
www.allitebooks.com

http://www.allitebooks.org

Learning BeagleBone

Learn how to love and care for your BeagleBone
and teach it tricks

Hunyue Yau

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning BeagleBone

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1191214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-290-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hunyue Yau

Reviewers
Tobias Janke

Samuel de Ancos Martín

Commissioning Editor
Edward Gordon

Acquisition Editor
Sam Wood

Content Development Editor
Arun Nadar

Technical Editors
Indrajit A. Das

Shashank Desai

Copy Editors
Roshni Banerjee

Relin Hedly

Deepa Nambiar

Project Coordinator
Neha Bhatnagar

Proofreaders
Ameesha Green

Joanna McMahon

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Valentina D'silva

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hunyue Yau is an electrical engineer who graduated from the California Institute
of Technology. He has worked with Linux since the early '90s, starting with the Soft
Landing System. He created one of the first embedded Linux devices in 1996 with a
custom-made distribution. He has worked on various products such as embedded
Linux appliances, embedded BSD-based devices, and embedded Linux mobile devices.
As an active member of the BeagleBoard community, he has volunteered at numerous
community events, from Maker Faire to Google Summer of Code mentoring. Today,
Hunyue synergizes his electrical engineering skills with embedded Linux software
skills to provide turnkey embedded Linux consulting services through HY Research
LLC (http://www.hy-research.com/), a company founded by him.

I would like to thank my wife, Betty, for supporting me
while writing this book as well as the many members of
the BeagleBoard community.

www.allitebooks.com

http://www.hy-research.com/
http://www.allitebooks.org

About the Reviewers

Tobias Janke lives in Northern Germany. He has been experimenting with
computers and hardware since he learned to read. He realized several hardware
projects and developed small applications at the age of 12. Then, with some more
experience, he cofounded a local company that specializes in computer services and
web design. As a hobby, he is working on computer-controlled hardware projects
featuring embedded programming and sensors. He is currently developing a fully
autonomous drone that is controlled by self-made hardware and software running
on the BeagleBone Black.

Samuel de Ancos Martín got into his passion, software developing, from a very
early age. Now he is an engineer and specializes in IoT development. He has been a
part of the development team of Carriots, an IoT platform based in Spain, where he
played an important part in its design, architecture, and development. He has also
taken part in the prototype with free boards and integration hardware with the big
manufacturers on the market. As a software developer and enthusiast, he has been
working for more than 10 years on building Internet-oriented software. You can get
more information about him on his website at http://deancos.com.

Samuel blogs occasionally at http://blog.deancos.com, in Spanish, about IoT and
developing software in general. You can contact him on Twitter at @sdeancos or mail
him at sdeancos@gmail.com.

I would like to thank my girlfriend and my family for supporting
me while I was reviewing this magnificent book as well as all my
colleagues who helped me grow as a better professional.

www.allitebooks.com

http://deancos.com
http://blog.deancos.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introducing the Beagle Boards	 7

The Beagle board family	 8
The Beagle boards	 8

BeagleBoard Classic	 9
BeagleBoard-xM	 10
BeagleBone	 12

BeagleBone White	 12
BeagleBone Black	 13

Summary of the Beagle board family	 15
Congratulations on selecting a BeagleBone board	 15
Unboxing and powering up your BeagleBone	 15
The Windows configuration	 19
The Linux configuration	 20
Useful PC software for your BeagleBone	 20
Accessing the BeagleBone	 21
Useful accessories	 23

The mains power adapter	 23
An SD card reader and microSD cards	 23

A serial debug cable	 24
A digital multimeter	 25
Using the DMM on the BBB	 26
Wireless interfacing accessories	 27

Summary	 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Software in the BeagleBone	 29
System software in the BeagleBone	 30
Distributions on the BeagleBone	 30

The Angström Linux distribution	 31
The Debian Linux distribution	 31

Installing a distribution in the BeagleBone	 32
Obtaining the image	 32

Windows users	 33
Linux users	 33

Writing the image	 34
Windows users	 34
Linux users	 35

Booting the image	 37
Flasher images	 38

Nonsystem software in the BeagleBone	 39
Summary	 40

Chapter 3: Building an LED Flasher	 41
Setting up a foundation for the exercises	 41

Selecting an editor	 42
Quick start with nano/pico	 43

Permissions	 43
Determining the current permission	 44
Converting permissions to the numeric form	 46
Setting up permissions	 47
Exercise format and notes	 48

Hello, World for the BeagleBone	 48
Exercise 1 – creating a Hello, World program	 48

Flashing the LEDs	 51
LEDs on the BeagleBone	 51
Exercise 2 – taking control of the LEDs	 52

Figuring out the LED controls	 52
Disconnecting the LEDs temporarily from the system	 53
Turning on an LED	 54

Using the controls in a program	 55
Exercise 3 – simple blinking	 56

Delays in the program	 56
Repeating things with loops	 57
Turning off an LED	 58
Troubleshooting	 60

Exercise 4 – advanced blinking	 60
Summary	 61

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Refining the LED Flasher	 63
The I2C bus	 63

Accessing I2C	 64
The I2C tools	 64
Exercise 1	 65

The I2C devices on the BeagleBone	 68
Exercise 2	 69

User interfaces	 71
Design	 71
Exercise 3	 72
Troubleshooting	 74

Loading your first web page	 74
Troubleshooting the BeagleBone web server access	 75
Exercise 4	 75

Shell variables	 75
Putting it all together	 76

Exercise 5	 79
Exercise 6	 81

Testing	 83
Troubleshooting	 84

Exercise 7	 85
Testing	 86

Summary	 87
Chapter 5: Connecting the BeagleBone to Mobile Devices	 89

Mobile devices	 90
Connectivity options	 90
Full network connection options	 90
Protocol-specific connectivity	 91
Mobile device connections	 93

Android devices	 93
iOS devices	 94

Carrier limitations	 94
Bluetooth wireless technology	 95

Bluetooth versions	 95
Bluetooth wireless connectivity	 96

Profiles	 96
Dial-up Networking	 97
Personal Area Network	 98

BLE options	 100

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Near Field Communication and the BeagleBone	 101
The BeagleBone NFC expansion board options	 102

The BeagleBone NFC as a device	 102
The BeagleBone NFC with a fully featured controller	 103

Summary	 103
Chapter 6: Recovering from the Mistakes	 105

Symptoms of the mistakes	 106
Troubleshooting the BeagleBone	 106

Diagnosing with the help of LEDs	 106
Setting up the serial debug cable on the BBB	 107

Connecting to the serial port on the BeagleBone	 108
Troubleshooting with the serial port	 112

Troubleshooting with the BBB serial port	 112
Troubleshooting with the BBW serial port	 114

Evaluating the serial port output	 114
Simple serial port output	 115
Bootloader serial port output	 116
Linux serial output	 117
No serial output	 117

Advanced LED diagnostics	 118
Repairing the BeagleBone	 118
Summary	 119

Chapter 7: Interfacing with the BeagleBone	 121
Electrical engineering in a nutshell	 122

Electrical properties	 122
Serial and parallel circuits	 122

Measuring the electrical properties	 123
Voltage measurements	 123
Resistance measurements	 124
Current measurements	 124
The BeagleBone voltages	 125

Expansion headers	 127
Transistors	 130

Bipolar transistors	 130
Example use of a bipolar transistor	 131

FETs or specifically MOSFETs	 132
Connecting LEDs to the BeagleBone	 133
Controlling relay with a BeagleBone	 134
Connecting switches to the BeagleBone	 135
I2C/SPI on the BeagleBone expansion connector	 136

Inter-Integrated Circuit	 136
Serial Peripheral Interface	 137

Summary	 138

Table of Contents

[v]

Chapter 8: Advanced Software Topics	 139
The BeagleBone programming with the C and Linux APIs	 139

Building the BeagleBone applications with the Linux API	 141
Compiling the existing libraries on the BeagleBone	 142

Cross compiling software for the BeagleBone	 142
Examples of the BeagleBone C compilation	 144

Native BeagleBone compilation	 144
Cross compiling a program for the BeagleBone	 144

User space versus kernel space on the BeagleBone	 146
Kernel drivers on the BeagleBone	 148
Device trees on the BeagleBone	 150
Pinmuxing on the BeagleBone	 152
Figuring out the pinmux on the BeagleBone	 153
The BeagleBone and real-time performance	 155
Summary	 156

Chapter 9: Expansion Boards and Options	 159
The BeagleBone capes	 159

Capes on the BBB versus BBW	 161
Example capes	 162
Capes and software on the BeagleBone	 163

USB devices on the BeagleBone	 164
USB versus capes for expansion	 166
Custom hardware versus off-the-shelf hardware	 169

Summary	 171
Appendix A: The Boot Process	 173

What happens when the power is turned on	 173
Bootloader	 174
Flash memory/microSD	 175

Linux and beyond	 176
Alternative boot uses	 176
Summary	 177

Appendix B: Terms and Definitions	 179
Index	 183

Preface
The BeagleBone provides a vehicle for learning embedded devices. Regardless of
whether you are a maker looking to embed a computer into your latest project or just
interested in learning about embedded programming, the BeagleBone is the board
to use. Unlike other low-cost controller boards, the BeagleBone is a fully fledged
computer using current mobile technology made accessible for custom projects,
prototypes, and learning. The BeagleBone can be programmed in almost any manner
that a desktop or laptop Linux system can. Design material is openly available so
projects can be independently manufactured.

This book goes through the basics of the BeagleBone boards along with exercises
to guide a new user through the process of using the BeagleBone for the first time.
It covers unboxing a new BeagleBone and basic configuration of a desktop or a laptop
system so that the board can be programmed. For anyone who has previously used a
microcontroller or has only programmed desktop systems, this book provides simple
exercises using no more resources than what is on the board.

What this book covers
Chapter 1, Introducing the Beagle Boards, introduces you to the idea of the Beagle boards
and also serves as a quick guide to the entire family of boards, as each board has
unique features that may make one board more suitable than another. It goes on to
unboxing your first BeagleBone and verifying whether it is running using a desktop
or laptop system. It'll also take you through useful accessories for the BeagleBone.

Preface

[2]

Chapter 2, Software in the BeagleBone, introduces the software in the BeagleBone.
It covers three aspects that include getting around the software that come with the
board, getting precanned images onto the board, and building software for the board
on the board. As part of this chapter, analogies to desktop software are provided.

Chapter 3, Building an LED Flasher, covers a basic introductory exercise of building a
simple LED pattern flasher "product" using the LEDs on the BeagleBone, along with
sample solutions. The entire example is doable with just the BeagleBone itself. The
only other thing needed is a PC to interact with the board.

Chapter 4, Refining the LED Flasher, builds on the previous chapter and explains how
to access the I2C bus. Again, no additional hardware is needed.

Chapter 5, Connecting the BeagleBone to Mobile Devices, looks at options to connect
a BeagleBone to a mobile device, such as a phone using Bluetooth. It goes through
different methods suitable for different types of mobile devices and the potential
pitfalls of each method.

Chapter 6, Recovering from the Mistakes, covers possible mistakes that may cause the
board to appear as dead. This chapter explains the process of attempting to recover
from such mistakes. It also goes through a quick diagnostic process to determine
whether the board is likely to be dead.

Chapter 7, Interfacing with the BeagleBone, takes you through the very basics of
connecting simple hardware to the BeagleBone. It covers the basics of how to
avoid damaging the board.

Chapter 8, Advanced Software Topics, covers more advanced ways of writing software
for the BeagleBone. It provides guidance to help you go beyond what this book
will cover.

Chapter 9, Expansion Boards and Options, explains what a cape is and the examples of
off-the-shelf things that can be added. It also goes through the process of creating
your own cape or even a basic expansion board.

Appendix A, The Boot Process, provides a slightly more detailed look at how a
BeagleBone loads software while powering on. This is useful in finding rapid
development methods or troubleshooting.

Appendix B, Terms and Definitions, provides background information on select terms
used throughout the book for new BeagleBone users. These cover terms used both
in this book and terms that may be encountered in the BeagleBone community.

Preface

[3]

What you need for this book
In order to go through this book, you should have a BeagleBone. Both the
BeagleBone White and the BeagleBone Black are covered and can be used for the
exercises. While the BeagleBone can be programmed in a standalone fashion, this
book will focus on programming it through a desktop or a laptop system. As such,
a desktop or a laptop running Windows or Linux is recommended. It is possible for
a reader to use a Mac OS system, but this book assumes the user is familiar with
Mac OS enough to bridge the gap between Mac OS and Windows or Linux. You
should have some knowledge of getting around the laptop or desktop system.

Who this book is for
If you are not familiar with embedded Linux and would like to learn about it,
this book is for you. This book is specifically targeting anyone who wants to use
the BeagleBone as the vehicle for their learning; this includes makers who want to
use the BeagleBone to control their latest product, or anyone who wants to learn
to leverage current mobile technology, or someone who wants to move beyond
simple microcontroller boards.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For Linux users, ssh root@192.168.7.2 will log you in to the board."

A block of code is set as follows:

$ ifconfig -a
….
eth1 Link encap:Ethernet HWaddr 1c:ba:8c:95:18:a0
 inet addr:192.168.7.1 Bcast:192.168.7.3
Mask:255.255.255.252
 inet6 addr: fe80::1eba:8cff:fe95:18a0/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:21 errors:0 dropped:0 overruns:0 frame:0
 TX packets:101 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:5280 (5.2 KB) TX bytes:21808 (21.8 KB)
….

Preface

[4]

Any command-line input or output is written as follows:

$ mount | grep sdb

/dev/sdb1 on /media/HYBOOT type vfat (rw,nosuid,nodev,uid=1000,gid=1000,s
hortname=mixed,dmask=0077,utf8=1,showexec,flush,uhelper=udisks)

$ sudo umount /dev/sdb1

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Enter the
IP address in the HostName section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/2905OS_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Disclaimer
The BeagleBone is a sensitive electronic device and may be damaged by improper
handling. Proper care should be taken during handling, development, and testing.
Read all warnings in this book and in the BeagleBone documentation at http://
beagleboard.org/. Specifically, read and understand the SRM (Software Reference
Manual). Do not attempt hardware interfacing without understanding limitations
and specifications for the board and the associated components. The information in
this book is provided on a best effort basis by the author. Software and hardware
is constantly updated and, as such, it is possible for conflicting changes after the
publication of this book. The author is not responsible for any damages.

https://www.packtpub.com/sites/default/files/downloads/2905OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/2905OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://beagleboard.org/
http://beagleboard.org/

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing the
Beagle Boards

This chapter will provide a background on the entire family of Beagle boards with
brief highlights of what is unique about every member, such as things that favor one
member over the other. This chapter will help you identify the Beagle boards that
might have been mislabeled. The following topics will be covered here:

•	 What are Beagle boards
•	 How do they relate to other development boards
•	 BeagleBoard Classic
•	 BeagleBoard-xM
•	 BeagleBone White
•	 BeagleBone Black

The focus of this book will be on the BeagleBone subfamily and assumes that a
BeagleBone board has been purchased.

www.allitebooks.com

http://www.allitebooks.org

Introducing the Beagle Boards

[8]

The Beagle board family
The Beagle boards are a family of low-cost, open development boards that provide
everyday students, developers, and other interested people with access to the current
mobile processor technology on a path toward developing ideas. Prior to the invention
of the Beagle family of boards, the available options to the user were primarily limited
to either low-computing power boards, such as the 8-bit microcontroller-based
Arduino boards, or dead-end options, such as repurposing existing products. There
were even other options such as compromising the physical size or electrical power
consumption by utilizing the nonmobile-oriented technology, for example, embedding
a small laptop or desktop into a project. The Beagle boards attempt to address these
points and more.

The Beagle board family provides you with access to the technologies that were
originally developed for mobile devices, such as phones and tablets, and uses them
to develop projects and for educational purposes. By leveraging the same technology
for education, students can be less reliant on obsolete technologies. All this access
comes affordably. Prior to the Beagle boards being available, development boards of
this class easily exceeded thousands of dollars. In contrast, the initial Beagle board
offering was priced at a mere 150 dollars!

The Beagle boards
The Beagle family of boards began in late 2008 with the original Beagle board.
The original board has quite a few characteristics similar to all members of the
Beagle board family. All the current boards are based on an ARM core and can be
powered by a single 5V source or by varying degrees from a USB port. All boards
have a USB port for expansion and provide direct access to the processor I/O for
advance interfacing and expansion. Examples of the processor I/O available for
expansion include Serial Peripheral Interface (SPI), I2C, pulse width modulation
(PWM), and general-purpose input/output (GPIO). The USB expansion path was
introduced at an early stage providing a cheap path to add features by leveraging
the existing desktop and laptop accessories.

All the boards are designed keeping the beginner in mind and, as such, are impossible
to brick on software basis.

To brick a board is a common slang term that refers to
damaging a board beyond recovery, thus, turning the board
from an embedded development system to something as
useful for embedded development as a brick.

Chapter 1

[9]

This doesn't mean that they cannot be damaged electrically or physically. For those
who are interested, the design and manufacturing material is also available for all
the boards. The bill of material is designed to be available via distribution so that the
boards themselves can be customized and manufactured even in small quantities.
This allows projects to be manufactured if desired.

Do not power up the board on any conductive surfaces or near
conductive materials, such as metal tools or exposed wires. The board
is fully exposed and doing so can subject your board to electrical
damage. The only exception is a proper ESD mat designed for use with
Electronics. The proper ESD mats are designed to be only conductive
enough to discharge static electricity without damaging the circuits.

The following sections highlight the specifications for each member presented in
the order they were introduced. They are based on the latest revision of the board.
As these boards leverage mobile technology, the availability changes and the designs
are partly revised to accommodate the available parts. The design information for
older versions is available at http://www.beagleboard.org/.

BeagleBoard Classic
The initial member of the Beagle board family is the BeagleBoard Classic (BBC),
which features the following specs:

•	 OMAP3530 clocked up to 720 MHz, featuring an ARM Cortex-A8 core along
with integrated 3D and video decoding accelerators

•	 256 MB of LPDDR (low-power DDR) memory with 512 MB of integrated
(NAND) flash memory on board; older revisions had less memory

•	 USB OTG (switchable between a USB device and a USB host) along with a
pure USB high-speed host-only port

•	 A low-level debug port accessible using a common desktop DB-9 adapter
•	 Analog audio in and out
•	 DVI-D video output to connect to a desktop monitor or a digital TV
•	 A full-size SD card interface
•	 A 28-pin general expansion header along with two 20-pin headers for

video expansion
•	 1.8V I/O

http://www.beagleboard.org/

Introducing the Beagle Boards

[10]

Only a nominal 5V is available on the expansion connector.
Expansion boards should have their own regulator.

At the original release of the BBC in 2008, OMAP3530 was comparable to
the processors of mobile phones of that time. The BBC is the only member to
feature a full-size SD card interface. You can see the BeagleBoard Classic in
the following image:

BeagleBoard-xM
As an upgrade to the BBC, the BeagleBoard-xM (BBX) was introduced later.
It features the following specs:

•	 DM3730 clocked up to 1 GHz, featuring an ARM Cortex-A8 core along
with integrated 3D and video decoding accelerators compared to 720 MHz
of the BBC.

•	 512 MB of LPDDR but no onboard flash memory compared to 256 MB of
LPDDR with up to 512 MB of onboard flash memory.

•	 USB OTG (switchable between a USB device and a USB host) along with an
onboard hub to provide four USB host ports and an onboard USB connected
to the Ethernet interface. The hub and Ethernet connect to the same port as
the high-speed port of the BBC. The hub allows low-speed devices to work
with the BBX.

•	 A low-level debug port accessible with a standard DB-9 serial cable.
An adapter is no longer needed.

Chapter 1

[11]

•	 Analog audio in and out. This is the same analog audio in and out as
that of the BBC.

•	 DVI-D video output to connect to a desktop monitor or a digital TV.
This is the same DVI-D video output as used in the BBC.

•	 A microSD interface. It replaces the full-size SD interface on the BBC.
The difference is mainly the physical size.

•	 A 28-pin expansion interface and two 20-pin video expansion interfaces
along with an additional camera interface board. The 28-pin and two
20-pin interfaces are physically and electrically compatible with the BBC.

•	 1.8V I/O.

Only a nominal 5V is available on the expansion connector.
Expansion boards should have their own regulator.

The BBX has a faster processor and added capabilities when compared to the BBC.
The camera interface is a unique feature for the BBX and provides a direct interface for
raw camera sensors. The 28-pin interface, along with the two 20-pin video interfaces,
is electrically and mechanically compatible with the BBC. Mechanical mounting holes
were purposely made backward compatible. Beginning with the BBX, boards were
shipped with a microSD card containing the Angström Linux distribution.

The latest version of the kernel and bootloader are shared between the BBX and
BBC. The software can detect and utilize features available on each board as the
DM3730 and the OMAP3530 processors are internally very similar. You can see
the BeagleBoard-xM in the following image:

Introducing the Beagle Boards

[12]

BeagleBone
To simplify things and to bring in a low-entry cost, the BeagleBone subfamily of
boards was introduced. While many concepts in this book can be shared with the
entire Beagle family, this book will focus on this subfamily. All current members
of BeagleBone can be purchased for less than 100 dollars.

BeagleBone White
The initial member of this subfamily is the BeagleBone White (BBW). This new form
factor has a footprint to allow the board itself to be stored inside an Altoids tin.

The Altoids tin is conductive and can electrically damage
the board if an operational BeagleBone without additional
protection is placed inside it.

The BBW features the following specs:

•	 AM3358 clocked at up to 720 MHz, featuring an ARM Cortex-A8 core along
with a 3D accelerator, an ARM Cortex-M3 for power management, and a
unique feature—the Programmable Real-time Unit Subsystem (PRUSS)

•	 256 MB of DDR2 memory
•	 Two USB ports, namely, a dedicated USB host and dedicated USB device
•	 An onboard JTAG debugger
•	 An onboard USB interface to access the low-level serial interfaces
•	 10/100 MB Ethernet interfaces
•	 Two 46-pin expansion interfaces with up to eight channels of analog input
•	 10-pin power expansion interface
•	 A microSD interface
•	 3.3V digital I/O
•	 1.8V analog I/O

Chapter 1

[13]

As with the BBX, the BBW ships with the Angström Linux distribution. You can see
the BeagleBone White in the following image:

BeagleBone Black
Intended as a lower-cost version of the BeagleBone, the BeagleBone Black (BBB)
features the following specs:

•	 AM3358 clocked at up to 1 GHz, featuring an ARM Cortex-A8 core along
with a 3D accelerator, an ARM Cortex-M3 for power management, and
a unique feature: the PRUSS. This is an improved revision of the same
processor in the BBW.

•	 512 MB of DDR3 memory compared to 256 MB of DDR2 memory on the BBW.
•	 4 GB of onboard flash embedded MMC (eMMC) memory for the latest

version compared to a complete lack of onboard flash memory on the BBW.
•	 Two USB ports, namely, a dedicated USB host and dedicated USB device.
•	 A low-level serial interface is available as a dedicated 6-pin header.
•	 10/100 MB Ethernet interfaces.
•	 Two 46-pin expansion interfaces with up to eight channels of analog input.

Introducing the Beagle Boards

[14]

•	 A microSD interface.
•	 A micro HDMI interface to connect to a digital monitor or a digital TV.

A digital audio is available on the same interface. This is new to the BBB.
•	 3.3V digital I/O.
•	 1.8V analog I/O.

The overall mechanical form factor of the BBB is the same as that of the BBW.
However, due to the added features, there are some slight electrical changes in the
expansion interface. The power expansion header was removed to make room for
added features. Unlike other boards, the BBB is shipped with a Linux distribution on
the internal flash memory. Early revisions shipped with Angström Linux and later
revisions shipped with Debian Linux as an attempt to simplify things for new users.

Unlike the BBW, the BBB does not provide an onboard JTAG debugger or an onboard
USB to serial converter. Both these features were provided by a single chip on the BBW
and were removed from the BBB for cost reasons. JTAG debugging is possible on the
BBB by soldering a connector to the back of the BBB and using an external debugger.
Access to the serial port on the BBB is provided by a serial header.

This book will focus solely on the BeagleBone subfamily (BBW and BBB). The
difference between them will be noted where applicable. It should be noted that for
more advanced projects, the BBC/BBX should be considered as they offer additional
unique features that are not available on the BBW/BBB. Most concepts learned on
the BBB/BBW boards are entirely applicable to the BBC/BBX boards. You can see
the BeagleBone Black in the following image:

Chapter 1

[15]

Summary of the Beagle board family
At the moment, there are four members in the Beagle board family, each with unique
features but all having the common goal of making technology accessible. The BBC
and BBX share a similar expansion connector and offer media-handling capabilities.
The BBW and BBB share a similar expansion connector and offer a low cost while
using the PRUSS for custom peripherals and real-time options. While all the boards
offer a good educational experience, this book will focus on the BBW and BBB.

Congratulations on selecting a
BeagleBone board
Depending on the BeagleBone you have purchased, the getting started process is
slightly different. Assuming that you have purchased a new board from an authorized
distributor with included accessories, we will now assemble it.

Using some of the accessories, namely, the SD card reader and
the mains adapter, the BBB and the BBW can be restored to the
factory state by following the instructions in Chapter 2, Software
in the BeagleBone. A mains adapter also known as a DC power
adapter or an AC adapter is required.

We'll first go through what's included and then a few very useful accessories to have.

At the time of writing this book, there are authorized branded boards
being introduced at http://beagleboard.org/.

Unboxing and powering up your
BeagleBone
For the BBB, the box will contain the BBB board in an ESD-safe protective bag
(a silver-colored bag), and a USB cable with a mini connector on one end and a
standard USB A connector on the other.

The BeagleBone boards are sensitive to static electricity; hence,
store the board in the protective ESD bag when not in use.

http://beagleboard.org/

Introducing the Beagle Boards

[16]

You can see the BeagleBone Black board with its contents in the following image:

For the BBW, the contents are similar except that it also contains a microSD card
along with a microSD to full-size SD adapter. For the purposes of this book, the SD
adapter is not needed but more advanced uses, such as recovery of the board, might
require the adapter. You can see the BeagleBone White board with its contents in the
following image:

Chapter 1

[17]

In order to power up the BeagleBone for the first time, a desktop or a laptop with
a USB port should be available. If possible, do not use an external hub. If you must
use a hub, be sure to use a self-power hub (a hub that has its own power supply).
The board as shipped is designed to work with most desktop/laptops. However,
there are some corner case configurations, which we will address later. The board has
been tested with systems that run Linux, Windows, and Mac OS. The configuration is
generally the easiest with a Linux system but it is not necessary.

This book will focus on Linux and Windows. The Mac OS
configuration should be similar. The overall process is described
at http://beagleboard.org/static/beaglebone/
latest/README.htm and http://beagleboard.org/
Getting%20Started.

For the BBW users, the microSD card should be inserted at this point prior to
connecting the mini USB cable; the BBB users can proceed to connecting the
mini USB cable.

The microSD card only fits in one way. If it does not appear to fit,
remove and flip it over. Do not force the card.

Regardless of the operating system, the first step is to plug the mini USB cable into
the BeagleBone.

The mini USB connector is at the bottom of the board under the LEDs,
next to the big silver RJ45 jack. The USB port is marked as USB.

When the BeagleBone is powered on from the machine, a blue power LED will
immediately light. If the LED doesn't glow or if it just blinks on briefly, it is possible
that your machine might fall in the corner case category and you might need the
power adapter as described later. The earlier URL mentions additional steps but
other steps such as upgrading to the latest image are optional. Similarly, configuring
the board for serial access is also optional.

www.allitebooks.com

http://beagleboard.org/static/beaglebone/latest/README.htm
http://beagleboard.org/static/beaglebone/latest/README.htm
http://beagleboard.org/Getting%20Started
http://beagleboard.org/Getting%20Started
http://www.allitebooks.org

Introducing the Beagle Boards

[18]

The exercises in this book should work fine with the shipping images. An image here
refers to the system software. Usually, updating the system software will add new
features and fix bugs. The system software shipped with the board should be enough
for the exercises in this book. So, you can use it to develop an understanding of the
BeagleBone before diving into its upgrades. In Chapter 2, Software in the BeagleBone,
we will look at the system software in more detail. You can see how the USB cables
connect to the BeagleBone Black and BeagleBone White in the following image:

The standard BeagleBone software at the time of writing this book provides two
standard USB functions for the BBB and one additional function for the BBW out
of the box. They are as follows:

•	 USB mass storage: This is a standard USB way of providing access to a
storage device. Other examples of UMS devices are the USB thumb drives;
most include drivers to support UMS.

Chapter 1

[19]

•	 USB Ethernet: This is one of the many methods of providing a virtual-network
interface with USB. The configuration supports the Remote Network Driver
Interface Specification (RNDIS) method so that it can work out of the box
with Windows without sacrificing the Linux compatibility. The net result is
a virtual-network interface that appears on both Linux and Windows.

•	 (BBW only) FTDI serial adapter: This is a combination serial port adapter
connected to a serial console and a JTAG interface. It is implemented as an
additional piece of hardware on the BBW. This hardware is combined with
the preceding two functions implemented by the Linux system running on
the BeagleBone with an onboard hub. The exercises in this book will not use
this part of the BBW.

The Windows configuration
In order to access the BeagleBone from Windows, a few basic drivers need to be
installed. The latest drivers can be downloaded from http://beagleboard.org/
getting-started. A version of the driver is available directly from the BeagleBone.
Shortly after plugging in the USB cable, a USB drive will appear on the desktop/
laptop. Navigate to the drive. There will be a folder named Drivers, and inside
it, there will a folder named Windows. Run the installer appropriate for your
version of Windows (64 bit or 32 bit). There might be some security warnings
about driver signing.

Depending on your version of Windows, you might need to restart/reboot.
Afterwards, a network device will appear.

If you choose to use an emulated environment, note that the BeagleBone
will appear as a composite device. You might need to assign multiple
devices to the emulated environment. For Mac OS users, there are
native Mac OS drivers available at http://beagleboard.org/
getting-started. The BBW users will see two potentially added
USB devices, namely, a FTDI device and a hub.

http://beagleboard.org/getting-started
http://beagleboard.org/getting-started
http://beagleboard.org/getting-started
http://beagleboard.org/getting-started

Introducing the Beagle Boards

[20]

The Linux configuration
For the exercises in this book, no additional drivers are needed in most distributions.
Most distributions will recognize the virtual Ethernet device provided by the system
software on the BeagleBone. When the BeagleBone is plugged in, it will provide a
composite device that offers a virtual Ethernet and a mass storage device. Unless
specifically disabled, the Linux kernel will recognize and attach appropriate drivers.
You can verify that the Beagle board is accessible by looking at the new network
interface. This can be done by looking at the output of the following ifconfig
command before and after plugging in the Beagle board:

$ ifconfig -a
….
eth1 Link encap:Ethernet HWaddr 1c:ba:8c:95:18:a0
 inet addr:192.168.7.1 Bcast:192.168.7.3
Mask:255.255.255.252
 inet6 addr: fe80::1eba:8cff:fe95:18a0/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:21 errors:0 dropped:0 overruns:0 frame:0
 TX packets:101 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:5280 (5.2 KB) TX bytes:21808 (21.8 KB)
….

The network device for the BeagleBone will appear as shown in the preceding code.
It will use the 192.168.7.1 address. Depending on the distribution, the name of the
network device might appear as a device with an eth or a USB prefix.

If the network device does not appear as described here, your distribution might
need additional drivers installed. Check with your distribution's documentation or
support community for details on how to enable support for a CDC Ethernet device.

Useful PC software for your BeagleBone
In order to follow the exercises in this book, you will need to have a few basic pieces
of software. The basic exercises will require an SSH client to be installed on your
desktop or laptop where the BeagleBone is connected to. The pieces of software
required are as follows:

•	 For Windows users, PuTTY is available from http://www.putty.org/.

http://www.putty.org/

Chapter 1

[21]

•	 For Linux users, OpenSSH or dropbear is often installed by default.
You can verify this by typing ssh in the shell prompt. If you get a help
message about the ssh usage, you should be ready.

•	 For Mac OS users, MacSSH can be downloaded for free from
http://www.macssh.com/ssh_down.html.

For more advanced exercises, a web browser is needed. The exercises should work
with any web browser. However, the getting started pages might not work correctly
in Internet Explorer. It is strongly recommended that you use another browser, such
as Firefox.

Accessing the BeagleBone
As shipped, the BeagleBone provides a web server and an SSH server. As a first test,
enter http://192.168.7.2/ and the following web page (served by the BeagleBone)
will appear:

Congratulations! You now have a working BeagleBone!

http://www.macssh.com/ssh_down.html

Introducing the Beagle Boards

[22]

As all the exercises in this book require shell access, the next step will be to attempt
to access the BeagleBone by SSH. The following are a few specifications:

•	 For Linux users, ssh root@192.168.7.2 will log you in to the board.
•	 For Windows users, run PuTTY, connect to 192.168.7.2, and use root

as the username to log in to the board. You will then see the following
screenshot. Enter the IP address in the HostName section. After clicking
on Open, you will be prompted to enter the username (root). If you are
prompted for a password, just press Enter.

For both Linux and Windows users, you will be asked to confirm the SSH key for the
BeagleBone. Enter YES when asked.

If you successfully log in to the board, you are ready for the exercises.

Chapter 1

[23]

Useful accessories
There are a few accessories that can be very helpful when accessing the
BeagleBone boards.

The mains power adapter
The first and possibly the most helpful accessory is a 5V wall outlet/mains power
adapter. This will allow you to power the BeagleBone from the wall outlet instead
of drawing power from a USB port. While the board can be powered by the USB
port, if you want to do anything that requires more than the minimal amount of
power, a 5V wall out/mains power adapter is strongly recommended. If capes
or expansion boards are installed, the amount of power can easily exceed what
is available from the USB port. These adapters are available from a variety of
sources. The specifications you are looking for are as follows:

•	 Regulated 5V power supply
•	 1 to 2A of current
•	 A female barrel connector with 2.1 mm inner diameter and 5.5 mm outer

diameter with the center positive

This might also be necessary if your laptop or desktop strictly enforces the USB
standard, which only provides 100mA of power initially and a maximum of 500mA.

An SD card reader and microSD cards
A USB SD or microSD card reader is one of the other important accessories.
Numerous images and software upgrades are available for download over the
Internet. More importantly, if you ever need to restore the BeagleBone to a factory
state, such as after a mistake, an SD card reader and a microSD card are absolutely
essential as this is done by a software image download. To use these images, a means
of writing to the microSD card is needed. The software installation process is detailed
in Chapter 2, Software in the BeagleBone. Almost any card reader will work; however, it
is strongly advised to get the one that is USB 2.0 high-speed capable. This is because
most images are relatively large and can take a while with a slower device.

In addition, as a companion to the SD card reader, a fast microSD card is highly
desirable. For the BBW, the microSD card as shipped is functional but it is often a
very slow card. The microSD cards are rated by a class system. Getting a reliable
high-speed microSD card can help improve the performance considerably for the
BBW. For the BBB, this is less important but it can help accelerate updates.

Introducing the Beagle Boards

[24]

If you do not have a microSD to full-size SD card adapter, be
sure that you purchase one. The microSD cards are often (but not
always) sold in a package that includes the adapter. Alternatively,
you can buy a card reader that can directly take microSD cards.

A serial debug cable
For the BBB, a USB to serial cable can be very helpful in debugging the system
or troubleshooting an apparently non-booting board. The FTDI TTL-232R-3V3
cable, available from Future Technology Devices International (FTDI), Digi-Key,
and other distributors will provide access to the low-level debug serial port. This
cable plugs in to a 6-pin header on the BBB. Pay attention to the triangle indicating
pin one. For the BBW, this functionality is built-in but a driver might be needed
depending on the operating system used in the desktop/laptop. You can see the
connector for the serial adapter in the following image (pin one is marked by the
white dot):

This cable converts the 3.3V UART signal into a USB signal accessible from the
desktop/laptop. Other means of doing the same exists but their discussion is outside
the scope of this book. See the System Reference Manual (SRM) and/or schematics
for details.

Chapter 1

[25]

A digital multimeter
A digital multimeter (DMM) is an extremely useful and relatively inexpensive
accessory for the BeagleBone.

For people not familiar with a basic DMM, a DMM allows you to
measure voltage, resistance, and current. For most of our purposes,
we are primarily looking at the voltage. The very basic DMM is
sufficient for most of our purposes.

DMMs provide a lot of insights if there are any problems. Exercises in this book do
not require a multimeter, but it can be very helpful in debugging. Power problems
and examining signals are just some of the things a DMM can help us with. The
BeagleBone boards provide analog inputs and the DMM provides a way to verify
these analog signals. Even for digital signals, the DMM can provide a basic insight in
signals not connected to LEDs, which are most of them. You can see a basic, low-cost
DMM in the following image (the probes are connected and the function is selected
by the rotary switch in the center):

A typical, basic DMM will have two test leads connected, a black one and a red one,
with a very sharp point on the end.

Be careful and do not poke yourself or anyone else with the leads.

Introducing the Beagle Boards

[26]

Typically, DMMs will have a rotary switch to select the measurement function or
range. For most of our purposes, we will be measuring signals between 0 and 5V.
So, in the case of the pictured DMM, the 20V setting marked by 20 in the upper-left
area marked as DCV for the DC voltage will work.

Using the DMM on the BBB
To measure a signal on the BBB, first select the appropriate voltage measurement
range. For the preceding DMM, a 20V range is the most appropriate as the BBB
uses 3.3V for most signals.

Do not attempt to measure anything you don't know the
range of, as this can be very dangerous.

After selecting the range, connect the black probe to a reference point. Electrically, this
is the ground. The ground signal is available on the exposed parts of the BeagleBone
mounting hole, on the pins labeled as ground on the expansion header, or on the
metal part of the Ethernet or RJ45 connector. Be very careful not to touch anything
else with the probe while measuring as this can damage the BeagleBone. After
connecting the black probe to the ground, connect the red probe to the signal being
measured. An example of a signal you can measure as an exercise is the power line.
Again, pay attention not to touch anything else with the probe to avoid shorting out
signals. You can see a few ground points on the BeagleBone Black in the following
image (the BBW has similar ground points):

Chapter 1

[27]

If you need a signal to practice measurement or to familiarize yourself with using
a DMM, consider measuring the power supply signals on the expansion connector.
This is worth repeating; be careful when measuring as accidentally shorting the
signal to an adjacent pin or to anything else on the BeagleBone can permanently
damage your board! You can locate power supply signals by referring to the SRMs
section on the expansion connector pin outs. The connector P9 contains most of the
power signals. On P9, you will find signals such as DC_3.3V, SYS_5V, and VDD_5V.
The DC_3.3V signal should measure around 3.3V if the board is powered on and
working correctly. VDD_5V is powered on only via a 5V barrel connector. SYS_5V
is powered when the BeagleBone is powered on either by a 5V barrel connector or
a USB connector.

The following are the two main strategies to measure the signal:

•	 Measure at the top side: The signals for the expansion connector are on the
female connectors, as shown in the preceding image. You will need some
kind of thin wire that fits the connector. In addition, if you later have an
expansion board or a cape connected, the connectors themselves might be
obscured. While some expansion boards might carry the signals through
the expansion board themselves, they are not required to do so. This is
especially true for the nonpower signals.

•	 Measure on the bottom side of the board: This has the advantage of allowing
direct probing with a greater risk of shorting to adjacent signals. If you are
careful, this provides the easiest access to the signals on the BeagleBone.

If you are unsure or trying to measure the signals on the BeagleBone for the
first time, it is a good idea to seek help from someone knowledgeable to confirm
whether your connections are correct and that you have not accidentally shorted
out the signals.

Wireless interfacing accessories
For folks who want to attempt to interface the BeagleBone wirelessly, a Bluetooth
USB adapter or a Wi-Fi USB adapter might be useful. Refer to the mailing list
at http://www.beagleboard.org/Community/Forums for possible supported
Wi-Fi adapters, as they will vary over time. This book will not discuss the Wi-Fi
configuration but in Chapter 5, Connecting the BeagleBone to Mobile Devices, we will
go through a few issues faced while connecting the BeagleBone to a mobile device,
such as a phone.

www.allitebooks.com

http://www.beagleboard.org/Community/Forums
http://www.allitebooks.org

Introducing the Beagle Boards

[28]

Summary
In this chapter, we looked at the Beagle board offerings and a few unique features of
each offering. Then, we went through the process of setting up a BeagleBone board
and understood the basics to access it from a laptop/desktop. By verifying access to
the BeagleBone via a web browser and a command line, we built a foundation for the
exercises in the upcoming chapters.

With a new board, we also went through a list of some very useful accessories. With
the exception of the power adapter for a few people with laptops/desktops that strictly
enforce power limits, none of the accessories are required for the exercises in this book.
You can proceed through the rest of the book while the accessories are ordered.

In the next chapter, we will look at system software in the BeagleBone along with the
process of flashing a new image onto the BeagleBone.

Software in the BeagleBone
Now that you have unboxed your BeagleBone and have the basic accessories to
connect to another machine, we'll look at the software in the BeagleBone. First, we'll
look at the available distributions for the BeagleBone and then go over how to get
these distributions onto the BeagleBone. To install a distribution, you need an SD
card reader as mentioned in the previous chapter. Finally, we'll look at how to get
your own software in the BeagleBone.

A Linux distribution (often known as distro) is a collection of
software composed of the Linux kernel and support pieces that
provides a user interface.

If you have a new BeagleBone board and the accessories have not arrived but you
are just anxious to get started, you can skip this chapter and move on to the next.
Come back to this chapter when you need to change the software, either to try
something different or for recovery purposes.

In this chapter, we will cover the following topics:

•	 System software in the BeagleBone
•	 BeagleBone distributions
•	 Angström and Debian Linux distributions for the BeagleBone
•	 Distribution installation on the BeagleBone from Windows and Linux hosts
•	 Bootable images versus flasher images
•	 Nonsystem software in the BeagleBone

Software in the BeagleBone

[30]

System software in the BeagleBone
This book will focus solely on running a Linux-based software in the BeagleBone.
It is possible to run almost any ARM-based software in the BeagleBone but this is
outside the scope of the book.

The examples of a few other distributions can be found at
http://beagleboard.org/projects. This is not an
exhaustive list.

The Linux-based system software comes in different flavors, commonly referred
to as distribution. Linux by itself strictly refers to a core piece known as the kernel.
A distribution takes the Linux kernel, configures things in a specific way, and then
adds other system software pieces.

Linux provides protection between different pieces of software to
increase the overall system's robustness. This is done by having a
supervisor or a privileged portion and an underprivileged portion.
The privileged portion resides mostly in the kernel. The unprivileged
portion is typically referred to as userland pieces. Userland pieces are,
by default, isolated from each other and obtain services from the kernel.

Each distribution has its own style of configuration and policies. However, for basic
things, they have a lot in common. Typical reasons to favor a particular distribution
on the BeagleBone would be flexibility in configuring the system for a particular
need, or compatibility with the existing legacy pieces. For beginners, easy access to
the configuration and prior experience with a distribution is often another reason.
However, as one becomes more familiar with the BeagleBone and Linux, other
reasons will dominate the choice of distributions.

Distributions on the BeagleBone
The BeagleBone can run many different distributions similar to those available
for desktops and laptops. However, the BeagleBone is shipped with two specific
distributions, namely, Angström and Debian. Both the flavors are available in an
easy-to-load format specifically for the BeagleBone.

http://beagleboard.org/projects

Chapter 2

[31]

The Angström Linux distribution
Angström has supported every Beagle board available since the beginning. The
BeagleBone White is shipped with a microSD card that contains Angström. Early
revisions of the BeagleBone Black were shipped pre-installed with the Angström.
A quick overview of Angström (http://www.angstrom-distribution.org/) is
as follows:

•	 Angström is built with OpenEmbedded and provides a lot of
configuration flexibility

•	 Angström is more commonly used with embedded devices and is a little
bit different from what people might be used to on the desktop/laptop

•	 The entire image can be locally built to give you an image with all the
specific sources used in the image

•	 Building a package that isn't already set up for Angström requires writing
a recipe, which can be daunting for new users

The Debian Linux distribution
Debian has been ported with the help of the community. Up until the latest version
of the BeagleBone Black, this has been largely an alternative distribution for folks
who want something much closer to a typical desktop or laptop distribution. Also
lumped together under Debian is the popular Debian-derived distribution, Ubuntu.
A quick overview of Debian (https://www.debian.org/ports/arm/) is as follows:

•	 Debian shares packages with the standard ARM Debian port. The primary
difference is that the kernel, bootloader, and low-level setup are specific to
the BeagleBone.

•	 For most part, Debian is the same as Debian on desktops or laptops.
This brings some level of familiarity for new users.

•	 Despite the difference in the nature of things done on a BeagleBone versus
desktops, there will still be quite a few differences, such as the way in which
the system boots and the support for the USB device mode. A BeagleBone
that runs Debian will often be performing more hardware-related things
than a desktop or laptop.

•	 Debian is only pre-installed with the latest revision of the BeagleBone Black.
All other revisions will require this to be explicitly loaded.

http://www.angstrom-distribution.org/
https://www.debian.org/ports/arm/

Software in the BeagleBone

[32]

Installing a distribution in the BeagleBone
The process of installing a distribution in the BeagleBone differs between the White
and Black versions. The BBW does not have a built-in flash memory, unlike the BBB.
The process of installing a distribution on the BBW is a matter of writing the image
onto the microSD card and booting from it. In contrast, the BBB has an onboard
memory to which you can copy the files. However, the BBB also offers a microSD
slot. This provides the BBB user with an option to test out a distribution using the
microSD card while keeping the stock image intact, similar to how a BBW is set up.

Before beginning, make sure that the following items are available:

•	 A blank microSD card at least 1 GB or bigger. The size needed depends on
the image; internal flash on a BBB is 2 GB on older revisions and 4 GB on
newer revisions. The card does not need to be blank but the contents will
be erased in the process, so make sure that there is nothing on the card that
you want to keep.

•	 An SD (or microSD) card reader/writer for the desktop/laptop. Make sure
that this is functional prior to beginning.

•	 A barrel power supply, as described in the previous chapter, is highly
recommended to flash a BBB's onboard memory, as writing to flash often
draws more power than a USB port can provide.

Obtaining the image
Regardless of the BeagleBone or distribution, the first step is to download the image,
which can be found at http://beagleboard.org/latest-images.

There are two types of images found on this page. The first type of image is a
generic, ready-to-run image suitable for use on the BBW or on the microSD slot of
a BBB without changing the contents of the onboard flash. The second type of image
is a flasher image that will install the distribution onto the onboard flash of a BBB.
The flasher images cannot be used on a BBW as it lacks the onboard flash.

The images on the web page are compressed with 7-Zip. For Windows users who
do not have a 7-Zip decompressor, it can be downloaded from http://www.7-zip.
org/download.html.

For Linux, there are several options; one of them is xz-utils. On a Debian/Ubuntu
system, this can be installed using the following command:

sudo apt-get install xz-utils

http://beagleboard.org/latest-images
http://www.7-zip.org/download.html
http://www.7-zip.org/download.html

Chapter 2

[33]

For BBB owners looking to try a different distribution, you will need to decide
whether you want to overwrite the contents of the onboard flash or not. If you do not
wish to overwrite the existing contents of the onboard flash, download the general
image (the same image as that of the BBW); otherwise, download the flasher image.

Once a choice (if any) is made, download the image onto the laptop/desktop and
then decompress it using the preceding tools.

Windows users
Assuming that you have installed the graphical version of 7-Zip correctly using the
defaults, you should have a 7-Zip group in your Start menu. Also, there should be
an application named 7-Zip File Manager. Start it and select the downloaded image.
Decompress it with the Extract option at the top of the page. When prompted, enter
a place to extract the contents to, as shown in the following screenshot:

Remember where you decompress it to, as that path will be needed to write the image.

Linux users
Assuming that you have installed the xz-utils package, you should be able to
decompress the image by running the following command:

unxz -d downloaded_imagename.xz

$ unxz -d bone-debian-7.5-2014-05-14-2gb.img.xz

Software in the BeagleBone

[34]

Writing the image
The process of writing out the image depends on the type of desktop/laptop and the
particular BeagleBone.

Windows users
Windows users will need an image-writing utility, such as Win32DiskImager, which
can be found at http://sourceforge.net/projects/win32diskimager/files/
latest/download.

After installation, a new application, Win32DiskImager, should appear in your Start
menu under Image Writer if installed using the defaults. To use Win32DiskImager,
follow these steps:

1.	 Start Win32DiskImager and you will see the following screenshot:

2.	 Insert the microSD card in the card reader using the microSD to full-size SD
card adapter as needed. After a brief wait for the system to recognize the
card reader, you should be able to select a device. Select the SD card reader
device. The device selection is found on the upper-right side of the dialog
box. It will only show the valid devices.

3.	 Select the image file you decompressed previously by clicking on the blue
folder icon to the left-hand side of the device selector.

The value generated by checking the MD5 Hash option
will not match the value from the downloaded site. MD5
Hash (also known as the MD5 sum or simply as MD5) from
the website is for the compressed file only. The process of
decompressing the file will change MD5 Hash.

http://sourceforge.net/projects/win32diskimager/files/latest/download
http://sourceforge.net/projects/win32diskimager/files/latest/download

Chapter 2

[35]

4.	 Click on the Write button at the bottom. You will be asked to confirm the
target device. If you are unsure at this point, seek assistance to avoid data
corruption. Confirm that you wish to continue. After confirming, the area
labeled Progress will become active, and you will see a percent value along
with a graphical progress bar, as shown in the following screenshot. Writing
to the microSD card can take a while, depending on the type of card and
reader you are using.

The write process will be complete once the progress indicates 100%.

The active progress bar and the percentage value are on the right.
This indicates the write process has started successfully.

Linux users
For Linux users, most distributions include tools to write the image. The first step is
to identify the name of the SD card reader.

An error here can corrupt the desktop/laptop system.

For users using an USB-connected SD card reader, follow these steps:

1.	 Open a terminal on the desktop/laptop.
2.	 Insert the microSD card into the card reader using the microSD to full-size

SD card adapter as needed. Connect the card reader to the machine. Wait a
brief moment to allow the machine to recognize the card reader.

3.	 Run dmesg again in the terminal and note the last few lines or optionally run
dmesg | tail -10.

Software in the BeagleBone

[36]

Piping a command in the tail is a convenient way to show only
the last few lines. See the man page for details.

The name of the device will be in the form of sdX, where X is a lowercase letter from
a to z. Note the name here:

$ dmesg | tail -10

[1001582.210640] sd 30:0:0:0: >[sdb] Write Protect is off

[1001582.210653] sd 30:0:0:0: >[sdb] Mode Sense: 4b 00 00 08

[1001582.210969] sd 30:0:0:0: >[sdb] No Caching mode page present

[1001582.210981] sd 30:0:0:0: >[sdb] Assuming drive cache: write through

[1001582.216573] sd 30:0:0:0: >[sdb] No Caching mode page present

[1001582.216586] sd 30:0:0:0: >[sdb] Assuming drive cache: write through

[1001582.225289] sdb: sdb1 sdb2

[1001582.226833] sd 30:0:0:0: >[sdb] No Caching mode page present

[1001582.226846] sd 30:0:0:0: >[sdb] Assuming drive cache: write through

[1001582.226856] sd 30:0:0:0: >[sdb] Attached SCSI removable disk

In the preceding example, the line sdb: sdb1 sdb2 identifies the SD card reader as
sdb with two partitions.

For users using an SD card reader built in a laptop, follow these steps (the name can
depend on how you are attached to the system):

1.	 Make sure that there is no SD card inserted. If there is one, eject/remove
the card after following the process normally done to remove the card.

2.	 Open a terminal.
3.	 Run dmesg and note the last few lines.
4.	 Insert an SD card into the card reader.
5.	 Run dmesg again.

The output will be similar to using a USB card reader but the name might differ.
There are two common forms of the device name, depending on how it is connected.
One is the device name sdX, where X is a lowercase letter, or it can be named
mmcblkN, where N is a number, that is, mmcblk0. Note the name here.

If the name is still unclear, seek assistance. For the preceding examples, we will
assume that the device name is sdb.

Chapter 2

[37]

Depending on your system configuration, the SD card might be automatically
mounted. Writing a new image to a mounted card can result in an unexpected
behavior. To check whether an image is mounted, enter the following command
in the Terminal window:

$ mount | grep sdb

Replace sdb with the name of your device. If that line returns a line, you will need
to unmount it as follows:

$ sudo umount /dev/sdb1

The /dev/sdb1 value should be replaced with the name found in the beginning of
the line, as shown in the following command:

$ mount | grep sdb

/dev/sdb1 on /media/HYBOOT type vfat (rw,nosuid,nodev,uid=1000,gid=1000,
shortname=mixed,dmask=0077,utf8=1,showexec,flush,uhelper=udisks)

$ sudo umount /dev/sdb1

While the name of the device is sdc or mmcblk0, the name shown in the first column
might include an additional number (such as sdc1) or the letter p and a number
(such as mmcblk0p1); include the number in the umount command. To write the
image onto the SD card, type the following command:

sudo dd if=/image of=/dev/sdc bs=1M

This command might take a while to execute, depending on the speed of the SD
card and the size of the image. This command does not provide updates, so be
patient. For more details on the dd command, refer to the man page for dd.

Booting the image
Now that the downloaded image is written to the SD card, the card is ready to
be used. If you have a BBB and would like to write the image to the onboard flash,
make sure that you have downloaded a flasher image. For all other uses, make sure
that you have downloaded a non-flasher image.

For the BBB users, if you have a USB serial cable, plug it in and
configure your terminal software. This will provide useful feedback.
For the BBW users, a similar output is available using the built-in,
integrated USB serial adapter. The serial port will provide hints if
the new image does not boot correctly.

www.allitebooks.com

http://www.allitebooks.org

Software in the BeagleBone

[38]

To boot the image, follows these steps:

1.	 Disconnect the power to the BeagleBone. This includes disconnecting both
the USB cable and the barrel power connection if one is used.

2.	 Insert the microSD card into the slot in the BBB or BBW.
3.	 For the BBB users only, locate the user button. You will need to depress

and hold the button for the next step.

This step only applies to the BBB. The BBW does not have a
user button. The user button is used to select between booting
from an onboard flash and the microSD slot. Depending on
what is currently on the BBB's onboard flash, it might appear
to boot from the microSD card due to some secondary checks.
Holding down the user button while the power is first applied
is necessary to ensure that the only software running is from the
microSD card. The user button on the BBB forces the system to
attempt to boot from the microSD media instead of the onboard
flash. The user button is only checked on power up. It is not
checked on reset! For non-flasher images, the user button can be
released at this point. See the next section for flasher images.

4.	 Apply the power by connecting the barrel connector (if used) or the USB
cable. The 5V power LED should light up. You can release the user button
approximately 20 seconds after the power LED is on. These 20 seconds are
longer than some sources suggest to give other pieces of software a chance
to see the user button depressed.

If you have downloaded a non-flasher image, such as an image intended for both the
BBW and BBB, the system is ready at this point.

Flasher images
For the BBB, there is an option to flash an OS onto the onboard flash. This same
option can be used to restore a BBB to a factory condition if the onboard flash is
corrupted due to experiments or if a BBB is sourced second hand. Unless you
have the USB to serial cable, there will be minimal feedback provided through
the flashing process.

The flashing process can take up to an hour depending on the
image. Do not power down or remove the microSD card while
the BBB is flashing. This can potentially damage the board.

Chapter 2

[39]

Unlike non-flasher images, the user button should be held down until all four LEDs
next to the Ethernet briefly light up.

Holding down the user button for the additional time is to let the
flasher image know you really want to flash. The flashing process on
older images ends with an automatic system reboot, which normally
would not have the user button held down. This avoids a flashing loop.

The completion of the flashing process is indicated by the same four LEDs next
to the Ethernet staying on. At this point, the BBB can be powered down manually.
The system will not reboot automatically on most newer images.

Nonsystem software in the BeagleBone
After the BeagleBone boots the kernel and allows you to log in, the system is ready
to run the nonsystem software. This software runs in an unprivileged level, so bugs
here are unlikely to crash the entire system. This software is typically what makes
the BeagleBone specific to a task. Later on in this book, we will write this type of
software as an exercise to familiarize ourselves with the BeagleBone. The line between
the system software and nonsystem software can be unclear as most distribution
includes a vast library of applications, either installed or easily installable with a few
commands. The exact process depends on the distribution. For Angström users, this
is done using the opkg command. For Debian users, this is done either by apt-get or
dpkg just like on a desktop machine.

For a lot of BeagleBone users, the software library offered by distributions is commonly
just a foundation to build upon. Depending on the intended task, additional software
either in the form of a script or for more advanced uses, full-blown applications are
needed. In both cases, they are often specific to the task and need to be written.
Getting such software in the BeagleBone is usually pretty straightforward.

The BeagleBone is a fully fledged computer. For many software
tasks, the exact same procedure used on a desktop can be used on
the BeagleBone. The notable exception is the software that requires
extensive resources to be built in a practical amount of time might
require more advanced techniques, such as cross compilation.

Software in the BeagleBone

[40]

The typical process is as follows; the specifics will vary as per the projects:

1.	 Log in to the BeagleBone using ssh. The shipped system software does not use
a password for root by default. However, some images, such as early versions
of Debian, might require a specific username and/or password. Refer to the
documentation for the image for the password and/or username to be used.

2.	 Using an editor of your choice, create the scripts or C/C++ program files.
Alternatively, create the files on the desktop/laptop and copy the contents
over using scp.

Standard software tools, such as make and gcc, are available natively on
the BeagleBone. Depending on the distribution, you may have to install
them explicitly. Details of the installation process details, such as the name
of the packages and commands, will vary depending on the distribution.

3.	 If necessary, compile the C/C++ program on the BeagleBone.
4.	 Debug and repeat.

Many software packages can be built using this method. Simply copy over the source
files and run, make, or configure as you would on a desktop system. The exact steps
will vary between packages and should be a part of the source code or package
documentation. Note that many software packages have dependencies that have to
be met either by installing a distribution-provided version or building them yourself.
Depending on the package, this can be a simple way but might be time consuming.

Summary
In this chapter, we looked at the two common system software distributions for
the BeagleBone. We also went through the basics of downloading and running
a distribution. For the BBB, this process allows a BBB in an unknown state to be
restored to a factory condition. Finally, we looked at an overview of installation
applications in the BeagleBone.

The upcoming chapters will be much more hands on as we apply the foundation
built here and go through the process of building your first project on the BeagleBone.
We will build a variation of the classic first project for embedded users, an LED flasher.
While you might not have chosen to install a new distribution at this time, this process
can be applied to recover from most software mistakes.

The LED flasher project will be broken into two parts. In Chapter 3, Building an LED
Flasher, we will ease into controlling the LED and end with a basic flasher. This basic
flasher will be the foundation for the advanced exercises.

Building an LED Flasher
Now that we have a basic foundation of what's on the BeagleBone and how to
install the basic system software on it, we will proceed to the basic exercises on the
BeagleBone with minimal fear of corrupting the BeagleBone. We'll get our feet wet
with classic introductory exercises but, first, we'll write a Hello, World exercise to
familiarize ourselves with the basics and then build our own embedded product—an
LED flasher. This will be done in small steps, each introducing a set of skills needed
for the LED flasher.

In this chapter, we will cover the following topics:

•	 Use a simple editor on the BeagleBone itself
•	 File permissions (what they are and how to determine them numerically)
•	 Set and examine file permissions
•	 Use sysfs to control the LEDs
•	 Read and write files using the shell language
•	 Loop and create delays in the shell language
•	 Debug shell scripts
•	 Flash LEDs

Setting up a foundation for the exercises
Let's go through a few basics for all the exercises in this book. The exercises in
this book should work with the BeagleBone powered by the USB interface for the
majority of users. However, a minority of users might have a desktop/laptop not
permitting enough power to be drawn from the USB port. In this case, you will need
the barrel power adapter as described in Chapter 1, Introducing the Beagle Boards.

Building an LED Flasher

[42]

All the exercises in this book assume that you will interact with the BeagleBone
over the USB interface. To do this, you will need an SSH client suitable for your
laptop/desktop. Refer to Chapter 1, Introducing the Beagle Boards, for examples of
SSH clients on Linux and Windows. To recap the basics, the process is as follows:

1.	 Plug in the USB port and allow the BeagleBone to boot up.
2.	 Start the SSH client.
3.	 Connect to 192.168.7.2 using the SSH client.
4.	 Log in as root.

After a successful login, you will be at a shell prompt similar to this:

foo $
$
#

The exact prompt will depend on the distribution's default configuration. For the rest
of the book, the prompt will be simplified to $.

Nothing prevents the exercises from being completed on the
diagnostic serial port. However, to do so, you will require the
serial cable on the BBB and a terminal program. Performing
the exercises with the USB interface is more straightforward
for beginners without learning additional tools.

Selecting an editor
All the exercises will involve typing short pieces of text. To keep things simple, the
exercises will be done using the shell script. This was chosen due to its simplicity
and almost universal availability in all the common distributions on the BeagleBone.
Almost all the alternative programming languages can perform the functions that are
equivalent to what shell scripting performs. This makes it an ideal learning language.
The ubiquity of shell scripting is the reason why many portable pieces of the setup
code are written in shell scripting.

Shell script is a language that is used to program Linux systems.
It provides you with an access to the most basic system controls
through a series of commands listed in a text format. The commands
used in a shell script are the same commands as typed in the normal
shell. In order to do the exercises, you will need to use an editor. For
Linux users, they are similar to the editors that are available on the
desktop/laptop.

Chapter 3

[43]

Most distributions will offer one of the following editors:

•	 vi/vim: This is the classic Linux text editor. It is very versatile, but also one of
the most cryptic editors available. For users interested in this editor, you can
refer to one of the many books on vi. No other specific mention of this editor
will be made in this book. If you are already familiar with this editor, feel free
to use it.

•	 nano/pico: These are relatively simple editors. For Windows users, this is not
too different from the basic command-line editor, edit. For beginners, this can
be a good choice to get started.

Quick start with nano/pico
A simple editor to start with is the nano/pico editor. A few quickstart hints for
nano/pico are as follows:

•	 To create or edit a file, provide the filename as the argument, as shown in the
following command:
$ nano hello.sh

•	 This will create a file named hello.sh and open it for editing if the file does
not exist. If the file already exists, it will just open the file for editing.

•	 Once in the editor, you can type normally.
•	 To exit the editor, press Ctrl + X, that is, hold down the Ctrl key, and then

press the X key. If the file has been modified, you will be prompted to save
or discard the changes.

More advanced topics such as search and replace are outside the scope of this book.
Additional information can be found using a search engine. For the exercises in this
book, these advanced features will offer minimal help.

Permissions
Linux has the concept of permissions for files. For our purposes, the main concern is
the execute permission. On a desktop/laptop system with multiple users, permissions
allows you to have selective access between different users. However, for an embedded
system such as the BeagleBone, permissions can provide security to isolate problems
either due to programmer- or user-errors. Other embedded uses of permissions are to
implement an access policy for the device itself. Linux permissions come in three basic
forms, namely, read, write, and execute. The meaning differs slightly between files
and directories.

Building an LED Flasher

[44]

For our purpose, we are mainly concerned with the permission on files. Let's take a
look at these permissions in detail:

•	 Read: This permission allows a file to be read and is designated by the letter r.
•	 Write: This permission allows the file to be modified and is designated by the

letter w.
•	 Execute: This permission allows a file to be executed (that is, run as a program).

This is the most important permission for the purpose of these exercises.
Without the execute permission, the short programs we write will not run.
This is designated by the letter x.

Determining the current permission
To determine the current permission of a file, use the ls command with the -l
(long list) option as follows:

$ ls -l hello.sh
-rw-rw-r-- 1 root users 0 Aug 3 22:25 hello.sh

In the preceding example, the ls command is used to examine the permissions
on the hello.sh file. The output of the ls command has several fields separated
by spaces. The first field of text, in this case -rw-rw-r--, is the permission for the
hello.sh file. For our purposes, this is the main field of concern.

The full list of fields in the order shown is permissions, reference
count, owner of the file, group owner of the file, size of the file,
date of the last modification, and the name of the file.

Meaning of the permissions field
Due to Linux originating from the desktop and multiuser world, permissions can be
applied to three basic groups of entities. The three groups of entities are in the order
presented as follows:

•	 User or owner of the file: The owner of the file is the user, as shown in the
third field of the preceding example, where root is the owner of the file.

•	 Group owner of the file: Each user in Linux is associated with a default
group. When a file is created, the file has a group owner determined by
the default group of the user that created it. The group owner is shown
in the fourth field. In the preceding example, the group owner is users.

Chapter 3

[45]

On a desktop system, the group can be a collection of different
users with the same level of shared access. For example, on
a desktop system, file access can be restricted to a group
composed of all the managers in a company.

•	 Other owner of the file: Everyone else other than the user or group is the
other owner of the file.

The following diagram shows the Linux permission entities relationship in a
graphical form. The permissions are applied based on the most specific member.

Each entity's permission is shown as a set of three characters in the order of read,
write, and execute (rwx).

In the preceding example, the permissions are shown in the order listed earlier
(-rw-rw-r---). Let's go through it in logical groups:

•	 The first character (-) is used to indicate a special file, for example,
a directory d can be designed. For the purpose of the exercises, we can
ignore this field.

For more details, consult the man page for the ls command.
This can be found by running man ls on a system with
the man pages installed. By default, the man pages are not
installed on most BeagleBone distributions. However, they
are often installed on a desktop or laptop Linux system. Man
pages can also be found on the Internet using a search engine.

•	 The next three characters (rw-) are the permissions for the owner of the file. In
this case, it is for the root user. The presence of a letter means that permission
is granted. If there is a - where the letter is normally present, the permission
is denied; rw- here means the user has read and write permissions, but no
execute permission as the last character of the group is -.

Building an LED Flasher

[46]

•	 The next three characters (rw-) are the permissions for the group owner of
the file. In this case, these are the permissions for the members of the group
name users. The rw- variable means anyone who is a member of the group
users, but is not the user (root) who has permissions to read and write to
the file, but not execute it.

•	 The last group of three characters (r--) are the permissions for anyone else
who is not the owner of the file and is not a member of the group owner of
the file. In this example, anyone is allowed to read the file, but not modify
or execute it.

•	 The last character (-) has a special advanced meaning that can be ignored
for most basic uses.

An example of using these permissions on an embedded device,
such as the BeagleBone, is building a device with a web server
connected to the Internet. Permissions can be used to limit access
to what can be seen using the web server.

Now that we know the basics of permissions, there is one more detail we need to
be concerned with the BeagleBone, an embedded device. Embedded devices tend to
have limited storage and the BeagleBone is no exception. On a desktop system with
plentiful storage, permissions can be referred to symbolically just like the output
of the ls command. In order to minimize the storage used by the system, many
distributions on the BeagleBone require permissions to be described numerically.

Converting permissions to the numeric form
Permissions can be converted to the numeric form by following a few basic rules:

•	 Numeric description does not need to include the special file indication.
This is the first character in the output of ls.

•	 Permissions for each entity are described by a separate single digit in the
order of owner, group, and other. In other words, each group of rwx is
represented by a single digit.

•	 To determine the numeric value, add each type of permission granted where:
°° Read permission has a value of 4
°° Write permission has a value of 2
°° Execute permission has a value of 1

Chapter 3

[47]

Again, referring to the earlier example with the permissions shown as -rw-rw-r---,
the first - character is ignored. The first entity, the owner of the file, has permissions
of rw-. The user has read and write permissions, but not the execute permission. We
add 4 and 2 (values of read and write respectively) to arrive at a total of 6. Similarly,
the group owner of the file has permissions of rw-. Again, add 4 and 2 that gives a
total of 6. For everyone else, the permission is r--, or only read. This gives a value of
4. Putting it all together, the numeric description of the permissions is 664.

To grant permission to an entity that does not currently have the permission, add the
value of this permission. To revoke the permission for the entity, subtract the value
of this permission. As an added check, the permission value should always be a
value between 0 and 7 inclusive.

Permissions are actually octal numbers. The permissions
themselves are determined by a set of three bits in binary.
Each octal digit represents three bits.

Setting up permissions
To change or set permissions on a file, use the Linux chmod command. The chmod
command takes two parameters, namely, permissions and the name of the file to
apply the permissions to.

For readers who might have learned permissions on a desktop
system where the permissions can be described symbolically,
depending on the particular distribution, this might not work.

A method that works on all distributions, including desktop systems, is to describe
permissions numerically. In the earlier example, we looked at the hello.sh file.
This is going to be our first program and we will run it. Unfortunately, there are no
execute permissions for the program. Let's fix it as follows:

$ ls -l hello.sh
-rw-rw-r-- 1 ds2 ds2 0 Aug 4 00:06 hello.sh
$ chmod 775 hello.sh
$ ls -l hello.sh
-rwxrwxr-x 1 ds2 ds2 0 Aug 4 00:06 hello.sh

www.allitebooks.com

http://www.allitebooks.org

Building an LED Flasher

[48]

Here, we run chmod 775 hello.sh to set permissions on the hello.sh file. Before
the change, the permissions were rw-rw-r-- (looking at just the owner/group/other
part). Numerically, this is 664. We will now add the execute permission. As per the
Converting permissions to the numeric form section, this means we have to add 1 to each
digit, which gives us the 775 permission. Running ls -l again confirms that the
change made has the intended effect.

Exercise format and notes
Now that we have the ability to create files and an understanding of permissions,
it is time to start the exercises. In the sample programs, the text will have a line
number at the beginning so that they can be referred to in the text. Do not type
the number and the colon used to separate them. Unless explicitly noted, there
is no initial space in each line.

Do not execute any cd (change directories) commands when
following the exercises. The exercises are written with certain
assumptions depending on which directory you are on. If you
have already executed any cd commands beforehand, run cd
without any parameters to set the current directory to the default
home directory, as follows:
$ cd

Hello, World for the BeagleBone
Hello, World is the classic first program. While it is very simple, it will go through
running programs on the BeagleBone to familiarize ourselves with the process before
diving fully into LED blinking. The goal of a Hello, World program is to print this
message on the screen.

Exercise 1 – creating a Hello, World program
For this exercise, we will first log in to the BeagleBone and create a file containing the
Hello, World program.

We will use shell as our programming language. All the following exercises in this
and the next chapter will be in shell. This language was intentionally selected to make
it easy to build your own software later on without it being overly complex. The exact
version of the shell will vary depending on the distribution used. However, exercises
should work on all known versions. A common version of the shell with many
extensions, which we will not use in the exercises, is bash. Some distributions will
use a simpler and smaller shell called dash, which has fewer extensions.

Chapter 3

[49]

Then, we will set up the permissions on the file (this step is often overlooked!),
run the program, and have it print Hello, World.

To do this, follow these steps:

1.	 Log in to your BeagleBone. In future exercises, this step is implied and will
not be explicitly called out.

2.	 From the shell prompt, create a text file named hello.sh with the following
content. We go through it line by line in a bit. So, do not be too concerned if
it doesn't have any meaning at this time. Do not type the line number and
colon; they are there so we can refer to each line:
hello.sh
1: #!/bin/sh
2: # This is a Hello, World Program. The next line is blank.
3:
4: echo Hello, World

Let's go through this short program:

•	 Line 1 is a magic sequence that tells the Linux kernel this is a shell script.
This must be the first line. The first two characters (#!) are a signal to the
kernel that the rest of the line is the path to the interpreter for this program.
In this case, the interpreter is /bin/sh, which is the basic shell.

Another example of this magic sequence is as follows:
#!/usr/bin/python

This is to tell the kernel that the file is a Python script and should
be handed to the Python interpreter located at /usr/bin/
python. The #! sequence is known as the hashbang or shebang.
For more information, visit http://en.wikipedia.org/wiki/
Shebang_%28Unix%29.

For most scripting languages, this first line is human readable to determine
the rest of the file.

•	 The next line is the first line that the shell will process. In the shell, anything
after the # character until the end of the line is considered a comment. The shell
does nothing with the comments. They are there for the user to annotate the
code. It is useful for other things, such as keeping short notes or explanations
on some special code. Here, we are using the comment to indicate that the
following line is blank to avoid any confusion for the people typing in the
program. Comments can also be used to temporarily disable the code when
debugging a program. We will try this technique later on.

http://en.wikipedia.org/wiki/Shebang_%28Unix%29
http://en.wikipedia.org/wiki/Shebang_%28Unix%29

Building an LED Flasher

[50]

•	 Line 3 is blank, but it points to an important part of shell programming.
Blank lines do not do anything in a shell script. However, they are very useful
in making the shell script easily readable. Blank lines can be used to separate
logical blocks of code to provide a natural break to anyone reading it.

•	 Line 4 is the heart of the program. In a shell script, the echo command prints
all of its parameters. In this case, we are printing Hello, World.

Now that we have a basic understanding of what this little program does, let's try to
run it. To run a simple text-based program such as this shell script, we type its name
in the command line as follows:

$./hello.sh
bash: ./hello.sh: Permission denied.

We begin the name of the program with the sequence ./, which explicitly instructs
the kernel to run the program in the current directory. By default, many distributions
do not have the current directory in the list of places and it will look for programs
for security reasons. Imagine that you developed a device using the BeagleBone that
will let people upload their own programs over the Internet to your BeagleBone.
One day, while debugging, you accidently change the directory where programs are
uploaded, that is, you mean to enter ls -l to look around, but as a typo, you typed
sl –l. A clever user of your device might have uploaded a program called sl to
do unintended evil things. If, by default, you had things configured to look in your
current directory for programs to run, you might have run the uploaded program
without realizing it! Despite this caution, some distributions do default to look in
your current directory automatically.

The output does not look like our goal of printing Hello, World. Let's look at what
went wrong. The output gives us a hint with the Permission denied message.
Let's begin by examining the permissions on the file:

$ ls -l hello.sh

-rw-rw-r-- 1 root users 23 Aug 4 00:41 hello.sh

As mentioned in the earlier section, the execute permission is needed for Linux
to recognize things as a program. You can see that the file lacks this permission.
Let's fix this. Make the file executable using chmod, as follows:

$ chmod 777 hello.sh

Here, we are being very generous with permissions. This is a first exercise and
we do not want permissions to cause problems. To review, this command gives
all the permissions to anyone (the owner, members of the group, and anyone else).
The permissions we are giving are read, write, and execute.

Chapter 3

[51]

The absolute minimum permissions that are needed for a
shell script to work are the read and execute permissions.

Once again, attempt to run the program:

$./hello.sh
Hello, World

Congratulations! You have written and executed your first program on the BeagleBone!

Let's review what you've learned:

•	 We built a foundation by learning how to create a file on the BeagleBone
using an editor

•	 We looked at the concepts of permissions on Linux, learned how to check the
current permissions on a file, and how to change them

•	 We learned that the execute permission is important in making the program
runnable by Linux

Flashing the LEDs
Hello, World might be a good first exercise on the BeagleBone to build a foundation,
but it doesn't leverage any of the unique embedded features of the BeagleBone. The
BeagleBone can interact with the real world. Our next exercise will be a classic first
exercise for embedded devices such as the BeagleBone. We will attempt to blink
some of the LEDs on the BeagleBone over the course of the next few exercises.

LEDs on the BeagleBone
The BeagleBone boards come with four programmable LEDs. These are the same LEDs
that are used to indicate the software flashing status located next to the RJ45 Ethernet
connector. On the BBW, the LEDs are green, whereas on the BBB, the LEDs are blue.
The LEDs can be programmed in the same way on both the BBB and BBW. They are
the LEDs that we will be blinking in our exercises.

Building an LED Flasher

[52]

You can see all the four LEDs on the BeagleBone White and BeagleBone Black turned
on in the following image:

Exercise 2 – taking control of the LEDs
The goal of this exercise is to take control of the LEDs on the BeagleBone and turn
them on. By default, on most distributions, the LEDs are configured to blink the
status of the system. We will disable the blinking of the LEDs that shows the system
status. For now, we will turn on the LED to check whether we have control. In the
next exercise, we will add the additional code to turn off and blink the LEDs.

As the LEDs on the BBW and BBB are of different colors, some
versions of software at the time of writing this book might refer
to the LEDs on the BBB as green or vice versa. This is a minor
cosmetic simplification in the system software, as the internal
hardware between the BBB and BBW is very similar.

Figuring out the LED controls
Since the Linux software for the BeagleBone is constantly being updated, the first
step is to determine the name used on your BeagleBone for the LEDs. The LEDs
are controlled by a set of special files. Writing to the special file allows the LED
to be turned on and off or configured for other things.

These special files are the sysfs files. The sysfs file allows you to control many
aspects of the Linux system by reading or writing to the appropriate file. For more
details, search for sysfs on a search engine.

Chapter 3

[53]

The special files to control the LEDs are located in the subdirectories under
/sys/class/leds. Their contents can be examined with the ls command.

Earlier, we looked at using ls -l to provide us with details such as the permissions.
Running ls without the -l command allows you to take a quick look at which files
are available in a directory, as shown here:

$ ls /sys/class/leds
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

In most systems, there will be four entries here. There can be additional entries,
if expansion boards are installed. The entries that are of interest to us are the ones
beginning with beaglebone as the name. Usually, there will only be four entries
containing beaglebone. Each entry corresponds to one LED. The last part of each
entry, usrN where N is a number from 0 to 3, refers to the correspondingly named
LED in the manual. If your BeagleBone shows slightly different names, replace
them with the corresponding name in your version of the exercise. For example, a
future version of the software might have entries named beaglebone:blue:usr0,
beaglebone:blue:usr1, and so on to reflect the BBB having blue LEDs.

Each entry listed is a directory containing the set of special files that allows us to
configure and control the LEDs. With the names of the LEDs noted, let's examine
the controls available:

$ ls /sys/class/leds/beaglebone:green:usr2
brightness device max_brightness power subsystem trigger uevent

These are the special files associated with the usr2 LED. The files that are of interest
to us are brightness and trigger. We will look at each one as we use them.

Disconnecting the LEDs temporarily from
the system
By default, on most distributions, the LEDs are set up to blink the system status.
LEDs on Linux can be attached to show different activities, such as how busy the
system is, the network activity, or when something is written to the flash memory.
Linux refers to them as triggers. Triggers are configured by the trigger special file.
To disconnect an LED's trigger, we can set the trigger to none. A trigger can be set
by writing none to the trigger file.

Building an LED Flasher

[54]

To see what triggers are available, use the cat command to read the
trigger file, for example:
$ cat /sys/class/leds/beaglebone:green:usr2/trigger

none nand-disk mmc0 timer oneshot [heartbeat] backlight
gpio cpu0 default-on transient

The currently configured trigger is shown in brackets. In the preceding
example, heartbeat, is currently configured. The cat command is not
limited to special files and it can be used to read any file.

In a shell script, a file can be written using the greater than character (>). The character
causes what is normally seen on the screen to be written in the file. This is known as
redirection or redirecting a command to a file. Earlier in the Hello, World exercise,
we used the echo command to print a message. The echo command combined with
redirection allows us to write to a file in a shell script.

You can restore the system LED behavior by simply rebooting.
These changes are not permanent.

Turning on an LED
After disconnecting the LED from the preconfigured system uses, the LEDs can be
used for other purposes, such as our LED blinking exercise. Like the triggers, the
LED states are controlled by a special file. Turning on an LED is accomplished by
writing to the brightness file. Writing a 0 to the file turns off the LED, whereas
writing a nonzero value to the LED turns it on. For our exercise, we will use the
value 255.

LEDs on Linux can be potentially dimmed. This can be done by
having Linux's send commands to dedicated hardware or by the
Linux kernel toggling an LED rapidly for a specific period of time.
The latter technique is known as pulse width modulation (PWM).
By default, dimming is not enabled on the BeagleBone. A large
value, such as 255, is purposely chosen so the readers using other
future Linux distributions can choose to preconfigure dimming or
brightness and won't be confused by a dimly lit LED. It should be
noted that all the LEDs use the same interface. Only the Linux kernel
needs to be reconfigured to change between different hardware.

Chapter 3

[55]

The current state of the LED can be examined by reading the brightness special file.
This can be done using the cat command as follows:

$ cat /sys/class/leds/beaglebone:green:usr2/brightness
0

Using the controls in a program
Now that we know how to disconnect the LEDs from the system control and turn
them on, let's put it together in a program.

Type the following program and name it ledon.sh:

ledon.sh
1: #!/bin/sh
2: # Replace the names with what is used on your system
3: # Disconnect all 4 LEDs on the BeagleBone so we can use it.
4: echo none > /sys/class/leds/beaglebone:green:usr0/trigger
5: echo none > /sys/class/leds/beaglebone:green:usr1/trigger
6: echo none > /sys/class/leds/beaglebone:green:usr2/trigger
7: echo none > /sys/class/leds/beaglebone:green:usr3/trigger
8: # Turn on all 4 LEDs
9: echo 255 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 255 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 255 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 255 > /sys/class/leds/beaglebone:green:usr3/brightness

Let's analyze the preceding program:

•	 The first line tells the Linux kernel that this is a shell script.
•	 From lines 3 to 7, the LEDs are disconnected from the system one by one

by writing none to the trigger control file. For the users who have noted
a different name earlier, replace the name used here with the one noted.
The lines beginning with # are comments used to help you understand
what it does.

•	 Lines 8 to 12 turn on each LED one by one by writing 255 to the special
brightness file.

Be sure to set the execute permission in the ledon.sh file if you haven't done so.
As a check, an inspection of the permissions should show something like this:

$ ls -l ledon.sh
-rwxrwxrwx 1 root users 617 Aug 4 02:12 ledon.sh

Building an LED Flasher

[56]

Run your program by typing the following command:

$./ledon.sh

There is no output on your SSH session. This entire program only changes the LEDs.
If all four LEDs turn on and remain on, congratulations!

Exercise 3 – simple blinking
In order to write a program to blink an LED, we need to do a few things. From a
programming standpoint, the following needs to be done:

1.	 Turn on the LED.
2.	 Wait for some time.
3.	 Turn off the LED.
4.	 Wait for some time.
5.	 Finally, repeat step 1.

From the Exercise 2 – taking control of the LEDs section, we have learned how to do
the first part of the LED blinker. In this exercise, we will learn how to do the rest and
complete our LED blinker. Since this book is about learning to use the BeagleBone, we
will focus only on the aspects of shell programming needed to complete this exercise.

Delays in the program
One useful characteristic of Linux is that it is a multitasking operating system.
What this means is that Linux will allow multiple programs to run simultaneously.
This is accomplished by letting each program run for a little bit, and then switching
to another program. When a program is waiting for time to pass, the right thing for
it to do is to let Linux know; so, it can let other programs run. In shell scripting, this
can be done with the sleep command. The sleep command takes the number of
seconds to wait before continuing.

In addition to yielding to other programs running, the sleep command
allows the Linux kernel to reduce power consumption if there are no
other programs to run. This can be important in an embedded system
running from a limited power source, such as a battery.

Chapter 3

[57]

Repeating things with loops
Until now, we have repeated things by retyping and modifying text as needed. Shell
scripting can repeat things in a controlled fashion. This is known as looping. For this
exercise, we will create a loop that repeats until it is stopped. This is known as an
infinite loop.

For many types of programming, infinite loops can be a bug.
However, for many embedded applications, it is often desirable
for one program to always remain running. For example, we are
creating an embedded device that blinks an LED. A common
expectation is that it will continue to blink nonstop.

In this exercise, we will use a while loop. Other loops are available, but will not
be discussed in this book. A while loop will continue to loop as long as the test
condition is true. By using a constant true as the test condition, it becomes an
infinite loop. Here is a fragment of code illustrating such a loop:

while :
do
 # Code to repeat
done

There are a few new concepts to note here:

•	 In a shell script, the test condition for a while loop is provided after the
while keyword. For this example, the test condition is :. A : sign is a do
nothing operation that always returns true. For readers familiar with other
programming languages such as C, this is equivalent to a while(1) loop.

•	 Unlike other shell commands seen so far, the while loop consists of multiple
lines. The loop begins with the while keyword along with the test condition.
The part of the program to loop, known as a block, is delineated by the pair
of keywords, namely, do and done. Everything between the do and done
keywords will be repeated.

•	 The block of repeated code is indented. Earlier, we mentioned that spaces are
ignored in a shell script, but they are useful for readability of the code. Shell
scripting does not require indentation. By indenting the repeated block, one
can quickly deduce which code is being repeated without having to look at
it line by line.

www.allitebooks.com

http://www.allitebooks.org

Building an LED Flasher

[58]

Turning off an LED
In the Exercise 2 – taking control of the LEDs section, we mentioned turning off an LED.
Similar to turning on an LED, turning off an LED is done by merely writing a 0 to
the brightness special file. While this is not a new concept, turning off an LED is
merely setting the brightness to 0.

Blinking the LEDs
Now that we have all the basic elements needed for this exercise, let's put it into
action with a program. Enter the following program and name it ledblink.sh:

ledblink.sh
1: #!/bin/sh
2: # Blink the 4 LEDs
3: # Run the following code forever
4: while :
5: do
6: # Turn on the 4 LEDs
7: echo 255 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 255 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 255 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 255 > /sys/class/leds/beaglebone:green:usr3/brightness
13: # sleep 1
14: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
15: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
16: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
17: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
18: # sleep 1
19: done

Make sure to set the executable permission in ledblink.sh if you have not done so.

If you jumped ahead and ran the program, it will appear
to be stuck. The prompt never returns. To break out of this,
press Ctrl + C. You might need to press it multiple times.

Before running it, let's go through the program:

•	 Lines 1 to 3 are the usual shell program lines that tells the system that this
is a shell, and then leaves comments to the users of the program.

•	 Line 4 starts with a while loop. The contents to loop are designated by the
block delimiters beginning with line 5 and ending with line 19.

Chapter 3

[59]

•	 Lines 6 to 18 are the lines to repeat. They turn on the LED as described, pause,
turn off the LED, pause again, and then repeat the entire cycle again.

Run the program using the following command:

$./ledblink.sh

Looking at the LEDs
Due to an error introduced purposely for this exercise, the LEDs do not seem to be
blinking by the normal definition of blink. Let's debug our program.

The first thing you might notice is that this program does not immediately return to
the prompt. This program has an infinite loop that continues until stopped. To stop
it, you need to press Ctrl + C. It might be necessary to press it multiple times. Stop
pressing it when the command prompt appears.

Load the program in an editor and view the program. See whether you can spot
the error. Visual inspection of the program is one of the methods of debugging. If
nothing stands out, the next step is to review what is known. We ran the program
and the LEDs appears to stay on, but they also appeared to be somewhat dimmer
than what we saw in exercise 2. An astute observer might notice that the LEDs are
blinking, but they are just blinking too fast!

With these clues in mind, let's review the code. The entire program repeats the lines
6 to 18. So, let's focus our attention on these lines. Lines 6 to 12 turn on the LEDs as
in the previous exercise. We also know that the LED does successfully turn on even
though it might appear dimmer.

The next line, 13, mentions sleep. Sleep as described before is a way of waiting.
Looking at it closely, we see #. Referring back to the first part of this chapter, the
character tells the shell to ignore everything after it. So, effectively, the sleep
command is ignored. Looking further at line 18, we see a similar problem. Remove
the # character from lines 13 and 18 and save the file.

Run ledblink.sh as before and observe the LEDs.

If you see all four LEDs blinking in unison slowly once every second, congratulations!
You have successfully blinked the LEDs on the BeagleBone.

Building an LED Flasher

[60]

Troubleshooting
If your LEDs did not blink slowly in unison once a second, something is wrong.
Exercises 2 and 3 were designed to be run one after another. If you did them in two
sessions or simply power cycled the BeagleBone, you need to rerun exercise 2. Exercise
2 reconfigures the LEDs to allow programmable control. This reconfiguration will
remain as long as the BeagleBone is not rebooted. Assuming that it was completed
correctly, you can repeat it by just running ledon.sh.

If, during any step, you see permission denied errors, verify the permissions.
Although most editors will preserve permissions, it is possible for the editor
to remove the execute permission. Permissions can be restored by running the
following command:

$ chmod 777 ledblink.sh

Exercise 4 – advanced blinking
In the preceding exercise, we created a basic blinker. Using the same concept, we can
create more advanced blinking that offers a different pattern. This exercise does not
introduce any new concepts and purposely offers less hand-holding to allow you to
practice the concepts. In exercise 3, all four LEDs flashed in unison. In this exercise, we
will sequence the LEDs one at a time. With a little modification, the LEDs can be made
to bounce back and forth in a scanning fashion. In this exercise, we will also combine
the configuration from exercise 2 using the following code:

 myblink.sh
1: #!/bin/sh
2: # Replace the names with what is used on your system
3: # Disconnect all 4 LEDs on the BeagleBone so we can use it.
4: echo none > /sys/class/leds/beaglebone:green:usr0/trigger
5: echo none > /sys/class/leds/beaglebone:green:usr1/trigger
6: echo none > /sys/class/leds/beaglebone:green:usr2/trigger
7: echo none > /sys/class/leds/beaglebone:green:usr3/trigger
8: # Start with all 4 LEDs off
9: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
13:
14: while :
15: do
16: echo 255 > /sys/class/leds/beaglebone:green:usr0/brightness
17: sleep 1
18: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness

Chapter 3

[61]

19: echo 255 > /sys/class/leds/beaglebone:green:usr1/brightness
20: sleep 1
21: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
22: echo 255 > /sys/class/leds/beaglebone:green:usr2/brightness
23: sleep 1
24: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
25: echo 255 > /sys/class/leds/beaglebone:green:usr3/brightness
26: sleep 1
27: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
28: done

Remember to make this executable before you attempt to run the preceding
command. A quick analysis of the program is as follows:

•	 Lines 3 to 12 are a variation of exercise 2. Instead of turning on the LEDs,
all four LEDs are turned off for an initial state.

•	 By including lines 4 to 7, we ensure that the BeagleBone can run this program
when powered on. In exercise 3, we rely on exercise 2 being run immediately
beforehand. Including the lines 4 to 7 lifts this requirement.

•	 Lines 16 to 27 cycles through the LEDs one at a time. We turn on one LED
and wait a second, so someone watching can see that the LED is on. Then, we
immediately turn off this LED and turn on the adjacent LED. This is repeated
until we get to the last LED. The last thing we do is turn off the LED, as the
first thing that is done is turning on the first LED. This makes it look like the
LEDs are wrapped around.

Summary
In this chapter, we went through the basic foundation to get a basic program on
the BeagleBone. We looked at using a simple editor on the BeagleBone. Then, you
learned about Linux file permissions. Linux file permissions are divided into three
groups, namely, user, group, and other. Each group can have read, write, and
execute permissions. We also looked at calculating the numeric representation of
the permissions. The permissions can be examined using the ls command and set
using the chmod command.

Using this basic foundation, we dived into our first Hello, World program on
the BeagleBone. While being simple, it illustrated the importance of permissions.
Building upon this with exercises 1 and 2, you learned about the sysfs files and how
to use them to control the LEDs on the BeagleBone. We controlled the LEDs by first
disconnecting them from the system control, and then turning them on and off by
writing to the sysfs files using the echo command and shell redirection.

Building an LED Flasher

[62]

In the next few exercises, you learned how to repeat things and add delays using
the shell while loop construct and the sleep command. Using the loop construct
and controlled delays, we flashed the LEDs in a controllable pace. In the process of
the exercises, we looked at several debugging techniques. These included using the
shell # character to disable lines and stopping a loop by pressing Ctrl + C. Combining
everything together, we culminated in a fancy LED blinker to blink the LED in a
pattern that will work when powered up.

Building upon all of this, we will look at other aspects of programming the BeagleBone
in the next chapter. Now that the core of our LED blinker is working, the next chapter
is about refining the LED blinker into an embedded device by starting it as the power
is turned on and giving it a user interface.

Refining the LED Flasher
In the previous chapter, we completed the classic introductory exercises that started
the LED flasher project. Building upon those exercises, we will improve the LED
flasher and turn the BeagleBone into an LED flasher project.

In this chapter, we will cover the following topics:

•	 The I2C bus
•	 Accessing the I2C devices
•	 Adding a user interface to our flasher
•	 Starting the flasher when powered on

Just as before, no additional hardware is needed; the BeagleBone board alone will
suffice. The difference between the BBB and BBW will be discussed. There are slight
differences between the BeagleBone boards that run Debian and Angström.

The I2C bus
A common way to connect the peripherals that do not require a very high
communication speed to an embedded system is using a protocol known as I2C.

Inter-Integrated Circuit (I2C) is a protocol originally developed by
Philips Semiconductors (now NXP). I2C is also known as IIC.

I2C is a simple serial protocol that uses two signal wires. In the simplest
configuration used by many setups, there is one master and one or more slave
devices. For the BeagleBone, the master will be the BeagleBone and the slave
devices will be peripherals. Each slave device (we will shorten to just device)
is uniquely identified by a 7-bit address.

Refining the LED Flasher

[64]

Later versions of the I2C protocol support an extended address
that allows more devices on a single bus.

The serial bus, as originally defined, runs at 100 kHz; however, later revisions allowed
400 kHz and faster variations enabled all the devices on the bus to operate at the higher
speed. So, a worst case speed figure is 100 kBits per second shared between all devices
on the bus.

Everything here is on a per-I2C-bus basis. There can be multiple I2C
buses each with its own master. Addresses are only unique on a bus.
The BeagleBone has multiple I2C buses available.

Examples of some devices that can be connected over I2C are as follows:

•	 Sensors such as temperature sensors, light sensors, accelerometers,
magnetometers, and gyroscopes

•	 Small amounts of nonvolatile memory

Accessing I2C
Under Linux, many details of I2C are abstracted away from the user. For basic uses,
only the bus number and the address of the device are needed. For our purposes, an
I2C device can be accessed in two general ways. In an ideal world, the I2C device
would be fully handled by an appropriate Linux kernel driver. This way, different
hardware of the same type would appear to be the same for the userland applications,
irrespective of whether the hardware is really connected by I2C. However, not all
devices have drivers written for them. In addition, for debugging and experimentation,
it is desirable to explicitly talk to an I2C device using the bus number and address.

In Linux, this lower-level userland interface is available for debugging and
experimentation. There are a few basic sets of tools to allow simple access using
the shell.

The I2C tools
The I2C tools (http://www.lm-sensors.org/wiki/I2CTools) are a set of utilities
used to view the I2C bus on a Linux machine. The I2C tools can attempt to identify
which addresses on an I2C bus contain a device and whether they are claimed by a
driver. This can be useful when connecting new I2C devices. It can also attempt to
read or write to a device on a very low-level basis.

http://www.lm-sensors.org/wiki/I2CTools

Chapter 4

[65]

To determine what devices are connected on an I2C bus, use i2cdetect.

There are some uncommon devices that might not respond in a
reasonable manner to the probes used by i2cdetect. Use this tool
with caution. This is less of an issue on embedded platforms, as the
expected devices on I2C are generally known ahead of time and can
be cross-checked with a datasheet.

The i2cdetect command has the following two main uses:

•	 To determine the number of visible buses on a Linux system. To use it in this
manner, use the -l option.

•	 To probe an I2C bus for devices on the bus. Probing for devices on an I2C
bus means searching for devices on the bus by sending out a mostly harmless
request on the bus and looking for responses. This can be done using
i2cdetect -r N, where N is the bus number as listed by i2cdetect.

We will try out each of these in the following exercise. Other I2C tools for reading and
writing to an I2C device include i2cget and i2cset. However, they are designed to
work with devices that do not have a kernel driver configured. The stock BeagleBone
configuration has proper kernel drivers for all the I2C devices on the BeagleBone.

Exercise 1
We will use the i2cdetect command on the BeagleBone to identify the devices on
the I2C bus. As before, use SSH to connect to your BeagleBone. All commands are
entered using the shell.

First, let's determine the I2C buses on the BeagleBone with the -l option,
as shown here:

$ i2cdetect -l

root@beaglebone:~# i2cdetect -l
i2c-0 i2c OMAP I2C adapter I2C adapter
i2c-1 i2c OMAP I2C adapter I2C adapter
root@beaglebone:~#

Your output should be similar to the preceding one. This output tells us that there
are two known I2C buses, namely, bus 0 and bus 1. The buses use a driver that
identifies itself as OMAP I2C adapter.

Refining the LED Flasher

[66]

The AM335x SoC used in the BeagleBone shares many parts with
the OMAP3530 and the DM3730 SoCs used in the BeagleBoards.
The OMAP I2C adapter was originally named for the I2C
hardware in the OMAP3530 SoC. This same I2C hardware is
also present in the AM335x SoC.

If you don't see the preceding output, the most likely problems are either you don't
have the I2C tools installed on your image or there was a typo. Note that the option
is a lower case l not 1. An error message similar to command not found suggests
that the I2C tools are not installed. At the time of writing this book, the I2C tools
are part of the standard image. The rest of the I2C exercises in this chapter assume
that the I2C tools are installed.

The next part of this exercise is to look at devices available on the I2C bus with the
i2cdetect command. From the first part of the exercise, we know there are two
buses, 0 and 1 (referred as i2c-0 and i2c-1 in the preceding example).

To look at the devices on a bus, we use the i2cdetect -r N command where N is
the bus number. The -r option is needed; so i2cdetect will use a read method to
probe for a device, as follows:

$ i2cdetect -r 0

Some devices might have side effects when they are read. The stock BeagleBone I2C
devices behave reasonably but consult the device documentation for other devices.
Also, consult the i2cdetect man page for additional details.

As probing some devices might not be safe, the following command will ask you to
confirm prior to doing anything. Answer y when asked, as shown here:

root@beaglebone:~# i2cdetect -r 0

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-0 using read byte commands.

I will probe address range 0x03-0x77.

Continue? [Y/n] y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- UU -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- UU -- -- -- -- -- -- -- -- -- -- --

Chapter 4

[67]

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: UU -- -- -- -- -- -- --

root@beaglebone:~#

If successful, you should see the preceding output. It will vary slightly between
the BBB and BBW. The output is presented in a table form. Each line of the table
represents 16 possible device addresses. The numbers in the row and column labels
are in hexadecimal (base 16). The vertical numbers (or the row labels) are the first
part of a two-digit hex number. The number in the first line of the table (or the
column labels) is the second digit. To get the address of the device being referred to,
add the two numbers, or to save math, just replace the zero from the first number
and replace it with the second number.

The following table explains the preceding section in detail:

Value Meaning
-- This means that there is nothing at this address.
UU This means that something might be at the address but is currently

unavailable. Most likely, the device at that address is under the control
of a kernel driver. Also, drivers can claim addresses without a device.

Two hex
digits

This means that a device is at the address and is available for claiming
a driver.

In the preceding sample output, UU is at 0x24, 0x34, 0x50, and 0x70. This tells us that
there is a driver claiming these addresses.

Without going into too many details for an introduction, some of
the interesting devices are as follows:

•	 0x24: Power Management Integrated Circuits (PMIC)
•	 0x50: EEPROM
•	 0x70: TDA998x (HDMI framer, BBB only)

As there are two I2C buses, let's look at the second bus:

$ i2cdetect -y -r 1

Refining the LED Flasher

[68]

This is a slightly different variation in the i2cdetect command. This time, we add
the -y option to skip the confirmation. The output should be similar to the following:

root@beaglebone:~# i2cdetect -y -r 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

root@beaglebone:~#

In the preceding example, we can see that there are four possible devices that are
claimed or at least reserved by a kernel driver. The rest of the bus is apparently free.
The four devices are at 0x54, 0x55, 0x56, and 0x57.

In reality, these four addresses are reserved by the EEPROM
driver, but there is really no hardware here. The BeagleBone
expansion system, capes, requires an I2C EEPROM to allow
the expansion board to be automatically configured. The kernel
reserves these four addresses for the I2C EEPROM on the capes.

If your i2cdetect command generates outputs similar to the preceding one, then you
have successfully completed this exercise.

The I2C devices on the BeagleBone
The BeagleBone by itself contains a few I2C devices as seen in the preceding exercise.
These include the power management controller and an I2C EEPROM.

Electrically Erasable Programmable Read Only Memory (EEPROM)
is a type of nonvolatile memory often used to store configuration or
identification information.

The PMIC generates the voltages applied to the SoC and other bits of hardware.
A mistake in programming this device can cause permanent damage to the
BeagleBone. We will avoid this device in our exercises.

Chapter 4

[69]

The I2C EEPROM on the BeagleBone is used to identify the board to the software.
This EEPROM can be written into but there are many safeguards in place to prevent
corruption of the contents. A corrupt EEPROM can be repaired with software.
This is the device we will use for our exercises.

Exercise 2
In this exercise, we will read the identification EEPROM on the BeagleBone and
display it. From the preceding exercise, we know that the EEPROM is at the address
0x50 on the bus 0. We also know that a kernel driver has claimed the device. This
was seen when we ran i2cdetect on the bus 0 and saw UU on the line labeled 50
under the column labeled 0.

There is a Linux kernel driver for standard I2C EEPROM devices. In this exercise,
we'll read the I2C EEPROM using the kernel driver. The kernel driver presents the
EEPROM as a special file. In order to read the content, we will need to use a new
shell command, dd. The dd command is similar to the cat command introduced
previously, and it will allow us to specify portions of the file to read. The options
to dd that we are interested in are shown in the following table:

The dd parameter Meaning
if=NAME This tells dd to read from the file called NAME
bs=N This sets the size of chunks dd will read at a time
count=N This tells dd the number of chunks to read
skip=N This tells dd the number of chunks to skip before reading

With these options, we can read only the bytes in the EEPROM of interest.
The BeagleBone EEPROM contains binary data, and we need to be specific to
avoid dealing with binary data that might not be printable.

Like the LED special files used in Chapter 3, Building an LED Flasher, the EEPROM
is presented in another special file. For EEPROM, the file is at /sys/bus/i2c/
devices/0-0050/eeprom.

The /sys/bus/i2c/devices directory contains all the known I2C devices on the
system. The 0-0050 parameter refers to the bus 0 and address 0x50. The file eeprom
is the way through which the kernel EEPROM driver presents the data.

The EEPROM data format is in the BeagleBone software reference manual available
at http://www.beagleboard.org/Support/Hardware%20Support.

http://www.beagleboard.org/Support/Hardware%20Support

Refining the LED Flasher

[70]

For our purpose, the 8 bytes located at the offset 4 from the beginning are of interest.
This contains a string that will identify the flavor of the BeagleBone.

This string originated in the bigger development boards for the
SoC used in the BeagleBone. It is used by the system software to
identify the board type.

Putting it all together, we get the following command:

$ dd if=/sys/bus/i2c/devices/0-0050/eeprom bs=1 skip=4 count=8

The following table explains every part of the preceding command:

The dd parameter Meaning
if=/sys/bus/i2c/
devices/0-0050/eeprom

This tells dd the file to read from

bs=1 This sets the chunk size into 1-byte chunks

skip=4 This tells skip to offset 4; skip takes the number of
blocks to skip but we have set the block size to 1 byte,
so we skip 4 bytes

count=8 This reads 8 bytes

The output of the preceding command is as follows:

root@beaglebone:~# dd if=/sys/bus/i2c/devices/0-0050/eeprom bs=1 skip=4
count=8
A335BNLT8+0 records in
8+0 records out
8 bytes (8 B) copied, 0.0101364 s, 0.8 kB/s
root@beaglebone:~#

Note the output of the command, A335BNLT, runs right into the summary from dd.
As described earlier, the content of the EEPROM is binary data. The dd command
will display exactly what is read. As the data is binary, the EEPROM does not
include things such as a new line to break up the data from the summary from dd.
In the later exercises, we will save the output of dd to a file to separate the summary
from dd and the actual data.

The output of this command will obviously differ between the BBB and BBW.
The preceding example was done on a BBB and the output is A335BNLT. For the
BBW, the string will be A335BONE.

If your output is similar to the preceding one, you have successfully completed
the exercise!

Chapter 4

[71]

Now that we have gotten our feet wet with I2C, let's go back to the LED flasher
we started building in Chapter 3, Building an LED Flasher. When we left the LED
flasher, the LED flasher required us to log in and manually start it. The only way
to change the flash behavior is to change the program.

User interfaces
Until this point, the LED flasher has hardcoded parameters. It would be very nice to
control the flashing with a user interface. The BeagleBone is naturally connected to
the network. So far, all our accesses have been via a network over the USB interface.
The BeagleBone also has an Ethernet interface that we have not used yet. Our next
few exercises are to add an interface to change the behavior of the LED flasher.

Up to this point, all our exercises were done using shell scripting.
The BeagleBone ships with another language, BoneScript, which
allows the BeagleBone to be programmed using a language similar
to JavaScript. Shell script was chosen for exercises over BoneScript to
provide an easier path for programmers who are not web oriented to
transition to the BeagleBone environment.

Design
Our user interface will be accessed through a web browser. The web pages will
be served using the same web server shipped with the BeagleBone that BoneScript
uses. Communications between the LED flasher software and the browser will be
done through a very simple BoneScript page. The following flowchart explains the
process in detail:

flash_manager.sh

N

Y

Use Presses one of 3 buttons:
Fast
Slow
Off

Webpage/webserver/NodeJS
Selected buttons is noted in

/tmp/flash_command

sleep 5

Terminated old
script and start
requested script

New
Command

/tmp/flash_command?

Refining the LED Flasher

[72]

The user interface will offer three different settings, namely, a slow flash, a fast
flash, and no flash. We will take a simplistic approach to support the three modes
by dividing the tasks into the following four pieces:

•	 A shell script that just blanks the LED to implement the no flash option.
•	 A shell script that implements a slow flash.
•	 A shell script that implements a fast flash.
•	 A manager script that watches for input from the UI. Its job is to stop and

start the preceding scripts based on the UI input.

The first three scripts are the same as what we wrote in the previous chapter with a
few minor modifications to integrate with the manager script.

As shipped, the BeagleBone software starts a web server built on top of Nodejs.
Nodejs (http://nodejs.org/) is another language but, for our exercises, we will
only use it in a limited fashion in the form of BoneScript to provide a web-based
user interface.

The exercises intentionally ignore security issues in order to keep them
manageable. While the same concepts are reusable in your own project,
anything that is somewhat open should also be designed with security
in mind.

Exercise 3
In this exercise, we will serve a custom page using the web server that is shipped with
the BeagleBone. The BeagleBone ships with a web server that contains a few basic
support pages. We will add our own page and verify that it works. The location for
the web page will differ slightly depending on the system software on the BeagleBone.
Debian users will have one location and Angström users will have another location.

From a shell, create a file on the web page at the location for your software.
The specifications for different users are as follows:

•	 For Angström users (/usr/share/bone101), use the following command:
$ pico /usr/share/bone101/hello.html

•	 For Debian users (/var/lib/cloud9), use the following command:
$ pico /var/lib/cloud9/hello.html

http://nodejs.org/

Chapter 4

[73]

Replace pico with your editor of choice. Type and save the following text (once
again, do not type the line numbers):

1:<title>Hello, World</title>
2:<h1>Hello, World</h1>

This is a simple HTML file that we will serve. For the readers who are not familiar
with HTML, line 1 sets the title of the page to Hello, World and line 2 puts Hello,
World in a large heading 1 size text in the main page.

To test our web page, we need to start a web browser. This page and other web
pages that we created use only the basic features and work with most web browsers,
such as Firefox. Before trying to load our page, let's verify our setup.

Let's refer back to how you logged in to the BeagleBone with SSH; you entered an
IP address: 192.168.7.2. If you used a different address, replace this address in
http://192.168.7.2/. Open a web browser on your laptop/desktop. Tell your
browser to go to a URL. Usually, this can be done by clicking on the address bar, by
pressing Ctrl + L, or by selecting Open URL from the File menu and pressing Enter.

If you are successful, the following page will appear. This is the default web page on
the BeagleBone. It redirects to the support page.

Refining the LED Flasher

[74]

Troubleshooting
For the readers who don't see the preceding web page, the troubleshooting steps will
depend on what does appear. If you see an error about server not found or server not
responding, double-check the URL. It should consist of the http:// text followed
by the IP address and then end with / (slash). If the error persists after verifying the
URL, check for any filtering, blocking, or firewall software on your laptop/desktop.

If you see an Error 404 message, double check the URL. Pay attention to any extra
text at the end. While unlikely, there is a possibility that the software on your
BeagleBone is corrupted. After verifying that the URL is typed correctly and there
are no problems on the laptop/desktop, consider reinstalling the system software
on your BeagleBone. The process is described in Chapter 2, Software in the BeagleBone.

Loading your first web page
Once you have successfully loaded the default web page, you can move on to loading
your first BeagleBone web page. Go to the browser and enter http://192.168.7.2/
hello.html. The following page will appear:

Chapter 4

[75]

Troubleshooting the BeagleBone web
server access
If you see an Error 404 message, check whether you have used the correct location
for your system software. The location to place the web page differs for Angström
and Debian. The locations provided are correct at the time of writing this book. If the
location appears to be correct, verify the permission on the file, as follows (it should
be universally readable):

root@beaglebone:/usr/share/bone101# ls -l
/usr/share/bone101/hello.html
-rw-r--r-- 1 root root 50 Jan 1 00:10 /usr/share/bone101/hello.html
root@beaglebone:/usr/share/bone101#

If the permissions differ, use chmod to change the permissions, as follows:

$ chmod 644 /usr/share/bone101/hello.html

Now that you have loaded your first web page, note the place where you created the
hello.html file. We will use this information in a later exercise to place the file for
our user interface.

Exercise 4
Now that we have successfully created our own web page and served it using the
BeagleBone's web server, we will work on creating the backend first. In this exercise,
we will create the manager shell script.

Shell variables
Like any other programming language, shell scripts have variables. Variables are a
way of saving information so that it can be used later. A shell variable can save the
output from another shell command, or it can be assigned data from a file. Another
use for a shell variable is to save the state information.

In a shell script, a variable name can consist of letters, numbers, and a few selected
symbols. Variable names are case sensitive. For example, Counter and COUNTER
are two different variables. For simplicity, we will use all capital letters in our
variable names.

Shell variables can be directly assigned values using the = operator, for example:

COUNTER=2

Refining the LED Flasher

[76]

This sets the shell variable COUNTER to a value of 2. Shell variables can also be assigned
the data from a file with the read command, as follows:

read VARIABLE < FILENAME

There are two new concepts here, which are as follows:

•	 The shell command read is used to take input from the terminal and save
the output to VARIABLE.

•	 The < character is another form of redirection as introduced in Chapter 3,
Building an LED Flasher. Here, the < character tells the shell to read from
a file and use that data as if it was typed. This is the complement of >,
which places the output of a command into a file.

Unlike other languages, a shell variable is referenced differently depending on
whether the variable is being directly referenced or we are asking the shell to
replace the variable with its contents. In the preceding example, VARIABLE is being
referenced, so it is used as it is. However, if we want the shell to replace VARIABLE
with its content, we need to prepend it with $ (the dollar sign), as shown here:

echo $VARIABLE

As introduced earlier, the echo command simply prints what is given. By having the
$ sign in front of the variable, we are telling the shell to replace $VARIABLE with the
value assigned to it. This prints the value or data stored in VARIABLE.

Putting it all together
As we have been performing different exercises, let's begin by setting up things back
to a known place. At the shell prompt, execute the cd command to go to the home
directory (this is the same place you started when you first logged in), as shown here:

$ cd

There is no specific output from this command. If you are already at the home
directory, this command does nothing. Now, use an editor to create a filename
flash_manager.sh with the following content:

1: #!/bin/sh
2: OLDCOMMAND="NONE"
3: echo 999999 > /tmp/process_id
4: echo echo > /tmp/flash_command
5: dd if=/sys/bus/i2c/devices/0-0050/eeprom bs=1 skip=4 count=8 >
/tmp/bone_type
6: while :
7: do

Chapter 4

[77]

8: read COMMAND < /tmp/flash_command
9: if [$COMMAND != $OLDCOMMAND]
10: then
11: read PROCESSID < /tmp/process_id
12: if [$PROCESSID != "999999"]
13: then
14: kill $PROCESSID
15: fi
16: ($COMMAND)&
17: OLDCOMMAND=$COMMAND
18: fi
19: sleep 5
20: done

To keep exercises manageable, error checking has been omitted. In an actual product,
the input should be checked for errors. As before, make sure that the execute
permission is set.

Before running this, let's go through the preceding script as it introduces a few more
shell scripting concepts:

•	 Line 1: This is the usual magic sequence that informs the kernel that this
script is a shell script.

•	 Line 2: In this line, the OLDCOMMAND variable is set to the string NONE.
•	 Line 3: This initializes the process_id file to something invalid, so we can

check for it later.
•	 Line 4: This initializes the flash_command variable with something harmless.

The web page will update this for different flash options.
•	 Line 5: This gets the type of BeagleBone it is running on and saves that to

/tmp/bone_type.
•	 Lines 6 and 7: These lines are infinite loops just like the ones we used in

Chapter 3, Building an LED Flasher.
•	 Line 8: Using the read command as described earlier, we read from the

/tmp/flash_command filename. The manager will receive input from the
web page through that file.

•	 Lines 9 and 10: Like any other language, the shell script can perform
conditional execution. Shell scripts use the if or then statements.
The syntax for if is as follows:
 if [test condition]
 then
 [code to run if condition is true]
 fi

Refining the LED Flasher

[78]

The block beginning with then and ending with the fi keyword is executed
if the test condition is true. Here, we check whether OLDCOMMAND and
COMMAND are different. C programmers will recognize the meaning of
!= , that is, not equal.

•	 Lines 7 to 10: These provide a condition whether OLDCOMMAND and COMMAND
are different so that we can act on it.

•	 Line 11: This reads in the process ID from the preceding command we ran.
•	 Lines 12 to 13: These lines check whether the process ID is different from the

special value we initialized it to.
•	 Line 14: If the process ID is different, we attempt to stop the preceding

command with the kill command. The kill command takes the process ID
and terminates that process.

•	 Line 16: This runs the command that was passed to us in the flash_command
variable. The & character at the end allows this command to run in the
background.

This is potentially a big security hole. If the web page
somehow manages to let a user trick it into putting
anything into /tmp/flash_command, the user can run
any command. For a real system, the content of COMMAND
should be checked before executing.

•	 Line 17: This saves the new command, so we can detect whether there is a
different command.

•	 Line 19: Using the sleep command, we pause for 5 seconds. A user interface
can only run as fast as a person using it. Rather than checking for commands
as fast as possible, we pause and try not to hog the resources.

We introduced many concepts in this exercise. We need to introduce one more for
this manager. Linux is a multitasking operating system, and it can run many things
at once. To run a program in the background from the shell, all that is needed is to
append & (ampersand) at the end of the command line. This is used when we launch
the LED flasher script. Without this, we would have to wait for the script to finish
and would be unable to accept more commands from the web page.

The job of the manager is to watch for commands and act on it. The manager should
work in the background. For testing purposes, we can run it as before. The other
pieces have not been written yet, so our testing will be very basic, as shown here:

$./flash_manager.sh

Chapter 4

[79]

There should be no output other than the statistics from dd, as seen earlier. Wait for
a minute to make sure the loop runs. If you don't see any error messages, you have
passed the basic test. We will do more testing in the next few exercises. To stop the
manager, press Ctrl + C.

If there are any error messages, double check the typing.

Exercise 5
Now that we have a manager, let's create three scripts to flash the LEDs. These three
scripts need to do the following tasks:

•	 A fast flash
•	 A slow flash
•	 Turn off LEDs

These scripts are very similar to the scripts we wrote in Chapter 3, Building an LED
Flasher. Hence, we will not go through them in detail. Create each of the scripts
using your editor of choice. Remember to set the execute permission on each one,
as shown here:

flasher_fast.sh
1: #!/bin/sh
2: # Replace the names with what is used on your system
3: # Disconnect all 4 LEDs on the BeagleBone so we can use it.
4: echo none > /sys/class/leds/beaglebone:green:usr0/trigger
5: echo none > /sys/class/leds/beaglebone:green:usr1/trigger
6: echo none > /sys/class/leds/beaglebone:green:usr2/trigger
7: echo none > /sys/class/leds/beaglebone:green:usr3/trigger
8: # Start with all 4 LEDs off
9: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
13: echo $$ > /tmp/process_id
14: while :
15: do
16: echo 255 > /sys/class/leds/beaglebone:green:usr0/brightness
17: sleep 1
18: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
19: echo 255 > /sys/class/leds/beaglebone:green:usr1/brightness
20: sleep 1
21: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
22: echo 255 > /sys/class/leds/beaglebone:green:usr2/brightness

Refining the LED Flasher

[80]

23: sleep 1
24: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
25: echo 255 > /sys/class/leds/beaglebone:green:usr3/brightness
26: sleep 1
27: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
28: done

flasher_slow.sh
1: #!/bin/sh
2: # Replace the names with what is used on your system
3: # Disconnect all 4 LEDs on the BeagleBone so we can use it.
4: echo none > /sys/class/leds/beaglebone:green:usr0/trigger
5: echo none > /sys/class/leds/beaglebone:green:usr1/trigger
6: echo none > /sys/class/leds/beaglebone:green:usr2/trigger
7: echo none > /sys/class/leds/beaglebone:green:usr3/trigger
8: # Start with all 4 LEDs off
9: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
13: echo $$ > /tmp/process_id
14: while :
15: do
16: echo 255 > /sys/class/leds/beaglebone:green:usr0/brightness
17: sleep 4
18: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
19: echo 255 > /sys/class/leds/beaglebone:green:usr1/brightness
20: sleep 4
21: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
22: echo 255 > /sys/class/leds/beaglebone:green:usr2/brightness
23: sleep 4
24: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
25: echo 255 > /sys/class/leds/beaglebone:green:usr3/brightness
26: sleep 4
27: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
28: done

led_off.sh
1: #!/bin/sh
2: # Replace the names with what is used on your system
3: # Disconnect all 4 LEDs on the BeagleBone so we can use it.
4: echo none > /sys/class/leds/beaglebone:green:usr0/trigger
5: echo none > /sys/class/leds/beaglebone:green:usr1/trigger

Chapter 4

[81]

6: echo none > /sys/class/leds/beaglebone:green:usr2/trigger
7: echo none > /sys/class/leds/beaglebone:green:usr3/trigger
8: # Start with all 4 LEDs off
9: echo 0 > /sys/class/leds/beaglebone:green:usr0/brightness
10: echo 0 > /sys/class/leds/beaglebone:green:usr1/brightness
11: echo 0 > /sys/class/leds/beaglebone:green:usr2/brightness
12: echo 0 > /sys/class/leds/beaglebone:green:usr3/brightness
13: echo 999999 > /tmp/process_id

These three programs are very similar. The code to set the LEDs to a known state is
repeated in each one, so they will all work the same way regardless of the order they
are run. All three of these programs are modifications of the preceding exercise from
Chapter 3, Building an LED Flasher. In each of these programs, we added line 13 to
write the process ID to /tmp/process_id.

$$ is a special variable in the shell. It means the current process ID.

The flasher_slow.sh command slows the blink rate by increasing the sleep time
interval from 1 second to 4 seconds. The led_off.sh command turns off the LEDs
and exits. It saves the value 999999 into /tmp/process_id so that the manager will
not attempt to stop this.

As in Chapter 3, Building an LED Flasher, each script was run by hand to verify that it
was typed correctly.

Exercise 6
In the previous two exercises, we created the backend for the user interface.
The backend is the one that does the actual work. Now, we will turn our attention
to the frontend. This is the part that takes the input from the user. The frontend that
we will build is a simple, no-frills web page using BoneScript.

BoneScript is a set of libraries and modules for Node.js to allow
the BeagleBone to be programmed using JavaScript.

Our web page will tell the user the flavor of BeagleBone that the flasher is using,
and it will provide three buttons to select a fast flash, a slow flash, or to stop flashing
all together.

Refining the LED Flasher

[82]

If you recall from Exercise 3, the paths used for the web server differs for Angström
and Debian. Keep in mind the path used for the hello.html file from Exercise 3.
The file for this exercise should be placed at the same place as hello.html from
Exercise 3.

Create flasher.html at the same place where you created hello.html and type
the following command:

1: <html>
2: <head>
3: <title>Simple UI</title>
4: <script src="bonescript.js"></script>
5: <script>
6: var demoRun = function(id) {
7: var myScript = document.getElementById(id).innerHTML;
8: myScript = myScript.replace("<", "<");
9: myScript = myScript.replace(">", ">");
10: myScript = myScript.replace("&", "&");
11: eval(myScript);
12: };
13: </script>
14: </head>
15: <body>
16: <script>
17: setTimeout("demoRun('getbonetype')", 500);
18: </script>
19: Flasher Running on <div id="bonetype">Unknown</div>
20: <div id="getbonetype">
21: <!--
22: b=require('bonescript');
23: b.readTextFile('/tmp/bone_type', showbone);
24: function showbone(x)
25: {
26: document.getElementById("bonetype").innerHTML = x.data;
27: }
28: -->
29: </div>
30: <div id='ledfast'>
31: <!--
32: b=require('bonescript');
33: b.writeTextFile('/tmp/flash_command', './flasher_fast.sh');
34: -->
35: </div>
36: <div id='ledslow'>
37: <!--
38: b=require('bonescript');

Chapter 4

[83]

39: b.writeTextFile('/tmp/flash_command', './flasher_slow.sh');
40: -->
41: </div>
42: <div id='ledoff'>
43: <!--
44: b=require('bonescript');
45: b.writeTextFile('/tmp/flash_command', './led_off.sh');
46: -->
47: </div>
48: <p>Fast LEDs flash: <button onclick="demoRun('ledfast')">Go! </
button></p>
50: <p>Slow LED flash: <button onclick="demoRun('ledslow')">Go!</
button></p>
52: <p>Turn off LEDs: <button onclick="demoRun('ledoff')">Go </button></
p>
53: </body>
54: </html>

As this exercise is about creating a user interface and not about web pages or
BoneScript, we will only do a cursory review of this file:

•	 Line 4: Here, we pull the BoneScript components.
•	 Lines 5 to 13: These lines execute a simple routine that run chunks of code

in BoneScript.
•	 Lines 16 to 18: Here, we set up a delayed callback to run the code to read the

bone_type file at /tmp/bone_type and display its contents on the web page.
This is done because a few parts of BoneScript are not immediately ready.

The rest of the file creates a button for each of the three states that we want. When
the button is pressed, the function in the onclick attribute is called. In each case,
we call demoRun with the name of the section to execute in BoneScript. Each named
section is defined by a <div id="NAME>" identifier and ends with a </div> marker.
Within this, we enclose the code with <!-- and -->, so the web browser will treat it
as a comment and not display it.

Testing
Provided that you have completed all the prior exercises, we can finally tie them
together. Before we can use the user interface, we need to start the backend. Go to
the home directory (using cd as before) and start the flash_manager.sh script,
as follows:

$./flash_manager.sh

Refining the LED Flasher

[84]

Navigate to the web browser as before and enter http://192.168.7.2/flasher.
html. The following web page will appear:

If you see a web page similar to the one shown in the preceding screenshot, give each
button a try. Allow a few seconds to pass between button presses for the LED pattern
to change.

Troubleshooting
If the web page does not appear, double check your typing or use a downloaded copy
of the file. If the buttons don't seem to do anything, perform the following actions:

•	 Check your browser to make sure that JavaScript is enabled.
•	 Make sure that you have the flash_manager.sh script running. Look at

the line Flasher running on. If it says Unknown, it is likely that JavaScript
is not enabled.

•	 Assuming that you have flash_manager.sh running and it still doesn't do
anything, check the three scripts, namely, flasher_fast.sh, flasher_slow.
sh, and led_off.sh. They should be located in the home directory and have
the execute permissions. You can exit flash_manager.sh by pressing Ctrl +
C. Remember to restart it before trying again.

Chapter 4

[85]

Exercise 7
Now that we have a flasher with a user interface to control it, let's put it all together
and have it automatically start when we power on the BeagleBone.

When the BeagleBone starts up, one of the first things to run is a process manager
called systemd.

For the readers who are familiar with older Linux systems, this is
the modern replacement for the init process. It does the same job
as init and more.

The systemd manager's job is to start up essential system services when it first boots
up. For this exercise, we will configure systemd to start our flasher manager. After
this is done, the flasher and its user interface will run automatically each time, like a
typical embedded device.

systemd takes a file that describes what needs to be run. Each thing it runs is a service.
They are located at /etc/systemd/system. We will create a flasher service to start
the LED flasher. While both Angström and Debian use systemd, the services are
configured differently. Until now, we placed things in the home directory without
having to care where this really is. However, at boot time, systemd doesn't necessarily
know where things are yet, and we have to specify the actual location in the service file.

Using an editor, type the version appropriate for your system software and save the
file at /lib/systemd/system/flasher.service. The commands for different users
are as follows:

•	 For Angström users, the following service file can be used:
[Unit]
Description=LED Flasher
[Service]
User=root
WorkingDirectory=/home/root
ExecStart=/home/root/flash_manager.sh
[Install]
WantedBy=multi-user.target

•	 For Debian users, the following service file can be used:
[Unit]
Description=LED Flasher
[Service]
User=root

Refining the LED Flasher

[86]

WorkingDirectory=/root
ExecStart=/root/flash_manager.sh
[Install]
WantedBy=multi-user.target

The differences between the two versions are the location of WorkingDirectory and
the path to the flash_manager.sh script.

Each section of a service file is labeled by square brackets. The [Unit] section
provides a readable description of what this does. The [Service] section describes
what is needed to start the service. In this case, all we do is run the flash manager
script. The [Install] section tells systemd under what boot up conditions does
this service apply to. The multi-user.target command is the normal boot
condition/state for the BeagleBone.

In this exercise, we only use a small part of what systemd can
do. For more details, refer to the documentation of systemd at
http://www.freedesktop.org/wiki/Software/systemd/.

Creating the service file defines the service for systemd. To tell systemd to make use
of the service, we need to enable it using the following command:

$ systemctl enable flasher.service

Testing
To test whether you correctly configured the flasher service, you need to reboot the
BeagleBone. You can reboot the board by using the following reboot command:

$ reboot

Allow a few minutes for the board to shut down and reboot itself. After it finishes
rebooting, go to the URL in the previous exercise. The buttons should control the
LEDs.

Congratulations, you have built your first network-controlled embedded device
with a BeagleBone!

http://www.freedesktop.org/wiki/Software/systemd/

Chapter 4

[87]

Summary
In this chapter, you learned a few more features of the BeagleBone. Using what we
wrote in Chapter 3, Building an LED Flasher, we improved it and turned our BeagleBone
into a network-controlled LED flasher product.

We learned how to scan for I2C devices using low-level commands such as
i2cdetect, read an I2C EEPROM using the Linux kernel I2C EEPROM driver,
and served a web page from the BeagleBone. We also built a backend manager to
support a user interface, used BoneScript to provide a web-based user interface
to speak to the backend manager, and configured the Linux system software's
systemd manager to automatically start our flasher manager on boot up.

While the LED flasher is an exercise to learn the BeagleBone, the same concepts
are applicable in building other things with the BeagleBone. The important thing to
remember is security considerations. They have been purposely left out to simplify
the exercises. Many simple devices can be added to the BeagleBone using I2C.
We will cover interfacing things using I2C and more in a coming chapter.

In the next chapter, we will turn our attention to connecting the BeagleBone to
a mobile device. We will go through some of the options for connectivity and
complications for each option.

Connecting the BeagleBone
to Mobile Devices

The BeagleBone is a naturally interconnected device. Out of the box, it comes with
USB networking and the Ethernet. In the previous chapter, we put together a simple
network-controlled user interface for our LED flasher. In this chapter, we will look
at the options to connect a BeagleBone to a mobile device. Connecting to a mobile
device is an advanced task, and this chapter provides an overview of this advanced
task whereas the specific details will not be covered.

In this chapter, we will cover the following topics:

•	 Physical connectivity options
•	 Android devices versus Apple iOS devices
•	 Phone carrier limitations
•	 Additional hardware
•	 Bluetooth Low Energy (BLE) and USB
•	 Bluetooth classic profiles (PAN/DUN)
•	 BLE options
•	 Near Field Communication (NFC)
•	 NFC options

Connecting the BeagleBone to Mobile Devices

[90]

Mobile devices
Mobile devices are a very diverse category of devices. Even the devices with the same
name can be different when purchased through different sources. It is very important
for anyone connecting a BeagleBone to a mobile device to never forget the diversity
and evolving nature of mobile devices. A mobile device can have physical differences
or adaptations specific to mobile networks or even software customizations done at the
request of mobile network operators. Due to these differences, connection strategies
tend to only work with a specific subset of devices; working with many devices will
require multiple strategies.

Connectivity options
The BeagleBone is a very flexible device and offers many options to connect to a
mobile device, such as a phone. One should not assume that connection means a full
network connection; there are levels of connectivity. Connectivity can be divided into
two general groups. The first is the full network connectivity and the second group is
protocol-specific connectivity. There are benefits and drawbacks to each group. Most
options will require additional hardware on the BeagleBone.

Full network connection options
A full network connection to a mobile device generally means a full TCP/IP
connection to the mobile device. This option has the following benefits:

•	 A full TCP/IP connection, with the cooperation of the mobile device, can
be expanded to provide Internet connectivity. It can provide access to cloud
services, or with the right amount of cooperation, it can also provide services
to the outside world.

•	 Since a TCP/IP connection looks the same to most of the applications as the
USB networking and Ethernet, it can simplify software development. Any
program written to work with IP networking can work with a full TCP/IP
network through a mobile device almost as it is. Again, the caveat is that the
mobile device and the carrier it is using need to cooperate. Under Linux, the
physical connectivity is largely transparent to the application. For example, our
LED flasher from Chapter 4, Refining the LED Flasher, can be made accessible to
a mobile device with no changes other than setting up the connection.

Chapter 5

[91]

•	 Even with limited cooperation of the network carrier, a TCP/IP connection
can allow the mobile device to issue control instructions to the BeagleBone.
As long as the application does not depend on the Internet or cloud services,
a basic TCP/IP connection between the mobile device and the BeagleBone is
all that is needed. However, the flexibility of a full TCP/IP connection comes
at a price.

•	 A full TCP/IP connection can expose the BeagleBone to a cesspool of security
issues. Unlike the Ethernet port or a desktop/laptop connected via USBnet,
it is not very common to find a firewall and other security filtering on mobile
devices. The application or at least something on the BeagleBone needs to
take care of this or risk it being hacked. The LED flasher we built in Chapter 4,
Refining the LED Flasher, will have to be Internet hardened. At the very least,
the application should validate any inputs it receives. At the BeagleBone
system software level, unused services should be disabled, and services
that are required should be hardened by checking for any security updates
needed and adding appropriate access controls. This is the bare minimum.
Proper security-conscious design is beyond the scope of this book.

•	 A full TCP/IP connection depends strongly on the cooperation of the mobile
device. This cooperation comes in several levels that we will address later.
Some mobile devices restrict the TCP/IP connections from unapproved
devices. Assuming you overcome this, there is a variety of networking
issues that need to be tackled.

Protocol-specific connectivity
With less flexibility, having a protocol-specific method of connectivity can provide
connectivity to a wider range of devices. The BeagleBone hardware is extremely
flexible. The following are the options that can work without additional hardware:

•	 The BeagleBone has an onboard hardware for the USB device mode. With the
right protocols, all that is needed is a cable. For device connectivity, the cable
needed is the same as the one currently used to connect to a laptop/desktop
but an additional adapter is needed to match the connector used on the mobile
device. This requires the mobile device to support the USB host mode. Within
the USB realm, things can be divided into two categories. The two categories
differ in the amount of system configuration and software that needs to be
written. For example, the BeagleBone system software supports the emulation
of a USB serial port when the BeagleBone is connected as a USB device, so only
a little configuration is needed to enable this. At the other end, a custom USB
protocol can be defined, which will require you to write the system software
to implement the protocol. The potential drawback of this is the lack of drivers
on the mobile device.

Connecting the BeagleBone to Mobile Devices

[92]

•	 The BeagleBone also has hardware for a USB host mode on the board.
Some mobile devices can act as a modem. This can provide access to send
SMS/MMS messages or potentially even data. The BeagleBone SoC is built
from the mobile device processor technology. This gives the BeagleBone in
the USB host role the ability to act as a mirror.

The options with additional hardware are much more diverse. The BeagleBone has
an expansion connection providing the I2C, SPI, and UART signals to provide easy
interfacing with numerous options. In addition, devices can be attached to the USB
host port. Examples of a few options for mobile device connectivity are as follows:

•	 Bluetooth: This can be added in several ways to the BeagleBone. The simplest
way is with a USB Bluetooth adapter. A more integrated option is to use the
UART signals on the expansion connector. Bluetooth opens a world of options
that we'll look at later.

•	 Wi-Fi: This connection on the BeagleBone is done using the USB or SPI
interfaces. This is a bit more complicated to configure. It mainly provides
a wireless TCP/IP interface and potentially draws a lot of power. Wi-Fi
can be run in the master mode that allows a mobile device to connect to it.
However, the drawback of this is finding a suitable Wi-Fi module, as not
every module will allow operation in the master mode. In the slave mode,
a suitable module is easier to find but it requires considerable power at the
mobile device end to emulate the master mode. You can compromise using
a third device such as a mini travel router.

•	 USB modules: A mobile network USB module, such as the 3G or LTE
connectivity modules, can be connected to the BeagleBone. This typically
provides access to SMS/MMS and even potential TCP/IP connectivity.
However, this option can be potentially very expensive. Mobile network
connectivity pricing can be expensive in the monetary sense and the
modules themselves can be expensive in the power consumption sense.
It can potentially draw much more power than the BeagleBone.

•	 NFC modules: These can be interfaced to the I2C bus on the expansion
connector. It requires a little bit more hardware and system software expertise
than the USB options but a basic I2C connection requires as little as four wires.
However, the data rate can be limited depending on the protocol defined.

While there are numerous options available, the rest of this chapter will mainly focus
on the Bluetooth wireless connectivity options with a brief discussion of NFC.

Chapter 5

[93]

Mobile device connections
At the time of writing this book, mobile devices can be roughly divided into two
common groups, namely, Android and iOS devices. The other less common mobile
devices work similarly. The biggest difference is the connectivity options offered by
the device. This book will focus on discussing iOS and Android devices. The choice
of mobile connectivity will be strongly influenced by the combination of mobile
devices that your BeagleBone project targets.

Android devices
The core part of Android is the Android open source project built on top of Linux.
As such, it has a lot of similar options and limitations as the BeagleBone. Android,
acting as the system software for the phone, has built-in policy-level limitations.
These limitations originate from either the design of a particular version of Android
itself or from a policy of the device supplier. An added complication unique to
Android devices is that the hardware can vary wildly. Android devices are built
by many different suppliers, each with their own design philosophy.

The limitations and features in Android include the following:

•	 No Bluetooth DUN profile support. Later versions of Android add support
for the PAN profile, which offers similar network functionality.

•	 No Bluetooth 4.0 support until Android 4.3. Even with Android 4.3, support
is limited to officially supported devices.

•	 Bluetooth profiles support will vary greatly depending on the device
manufacturer. Android runs on the Linux kernel but Bluetooth wireless
support is not always implemented using BlueZ (http://www.bluez.org/)
like on the BeagleBone. In the recent version of Android, the default Bluetooth
wireless support is not BlueZ. There are different Bluetooth wireless stacks
used with Android that support different amounts of functionality.

BlueZ is the default Bluetooth stack for Linux and is
provided by the BeagleBone system software.

•	 The options to interface using the mass storage depend strongly on the
policies of the device maker.

•	 USB driver support will vary greatly between devices.
•	 Many Android 4.0 or newer devices offer NFC as a connectivity option.
•	 Not all Android devices support the USB host mode.

http://www.bluez.org/

Connecting the BeagleBone to Mobile Devices

[94]

iOS devices
In contrast to Android, iOS is a closed source design. For business reasons, the device
manufacturer has chosen to severely restrict the options available for connection to
unapproved devices such as the BeagleBone. Everything from wireless connections
to physical USB connections to software options is tightly controlled. In iOS, a
TCP/IP connection to the BeagleBone requires specialized software along with the
cooperation of the carrier. Bluetooth connectivity requires a special authentication
process involving nonstandard hardware. However, newer versions of iOS will
support Bluetooth 4.0 with the low-energy option without any special hardware.
Bluetooth 4.0 (also known as Bluetooth Low Energy or Bluetooth Smart), using the
GATT profile, is most likely the best option to interface with an iOS device. This will
be discussed in more detail later in this chapter. In addition, except for the newest
iOS-based devices, NFC is not supported.

Both Android and iOS devices can have unofficial options. For example,
an Android device can be rooted to bypass many policy-level limitations.
Similarly, you can jailbreak iOS devices; however useful this may be,
jailbreaking will not be discussed in this book. In addition, a jailbreak
can potentially invalidate any guarantees on the device.

Carrier limitations
The most interesting mobile devices to connect to the BeagleBone are phones.
The network of a mobile device is subjected to specific terms, which can severely
limit the options with the BeagleBone, as the terms will vary greatly from country
to country and plan to plan even within the same network carrier. The following
are a few issues faced:

•	 Restrictions on connecting another device under the same plan. This is often
described as tethering. This often manifests itself as the tethering options
being disabled or removed entirely from a phone. However, it can also be
a contractual term. Attempting to bypass this can result in the service being
suspended or terminated! It is a good idea to consult the contract terms prior
to connecting the BeagleBone to a mobile device.

•	 TCP/IP filtering from the carrier can break applications. Included in this
category are the following:

°° Port-based filtering: This attempts to connect to a nonstandard port
for a cloud service might be blocked.

°° Enforced proxying: This can produce stale data or data that has been
modified by the carrier.

Chapter 5

[95]

°° Limitations on the reach of certain ports: Often, as an antispam
measure, any traffic headed for the e-mail port is blocked except
for those destined to the carrier's specific server, which can then
authenticate or rate limit traffic.

°° Connections can be one way: The BeagleBone can make a
connection to an outside service but it cannot provide services
by listening to a port.

•	 IP addresses provided by a carrier might not be public and the address might
change on each connection. This can break some services that expect both
ends to know their own IP address as seen on the other end.

Bluetooth wireless technology
Bluetooth wireless technology is a wireless, short-range protocol used to interconnect
devices. It can offer services that range from audio transfer to networking to a higher-
level object transfer. These services make Bluetooth an ideal protocol to interface the
BeagleBone to a mobile device. Due to the demand for hands-free phone functionality
driven by laws, most modern phones will have a built-in Bluetooth functionality.
While the BeagleBone can utilize almost all aspects of the Bluetooth wireless
technology, we will focus on a few common uses of it in the context of the mobile
connectivity for the BeagleBone.

Anything called Bluetooth has to be approved by the Bluetooth SIG.
Refer to www.bluetooth.org on approval requirements.

Bluetooth versions
Bluetooth wireless technology has gone through numerous revisions of the
specification. At the time of writing this book, there are four major approved
revisions. The versions up to 3 describe enhancements that are backward compatible.
Version 4 defines a new non-backward compatible implementation designed for low
power. Bluetooth 4.0 defines Bluetooth Smart. Under version 4, the protocol defined
by the prior versions is Bluetooth Classic. Version 4 also defines a dual function
device capable of Bluetooth Classic and BLE. The major difference with BLE is that
it is designed for extremely low power consumption. This is achieved by simplifying
the overall protocol.

www.bluetooth.org

Connecting the BeagleBone to Mobile Devices

[96]

The common names and terms relating to Bluetooth wireless technology as of
version 4 of the specification are as follows:

Terms Meaning
BLE This is Bluetooth Low Energy defined by version 4

of the specification
Bluetooth Smart This is similar to Bluetooth Low Energy (this is a

marketing term)
Bluetooth Classic This is the original Bluetooth protocol specified

originally by version 1 of the specification
Dual role This refers to a device that can work with both

Bluetooth Classic and Bluetooth Smart devices
Bluetooth Smart Ready This is similar to the dual role device (this is a

marketing term)

Bluetooth wireless connectivity
The BeagleBone can be expanded to support the Bluetooth wireless technology
connectivity without too much effort. There are a few subtle details that should be
considered. While Bluetooth prior to version 4.0 is mostly interoperable, BLE in 4.0
requires specific hardware support. For general purposes, a dual role, Bluetooth 4.0
device should be strongly considered.

Linux supports many Bluetooth wireless modules or interfaces. However, the support
is not universal. When selecting a module, it is best to confirm the Linux support either
directly on the BeagleBone or at least on other Linux systems. If possible, determine
the minimal version of the kernel needed to support the module. As the BeagleBone
system software uses the BlueZ stack, it is useful to verify the compatibility. However,
verifying specific compatibility with the BlueZ stack can be tricky due to vendors not
understanding the request.

Profiles
The Bluetooth functionality is described in terms of profiles defined by the Bluetooth
Special Interest Group (SIG). There are two main profiles of interest to us and
one profile is worth mentioning. There are two different profiles that offer network
connectivity, namely, Personal Area Networking (PAN) and Dial-up Networking
(DUN). They both offer TCP/IP connectivity but in a different manner. It is important
to repeat that network connectivity is offered by either of these options; this does not
necessarily imply Internet connectivity.

Chapter 5

[97]

Some mobile devices support the DUN or PAN profiles as a means of obtaining
Internet connectivity and not exporting it. Despite this, it can still be used to provide
connectivity between the device and the BeagleBone.

While we won't discuss it, it is worth mentioning Serial Port Profile (SPP). SPP
emulates a serial port over Bluetooth at both the BeagleBone end and the mobile device
end. If TCP/IP connectivity is not needed, SPP can provide a simple connectivity.
From an application point of view, this emulated serial port is the same as a regular
serial port with the exception of the name.

Bluetooth profiles can be built on top of other profiles. For
example, the DUN profile is built on top of SPP. So, if a mobile
device supports DUN, it might also support SPP even if it is
not specifically called out. The reverse is also possible with the
addition of more software. For example, additional software can
be added to implement the network functionality on top of SPP.

Dial-up Networking
Even if Android does not support DUN, this protocol is worth discussing. Of the two
networking profiles, DUN is the simplest to implement. DUN emulates a traditional
dial-up modem over SPP. A DUN connection sequence is as follows:

1.	 The originating end opens the emulated serial port.
2.	 The AT modem commands are sent to the dial string. The exact dial string

depends on the implementation. A minimal implementation can ignore the
dial string.

3.	 The originating end waits for a CONNECT response and proceeds to run PPP
on the serial port.

Point to Point Protocol (PPP) is one of the common protocols used
over a serial line to provide TCP/IP connectivity. The protocol is
defined by RFC1661 (http://tools.ietf.org/html/rfc1661).
It handles negotiation and assignment of IP addresses and other
network functionalities. This can be a real TCP/IP connection
or an emulated one used by some Internet connection-sharing
software. An old software package called slirp (http://slirp.
sourceforge.net/) can provide emulated functionality on Linux.

http://tools.ietf.org/html/rfc1661
http://slirp.sourceforge.net/
http://slirp.sourceforge.net/

Connecting the BeagleBone to Mobile Devices

[98]

The rest of the connection is negotiated with PPP. DUN on the remote end can be
added to a system that supports SPP. All that is required is software to parse the
AT commands and wait for a dial string. At this point, the software responds with
CONNECT and starts the PPP server.

For a BeagleBone to connect using DUN, the sequence is as follows:

1.	 Connect to the mobile device using RFCOMM or the DBUS interface
provided by later versions of BlueZ. This establishes the underlying SPP
connection. On most devices, the BeagleBone will need to be paired or
pre-authenticated with the mobile device prior to this happening.

2.	 Open the serial port and send it a configuration and dialing sequence.
The configuration sequence is specific to the carrier. Typically, this will
be something like ATDT*99**. ATDT is the AT command to dial the number
following the T. The number to dial will depend upon the mobile device
and the carrier.

3.	 Wait for the other end to send a CONNECT message.
4.	 Then, start PPP.

After step 1, the entire process can be handled by the PPP server and its companion
chat. Refer to the pppd man page for more details.

Personal Area Network
Newer versions of Android support include PAN support; so this will be the
profile to use if you need a TCP/IP connection and want to work with Android
devices. While DUN looks like a dial-up modem as its name suggests, PAN looks
more like an Ethernet interface. It is possible to have multiple devices on a single
network. While this offers more flexibility than DUN, this can be more complicated
to configure. Using PAN can require some level of network design similar to an
Ethernet network.

For a simple setup between a BeagleBone and an Android mobile device without
taking advantage of the extra flexibility offered by the PAN profile, the configuration
can be relatively straightforward. Android can be configured to export the Internet
connection or it can be configured to use the connection for the Internet. Depending
on the device, one or the other or both can be available. For the option to use
the PAN network for the Internet, a DHCP server needs to be available on the
BeagleBone and possibly a name server.

Chapter 5

[99]

If a DHCP server is enabled on the BeagleBone and the Ethernet
connection is used, be sure that the BeagleBone does not attempt
to provide DHCP servers to the Ethernet side; the exception is if the
BeagleBone is the only DHCP server. Having multiple conflicting
DHCP servers on the same Ethernet network can lead to some very
mysterious and hard-to-debug network issues!

As an example, on an Android 4.3 device, such as Galaxy Nexus, the configuration for
PAN can be found in the Settings app. The option to export the Internet connection,
if available, is found in the section under Wireless & Networks in the More option.
Here, select Tethering & portable hotspot. Checking the Bluetooth tethering option
will enable the PAN support, as shown in the following screenshot:

Connecting the BeagleBone to Mobile Devices

[100]

The option to do the reverse where the Android side thinks that the BeagleBone
is providing an Internet access is located under Bluetooth in the Settings app.
Assuming that the BeagleBone was previously paired, it should appear in the list.
Select the BeagleBone's option and make sure that the box labeled Internet access
is checked. Go back and select the BeagleBone from the list. It should attempt to
connect to the BeagleBone. Note that these are typical locations of options and
they can be disabled or moved by either the carrier or the device manufacturer.

For details on how to use the PAN functionality, refer to the BlueZ documentation.
Be sure to refer to the documentation for the version of BlueZ used on your BeagleBone
system software. At the time of writing this book, instructions that refer to using the
pand command are obsolete. Newer versions use DBUS.

BLE options
The simplest wireless method of connecting to an iOS-based mobile device is to
use BLE. Unlike Bluetooth Classic, BLE connectivity is not restricted on iOS devices.
As an added benefit, Android Version 4.3 can also support BLE, provided the device
has the hardware and is supported by the manufacture for BLE connectivity. BLE is
not currently supported by existing mobile devices for TCP/IP connectivity.

In order to provide BLE connectivity to a mobile device, the BeagleBone needs to be
configured to act as a GATT server. BlueZ contains examples of how to implement a
GATT server. Refer to the BlueZ source code and documentation for more detail.

Generic Attribute Profile (GATT) is a standard BLE profile used
by a large portion of current BLE devices. This is one of the BLE
profiles supported by the Android 4.3 API.

Unfortunately, at the time of writing this book, there are no simple examples of a
GATT server for BlueZ.

However, if the goal is to connect to a mobile device that is designed to be used with
another mobile device from the BeagleBone, there are a few examples with BlueZ.
For example, if the goal is to connect to a smart watch that supports BLE and is not
locked by the manufacturer, BlueZ has a library to implement the application along
with a test tool. For simple tests and experiments, recent versions of BlueZ that
support BLE provide a tool called gatttool that can perform simple operations
related to GATT, such as querying an attribute. The difference between this and
a BLE connection to other mobile devices is that the BeagleBone is not required to
act as the GATT service.

Chapter 5

[101]

Near Field Communication and the
BeagleBone
Near Field Communication (NFC) is a way for new mobile devices to interact with
other mobile devices, NFC tags, or to authenticate communications. NFC is not a
peer-to-peer protocol. For more information on NFC, visit https://en.wikipedia.
org/wiki/Near_Field_Communication.

Briefly, NFC works by creating a field with a low-power radio frequency transmitter
on the master or server side and then monitoring it. When another NFC device or
slave comes close enough to the master end, the master will see a change in the field.
The roles of the master and slave can be swapped but is not necessary. Both ends
communicate by controlling the way the changes occur. The following are a few key
characteristics:

•	 NFC works over short distances. There is no numeric value for the distance
as the distance depends on the antennas used by both ends. Changing the
antenna has a large effect on the distance the NFC will work.

•	 The field provided by the transmitter can provide small amounts of power.
The field power is what allows NFC tags to work. NFC tags have no power
source of their own. When an NFC master comes within range, the field
powers the tag and allows it to interact.

•	 Most NFC devices exchange small amounts of data using NFC. For example,
Android devices do not send the actual applications over NFC. Instead, they
send a pointer to where the application can be downloaded.

•	 Compared to the Bluetooth wireless technology, NFC has a comparatively
low data rate.

A BeagleBone can be interfaced with NFC but, at the time of writing this book,
there are very few off-the-shelf options. The options to add the NFC capability
are as follows:

•	 USB: These are special devices and not the usual mass-marketed USB
devices. Depending on the manufactures, drivers can be hard to find.
In addition, they are often built for use with a desktop, which can mean
that they have an overall size as large as the BeagleBone.

•	 BeagleBone expansion boards/capes: There are a few electrical and software
options available. These typically will use the I2C or SPI interfaces on the
BeagleBone to interface with an NFC chip to implement the functionality.
We will talk about them in the next section.

https://en.wikipedia.org/wiki/Near_Field_Communication
https://en.wikipedia.org/wiki/Near_Field_Communication

Connecting the BeagleBone to Mobile Devices

[102]

The BeagleBone NFC expansion board options
At the time of writing this book, the author is not aware of any easily obtainable NFC
expansion board for the BeagleBone. There are documented projects but the status
of the board is unclear. While physically engineering an NFC expansion board is
beyond the scope of this book, there are a few considerations.

The BeagleBone NFC as a device
A simple NFC device interface can be added to the BeagleBone with very little
support circuitry and software. There are devices that provide a single chip with
the following features:

•	 A standard I2C EEPROM interface from the BeagleBone side will look just
like the onboard I2C EEPROM. Techniques used in Chapter 4, Refining the
LED Flasher, to read the onboard EEPROM can be applied with a few minor
modifications.

•	 An NFC interface that requires only passive components such as a coil for
the antenna.

NFC is considered to be a radio frequency technology and is
regulated in many parts of the world. You should familiarize
yourself with the regulatory requirements prior to implementing
your own NFC interface.

ST Electronics (http://www.st.com) is a manufacturer of such a device. A simple
way to test out NFC on the BeagleBone is to modify the development boards for
the device.

The main considerations in software for a simple device like this are as follows:

•	 If you want a protocol that you would like to use to exchange information,
the device provides a shared memory that is visible from I2C on the
BeagleBone and from NFC

•	 If your protocol involves both sides writing to the memory, there should
be some mechanism to avoid collisions and/or corruption of data

•	 These devices use the same I2C address as the EEPROM used by the capes
and can potentially conflict

http://www.st.com

Chapter 5

[103]

The BeagleBone NFC with a fully featured controller
While it is possible to use the BeagleBone as an NFC master, this can be considerably
more complex. Due to the mobile device heritage of the BeagleBone, the same NFC
controllers on mobile devices can often be interfaced with the BeagleBone. Using a
fully featured NFC controller will offer the most flexibility. Many controllers allow
both master and slave sides to be selected. There are a few drawbacks of attempting
a full controller. They are as follows:

•	 Usually a full NFC stack is needed. Some of the work done for Android
might be leveraged for a useable stack. This is needed to implement details
of the NFC software protocol.

•	 Appropriate drivers are required for the NFC controller hardware to work
with the NFC stack.

•	 Software to interface your application with the NFC stack.
•	 The hardware can be much more complicated. While communications

with the BeagleBone can still be I2C or SPI, there is more complex support
circuitry needed compared to the simple device implementation.

Considering how new NFC is, the Linux support for it has not been fully standardized.

Summary
In this chapter, we discussed the options and limitations of connecting the
BeagleBone to a mobile device. We started by looking at the TCP/IP connection
options versus non-TCP/IP options. The TCP/IP options can allow simple network
interfaces similar to what we used for the LED flasher to work with minimal to
no changes, whereas a non-TCP/IP option is likely to require, at the very least,
application-level changes and possibly systemsoftware-level changes.

Then, we looked at options that require additional hardware on the BeagleBone
and options that did not. We also covered Bluetooth wireless technology as a way
of connecting to both Android- and iOS-based mobile devices. An important detail
is that mobile devices are highly varied and connecting to different devices will
most likely require multiple connection strategies.

In the next chapter, we will look at something more practical, such as recovering
from mistakes. While no user would want their device to break, mistakes do happen.
Fortunately, some of them are recoverable. We'll also discuss how to perform a few
basic diagnostics and potential recovery procedures.

Recovering from the Mistakes
You can try to avoid mistakes, but sometimes they just happen. In this chapter, we
will look at what to do after a mistake happens. While the Beagle board is designed
to be robust, part of doing embedded things can involve interfacing with different
hardware. Even if you haven't made a mistake before, learning the diagnostic
procedures in this chapter will assist you in taking necessary precautions.

In this chapter, we will cover the following topics:

•	 Diagnosing different conditions with the help of LEDs
•	 Troubleshooting the BeagleBone with a serial port
•	 Repairing options

When a mistake happens, do not panic.

For more serious mistakes resulting in a fire or injuries to you or
anyone else, or anything that might threaten either you or anyone
else, please contact the local emergency authorities immediately!

For less serious mistakes that do not involve an immediate threat or harm to you
or anyone else, take a moment to evaluate the situation and avoid compounding
the mistake with another one. This chapter makes an implicit assumption that your
BeagleBone was not physically damaged. Physical damages such as torn-off connectors
and cracked boards need a much more advanced evaluation of the situation.

There are several categories of problems or mistakes that can happen. In this
chapter, we will try to identify the category of problems so that a reasonable
recourse can be taken.

Recovering from the Mistakes

[106]

Symptoms of the mistakes
Most mistakes will lead to a few common symptoms. We will focus on the
following symptoms:

•	 The web server on the BeagleBone is inaccessible
•	 SSH no longer works; you will either get an error about no such host or

invalid password
•	 SSH appears to work, but you are immediately disconnected
•	 Nothing happens when you connect power to the board

The goal of this chapter is to identify problems that can be repaired with the help of
software. The board is designed in such a way that it can be recovered after almost
any software fault. We have intentionally not gone through the causes. For beginners,
it is often very hard to identify the specific steps that lead to the problem.

Troubleshooting the BeagleBone
We will go through evaluating the board and then attempt to classify the types of
problems. It is important to keep in mind that a perfect diagnosis is a difficult thing to
do. The part with the LEDs can be partially done without any additional equipment.
For the BeagleBone Black (BBB), a serial cable can provide a lot more details.

Diagnosing with the help of LEDs
The first step is to observe the LEDs on the BeagleBone. A functional BeagleBone has
a power LED light controlled by the hardware. Most BeagleBone system software will,
by default, blink the other LEDs to indicate system activity. If none of the LEDs are
on, check whether the power is switched on. It is especially important to verify that
the BeagleBone is solely powered from the USB port. The USB specification provides
up to 500 mA per port but, in some cases, this can be limited to 100 mA. The 100 mA
current can cause the BeagleBone to boot and reset. Although 500 mA is available, the
BeagleBone software can draw more power. It can come from the inadvertent changes
to the software at the BeagleBone's end or by reconfigurations at the desktop/laptop
end. If the USB power is under suspicion, try to power the BeagleBone with a barrel
power connector. Note the LEDs on the BeagleBone boards. The single LED next to
the barrel power jack labeled 5V is the power LED, as shown in the following image:

Chapter 6

[107]

Setting up the serial debug cable on the BBB
For the BBB users, if you have a serial debug cable, this is a good time to use it.
The BeagleBone White (BBW) has the serial debug cable functionality built in.
If you do not have a serial debug cable, skip to the Advanced LED diagnostics section.

The serial to USB cable made by Future Technology Devices International (FTDI)
will be referred to here. One end fits the 6-pin male header found between the
expansion connectors (P8 and P9) on the BBB. It is placed immediately next to the
P9 connector. In the following image, pin 1 is marked by a white dot at one end of
the 6-pin connector; the location of the serial connector is also highlighted. If you are
using the recommended TTL-232R-3V3 cable, the corresponding pin 1 on the cable is
identified by a black wire.

Recovering from the Mistakes

[108]

You can see the BBB connected to the serial cable (TTL-232R-3V3) in the following
image. Also, note the white dot and the black wire appears at the same end.

Most modern Linux distributions will have the specific drivers already installed.
Windows users might need to install the drivers from the FTDI's website
(http://www.ftdichip.com/).

Once installed, the BeagleBone can be accessed via the cable using the terminal
software. If you are reading this chapter to prepare for mistakes rather than figuring
out what to do with an inaccessible BeagleBone, it is a good idea to familiarize
yourself with the serial port as it is an extremely valuable resource to troubleshoot.

Connecting to the serial port on the BeagleBone
The process to connect to the serial port is the same for both the BBW and BBB.
The serial cable on the BBB and the equivalent built-in functionality on the BBW
is a serial connection to the console. It's normally configured as 115200 baud, 8 bit,
no parity, and 1 stop bit with no flow control. Be sure to disable the flow control in
the terminal software.

On Linux, there are several terminal software choices to choose from. The example
terminal software includes screen, minicom, gtkterm, or even kermit. Most of them
are installable using the distribution package manager. Refer to the documentation
on terminal software for more details about how to use them. One common piece of
information needed by all of them is the name of the serial port.

http://www.ftdichip.com/

Chapter 6

[109]

To determine the serial port name, use dmesg and look for the name in the form of
ttyUSBn where n is a number, as shown in the following command:

$ dmesg | grep ttyUSB | tail
[1272540.710888] usb 3-3: >FTDI USB Serial Device converter now
attached to ttyUSB0

The preceding command can change each time the cable is unplugged from the
desktop/laptop.

Go through this process if the cable or the BBW is unplugged.
For advanced users, it is possible to configure a fixed name.
For older Linux desktop/laptop systems or even newer
ones with different driver configurations, the BBW provides
two serial interfaces. One of them is assigned to an onboard
debugger interface. For our purposes, it is usually the second
one. However, if there is no output on one, try the other one.

In the preceding example, ttyUSB0 is the name of the serial port. Once you have
the name of the serial port, you can connect to it with the terminal software on the
laptop/desktop end, for example, with the screen command, as follows:

$ sudo screen /dev/ttyUSB0 115200

The sudo command can be optional depending on how your system is set up.

Some desktop/laptop Linux systems might attempt to treat the
serial cable as a modem if the terminal software fails to open the
serial port with an error stating that it is busy; this is most likely
the case. The specific details to disable this behavior will vary.
Please consult the local authority for details.

For Windows users, the cable with the BBB or BBW should appear as a COM port.
There are many choices of terminal software, but recent versions of the PuTTY
software that we have used to log in to the BeagleBone so far can also act as the
terminal software. Before using the software, you need to determine the name of
the COM port. To do this, first unplug the BBB's or BBW's cable, and then start the
Windows device manager. The exact location of the Windows device manager will
vary depending on the version of Windows. It is usually found in Control Panel.

Recovering from the Mistakes

[110]

A shortcut to get to the Windows device manager for the newer versions of Windows
is to explicitly run it from the Run dialog box, which appears by pressing the Windows
key + R. The Windows key is usually marked with a flag such as the Windows logo.
Once the Run dialog box appears, type devmgmt.msc and press OK, as shown in the
following screenshot:

Note the choices of the COM ports. When you plug in the BeagleBone, a new COM
port will appear. It might appear as a large COM port number; note it. In this example,
COM56 is the serial port name to use PuTTY, as shown in the following screenshot:

Chapter 6

[111]

To configure PuTTY, follow these steps:

1.	 Start PuTTY.
2.	 Select Serial from the Connection options.
3.	 Enter the COM port name that you noted in the first box.
4.	 Change the Speed setting to 115200.
5.	 Change the Flow control to None. If this is misconfigured, you might

still get the output, but the attempts to give an input might fail randomly.
The hardware flow control signals on the BBB are not connected, and
random noise can interfere with the flow control.

6.	 Finally, click on Open.

If the BeagleBone was on COM1, the setting will look like this:

Recovering from the Mistakes

[112]

Troubleshooting with the serial port
The process for troubleshooting is slightly different between the BBB and BBW. On the
BBB with the separate cable, the cable is powered by the laptop/desktop system that it
is connected to. In contrast, the equivalent functionality on the BBW is powered by the
BBW itself. Some early information might be lost or hard to capture.

Troubleshooting with the BBB serial port
With the terminal software running, power on the BBB and watch out for the output.
A fully functional BBB will produce the following output from the U-Boot bootloader:

U-Boot SPL 2013.10-00015-gcbcb61f (Mar 31 2014 - 19:06:00)
reading args
spl: error reading image args, err - -1
reading u-boot.img
reading u-boot.img

U-Boot 2013.10-00016-g936eac7 (Mar 31 2014 - 19:51:25)

I2C: ready
DRAM: 512 MiB
WARNING: Caches not enabled
NAND: 0 MiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
*** Warning - readenv() failed, using default environment

Net: <ethaddr> not set. Validating first E-fuse MAC
cpsw, usb_ether
Hit any key to stop autoboot: 1 ### 0
gpio: pin 53 (gpio 53) value is 1
mmc1(part 0) is current device
gpio: pin 54 (gpio 54) value is 1
SD/MMC found on device 1
reading uEnv.txt
1525 bytes read in 6 ms (248 KiB/s)
Importing environment from mmc ...
gpio: pin 55 (gpio 55) value is 1
Checking if uenvcmd is set ...
gpio: pin 56 (gpio 56) value is 1
Running uenvcmd ...
reading zImage
3688016 bytes read in 350 ms (10 MiB/s)

Chapter 6

[113]

reading initrd.img
4539357 bytes read in 429 ms (10.1 MiB/s)
reading /dtbs/am335x-boneblack.dtb
24508 bytes read in 11 ms (2.1 MiB/s)
Kernel image @ 0x80200000 [0x000000 - 0x384650]
Flattened Device Tree blob at 815f0000
 Booting using the fdt blob at 0x815f0000
 Using Device Tree in place at 815f0000, end 815f8fbb

The line Starting kernel marks the beginning of the output from the kernel. The
following is an example of the output from the kernel on the serial port. Note that a
few parts have been removed. This output is from a Debian system. Generally, the
output will end with a login prompt, as shown in the following sample output:

Starting kernel ...

Uncompressing Linux... done, booting the kernel.
[0.508005] omap2_mbox_probe: platform not supported
[0.682594] tps65217-bl tps65217-bl: no platform data provided
[0.747681] bone-capemgr bone_capemgr.9: slot #0: No cape found
[0.784788] bone-capemgr bone_capemgr.9: slot #1: No cape found
[0.821897] bone-capemgr bone_capemgr.9: slot #2: No cape found
[0.859006] bone-capemgr bone_capemgr.9: slot #3: No cape found
[0.885650] omap_hsmmc mmc.4: of_parse_phandle_with_args of 'reset'
failed
[0.947177] pinctrl-single 44e10800.pinmux: pin 44e10854 already
requested by 44e10800.pinmux; cannot claim for gpio-leds.8
[0.958868] pinctrl-single 44e10800.pinmux: pin-21 (gpio-leds.8)
status -22
[0.966155] pinctrl-single 44e10800.pinmux: could not request pin 21
on device pinctrl-single
Loading, please wait...
Scanning for Btrfs filesystems
INIT: version 2.88 booting
[info] Using makefile-style concurrent boot in runlevel S.
[....] Starting the hotplug events dispatcher: udevdudevd[337]: specified
group 'fuse' unknown
udevd[337]: specified group 'fuse' unknown

[....] Synthesizing the initial hotplug events...udevd[337]: specified
user 'usbmux' unknown
[....] Waiting for /dev to be fully populated...done.
[....] Activating swap...done.
.......

Recovering from the Mistakes

[114]

Debian GNU/Linux 7 arm ttyO0

arm login:

Troubleshooting with the BBW serial port
As the serial port is powered by the BBW itself, the process is to connect the USB cable
to the desktop/laptop. Start the terminal software. If there is no output, press and
release the reset button on the BBW. The reset button is located next to the Ethernet
jack near the LEDs. It will be useful if the terminal software is slow to start. The BBW
might generate messages before the terminal software is ready. Reset in most cases
will cause the messages to be regenerated. The location of the reset button on the BBW
highlighted in black is shown in the following image:

On a normal BBW, the output after pressing reset should be very similar to the
output from the BBB.

Evaluating the serial port output
The evaluation of the serial output is the same on both the BBW and BBB. If the
board produces any output with more than a few characters, the most likely problem
will be corrupt or missing software. If there is no output or just a single character,
skip to the No serial output section. If there is any uncertainty, read the Simple serial
port output section to verify that there is no serial output.

Chapter 6

[115]

As you can get the output on the serial console, your BeagleBone is not likely to be
damaged on the hardware level. All the output on the serial console is generated by
some level of software. If you are in a hurry to recover the BeagleBone, reinstalling the
system software as described in Chapter 2, Software in the BeagleBone, is a reasonable
thing to do. In the following sections, we will try to further diagnose what might be
wrong and make an attempt to understand the situation.

Reinstalling the system software on the BBB will erase the onboard
memory. Follow the instructions to run the software from a microSD
card if you want to check whether reinstalling the system software
helps. On the BBW, you can simply create another microSD card.

Simple serial port output
The most basic output from the BeagleBone is a bunch of Cs that appear on the
terminal screen. This is generated by the immutable ROM bootloader on the AM335x
SoC used by the BeagleBone in an attempt to solicit a download from the serial port.
An example of the output from the ROM bootloader waiting for a download is shown
in the following screenshot:

On the BBW, this happens because the ROM bootloader considers the microSD card
to be invalid. This will happen if the onboard eMMC flash memory is invalid; either
there is no microSD card present, or it is present but invalid. In this case, either reimage
the card or fix it if it is invalid. Fixing the card is an advanced subject beyond the
scope of this book. A microSD card or the eMMC flash can be invalidated due to data
corruption or a direct mistake. For a microSD card, it can also be considered invalid
due to poor or bad seating, so it is worthwhile to carefully eject the card and push it
back in.

Recovering from the Mistakes

[116]

When the power is on, the SoC ROM bootloader checks the
memory devices, which in the case of the BBB are the onboard
eMMC and microSD and in the case of the BBW is the microSD.
If a memory device is found, the ROM bootloader will validate it
by looking at a few aspects. Only when all the aspects are found,
it will consider the device valid and attempt to boot from it. The
first partition is a FAT-formatted partition with a file named MLO.
The MLO file has a special hash to validate its contents.

Bootloader serial port output
A prompt screen appears at the U-Boot output and the system gets as far as
loading the bootloader. Refer to the first output of the bootloader in the preceding
example. Normally, the second output will follow, but if the BeagleBone is stuck
at the bootloader, the content similar to the second output will never show up.
It should be clarified that this bootloader is different from the ROM bootloader.

Although pressing Enter can confirm being present at the U-Boot
prompt, it can also lead to confusion. During boot up, U-Boot will
look for an input from the serial console. If the input is found, the
boot process is aborted. Referring back to the first output, U-Boot
waits briefly for the input when it prints the message Hit any key
to stop autoboot:.

Getting stuck at U-Boot can be a result of several things. At startup, U-Boot is
configured to look for a configuration file, uEnv.txt, in the first partition. This
file tells U-Boot where to load the Linux kernel from. If this file is corrupted or
missing, the BeagleBone can get stuck at the bootloader level. An advanced user
can search for uEnv.txt on a search engine for more details on what is needed
to restore this file.

Another common way to get stuck at the bootloader level is when the Linux
kernel file is missing. The location of the Linux kernel will vary depending on
the version of the kernel and on the distribution used. The possible names for
the kernel are as follows:

•	 uImage: This was the earlier/original name for the kernel
•	 zImage: This is a new name used for the kernel as it offers a way to

incorporate configuration data in the same file

Chapter 6

[117]

The possible locations for the kernel are as follows:

•	 On the first FAT partition itself under either of the two names
•	 Somewhere on the second Linux format partition as a system file

(often in the /boot directory)

If you need to recover data from the internal eMMC flash of a BBB and your BBB got
as far as the bootloader, you can search for the information specific to the distribution
you are using or possibly attempt to recover the data by booting using the user button
and a microSD card as described in Chapter 2, Software in the BeagleBone. The recovery
process will require advanced system skills, so seek local assistance.

Linux serial output
If you get more text in the output, there is a possibility that Linux is running. Look
for a login prompt at the end of the message or press Enter to see whether a prompt
appears. If a prompt appears, try logging in as root just like with SSH. A successful
login here most likely points to a network configuration problem. A failed login or a
lack of a prompt suggests a potentially more severe problem.

For a BBB, it might be possible to boot from a microSD card and attempt to correct
the problem. On the BBW, the microSD card can be removed and looked at with a
reader on a laptop or desktop. In either case, further evaluation and correction is
an advanced topic outside of the scope of this book.

No serial output
A total lack of serial port output points to a more hardware-oriented problem. Before
going further, create a bootable microSD card as described in Chapter 2, Software in
the BeagleBone, and attempt to boot from it. This can be done by powering off the BBB
and disconnecting the USB and any barrel power connector. Then, hold down the
user button when applying power. On the BBW, this is simply a matter of inserting
the microSD card. This step is to eliminate a bootloader corruption, where the ROM
bootloader thinks the flash is valid but is corrupted in a way that renders it useless.
This also eliminates the case where the ROM bootloader is the output as described
in the Simple serial port output section, but is missed due to the terminal software.

If the new microSD card doesn't work, the problem is most likely due to a corrupt
flash. This can be repaired using the flasher image.

Recovering from the Mistakes

[118]

Advanced LED diagnostics
Assuming there is no output on the serial port with the bootable microSD card, the
next step is to look at the LEDs. Look at the power LED when the power is applied. If
it is off, disconnect the power. Watch the power LED as you reapply power. It might
be helpful to do this in a dimmer area. If all you see is a brief flash of the power LED,
there is most likely hardware damage. The power management chip on the board has
detected a fault. Refer to the following section to get details about how to seek repairs.

If there is no flash at all on the power LED, verify that there is power being applied.
Try unplugging all the sources of power; let the BeagleBone sit unpowered for
five- to ten-minutes. There is some thermal protection on the BeagleBone and letting
it stay unpowered briefly can allow the thermal protection to reset itself. If you have
access to a DMM or can consult someone with access to one, verify that your power
source is providing 5V to the BeagleBone. Ideally, this should be done via the barrel
connector to avoid USB complications. While we have not specifically discussed
expansion boards, also known as a cape, they can produce similar symptoms such
as a lack of any power LED indication. Remove any expansion boards and verify the
symptoms. With the 5V verified and a lack of a short flash on the power LED on a
plain BeagleBone without any expansion boards, it is likely that there is a hardware
component that is damaged.

Repairing the BeagleBone
After going through the previous troubleshooting process with the LEDs and the
serial port, if you still do not find a fix, the next step is to look at repair options.
The BeagleBone SRM document describes this procedure. Repair requests can be
initiated by navigating to http://www.beagleboard.org/support/rma. Once
approved, an RMA number will be issued and instructions to ship will be provided.
The BeagleBone is then shipped back to the provided address. Depending on the
nature of the problem and the length of time for which you have owned the board,
there might be a cost associated with it. The concerned authorities should be able to
explain this to you. Once they receive the board, they will do additional diagnostics
and replace components as needed.

Since the BeagleBone is a low-cost board, the cost to ship and repair can potentially
exceed the cost of a new board. For instances like this, it might be best to buy a
replacement. For readers outside the U.S., they can also contact the distributor
they purchased the BeagleBone from.

http://www.beagleboard.org/support/rma

Chapter 6

[119]

Summary
In this chapter, we looked at ways to recover your BeagleBone from certain mistakes.
There are two primary diagnostic information sources for the BeagleBone family.
The LEDs, specifically the power LED, can provide immediate information on the
state of the BeagleBone. The second important diagnostic tool is the serial port. On
the BBB, this requires the optional serial cable. On the BBW, this functionality is built
into the board, but there are some potential sequencing problems. With these two
diagnostic indicators, you should be able to fix simpler mistakes, often by just merely
reinstalling the system software. This same process can also identify boards that are
likely to require either a repair or replacement.

With this basic diagnostic process in hand, the next chapter will look at options to
interface the BeagleBone with other hardware. If something does go wrong with
interfacing hardware, the diagnostic process described in this chapter can give you
some insights.

Interfacing with the
BeagleBone

In the last few chapters, we mostly looked at the software aspects. While the
BBB can do a lot by itself, it can do a lot more when connected to other hardware.
This chapter will focus on general interfacing of the BeagleBone on a low level.
In the next chapter, we will look at standard expansion options on a higher level.

In this chapter, we will cover the following topics:

•	 Electrical engineering in a nutshell
•	 BeagleBone voltages
•	 Expansion headers
•	 Transistors
•	 LEDs, relays, and switches
•	 I2C/SPI
•	 Hidden gotchas

Interfacing with the BeagleBone

[122]

Electrical engineering in a nutshell
This chapter is not intended in any way as a substitution for a proper education in
electrical engineering! We will go over some of the fundamentals in the context of
the BeagleBone so that the rest of the chapter makes sense.

Electrical properties
Electricity has three basic properties, namely, voltage, current, and resistance.
Using a water analogy, voltage can be considered as the pressure and current
can be considered as the rate of the water flow. Voltage is measured in volts and is
written as V and current is measured in amperes and is written as either amp or A.
For many of our purposes, it is convenient to measure current in milliamp or mA.
This is 1/1000th of an amp. Tie this to the water analogy and amperes is the rate
of charge per second. Resistance is what lets us control the amount of current or
voltage. Resistance is measured in ohms.

Resistance, voltage, and current are related to each other by Ohm's law
(http://en.wikipedia.org/wiki/Ohm%27s_law). It has the following three
equivalent forms:

•	 R = V/I
•	 V = IR
•	 I = V/R

In the preceding formulas, R is the resistance in ohms, V is the voltage in volts,
and I is the current in amps.

If any two are known, the third value can be calculated. For example, if you know
the voltage and the resistance, you can calculate the amount of current that will
flow through it. Similarly, if you know the voltage and want to limit the current,
the preceding formula will let you calculate the resistance value.

Serial and parallel circuits
An essential concept that is needed to understand electronics is parallel and serial
connections. Consider the water system in a city with a central water source. Each
house gets a water feed. Except in the exceptional water usage cases, the water usage
in your house doesn't affect your neighbor's house. This is an example of a parallel
connection. In a parallel connection, all the connections of the same polarity are
connected together. This is like the houses with all the water sources and the water
drains being connected together.

http://en.wikipedia.org/wiki/Ohm%27s_law

Chapter 7

[123]

For a serial connection, consider a garden hose with two valves. One valve is at the
hose connection and the other valve is at the nozzle. For the water to come out of the
nozzle, both the valves have to be turned on. Turning off either valve will reduce the
water flow. An electrical serial connection is the same way. One device is connected
to the next device in a chain such as the two valves. Resistance in either device will
reduce the current through both the devices.

Measuring the electrical properties
In Chapter 1, Introducing the Beagle Boards, one of the recommended accessories is a
digital multimeter (DMM). The DMM can measure all three properties of interest
to us. Each property is measured slightly differently. Before connecting the DMM
to anything, set the DMM to the correct mode and range if necessary.

Voltage measurements
Voltage is the easiest property to measure. If your DMM is autoranging where it will
try to set itself based on the signal, all you need to do is put the meter in the voltage
mode. This is commonly done by turning the knob to the voltage option. Sometimes
this is marked with a V or DCV mark. Refer to the meter manual if it is unclear.
In a manually ranged DMM, you will need to guess the voltage of your signal and
select a range. When in doubt, select a higher range. For the DMM shown in Chapter 1,
Introducing the Beagle Boards, the voltage measurement ranges are labeled DCV in
the upper-left quadrant of the range-selector knob. The numbers on the label are the
maximum voltage values for each range. For example, turning the knob to the 20 range
in the DCV quadrant will set the meter to measure up to 20V.

Do not attempt to measure high voltages without proper training!
Consult the properly trained authority and your meter manual for
details on measurements.

Once the voltage range is selected, connect the DMM to the item being measured.
Voltage is measured in parallel, that is, the positive terminal of the item being
measured should be connected to the red lead on the DMM, and the negative
terminal of the item being measured should be connected to the black lead.
There are two kinds of voltages that you might want to know about.

The first kind is the voltage being applied to the BeagleBone. For this, you connect
the black lead to a ground point on the BeagleBone. Ground is the term used to refer
to a reference level. The red probe will be connected to the power input. This will
give you a reading for the voltage being applied. For the BeagleBone, this should
measure about 5V. Anything between 5.25V and 4.75V should be fine. This is a good
diagnostic to verify the power supply for the BeagleBone before using it.

Interfacing with the BeagleBone

[124]

The second kind of voltage measurement is the voltage across a component.
Ohm's law relates current, voltage, and resistance for a component or a group of
components. The resistance can be distributed over different components but Ohm's
law still applies. To measure the voltage across a component, connect the meter in
parallel with the component. This means placing one probe on one terminal of the
component and the other probe on the other terminal of the component. The main
difference here is that the probes do not need to be connected to ground.

Resistance measurements
Measurement of resistance is very similar to voltage measurement. One essential
difference is that resistance is never measured with the power applied. To measure
resistance, the DMM is set to a range labeled either R or omega (Ώ)—the Greek letter
for Ohm. In the example from Chapter 1, Introducing the Beagle Boards, the resistance
range is labeled Omega in the lower-left quadrant. Once the resistance is set, do not
connect the DMM to anything with power. A DMM measures resistance by sending
a very small sense current and measuring the voltage. Connecting a DMM set to
measure resistance to a live circuit can damage it. In addition, resistance in a circuit
can be changed by other elements in the circuit. Unless you understand circuits
completely, always measure the resistance outside a circuit. The measurement is done
by connecting the DMM in parallel with the resistance element such as a resistor.

When measuring resistance, make sure that you avoid
touching the metal parts of the probes. Your fingers can
influence the resistance readings.

Current measurements
Current is measured differently than voltage. Also, the DMM to measure current
is connected differently than how it is connected to measure voltage or resistance.
A common mistake is to attempt to measure current in parallel such as with voltage.
Going back to the water analogy, current is the rate of flow. To measure the flow,
you need to be in line with the flow. For electricity, the DMM will need to be in series.
Measuring current is an advanced procedure. We will go through an overview of the
process but do more research before attempting to measure it yourself.

Setting the DMM to measure current is very similar to setting the DMM to measure
voltage. Current measurement is often labeled with A. In addition, some meters
will require you to connect your probes to a different connector. Refer to the meter's
manual to determine whether it is needed on your meter. Once set to measure current,
never connect the DMM across anything like you would do to measure voltage.

Chapter 7

[125]

Current measurement with a DMM will often require a wire to be cut. The DMM
needs to be placed in series with the circuit or part in order to measure the current.

There are advanced ways to measure current without having
to cut wires. This can be done using a small sense resistor
in series with the device being measured. A DMM can be
set up to measure the voltage across the resistor. Current
is then calculated with Ohm's law, for example, the earlier
Beagle boards (not BeagleBone boards) had built-in current
measurement resistors. There are other considerations
beyond what can be covered in this book for this technique.

BeagleBone voltages
The BeagleBone uses a few different voltages. To prevent damage, there are voltages
that should never be exceeded.

Refer to the reference manuals and the datasheet for the
AM335x SoC for the specific requirements. What is described
here is a general overview. The author is not responsible for
any damage to a BeagleBone! Proceed at your own risk.

The BeagleBone is designed to be powered at 5V. This is a nominal number that
can vary a few percent. Attempting to power the BeagleBone with a voltage higher
or lower than this will damage it or, at the very least, prevent all or part of it from
working correctly. This 5V value can be provided by the barrel connector or the USB
port. The USB specification limits the available current to 500mA. The BeagleBone
itself can consume this much current under certain conditions. Anything being
interfaced should be powered separately or the BeagleBone should be powered
using the barrel connector.

The 5V power source is reduced to several lower voltages for different parts of the
system. With one exception, all the digital input/output pins on the expansion
connector work at 3.3V levels. This means a high or Boolean 1 is roughly 3.3V and
a low or Boolean 0 is 0V. Any signals going into the BeagleBone should never be of
lower value than the value of 3.3V or the voltage applied to the BeagleBone. This
is important to rephase. To put it another way, do not apply any voltage to the
BeagleBone if it is off! In addition, these are digital input signals, which means that
the voltage applied should only be 3.3V or 0V. It is not acceptable to apply voltages
between this range.

Interfacing with the BeagleBone

[126]

More accurately, there is an acceptable range for high and low signals.
Signals outside the range are undefined and can lead to problems
such as excessive power consumption. See the datasheet for the exact
numbers. Generally, input values from 2 to 3.3V when the system is
properly powered up will be okay as a high and 0 to 0.8V is okay as a
low. Do not apply any voltage if the BeagleBone is not powered.

The exception to the 3.3V level is the analog ADC inputs on the expansion connector
of the BeagleBone. They are designed for a maximum input of 1.8V. Any applied
voltages should never exceed 1.8V. Unlike digital inputs, anything between 0V and
the maximum of 1.8V can be applied to these analog inputs.

One important difference between the BeagleBone subfamily and the earlier
BeagleBoards is the I/O voltages. On the BeagleBone, all the digital I/O is at 3.3V
levels. In contrast, the earlier BeagleBoards had 1.8V I/O. Keep this in mind if you
want to consider adapting projects to the BeagleBone.

If you ever need to connect a device that uses a different voltage to signal than 3.3V,
consider the following few options:

•	 It is sometimes possible to directly interface a device with different voltages
if the device provides an I/O voltage input. This input is often labeled as
VDDIO. If available, check for a combination of voltages that you can use
with a 3.3V I/O. For example, an accelerometer has two power inputs labeled
VDD and VDDIO. Both VDD and VDDIO are labeled as ranging from 1.6 to
3.6V; however, VDDIO must be less than or equal to VDD. So, if you were to
power the VDD with 1.8V, you cannot use 3.3V on VDDIO. While a device can
offer the VDDIO input, breakout boards sometimes directly connect VDD and
VDDIO together, effectively defeating this feature.

•	 Powering the device at 3.3V might be obvious but for readers used to more
primitive microcontroller boards running at 5V, this might be a new option.
Check the device specifications to check whether it can run the device at
3.3V. The difference between this option and the previous one is that you
are powering the entire device at 3.3V, whereas the previous option only
powers the I/O at 3.3V.

Chapter 7

[127]

•	 Using a level converter takes the I/O at one voltage and converts it to 3.3V.
Level converters are of the following three types:

°° Input only: This takes the signal that is not 3.3V and converts it
to a 3.3V signal used by the BeagleBone. As suggested, this is used
for inputs.

°° Output only: This does the opposite of the preceding converter;
it takes a 3.3V signal and converts it to another voltage signal.

°° Bidirectional: This attempts to automatically figure out which side
is the output end and converts the other end to the same logic state
but at a different voltage. These devices might not work on higher
speed signals.

•	 For inputs to the BeagleBone, use an open collector/drain signal. An open
collector/drain signal is a signal that can only drive low. It assumes that
the signal is held high by some other external mechanism, such as a pull-
up resistor that connects to 3.3V. For this option, it is important to confirm
whether 3.3V is acceptable with the datasheet. Due to manufacturing
processes, there is an upper-limit voltage for devices.

Open drain or open collector are functionally the same for our
purposes. The names refer to the type of transistor used in the
chips. Strictly, open collector refers only to chips that use bipolar
transistors, whereas open drain refers only to chips using FET
transistors. In the rest of this chapter, we will use open collector
to refer to either of these.

Expansion headers
Now that you had a whirlwind lesson on electrical engineering fundamentals, let's
look at the BeagleBone side. On the BeagleBone, there are two connectors that can be
used to interface to the BeagleBone. These are the same two connectors used by the
expansion boards, which we will discuss in Chapter 8, Advanced Software Topics. This
chapter will focus on some of the lower-level details for interfacing. The connector
is electrically compatible between the BeagleBone Black and the BeagleBone White.
However, some signals on the BeagleBone Black are shared with onboard features
such as the onboard flash and the video interface. Most of these features can be
disabled by following the procedures described in the BeagleBone Black SRM.

Interfacing with the BeagleBone

[128]

The two connectors are labeled P8 and P9. See the SRM document at http://www.
beagleboard.org/ for the signals and pin assignment. These connectors are 0.1 inch
spaced 2 x 23 female headers. They mate with common 0.1 inch male connectors.
You can see the expansion connectors' location in the following image:

The main power signals on the expansion connectors P8 and P9 are labeled in
the preceding image. The connectors are numbered from the left-hand side to the
right-hand side. The odd pins for P9 are all along the bottom edge and the even
pins for P8 are all along the top edge. Note that the power signal comes in pairs.
Signals not labeled in the preceding image are I/O or reference voltage pins.

The signals of interest in these connectors are as follows:

•	 A 3.3V power source. This can supply around 0.5A.
•	 A 5V power source if the barrel connector is used to power the BeagleBone.

This can be used to power devices that have their own regulator.
•	 Up to 8 analog inputs. These are limited to 1.8V. Exceeding 1.8V on these

pins can permanently damage the BeagleBone.
•	 Digital I/O that can be configured for various functions. These are 3.3V

signals. They have limited current capabilities. Generally, do not pull more
than 7mA for each signal. Refer to the SRM or the SoC datasheet for specific
limits. We will look at how to drive things that require more power later in
this chapter. The following are a few connections that we can use:

http://www.beagleboard.org/
http://www.beagleboard.org/

Chapter 7

[129]

•	 general-purpose input/output (GPIO).

Some GPIO signals on the BeagleBone Black are shared only for
BeagleBone Black users. This is done for backward compatibility
with the original BeagleBone White. This is done by connecting
two or more signals together with a low-value resistor. What this
means in practice is that you will need to make sure that these two
signals are never set to conflicting states, such as both of them set
to be outputs. If both of them are set to outputs and they are not in
the exact same state (high or low), they can fight and damage the
AM335x SoC.

°° Serial interfaces such as UART, I2C, and SPI.
°° Other more advanced features such as a video interface. See the SRM

and/or the SoC datasheet for details.

The different functions on the digital lines are selected by a pinmux. Each pin on the
SoC can serve up to seven different functions but only one can be exposed at a time.
The pin mux allows selection of the function. Programming and configuration of the
pin mux by software is being revised at the time of writing this book. Refer to the
support resources of your image for the correct pin mux programming procedures.
An overview of the different methods is as follows:

•	 The bootloader, U-Boot, can be modified to configure the pin mux. This
was done in some early system software. As the Linux kernel runs after the
bootloader, there is a risk of confusion from the kernel changing the pin mux.

•	 Older versions of the kernel allow the pin mux to be configured using board
files, which are parts of the kernel specific to the BeagleBone. This requires
the kernel to be rebuilt for each change and is being phased out due to
this complexity.

•	 Some older versions of the kernel provide a debugging interface in sysfs to
allow non-kernel software to program the mux.

•	 Newer versions of the kernel are configured by a device tree. This is the data
structure used to describe the hardware at boot time. However, this interface
is still being developed at the time of writing this book.

•	 A newer kernel specific to the BeagleBone offers a feature known as the cape
manager. This takes portions of the device tree and allows them to be loaded
dynamically. This is currently a feature specific to the BeagleBone and is
functional only on certain versions of the kernel.

Interfacing with the BeagleBone

[130]

Transistors
A transistor is a key component that can allow different things to be hooked up
to the BeagleBone over the expansion headers. Transistors allow things that need
different voltages or more current to be controlled. A transistor has three terminals.
The application of voltage or current to one terminal allows the current or voltage
between the other two terminals to be controlled. This control property allows a
very small signal to control a much larger signal. This has many implications for
analog signals but we will mainly focus on transistors and digital signals. Other
texts might refer to the transistor as a switch.

Details for the selection of transistors can be very complicated. We will go through
a simplified description. Transistors can be divided into two general categories,
namely, bipolar transistors and Field Effect Transistors (FETs).

Bipolar transistors
Bipolar transistors are the first type of commonly available transistors. They take a
control current as the input that controls the current between the other two terminals.
They have three terminals, namely, base, collector, and emitter. Application of the
current through the base to the emitter will cause the transistor to set the current
going from the collector to the emitter to be a multiple of the current going through
the base. The multiplication is a property of the transistor and is referred to as beta.
On a schematic, a bipolar transistor is drawn as follows:

Collector

Base

Emitter

Base

Collector

Emitter

Bipolar transistors come in two versions, NPN (arrow pointing out) and PNP
(arrow pointing in). They differ by the polarity of the current flowing through it.

Chapter 7

[131]

Example use of a bipolar transistor
A common transistor for experimenting is 2N2222A or 2N3904. This is an NPN
type available in an easy-to-use plastic package with three leads known as a TO-92
package, or sometimes in a small metal package. Refer to the datasheet for the lead
specifics as it can vary slightly between manufactures. In this example, we will use
a GPIO line on the BeagleBone to control a green LED that takes 20mA of current.
The GPIO lines on the SoC can only source less than that, so we need a transistor to
control the larger current. An example usage of a transistor to interface an LED to a
GPIO on the BeagleBone is shown in the following diagram:

Collector

Emitter

BaseGPIO

R1

GND

LED1

R2

3.3V

The first thing to notice in this schematic is that there are two resistors labeled
R1 and R2. They are required to control the current. R1 limits the current from the
BeagleBone's GPIO and R2 limits the current to the LED. Let's work out the resistors
by working from the LED back to the SoC. An LED has a property that will drop a fix
voltage. For a green LED, this is approximately 2V. One end of the LED is connected
to 3.3V through R2. The LED drops about 2V, so the resistor sees 3.3V to 2V or 1.3V.
We want 20mA through the LED. So, using Ohm's law, we get:

1.3V/0.020A = 65 Ohm

The next resistor, R1, is connected between the base and the BeagleBone. The
BeagleBone I/O is at 3.3V. For simplicity, let's draw 5mA from the BeagleBone.

Using Ohm's law, we get:

3.3V/5mA = 660 Ohm

Interfacing with the BeagleBone

[132]

Looking at a datasheet for 2N2222A, it shows a minimum beta value of 100.

The beta value is often provided as a typical value and a minimum
value. The actual value can vary a lot. When calculating, use the
minimum value to ensure things can work all types of transistors.

A bipolar transistor will try to make the current from the collector to the emitter
equal to the value of beta multiplied by the base current. So, in this case, 100 * 5mA
= 500mA, which is much greater than the 20mA we want. A transistor can only drop
the voltage and not increase the voltage. When the actual current flowing is smaller
than the current the transistor is trying for, the transistor is considered to be in
saturation. For our application, this is very desirable. It means that the current will
be controlled by R2.

With everything described so far, R2 might appear to be unnecessary. We could have
selected R1 so that it will be multiplied to give us the required current. This is a bad
idea for the following reasons:

•	 The beta value can vary from transistor to transistor of the same type.
•	 The beta value depends on the temperature.
•	 The calculations used earlier are a simplified approximation. Due to the way

a transistor is made, the base is a diode connection and will drop roughly by
0.6V. This value changes the temperature and current flowing through it. By
driving the transistor well into saturation, the exact current through the base
is in material; the important point here is that there is enough current flowing
to cause saturation and the current specifications of the transistor and GPIO
are not exceeded.

FETs or specifically MOSFETs
The second type of transistor is a Field Effect Transistor (FET). There are different
flavors of FETs; the one that is of interest to us is a Metal Oxide Semiconductor Field
Effect Transistor (MOSFET). A MOSFET has three terminals called gate, drain, and
source. A MOSFET is controlled by a voltage applied to the gate. Application of voltage
to the gate causes the current between the drain and source to change. A MOSFET can
be tricky for a beginner to use. We will go through an overview but specific details
are beyond the scope of this book.

Chapter 7

[133]

Unlike the base on a bipolar transistor, the gate on a MOSFET is an open circuit. No
steady current flows through the gate. The advantage is that we save a part, as we do
not need a resistor to control the current. The drawback is that the gate itself is a very
thin layer of glass that can be damaged by static electricity. A MOSFET should be
kept in the protective material it was shipped in until it is ready to use.

What makes the MOSFET more complex to use is the drain source path is not
controlled by a simple multiplier. MOSFETs have a gate threshold voltage before the
drain source path is affected. In addition, the effect on the drain source path depends
on the type of MOSFET. It can increase or decrease the current, unlike a bipolar
transistor. Once a MOSFET is properly selected, it can be used in a similar manner.

Connecting LEDs to the BeagleBone
We made many references to Light Emitting Diodes (LEDs) in this book
and many readers are interested in LEDs. They can serve both decorative and
functional purposes. LEDs are diodes that light up as the name suggests. Diodes
are two-terminal, one-way electricity controls. Current is allowed to flow only in
one direction. The important characteristics of LEDs are as follows:

•	 They have a minimum voltage before they can turn on. This voltage will
vary slightly with the amount of current flowing through it. Different LEDs
will have different voltages. This is determined by the underlying physics
of the LED. On a datasheet, this is often labeled as the forward voltage.

•	 As an LED is a diode which conducts only in one direction, the polarity at
which an LED is hooked up matters. The terminals on an LED are the anode
and the cathode. The anode should go to the positive side of the power source.

•	 The brightness of the LEDs is determined by the current through them.
An LED always needs a resistor or some other means of limiting the current.
The recommended and maximum currents through an LED are specified
in the datasheet for the LED. Generally, an LED will require a minimum
current before it lights up. Then, it will get proportionally brighter as the
current increases up to a point. Beyond this point, increasing the current
will not proportionally increase brightness and might damage the LED.

•	 Some LEDs are rated for use in a multiplexing operation. Multiplexing is
a way of controlling a large number of LEDs without having to use exactly
two wires per LED. This is usually done by turning on LEDs one at a time.
However, as the LEDs are not continuously on, they can appear dim. The
solution is to drive the LED with a large current pulse for a brief period of
time. This is the multiplexing or pulsed current rating. This rating is usually
specified with a maximum duration.

Interfacing with the BeagleBone

[134]

Most LEDs will require a transistor to drive. The considerations to drive the LEDs
are as follows:

•	 For a first approximation, the forward voltage of an LED depends on the color
of the LED. Red, yellow, and some green LEDs tend to have a forward voltage
of around 2V or less. Blue and white LEDs have higher forward voltages in the
range of 3.0V to 4.0V. Unless you specifically look for a blue or white LED of
lower forward voltage, you will need a higher voltage than 3.3V.

•	 Current through an LED controls its brightness. However, varying current
with software can be difficult. A common way to control the brightness is to
flash an LED faster than the human eyes can see. By varying how long an LED
remains on before turning off, the LED can appear to be at different brightness.
This technique is called pulse width modulation (PWM). The BeagleBone can
do this by software or hardware.

Controlling relay with a BeagleBone
While a transistor can be used to interface with devices that require more current
or a higher voltage, a transistor is still electrically connected to the BeagleBone. A
relay is a mechanical switch that is activated or deactivated by an electromagnet and
can provide electrical isolation. There are a few potential hazards with controlling a
relay. This applies to anything that has a coil such as a solenoid, motor, or even an
electromagnet. As a group, they are known as inductive loads. Without going into
the physics, switching an inductive load can result in voltage spikes, known as an
inductive kickback, which can damage the transistors. The following are the points
to consider when connecting to a relay:

•	 Consider the current required by the relay. Compared to LEDs, relays
can require more power. Check the relay specifications. Sometimes, relay
specifies a coil resistance. You can use Ohm's law to figure out the current
needed to drive it.

•	 Relays come in a variety of voltage ratings. Except for the lowest power
relays, relays can require voltages higher than 3.3V.

•	 There are dedicated chips to drive relays but for a simple low-power driver,
a transistor can be used.

•	 When using a transistor or a dedicated driver that does not include
protection against the inductive kickback, you will need to add a diode in
parallel with the relay. The diode is connected such that when the relay is
turned on, current does not flow through the diode. However, when the
relay is turned off, the inductive kickback is shunted through the diode.
This works because the inductive kickback occurs in the opposite polarity.
The following diagram shows the sample relay interface. The D1 diode
handles the inductive kickback when the relay switches off.

Chapter 7

[135]

Collector

Emitter

BaseGPIO

R1

GND

R2

3.3V

R
E
P
L
A
Y

D
1

Connecting switches to the BeagleBone
So far, we have mostly looked at outputs from the BeagleBone. Let's look at getting
the physical input. The switches that we are talking about here are simple mechanical
devices that can open or close a circuit. They can be push button switches such as the
user or reset button on the BeagleBone, or they can be slide switches. They can also be
sensors. For example, you can detect tilt by having a metal ball sitting between two
wires in a box. When the box is tilted, the ball rolls away and opens the circuit. All of
these are interfaced similarly. One important thing to remember is that these switches
are passive. They do not have power. The following diagram shows a sample switch
connection (SW1) to a GPIO:

GPIO

GND

R
1

3.3V

S
w

1

Interfacing with the BeagleBone

[136]

A passive switch can be connected to the BeagleBone's GPIO by connecting one
terminal of the switch to ground and the other end to 3.3V through a resistor. The
GPIO is connected to the resistor on the side connected to the switch. The resistor is
large enough, so when the switch is closed, not too much current flows. It needs to be
small enough, so the noise doesn't interfere. The common values that work for this
are between 1000 to 4700 Ohms.

I2C/SPI on the BeagleBone expansion
connector
I2C and SPI are two common serial buses used to interface with many commonly
used peripherals. Using these buses while interfacing is more advanced than a
simple beginner's task; beginners should be aware of them. In our exercises,
although we looked at I2C, we focused on what is on the board itself.

Inter-Integrated Circuit
Inter-Integrated Circuit (I2C) is a two-wire serial bus interface. This interface defines
a full protocol to allow different devices on the bus to be identified with addresses.
Different combinations of the states of two wires are used to identify different parts
of the protocol. When using I2C to interface from the BeagleBone to an I2C device,
the key things to be aware of are as follows:

•	 I2C signals are open collector. This allows multiple devices to be connected in
parallel. However, this requires two resistors, roughly from 1000 to 4700 Ohms
that connect each of the I2C signals to 3.3V. Open collector means each device
can make the signal low but not high. This way if two devices try to transfer
data at once, there will be no electrical damage.

•	 I2C signals can be bidirectional. The same wires can have data flowing in and
out of the BeagleBone.

•	 I2C is half duplex. At any given time, data can flow in only one direction.
•	 I2C devices can work with different voltages. On the BeagleBone, this is 3.3V.

In the event that you need to convert between voltages, keep in mind that
you will need a bidirectional converter.

Chapter 7

[137]

Serial Peripheral Interface
Serial Peripheral Interface (SPI) is a three-wire serial interface. This is a very
simple serial interface. In contrast to I2C, the SPI interface only defines bits and
has no concept of bytes. It can be considered to be a shift register. The device
being connected to will have additional constraints on the data format it wants.

The three wires or signals are as follows:

•	 Clock: The data is transferred either on the rising or falling edge of the clock.
The edge used depends on the device.

•	 A signal to transfer data from the BeagleBone to the device: This is
sometimes known as Master Out Slave In (MOSI) or Slave In Master Out
(SIMO). The master is the BeagleBone and the device is the slave. This line
can be optional for write-only devices such as an SPI control for an LED.
The clock-edge configuration determines when data is valid on this line.

•	 A signal to transfer data from the device to the BeagleBone: This is
sometimes known as Master In Slave Out (MISO) or Slave Out Master In
(SOMI). The master is the BeagleBone and the device is the slave. This line can
be optional for read-only devices such as a dumb sensor that provides data.
The clock-edge configuration determines when data is valid on this line.

On each tick of the clock, both the BeagleBone and the device will each receive and
transmit one bit. SPI is always a full-duplex interface. Data flowing on either wire
can be ignored by either side but cannot be stopped. SPI is commonly used with one
additional wire, a chip select (http://en.wikipedia.org/wiki/Chip_select) or
an enable signal. This is the signal that tells the device you are connecting to that it
is being talked to. It is optional but not using this signal means you can only have
one device per SPI interface. This signal is normally an active low signal on the
BeagleBone. An active low chip select means the chip select signal only enables the
device when the signal is low or logic 0.

An example connection using the chip select signal is to connect the clock, MOSI,
and MISO in parallel. Unless the chip select signal is active, the slave device keeps
its MISO signal tristated, that is, the signal is put into a state as if it was not there.
The slave device also ignores the clock and MOSI line while the chip select signal is
inactive. When the chip select signal is active, the slave device responds. This way,
the master can select which slave device to talk to.

http://en.wikipedia.org/wiki/Chip_select

Interfacing with the BeagleBone

[138]

Summary
In this chapter, we went through a quick description of basic electrical
engineering concepts as a foundation for interfacing the BeagleBone with other
things. We looked at the available signals and power on the expansion connectors,
P8 and P9, on the BeagleBone. We also briefly looked at the pin mux used to select
different functionalities on the expansion connector. For the expansion connector,
we discussed several details that are critical for interfacing. The BeagleBone uses
3.3V for all the logic signals. The only signals that aren't 3.3V on the BeagleBone
are the 1.8V analog to digital converter inputs. We then looked at using a transistor
to interface to signals that aren't 3.3V and to drive higher current.

We also looked at a few specific things that can be interfaced using a transistor.
For the LEDs, we looked into determining the resistor values using Ohm's law.
For relays, we touched on hazards such as inductive kickback, which can be
suppressed with a diode.

Then, we turned our attention to taking input from a switch with a pull-up resistor
on a GPIO. Finally, we got a taste of interfacing with SPI and I2C buses. We looked
at the signals involved for each bus.

In the next chapter, we will discuss expanding the BeagleBone on a higher level
using expansion boards and off-the-shelf accessories.

Advanced Software Topics
So far, all of our programming has been done using high-level languages, such as
shell script or Node.js. In this chapter, we will look at other BeagleBone software
development methods along with other pieces of software on the BeagleBone that
are necessary to support additional hardware. The BeagleBone is a full Linux system
like Linux on a desktop or laptop and most desktop development techniques will be
applicable. In this chapter, we will cover the following topics:

•	 BeagleBone programming with the C and Linux APIs
•	 User space / kernel space
•	 Kernel driver on the BeagleBone
•	 Device tree on the BeagleBone
•	 Pinmuxing
•	 Real-time behavior on Linux

The BeagleBone programming with the
C and Linux APIs
Almost all Linux programs written in C for a desktop or laptop can be made to
work on the BeagleBone if it uses only the Linux API. While this is a qualified
statement, many programs will fall into this category. The gating factor is the
presence of hardware. For example, a program that requires a keyboard will
not work unless a keyboard is installed.

This section is applicable to other programming languages
such as C++.

Advanced Software Topics

[140]

The things that are likely to break when moving from the desktop to the BeagleBone
are as follows:

•	 Software that accesses hardware using the low-level APIs rather than the
higher-level abstractions layers; for example, an older desktop system may
offer a parallel port that some applications will try to use as GPIOs. While the
parallel port access is a standard Linux API, there is no equivalent parallel
port on the BeagleBone.

Most software written to use the parallel port in this fashion
can often be rewritten to use the GPIO on the BeagleBone.
The primary concern in this case is the electrical interface.
A PC parallel port usually runs at 5V, but the BeagleBone
GPIO runs at 3.3V.

•	 Using the desktop-specific features such as interfacing to the PCI and
PCIe buses. These buses do not exist on the BeagleBone. Most likely the
bus-specific software is trying to determine features such as address and
mapping, which can be done on the BeagleBone but in a different manner.
This is another example of using a low-level API instead of a proper Linux
kernel abstraction.

•	 Software that makes assumptions about memory alignment is not likely to
work. The x86 architecture used on a desktop Linux has hardware support for
unaligned accesses. The ARM architecture on the BeagleBone will generate a
fault on unaligned access. This is likely to appear as a segmentation fault or a
performance impact if Linux is configured to emulate the unaligned access.
An example of the unaligned access is casting an offset in an array of char
into int without checking the word's boundary alignment.

•	 Multimedia acceleration may range from suboptimal or completely broken
when moved directly to the BeagleBone. This is due to the differences in
SIMD instructions on the x86 versus the ARM cores. Often this will break
immediately due to the acceleration being written in machine language,
but this may be a potential problem if it is done with the C code and
assumptions on the compiler.

The ARM core on the BeagleBone has an SIMD instruction set
known as NEON. It is designed for multimedia acceleration
but requires the software to be written for it.

•	 3D graphics program written to use the full OpenGL API. The BeagleBone
hardware only supports OpenGL ES, which is the embedded subset.

Chapter 8

[141]

The preceding issues on the BeagleBone are largely due to hardware differences.
The BeagleBone uses an ARM core whereas desktops and laptops mostly use an
x86 core.

The reverse, running the BeagleBone Linux C program on a desktop or laptop, is less
likely to work for several reasons. The important things to keep in mind when trying
to prototype software on a desktop or laptop for the BeagleBone are as follows:

•	 Interfacing many types of hardware with the BeagleBone is relatively
straightforward. However, this is less straightforward on a desktop.
BeagleBone software is commonly written to control the hardware attached
to it. For example, most desktop systems do not offer GPIOs unlike the
BeagleBone. Software written to control GPIOs is not likely to work.

•	 It is easy to abuse Linux APIs as a shortcut to avoid writing proper drivers,
but this will break prototyping software on desktops. An example is the
common circulated shortcut to directly configure the BeagleBone hardware
by reading and writing to /dev/mem. Reading and writing to /dev/mem is a
Linux standard API but the behavior is very specific to the BeagleBone. For
almost everything, the same task can be done by proper higher-level Linux
APIs or writing a proper Linux kernel driver.

•	 An exception to this is the higher-level applications that tend to be very
portable. The graphical user interface can often be moved between the
desktop and the BeagleBone provided they use the same underlying
framework. For example, an application with a graphic display using
the X Windows system should work with almost no changes on the
BeagleBone provided a proper X server is installed.

Building the BeagleBone applications with the
Linux API
Except for simple applications, most applications will leverage the existing libraries
or even existing applications. The rich library of Linux applications is a very strong
reason to use Linux in an embedded device such as the BeagleBone. This can be
done in two general ways. The library may be available from the system software
provider. For example, the Debian-based and Ubuntu-based distributions on the
BeagleBone offer most of the same libraries as the equivalent on a desktop. The
second way is compiling the library yourself.

Advanced Software Topics

[142]

Compiling the existing libraries on the
BeagleBone
In general, libraries can be natively compiled on the BeagleBone just like on a desktop.
Most distributions for the BeagleBone will have a C compiler installed by default along
with standard header files. The tools to compile software not included beyond the C
compiler can usually be installed from the distribution's repository. There are a few
drawbacks of native compilation on the BeagleBone. They are as follows:

•	 Speed: As flexible and as powerful as the BeagleBone is, most desktop
systems are faster. This translates into a quicker compilation compared
to the BeagleBone.

•	 Storage space: The BeagleBone is designed to be an embedded device and
lacks high-speed interfaces for hard drives. At the time of writing this book,
the primary storage space on the BeagleBone is the microSD card, which
is limited to about 32 GB. Most modern hard drives can easily exceed this
capacity. The USB interface can be used for a hard drive interface, but this
is of limited speed.

•	 Memory: The BeagleBone has considerably less memory than the current
desktop systems. A BeagleBone Black with 512 MB has between 1/8 and 1/32
of the memory on a desktop system. Lack of memory can limit compilation
speed more than a slower processor.

Cross compiling software for the BeagleBone
One way to side step the preceding limitations is to cross compile software. Cross
compiling software is the process of compiling software on a desktop or a laptop using
a special compiler to generate binaries suitable for the BeagleBone. Cross compiling
takes advantage of the faster and resource-rich desktop system to generate software for
embedded devices that have fewer resources. Cross compilation terminology describes
the host as the machine running the compiler. The target is the machine that will run
the resultant executable. In our case, the host is the desktop machine and the target is
the BeagleBone. This extra speed does come with some added complications as follows:

•	 A special cross compiler is needed. The easiest way to obtain a cross
compiler is to install one from the distribution on the desktop. This can also
be downloaded from http://www.linaro.org/downloads/. Look for the
section labeled Toolchains. Toolchains can also be built using a script called
crosstool-ng. Check out the link http://crosstool-ng.org/ for details.

http://www.linaro.org/downloads/
http://crosstool-ng.org/

Chapter 8

[143]

•	 For libraries designed to use build wrapper tools such as cmake, libtools, or
autoconf, special parameters will need to be provided to the wrapper tool to
make them aware of cross compilation. Unfortunately, some packages have
not been tested with cross compilation or worse yet, written in a way that uses
these tools that make cross compilation difficult. An example problem is an
autoconf configure script that explicitly tries to build and run the resultant
executable using the cross compiler. A cross compiler for the BeagleBone will
generate binaries suitable for ARM, which will not run on a desktop.

•	 Library build systems that make assumptions on locations can have subtle,
hard-to-detect bugs. For example, a library build system has an explicit
reference to look for headers at /usr/local/include rather than allow the
path to be supplied. Using /usr/local/include will pick up the include
files configured for the host system rather than the proper target system's
include files.

There are several tools designed to work around these complications. These tools are
often used by the distributions to build (for more details, use a search engine):

•	 Buildroot: This is one of the simpler tools but is not currently used much.
It is a collection of makefiles to help with cross compilation. For more details,
visit http://buildroot.uclibc.org/.

•	 OpenEmbedded and Yocto: These two share a common foundation but
offer different degrees of support. They are extremely powerful tools for
cross compilation. Other extremely advanced features include the ability
to build a fully customized image for flashing with a single command.
OpenEmbedded is the tool used to build the Angström distribution.
The flexibility and power of OpenEmbedded comes at the price of slightly
more complex configuration and a steeper learning curve. OpenEmbedded
offers a full collection of build tools and cross compilation configuration to
work around the complications. In addition, OpenEmbedded has a large
number of recipes to handle cross compilation of many packages. For more
information, visit http://openembedded.org/.

OpenEmbedded is a build tool and is often confused with
distributions. OpenEmbedded can be used to build different
distributions. For example, Angström is a distribution built
using the OpenEmbedded tool. A distribution is a collection
of different pieces of software with a configuration scheme
defined by configuration files within OpenEmbedded.

http://buildroot.uclibc.org/
http://openembedded.org/

Advanced Software Topics

[144]

Examples of the BeagleBone C compilation
To illustrate C compilation for the BeagleBone, we will once again use the classic
Hello, World example. The code shown below can be used to check the distribution
and toolchains:

 1: #include <stdio.h>
 2: int main(int argc, char **argv)
 3: {
 4: printf("Hello, World\n");
 5: return 0;
 6: }

Put this program in a file named hello.c on the build system.

Native BeagleBone compilation
To compile the preceding program, use the following command:

$ gcc hello.c -o hello

To test the resultant executable, use the following command:

$./hello

If the compiler is working, there should be no errors; errors such as command not
found or missing stdio.h points to the distribution not having the compiler or
header files properly installed.

Cross compiling a program for the BeagleBone
Make sure your cross compiler is installed on your desktop or laptop. This example
assumes you are on a Linux system. Cross compiling from a Mac or a Windows
system is possible but will not be covered in this chapter. The name of the cross
compiler will vary depending on which cross compiler you are using. Generally,
the cross compiler will be named something like this:

arm-none-eabi-gcc

The name will typically begin with arm and end with gcc. The wording between arm
and none will vary depending on the source of the compiler. Everything from arm
up to the dash before the gcc is known as the cross compilation prefix. One trick to
identifying the cross compiler if it is installed in the search path is to type arm- and
invoke the shell's completion feature with the Tab key. If it is set up correctly, this
will often show enough information to determine the cross compiler prefix.

Chapter 8

[145]

A potential trap for cross compiling is the cross compiler must be configured to use
the same libraries as the distribution used on the BeagleBone. It is possible to have
a cross compiler set up to generate ARM binaries but not call the correct libraries.
Examples of cross compilers that can cause problem are as follows:

•	 The older BeagleBone distributions came in two flavors reflecting the
libraries they were configured for. Older ARM cores did not include floating
point support in the hardware, so all the floating point operations had to
be emulated. As floating point support was added to the ARM core, the
additional support was invoked by the emulation code. This is inefficient
as it requires additional steps. This process is described as soft float. A
high performance method of invoking floating point support is to directly
generate code that would fail on systems that are not equipped with floating
point. This method is hard float. A compiler configured to use hard float
binaries is not compatible with a BeagleBone distribution setup for soft float
and vice versa.

•	 Android systems use a simplified library known as bionic. A cross compiler,
such as the one that is provided with the Android native development kit,
will not properly compile programs for a BeagleBone. An obvious exception
is if the BeagleBone is running Android!

•	 The BeagleBone uses an ARM Cortex-A8 core. Other embedded devices can
have ARM cores, such as a Cortex-M0, Cortex-M3, or Cortex-M4. The cross
compiler setup for these cores is incompatible with the BeagleBone.

Unfortunately, there are no universal ways to determine cross compiler suitability.
The original intent of the cross compiler name is to identify how it was configured.
However, many cross compilers are vaguely named with no definitive indication
of compatibility.

To cross compile for the BeagleBone after installing the cross compiler, use the
following command:

arm-none-eabi-gcc hello.c -o hello

Replace the prefix if your cross compiler has a different prefix. The native compiler
and the cross compiler share the same arguments provided they are from the same
version of the compiler. You can determine the compiler version using the -v option,
as follows:

•	 For a native compiler, use the following command:
$ gcc -v

•	 For a cross compiler, use the following command:
$ arm-none-eabi-gcc -v

Advanced Software Topics

[146]

It is very important to ensure any path reference contain suitable files for the
BeagleBone. For example, if the include file search path option (-I) or the library
search path option (-L) is used, only point them to versions for the BeagleBone. It is
unlikely to be /usr/include, /usr/lib, /usr/local/include, or /usr/local/lib.

The executable generated earlier can be tested by following these steps:

1.	 Copy hello to the BeagleBone using scp as described in the exercises earlier.
For example, the following command will copy it to /tmp on the BeagleBone:
$ scp hello root@192.168.7.2:/tmp

2.	 Then, execute it using the following command:
$ /tmp/hello

One common but confusing error is File not found while attempting to execute it.
If ls -l shows the file with the right permissions, then the likely common problem
is that the cross compilation toolchain is not configured for the distribution used on
the BeagleBone.

By default, executables are dynamically linked. During compilation,
the name of the dynamic linker is hardcoded into the executable.
If this name does not match the dynamic linker on the BeagleBone,
the system will complain about the file not found. This error refers
to the dynamic linker not being found.

User space versus kernel space on the
BeagleBone
On Linux, software is divided into two realms. The first realm, kernel space,
is a privileged space that has visibility of the entire system. On some systems,
this is also known as the supervisor mode. The other realm, user space, is an
unprivileged space backed by hardware. It has a limited visibility of the entire
system. All hardware access is done through the Linux API. Attempts to increase
visibility beyond what the Linux API allows will result in a fault or at least an
error. All the exercises up to this point have been exclusively in the user space.
One important detail to note is that the system software or distributions include
both kernel and user space components. Kernel space is exclusively in the Linux
kernel and everything else is user space.

Chapter 8

[147]

The distinction between user space and kernel on the BeagleBone is very important.
The kernel is aware of the differences in hardware. A few things that the kernel is
aware of are as follows:

•	 Board level bugs or feature changes: If the future version of the BeagleBone
changes the way the LEDs are used in our LED flasher exercises, the kernel
will have to know about it. Similarly, if the BeagleBone contains different
revisions of the hardware, the kernel will have to be aware of it too.

•	 Errata and fixes on the SoC: The SoC is a complicated piece of silicon and
has errata associated with it. For example, the initial BeagleBone White
boards contain the first revision of the AM335x SoC rated at a maximum
720 MHz. The BeagleBone Black uses the second revision of the same SoC
rated at 1 GHz. The kernel at boot time detects the revision and sets the
clock's speed limits appropriately.

•	 Physical resources on the system: The memory on the BeagleBone Black
and BeagleBone White differ in size and type. The kernel is aware of it and
does its best to abstract the difference away from user space.

The benefit of the kernel being aware of these differences is that the user space
software can often be agnostic to the differences. Our LED flasher exercises will
work on future boards as long as the kernel presents the same interface.

For most users, the following key points apply:

•	 User space offers more debugging tools compared to the kernel.
•	 User space has the illusion of multitasking so it is very easy to open multiple

sessions to the BeagleBone when debugging.
•	 Due to abstractions, user space can have performance penalties.
•	 User space depends on hardware support being in the kernel.
•	 It is very tempting to use the debugging Linux APIs to circumvent the user

space limitations to support new hardware or to avoid learning the proper
API. This is a very bad idea for the following reasons:

°° It makes the user space application specific to the revision of
the hardware

°° This discards any protections offered by abstracting the hardware
°° It makes it very difficult to move to improved hardware, for example,

this would complicate movement from the original BeagleBoard
classic to the BeagleBone

°° Debugging APIs such as spidev or the equivalent for I2C were
created to debug without performance considerations

Advanced Software Topics

[148]

Kernel drivers on the BeagleBone
The proper means to support hardware on the BeagleBone is with a Linux
kernel driver. This includes both stock hardware on the BeagleBone and any
new added hardware. Using a kernel driver avoids the preceding drawbacks
and allows maximum performance benefits. The resources on the SoC can be
used with minimal difficulty. Access to things such as DMA and interrupts are
very difficult in user space but are relatively straightforward in the kernel.

Writing a device driver is beyond the scope of this introductory book. However,
advanced beginners should be aware of how to build the kernel. The Linux kernel is
well written and cross compilation is easily done. Building the kernel can be done in
a series of steps. You will need a cross compiler. The sample command lines assume
the cross compiler prefix is arm-none-eabi-. If you have a different compiler setup,
replace that prefix with yours. All the following commands will have ARCH=arm to
tell the kernel build system that you are building for the ARM architecture.

These instructions assume you are cross compiling from a Linux desktop or
laptop. It is possible to compile the kernel natively on the BeagleBone, but it can
be a long and tedious process. For those who would like to attempt it, the same
instructions can be used with the cross compile prefix set to empty or by just
omitting the CROSS_COMPILE= part entirely. Kernel compilation is generally not
supported on other operating systems such as Windows. For users on Windows,
the easiest option is to create a virtual machine running Linux.

Some distributions have the process partially automated with
a script. For example, the Angström kernel is built by the
OpenEmbedded build system. The Debian BeagleBone kernels
can be built using the process described at http://eewiki.
net/display/linuxonarm/BeagleBone. This build process
uses a script to automate the building.

To build the Debian BeagleBone kernels, follow these steps:

1.	 Download the kernel source tree. The core support for the BeagleBone is in
the mainline Linux kernel but other trees specific to BeagleBone may offer
more functionality. Kernel trees are often provided as part of a Git repository.
Git is a source revision control system commonly used by Linux kernel
developers. If the kernel is not in a Git repository, unpack the download.

http://eewiki.net/display/linuxonarm/BeagleBone
http://eewiki.net/display/linuxonarm/BeagleBone

Chapter 8

[149]

2.	 Navigate to the kernel tree you have downloaded. This is usually a directory
with folders such as arch, boot, drivers, kernel, and other. Depending
on how you download the kernel tree in the last step, the place you need to
be buried is in a directory or two deep. The rest of the instructions assume
that you are in the directory with the subdirectories. You will need to create
a configuration file. There are two common ways to get a configuration file.
They are as follows:

°° If the kernel source you are using is similar to your running
system and your running system provides it, you can then
copy the compressed configuration file from your BeagleBone.
The compressed configuration file is at /proc/config.gz.
For example:
$ scp root@192.168.7.2:/proc/config.gz /tmp

$ gzip -d /tmp/config.gz

$ cp /tmp/config TOP_OF_YOUR_KERNEL_TREE/.config

If your kernel tree is at /home/user/BeagleBoneKernel, replace
TOP_OF_YOUR_KERNEL_TREE with /home/user/BeagleBoneKernel.

°° Attempt to use the default config file. Depending on the kernel tree,
this may be potentially buggy. To use the default configuration, use
the following command:
make ARCH=arm omap2plus_defconfig

This will set the configuration to the default configuration. The kernel
configuration file is stored in .config on the top of the kernel tree.

3.	 Optionally, edit the configuration file as necessary. New drivers can often be
added by just enabling the option. There are several interfaces to configure
the kernel. You can invoke them using the following command:
$ make ARCH=arm menuconfig

This will start a text-mode, graphical-like interface.
$ make ARCH=arm xconfig

This will start a graphical interface that can be used with a mouse.
It is strongly recommended that you use one of these options to edit
the kernel configuration. While the config file is a text file, manual
edits may not correctly manage all the dependencies for a given option.

Advanced Software Topics

[150]

4.	 To build the kernel, use one of the following two commands. The difference
is the format used by the distribution.

°° For newer versions of Ubuntu/Debian, use the following command:
make ARCH=arm CROSS_COMPILE=arm-none-eabi- zImage

The resultant kernel will be at arch/arm/boot/zImage.

°° For Angström, use the following command:

make ARCH=arm CROSS_COMPILE=arm-none-eabi- uImage

The resultant kernel will be at arch/arm/boot/uImage.

5.	 The -j option can be safely added to the make command line to parallelize
the compilation. However, this hides compilation errors.

6.	 If your kernel is configured to use modules, they can be built by the
following command:
make ARCH=arm CROSS_COMPILE=arm-none-eabi- modules

7.	 Install the kernel. The exact location of the kernel will depend on the
distribution of the system software that you are using. As this is beyond
the scope of this book, refer to the distribution for details on where to
place the kernel and the name for it.

As a precaution, save the old kernel in case your new kernel has
problems. This can be done by renaming the original uImage/
zImage image before copying into your kernel. On the BeagleBone
White, you can revert to the original kernel using an SD card reader on
the desktop. For the BeagleBone Black, you can boot from a microSD
card like you do on the BeagleBone White, and then manually revert
the change on the internal flash. Alternatively, experiment with new
kernels using a microSD card.

Device trees on the BeagleBone
One feature that was introduced in the Linux kernel is the concept of a device
tree. The goal of the device tree is to allow one kernel binary to support different
hardware by changing the device tree. A device tree is a data structure used by the
kernel to describe the underlying hardware.

Chapter 8

[151]

The device tree data informs the kernel about the following:

•	 Physical address of the hardware blocks, for example, the I2C block on the
BeagleBone is supported by the same driver as the one on the original Beagle
boards. However, they differ by the address.

•	 Any hardware revision differences.
•	 Name of the driver the hardware uses. This is often specified as a

compatible attribute.
•	 Hardware resources such as interrupts and DMA resources used.
•	 Register settings specific to the hardware.

The device tree information depends on the driver using it. There can be other
attributes such as GPIOs to enable functions.

Like building a kernel, the device tree is an advanced topic. We will go through an
overview of the device tree. The device tree is described by a Device Tree Source
(DTS) file. During the kernel compilation, the DTS file is compiled into a Device
Tree Blob (DTB) or binary. The compiler used to generate a DTB is the dtc. It is a
part of the kernel tree. It is described at Documentation/devicetree in the kernel
tree. The device tree is often built as part of the kernel build process.

Most device tree source files are found at arch/arm/boot/dts. The compiled DTB
files can be explicitly loaded by the bootloader or can be included as part of the
kernel binary. For example, the zImage format used by the newer Debian/Ubuntu
distributions includes the DTB files.

The concept of a device tree for the ARM architecture is relatively new. Device trees
were introduced roughly at the same time frame as the introduction of the BeagleBone
Black. A consequence of this is that the device tree support is still being phased in and
is subject to change. Prior to the device tree, the hardware was largely described by a C
source file known as a board file. This file is compiled into the kernel. Both the changes
and phase-in period means that a lot of the older online tutorials for driver addition
are obsolete. Another unfortunate consequence of this is that the device drivers that
have not been updated for device tree support may not be available.

Advanced Software Topics

[152]

Pinmuxing on the BeagleBone
Pinmuxing is a combined software and hardware concept that embedded users,
such as the BeagleBone users, must be very aware of if they are using anything other
than the basic functions of the BeagleBone. Any interfacing using the expansion
connector P8 and P9 is likely to involve the pinmux unless the hardware being
interfaced matches the default settings. Some of the off-the-shelf expansion boards
come with configuration settings to automate this process. Regardless of whether it
is automated, it is a good idea to at least confirm the pinmux settings. As described
in Chapter 7, Interfacing with the BeagleBone, pinmux is used to select one of the eight
functions on each signal from the SoC. It is the last part of the SoC before a signal
leaves and the first part before a signal enters the SoC.

From a software standpoint, it is possible for the kernel driver to be configured
perfectly and yet any external connected hardware to the SoC would not work. The
pinmux is controlled by a different driver. Unless the pinmux driver is configured
properly, signals cannot get to or from the hardware block. This can be compared
to a drawbridge between the inside of the SoC and the outside world; until the
drawbridge is lowered, signals cannot get in or out. The pinmux documentation is
divided between two documents on the SoC. The most reliable way to locate the
documentation for the SoC and any other tools referred to from Texas Instruments
is to search for the SoC family, AM335x, on its website (http://www.ti.com/).
The specific links often change. The following are a few of the several tools that
can be used to figure out the pinmuxing:

•	 Texas Instruments, which makes the SoC used on the BeagleBone, provides
a pinmux tool. This is a tool for the SoC and is not specific to the BeagleBone.
You will need to determine the available signals from the BeagleBone SRM
or the BeagleBone schematics.

•	 The BeagleBoard community has a variety of tools that help to figure out the
pinmux settings on all the members of the BeagleBoards. They are provided
by users and are useful to vary the degree. To find them, search pinmux
and BeagleBone on a search engine. The author has not used these tools and
cannot comment on their usefulness.

•	 You can manually correlate the different documentation. The steps for these
will be discussed in the next section.

http://www.ti.com/

Chapter 8

[153]

Figuring out the pinmux on the
BeagleBone
The process of figuring out the pinmux can be very confusing for a new user. What
is described here is an attempt to identify the information from different sources and
connect them to determine a pinmux setting. There are four documents that contain
relevant information. They are as follows:

•	 BeagleBone SRM: This describes the signals from the SoC that are exposed
on the expansion connectors, P8 and P9. Most users will start here to identify
the pins they are using.

•	 BeagleBone schematics: While not strictly needed, the schematics can help
clarify some signals. Some signals on the BeagleBone are connected together
for backward compatibility with older revisions of the board. The schematic
along with the SRM will help you identify them.

•	 AM335x datasheet: This is the documentation labeled as the datasheet on
the Texas Instruments website. It is a much smaller PDF document than the
TRM. Most of the information here is hardware-specific but we need it to
identify the modes.

•	 AM335x TRM: This is the larger of the two documents from the Texas
Instruments website. It contains the software details for programming
the chip.

The process to determine the pinmux settings is as follows:

1.	 Using the BeagleBone SRM, identify the pins on the expansion connector
you would like to use. For example, if you have an LED hooked up to pin
30 on P8, the SRM calls this GPIO2_25 and the signal is hooked up to R6
on the SoC.

2.	 All current versions of the BeagleBone use the ZCZ package. You can confirm
this by looking at the BeagleBone schematics.

3.	 Search in the AM335x datasheet for what it describes as ball R6 on the ZCZ
package. The datasheet is the smaller one of the two documents from the
Texas Instruments website. This should be a row in a table with a column for
the pin name than another column showing eight possible modes. We can
ignore the electrical details for now. The eight possible modes are the eight
possible functions that can be assigned to this pin or ball. The name in the pin
name column can be different from the name used in the BeagleBone SRM.
The two bits of information we need from this step is the name it uses here
and the mode number for the function we need. In our example, the name
is LCD_AC_BIAS_EN and the mode for GPIO2_25 is mode 7.

Advanced Software Topics

[154]

4.	 The AM335x SoC TRM document contains the rest of the information needed.
This is the larger of the two documents. In the TRM, look for the Control Module
chapter. Within that chapter, we get the following information:

°° Under the pad control registers, there is a description of the registers.
It shows the bits used to control the functions. Each pin will have
one such register. Refer to this to figure out the value needed for
the register.

°° Toward the end of the chapter, there will be a list of registers. It will be
in the part of the chapter labeled Registers. The list will show an offset
and an acronym. To determine the offset, look for the pin name. It will
have conf_ prepended to it. In our example, we will look for conf_
lcd_ac_bias_en. From the table, it shows an offset of 8ECh or 0x8EC.

From the preceding procedure, we have determined a register offset and a value.
To make use of that in a current as of writing kernel, we need to get that information
into the device tree. Typically, the device tree can be found at arch/arm/boot in
the Linux kernel source tree. The exact section of the device tree will depend on the
particular driver and version of the kernel. Most pinmux settings will be defined in
a section similar to this:

pinctrl-single,pins = <
 0xEC (PIN_OUTPUT_PULLDOWN | MUX_MODE7) /* lcd_ac_bias_
en.gpio2_25 */ >;

The 0xEC value is the offset. The device tree wants the offset to be relative at the
beginning of the pinmux registers. To determine the offset for the device tree from
the offset from the TRM, subtract 0x800. The next argument is the settings for the
pinmux. It can be given symbolically like the example or can be given as another
number. The number can be determined from the TRM's Control Module chapter
as shown in step 4 of the preceding process.

For readers who are familiar with direct access, all these offsets may
be confusing. The pinmux register resides at a fixed physical address
on the processor. The fixed physical address can be determined by
looking at the TRM. The Memory map chapter provides the addresses of
the entire SoC. From that chapter, we can see that the control module
registers begin at 0x44e10000. In the Control Module chapter, we can
see that the pinmux or pad configuration registers begin at 0x800.
In our example, the offset for the register is at 0x8ec. To get the full
physical address add 0x44e10000 to 0x8ec to give us 0x44e108ec.

Chapter 8

[155]

It is customary to note the name and function as a comment to the pinmux setting.
The naming convention used is the pin name as found in the datasheet followed by
a period and then followed by the function name used. The datasheet pin name is
usually the pin's mode 0 function.

The BeagleBone and real-time
performance
New users that are not from Linux-based embedded backgrounds often have an
expectation of real-time performance. Linux is not a real-time operating system
(RTOS). It is beyond the scope of this book to fully address this point but some
clarification of potential confusion is needed.

Real-time performance means repeatable and predictable timing behavior. It does
not mean higher performance as the name would suggest. Real-time performance is
often needed in embedded devices so they can respond to external events in a timely
manner. For example, maintaining a consistent motor speed from a BeagleBone
requires the BeagleBone to respond to the motor speed measurements in a
consistent manner.

On the BeagleBone systems running Linux, real-time behavior can be addressed in
the following ways for noncritical systems:

•	 Compared to many smaller embedded systems, the BeagleBone is
considerably faster. This may be enough to approximate the real time for
most of the time. It is essential to note this is viable for noncritical systems,
that is, a system where an occasional violation of timing behavior does not
result in something very bad.

•	 Modify the kernel with a real-time patched kernel. This can be very tricky
to debug and provides limited real-time capabilities. Real-time patches are
under development and may be buggy. This option should be considered
with an understanding that considerable debugging of the kernel may be
needed. There are two main variants of adding real-time behavior to the
Linux kernel, as follows:

°° Linux is modified so different parts of the kernel cannot monopolize
the system for large periods of time.

°° Linux runs as a subsystem on top of a larger real-time system.
The underlying real-time system will run Linux whenever there
is nothing more time critical to run.

Advanced Software Topics

[156]

•	 Leverage the PRUSS block on the BeagleBone. The PRUSS block is part of the
AM335x SoC that consists of additional cores to provide real-time capabilities.

•	 Depending on the behavior needed, it may be possible to offload the real-time
aspects to a dedicated hardware on the AM335x SoC. For example, generation
of Pulse Width Modulation (PWM) signals can be directly done by dedicated
hardware on the SoC itself.

•	 A complicated option is to add an external microcontroller to perform and
interface it to the BeagleBone over I2C or SPI. This is similar to the last option
with the PRUSS except the processing is external to the SoC.

There are a few indirect pitfalls of attempting it real time on the BeagleBone:

•	 Real time is not faster. Implementations requiring faster behavior without
a need to guarantee timing can be improved by moving appropriate pieces
to the kernel if it hasn't been done. GPIO toggling like we did for the LED
exercises is slow. We did the exercises in user mode using a scripting
language. Moving the code into the kernel will improve the performance.

•	 Merely moving into the kernel mode does not necessarily provide real-time
performance. Kernel mode lacks the performance impact of many of the
abstractions but other parts of the kernel can interfere with timing.

There are many more factors to consider regarding real-time behavior. This section is
here mainly to clarify some confusion seen in the BeagleBoard community regarding
real-time behavior. It is not intended to be anywhere near a complete overview of
real-time behavior on a BeagleBone.

Summary
In this chapter, we looked at several advanced software topics. We began by looking
at programming the BeagleBone like a desktop system using the C and Linux APIs.
You learned that the BeagleBone shares many things with a desktop Linux system
and can reuse most libraries and software developed on the desktop. However,
leveraging desktop-developed software may have some potential issues on the
BeagleBone. Despite the potential issues, a desktop can prototype applications
with a few caveats.

We then looked at software compilation for the BeagleBone. Next, we looked at the
native compilation on the BeagleBone, which works just like a desktop. However,
this process can be slower compared to a desktop. We also looked at the concept of
cross compiling where we compiled software for the BeagleBone on the desktop.
Cross compiling is faster but there can be complications.

Chapter 8

[157]

As an example of building software, we built a C version of Hello, World for the
BeagleBone in two ways. First, we natively compiled the Hello, World application
using native compilation on the BeagleBone. Then, we looked at cross compiling
the same Hello, World application.

You learned that Linux has a user mode and a kernel mode and each mode has
different levels of access. Due to the different levels of access, hardware support
should be given through the kernel despite the tempting user-mode debugging APIs.

Next, we looked at the device tree data structure used for hardware support in the
Linux kernel. We finished off the chapter with a description of the pinmux along
with how to determine the configuration of the pinmux.

Finally, we rounded off the chapter with some clarification of the real-time behavior
and the BeagleBone running Linux. Linux is not a real-time system.

With the topics covered in this chapter, you should be able to get a sense of
what is needed software-wise to support additional hardware interfaced to the
BeagleBone using the expansion connectors P8 and P9. These topics are presented
largely as a roadmap to these advanced topics instead of purely as a how-to for
the advanced topics.

In the next chapter, we will look at off-the-shelf expansion options for the BeagleBone,
such as what the SRM describes as a cape, along with USB expansion options.

Expansion Boards
and Options

We have previously looked at interfacing the custom hardware to the BeagleBone
using the GPIO, SPI, and I2C interfaces. While that offers the most flexibility, there are
prebuilt, off-the-shelf expansion options for the BeagleBone. These can be a quicker
and a simpler way of adding features provided they meet your needs. These options
provide a vast library of hardware for the BeagleBone. In this chapter, we will look at
the following topics:

•	 Prebuilt expansion boards
•	 Example cape offerings
•	 Configuring Linux for capes
•	 USB expansion options
•	 USB versus capes for expansion
•	 Custom hardware versus off-the-shelf hardware

The BeagleBone capes
Capes are expansion boards that plug in to the expansion connectors, P8 and P9, on
the BeagleBone and have a specific pin usage. Capes are defined in the BeagleBone
SRM document. Capes are specific to the BeagleBone subfamily and specifically do
not include the BeagleBoard Classic or the BeagleBoard xM. Anyone can build a
cape using the description in the SRM.

For readers familiar with the microcontroller-based Arduino boards,
capes are conceptually similar to a shield for Arduino boards.

Expansion Boards and Options

[160]

As defined in the BeagleBone SRM, capes can be of any shape, but the location
of the Ethernet RJ45 connector along with the location of the LED can dictate a
specific cut-out pattern. Alternatively, extra tall connectors can be used to clear
the Ethernet RJ45 connector. Up to four capes can be stacked using dual-sided
connectors. A dual-sided connector is a through hole connector with male pins
on one side to fit the expansion connectors P8 and P9, and a female socket on the
other side. However, you will need to be careful not to stack capes that electrically
conflict or have conflicting resource requirements.

The main distinguishing and required feature for a cape is an I2C EEPROM used to
identify the cape along with the resources it uses. The I2C EEPROM format is defined
in the SRM. The exception to the EEPROM requirement is for passive expansion
boards such as a blank breadboard. In order to allow stacking, the EEPROM's I2C
address needs to be physically configurable to one of the four possible addresses with
a dip switch or jumpers. This EEPROM is the same as the BeagleBone identification
EEPROM we discussed in the exercises of the previous chapters. The specifications
of EEPROM are as follows:

•	 24C256 or compatible
•	 32 KB
•	 Configurable for I2C addresses 0x54 to 0x57 (these addresses are dedicated

to cape identification)
•	 Connected to I2C2 on P9 using pins 19 and 20

Unless otherwise specified, the I2C bus numbers in this chapter
refer to the physical bus numbers used in the schematics. Due
to the way the Linux software is configured by default, physical
I2C1 is not enabled. The Linux kernel numbers the buses as they
are enabled. As a result, the software I2C1 is really the I2C2 bus
shown in the hardware documentation.

The EEPROM contents are shown in the following table:

Name Offset Size Description
Header 0 4 This contains the bytes 0xaa, 0x55, 0x33, and

0xee to identify this as a cape ID EEPROM.
Revision 4 2 This is the revision of the EEPROM format and not

the revision of the cape.

Chapter 9

[161]

Name Offset Size Description
Board name 6 32 This name in ASCII text of the cape.
Version 38 4 This is the hardware version of the cape in ASCII.
Manufacture 42 16 This is the name of the cape manufacture in ASCII.
Part number 58 16 This is the part number in ASCII.
Number of pins 74 2 This is the number of pins used by the cape and

the value is in hex.
Serial number 76 12 See BeagleBone SRM for description of the format.
Pin usage 88 148 These are the two bytes to describe each of the

configurable pins on the BeagleBone. This is the
data used to describe the pinmux setting needed
for the cape. See the SRM for the details.

VDD_3V3B
current

236 2 This is the maximum current in milliamp drawn
from this rail. Its value is stored in hex.

VDD_5V current 238 2 This is the maximum current in milliamp drawn
from this rail. Its value is stored in hex.

SYS_5V current 240 2 This is the maximum current in milliamp drawn
from this rail. Its value is stored in hex.

DC supplied 242 2 If the cape supplies power like a power supply
or battery cape, this field describes the current
capacity of the supply.

Note that the only description of functionality in the EEPROM is the name of the
name field. It is entirely up to the software to map the part number and revision
fields to the appropriate functionality. The main goal of the EEPROM is to identify
electrical requirements.

Capes on the BBB versus BBW
The differences between the BBB and the BBW impose a few differences in which capes
will work. The BBW has an additional connector to use the onboard battery charger
and LED driver. This connector has been replaced by a simpler but unpopulated set
of pads with only the onboard battery charger signals at a slightly different location.
Any capes that depend on that will not work on the BBB or vice versa.

Expansion Boards and Options

[162]

Additional features on the BBB, such as the onboard flash and the video output, looks
like a virtual cape to software. While the virtual capes can be disabled in software,
the presence of the onboard hardware can interfere with certain capes. Resources that
may conflict are as follows:

•	 Onboard flash: The onboard flash is connected to the MMC interface.
The MMC interface uses signals on the expansion connector. In order to
reuse those signals, the onboard flash needs to be held in reset through a
combination of software and hardware signals. Refer to the BeagleBone
SRM for the specific sequence required. Even with the onboard flash
held in reset, these signals may need to be qualified with reset due to the
processor switching the configuration to defaults at reset. Another potential
complication is that SoC will probe for the onboard flash each time the
BeagleBone is reset. This can interfere with the hardware using those pins.
This can be worked around by forcing the boot configuration as described
in the SRM.

Any capes or expansion boards that use the pins shared with
the onboard flash should not electrically drive the signals till
the software has properly configured the system.

•	 Onboard video: Most complications from the onboard video are in the
form of electrical loading. This can limit the speed of any signals on the
video lines. In addition, the onboard video is configured for 16-bit video,
which can conflict with other video usages such as 24-bit LCDs.

•	 Boot order: Capes that attempt to modify the boot order may not have the
same effect on both the BBW and the BBB. The onboard flash of the BBB
can change how the SoC will boot the BeagleBone.

Example capes
Capes cover a wide range of expansion hardware for the BeagleBone. There is no
complete authoritative list. The Beagle board website at http://www.beagleboard.
org/ lists some of the many offerings. A quick survey of what's available at the time
of writing this book includes the following:

•	 LCD capes with a range of sizes along with different options for touch screens
•	 FPGA interfaces for prototyping
•	 Stepper motor interfaces
•	 Sensor capes to sense temperature, pressure, humidity, acceleration, rotation,

and so on

http://www.beagleboard.org/
http://www.beagleboard.org/

Chapter 9

[163]

•	 Wireless interface capes providing things such as Wi-Fi and Zig Bee
•	 3D printer control capes
•	 GPS interfaces

Cape availability will vary. This is not an exhaustive
list! Features and availability are entirely up to the
suppliers/designers of the cape.

Capes and software on the BeagleBone
The original design of capes is to allow automated configuration when a cape is
connected to the BeagleBone. This is done by the following actions:

•	 The Linux kernel on boot up scans for the identification EEPROM at
addresses 0x54-0x57 on I2C2

Most kernels will refer to the hardware I2C2 bus for
capes as I2C1. Keep this in mind while reading the
software documentation for capes.

•	 If the EEPROM is found, the contents are validated
•	 Assuming the contents are valid, the pin configuration information is used

to configure the pinmux; the appropriate drivers will be enabled

With the introduction of the device tree, the process is slightly modified. Prior to
the device tree, each kernel binary supported a limited subset of capes. Newer
capes that require specific initialization would require a new kernel binary. With
the introduction of the device tree, it can be as simple as defining a new device tree
entry. The cape system with device tree requires an additional software component,
a cape manager. The cape manager performs the following actions:

•	 Scan the hardware I2C2 bus for an EEPROM at addresses 0x54 to 0x57
•	 Validate the EEPROM
•	 Use the PART-NUMBER:REVISION information from the EEPROM to configure

the board

Expansion Boards and Options

[164]

The cape manager uses the device tree overlays, which is a method to graft additional
information onto a running kernel's device tree. The full format and functionality
are described in Documentation/device tree in a kernel tree. A device tree overlay has
a similar syntax to a normal device. The difference is that the overlay contains only a
fragment of the device tree. It is compiled using the same tools as a normal device tree
file provided the tool is from a device tree overlay-enabled kernel.

An additional functionality of the cape manager is to allow the cape detection process
to be overridden. Capes can be forced enabled or disabled via options passed through
the Linux kernel command line. This is especially useful on the BeagleBone Black
where the extra features such as the onboard flash and the video interface appear as
a virtual cape. For situations on the BBB where those extra features are undesirable
due to resource conflicts, the software conflicts can be eliminated by disabling them
through the cape manager.

If you ever need to change the Linux kernel command line, this can
be done by modifying a text file located in the first partition of the
microSD card or the first partition of the onboard flash. For most
versions of the bootloader, U-Boot, the kernel command line is
stored in a text file named uEnv.txt. This is a text file containing
the settings for the bootloader. The specifics will depend on the
distribution. The changes in this file can render the BeagleBone
unbootable or lead to subtle problems.

USB devices on the BeagleBone
The BeagleBone offers a USB host port that allows most USB devices supported
by the Linux software to work on the BeagleBone. Many USB devices can be shared
with a desktop system or used to exchange data with a desktop system. Consider the
following points before using the USB option:

•	 Power: The BeagleBone can provide up to 500mA on the USB port, but
it needs to be powered from the barrel connector for reliable operation.
Powering the BeagleBone using the USB option may work but this is
outside of the USB specification. Keep in mind the 500mA limit is a USB
2.0 specification, but some mass-marketed USB devices may rely on the
500mA limit to be unenforced.

•	 Speed: The USB port on the BeagleBone is a USB 2.0 high-speed port and
can support high-speed, full-speed, and low-speed devices. However, due to
the way the software and hardware is designed, high-speed devices may not
archive the same throughput as a desktop system.

Chapter 9

[165]

•	 Multimedia: USB multimedia devices such as cameras, audio interfaces,
and video capture interfaces may not work well simultaneously. On many
desktop systems, there are multiple USB buses each capable of the full bus
speed. However, on the BeagleBone, there is only one bus. The addition
of a USB hub to increase the number of ports will divide the bus capacity
among all the devices.

You can see the locations of the USB host interface (at the left-hand side) and the USB
device interface (at the right-hand side under the highlighted area below the LEDs)
in the following image:

It is important to note the BeagleBone comes with both a USB device and a USB host
interface. A USB device interface allows the BeagleBone to connect to a PC. This is
the smaller mini-B connector located underneath the LEDs next to the Ethernet RJ45
connector. For many readers, this is the way the BeagleBone has been powered and
used for the exercises. A USB host interface allows the BeagleBone to connect to other
devices and is the focus of the discussion here. The USB host interface is the larger A
connector located on the opposite end from the Ethernet RJ45 connector. Refer to the
preceding image for the locations of each one. A simple way to remember the host
versus device interfaces is to look at a USB thumb drive. A USB thumb drive is a USB
device and it plugs into a USB host connector. The USB thumb drive does not fit the
smaller USB device mini-B connector.

While the BeagleBone provides a single USB host port, it is possible to connect multiple
USB devices to the BeagleBone via a USB hub. USB hubs come in self-powered and
bus-powered types. A self-powered USB hub has a power connector to feed power.
The bus-power version draws all of its power from the BeagleBone. The consequence
of this is that the bus-powered version can only provide each device with a maximum
of 100mA on each power, whereas the self-powered version can potentially supply up
to 500mA on each power. A USB thumb drive may not need more than 100mA, but if
you are interfacing a USB Wi-Fi interface along with another USB device, you are likely
to need more than 100mA.

Expansion Boards and Options

[166]

Using a self-powered USB hub along with powering the BeagleBone with
the barrel can create a mess of wires. One way of working around this is to
draw power for the BeagleBone from the USB hub. The USB specification
does not permit this configuration as any device drawing more than
100mA should explicitly ask permission. However, some hubs do not
enforce this part of the specification. The BeagleBone can be powered
using such a hub and then using a USB to barrel connector adapter cable.
There is no generic name for this but what you are looking for is a cable
that wires pins 1 and 4 on a USB A connector to the parts of a plug that
mate with the barrel connector. Keep in mind the center pin is positive.

An important aspect of a USB hub to remember is that the hub does not create
additional transfer capacity. A hub connected to the BeagleBone will divide the
single port's transfer capacity among all the connected devices. Connecting multiple
high transfer capacity or bandwidth devices such as a USB camera may not work
as well as expected. Even connecting a storage device along with a high bandwidth
device may have problems if both devices are in use. For example, attempting to
record video from a USB camera onto a USB thumb drive may not work well.

USB versus capes for expansion
USB and capes both offer off-the-shelf options to add functionality to the BeagleBone.
There are advantages and disadvantages of each option.

The advantages of the USB option are as follows:

•	 They are often mass produced for the desktop/laptop market. As a high
volume product, this can be obtained at a lower cost.

•	 USB devices are designed with power management in mind, and compliant
devices have limits on power consumption.

•	 Since USB devices are often used for the mass market, they are often better
tested so less time is spent on debugging the hardware. In practice, this can
vary depending on the manufacturer of the device. At the very least, a USB
device can be verified by moving it temporarily to a desktop.

•	 USB devices have standard functionality that the Linux kernel will recognize
without a special driver. For example, all keyboards, mouse, and mass storage
devices are handled in a well-known manner. This makes it simple to swap
devices within the same category for other reasons such as mechanical form
factor. For example, a system requiring a keyboard can be tested with a USB
keyboard. Later on it can be swapped with a physically smaller USB keyboard
and there is a reasonable assurance that it will just work.

Chapter 9

[167]

•	 USB device support can come from the wide Linux community
providing drivers.

•	 USB devices can be plugged in after the BeagleBone is running.

The advantages of a cape are as follows:

•	 Capes are designed for the BeagleBone family and have been tested to
work with at least one member of the BeagleBone family.

•	 Capes provide the expansion option needed by the BeagleBone user, not
just things wanted by the mass market. This can provide hardware that is
normally not interesting enough for the high-volume, consumer-oriented
market for USB devices.

•	 Capes can supply or consume power. A battery cape can power
the BeagleBone.

•	 Due to the location of the expansion connectors on the BeagleBone,
capes can result in a mechanically smaller package.

•	 Capes provide access to the I2C/SPI buses. This can help prototype by
having the same chips as a final product that integrates everything into
a single board.

•	 Capes have access to interfaces not available through USB. For example,
the video interface and the general purpose memory bus is only available
on the expansion connectors.

•	 Capes are often better documented. Schematics and the parts used are
well known.

•	 Up to four capes can be stacked provided they do not have conflicting
resource requirements.

The disadvantages of USB on the BeagleBone are as follows:

•	 The USB specification provides up to 500mA. Higher current devices such
as some USB hard drives cheat by requiring two USB ports with a Y cable.
On a BeagleBone, this requires a self-powered hub.

•	 Only one USB device can be connected unless a hub is used.
•	 All connected USB devices share the same bandwidth when a USB hub

is used.
•	 USB devices are typically limited to mass-marketed devices of interest

to consumers.

Expansion Boards and Options

[168]

•	 Due to the high volume and often non-Linux targeted nature of USB devices,
USB devices may be discontinued or modified without notice. Worse yet,
the device may be redesigned without notice in a manner that does not work
with Linux. The same model purchased today may have a totally different
and incompatible design than the same model purchased tomorrow. This is
important if a device needs to be replaced or reproduced.

A redesigned device can be incompatible because most
devices are mass marketed to the non-Linux market such as
for Windows users. Windows users can update their drivers
to support the newer design, but Linux users on desktops
and on the BeagleBone do not have that option because the
manufacturer may not directly support Linux users.

•	 USB devices are often not documented with sufficient technical details,
and schematics are usually not available.

•	 Not all USB devices work with Linux.
•	 USB devices require a 5V source. SoC and most of the BeagleBone runs

at 3.3V or lower. While outside of the specifications of the BeagleBone,
it is possible to modify the BeagleBone to run from a lower voltage source.
However, using a USB device requires a 5V source.

The disadvantages of capes are as follows:

•	 Capes are generally low-volume products, which can be more expensive
compared to, if available, a USB version of the same functionality.

•	 Capes may not be interchangeable between the BeagleBone White and
BeagleBone Black versions. Capes originally designed for the BBW may require
additional software work to use on the BBB. The additional features such as the
onboard flash and video interfaces may conflict with capes. For example, LCD
capes can require video timings that are incompatible with the video interface.

•	 The physical cape interface over the P9 and P8 connector is not electrically
protected. Most of the signals are directly connected to SoC. In contrast, the
USB port is designed with a certain level of protection. Excess power draw
will generate a fault on USB; whereas, the same excess power draw can
damage the BeagleBone.

•	 Capes cannot be hot swapped.
•	 Cape support may not be functional in all versions of the Linux kernel.

The cape manager software at the time of writing this book has not merged
into the main line Linux kernel.

Chapter 9

[169]

•	 Power management support can vary greatly among different capes. There is
no requirement to handle power management on a cape.

The advantages and disadvantages of capes versus USB can help eliminate options
but sometimes that does not provide a clear picture. Consider a BeagleBone configured
to stream video from a camera over the network. If we solely look at the advantages
of USB, a camera and a USB Wi-Fi interface will be the cheapest. Most modern USB
cameras provide a standard USB interface that uses generic drivers, namely, the USB
Video Class (UVC) driver. However, if the entire system is considered, the USB bus
may not have enough bandwidth to accommodate video data coming from the camera
and video being sent over the Wi-Fi interface. A refinement of this is to consider a
combination of capes and USB. There are more USB camera options than there are cape
camera options, so that would make USB the best option for cameras. A Wi-Fi cape
does not share the bandwidth with the USB so that solves that problem. In addition,
this avoids the problem of locating a Linux-compatible USB Wi-Fi interface.

Custom hardware versus off-the-shelf
hardware
For requirements not provided by an existing cape or a USB device, the only option
available is to build custom hardware. However, for requirements that may appear
to be available in either a cape form or a USB form, the choice is less clear. Many
capes were created because of requirements that cannot be fulfilled with off-the-shelf
hardware. For all of these options, some expertise in hardware design is needed.
You can learn it or can seek out services. Here are a few considerations and things
that should be done:

•	 Existing off-the-shelf hardware can be modified. Capes often provide
schematics and sometimes the designers are available for consultation.
For this to be feasible, the existing hardware should be somewhat close
to what is needed. For example, if you need the BeagleBone interfaced to
a chip with a large number of connections, it does not make sense to start
with anything other than a cape or a USB device with at least that chip.
Things to consider with these options are as follows:

°° The necessary signals are available. It should not be buried under
a Ball Grid Array (BGA) or other hard to access points.

°° The necessary signals need to be accessible. The difference between
this and the last point is this point refers to the circuit board, for
example, a multilayered circuit board can hide a lot of things.

Expansion Boards and Options

[170]

°° The starting point should be as close as possible to the final point.
Many devices have configuration options that may require the board
to be wired up in a way specific to that option. Starting with a board
that has different options can introduce additional complexities that
may make this moot.

•	 Capes often provide only one function. If multiple functions are needed and
they are all available as separate capes, stacking is an option but this could
mean the entire stack taking up a lot of room. Depending on the type of cape,
stacking can also cause electrical issues if there are any fast signals in the
entire stack.

•	 If the end goal is to prototype a product, it can make sense to build a custom
board. Depending on community interest, adding EEPROM can turn this into
a cape.

•	 A custom interface board is likely to require Linux kernel software work.
Available capes often come with software configuration information. This
can be an added burden if you don't have any expertise in those areas.

•	 Even if modification of an existing cape is impractical, many capes are
open hardware designs that can be leveraged to produce your own version.
Please verify the licenses are compatible with your goals before doing so.

•	 Even if the functionality you need is available as a USB device, building a
custom board can be a better choice. USB devices are generally mass-marketed
products that may be revised or discontinued without notice. In addition, USB
power management relies on the entire USB stack working correctly. Moving
to a non-USB option, if available, can simplify power management and give
you control over the hardware design. Non-USB power management can be
as simple as toggling a GPIO signal or sending a command over an I2C/SPI
control channel.

•	 If the custom expansion board is chosen, there may be added software
support requirements. Each time the system is updated with a newer version
of the distribution, the same software changes will have to be made. This can
entail porting the software if the software interface used has been changed.
One way of addressing this is to attempt to get your software changes
committed to the source. This is known as upstreaming. The full process
of upstreaming is beyond the scope of this book. Steps to upstream your
software changes, such as a new driver for the kernel, are as follows:

1.	 Make sure your changes are against the current development version
of the kernel.

2.	 Subscribe to the discussion list for the relevant subsystems your
driver uses.

Chapter 9

[171]

3.	 Be sure the software is written in a manner consistent with the kernel;
this includes white space format. Refer to Documentation/Coding-Style
in the kernel source tree for details. This step is often a major stumbling
block for new submissions.

4.	 Break up your changes into logical blocks that add or remove a
specific functionality.

5.	 Submit the blocks as a series of unified diffs to the discussion list
for comments. Do not use attachments. Act on the comments and
iterate if needed.

6.	 If successful, upstreaming can reduce the support overhead with
custom expansion boards.

7.	 Keep in mind the difference between a custom expansion board
and a cape is largely the EEPROM. It may be useful to others.

•	 A very important determining factor is resource constraints on the expansion
connector. Some signals may be available only on certain pins. Those pins
may have been specified to be used as a cape or be used by another cape. If
that is the only way to connect the combination of hardware, then you have
no choice other than to build a custom expansion board. For example, if the
combination of interfaces used on the expansion connector forces you to pins
19 and 20 on P9 as something other than I2C, you cannot have a cape.

Summary
In this chapter, we looked at some of the off-the-shelf options of the BeagleBone
expansion. This hardware library comes in two general versions, a USB-based
version, and something known as capes. This chapter introduced a lot of
off-the-shelf interfacing details.

For capes, the specification is provided in the SRM. The main differentiator
for a cape is the identification of EEPROM. This EEPROM identifies hardware
resources the cape uses, such as pinmux configuration and electrical requirements.
An important detail is that EEPROM does not define software requirements such as
drivers. The current software at the time of writing this book uses a cape manager
to configure capes. A cape manager associates the cape with a device tree overlay
to describe the hardware on the cape to the software. On the BeagleBone Black,
new features unique to it appear to the software as a virtual cape.

Expansion Boards and Options

[172]

Another off-the-shelf expansion option is a USB device. USB devices are
often mass-marketed devices, which can be lower in cost but may have issues
for embedded uses like on the BeagleBone. Choosing between USB and cape
expansion options requires an understanding of the limitations on each interface.
Using a combination of both USB and a cape can be a good idea.

We also looked at the reasons for a custom expansion board. We compared
off-the-shelf options such as a cape or USB with a custom expansion board.
An important detail to keep in mind is that all capes are just a subset of an
expansion board with specific pin usage on the expansion connector along
with EEPROM requirements.

In this book, we have covered the BeagleBone basic starting from unboxing
your BeagleBone to programming your BeagleBone, along with expanding
your BeagleBone for interconnectivity and other purposes. Along the way, we
covered the basic recovery procedures in case of mistakes. Now that you have
a foundation, go forth and build your embedded device with a BeagleBone!

The Boot Process
The BBB/BBW boards offer several ways of booting that can be leveraged for
different purposes, such as recovering a board from a software corruption, putting
a used board into a known state, or booting a newly-built board. This appendix
provides an overview of what is possible, as this subject does come up in various
forms on the support forums and mailing lists. For complete details, refer to the
AM335x technical reference manual available at http://www.ti.com. We will
cover the following topics:

•	 What happens when the power is switched on
•	 Getting an initial bootloader running
•	 Getting the main bootloader
•	 Linux and beyond
•	 Potential alternative boot uses

What happens when the power is
turned on
Unlike simple processors where the user's code executes immediately at power on,
the AM335x processors feature an internal ROM to offer a variety of choices to start
the system. At power on, the internal ROM starts running and looks at the SYSBOOT
signals connected to the processor to decide whether to load the user code and to
configure the device containing the user code appropriately. The BBB exposes a
subset of the available options; this subset can be selected by the user button.

http://www.ti.com

The Boot Process

[174]

Note that the user button is only checked on power up (not reset!). In the following
image, the user button is highlighted. Since the BBW does not have an onboard flash,
there is no user button.

Bootloader
Bootloader is the part of the system responsible for loading the operating system. This
is similar to the concept of BIOS on desktop systems. By default, if the user button is
not depressed, the processor will attempt to boot from the onboard flash on the BBB.
The processor will configure the flash to access and look for a special file called MLO on
the first partition. The MLO file contains a first stage bootloader along with a checksum
to let the ROM know that it is valid code. If the checksum is valid, the contents are
copied to the internal memory and the processor will attempt to execute from there.
The first stage bootloader's size is limited by the size of the internal memory.

The job of the first stage bootloader is to configure the external (DDR2/DDR3)
memory and read in the second stage bootloader into the external memory and pass
control. On a standard BBB system, this will load u-boot.img from the same location
as MLO. The u-boot.img file is the main code for U-Boot—the main bootloader.

Once U-Boot is running, it will configure additional hardware as needed. On a
standard system, it will attempt to load a configuration defined by u-env.txt in
the same partition as the rest. Using that information, it will attempt to load and
start Linux from the specified media such as the onboard flash. The standard U-Boot
(as shipped) will check for an external microSD card. If present, it will load the Linux
kernel from there instead of the internal flash. The following flowchart shows the
boot process and how it is changed by the user button:

Appendix A

[175]

Power
on

Yes

Yes

No

No

No

No

No

Boot

YesBoot

YesBoot

Yes Boot

Valid MLO?

Look for
MLO on
external
microSD

Look for
MLO on

internal flash

Is user button
pressed?

Look for a
download
on serial

port

Valid download
before timeout?

Valid MLO?

Look for a
download

on the USB
port

Valid MLO?

Look for
MLO on
external
microSD

Look for a
download
on serial

port

...

...

Flash memory/microSD
The internal flash memory is normally divided into two partitions:

•	 The first partition contains the MLO, u-env.txt, and u-boot.img files,
and sometimes the Linux kernel

•	 The second partition contains the Linux filesystem

For a lot of projects, the second partition is the only part that is typically modified
and is the partition that is most likely to be corrupted due to user errors. The first
partition is not often corrupted due to user errors. From a recovery standpoint, this
can be addressed as simply as inserting a configured microSD card and allowing the
system to boot! For the microSD card, such as on the BBW, things are analogous as
the flash memory used on the BBB is embedded MMC (eMMC). eMMC is basically
the same microSD card permanently mounted on the board.

The Boot Process

[176]

On a standard system, the onboard LEDs have a pattern to indicate whether
things have got as far as loading the Linux kernel. This is a function of the
U-Boot configuration.

If the user button is pressed again when power is applied, the BBB will look for the
same MLO file on the external microSD card. If the file is found and the checksum
matches, it will attempt the same boot process as explained earlier but using the
external SD card. This is useful if the bootloader itself is corrupted.

A more advanced booting method is possible if the user button is pressed at power
on. The BBB is capable of downloading a bootloader over the serial port or the USB
device port.

Linux and beyond
For most BBB/BBW users, the boot process ends when their application is running.
However, from a support point of view, there is an earlier dividing line. What
happens after the bootloader (U-Boot) has finished is often a different support
process than what happens during and before the bootloader runs. The bootloader
and the earlier messages are typically only visible through the debug serial port,
whereas Linux messages can be accessed via USB or the Ethernet using SSH.

For most users, the bootloader starts Linux. How Linux gets started depends entirely
on the bootloader configuration. For the BBB, the bootloader will load the kernel
and other Linux support pieces from the microSD card (if present); failing that, it
will fall back to the internal flash. For advanced Linux development such as kernel
development, the kernel does not usually need to be updated on the internal eMMC
flash. A microSD card can be prepared and the bootloader will load Linux from there
without having to press the user button, provided a valid bootloader lives on the
internal flash memory.

The exact process beyond loading the kernel is determined by the Linux distribution
chosen. Depending on the revision of the BBB, this can be either Angström or Debian.
Launching an application is specific to the Linux distribution and is beyond the scope
of this book.

Alternative boot uses
By pressing the user button prior to power on, an external microSD card can be used
to reflash a BBB to the factory state. This is useful if the flash is corrupted, if a used
board is purchased, or if you want to reset a board between class sessions. Images to
reflash a BBB can be downloaded at www.beagleboard.org.

www.beagleboard.org

Appendix A

[177]

More advanced uses of the alternative boot option include rapid development by
allowing a desktop or laptop to preconfigure a microSD without having to wait for
the image to be written to the onboard flash memory.

Summary
The boot process can be altered by pressing the user button to force booting from
an external microSD card or other devices. Regardless of which device or boot media,
the BBB/BBW only knows to look for MLO. The MLO file is the first member of the chain
that ends with Linux running. As such, a corrupt MLO/u-boot can make the board
appear dead unless the debug serial port is examined.

After going through the exercises and building an understanding of the essentials
of the BeagleBone, the next step is to build on what you have learned. You can apply
this knowledge on your own projects or adapt one of the many open source projects
for the BeagleBone. In the course of your project, you will learn more advanced
techniques as you encounter hurdles. The theory presented in this book should
provide a foundation to help surmount the challenges from your own projects.

Terms and Definitions
New BeagleBone users come from backgrounds that vary both technically and
geographically. In this appendix, we will go through some terms to help you
understand this book and other BeagleBone resources such as the community
mailing list:

•	 Active low/active high: These are different electrical ways of describing
a signal. Active high and active low refers to the electrical state a signal is
considered to be active. For example, an enable or chip select signal can be
described as active high or active low. An active low enable or chip select
signal means when the signal is at the electrical value 0 (usually 0V), the
signal is enabled or the chip is selected. Conversely, an active high enable or
chip select signal means when the signal is at the electrical value 1 (3.3V for
the BeagleBone), the signal is enabled or the chip is selected. The opposite
state in both cases would mean the chip is not selected. A related concept
is tristating.

•	 Altoids tin: Altoids is a mint candy sold in many parts of the world. It is
commonly distributed in a small metal container with rounded corners,
an Altoids tin. The tin is often used to store small items and it happens
to match the shape of the BeagleBone.

•	 Directories: Linux has the concept of a directory to help organize things on
a storage device. On other systems, such as Mac OS or Windows, this is the
equivalent of a folder. It is analogous to a physical folder.

•	 Electro Static Discharge (ESD): Many modern electronic devices, such as the
BeagleBone, are sensitive to static electricity. ESD is the damaging discharge
of static electricity, which is similar to getting shocked by touching a door
knob after walking across a carpet. That shock might be an annoyance for
you, but for the tiny transistors inside the silicon chips, they carry enough
energy to destroy microscopic structures on the transistor.

Terms and Definitions

[180]

•	 Hosts and targets: These are terms used to describe a typical embedded
development setup. An embedded system is often limited compared to a
desktop or a laptop system. For example, embedded systems may have
limited computing power, memory, connectivity, and human-oriented I/O
systems such as keyboards and displays. To expedite development, a desktop
or a laptop is often paired with the embedded system. The embedded system
is the target, as in the target of the development, and the host system is the
desktop or laptop. The BeagleBone has considerably more capability than
other embedded systems, but the same terms are applicable.

•	 Man pages: This term is short for manual pages, and these are the
traditional way Linux/Unix commands are documented. On most Linux
systems, you can pull up a man page by going to the command prompt
and using the man command, for example, man ls. This will pull up the
man page for the ls command. Man pages can also be found by searching
for man ls on a search engine.

•	 Programmable Real-time Unit Subsystem (PRUSS): This is a block on the
SoC used by the BeagleBone to support real-time hardware operation. The
PRUSS subsystem provides two Programmable Real-time Units (PRUs)
to support real-time operations in hardware. The main processor on the
BeagleBone is an ARM Cortex-A8 and it commonly runs Linux; neither of
these pieces are designed for real time. Real time means each time you do
something, you can predict how long it will take and when it will happen.
For example, if you were to use Linux to toggle a signal very rapidly, you
will notice the signal is not always regularly timed. Similarly, there are
hardware aspects of the Cortex-A8 that can make the timing not completely
predictable. The PRU is an independent microcontroller designed to offload
real-time tasks from Linux. On many other SoCs, the PRU equivalent would
be an external microcontroller chip.

•	 System on a Chip (SoC): This is an integrated chip that offers a processor
and peripherals in a single package. The BeagleBone uses the AM3358 SoC
from Texas Instruments and provides an ARM processor, memory controller,
I2C controller, Ethernet controller, and more on a single package. Prior to
SoCs, the same functionality required multiple chips. The AM3358 SoC is
what makes the low cost of the Beagle boards and BeagleBones possible.

Appendix B

[181]

•	 Secure Shell (SSH): This is an optionally encrypted network protocol used
to connect to other systems for things such as command-line access. The
encryption part is not essential for our use, but SSH can provide some simple
level of security if the BeagleBone is ever directly connected to an unsecured
network, such as the Internet. SSH also provides the basis for file transfer
protocols, such as SCP or SFTP. SCP allows files to be copied to and from
an SSH server such as the BeagleBone. SSH consists of a server on the device
you are accessing and a client on the machine you are coming from. On Linux
desktops, OpenSSH (http://www.openssh.com/) is a common package.
For embedded devices, Dropbear (https://matt.ucc.asn.au/dropbear/
dropbear.html) is another smaller package. Both of these packages implement
the SSH server and client.SSH. Most BeagleBone distributions will use one of
these SSH implementations. SSH clients and the related file transfer tools such
as SCP exist for most systems. A sampling of SSH clients are as follows:

°° The OpenSSH package's client has been ported to many systems.
This provides both SSH and SCP functionality.

°° PuTTY (http://www.putty.org/) is an SSH client for
Windows systems.

°° WinSCP (http://winscp.net/eng/index.php) is an SCP client
for Windows.

•	 Tristate: A tristate signal can assume one of three possible states. It can be
logic 0, logic 1, or a third high impedance state. Sometimes high impedance
is designated as Hi-Z. A high impedance state means the signal is electrically
disconnected. It behaves as if nothing is connected. Using a chip select, multiple
devices can be connected in parallel. As long as the chip select is inactive, each
device remains in the high impedance state. The high impedance state prevents
the devices from electrically fighting with each other. On the BeagleBone, the
high impedance state can be simulated in most cases by configuring the signal
as an input.

http://www.openssh.com/
https://matt.ucc.asn.au/dropbear/dropbear.html
https://matt.ucc.asn.au/dropbear/dropbear.html
http://www.putty.org/
http://winscp.net/eng/index.php

Index
Symbols
7-Zip

download link 32

A
accessories, BeagleBone

digital multimeter (DMM) 25
digital multimeter (DMM),

using on BBB 26, 27
mains power adapter 23
microSD cards 23
SD card reader 23
serial debug cable 24
wireless interfacing accessories 27

active high 179
active low 179
advanced blinking exercise, LEDs 60, 61
alternative boot uses 176
Altoids tin 179
AM335x datasheet 153
AM335x TRM 153
AM3358 SoC 180
Android devices

about 93
features 93
limitations 93

Angström Linux distribution
about 31
overview 31
URL 31

B
Ball Grid Array (BGA) 169
BBB serial port

troubleshooting 112
BBB, versus BBW 161, 162
BBW serial port

troubleshooting 114
BeagleBoard Classic (BBC)

about 9, 10
features 9

Beagle board family
about 8
summary 15

Beagle boards
about 8, 9
BeagleBoard Classic (BBC) 9
BeagleBoard-xM (BBX) 10
BeagleBone 12
reference link, for older versions 9

BeagleBoard-xM (BBX)
about 10
features 10, 11

BeagleBone
about 12
accessing 21, 22
accessories 23
applications, building with Linux API 141
BeagleBone Black (BBB) 13
BeagleBone White (BBW) 12
distributions 30
FTDI serial adapter 19

[184]

getting started process 15
Hello, World program 48
I2C devices 68
LEDs 51
Linux configuration 20
nonsystem software 39, 40
PC software 20, 21
powering up 15-18
real-time performance 155
repairing 118
system software 30
troubleshooting 106
unboxing 15
USB devices 164
USB functions 18
Windows configuration 19

BeagleBone Black (BBB)
about 13
features 13, 14

BeagleBone capes. See capes
BeagleBone C compilation

examples 144
BeagleBone, connecting to mobile devices

about 89
BLE options 100
Bluetooth wireless technology 95
carrier limitations 94
connectivity options 90
full network connection options 90
mobile device connections 93
mobile devices 90
Near Field Communication (NFC) 101
profiles 96
protocol-specific connectivity 91

BeagleBone Linux C program
issues 141

BeagleBone NFC
expansion board options 102
options 101

BeagleBone NFC, with fully featured
controller

about 103
drawbacks 103

BeagleBone programming, with C and
Linux APIs

about 139
issues 140

BeagleBone schematics 153
BeagleBone SRM 153
BeagleBone voltages

about 125
level converters 127
options 126, 127

BeagleBone web server access
troubleshooting 75

BeagleBone White (BBW)
about 12, 13
features 12

bipolar transistors
about 130
example 131, 132
NPN (arrow pointing out) version 130
PNP (arrow pointing in) version 130

BLE options 100
Bluetooth Special Interest Group (SIG) 96
Bluetooth wireless technology

about 95
Bluetooth versions 95, 96
Bluetooth wireless connectivity 96

BlueZ
about 93
URL 93

bootloader 174
boot order 162
boot process

about 173
bootloader 174
flash memory/microSD 175, 176
Linux 176
power on 173, 174

Buildroot
about 143
URL 143

C
cape manager

about 163, 164
actions 163

capes
about 159, 160
advantages 167
BBB, versus BBW 161, 162
connecting, to BeagleBone 163

[185]

disadvantages 168
example 162
I2C EEPROM 160

carrier limitations 94, 95
chip select

reference link 137
connectivity options 90
considerations, USB on BeagleBone

about 164
multimedia 165
power 164
speed 164

cross compiling software 142, 143
crosstool-ng

reference link 142
current measurements 124, 125
custom hardware

considerations 169-171
versus off-the-shelf hardware 169

D
Debian BeagleBone kernels

building 148-150
reference link, for building process 148

Debian Linux distribution
about 31
overview 31
URL 31

Device Tree Blob (DTB) 151
device trees 150, 151
Device Tree Source (DTS) file 151
Dial-up Networking (DUN)

about 96, 97
connection sequence 97, 98
connection sequence, for BeagleBone 98

digital multimeter (DMM)
about 25, 123
using 26, 27

directories 179
distributions, BeagleBone

about 30
Angström Linux distribution 31
Debian Linux distribution 31
flasher images 38, 39
image, obtaining 32

installing 32
Dropbear

URL 181

E
editors

nano/pico 43
selecting 42
vi/vim 43

EEPROM
about 68, 160
contents 160, 161
specifications 160

electrical engineering
about 122
electrical properties 122

Electrically Erasable Programmable Read
Only Memory. See EEPROM

electrical properties
about 122
parallel circuits 122, 123
serial circuits 122, 123

electrical properties, measuring
about 123
BeagleBone voltages 125
current measurements 124, 125
resistance measurements 124
voltage measurements 123, 124

Electro Static Discharge (ESD) 179
embedded MMC (eMMC) memory 13, 175
Error 404 message 74, 75
examples, BeagleBone C compilation

about 144
native BeagleBone compilation 144
program, cross compiling 144-146

expansion board options, BeagleBone NFC
about 102
BeagleBone NFC, as device 102
BeagleBone NFC, with fully featured

controller 103
expansion connectors

P8 128
P9 128
signals of interest 128, 129

expansion headers 127, 128

[186]

F
Field Effect Transistors (FETs) 130, 132
flashing process, images 38
foundation for exercises, setting up

about 41, 42
editor, selecting 42
nano/pico editor 43
permissions 43

FTDI serial adapter 19
full network connection options

(full TCP/IP connection)
about 90
benefits 90, 91

Future Technology Devices
International (FTDI)

about 24, 107
URL 108

G
general-purpose input/output (GPIO) 8, 129
Generic Attribute Profile (GATT) 100
groups of entities, permissions

group owner of file 44
other owner of file 45
user or owner of file 44

H
Hello, World program

about 48
creating 48-51

hosts 180

I
I2C

about 8, 136
warnings 136

I2C bus
about 63, 64
accessing 64
exercise 1 65-68

i2cdetect command
uses 65

I2C devices, on BeagleBone
about 68

exercise 2 69, 70
I2C EEPROM format 160
I2C tools

about 64, 65
reference link 64

image, BeagleBone distribution
booting 37, 38
obtaining 32, 33
obtaining, for Linux users 33
obtaining, for Windows users 33
reference link 32
writing 34
writing, for Linux users 35-37
writing, for Windows users 34, 35

Image Writer 34
interfacing, BeagleBone

about 121
electrical engineering 122
expansion headers 127
I2C/SPI, on BeagleBone expansion

connector 136
LEDs, connecting to BeagleBone 133
relay, controlling with BeagleBone 134
switches, connecting to BeagleBone 135
transistors 130

Inter-Integrated Circuit. See I2C
iOS devices 94

K
kernel drivers 148
kernel space 146, 147

L
LED controls

using, in program 55, 56
LED flasher project, building

foundation, setting up for exercises 41, 42
Hello, World exercise 41

LED flasher project, refining
about 63
I2C bus 63
user interfaces 71
web page, loading 74

LEDs
about 51

[187]

advanced blinking exercise 60, 61
characteristics 133
connecting, to BeagleBone 133
considerations 134
controlling 52
disconnecting temporarily,

from system 53, 54
flashing 51
LED controls, identifying 52, 53
simple blinking exercise 56
turning on 54, 55

level converters, BeagleBone voltages
bidirectional 127
input only 127
output only 127

libraries
compiling, on BeagleBone 142

Light Emitting Diodes. See LEDs
Linux 176
Linux API

BeagleBone applications, building with 141
Linux configuration, BeagleBone 20

M
MacSSH

URL 21
mains power adapter 23
man pages 180
Master In Slave Out (MISO) 137
Master Out Slave In (MOSI) 137
Metal Oxide Semiconductor Field Effect

Transistor (MOSFET)
about 132, 133
drain terminal 132
gate terminal 132
source terminal 132

microSD cards 23
mistakes

categories 105
recovering 105
symptoms 106

mobile device connections
about 93
Android devices 93
iOS devices 94

mobile device connectivity examples,
protocol-specific connectivity

Bluetooth 92
NFC modules 92
USB modules 92
Wi-Fi 92

mobile devices 90

N
nano/pico editor

about 43
quick start hints 43

native BeagleBone compilation
about 144
drawbacks 142

Near Field Communication (NFC)
about 89, 101
characteristics 101
reference link 101

nonsystem software, BeagleBone 39

O
Ohm's law

reference link 122
Omega 124
onboard flash 162
onboard video 162
OpenEmbedded

about 143
URL 143

OpenSSH
about 21
URL 181

options, BeagleBone NFC
BeagleBone expansion boards/capes 101
USB 101

P
PC software, for BeagleBone

MacSSH, for Mac OS users 21
OpenSSH or Dropbear, for Linux users 21
PuTTY, for Windows users 20

permissions
about 43

[188]

converting, to numeric form 46, 47
current permission, determining 44
execute permission 44
exercises format and notes 48
permissions field 44
read permission 44
setting up 47, 48
write permission 44

Personal Area Networking (PAN) 96, 98-100
pinmux

about 129
figuring out 153
programming procedures 129
settings, determining 153-155

pinmuxing
about 152
tools, for figuring out 152

Point to Point Protocol (PPP) 97
processor I/O, examples 8
profiles

about 97
Dial-up Networking (DUN) 96, 97
Personal Area Networking (PAN) 96, 98

Programmable Real-time Unit
Subsystem (PRUSS) 12, 180

protocol-specific connectivity
about 91
mobile device connectivity examples 92
options 91, 92

pulse width modulation
(PWM) 8, 54, 134, 156

PuTTY
configuring 111
URL 20, 181

R
real-time operating system (RTOS) 155
real-time performance, BeagleBone

about 155, 156
pitfalls 156

relay
considerations 134
controlling, with BeagleBone 134

Remote Network Driver Interface
Specification (RNDIS) method 19

resistance measurements 124

S
SD card reader 23
Secure Shell (SSH) 181
serial debug cable 24
Serial Peripheral Interface. See SPI
serial port

troubleshooting 112
serial port output evaluation

about 114, 115
bootloader serial port output 116, 117
Linux serial output 117
no serial output 117
simple serial port output 115

Serial Port Profile (SPP) 97
shell script 42
simple blinking exercise, LEDs

about 56
delays, in program 56
LEDs, blinking 58, 59
LED, turning off 58
program, debugging 59
repeating things, with loops 57
troubleshooting 60

Slave In Master Out (SIMO) 137
Slave Out Master In (SOMI) 137
slirp

URL 97
SPI

about 8, 137
signals 137

SSH clients
sampling 181

ST Electronics
about 102
URL 102

strategies, for signal measuring
measuring at top side 27
measuring on bottom side 27

supervisor mode 146
switches

connecting, to BeagleBone 135, 136
System on a Chip (SoC) 180
System Reference Manual (SRM) 24
system software, BeagleBone 30

[189]

T
targets 180
TCP/IP filtering

connections can be one way 95
enforced proxying 94
limitations on reach of certain ports 95
port-based filtering 94

Texas Instruments 152
toolchains 142
tools, for complications

Buildroot 143
OpenEmbedded 143
Yocto 143

transistors
about 130
bipolar transistors 130
categories 130
FETs 132

tristate 181
troubleshooting

advanced LED diagnostics 118
BeagleBone 106
BeagleBone web server access 75
diagnosing, with LEDs 106
performing, with BBB serial port 112, 113
performing, with BBW serial port 114
performing, with serial port 112
serial debug cable, setting up on

BBB 107, 108
serial port, connecting on

BeagleBone 108-111
serial port output, evaluating 114, 115

U
u-boot.img file 174
USB device interface 165
USB Ethernet 19
USB functions, BeagleBone

FTDI serial adapter 19
USB Ethernet 19
USB mass storage 18

USB host interface 165
USB hubs 165
USB mass storage 18

USB, on BeagleBone
about 164
advantages 166
considerations 164, 165
custom hardware, versus off-the-shelf

hardware 169
disadvantages 167, 168
versus capes 166

USB thumb drive 165
USB Video Class (UVC) driver 169
user interfaces, LED flasher

about 71
design 71, 72
exercise 3 72, 73
troubleshooting 74

user space
about 146
key points 147
versus kernel space 146

V
vi/vim editor 43
voltage measurements 123, 124
voltage mode 123

W
web page, LED flasher project

backend, creating 75
backend, testing 83
BeagleBone web server access,

troubleshooting 75
exercise 4 75
exercise 5 79
exercise 6 81
exercise 7 85
flasher service configuration, testing 86
flash_manager.sh, creating 76-79
frontend, building 81-83
loading 74
manager shell script, creating 75, 76
scripts, creating 79-81
shell variables 75, 76
systemd manager, running 85, 86
testing 83, 84
troubleshooting 84

[190]

Win32DiskImager
using 34

Windows configuration, BeagleBone 19
WinSCP 181
wireless interfacing accessories 27

Y
Yocto 143

Thank you for buying
Learning BeagleBone

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building a BeagleBone Black
Super Cluster
ISBN: 978-1-78398-944-7 Paperback: 156 pages

Build and configure your own parallel computing
Beowulf cluster using BeagleBone Black ARM systems

1.	 Configure your own cluster for high-speed
parallel computing.

2.	 Benefit from your personally configured super
computer which is a power efficient, low-cost,
and highly scalable super computer.

3.	 Write your own cluster software with the
help of practical examples using powerful
computational libraries specifically designed
for distributed memory machines.

BeagleBone for Secret Agents
ISBN: 978-1-78398-604-0 Paperback: 162 pages

Browse anonymously, communicate secretly,
and create custom security solutions with open
source software, the BeagleBone Black, and
cryptographic hardware

1.	 Interface with cryptographic hardware
to add security to your embedded project,
securing you from external threats.

2.	 Use and build applications with trusted
anonymity and security software such
as Tor and GPG to defend your privacy
and confidentiality.

3.	 Work with low-level I/O on BeagleBone
Black such as I2C, GPIO, and serial interfaces
to create custom hardware applications.

Please check www.PacktPub.com for information on our titles

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1.	 Get to grips with robotic systems.

2.	 Communicate with your robot and teach it
to detect and respond to its environment.

3.	 Develop walking, rolling, swimming,
and flying robots.

Building a Home Security System
with BeagleBone
ISBN: 978-1-78355-960-2 Paperback: 120 pages

Build your own high-tech alarm system at a fraction
of the cost

1.	 Build your own state-of-the-art security system.

2.	 Monitor your system from anywhere you
can receive e-mail.

3.	 Add control of other systems such as
sprinklers and gates.

4.	 Save thousands on monitoring and rental fees.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing the
Beagle Boards
	The Beagle board family
	The Beagle boards
	BeagleBoard Classic
	BeagleBoard-xM
	BeagleBone
	BeagleBone White
	BeagleBone Black

	Summary of the Beagle board family
	Congratulations on selecting a BeagleBone board
	Unboxing and powering up your BeagleBone
	The Windows configuration
	The Linux configuration
	Useful PC software for your BeagleBone
	Accessing the BeagleBone
	Useful accessories
	The mains power adapter
	An SD card reader and microSD cards
	A serial debug cable
	A digital multimeter
	Using the DMM on the BBB
	Wireless interfacing accessories

	Summary

	Chapter 2: Software in the BeagleBone
	System software in the BeagleBone
	Distributions on the BeagleBone
	The Angström Linux distribution
	The Debian Linux distribution

	Installing a distribution in the BeagleBone
	Obtaining the image
	Windows users
	Linux users

	Writing the image
	Windows users
	Linux users

	Booting the image
	Flasher images

	Nonsystem software in the BeagleBone
	Summary

	Chapter 3: Building an LED Flasher
	Setting up a foundation for the exercises
	Selecting an editor
	Quick start with nano/pico

	Permissions
	Determining the current permission
	Converting permissions to the numeric form
	Setting up permissions
	Exercise format and notes

	Hello, World for the BeagleBone
	Exercise 1 – creating a Hello, World program

	Flashing the LEDs
	LEDs on the BeagleBone
	Exercise 2 – taking control of the LEDs
	Figuring out the LED controls
	Disconnecting the LEDs temporarily from the system
	Turning on an LED

	Using the controls in a program
	Exercise 3 – simple blinking
	Delays in the program
	Repeating things with loops
	Turning off an LED
	Troubleshooting

	Exercise 4 – advanced blinking

	Summary

	Chapter 4: Refining the LED Flasher
	The I2C bus
	Accessing I2C
	The I2C tools
	Exercise 1

	The I2C devices on the BeagleBone
	Exercise 2

	User interfaces
	Design
	Exercise 3
	Troubleshooting

	Loading your first web page
	Troubleshooting the BeagleBone web server access
	Exercise 4
	Shell variables
	Putting it all together

	Exercise 5
	Exercise 6
	Testing
	Troubleshooting

	Exercise 7
	Testing

	Summary

	Chapter 5: Connecting the BeagleBone
to Mobile Devices
	Mobile devices
	Connectivity options
	Full network connection options
	Protocol-specific connectivity
	Mobile device connections
	Android devices
	iOS devices

	Carrier limitations
	Bluetooth wireless technology
	Bluetooth versions
	Bluetooth wireless connectivity

	Profiles
	Dial-up Networking
	Personal Area Network

	BLE options
	Near Field Communication and the BeagleBone
	BeagleBone NFC expansion board options
	BeagleBone NFC as a device
	BeagleBone NFC with a fully featured controller

	Summary

	Chapter 6: Recovering from the Mistakes
	Symptoms of the mistakes
	Troubleshooting the BeagleBone
	Diagnosing with the help of LEDs
	Setting up the serial debug cable on the BBB
	Connecting to the serial port on the BeagleBone

	Troubleshooting with the serial port
	Troubleshooting with the BBB serial port
	Troubleshooting with the BBW serial port

	Evaluating the serial port output
	Simple serial port output
	Bootloader serial port output
	Linux serial output
	No serial output

	Advanced LED diagnostics

	Repairing the BeagleBone
	Summary

	Chapter 7: Interfacing with the BeagleBone
	Electrical engineering in a nutshell
	Electrical properties
	Serial and parallel circuits

	Measuring the electrical properties
	Voltage measurements
	Resistance measurements
	Current measurements
	BeagleBone voltages

	Expansion headers
	Transistors
	Bipolar transistors
	Example use of a bipolar transistor

	FETs or specifically MOSFETs

	Connecting LEDs to the BeagleBone
	Controlling relay with a BeagleBone
	Connecting switches to the BeagleBone
	I2C/SPI on the BeagleBone expansion connector
	Inter Integrated Circuit
	Serial Peripheral Interface

	Summary

	Chapter 8: Advanced Software Topics
	BeagleBone programming with the C and Linux APIs
	Building BeagleBone applications with the Linux API
	Compiling the existing libraries on the BeagleBone
	Cross compiling software for the BeagleBone

	Examples of the BeagleBone C compilation
	Native BeagleBone compilation
	Cross compiling a program for the BeagleBone

	User space versus kernel space on the BeagleBone
	Kernel drivers on the BeagleBone
	Device trees on the BeagleBone
	Pinmuxing on the BeagleBone
	Figuring out the pinmux on the BeagleBone
	The BeagleBone and real-time performance
	Summary

	Chapter 9: Expansion Boards
and Options
	The BeagleBone capes
	Capes on the BBB versus BBW
	Example capes
	Capes and software on the BeagleBone

	USB devices on the BeagleBone
	USB versus capes for expansion
	Custom hardware versus off-the-shelf hardware

	Summary

	Appendix A: The Boot Process
	What happens at power on
	The Bootloader
	Flash memory/microSD

	Linux and beyond
	Alternative boot uses
	Summary

	Appendix B: Terms and Definitions
	Index

