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Preface
Thanks to the progress made in the hardware industries, our storage capacity has 
increased, and because of this, there are many organizations who want to store all 
types of events for analytics purposes. This has given birth to a new era of machine 
learning. The field of machine learning is very complex and writing these algorithms 
is not a piece of cake. Apache Mahout provides us with readymade algorithms 
in the area of machine learning and saves us from the complex task of algorithm 
implementation.

The intention of this book is to cover classification algorithms available in Apache 
Mahout. Whether you have already worked on classification algorithms using 
some other tool or are completely new to the field, this book will help you. So, start 
reading this book to explore the classification algorithms in one of the most popular 
open source projects which enjoys strong community support: Apache Mahout.

What this book covers
Chapter 1, Classification in Data Analysis, provides an introduction to the classification 
concept in data analysis. This chapter will cover the basics of classification, similarity 
matrix, and algorithms available in this area.

Chapter 2, Apache Mahout, provides an introduction to Apache Mahout and its 
installation process. Further, this chapter will talk about why it is a good choice  
for classification.

Chapter 3, Learning Logistic Regression / SGD Using Mahout, discusses logistic 
regression and Stochastic Gradient Descent, and how developers can use Mahout  
to use SGD.

Chapter 4, Learning the Naïve Bayes Classification Using Mahout, discusses the Bayes 
Theorem, Naïve Bayes classification, and how we can use Mahout to build Naïve 
Bayes classifier.
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Chapter 5, Learning the Hidden Markov Model Using Mahout, covers the HMM and how 
to use Mahout's HMM algorithms.

Chapter 6, Learning Random Forest Using Mahout, discusses the Random forest 
algorithm in detail, and how to use Mahout's Random forest implementation.

Chapter 7, Learning Multilayer Perceptron Using Mahout, discusses Mahout as an early 
level implementation of a neural network. We will discuss Multilayer Perceptron in 
this chapter. Further, we will use Mahout's implementation of MLP.

Chapter 8, Mahout Changes in the Upcoming Release, discusses Mahout as a work in 
progress. We will discuss the new major changes in the upcoming release of Mahout.

Chapter 9, Building an E-mail Classification System Using Apache Mahout, provides two 
use cases of e-mail classification—spam mail classification and e-mail classification 
based on the project the mail belongs to. We will create the model, and use this 
model in a program that will simulate the real working environment.

What you need for this book
To use the examples in this book, you should have the following software installed 
on your system:

• Java 1.6 or higher
• Eclipse
• Hadoop
• Mahout; we will discuss the installation in Chapter 2, Apache Mahout,  

of this book
• Maven, depending on how you install Mahout

Who this book is for
If you are a data scientist who has some experience with the Hadoop ecosystem and 
machine learning methods and want to try out classification on large datasets using 
Mahout, this book is ideal for you. Knowledge of Java is essential.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.
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Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"Extract the source code and ensure that the folder contains the pom.xml file."

A block of code is set as follows:

    public static Map<String, Integer>  
      readDictionary(Configuration conf, Path dictionaryPath) {
        Map<String, Integer> dictionary = new HashMap<String,  
          Integer>();
        for (Pair<Text, IntWritable> pair : new  
          SequenceFileIterable<Text, IntWritable>(dictionaryPath,  
          true, conf)) {
            dictionary.put(pair.getFirst().toString(),  
              pair.getSecond().get());
        }
        return dictionary;
    }

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

    public static Map<String, Integer>  
      readDictionary(Configuration conf, Path dictionaryPath) {
        Map<String, Integer> dictionary = new HashMap<String,  
          Integer>();
        for (Pair<Text, IntWritable> pair : new  
          SequenceFileIterable<Text, IntWritable>(dictionaryPath,  
          true, conf)) {
            dictionary.put(pair.getFirst().toString(),  
              pair.getSecond().get());
        }
        return dictionary;
    }

Any command-line input or output is written as follows:

hadoop fs -mkdir /user/hue/KDDTrain 

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs –put /tmp/KDDTrain+_20Percent.arff  /user/hue/KDDTrain

hadoop fs –put /tmp/KDDTest+.arff  /user/hue/KDDTest
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New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Now, 
navigate to the location for mahout-distribution-0.9 and click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4959OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4959OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




Classification in  
Data Analysis

In the last decade, we saw a huge growth in social networking and e-commerce sites. 
I am sure that you must have got information about this book on Facebook, Twitter, 
or some other site. Chances are also high that you are reading an e-copy of this book 
after ordering it on your phone or tablet.

This must give you an idea of how much data we are generating over the Internet 
every single day. Now, in order to obtain all necessary information from the data, 
we not only create data but also store this data. This data is extremely useful to get 
some important insights into the business. The analysis of this data can increase 
the customer base and create profits for the organization. Take the example of an 
e-commerce site. You visit the site to buy some book. You get information about 
books on related topics or the same topic, publisher, or writer, and this helps you to 
take better decisions, which also helps the site to know more about its customers. 
This will eventually lead to an increase in sales.

Finding related items or suggesting a new item to the user is all part of the data 
science in which we analyze the data and try to get useful patterns.

Data analysis is the process of inspecting historical data and creating models to get 
useful information that is required to help in decision making. It is helpful in many 
industries, such as e-commerce, banking, finance, healthcare, telecommunications, 
retail, oceanography, and many more.

Let's take the example of a weather forecasting system. It is a system that can predict 
the state of the atmosphere at a particular location. In this process, scientists collect 
historical data of the atmosphere of that location and try to create a model based on 
it to predict how the atmosphere will evolve over a period of time.
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In machine learning, classification is the automation of the decision-making process 
that learns from examples of the past and emulates those decisions automatically. 
Emulating the decisions automatically is a core concept in predictive analytics. In 
this chapter, we will look at the following points:

• Understanding classification
• Working of classification systems
• Classification algorithms
• Model evaluation methods

Introducing the classification
The word classification always reminds us of our biology class, where we learned 
about the classification of animals. We learned about different categories of animals, 
such as mammals, reptiles, birds, amphibians, and so on.

If you remember how these categories are defined, you will realize that there were 
certain properties that scientists found in existing animals, and based on these 
properties, they categorized a new animal.

Other real-life examples of classification could be, for instance, when you visit the 
doctor. He/she asks you certain questions, and based on your answers, he/she is 
able to identify whether you have a certain disease or not.

Classification is the categorization of potential answers, and in machine learning,  
we want to automate this process. Biological classification is an example 
of multiclass classification and finding the disease is an example of binary 
classification.

In data analysis, we want to use machine learning concepts. To analyze the data, we 
want to build a system that can help us to find out which class an individual item 
belongs to. Usually, these classes are mutually exclusive. A related problem in this 
area is finding out the probability that an individual belongs to a certain class.
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Classification is a supervised learning technique. In this technique, machines—
based on historical data—learn and gain the capabilities to predict the unknown. In 
machine learning, another popular technique is unsupervised learning. In supervised 
learning, we already know the output categories, but in unsupervised learning, 
we know nothing about the output. Let's understand this with a quick example: 
suppose we have a fruit basket, and we want to classify fruits. When we say classify, 
it means that in the training data, we already have output variables, such as size and 
color, and we know whether the color is red and the size is from 2.3" to 3.7". We will 
classify that fruit as an apple. Opposite to this, in unsupervised learning, we want to 
separate different fruits, and we do not have any output information in the training 
dataset, so the learning algorithm will separate different fruits based on different 
features present in the dataset, but it will not be able to label them. In other words, it 
will not be able to tell which one is an apple and which one is a banana, although it 
will be able to separate them.

Application of the classification system
Classification is used for prediction. In the case of e-mail categorization, it is used 
to classify e-mail as spam or not spam. Nowadays, Gmail is classifying e-mails as 
primary, social, and promotional as well. Classification is useful in predicting credit 
card frauds, to categorize customers for eligibility of loans, and so on. It is also used  
to predict customer churn in the insurance and telecom industries. It is useful in 
the healthcare industry as well. Based on historical data, it is useful in classifying 
particular symptoms of a disease to predict the disease in advance. Classification can 
be used to classify tropical cyclones. So, it is useful across all industries.

Working of the classification system
Let's understand the classification process in more detail. In the process of 
classification, with the dataset given to us, we try to find out informative variables 
using which we can reduce the uncertainty and categorize something. These 
informative variables are called explanatory variables or features.

www.allitebooks.com

http://www.allitebooks.org
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The final categories that we are interested are called target variables or labels. 
Explanatory variables can be any of the following forms:

• Continuous (numeric types)
• Categorical
• Word-like
• Text-like

If numeric types are not useful for any mathematical functions, those 
will be counted as categorical (zip codes, street numbers, and so on).

So, for example, we have a dataset of customer's' loan applications, and we want to 
build a classifier to find out whether a new customer is eligible for a loan or not. In 
this dataset, we can have the following fields:

• Customer Age
• Customer Income (PA)
• Customer Account Balance
• Loan Granted

From these fields, Customer Age, Customer Income (PA) and Customer Account 
Balance will work as explanatory variables and Loan Granted will be the target 
variable, as shown in the following screenshot:
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To understand the creation of the classifier, we need to understand a few terms,  
as shown in the following diagram:

• Training dataset: From the given dataset, a portion of the data is used  
to create the training dataset (it could be 70 percent of the given data).  
This dataset is used to build the classifier. All the feature sets are used  
in this dataset.

• Test dataset: The dataset that is left after the training dataset is used to  
test the created model. With this data, only the feature set is used and  
the model is used to predict the target variables or labels.

• Model: This is used to understand the algorithm used to generate the  
target variables.

While building a classifier, we follow these steps:

• Collecting historical data
• Cleaning data (a lot of activities are involved here, such as space removal, 

and so on)
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• Defining target variables
• Defining explanatory variables
• Selecting an algorithm
• Training the model (using the training dataset)
• Running test data
• Evaluating the model
• Adjusting explanatory variables
• Rerunning the test

While preparing the model, one should take care of outlier detection. Outlier 
detection is a method to find out items that do not conform to an expected pattern 
in a dataset. Outliers in an input dataset can mislead the training process of an 
algorithm. This can affect the model accuracy. There are algorithms to find out these 
outliers in the datasets. Distance-based techniques and fuzzy-logic-based methods 
are mostly used to find out outliers in the dataset. Let's talk about one example to 
understand the outliers.

We have a set of numbers, and we want to find out the mean of these numbers:

10, 75, 10, 15, 20, 85, 25, 30, 25

Just plot these numbers and the result will be as shown in the following screenshot:

Clearly, the numbers 75 and 85 are outliers (far away in the plot from the other 
numbers).

Mean = sum of values/number of values = 32.78

Mean without the outliers: = 19.29

So, now you can understand how outliers can affect the results.

While creating the model, we can encounter two majorly occurring problems—
Overfitting and Underfitting.
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Overfitting occurs when the algorithm captures the noise of the data, and the 
algorithm fits the data too well. Generally, it occurs if we use all the given data to 
build the model using pure memorization. Instead of finding out the generalizing 
pattern, the model just memorizes the pattern. Usually, in the case of overfitting, the 
model gets more complex, and it is allowed to pick up spurious correlations. These 
correlations are specific to training datasets and do not represent characteristics of 
the whole dataset in general.

The following diagram is an example of overfitting. An outlier is present, and the 
algorithm considers that and creates a model that perfectly classifies the training 
set, but because of this, the test data is wrongly classified (both the rectangles are 
classified as stars in the test data):

There is no single method to avoid overfitting; however, we have some approaches, 
such as a reduction in the number of features and the regularization of a few of the 
features. Another way is to train the model with some dataset and test with the 
remaining dataset. A common method called cross-validation is used to generate 
multiple performance measures. In this way, a single dataset is split and used for the 
creation of performance measures.

Underfitting occurs when the algorithm cannot capture the patterns in the data, and 
the data does not fit well. Underfitting is also known as high bias. It means your 
algorithm has such a strong bias towards its hypothesis that it does not fit the data 
well. For an underfitting error, more data will not help. It can increase the training 
error. More explanatory variables can help to deal with the underfitting problem. 
More explanatory fields will expand the hypothesis space and will be useful to 
overcome this problem.

Both overfitting and underfitting provide poor results with new datasets.
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Classification algorithms
We will now discuss the following algorithms that are supported by Apache Mahout 
in this book:

• Logistic regression / Stochastic Gradient Descent (SGD): We usually 
read regression along with classification, but actually, there is a difference 
between the two. Classification involves a categorical target variable, while 
regression involves a numeric target variable. Classification predicts whether 
something will happen, and regression predicts how much of something 
will happen. We will cover this algorithm in Chapter 3, Learning Logistic 
Regression / SGD Using Mahout. Mahout supports logistic regression trained 
via Stochastic Gradient Descent.

• Naïve Bayes classification: This is a very popular algorithm for text 
classification. Naïve Bayes uses the concept of probability to classify new 
items. It is based on the Bayes theorem. We will discuss this algorithm in 
Chapter 4, Learning the Naïve Bayes Classification Using Mahout. In this chapter,  
we will see how Mahout is useful in classifying text, which is required in the 
data analysis field. We will discuss vectorization, bag of words, n-grams,  
and other terms used in text classification.

• Hidden Markov Model (HMM): This is used in various fields, such as 
speech recognition, parts-of-speech tagging, gene prediction, time-series 
analysis, and so on. In HMM, we observe a sequence of emissions but do 
not have a sequence of states which a model uses to generate the emission. 
In Chapter 5, Learning the Hidden Markov Model Using Mahout, we will take 
one more algorithm supported by Mahout Hidden Markov Model. We will 
discuss HMM in detail and see how Mahout supports this algorithm.

• Random Forest: This is the most widely used algorithm in classification. 
Random Forest consists of a collection of simple tree predictors, each capable 
of producing a response when presented with a set of explanatory variables. 
In Chapter 6, Learning Random Forest Using Mahout, we will discuss this 
algorithm in detail and also talk about how to use Mahout to implement this 
algorithm.

• Multi-layer Perceptron (MLP): In Chapter 7, Learning Multilayer Perceptron 
Using Mahout, we will discuss this newly implemented algorithm in Mahout. 
An MLP consists of multiple layers of nodes in a directed graph, with each 
layer fully connected to the next one. It is a base for the implementation of 
neural networks. We will discuss neural networks a little but only after a 
detailed discussion on MLP in Mahout.
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We will discuss all the classification algorithms supported by Apache Mahout in  
this book, and we will also check the model evaluation techniques provided by 
Apache Mahout.

Model evaluation techniques
We cannot have a single evaluation metric that can fit all the classifier models, but 
we can find out some common issues in evaluation, and we have techniques to deal 
with them. We will discuss the following techniques that are used in Mahout:

• Confusion matrix
• ROC graph
• AUC
• Entropy matrix

The confusion matrix
The confusion matrix provides us with the number of correct and incorrect 
predictions made by the model compared with the actual outcomes (target values) 
in the data. A confusion matrix is a N*N matrix, where N is the number of labels 
(classes). Each column is an instance in the predicted class, and each row is an 
instance in the actual class. Using this matrix, we can find out how one class is 
confused with another. Let's assume that we have a classifier that classifies three 
fruits: strawberries, cherries, and grapes. Assuming that we have a sample of 24 
fruits: 7 strawberries, 8 cherries, and 9 grapes, the resulting confusion matrix will  
be as shown in the following table:

                                                   Predicted classes by model

Actual 
class

Strawberries Cherries Grapes
Strawberries 4 3 0
Cherries 2 5 1
Grapes 0 1 8

So, in this model, from the 8 strawberries, 3 were classified as cherries. From the 8 
cherries, 2 were classified as strawberries, and 1 is classified as a grape. From the 
9 grapes, 1 is classified as a cherry. From this matrix, we will create the table of 
confusion. The table of confusion has two rows and two columns that report about 
true positive, true negative, false positive, and false negative.
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So, if we build this table for a particular class, let's say for strawberries, it would be 
as follows:

True Positive
4 (actual strawberries classified correctly) 
(a)

False Positive
2 (cherries that were classified as 
strawberries)(b)

False Negative
3 (strawberries wrongly classified as 
cherries) (c)

True Negative
15 (all other fruits correctly not classified as 
strawberries) (d)

Using this table of confusion, we can find out the following terms:

• Accuracy: This is the proportion of the total number of predictions that 
were correctly classified. It is calculated as (True Positive + True Negative) / 
Positive + Negative. Therefore, accuracy = (a+d)/(a+b+c+d).

• Precision or positive predictive value: This is the proportion of positive 
cases that were correctly classified. It is calculated as (True Positive)/(True 
Positive + False Positive). Therefore, precision = a/(a+b).

• Negative predictive value: This is the proportion of negative cases that were 
classified correctly. It is calculated as True Negative/(True Negative + False 
Negative). Therefore, negative predictive value = d/(c+d).

• Sensitivity / true positive rate / recall: This is the proportion of the actual 
positive cases that were correctly identified. It is calculated as True Positive/
(True Positive + False Negative). Therefore, sensitivity = a/(a+c).

• Specificity: This is the proportion of the actual negative cases. It is calculated 
as True Negative/(False Positive + True Negative). Therefore, specificity =d /(b+d).

• F1 score: This is the measure of a test's accuracy, and it is calculated as 
follows: F1 = 2.((Positive predictive value (precision) * sensitivity (recall))/(Positive 
predictive value (precision) +sensitivity (recall))).
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The Receiver Operating Characteristics  
(ROC) graph
ROC is a two-dimensional plot of a classifier with false positive rate on the x axis 
and true positive rate on the y axis. The lower point (0,0) in the figure represents 
never issuing a positive classification. Point (0,1) represents perfect classification. 
The diagonal from (0,0) to (1,1) divides the ROC space. Points above the diagonal 
represent good classification results, and points below the line represent poor results, 
as shown in the following diagram:

Area under the ROC curve
This is the area under the ROC curve and is also known as AUC. It is used to 
measure the quality of the classification model. In practice, most of the classification 
models have an AUC between 0.5 and 1. The closer the value is to 1, the greater is 
your classifier.
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The entropy matrix
Before going into the details of the entropy matrix, first we need to understand 
entropy. The concept of entropy in information theory was developed by Shannon.

Entropy is a measure of disorder that can be applied to a set. It is defined as:

Entropy = -p1log(p1) – p2log(p2)- …….

Each p is the probability of a particular property within the set. Let's revisit our 
customer loan application dataset. For example, assuming we have a set of 10 
customers from which 6 are eligible for a loan and 4 are not. Here, we have  
two properties (classes): eligible or not eligible.

P(eligible) = 6/10 = 0.6

P(not eligible) = 4/10 = 0.4

So, entropy of the dataset will be:

Entropy = -[0.6*log2(0.6)+0.4*log2(0.4)]

             = -[0.6*-0.74 +0.4*-1.32]

             = 0.972

Entropy is useful in acquiring knowledge of information gain. Information gain 
measures the change in entropy due to any new information being added in model 
creation. So, if entropy decreases from new information, it indicates that the model  
is performing well now. Information gain is calculated as:

IG (classes , subclasses) = entropy(class) –(p(subclass1)*entropy(subclass1)+ 
p(subclass2)*entropy(subclass2) + …)

Entropy matrix is basically the same as the confusion matrix defined earlier; the 
only difference is that the elements in the matrix are the averages of the log of the 
probability score for each true or estimated category combination. A good model 
will have small negative numbers along the diagonal and will have large negative 
numbers in the off-diagonal position.
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Summary
We have discussed classification and its applications and also what algorithm and 
classifier evaluation techniques are supported by Mahout. We discussed techniques 
like confusion matrix, ROC graph, AUC, and entropy matrix.

Now, we will move to the next chapter and set up Apache Mahout and the developer 
environment. We will also discuss the architecture of Apache Mahout and find out 
why Mahout is a good choice for classification.

www.allitebooks.com
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Apache Mahout
In the previous chapter, we discussed classification and looked into the algorithms 
provided by Mahout in this area. Before going to those algorithms, we need  
to understand Mahout and its installation. In this chapter, we will explore the 
following topics:

• What is Apache Mahout?
• Algorithms supported in Mahout
• Why is it a good choice for classification problems?
• Setting up the system for Mahout development

Introducing Apache Mahout
A mahout is a person who rides and controls an elephant. Most of the algorithms 
in Apache Mahout are implemented on top of Hadoop, which is another Apache-
licensed project and has the symbol of an elephant (http://hadoop.apache.org/). 
As Apache Mahout rides over Hadoop, this name is justified.

http://hadoop.apache.org/
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Apache Mahout is a project of Apache Software Foundation that has 
implementations of machine learning algorithms. Mahout was started as a subproject 
of the Apache Lucene project in 2008. After some time, an open source project 
named Taste, which was developed for collaborative filtering, and it was absorbed 
into Mahout. Mahout is written in Java and provides scalable machine learning 
algorithms. Mahout is the default choice for machine learning problems in which the 
data is too large to fit into a single machine. Mahout provides Java libraries and does 
not provide any user interface or server. It is a framework of tools to be used and 
adapted by developers.

To sum it up, Mahout provides you with implementations of the most frequently 
used machine learning algorithms in the area of classification, clustering, and 
recommendation. Instead of spending time writing algorithms, it provides us with 
ready-to-consume solutions.

Mahout uses Hadoop for its algorithms, but some of the algorithms can also run 
without Hadoop. Currently, Mahout supports the following use cases:

• Recommendation: This takes the user data and tries to predict items that the 
user might like. With this use case, you can see all the sites that are selling 
goods to the user. Based on your previous action, they will try to find out 
unknown items that could be of use. One example can be this: as soon as 
you select some book from Amazon, the website will show you a list of other 
books under the title, Customers Who Bought This Item Also Bought. It 
also shows the title, What Other Items Do Customers Buy After Viewing 
This Item? Another example of recommendation is that while playing videos 
on YouTube, it recommends that you listen to some other videos based on 
your selection. Mahout provides full API support to develop your own user-
based or item-based recommendation engine.
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• Classification: As defined in the earlier chapter, classification decides how 
much an item belongs to one particular category. E-mail classification for 
filtering out spam is a classic example of classification. Mahout provides a 
rich set of APIs to build your own classification model. For example, Mahout 
can be used to build a document classifier or an e-mail classifier.

• Clustering: This is a technique that tries to group items together based 
on some sort of similarity. Here, we find the different clusters of items 
based on certain properties, and we do not know the name of the cluster in 
advance. The main difference between clustering and classification is that in 
classification, we know the end class name. Clustering is useful in finding out 
different customer segments. Google News uses the clustering technique in 
order to group news. For clustering, Mahout has already implemented some 
of the most popular algorithms in this area, such as k-means, fuzzy k-means, 
canopy, and so on.

• Dimensional reduction: As we discussed in the previous chapter, features 
are called dimensions. Dimensional reduction is the process of reducing the 
number of random variables under consideration. This makes data easy to 
use. Mahout provides algorithms for dimensional reduction. Singular value 
decomposition and Lanczos are examples of the algorithms that Mahout 
provides.

• Topic modeling: Topic modeling is used to capture the abstract idea of a 
document. A topic model is a model that associates probability distribution 
with each document over topics. Given that a document is about a particular 
topic, one would expect particular words to appear in the document more or 
less frequently. "Football" and "goal" will appear more in a document about 
sports. Latent Dirichlet Allocation (LDA) is a powerful learning algorithm 
for topic modeling. In Mahout, collapsed variational Bayes is implemented 
for LDA.

Algorithms supported in Mahout
The implementation of algorithms in Mahout can be categorized into two groups:

• Sequential algorithms: These algorithms are executed sequentially and 
do not use Hadoop scalable processing. They are usually the ones derived 
from Taste. For example: user-based collaborative filtering, logistic 
regression, Hidden Markov Model, multi-layer perceptron, singular value 
decomposition.
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• Parallel algorithms: These algorithms can support petabytes of data using 
Hadoop's map and hence reduce parallel processing. For example, Random 
Forest, Naïve Bayes, canopy clustering, k-means clustering ,spectral 
clustering, and so on.

Reasons for Mahout being a good choice 
for classification
In machine learning systems, the more data you use, the more accurate the system 
built will be. Mahout, which uses Hadoop for scalability, is way ahead of others in 
terms of handling huge datasets. As the number of training sets increases, Mahout's 
performance also increases. If the input size for training examples is from 1 million to 
10 million, then Mahout is an excellent choice.

For classification problems, increased data for training is desirable as it can improve 
the accuracy of the model. Generally, as the number of datasets increases, memory 
requirement also increases, and algorithms become slow, but Mahout's scalable and 
parallel algorithms work better with regards to the time taken. Each new machine 
added decreases the training time and provides higher performance.

Installing Mahout
Now let's try the slightly challenging part of this book: Mahout installation. Based on 
common experiences, I have come up with the following questions or concerns that 
users face before installation:

• I do not know anything about Maven. How will I compile Mahout build?
• How can I set up Eclipse to write my own programs in Mahout?
• How can I install Mahout on a Windows system?

So, we will install Mahout with the help of the following steps. Each step is 
independent from the other. You can choose any one of these:

• Building Mahout code using Maven
• Setting up a development environment using Eclipse
• Setting up Mahout for a Windows user
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Before any of the steps, some of the prerequisites are:

• You should have Java installed on your system. Wikihow is a good source  
for this at http://www.wikihow.com/Install-Java-on-Linux

• You should have Hadoop installed on your system from the http://
hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleNodeSetup.html URL

Building Mahout from source using Maven
Mahout's build and release system is based on Maven.

Installing Maven
1. Create the folder /usr/local/maven, as follows:

mkdir /usr/local/maven

2. Download the distribution apache-maven-x.y.z-bin.tar.gz from the 
Maven site (http://maven.apache.org/download.cgi) and move this to /
usr/local/maven, as follows:
mv apache-maven-x.y.z-bin.tar.gz /usr/local/maven

3. Unpack to the location /usr/local/maven, as follows:
tar –xvf apache-maven-x.y.z-bin.tar.gz

4. Edit the .bashrc file, as follows:

export M2_HOME=/usr/local/apache-maven-x.y.z 
export M2=$M2_HOME/bin 
export PATH=$M2:$PATH

For the Eclipse IDE, go to Help and select Install new Software. 
Click on the Add button, and in the pop up, type the name 
M2Eclipse, provide the link http://download.eclipse.org/
technology/m2e/releases, and click on OK.

http://www.wikihow.com/Install-Java-on-Linux
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleNodeSetup.html
http://maven.apache.org/download.cgi
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases


Apache Mahout

[ 26 ]

Building Mahout code
By default, Mahout assumes that Hadoop is already installed on the system. Mahout 
uses the HADOOP_HOME and HADOOP_CONF_DIR environment variables to access 
Hadoop cluster configurations. For setting up Mahout, execute the following steps:

1. Download the Mahout distribution file mahout-distribution-0.9-
src.tar.gz from the location http://archive.apache.org/dist/
mahout/0.9/.

2. Choose an installation directory for Mahout (/usr/local/Mahout), and place 
the downloaded source in the folder. Extract the source code and ensure that 
the folder contains the pom.xml file. The following is the exact location of the 
source:
tar -xvf  mahout-distribution-0.9-src.tar.gz

3. Install the Mahout Maven project, and skip the test cases while installing,  
as follows:
mvn install -Dmaven.test.skip=true

4. Set the MAHOUT_HOME environment variable in the ~/.bashrc file, and update 
the PATH variable with the Mahout bin directory:
export MAHOUT_HOME=/user/local/mahout/mahout-distribution-0.9

export PATH=$PATH:$MAHOUT_HOME/bin

5. To test the Mahout installation, execute the command: mahout. This will 
list the available programs within the distribution bundle, as shown in the 
following screenshot:

http://archive.apache.org/dist/mahout/0.9/
http://archive.apache.org/dist/mahout/0.9/
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Setting up a development environment using 
Eclipse
For this setup, you should have Maven installed on the system and the Maven plugin 
for Eclipse. Refer to the Installing Maven step explained in the previous section. This 
setup can be done in the following steps:

1. Download the Mahout distribution file mahout-distribution-0.9-src.
tar.gz from the location http://archive.apache.org/dist/mahout/0.9/ 
and unzip this:
tar xzf mahout-distribution-0.9-src.tar.gz

2. Let's create a folder named workspace under /usr/local/workspace,  
as follows:
mkdir /usr/local/workspace

3. Move the downloaded distribution to this folder (from the downloads 
folder), as follows:
mv mahout-distribution-0.9 /usr/local/workspace/

http://archive.apache.org/dist/mahout/0.9/
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4. Move to the folder /usr/local/workspace/mahout-distribution-0.9  
and make an Eclipse project (this command can take up to an hour):
mvn eclipse:eclipse

5. Set the Mahout home in the .bashrc file, as explained earlier in the Building 
Mahout code section.

6. Now open Eclipse. Select the file, import Maven, and Existing Maven 
Projects. Now, navigate to the location for mahout-distribution-0.9 and click 
on Finish.
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Setting up Mahout for a Windows user
A Windows user can use Cygwin (a large collection of GNU and open source tools 
that provides functionality similar to a Linux distribution on Windows) to set up 
their environment. There is also another way that is easy to use, as shown in the 
following steps:

1. Download Hortonworks Sandbox for virtual box on your system from 
the location http://hortonworks.com/products/hortonworks-
sandbox/#install. Hortonworks Sandbox on your system will be a  
pseudo-distributed mode of Hadoop.

2. Log in to the console. Use Alt + F5 or alternatively download Putty and 
provide 127.0.0.1 as the hostname and 2222 in the port, as shown in the 
following figure. Log in with the username root and password -hadoop.

www.allitebooks.com

http://hortonworks.com/products/hortonworks-sandbox/#install
http://hortonworks.com/products/hortonworks-sandbox/#install
http://www.allitebooks.org
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3. Enter the following command:
yum install mahout

Now, you will see a screen like this:

4. Enter y, and your Mahout will start installing. Once this is done, you can  
test by typing the command mahout and this will show you the same  
screen as shown in the Setting up a development environment using Eclipse 
recipe seen earlier.

Summary
We discussed Apache Mahout in detail in this chapter. We covered  the process of 
installing Mahout on our system, along with setting up a development environment 
that is ready to execute Mahout algorithms. We have also taken a look at the reasons 
behind Mahout being considered a good choice for classification. Now, we move 
to the next where we will understand about logistic regression and learn about the 
process that needs to be followed to execute our first algorithm in Mahout.



Learning Logistic Regression 
/ SGD Using Mahout

Instead of jumping directly into logistic regression, let's try to understand a few of its 
concepts. In this chapter, we will explore the following topics:

• Introducing regression
• Understanding linear regression
• Cost function
• Gradient descent
• Logistic regression
• Understanding SGD
• Using Mahout for logistic regression

Introducing regression
Regression analysis is used for prediction and forecasting. It is used to find out the 
relationship between explanatory variables and target variables. Essentially, it is a 
statistical model that is used to find out the relationship among variables present 
in the datasets. An example that you can refer to for a better understanding of this 
term is this: determine the earnings of workers in a particular industry. Here, we 
will try to find out the factors that affect a worker's salary. These factors can be age, 
education, years of experience, particular skill set, location, and so on. We will try to 
make a model that will take all these variables into consideration and try to predict 
the salary. In regression analysis, we characterize the variation of the target variable 
around the regression function, which can be described by a probability distribution 
that is also of interest. There are a number of regression analysis techniques that are 
available. For example, linear regression, ordinary least squares regression, logistic 
regression, and so on.
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Understanding linear regression
In linear regression, we create a model to predict the value of a target variable  
with the help of an explanatory variable. To understand this better, let's look  
at an example.

A company X that deals in selling coffee has noticed that in the month of monsoon, 
their sales increased to quite an extent. So they have come up with a formula to find 
the relation between rain and their per cup coffee sale, which is shown as follows:

C = 1.5R+800

So, for 2 mm of rain, there is a demand of 803 cups of coffee. Now if you go into 
minute details, you will realize that we have the data for rainfall and per cup coffee 
sale, and we are trying to build a model that can predict the demand for coffee based 
on the rainfall. We have data in the form of (R1, C1), (R2, C2)…. (Ri, Ci). Here, we 
will build the model in a manner that keeps the error in the actual and predicted 
values at a minimum.

Cost function
In the equation C = 1.5R+800, the two values 1.5 and 800 are parameters and 
these values affect the end result. We can write this equation as C= p0+p1R. As we 
discussed earlier, our goal is to reduce the difference between the actual value and 
the predicted value, and this is dependent on the values of p0 and p1. Let's assume 
that the predicted value is Cp and the actual value is C so that the difference will be 
(Cp-C). This can be written as (p0+p1R-C).To minimize this error, we define the error 
function, which is also called the cost function.

The cost function can be defined with the following formula:

( ) ( )( )20 1 0 1
1
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Here, i is the ith sample and N is the number of training examples. We calculate costs 
for different sets of p0 and p1 and finally select the p0 and p1 that gives the least cost 
(C). This is the model that will be used to make predictions for new input.
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Gradient descent
Gradient descent starts with an initial set of parameter values, p0 and p1, and 
iteratively moves towards a set of parameter values that minimizes the cost function. 
We can visualize this error function graphically, where width and length can be 
considered as the parameters p0 and p1 and height as the cost function. Our goal is 
to find the values for p0 and p1 in a way that our cost function will be minimal. We 
start the algorithm with some values of p0 and p1 and iteratively work towards the 
minimum value. A good way to ensure that the gradient descent is working correctly 
is to make sure that the cost function decreases for each iteration. In this case, the 
cost function surface is convex and we will try to find out the minimum value. This 
can be seen in the following figure:

Logistic regression
Logistic regression is used to ascertain the probability of an event. Generally, logistic 
regression refers to problems where the outcome is binary, for example, in building 
a model that is based on a customer's income, travel uses, gender, and other features 
to predict whether he or she will buy a particular car or not. So, the answer will be a 
simple yes or no. When the outcome is composed of more than one category, this is 
called multinomial logistic regression.
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Logistic regression is based on the sigmoid function. Predictor variables are 
combined with linear weight and then passed to this function, which generates the 
output in the range of 0–1. An output close to 1 indicates that an item belongs to a 
certain class. Let's first understand the sigmoid or logistic function. It can be defined 
by the following formula:

F (z) = 1/1+e (-z)

With a single explanatory variable, z will be defined as z = β0 + β1*x. This equation is 
explained as follows:

• z: This is called the dependent variable. This is the variable that we would 
like to predict. During the creation of the model, we have this variable with 
us in the training set, and we build the model to predict this variable. The 
known values of z are called observed values.

• x: This is the explanatory or independent variable. These variables are 
used to predict the dependent variable z. For example, to predict the sales 
of a newly launched product at a particular location, we might include 
explanatory variables such as the price of the product, the average income of 
the people of that location, and so on.

• β0: This is called the regression intercept. If all explanatory variables are zero, 
then this parameter is equal to the dependent variable z.

• β1: These are values for each explanatory variable.

The graph of the logistic function is as follows:
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With a little bit of mathematics, we can change this equation as follows:

ln(F(x)/(1-F(x)) = β0 + β1*x

In the case of linear regression, the cost function graph was convex, but here, it is not 
going to be convex. Finding the minimum values for parameters in a way that our 
predicted output is close to the actual one will be difficult. In a cost function, while 
calculating for logistic regression, we will replace our Cp value of linear regression 
with the function F(z). To make convex logistic regression cost functions, we will 
replace (p0+p1Ri-Ci)2 with one of the following:

• log (1/1+e (-(β0 + β1*x))) if the actual occurrence of an event is 1, this function 
will represent the cost.

• log (1-(1/1+e (-(β0 + β1*x)))) if the actual occurrence of an event is 0, this 
function will represent the cost.

We will have to remember that in logistic regression, we calculate the class 
probability. So, if the probability of an event occurring (customer buying a car, being 
defrauded, and so on ) is p, the probability of non-occurrence is 1-p.

Stochastic Gradient Descent
Gradient descent minimizes the cost function. For very large datasets, gradient 
descent is a very expensive procedure. Stochastic Gradient Descent (SGD) is a 
modification of the gradient descent algorithm to handle large datasets. Gradient 
descent computes the gradient using the whole dataset, while SGD computes the 
gradient using a single sample. So, gradient descent loads the full dataset and tries 
to find out the local minimum on the graph and then repeat the full process again, 
while SGD adjusts the cost function for every sample, one by one. A major advantage 
that SGD has over gradient descent is that its speed of computation is a whole lot 
faster. Large datasets in RAM generally cannot be held as the storage is limited. In 
SGD, the burden on the RAM is reduced, wherein each sample or batch of samples 
are loaded and worked with, the results for which are stored, and so on.
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Using Mahout for logistic regression
Mahout has implementations for logistic regression using SGD. It is very easy to 
understand and use. So let's get started.

Dataset

We will use the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. This is a 
dataset for breast cancer tumors and data is available from 1995 onwards. It has 569 
instances of breast tumor cases and has 30 features to predict the diagnosis, which is 
categorized as either benign or malignant.

More details on the preceding dataset is available at http://
archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/wdbc.names.

Preparing the training and test data

You can download the wdbc.data dataset from http://archive.ics.uci.edu/ml/
machine-learning-databases/breast-cancer-wisconsin/wdbc.data.

Now, save it as a CSV file and include the following header line:

ID_Number,Diagnosis,Radius,Texture,Perimeter,Area,Smoothness,Compactn
ess,Concavity,ConcavePoints,Symmetry,Fractal_Dimension,RadiusStdError
,TextureStdError,PerimeterStdError,AreaStdError,SmoothnessStdError,Co
mpactnessStdError,ConcavityStdError,ConcavePointStdError,Symmetrystde
rror,FractalDimensionStderror,WorstRadius,worsttexture,worstperimeter
,worstarea,worstsmoothness,worstcompactness,worstconcavity,worstconca
vepoints,worstsymmentry,worstfractaldimensions

Now, we will have to perform the following steps to prepare this data to be used by 
the Mahout logistic regression algorithm:

1. We will make the target class numeric. In this case, the second field diagnosis 
is the target variable. We will change malignant to 0 and benign to 1. Use the 
following code snippet to introduce the changes. We can use this strategy for 
small datasets, but for huge datasets, we have different strategies, which we 
will cover in Chapter 4, Learning the Naïve Bayes Classification Using Mahout:

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data
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public void convertTargetToInteger() throws IOException{
  //Read the data
  BufferedReader br = new BufferedReader(new  
    FileReader("wdbc.csv"));
  String line =null;
  //Create the file to save the resulted data
  File wdbcData = new File("<Your Destination location for  
    file.>");
  FileWriter fw = new FileWriter(wdbcData);
  //We are adding header to the new file
  fw.write("ID_Number"+","+"Diagnosis"+","+"Radius" 
    +","+"Texture"+","+"Perimeter"+","+"Area" 
    +","+"Smoothness"+","+"Compactness"+","+"Concavity" 
    +","+"ConcavePoints"+","+"Symmetry" 
    +","+"Fractal_Dimension"+","+"RadiusStdError" 
    +","+"TextureStdError"+","+"PerimeterStdError" 
    +","+"AreaStdError"+","+"SmoothnessStdError" 
    +","+"CompactnessStdError"+","+"ConcavityStdError" 
    +","+"ConcavePointStdError"+","+"Symmetrystderror" 
    +","+"FractalDimensionStderror"+","+"WorstRadius" 
    +","+"worsttexture"+","+"worstperimeter" 
    +","+"worstarea"+","+"worstsmoothness" 
    +","+"worstcompactness"+","+"worstconcavity" 
    +","+"worstconcavepoints"+","+"worstsymmentry" 
    +","+"worstfractaldimensions"+"\n");

  /*In the while loop we are reading line by line and  
    checking the last field- parts[1] and changing it to  
    numeric value accordingly*/
  while((line=br.readLine())!=null){
    String []parts = line.split(",");
    if(parts[1].equals("M")){
    fw.write(parts[0]+","+"0"+","+parts[2]+","+parts[3]+", 
       "+parts[4]+","+parts[5]+","+parts[6]+","+parts[7]+", 
       "+parts[8]+","+parts[9]+","+parts[10]+", 
       "+parts[11]+","+parts[12]+","+parts[13]+", 
       "+parts[14]+","+parts[15]+","+parts[16]+", 
       "+parts[17]+","+parts[18]+","+parts[19]+", 
       "+parts[20]+","+parts[21]+","+parts[22]+", 
       "+parts[23]+","+parts[24]+","+parts[25]+", 
       "+parts[26]+","+parts[27]+","+parts[28]+", 
       "+parts[29]+","+parts[30]+","+parts[31]+"\n");
    }
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    if(parts[1].equals("B")){
      fw.write(parts[0]+","+"1"+","+parts[2]+", 
        "+parts[3]+","+parts[4]+","+parts[5]+", 
        "+parts[6]+","+parts[7]+","+parts[8]+", 
        "+parts[9]+","+parts[10]+","+parts[11]+", 
        "+parts[12]+","+parts[13]+","+parts[14]+", 
        "+parts[15]+","+parts[16]+","+parts[17]+", 
        "+parts[18]+","+parts[19]+","+parts[20]+", 
        "+parts[21]+","+parts[22]+","+parts[23]+", 
        "+parts[24]+","+parts[25]+","+parts[26]+", 
        "+parts[27]+","+parts[28]+","+parts[29]+", 
        "+parts[30]+","+parts[31]+"\n");
    }
  }
  fw.close();
  br.close();
}

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

2. We will have to split the dataset into training and test datasets and then 
shuffle the datasets so that we can mix them up, which can be  
done using the following code snippet:

public void dataPrepration() throws Exception {
  // Reading the dataset created by earlier method  
    convertTargetToInteger and here we are using google  
    guava api's.
  List<String> result = Resources.readLines(Resources. 
    getResource("wdbc.csv"), Charsets.UTF_8);
  //This is to remove header before the randomization  
    process. Otherwise it can appear in the middle of  
    dataset.
  List<String> raw = result.subList(1, 570);
  Random random = new Random();
  //Shuffling the dataset.
  Collections.shuffle(raw, random);
  //Splitting dataset into training and test examples.
  List<String> train = raw.subList(0, 470);
  List<String> test = raw.subList(470, 569);

http://www.packtpub.com
http://www.packtpub.com/support
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  File trainingData = new File("<your Location>/  
     wdbcTrain.csv");
  File testData = new File("<your Location>/  
     wdbcTest.csv");
  writeCSV(train, trainingData);
  writeCSV(test, testData);
}
//This method is writing the list to desired file location.
public void writeCSV(List<String> list, File file) throws 
IOException{
  FileWriter fw = new FileWriter(file);
  fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"+", 
    "+"Texture"+","+"Perimeter"+","+"Area"+", 
    "+"Smoothness"+","+"Compactness"+", 
    "+"Concavity"+","+"ConcavePoints"+","+"Symmetry"+", 
    "+"Fractal_Dimension"+","+"RadiusStdError"+", 
    "+"TextureStdError"+","+"PerimeterStdError"+", 
    "+"AreaStdError"+","+"SmoothnessStdError"+", 
    "+"CompactnessStdError"+","+"ConcavityStdError"+", 
    "+"ConcavePointStdError"+","+"Symmetrystderror"+", 
    "+"FractalDimensionStderror"+","+"WorstRadius"+", 
    "+"worsttexture"+","+"worstperimeter"+", 
    "+"worstarea"+","+"worstsmoothness"+", 
    "+"worstcompactness"+","+"worstconcavity"+", 
    "+"worstconcavepoints"+","+"worstsymmentry"+", 
    "+"worstfractaldimensions"+"\n");
  for(int i=0;i< list.size();i++){
    fw.write(list.get(i)+"\n");
  }
  fw.close();
}

Training the model

We will use the training dataset and trainlogistic algorithm to prepare the model. 
Use the following command to create the model:

mahout trainlogistic --input /tmp/wdbcTrain.csv --output /tmp//
model --target Diagnosis --categories 2 --predictors Radius Texture 
Perimeter Area Smoothness Compactness Concavity ConcavePoints Symmetry 
Fractal_Dimension RadiusStdError TextureStdError PerimeterStdError 
AreaStdError SmoothnessStdError CompactnessStdError ConcavityStdError 
ConcavePointStdError Symmetrystderror FractalDimensionStderror 
WorstRadius worsttexture worstperimeter worstarea worstsmoothness 
worstcompactness worstconcavity worstconcavepoints worstsymmentry 
worstfractaldimensions  --types numeric --features 30 --passes 90 --rate 
300

www.allitebooks.com
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This command will give you the following output:

Let's understand the parameters used in this command:

• trainlogistic: This is the algorithm that Mahout provides to build the 
model using your input parameters.

• input: This is the location of the input file.
• output: This is the location of the model file.
• target: This is the name of the target variable that we want to predict from 

the dataset.
• categories: This refers to the number of predicted classes.
• predictors: This features in the dataset used to predict the target variable.
• types: This is a list of the types of predictor variables. (Here all are numeric 

but it could be word or text as well.)
• features: This is the size of the feature vector used to build the model.
• passes: This specifies the number of times the input data should be re-

examined during training. Small input files may need to be examined dozens 
of times. Very large input files probably don't even need to be completely 
examined.

• rate: This sets the initial learning rate. This can be large if you have lots 
of data or use lots of passes because it decreases progressively as data is 
examined.
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Now our model is ready to move on to the next step of evaluation. To evaluate 
the model further, we can use the same dataset and check the confusion and AUC 
matrix. The command for this will be as follows:

mahout runlogistic --input /tmp/wdbcTrain.csv --model /tmp//model  --auc 
--confusion

• runlogistic: This is the algorithm to run the logistic regression model over 
an input dataset

• model: This is the location of the model file
• auc: This prints the AUC score for the model versus the input data after the 

data is read
• confusion: This prints the confusion matrix for a particular threshold

The output of the previous command is shown in  the following screenshot:

Now, these matrices show that the model is not bad. Having 0.88 as the value for 
AUC is good, but we will check this on test data as well. The confusion matrix 
informs us that out of 172 malignant tumors, it has correctly classified 151 instances 
and that 34 benign tumors are also classified as malignant. In the case of benign 
tumors, out of 298, it has correctly classified 264.

If the model does not provide good results, we have a number of options.

Change the parameters in the feature vector, increasing them if we are selecting few 
features. This should be done one at a time, and we should test the result again with 
each generated model. We should get a model where AUC is close to 1.
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Let's run the same algorithm on test data as well:

mahout runlogistic --input /tmp/wdbcTest.csv --model /tmp//model  --auc –
confusion

So this model works almost the same on test data as well. It has classified 34 out of 
the 40 malignant tumors correctly.

Summary
In this chapter, we discussed logistic regression and how we can use this algorithm 
available in Apache Mahout. We used the Wisconsin Diagnostic Breast Cancer 
dataset and randomly broke it into two datasets: one for training and the other for 
testing. We created the logistic regression model using Mahout and also ran test data 
over this model. Now, we will move on to the next chapter where you will learn 
about the Naïve Bayes classification and also the most frequently used classification 
technique: text classification.



Learning the Naïve Bayes 
Classification Using Mahout

In this chapter, we will use the Naïve Bayes classification algorithm to classify a 
set of documents. Classifying text documents is a little tricky because of the data 
preparation steps involved. In this chapter, we will explore the following topics:

• Conditional probability and the Bayes rule
• Understanding the Naïve Bayes algorithm
• Understanding terms used in text classification
• Using the Naïve Bayes algorithm in Apache Mahout

Introducing conditional probability and 
the Bayes rule
Before learning the Naïve Bayes algorithm, you should have an understanding of 
conditional probability and the Bayes rule.

In very simple terms, conditional probability is the probability that something will 
happen, given that something else has already happened. It is expressed as P(A/B), 
which can be read as probability of A given B, and it finds the probability of the 
occurrence of event A once event B has already happened.
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Mathematically, it is defined as follows:
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For example, if you choose a card from a standard card deck and if you were asked 
about the probability for the card to be a diamond, you would quickly say 13/52 or 
0.25, as there are 13 diamond cards in the deck. However, if you then look at the card 
and declare that it is red, then we will have narrowed the possibilities for the card 
to 26 possible cards, and the probability that the card is a diamond now is 13/26 = 
0.5. So, if we define A as a diamond card and B as a red card, then P(A/B) will be the 
probability of the card being a diamond, given it is red.

Sometimes, for a given pair of events, conditional probability is hard to calculate, 
and Bayes' theorem helps us here by giving the relationship between two conditional 
probabilities.

Bayes' theorem is defined as follows:
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The terms in the formula are defined as follows:

• P(A): This is called prior probability or prior
• P(B/A): This is called conditional probability or likelihood
• P(B): This is called marginal probability
• P(A/B): This is called posterior probability or posterior

The following formula is derived only from the conditional probability formula.  
We can define P(B/A) as follows:
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When rearranged, the formula becomes this:
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Now, from the preceding conditional probability formula, we get the following:
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Let's take an example that will help us to understand how Bayes' theorem is applied.

A cancer test gives a positive result with a probability of 97 percent when the 
patient is indeed affected by cancer, while it gives a negative result with 99 percent 
probability when the patient is not affected by cancer. If a patient is drawn at random 
from a population where 0.2 percent of the individuals are affected by cancer and he 
or she is found to be positive, what is the probability that he or she is indeed affected 
by cancer? In probabilistic terms, what we know about this problem can be defined 
as follows:

P (positive| cancer) = 0.97

P (positive| no cancer) = 1-0.99 = 0.01

P (cancer) = 0.002

P (no cancer) = 1-0.002= 0.998

P (positive) = P (positive| cancer) P (cancer) + P (positive| no cancer) P (no cancer)

                   = 0.97*0.002 + 0.01*0.998

                    = 0.01192

Now P (cancer| positive) = (0.97*0.002)/0.01192 = 0.1628

So even when found positive, the probability of the patient being affected by cancer 
in this example is around 16 percent.
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Understanding the Naïve Bayes algorithm
In Bayes' theorem, we have seen that the outcome is based only on one evidence,  
but in classification problems, we have multiple evidences and we have to predict 
the outcome. In Naïve Bayes, we uncouple multiple pieces of evidence and treat  
each one of them independently. It is defined as follows:

P (outcome | multiple Evidence) ) = P (Evidence 1|outcome)* P (Evidence 2|outcome)* P 
(Evidence 3|outcome) …. /P (Evidence)

Run this formula for each possible outcome. Since we are trying to classify, 
each outcome will be called a class. Our task is to look at the evidence (features) 
to consider how likely it is for it to be of a particular class and then assign it 
accordingly. The class that has the highest probability gets assigned to that 
combination of evidences. Let's understand this with an example.

Let's say that we have data on 1,000 pieces of fruit. They happen to be bananas, 
apples, or some other fruit. We are aware of three characteristics of each fruit:

• Size: They are either long or not long
• Taste: They are either sweet or not sweet
• Color: They are either yellow or not yellow

Assume that we have a dataset like the following:

Fruit type Taste – 
sweet

Taste 
– not 
sweet

Color – 
yellow

Color 
– not 
yellow

Size – 
long

Size – 
not long

Total

Banana 350 150 450 50 400 100 500
Apple 150 150 100 200 0 300 300
Other 150 50 50 150 100 100 200
Total 650 350 600 400 500 500 1000

Now let's look at the things we have:

P (Banana) = 500/1000 = 0.5

P (Apple) = 300/1000 = 0.3

P (Other) = 200/1000 = 0.2
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Let's look at the probability of the features:

P (Sweet) = 650/1000 = 0.65

P (Yellow) = 600/1000 = 0.6

P (long) = 500/1000 = 0.5

P (not Sweet) = 350/1000 = 0.35

P (not yellow) = 400/1000= 0.4

P (not long) = 500/1000 = 0.5

Now we want to know what fruit we will have if it is not yellow and not long and 
sweet. The probability of it being an apple is as follows:

P (Apple| sweet, not long, not yellow) = P (sweet | Apple)* P (not long | Apple)* P (not 
yellow |   Apple)*P (Apple)/P (sweet)* P (not long) *P (not yellow)

                                                               = 0.5*1*0.67*0.3/P (Evidence)

                                                               = 0.1005/P (Evidence)

The probability of it being a banana is this:

P (banana| sweet, not long, not yellow) = P (sweet | banana)* P (not long | banana)* P (not 
yellow | banana)*P (banana)/P (sweet)* P (not long) *P (not yellow)

                                                                 = 0.7*0.2*0.1*0.5/P (Evidence)

                                                                 = 0.007/P (Evidence)

The probability of it being any other fruit is as follows:

P (other fruit| sweet, not long, not yellow) = P (sweet | other fruit)* P (not long | other 
fruit)* P (not yellow | other fruit)  *P (other fruit)/P (sweet)* P (not long) *P (not yellow)

                                                                      = 0.75*0.5*0.75*0.2/P (Evidence)

                                                                      = 0.05625/ P (Evidence)

So from the results, you can see that if the fruit is sweet, not long, and not yellow, 
then the highest probability is that it will be an apple. So find out the highest 
probability and assign the unknown item to that class.

Naïve Bayes is a very good choice for text classification. Before we move on to text 
classification using Naïve Bayes in Mahout, let's understand a few terms that are 
really useful for text classification.
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Understanding the terms used in text 
classification
To prepare data so that it can be used by a classifier is a complex process. From raw 
data, we can collect explanatory and target variables and encode them as vectors, 
which is the input of the classifier.

Vectors are ordered lists of values as defined in two-dimensional space. You can 
take a clue from coordinate geometry as well. A point (3, 4) is a point in the x and y 
planes. In Mahout, it is different. Here, a vector can have (3, 4) or 10,000 dimensions.

Mahout provides support for creating vectors. There are two types of vector 
implementations in Mahout: sparse and dense vectors. There are a few terms that  
we need to understand for text classification:

• Bag of words: This considers each document as a collection of words. 
This ignores word order, grammar, and punctuation. So, if every word 
is a feature, then calculating the feature value of the document word is 
represented as a token. It is given the value 1 if it is present or 0 if not.

• Term frequency: This considers the word count in the document instead of 
0 and 1. So the importance of a word increases with the number of times it 
appears in the document. Consider the following example sentence:

Apple has launched iPhone and it will continue to launch such products. 
Other competitors are also planning to launch products similar to that of 
iPhone.

The following is the table that represents term frequency:

Term Count
Apple 1
Launch 3
iPhone 2
Product 2
Plan 1
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The following techniques are usually applied to come up with this type of table:

• Stemming of words: With this, the suffix is removed from the word so 
"launched", "launches", and "launch" are all considered as "launch".

• Case normalization: With this, every term is converted to lowercase.
• Stop word removal: There are some words that are almost present in every 

document. We call these words stop words. During an important feature 
extraction from a document, these words come into account and they will not 
be helpful in the overall calculation. Examples of these words are "is, are, the, 
that, and so on." So, while extracting, we will ignore these kind of words.

• Inverse document frequency: This is considered as the boost a term gets 
for being rare. A term should not be too common. If a term occurs in every 
document, it is not good for classification. The fewer documents in which a 
term occurs, the more significant it is likely to be for the documents it does 
occur in. For a term t, inverse document frequency is calculated as follows:
IDF (t) = 1 + log (total number of documents/ number of documents 
containing t)

• Term frequency and inverse term frequency: This is one of the popular 
representations of the text. It is the product of term frequency and inverse 
document frequency, as follows:

TFIDF (t, d) = TF (t, d) * IDF (t)

Each document is a feature vector and a collection of documents is a set of these 
feature vectors and this set works as the input for the classification. Now that we 
understand the basic concepts behind the vector creation of text documents, let's 
move on to the next section where we will classify text documents using the Naïve 
Bayes algorithm.

Using the Naïve Bayes algorithm in 
Apache Mahout
We will use a dataset of 20 newsgroups for this exercise. The 20 newsgroups 
dataset is a standard dataset commonly used for machine learning research. The 
data is obtained from transcripts of several months of postings made in 20 Usenet 
newsgroups from the early 1990s. This dataset consists of messages, one per file. 
Each file begins with header lines that specify things such as who sent the message, 
how long it is, what kind of software was used, and the subject. A blank line follows 
and then the message body follows as unformatted text.

www.allitebooks.com
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Download the 20news-bydate.tar.gz dataset from http://qwone.
com/~jason/20Newsgroups/. The following steps are used to build the Naïve Bayes 
classifier using Mahout:

1. Create a 20newsdata directory and unzip the data here:
mkdir /tmp/20newsdata

cd /tmp/20newsdata

tar –xzvf /tmp/20news-bydate.tar.gz

2. You will see two folders under 20newsdata: 20news-bydate-test and 
20news-bydate-train. Now create another directory called 20newsdataall 
and merge both the training and test data of the 20 newsgroups.

3. Come out of the directory and move to the home directory and execute  
the following:
mkdir /tmp/20newsdataall

cp –R /20newsdata/*/* /tmp/20newsdataall

4. Create a directory in Hadoop and save this data in HDFS format:
hadoop fs –mkdir /user/hue/20newsdata

hadoop fs –put /tmp/20newsdataall /user/hue/20newsdata

5. Convert the raw data into a sequence file. The seqdirectory command will 
generate sequence files from a directory. Sequence files are used in Hadoop. 
A sequence file is a flat file that consists of binary key/value pairs. We are 
converting the files into sequence files so that it can be processed in Hadoop, 
which can be done using the following command:
bin/mahout seqdirectory -i /user/hue/20newsdata/20newsdataall  -o 
/user/hue/20newsdataseq-out

The output of the preceding command can be seen in the following screenshot:

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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6. Convert the sequence file into a sparse vector using the following command:
bin/mahout seq2sparse -i /user/hue/20newsdataseq-out/part-m-00000 
-o /user/hue/20newsdatavec -lnorm -nv -wt tfidf

The terms used in the preceding command are as follows:

 ° lnorm: This is for the output vector to be log normalized
 ° nv: This refers to named vectors
 ° wt: This refers to the kind of weight to use; here, we use tfidf

The output of the preceding command on the console is shown in the 
following screenshot:
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7. Split the set of vectors to train and test the model:
bin/mahout split -i /user/hue/20newsdatavec/tfidf-vectors 
--trainingOutput /user/hue/20newsdatatrain --testOutput /
user/hue/20newsdatatest --randomSelectionPct 40 --overwrite 
--sequenceFiles -xm sequential

The terms used in the preceding command are as follows:

 ° randomSelectionPct: This divides the percentage of data into 
testing and training datasets. Here, 60 percent is for testing and  
40 percent for training.

 ° xm: This refers to the execution method to use: sequential or 
mapreduce. The default is mapreduce.

8. Now train the model:
bin/mahout trainnb -i /user/hue/20newsdatatrain -el -o /user/hue/
model -li /user/hue/labelindex -ow -c

9. Test the model using the following command:

bin/mahout testnb -i /user/hue/20newsdatatest -m /user/hue/model/ 
-l  /user/hue/labelindex -ow -o /user/hue/results
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The output of the preceding command on the console is shown in the 
following screenshot:

We get the result of our Naïve Bayes classifier for the 20 newsgroups.
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Summary
In this chapter, we discussed the Naïve Bayes algorithm. This algorithm is a 
simplistic yet highly regarded statistical model that is widely used in both industry 
and academia, and it produces good results on many occasions. We initially 
discussed conditional probability and the Bayes rule. We then saw an example of 
the Naïve Bayes algorithm. You learned about the approaches to convert text into a 
vector format, which is an input for classifiers. Finally, we used the 20 newsgroups 
dataset to build a classifier using the Naïve Bayes algorithm in Mahout. In the  
next chapter, we will continue our journey of exploring classification algorithms  
in Mahout with the Hidden Markov model implementation.



Learning the Hidden Markov 
Model Using Mahout

In this chapter, we will cover one of the most interesting topics of classification 
techniques: the Hidden Markov Model (HMM). To understand the HMM, we will 
cover the following topics in this chapter:

• Deterministic and nondeterministic patterns
• The Markov process
• Introducing the HMM
• Using Mahout for the HMM

Deterministic and nondeterministic 
patterns
In a deterministic system, each state is solely dependent on the state it was 
previously in. For example, let's take the case of a set of traffic lights. The sequence  
of lights is red → green → amber → red. So, here we know what state will follow 
after the current state. Once the transitions are known, deterministic systems are  
easy to understand.

For nondeterministic patterns, consider an example of a person named Bob who 
has his snacks at 4:00 P.M. every day. Let's say he has any one of the three items 
from the menu: ice cream, juice, or cake. We cannot say for sure what item he will 
have the next day, even if we know what he had today. This is an example of a 
nondeterministic pattern.
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The Markov process
In the Markov process, the next state is dependent on the previous states. If we 
assume that we have an n state system, then the next state is dependent on the 
previous n states. This process is called an n model order. In the Markov process, 
we make the choice for the next state probabilistically. So, considering our previous 
example, if Bob had juice today, he can have juice, ice cream, or cake the next day. 
In the same way, we can reach any state in the system from the previous state. The 
Markov process is shown in the following diagram:

Cake Ice-cream Juice

If we have n states in a process, then we can reach any state with n2 transitions. We 
have a probability of moving to any state, and hence, we will have n2 probabilities of 
doing this. For a Markov process, we will have the following three items:

• States: This refers to the states in the system. In our example, let's say there 
are three states: state 1, state 2, and state 3.

• Transition matrix: This will have the probabilities of moving from one 
state to any other state. An example of the transition matrix is shown in the 
following screenshot:

This matrix shows that if the system was in state 1 yesterday, then the 
probability of it to remain in the same state today will be 0.1.
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• Initial state vector: This is the vector of the initial state of the system. 
(Any one of the states will have a probability of 1 and the rest will have a 
probability of 0 in this vector.)

Introducing the Hidden Markov Model
The Hidden Markov Model (HMM) is a classification technique to predict the states 
of a system by observing the outcomes without having access to the actual states 
themselves. It is a Markov model in which the states are hidden.

Let's continue with Bob's snack example we saw earlier. Now assume we have one 
more set of events in place that is directly observable. We know what Bob has eaten 
for lunch and his snacks intake is related to his lunch. So, we have an observation 
state, which is Bob's lunch, and hidden states, which are his snacks intake. We want 
to build an algorithm that can forecast what would be Bob's choice of snack based on 
his lunch.
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In addition to the transition probability matrix in the Hidden Markov Model, we 
have one more matrix that is called an emission matrix. This matrix contains the 
probability of the observable state, provided it is assigned a hidden state. The 
emission matrix is as follows:

P (observable state | one state)

So, a Hidden Markov Model has the following properties:

• State vector: This contains the probability of the hidden model to be in a 
particular state at the start

• Transition matrix: This has the probabilities of a hidden state, given the 
previous hidden state

• Emission matrix: Given that the hidden model is in a particular hidden state, 
this has the probabilities of observing a particular observable state

• Hidden states: This refers to the states of the system that can be defined by 
the Hidden Markov Model

• Observable state: The states that are visible in the process

Using the Hidden Markov Model, three types of problems can be solved. The first 
two are related to the pattern recognition problem and the third type of problem 
generates a Hidden Markov Model, given a sequence of observations. Let's look at 
these three types of problems:

• Evaluation: This is finding out the probability of an observed sequence, 
given an HMM. From the number of different HMMs that describe different 
systems and a sequence of observations, our goal will be to find out which 
HMM will most probably generate the required sequence. We use the 
forward algorithm to calculate the probability of an observation sequence 
when a particular HMM is given and find out the most probable HMM.

• Decoding: This is finding the most probable sequence of hidden states 
from some observations. We use the Viterbi algorithm to determine the 
most probable sequence of hidden states when you have a sequence of 
observations and an HMM.

• Learning: Learning is generating the HMM from a sequence of observations. 
So, if we have such a sequence, we may wonder which is the most likely 
model to generate this sequence. The forward-backward algorithms are 
useful in solving this problem.

The Hidden Markov Model is used in different applications such as speech 
recognition, handwritten letter recognition, genome analysis, parts of speech  
tagging, customer behavior modeling, and so on.
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Using Mahout for the Hidden Markov 
Model
Apache Mahout has the implementation of the Hidden Markov Model. It is available 
in the org.apache.mahout.classifier.sequencelearning.hmm package.

The overall implementation is provided by eight different classes:

• HMMModel: This is the main class that defines the Hidden Markov Model.
• HmmTrainer: This class has algorithms that are used to train the Hidden 

Markov Model. The main algorithms are supervised learning, unsupervised 
learning, and unsupervised Baum-Welch.

• HmmEvaluator: This class provides different methods to evaluate an HMM 
model. The following use cases are covered in this class:

 ° Generating a sequence of output states from a model (prediction)
 ° Computing the likelihood that a given model will generate the given 

sequence of output states (model likelihood)
 ° Computing the most likely hidden sequence for a given model and a 

given observed sequence (decoding)

• HmmAlgorithms: This class contains implementations of the three major 
HMM algorithms: forward, backward, and Viterbi.

• HmmUtils: This is a utility class and provides methods to handle HMM 
model objects.

• RandomSequenceGenerator: This is a command-line tool to generate a 
sequence by the given HMM.

• BaumWelchTrainer: This is the class to train HMM from the console.
• ViterbiEvaluator: This is also a command-line tool for Viterbi evaluation.

Now, let's work with Bob's example.

The following is the given matrix and the initial probability vector:

Ice cream Cake Juice
0.36 0.51 0.13

www.allitebooks.com

http://www.allitebooks.org


Learning the Hidden Markov Model Using Mahout

[ 60 ]

The following will be the state transition matrix:

Ice cream Cake Juice
Ice cream 0.365 0.500 0.135
Cake 0.250 0.125 0.625
Juice 0.365 0.265 0.370

The following will be the emission matrix:

Spicy food Normal food No food
Ice cream 0.1 0.2 0.7
Cake 0.5 0.25 0.25
Juice 0.80 0.10 0.10

Now we will execute a command-line-based example of this problem. We have three 
hidden states of what Bob's eaten for snacks: ice-cream, cake, or juice. Then, we have 
three observable states of what he is having at lunch: spicy food, normal food, or no 
food at all. Now, the following are the steps to execute from the command line:

1. Create a directory with the name hmm: mkdir /tmp/hmm. Go to this directory 
and create the sample input file of the observed states. This will include a 
sequence of Bob's lunch habit: spicy food (state 0), normal food (state 1), and 
no food (state 2). Execute the following command:
echo "0 1 2 2 2 1 1 0 0 2 1 2 1 1 1 1 2 2 2 0 0 0 0 0 0 2 2 2 0 0 
0 0 0 0 1 1 1 1 2 2 2 2 2 0 2 1 2 0 2 1 2 1 1 0 0 0 1 0 1 0 2 1 2 
1 2 1 2 1 1 0 0 2 2 0 2 1 1 0" > hmm-input

2. Run the BaumWelch algorithm to train the model using the  
following command:
mahout baumwelch -i /tmp/hmm/hmm-input -o /tmp/hmm/hmm-model -nh 3 
-no 3 -e .0001 -m 1000

The parameters used in the preceding command are as follows:

 ° i: This is the input file location
 ° o: This is the output location for the model
 ° nh: This is the number of hidden states. In our example, it is three (ice 

cream, juice, or cake)
 ° no: This is the number of observable states. In our example, it is three 

(spicy, normal, or no food)
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 ° e: This is the epsilon number. This is the convergence threshold value
 ° m: This is the maximum iteration number

The following screenshot shows the output on executing the previous 
command:

3. Now we have an HMM model that can be used to build a predicted 
sequence. We will run the model to predict the next 15 states of the 
observable sequence using the following command:
mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-
predictions -l 10

The parameters used in the preceding command are as follows:

m: This is the path for the HMM model
o: This is the output directory path
l: This is the length of the generated sequence

4. To view the prediction for the next 10 observable states, use the  
following command:
mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-
predictions -l 10

The output of the previous command is shown in the following screenshot:

From the output, we can say that the next observable states for Bob's lunch 
will be spicy, spicy, spicy, normal, normal, no food, no food, no food, no 
food, and no food.
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5. Now, we will use one more algorithm to predict the hidden state. We will use 
the Viterbi algorithm to predict the hidden states for a given observational 
state's sequence. We will first create the sequence of the observational state 
using the following command:
echo "0 1 2 0 2 1 1 0 0 1 1 2" > /tmp/hmm/hmm-viterbi-input

6. We will use the Viterbi command-line option to generate the output with the 
likelihood of generating this sequence:
mahout viterbi --input /tmp/hmm/hmm-viterbi-input --output tmp/
hmm/hmm-viterbi-output --model /tmp/hmm/hmm-model --likelihood

The parameters used in the preceding command are as follows:

 ° input: This is the input location of the file
 ° output: This is the output location of the Viterbi algorithm's output
 ° model: This is the HMM model location that we created earlier
 ° likelihood: This is the computed likelihood of the  

observed sequence

The following screenshot shows the output on executing the  
previous command:

7. Predictions from the Viterbi are saved in the output file and can be seen 
using the cat command:

cat /tmp/hmm/hmm-viterbi-output

The following output shows the predictions for the hidden state:
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Summary
In this chapter, we discussed another classification technique: the Hidden Markov 
Model. You learned about deterministic and nondeterministic patterns. We also 
touched upon the Markov process and Hidden Markov process in general. We 
checked the classes implemented inside Mahout to support the Hidden Markov 
Model. We took up an example to create the HMM model and further used this 
model to predict the observational state's sequence. We used the Viterbi algorithm 
implemented in Mahout to predict the hidden states in the system.

Now, in the next chapter, we will cover one more interesting algorithm used in 
classification area: Random forest.





Learning Random Forest 
Using Mahout

Random forest is one of the most popular techniques in classification. It starts with a 
machine learning technique called decision tree. In this chapter, we will explore the 
following topics:

• Decision tree
• Random forest
• Using Mahout for Random forest

Decision tree
A decision tree is used for classification and regression problems. In simple terms, 
it is a predictive model that uses binary rules to calculate the target variable. In a 
decision tree, we use an iterative process of splitting the data into partitions, then we 
split it further on branches. As in other classification model creation processes, we 
start with the training dataset in which target variables or class labels are defined. 
The algorithm tries to break all the records in training datasets into two parts based 
on one of the explanatory variables. The partitioning is then applied to each new 
partition, and this process is continued until no more partitioning can be done. The 
core of the algorithm is to find out the rule that determines the initial split. There 
are algorithms to create decision trees, such as Iterative Dichotomiser 3 (ID3), 
Classification and Regression Tree (CART), Chi-squared Automatic Interaction 
Detector (CHAID), and so on. A good explanation for ID3 can be found at http://
www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html.

http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html
http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html
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Forming the explanatory variables to choose the best splitter in a node, the algorithm 
considers each variable in turn. Every possible split is considered and tried, and the 
best split is the one that produces the largest decrease in diversity of the classification 
label within each partition. This is repeated for all variables, and the winner is chosen 
as the best splitter for that node. The process is continued in the next node until we 
reach a node where we can make the decision.

We create a decision tree from a training dataset so it can suffer from the overfitting 
problem. This behavior creates a problem with real datasets. To improve this 
situation, a process called pruning is used. In this process, we remove the branches 
and leaves of the tree to improve the performance. Algorithms used to build the tree 
work best at the starting or root node since all the information is available there. 
Later on, with each split, data is less and towards the end of the tree, a particular 
node can show patterns that are related to the set of data which is used to split. These 
patterns create problems when we use them to predict the real dataset. Pruning 
methods let the tree grow and remove the smaller branches that fail to generalize. 
Now take an example to understand the decision tree.

Consider we have a iris flower dataset. This dataset is hugely popular in the machine 
learning field. It was introduced by Sir Ronald Fisher. It contains 50 samples from 
each of three species of iris flower (Iris setosa, Iris virginica, and Iris versicolor). 
The four explanatory variables are the length and width of the sepals and petals in 
centimeters, and the target variable is the class to which the flower belongs.

Sentosa

(Entire Group)

Petal WidthSentosa

Versicolor virginica

Petal Length < 2.1 Petal Length >= 2.1

Petal Width < 1.9 Petal Width >= 1.9
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As you can see in the preceding diagram, all the groups were earlier considered as 
Sentosa species and then the explanatory variable and petal length were further  
used to divide the groups. At each step, the calculation for misclassified items was 
also done, which shows how many items were wrongly classified. Moreover, the 
petal width variable was taken into account. Usually, items at leaf nodes are  
correctly classified.

Random forest
The Random forest algorithm was developed by Leo Breiman and Adele Cutler. 
Random forests grow many classification trees. They are an ensemble learning 
method for classification and regression that constructs a number of decision trees at 
training time and also outputs the class that is the mode of the classes outputted by 
individual trees.

Single decision trees show the bias–variance tradeoff. So they usually have high 
variance or high bias. The following are the parameters in the algorithm:

• Bias: This is an error caused by an erroneous assumption in the  
learning algorithm

• Variance: This is an error that ranges from sensitivity to small fluctuations  
in the training set

Random forests attempt to mitigate this problem by averaging to find a natural 
balance between two extremes. A Random forest works on the idea of bagging, 
which is to average noisy and unbiased models to create a model with low variance. 
A Random forest algorithm works as a large collection of decorrelated decision trees. 
To understand the idea of a Random forest algorithm, let's work with an example.

Consider we have a training dataset that has lots of features (explanatory variables) 
and target variables or classes:
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We create a sample set from the given dataset:

A different set of random features were taken into account to create the random sub-
dataset. Now, from these sub-datasets, different decision trees will be created. So 
actually we have created a forest of the different decision trees. Using these different 
trees, we will create a ranking system for all the classifiers. To predict the class of a 
new unknown item, we will use all the decision trees and separately find out which 
class these trees are predicting. See the following diagram for a better understanding 
of this concept:

Different decision trees to predict the class of an unknown item
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In this particular case, we have four different decision trees. We predict the class 
of an unknown dataset with each of the trees. As per the preceding figure, the first 
decision tree provides class 2 as the predicted class, the second decision tree predicts 
class 5, the third decision tree predicts class 5, and the fourth decision tree predicts 
class 3. Now, a Random forest will vote for each class. So we have one vote each for 
class 2 and class 3 and two votes for class 5. Therefore, it has decided that for the new 
unknown dataset, the predicted class is class 5. So the class that gets a higher vote is 
decided for the new dataset. A Random forest has a lot of benefits in classification 
and a few of them are mentioned in the following list:

• Combination of learning models increases the accuracy of the classification
• Runs effectively on large datasets as well
• The generated forest can be saved and used for other datasets as well
• Can handle a large amount of explanatory variables

Now that we have understood the Random forest theoretically, let's move on to 
Mahout and use the Random forest algorithm, which is available in Apache Mahout.

Using Mahout for Random forest
Mahout has implementation for the Random forest algorithm. It is very easy to 
understand and use. So let's get started.

Dataset

We will use the NSL-KDD dataset. Since 1999, KDD'99 has been the most widely 
used dataset for the evaluation of anomaly detection methods. This dataset is 
prepared by S. J. Stolfo and is built based on the data captured in the DARPA'98 IDS 
evaluation program (R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, 
D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. 
Zissman, "Evaluating intrusion detection systems: The 1998 darpa off-line intrusion 
detection evaluation," discex, vol. 02, p. 1012, 2000).

DARPA'98 is about 4 GB of compressed raw (binary) tcp dump data of 7 weeks of 
network traffic, which can be processed into about 5 million connection records, each 
with about 100 bytes. The two weeks of test data have around 2 million connection 
records. The KDD training dataset consists of approximately 4,900,000 single 
connection vectors, each of which contains 41 features and is labeled as either normal 
or an attack, with exactly one specific attack type.

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD'99 
dataset. You can download this dataset from http://nsl.cs.unb.ca/NSL-KDD/.

http://nsl.cs.unb.ca/NSL-KDD/
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We will download the KDDTrain+_20Percent.ARFF and KDDTest+.ARFF datasets.

In KDDTrain+_20Percent.ARFF and KDDTest+.ARFF, remove the first 
44 lines (that is, all lines starting with @attribute). If this is not done, we 
will not be able to generate a descriptor file.
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Steps to use the Random forest algorithm in 
Mahout
The steps to implement the Random forest algorithm in Apache Mahout are as 
follows:

1. Transfer the test and training datasets to hdfs using the following 
commands:
hadoop fs -mkdir /user/hue/KDDTrain

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs –put /tmp/KDDTrain+_20Percent.arff  /user/hue/KDDTrain

hadoop fs –put /tmp/KDDTest+.arff  /user/hue/KDDTest

2. Generate the descriptor file. Before you build a Random forest model based 
on the training data in KDDTrain+.arff, a descriptor file is required. This is 
because all information in the training dataset needs to be labeled. From the 
labeled dataset, the algorithm can understand which one is numerical and 
categorical. Use the following command to generate descriptor file:
hadoop jar  $MAHOUT_HOME/core/target/mahout-core-xyz.job.jar 

org.apache.mahout.classifier.df.tools.Describe 

-p /user/hue/KDDTrain/KDDTrain+_20Percent.arff 

-f /user/hue/KDDTrain/KDDTrain+.info 

-d N 3 C 2 N C 4 N C 8 N 2 C 19 N L

Jar: Mahout core jar (xyz stands for version). If you have directly installed 
Mahout, it can be found under the /usr/lib/mahout folder. The main class 
Describe is used here and it takes three parameters:

The p path for the data to be described.
The f location for the generated descriptor file.
d is the information for the attribute on the data. N 3 C 2 N C 4 N C 8 
N 2 C 19 N L defines that the dataset is starting with a numeric (N), 
followed by three categorical attributes, and so on. In the last,  
L defines the label.
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The output of the previous command is shown in the following screenshot:

3. Build the Random forest using the following command:
hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.
jar org.apache.mahout.classifier.df.mapreduce.BuildForest  

-Dmapred.max.split.size=1874231 -d /user/hue/KDDTrain/
KDDTrain+_20Percent.arff  

-ds /user/hue/KDDTrain/KDDTrain+.info 

-sl 5 -p -t 100 –o /user/hue/ nsl-forest

Jar: Mahout example jar (xyz stands for version). If you have directly 
installed Mahout, it can be found under the /usr/lib/mahout folder. The 
main class build forest is used to build the forest with other arguments, 
which are shown in the following list:

Dmapred.max.split.size indicates to Hadoop the maximum size of 
each partition.
d stands for the data path.
ds stands for the location of the descriptor file.
sl is a variable to select randomly at each tree node. Here, each tree is 
built using five randomly selected attributes per node.
p uses partial data implementation.
t stands for the number of trees to grow. Here, the commands build 
100 trees using partial implementation.
o stands for the output path that will contain the decision forest.
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In the end, the process will show the following result:

4. Use this model to classify the new dataset:

hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.
jar org.apache.mahout.classifier.df.mapreduce.TestForest 

-i /user/hue/KDDTest/KDDTest+.arff 

-ds /user/hue/KDDTrain/KDDTrain+.info -m /user/hue/nsl-forest -a –
mr

 -o /user/hue/predictions

Jar: Mahout example jar (xyz stands for version). If you have directly 
installed Mahout, it can be found under the /usr/lib/mahout folder. The 
class to test the forest has the following parameters:

I indicates the path for the test data
ds stands for the location of the descriptor file
m stands for the location of the generated forest from the  
previous command
a informs to run the analyzer to compute the confusion matrix
mr informs hadoop to distribute the classification
o stands for the location to store the predictions in
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The job provides the following confusion matrix:

So, from the confusion matrix, it is clear that 9,396 instances were correctly classified 
and 315 normal instances were incorrectly classified as anomalies. And the accuracy 
percentage is 77.7635 (correctly classified instances by the model / classified 
instances). The output file in the prediction folder contains the list where 0 and 1. 0 
defines the normal dataset and 1 defines the anomaly.

Summary
In this chapter, we discussed the Random forest algorithm. We started our 
discussion by understanding the decision tree and continued with an understanding 
of the Random forest. We took up the NSL-KDD dataset, which is used to build 
predictive systems for cyber security. We used Mahout to build the Random forest 
tree, and used it with the test dataset and generated the confusion matrix and other 
statistics for the output.

In the next chapter, we will look at the final classification algorithm available in 
Apache Mahout. So stay tuned!



Learning Multilayer 
Perceptron Using Mahout

To understand a Multilayer Perceptron (MLP), we will first explore one more 
popular machine learning technique: neural network. In this chapter, we will 
explore the following topics:

• Neural network and neurons
• MLP
• Using Mahout for MLP implementation

Neural network and neurons
Neural network is an old algorithm, and it was developed with a goal in mind: to 
provide the computer with a brain. Neural network is inspired by the biological 
structure of the human brain where multiple neurons are connected and form 
columns and layers. A neuron is an electrically excitable cell that processes and 
transmits information through electrical and chemical signals. Perceptual input 
enters into the neural network through our sensory organs and is then further 
processed into higher levels. Let's understand how neurons work in our brain.
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Neurons are computational units in the brain that collect the input from input 
nerves, which are called dendrites. They perform computation on these input 
messages and send the output using output nerves, which are called axons. See the 
following figure (http://vv.carleton.ca/~neil/neural/neuron-a.html):

On the same lines, we develop a neural network in computers. We can represent a 
neuron in our algorithm as shown in the following figure:

x1

fx2

x3

Here, x1, x2, and x3 are the feature vectors, and they are assigned to a function f, 
which will do the computation and provide the output. This activation function 
is usually chosen from the family of sigmoidal functions (as defined in Chapter 
3, Learning Logistic Regression / SGD Using Mahout). In the case of classification 
problems, softmax activation functions are used. In classification problems, we want 
the output as the probabilities of target classes. So, it is desirable for the output to lie 
between 0 and 1 and the sum close to 1. Softmax function enforces these constraints. 
It is a generalization of the logistic function. More details on softmax function can be 
found at http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.
html.

http://vv.carleton.ca/~neil/neural/neuron-a.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html
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Multilayer Perceptron
A neural network or artificial neural network generally refers to an MLP network. 
We defined neuron as an implementation in computers in the previous section. An 
MLP network consists of multiple layers of these neuron units. Let's understand a 
perceptron network of three layers, as shown in the next figure. The first layer of 
the MLP represents the input and has no other purpose than routing the input to 
every connected unit in a feed-forward fashion. The second layer is called hidden 
layers, and the last layer serves the special purpose of determining the output. The 
activation of neurons in the hidden layers can be defined as the sum of the weight  
of all the input. Neuron 1 in layer 2 is defined as follows:

Y12 = g(w110x0 +w111x1+w112x2+w113x3)

The first part where *x0 = 0* is called the bias and can be used as an offset, 
independent of the input. Neuron 2 in layer 2 is defined as follows:

Y22 = g(w120x0 +w121x1+w122x2+w123x3)

Neuron 3 in layer 2 is defined as follows:

Y32 = g (w130x0 +w131x1+w132x2+w133x3)
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Here, g is a sigmoid function, as defined in Chapter 3, Learning Logistic Regression / 
SGD Using Mahout. The function is as follows:

g(z) = 1/1+e (-z)

In this MLP network output, from each input and hidden layers, neuron units are 
distributed to other nodes, and this is why this type of network is called a fully 
connected network. In this network, no values are fed back to the previous layer. (Feed 
forward is another strategy and is also known as back propagation. Details on this can 
be found at http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html.)

An MLP network can have more than one hidden layer. To get the value of the 
weights so that we can get the predicted value as close as possible to the actual one 
is a training process of the MLP. To build an effective network, we consider a lot of 
items such as the number of hidden layers and neuron units in each layer, the cost 
function to minimize the error in predicted and actual values, and so on.

Now let's discuss two more important and problematic questions that arise when 
creating an MLP network:

• How many hidden layers should one use for the network?
• How many numbers of hidden units (neuron units) should one use in a 

hidden layer?

Zero hidden layers are required to resolve linearly separable data. Assuming your 
data does require separation by a non-linear technique, always start with one hidden 
layer. Almost certainly, that's all you will need. If your data is separable using an 
MLP, then this MLP probably only needs a single hidden layer. In order to select the 
number of units in different layers, these are the guidelines:

• Input layer: This refers to the number of explanatory variables in the model 
plus one for the bias node.

• Output layer: In the case of classification, this refers to the number of target 
variables, and in the case of regression, this is obviously one.

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
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• Hidden layer: Start your network with one hidden layer and use the number 
of neuron units equivalent to the units in the input layer. The best way is to 
train several neural networks with different numbers of hidden layers and 
hidden neurons and measure the performance of these networks using cross-
validation. You can stick with the number that yields the best-performing 
network. Problems that require two hidden layers are rarely encountered. 
However, neural networks that have more than one hidden layer can 
represent functions with any kind of shape. There is currently no theory to 
justify the use of neural networks with more than two hidden layers. In fact, 
for many practical problems, there is no reason to use any more than one 
hidden layer. A network with no hidden layer is only capable of representing 
linearly separable functions. Networks with one layer can approximate 
any function that contains a continuous mapping from one finite space to 
another, and networks with two hidden layers can represent an arbitrary 
decision boundary to arbitrary accuracy with rational activation functions 
and can approximate any smooth mapping to any accuracy (Chapter 5 of  
the book Introduction to Neural Networks for Java).

• Number of neurons or hidden units: Use the number of neuron units 
equivalent to the units in the input layer. The number of hidden units should 
be less than twice the number of units in the input layer. Another rule to 
calculate this is (number of input units + number of output units)* 2/3.

Do the testing for generalization errors, training errors, bias, and variance. When a 
generalization error dips, then just before it begins to increase again, the numbers of 
nodes are usually found to be perfect at this point.

Now let's move on to the next section and explore how we can use Mahout for  
an MLP.

MLP implementation in Mahout
The MLP implementation is based on a more general neural network class. It is 
implemented to run on a single machine using Stochastic Gradient Descent, where 
the weights are updated using one data point at a time.

The number of layers and units per layer can be specified manually and determines 
the whole topology with each unit being fully connected to the previous layer. A 
bias unit is automatically added to the input of every layer. A bias unit is helpful for 
shifting the activation function to the left or right. It is like adding a coefficient to the 
linear function.
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Currently, the logistic sigmoid is used as a squashing function in every hidden and 
output layer.

The command-line version does not perform iterations that lead to bad results on 
small datasets. Another restriction is that the CLI version of the MLP only supports 
classification, since the labels have to be given explicitly when executing the 
implementation in the command line.

A learned model can be stored and updated with new training instances using the 
`--update` flag. The output of the classification result is saved as a .txt file and 
only consists of the assigned labels. Apart from the command-line interface, it is 
possible to construct and compile more specialized neural networks using the API 
and interfaces in the mrlegacy package. (The core package is renamed as mrlegacy.)

In the command line, we use TrainMultilayerPerceptron and 
RunMultilayerPerceptron classes that are available in the mrlegacy package with 
three other classes: Neural network.java, NeuralNetworkFunctions.java, and 
MultilayerPerceptron.java. For this particular implementation, users can freely 
control the topology of the MLP, including the following:

• The size of the input layer
• The number of hidden layers
• The size of each hidden layer
• The size of the output layer
• The cost function
• The squashing function

The model is trained in an online learning approach, where the weights of neurons in 
the MLP is updated and incremented using the backPropagation algorithm proposed 
by Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning representations by 
back-propagating errors. Nature, 323, 533-536.
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Using Mahout for MLP
Mahout has implementation for an MLP network. The MLP implementation is 
currently located in the Map-Reduce-Legacy package. As with other classification 
algorithms, two separated classes are implemented to train and use this 
classifier. For training the classifier, the org.apache.mahout.classifier.mlp.
TrainMultilayerPerceptron class, and for running the classifier, the org.apache.
mahout.classifier.mlp.RunMultilayerPerceptron class is used. There are a 
number of parameters defined that are used with these classes, but we will discuss 
these parameters once we run our example on a dataset.

Dataset

In this chapter, we will train an MLP to classify the iris dataset. The iris flower 
dataset contains data of three flower species, where each data point consists of four 
features. This dataset was introduced by Sir Ronald Fisher. It consists of 50 samples 
from each of three species of iris. These species are Iris setosa, Iris virginica, and Iris 
versicolor. Four features were measured from each sample:

• Sepal length
• Sepal width
• Petal length
• Petal width

All measurements are in centimeters. You can download this dataset from https://
archive.ics.uci.edu/ml/machine-learning-databases/iris/ and save it as a 
.csv file, as shown in the following screenshot:

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
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This dataset will look like the the following screenshot:

Steps to use the MLP algorithm in Mahout
The steps to use the MLP algorithm in Mahout are as follows:

1. Create the MLP model.
To create the MLP model, we will use the TrainMultilayerPerceptron 
class. Use the following command to generate the model:

bin/mahout org.apache.mahout.classifier.mlp.
TrainMultilayerPerceptron -i /tmp/irisdata.csv -labels Iris-setosa 
Iris-versicolor Iris-virginica -mo /tmp/model.model -ls 4 8 3 -l 
0.2 -m 0.35 -r 0.0001

You can also run using the core jar: Mahout core jar (xyz stands for the 
version). If you have directly installed Mahout, it can be found under the /
usr/lib/mahout folder. Execute the following command:

Java –cp /usr/lib/mahout/ mahout-core-xyz-job.jar org.apache.
mahout.classifier.mlp.TrainMultilayerPerceptron -i /tmp/irisdata.
csv -labels Iris-setosa Iris-versicolor Iris-virginica -mo /user/
hue/mlp/model.model -ls 4 8 3 -l 0.2 -m 0.35 -r 0.0001
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The TrainMultilayerPerceptron class is used here and it takes different 
parameters. Also, i is the path for the input dataset. Here, we have put the 
dataset under the /tmp folder (local filesystem). Additionally, labels are 
defined in the dataset. Here we have the following labels:

 ° mo is the output location for the created model.
 ° ls is the number of units per layer, including input, hidden, and 

output layers. This parameter specifies the topology of the network. 
Here, we have 4 as the input feature, 8 for the hidden layer, and 3 for 
the output class number.

 ° l is the learning rate that is used for weight updates. The default is 
0.5. To approximate gradient descent, neural networks are trained 
with algorithms. Learning is possible either by batch or online 
methods. In batch training, weight changes are accumulated over 
an entire presentation of the training data (an epoch) before being 
applied, while online training updates weighs after the presentation 
of each training example (instance). More details can be found at 
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf.

 ° m is the momentum weight that is used for gradient descent. This 
must be in the range between 0–1.0.

 ° r is the regularization value for the weight vector. This must be in the 
range between 0–0.1. It is used to prevent overfitting.

2. To test/run the MLP classification of the trained model, we can use the 
following command:

bin/mahout org.apache.mahout.classifier.mlp.
RunMultilayerPerceptron -i /tmp/irisdata.csv -cr 0 3 -mo /tmp/
model.model -o /tmp/labelResult.txt

You can also run using the Mahout core jar (xyz stands for version). If you 
have directly installed Mahout, it can be found under the /usr/lib/mahout 
folder. Execute the following command:

Java –cp /usr/lib/mahout/ mahout-core-xyz-job.jar org.apache.
mahout.classifier.mlp.RunMultilayerPerceptron -i /tmp/irisdata.csv 
-cr 0 3 -mo /tmp/model.model -o /tmp/labelResult.txt

http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf
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The RunMultilayerPerceptron class is employed here to use the model. 
This class also takes different parameters, which are as follows:

 ° i indicates the input dataset location
 ° cr is the range of columns to use from the input file, starting with 0 

(that is, `-cr 0 5` for including the first six columns only)
 ° mo is the location of the model built earlier
 ° o is the path to store labeled results from running the model

 

Summary
In this chapter, we discussed one of the newly implemented algorithms in Mahout: 
MLP. We started our discussion by understanding neural networks and neuron units 
and continued our discussion further to understand the MLP network algorithm. We 
discussed how to choose different layer units. We then moved to Mahout and used the 
iris dataset to test and run an MLP algorithm implemented in Mahout. With this, we 
have finished our discussion on classification algorithms available in Apache Mahout.

Now we move on to the next chapter of this book where we will discuss the new 
changes coming up in the new Mahout release.



Mahout Changes in the 
Upcoming Release

Mahout is a community-driven project and its community is very strong. This 
community decided on some of the major changes in the upcoming 1.0 release. In 
this chapter, we will explore the upcoming changes and developments in Apache 
Mahout. We will look at the following topics in brief:

• New changes due in Mahout 1.0
• Apache Spark
• H20-platform-related work in Apache Mahout

Mahout new changes
Mahout was using the map reduce programming model to handle large datasets. 
From the end of April 2014, the community decided to stop the implementation of 
the new map reduce algorithm. This decision has a valid reason. Mahout's codebase 
will be moving to modern data processing systems that offer a richer programming 
model and more efficient execution than Hadoop's MapReduce.

Mahout has started its implementation on the top of Domain Specific Language 
(DSL) for linear algebraic operations. Programs written in this DSL are automatically 
optimized and executed in parallel on Apache Spark. Scala DSL and algebraic 
optimizer is Scala and Spark binding for Mahout.
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Mahout Scala and Spark bindings
With Mahout Scala bindings and Mahout Spark bindings for linear algebra 
subroutines, developers in Mahout are trying to bring semantic explicitness to 
Mahout's in-core and out-of-core linear algebra subroutines. They are doing this 
while adding the benefits of the strong programming environment of Scala and 
capitalizing on scalability benefits of Spark and GraphX. Scala binding is used 
to provide support for Scala DSL, and this will make writing machine learning 
programs easier.

Mahout Scala and Spark bindings are packages that aim to provide an R-like 
look and feel to Mahout's in-core and out-of-core Spark-backed linear algebra. 
An important part of Spark bindings is the expression optimizer. This optimizer 
looks at the entire expression and decides on how it can be simplified and which 
physical operators should be picked. A high-level diagram of the binding stack 
is shown in the following figure (https://issues.apache.org/jira/secure/
attachment/12638098/BindingsStack.jpg):

https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg
https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg
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The Spark binding shell has also been implemented in Mahout 1.0. Let's understand 
the Apache Spark project first and then we will revisit the Spark binding shell  
in Mahout.

Apache Spark
Apache Spark is an open source, in-memory, general-purpose computing system. 
Spark's in-memory technique provides performance that is 100 times faster. Instead 
of Hadoop-like disk-based computation, Spark uses cluster memory to upload all  
the data into the memory, and this data can be queried repeatedly.

Apache Spark provides high-level APIs in Java, Python, and Scala and an  
optimized engine that supports general execution graphs. It provides the  
following high-level tools:

• Spark SQL: This is for SQL and structured data processing.
• MLib: This is Spark's scalable machine learning library that consists 

of common learning algorithms and utilities, including classification, 
regression, clustering, collaborative filtering, dimensionality reduction,  
as well as the underlying optimization primitives.

• GraphX: This is the new Spark API for graphs and graph-parallel 
computation.

• Spark streaming: This can collect data from many sources and after 
processing this data, it uses complex algorithms and can push the data to 
filesystems, databases, and live dashboards.

As Spark is gaining popularity among data scientists, the Mahout community is also 
quickly working on making Mahout algorithms function on Spark's execution engine 
to speed up its calculation 10 to 100 times faster. Mahout provides several important 
building blocks to create recommendations using Spark. Spark-item similarity can 
be used to create other people also liked these things kind of recommendations and 
when paired with a search engine can personalize recommendations for individual 
users. Spark-row similarity can provide non-personalized content based on 
recommendations and when paired with a search engine can be used to personalize 
content based on recommendations (http://comments.gmane.org/gmane.comp.
apache.mahout.scm/6513).

http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513
http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513
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Using Mahout's Spark shell
You can use Mahout's Spark shell by referring to the following steps:

1. Download Spark from http://spark.apache.org/downloads.html.
2. Create a new folder with the name spark using the following command and 

move the downloaded file there:
mkdir /tmp/spark

mv ~/Downloads/spark-1.1.1.tgz/tmp/spark

3. Unpack the archived file in a folder using the following command:
cd /tmp/spark

tar xzf spark-1.1.1.tgz

4. This will unzip the file under/tmp/spark/spark-1.1.1. Now, move to the 
newly created folder and run the following command:
cd /spark-1.1.1

sbt/sbt assembly

This will build Spark on your system as shown in the following screenshot:

http://spark.apache.org/downloads.html
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5. Now create a Mahout directory and move the file to it using the following 
command:
mkdir /tmp/Mahout

6. Check out the master branch of Mahout from GitHub using the following 
command:
git clone https://github.com/apache/mahout mahout

The output of the preceding command is shown in the following screenshot:

7. Change your directory to the newly created Mahout directory and  
build Mahout:
cd mahout

mvn -DskipTests clean install

The output of the preceding command is shown in the following screenshot:
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8. Move to the directory where you unpacked Spark and type the following 
command to start Spark locally:
cd /tmp/spark/spark-1.1.1

sbin/start-all-sh

The output of the preceding command is shown in the following screenshot:

9. Open a browser; point it to http://localhost:8080/ to check whether 
Spark has successfully started. Copy the URL of the Spark master at the top 
of the page (it starts with spark://).

10. Define the following environment variables:
export MAHOUT_HOME=[directory into which you checked out Mahout]

export SPARK_HOME=[directory where you unpacked Spark]

export MASTER=[url of the Spark master]

11. Finally, change to the directory where you unpacked Mahout and type bin/
mahout spark-shell; you should see the shell starting and get the  
mahout> prompt.

Now your Mahout Spark shell is ready and you can start playing with data. For 
more information on this topic, see the implementation section at https://mahout.
apache.org/users/sparkbindings/play-with-shell.html.

H2O platform integration
As discussed earlier, an experimental work to integrate Mahout and the H2O 
platform is also in progress. The integration provides an H2O backend to the Mahout 
algebra DSL.

https://mahout.apache.org/users/sparkbindings/play-with-shell.html
https://mahout.apache.org/users/sparkbindings/play-with-shell.html


Chapter 8

[ 91 ]

H2O makes Hadoop do math! H2O scales statistics, machine learning, and math 
over big data. It is extensible and users can build blocks using simple math legos in 
the core. H2O keeps familiar interfaces such as R, Excel, and JSON so that big data 
enthusiasts and experts can explore, munge, model, and score datasets using a range 
of simple-to-advanced algorithms. Data collection is easy, while decision making is 
hard. H2O makes it fast and easy to derive insights from your data through faster 
and better predictive modeling. It also has a vision of online scoring and modeling in 
a single platform (http://0xdata.com/download/).

H2O is fundamentally a peer-to-peer system. H2O nodes join together to form a 
cloud on which high-performance distributed math can be executed. Each node joins 
a cloud of a given name. Multiple clouds can exist on the same network at the same 
time as long as their names are different. Multiple nodes can exist on the same server 
as well (they can even belong to the same cloud).

The Mahout H2O integration is fit into this model by having N-1 worker nodes and 
one driver node, all belonging to the same cloud name. The default cloud name used 
for the integration is mah2out. Clouds have to be spun up as per their task/job.

More details can be found at https://issues.apache.org/jira/browse/
MAHOUT-1500.

Summary
In this chapter, we discussed the upcoming release of Mahout 1.0, and the changes 
that are currently going on. We also glanced through Spark, Scala binding, and 
Apache Spark. We also discussed a high-level overview of H2O Mahout integration.

Now let's move on to the final chapter of this book where we will develop a 
production-ready classifier.

http://0xdata.com/download
https://issues.apache.org/jira/browse/MAHOUT-1500
https://issues.apache.org/jira/browse/MAHOUT-1500




Building an E-mail 
Classification System Using 

Apache Mahout
In this chapter, we will create a classifier system using Mahout. In order to build this 
system, we will cover the following topics:

• Getting the dataset
• Preparation of the dataset
• Preparing the model
• Training the model

In this chapter, we will target the creation of two different classifiers. The first one 
will be an easy one because you can both create and test it on a pseudo-distributed 
Hadoop installation. For the second classifier, I will provide you with all the details, 
so you can run it using your fully distributed Hadoop installation. I will count the 
second one as a hands-on exercise for the readers of this book.

First of all, let's understand the problem statement for the first use case. Nowadays, 
in most of the e-mail systems, we see that e-mails are classified as spam or not spam. 
E-mails that are not spam are delivered directly into our inbox but spam e-mails are 
stored in a folder called Spam. Usually, based on a certain pattern such as message 
subject, sender's e-mail address, or certain keywords in the message body, we 
categorize an incoming e-mail as spam. We will create a classifier using Mahout, 
which will classify an e-mail into spam or not spam. We will use SpamAssassin, an 
Apache open source project dataset for this task.
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For the second use case, we will create a classifier, which can predict a group of 
incoming e-mails. As an open source project, there are lots of projects under the 
Apache software foundation, such as Apache Mahout, Apache Hadoop, Apache 
Solr, and so on. We will take the Apache Software Foundation (ASF) e-mail dataset 
and using this, we will create and train our model so that our model can predict a 
new incoming e-mail. So, based on certain features, we will be able to predict which 
group a new incoming e-mail belongs to.

In Mahout's classification problem, we will have to identify a pattern in the dataset 
to help us predict the group of a new e-mail. We already have a dataset, which is 
separated by project names. We will use the ASF public e-mail archives dataset for 
this use case.

Now, let's consider our first use case: spam e-mail detection classifier.

Spam e-mail dataset
As I mentioned, we will be using the Apache SpamAssassin projects dataset. 
Apache SpamAssassin is an open source spam filter. Download 20021010_easy_
ham.tar and 20021010_spam.tar from http://spamassassin.apache.org/
publiccorpus/, as shown in the following screenshot:

http://spamassassin.apache.org/publiccorpus/
http://spamassassin.apache.org/publiccorpus/
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Creating the model using the Assassin 
dataset
We can create the model with the help of the following steps:

1. Create a folder under tmp with the name dataset, and then click on the 
folder and unzip the datasets using the following command:
mkdir /tmp/assassin/dataset

tar –xvf  /tmp/assassin/ 20021010_easy_ham.tar.bz2 

tar –xvf /tmp/assassin/ 20021010_spam.tar.bz2

This will create two folders under the dataset folder, easy _ham and spam, 
as shown in the following screenshot:

2. Create a folder in Hdfs and move this dataset into Hadoop:
hadoop fs  -mkdir /user/hue/assassin/

hadoop fs –put /tmp/assassin/dataset  /user/hue/assassin 

tar –xvf /tmp/assassin/ 20021010_spam.tar.bz2

Now our data preparation is done. We have downloaded the data and 
moved this data into hdfs. Let's move on to the next step.
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3. Convert this data into sequence files so that we can process it using Hadoop:
bin/mahout seqdirectory –i /user/hue/assassin/dataset –o /user/
hue/assassinseq-out

4. Convert the sequence file into sparse vector (Mahout algorithms accept 
input in vector format, which is why we are converting the sequence file  
into sparse vector) by using the following command:
bin/mahout seq2sparse -i /user/hue/assassinseq-out/part-m-00000 -o 
/user/hue/assassinvec -lnorm -nv -wt tfidf
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The command in the preceding screenshot is explained as follows:
 ° lnorm: This command is used for output vector to be log normalized.
 ° nv: This command is used for named vector.
 ° wt: This command is used to identify the kind of weight to use. Here 

we use tf-idf.

5. Split the set of vectors for training and testing the model, as follows:
bin/mahout split -i /user/hue/assassinvec/tfidf-vectors 
--trainingOutput /user/hue/assassindatatrain --testOutput /
user/hue/assassindatatest --randomSelectionPct 20 --overwrite 
--sequenceFiles -xm sequential

The preceding command can be explained as follows:
 ° The randomSelectionPct parameter divides the percentage of data 

into test and training datasets. In this case, it's 80 percent for test and 
20 percent for training.

 ° The xm parameter specifies what portion of the tf (tf-idf) vectors 
is to be used expressed in times the standard deviation.

 ° The sigma symbol specifies the document frequencies of these 
vectors. It can be used to remove really high frequency terms. It is 
expressed as a double value. A good value to be specified is 3.0. If the 
value is less than 0, no vectors will be filtered out.
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6. Now, train the model using the following command:
bin/mahout trainnb -i /user/hue/assassindatatrain -el -o /user/
hue/prodmodel -li /user/hue/prodlabelindex -ow -c

7. Now, test the model using the following command:
bin/mahout testnb -i /user/hue/assassindatatest -m /user/hue/
prodmodel/ -l  /user/hue/prodlabelindex -ow -o /user/hue/
prodresults

You can see from the results that the output is displayed on the console. As per the 
matrix, the system has correctly classified 99.53 percent of the instances given.
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We can use this created model to classify new documents. To do this, we can either 
use a Java program or create a servlet that can be deployed on our server.

Let's take an example of a Java program in continuation of this exercise.

Program to use a classifier model
We will create a Java program that will use our model to classify new e-mails. This 
program will take model, labelindex, dictionary-file, document frequency, and text 
file as input and will generate a score for the categories. The category will be decided 
based on the higher scores.

Let's have a look at this program step by step:

• The .jar files required to make a compilation of this program are as follows:
 ° Hadoop-core-x.y.x.jar

 ° Mahout-core-xyz.jar

 ° Mahout-integration-xyz.jar

 ° Mahout-math-xyz.jar

• The import statements are listed as follows. We are discussing this because 
there are lots of changes in the Mahout releases and people usually find it 
difficult to get the correct classes.

 ° import java.io.BufferedReader;

 ° import java.io.FileReader;

 ° import java.io.StringReader;

 ° import java.util.HashMap;

 ° import java.util.Map;

 ° import org.apache.hadoop.conf.Configuration;

 ° import org.apache.hadoop.fs.Path;

 ° import org.apache.lucene.analysis.Analyzer;

 ° import org.apache.lucene.analysis.TokenStream;

 ° import org.apache.lucene.analysis.standard.
StandardAnalyzer;

 ° import org.apache.lucene.analysis.tokenattributes.
CharTermAttribute;

 ° import org.apache.lucene.util.Version;
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 ° import org.apache.mahout.classifier.naivebayes.
BayesUtils;

 ° import org.apache.mahout.classifier.naivebayes.
NaiveBayesModel;

 ° import org.apache.mahout.classifier.naivebayes.
StandardNaiveBayesClassifier;

 ° import org.apache.mahout.common.Pair;

 ° import org.apache.mahout.common.iterator.sequencefile.
SequenceFileIterable;

 ° import org.apache.mahout.math.RandomAccessSparseVector;

 ° import org.apache.mahout.math.Vector;

 ° import org.apache.mahout.math.Vector.Element;

 ° import org.apache.mahout.vectorizer.TFIDF;

 ° import org.apache.hadoop.io.*;

 ° import com.google.common.collect.ConcurrentHashMultiset;

 ° import com.google.common.collect.Multiset;

• The supporting methods to read the dictionary are as follows:
public static Map<String, Integer>  
  readDictionary(Configuration conf, Path dictionaryPath)  
    {
  Map<String, Integer> dictionary = new HashMap<String,  
    Integer>();
  for (Pair<Text, IntWritable> pair : new  
    SequenceFileIterable<Text,  
      IntWritable>(dictionaryPath, true, conf)) {
    dictionary.put(pair.getFirst().toString(),  
      pair.getSecond().get());
  }
  return dictionary;
}

• The supporting methods to read the document frequency are as follows:
public static Map<Integer, Long>  
  readDocumentFrequency(Configuration conf, Path  
    documentFrequencyPath) {
  Map<Integer, Long> documentFrequency = new  
    HashMap<Integer, Long>();
  for (Pair<IntWritable, LongWritable> pair : new  
    SequenceFileIterable<IntWritable,  
      LongWritable>(documentFrequencyPath, true, conf)) {
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    documentFrequency.put(pair.getFirst().get(),  
      pair.getSecond().get());
  }
  return documentFrequency;
}

• The first part of the main method is used to perform the following actions:
 ° Getting the input
 ° Loading the model
 ° Initializing StandardNaiveBayesClassifier using our created model
 ° Reading labelindex, document frequency, and dictionary created 

while creating the vector from the dataset

The following code can be used for the preceding actions:
public static void main(String[] args) throws Exception {
  if (args.length < 5) {
    System.out.println("Arguments: [model] [labelindex]  
      [dictionary] [documentfrequency] [new file] ");
    return;
  }
  String modelPath = args[0];
  String labelIndexPath = args[1];
  String dictionaryPath = args[2];
  String documentFrequencyPath = args[3];
  String newDataPath = args[4];
  Configuration configuration = new Configuration(); //  
    model is a matrix (wordId, labelId) => probability  
      score
  NaiveBayesModel model = NaiveBayesModel.materialize(new  
    Path(modelPath), configuration); 
  StandardNaiveBayesClassifier classifier = new  
    StandardNaiveBayesClassifier(model); 
  // labels is a map label => classId
  Map<Integer, String> labels =  
    BayesUtils.readLabelIndex(configuration, new  
      Path(labelIndexPath));
  Map<String, Integer> dictionary =  
    readDictionary(configuration, new  
      Path(dictionaryPath));
  Map<Integer, Long> documentFrequency =  
    readDocumentFrequency(configuration, new  
      Path(documentFrequencyPath));
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• The second part of the main method is used to extract words from the e-mail:
Analyzer analyzer = new  
  StandardAnalyzer(Version.LUCENE_CURRENT);

int labelCount = labels.size();
int documentCount = documentFrequency.get(-1).intValue();

System.out.println("Number of labels: " + labelCount);
System.out.println("Number of documents in training set: "  
  + documentCount);
BufferedReader reader = new BufferedReader(new  
  FileReader(newDataPath));
while(true) {
  String line = reader.readLine();
  if (line == null) {
    break;
  }

  ConcurrentHashMultiset<Object> words =  
    ConcurrentHashMultiset.create(); 
  // extract words from mail
  TokenStream ts = analyzer.tokenStream("text", new  
    StringReader(line));
  CharTermAttribute termAtt =  
    ts.addAttribute(CharTermAttribute.class);
  ts.reset();
  int wordCount = 0;
  while (ts.incrementToken()) {
    if (termAtt.length() > 0) {
      String word =  
        ts.getAttribute(CharTermAttribute.class). 
          toString();
      Integer wordId = dictionary.get(word);
      // if the word is not in the dictionary, skip it
      if (wordId != null) {
        words.add(word);
        wordCount++;
      }
    }
  }
  ts.close();
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• The third part of the main method is used to create vector of the id word and 
the tf-idf weights:
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
for (Multiset.Entry entry:words.entrySet()) {
  String word =  (String)entry.getElement();
  int count = entry.getCount();
  Integer wordId = dictionary.get(word);
  Long freq = documentFrequency.get(wordId);
  double tfIdfValue = tfidf.calculate(count,  
    freq.intValue(), wordCount, documentCount);
  vector.setQuick(wordId, tfIdfValue);
}

• In the fourth part of the main method, with classifier, we get the score for 
each label and assign the e-mail to the higher scored label:
  Vector resultVector = classifier.classifyFull(vector);
    double bestScore = -Double.MAX_VALUE;
    int bestCategoryId = -1;          
    for(int i=0 ;i<resultVector.size();i++) {
      Element e1  = resultVector.getElement(i);
      int categoryId = e1.index();
      double score = e1.get();
      if (score > bestScore) {
        bestScore = score;
        bestCategoryId = categoryId;
      }
      System.out.print("  " + labels.get(categoryId) + ": "  
        + score);
    }
    System.out.println(" => " +  
      labels.get(bestCategoryId));
  }
}

Now, put all these codes under one class and create the .jar file of this class. We 
will use this .jar file to test our new e-mails.
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Testing the program
To test the program, perform the following steps:

1. Create a folder named assassinmodeltest in the local directory, as follows:
mkdir /tmp/assassinmodeltest

2. To use this model, get the following files from hdfs to /tmp/
assassinmodeltest:

 ° For the earlier created model, use the following command:
hadoop fs –get /user/hue/prodmodel /tmp/assassinmodeltest

 ° For labelindex, use the following command:
hadoop fs –get /user/hue/prodlabelindex  /tmp/
assassinmodeltest

 ° For df-counts from the assassinvec folder (change the name of the 
part-00000 file to df-count), use the following commands:
hadoop fs –get /user/hue/assassinvec/df-count  /tmp/
assassinmodeltest

dictionary.file-0 from the same assassinvec folder

hadoop fs –get /user/hue/assassinvec/dictionary.file-0  /
tmp/assassinmodeltest

3. Under /tmp/assassinmodeltest, create a file with the message shown in 
the following screenshot:
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4. Now, run the program using the following command:
Java –cp /tmp/assassinmodeltest/spamclassifier.jar:/usr/
lib/mahout/* com.packt.spamfilter.TestClassifier /tmp/
assassinmodeltest /tmp/assassinmodeltest/prodlabelindex /tmp/
assassinmodeltest/dictionary.file-0 /tmp/assassinmodeltest/df-
count /tmp/assassinmodeltest/testemail

5. Now, update the test e-mail file with the message shown in the  
following screenshot:

6. Run the program again using the same command as given in step 4 and view 
the result as follows:

Now, we have a program ready that can use our classifier model and predict the 
unknown items. Let's move on to our second use case.

Second use case as an exercise
As discussed at the start of this chapter, we will now work on a second use case, 
where we will predict the category of a new e-mail.
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The ASF e-mail dataset
The Apache Software Foundation e-mail dataset is partitioned by project. This e-mail 
dataset can be found at http://aws.amazon.com/datasets/7791434387204566.

A smaller dataset can be found at http://files.grantingersoll.com/ibm.tar.
gz. (Refer to http://lucidworks.com/blog/scaling-mahout/). Use this data to 
perform the following steps:

1. Move this data to the folder of your choice (/tmp/asfmail) and unzip  
the folder:
mkdir /tmp/asfmail

tar –xvf  ibm.tar

2. Move the dataset to hdfs:
hadoop fs -put /tmp/asfmail/ibm/content /user/hue/asfmail

3. Convert the mbox files into Hadoop's SequenceFile format using Mahout's 
SequenceFilesFromMailArchives as follows:
mahout  org.apache.mahout.text.SequenceFilesFromMailArchives 
--charset "UTF-8" --body --subject --input /user/hue/asfmail/
content --output /user/hue/asfmailout

http://aws.amazon.com/datasets/7791434387204566
http://files.grantingersoll.com/ibm.tar.gz
http://files.grantingersoll.com/ibm.tar.gz
http://lucidworks.com/blog/scaling-mahout/
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4. Convert the sequence file into sparse vector:
mahout  seq2sparse --input /user/hue/asfmailout --output /
user/hue/asfmailseqsp --norm 2 --weight TFIDF --namedVector 
--maxDFPercent 90 --minSupport 2 --analyzerName org.apache.mahout.
text.MailArchivesClusteringAnalyzer

5. Modify the labels:
mahout  org.apache.mahout.classifier.email.PrepEmailDriver --input 
/user/hue/asfmailseqsp --output /user/hue/asfmailseqsplabel 
--maxItemsPerLabel 1000

Now, the next three steps are similar to the ones we performed earlier:

1. Split the dataset into training and test datasets using the  
following command:
mahout  split --input /user/hue/asfmailseqsplabel --trainingOutput 
/user/hue/asfmailtrain --testOutput /user/hue/asfmailtest  
--randomSelectionPct 20 --overwrite --sequenceFiles

2. Train the model using the training dataset as follows:
mahout trainnb -i /user/hue/asfmailtrain -o /user/hue/asfmailmodel 
-extractLabels --labelIndex /user/hue/asfmaillabels

3. Test the model using the test dataset:
mahout testnb -i /user/hue/asfmailtest -m /user/hue/asfmailmodel 
--labelIndex /user/hue/asfmaillabels
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As you may have noticed, all the steps are exactly identical to the ones we performed 
earlier. Hereby, I leave this topic as an exercise for you to create your own classifier 
system using this model. You can use hints as provided for the spam filter classifier. 
We now move our discussion to tuning our classifier. Let's take a brief overview of 
the best practices in this area.

Classifiers tuning
We already discussed classifiers' evaluation techniques in Chapter 1, Classification in 
Data Analysis. Just as a reminder, we evaluate our model using techniques such as 
confusion matrix, entropy matrix, area under curve, and so on.

From the explanatory variables, we create the feature vector. To check how a 
particular model is working, these feature vectors need to be investigated. In 
Mahout, there is a class available for this, ModelDissector. It takes the following 
three inputs:

• Features: This class takes a feature vector to use (destructively)
• TraceDictionary: This class takes a trace dictionary containing variables and 

the locations in the feature vector that are affected by them
• Learner: This class takes the model that we are probing to find weights  

on features

ModelDissector tweaks the feature vector and observes how the model output 
changes. By taking an average of the number of examples, we can determine the 
effect of different explanatory variables.

ModelDissector has a summary method, which returns the most important  
features with their weights, most important category, and the top few categories  
that they affect.

The output of ModelDissector is helpful in troubleshooting problems in a wrongly  
created model.

More details for the code can be found at https://github.com/apache/mahout/
blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/
ModelDissector.java.

While improving the output of the classifier, one should take care with two 
commonly occurring problems: target leak, and broken feature extraction.

https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout/classifier/sgd/ModelDissector.java
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If the model is showing results that are too good to be true or an output beyond 
expectations, we could have a problem with target leak. This error comes once 
information from the target variable is included in the explanatory variables,  
which are used to train the classifier. In this instance, the classifier will work  
too well for the test dataset.

On the other hand, broken feature extraction occurs when feature extraction 
is broken. This type of classifier shows the opposite result from the target leak 
classifiers. Here, the model provides results poorer than expected.

To tune the classifier, we can use new explanatory variables, transformations of 
explanatory variables, and can also eliminate some of the variables. We should also 
try different learning algorithms to create the model and choose an algorithm, which 
is good in performance, training time, and speed.

More details on tuning can be found in Chapter 16, Deploying a classifier in the book 
Mahout in Action.

Summary
In this chapter, we discussed creating our own production ready classifier model. We 
took up two use cases here, one for an e-mail spam filter and the other for classifying 
the e-mail as per the projects. We used datasets for Apache SpamAssassin for the 
e-mail filter and ASF for the e-mail classifier.

We also saw how to increase the performance of your model.

So you are now ready to implement classifiers using Apache Mahout for your own 
real world use cases. Happy learning!
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