the arrow based on the grid column number,
derived using modulo (/ % 10). All columns start with an initial offset of 50,
and an additional offset of 50 pixels per column is added. The first arrow will
be positioned at 50 (based on 50 + (0 * 50)), the second will be positioned
at 100 (based on 50 + (1 * 50)), and so on. If i % 10 is 0 (line 6) a new row is
required and 50 is added to rowy.

1 var rowY:Number = 0;

2 var myArrow:Arrow;

3 for (var i:int = 0; i < 70; i++) {

4 myArrow = new ArrowQ;

5 myArrow.x = 50 + ((i % 10) * 50);

6 if (i % 16 == 0) {

7 rowY += 50;

8 }

9 myArrow.y = rowY;

10 addChild(myArrow);

11 myArrow.addEventListener(Event.ENTER_FRAME, onLoop,
12 false, 0, true);

13}

14

15 function onLoop(evt:Event):void {

16 var thisArrow:Arrow = Arrow(evt.target);

17 var rotationRadians:Number = Math.atan2(thisArrow.y - mouseY,
18 thisArrow.x - mouseX);
19 thisArrow.rotation = rad2deg(rotationRadians);
20}

21

22 function rad2deg(rad:Number):Number {

23 return rad / (Math.PI / 180)

24}

Programmatic Tweening

Scripting your own animations from scratch gives you a lot of control and
freedom, but it can be time-consuming, too. You may also discover that you're
frequently rewriting similar equations in project after project. If you find
yourself spending too much time in this manner, you may want to look into
ActionScript tweening classes. A tween is an animation sequence in which the

Programmatic Tweening

Chapter 7: Motion

83



Programmatic Tweening

NOTE

As discussed in Chapters 1 and 6, even
though this code is a simple timeline
script, it still needs import statements
because the required classes are not part
of the flash package. Only classes from
this package are automatically imported
behind the scenes in Flash Professional
timeline scripts.

Part Il: Graphics and Interaction

computer interpolates all relevant settings between starting and ending prop-
erty values. For example, just like you would create a motion tween in Flash
Professional's timeline, you might write a programmatic tween that moves a
movie clip from an x position of 100 to an x position of 400.

Adobe's Tween Class

Until you are comfortable using third-party ActionScript packages, you may
want to get up to speed with tweening using Adobe's Tween class. Built into
the ActionScript language, the Tween class is fairly limited but also easy to
understand. Here is a look at the class's signature, and the seven parameters
into which you send data when instantiating a tween object:

Tween(obj:0Object, prop:String, tunc:Function, begin:Number,

finish:Number, duration:Number, useSeconds:Boolean):Tween

The class takes the following arguments (in this order):
e obj: The object to animate

e prop: A relevant property to manipulate
e func: A preexisting easing function to add expressiveness to the ani-

mation
* begin: The beginning value of the property
e finish: The finishing value of the property
e duration: The duration of the tween
e useSeconds: Whether to use seconds or frames as the desired time unit

It also returns a Tween object, so you can store a reference to the tween for
additional manipulation. For example, you can stop or start the tween at a
later point.

The following script, found in the tween_class.fla source file, provides a
simple example of how to use the Tween class. It moves a movie clip from
one side of the stage to the other, bouncing the clip into its final destination.
Lines 1 through 4 tell the compiler where to find the required classes. Lines
6 through 8 create a movie clip from the FLA library using the Ball linkage
class, place it at point (100,100), and then add it to the display list.

1 import fl.transitions .Tween;

2 import fl.transitions .easing.Bounce;

3 import fl.transitions .easing.None;

4 import fl.transitions .TweenEvent;

5

6 var ball:MovieClip = new Ball();

7 ball.x = ball.y = 100

g addChild(ball);

XO var ballXTween:Tween ‘= new Tween(ball, "x", Bounce.easeOut
11 100, 400, 3, true);
12



13 ballXTween.addEventListener(TweenEvent.MOTION_FINISH,

14 onMotionFinish);

15 function onMotionFinish(evt:TweenEvent):void {

16 var ballAlphaTween:Tween = new Tween(ball, "alpha",
17 None.easeOut,

18 1, 0.3, 1, true);
19 1}

Lines 10 and 11 create a Tween instance to animate ball's x property Pay par-
ticular attention to the fact that the property is specified in string format.
That can take a little getting used to.

The tween will use the Bounce easing function to add expressiveness to the
animation while moving the movie clip horizontally from 100 to 400 pixels.
As a result, the ball will appear to bounce against its final position. Finally,
the tween will conclude in 3 seconds—indicated by the time unit 3, and the
true value of the last parameter, useSeconds, ensuring the tween is timed with

seconds, not frames.

Lines 13 and 14 add an event listener to the ballXTween object, to trigger
the listener function when the animation is finished and the TweenEvent.
MOTION_FINISH event is fired. At that point, a new tween is created, to fade the
alpha property of the same object from 1 to 03. The second tween will take 1
second, and uses no easing to complete the task.

Only the last parameter of the Tween class is optional. (When omitted,
useSeconds will be false and will use frames to time the tween, rather than
seconds.) Therefore, if you don't want to use easing, you must specify the None
easing class, and either the easeln or easeOut property. Which you choose
will not matter, as no easing will be applied. The names and descriptions
of other available easing classes can be found in Table 7-4. All easing classes
allow easing in, easing out, and easing both in and out of the tween.

Table 7-4. Easing types found in the fI. transitions.easing package

Easing Class Description

Back Easing in begins by backing up and then moving toward the tar-
get. Easing out overshoots the target and backtracks to approach it.

Bounce Bounces in with increasing speed, or out with decreasing speed.

Elastic Undulates in an exponentially decaying sine wave, accelerating in

and decelerating out.

None Linear motion without easing.

Regular Normal easing, like that found in the timelines simple easing fea-

ture, accelerating in and decelerating out.

Strong Emphasized easing, stronger than that found in the timelines
simple easing feature, but without additional effects. Accelerates in
and decelerates out.

Programmatic Tweening

Chapter 7: Motion

83



Programmatic Tweening

NOTE

With the developer's kind permission,
we've included the Tweening Platform
with the sample source code from the
companion website. As with any software
product, however, you would be wise to
check periodically with the Greensock
website  (httpy//www.greensockcom)

to see if any changes to the packages
have been made, and update your files
accordingly.

Part Il: Graphics and Interaction

GreenSock's TweenlLite

After gaining a little experience with third-party packages, you'll very likely
want to stop using the built-in Tween class and find a tweening package that
you like. Invariably, these heavily optimized products are smaller, faster, and
more robust, offering quite a bit that is worthy of your experimentation.

Our favorite is the Tweening Platform by GreenSock. The platform contains
several great products, but the one we want to focus on is TweenLite. The
tweening library comes in two variations: TweenLite, which is the smallest
possible size and is optimized by making a wide array of features optional,
and TweenMax, which is basically TweenLite with all of its features pre-
enabled, as well as a handful of additional advanced features.

We'll introduce TweenLite by recreating the tween example from the "Adobe's
Tween Class" section for comparison, and then building an example ban-
ner as an additional project. The main tools of TweenLite are a pair of nice,
simple methods: to() and from(). As their names imply, they allow you to
tween an object's properties from their current values fo final values, or from
initial values to their current values, respectively

Our first TweenLite example will demonstrate the to() method, which has
the following signature:

to(target:0bject, duration:Number, vars:Object):TweenLite

It begins with the object to tween, then includes the duration of the tween,
and finishes up with an object that contains all other variables you may want
to use to manipulate your tween. We'll show you a few options for the vari-
ables object in a moment, but a relevant example is the useFrames property
The duration of the tween is measured in seconds by default, but you can set
useFrames to true if you prefer, and the tween duration will be based on the
file's frame rate. The method also returns a TweenLite instance if you want to
store a reference to the tween for later use.

All TweenLite examples are found in the fweenLite directory in the source
archive, and the following script is in the tweenLitefla source file, The first
six lines are very similar to the Tween class example from the prior section—
importing required classes and creating a movie clip to manipulate. Because
this is an external library, you must have the Greensock Tweening Platform
package in a known class path for the imports to work. For this example, you
can place the package's com folder in the same directory as your FLA file.

com.greensock.TweenlLite;
com.greensock.easing.Bounce;

import
import

var ball:MovieClip = new Ball();
ball.x = ball.y = 100;
addChild(ball);
TweenLite.to(ball, 3, {x:400, ease:Bounce.easeOut,
onComplete:fadeBall});

VW ON OV AW N R


http://www.greensockcom

10 function fadeBallQ :void {
11 TweenLite.to(ball, 1,
12 }

{alpha:0.3});

In lines 8 and 9, TweenLite to() method is used to tween ball for 3 seconds,
from whatever the current location is (100, as set in line 5) to 400. It uses the
Bounce easing class and calls the fadeBallQ function when the animation is
complete.

The way TweenLite handles methods is quite different from the Tween class.
Instead of having to create all your own listeners, TweenLite uses callbacks.
An ActionScript callback is similar to the everyday use of the term. It's a
mechanism where you can essentially leave a message for an object and ask
In this
case, you're asking TweenLite to call the fadeBallQ function when the tween

it to call you back at the function specified when an event occurs.

is complete. When the function is called, another tween is created, this time
fading the ball movie clip to 30 percent.

TweenLite also makes it very easy to build a sequence of tweens by using
the delay property In the prior example, the first tween spanned 3 seconds
and, upon finishing, called another tween. Rather than relying on events, you
can simply create both tweens but delay the second one to occur when the
first finishes. This will produce the same effect as the previous example, but
illustrates the ability to start your tweens whenever it suits you. To see this
in action, simply use the following code to replace lines 8 through 12 of the
prior example. This modification can be found in the tweenLite_to_delay.fla
source file.

8 TweenlLite.to(ball, 3,
9 TweenLite.to(ball, 1,

{x:400, ease:Bounce.ease@ut});
{alpha:0.3, delay:3, overwrite:false})j

Note that when taking this approach, you're essentially asking the tween to
reassign itself. Just like for a variable, you may want a new behavior, or you
may not. If you don't want a tween to cancel out a prior tween referencing
the same object, you must use a property called overwrite to control how the
tweens interrelate. Setting the property to false will treat the tweens indepen-
dently. The result is a sequence of tweens but without relying on events. The
next example uses this technique.

Creating a simple banner using TweenLite

With a little experience under your belt, let's make a banner. We'll explore two
key TweenLite concepts in this exercise: the fromQ method, and the ability to
add advanced features through a plug-in mechanism.

The nice thing about using the fromQ method is that you can precreate a
layout and TweenLite will automatically build it up using your specified
from settings. For example, Figure 7-19 shows what the FLA file looks like
when you write your script. This is actually the final state of the banner, so
you can adjust your layout until you're satisfied. Once you're happy with the

Programmatic Tweening

NOTE

The object syntax for the third param-
eter of TweenLite's toQ method makes
it very easy to tween many properties
at once. For example, you could write a
tween like this:

TweenLite.to(ball, 3, {x:1e,
y:10, alpha:1l, rotation:99,
ease:Bounce.easeOut});

This tween would alter the x, y, alpha,
and rotation properties all in a single
structure, making it much easier to use
than Adobe's Tween class. You can kill
all properties, or even select properties,
any time so you can change the behav-
ior of the tween after creating it.

Chapter 7: Motion 83



Programmatic Tweening

banner, it's time to itemize the properties you want to work with and their
initial values. The following script is found in the tweenhite_from_banner.fla
source file.

The first property we'll use is called tint, and it's not part of the TweenLite
default configuration. It is part of TweenLite's bigger brother package,
TweenMax, but TweenLite is optimized to be as small as possible and doesn't
include any non-essential features. However, you don't need to move up to
TweenMax if you only want to use a few features and keep everything really
small. TweenLite has a plug-in system that allows you to activate specific
plug-ins on an as-needed basis. You have to do this only once and the plug-in
features will be available to the rest of your file thereafter.

Lines 1 through 4 import the needed classes, including the TweenPlugin class
that manages plug-ins, and the specific plug-in we need, TintPlugin. Line 6
activates the TintPlugin. It will then be available throughout the life of the
project. Lines 9 through 17 are the from() tweens, each of which lasts for 1
second.

Line 8 fades the background up from black. Lines 9 through 16 scale up the
four balls from 0 to final size. They use an Elastic ease so the tweens spring
forward and back a few times around their final scale values. However, each
tween is delayed a bit to build a sequence. The first ball starts a half-second
after the tint fade begins, the second tween starts one and one-half seconds
later, and so on. The last ball springs into place three seconds after the process
begins. This timing is amassed from a two-second delay and a one-second
duration. At the same time, the word 'AS3" finishes sliding in from the left.

1 import com.greensock.TweenlLite;
2 import com.greensock.plugins.TweenPlugin;
3 import com.greensock.plugins.TintPlugin;
4 import com.greensock.easing.Bounce;
5
. 6 TweenPlugin.activate([TintPlugin]);
Figure 7-19. A mock banner 7
advertisement animated with TweenlLite 8  TweenLite.from(bg, 1, {tint:0x0e0000});
9 TweenLite.from(ballo, 1, {scaleX:0, scaleY:0,
10 ease:Elastic.easeOut, delay::0.5});
11 TweenLite,,from(balll, 1, {scaleX:@, scaleY:o,
12 ease:Elastic.easeOut, delay::1-5});
13 TweenLite,,from(ball2, 3, {scaleX:9, scaleY:®o,
14 ease:Elastic.easeOut, delay::1-75});
15 Tweenlite,,from(ball3, 1, {scaleX:0, scaleY:0,
16 ease:Elastic.easeOut, delay::2});
17 TweenlLite,,from(as3, 1,, 1x:-100, ease:Elastic.easeOut, delay:2});

4

Part Il: Graphics and Interaction



Reproducing Timeline Tweens with ActionScript

The last thing we want to mention in this chapter is a companion website
post about a feature that's a bit out of the ordinary As such, we intend it
to be an additional resource for your continued study outside this book. In
addition to scripting motion solely with code, it's also possible to rebuild a
Flash Professional timeline motion tween using ActionScript.

At the very least, this is an interesting workflow between designer and devel-
oper—allowing a designer to carefully tweak an animation using traditional
interface tools, and then turning the file over to a developer that can make
the entire process more dynamic with ActionScript. At best, it's a way for any
Flash user to turn restrictive timeline tweens into code-based animations that

are vastly easier to reuse and adapt.

This process requires that a traditional timeline tween be created first, and
then Flash can break down the steps needed to reproduce the tween and write
them to an XML document. ActionScript can then load the document, parse
the instructions, and recreate the tween on the fly The companion website
(ihttp://www.LearningActionScript3.com) has a full tutorial, including sample
files, in a post called "Recreating Timeline Tweens with ActionScript," so be
sure to check it out.

learningactionscript3 Packages

As discussed multiple times in prior chapters, one of the greatest benefits of learning
object-oriented programming is the ability to guickly and easily reuse code. To that
end, we're going to evolve a small library of code as the book progresses, to show
you how to build reusable packages of your own.

In this and every subseguent chapter, we'll add a little code to this ongoing
learningactionscript3 project package. We won't stress this too heavily, and it
won't get in the way of learning any of the syntax. However, by the time you finish
the book, you will have amassed a small collection of classes that you can use in your
own projects.

The contribution from this chapter is the MotionUtils class, which includes several
ofthe basic formulas covered herein, including the degree-to-radian and radian-to-
degree conversion, Zeno's paradox, Hooke's law, and more.

Programmatic Tweening

NOTE

In this introduction, we've only
scratched the surface of what the
GreenSock Tweening Platform can

do. Visit http;//www.greensock.com
for details, documentation, interactive
examples, performance comparisons of
other tweening engines, and more.

Chapter 7: Motion

83


http://www.LearningActionScript3.com
http://www.greensock.com

What's Next?

Part Il: Graphics and Interaction

What's Next?

Though this chapter details a variety of ActionScript animation techniques, it
only begins to cover the subject of motion through code. The basic building
blocks are here, however, and it's with these concepts (and related skills that
grow from the ideas herein) that greater art and industry can be achieved.

Next on the to-do list is the ability to partially free yourself from the con-
straints of the Flash Professional interface and approach code-only projects
with a little more latitude. When working with visual assets, we've so far
relied heavily on symbols created within Flash and stored in a file's library.

It's true that we've sneaked a dynamically created vector in here and there,
such as in the second particle system in this chapter, when lines were drawn
between particles in close proximity Despite that, thus far we've typically
instantiated objects from a file's library using a linkage class. We'll continue
to do that any time complex artwork warrants this practice, but we'll also
begin to work with vectors and bitmaps created with code. In addition to giv-
ing you more freedom, this approach can also reduce file size and make your
SWFs load faster.

In the next chapter, we'll discuss:

* Using the Graphics class to draw vectors to create assets on the fly with-
out contributing to file size

* Calling methods of the flash.geom package to use rectangles and points
in your scripts

* Using 9-slice scaling to achieve distortion-free symbol instance scaling



DRAWING W
J ORS

Flash is well known for popularizing vector graphics on the Web. Put simply,
vectors are composed of mathematically generated points, lines, curves, and
shapes and are used to create artwork in computer software. Using vectors is
optimal when you need to scale artwork because the vectors remain crisp and
clean at any size. By contrast, bitmap graphics pixelate when scaled.

Drawing vectors graphics with code brings with it special benefits. Included
among them is the freedom to create assets on the fly, rather than relying
solely on art drawn or imported prior to publishing your file. Related to this
is the additional bonus of reduced file size, because assets are created at run-
time rather than occupying space in your SWF. Smaller files mean less time
that your viewers spend waiting for your files to load.

In this chapter, we'll focus on drawing vectors, the first of two ways to origi-
nate visual assets with code. Over the next several pages, we'll cover:

* The Graphics Class. This class, often referred to as part of the draw-
ing API, contains methods for drawing vectors. You have control over
stroke and fill attributes, and can move a virtual pen around the
screen, choosing where to draw lines, curves, and shapes like circles
and rectangles.

* The Geometry Package. This utility package contains classes for creat-
ing points and rectangles, as well as transforming objects, and creating
matrices (a special kind of number array) for complex simultaneous
changes to rotation, scaling, and x and y translation. Using matrices,
you can achieve effects for which no properties exist, including skew
and shear.

* 9-slice Scaling. Through the use of a dynamically assignable rect-
angle, 9-slice scaling can prevent the sides and corners of a movie clip
from distorting when scaled.

CHAPTER

IN THIS CHAPTER

The Graphics Class
The Geometry Package
9-Slice Scaling

Applied Examples
What's Next?

191



The Graphics Class

Figure 8-h The culmination of several
Graphics class method calls

-HI Part Il: Graphics and Interaction

* Applied Examples. Combining what you'll learn in this chapter,
you'll write a custom button class that can be reused from project to
project, and create the graphics for a color picker. You can then carry
the color picker exercise into the next chapter, where you'll put it to
work while composing and creating bitmaps.

The Graphics Class

The Graphics class is the foundation for drawing vectors with code. You use
methods of this class to define line and fill styles, and draw lines, curves, and
shapes, similar to how you would by using the Flash interface.

Before we get started with syntax-specific discussions, however, here's a quick
word of advice about where to draw your vectors. It is possible to draw vec-
tors directly into the main timeline, but we recommend that you first create
one or more movie clips or sprites to serve as canvases for your drawings. This
is analogous to an artist drawing on a canvas instead of a studio wall —which
makes it a lot easier to move a masterpiece around or exhibit it in a gallery

The same is true of virtual canvases in movie clips.

For example, if you draw into a movie clip, you can change its depth, assign it
to a new parent, or change many properties to affect its appearance or func-
tionality Similarly, as you'll learn in the next chapter, you can apply special
effects and filters to movie clips, which can't be applied directly to the stage.

This is particularly relevant because you don't create a new instance of the
Graphics class when you want to start drawing. Instead, all methods of the
class must be called from the graphics property of the movie clip or sprite
you're drawing into, and it's useful to create a reference to this property, both
as a shortcut and performance enhancement. For example, the following code
creates a sprite canvas and stores its graphics object in the variable g. In this
snippet, <methodOrProperty> is a placeholder for method or property syntax
we are about to introduce.
var canvas:Sprite = new SpriteQ;

var g:Graphics = canvas.graphics;

g.<methodOrProperty>;

After creating g, you can manipulate all methods and properties of the
Graphics class from that reference. This is not only less to type, but it's faster
because the player doesn't have to retrieve the reference to the graphics object
every time it's used. This isn't a requirement, and we may not use this method
universally throughout this book, but it's a good habit to get into.

To demonstrate styling and drawing lines, curves, and shapes, we're going to
build the contents of Figure 8-1 over several examples. Continuing the same
example over multiple snippets will also emphasize the fact that you can con-
tinue drawing from where you left off, move your virtual pen before drawing
again, and restyle your stroke or fills while you draw. The finished script can
be found in the lines_curves_primitives.fla source file.



Drawing Lines

The first step in drawing lines is to set a line style using the lineStyleQ
method. This is equivalent to setting several stroke properties in the
Properties panel of the Flash Professional interface. The typical syntax is as

follows:
1 var canvas:Sprite = new SpriteQ;
2 addChild(canvas);
3 var g:Graphics = canvas.graphics;
4
5 g.lineStyle(2, 0x000000);

The first parameter of the lineStyleQ method represents line thickness
in points, and the second is color in OxRRGGBB hexadecimal format, as
described in Chapter 3. When a color is not included, black is used as the
default. When a line thickness of 0 is specified, a hairline thickness is used.
If you don't want to use a line at all, you can omit the method. If you want to
switch to no line for future shapes, after you've already started drawing, call
the method with no parameters to clear any existing line style.

The next step is to draw the line. The process of doing so is similar to physi-
cally drawing a line on a piece of paper. Ordinarily, you don't start drawing
a line from the edge of the paper to the intended first point of the line, and
then continuing to draw until you reach the second point of the line. Instead,
you move your pen to the preferred starting point and then begin drawing.
This is also true with the Graphics class. If you don't first move your virtual
pen to the line's starting point, you will begin drawing from point (0, 0), the
upper-left corner of your canvas. The moveToQ method moves the virtual pen
to the x and y coordinate specified therein, and the 1lineToQ method draws
from the previous virtual pen location to the x and y coordinates specified.
Continuing our script from the prior code block, the following sequence will
first move to point (150,100) and then draw to point (400,100):
6 //continued from prior section

7 g.moveTo(1l50, 100);
8 g.lineTo (400, 100);

To continue drawing straight lines, you can add more lineToQ methods.
Each successive call will continue drawing the line from the previous loca-
tion, as if you never lifted pen from paper. You can, however, change line
styles at any time during the process.

The following script continuation draws another line 20 pixels down, and

then another line back to the left to the x coordinate where we started. It

then changes the line style from 2-pixel black to 4-pixel red, moves the pen

to a new location 55 pixels below the prior line, and draws another line of

the same length back to the right. When this script block finishes executing,

it will have drawn the straight black and red line segments seen in Figure 8-1.
9 //continued from prior section

10 g.lineTo(400, 120);
11 g.lineTo(1l50, 120);

The Graphics Class

NOTE

As described in Chapter 4, when you
don't need a timeline, as in this example,
you can work with a sprite instead of a
movie clip. For more information about
when to use MovieClip and when to
use Sprite, see the "MouvieClip versus
Sprite" post at the companion website,
http:/fwww.LearningActionScript3.com.

NOTE

The 1ineStyleQ method includes
additional properties that are also found
in the Properties panel, including alpha,
stroke hinting, caps (end cap style:
round, square, or none), join (joint style:
round, bevel, or miter), and miter (miter
limit: degree of joint pointiness). In cases
like these, where the Flash Professional
interface overlaps an ActionScript
method so thoroughly, comparing the
Properties panel with the ActionScript
documentation can help jump-start your
experimentation with these features.

Chapter 8: Drawing with Vectors H


http://www.LearningActionScript3.com

The Graphics Class

NOTE

Although originally developed by Paul
de Casteljau, vector curves are com-
monly called Bezier curves because they
were famously used by French engineer
Pierre Bezier in the design of automotive
bodies during the early 1960s.

A (275,0)

(150, 100) (400, 100)

Figure 8-2. A quadratic Bézier curve with
one control point for both end points of a
line segment

-HI Part Il: Graphics and Interaction

12 g.lineStyle(4, OxFF0000);
13 g.moveTo(l50, 175);
14 g.lineTo(400, 175);

Drawing Curves

As you might imagine, you're not limited to drawing straight lines. You can
also draw curves like those created by vector drawing programs such as
Adobe Illustrator. The syntax for drawing a curve requires the addition of a
point that will act as a control point, effectively pulling the curve away from
an ordinary straight-line appearance. This is equivalent to creating a control
point in Illustrator.

ActionScript, however, uses the quadratic Bezier curve model. Quadratic
curves use one control point (often referred to as a handle) for both end points
of a line segment. By contrast, other drawing tools (including Illustrator) use
the cubic Bezier model, which adds separate control handles for each point.
A quadratic Bezier curve is illustrated in Figure 8-2, showing both end points
and the control point used to manipulate the curve.

Though the algorithms used by ActionScript behind the scenes aren't para-
mount, remembering that only one control point is used to create a curve can
help you remember the syntax of the curveToQ method, used to draw a curve
with the drawing API. Here is the method's signature:

curveTo(controlX:Number, controlY:Number,
anchorX:Number, anchorY:Number):void

Unlike 1lineToQ, it uses four coordinates. The first two are the x and y values
of the control point, and the second two are the x and y values of the destina-

tion point.

The following code continues our script by drawing the curve shown at the
top of Figure 8-1. It starts by switching to a 2-point blue line and moving the
pen to point (150,100). It then draws a curve that ends at point (400,100) but
is affected by the control point at point (275, 0).

//continued from prior section

g.lineStyle(2, ©XO00OFF);

g.moveTo(1l50, 100);
g.curveTo(275, 0, 400, 100);

A wN R

It's also possible to draw simple shapes including a circle and a rectangle
with or without rounded corners. Before we demonstrate drawing these basic
shapes, let's introduce how to style fills.

Adding Solid Fills

To add a solid-color fill to a drawing, you must use the beginFillQ method.
It accepts two parameters: color and alpha. Color is a uint (an unsigned
integer, or nonnegative integer), and is typically specified in the OxRRGGBB



hexadecimal format. The alpha value is a Number in the percentage range of 0
to 1, with a default of 1 (100 percent).

After setting a fill style, you can continue drawing lines, curves, and shapes,
and then conclude with the endFillQ method, which uses no parameters.
The following code demonstrates two things. First, it shows the benefit of
drawing into a dedicated canvas, allowing you to position the display object
(and therefore your drawing) anywhere on the stage (lines 20 through 23). It
then demonstrates line and fill styling (lines 26 and 27) and moving to, and
drawing, a triangle (lines 28 through 31). Finally line 32 ends the fill.

1 //continued from prior section

2 var triangle:Sprite = new SpriteQ;
3 triangle.x = 50;

4 triangle.y = 250;

5 addChild(triangle);

6

7 var tg:Graphics = triangle.graphics;
8 tg.lineStyle(o0);

9 tg.beginFill(0xFF9900, 1);

10 tg.moveTo(50, 0);

11 tg.lineTo(le@, 100);

12 tg.lineTo(0@, 100);

13 tg.lineTo(50, 0);

14 tg.endFillQ;

Drawing Shapes

Drawing one line segment at a time is not the only method for drawing
shapes. It's also possible to draw simple shapes using a trio of methods:
drawCircleQ, drawRectQ, and drawRoundRectQ (for drawing rectangles with
rounded corners). The following code segment concludes our ongoing script
by drawing three shapes—with varying fill colors and fill alpha values—into
the same canvas, newly created in lines 34 through 37. Drawing multiple
objects into one canvas reduces flexibility because you can't manipulate the
objects separately thereafter. However, this is useful when drawing complex
shapes that will be treated as a single object.

Lines 41 and 42 show how to use opacity for a special effect. Note that the
stroke and fill both have an alpha value of 50 percent. The fill is red and the
stroke is blue and 6 pixels thick. In Flash, strokes center on the edge to which
they are applied, which, in this case, results in a 3-pixel overlap between
stroke and fill edge. The partial opacity of both stroke and fill result in a red
circle with the appearance of a 3-pixel purple outline surrounded by a 3-pixel
blue outline. Line 43 creates the circle itself, using the drawCircleQ method.
This method requires the x and y values of the center of the circle (50, 50),
and the circle's radius (50). The end result can be seen in the circle at the
bottom of Figure 8-1.

//continued from prior section

var shapes:Sprite = new SpriteQ;
shapes.x = 150;

A w N R

shapes.y = 250;

The Graphics Class

NOTE

Although the endFillQ method can
be omitted for simple drawings, doing so
can produce unexpected results. See the
"Using endFillQ with the Drawing API"
post at the companion website for more
information.

Chapter 8: Drawing with Vectors H



5 addChild(shapes);

6

7 var sg:Graphics = shapes.graphics;
8

9

sg.lineStyle(6, OxOO00FF, ©.5);
10 sg.beginFill(OxFFO000, ©.5);
11 sg.drawCircle(50, 50, 50);
12 sg.endFillQ;

14 sg.lineStyle();

15 sg.beginFill(Ox0000FF, ©.2);
16 sg.drawRect(125, @, 100, 100);
17 sg.endFillQ;

19 sg.beginFill(OxO0000FF, ©.5);
20 sg.drawRoundRect(250, @, 100, 100, 50);
21 sg.endFillQ;

Line 46 shows how to clear a previously existing line style. If you want to
begin without a stroke, it's easy to omit the method. If a stroke already exists,
however, and you want to clear it, you must invoke the lineStyleQ method
with no parameters. (If you use a value of 0, the method creates a hairline
stroke.) Line 48 draws a rectangle using the drawRectQ method, which
accepts the x and y coordinates of the rectangle, followed by the width and
height of the rectangle. The last shape method, drawRoundRectQ in line 52, is
the same as drawRectQ but adds a fifth parameter for the corner radius used
to draw all four corners of the rectangle. See Figure 8-1 to check the results of
this finished script.

NOTE

An undocumented method called drawRoundRectComplexQ allows you to control
the corner radius of each corner independently. Here is the method signature:
drawRoundRectComplex(x:Number, y:Number, width:Number,
height:Number, toplLeftRadius:Number, topRightRadius:Number,
bottomLeftRadius:Number, bottomRightRadius:Number):void
The following code, found in the draw_round_rect_complex.fla source file, creates a
graphic that looks like a tab, which is convenient for tab-based navigation systems.

var tab:Sprite = new SpriteQ;
tab.x = tab.y = 50;
addChlld(tab);

tab.graphics.beginFill(0x333399);
tab.graphics.drawRoundRectComplex(@, ©, 100, 25,
15, 15, 0, 0);

As with all undocumented code, use at your own risk. Adobe may remove this meth-
od at any time. (The likelihood of that is probably low, however, because the method
has been part of the Flex ActionScript documentation since Flex 2. Adobe has never
made public why they chose not to document this method for Flash Professional
users.)



Using Gradient Fills and Lines

ActionScript 3.0 doesn't restrict you to using solid colors for your fills or lines.
You can also use gradients and bitmaps. Let's first discuss gradients, using the
beginGradientFi.il() method for fills and the lineGradientStyleQ method

for lines.

Gradient fills

Gradients can be linear (left to right, by default) or radial (radiating from
the epicenter of the gradient outward). The content of the gradient is then
determined by three parallel arrays (arrays with the same number of items in
a corresponding order): colors, alpha values for each color, and ratios —values
for each color that determine its weighting within the gradient.

The type of gradient is specified by the GradientType constants LINEAR or
RADIAL. The colors of the gradient are specified as an array of color values,
typically uint values in hexadecimal format, and listed within the array in
the order in which they appear in the gradient. The alpha values for color are
specified as an array of Number values between 0 and 1, and correspond with
the order of the colors.

The ratio array contains a number for each color that places it within the
gradient between 0 (far left, or center of radial) to 255 (far right or outer edge
of radial). For simplicity, we'll use a linear gradient in our description, but the
same ideas apply to radial gradients.

Think of the numeric span from 0 to 255 as a distance. If a gradient has
only two colors, an evenly distributed gradient would have a ratio array of
[0, 255]. In this example, the starting value of one color is at the extreme left
and the starting value of the other color is at the extreme right. The mixture
between these two colors creates the gradient, as you can see in the center of
Figure 8-3.

However, you can also weight a color by skewing the ratio array For example,
to favor the right color, move its starting point further to the left—expanding
the amount of the right color in the gradient, and reducing the amount of
the left color, resulting in a ratio of [0,127]. The top of Figure 8-3 shows this
effect, skewing to black. Using a ratio of [127,255] will have the reverse effect,
favoring the color on the left and skewing red in the bottom of Figure 8-3.

Now let's put these values to work in the following example. Having shown
the appearance of linear gradients in Figure 8-3, let's take a look at radial
gradients. This exercise can be found in the radial_gradient_l.fla source file.
Lines 1 through 3 create our drawing canvas and Graphics reference, line 10
creates the gradient fill using variables for each parameter, and line 11 draws
a square. The heart of the gradient fill spans lines 5 through 8. Line 5 opts
for a radial gradient. Line 6 identifies red and black as the gradient's colors.
Line 7 provides an alpha value of 1 (100 percent) for each color. Finally, line 8
weights the colors evenly across the full distance of the gradient.

The Graphics Class

0 255

0 [0,127]

0 [0, 255] a
[127, 255]

Figure 8-3. Gradient color ratios

NOTE

Graphic symbols beneath each gradient
in Figure 8-3 mark color positions for
demonstration purposes only. Although
these symbols make intentional allu-
sions to the Flash Professional Color
panel, the gradients in the figure were
created solely with ActionScript.

Chapter 8: Drawing with Vectors H



The Graphics Class

Figure 8-4. Aradial gradient fill created
with the Graphics class

Figure 8-5. A linear gradient line style

NOTE

As discussed in the "Gradient fills" por-
tion of this section, transforming the line
gradient also requires a special mathe-
matical construct called a matrix, which
we'll introduce in the upcoming section
"The Geometry Package,"

-HI Part Il: Graphics and Interaction

var canvas = new SpriteQ;
addChild(canvas);
var g:Graphics = canvas.graphics;

var gradType:String = GradientType.RADIAL;
var colors:Array = [OxFFOO00, ©x000000];
var alphas:Array = [1, 1];

var ratios:Array = [0, 255];

10 g.beginGradientFill(gradType, colors, alphas, ratios)
11 g.drawRect(9, 0, 100, 100);

Figure 8-4 shows the resulting gradient fill. To manipulate the gradient as a
whole, such as moving the center of a radial gradient, rotating a linear gradi-
ent, or scaling a gradient to include more or less of the color span, you must
use a matrix—a special kind of number array, which we'll introduce later
in the chapter. Before that, let's look at gradient line styles, bitmap fills, and
bitmap line styles. Then we'll revisit these topics to see how matrices can alter
their appearance.

Gradient line styles

Using a gradient line style is very much like combining a regular line style
with a gradient fill. The only difference is that the gradient is applied to the
line, not the fill. In fact, lineGradientStyleQ, the method for applying a
gradient line style, doesn't even replace the solid-color lineStyleQ method.
Instead, both methods work together to define a line style and then paint it
with a gradient. If you omitted the basic 1ineStyleQ method, no line would
appear at all.

The following script, found in line_style_gradient.fla source file, shows this
medley in action. Lines 1 through 5 create and position a canvas, as well as
create a reference to its graphics property Line 6 applies a conventional line
style, specifying a black, 20-pixel stroke. Lines 8 through 11 define the gradi-
ent properties, just as we did in the last example, specifying a linear gradient,
from red to black, at full alpha, and evenly distributed between the two col-
ors. Line 13 applies the gradient, also in a similar fashion to the last example,
but this time to the line style, not the fill. Once the line is styled, line 14 draws
a 200 x 200 rectangle. The effect is illustrated in Figure 8-5.

1 var canvas:Sprite = new SpriteQ;

2 addChild(canvas);

3 var g:Graphics = canvas.graphics;

4

5 canvas.x = canvas.y = 10;

6 g.lineStyle(20, ©x000000);

7

8 var gradType:String = GradientType.LINEAR;
9 var colors:Array = [OxFFOO00O, 0x000000];
10 var alphas:Array = [1, 1];

11 var ratios:Array = [0, 255];

13 g.lineGradientStyle(gradType, colors, alphas, ratios);
14 g.drawRect(0, 0, 200, 200);



Using Bitmap Fills and Lines

In addition to applying gradients to fills and lines, you can use bitmaps
to decorate your drawing's fills and lines. Both the beginBitmapFill() and
lineBitmapStyleQ methods we cover in this section use instances of the
BitmapData class. This class handles pixel color and alpha data and allows
low-level manipulation of bitmaps. Conveniently, BitmapData is also the data
type of bitmaps instantiated from the Flash Professional library using a link-
age class. So, any time we need such an instance in the following examples,
using a linkage class with an imported bitmap will fit the bill.

Bitmap fills

Using bitmap fills is an easy way to add art to a shape created with the drawing
API Instead of using the beginFillQ method, simply substitute beginBitmap-
Fill(). The method requires a BitmapData instance, such as a bitmap from
the library, but all remaining parameters are optional. When using the default
values, the bitmap will automatically tile. This is very useful for keeping file size
down because you can fill large areas with custom bitmap art by using tiles.

In the following example, the 18 x 19 pixel tile in Figure 8-6 has been import-
ed into the bitmap_fill_tiled.fla source file and been given a linkage class of
WeaveTile. The following code fills a 200 x 200 rectangle with the tile result-
ing in what you see in Figure 8-7. Note in line 5 that you must pass in the
size of the bitmap you want to use for your fill when creating the BitmapData

instance.
var canvas:Sprite = new SpriteQ;
addChild(canvas);
var g:Graphics = canvas.graphics;

g.beginBitmapFill(new WeaveTile(18, 19));
g.drawRect(0, 0, 200, 200);
g.endFillQ;

If you don't want to tile the bitmap, you need only adjust an optional param-
eter of the beginBitmapFillQ method. Here is the method signature:

beginBitmapFill(bitmap:BitmapData, matrix:Matrix=null,
repeat:Boolean=true, smooth:Boolean=false):void

The first optional parameter is for a matrix, used to rotate, scale, or adjust
the location of a bitmap within your shape. We'll do that a little later in the
chapter. We do need to provide a value here, however, to get to the remaining
parameters, because the order of parameters is not arbitrary So, in this case,
we'll pass in null to make no change.

The second parameter controls tiling. By default, its value is true, but you
can turn off tiling by setting its value to false. The third optional parameter
smoothes the appearance of the bitmap when scaled, softening up the edges.
Smoothing can adversely affect performance, so don't apply it arbitrarily, and
usually not to fast-moving sprites.

The Graphics Class

NOTE

In Chapter 13, we'll discuss how to load
external images so you can use bitmaps
that haven't already been imported into
an FLA. For now, let's focus on the syn-
tax required to use bitmaps, no matter
where they originate.

NOTE

Flash Professional CS5 users can omit
the width and height values in this
usage. This will be discussed further
in the next chapter, when covering the
BitmapData class in greater detail.

S.
Figure 8-6. A bitmap tile

|

8°% o o% o

Figure 8-7. A tiled bitmap fill

Chapter 8: Drawing with Vectors H



The Graphics Class

Figure 8-8. A bitmap fill without tiling

f— ==t

Figure 8-9. A tiled bitmap line style

Figure 8-10. A bitmap line style without
tiling

NOTE

One very important thing to remem-
ber is that bitmap line styles are new
to Flash Player as of version 10.1.
Therefore, your viewers must have that
version of the player or later for this
feature to work.

«HI Part II: Graphics and Interaction

The following code, found in the bitmap_fill.fla source file, is nearly identical
to the last example, only modifying the arguments in the beginBitmapFillQ
method. It uses a bitmap with a linkage class of Texture, no matrix, turns off
tiling, and turns on smoothing to show you an example of the syntax for the
optional parameters (all in line 5). The result is shown in Figure 8-8.

var canvas:Sprite = new SpriteQ;
9 addChild(canvas);
10 var g:Graphics = canvas.graphics;

12 g.beginBitmapFill(new Texture(550, 400), null, false, true);
13 g.drawRect(9, ©, 200, 200);
14 g.endFillQ;

Bitmap line styles

Applying bitmaps to line styles will likely feel like familiar territory It's simi-
lar to applying gradients to line styles, in that the basic 1ineStyleQ method
is still required to control things like thickness and alpha values for the line.
The lineBitmapStyleQ method is then used immediately thereafter to apply
the bitmap. This method is similar to the beginBitmapFillQ method in that
it takes the same parameters: a BitmapData instance, a matrix for bitmap
manipulation (null by default), and tiling and smoothing options (true and
false by default, respectively).

The only drawing API change the following code (found in the line_style_
bitmap_tiled.fla source file) makes to the previous examples is substituting a
bitmap line style for a fill style. It again uses the WeaveTile linkage class, put-
ting the tile from Figure 8-6 to use one more time. Because tiling is enabled
by default, the result of this simple code is seen in Figure 8-9.

var canvas:Sprite = new SpriteQ;

addChild(canvas);
var g:Graphics = canvas.graphics;

canvas.x = canvas.y = 10;

g.lineStyle(20, 0x000000);
g.lineBitmapStyle(new WeaveTile(18, 19));
g.drawRect(0, 0, 200, 200);

When tiling is turned off, you can apply larger bitmaps to line styles for a less
geometric effect. The following code uses the previously mentioned Texture
bitmap and sets tiling to false. The result is seen in Figure 8-10, and found in
the line_style_bitmap.fla source file.

9 var canvas:Sprite = new SpriteQ;
10 addChild(canvas);

11 var g:Graphics = canvas.graphics;
12

13 canvas.x = canvas.y = 20;

14 g.lineStyle(40, 0x000000);
15 g.lineBitmapStyle(new Texture(550, 400), null, false)
16 g.drawRect(©, 0, 510, 360)



Simulating the Pencil Tool

A good way to learn interactive drawing is to simulate the functionality of the
Flash Professional Pencil tool. As when you use the Pencil tool in Flash, in
ActionScript you select a line size and color, move the mouse to the drawing's
starting point, then click and drag to draw. In both cases, you also release the
mouse to move to a new location, and then start drawing again.

This process is outlined in the following script from the pencil.fla source file.
Lines 1 through 3 prepare our usual canvas, and line 4 initializes a Boolean to
keep track of whether the pencil is drawing. Line 6 sets the line style.

Lines 8 through 18 create a trio of listeners: Line 8 is added to the main time-
line (the scope of the script) and updates the art every enter frame. Lines 9
through 11 are added to the stage and toggle the drawing Boolean based on
the mouse activity Finally, lines 21 through 25 move the drawing point with
the mouse if the mouse button is up, and draw with the mouse if its button
is down. Figure 8-11 is a simple graphic drawn with this code.

1 var canvas:Sprite = new SpriteQ;

2 addChild(canvas);

3 var g:Graphics = canvas.graphics;

4 var drawing:Boolean = false;

5

6 g.lineStyle(l, ©x000000);

7

8 this.addEventListener(Event.ENTER_FRAME, onLoop, false, 0, true);
9 stage.addEventListener(MouseEvent.MOUSE_DOWN, onDown,
10 false, 0, true);

11 stage.addEventListener(MouseEvent.MOUSE_UP, onllp, false, @, true);
12

13 function onDown(evt:MouseEvent):void {

14 drawing = true;

15}

16 function onllp(evt:MouseEvent) :void {

17 drawing = false;

18 }

19

20 function onLoop(evt:Event):void {

21 if (drawing) {

22 g.lineTo(mouseX, mouseY);

23 } else {

24 g.moveTo(mouseX, mouseY);

25 }

26}

The Graphics Class

NOTE

In lines 9 and 10 of the pencilfla code,
the mouse event listeners are added to
the stage because the stage can eas-

ily react to mouse events. Ifyou add

a mouse event listener to a movie clip
(which the main timeline is), the mouse
events will register only ifyou click on
visible content within the movie clip. As
this example is a simple drawing appli-
cation that begins with a blank canvas,
attaching mouse events to the main
timeline would mean that no mouse
event would ever be heard.

Figure 8-11. Art created using the pencil fla
source file

Chapter 8: Drawing with Vectors H



The Graphics Class

Figure 8-12. Two shapes created with the
drawPathQ method

-HI Part Il: Graphics and Interaction

Drawing Complex Shapes with drawPath()

If you want to push yourself a bit to use many of the skills you've learned
throughout this book, you can take a sideline and look over this more
advanced technique for drawing with vectors. Feel free to skip this section, if
you're still finding your scripting legs. You can always come back to it when
you're more comfortable with ActionScript 3.0.

This exercise is just a form of self-guided study, and introduces a new feature
of Flash Player 10.1. Although it can really expand what you can do in combi-
nation with other new features discussed on the companion website, there's
nothing here that you can't put off for now. In essence, all this feature does is
allow you to draw a complex shape all at once, having stored the same draw-
ing methods you've just learned, and corresponding points, for later recall.

The drawPathQ method allows you to build a collection of drawing com-
mands and draw a vector masterpiece all at once. From a comparison
standpoint, drawPathQ isn't very different from executing a list of individual
drawing API commands. In the simplest terms, it collects moveToQ, 1lineToQ,
and curveToQ commands into a single method, but it does a bit more if you
delve deeper.

First, it stores both the commands and data points using the fast, efficient
Vector class. An instance of the Vector class is very different from the vectors
we've been drawing throughout this chapter. Essentially, the ActionScript
construct vector is an array and, in most cases, working with a vector will be
the same as working with an array However, vectors are very fast because they
are typed arrays. That is, normal arrays can contain a mixture of many data
types, making it impossible for the array as a whole to be checked against a
single data type. Each vector, on the other hand, can contain only one data
type, so the compiler knows right away what the data type of everything in
the vector will be. That makes them fast. If you haven't used vectors yet, take
another look at Chapter 2.

The second, and most beneficial feature of the drawPathQ method is that
you can save the drawing commands and points for later use; you can recall
them again and again to draw complex paths without having to rewrite the
code every time. The companion website has more information about this
process in a series of posts aptly prefixed "The Drawing APIL." For now, how-
ever, let's write a function that will collect polygon coordinates and 1ineToQ
commands to draw finished polygons using the drawPathQ method. Two
example polygons created by the script, a hexagon and a triangle, are shown
in Figure 8-12.

The following script can be found in the draw_path_polygons.fla source file.
Lines 1 through 7 create two canvases into which we will draw a triangle
and hexagon, respectively We're using two canvases because our function can
draw polygons with three or more sides, and the script will demonstrate both
a three-sided polygon (triangle) and a six-sided polygon (hexagon).



var hexagon:Sprite = new SpriteQ;
hexagon.x = hexagon.y = 100;
addChild(hexagon);

var triangle:Sprite = new SpriteQ;
triangle.x = triangle.y = 200;
addChild(triangle);

The drawPolygonQ method, which we defined in lines 9 through 33, uses
simple math to calculate points on an invisible circle, and then divides the
circumference of that circle into equal segments to find the points of a poly-
gon. In other words, if you divided a circle at two equidistant points along its
circumference, you'd end up with two points that describe a straight line (the
circle's diameter). If you divided the circumference into three segments, you'd
end up with three points that form a triangle, and so on.

The drawPolygonQ method takes as its arguments: a sprite to draw into, the
radius and number of sides for the polygon, and the starting angle of the first
point in the polygon (lines 9 and 10). Line 11 stores the graphics property of
the desired canvas so we can draw into it, and line 12 stores the number of
points of the polygon we want to draw to. (The number of points is one larger
than the number of sides because we have to draw back to the first point
again, to close the shape.)

The number of polygon segments determines the amount by which the angle
is incremented each time a line is drawn (line 13). A triangle touches our
invisible circle three times, so the angle increment is 360/3 or 120 degrees. A
hexagon has 6 sides, so its angle is incremented 60 degrees each time a side
is drawn (360 / 6 = 60).

The last initialization steps, in lines 14 and 15, create empty vectors to contain
the polygon points and commands. Note that the data type of the vector is
added to the process, as discussed in Chapter 2. The points of the polygon
will be stored in Number format, and the commands will be stored in int
(integer) format. Line 16 adds the first drawing instruction, a moveToQ, to the
commands vector. The constant MOVE_TO from the GraphicsPathCommand class
contains the required integer, making it easier to remember because you don't
have to recall which integer corresponds to which method. If you prefer to use
integers to save space, however, moveToQ is 1, 1ineToQ is 2, and curve ToQis 3.

Lines 17 through 21 determine the point to which the first move is made.
They use the basic circle math discussed in Chapter 7 to find the points of
the polygon on our invisible circle. The current angle is first converted from
degrees to radians (line 17, calling the function in lines 35 through 37), and
then the x and y coordinates of the first point are calculated, using cosine and
sine respectively, times the radius of the circle (lines 18 and 19). Finally, lines
20 and 21 push the point into the points vector. Note that the x and y values
are stored separately and sequentially, rather than as x-y pairs, to take advan-
tage of the speed boost that comes from processing numbers in a vector.

The Graphics Class

Figure 8-13. Forming polygons by dividing
a circle's circumference into equal sections
and then connecting the equidistant
points

Chapter 8: Drawing with Vectors H



The Graphics Class

H

Part II: Graphics and Interaction

8 //drawing function

9 function drawPolygon(canvas:Sprite, radius:Number,

10 numSegments:int, angle:Number=0):void {
11 var g:Graphics = canvas.graphics;

12 var numPoints:int = numSegments + 1;

13 var angleChange:Number = 360/numSegments;

14 var points:Vector.<Number> = new Vector.<Number>;
15 var commands:Vector.<int> = new Vector.<int>;

16 commands.push(GraphicsPathCommand.MOVE_T®);

17 var radians:Number = deg2rad(angle);

18 var xLoc:Number = Math.cos(radians) * radius;

19 var yLoc:Number = Math.sin(radians) * radius;

20 points.push(xLoc);

21 points.push(yLoc);

The for loop in lines 22 through 30 repeats this process for every point in
the polygon, with two exceptions. First, line 23 increments the angle to deter-
mine the location of the next point. For each subsequent point, the 1ineToQ
method is used to draw a line to the point, rather than move there.

The final part of the function sets a line style, and draws the polygon all at
once by walking through each command and matching it with correspond-
ing points (lines 31 and 32, respectively).

22 for (var i:int = ©; i < numPoints; i++) {
23 angle += angleChange;

24 radians = deg2rad(angle);

25 xLoc = Math.cos(radians) * radius;

26 yLoc = Math.sin(radians) * radius;

27 commands.push(GraphicsPathCommand.LINE_T®);
28 points.push(xLoc);

29 points.push(yLoc);

30 }

31 g.lineStyle(1l, 0x000000);

32 g.drawPath(commands, points);

33}

34

35 function deg2rad(deg:Number):Number {

36 return deg * (Math.PI/180)

37}

38

39 drawPolygon(hexagon, 50, 6);
40 drawPolygon(triangle, 50, 3, 270);

The last step in the process occurs in lines 39 and 40 when the function
is called. Each time, a minimum of three things is passed to the function:
a movie clip canvas into which the art is drawn, the radius of the desired
polygon, and the number of sides used to create the polygon. Line 40 demon-
strates the optional parameter, dictating the starting position of the polygons
first point. By default, this is at angle 0, or to the right. (This is determined by
the default value of 0 for the angle parameter in line 10.) To align the triangle
upward, we must set the starting angle to 270 degrees.

Don't forget: there are additional discussions related to this process on the com-
panion website. Two more drawing methods, for example, offer slightly modi-
fied syntax for the moveToQ and lineToQ drawing commands. They introduce



no new functionality, but are designed to require fewer code edits, should
you ever need to switch to drawing a curve later on. More importantly, addi-
tional features not covered here can be used to store and redraw graphics
data again and again. Push yourself to learn and check out the site when
you're ready

The Geometry Package

Regardless of whether you intend to use a lot of math in your programming,
you will probably use more geometry than you think. You've already indi-
rectly referenced points on many occasions, and you might also use rectangles
for simple tasks like defining an area or checking to see if something is within
a given boundary Fortunately, simple tasks like these do not require that you
calculate your own formulas. In fact, preexisting ActionScript classes can even
replace some of the manual coding you're already doing, such as calculating
the distance between two points, discussed in Chapter 7.

The flash.geom package contains a handy set of utility classes that help cre-
ate and manipulate points, rectangles, and other data used to transform the
appearance of objects. Here we'll focus on three of its classes that most closely
relate to drawing with code: Point, Rectangle, and Matrix. We'll also revisit
the Geometry package when discussing color in the next chapter.

Creating Points

The Point class allows you to reference an x and y coordinate as a single
point. An instance of the Point class contains x and y properties, and creating
the instance is as easy as using the new operator, just as you've done many
times so far. Using an empty constructor, as seen in the first line of the fol-
lowing code block, will automatically create a default point of (0, 0). You can
reference another location, however, by passing x and y values into the con-
structor. The first syntax demonstration that follows creates a default point
and traces the point's x and y properties separately The second demonstra-
tion creates a specific point and traces the point as a whole.
var pt:Point = new Point();

trace(pt.x, pt.y);

//0 o

var pt2:Point =
trace(pt2);
//(x=100, y=100)

new Point(lee, 100);

In addition to its x and y properties, the Point class also has a handful of
useful methods to make processing point data easier. These methods allow
you to move a point, add or subtract the x and y values of two points, or
determine whether two points are the same. It can even calculate the distance

from one point to another, or find an interim location between two points.

The Geometry Package

NOTE

Neither the Point nor the Rectangle
class draws a shape. These classes define
virtual points and rectangles for use
with other coding needs.

Chapter 8: Drawing with Vectors H

>5



The Geometry Package

NOTE

See the "Using Points and Rectangles"
post on the companion website for addi-
tional information.

. Part Il: Graphics and Interaction

The following code is found in the points.fla source file. Traces are used
throughout the code to show you the immediate results of each instruction.
To start, lines 1 and 2 create two points to work with. Line 3 demonstrates the
off set () method, moving the point 50 pixels in both the x and y directions.

Lines 6 and 8 demonstrate adding and subtracting points. These methods
work on the point's x and y values independently, creating a new point that is
calculated from the sum or difference of the two point coordinates. Line 10
checks to see if two points are the same using the equals() method. This is
very handy for conditionals because you don't have to test for x and y values
independently

var ptl:Point = new Point(lee, 100);

var pt2:Point = new Point(400, 400);
ptl.offset(50, 50);

trace(ptl);

//(x=150, y=150)
trace(ptl.add(pt2));

//(x=550, y=550)
trace(pt2.subtract(ptl));

//(x=250, y=250)
trace(ptl.equals(pt2));

//false

VW wN OV WN R

B
[

Two very convenient Point methods are distance() and interpolateQ,
which really simplify animation math. Essentially, distanceQ performs the
work of the Pythagorean theorem discussed in the previous chapter, so you
don't have to do it yourself. The interpolateQ method calculates an interim
location between two specified points. The method's third parameter deter-
mines how close to either point you want the new location to be. A value
closer to 0 is nearer the proximity of the second point; a value approaching 1
is closer to the first point.

12 trace(Point.distance(ptl,

13 //353.5533905932738

14 trace(Point.interpolate(ptl, pt2,
15 //(x=275, y=275)

pt2));

0.5));

Creating Rectangles

Rectangles are defined in a way similar to defining points, but by using the
Rectangle class. Like using point data, creating and manipulating rectan-
gular areas via ActionScript can be very helpful when positioning objects.
For example, a rectangle can be used to establish a boundary within which
something must remain or occur —such as keeping a movie clip in a corner
of the stage. You will also see in the next chapter that rectangles are valuable
for defining areas of data—in much the way a marquee selection or cropping
tool behaves in a drawing application.

Here's an example of creating a rectangle, and checking its location, width,
and height. The first line of the following snippet shows the order of argu-
ments that must be supplied when instantiating a rectangle. Comparing the



sample output comments to this line shows how the properties and values
are related.

//Rectangle(x:Number, y:Number, width:Number, height:Number)

var rect:Rectangle = new Rectangle (@, ©, 100, 100);

trace(rect.x, rect.y);

//0 @

trace(rect.width, rect.height);
//100 100

trace(rect);

//(x-08, y=0, w=100, h=100)

Three sets of properties also give you a more granular look at location and
dimension values of the rectangle. For example, in the rectangles.fla source
file, you'll find the following script, which shows how to find the rectangle's
location, width, and height, just as you did with the Point class. Line 4 dem-
onstrates the left, top, right, and bottom properties of the rectangle. You can
use these properties to check for the location of an edge of a rectangle. Finally,
line 6 uses the top Left and bottomRight properties to retrieve the appropri-
ately named bounding points of the rectangle.

var rectjRectangle = new Rectangle (50, 50, 200, 100);
trace(rect.x,
//50 50 200 100

1

2 rect.y,
3

4 trace(rect.left,
5

6

7

rect.width, rect.height);

rect.top, rect.right, rect.bottom);

//50 50 250 150
trace(rect.topLeft, rect.bottomRight);
//(x=50, y=50) (x=250, y=150)

As with the Point class, you can move a rectangle with one call to the off-
set () method (shown in line 9 of the continuing script that follows), instead
of changing both the rectangle's x and y properties. You can also create a
larger rectangle by increasing the width and height on all sides surrounding
the initial rectangle's center point. This is accomplished using the inflate()
method and is another way of creating a quick frame around a rectangle. The
first parameter of this method is added to the location of the rectangle's left
and right dimensions (enlarging the rectangle horizontally), and the second
parameter is applied to the top and bottom dimensions (enlarging the rect-
angle vertically).

8 //offset and inflate

9 rect.offset(le, 10);

10 trace(rect.left, rect.top,

11 //60 60 260 160

12 rect.inflate(20, 20);

13  trace(rect.left,
14 //40 40 280 180

rect.right, rect.bottom);

rect.top, rect.right, rect.bottom);

Next, you can use a handful of methods to compare rectangles with points
and other rectangles. The following code block compares two new rectangles,
recti and rect2, and a new point, pnt. Lines 19, 21, and 23 determine whether
an object is inside a rectangle. Line 19 checks to see whether x and y locations
are both inside the rectangle. Line 21 performs the same test, but allows you
to pass in a point instead of discreet x and y values. Line 23 checks to see

The Geometry Package

Chapter 8: Drawing with Vectors H >5



The Geometry Package

5, 25

pnt
(125, 50)

rect2

Figure 8-14. Rectangle class methods
demonstrated

2jilS Part ll: Graphics and Interaction

whether an entire rectangle is within another rectangle. These methods can
be handy for programming drag-and-drop exercises.

15 //contains

16 var recti:Rectangle = new Rectangle(©, ©, 100, 50);
17 var rect2:Rectangle = new Rectangle(50, 25, 100, 50);
18 var pnt:Point = new Point(125, 50);

19 trace(rectl.contains(25, 25));

20 //true

21  trace(rect2.containsPoint(pnt));
22 //true

23 trace(rectl.containsRect(rect2));
24 //false

Line 26 of this ongoing example checks to see if two rectangles overlap, and
line 28 returns any area shared by both rectangles. Line 30 returns the union
of the two specified rectangles —a new rectangle created from the minimum-
bounding area that fully encompasses both original rectangles.

25 //intersection and union

26 trace(recti.intersects(rect2));

27 //true

28 trace(recti.intersection(rect2));

29 //(x=50, y=25, w=50, h=25)

30 trace(rectl.union(rect2));

31 //(x-0, y=0, w=150, h=75)

These methods can be used in advanced collision detections, drawing tools,
and other efforts. For example, you can rule that two objects collide only if a
certain degree of overlap is achieved (rather than first contact). This can be
determined by checking the size of the resulting intersection.

Because neither the Rectangle nor Point classes create display objects, Figure
8-14 visualizes the rectangles and points discussed. The blue rectangle repre-
sents recti, the yellow rectangle represents rect2, the red dot represents pnt,
and the black dot represents the explicit point (25,25). The green area depicts
the new rectangle created by the intersection of recti and rect2, and the
dashed line depicts the new rectangle created by the union of recti and rect2.

Using Matrices

ActionScript offers predefined properties for affecting a display object's
scale, rotation, and x and y locations, all of which are specified individually
However, there are certain types of objects to which these properties do not
apply, such as the gradient fill and line style discussed previously and similar
bitmap properties we'll introduce in a moment and cover in the next chapter.

To change these kinds of objects, you must use a matrix. A matrix is basically
a special kind of array of numbers, expressed in a grid. It is not a multi-
dimensional array, as the numbers are stored linearly. However, they relate
to each other within the matrix in special ways. Matrix elements can be
used independently or together to perform complex object transformations.



For example, combinations of elements, such as scale and rotation, can be
applied at once, and matrices can even be used to achieve effects that are
otherwise not possible with individual properties, such as skewing.

You can also use matrices for more advanced operations such as determining
where a point ends up after an object has been transformed. In other words,
the point (10,10) near the upper-left corner of a rectangle will not be at point
(10,10) after a 90-degree rotation. The Matrix class can tell you the new loca-
tion to which that point has moved, or even the change in location between
the new and original points.

The Matrix class provides a basic 3 x 3 matrix for use in several transfor-
mation processes. Its structure can be seen in Figure 8-15. Built-in Matrix
properties a and d affect scaling. Properties b and c will skew (or shear) an
object. The tx and ty properties affect x and y location, respectively Together,
elements a, b, c, and d, affect rotation. The last three values in the matrix, u,
v, and w, are not used in ActionScript and can be ignored.

Table 8-1 shows the transformations possible with a matrix. The first column
shows the type of transformation, the second column lists related properties
and a simplified class method for accomplishing the goal (if one exists), and
the third column shows the values that must be adjusted, if you need to do
so manually It is almost always more convenient to use existing methods,
or the a, b, ¢, d, tx, and ty properties, but writing out the matrix explicitly
is useful when you want to make several changes at once. Finally, the last
column depicts a representative change in an object when the transformation
is applied.

Table 8-1. Matrix values and how they transform objects

The Geometry Package

—
x

c oo
~+
~<

C.
d.
V.

3

]

Figure 8-15. Matrix properties

Transformation Properties/Methods Matrix Result
Identity a, b, ¢, d, tx, ty [ 1, o, ©
Default matrix, null transformation identity() 0, 1, o

0, 0, 1]
Translation tx, ty [1, o, tx
Changes position, x and y, respectively, translate(tx, ty) 0, 1, ty
using pixels ’ 9, 9, 1]
Scale a, d [sx, 0, O
Scales along the x and y axes, respectively, 0, sy, O

¢ | scale(a, d)

using percent 8, 6, 1]
Rotation a, b, ¢, d [ cos(q), sin(qg), O

i 1
Rotates, using radians rot -sin(q), cos(q), 0

otate(q) o, 0, 1]

(continued)

>5
Chapter 8: Drawing with Vectors H



The Geometry Package

Table 8-1. Matrix values and how they transform objects (continued)

Transformation Properties/Methods Matrix Result

Skew  (Shear) b, ¢ [ 1,tan(zx), 0 ‘

Skews along the x and y axes, respec- None. (See the tan(zy), 1, 0 \ \
MatrixTransformer note in 0, 0, 1]

tively, using pixels

the "Calculating changes in
points after transformations"

section.)

c=-20
x offset by deltaTransformPointO

Figure 8-16. A sprite skewed with the
Matrix class

Part Il: Graphics and Interaction

Skewing with matrices

To test this information, let's use the Matrix class to do something you can't
do with a built-in property or method —skew a display object. The following
script, found in the matrix_skew_l.fla source file, creates a rectangle with the
Graphics class and then skews it.

To start with, lines 1 through 7 create a translucent green rectangular sprite
with a 1-pixel black border and add it to the display list. The function span-
ning lines 9 through 10, originally discussed in Chapter 7, converts degrees to
radians for use with the Matrix skewing code.

1 var rect:Sprite = new SpriteQ;

2 addChild(rect);

3 var g:Graphics = rect.graphics;

4 g.lineStyle(1l, ©x000000);

5 g.begin Fil1(OxOOFF0O0, ©.4);

6 g.drawRect(0, o0, 100, 50);

7 g.endFillQ;

8

9 function deg2rad(deg:Number):Number {
10 return deg * Math.PI / 180;

1}

12

13 var matrix:Matrix = rect.transform.matrix;
14 matrix.c = Math.tan(deg2rad(20));

15 rect.transform.matrix = matrix;

Finally, lines 13 through 15 apply the skewing effect. Line 13 creates a matrix
based on the existing object's matrix, by retrieving the value of the matrix
property of the transform object. This makes sure you are starting from any
current transformation, whatever that may be. That is, if an object has already
been skewed, starting with a default matrix (also called an identity matrix)
will effectively reset the prior skew with the new values.

Line 14 sets the c property of the matrix, which skews along the x-axis using
the angle specified. It requires radians instead of degrees, so a value of 20
degrees is passed to the conversion function to get back the required radian
value. Finally, the matrix is applied to the object's matrix property in line 15.
The result is seen in the top illustration in Figure 8-16.



Note that the skew is applied to the bottom edge of the sprite. This is impor-
tant because if you wanted to give the sprite the appearance that it was
slanted right rather than left, you need to compensate with the correct angle.
Angles between 90 and 180 degrees and between 270 and 360 degrees will
slant an object to the right but it's easier to use corresponding negative values.
The following change to the existing script (indicated in bold) is found in
matrix_skew_2.fla and uses -20 degrees instead of 20 degrees, and the result
appears in the middle illustration of Figure 8-16.
16 var matrix:Matrix = rect.transform.matrix;

17 matrix.c = Math.tan(deg2rad(-20))j
18 rect.transform.matrix = matrix;

Calculating changes in points after transformations

The sprite slants to the right, but because horizontal skewing affects only
the bottom edge, the sprite now appears offset to the left. That is, we suc-
cessfully skewed the object -20 degrees, but it is no longer where we want it
to be. To comp