
www.allitebooks.com

http://www.allitebooks.org

Learning Apache Mahout
Classification

Build and personalize your own classifiers using
Apache Mahout

Ashish Gupta

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Apache Mahout Classification

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1210215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-495-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Ashish Gupta

Reviewers
Siva Prakash

Tharindu Rusira

Vishnu Viswanath

Commissioning Editor
Akram Hussain

Acquisition Editor
Reshma Raman

Content Development Editor
Merwyn D'souza

Technical Editors
Monica John

Novina Kewalramani

Shruti Rawool

Copy Editors
Sarang Chari

Gladson Monteiro

Aarti Saldanha

Rashmi Sawant

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Steve Maguire

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ashish Gupta has been working in the field of software development for the last
8 years. He has worked in different companies, such as SAP Labs and Caterpillar,
as a software developer. While working for a start-up where he was responsible
for predicting potential customers for new fashion apparels using social media, he
developed an interest in the field of machine learning. Since then, he has worked on
using big data technologies and machine learning for different industries, including
retail, finance, insurance, and so on. He has a passion for learning new technologies
and sharing the knowledge thus gained with others. He has organized many boot
camps for the Apache Mahout and Hadoop ecosystem.

First of all, I would like to thank open source communities for their
continuous efforts in developing great software for all. I would like
to thank Merwyn D'Souza and Reshma Raman, my editors for this
project. Special thanks to the reviewers of this book.

Nothing can be accomplished without the support of family,
friends, and loved ones. I would like to thank my friends, family,
and especially my wife and my son for their continuous support
throughout the writing of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Siva Prakash is working as a tech lead in Bangalore. He has extensive development
experience in the analysis, design, development, implementation, and maintenance
of various desktop, mobile, and web-based applications. He loves trekking, traveling,
music, reading books, and blogging.

You can find him on LinkedIn at https://www.linkedin.com/in/techsivam.

Tharindu Rusira is currently a computer science and engineering undergraduate
at the University of Moratuwa, Sri Lanka. As a student researcher, he has strong
interests in machine learning, compilers, and high-performance computing.

Tharindu has also worked as a research and development software engineering
intern at Zaizi Asia (Pvt) Ltd., where he first started using Apache Mahout during
the implementation of an enterprise-level content management and information
retrieval system.

He sees the potential of Apache Mahout as a scalable machine learning library for
industry-level implementations and has even contributed to the Mahout 0.9 release,
the latest stable release of Mahout.

He is available on LinkedIn at https://www.linkedin.com/in/trusira.

Vishnu Viswanath is a senior big data developer who has many years of
industrial expertise in the arena of machine learning. He is a tech enthusiast and is
passionate about big data and has expertise on most big-data-related technologies.

You can find him on LinkedIn at http://in.linkedin.com/in/vishnuviswanath25.

www.allitebooks.com

https://www.linkedin.com/in/techsivam
https://www.linkedin.com/in/trusira
http://in.linkedin.com/in/vishnuviswanath25
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Classification in Data Analysis 7

Introducing the classification 8
Application of the classification system 9
Working of the classification system 9

Classification algorithms 14
Model evaluation techniques 15

The confusion matrix 15
The Receiver Operating Characteristics (ROC) graph 17
Area under the ROC curve 17
The entropy matrix 18

Summary 19
Chapter 2: Apache Mahout 21

Introducing Apache Mahout 21
Algorithms supported in Mahout 23
Reasons for Mahout being a good choice for classification 24
Installing Mahout 24

Building Mahout from source using Maven 25
Installing Maven 25
Building Mahout code 26

Setting up a development environment using Eclipse 27
Setting up Mahout for a Windows user 29

Summary 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Learning Logistic Regression / SGD
Using Mahout 31

Introducing regression 31
Understanding linear regression 32

Cost function 32
Gradient descent 33

Logistic regression 33
Stochastic Gradient Descent 35
Using Mahout for logistic regression 36

Summary 42
Chapter 4: Learning the Naïve Bayes Classification
Using Mahout 43

Introducing conditional probability and the Bayes rule 43
Understanding the Naïve Bayes algorithm 46
Understanding the terms used in text classification 48
Using the Naïve Bayes algorithm in Apache Mahout 49
Summary 54

Chapter 5: Learning the Hidden Markov Model
Using Mahout 55

Deterministic and nondeterministic patterns 55
The Markov process 56
Introducing the Hidden Markov Model 57
Using Mahout for the Hidden Markov Model 59
Summary 63

Chapter 6: Learning Random Forest Using Mahout 65
Decision tree 65
Random forest 67
Using Mahout for Random forest 69

Steps to use the Random forest algorithm in Mahout 71
Summary 74

Chapter 7: Learning Multilayer Perceptron Using Mahout 75
Neural network and neurons 75
Multilayer Perceptron 77
MLP implementation in Mahout 79
Using Mahout for MLP 81

Steps to use the MLP algorithm in Mahout 82
Summary 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 8: Mahout Changes in the Upcoming Release 85
Mahout new changes 85

Mahout Scala and Spark bindings 86
Apache Spark 87

Using Mahout's Spark shell 88
H2O platform integration 90
Summary 91

Chapter 9: Building an E-mail Classification System
Using Apache Mahout 93

Spam e-mail dataset 94
Creating the model using the Assassin dataset 95
Program to use a classifier model 99
Testing the program 104
Second use case as an exercise 105

The ASF e-mail dataset 106
Classifiers tuning 108
Summary 109

Index 111

www.allitebooks.com

http://www.allitebooks.org

Preface
Thanks to the progress made in the hardware industries, our storage capacity has
increased, and because of this, there are many organizations who want to store all
types of events for analytics purposes. This has given birth to a new era of machine
learning. The field of machine learning is very complex and writing these algorithms
is not a piece of cake. Apache Mahout provides us with readymade algorithms
in the area of machine learning and saves us from the complex task of algorithm
implementation.

The intention of this book is to cover classification algorithms available in Apache
Mahout. Whether you have already worked on classification algorithms using
some other tool or are completely new to the field, this book will help you. So, start
reading this book to explore the classification algorithms in one of the most popular
open source projects which enjoys strong community support: Apache Mahout.

What this book covers
Chapter 1, Classification in Data Analysis, provides an introduction to the classification
concept in data analysis. This chapter will cover the basics of classification, similarity
matrix, and algorithms available in this area.

Chapter 2, Apache Mahout, provides an introduction to Apache Mahout and its
installation process. Further, this chapter will talk about why it is a good choice
for classification.

Chapter 3, Learning Logistic Regression / SGD Using Mahout, discusses logistic
regression and Stochastic Gradient Descent, and how developers can use Mahout
to use SGD.

Chapter 4, Learning the Naïve Bayes Classification Using Mahout, discusses the Bayes
Theorem, Naïve Bayes classification, and how we can use Mahout to build Naïve
Bayes classifier.

Preface

[2]

Chapter 5, Learning the Hidden Markov Model Using Mahout, covers the HMM and how
to use Mahout's HMM algorithms.

Chapter 6, Learning Random Forest Using Mahout, discusses the Random forest
algorithm in detail, and how to use Mahout's Random forest implementation.

Chapter 7, Learning Multilayer Perceptron Using Mahout, discusses Mahout as an early
level implementation of a neural network. We will discuss Multilayer Perceptron in
this chapter. Further, we will use Mahout's implementation of MLP.

Chapter 8, Mahout Changes in the Upcoming Release, discusses Mahout as a work in
progress. We will discuss the new major changes in the upcoming release of Mahout.

Chapter 9, Building an E-mail Classification System Using Apache Mahout, provides two
use cases of e-mail classification—spam mail classification and e-mail classification
based on the project the mail belongs to. We will create the model, and use this
model in a program that will simulate the real working environment.

What you need for this book
To use the examples in this book, you should have the following software installed
on your system:

• Java 1.6 or higher
• Eclipse
• Hadoop
• Mahout; we will discuss the installation in Chapter 2, Apache Mahout,

of this book
• Maven, depending on how you install Mahout

Who this book is for
If you are a data scientist who has some experience with the Hadoop ecosystem and
machine learning methods and want to try out classification on large datasets using
Mahout, this book is ideal for you. Knowledge of Java is essential.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Extract the source code and ensure that the folder contains the pom.xml file."

A block of code is set as follows:

 public static Map<String, Integer>
 readDictionary(Configuration conf, Path dictionaryPath) {
 Map<String, Integer> dictionary = new HashMap<String,
 Integer>();
 for (Pair<Text, IntWritable> pair : new
 SequenceFileIterable<Text, IntWritable>(dictionaryPath,
 true, conf)) {
 dictionary.put(pair.getFirst().toString(),
 pair.getSecond().get());
 }
 return dictionary;
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 public static Map<String, Integer>
 readDictionary(Configuration conf, Path dictionaryPath) {
 Map<String, Integer> dictionary = new HashMap<String,
 Integer>();
 for (Pair<Text, IntWritable> pair : new
 SequenceFileIterable<Text, IntWritable>(dictionaryPath,
 true, conf)) {
 dictionary.put(pair.getFirst().toString(),
 pair.getSecond().get());
 }
 return dictionary;
 }

Any command-line input or output is written as follows:

hadoop fs -mkdir /user/hue/KDDTrain

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs –put /tmp/KDDTrain+_20Percent.arff /user/hue/KDDTrain

hadoop fs –put /tmp/KDDTest+.arff /user/hue/KDDTest

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now,
navigate to the location for mahout-distribution-0.9 and click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4959OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Classification in
Data Analysis

In the last decade, we saw a huge growth in social networking and e-commerce sites.
I am sure that you must have got information about this book on Facebook, Twitter,
or some other site. Chances are also high that you are reading an e-copy of this book
after ordering it on your phone or tablet.

This must give you an idea of how much data we are generating over the Internet
every single day. Now, in order to obtain all necessary information from the data,
we not only create data but also store this data. This data is extremely useful to get
some important insights into the business. The analysis of this data can increase
the customer base and create profits for the organization. Take the example of an
e-commerce site. You visit the site to buy some book. You get information about
books on related topics or the same topic, publisher, or writer, and this helps you to
take better decisions, which also helps the site to know more about its customers.
This will eventually lead to an increase in sales.

Finding related items or suggesting a new item to the user is all part of the data
science in which we analyze the data and try to get useful patterns.

Data analysis is the process of inspecting historical data and creating models to get
useful information that is required to help in decision making. It is helpful in many
industries, such as e-commerce, banking, finance, healthcare, telecommunications,
retail, oceanography, and many more.

Let's take the example of a weather forecasting system. It is a system that can predict
the state of the atmosphere at a particular location. In this process, scientists collect
historical data of the atmosphere of that location and try to create a model based on
it to predict how the atmosphere will evolve over a period of time.

Classification in Data Analysis

[8]

In machine learning, classification is the automation of the decision-making process
that learns from examples of the past and emulates those decisions automatically.
Emulating the decisions automatically is a core concept in predictive analytics. In
this chapter, we will look at the following points:

• Understanding classification
• Working of classification systems
• Classification algorithms
• Model evaluation methods

Introducing the classification
The word classification always reminds us of our biology class, where we learned
about the classification of animals. We learned about different categories of animals,
such as mammals, reptiles, birds, amphibians, and so on.

If you remember how these categories are defined, you will realize that there were
certain properties that scientists found in existing animals, and based on these
properties, they categorized a new animal.

Other real-life examples of classification could be, for instance, when you visit the
doctor. He/she asks you certain questions, and based on your answers, he/she is
able to identify whether you have a certain disease or not.

Classification is the categorization of potential answers, and in machine learning,
we want to automate this process. Biological classification is an example
of multiclass classification and finding the disease is an example of binary
classification.

In data analysis, we want to use machine learning concepts. To analyze the data, we
want to build a system that can help us to find out which class an individual item
belongs to. Usually, these classes are mutually exclusive. A related problem in this
area is finding out the probability that an individual belongs to a certain class.

Chapter 1

[9]

Classification is a supervised learning technique. In this technique, machines—
based on historical data—learn and gain the capabilities to predict the unknown. In
machine learning, another popular technique is unsupervised learning. In supervised
learning, we already know the output categories, but in unsupervised learning,
we know nothing about the output. Let's understand this with a quick example:
suppose we have a fruit basket, and we want to classify fruits. When we say classify,
it means that in the training data, we already have output variables, such as size and
color, and we know whether the color is red and the size is from 2.3" to 3.7". We will
classify that fruit as an apple. Opposite to this, in unsupervised learning, we want to
separate different fruits, and we do not have any output information in the training
dataset, so the learning algorithm will separate different fruits based on different
features present in the dataset, but it will not be able to label them. In other words, it
will not be able to tell which one is an apple and which one is a banana, although it
will be able to separate them.

Application of the classification system
Classification is used for prediction. In the case of e-mail categorization, it is used
to classify e-mail as spam or not spam. Nowadays, Gmail is classifying e-mails as
primary, social, and promotional as well. Classification is useful in predicting credit
card frauds, to categorize customers for eligibility of loans, and so on. It is also used
to predict customer churn in the insurance and telecom industries. It is useful in
the healthcare industry as well. Based on historical data, it is useful in classifying
particular symptoms of a disease to predict the disease in advance. Classification can
be used to classify tropical cyclones. So, it is useful across all industries.

Working of the classification system
Let's understand the classification process in more detail. In the process of
classification, with the dataset given to us, we try to find out informative variables
using which we can reduce the uncertainty and categorize something. These
informative variables are called explanatory variables or features.

www.allitebooks.com

http://www.allitebooks.org

Classification in Data Analysis

[10]

The final categories that we are interested are called target variables or labels.
Explanatory variables can be any of the following forms:

• Continuous (numeric types)
• Categorical
• Word-like
• Text-like

If numeric types are not useful for any mathematical functions, those
will be counted as categorical (zip codes, street numbers, and so on).

So, for example, we have a dataset of customer's' loan applications, and we want to
build a classifier to find out whether a new customer is eligible for a loan or not. In
this dataset, we can have the following fields:

• Customer Age
• Customer Income (PA)
• Customer Account Balance
• Loan Granted

From these fields, Customer Age, Customer Income (PA) and Customer Account
Balance will work as explanatory variables and Loan Granted will be the target
variable, as shown in the following screenshot:

Chapter 1

[11]

To understand the creation of the classifier, we need to understand a few terms,
as shown in the following diagram:

• Training dataset: From the given dataset, a portion of the data is used
to create the training dataset (it could be 70 percent of the given data).
This dataset is used to build the classifier. All the feature sets are used
in this dataset.

• Test dataset: The dataset that is left after the training dataset is used to
test the created model. With this data, only the feature set is used and
the model is used to predict the target variables or labels.

• Model: This is used to understand the algorithm used to generate the
target variables.

While building a classifier, we follow these steps:

• Collecting historical data
• Cleaning data (a lot of activities are involved here, such as space removal,

and so on)

Classification in Data Analysis

[12]

• Defining target variables
• Defining explanatory variables
• Selecting an algorithm
• Training the model (using the training dataset)
• Running test data
• Evaluating the model
• Adjusting explanatory variables
• Rerunning the test

While preparing the model, one should take care of outlier detection. Outlier
detection is a method to find out items that do not conform to an expected pattern
in a dataset. Outliers in an input dataset can mislead the training process of an
algorithm. This can affect the model accuracy. There are algorithms to find out these
outliers in the datasets. Distance-based techniques and fuzzy-logic-based methods
are mostly used to find out outliers in the dataset. Let's talk about one example to
understand the outliers.

We have a set of numbers, and we want to find out the mean of these numbers:

10, 75, 10, 15, 20, 85, 25, 30, 25

Just plot these numbers and the result will be as shown in the following screenshot:

Clearly, the numbers 75 and 85 are outliers (far away in the plot from the other
numbers).

Mean = sum of values/number of values = 32.78

Mean without the outliers: = 19.29

So, now you can understand how outliers can affect the results.

While creating the model, we can encounter two majorly occurring problems—
Overfitting and Underfitting.

Chapter 1

[13]

Overfitting occurs when the algorithm captures the noise of the data, and the
algorithm fits the data too well. Generally, it occurs if we use all the given data to
build the model using pure memorization. Instead of finding out the generalizing
pattern, the model just memorizes the pattern. Usually, in the case of overfitting, the
model gets more complex, and it is allowed to pick up spurious correlations. These
correlations are specific to training datasets and do not represent characteristics of
the whole dataset in general.

The following diagram is an example of overfitting. An outlier is present, and the
algorithm considers that and creates a model that perfectly classifies the training
set, but because of this, the test data is wrongly classified (both the rectangles are
classified as stars in the test data):

There is no single method to avoid overfitting; however, we have some approaches,
such as a reduction in the number of features and the regularization of a few of the
features. Another way is to train the model with some dataset and test with the
remaining dataset. A common method called cross-validation is used to generate
multiple performance measures. In this way, a single dataset is split and used for the
creation of performance measures.

Underfitting occurs when the algorithm cannot capture the patterns in the data, and
the data does not fit well. Underfitting is also known as high bias. It means your
algorithm has such a strong bias towards its hypothesis that it does not fit the data
well. For an underfitting error, more data will not help. It can increase the training
error. More explanatory variables can help to deal with the underfitting problem.
More explanatory fields will expand the hypothesis space and will be useful to
overcome this problem.

Both overfitting and underfitting provide poor results with new datasets.

Classification in Data Analysis

[14]

Classification algorithms
We will now discuss the following algorithms that are supported by Apache Mahout
in this book:

• Logistic regression / Stochastic Gradient Descent (SGD): We usually
read regression along with classification, but actually, there is a difference
between the two. Classification involves a categorical target variable, while
regression involves a numeric target variable. Classification predicts whether
something will happen, and regression predicts how much of something
will happen. We will cover this algorithm in Chapter 3, Learning Logistic
Regression / SGD Using Mahout. Mahout supports logistic regression trained
via Stochastic Gradient Descent.

• Naïve Bayes classification: This is a very popular algorithm for text
classification. Naïve Bayes uses the concept of probability to classify new
items. It is based on the Bayes theorem. We will discuss this algorithm in
Chapter 4, Learning the Naïve Bayes Classification Using Mahout. In this chapter,
we will see how Mahout is useful in classifying text, which is required in the
data analysis field. We will discuss vectorization, bag of words, n-grams,
and other terms used in text classification.

• Hidden Markov Model (HMM): This is used in various fields, such as
speech recognition, parts-of-speech tagging, gene prediction, time-series
analysis, and so on. In HMM, we observe a sequence of emissions but do
not have a sequence of states which a model uses to generate the emission.
In Chapter 5, Learning the Hidden Markov Model Using Mahout, we will take
one more algorithm supported by Mahout Hidden Markov Model. We will
discuss HMM in detail and see how Mahout supports this algorithm.

• Random Forest: This is the most widely used algorithm in classification.
Random Forest consists of a collection of simple tree predictors, each capable
of producing a response when presented with a set of explanatory variables.
In Chapter 6, Learning Random Forest Using Mahout, we will discuss this
algorithm in detail and also talk about how to use Mahout to implement this
algorithm.

• Multi-layer Perceptron (MLP): In Chapter 7, Learning Multilayer Perceptron
Using Mahout, we will discuss this newly implemented algorithm in Mahout.
An MLP consists of multiple layers of nodes in a directed graph, with each
layer fully connected to the next one. It is a base for the implementation of
neural networks. We will discuss neural networks a little but only after a
detailed discussion on MLP in Mahout.

Chapter 1

[15]

We will discuss all the classification algorithms supported by Apache Mahout in
this book, and we will also check the model evaluation techniques provided by
Apache Mahout.

Model evaluation techniques
We cannot have a single evaluation metric that can fit all the classifier models, but
we can find out some common issues in evaluation, and we have techniques to deal
with them. We will discuss the following techniques that are used in Mahout:

• Confusion matrix
• ROC graph
• AUC
• Entropy matrix

The confusion matrix
The confusion matrix provides us with the number of correct and incorrect
predictions made by the model compared with the actual outcomes (target values)
in the data. A confusion matrix is a N*N matrix, where N is the number of labels
(classes). Each column is an instance in the predicted class, and each row is an
instance in the actual class. Using this matrix, we can find out how one class is
confused with another. Let's assume that we have a classifier that classifies three
fruits: strawberries, cherries, and grapes. Assuming that we have a sample of 24
fruits: 7 strawberries, 8 cherries, and 9 grapes, the resulting confusion matrix will
be as shown in the following table:

 Predicted classes by model

Actual
class

Strawberries Cherries Grapes
Strawberries 4 3 0
Cherries 2 5 1
Grapes 0 1 8

So, in this model, from the 8 strawberries, 3 were classified as cherries. From the 8
cherries, 2 were classified as strawberries, and 1 is classified as a grape. From the
9 grapes, 1 is classified as a cherry. From this matrix, we will create the table of
confusion. The table of confusion has two rows and two columns that report about
true positive, true negative, false positive, and false negative.

Classification in Data Analysis

[16]

So, if we build this table for a particular class, let's say for strawberries, it would be
as follows:

True Positive
4 (actual strawberries classified correctly)
(a)

False Positive
2 (cherries that were classified as
strawberries)(b)

False Negative
3 (strawberries wrongly classified as
cherries) (c)

True Negative
15 (all other fruits correctly not classified as
strawberries) (d)

Using this table of confusion, we can find out the following terms:

• Accuracy: This is the proportion of the total number of predictions that
were correctly classified. It is calculated as (True Positive + True Negative) /
Positive + Negative. Therefore, accuracy = (a+d)/(a+b+c+d).

• Precision or positive predictive value: This is the proportion of positive
cases that were correctly classified. It is calculated as (True Positive)/(True
Positive + False Positive). Therefore, precision = a/(a+b).

• Negative predictive value: This is the proportion of negative cases that were
classified correctly. It is calculated as True Negative/(True Negative + False
Negative). Therefore, negative predictive value = d/(c+d).

• Sensitivity / true positive rate / recall: This is the proportion of the actual
positive cases that were correctly identified. It is calculated as True Positive/
(True Positive + False Negative). Therefore, sensitivity = a/(a+c).

• Specificity: This is the proportion of the actual negative cases. It is calculated
as True Negative/(False Positive + True Negative). Therefore, specificity =d /(b+d).

• F1 score: This is the measure of a test's accuracy, and it is calculated as
follows: F1 = 2.((Positive predictive value (precision) * sensitivity (recall))/(Positive
predictive value (precision) +sensitivity (recall))).

Chapter 1

[17]

The Receiver Operating Characteristics
(ROC) graph
ROC is a two-dimensional plot of a classifier with false positive rate on the x axis
and true positive rate on the y axis. The lower point (0,0) in the figure represents
never issuing a positive classification. Point (0,1) represents perfect classification.
The diagonal from (0,0) to (1,1) divides the ROC space. Points above the diagonal
represent good classification results, and points below the line represent poor results,
as shown in the following diagram:

Area under the ROC curve
This is the area under the ROC curve and is also known as AUC. It is used to
measure the quality of the classification model. In practice, most of the classification
models have an AUC between 0.5 and 1. The closer the value is to 1, the greater is
your classifier.

Classification in Data Analysis

[18]

The entropy matrix
Before going into the details of the entropy matrix, first we need to understand
entropy. The concept of entropy in information theory was developed by Shannon.

Entropy is a measure of disorder that can be applied to a set. It is defined as:

Entropy = -p1log(p1) – p2log(p2)- …….

Each p is the probability of a particular property within the set. Let's revisit our
customer loan application dataset. For example, assuming we have a set of 10
customers from which 6 are eligible for a loan and 4 are not. Here, we have
two properties (classes): eligible or not eligible.

P(eligible) = 6/10 = 0.6

P(not eligible) = 4/10 = 0.4

So, entropy of the dataset will be:

Entropy = -[0.6*log2(0.6)+0.4*log2(0.4)]

 = -[0.6*-0.74 +0.4*-1.32]

 = 0.972

Entropy is useful in acquiring knowledge of information gain. Information gain
measures the change in entropy due to any new information being added in model
creation. So, if entropy decreases from new information, it indicates that the model
is performing well now. Information gain is calculated as:

IG (classes , subclasses) = entropy(class) –(p(subclass1)*entropy(subclass1)+
p(subclass2)*entropy(subclass2) + …)

Entropy matrix is basically the same as the confusion matrix defined earlier; the
only difference is that the elements in the matrix are the averages of the log of the
probability score for each true or estimated category combination. A good model
will have small negative numbers along the diagonal and will have large negative
numbers in the off-diagonal position.

Chapter 1

[19]

Summary
We have discussed classification and its applications and also what algorithm and
classifier evaluation techniques are supported by Mahout. We discussed techniques
like confusion matrix, ROC graph, AUC, and entropy matrix.

Now, we will move to the next chapter and set up Apache Mahout and the developer
environment. We will also discuss the architecture of Apache Mahout and find out
why Mahout is a good choice for classification.

www.allitebooks.com

http://www.allitebooks.org

Apache Mahout
In the previous chapter, we discussed classification and looked into the algorithms
provided by Mahout in this area. Before going to those algorithms, we need
to understand Mahout and its installation. In this chapter, we will explore the
following topics:

• What is Apache Mahout?
• Algorithms supported in Mahout
• Why is it a good choice for classification problems?
• Setting up the system for Mahout development

Introducing Apache Mahout
A mahout is a person who rides and controls an elephant. Most of the algorithms
in Apache Mahout are implemented on top of Hadoop, which is another Apache-
licensed project and has the symbol of an elephant (http://hadoop.apache.org/).
As Apache Mahout rides over Hadoop, this name is justified.

http://hadoop.apache.org/

Apache Mahout

[22]

Apache Mahout is a project of Apache Software Foundation that has
implementations of machine learning algorithms. Mahout was started as a subproject
of the Apache Lucene project in 2008. After some time, an open source project
named Taste, which was developed for collaborative filtering, and it was absorbed
into Mahout. Mahout is written in Java and provides scalable machine learning
algorithms. Mahout is the default choice for machine learning problems in which the
data is too large to fit into a single machine. Mahout provides Java libraries and does
not provide any user interface or server. It is a framework of tools to be used and
adapted by developers.

To sum it up, Mahout provides you with implementations of the most frequently
used machine learning algorithms in the area of classification, clustering, and
recommendation. Instead of spending time writing algorithms, it provides us with
ready-to-consume solutions.

Mahout uses Hadoop for its algorithms, but some of the algorithms can also run
without Hadoop. Currently, Mahout supports the following use cases:

• Recommendation: This takes the user data and tries to predict items that the
user might like. With this use case, you can see all the sites that are selling
goods to the user. Based on your previous action, they will try to find out
unknown items that could be of use. One example can be this: as soon as
you select some book from Amazon, the website will show you a list of other
books under the title, Customers Who Bought This Item Also Bought. It
also shows the title, What Other Items Do Customers Buy After Viewing
This Item? Another example of recommendation is that while playing videos
on YouTube, it recommends that you listen to some other videos based on
your selection. Mahout provides full API support to develop your own user-
based or item-based recommendation engine.

Chapter 2

[23]

• Classification: As defined in the earlier chapter, classification decides how
much an item belongs to one particular category. E-mail classification for
filtering out spam is a classic example of classification. Mahout provides a
rich set of APIs to build your own classification model. For example, Mahout
can be used to build a document classifier or an e-mail classifier.

• Clustering: This is a technique that tries to group items together based
on some sort of similarity. Here, we find the different clusters of items
based on certain properties, and we do not know the name of the cluster in
advance. The main difference between clustering and classification is that in
classification, we know the end class name. Clustering is useful in finding out
different customer segments. Google News uses the clustering technique in
order to group news. For clustering, Mahout has already implemented some
of the most popular algorithms in this area, such as k-means, fuzzy k-means,
canopy, and so on.

• Dimensional reduction: As we discussed in the previous chapter, features
are called dimensions. Dimensional reduction is the process of reducing the
number of random variables under consideration. This makes data easy to
use. Mahout provides algorithms for dimensional reduction. Singular value
decomposition and Lanczos are examples of the algorithms that Mahout
provides.

• Topic modeling: Topic modeling is used to capture the abstract idea of a
document. A topic model is a model that associates probability distribution
with each document over topics. Given that a document is about a particular
topic, one would expect particular words to appear in the document more or
less frequently. "Football" and "goal" will appear more in a document about
sports. Latent Dirichlet Allocation (LDA) is a powerful learning algorithm
for topic modeling. In Mahout, collapsed variational Bayes is implemented
for LDA.

Algorithms supported in Mahout
The implementation of algorithms in Mahout can be categorized into two groups:

• Sequential algorithms: These algorithms are executed sequentially and
do not use Hadoop scalable processing. They are usually the ones derived
from Taste. For example: user-based collaborative filtering, logistic
regression, Hidden Markov Model, multi-layer perceptron, singular value
decomposition.

Apache Mahout

[24]

• Parallel algorithms: These algorithms can support petabytes of data using
Hadoop's map and hence reduce parallel processing. For example, Random
Forest, Naïve Bayes, canopy clustering, k-means clustering ,spectral
clustering, and so on.

Reasons for Mahout being a good choice
for classification
In machine learning systems, the more data you use, the more accurate the system
built will be. Mahout, which uses Hadoop for scalability, is way ahead of others in
terms of handling huge datasets. As the number of training sets increases, Mahout's
performance also increases. If the input size for training examples is from 1 million to
10 million, then Mahout is an excellent choice.

For classification problems, increased data for training is desirable as it can improve
the accuracy of the model. Generally, as the number of datasets increases, memory
requirement also increases, and algorithms become slow, but Mahout's scalable and
parallel algorithms work better with regards to the time taken. Each new machine
added decreases the training time and provides higher performance.

Installing Mahout
Now let's try the slightly challenging part of this book: Mahout installation. Based on
common experiences, I have come up with the following questions or concerns that
users face before installation:

• I do not know anything about Maven. How will I compile Mahout build?
• How can I set up Eclipse to write my own programs in Mahout?
• How can I install Mahout on a Windows system?

So, we will install Mahout with the help of the following steps. Each step is
independent from the other. You can choose any one of these:

• Building Mahout code using Maven
• Setting up a development environment using Eclipse
• Setting up Mahout for a Windows user

Chapter 2

[25]

Before any of the steps, some of the prerequisites are:

• You should have Java installed on your system. Wikihow is a good source
for this at http://www.wikihow.com/Install-Java-on-Linux

• You should have Hadoop installed on your system from the http://
hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleNodeSetup.html URL

Building Mahout from source using Maven
Mahout's build and release system is based on Maven.

Installing Maven
1. Create the folder /usr/local/maven, as follows:

mkdir /usr/local/maven

2. Download the distribution apache-maven-x.y.z-bin.tar.gz from the
Maven site (http://maven.apache.org/download.cgi) and move this to /
usr/local/maven, as follows:
mv apache-maven-x.y.z-bin.tar.gz /usr/local/maven

3. Unpack to the location /usr/local/maven, as follows:
tar –xvf apache-maven-x.y.z-bin.tar.gz

4. Edit the .bashrc file, as follows:

export M2_HOME=/usr/local/apache-maven-x.y.z
export M2=$M2_HOME/bin
export PATH=$M2:$PATH

For the Eclipse IDE, go to Help and select Install new Software.
Click on the Add button, and in the pop up, type the name
M2Eclipse, provide the link http://download.eclipse.org/
technology/m2e/releases, and click on OK.

http://www.wikihow.com/Install-Java-on-Linux
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://maven.apache.org/download.cgi
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases

Apache Mahout

[26]

Building Mahout code
By default, Mahout assumes that Hadoop is already installed on the system. Mahout
uses the HADOOP_HOME and HADOOP_CONF_DIR environment variables to access
Hadoop cluster configurations. For setting up Mahout, execute the following steps:

1. Download the Mahout distribution file mahout-distribution-0.9-
src.tar.gz from the location http://archive.apache.org/dist/
mahout/0.9/.

2. Choose an installation directory for Mahout (/usr/local/Mahout), and place
the downloaded source in the folder. Extract the source code and ensure that
the folder contains the pom.xml file. The following is the exact location of the
source:
tar -xvf mahout-distribution-0.9-src.tar.gz

3. Install the Mahout Maven project, and skip the test cases while installing,
as follows:
mvn install -Dmaven.test.skip=true

4. Set the MAHOUT_HOME environment variable in the ~/.bashrc file, and update
the PATH variable with the Mahout bin directory:
export MAHOUT_HOME=/user/local/mahout/mahout-distribution-0.9

export PATH=$PATH:$MAHOUT_HOME/bin

5. To test the Mahout installation, execute the command: mahout. This will
list the available programs within the distribution bundle, as shown in the
following screenshot:

http://archive.apache.org/dist/mahout/0.9/
http://archive.apache.org/dist/mahout/0.9/

Chapter 2

[27]

Setting up a development environment using
Eclipse
For this setup, you should have Maven installed on the system and the Maven plugin
for Eclipse. Refer to the Installing Maven step explained in the previous section. This
setup can be done in the following steps:

1. Download the Mahout distribution file mahout-distribution-0.9-src.
tar.gz from the location http://archive.apache.org/dist/mahout/0.9/
and unzip this:
tar xzf mahout-distribution-0.9-src.tar.gz

2. Let's create a folder named workspace under /usr/local/workspace,
as follows:
mkdir /usr/local/workspace

3. Move the downloaded distribution to this folder (from the downloads
folder), as follows:
mv mahout-distribution-0.9 /usr/local/workspace/

http://archive.apache.org/dist/mahout/0.9/

Apache Mahout

[28]

4. Move to the folder /usr/local/workspace/mahout-distribution-0.9
and make an Eclipse project (this command can take up to an hour):
mvn eclipse:eclipse

5. Set the Mahout home in the .bashrc file, as explained earlier in the Building
Mahout code section.

6. Now open Eclipse. Select the file, import Maven, and Existing Maven
Projects. Now, navigate to the location for mahout-distribution-0.9 and click
on Finish.

Chapter 2

[29]

Setting up Mahout for a Windows user
A Windows user can use Cygwin (a large collection of GNU and open source tools
that provides functionality similar to a Linux distribution on Windows) to set up
their environment. There is also another way that is easy to use, as shown in the
following steps:

1. Download Hortonworks Sandbox for virtual box on your system from
the location http://hortonworks.com/products/hortonworks-
sandbox/#install. Hortonworks Sandbox on your system will be a
pseudo-distributed mode of Hadoop.

2. Log in to the console. Use Alt + F5 or alternatively download Putty and
provide 127.0.0.1 as the hostname and 2222 in the port, as shown in the
following figure. Log in with the username root and password -hadoop.

www.allitebooks.com

http://hortonworks.com/products/hortonworks-sandbox/#install
http://hortonworks.com/products/hortonworks-sandbox/#install
http://www.allitebooks.org

Apache Mahout

[30]

3. Enter the following command:
yum install mahout

Now, you will see a screen like this:

4. Enter y, and your Mahout will start installing. Once this is done, you can
test by typing the command mahout and this will show you the same
screen as shown in the Setting up a development environment using Eclipse
recipe seen earlier.

Summary
We discussed Apache Mahout in detail in this chapter. We covered the process of
installing Mahout on our system, along with setting up a development environment
that is ready to execute Mahout algorithms. We have also taken a look at the reasons
behind Mahout being considered a good choice for classification. Now, we move
to the next where we will understand about logistic regression and learn about the
process that needs to be followed to execute our first algorithm in Mahout.

Learning Logistic Regression
/ SGD Using Mahout

Instead of jumping directly into logistic regression, let's try to understand a few of its
concepts. In this chapter, we will explore the following topics:

• Introducing regression
• Understanding linear regression
• Cost function
• Gradient descent
• Logistic regression
• Understanding SGD
• Using Mahout for logistic regression

Introducing regression
Regression analysis is used for prediction and forecasting. It is used to find out the
relationship between explanatory variables and target variables. Essentially, it is a
statistical model that is used to find out the relationship among variables present
in the datasets. An example that you can refer to for a better understanding of this
term is this: determine the earnings of workers in a particular industry. Here, we
will try to find out the factors that affect a worker's salary. These factors can be age,
education, years of experience, particular skill set, location, and so on. We will try to
make a model that will take all these variables into consideration and try to predict
the salary. In regression analysis, we characterize the variation of the target variable
around the regression function, which can be described by a probability distribution
that is also of interest. There are a number of regression analysis techniques that are
available. For example, linear regression, ordinary least squares regression, logistic
regression, and so on.

Learning Logistic Regression / SGD Using Mahout

[32]

Understanding linear regression
In linear regression, we create a model to predict the value of a target variable
with the help of an explanatory variable. To understand this better, let's look
at an example.

A company X that deals in selling coffee has noticed that in the month of monsoon,
their sales increased to quite an extent. So they have come up with a formula to find
the relation between rain and their per cup coffee sale, which is shown as follows:

C = 1.5R+800

So, for 2 mm of rain, there is a demand of 803 cups of coffee. Now if you go into
minute details, you will realize that we have the data for rainfall and per cup coffee
sale, and we are trying to build a model that can predict the demand for coffee based
on the rainfall. We have data in the form of (R1, C1), (R2, C2)…. (Ri, Ci). Here, we
will build the model in a manner that keeps the error in the actual and predicted
values at a minimum.

Cost function
In the equation C = 1.5R+800, the two values 1.5 and 800 are parameters and
these values affect the end result. We can write this equation as C= p0+p1R. As we
discussed earlier, our goal is to reduce the difference between the actual value and
the predicted value, and this is dependent on the values of p0 and p1. Let's assume
that the predicted value is Cp and the actual value is C so that the difference will be
(Cp-C). This can be written as (p0+p1R-C).To minimize this error, we define the error
function, which is also called the cost function.

The cost function can be defined with the following formula:

() ()()20 1 0 1
1

1Cost Function p ,p p +p R C
N

i i
iN =

= −∑

Here, i is the ith sample and N is the number of training examples. We calculate costs
for different sets of p0 and p1 and finally select the p0 and p1 that gives the least cost
(C). This is the model that will be used to make predictions for new input.

Chapter 3

[33]

Gradient descent
Gradient descent starts with an initial set of parameter values, p0 and p1, and
iteratively moves towards a set of parameter values that minimizes the cost function.
We can visualize this error function graphically, where width and length can be
considered as the parameters p0 and p1 and height as the cost function. Our goal is
to find the values for p0 and p1 in a way that our cost function will be minimal. We
start the algorithm with some values of p0 and p1 and iteratively work towards the
minimum value. A good way to ensure that the gradient descent is working correctly
is to make sure that the cost function decreases for each iteration. In this case, the
cost function surface is convex and we will try to find out the minimum value. This
can be seen in the following figure:

Logistic regression
Logistic regression is used to ascertain the probability of an event. Generally, logistic
regression refers to problems where the outcome is binary, for example, in building
a model that is based on a customer's income, travel uses, gender, and other features
to predict whether he or she will buy a particular car or not. So, the answer will be a
simple yes or no. When the outcome is composed of more than one category, this is
called multinomial logistic regression.

Learning Logistic Regression / SGD Using Mahout

[34]

Logistic regression is based on the sigmoid function. Predictor variables are
combined with linear weight and then passed to this function, which generates the
output in the range of 0–1. An output close to 1 indicates that an item belongs to a
certain class. Let's first understand the sigmoid or logistic function. It can be defined
by the following formula:

F (z) = 1/1+e (-z)

With a single explanatory variable, z will be defined as z = β0 + β1*x. This equation is
explained as follows:

• z: This is called the dependent variable. This is the variable that we would
like to predict. During the creation of the model, we have this variable with
us in the training set, and we build the model to predict this variable. The
known values of z are called observed values.

• x: This is the explanatory or independent variable. These variables are
used to predict the dependent variable z. For example, to predict the sales
of a newly launched product at a particular location, we might include
explanatory variables such as the price of the product, the average income of
the people of that location, and so on.

• β0: This is called the regression intercept. If all explanatory variables are zero,
then this parameter is equal to the dependent variable z.

• β1: These are values for each explanatory variable.

The graph of the logistic function is as follows:

Chapter 3

[35]

With a little bit of mathematics, we can change this equation as follows:

ln(F(x)/(1-F(x)) = β0 + β1*x

In the case of linear regression, the cost function graph was convex, but here, it is not
going to be convex. Finding the minimum values for parameters in a way that our
predicted output is close to the actual one will be difficult. In a cost function, while
calculating for logistic regression, we will replace our Cp value of linear regression
with the function F(z). To make convex logistic regression cost functions, we will
replace (p0+p1Ri-Ci)2 with one of the following:

• log (1/1+e (-(β0 + β1*x))) if the actual occurrence of an event is 1, this function
will represent the cost.

• log (1-(1/1+e (-(β0 + β1*x)))) if the actual occurrence of an event is 0, this
function will represent the cost.

We will have to remember that in logistic regression, we calculate the class
probability. So, if the probability of an event occurring (customer buying a car, being
defrauded, and so on) is p, the probability of non-occurrence is 1-p.

Stochastic Gradient Descent
Gradient descent minimizes the cost function. For very large datasets, gradient
descent is a very expensive procedure. Stochastic Gradient Descent (SGD) is a
modification of the gradient descent algorithm to handle large datasets. Gradient
descent computes the gradient using the whole dataset, while SGD computes the
gradient using a single sample. So, gradient descent loads the full dataset and tries
to find out the local minimum on the graph and then repeat the full process again,
while SGD adjusts the cost function for every sample, one by one. A major advantage
that SGD has over gradient descent is that its speed of computation is a whole lot
faster. Large datasets in RAM generally cannot be held as the storage is limited. In
SGD, the burden on the RAM is reduced, wherein each sample or batch of samples
are loaded and worked with, the results for which are stored, and so on.

Learning Logistic Regression / SGD Using Mahout

[36]

Using Mahout for logistic regression
Mahout has implementations for logistic regression using SGD. It is very easy to
understand and use. So let's get started.

Dataset

We will use the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. This is a
dataset for breast cancer tumors and data is available from 1995 onwards. It has 569
instances of breast tumor cases and has 30 features to predict the diagnosis, which is
categorized as either benign or malignant.

More details on the preceding dataset is available at http://
archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/wdbc.names.

Preparing the training and test data

You can download the wdbc.data dataset from http://archive.ics.uci.edu/ml/
machine-learning-databases/breast-cancer-wisconsin/wdbc.data.

Now, save it as a CSV file and include the following header line:

ID_Number,Diagnosis,Radius,Texture,Perimeter,Area,Smoothness,Compactn
ess,Concavity,ConcavePoints,Symmetry,Fractal_Dimension,RadiusStdError
,TextureStdError,PerimeterStdError,AreaStdError,SmoothnessStdError,Co
mpactnessStdError,ConcavityStdError,ConcavePointStdError,Symmetrystde
rror,FractalDimensionStderror,WorstRadius,worsttexture,worstperimeter
,worstarea,worstsmoothness,worstcompactness,worstconcavity,worstconca
vepoints,worstsymmentry,worstfractaldimensions

Now, we will have to perform the following steps to prepare this data to be used by
the Mahout logistic regression algorithm:

1. We will make the target class numeric. In this case, the second field diagnosis
is the target variable. We will change malignant to 0 and benign to 1. Use the
following code snippet to introduce the changes. We can use this strategy for
small datasets, but for huge datasets, we have different strategies, which we
will cover in Chapter 4, Learning the Naïve Bayes Classification Using Mahout:

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

Chapter 3

[37]

public void convertTargetToInteger() throws IOException{
 //Read the data
 BufferedReader br = new BufferedReader(new
 FileReader("wdbc.csv"));
 String line =null;
 //Create the file to save the resulted data
 File wdbcData = new File("<Your Destination location for
 file.>");
 FileWriter fw = new FileWriter(wdbcData);
 //We are adding header to the new file
 fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"
 +","+"Texture"+","+"Perimeter"+","+"Area"
 +","+"Smoothness"+","+"Compactness"+","+"Concavity"
 +","+"ConcavePoints"+","+"Symmetry"
 +","+"Fractal_Dimension"+","+"RadiusStdError"
 +","+"TextureStdError"+","+"PerimeterStdError"
 +","+"AreaStdError"+","+"SmoothnessStdError"
 +","+"CompactnessStdError"+","+"ConcavityStdError"
 +","+"ConcavePointStdError"+","+"Symmetrystderror"
 +","+"FractalDimensionStderror"+","+"WorstRadius"
 +","+"worsttexture"+","+"worstperimeter"
 +","+"worstarea"+","+"worstsmoothness"
 +","+"worstcompactness"+","+"worstconcavity"
 +","+"worstconcavepoints"+","+"worstsymmentry"
 +","+"worstfractaldimensions"+"\n");

 /*In the while loop we are reading line by line and
 checking the last field- parts[1] and changing it to
 numeric value accordingly*/
 while((line=br.readLine())!=null){
 String []parts = line.split(",");
 if(parts[1].equals("M")){
 fw.write(parts[0]+","+"0"+","+parts[2]+","+parts[3]+",
 "+parts[4]+","+parts[5]+","+parts[6]+","+parts[7]+",
 "+parts[8]+","+parts[9]+","+parts[10]+",
 "+parts[11]+","+parts[12]+","+parts[13]+",
 "+parts[14]+","+parts[15]+","+parts[16]+",
 "+parts[17]+","+parts[18]+","+parts[19]+",
 "+parts[20]+","+parts[21]+","+parts[22]+",
 "+parts[23]+","+parts[24]+","+parts[25]+",
 "+parts[26]+","+parts[27]+","+parts[28]+",
 "+parts[29]+","+parts[30]+","+parts[31]+"\n");
 }

Learning Logistic Regression / SGD Using Mahout

[38]

 if(parts[1].equals("B")){
 fw.write(parts[0]+","+"1"+","+parts[2]+",
 "+parts[3]+","+parts[4]+","+parts[5]+",
 "+parts[6]+","+parts[7]+","+parts[8]+",
 "+parts[9]+","+parts[10]+","+parts[11]+",
 "+parts[12]+","+parts[13]+","+parts[14]+",
 "+parts[15]+","+parts[16]+","+parts[17]+",
 "+parts[18]+","+parts[19]+","+parts[20]+",
 "+parts[21]+","+parts[22]+","+parts[23]+",
 "+parts[24]+","+parts[25]+","+parts[26]+",
 "+parts[27]+","+parts[28]+","+parts[29]+",
 "+parts[30]+","+parts[31]+"\n");
 }
 }
 fw.close();
 br.close();
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

2. We will have to split the dataset into training and test datasets and then
shuffle the datasets so that we can mix them up, which can be
done using the following code snippet:

public void dataPrepration() throws Exception {
 // Reading the dataset created by earlier method
 convertTargetToInteger and here we are using google
 guava api's.
 List<String> result = Resources.readLines(Resources.
 getResource("wdbc.csv"), Charsets.UTF_8);
 //This is to remove header before the randomization
 process. Otherwise it can appear in the middle of
 dataset.
 List<String> raw = result.subList(1, 570);
 Random random = new Random();
 //Shuffling the dataset.
 Collections.shuffle(raw, random);
 //Splitting dataset into training and test examples.
 List<String> train = raw.subList(0, 470);
 List<String> test = raw.subList(470, 569);

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 3

[39]

 File trainingData = new File("<your Location>/
 wdbcTrain.csv");
 File testData = new File("<your Location>/
 wdbcTest.csv");
 writeCSV(train, trainingData);
 writeCSV(test, testData);
}
//This method is writing the list to desired file location.
public void writeCSV(List<String> list, File file) throws
IOException{
 FileWriter fw = new FileWriter(file);
 fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"+",
 "+"Texture"+","+"Perimeter"+","+"Area"+",
 "+"Smoothness"+","+"Compactness"+",
 "+"Concavity"+","+"ConcavePoints"+","+"Symmetry"+",
 "+"Fractal_Dimension"+","+"RadiusStdError"+",
 "+"TextureStdError"+","+"PerimeterStdError"+",
 "+"AreaStdError"+","+"SmoothnessStdError"+",
 "+"CompactnessStdError"+","+"ConcavityStdError"+",
 "+"ConcavePointStdError"+","+"Symmetrystderror"+",
 "+"FractalDimensionStderror"+","+"WorstRadius"+",
 "+"worsttexture"+","+"worstperimeter"+",
 "+"worstarea"+","+"worstsmoothness"+",
 "+"worstcompactness"+","+"worstconcavity"+",
 "+"worstconcavepoints"+","+"worstsymmentry"+",
 "+"worstfractaldimensions"+"\n");
 for(int i=0;i< list.size();i++){
 fw.write(list.get(i)+"\n");
 }
 fw.close();
}

Training the model

We will use the training dataset and trainlogistic algorithm to prepare the model.
Use the following command to create the model:

mahout trainlogistic --input /tmp/wdbcTrain.csv --output /tmp//
model --target Diagnosis --categories 2 --predictors Radius Texture
Perimeter Area Smoothness Compactness Concavity ConcavePoints Symmetry
Fractal_Dimension RadiusStdError TextureStdError PerimeterStdError
AreaStdError SmoothnessStdError CompactnessStdError ConcavityStdError
ConcavePointStdError Symmetrystderror FractalDimensionStderror
WorstRadius worsttexture worstperimeter worstarea worstsmoothness
worstcompactness worstconcavity worstconcavepoints worstsymmentry
worstfractaldimensions --types numeric --features 30 --passes 90 --rate
300

www.allitebooks.com

http://www.allitebooks.org

Learning Logistic Regression / SGD Using Mahout

[40]

This command will give you the following output:

Let's understand the parameters used in this command:

• trainlogistic: This is the algorithm that Mahout provides to build the
model using your input parameters.

• input: This is the location of the input file.
• output: This is the location of the model file.
• target: This is the name of the target variable that we want to predict from

the dataset.
• categories: This refers to the number of predicted classes.
• predictors: This features in the dataset used to predict the target variable.
• types: This is a list of the types of predictor variables. (Here all are numeric

but it could be word or text as well.)
• features: This is the size of the feature vector used to build the model.
• passes: This specifies the number of times the input data should be re-

examined during training. Small input files may need to be examined dozens
of times. Very large input files probably don't even need to be completely
examined.

• rate: This sets the initial learning rate. This can be large if you have lots
of data or use lots of passes because it decreases progressively as data is
examined.

Chapter 3

[41]

Now our model is ready to move on to the next step of evaluation. To evaluate
the model further, we can use the same dataset and check the confusion and AUC
matrix. The command for this will be as follows:

mahout runlogistic --input /tmp/wdbcTrain.csv --model /tmp//model --auc
--confusion

• runlogistic: This is the algorithm to run the logistic regression model over
an input dataset

• model: This is the location of the model file
• auc: This prints the AUC score for the model versus the input data after the

data is read
• confusion: This prints the confusion matrix for a particular threshold

The output of the previous command is shown in the following screenshot:

Now, these matrices show that the model is not bad. Having 0.88 as the value for
AUC is good, but we will check this on test data as well. The confusion matrix
informs us that out of 172 malignant tumors, it has correctly classified 151 instances
and that 34 benign tumors are also classified as malignant. In the case of benign
tumors, out of 298, it has correctly classified 264.

If the model does not provide good results, we have a number of options.

Change the parameters in the feature vector, increasing them if we are selecting few
features. This should be done one at a time, and we should test the result again with
each generated model. We should get a model where AUC is close to 1.

Learning Logistic Regression / SGD Using Mahout

[42]

Let's run the same algorithm on test data as well:

mahout runlogistic --input /tmp/wdbcTest.csv --model /tmp//model --auc –
confusion

So this model works almost the same on test data as well. It has classified 34 out of
the 40 malignant tumors correctly.

Summary
In this chapter, we discussed logistic regression and how we can use this algorithm
available in Apache Mahout. We used the Wisconsin Diagnostic Breast Cancer
dataset and randomly broke it into two datasets: one for training and the other for
testing. We created the logistic regression model using Mahout and also ran test data
over this model. Now, we will move on to the next chapter where you will learn
about the Naïve Bayes classification and also the most frequently used classification
technique: text classification.

Learning the Naïve Bayes
Classification Using Mahout

In this chapter, we will use the Naïve Bayes classification algorithm to classify a
set of documents. Classifying text documents is a little tricky because of the data
preparation steps involved. In this chapter, we will explore the following topics:

• Conditional probability and the Bayes rule
• Understanding the Naïve Bayes algorithm
• Understanding terms used in text classification
• Using the Naïve Bayes algorithm in Apache Mahout

Introducing conditional probability and
the Bayes rule
Before learning the Naïve Bayes algorithm, you should have an understanding of
conditional probability and the Bayes rule.

In very simple terms, conditional probability is the probability that something will
happen, given that something else has already happened. It is expressed as P(A/B),
which can be read as probability of A given B, and it finds the probability of the
occurrence of event A once event B has already happened.

Learning the Naïve Bayes Classification Using Mahout

[44]

Mathematically, it is defined as follows:

() ()
()

P
P |

P
A B

A B
B
∩

=

For example, if you choose a card from a standard card deck and if you were asked
about the probability for the card to be a diamond, you would quickly say 13/52 or
0.25, as there are 13 diamond cards in the deck. However, if you then look at the card
and declare that it is red, then we will have narrowed the possibilities for the card
to 26 possible cards, and the probability that the card is a diamond now is 13/26 =
0.5. So, if we define A as a diamond card and B as a red card, then P(A/B) will be the
probability of the card being a diamond, given it is red.

Sometimes, for a given pair of events, conditional probability is hard to calculate,
and Bayes' theorem helps us here by giving the relationship between two conditional
probabilities.

Bayes' theorem is defined as follows:

() () ()
()

P | P
P |

P
B A A

A B
B

=

The terms in the formula are defined as follows:

• P(A): This is called prior probability or prior
• P(B/A): This is called conditional probability or likelihood
• P(B): This is called marginal probability
• P(A/B): This is called posterior probability or posterior

The following formula is derived only from the conditional probability formula.
We can define P(B/A) as follows:

()
()

P
P
A B
A
∩

Chapter 4

[45]

When rearranged, the formula becomes this:

() () ()P P | PA B B A A∩ =

Now, from the preceding conditional probability formula, we get the following:

() ()
()

() ()
()

P P | P
P |

P P
A B B A A

A B
B B
∩

= =

Let's take an example that will help us to understand how Bayes' theorem is applied.

A cancer test gives a positive result with a probability of 97 percent when the
patient is indeed affected by cancer, while it gives a negative result with 99 percent
probability when the patient is not affected by cancer. If a patient is drawn at random
from a population where 0.2 percent of the individuals are affected by cancer and he
or she is found to be positive, what is the probability that he or she is indeed affected
by cancer? In probabilistic terms, what we know about this problem can be defined
as follows:

P (positive| cancer) = 0.97

P (positive| no cancer) = 1-0.99 = 0.01

P (cancer) = 0.002

P (no cancer) = 1-0.002= 0.998

P (positive) = P (positive| cancer) P (cancer) + P (positive| no cancer) P (no cancer)

 = 0.97*0.002 + 0.01*0.998

 = 0.01192

Now P (cancer| positive) = (0.97*0.002)/0.01192 = 0.1628

So even when found positive, the probability of the patient being affected by cancer
in this example is around 16 percent.

Learning the Naïve Bayes Classification Using Mahout

[46]

Understanding the Naïve Bayes algorithm
In Bayes' theorem, we have seen that the outcome is based only on one evidence,
but in classification problems, we have multiple evidences and we have to predict
the outcome. In Naïve Bayes, we uncouple multiple pieces of evidence and treat
each one of them independently. It is defined as follows:

P (outcome | multiple Evidence)) = P (Evidence 1|outcome)* P (Evidence 2|outcome)* P
(Evidence 3|outcome) …. /P (Evidence)

Run this formula for each possible outcome. Since we are trying to classify,
each outcome will be called a class. Our task is to look at the evidence (features)
to consider how likely it is for it to be of a particular class and then assign it
accordingly. The class that has the highest probability gets assigned to that
combination of evidences. Let's understand this with an example.

Let's say that we have data on 1,000 pieces of fruit. They happen to be bananas,
apples, or some other fruit. We are aware of three characteristics of each fruit:

• Size: They are either long or not long
• Taste: They are either sweet or not sweet
• Color: They are either yellow or not yellow

Assume that we have a dataset like the following:

Fruit type Taste –
sweet

Taste
– not
sweet

Color –
yellow

Color
– not
yellow

Size –
long

Size –
not long

Total

Banana 350 150 450 50 400 100 500
Apple 150 150 100 200 0 300 300
Other 150 50 50 150 100 100 200
Total 650 350 600 400 500 500 1000

Now let's look at the things we have:

P (Banana) = 500/1000 = 0.5

P (Apple) = 300/1000 = 0.3

P (Other) = 200/1000 = 0.2

Chapter 4

[47]

Let's look at the probability of the features:

P (Sweet) = 650/1000 = 0.65

P (Yellow) = 600/1000 = 0.6

P (long) = 500/1000 = 0.5

P (not Sweet) = 350/1000 = 0.35

P (not yellow) = 400/1000= 0.4

P (not long) = 500/1000 = 0.5

Now we want to know what fruit we will have if it is not yellow and not long and
sweet. The probability of it being an apple is as follows:

P (Apple| sweet, not long, not yellow) = P (sweet | Apple)* P (not long | Apple)* P (not
yellow | Apple)*P (Apple)/P (sweet)* P (not long) *P (not yellow)

 = 0.5*1*0.67*0.3/P (Evidence)

 = 0.1005/P (Evidence)

The probability of it being a banana is this:

P (banana| sweet, not long, not yellow) = P (sweet | banana)* P (not long | banana)* P (not
yellow | banana)*P (banana)/P (sweet)* P (not long) *P (not yellow)

 = 0.7*0.2*0.1*0.5/P (Evidence)

 = 0.007/P (Evidence)

The probability of it being any other fruit is as follows:

P (other fruit| sweet, not long, not yellow) = P (sweet | other fruit)* P (not long | other
fruit)* P (not yellow | other fruit) *P (other fruit)/P (sweet)* P (not long) *P (not yellow)

 = 0.75*0.5*0.75*0.2/P (Evidence)

 = 0.05625/ P (Evidence)

So from the results, you can see that if the fruit is sweet, not long, and not yellow,
then the highest probability is that it will be an apple. So find out the highest
probability and assign the unknown item to that class.

Naïve Bayes is a very good choice for text classification. Before we move on to text
classification using Naïve Bayes in Mahout, let's understand a few terms that are
really useful for text classification.

Learning the Naïve Bayes Classification Using Mahout

[48]

Understanding the terms used in text
classification
To prepare data so that it can be used by a classifier is a complex process. From raw
data, we can collect explanatory and target variables and encode them as vectors,
which is the input of the classifier.

Vectors are ordered lists of values as defined in two-dimensional space. You can
take a clue from coordinate geometry as well. A point (3, 4) is a point in the x and y
planes. In Mahout, it is different. Here, a vector can have (3, 4) or 10,000 dimensions.

Mahout provides support for creating vectors. There are two types of vector
implementations in Mahout: sparse and dense vectors. There are a few terms that
we need to understand for text classification:

• Bag of words: This considers each document as a collection of words.
This ignores word order, grammar, and punctuation. So, if every word
is a feature, then calculating the feature value of the document word is
represented as a token. It is given the value 1 if it is present or 0 if not.

• Term frequency: This considers the word count in the document instead of
0 and 1. So the importance of a word increases with the number of times it
appears in the document. Consider the following example sentence:

Apple has launched iPhone and it will continue to launch such products.
Other competitors are also planning to launch products similar to that of
iPhone.

The following is the table that represents term frequency:

Term Count
Apple 1
Launch 3
iPhone 2
Product 2
Plan 1

Chapter 4

[49]

The following techniques are usually applied to come up with this type of table:

• Stemming of words: With this, the suffix is removed from the word so
"launched", "launches", and "launch" are all considered as "launch".

• Case normalization: With this, every term is converted to lowercase.
• Stop word removal: There are some words that are almost present in every

document. We call these words stop words. During an important feature
extraction from a document, these words come into account and they will not
be helpful in the overall calculation. Examples of these words are "is, are, the,
that, and so on." So, while extracting, we will ignore these kind of words.

• Inverse document frequency: This is considered as the boost a term gets
for being rare. A term should not be too common. If a term occurs in every
document, it is not good for classification. The fewer documents in which a
term occurs, the more significant it is likely to be for the documents it does
occur in. For a term t, inverse document frequency is calculated as follows:
IDF (t) = 1 + log (total number of documents/ number of documents
containing t)

• Term frequency and inverse term frequency: This is one of the popular
representations of the text. It is the product of term frequency and inverse
document frequency, as follows:

TFIDF (t, d) = TF (t, d) * IDF (t)

Each document is a feature vector and a collection of documents is a set of these
feature vectors and this set works as the input for the classification. Now that we
understand the basic concepts behind the vector creation of text documents, let's
move on to the next section where we will classify text documents using the Naïve
Bayes algorithm.

Using the Naïve Bayes algorithm in
Apache Mahout
We will use a dataset of 20 newsgroups for this exercise. The 20 newsgroups
dataset is a standard dataset commonly used for machine learning research. The
data is obtained from transcripts of several months of postings made in 20 Usenet
newsgroups from the early 1990s. This dataset consists of messages, one per file.
Each file begins with header lines that specify things such as who sent the message,
how long it is, what kind of software was used, and the subject. A blank line follows
and then the message body follows as unformatted text.

www.allitebooks.com

http://www.allitebooks.org

Learning the Naïve Bayes Classification Using Mahout

[50]

Download the 20news-bydate.tar.gz dataset from http://qwone.
com/~jason/20Newsgroups/. The following steps are used to build the Naïve Bayes
classifier using Mahout:

1. Create a 20newsdata directory and unzip the data here:
mkdir /tmp/20newsdata

cd /tmp/20newsdata

tar –xzvf /tmp/20news-bydate.tar.gz

2. You will see two folders under 20newsdata: 20news-bydate-test and
20news-bydate-train. Now create another directory called 20newsdataall
and merge both the training and test data of the 20 newsgroups.

3. Come out of the directory and move to the home directory and execute
the following:
mkdir /tmp/20newsdataall

cp –R /20newsdata/*/* /tmp/20newsdataall

4. Create a directory in Hadoop and save this data in HDFS format:
hadoop fs –mkdir /user/hue/20newsdata

hadoop fs –put /tmp/20newsdataall /user/hue/20newsdata

5. Convert the raw data into a sequence file. The seqdirectory command will
generate sequence files from a directory. Sequence files are used in Hadoop.
A sequence file is a flat file that consists of binary key/value pairs. We are
converting the files into sequence files so that it can be processed in Hadoop,
which can be done using the following command:
bin/mahout seqdirectory -i /user/hue/20newsdata/20newsdataall -o
/user/hue/20newsdataseq-out

The output of the preceding command can be seen in the following screenshot:

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

Chapter 4

[51]

6. Convert the sequence file into a sparse vector using the following command:
bin/mahout seq2sparse -i /user/hue/20newsdataseq-out/part-m-00000
-o /user/hue/20newsdatavec -lnorm -nv -wt tfidf

The terms used in the preceding command are as follows:

 ° lnorm: This is for the output vector to be log normalized
 ° nv: This refers to named vectors
 ° wt: This refers to the kind of weight to use; here, we use tfidf

The output of the preceding command on the console is shown in the
following screenshot:

Learning the Naïve Bayes Classification Using Mahout

[52]

7. Split the set of vectors to train and test the model:
bin/mahout split -i /user/hue/20newsdatavec/tfidf-vectors
--trainingOutput /user/hue/20newsdatatrain --testOutput /
user/hue/20newsdatatest --randomSelectionPct 40 --overwrite
--sequenceFiles -xm sequential

The terms used in the preceding command are as follows:

 ° randomSelectionPct: This divides the percentage of data into
testing and training datasets. Here, 60 percent is for testing and
40 percent for training.

 ° xm: This refers to the execution method to use: sequential or
mapreduce. The default is mapreduce.

8. Now train the model:
bin/mahout trainnb -i /user/hue/20newsdatatrain -el -o /user/hue/
model -li /user/hue/labelindex -ow -c

9. Test the model using the following command:

bin/mahout testnb -i /user/hue/20newsdatatest -m /user/hue/model/
-l /user/hue/labelindex -ow -o /user/hue/results

Chapter 4

[53]

The output of the preceding command on the console is shown in the
following screenshot:

We get the result of our Naïve Bayes classifier for the 20 newsgroups.

Learning the Naïve Bayes Classification Using Mahout

[54]

Summary
In this chapter, we discussed the Naïve Bayes algorithm. This algorithm is a
simplistic yet highly regarded statistical model that is widely used in both industry
and academia, and it produces good results on many occasions. We initially
discussed conditional probability and the Bayes rule. We then saw an example of
the Naïve Bayes algorithm. You learned about the approaches to convert text into a
vector format, which is an input for classifiers. Finally, we used the 20 newsgroups
dataset to build a classifier using the Naïve Bayes algorithm in Mahout. In the
next chapter, we will continue our journey of exploring classification algorithms
in Mahout with the Hidden Markov model implementation.

Learning the Hidden Markov
Model Using Mahout

In this chapter, we will cover one of the most interesting topics of classification
techniques: the Hidden Markov Model (HMM). To understand the HMM, we will
cover the following topics in this chapter:

• Deterministic and nondeterministic patterns
• The Markov process
• Introducing the HMM
• Using Mahout for the HMM

Deterministic and nondeterministic
patterns
In a deterministic system, each state is solely dependent on the state it was
previously in. For example, let's take the case of a set of traffic lights. The sequence
of lights is red → green → amber → red. So, here we know what state will follow
after the current state. Once the transitions are known, deterministic systems are
easy to understand.

For nondeterministic patterns, consider an example of a person named Bob who
has his snacks at 4:00 P.M. every day. Let's say he has any one of the three items
from the menu: ice cream, juice, or cake. We cannot say for sure what item he will
have the next day, even if we know what he had today. This is an example of a
nondeterministic pattern.

Learning the Hidden Markov Model Using Mahout

[56]

The Markov process
In the Markov process, the next state is dependent on the previous states. If we
assume that we have an n state system, then the next state is dependent on the
previous n states. This process is called an n model order. In the Markov process,
we make the choice for the next state probabilistically. So, considering our previous
example, if Bob had juice today, he can have juice, ice cream, or cake the next day.
In the same way, we can reach any state in the system from the previous state. The
Markov process is shown in the following diagram:

Cake Ice-cream Juice

If we have n states in a process, then we can reach any state with n2 transitions. We
have a probability of moving to any state, and hence, we will have n2 probabilities of
doing this. For a Markov process, we will have the following three items:

• States: This refers to the states in the system. In our example, let's say there
are three states: state 1, state 2, and state 3.

• Transition matrix: This will have the probabilities of moving from one
state to any other state. An example of the transition matrix is shown in the
following screenshot:

This matrix shows that if the system was in state 1 yesterday, then the
probability of it to remain in the same state today will be 0.1.

Chapter 5

[57]

• Initial state vector: This is the vector of the initial state of the system.
(Any one of the states will have a probability of 1 and the rest will have a
probability of 0 in this vector.)

Introducing the Hidden Markov Model
The Hidden Markov Model (HMM) is a classification technique to predict the states
of a system by observing the outcomes without having access to the actual states
themselves. It is a Markov model in which the states are hidden.

Let's continue with Bob's snack example we saw earlier. Now assume we have one
more set of events in place that is directly observable. We know what Bob has eaten
for lunch and his snacks intake is related to his lunch. So, we have an observation
state, which is Bob's lunch, and hidden states, which are his snacks intake. We want
to build an algorithm that can forecast what would be Bob's choice of snack based on
his lunch.

Learning the Hidden Markov Model Using Mahout

[58]

In addition to the transition probability matrix in the Hidden Markov Model, we
have one more matrix that is called an emission matrix. This matrix contains the
probability of the observable state, provided it is assigned a hidden state. The
emission matrix is as follows:

P (observable state | one state)

So, a Hidden Markov Model has the following properties:

• State vector: This contains the probability of the hidden model to be in a
particular state at the start

• Transition matrix: This has the probabilities of a hidden state, given the
previous hidden state

• Emission matrix: Given that the hidden model is in a particular hidden state,
this has the probabilities of observing a particular observable state

• Hidden states: This refers to the states of the system that can be defined by
the Hidden Markov Model

• Observable state: The states that are visible in the process

Using the Hidden Markov Model, three types of problems can be solved. The first
two are related to the pattern recognition problem and the third type of problem
generates a Hidden Markov Model, given a sequence of observations. Let's look at
these three types of problems:

• Evaluation: This is finding out the probability of an observed sequence,
given an HMM. From the number of different HMMs that describe different
systems and a sequence of observations, our goal will be to find out which
HMM will most probably generate the required sequence. We use the
forward algorithm to calculate the probability of an observation sequence
when a particular HMM is given and find out the most probable HMM.

• Decoding: This is finding the most probable sequence of hidden states
from some observations. We use the Viterbi algorithm to determine the
most probable sequence of hidden states when you have a sequence of
observations and an HMM.

• Learning: Learning is generating the HMM from a sequence of observations.
So, if we have such a sequence, we may wonder which is the most likely
model to generate this sequence. The forward-backward algorithms are
useful in solving this problem.

The Hidden Markov Model is used in different applications such as speech
recognition, handwritten letter recognition, genome analysis, parts of speech
tagging, customer behavior modeling, and so on.

Chapter 5

[59]

Using Mahout for the Hidden Markov
Model
Apache Mahout has the implementation of the Hidden Markov Model. It is available
in the org.apache.mahout.classifier.sequencelearning.hmm package.

The overall implementation is provided by eight different classes:

• HMMModel: This is the main class that defines the Hidden Markov Model.
• HmmTrainer: This class has algorithms that are used to train the Hidden

Markov Model. The main algorithms are supervised learning, unsupervised
learning, and unsupervised Baum-Welch.

• HmmEvaluator: This class provides different methods to evaluate an HMM
model. The following use cases are covered in this class:

 ° Generating a sequence of output states from a model (prediction)
 ° Computing the likelihood that a given model will generate the given

sequence of output states (model likelihood)
 ° Computing the most likely hidden sequence for a given model and a

given observed sequence (decoding)

• HmmAlgorithms: This class contains implementations of the three major
HMM algorithms: forward, backward, and Viterbi.

• HmmUtils: This is a utility class and provides methods to handle HMM
model objects.

• RandomSequenceGenerator: This is a command-line tool to generate a
sequence by the given HMM.

• BaumWelchTrainer: This is the class to train HMM from the console.
• ViterbiEvaluator: This is also a command-line tool for Viterbi evaluation.

Now, let's work with Bob's example.

The following is the given matrix and the initial probability vector:

Ice cream Cake Juice
0.36 0.51 0.13

www.allitebooks.com

http://www.allitebooks.org

Learning the Hidden Markov Model Using Mahout

[60]

The following will be the state transition matrix:

Ice cream Cake Juice
Ice cream 0.365 0.500 0.135
Cake 0.250 0.125 0.625
Juice 0.365 0.265 0.370

The following will be the emission matrix:

Spicy food Normal food No food
Ice cream 0.1 0.2 0.7
Cake 0.5 0.25 0.25
Juice 0.80 0.10 0.10

Now we will execute a command-line-based example of this problem. We have three
hidden states of what Bob's eaten for snacks: ice-cream, cake, or juice. Then, we have
three observable states of what he is having at lunch: spicy food, normal food, or no
food at all. Now, the following are the steps to execute from the command line:

1. Create a directory with the name hmm: mkdir /tmp/hmm. Go to this directory
and create the sample input file of the observed states. This will include a
sequence of Bob's lunch habit: spicy food (state 0), normal food (state 1), and
no food (state 2). Execute the following command:
echo "0 1 2 2 2 1 1 0 0 2 1 2 1 1 1 1 2 2 2 0 0 0 0 0 0 2 2 2 0 0
0 0 0 0 1 1 1 1 2 2 2 2 2 0 2 1 2 0 2 1 2 1 1 0 0 0 1 0 1 0 2 1 2
1 2 1 2 1 1 0 0 2 2 0 2 1 1 0" > hmm-input

2. Run the BaumWelch algorithm to train the model using the
following command:
mahout baumwelch -i /tmp/hmm/hmm-input -o /tmp/hmm/hmm-model -nh 3
-no 3 -e .0001 -m 1000

The parameters used in the preceding command are as follows:

 ° i: This is the input file location
 ° o: This is the output location for the model
 ° nh: This is the number of hidden states. In our example, it is three (ice

cream, juice, or cake)
 ° no: This is the number of observable states. In our example, it is three

(spicy, normal, or no food)

Chapter 5

[61]

 ° e: This is the epsilon number. This is the convergence threshold value
 ° m: This is the maximum iteration number

The following screenshot shows the output on executing the previous
command:

3. Now we have an HMM model that can be used to build a predicted
sequence. We will run the model to predict the next 15 states of the
observable sequence using the following command:
mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-
predictions -l 10

The parameters used in the preceding command are as follows:

m: This is the path for the HMM model
o: This is the output directory path
l: This is the length of the generated sequence

4. To view the prediction for the next 10 observable states, use the
following command:
mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-
predictions -l 10

The output of the previous command is shown in the following screenshot:

From the output, we can say that the next observable states for Bob's lunch
will be spicy, spicy, spicy, normal, normal, no food, no food, no food, no
food, and no food.

Learning the Hidden Markov Model Using Mahout

[62]

5. Now, we will use one more algorithm to predict the hidden state. We will use
the Viterbi algorithm to predict the hidden states for a given observational
state's sequence. We will first create the sequence of the observational state
using the following command:
echo "0 1 2 0 2 1 1 0 0 1 1 2" > /tmp/hmm/hmm-viterbi-input

6. We will use the Viterbi command-line option to generate the output with the
likelihood of generating this sequence:
mahout viterbi --input /tmp/hmm/hmm-viterbi-input --output tmp/
hmm/hmm-viterbi-output --model /tmp/hmm/hmm-model --likelihood

The parameters used in the preceding command are as follows:

 ° input: This is the input location of the file
 ° output: This is the output location of the Viterbi algorithm's output
 ° model: This is the HMM model location that we created earlier
 ° likelihood: This is the computed likelihood of the

observed sequence

The following screenshot shows the output on executing the
previous command:

7. Predictions from the Viterbi are saved in the output file and can be seen
using the cat command:

cat /tmp/hmm/hmm-viterbi-output

The following output shows the predictions for the hidden state:

Chapter 5

[63]

Summary
In this chapter, we discussed another classification technique: the Hidden Markov
Model. You learned about deterministic and nondeterministic patterns. We also
touched upon the Markov process and Hidden Markov process in general. We
checked the classes implemented inside Mahout to support the Hidden Markov
Model. We took up an example to create the HMM model and further used this
model to predict the observational state's sequence. We used the Viterbi algorithm
implemented in Mahout to predict the hidden states in the system.

Now, in the next chapter, we will cover one more interesting algorithm used in
classification area: Random forest.

Learning Random Forest
Using Mahout

Random forest is one of the most popular techniques in classification. It starts with a
machine learning technique called decision tree. In this chapter, we will explore the
following topics:

• Decision tree
• Random forest
• Using Mahout for Random forest

Decision tree
A decision tree is used for classification and regression problems. In simple terms,
it is a predictive model that uses binary rules to calculate the target variable. In a
decision tree, we use an iterative process of splitting the data into partitions, then we
split it further on branches. As in other classification model creation processes, we
start with the training dataset in which target variables or class labels are defined.
The algorithm tries to break all the records in training datasets into two parts based
on one of the explanatory variables. The partitioning is then applied to each new
partition, and this process is continued until no more partitioning can be done. The
core of the algorithm is to find out the rule that determines the initial split. There
are algorithms to create decision trees, such as Iterative Dichotomiser 3 (ID3),
Classification and Regression Tree (CART), Chi-squared Automatic Interaction
Detector (CHAID), and so on. A good explanation for ID3 can be found at http://
www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html.

http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html
http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html

Learning Random Forest Using Mahout

[66]

Forming the explanatory variables to choose the best splitter in a node, the algorithm
considers each variable in turn. Every possible split is considered and tried, and the
best split is the one that produces the largest decrease in diversity of the classification
label within each partition. This is repeated for all variables, and the winner is chosen
as the best splitter for that node. The process is continued in the next node until we
reach a node where we can make the decision.

We create a decision tree from a training dataset so it can suffer from the overfitting
problem. This behavior creates a problem with real datasets. To improve this
situation, a process called pruning is used. In this process, we remove the branches
and leaves of the tree to improve the performance. Algorithms used to build the tree
work best at the starting or root node since all the information is available there.
Later on, with each split, data is less and towards the end of the tree, a particular
node can show patterns that are related to the set of data which is used to split. These
patterns create problems when we use them to predict the real dataset. Pruning
methods let the tree grow and remove the smaller branches that fail to generalize.
Now take an example to understand the decision tree.

Consider we have a iris flower dataset. This dataset is hugely popular in the machine
learning field. It was introduced by Sir Ronald Fisher. It contains 50 samples from
each of three species of iris flower (Iris setosa, Iris virginica, and Iris versicolor).
The four explanatory variables are the length and width of the sepals and petals in
centimeters, and the target variable is the class to which the flower belongs.

Sentosa

(Entire Group)

Petal WidthSentosa

Versicolor virginica

Petal Length < 2.1 Petal Length >= 2.1

Petal Width < 1.9 Petal Width >= 1.9

Chapter 6

[67]

As you can see in the preceding diagram, all the groups were earlier considered as
Sentosa species and then the explanatory variable and petal length were further
used to divide the groups. At each step, the calculation for misclassified items was
also done, which shows how many items were wrongly classified. Moreover, the
petal width variable was taken into account. Usually, items at leaf nodes are
correctly classified.

Random forest
The Random forest algorithm was developed by Leo Breiman and Adele Cutler.
Random forests grow many classification trees. They are an ensemble learning
method for classification and regression that constructs a number of decision trees at
training time and also outputs the class that is the mode of the classes outputted by
individual trees.

Single decision trees show the bias–variance tradeoff. So they usually have high
variance or high bias. The following are the parameters in the algorithm:

• Bias: This is an error caused by an erroneous assumption in the
learning algorithm

• Variance: This is an error that ranges from sensitivity to small fluctuations
in the training set

Random forests attempt to mitigate this problem by averaging to find a natural
balance between two extremes. A Random forest works on the idea of bagging,
which is to average noisy and unbiased models to create a model with low variance.
A Random forest algorithm works as a large collection of decorrelated decision trees.
To understand the idea of a Random forest algorithm, let's work with an example.

Consider we have a training dataset that has lots of features (explanatory variables)
and target variables or classes:

Learning Random Forest Using Mahout

[68]

We create a sample set from the given dataset:

A different set of random features were taken into account to create the random sub-
dataset. Now, from these sub-datasets, different decision trees will be created. So
actually we have created a forest of the different decision trees. Using these different
trees, we will create a ranking system for all the classifiers. To predict the class of a
new unknown item, we will use all the decision trees and separately find out which
class these trees are predicting. See the following diagram for a better understanding
of this concept:

Different decision trees to predict the class of an unknown item

Chapter 6

[69]

In this particular case, we have four different decision trees. We predict the class
of an unknown dataset with each of the trees. As per the preceding figure, the first
decision tree provides class 2 as the predicted class, the second decision tree predicts
class 5, the third decision tree predicts class 5, and the fourth decision tree predicts
class 3. Now, a Random forest will vote for each class. So we have one vote each for
class 2 and class 3 and two votes for class 5. Therefore, it has decided that for the new
unknown dataset, the predicted class is class 5. So the class that gets a higher vote is
decided for the new dataset. A Random forest has a lot of benefits in classification
and a few of them are mentioned in the following list:

• Combination of learning models increases the accuracy of the classification
• Runs effectively on large datasets as well
• The generated forest can be saved and used for other datasets as well
• Can handle a large amount of explanatory variables

Now that we have understood the Random forest theoretically, let's move on to
Mahout and use the Random forest algorithm, which is available in Apache Mahout.

Using Mahout for Random forest
Mahout has implementation for the Random forest algorithm. It is very easy to
understand and use. So let's get started.

Dataset

We will use the NSL-KDD dataset. Since 1999, KDD'99 has been the most widely
used dataset for the evaluation of anomaly detection methods. This dataset is
prepared by S. J. Stolfo and is built based on the data captured in the DARPA'98 IDS
evaluation program (R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall,
D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A.
Zissman, "Evaluating intrusion detection systems: The 1998 darpa off-line intrusion
detection evaluation," discex, vol. 02, p. 1012, 2000).

DARPA'98 is about 4 GB of compressed raw (binary) tcp dump data of 7 weeks of
network traffic, which can be processed into about 5 million connection records, each
with about 100 bytes. The two weeks of test data have around 2 million connection
records. The KDD training dataset consists of approximately 4,900,000 single
connection vectors, each of which contains 41 features and is labeled as either normal
or an attack, with exactly one specific attack type.

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD'99
dataset. You can download this dataset from http://nsl.cs.unb.ca/NSL-KDD/.

http://nsl.cs.unb.ca/NSL-KDD/

Learning Random Forest Using Mahout

[70]

We will download the KDDTrain+_20Percent.ARFF and KDDTest+.ARFF datasets.

In KDDTrain+_20Percent.ARFF and KDDTest+.ARFF, remove the first
44 lines (that is, all lines starting with @attribute). If this is not done, we
will not be able to generate a descriptor file.

Chapter 6

[71]

Steps to use the Random forest algorithm in
Mahout
The steps to implement the Random forest algorithm in Apache Mahout are as
follows:

1. Transfer the test and training datasets to hdfs using the following
commands:
hadoop fs -mkdir /user/hue/KDDTrain

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs –put /tmp/KDDTrain+_20Percent.arff /user/hue/KDDTrain

hadoop fs –put /tmp/KDDTest+.arff /user/hue/KDDTest

2. Generate the descriptor file. Before you build a Random forest model based
on the training data in KDDTrain+.arff, a descriptor file is required. This is
because all information in the training dataset needs to be labeled. From the
labeled dataset, the algorithm can understand which one is numerical and
categorical. Use the following command to generate descriptor file:
hadoop jar $MAHOUT_HOME/core/target/mahout-core-xyz.job.jar

org.apache.mahout.classifier.df.tools.Describe

-p /user/hue/KDDTrain/KDDTrain+_20Percent.arff

-f /user/hue/KDDTrain/KDDTrain+.info

-d N 3 C 2 N C 4 N C 8 N 2 C 19 N L

Jar: Mahout core jar (xyz stands for version). If you have directly installed
Mahout, it can be found under the /usr/lib/mahout folder. The main class
Describe is used here and it takes three parameters:

The p path for the data to be described.
The f location for the generated descriptor file.
d is the information for the attribute on the data. N 3 C 2 N C 4 N C 8
N 2 C 19 N L defines that the dataset is starting with a numeric (N),
followed by three categorical attributes, and so on. In the last,
L defines the label.

Learning Random Forest Using Mahout

[72]

The output of the previous command is shown in the following screenshot:

3. Build the Random forest using the following command:
hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.
jar org.apache.mahout.classifier.df.mapreduce.BuildForest

-Dmapred.max.split.size=1874231 -d /user/hue/KDDTrain/
KDDTrain+_20Percent.arff

-ds /user/hue/KDDTrain/KDDTrain+.info

-sl 5 -p -t 100 –o /user/hue/ nsl-forest

Jar: Mahout example jar (xyz stands for version). If you have directly
installed Mahout, it can be found under the /usr/lib/mahout folder. The
main class build forest is used to build the forest with other arguments,
which are shown in the following list:

Dmapred.max.split.size indicates to Hadoop the maximum size of
each partition.
d stands for the data path.
ds stands for the location of the descriptor file.
sl is a variable to select randomly at each tree node. Here, each tree is
built using five randomly selected attributes per node.
p uses partial data implementation.
t stands for the number of trees to grow. Here, the commands build
100 trees using partial implementation.
o stands for the output path that will contain the decision forest.

Chapter 6

[73]

In the end, the process will show the following result:

4. Use this model to classify the new dataset:

hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.
jar org.apache.mahout.classifier.df.mapreduce.TestForest

-i /user/hue/KDDTest/KDDTest+.arff

-ds /user/hue/KDDTrain/KDDTrain+.info -m /user/hue/nsl-forest -a –
mr

 -o /user/hue/predictions

Jar: Mahout example jar (xyz stands for version). If you have directly
installed Mahout, it can be found under the /usr/lib/mahout folder. The
class to test the forest has the following parameters:

I indicates the path for the test data
ds stands for the location of the descriptor file
m stands for the location of the generated forest from the
previous command
a informs to run the analyzer to compute the confusion matrix
mr informs hadoop to distribute the classification
o stands for the location to store the predictions in

Learning Random Forest Using Mahout

[74]

The job provides the following confusion matrix:

So, from the confusion matrix, it is clear that 9,396 instances were correctly classified
and 315 normal instances were incorrectly classified as anomalies. And the accuracy
percentage is 77.7635 (correctly classified instances by the model / classified
instances). The output file in the prediction folder contains the list where 0 and 1. 0
defines the normal dataset and 1 defines the anomaly.

Summary
In this chapter, we discussed the Random forest algorithm. We started our
discussion by understanding the decision tree and continued with an understanding
of the Random forest. We took up the NSL-KDD dataset, which is used to build
predictive systems for cyber security. We used Mahout to build the Random forest
tree, and used it with the test dataset and generated the confusion matrix and other
statistics for the output.

In the next chapter, we will look at the final classification algorithm available in
Apache Mahout. So stay tuned!

Learning Multilayer
Perceptron Using Mahout

To understand a Multilayer Perceptron (MLP), we will first explore one more
popular machine learning technique: neural network. In this chapter, we will
explore the following topics:

• Neural network and neurons
• MLP
• Using Mahout for MLP implementation

Neural network and neurons
Neural network is an old algorithm, and it was developed with a goal in mind: to
provide the computer with a brain. Neural network is inspired by the biological
structure of the human brain where multiple neurons are connected and form
columns and layers. A neuron is an electrically excitable cell that processes and
transmits information through electrical and chemical signals. Perceptual input
enters into the neural network through our sensory organs and is then further
processed into higher levels. Let's understand how neurons work in our brain.

Learning Multilayer Perceptron Using Mahout

[76]

Neurons are computational units in the brain that collect the input from input
nerves, which are called dendrites. They perform computation on these input
messages and send the output using output nerves, which are called axons. See the
following figure (http://vv.carleton.ca/~neil/neural/neuron-a.html):

On the same lines, we develop a neural network in computers. We can represent a
neuron in our algorithm as shown in the following figure:

x1

fx2

x3

Here, x1, x2, and x3 are the feature vectors, and they are assigned to a function f,
which will do the computation and provide the output. This activation function
is usually chosen from the family of sigmoidal functions (as defined in Chapter
3, Learning Logistic Regression / SGD Using Mahout). In the case of classification
problems, softmax activation functions are used. In classification problems, we want
the output as the probabilities of target classes. So, it is desirable for the output to lie
between 0 and 1 and the sum close to 1. Softmax function enforces these constraints.
It is a generalization of the logistic function. More details on softmax function can be
found at http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.
html.

http://vv.carleton.ca/~neil/neural/neuron-a.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html

Chapter 7

[77]

Multilayer Perceptron
A neural network or artificial neural network generally refers to an MLP network.
We defined neuron as an implementation in computers in the previous section. An
MLP network consists of multiple layers of these neuron units. Let's understand a
perceptron network of three layers, as shown in the next figure. The first layer of
the MLP represents the input and has no other purpose than routing the input to
every connected unit in a feed-forward fashion. The second layer is called hidden
layers, and the last layer serves the special purpose of determining the output. The
activation of neurons in the hidden layers can be defined as the sum of the weight
of all the input. Neuron 1 in layer 2 is defined as follows:

Y12 = g(w110x0 +w111x1+w112x2+w113x3)

The first part where *x0 = 0* is called the bias and can be used as an offset,
independent of the input. Neuron 2 in layer 2 is defined as follows:

Y22 = g(w120x0 +w121x1+w122x2+w123x3)

Neuron 3 in layer 2 is defined as follows:

Y32 = g (w130x0 +w131x1+w132x2+w133x3)

Learning Multilayer Perceptron Using Mahout

[78]

Here, g is a sigmoid function, as defined in Chapter 3, Learning Logistic Regression /
SGD Using Mahout. The function is as follows:

g(z) = 1/1+e (-z)

In this MLP network output, from each input and hidden layers, neuron units are
distributed to other nodes, and this is why this type of network is called a fully
connected network. In this network, no values are fed back to the previous layer. (Feed
forward is another strategy and is also known as back propagation. Details on this can
be found at http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html.)

An MLP network can have more than one hidden layer. To get the value of the
weights so that we can get the predicted value as close as possible to the actual one
is a training process of the MLP. To build an effective network, we consider a lot of
items such as the number of hidden layers and neuron units in each layer, the cost
function to minimize the error in predicted and actual values, and so on.

Now let's discuss two more important and problematic questions that arise when
creating an MLP network:

• How many hidden layers should one use for the network?
• How many numbers of hidden units (neuron units) should one use in a

hidden layer?

Zero hidden layers are required to resolve linearly separable data. Assuming your
data does require separation by a non-linear technique, always start with one hidden
layer. Almost certainly, that's all you will need. If your data is separable using an
MLP, then this MLP probably only needs a single hidden layer. In order to select the
number of units in different layers, these are the guidelines:

• Input layer: This refers to the number of explanatory variables in the model
plus one for the bias node.

• Output layer: In the case of classification, this refers to the number of target
variables, and in the case of regression, this is obviously one.

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

Chapter 7

[79]

• Hidden layer: Start your network with one hidden layer and use the number
of neuron units equivalent to the units in the input layer. The best way is to
train several neural networks with different numbers of hidden layers and
hidden neurons and measure the performance of these networks using cross-
validation. You can stick with the number that yields the best-performing
network. Problems that require two hidden layers are rarely encountered.
However, neural networks that have more than one hidden layer can
represent functions with any kind of shape. There is currently no theory to
justify the use of neural networks with more than two hidden layers. In fact,
for many practical problems, there is no reason to use any more than one
hidden layer. A network with no hidden layer is only capable of representing
linearly separable functions. Networks with one layer can approximate
any function that contains a continuous mapping from one finite space to
another, and networks with two hidden layers can represent an arbitrary
decision boundary to arbitrary accuracy with rational activation functions
and can approximate any smooth mapping to any accuracy (Chapter 5 of
the book Introduction to Neural Networks for Java).

• Number of neurons or hidden units: Use the number of neuron units
equivalent to the units in the input layer. The number of hidden units should
be less than twice the number of units in the input layer. Another rule to
calculate this is (number of input units + number of output units)* 2/3.

Do the testing for generalization errors, training errors, bias, and variance. When a
generalization error dips, then just before it begins to increase again, the numbers of
nodes are usually found to be perfect at this point.

Now let's move on to the next section and explore how we can use Mahout for
an MLP.

MLP implementation in Mahout
The MLP implementation is based on a more general neural network class. It is
implemented to run on a single machine using Stochastic Gradient Descent, where
the weights are updated using one data point at a time.

The number of layers and units per layer can be specified manually and determines
the whole topology with each unit being fully connected to the previous layer. A
bias unit is automatically added to the input of every layer. A bias unit is helpful for
shifting the activation function to the left or right. It is like adding a coefficient to the
linear function.

Learning Multilayer Perceptron Using Mahout

[80]

Currently, the logistic sigmoid is used as a squashing function in every hidden and
output layer.

The command-line version does not perform iterations that lead to bad results on
small datasets. Another restriction is that the CLI version of the MLP only supports
classification, since the labels have to be given explicitly when executing the
implementation in the command line.

A learned model can be stored and updated with new training instances using the
`--update` flag. The output of the classification result is saved as a .txt file and
only consists of the assigned labels. Apart from the command-line interface, it is
possible to construct and compile more specialized neural networks using the API
and interfaces in the mrlegacy package. (The core package is renamed as mrlegacy.)

In the command line, we use TrainMultilayerPerceptron and
RunMultilayerPerceptron classes that are available in the mrlegacy package with
three other classes: Neural network.java, NeuralNetworkFunctions.java, and
MultilayerPerceptron.java. For this particular implementation, users can freely
control the topology of the MLP, including the following:

• The size of the input layer
• The number of hidden layers
• The size of each hidden layer
• The size of the output layer
• The cost function
• The squashing function

The model is trained in an online learning approach, where the weights of neurons in
the MLP is updated and incremented using the backPropagation algorithm proposed
by Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning representations by
back-propagating errors. Nature, 323, 533-536.

Chapter 7

[81]

Using Mahout for MLP
Mahout has implementation for an MLP network. The MLP implementation is
currently located in the Map-Reduce-Legacy package. As with other classification
algorithms, two separated classes are implemented to train and use this
classifier. For training the classifier, the org.apache.mahout.classifier.mlp.
TrainMultilayerPerceptron class, and for running the classifier, the org.apache.
mahout.classifier.mlp.RunMultilayerPerceptron class is used. There are a
number of parameters defined that are used with these classes, but we will discuss
these parameters once we run our example on a dataset.

Dataset

In this chapter, we will train an MLP to classify the iris dataset. The iris flower
dataset contains data of three flower species, where each data point consists of four
features. This dataset was introduced by Sir Ronald Fisher. It consists of 50 samples
from each of three species of iris. These species are Iris setosa, Iris virginica, and Iris
versicolor. Four features were measured from each sample:

• Sepal length
• Sepal width
• Petal length
• Petal width

All measurements are in centimeters. You can download this dataset from https://
archive.ics.uci.edu/ml/machine-learning-databases/iris/ and save it as a
.csv file, as shown in the following screenshot:

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/

Learning Multilayer Perceptron Using Mahout

[82]

This dataset will look like the the following screenshot:

Steps to use the MLP algorithm in Mahout
The steps to use the MLP algorithm in Mahout are as follows:

1. Create the MLP model.
To create the MLP model, we will use the TrainMultilayerPerceptron
class. Use the following command to generate the model:

bin/mahout org.apache.mahout.classifier.mlp.
TrainMultilayerPerceptron -i /tmp/irisdata.csv -labels Iris-setosa
Iris-versicolor Iris-virginica -mo /tmp/model.model -ls 4 8 3 -l
0.2 -m 0.35 -r 0.0001

You can also run using the core jar: Mahout core jar (xyz stands for the
version). If you have directly installed Mahout, it can be found under the /
usr/lib/mahout folder. Execute the following command:

Java –cp /usr/lib/mahout/ mahout-core-xyz-job.jar org.apache.
mahout.classifier.mlp.TrainMultilayerPerceptron -i /tmp/irisdata.
csv -labels Iris-setosa Iris-versicolor Iris-virginica -mo /user/
hue/mlp/model.model -ls 4 8 3 -l 0.2 -m 0.35 -r 0.0001

Chapter 7

[83]

The TrainMultilayerPerceptron class is used here and it takes different
parameters. Also, i is the path for the input dataset. Here, we have put the
dataset under the /tmp folder (local filesystem). Additionally, labels are
defined in the dataset. Here we have the following labels:

 ° mo is the output location for the created model.
 ° ls is the number of units per layer, including input, hidden, and

output layers. This parameter specifies the topology of the network.
Here, we have 4 as the input feature, 8 for the hidden layer, and 3 for
the output class number.

 ° l is the learning rate that is used for weight updates. The default is
0.5. To approximate gradient descent, neural networks are trained
with algorithms. Learning is possible either by batch or online
methods. In batch training, weight changes are accumulated over
an entire presentation of the training data (an epoch) before being
applied, while online training updates weighs after the presentation
of each training example (instance). More details can be found at
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf.

 ° m is the momentum weight that is used for gradient descent. This
must be in the range between 0–1.0.

 ° r is the regularization value for the weight vector. This must be in the
range between 0–0.1. It is used to prevent overfitting.

2. To test/run the MLP classification of the trained model, we can use the
following command:

bin/mahout org.apache.mahout.classifier.mlp.
RunMultilayerPerceptron -i /tmp/irisdata.csv -cr 0 3 -mo /tmp/
model.model -o /tmp/labelResult.txt

You can also run using the Mahout core jar (xyz stands for version). If you
have directly installed Mahout, it can be found under the /usr/lib/mahout
folder. Execute the following command:

Java –cp /usr/lib/mahout/ mahout-core-xyz-job.jar org.apache.
mahout.classifier.mlp.RunMultilayerPerceptron -i /tmp/irisdata.csv
-cr 0 3 -mo /tmp/model.model -o /tmp/labelResult.txt

http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf

Learning Multilayer Perceptron Using Mahout

[84]

The RunMultilayerPerceptron class is employed here to use the model.
This class also takes different parameters, which are as follows:

 ° i indicates the input dataset location
 ° cr is the range of columns to use from the input file, starting with 0

(that is, `-cr 0 5` for including the first six columns only)
 ° mo is the location of the model built earlier
 ° o is the path to store labeled results from running the model

Summary
In this chapter, we discussed one of the newly implemented algorithms in Mahout:
MLP. We started our discussion by understanding neural networks and neuron units
and continued our discussion further to understand the MLP network algorithm. We
discussed how to choose different layer units. We then moved to Mahout and used the
iris dataset to test and run an MLP algorithm implemented in Mahout. With this, we
have finished our discussion on classification algorithms available in Apache Mahout.

Now we move on to the next chapter of this book where we will discuss the new
changes coming up in the new Mahout release.

Mahout Changes in the
Upcoming Release

Mahout is a community-driven project and its community is very strong. This
community decided on some of the major changes in the upcoming 1.0 release. In
this chapter, we will explore the upcoming changes and developments in Apache
Mahout. We will look at the following topics in brief:

• New changes due in Mahout 1.0
• Apache Spark
• H20-platform-related work in Apache Mahout

Mahout new changes
Mahout was using the map reduce programming model to handle large datasets.
From the end of April 2014, the community decided to stop the implementation of
the new map reduce algorithm. This decision has a valid reason. Mahout's codebase
will be moving to modern data processing systems that offer a richer programming
model and more efficient execution than Hadoop's MapReduce.

Mahout has started its implementation on the top of Domain Specific Language
(DSL) for linear algebraic operations. Programs written in this DSL are automatically
optimized and executed in parallel on Apache Spark. Scala DSL and algebraic
optimizer is Scala and Spark binding for Mahout.

Mahout Changes in the Upcoming Release

[86]

Mahout Scala and Spark bindings
With Mahout Scala bindings and Mahout Spark bindings for linear algebra
subroutines, developers in Mahout are trying to bring semantic explicitness to
Mahout's in-core and out-of-core linear algebra subroutines. They are doing this
while adding the benefits of the strong programming environment of Scala and
capitalizing on scalability benefits of Spark and GraphX. Scala binding is used
to provide support for Scala DSL, and this will make writing machine learning
programs easier.

Mahout Scala and Spark bindings are packages that aim to provide an R-like
look and feel to Mahout's in-core and out-of-core Spark-backed linear algebra.
An important part of Spark bindings is the expression optimizer. This optimizer
looks at the entire expression and decides on how it can be simplified and which
physical operators should be picked. A high-level diagram of the binding stack
is shown in the following figure (https://issues.apache.org/jira/secure/
attachment/12638098/BindingsStack.jpg):

https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg
https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg

Chapter 8

[87]

The Spark binding shell has also been implemented in Mahout 1.0. Let's understand
the Apache Spark project first and then we will revisit the Spark binding shell
in Mahout.

Apache Spark
Apache Spark is an open source, in-memory, general-purpose computing system.
Spark's in-memory technique provides performance that is 100 times faster. Instead
of Hadoop-like disk-based computation, Spark uses cluster memory to upload all
the data into the memory, and this data can be queried repeatedly.

Apache Spark provides high-level APIs in Java, Python, and Scala and an
optimized engine that supports general execution graphs. It provides the
following high-level tools:

• Spark SQL: This is for SQL and structured data processing.
• MLib: This is Spark's scalable machine learning library that consists

of common learning algorithms and utilities, including classification,
regression, clustering, collaborative filtering, dimensionality reduction,
as well as the underlying optimization primitives.

• GraphX: This is the new Spark API for graphs and graph-parallel
computation.

• Spark streaming: This can collect data from many sources and after
processing this data, it uses complex algorithms and can push the data to
filesystems, databases, and live dashboards.

As Spark is gaining popularity among data scientists, the Mahout community is also
quickly working on making Mahout algorithms function on Spark's execution engine
to speed up its calculation 10 to 100 times faster. Mahout provides several important
building blocks to create recommendations using Spark. Spark-item similarity can
be used to create other people also liked these things kind of recommendations and
when paired with a search engine can personalize recommendations for individual
users. Spark-row similarity can provide non-personalized content based on
recommendations and when paired with a search engine can be used to personalize
content based on recommendations (http://comments.gmane.org/gmane.comp.
apache.mahout.scm/6513).

http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513
http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513

Mahout Changes in the Upcoming Release

[88]

Using Mahout's Spark shell
You can use Mahout's Spark shell by referring to the following steps:

1. Download Spark from http://spark.apache.org/downloads.html.
2. Create a new folder with the name spark using the following command and

move the downloaded file there:
mkdir /tmp/spark

mv ~/Downloads/spark-1.1.1.tgz/tmp/spark

3. Unpack the archived file in a folder using the following command:
cd /tmp/spark

tar xzf spark-1.1.1.tgz

4. This will unzip the file under/tmp/spark/spark-1.1.1. Now, move to the
newly created folder and run the following command:
cd /spark-1.1.1

sbt/sbt assembly

This will build Spark on your system as shown in the following screenshot:

http://spark.apache.org/downloads.html

Chapter 8

[89]

5. Now create a Mahout directory and move the file to it using the following
command:
mkdir /tmp/Mahout

6. Check out the master branch of Mahout from GitHub using the following
command:
git clone https://github.com/apache/mahout mahout

The output of the preceding command is shown in the following screenshot:

7. Change your directory to the newly created Mahout directory and
build Mahout:
cd mahout

mvn -DskipTests clean install

The output of the preceding command is shown in the following screenshot:

Mahout Changes in the Upcoming Release

[90]

8. Move to the directory where you unpacked Spark and type the following
command to start Spark locally:
cd /tmp/spark/spark-1.1.1

sbin/start-all-sh

The output of the preceding command is shown in the following screenshot:

9. Open a browser; point it to http://localhost:8080/ to check whether
Spark has successfully started. Copy the URL of the Spark master at the top
of the page (it starts with spark://).

10. Define the following environment variables:
export MAHOUT_HOME=[directory into which you checked out Mahout]

export SPARK_HOME=[directory where you unpacked Spark]

export MASTER=[url of the Spark master]

11. Finally, change to the directory where you unpacked Mahout and type bin/
mahout spark-shell; you should see the shell starting and get the
mahout> prompt.

Now your Mahout Spark shell is ready and you can start playing with data. For
more information on this topic, see the implementation section at https://mahout.
apache.org/users/sparkbindings/play-with-shell.html.

H2O platform integration
As discussed earlier, an experimental work to integrate Mahout and the H2O
platform is also in progress. The integration provides an H2O backend to the Mahout
algebra DSL.

https://mahout.apache.org/users/sparkbindings/play-with-shell.html
https://mahout.apache.org/users/sparkbindings/play-with-shell.html

Chapter 8

[91]

H2O makes Hadoop do math! H2O scales statistics, machine learning, and math
over big data. It is extensible and users can build blocks using simple math legos in
the core. H2O keeps familiar interfaces such as R, Excel, and JSON so that big data
enthusiasts and experts can explore, munge, model, and score datasets using a range
of simple-to-advanced algorithms. Data collection is easy, while decision making is
hard. H2O makes it fast and easy to derive insights from your data through faster
and better predictive modeling. It also has a vision of online scoring and modeling in
a single platform (http://0xdata.com/download/).

H2O is fundamentally a peer-to-peer system. H2O nodes join together to form a
cloud on which high-performance distributed math can be executed. Each node joins
a cloud of a given name. Multiple clouds can exist on the same network at the same
time as long as their names are different. Multiple nodes can exist on the same server
as well (they can even belong to the same cloud).

The Mahout H2O integration is fit into this model by having N-1 worker nodes and
one driver node, all belonging to the same cloud name. The default cloud name used
for the integration is mah2out. Clouds have to be spun up as per their task/job.

More details can be found at https://issues.apache.org/jira/browse/
MAHOUT-1500.

Summary
In this chapter, we discussed the upcoming release of Mahout 1.0, and the changes
that are currently going on. We also glanced through Spark, Scala binding, and
Apache Spark. We also discussed a high-level overview of H2O Mahout integration.

Now let's move on to the final chapter of this book where we will develop a
production-ready classifier.

http://0xdata.com/download
https://issues.apache.org/jira/browse/MAHOUT-1500
https://issues.apache.org/jira/browse/MAHOUT-1500

Building an E-mail
Classification System Using

Apache Mahout
In this chapter, we will create a classifier system using Mahout. In order to build this
system, we will cover the following topics:

• Getting the dataset
• Preparation of the dataset
• Preparing the model
• Training the model

In this chapter, we will target the creation of two different classifiers. The first one
will be an easy one because you can both create and test it on a pseudo-distributed
Hadoop installation. For the second classifier, I will provide you with all the details,
so you can run it using your fully distributed Hadoop installation. I will count the
second one as a hands-on exercise for the readers of this book.

First of all, let's understand the problem statement for the first use case. Nowadays,
in most of the e-mail systems, we see that e-mails are classified as spam or not spam.
E-mails that are not spam are delivered directly into our inbox but spam e-mails are
stored in a folder called Spam. Usually, based on a certain pattern such as message
subject, sender's e-mail address, or certain keywords in the message body, we
categorize an incoming e-mail as spam. We will create a classifier using Mahout,
which will classify an e-mail into spam or not spam. We will use SpamAssassin, an
Apache open source project dataset for this task.

Building an E-mail Classification System Using Apache Mahout

[94]

For the second use case, we will create a classifier, which can predict a group of
incoming e-mails. As an open source project, there are lots of projects under the
Apache software foundation, such as Apache Mahout, Apache Hadoop, Apache
Solr, and so on. We will take the Apache Software Foundation (ASF) e-mail dataset
and using this, we will create and train our model so that our model can predict a
new incoming e-mail. So, based on certain features, we will be able to predict which
group a new incoming e-mail belongs to.

In Mahout's classification problem, we will have to identify a pattern in the dataset
to help us predict the group of a new e-mail. We already have a dataset, which is
separated by project names. We will use the ASF public e-mail archives dataset for
this use case.

Now, let's consider our first use case: spam e-mail detection classifier.

Spam e-mail dataset
As I mentioned, we will be using the Apache SpamAssassin projects dataset.
Apache SpamAssassin is an open source spam filter. Download 20021010_easy_
ham.tar and 20021010_spam.tar from http://spamassassin.apache.org/
publiccorpus/, as shown in the following screenshot:

http://spamassassin.apache.org/publiccorpus/
http://spamassassin.apache.org/publiccorpus/

Chapter 9

[95]

Creating the model using the Assassin
dataset
We can create the model with the help of the following steps:

1. Create a folder under tmp with the name dataset, and then click on the
folder and unzip the datasets using the following command:
mkdir /tmp/assassin/dataset

tar –xvf /tmp/assassin/ 20021010_easy_ham.tar.bz2

tar –xvf /tmp/assassin/ 20021010_spam.tar.bz2

This will create two folders under the dataset folder, easy _ham and spam,
as shown in the following screenshot:

2. Create a folder in Hdfs and move this dataset into Hadoop:
hadoop fs -mkdir /user/hue/assassin/

hadoop fs –put /tmp/assassin/dataset /user/hue/assassin

tar –xvf /tmp/assassin/ 20021010_spam.tar.bz2

Now our data preparation is done. We have downloaded the data and
moved this data into hdfs. Let's move on to the next step.

Building an E-mail Classification System Using Apache Mahout

[96]

3. Convert this data into sequence files so that we can process it using Hadoop:
bin/mahout seqdirectory –i /user/hue/assassin/dataset –o /user/
hue/assassinseq-out

4. Convert the sequence file into sparse vector (Mahout algorithms accept
input in vector format, which is why we are converting the sequence file
into sparse vector) by using the following command:
bin/mahout seq2sparse -i /user/hue/assassinseq-out/part-m-00000 -o
/user/hue/assassinvec -lnorm -nv -wt tfidf

Chapter 9

[97]

The command in the preceding screenshot is explained as follows:
 ° lnorm: This command is used for output vector to be log normalized.
 ° nv: This command is used for named vector.
 ° wt: This command is used to identify the kind of weight to use. Here

we use tf-idf.

5. Split the set of vectors for training and testing the model, as follows:
bin/mahout split -i /user/hue/assassinvec/tfidf-vectors
--trainingOutput /user/hue/assassindatatrain --testOutput /
user/hue/assassindatatest --randomSelectionPct 20 --overwrite
--sequenceFiles -xm sequential

The preceding command can be explained as follows:
 ° The randomSelectionPct parameter divides the percentage of data

into test and training datasets. In this case, it's 80 percent for test and
20 percent for training.

 ° The xm parameter specifies what portion of the tf (tf-idf) vectors
is to be used expressed in times the standard deviation.

 ° The sigma symbol specifies the document frequencies of these
vectors. It can be used to remove really high frequency terms. It is
expressed as a double value. A good value to be specified is 3.0. If the
value is less than 0, no vectors will be filtered out.

Building an E-mail Classification System Using Apache Mahout

[98]

6. Now, train the model using the following command:
bin/mahout trainnb -i /user/hue/assassindatatrain -el -o /user/
hue/prodmodel -li /user/hue/prodlabelindex -ow -c

7. Now, test the model using the following command:
bin/mahout testnb -i /user/hue/assassindatatest -m /user/hue/
prodmodel/ -l /user/hue/prodlabelindex -ow -o /user/hue/
prodresults

You can see from the results that the output is displayed on the console. As per the
matrix, the system has correctly classified 99.53 percent of the instances given.

Chapter 9

[99]

We can use this created model to classify new documents. To do this, we can either
use a Java program or create a servlet that can be deployed on our server.

Let's take an example of a Java program in continuation of this exercise.

Program to use a classifier model
We will create a Java program that will use our model to classify new e-mails. This
program will take model, labelindex, dictionary-file, document frequency, and text
file as input and will generate a score for the categories. The category will be decided
based on the higher scores.

Let's have a look at this program step by step:

• The .jar files required to make a compilation of this program are as follows:
 ° Hadoop-core-x.y.x.jar

 ° Mahout-core-xyz.jar

 ° Mahout-integration-xyz.jar

 ° Mahout-math-xyz.jar

• The import statements are listed as follows. We are discussing this because
there are lots of changes in the Mahout releases and people usually find it
difficult to get the correct classes.

 ° import java.io.BufferedReader;

 ° import java.io.FileReader;

 ° import java.io.StringReader;

 ° import java.util.HashMap;

 ° import java.util.Map;

 ° import org.apache.hadoop.conf.Configuration;

 ° import org.apache.hadoop.fs.Path;

 ° import org.apache.lucene.analysis.Analyzer;

 ° import org.apache.lucene.analysis.TokenStream;

 ° import org.apache.lucene.analysis.standard.
StandardAnalyzer;

 ° import org.apache.lucene.analysis.tokenattributes.
CharTermAttribute;

 ° import org.apache.lucene.util.Version;

Building an E-mail Classification System Using Apache Mahout

[100]

 ° import org.apache.mahout.classifier.naivebayes.
BayesUtils;

 ° import org.apache.mahout.classifier.naivebayes.
NaiveBayesModel;

 ° import org.apache.mahout.classifier.naivebayes.
StandardNaiveBayesClassifier;

 ° import org.apache.mahout.common.Pair;

 ° import org.apache.mahout.common.iterator.sequencefile.
SequenceFileIterable;

 ° import org.apache.mahout.math.RandomAccessSparseVector;

 ° import org.apache.mahout.math.Vector;

 ° import org.apache.mahout.math.Vector.Element;

 ° import org.apache.mahout.vectorizer.TFIDF;

 ° import org.apache.hadoop.io.*;

 ° import com.google.common.collect.ConcurrentHashMultiset;

 ° import com.google.common.collect.Multiset;

• The supporting methods to read the dictionary are as follows:
public static Map<String, Integer>
 readDictionary(Configuration conf, Path dictionaryPath)
 {
 Map<String, Integer> dictionary = new HashMap<String,
 Integer>();
 for (Pair<Text, IntWritable> pair : new
 SequenceFileIterable<Text,
 IntWritable>(dictionaryPath, true, conf)) {
 dictionary.put(pair.getFirst().toString(),
 pair.getSecond().get());
 }
 return dictionary;
}

• The supporting methods to read the document frequency are as follows:
public static Map<Integer, Long>
 readDocumentFrequency(Configuration conf, Path
 documentFrequencyPath) {
 Map<Integer, Long> documentFrequency = new
 HashMap<Integer, Long>();
 for (Pair<IntWritable, LongWritable> pair : new
 SequenceFileIterable<IntWritable,
 LongWritable>(documentFrequencyPath, true, conf)) {

Chapter 9

[101]

 documentFrequency.put(pair.getFirst().get(),
 pair.getSecond().get());
 }
 return documentFrequency;
}

• The first part of the main method is used to perform the following actions:
 ° Getting the input
 ° Loading the model
 ° Initializing StandardNaiveBayesClassifier using our created model
 ° Reading labelindex, document frequency, and dictionary created

while creating the vector from the dataset

The following code can be used for the preceding actions:
public static void main(String[] args) throws Exception {
 if (args.length < 5) {
 System.out.println("Arguments: [model] [labelindex]
 [dictionary] [documentfrequency] [new file] ");
 return;
 }
 String modelPath = args[0];
 String labelIndexPath = args[1];
 String dictionaryPath = args[2];
 String documentFrequencyPath = args[3];
 String newDataPath = args[4];
 Configuration configuration = new Configuration(); //
 model is a matrix (wordId, labelId) => probability
 score
 NaiveBayesModel model = NaiveBayesModel.materialize(new
 Path(modelPath), configuration);
 StandardNaiveBayesClassifier classifier = new
 StandardNaiveBayesClassifier(model);
 // labels is a map label => classId
 Map<Integer, String> labels =
 BayesUtils.readLabelIndex(configuration, new
 Path(labelIndexPath));
 Map<String, Integer> dictionary =
 readDictionary(configuration, new
 Path(dictionaryPath));
 Map<Integer, Long> documentFrequency =
 readDocumentFrequency(configuration, new
 Path(documentFrequencyPath));

Building an E-mail Classification System Using Apache Mahout

[102]

• The second part of the main method is used to extract words from the e-mail:
Analyzer analyzer = new
 StandardAnalyzer(Version.LUCENE_CURRENT);

int labelCount = labels.size();
int documentCount = documentFrequency.get(-1).intValue();

System.out.println("Number of labels: " + labelCount);
System.out.println("Number of documents in training set: "
 + documentCount);
BufferedReader reader = new BufferedReader(new
 FileReader(newDataPath));
while(true) {
 String line = reader.readLine();
 if (line == null) {
 break;
 }

 ConcurrentHashMultiset<Object> words =
 ConcurrentHashMultiset.create();
 // extract words from mail
 TokenStream ts = analyzer.tokenStream("text", new
 StringReader(line));
 CharTermAttribute termAtt =
 ts.addAttribute(CharTermAttribute.class);
 ts.reset();
 int wordCount = 0;
 while (ts.incrementToken()) {
 if (termAtt.length() > 0) {
 String word =
 ts.getAttribute(CharTermAttribute.class).
 toString();
 Integer wordId = dictionary.get(word);
 // if the word is not in the dictionary, skip it
 if (wordId != null) {
 words.add(word);
 wordCount++;
 }
 }
 }
 ts.close();

Chapter 9

[103]

• The third part of the main method is used to create vector of the id word and
the tf-idf weights:
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
for (Multiset.Entry entry:words.entrySet()) {
 String word = (String)entry.getElement();
 int count = entry.getCount();
 Integer wordId = dictionary.get(word);
 Long freq = documentFrequency.get(wordId);
 double tfIdfValue = tfidf.calculate(count,
 freq.intValue(), wordCount, documentCount);
 vector.setQuick(wordId, tfIdfValue);
}

• In the fourth part of the main method, with classifier, we get the score for
each label and assign the e-mail to the higher scored label:
 Vector resultVector = classifier.classifyFull(vector);
 double bestScore = -Double.MAX_VALUE;
 int bestCategoryId = -1;
 for(int i=0 ;i<resultVector.size();i++) {
 Element e1 = resultVector.getElement(i);
 int categoryId = e1.index();
 double score = e1.get();
 if (score > bestScore) {
 bestScore = score;
 bestCategoryId = categoryId;
 }
 System.out.print(" " + labels.get(categoryId) + ": "
 + score);
 }
 System.out.println(" => " +
 labels.get(bestCategoryId));
 }
}

Now, put all these codes under one class and create the .jar file of this class. We
will use this .jar file to test our new e-mails.

Building an E-mail Classification System Using Apache Mahout

[104]

Testing the program
To test the program, perform the following steps:

1. Create a folder named assassinmodeltest in the local directory, as follows:
mkdir /tmp/assassinmodeltest

2. To use this model, get the following files from hdfs to /tmp/
assassinmodeltest:

 ° For the earlier created model, use the following command:
hadoop fs –get /user/hue/prodmodel /tmp/assassinmodeltest

 ° For labelindex, use the following command:
hadoop fs –get /user/hue/prodlabelindex /tmp/
assassinmodeltest

 ° For df-counts from the assassinvec folder (change the name of the
part-00000 file to df-count), use the following commands:
hadoop fs –get /user/hue/assassinvec/df-count /tmp/
assassinmodeltest

dictionary.file-0 from the same assassinvec folder

hadoop fs –get /user/hue/assassinvec/dictionary.file-0 /
tmp/assassinmodeltest

3. Under /tmp/assassinmodeltest, create a file with the message shown in
the following screenshot:

Chapter 9

[105]

4. Now, run the program using the following command:
Java –cp /tmp/assassinmodeltest/spamclassifier.jar:/usr/
lib/mahout/* com.packt.spamfilter.TestClassifier /tmp/
assassinmodeltest /tmp/assassinmodeltest/prodlabelindex /tmp/
assassinmodeltest/dictionary.file-0 /tmp/assassinmodeltest/df-
count /tmp/assassinmodeltest/testemail

5. Now, update the test e-mail file with the message shown in the
following screenshot:

6. Run the program again using the same command as given in step 4 and view
the result as follows:

Now, we have a program ready that can use our classifier model and predict the
unknown items. Let's move on to our second use case.

Second use case as an exercise
As discussed at the start of this chapter, we will now work on a second use case,
where we will predict the category of a new e-mail.

Building an E-mail Classification System Using Apache Mahout

[106]

The ASF e-mail dataset
The Apache Software Foundation e-mail dataset is partitioned by project. This e-mail
dataset can be found at http://aws.amazon.com/datasets/7791434387204566.

A smaller dataset can be found at http://files.grantingersoll.com/ibm.tar.
gz. (Refer to http://lucidworks.com/blog/scaling-mahout/). Use this data to
perform the following steps:

1. Move this data to the folder of your choice (/tmp/asfmail) and unzip
the folder:
mkdir /tmp/asfmail

tar –xvf ibm.tar

2. Move the dataset to hdfs:
hadoop fs -put /tmp/asfmail/ibm/content /user/hue/asfmail

3. Convert the mbox files into Hadoop's SequenceFile format using Mahout's
SequenceFilesFromMailArchives as follows:
mahout org.apache.mahout.text.SequenceFilesFromMailArchives
--charset "UTF-8" --body --subject --input /user/hue/asfmail/
content --output /user/hue/asfmailout

http://aws.amazon.com/datasets/7791434387204566
http://files.grantingersoll.com/ibm.tar.gz
http://files.grantingersoll.com/ibm.tar.gz
http://lucidworks.com/blog/scaling-mahout/

Chapter 9

[107]

4. Convert the sequence file into sparse vector:
mahout seq2sparse --input /user/hue/asfmailout --output /
user/hue/asfmailseqsp --norm 2 --weight TFIDF --namedVector
--maxDFPercent 90 --minSupport 2 --analyzerName org.apache.mahout.
text.MailArchivesClusteringAnalyzer

5. Modify the labels:
mahout org.apache.mahout.classifier.email.PrepEmailDriver --input
/user/hue/asfmailseqsp --output /user/hue/asfmailseqsplabel
--maxItemsPerLabel 1000

Now, the next three steps are similar to the ones we performed earlier:

1. Split the dataset into training and test datasets using the
following command:
mahout split --input /user/hue/asfmailseqsplabel --trainingOutput
/user/hue/asfmailtrain --testOutput /user/hue/asfmailtest
--randomSelectionPct 20 --overwrite --sequenceFiles

2. Train the model using the training dataset as follows:
mahout trainnb -i /user/hue/asfmailtrain -o /user/hue/asfmailmodel
-extractLabels --labelIndex /user/hue/asfmaillabels

3. Test the model using the test dataset:
mahout testnb -i /user/hue/asfmailtest -m /user/hue/asfmailmodel
--labelIndex /user/hue/asfmaillabels

Building an E-mail Classification System Using Apache Mahout

[108]

As you may have noticed, all the steps are exactly identical to the ones we performed
earlier. Hereby, I leave this topic as an exercise for you to create your own classifier
system using this model. You can use hints as provided for the spam filter classifier.
We now move our discussion to tuning our classifier. Let's take a brief overview of
the best practices in this area.

Classifiers tuning
We already discussed classifiers' evaluation techniques in Chapter 1, Classification in
Data Analysis. Just as a reminder, we evaluate our model using techniques such as
confusion matrix, entropy matrix, area under curve, and so on.

From the explanatory variables, we create the feature vector. To check how a
particular model is working, these feature vectors need to be investigated. In
Mahout, there is a class available for this, ModelDissector. It takes the following
three inputs:

• Features: This class takes a feature vector to use (destructively)
• TraceDictionary: This class takes a trace dictionary containing variables and

the locations in the feature vector that are affected by them
• Learner: This class takes the model that we are probing to find weights

on features

ModelDissector tweaks the feature vector and observes how the model output
changes. By taking an average of the number of examples, we can determine the
effect of different explanatory variables.

ModelDissector has a summary method, which returns the most important
features with their weights, most important category, and the top few categories
that they affect.

The output of ModelDissector is helpful in troubleshooting problems in a wrongly
created model.

More details for the code can be found at https://github.com/apache/mahout/
blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/
ModelDissector.java.

While improving the output of the classifier, one should take care with two
commonly occurring problems: target leak, and broken feature extraction.

https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java

Chapter 9

[109]

If the model is showing results that are too good to be true or an output beyond
expectations, we could have a problem with target leak. This error comes once
information from the target variable is included in the explanatory variables,
which are used to train the classifier. In this instance, the classifier will work
too well for the test dataset.

On the other hand, broken feature extraction occurs when feature extraction
is broken. This type of classifier shows the opposite result from the target leak
classifiers. Here, the model provides results poorer than expected.

To tune the classifier, we can use new explanatory variables, transformations of
explanatory variables, and can also eliminate some of the variables. We should also
try different learning algorithms to create the model and choose an algorithm, which
is good in performance, training time, and speed.

More details on tuning can be found in Chapter 16, Deploying a classifier in the book
Mahout in Action.

Summary
In this chapter, we discussed creating our own production ready classifier model. We
took up two use cases here, one for an e-mail spam filter and the other for classifying
the e-mail as per the projects. We used datasets for Apache SpamAssassin for the
e-mail filter and ASF for the e-mail classifier.

We also saw how to increase the performance of your model.

So you are now ready to implement classifiers using Apache Mahout for your own
real world use cases. Happy learning!

Index
A
algorithms, classification

Hidden Markov Model (HMM) 14
Logistic regression 14
Multi-layer perceptron (MLP) 14
Naïve Bayes classification 14
random forest 14
Stochastic Gradient Descent (SGD) 14

Apache Mahout. See Mahout
Apache Software Foundation (ASF) 94
Apache SpamAssassin project 94
Apache Spark

about 87
GraphX 87
MLib 87
Spark SQL 87
Spark streaming 87

ASF e-mail dataset
about 106, 107
URL 106

Assassin dataset
used, for creating model 95-99

AUC (area under the ROC curve) 17
axons 76

B
back propagation 78
Bag of words 48
BaumWelchTrainer class 59
Bayes rule 44, 45
binding stack

URL 86

C
Chi-squared Automatic Interaction Detector

(CHAID) 65
classification

about 8, 23
algorithms 14, 15
application 9
system, working 9-13

Classification and Regression Tree
(CART) 65

classifier
about 93
building 11
model 11
model using, program 99-103
test dataset 11
training dataset 11
tuning 108, 109

clustering 23
conditional probability 43-45
confusion matrix

about 15, 16
Accuracy 16
F1 score 16
Negative predictive value 16
Precision or positive predictive value 16
Sensitivity / true positive rate / recall 16
Specificity 16

cost function, linear regression 32

D
DARPA'98 69
data analysis

about 7
classification 8

[112]

decision tree 65-67
dendrites 76
dependent variable 34
deterministic patterns 55
development environment

setting up, Eclipse used 27, 28
dimensional reduction 23
Domain Specific Language (DSL) 85

E
Eclipse

used, for building development
environment 27, 28

emission matrix, HMM 58
Entropy matrix 18
explanatory variables 9, 34

G
gradient descent

about 33
logistic function 34
sigmoid function 34

GraphX 87

H
H2O platform

integration 90
URL 91

Hadoop
URL 21, 25

hidden layers, MLP network 77, 79
Hidden Markov Model. See HMM
hidden states, HMM 58
HMM

about 14, 57, 58
BaumWelchTrainer class 59
emission matrix 58
hidden states 58
HmmAlgorithms class 59
HmmEvaluator class 59
HMMModel class 59
HmmTrainer class 59
HmmUtils class 59
input command 62
likelihood command 62

Mahout used 59-62
model command 62
observable state 58
output command 62
properties 58
RandomSequencerGenerator 59
state vector 58
transition matrix 58
ViterbiEvaluator class 59

HMM, issues
decoding 58
evaluation 58
learning 58

Hortonworks Sandbox
URL 29

I
Initial state vector, Markov process 57
independent variable 34
input layer, MLP network 78
iris dataset

URL 81
Iterative Dichotomiser 3 (ID3)

URL 65

J
Java

URL 25

L
labels 10
Latent Dirichlet Allocation (LDA) 23
linear regression

about 32
cost function 32
gradient descent 33

logistic function 34
logistic regression

about 14, 33-35
auc 41
categories 40
confusion 41
dataset 36
features 40
input 40

[113]

Mahout, using for 36
model 41
model, training 39
output 40
passes 40
predictors 40
rate 40
runlogistic 41
target 40
training and test data, preparing 36-38
trainlogistic 40
types 40

M
M2Eclipse

URL 25
Mahout

about 21
building from source, Maven used 25
code, building 26
distribution file, URL 26, 27
features 24
H2O platform, integration 90, 91
installing 24
Maven, installing 25
MLP algorithm, using 82-84
MLP, implementing 79, 80
Naïve Bayes algorithm 49-53
prerequisites 25
Random forest algorithm,

implementing 71-74
Scala bindings 86
setting up, for Windows user 29, 30
Spark bindings 86
Spark shell, using 88-90
updations 85
use cases 22
used, for logistic regression 36-42
using, for HMM 59-62
using, for MLP 81, 82
using, for Random forest algorithm 69

Mahout, algorithms
about 23
parallel algorithms 24
sequential algorithms 23

Mahout Scala bindings 86

Mahout Spark bindings 86
Mahout, use cases

classification 23
clustering 23
dimensional reduction 23
recommendation 22
topic modeling 23

Markov process
about 56
Initial state vector 57
states 56
transition matrix 56
Transition matrix 56

Maven
installing 25
URL 25
used, for building Mahout from source 25

MLib 87
MLP

about 14
algorithm, using in Mahout 82-84
implementing, in Mahout 79, 80
iris dataset 81
Mahout used 81, 82

MLP network
about 77, 78
back propagation 78
hidden layers 77-79
input layer 78
number of neurons or hidden units 79
output layer 78
zero hidden layers 78

model
classifier model, program for

using 99-103
creating, Assassin dataset used 95-99

ModelDissector
about 108
Features class 108
Learner class 108
TraceDictionary class 108

model, evaluation
area under the ROC curve (AUC) 17
confusion matrix 15, 16
Entropy matrix 18
Receiver Operating Characteristics (ROC)

graph 17

[114]

model, issues
overfitting 13
underfitting 13

Multilayer Perceptron. See MLP

N
Naïve Bayes algorithm

about 46, 47
in Apache Mahout 49-53

Naïve Bayes classification 14
neural network 75, 76
neurons

about 75
URL 76

nondeterministic patterns 55
NSL-KDD dataset

URL 69

O
observable state, HMM 58
outlier detection 12
output layer, MLP network 78
overfitting, model

issues 13

P
parallel algorithms 24
program

testing 104, 105
pruning 66

R
random forest 14
Random forest algorithm

about 67-69
Bias parameter 67
dataset 70
implementing, in Mahout 71-74
Mahout used 69
NSL-KDD dataset 69
Variance parameter 67

RandomSequencerGenerator 59

Receiver Operating Characteristics (ROC)
graph 17

regression
about 31
linear regression 32

regression intercept 34

S
sequential algorithms 23
sigmoid function 34
softmax function

URL 76
spam e-mail dataset classifier 94
Spark

binding, URL 90
URL 88

Spark-item 87
Spark-row 87
Spark shell

using 88-90
Spark SQL 87
Spark streaming 87
states, Markov process 56
state vector, HMM 58
Stochastic Gradient Descent (SGD) 14, 35

T
target variables 10
term frequency

about 48
and inverse term frequency 49
Case normalization 49
Inverse document frequency 49
Stemming of words 49
Stop word removal 49

text classification 48, 49
topic modeling 23
transition matrix, HMM 58
transition matrix, Markov process 56

U
underfitting model

issues 13

[115]

V
vectors 48
ViterbiEvaluator class 59

W
Windows

user, Mahout setting up for 29, 30
Wisconsin Diagnostic Breast

Cancer (WDBC) dataset
URL 36

Thank you for buying
Learning Apache Mahout Classification

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Mahout Cookbook
ISBN: 978-1-84951-802-4 Paperback: 250 pages

A fast, fresh, developer-oriented dive into the world
of Apache Mahout

1. Learn how to set up a Mahout development
environment.

2. Start testing Mahout in a standalone
Hadoop cluster.

3. Learn to find stock market direction using
logistic regression.

Mastering Apache Cassandra
ISBN: 978-1-78216-268-1 Paperback: 340 pages

Get comfortable with the fastest NoSQL database,
its architecture, key programming patterns,
infrastructure management, and more!

1. Complete coverage of all aspects of Cassandra.

2. Discusses prominent patterns, pros and cons,
and use cases.

3. Contains briefs on integration with
other software.

Please check www.PacktPub.com for information on our titles

Apache Karaf Cookbook
ISBN: 978-1-78398-508-1 Paperback: 260 pages

Over 60 recipes to help you get the most out of your
Apache Karaf deployments

1. Leverage Apache Karaf to apply OSGi's
powerful features to frameworks such as
Apache ActiveMQ, Camel, Cassandra, CXF,
and Hadoop.

2. Set up Apache Karaf for high availability.

3. A thorough guide with example-based recipes
to help you get a deeper understanding of
Apache Karaf's capabilities.

Scaling Apache Solr
ISBN: 978-1-78398-174-8 Paperback: 298 pages

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

1. Get an introduction to the basics of Apache Solr
in a step-by-step manner with lots of examples.

2. Develop and understand the workings of
enterprise search solution using various
techniques and real-life use cases.

3. Gain a practical insight into the advanced ways
of optimizing and making an enterprise search
solution cloud ready.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Classification in
Data Analysis
	Introducing classification
	Application of the classification system
	Working of the classification system

	Classification algorithms
	Model evaluation techniques
	Confusion matrix
	The Receiver Operating Characteristics
(ROC) graph
	Area under the ROC curve
	Entropy matrix

	Summary

	Chapter 2: Apache Mahout
	Introducing Apache Mahout
	Algorithms supported in Mahout
	Reasons for Mahout being a good choice for classification
	Installing Mahout
	Building Mahout from source using Maven
	Installing Maven
	Building Mahout code

	Setting up a development environment using Eclipse
	Setting up Mahout for a Windows user

	Summary

	Chapter 3: Learning Logistic Regression / SGD Using Mahout
	Introducing regression
	Understanding linear regression
	Cost function
	Gradient descent

	Logistic regression
	Stochastic Gradient Descent
	Using Mahout for logistic regression

	Summary

	Chapter 4: Learning Naïve Bayes Classification Using Mahout
	Introducing conditional probability and the Bayes rule
	Understanding the Naïve Bayes algorithm
	Understanding the terms used in text classification
	Using the Naïve Bayes algorithm in Apache Mahout
	Summary

	Chapter 5: Learning the Hidden Markov Model Using Mahout
	Deterministic and nondeterministic patterns
	The Markov process
	Introducing the Hidden Markov Model
	Using Mahout for the Hidden Markov Model
	Summary

	Chapter 6: Learning Random Forest Using Mahout
	Decision tree
	Random forest
	Using Mahout for Random forest
	Steps to use the Random forest algorithm in Mahout

	Summary

	Chapter 7: Learning Multilayer Perceptron Using Mahout
	Neural network and neurons
	Multilayer Perceptron
	MLP implementation in Mahout
	Using Mahout for MLP
	Steps to use the MLP algorithm in Mahout

	Summary

	Chapter 8: Mahout Changes in the Upcoming Release
	Mahout new changes
	Mahout Scala and Spark bindings

	Apache Spark
	Using Mahout's Spark shell

	H2O platform integration
	Summary

	Chapter 9: Building an E-mail Classification System Using Apache Mahout
	Spam e-mail dataset
	Creating the model using the Assassin dataset
	Program to use classifier model
	Testing the program
	Second use case as an exercise
	ASF e-mail dataset

	Classifiers tuning
	Summary

	Index

