
■
■

■

■

■

■

Jason Swartz

 Learning

 Scala
PRACTICAL FUNCTIONAL PROGRAMMING

FOR THE JVM

L
e
a
rn

in
g
 S

c
a
la

www.allitebooks.com

http://www.allitebooks.org

SC AL A /JAVA /PROGR AMMING L ANGUAGES

Learning Scala

ISBN: 978-1-449-36793-0

US $39.99 CAN $41.99

“ Whether you're

experienced in Python

or more familiar with

Java, you'll find this book

a friendly introduction

to Scala. Jason's

writing is practical and

approachable; Learning

Scala provides a clear

beginner's guide by

combining a familiar

object-oriented style with

idiomatic features of the

language. It's the book

I wish I had when I first

started!”
—Katherine Fellows

Software Engineer, Comcast, Inc.

Twitter: @oreillymedia

facebook.com/oreilly

Why learn Scala? You don’t need to be a data scientist or distributed

computing expert to appreciate this object-oriented functional programming

language. This practical book provides a comprehensive yet approachable

introduction to the language, complete with syntax diagrams, examples, and

exercises. You’ll start with Scala's core types and syntax before diving into

higher-order functions and immutable data structures.

Author Jason Swartz demonstrates why Scala’s concise and expressive

syntax make it an ideal language for Ruby or Python developers who want

to improve their craft, while its type safety and performance ensures that

it’s stable and fast enough for any application.

 ■ Learn about the core data types, literals, values, and variables

 ■ Discover how to think and write in expressions, the foundation

for Scala's syntax

 ■ Write higher-order functions that accept or return other

functions

 ■ Become familiar with immutable data structures and easily

transform them with type-safe and declarative operations

 ■ Create custom inix operators to simplify existing operations or

even to start your own domain-speciic language

 ■ Build classes that compose one or more traits for full

reusability, or create new functionality by mixing them in at

instantiation

Jason Swartz is a software developer who adores intuitive user interfaces,

expressive programming languages, and concise user documentation. He also

organizes Scala community events in San Francisco and develops applications for

Netflix’s consumer device program.

www.allitebooks.com

http://www.allitebooks.org

Jason Swartz

Learning Scala

www.allitebooks.com

http://www.allitebooks.org

Learning Scala

by Jason Swartz

Copyright © 2015 Jason Swartz. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Colleen Lobner
Copyeditor: Kim Cofer
Proofreader: Charles Roumeliotis

Indexer: Ellen Troutman
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition:

2014-12-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449367930 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Scala, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-449-36793-0

[LSI]

www.allitebooks.com

http://www.allitebooks.org

For my loving wife, who foresees great prospects; and for my loving daughter, who also
foresees the first printed copy coming her way.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. ix

Part I. Core Scala

1. Getting Started with the Scalable Language. 3
Installing Scala 3
Using the Scala REPL 4
Summary 6
Exercises 6

2. Working with Data: Literals, Values, Variables, and Types. 9
Values 10
Variables 12
Naming 13
Types 15

Numeric Data Types 15
Strings 17
An Overview of Scala Types 21
Tuples 25

Summary 26
Exercises 26

3. Expressions and Conditionals. 27
Expressions 27

Defining Values and Variables with Expressions 28
Expression Blocks 28
Statements 29

If..Else Expression Blocks 30
If Expressions 30

v

www.allitebooks.com

http://www.allitebooks.org

If-Else Expressions 31
Match Expressions 31

Matching with Wildcard Patterns 34
Matching with Pattern Guards 36
Matching Types with Pattern Variables 36

Loops 37
Iterator Guards 39
Nested Iterators 39
Value Binding 40
While and Do/While Loops 40

Summary 41
Exercises 42

4. Functions. 45
Procedures 48
Functions with Empty Parentheses 48
Function Invocation with Expression Blocks 49
Recursive Functions 50
Nested Functions 52
Calling Functions with Named Parameters 53
Parameters with Default Values 53
Vararg Parameters 54
Parameter Groups 55
Type Parameters 55
Methods and Operators 57
Writing Readable Functions 60
Summary 62
Exercises 62

5. First-Class Functions. 65
Function Types and Values 66
Higher-Order Functions 68
Function Literals 69
Placeholder Syntax 72
Partially Applied Functions and Currying 74
By-Name Parameters 75
Partial Functions 76
Invoking Higher-Order Functions with Function Literal Blocks 78
Summary 80
Exercises 81

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

6. Common Collections. 83
Lists, Sets, and Maps 83
What’s in a List? 86

The Cons Operator 89
List Arithmetic 90
Mapping Lists 92
Reducing Lists 93
Converting Collections 98

Java and Scala Collection Compatibility 99
Pattern Matching with Collections 100
Summary 101
Exercises 102

7. More Collections. 107
Mutable Collections 107

Creating New Mutable Collections 108
Creating Mutable Collections from Immutable Ones 109
Using Collection Builders 111

Arrays 112
Seq and Sequences 113
Streams 115
Monadic Collections 117

Option Collections 117
Try Collections 121
Future Collections 125

Summary 130
Exercises 131

Part II. Object-Oriented Scala

8. Classes. 137
Defining Classes 142
More Class Types 146

Abstract Classes 146
Anonymous Classes 148

More Field and Method Types 149
Overloaded Methods 149
Apply Methods 150
Lazy Values 150

Packaging 151
Accessing Packaged Classes 152

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Packaging Syntax 156
Privacy Controls 158
Privacy Access Modifiers 160
Final and Sealed Classes 161
Summary 162
Exercises 162

9. Objects, Case Classes, and Traits. 167
Objects 167

Apply Methods and Companion Objects 169
Command-Line Applications with Objects 172

Case Classes 173
Traits 176

Self Types 180
Instantiation with Traits 182

Importing Instance Members 184
Summary 185
Break—Configuring Your First Scala Project 186
Exercises 191

10. Advanced Typing. 199
Tuple and Function Value Classes 201
Implicit Parameters 203
Implicit Classes 205
Types 207

Type Aliases 207
Abstract Types 208
Bounded Types 209
Type Variance 212
Package Objects 216

Summary 217
Questions 218

A. Reserved Words. 221

Index. 225

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Welcome to Learning Scala. In this book I will provide you with a comprehensive yet
approachable introduction to the Scala programming language.

Who This Book Is For
This book is meant for developers who have worked in object-oriented languages such
as Java, Ruby, or Python and are interested in improving their craft by learning Scala.
Java developers will recognize the core object-oriented, static typing and generic col‐
lections in Scala. However, they may be challenged to switch to Scala’s more expressive
and flexible syntax, and the use of immutable data and function literals to solve prob‐
lems. Ruby and Python developers will be familiar with the use of function literals (aka
closures or blocks) to work with collections, but may be challenged with its static,
generic-supporting type system.

For these and any other developers who want to learn how to develop in the Scala
programming language, this book provides an organized and examples-based guide
that follows a gradual learning curve.

Why Write “Learning Scala”?
When I picked up Scala in early 2012, I found the process of learning the language was
longer and more challenging than it ought to be. The available books on Scala did cover
the core features of the language. However, I found it difficult to switch from Java to
Scala’s unfamiliar syntax, its preference for immutable data structures, and its sheer
extensibility. It took me several weeks to become comfortable writing new code, several
months to fully understand other developers’ code, and up to a year to figure out the
more advanced features of the language.

I chose to write this book so that future developers will have an easier time learning the
language. Now, even using this book the process of learning Scala won’t be easy; picking

ix

up new skills is always going to be challenging, and learning a new language with an
unfamiliar syntax and new methodologies is going to take dedication and lots of work.
However, this book at least should make the process easier. Hopefully it will ensure that
more developers than before will pick up Scala, and also become capable enough to
work with it as their main language.

Why Learn Scala (or, Why Should You Read “Learning
Scala”)?
I enjoy developing with Scala and highly recommend it to anyone writing server ap‐
plications and other types of programs suitable for Java-like languages. If you are work‐
ing in domains suitable for running the Java Virtual Machine such as web applications,
services, jobs, or data processing, then I’ll certainly recommend that you try using Scala.

Here’s why you should take this advice and learn to develop in Scala.

Reason 1—Your Code Will Be Better
You will be able to start using functional programming techniques to stabilize your
applications and reduce issues that arise from unintended side effects. By switching
from mutable data structures to immutable data structures and from regular methods
to pure functions that have no effect on their environment, your code will be safer, more
stable, and much easier to comprehend.

Your code will also be simpler and more expressive. If you currently work in a dynamic
language such as Python, Ruby, or JavaScript, you already are familiar with the benefits
of using a short, expressive syntax, avoiding unnecessary punctuation, and condensing
map, filter, and reduce operations to simple one-liners. If you are more familiar with
statically typed languages like Java, C#, or C++, you’ll be able to shed explicit types,
punctuation, and boilerplate code. You will also be able to pick up an expressive syntax
rarely seen in other compiled languages.

Finally, your code will be strongly typed (even without specifying explicit types) and
support both multiple inheritance and mixin capabilities. Also, any type incompatibil‐
ities will be caught before your code ever runs. Developers in statically typed languages
will be familiar with the type safety and performance available in Scala. Those using
dynamic languages will be able to drastically increase safety and performance while
staying with an expressive language.

Reason 2—You’ll Be a Better Engineer
An engineer who can write short and expressive code (as one expects in Ruby or Python)
while also delivering a type-safe and high-performance application (as one expects from
Java or C++) would be considered both impressive and valuable. I am assuming that if

x | Preface

you read this book and take up Scala programming you will be writing programs that
have all of these benefits. You’ll be able to take full advantage of Scala’s functional pro‐
gramming features, deliver type-safe and expressive code, and be more productive than
you have ever been.

Learning any new programming language is a worthwhile endeavor, because you’ll pick
up new and different ways to approach problem solving and algorithm and data struc‐
ture design, along with ways to express these new techniques in a foreign syntax. On
top of this, taking up a functional programming language like Scala will help to shape
how you view the concepts of data mutability, higher-order functions, and side effects,
not only as new ideas but how they apply to your current coding work and designs. You
may find that working with inline functions and static types are unnecessary for your
current needs, but you’ll have some experience with their benefits and drawbacks. Plus,
if it becomes possible to apply these features in a partial manner to your current lan‐
guage, such as the new lambda expression support in Java 8, you’ll be ready to handle
them appropriately.

Reason 3—You’ll Be a Happier Engineer
This is admittedly a bold statement from someone you haven’t met and who shouldn’t
presume to know what effect Scala development will have on your brain. I’ll only state
that if your code proficiency improves to the point that you are easily writing code that
works better, reads better, debugs better, and runs faster than before, and on top of all
this takes less time to write, you’re going to be happier doing so.

Not that life is all about coding, of course. Nor does the work schedule of average soft‐
ware engineers involve more than half of their time spent actually writing code.

But that time spent writing code will be more fun, and you’ll be able to take more pride
in your work. That should be reason enough to learn something new.

Why Learning Scala May Not Be for You
You should know that Scala has a reputation for being difficult to learn. The language
combines two apparently conflicting software engineering paradigms: object-oriented
programming and functional programming. This synergy will be surprising to new‐
comers and the resulting syntax takes some practice to pick up. Scala also has a sophis‐
ticated type system that enables custom typing declarations at a level rarely seen outside
of academic languages. Ascertaining the syntax and utility of this type system will be
challenging, especially if you do not have academic experience with abstract algebra or
type theory.

If you do not have enough time to spend on reading this book and going through its
exercises, or alternately prefer more challenging or theoretical routes to learning the
language, then this book may not be suitable for you.

Preface | xi

About the Syntax Notation in This Book
Here is an example of the syntax notation you’ll encounter in this book:

val <identifier>[: <type>] = <data>

This specific example is the definition of a value, a type of variable in Scala that cannot
be reassigned. It uses my own informal notation for defining the Scala language’s syntax,
one that can be easier to read than the traditional notations used to define languages
but that comes at the cost of being less formal and precise.

Here is how this notation works:

• Keywords and punctuation are printed normally as they would appear in source
code.

• Variable items, such as values, types, and literals, are surrounded by angular brack‐
ets (“<” and “>”).

• Optional segments are surrounded by square brackets (“[” and “]”).

For example, in the preceding example “val” is a keyword, “identifier” and “data” are
variable items that change with the context, and “type” is an optional item that (if speci‐
fied) must be separated from the identifier by a colon (“:”).

I do suggest reading the formal Scala language specification in addition to this book.
Although it uses a traditional syntax notation that may be difficult to learn, it is still
invaluable for determining the exact syntax requirements of any given feature. The
official title is The Scala Language Specification (Odersky, 2011), and you can find it
either on the official Scala site or with a quick web search.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xii | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/Learning-Scala-materials.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Scala by Jason Swartz (O’Reilly).
Copyright 2015 Jason Swartz, 978-1-449-36793-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xiii

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-scala.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

Acknowledgments
I would like to thank my editor, Meghan Blanchette, for all her efforts to improve the
quality of the book and to make its delivery possible. I would also like to thank Simon
St. Laurent for his help and encouragement in proposing the book and launching the
entire process.

This book would also not have been possible without the many excellent reviewers who
spent their own time reading and reviewing its many revisions. Thank you so much,
Edward Yue Shung Wong, Shannon “JJ” Behrens, Manish Pandit, Devendra Jaisinghani,
Art Peel, Ryan Delucchi, Semmy Purewal, Luc Perkins, Robert Geist, and Alexander
Trauzzi! I’ve learned so much from you and really appreciate everything you have done.

I would like to thank Professor Martin Odersky, the fine folks at EPFL and Typesafe,
and the members of the Scala community for creating and improving such an amazing
language.

I’d also like to thank my wife, Jeanne, and daughter, Oona, for making their sacrifices
and providing moral support so I could write this book.

Finally, I’d like to thank my brother, Joshua, for suggesting that I just go ahead and write
a book. Josh, I don’t know what you were expecting when you said that, but here it is.

Preface | xv

PART I

Core Scala

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Getting Started with the Scalable
Language

The Scala programming language has a wonderfully continental ring to its name, as
befits its origins at the École polytechnique fédérale de Lausanne (EPFL) in Lausanne,
Switzerland. The Scala logo represents a circular stairway, which may lead you to believe
its origin is the term La Scala, meaning a staircase or ladder in Italian, or that it derives
from the famous Italian opera house Teatro alla Scala. In fact the name Scala is an
abbreviation of the term SCAlable LAnguage, a fitting description of its intention. Pro‐
fessor Martin Odersky and his group at EPFL created the language in 2003 to provide
a high-performance, concurrent-ready environment for functional programming and
object-oriented programming on the Java Virtual Machine (JVM) platform.

Now that you have the background story, let’s install Scala and try it out.

Installing Scala
As a JVM language, Scala requires the use of a Java runtime. Scala 2.11, the version you’ll
be using, needs at least Java 6. However, I recommend installing the Java 8 JDK (aka
Java SE for Standard Environment) instead for optimal performance. You can download
the Java 8 JDK (or a later version, if available) for most platforms directly from Oracle’s
website. Installers are available, so you shouldn’t need to manually configure your PATH
variable to get the applications installed.

When finished, verify your Java version by running java -version from the command
line. Here is an example of running this command for Java 8:

$ java -version

java version "1.8.0_05"

Java(TM) SE Runtime Environment (build 1.8.0_05-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.5-b02, mixed mode)

3

Now that Java is installed, it’s time to install Scala. There are two ways to install Scala
(or any other fine programming tool): the manual approach, suitable for command-
line heroes who like to modify their system’s environment variables, and the automatic
approach, for the rest of us.

To install Scala manually, download the Scala 2.11 distribution from http://www.scala-
lang.org and add its “bin” directory to your path. The distribution includes the Scala
runtimes, tools, compiled libraries, and source, but the most important item we’ll need
is the scala command. This command provides (among other features) the REPL
(Read-Eval-Print-Loop) shell we will use to learn and experiment with the Scala lan‐
guage.

To install Scala automatically, use a package manager such as Homebrew for OS X,
Chocolatey for Windows, or apt-get/Yum for Linux systems. These are freely available
and will handle finding the package, downloading and extracting it, and installing it so
you can access it from the command line. The scala package is available in all of these
package managers as “scala,” so you can install it with (brew/choco/apt-get-yum)
install scala.

When installed, execute the scala command from the command line. You should see
a welcome message like the following (although your Scala and Java version messages
may be different):

$ scala

Welcome to Scala version 2.11.0 (Java HotSpot(TM) 64-Bit Server VM,

 Java 1.8.0_05).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

When you see the Welcome to Scala message and the scala> prompt you are now in
the Scala REPL and are ready to start coding.

If the command is found but there are problems launching it, make sure your Java
command is installed correctly and that your system path points to the correct Java
version.

Using the Scala REPL
If you have used other REPL shells like Python’s python, Ruby’s irb, or Groovy’s groovysh
you’ll find the Scala REPL familiar. As with the REPL’s provided with the Python, Ruby,
and Groovy runtimes, Scala’s REPL provides support for evaluating and executing code
one line at a time with helpful feedback.

If you haven’t used a REPL, or are just unaccustomed to writing code outside an IDE
or editor, it will take some practice to learn how to develop in the Scala REPL. However,

4 | Chapter 1: Getting Started with the Scalable Language

it provides an unsurpassed way to learn and experiment quickly and responsively with
the Scala language and libraries. You can enter single lines of code to evaluate and
compile, and any variables you create are available for the lifetime of your session. A
multiline paste mode supports entering multiple lines of code to be compiled together
(instead of individually), and external source code and libraries can be loaded at any
time. A help system is available and can be started by entering the :help command.

Let’s get started using the REPL by implementing the classic first exercise of all serious
programming books, the “Hello World” application. Start up the REPL and make sure
you see the scala> prompt on your screen:

scala>

After the prompt type println("Hello, World!") and press Return. The REPL will
run your println() command and print the output on a line below your command.
Following the printout will be another scala> prompt, waiting for a new command to
run. This is the Read, Evaluate, Print, Loop behavior from which the REPL derives its
name.

Here is how the input and response should appear in the REPL:

scala> println("Hello, World")

Hello, World

scala>

Congratulations, you have now written and executed Scala code.

The println() function, universally available to all Scala code, prints a message to the
JVM’s stdout stream. When used in application servers that stdout stream is typically
logged to a file (e.g., Tomcat’s catalina.out), but in the Scala REPL the println() func‐
tion’s messages appear directly in the REPL.

You can use standard readline-style up-arrow and down-arrow keys to navigate to the
previous and next input lines. For example, press the up-arrow key and hit Return to
rerun the previous command, or press up arrow and enter a new message to print. REPL
history is stored between sessions, so you can quit, run the scala command again, and
press up arrow to access your previous commands.

Let’s try performing a simple arithmetic operation. At a new prompt type 5 * 7 and
press Return. Your display should look like this:

scala> 5 * 7

res0: Int = 35

scala>

This time your Scala command did not print output, but instead returned a value, the
product of 5 and 7. When your commands return (or are themselves) values, the REPL

Using the Scala REPL | 5

will assign them to a new, constant variable so that you can refer to the value in later
operations. These “res” variables (a shortened version of “result,” perhaps) are sequen‐
tially numbered so that there will always be a unique container for your command’s
result.

Now that res0 contains the output of the multiplication command, lets make use of it.
Type 2 * res0 at a fresh prompt and press Return. You should see something like this:

scala> 2 * res0

res1: Int = 70

scala>

As expected, the REPL recognized the res0 variable it previously created in your arith‐
metic expression, and generated a new variable res1 to store the result of the new
expression.

Summary
I hope you’ve seen how using the Scala REPL to evaluate and experiment with code
provides an enriched learning environment for this programming language. As you
continue through this book, keep the REPL open and use it to validate everything you
learn. The code samples throughout the book are presented as raw captures of REPL
sessions to both validate that they work and what they print out, and also to make it
easier for you to replicate them in your own REPL session.

Even better, modify and rework code examples until they break. Scala is a compiled,
statically typed language, so the REPL (which compiles a line after you hit Return) will
let you know immediately if you have entered incorrect Scala code or not. This will help
you pick up the language more quickly and better understand the limits of its syntax
and features.

Exercises

1. Although println() is a good way to print a string, can you find a way to print a
string without println? Also, what kinds of numbers, strings, and other data does
the REPL support?

2. In the Scala REPL, convert the temperature value of 22.5 Centigrade to Fahrenheit.
The conversion formula is cToF(x) = (x * 9/5) + 32.

3. Take the result from exercise 2, halve it, and convert it back to Centigrade. You can
use the generated constant variable (e.g., “res0”) instead of copying and pasting the
value yourself.

6 | Chapter 1: Getting Started with the Scalable Language

4. The REPL can load and interpret Scala code from an external file with the :load
<file> command. Create a new file named Hello.scala and add a command that
will print a greeting, then execute it from the REPL.

5. Another way to load external Scala code is to paste it into the REPL in “raw” mode,
where the code is compiled as if it were actually in a proper source file. To do this,
type :paste -raw, hit Return, and then paste the contents of your source file from
exercise 4. After exiting “paste” mode you should see the greeting.

Exercises | 7

CHAPTER 2

Working with Data: Literals, Values,
Variables, and Types

In this chapter we will cover the core data and variable types in Scala. Let’s start with
the definitions of the terms literal, value, variable, and type:

• A literal (or literal data) is data that appears directly in the source code, like the
number 5, the character A, and the text “Hello, World.”

• A value is an immutable, typed storage unit. A value can be assigned data when it
is defined, but can never be reassigned.

• A variable is a mutable, typed storage unit. A variable can be assigned data when it
is defined and can also be reassigned data at any time.

• A type is the kind of data you are working with, a definition or classification of data.
All data in Scala corresponds to a specific type, and all Scala types are defined as
classes with methods that operate on the data.

The data stored in values and variables in Scala will get automatically deallocated by the
Java Virtual Machine’s garbage collection when they are no longer used. There is no
ability, or need, to deallocate them manually.

Let’s try exercising these terms by working with data in the Scala REPL. Scala values are
defined with the syntax val <name>: <type> = <literal>, so we will create a value
with the name x, type Int (short for “integer”), and assigned it the literal number 5:

scala> val x: Int = 5

x: Int = 5

What happened here? The REPL (again, a Read-Evaluate-Print-Loop shell) read the
value definition, evaluated it, and reprinted it as a confirmation. The new value, named
x, is now defined and available to use. So let’s use it:

9

scala> x

res0: Int = 5

scala> x * 2

res1: Int = 10

scala> x / 5

res2: Int = 1

Each of these three input lines are valid Scala syntax and return an integer value. In each
case, because a value is returned, the REPL repeats the value and its type and also assigns
a unique, sequentially named value starting with res0 (short for “result”). You can
choose to make use of these “result” values just like any value you explicitly define:

scala> res0 * res1

res3: Int = 50

Here the values res0 and res1 are multiplied, resulting in the value 50 being returned
and stored in the new value named res3.

Let’s try working with variables now. Variables, which unlike values are mutable and
can be reassigned new values, are defined with the syntax var <name>: <type> = <lit
eral>.

Here is an example of working with variables:

scala> var a: Double = 2.72

a: Double = 2.72

scala> a = 355.0 / 113.0

a: Double = 3.1415929203539825

scala> a = 5

a: Double = 5.0

In this example we defined the variable a to have the type Double, a double-precision
floating-point number. And then, because it is a variable, we reassigned it to a different
value.

This has been a short introduction to using values, variables, types, and literals in Scala.
In the rest of this chapter we will cover each of these subject areas in depth.

Values
Values are immutable, typed storage units, and by convention are the default method
for storing data. You can define a new value using the val keyword.

Syntax: Defining a Value

val <identifier>[: <type>] = <data>

10 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

Values require both a name and assigned data, but they do not require an explicit
type. If the type is not specified (i.e., the “: <type>” syntax is not included), the Scala
compiler will infer the type based on the assigned data.

Here are some examples of defining values with their type in the Scala REPL:

scala> val x: Int = 20

x: Int = 20

scala> val greeting: String = "Hello, World"

greeting: String = Hello, World

scala> val atSymbol: Char = '@'

atSymbol: Char = @

You may have noticed from the syntax diagram that specifying the type in value defi‐
nitions is optional. In situations where it is possible to deduce the type of the value based
on its assignment (for example, the literal 20 in the first example is obviously an integer),
you can leave off the type from a value definition. The Scala compiler will then discern
the type of the value from its assignment, a process known as type inference. Values
defined without a type are not typeless; they are assigned the proper type just as if the
type had been included in the definition.

Let’s try the examples again without specifying their types:

scala> val x = 20

x: Int = 20

scala> val greeting = "Hello, World"

greeting: String = Hello, World

scala> val atSymbol = '@'

atSymbol: Char = @

In this example the values end up having the same types (Int, String, and Char) as they
did when the types were explicitly stated. The Scala compiler, via the REPL, was able to
deduce that the literal 20 corresponds to the type Int, the literal "Hello, World" to the
type String, and the literal @ to the type Char.

Using Scala’s type inference is a helpful shortcut when writing code because it removes
the need to explicitly write the type of a value. As a guideline it should only be used
when it does not reduce the readability of your code. In the case that someone reading
your code would not be able to figure out what the type of the value is, it would be better
to include the explicit type in the value definition.

Although type inference will deduce the correct type to use to store data, it will not
override an explicit type that you set. If you define a value with a type that is incompatible
with the initial value you will get a compilation error:

Values | 11

scala> val x: Int = "Hello"

<console>:7: error: type mismatch;

 found : String("Hello")

 required: Int

 val x: Int = "Hello"

The error here affirms that an Int type cannot be used to store a String.

Variables
In computer science the term variable typically refers to a unique identifier corre‐
sponding to an allocated or reserved memory space, into which values can be stored
and from which values can be retrieved. As long as the memory space is reserved, it can
be assigned new values over and over again. Thus, the contents of the memory space
are dynamic, or variable.

In most languages, such as C, Java, PHP, Python, and Ruby, this is the typical pattern
for working with named, assignable memory storage. Variables are dynamic, mutable,
and reassignable (with the exception of those defined with special restrictions such as
Java’s final keyword).

In Scala, values are preferred over variables by convention, due to the stability and
predictability they bring to source code. When you define a value you can be assured
that it will retain the same value regardless of any other code that may access it. Reading
and debugging code is easier when a value assigned at the beginning of a code segment
is unchanged through the end of the code segment. Finally, when working with data
that may be available for the life span of an application, or accessible from concurrent
or multithreaded code, an immutable value will be more stable and less prone to errors
than mutable data that may be modified at unexpected times.

The example code and exercises in this book prefer the use of values over variables.
However, in those places where variables are more suitable, such as local variables that
store temporary data or accumulate values in loops, variables will certainly be used.

Now that the preference for values over variables has been explained in detail, we can
put that aside and cover how to use variables in Scala.

The var keyword is used to define a variable with a given name, type, and assignment.

Syntax: Defining a Variable

var <identifier>[: <type>] = <data>

Like values, variables can be defined with or without an explicit type. If no type is
specified the Scala compiler will use type inference to determine the correct type to
assign to your variable. Unlike values, variables can be reassigned new data at any time.

12 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

www.allitebooks.com

http://www.allitebooks.org

Here is an example of defining a variable and then reassigning it, in this case to the
product of itself and another number:

scala> var x = 5

x: Int = 5

scala> x = x * 4

x: Int = 20

Although a variable can be reassigned, its designated type cannot, and so a variable
cannot be reassigned data that has an incompatible type. For example, defining a variable
of type Int and then assigning it a String value will result in a compiler error:

scala> var x = 5

x: Int = 5

scala> x = "what's up?"

<console>:8: error: type mismatch;

 found : String("what\'s up?")

 required: Int

 x = "what's up?"

 ^

However, defining a variable of type Double and assigning it an Int value will work
because Int numbers can be converted to Double numbers automatically:

scala> var y = 1.5

y: Double = 1.5

scala> y = 42

y: Double = 42.0

Naming
Scala names can use letters, numbers, and a range of special operator characters. This
makes it possible to use standard mathematical operators (e.g., * and :+) and constants
(e.g., π and φ) in place of longer names to make the code more expressive.

The Scala Language Specification defines these operator characters as “all other char‐
acters in \u0020-007F and Unicode categories Sm [Symbol/Math] … except parentheses
([]) and periods.” Square brackets (referred to in the text as parentheses) are reserved
for use in type parameterization, while periods are reserved for access to the fields and
methods of objects (instantiated types).

Here are the rules for combining letters, numbers, and characters into valid identifiers
in Scala:

1. A letter followed by zero or more letters and digits.

Naming | 13

2. A letter followed by zero or more letters and digits, then an underscore (_), and
then one or more of either letters and digits or operator characters.

3. One or more operator characters.

4. One or more of any character except a backquote, all enclosed in a pair of back-
quotes.

Names enclosed in backquotes can, unlike the other names, be re‐
served keywords in Scala such as true, while, =, and var.

Let’s try out some of these naming rules in the REPL:

scala> val π = 3.14159

π: Double = 3.14159

scala> val $ = "USD currency symbol"

$: String = USD currency symbol

scala> val o_O = "Hmm"

o_O: String = Hmm

scala> val 50cent = "$0.50"

<console>:1: error: Invalid literal number

 val 50cent = "$0.50"

 ^

scala> val a.b = 25

<console>:7: error: not found: value a

 val a.b = 25

scala> val `a.b` = 4

a.b: Int = 4

The special character “π” is a valid Scala identifier.

The value name “50cent” is invalid because names cannot start with numbers.
In this case the compiler started parsing the name as a literal number and ran
into problems at the letter “c”.

The value name “a.b” is invalid because a period isn’t an operator character.

Rewriting this value with backquotes fixes the problem, although the aesthetics
of using backquotes isn’t that great.

Value and variable names, by convention, should start with a lowercase letter and then
capitalize additional words. This is popularly known as camel case, and though not

14 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

required it is recommended for all Scala developers. This helps to distinguish them from
types and classes which (also by convention, not by rule) follow camel case but start
with an uppercase letter.

Types
Scala has both numeric (e.g., Int and Double) and nonnumeric types (e.g., String) that
can be used to define values and variables. These core types are the building blocks for
all other types including objects and collections, and are themselves objects that have
methods and operators that act on their data.

Unlike Java and C there is no concept of a primitive type in Scala. While the Java Virtual
Machine supports the primitive integer type int and the integer class Integer, Scala
only supports its own integer class, Int.

Numeric Data Types
Table 2-1 displays Scala’s numeric data types.

Table 2-1. Core numeric types

Name Description Size Min Max

Byte Signed integer 1 byte –127 128

Short Signed integer 2 bytes –32768 32767

Int Signed integer 4 bytes –231 231–1

Long Signed integer 8 bytes –263 263–1

Float Signed floating point 4 bytes n/a n/a

Double Signed floating point 8 bytes n/a n/a

See the API documentation for java.lang.Float and java.lang.Dou
ble for a description of the calculated maximum and minimum val‐
ues for these floating-point numbers.

Scala supports the ability to automatically convert numbers from one type to another
based on the rank of the type. The numeric types in Table 2-1 are sorted by their auto‐
matic conversion rank, where the Byte type is the lowest and can be converted to any
other type.

Let’s try this out by creating values of different types and automatically converting them
to higher-ranked types:

scala> val b: Byte = 10

b: Byte = 10

Types | 15

scala> val s: Short = b

s: Short = 10

scala> val d: Double = s

d: Double = 10.0

The b and s values here were assigned to new values that had a higher rank, and so were
automatically converted (or “upconverted” as some say) to the higher ranks.

Java developers will recognize the names of these types, which are
wrappers around the core JVM types of the same names (except the
JVM’s Integer is Scala’s Int). Wrapping JVM types ensures that Sca‐
la and Java are interopable, and that Scala can make use of every Java
library.

Scala does not allow automatic conversion from higher ranked types to lower ranked
types. This makes sense, because you could otherwise lose data if you convert to a type
with less storage. Here is an example of trying to automatically convert a higher ranked
type to a lower ranked type and the ensuing error:

scala> val l: Long = 20

l: Long = 20

scala> val i: Int = l

<console>:8: error: type mismatch;

 found : Long

 required: Int

 val i: Int = l

You can choose to manually convert between types using the toType methods available
on all numeric types. Although this makes it possible to lose data by converting to a
lesser ranked type, it is useful when you know that the data is compatible with the lower
ranked type.

For example, here is a Long value that can be safely converted to type Int using the toInt
method, because its data is within the storage bounds of an Int:

scala> val l: Long = 20

l: Long = 20

scala> val i: Int = l.toInt

i: Int = 20

An alternative to using explicit types is to specify the type of your literal data directly,
using Scala’s notation for literal types. See Table 2-2 for the full list of notations for
specifying the types of literals.

16 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

Table 2-2. Numeric literals

Literal Type Description

5 Int Unadorned integer literals are Int by default

0x0f Int The “0x” prefix denotes hexadecimal notation

5l Long The “l” suffix denotes a Long type

5.0 Double Unadorned decimal literals are Double by default

5f Float The “f” suffix denotes a Float type

5d Double The “d suffix denotes a Double type

Literal Characters Are Case-Insensitive
You can use either lowercase or uppercase letters in Scala’s literal types.
The literal number 5L is the same as the literal number 5l.

Let’s try out these literals by assigning them to new values without stating the type. The
Scala REPL will use type inference to calculate the appropriate types for each value:

scala> val anInt = 5

anInt: Int = 5

scala> val yellowRgb = 0xffff00

yellowRgb: Int = 16776960

scala> val id = 100l

id: Long = 100

scala> val pi = 3.1416

pi: Double = 3.1416

Strings
The String type represents “strings” of text, one of the most common core types in any
programming language. Scala’s String is built on Java’s String and adds unique fea‐
tures like multiline literals and string interpolation.

Write String literals using double quotes, with special characters escaped with back‐
slashes:

scala> val hello = "Hello There"

hello: String = Hello There

scala> val signature = "With Regards, \nYour friend"

signature: String =

With Regards,

Your friend

Types | 17

Like numeric types, the String type supports the use of math operators. For example,
use the equals operator (==) to compare two String values. Unlike Java, the equals
operator (==) checks for true equality, not object reference equality:

scala> val greeting = "Hello, " + "World"

greeting: String = Hello, World

scala> val matched = (greeting == "Hello, World")

matched: Boolean = true

scala> val theme = "Na " * 16 + "Batman!" // what do you expect this to print?

A multiline String can be created using triple-quotes. Multiline strings are literal, and
so do not recognize the use of backslashes as the start of special characters:

scala> val greeting = """She suggested reformatting the file

 | by replacing tabs (\t) with newlines (\n);

 | "Why do that?", he asked. """

greeting: String =

She suggested reformatting the file

by replacing tabs (\t) with newlines (\n);

"Why do that?", he asked.

String interpolation

Building a String based on other values is reasonably easy to do with string addition.
Here is a String built by adding text before and after the Float value:

scala> val approx = 355/113f

approx: Float = 3.141593

scala> println("Pi, using 355/113, is about " + approx + ".")

Pi, using 355/113, is about 3.141593.

A more direct way to combine your values or variables inside a String is with string
interpolation, a special mode where external value and variable names are recognized
and resolved. The Scala notation for string interpolation is an “s” prefix added before
the first double quote of the string. Then dollar sign operators ($) (with optional braces)
can be used to note references to external data.

Here is the example again using string interpolation:

scala> println(s"Pi, using 355/113, is about $approx.")

Pi, using 355/113, is about 3.141593.

You will need the optional braces if you have any nonword characters in your reference
(such as a calculation), or if your reference can’t be distinguished from the surrounding
text:

scala> val item = "apple"

item: String = apple

18 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

scala> s"How do you like them ${item}s?"

res0: String = How do you like them apples?

scala> s"Fish n chips n vinegar, ${"pepper "*3}salt"

res1: String = Fish n chips n vinegar, pepper pepper pepper salt

An alternate format for string interpolation uses printf notation, very useful when you
want to control the data formatting such as the character count or display of decimal
values. To use printf notation change the prefix to an “f ” and follow the end of the
reference immediately with the printf notation:

If you are unfamiliar with printf there are numerous online refer‐
ences for the format, including the official Javadoc for java.util.For
matter, the underlying engine used by Scala to format these strings.

scala> val item = "apple"

item: String = apple

scala> f"I wrote a new $item%.3s today"

res2: String = I wrote a new app today

scala> f"Enjoying this $item ${355/113.0}%.5f times today"

res3: String = Enjoying this apple 3.14159 times today

These printf notations make the references a little harder to read than in the previous
examples, but do provide essential control over the output.

Now that we have learned how to control data output with strings, let’s find out how to
do the opposite with regular expressions.

Regular expressions

A regular expression is a string of characters and punctuation that represents a search
pattern. Popularized by Perl and command-line utilities like Grep, regular expressions
are a standard feature in the libraries of most programming languages including Scala.

The format for Scala’s regular expressions is based on the Java class
java.util.regex.Pattern. I recommend reading the Javadoc (the Java API documen‐
tation) for java.util.regex.Pattern if you are unfamiliar with this type, because Java’s
(and thus Scala’s) regular expressions may be different from the format you have used
with other languages and tools.

The String type provides a number of built-in operations that support regular expres‐
sions. Table 2-3 displays a selection of these operations.

Types | 19

Table 2-3. Regular expression operations

Name Example Description

matches "Froggy went a' courting" matches ".*

courting"

Returns true if the regular expression matches

the entire string.

replaceAll "milk, tea, muck" replaceAll ("m[^]

+k", "coffee")

Replaces all matches with replacement text.

replaceFirst "milk, tea, muck" replaceFirst ("m[^]

+k", "coffee")

Replaces the first match with replacement text.

For more advanced handling of regular expressions, convert a string to a regular ex‐
pression type by invoking its r operator. This will return a Regex instance that can handle
additional search and replace operations as well as capture group support. A capture
group makes it possible to select items in a given string and convert them to local values
based on the regular expression pattern. The pattern must include at least one capture
group defined by parentheses, and the input must include at least one of the captured
patterns to return the value.

Syntax: Capturing Values with Regular Expressions

val <Regex value>(<identifier>) = <input string>

Let’s try this out by capturing the numeric value from the output of the previous example
(see “String interpolation” on page 18). We’ll use multiline strings to store our regular
expression pattern, because they are literal and allow us to write a backslash without a
second, escaping backslash:

scala> val input = "Enjoying this apple 3.14159 times today"

input: String = Enjoying this apple 3.14159 times today

scala> val pattern = """.* apple ([\d.]+) times .*""".r

pattern: scala.util.matching.Regex = .* apple ([\d.]+) times .*

scala> val pattern(amountText) = input

amountText: String = 3.14159

scala> val amount = amountText.toDouble

amount: Double = 3.14159

The capture group is the series of digits and a period between the words apple
and times.

The full regular expression type is scala.util.matching.Regex, or just
util.matching.Regex.

The format is admittedly a bit odd. The name of the new value containing the
capture group match, amountText, does not directly follow the val identifier.

After converting the amount in text form to a Double we have our numeric value.

20 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

Regular expressions serve as a compact and efficient means to process text, with oper‐
ations such as matching, replacing, and capturing. If you are still new to regular ex‐
pressions, it is worth investing time to study them because they are widely applicable
in modern software development.

An Overview of Scala Types
In this section we will move on from numbers and strings to a broader look at the range
of core types. All of Scala’s types, from numbers to strings to collections, exist as part of
a type hierarchy. Every class that you define in Scala will also belong to this hierarchy
automatically.

Figure 2-1 shows the hierarchy of Scala’s core (numeric and nonnumeric) types.

Figure 2-1. The Scala type hierarchy

Types | 21

The open-headed arrows in the diagram indicate supertypes, a common notation in
object-oriented diagrams. The multiple-arrow types at the bottom indicate that they are
subtypes of every type in the system, including classes you define on your own.

In Table 2-4 you can see a full listing of the specific types mentioned in this diagram,
followed by more complete descriptions.

Table 2-4. Core nonnumeric types

Name Description Instantiable

Any The root of all types in Scala No

AnyVal The root of all value types No

AnyRef The root of all reference (nonvalue) types No

Nothing The subclass of all types No

Null The subclass of all AnyRef types signifying a null value No

Char Unicode character Yes

Boolean true or false Yes

String A string of characters (i.e., text) Yes

Unit Denotes the lack of a value No

The Any, AnyVal, and AnyRef types are the root of Scala’s type hierarchy. Any is the
absolute root, and all other types descend from its two children, AnyVal and AnyRef.
The types that extend AnyVal are known as value types because they are the core values
used to represent data. They include all of the numeric types we have covered plus Char,
Boolean, and Unit. AnyVal types are accessed just like other types but may be allocated
at runtime either on the heap as objects or locally on the stack as a JVM primitive value.
All other types have AnyRef as their root and are only ever allocated on the heap as
objects. The term “Ref ” in “AnyRef ” indicates they they are reference types that are
accessed via a memory reference.

At the bottom of the Scala type hierarchy are the Nothing and Null types. Nothing is a
subtype of every other type and exists to provide a compatible return type for operations
that significantly affect a program’s flow. For example, the return keyword, which exits
a function early with a return value, has a return type of Nothing so it can be used in
the middle of initializing a value and not affect the type of that value. Nothing is only
used as a type, because it cannot be instantiated.

The other bottom type is Null, a subtype of all AnyRef types that exists to provide a type
for the keyword null. A String variable, for example, can be assigned null at any time,
such that the variable does not point to any string instance in memory. This assignment
of null to a variable declared as type String is acceptable because null is a compatible
type for String. Defining a type for null is an example of how Scala’s syntax prefers the
use of real types and instances to reserved keywords.

22 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

www.allitebooks.com

http://www.allitebooks.org

Char is the only type that could also appear in “Numeric Data Types” on page 15. As the
basis of the String type it contains a single character and so is sometimes considered
to be a unit of text. Essentially it is a scalar type that can be converted to and from other
numbers.

Char literals are written with single quotes, distinguishing them from String literals,
which are written with double quotes. If you’re familiar with the ASCII character num‐
bering system, this example should be obvious:

scala> val c = 'A'

c: Char = A

scala> val i: Int = c

i: Int = 65

scala> val t: Char = 116

t: Char = t

The Boolean type is limited to the values true and false. In addition to using true and
false, you can also obtain Boolean values from comparison and Boolean logic opera‐
tors:

scala> val isTrue = !true

isTrue: Boolean = false

scala> val isFalse = !true

isFalse: Boolean = false

scala> val unequal = (5 != 6)

unequal: Boolean = true

scala> val isLess = (5 < 6)

isLess: Boolean = true

scala> val unequalAndLess = unequal & isLess

unequalAndLess: Boolean = true

scala> val definitelyFalse = false && unequal

definitelyFalse: Boolean = false

What is the Difference Between & and && ?
The Boolean comparison operators && and || are lazy in that they will
not bother evaluating the second argument if the first argument is
sufficient. The operators & and | will always check both arguments
before returning a result.

Unlike many dynamic languages, Scala does not support automatic conversion of other
types to Booleans. A nonnull string cannot be evaluated as true, and the number zero

Types | 23

does not equal false. If you need to evaluate a value’s state to a Boolean, use an explicit
comparison:

scala> val zero = 0

zero: Int = 0

scala> val isValid = zero > 0

isValid: Boolean = false

The Unit type is unlike the other core types here (numeric and nonnumeric) in that
instead of denoting a type of data it denotes the lack of data. In a way it is similar to the
void keyword used in Java and C, which is used to define a function that doesn’t return
data. The Unit type is similarly used in Scala as the return type for functions or expres‐
sions that don’t return anything. For example, the common println function could be
said to return a Unit type because it returns nothing.

The Unit literal is an empty pair of parentheses, (), which if you consider it is a fine
representation of not having a value. If you want you can define a value or variable with
the Unit type, but again its common usage is for defining functions and expressions:

scala> val nada = ()

nada: Unit = ()

Now that we have covered the core types, let’s have a look at the operations they all have
in common.

Type operations

Table 2-5 displays the operations available on all types in Scala. The toString and
hashCode methods are required on all JVM instances.

Table 2-5. Common type operations

Name Example Description

asInstanceOf[<type>] 5.asInstanceOf[Long] Converts the value to a value of the desired type.

Causes an error if the value is not compatible with the

new type.

getClass (7.0 / 5).getClass Returns the type (i.e., the class) of a value.

isInstanceOf (5.0).isInstanceOf[Float] Returns true if the value has the given type.

hashCode "A".hashCode Returns the hash code of the value, useful for hash-

based collections.

to<type> 20.toByte; 47.toFloat Conversion functions to convert a value to a compatible

value.

toString (3.0 / 4.0).toString Renders the value to a String.

24 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

Avoid asInstanceOf
The asInstanceOf operation will cause an error if the value can‐
not be converted to the requested type. To avoid runtime errors with
this operation, prefer the to<type> typed conversion operations
when possible.

The types we have covered so far in this chapter are all (with the possible exception of
String) scalar values, which represent a single element (or, of course with Unit, the lack
of any element). As a complement to these scalar values, we will finish the chapter with
the Tuple type, which can collect two or more of these values into a new,
ordered element.

Tuples
A tuple is an ordered container of two or more values, all of which may have different
types. You may be familiar with this term from working with relational databases, where
a single row of a table is considered its own tuple. Tuples can be useful when you need
to logically group values, representing them as a coherent unit. Unlike lists and arrays,
however, there is no way to iterate through elements in a tuple. Its purpose is only as a
container for more than one value.

You can create a tuple by writing your values separated by a comma and surrounded by
a pair of parentheses.

Syntax: Create a Tuple

(<value 1>, <value 2>[, <value 3>...])

For example, here is a tuple containing Int, String, and Boolean values:

scala> val info = (5, "Korben", true)

info: (Int, String, Boolean) = (5,Korben,true)

You can access an individual element from a tuple by its 1-based index (e.g., where the
first element is 1, second is 2, etc.):

scala> val name = info._2

name: String = Korben

An alternate form of creating a 2-sized tuple is with the relation operator (->). This is
a popular shortcut for representing key-value pairs in tuples:

scala> val red = "red" -> "0xff0000"

red: (String, String) = (red,0xff0000)

scala> val reversed = red._2 -> red._1

reversed: (String, String) = (0xff0000,red)

Types | 25

Tuples provide a generic means to structure data, and are useful when you need to group
discrete elements for handling.

Summary
This may be a challenging chapter to see through to the end, because you had to read
all about types and data without learning how to do real programming in Scala yet. I’m
glad you did.

What was the oddest or most-unexpected part of this chapter? The use of keywords to
announce value and variable definition? The reversed manner (if you’re coming from
Java) of defining a variable’s name before its type? The idea that much of your code can
use fixed, nonreassignable values instead of (variable) variables?

If these ideas were hard to take, the good news is that, as you gain experience in Scala
developemnt, they will become quite normal. Eventually they may even seem to be
obvious choices for a well-designed functional programming language.

At this point you should know how to define your own values and variables, although
we haven’t yet learned where to come up with useful data to store in them. In the next
chapter you will study ways to derive and calculate this data using logical structures
known as expressions.

Exercises
1. Write a new Centigrade-to-Fahrenheit conversion (using the formula (x * 9/5) +

32), saving each step of the conversion into separate values. What do you expect
the type of each value will be?

2. Modify the Centigrade-to-Fahrenheit formula to return an integer instead of a
floating-point number.

3. Using the input value 2.7255, generate the string “You owe $2.73.” Is this doable
with string interpolation?

4. Is there a simpler way to write the following?

val flag: Boolean = false

val result: Boolean = (flag == false)

5. Convert the number 128 to a Char, a String, a Double, and then back to an Int.
Do you expect the original amount to be retained? Do you need any special con‐
version functions for this?

6. Using the input string “Frank,123 Main,925-555-1943,95122” and regular expres‐
sion matching, retrieve the telephone number. Can you convert each part of the
telephone number to its own integer value? How would you store this in a tuple?

26 | Chapter 2: Working with Data: Literals, Values, Variables, and Types

CHAPTER 3

Expressions and Conditionals

This chapter focuses on Scala’s expressions, statements, and conditionals. The term
expression as used in this book indicates a unit of code that returns a value after it has
been executed. One or more lines of code can be considered an expression if they are
collected together using curly braces ({ and }). This is known as an expression block.

Expressions provide a foundation for functional programming because they make it
possible to return data instead of modifying existing data (such as a variable). This
enables the use of immutable data, a key functional programming concept where new
data is stored in new values instead of in existing variables. Functions, of course, can be
used to return new data, but they are in a way just another type of expression.

When all of your code can be organized (or conceptualized) into a collection of one or
more hierarchical expressions that return values using immutable data will be straight‐
forward. The return values of expressions will be passed to other expressions or stored
into values. As you migrate from using variables, your functions and expressions will
have fewer side effects. In other words, they will purely act on the input you give them
without affecting any data other than their return value. This is one of the main goals
and benefits of functional programming.

Expressions
As noted earlier, an expression is a single unit of code that returns a value.

Let’s start out with an example of a simple expression in Scala, just a String literal on
its own:

scala> "hello"

res0: String = hello

27

OK, that’s not a very impressive expression. Here’s a more complicated one:

scala> "hel" + 'l' + "o"

res1: String = hello

This example and the previous example are valid expressions that, while implemented
differently, generate the same result. What’s important about expressions is the value
they return. The entire point of them is to return a value that gets captured and used.

Defining Values and Variables with Expressions
We have seen that expressions cover both literal values (“hello”) and calculated val‐
ues. Previously we have defined values and variables as being assigned literal values.
However, it is more accurate to say that they are assigned the return value of expressions.
This is true whether the expression is a literal (e.g., 5), a calculation, or a function call.

Given this, let’s redefine the syntax for defining values and variables based on expres‐
sions.

Syntax: Defining Values and Variables, Using Expressions

val <identifier>[: <type>] = <expression>

var <identifier>[: <type>] = <expression>

Because literal values are also a kind of expression, these definitions are more encom‐
passing and accurate. It turns out that expressions are also a good foundation for defin‐
ing most of Scala’s syntax. Look for the term “<expression>” in future syntax notations
to indicate where any expression may be used.

Expression Blocks
Multiple expressions can be combined using curly braces ({ and }) to create a single
expression block. An expression has its own scope, and may contain values and variables
local to the expression block. The last expression in the block is the return value for the
entire block.

As an example, here is a line with two expressions that would work better as a block:

scala> val x = 5 * 20; val amount = x + 10

x: Int = 100

amount: Int = 110

The only value we really care about keeping is “amount,” so let’s combine the expressions
including the “x” value into a block. We’ll use its return value to define the “amount”
value:

scala> val amount = { val x = 5 * 20; x + 10 }

amount: Int = 110

28 | Chapter 3: Expressions and Conditionals

The last expression in the block, “x + 10,” determines the block’s return value. The “x”
value, previously defined at the same level of “amount,” is now defined locally to the
block. The code is now cleaner, because the intent of using “x” to define “amount” is
now obvious.

Expression blocks can span as many lines as you need. The preceding example could
have been rewritten without the semicolons as follows:

scala> val amount = {

 | val x = 5 * 20

 | x + 10

 | }

amount: Int = 110

Expression blocks are also nestable, with each level of expression block having its own
scoped values and variables.

Here is a short example demonstrating a three-deep nested expression block:

scala> { val a = 1; { val b = a * 2; { val c = b + 4; c } } }

res5: Int = 6

These examples may not indicate compelling reasons to use expression blocks on their
own. However, it is important to understand their syntax and compositional nature
because we will revisit them when we cover control structures later in this chapter.

Statements
A statement is just an expression that doesn’t return a value. Statements have a return
type of Unit, the type that indicates the lack of a value. Some common statements used
in Scala programming include calls to println() and value and variable definitions.

For example, the following value definition is a statement because it doesn’t return
anything:

scala> val x = 1

x: Int = 1

The REPL repeats the definition of x but there is not actual data returned that can be
used to create a new value.

A statement block, unlike an expression block, does not return a value. Because a state‐
ment block has no output, it is commonly used to modify existing data or make changes
outside the scope of the application (e.g., writing to the console, updating a database,
connecting to an external server).

Expressions | 29

If..Else Expression Blocks
The If..Else conditional expression is a classic programming construct for choosing a
branch of code based on whether an expression resolves to true or false. In many lan‐
guages this takes the form of an “if .. else if .. else” block, which starts with an “if,”
continues with zero to many “else if ” sections, and ends with a final “else” catch-all
statement.

As a matter of practice you can write these same “if .. else if .. else” blocks in Scala and
they will work just as you have experienced them in Java and other languages. As a
matter of formal syntax, however, Scala only supports a single “if ” and optional “else”
block, and does not recognize the “else if ” block as a single construct.

So how do “else if ” blocks still work correctly in Scala? Because “if .. else” blocks are
based on expression blocks, and expression blocks can be easily nested, an “if .. else if ..
else” expression is equivalent to a nested “if .. else { if .. else }” expression. Logically this
is exactly the same as an “if .. else if .. else” block, and as a matter of syntax Scala recognizes
the second “if else” as a nested expression of the outer “if .. else” block.

Let’s start exploring actual “if ” and “if .. else” blocks by looking at the syntax for the
simple “if ” block.

If Expressions
Syntax: Using an If Expression

if (<Boolean expression>) <expression>

The term Boolean expression here indicates an expression that will return either true
or false.

Here is a simple if block that prints a notice if the Boolean expression is true:

scala> if (47 % 3 > 0) println("Not a multiple of 3")

Not a multiple of 3

Of course 47 isn’t a multiple of 3, so the Boolean expression was true and the println
was trigggered.

Although an if block can act as an expression, it is better suited for statements like this
one. The problem with using if blocks as expressions is that they only conditionally
return a value. If the Boolean expression returns false, what do you expect the if block
to return?

scala> val result = if (false) "what does this return?"

result: Any = ()

The type of the result value in this example is unspecified so the compiler used type
inference to determine the most appropriate type. Either a String or Unit could have

30 | Chapter 3: Expressions and Conditionals

been returned, so the compiler chose the root class Any. This is the one class common
to both String (which extends AnyRef) and to Unit (which extends AnyVal).

Unlike the solitary “if ” block, the “if .. else” block is well suited to working
with expressions.

If-Else Expressions
Syntax: If .. Else Expressions

if (<Boolean expression>) <expression>

else <expression>

Here is an example:

scala> val x = 10; val y = 20

x: Int = 10

y: Int = 20

scala> val max = if (x > y) x else y

max: Int = 20

You can see that the x and y values make up the entirety of the if and else expressions.
The resulting value is assigned to max, which we and the Scala compiler know will be
an Int because both expressions have return values of type Int.

Some wonder why Scala doesn’t have a ternary expression (popular in C and Java) where
the punctuation characters ? and : act as a one-line if and else expression. It should
be clear from this example that Scala doesn’t really need it because its if and else blocks
can fit compactly on a single line (and, unlike in C and Java, they are already an
expression).

Using a single expression without an expression block in if..else expressions works
well if everything fits on one line. When your if..else expression doesn’t easily fit on
a single line, however, consider using expression blocks to make your code more read‐
able. if expressions without an else should always use curly braces, because they tend
to be statements that create side effects.

if..else blocks are a simple and common way to write conditional logic. There are
other, more elegant ways to do so in Scala, however, using match expressions.

Match Expressions
Match expressions are akin to C’s and Java’s “switch” statements, where a single input
item is evaluated and the first pattern that is “matched” is executed and its value re‐
turned. Like C’s and Java’s “switch” statements, Scala’s match expressions support a de‐
fault or wildcard “catch-all” pattern. Unlike them, only zero or one patterns can match;

Match Expressions | 31

there is no “fall-through” from one pattern to the next one in line, nor is there a “break”
statement that would prevent this fall-through.

The traditional “switch” statement is limited to matching by value, but Scala’s match
expressions are an amazingly flexible device that also enables matching such diverse
items as types, regular expressions, numeric ranges, and data structure contents. Al‐
though many match expressions could be replaced with simple “if .. else if .. else” blocks,
doing so would result in a loss of the concise syntax that match expressions offer.

In fact, most Scala developers prefer match expressions over “if .. else” blocks because
of their expressiveness and concise syntax.

In this section we will cover the basic syntax and uses of match expressions. As you read
through the book, you will pick up new features that may be applicable to match ex‐
pressions. Try experimenting with them to find new ways to express relationships or
equivalence through match expressions.

Syntax: Using a Match Expression

<expression> match {

 case <pattern match> => <expression>

 [case...]

}

Multiple Expressions Allowed but Not Recommended
Scala officially supports having multiple expressions follow the ar‐
row (=>), but this is not recommended because it may reduce read‐
ability. If you have multiple expressions in a case block, convert them
to an expression block by wrapping them with curly braces.

Let’s try this out by converting the “if .. else” example from the previous section into a
match expression. In this version the Boolean expression is handled first, and then the
result is matched to either true or false:

scala> val x = 10; val y = 20

x: Int = 10

y: Int = 20

scala> val max = x > y match {

 | case true => x

 | case false => y

 | }

max: Int = 20

The logic works out to the same as in the “if .. else” block but is implemented differently.

Here is another example of a match expression, one that takes an integer status code
and tries to return the most appropriate message for it. Depending on the input to the
expression, additional actions may be taken besides just returning a value:

32 | Chapter 3: Expressions and Conditionals

www.allitebooks.com

http://www.allitebooks.org

scala> val status = 500

status: Int = 500

scala> val message = status match {

 | case 200 =>

 | "ok"

 | case 400 => {

 | println("ERROR - we called the service incorrectly")

 | "error"

 | }

 | case 500 => {

 | println("ERROR - the service encountered an error")

 | "error"

 | }

 | }

ERROR - the service encountered an error

message: String = error

This match expression prints error messages in case the status is 400 or 500 in addition
to returning the message “error.” The println statement is a good example of including
more than one expression in a case block. There is no limit to the number of statements
and expressions you can have inside a case block, although only the last expression will
be used for the match expression’s return value.

You can combine multiple patterns together with a pattern alternative, where the case
block will be triggered if any one of the patterns match.

Syntax: A Pattern Alternative

case <pattern 1> | <pattern 2> .. => <one or more expressions>

The pattern alternative makes it possible to prevent duplicated code by reusing the same
case block for multiple patterns. Here is an example showing the uses of these pipes (|)
to collapse a 7-pattern match expression down to only two patterns:

scala> val day = "MON"

day: String = MON

scala> val kind = day match {

 | case "MON" | "TUE" | "WED" | "THU" | "FRI" =>

 | "weekday"

 | case "SAT" | "SUN" =>

 | "weekend"

 | }

kind: String = weekday

So far the examples have left open the possibility that a pattern may not be found that
matches the input expression. In case this event does occur, for example if the input to
the previous example was “MONDAY,” what do you think would happen?

Match Expressions | 33

Well, it’s more fun to try it out than to explain, so here is an example of a match ex‐
pression that fails to provide a matching pattern for the input expression:

scala> "match me" match { case "nope" => "sorry" }

scala.MatchError: match me (of class java.lang.String)

 ... 32 elided

The input of “match me” didn’t match the only given pattern, “nope,” so the Scala com‐
piler treated this as a runtime error. The error type, scala.MatchError, indicates that
this is a failure of the match expression to handle its input.

The message “… 32 elided” in the preceding example indicates that
the error’s stack trace (a list of all the nested function calls down to
the one that caused the error) was reduced for readability.

To prevent errors from disrupting your match expression, use a wildcard match-all
pattern or else add enough patterns to cover all possible inputs. A wildcard pattern
placed as the final pattern in a match expression will match all possible input patterns
and prevent a scala.MatchError from occurring.

Matching with Wildcard Patterns
There are two kinds of wildcard patterns you can use in a match expression: value
binding and wildcard (aka “underscore”) operators.

With value binding (aka variable binding) the input to a match expression is bound to
a local value, which can then be used in the body of the case block. Because the pattern
contains the name of the value to be bound there is no actual pattern to match against,
and thus value binding is a wildcard pattern because it will match any input value.

Syntax: A Value Binding Pattern

case <identifier> => <one or more expressions>

Here is an example that tries to match a specific literal and otherwises uses value binding
to ensure all other possible values are matched:

scala> val message = "Ok"

message: String = Ok

scala> val status = message match {

 | case "Ok" => 200

 | case other => {

 | println(s"Couldn't parse $other")

 | -1

 | }

34 | Chapter 3: Expressions and Conditionals

 | }

status: Int = 200

The value other is defined for the duration of the case block and is assigned the value
of message, the input to the match expression.

The other type of wildcard pattern is the use of the wildcard operator. This is an un‐
derscore (_) character that acts as an unnamed placeholder for the eventual value of an
expression at runtime. As with value binding, the underscore operator doesn’t provide
a pattern to match against, and thus it is a wildcard pattern that will match any input
value.

Syntax: A Wildcard Operator Pattern

case _ => <one or more expressions>

The wildcard cannot be accessed on the right side of the arrow, unlike with value bind‐
ing. If you need to access the value of the wildcard in the case block, consider using a
value binding, or just accessing the input to the match expression (if available).

Why an Underscore as a wildcard?
Using underscores to indicate unknown values comes from the field
of mathematics, arithmetic in particular, where missing amounts are
denoted in problems with one or more underscores. For example, the
equation 5 * _ = 15 is a problem that must be solved for _, the
missing value.

Here is a similar example to the one earlier only with a wildcard operator instead of a
bound value:

scala> val message = "Unauthorized"

message: String = Unauthorized

scala> val status = message match {

 | case "Ok" => 200

 | case _ => {

 | println(s"Couldn't parse $message")

 | -1

 | }

 | }

Couldn't parse Unauthorized

status: Int = -1

In this case the underscore operator matches the runtime value of the input to the match
expression. However, it can’t be accessed inside the case block as a bound value would,
and thus the input to the match expression is used to create an informative println
statement.

Match Expressions | 35

Matching with Pattern Guards
A pattern guard adds an if expression to a value-binding pattern, making it possible to
mix conditional logic into match expressions. When a pattern guard is used the pattern
will only be matched when the if expression returns true.

Syntax: A Pattern Guard

case <pattern> if <Boolean expression> => <one or more expressions>

Unlike regular if expressions, the if expression here doesn’t require parentheses ((
and)) around its Boolean expression. Regular if expressions require the parentheses
in order to simplify the job of parsing the full command and delineate the Boolean
expression from the conditional expression. In this case the arrow (=>) handles that task
and simplifies parsing. You can, however, add the parentheses around the Boolean ex‐
pression if you wish.

Let’s use a pattern guard to differentiate between a nonnull and a null response and
report the correct message:

scala> val response: String = null

response: String = null

scala> response match {

 | case s if s != null => println(s"Received '$s'")

 | case s => println("Error! Received a null response")

 | }

Error! Received a null response

Matching Types with Pattern Variables
Another way to do pattern matching in a match expression is to match the type of the
input expression. Pattern variables, if matched, may convert the input value to a value
with a different type. This new value and type can then be used inside the case block.

Syntax: Specifying a Pattern Variable

case <identifier>: <type> => <one or more expressions>

The only restriction for pattern variable naming, other than the naming requirements
already in place for values and variables, is that they must start with a lowercase letter.

You might be considering the utility of using a match expression to determine a value’s
type, given that all values have types and they are typically rather descriptive. The sup‐
port of polymorphic types in Scala should be a clue to a match expression’s utility. A
value of type Int may get assigned to another value of type Any, or it may be returned
as Any from a Java or Scala library call. Although the data is indeed an Int, the value
will have the higher type Any.

36 | Chapter 3: Expressions and Conditionals

Let’s reproduce this situation by creating an Int, assigning it to an Any, and using a
match expression to resolve its true type:

scala> val x: Int = 12180

x: Int = 12180

scala> val y: Any = x

y: Any = 12180

scala> y match {

 | case x: String => s"'x'"

 | case x: Double => f"$x%.2f"

 | case x: Float => f"$x%.2f"

 | case x: Long => s"${x}l"

 | case x: Int => s"${x}i"

 | }

res9: String = 12180i

Even though the value given to the match expression has the type Any, the data it is
storing was created as an Int. The match expression was able to match based on the
actual type of the value, not just on the type that it was given. Thus, the integer 12180,
even when given as type Any, could be correctly recognized as an integer and formatted
as such.

Loops
Loops are the last expression-based control structure we’ll examine in this chapter. A
loop is a term for exercising a task repeatedly, and may include iterating through a range
of data or repeating until a Boolean expression returns false.

The most important looping structure in Scala is the for-loop, also known as a for-
comprehension. For-loops can iterate over a range of data executing an expression every
time and optionally return a collection of all the expression’s return values. These for-
loops are highly customizable, supporting nested iterating, filtering, and value binding.

To get started we will introduce a new data structure called a Range, which iterates over
a series of numbers. Ranges are created using the to or until operator with starting and
ending integers, where the to operator creates an inclusive list and the until operator
creates an exclusive list.

Syntax: Defining a Numeric Range

<starting integer> [to|until] <ending integer> [by increment]

Next is the basic definition of a for-loop.

Syntax: Iterating with a Basic For-Loop

for (<identifier> <- <iterator>) [yield] [<expression>]

Loops | 37

The yield keyword is optional. If it is specified along with an expression, the return
value of every expression that gets invoked will be returned as a collection. If it isn’t
specified, but the expression is still specified, the expression will be invoked but its return
values will not be accessible.

You can define for-loops with parentheses or curly braces. The difference between the
two styles comes when using multiple iterators (or other valid for-loop items, as we’ll
see), one on each line. With parentheses-based for-loops, each iterator line before the
final one must end with a semicolon. With curly-braces-based for-loops, the semicolon
after an iterator line is optional.

Let’s start out printing a simple week planner by iterating over the days of a week, from
1 to 7 (inclusive), and printing out a header for each one:

scala> for (x <- 1 to 7) { println(s"Day $x:") }

Day 1:

Day 2:

Day 3:

Day 4:

Day 5:

Day 6:

Day 7:

The curly braces in the loop’s expression (really a statement here because there isn’t a
yield keyword) are optional because there is only a single command, but I added them
to make this look more like a traditional Java/C “for” loop.

However, what if what I really need is a collection of these “Day X:” messages? Then I
can reuse them in other ways, or print them out as many times as I need. The yield
keyword is the solution. I can convert the iterated statement into an expression that
returns each message instead of printing it out, and add the yield keyword to con‐
vert the entire loop into an expression that returns the collection:

scala> for (x <- 1 to 7) yield { s"Day $x:" }

res10: scala.collection.immutable.IndexedSeq[String] = Vector(Day 1:,

Day 2:, Day 3:, Day 4:, Day 5:, Day 6:, Day 7:)

The Scala REPL’s printout is more complicated than we have seen. This one is reporting
that res10 has the type IndexedSeq[String], an indexed sequence of String, and is
assigned a Vector, one of the implementations of IndexedSeq. Because of Scala’s support
for object-oriented polymorphism, a Vector (a subtype of IndexedSeq) can be assigned
to an IndexedSeq-typed value.

In a way you can consider this for-loop to be a map, because it takes the expression of
rendering the day to a String and applies it for every member of the input range. We
have used this to map the range of numbers from 1 to 7 into a collection of messages of
the same size. Like other sequences, this collection can now be used as an iterator in
other for-loops.

38 | Chapter 3: Expressions and Conditionals

Let’s try it out by creating a for-loop that iterates over the sequence we built and printing
each message, this time all on the same line instead of on their own lines. Again we only
have a single command in the iterated expression, so this time we will leave off the curly
braces because they are not necessary here:

scala> for (day <- res0) print(day + ", ")

Day 1:, Day 2:, Day 3:, Day 4:, Day 5:, Day 6:, Day 7:,

Iterator Guards
Like a pattern guard in a match expression, an iterator guard (also known as a filter)
adds an if expression to an iterator. When an iterator guard is used, an iteration will
be skipped unless the if expression returns true.

Syntax: An Iterator Guard

for (<identifier> <- <iterator> if <Boolean expression>) ...

Here is an example of using iterator guards to create a collection of numbers that are
multiples of 3:

scala> val threes = for (i <- 1 to 20 if i % 3 == 0) yield i

threes: scala.collection.immutable.IndexedSeq[Int] = Vector(3, 6, 9, 12, 15, 18)

An iterator guard can also appear on its own line, separate from the iterator. Here’s
another example for-loop with separate iterator and iterator guards:

scala> val quote = "Faith,Hope,,Charity"

quote: String = Faith,Hope,,Charity

scala> for {

 | t <- quote.split(",")

 | if t != null

 | if t.size > 0

 | }

 | { println(t) }

Faith

Hope

Charity

Nested Iterators
Nested iterators are extra iterators added to a for-loop, multiplying the total number of
iterations by their iterator count. They are called nested iterators because adding them
to an existing loop has the same effect as if they were written as a separate nested loop.
Because the total number of iterations is the product of all of the iterators, adding a
nested loop that will iterate once will not change the number of iterations, whereas a
nested loop that does not iterate will cancel all iterations.

Loops | 39

Here is an example of a for-loop with two iterators:

scala> for { x <- 1 to 2

 | y <- 1 to 3 }

 | { print(s"($x,$y) ") }

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

scala>

Because the product of the two iterators is six iterations, the print statement is called
six times.

Value Binding
A common tactic in for-loops is to define temporary values or variables inside the ex‐
pression block based on the current iteration. An alternate way to do this in Scala is to
use value binding in the for-loop’s definition, which works the same but can help to
minimize the size and complexity of the expression block. Bound values can be used
for nested iterators, iterator guards, and other bound values.

Syntax: Value Binding in For-Loops

for (<identifier> <- <iterator>; <identifier> = <expression>) ...

In this example I will use the “left-shift” binary operator (<<) on an Int to compute the
powers of two from zero to eight. The argument to the operator is the number of times
to “shift” the number leftwards by one bit, effectively mupltiplying it by two. The result
of each operation is bound to the value “pow” in the current iteration:

scala> val powersOf2 = for (i <- 0 to 8; pow = 1 << i) yield pow

powersOf2: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 4, 8,

16, 32, 64, 128, 256)

The “pow” value is defined and assigned for each iteration in the loop. Because that
value is yielded by the for-loop, the result is a collection of the “pow” value from each
iteration.

Value binding within the definition of a for-loop makes it possible to centralize most of
the loop’s logic inside the definition. The result is a more compact for-loop with an even
more compact yield expression (if used).

While and Do/While Loops
In addition to for-loops Scala also supports “while” and “do/while” loops, which repeat
a statement until a Boolean expression returns false. These are not as commonly used
as for-loops in Scala, however, because they are not expressions and cannot be used to
yield values.

Syntax: A While Loop

while (<Boolean expression>) statement

40 | Chapter 3: Expressions and Conditionals

As a very simple example here is a while loop that decrements a number repeatedly
until it is no longer greater than zero:

scala> var x = 10; while (x > 0) x -= 1

x: Int = 0

The “do/while” loop is similar but the statement is executed before the Boolean expres‐
sion is first evaluated. In this example I have a Boolean expression that will return false,
but is only checked after the statement has had a chance to run:

scala> val x = 0

x: Int = 0

scala> do println(s"Here I am, x = $x") while (x > 0)

Here I am, x = 0

The while and do/while loops may have their uses, for example if you’re reading from
a socket and need to continue iterating until there is no more content to read. However,
Scala offers a number of more expressive and more functional ways to handle loops
than while and do/while loops. These include the for-loops we already covered as well
as some new ones we’ll study in Chapter 6.

Summary
We covered if/else conditions, pattern matching, and loops in detail in this chapter.
These structures provide a solid basis for writing core logic in Scala.

However, these three (or two) structures are just as important to learning Scala devel‐
opment as learning about the fundamentals of expressions. The namesake of this chapter
—expressions and their return values—are the real core building block of any applica‐
tion. Expressions themselves may seem to be an obvious concept, and devoting an entire
chapter to them has the appearance of being overly generous to the topic. The reason I
have devoted a chapter to them is that learning to work in terms of expressions is a
useful and valuable skill. You should consider expressions when writing code, and even
structure your applications around them. Some important principles to keep in mind
when writing expressions are (1) how you will organize your code as expressions, (2)
how your expressions will derive a return value, and (3) what you will do with that
return value.

Expressions, in addition to being a foundation for your code organization, are also a
foundation for Scala’s syntax. In this chapter we have defined if/else conditions, pattern
matching, and loops in terms of how they are structured around expressions. In the
next chapter we will continue this practice by introducing functions as named, reusable
expressions and defining them as such. Future chapters will continue this trend of
defining concepts and structures in terms of expressions. Thus, understanding the basic
nature and syntax of expressions and expression blocks is a crucial key to picking up
the syntax for the rest of the language.

Summary | 41

Exercises
While the Scala REPL provides an excellent venue for experimenting with the language’s
features, writing more than a line or two of code in it can be challenging. Because you’ll
need to start working with more than a few lines of code, it’s time to start working in
standalone Scala source files.

The scala command, which launches the Scala REPL, can also be used to evaluate and
execute Scala source files:

$ scala <source file>

To test this out, create a new file titled Hello.scala with the following contents:

println("Hello, World")

Then execute it with the scala command:

$ scala Hello.scala

Hello, World

$

You should see the result (“Hello, World”) printed on the next line.

An alternate way to execute external Scala files is with the :load command in the Scala
REPL. This is useful if you want to stay in the Scala REPL while still using a text editor
or IDE to edit your code.

To test this out, in the same directory you created the Hello.scala file, start the Scala
REPL and run :load Hello.scala:

scala> :load Hello.scala

Loading Hello.scala...

Hello, World

scala>

The :load command is a Scala REPL feature and not actually part of
the Scala language. Scala REPL commands are distinguished from
regular Scala syntax by their “:” prefix.

Now that you have the option of developing within the Scala REPL or in a separate text
editor or IDE, you can get started with the exercises for this chapter.

1. Given a string name, write a match expression that will return the same string if
nonempty, or else the string “n/a” if it is empty.

42 | Chapter 3: Expressions and Conditionals

www.allitebooks.com

http://www.allitebooks.org

2. Given a double amount, write an expression to return “greater” if it is more than
zero, “same” if it equals zero, and “less” if it is less than zero. Can you write this with
if..else blocks? How about with match expressions?

3. Write an expression to convert one of the input values cyan, magenta, yellow to
their six-char hexadecimal equivalents in string form. What can you do to handle
error conditions?

4. Print the numbers 1 to 100, with each line containing a group of five numbers. For
example:

1, 2, 3, 4, 5,

6, 7, 8, 9, 10

....

5. Write an expression to print the numbers from 1 to 100, except that for multiples
of 3, print “type,” and for multiples of 5, print “safe.” For multiples of both 3 and 5,
print “typesafe.”

6. Can you rewrite the answer to exercise 5 to fit on one line? It probably won’t be
easier to read, but reducing code to its shortest form is an art, and a good exercise
to learn the language.

Exercises | 43

CHAPTER 4

Functions

Functions are the core building blocks of reusable logic. Of course, you probably already
knew that, because nearly all other languages also have functions (or methods, the
object-oriented version of functions). Devoting an entire chapter to a concept common
across languages may thus seem odd, but to Scala and other functional programming
languages functions are very important.

Functional programming languages are geared to support the creation of highly reusable
and composable functions and to help developers organize their code base around
them. Much like a Unix power user will compose multiple single-purpose tools into a
complex piped command, a functional programmer will combine single-purpose func‐
tion invocations into chains of operations (think Map/Reduce). A function that was
written with a simple purpose (e.g., to double a number) may be picked up and applied
across a 50,000-node list, or given to an actor to be executed locally or in a remote server.

In Scala, functions are named, reusable expressions. They may be parameterized and
they may return a value, but neither of these features are required. These features are,
however, useful for ensuring maximum reusability and composability. They will also
help you write shorter, more readable, and more stable applications. Using parameter‐
ized functions you can normalize duplicated code, simplifying your logic and making
it more discoverable. Testing your code becomes easier, because normalized and para‐
meterized logic is easier to test than denormalized logic repeated throughout your code.

Even greater benefits may come from following standard functional programming
methodology and building pure functions when possible. In functional programming a
pure function is one that:

• Has one or more input parameters

• Performs calculations using only the input parameters

• Returns a value

45

• Always returns the same value for the same input

• Does not use or affect any data outside the function

• Is not affected by any data outside the function

Pure functions are essentially equivalent to functions in mathematics, where the defi‐
nition is a calculation derived only from the input parameters, and are the building
blocks for programs in functional programming. They are more stable than functions
that do not meet these requirements because they are stateless and orthogonal to ex‐
ternal data such as files, databases, sockets, global variables, or other shared data. In
essence, they are uncorruptible and noncorrupting expressions of pure logic.

On the other hand, it can be really hard to write useful applications that don’t affect files,
databases, or sockets, so it is rare to write one that only contains pure functions. Instead
of trying to find a way to exlusively use pure functions in their applications, Scala de‐
velopers will generally compromise and seek ways to reduce the number of unpure
functions. Keeping unpure functions clearly named and organized in such a way that
they can be easily identified versus pure functions is a common goal of modularizing
and organizing Scala applications.

With this in mind, let’s learn how to write functions in Scala. Because Scala’s function
definitions are flexible, with several optional components, we’ll start with the most basic
type first.

Syntax: Defining an Input-less Function

def <identifier> = <expression>

At its most basic, a Scala function is a named wrapper for an expression. When you
need a function to format the current data, check a remote service for new data, or just
to return a fixed value, this is the format for you. Here is an example of defining and
invoking input-less functions:

scala> def hi = "hi"

hi: String

scala> hi

res0: String = hi

The return type of functions, as with values and variables, are present even if they are
not explicitly defined. And like values and variables, functions are easier to read with
explicit types.

Syntax: Defining a Function with a Return Type

def <identifier>: <type> = <expression>

46 | Chapter 4: Functions

This function definition is also input-less, but it demonstrates the “colon-and-type”
format from value and variable definitions for function definitions. Here’s the “hi”
function again with an explicit type for better readability:

scala> def hi: String = "hi"

hi: String

Now we’re ready to look at a full function definition.

Syntax: Defining a Function

def <identifier>(<identifier>: <type>[, ...]): <type> = <expression>

Let’s try creating a function that performs an essential mathematical operation:

scala> def multiplier(x: Int, y: Int): Int = { x * y }

multiplier: (x: Int, y: Int)Int

scala> multiplier(6, 7)

res0: Int = 42

The body of these functions consists essentially of expressions or expression blocks,
where the final line becomes the return value of the expression and thus the function.
While I do recommend continuing this practice for functions, there are times when you
need to exit and return a value before the end of the function’s expression block. You
can use the return keyword to specify a function’s return value explicitly and exit the
function.

A common use of an early function exit is to stop further execution in the case of invalid
or abnormal input values. For example, this “trim” function validates that the input value
is nonnull before calling the JVM String’s “trim” method:

scala> def safeTrim(s: String): String = {

 | if (s == null) return null

 | s.trim()

 | }

safeTrim: (s: String)String

You should now have a basic understanding of how to define and invoke functions
in Scala.

To become more familiar with Scala’s functions, try rewriting some
code examples from Chapter 2 and Chapter 3 as functions. When
possible, move fixed values from the example expressions into input
parameters of your new functions.

Functions | 47

Procedures
A procedure is a function that doesn’t have a return value. Any function that ends with
a statement, such as a println() call, is also a procedure. If you have a simple function
without an explicit return type that ends with a statement, the Scala compiler will infer
the return type of the function to be Unit, the lack of a value. For procedures greater
than a single line, an explicit unit type of Unit will clearly indicate to readers that there
is no return value.

Here is a simple logging procedure, defined with an implicit return type and then with
an explict return type:

scala> def log(d: Double) = println(f"Got value $d%.2f")

log: (d: Double)Unit

scala> def log(d: Double): Unit = println(f"Got value $d%.2f")

log: (d: Double)Unit

scala> log(2.23535)

Got value 2.24

An alternate but now unofficially deprecated syntax you will see for procedures is to
define them without the Unit return type and without an equals sign before the pro‐
cedure body. With this syntax the example log() method would be written like this:

scala> def log(d: Double) { println(f"Got value $d%.2f") }

log: (d: Double)Unit

As just noted, this syntax is unofficially deprecated by the maintainers of the Scala
language. The problem with this syntax is that too many developers accidentally wrote
procedures with return values, expecting the return value to be actually returned to the
caller. With this procedure syntax, any return value (or final expression) will be dis‐
carded. To address this problem, it is recommended that developers stick to regular
function definitions with an equals sign to reduce the possibility that valid return values
will be ignored.

Functions with Empty Parentheses
An alternate way to define and invoke an input-less function (one which has no input
parameters) is with empty parentheses. You might find this style preferable because it
clearly distinguishes the function from a value.

Syntax: Defining a Function with Empty Parentheses

def <identifier>()[: <type>] = <expression>

You can invoke such a function using empty parentheses as well, or choose to leave them
off:

48 | Chapter 4: Functions

scala> def hi(): String = "hi"

hi: ()String

scala> hi()

res1: String = hi

scala> hi

res2: String = hi

The reverse is not true, however. Scala does not allow a function that was defined without
parentheses to be invoked with them. This rule prevents confusion from invoking a
function without parentheses versus invoking the return value of that function as a
function.

Functions with Side Effects Should Use Parentheses
A Scala convention for input-less functions is that they should be
defined with empty parentheses if they have side effects (i.e., if the
function modifies data outside its scope). For example, an input-less
function that writes a message to the console should be defined with
empty parentheses.

Function Invocation with Expression Blocks
When invoking functions using a single parameter, you can choose to use an expression
block surrounded with curly braces to send the parameter instead of surrounding the
value with parentheses. Using an expression block to invoke a function makes it possible
to handle calculations or other actions and then call the function with the return value
of the block.

Syntax: Invoking a Function with an Expression Block

<function identifier> <expression block>

One example where using an expression block to invoke a function may be preferable
is when you have to send a calculated value to the function. Instead of calculating the
amount and storing it in local values to be passed to the function, you can do the cal‐
culations inside the expression block. The expression block will be evaluated before the
function is called and the block’s return value will be used as the function argument.

Here is an example of calculating values inside a function block used for invoking a
function:

scala> def formatEuro(amt: Double) = f"€$amt%.2f"

formatEuro: (amt: Double)String

scala> formatEuro(3.4645)

res4: String = €3.46

Function Invocation with Expression Blocks | 49

scala> formatEuro { val rate = 1.32; 0.235 + 0.7123 + rate * 5.32 }

res5: String = €7.97

If the value we want to pass to the function is already calculated, using parentheses to
specify the function parameter is the natural way to go. But if you have calculations that
will only be used for the function, and you can keep the code readable to others, a
function invocation with an expression block may be a good choice.

Recursive Functions
A recursive function is one that may invoke itself, preferably with some type of parameter
or external condition that will be checked to avoid an infinite loop of function invoca‐
tion. Recursive functions are very popular in functional programming because they
offer a way to iterate over data structures or calculations without using mutable data,
because each function call has its own stack for storing function parameters.

Here’s an example of a recursive function that raises an integer by a given
positive exponent:

scala> def power(x: Int, n: Int): Long = {

 | if (n >= 1) x * power(x, n-1)

 | else 1

 | }

power: (x: Int, n: Int)Long

scala> power(2, 8)

res6: Long = 256

scala> power(2, 1)

res7: Long = 2

scala> power(2, 0)

res8: Long = 1

One problem with using recursive functions is running into the dreaded “Stack Over‐
flow” error, where invoking a recursive function too many times eventually uses up all
of the allocated stack space.

To prevent this scenario, the Scala compiler can optimize some recursive functions with
tail-recursion so that recursive calls do not use additional stack space. With tail-
recursion–optimized functions, recursive invocation doesn’t create new stack space but
instead uses the current function’s stack space. Only functions whose last statement is
the recursive invocation can be optimized for tail-recursion by the Scala compiler. If the
result of invoking itself is used for anything but the direct return value, a function can’t
be optimized.

Fortunately there is a function annotation available to mark a function as being intended
to be optimized for tail-recursion. A function annotation is special syntax carried over

50 | Chapter 4: Functions

from the Java programming language where the “at” sign (@) and an annotation type is
placed before a function definition to mark it for special use. A function marked with
the tail-recursion function annotation will cause an error at compilation time if it cannot
be optimized for tail-recursion.

To mark a function as intended for tail-recursion, add the text @annotation.tailrec
before the function definition or on the previous line.

Here’s the same example again only marked with the “tailrec” annotation, to let the Scala
compiler know we expect it to be optimized for tail-recursion and that if it cannot be,
the compiler should treat it as an error:

scala> @annotation.tailrec

 | def power(x: Int, n: Int): Long = {

 | if (n >= 1) x * power(x, n-1)

 | else 1

 | }

<console>:9: error: could not optimize @tailrec annotated method power:

it contains a recursive call not in tail position

 if (n >= 1) x * power(x, n-1)

Ah, the function couldn’t be optimized because the recursive call is not the last statement
in the function. This is understandable. I’ll switch the “if ” and “else” conditions and try
again:

scala> @annotation.tailrec

 | def power(x: Int, n: Int): Long = {

 | if (n < 1) 1

 | else x * power(x, n-1)

 | }

<console>:11: error: could not optimize @tailrec annotated method power:

it contains a recursive call not in tail position

 else x * power(x, n-1)

 ^

Hmm, the recursive call is the last item in the function. Oh I see, we’re taking the result
of the recursive call and multiplying it by a value, so that multiplication is actually the
last statement in the function, not the recursive call.

A good way to fix this is to move the multiplication into the beginning of the invoked
function instead of multiplying its result. Now the end of the function is a simple un‐
touched result from the recursive call:

scala> @annotation.tailrec

 | def power(x: Int, n: Int, t: Int = 1): Int = {

 | if (n < 1) t

 | else power(x, n-1, x*t)

 | }

power: (x: Int, n: Int, t: Int)Int

Recursive Functions | 51

scala> power(2,8)

res9: Int = 256

Success! The “tailrec” annotation and successful compile guarantees that the function
will be optimized with tail-recursion, so that each successive call will not add more stack
frames.

Although this example may seem challenging to get through, recursion and tail-
recursion are still valuable methods for iterating without using mutable data. You’ll find
that many of the data structures we’ll explore later in the book will be rich with functions
that are implemented with tail-recursion.

Nested Functions
Functions are named, parameterized expression blocks and expression blocks are ne‐
stable, so it should be no great surprise that functions are themselves nestable.

There are times when you have logic that needs to be repeated inside a method, but
would not benefit from being extrapolated to an external method. In these cases defining
an internal function inside another function, to only be used in that function, may be
worthwhile.

Let’s have a look at a method that takes three integers and returns the one with the
highest value:

scala> def max(a: Int, b: Int, c: Int) = {

 | def max(x: Int, y: Int) = if (x > y) x else y

 | max(a, max(b, c))

 | }

max: (a: Int, b: Int, c: Int)Int

scala> max(42, 181, 19)

res10: Int = 181

The logic inside the max(Int, Int) nested function was defined once but used twice
inside the outer function, making it possible to reduce duplicated logic and simplify the
overall function.

The nested function here has the same name as its outer function, but because their
parameters are different (the nested one only takes two integers) there is no conflict
between them. Scala functions are differentiated by their name and the list of their
parameter types. However, even if the names and parameter types were the same there
would be no confict because the local (nested) one takes precedence over the outer one.

52 | Chapter 4: Functions

www.allitebooks.com

http://www.allitebooks.org

Calling Functions with Named Parameters
The convention for calling functions is that the parameters are specified in the order in
which they are originally defined. However, in Scala you can call parameters by name,
making it possible to specify them out of order.

Syntax: Specifying a Parameter by Name

<function name>(<parameter> = <value>)

In this example, a simple two-parameter function is invoked twice, first using the con‐
vention of specifying parameters by their order and then by assigning values by
parameter name:

scala> def greet(prefix: String, name: String) = s"$prefix $name"

greet: (prefix: String, name: String)String

scala> val greeting1 = greet("Ms", "Brown")

greeting1: String = Ms Brown

scala> val greeting2 = greet(name = "Brown", prefix = "Mr")

greeting2: String = Mr Brown

Read the next section on default values to see how calling parameters by name can be
very useful.

Parameters with Default Values
A common problem when defining functions is deciding which input parameters they
should take to maximize reuse. In Scala, Java, and other languages, a common solution
is to provide multiple versions of the same function with the same name but different
lists of input parameters. This practice is known as function overloading due to the
function’s name being reused for different inputs. The common practice is to copy a
function with x number of parameters to a new function with x–1 parameters that
invokes the original function using a default value for the missing parameter.

Scala provides a cleaner solution for this problem: specifying default values for any
parameter, making the use of that parameter optional for callers.

Syntax: Specifying a Default Value for a Function Parameter

def <identifier>(<identifier>: <type> = <value>): <type>

Here is the greeting example from the previous section again with a default value for
the “prefix” parameter. Because the “name” parameter is still required we will call the
function with only this parameter, calling it by name because we can’t call it in order
(because the “prefix” parameter comes first!):

scala> def greet(prefix: String = "", name: String) = s"$prefix$name"

greet: (prefix: String, name: String)String

Calling Functions with Named Parameters | 53

scala> val greeting1 = greet(name = "Paul")

greeting1: String = Paul

This is pretty useful, except it would be better to be able to call the function without
having to specify the parameter name. By reorganizing the function so that the required
parameter comes first, we can call it without using a parameter name:

scala> def greet(name: String, prefix: String = "") = s"$prefix$name"

greet: (name: String, prefix: String)String

scala> val greeting2 = greet("Ola")

greeting2: String = Ola

As a matter of style it’s better to organize function parameters so that those with default
values follow required parameters. This emphasizes the importance of the required
parameters as well as making it possible to call the function without specifying the
default parameters and not require the use of parameter names.

Vararg Parameters
Java and C developers will recognize the term vararg, a function parameter that can
match zero or more arguments from the caller. Its most popular usage is in string in‐
terpolation functions such as C’s printf() and Java’s String.format().

Scala also supports vararg parameters, so you can define a function with a variable
number of input arguments. The vararg parameter cannot be followed by a nonvararg
parameter because there would be no way to distinguish them. Inside the function, the
vararg parameter, implemented as a collection (which we’ll study in Chapter 6), can be
used as an iterator in for loops.

To mark a function parameter as matching one or more input arguments, add an asterisk
symbol (*) after the parameter’s type in the function definition.

Here is an example of using a vararg parameter to create a summing function that returns
a sum of all of its input integers:

scala> def sum(items: Int*): Int = {

 | var total = 0

 | for (i <- items) total += i

 | total

 | }

sum: (items: Int*)Int

scala> sum(10, 20, 30)

res11: Int = 60

scala> sum()

res12: Int = 0

54 | Chapter 4: Functions

Parameter Groups
So far we have looked at parameterized function definitions as a list of parameters
surrounded by parentheses. Scala provides the option to break these into groups of
parameters, each separated with their own parentheses.

Here is an example of the “max” function where the two input parameters have been
split into their own parameter groups:

scala> def max(x: Int)(y: Int) = if (x > y) x else y

max: (x: Int)(y: Int)Int

scala> val larger = max(20)(39)

larger: Int = 39

Given this example, parameter groups may appear to provide little benefit. After all,
why not just keep all of the parameters together in one group? The real benefits come
when you use them with function literals, which we will investigate in “Invoking Higher-
Order Functions with Function Literal Blocks” on page 78.

Type Parameters
Until this point, the only parameters to functions we have discussed are “value” pa‐
rameters, the input data passed to functions. In Scala, to complement the value param‐
eters, you can also pass type parameters, which dictate the types used for the value
parameters or for the return value. Using type parameters can increase the flexibility
and reusability of functions as they transition these types from being fixed to being set
by the caller of the function.

Here is the syntax for defining a function with a type parameter. I’ve removed everything
after the return type to keep the syntax simple, and changed the typical “identifier”
notation to denote its actual purpose (because otherwise every item after “def ” would
be an identifier).

Syntax: Defining a Function’s Type Parameters

def <function-name>[type-name](parameter-name>: <type-name>): <type-name>...

This is where I normally put an example of a new feature, but because type parameters
can be a tricky subject to learn I’ll change the formula here to show how this feature
solves a given problem.

Here is one of the times when I’m showing the wrong way to do
something. It is a useful exercise for demonstrating the usefulness of
type parameters, but be forewarned that some of the example code
exercises will not be correct.

Parameter Groups | 55

Let’s say I want to have a simple function that only returns its input (known as an identity

function), in this case one defined for a String:

def identity(s: String): String = s

Well, that could be useful, but I can only call it for a String. There is no way to call it
for, say, an Int unless I define a separate function:

def identity(i: Int): Int = i

Now I have defined this for Ints, but it will be a pain to have to redefine this for every
type I want to use. What if I just use the root type, Any, which will work for all types?
I’ll try that out and pass it a new String, then store the return value:

scala> def identity(a: Any): Any = a

identity: (a: Any)Any

scala> val s: String = identity("Hello")

<console>:8: error: type mismatch;

 found : Any

 required: String

 val s: String = identity("Hello")

 ^

This example didn’t work out. I had hoped to assign the result to a String but because
the function’s return type is Any there was no way to do this, thus resulting in a Scala
compilation error.

The solution? Instead of defining the function to use a specific type (e.g., String or
Int) or a generic “root” type (e.g., Any), parameterize the type so it will suit whatever
callers want to use.

Here is the identity function defined with a type parameter, making it usable with any
type you give it:

scala> def identity[A](a: A): A = a

identity: [A](a: A)A

scala> val s: String = identity[String]("Hello")

s: String = Hello

scala> val d: Double = identity[Double](2.717)

d: Double = 2.717

The identity function’s type parameter is A, which like the value parameter a is simply
a unique identifier. It is used to define the type of the value parameter a and the return
type of the function.

Now that the identity function has been defined with a type parameter, I can call it with
[String] to convert the value parameter type and return type into a String for the

56 | Chapter 4: Functions

scope of my function call. I can then call it with [Double] to convert it to work with
Double values for the scope of the function call.

Of course, another excellent feature that we know Scala provides is type inference. In
the preceding example it wasn’t really necessary to pass the [String] type parameter
to the “identity” method because the compiler could have inferred this from either the
String literal we passed it or the String value to which we assigned the function’s return
value.

Let’s take the two function calls from the previous example and remove their type pa‐
rameters, demonstrating that type parameters can be inferred by the compiler:

scala> val s: String = identity("Hello")

s: String = Hello

scala> val d: Double = identity(2.717)

d: Double = 2.717

This looks great. There is just one remaining explicit type we can remove, the types of
the values. With input values of a String and a Double, the Scala compiler can infer the
types of the type parameters and of the values to which the return values are assigned:

scala> val s = identity("Hello")

s: String = Hello

scala> val d = identity(2.717)

d: Double = 2.717

Here you have witnessed a triumph of type parameters and type inference. The literals
passed to a function are enough to change its value parameter type, return value type,
and the type of the values to which its return value is assigned.

In regular practice this may not be the most readable way to define values, because a
reader of the code would need to check the function definition carefully to figure out
what the values assigned to its return value would become. It does, however, serve as a
successful demonstration of the flexibility and functionality of Scala’s type system and
support for highly reusable functions.

Methods and Operators
Until this point we have been discussing the use of functions without reference to where
they will actually be used. Functions on their own, as defined in the REPL, are helpful
for learning the core concepts. However, in practice they will typically exist in objects
and act on data from the object, so a more appropriate term for them will often be
“methods.”

A method is a function defined in a class and available from any instance of the class.
The standard way to invoke methods in Scala (as in Java and Ruby) is with infix dot

Methods and Operators | 57

notation, where the method name is prefixed by the name of its instance and the dot (.)
separator.

Syntax: Invoking a Method with Infix Dot Notation

<class instance>.<method>[(<parameters>)]

Let’s try this out by calling one of the many useful methods on the String type:

scala> val s = "vacation.jpg"

s: String = vacation.jpg

scala> val isJPEG = s.endsWith(".jpg")

isJPEG: Boolean = true

If it isn’t clear, the value s is an instance of type String, and the String class has a
method called endsWith(). In the future we’ll refer to methods using the full class name,
like String.endsWith(), even though you typically invoke them with the instance
name, not the type name.

You’ll find that most of the types in Scala have a wide variety of methods available for
use with them. Part of the process of becoming a proficient Scala developer is learning
the Scala library well enough to be familiar with many of its types and their methods.
The official Scala API Documention has a full list of the available types and their meth‐
ods. I highly recommend taking the time to learn the types you are using and try out
new methods on them.

Finding Documentation for the String Type
The documentation for the String type is split between the String
Ops page in the Scala documentation and the java.lang.String Jav‐
adocs, because Scala wraps Java’s String, providing complementary
functionality.

Let’s continue exploring new methods by trying out some of the useful ones in the Double
type:

scala> val d = 65.642

d: Double = 65.642

scala> d.round

res13: Long = 66

scala> d.floor

res14: Double = 65.0

scala> d.compare(18.0)

res15: Int = 1

58 | Chapter 4: Functions

scala> d.+(2.721)

res16: Double = 68.363

The round and floor methods are relatively simple. They have no parameters and only
return a modified version of the value in the object (where the object in question is a
Double with the value 65.642). The compare method takes a single parameter and returns
either 1, 0, or –1 if the given parameter is less, equal to, or greater than the value of d.

The last method has a single character as its name, the addition operator (+), but is still
a valid function that takes a single parameter and returns the sum of d and the parameter.
It may seem odd to provide a method for handling addition when one could just use
the addition operator, but this method is actually the implementation of the addition
operator.

Let me explain that in plainer terms. There actually is no addition operator in Scala, nor
are there any other arithmetic operators. All of the arithmetic operators we have used
in Scala are actually methods, written as simple functions using their operator symbol
as the function name and bound to a specific type.

This is possible because of an alternate form of invoking methods on objects known as
operator notation, which forsakes the traditional dot notation and uses spaces to sepa‐
rate the object, its operator method, and the single parameter to the method. Every time
we write 2 + 3, the Scala compiler recognizes this as operator notation and treats it as
if you had written 2.+(3), where the addition method of an Int with the value 2 is called
with the parameter 3 and the value 5 is returned.

To invoke an object’s methods with operator notation, pick a method that takes a single
parameter and separate the object, method, and single parameter with spaces. No other
puncuation is necessary.

Syntax: Invoking a Method with Operator Notation

<object> <method> <parameter>

A more precise term for this notation would be infix operator notation, because the
operator (the object’s method) is located in between the two operands.

Let’s repeat the last two method calls in the previous example, but rewrite them using
operator notation. The first two methods in the previous example aren’t eligible for infix
operator notation because they lack a parameter:

scala> d compare 18.0

res17: Int = 1

scala> d + 2.721

res18: Double = 68.363

The results are equivalent to the results in the previous example, which we should expect
because they are calling the same functions with the same input values.

Methods and Operators | 59

What About Methods with More Than One Parameter?
Operator notation is meant for single-parameter methods, akin to
simple mathematical operations, but can be used on methods with
more than one parameter. To do so, wrap the list of parameters in
parentheses and treat it as a single (but wrapped) parameter. For
example, you can invoke String.substring(start,end) as "star
ing" substring (1,4).

Here is an addition of three numbers. In terms of operators, there are two additions
taking place. How would you expect this gets converted into method calls?

scala> 1 + 2 + 3

res19: Int = 6

The answer is that the first operation is one method call, 1 + 2. The second operation
is a separate method call applied to the result from the first call, or 3 + 3. You can use
the same technique to chain regular method calls as long as each method’s result is an
object on which you can call the next operator method.

Scala’s support for infix operator notation for invoking object methods has multiple
benefits for the language. Operators, instead of being a part of the syntax and imple‐
mented in hidden ways, are just methods implemented in their objects that can be
viewed or called directly. The syntax is thus reduced and simplified. Developers are free
to implement their own operators because every single-parameter method can be used
as an operator, and are motivated to simplify methods to only take a single parameter
to make them eligible for operator notation. Finally, the code readability may be im‐
proved, removing otherwise necessary punctuation to focus on the simple object, meth‐
od, and parameter components.

About the only drawback to using operator notation is when it reduces code readability
instead of improving it. For example, a chain of 10 method calls separated only by spaces
may be a bit harder to read than with regular dot notation, because the operators and
operands may be hard to discern. Or an overeager developer may define his own type
with an addition operator that, unknowingly to callers, performs a completely different
type of operation.

Make sure to use care to invoke operator notation only when it can be clearly read, and
you may find yourself using it regularly.

Writing Readable Functions
We’ll wrap up this chapter with a more general discussion of how to write functions.

The entire point of writing functions is to reuse them (because otherwise you would
have left them as single-use expressions). And the best way to ensure your functions

60 | Chapter 4: Functions

will get reused is to make them readable by other developers. Readable functions are
clear, understandable, and simple.

There are two ways to make sure your functions are readable. First, keep them short,
well-named, and obvious. Break your complex functions into simpler functions that are
shorter than the height of a standard visible page of text (say, 40 lines), so a reader won’t
need to scroll up and down to see the entire function. Use a name that reasonably sums
up what your function is trying to accomplish. If you have these two right, your function’s
intent and implementation should be fairly obvious to developers.

The other way to make your functions readable is to add comments where appropri‐
ate. Scala supports the same commenting syntax as Java and C++ do. A double-slash
(//) starts a line comment, continuing until the end of the line it starts on. A slash-and-
star (/*) starts a range comment that continues until a closing star-and-slash (*/). Use
them within your function to point out details and context that may be missed by read‐
ers, as well as to indicate potential problems or future work to be done.

An additional type of commenting is adding Scaladoc headers to your function. The
Scaladoc tool, included with your Scala package, can generate API documentation based
on these function headers. Scaladoc headers follow the same format as Javadoc headers,
with a starting range comment of two stars (e.g., /**), an indented start prefixing every
following line, and a regular ending range comment (*/). Parameters can be called out
with a @param keyword followed by the parameter name and its description.

Scaladoc (or Javadoc, if you prefer) headers are a standard format for function com‐
ments. Adding them to your functions is a good practice to follow even if you don’t plan
on generating API documentation. Developers reading your function will likely start
with the Scaladoc header before reading the function’s code, so make sure to keep it
accurate and concise.

Here is an example Scaladoc header for a function:

scala> /**

 | * Returns the input string without leading or trailing

 | * whitespace, or null if the input string is null.

 | * @param s the input string to trim, or null.

 | */

 | def safeTrim(s: String): String = {

 | if (s == null) return null

 | s.trim()

 | }

safeTrim: (s: String)String

An additional benefit of using Scaladoc headers for your function is the support from
IDEs such as Eclipse and IntelliJ IDEA. They allow developers to read the documenta‐
tion for your function without even reading your source code. Developers who invoke
your function (or method) can view the Scaladoc header’s contents with a mouse-over
of a function invocation, or by browsing a list of functions.

Writing Readable Functions | 61

Summary
Because most of the language’s logical structures were covered in Chapter 3, it made
sense to focus this, the chapter following expressions, on how to organize and reuse
them as functions. Indeed, while a function’s name, input parameters, and return value
type are important parts of a function’s definition, the actual contents of a function are
one big expression.

An entire chapter about functions should be no less than expected from a book itself
devoted to a functional programming language. However, though you just finished an
entire chapter about functions, you have not yet learned everything there is to know
about functions. Namely, that in Scala you can treat your functions as data and pass
them into other functions to invoke.

This concept of functions as data, with their own literals and types, brings functions up
to par with other forms as data. You’ll learn all about how functions can receive the same
treatment as other data types, making them “first-class” citizens of the language, in the
next chapter.

Exercises
1. Write a function that computes the area of a circle given its radius.

2. Provide an alternate form of the function in exercise 1 that takes the radius as a
String. What happens if your function is invoked with an empty String ?

3. Write a recursive function that prints the values from 5 to 50 by fives, without using
for or while loops. Can you make it tail-recursive?

4. Write a function that takes a milliseconds value and returns a string describing the
value in days, hours, minutes, and seconds. What’s the optimal type for the input
value?

5. Write a function that calculates the first value raised to the exponent of the second
value. Try writing this first using math.pow, then with your own calculation. Did
you implement it with variables? Is there a solution available that only uses im‐
mutable data? Did you choose a numeric type that is large enough for your uses?

6. Write a function that calculates the difference between a pair of 2D points (x and
y) and returns the result as a point. Hint: this would be a good use for tuples (see
“Tuples” on page 25).

7. Write a function that takes a 2-sized tuple and returns it with the Int value (if
included) in the first position. Hint: this would be a good use for type parameters
and the isInstanceOf type operation.

8. Write a function that takes a 3-sized tuple and returns a 6-sized tuple, with each
original parameter followed by its String representation. For example, invoking

62 | Chapter 4: Functions

the function with (true, 22.25, "yes") should return (true, "true", 22.5,
"22.5", "yes", "yes"). Can you ensure that tuples of all possible types are com‐
patible with your function? When you invoke this function, can you do so with
explicit types not only in the function result but in the value that you use to store
the result?

Exercises | 63

CHAPTER 5

First-Class Functions

One of the core values of functional programming is that functions should be first-
class. The term indicates that they are not only declared and invoked but can be used
in every segment of the language as just another data type. A first-class function may,
as with other data types, be created in literal form without ever having been assigned
an identifier; be stored in a container such as a value, variable, or data structure; and be
used as a parameter to another function or used as the return value from another func‐
tion.

Functions that accept other functions as parameters and/or use functions as return
values are known as higher-order functions. You may have heard of two of the most
famous higher-order functions, map() and reduce(). The map() higher-order func‐
tion takes a function parameter and uses it to convert one or more items to a new value
and/or type. The reduce() higher-order function takes a function parameter and uses
it to reduce a collection of multiple items down to a single item. The popular Map/
Reduce computing paradigm uses this concept to tackle large computing challenges, by
mapping the computation across a range of distributed nodes and reducing their results
back to a meaningful size.

One of the benefits of using higher-order functions to work with data is that the actual
how of processing the data is left as an implementation detail to the framework that has
the higher-order function. A caller can specify what should be done and leave the higher-
order functions to handle the actual logic flow. There’s actually a name for this meth‐
odology, declarative programming, typically correlated with the use of functional pro‐
gramming and indicating that higher-order functions or some other mechanism is used
to simply declare the work to be done without manually doing it. The opposite of this
approach is the more mundane imperative programming style, wherein the logic flow
of an operation is always explicitly stated.

So how does all of this apply to Scala?

65

Scala has full support for first-class functions, higher-order functions, and the use of
declarative programming. As with other types of data such as String or Int, functions
have types based on the types of their input arguments and their return value. A function
can be stored in a value or variable, passed to a function, returned from a function, and
used with data structures to support map(), reduce(), fold(), and filter(), among
many other higher-order functions.

In this chapter, we will explore Scala’s use of first-class functions, higher-order functions,
and the use of function literals to easily create or pass logical expressions anywhere a
regular function could be used.

Function Types and Values
The type of a function is a simple grouping of its input types and return value type,
arranged with an arrow indicating the direction from input types to output type.

Syntax: A Function Type

([<type>, ...]) => <type>

Until now, all of the types we have used have been simple words like String and Int,
so a type that includes punctuation and whitespace is likely to appear to be a bit odd.
However, if you think about it, this is the only way to really describe a function without
using a specific name. Because a function’s signature is its name, inputs, and outputs,
the type of a function should be the inputs and outputs.

For example, the function def double(x: Int): Int = x * 2 has the function type
Int => Int, indicating that it has a single Int parameter and returns an Int. The
function name, “double,” is an identifier and isn’t part of the type. The body of the
function, a simple multiplication of the input by 2, does not affect the type of the func‐
tion. The rest of the information is the input types and return type, and so these make
up the function type itself.

Let’s try using a function type in the REPL, by creating a function and then assigning it
to a function value:

scala> def double(x: Int): Int = x * 2

double: (x: Int)Int

scala> double(5)

res0: Int = 10

scala> val myDouble: (Int) => Int = double

myDouble: Int => Int = <function1>

scala> myDouble(5)

res1: Int = 10

66 | Chapter 5: First-Class Functions

scala> val myDoubleCopy = myDouble

myDoubleCopy: Int => Int = <function1>

scala> myDoubleCopy(5)

res2: Int = 10

myDouble is just a value, except that unlike other values it can be invoked.

Invoking myDouble as a function has the same result as invoking double.

Assigning a function value to a new value works as with any other value.

The explicit type for the “myDouble” value was required to distinguish it as a function
value and not a function invocation. An alternate way to define function values, assigned
with a function, is with the wildcard operator, _.

Function types with a single parameter can leave off the parenthe‐
ses. For example, a function that takes and returns a single integer can
be written as the type Int => Int.

Syntax: Assigning a Function with the Wildcard Operator

val <identifier> = <function name> _

Let’s try this out with the “myDouble” function value:

scala> def double(x: Int): Int = x * 2

double: (x: Int)Int

scala> val myDouble = double _

myDouble: Int => Int = <function1>

scala> val amount = myDouble(20)

amount: Int = 40

This time, the explicit function type for myDouble wasn’t required to distinguish it from
a function invocation. The underscore (_) served as a placeholder for a future invocation
of the function, returning a function value that we could store in myDouble.

Let’s revisit the explicit function type again to explore functions with multiple inputs.
A function type with multiple inputs requires explicit parentheses around the input
types, which ends up having the appearance of a function definition without parameter
names.

Here’s an example of a function value defined with an explicit function type using mul‐
tiple parameters, enclosed with parentheses:

scala> def max(a: Int, b: Int) = if (a > b) a else b

max: (a: Int, b: Int)Int

Function Types and Values | 67

scala> val maximize: (Int, Int) => Int = max

maximize: (Int, Int) => Int = <function2>

scala> maximize(50, 30)

res3: Int = 50

We could have also used a wildcard operator here, in place of the explicit type, but this
example serves to demonstrate how to specify the multiple parameters in the type.

Finally, here’s a function type that has no inputs. Do the empty parentheses remind you
of a certain core Scala type? This is also the literal repesentation of the Unit type (as
seen in Table 2-4), which indicates the lack of a value:

scala> def logStart() = "=" * 50 + "\nStarting NOW\n" + "=" * 50

logStart: ()String

scala> val start: () => String = logStart

start: () => String = <function0>

scala> println(start())

==

Starting NOW

==

This was a gentle introduction to how functions may be treated as data, by storing them
in values and assigning them static types. I hope you can try out these examples and
gain some familiarity with specifying function types and storing functions in values,
because the next few sections on higher-order functions and function literals are going
to build on this knowledge and cover some challenging new syntax. Everything’s about
to get seriously fun now.

Higher-Order Functions
We have already defined values that have a function type. A higher-order function is a
function that has a value with a function type as an input parameter or return value.

Here’s a good use case for a higher-order function: calling other functions that act on a
String, but only if the input String is not null. Adding this check can prevent a
NullPointerException in the JVM by avoiding a method call on null:

scala> def safeStringOp(s: String, f: String => String) = {

 | if (s != null) f(s) else s

 | }

safeStringOp: (s: String, f: String => String)String

scala> def reverser(s: String) = s.reverse

reverser: (s: String)String

scala> safeStringOp(null, reverser)

68 | Chapter 5: First-Class Functions

res4: String = null

scala> safeStringOp("Ready", reverser)

res5: String = ydaeR

The call with “null” safely returned the same value back, whereas the call with a valid
String returned the reverse of the input value.

This example demonstrated how to pass an existing function as a parameter to a higher-
order function. An alternative to using functions as parameters is to define them inline
with function literals, as we will see in the next section.

Function Literals
Now we’ll tackle a difficult concept covered by a variety of names by starting with an
easy example. In this example we will create a function literal, a working function that
lacks a name, and assign it to a new function value:

scala> val doubler = (x: Int) => x * 2

doubler: Int => Int = <function1>

scala> val doubled = doubler(22)

doubled: Int = 44

The function literal in this example is the syntax (x: Int) => x * 2, which defines a
typed input argument (x) and the function body (x * 2). Function literals can be stored
in function values and variables, or defined as part of a higher-order function invocation.
You can express a function literal in any place that accepts a function type.

Although function literals are nameless functions, their concept and the use of the arrow
syntax have many names. Here are a few that you may know:

Anonymous functions
Literally true, because function literals do not include a function name. This is the
Scala language’s formal name for function literals.

Lambda expressions
Both C# and Java 8 use this term, derived from the original lambda calculus syntax
(e.g., x → x*2) in mathematics.

Lambdas
A shortened version of lambda expressions.

function0, function1, function2, ..
The Scala compiler’s term for function literals, based on the number of input ar‐
guments. You can see how the single-argument function literal in the preceding
example was given the name <function1>.

Function Literals | 69

Why Not Just Call Them Anonymous Functions?
Although The Scala Language Specification (Odersky, 2011) uses the
term anonymous function, this term focuses more attention on the
lack of a name than on the interesting arrow-based syntax for defin‐
ing its logic. Thus I prefer the clarifying term function literal, which
indicates that the entire logic of a function body is being specified
inline! You can think of a function literal as being to a function val‐
ue what a string literal (e.g., “Hello, World”) is to a string value: a
literal expression of the assigned data.

Syntax: Writing a Function Literal

([<identifier>: <type>, ...]) => <expression>

Let’s define a function value and assign it a new function literal:

scala> val greeter = (name: String) => s"Hello, $name"

greeter: String => String = <function1>

scala> val hi = greeter("World")

hi: String = Hello, World

If you think about it, a function literal is essentially a parameterized expression. We
know about expressions that return a value, but now have a way to parameterize their
input.

Let’s try a longer example to compare function assignment with function literals. We’ll
start with the max() function from the chapter introduction, assign it to a function value,
and then reimplement the max() function as a function literal:

scala> def max(a: Int, b: Int) = if (a > b) a else b

max: (a: Int, b: Int)Int

scala> val maximize: (Int, Int) => Int = max

maximize: (Int, Int) => Int = <function2>

scala> val maximize = (a: Int, b: Int) => if (a > b) a else b

maximize: (Int, Int) => Int = <function2>

scala> maximize(84, 96)

res6: Int = 96

The original max() function

.. as assigned to a function value

.. as redefined with a function literal

70 | Chapter 5: First-Class Functions

Function literals do not always need input arguments. Let’s try defining one that doesn’t
take any arguments. We’ll rewrite another function as a function literal, this time with
the logStart() function from the chapter introduction:

scala> def logStart() = "=" * 50 + "\nStarting NOW\n" + "=" * 50

logStart: ()String

scala> val start = () => "=" * 50 + "\nStarting NOW\n" + "=" * 50

start: () => String = <function0>

scala> println(start())

==

Starting NOW

==

Did you note that the REPL referred to the function literal as a “function0,” its name for
input-less functions? This is not the type of the value, however, which was inferred as
() => String, an input-less function that returns a string.

As noted, function literals can be defined inside of higher-order function invocations.
As an example, we will invoke the “safeStringOp” example (see “Higher-Order Func‐
tions” on page 68) with a function literal:

scala> def safeStringOp(s: String, f: String => String) = {

 | if (s != null) f(s) else s

 | }

safeStringOp: (s: String, f: String => String)String

scala> safeStringOp(null, (s: String) => s.reverse)

res7: String = null

scala> safeStringOp("Ready", (s: String) => s.reverse)

res8: String = ydaeR

The function “safeStringOp” receives a function value parameter named “f ” and invokes
it conditionally. It makes no distinction between a regular function value being used to
invoke it versus our function literal.

In the example, the type of the function parameter “f ” is String => String. With this
type already defined, we could have removed the explicit type from our function literal,
because the compiler could easily infer its expected type. Removing the explicit type
means that we could then remove the parentheses from the function literal, because
they are unnecessary for single, untyped inputs.

Function Literals | 71

Let’s invoke the “safeStringOp” function again with a function literal that uses this sim‐
pler syntax:

scala> safeStringOp(null, s => s.reverse)

res9: String = null

scala> safeStringOp("Ready", s => s.reverse)

res10: String = ydaeR

The function literals here, stripped of their explicit types or parentheses, are reduced
down to the basic essence of the function. They take an input parameter and return a
value based on an operation on that parameter.

Although these function literals are very simple expressions of functions, Scala supports
even simpler expressions with placeholder syntax.

Placeholder Syntax
Placeholder syntax is a shortened form of function literals, replacing named parameters
with wildcard operators (_). It can be used when (a) the explicit type of the function is
specified outside the literal and (b) the parameters are used no more than once.

Here is an example of a doubling function literal using wildcard operators in place of
named parameters:

scala> val doubler: Int => Int = _ * 2

doubler: Int => Int = <function1>

Placeholder syntax is valid here because the input parameter is only used once and the
literal’s type has an external explicit definition (in the value).

As another example, let’s invoke the “safeStringOp” example with placeholder syntax:

scala> def safeStringOp(s: String, f: String => String) = {

 | if (s != null) f(s) else s

 | }

safeStringOp: (s: String, f: String => String)String

scala> safeStringOp(null, _.reverse)

res11: String = null

scala> safeStringOp("Ready", _.reverse)

res12: String = ydaeR

The body of the function literal is operationally the same as s => s.reverse, but sim‐
plified with placeholder syntax. The reference to the input parameter s has been replaced
with a wildcard (_) representing the first input parameter to the function. Essentially
the wildcard is the single String input parameter.

72 | Chapter 5: First-Class Functions

Let’s demonstrate how this ordering of placeholders works by trying an example with
two placeholders:

scala> def combination(x: Int, y: Int, f: (Int,Int) => Int) = f(x,y)

combination: (x: Int, y: Int, f: (Int, Int) => Int)Int

scala> combination(23, 12, _ * _)

res13: Int = 276

The use of two placeholders admittedly makes the syntax more abstract. Try to keep in
mind that they are positionally replacing the input parameters (x and y, respectively).

Using an additional placeholder here would result in an error, because the number of
placeholders must match the number of input arguments. If I call the reduce method
with one or three placeholders, an error would ensue.

Let’s kick the number of placeholders up for the last time, from two to three. Is this
example still easily readable?

scala> def tripleOp(a: Int, b: Int, c: Int, f: (Int, Int, Int) => Int) = f(a,b,c)

tripleOp: (a: Int, b: Int, c: Int, f: (Int, Int, Int) => Int)Int

scala> tripleOp(23, 92, 14, _ * _ + _)

res14: Int = 2130

The tripleOp function takes four parameters: three Int values and a function that can
reduce them down to a single Int. The actual function body is far shorter than the
parameter list, and applies the function to the input values.

This example function, tripleOp, is limited to integer values. However, wouldn’t it be
more useful if it was generic and supported type parameters?

Let’s redefine the tripleOp function using two type parameters, one for the common
input type and one for the single return value type. This will give us some flexibility to
call the tripleOp function with any type of inputs or anonymous functions that we
choose (as long as the anonymous function takes three inputs):

scala> def tripleOp[A,B](a: A, b: A, c: A, f: (A, A, A) => B) = f(a,b,c)

tripleOp: [A, B](a: A, b: A, c: A, f: (A, A, A) => B)B

scala> tripleOp[Int,Int](23, 92, 14, _ * _ + _)

res15: Int = 2130

scala> tripleOp[Int,Double](23, 92, 14, 1.0 * _ / _ / _)

res16: Double = 0.017857142857142856

scala> tripleOp[Int,Boolean](93, 92, 14, _ > _ + _)

res17: Boolean = false

Placeholder Syntax | 73

This syntax is admittedly a bit difficult to comprehend if you aren’t experienced with
Scala. Eventually, after reading the material and working on the exercises at the end of
this chapter, the use of placeholders will feel like just another tool to you.

Placeholder syntax is especially helpful when working with data structures and collec‐
tions. Many of the core sorting, filtering, and other data structure methods tend to use
first-class functions, and placeholder syntax reduces the amount of extra code required
to call these methods.

Partially Applied Functions and Currying
Invoking functions, both regular and higher-order, typically requires specifying all of
the function’s parameters in the invocation (the exception being those functions with
default parameter values). What if you wanted to reuse a function invocation and retain
some of the parameters to avoid typing them in again?

To demonstrate this answer, I’ll use the example of a two-parameter function that checks
if a given number is a factor of the other number:

scala> def factorOf(x: Int, y: Int) = y % x == 0

factorOf: (x: Int, y: Int)Boolean

If you want a shortcut to the function without retaining any parameters, you can use
the wildcard operator (_) assignment we covered in this chapter’s introduction:

scala> val f = factorOf _

f: (Int, Int) => Boolean = <function2>

scala> val x = f(7, 20)

x: Boolean = false

If you want to retain some of the parameters, you can partially apply the function by
using the wildcard operator to take the place of one of the parameters. The wildcard
operator here requires an explicit type, because it is used to generate a function value
with a declared input type:

scala> val multipleOf3 = factorOf(3, _: Int)

multipleOf3: Int => Boolean = <function1>

scala> val y = multipleOf3(78)

y: Boolean = true

The new function value, multipleOf3, is a partially applied function, because it contains
some but not all of the parameters for the factorOf() function.

A cleaner way to partially apply functions is to use functions with multiple parameter
lists. Instead of breaking up a parameter list into applied and unapplied parameters,
apply the parameters for one list while leaving another list unapplied. This is a technique
known as currying the function:

74 | Chapter 5: First-Class Functions

scala> def factorOf(x: Int)(y: Int) = y % x == 0

factorOf: (x: Int)(y: Int)Boolean

scala> val isEven = factorOf(2) _

isEven: Int => Boolean = <function1>

scala> val z = isEven(32)

z: Boolean = true

In terms of a function type, a function with multiple parameter lists is considered to be
a chain of multiple functions. Each separate parameter list is considered to be a separate
function call.

Our example function def factorOf(x: Int, y: Int) has the function type (Int,
Int) => Boolean. But the updated example function “def factorOf(x: Int)(y: Int)” has
the function type Int => Int => Boolean. When curried, the function type becomes
the second chained function, Int => Boolean. In the preceding example, the function
value “isEven” curries the first part of the chained function with the integer value 2.

With some ingenuity you could write your own function literals that handle the job that
partially applied functions and curried functions provide. Retaining a reusable param‐
eter in a function literal and invoking a new function with it and new parameters isn’t
a complex trick. The benefit that partially applied functions and curried functions pro‐
vide is an expressive syntax for doing so.

By-Name Parameters
We have studied higher-order functions that take a function value as a parameter. An
alternate form of a function type parameter is a by-name parameter, which can take
either a value or a function that eventually returns the value. By supporting invocations
with both values and functions, a function that takes a by-name parameter leaves the
choice of which to use up to its callers.

Syntax: Specifying a By-Name Parameter

<identifier>: => <type>

Each time a by-name parameter is used inside a function, it gets evaluated into a value.
If a value is passed to the function then there is no effect, but if a function is passed then
that function is invoked for every usage.

When you pass a function to a by-name parameter, make sure that you understand any
cost of repeated accesses of your function. For example, an expression that searches a
database and returns its value may have acceptable performance if used once to pass a
fixed value to a function. But if that expression is used for a by-name parameter, it
becomes a function value that is invoked every time the parameter is accessed in the
method.

By-Name Parameters | 75

The main benefit of using by-name parameters, as opposed to value or function pa‐
rameters, is the flexibility they provide. Functions that take by-name parameters can be
used when values are available, and also when a function needs to be used instead.
Although multiple parameter accesses implies multiple invocations of the function pa‐
rameter, the inverse is also true. A function passed in a by-name parameter will not be
invoked if the parameter is not accessed, so a costly function call can be avoided if
necessary.

Let’s try invoking a function that has a by-name parameter. We’ll use it with a regular
value and then with a function to verify that it invokes the function every time the
parameter is accessed:

scala> def doubles(x: => Int) = {

 | println("Now doubling " + x)

 | x * 2

 | }

doubles: (x: => Int)Int

scala> doubles(5)

Now doubling 5

res18: Int = 10

scala> def f(i: Int) = { println(s"Hello from f($i)"); i }

f: (i: Int)Int

scala> doubles(f(8))

Hello from f(8)

Now doubling 8

Hello from f(8)

res19: Int = 16

The x by-name parameter is accessed here just like a normal by-value parameter.

Invoke the doubles method with a regular value and it will operate normally.

…but when you invoke it with a function value, that function value will get
invoked inside the doubles method.

Because the double method refers to the x param twice, the “Hello” message
gets invoked twice.

Partial Functions
All of the functions we have studied so far are known as total functions, because they
properly support every possible value that meets the type of the input parameters. A
simple function like def double(x: Int) = x*2 can be considered a total function;
there is no input x that the double() function could not process.

76 | Chapter 5: First-Class Functions

However, there are some functions that do not support every possible value that meets
the input types. For example, a function that returns the square root of the input number
would certainly not work if the input number was negative. Likewise, a function that
divides by a given number isn’t applicable if that number is zero. Such functions are
called partial functions because they can only partially apply to their input data.

Scala’s partial functions are function literals that apply a series of case patterns to their
input, requiring that the input match at least one of the given patterns. Invoking one of
these partial functions with data that does not meet at least one case pattern results in
a Scala error.

What Is the Difference Between Partial and Partially Applied Functions?
The two terms look and sound almost the same, causing many de‐
velopers to mix them up. A partial function, as opposed to a total
function, only accepts a partial amount of all possible input values. A
partially applied function is a regular function that has been partial‐
ly invoked, and remains to be fully invoked (if ever) in the future.

Let’s take one of the examples of match expressions (from “Match Expressions” on page
31) and reuse it as a new partial function:

scala> val statusHandler: Int => String = {

 | case 200 => "Okay"

 | case 400 => "Your Error"

 | case 500 => "Our error"

 | }

statusHandler: Int => String = <function1>

We now have a function literal that is only applicable to integers with the values 200,
400, and 500. We’ll test it out with valid inputs first:

scala> statusHandler(200)

res20: String = Okay

scala> statusHandler(400)

res21: String = Your Error

What do you expect to happen if we call it with an integer that doesn’t match one of its
case patterns?

scala> statusHandler(401)

scala.MatchError: 401 (of class java.lang.Integer)

 at $anonfun$1.apply(<console>:7)

 at $anonfun$1.apply(<console>:7)

 ... 32 elided

A MatchError resulted because the input value, while having the correct Int type, did
not match any of the partial function’s case patterns.

Partial Functions | 77

Partial functions may seem like an odd feature, because when they are not applicable
they can lead to errors like this. One method to prevent such errors is to use a wildcard
pattern at the end to catch all other errors, but then the term “partial function” wouldn’t
really be applicable. You’ll find partial functions more useful when working with col‐
lections and pattern matching. For example, you can “collect” every item in a collection
that is accepted by a given partial function.

Invoking Higher-Order Functions with Function Literal
Blocks
We covered how to invoke functions with expression blocks instead of parentheses or
spaces (see “Function Invocation with Expression Blocks” on page 49). You can reuse
this notation with higher-order functions, invoking them with function literal blocks
in addition to or in place of parentheses. A function invoked by its name and a large
expression block takes the block as a function literal, which can then be invoked zero
or more times. A common use of this syntax is to invoke utility functions with an
expression block. For example, a higher-order function can wrap a given expression
block in a single database session or transaction.

I’ll use the “safeStringOps” function to demonstrate when this syntax may be desirable
and how to use it. To start, here is the “safeStringOps” function used with a regular
function literal, before converting it to the desired syntax:

scala> def safeStringOp(s: String, f: String => String) = {

 | if (s != null) f(s) else s

 | }

safeStringOp: (s: String, f: String => String)String

scala> val uuid = java.util.UUID.randomUUID.toString

uuid: String = bfe1ddda-92f6-4c7a-8bfc-f946bdac7bc9

scala> val timedUUID = safeStringOp(uuid, { s =>

 | val now = System.currentTimeMillis

 | val timed = s.take(24) + now

 | timed.toUpperCase

 | })

timedUUID: String = BFE1DDDA-92F6-4C7A-8BFC-1394546043987

A UUID utility in Java’s java.util package, accessible (as are all JDK classes)
from Scala.

System.currentTimeMillis provides the epoch time (elapsed time since
January 1, 1970 GMT) in milliseconds, useful for creating timestamps.

The take(x) method returns the first x items from the String, in this case the
first four sections of the UUID.

78 | Chapter 5: First-Class Functions

In this example, a multiline function literal is passed along with a value parameter to a
function. This works, but including these together in the same parenthesis block is
unwieldy.

We can improve this by splitting the parameters in “safeStringOp” into two separate
groups (see “Parameter Groups” on page 55). The second parameter group, containing
the function type, can then be invoked with expression block syntax:

scala> def safeStringOp(s: String)(f: String => String) = {

 | if (s != null) f(s) else s

 | }

safeStringOp: (s: String)(f: String => String)String

scala> val timedUUID = safeStringOp(uuid) { s =>

 | val now = System.currentTimeMillis

 | val timed = s.take(24) + now

 | timed.toUpperCase

 | }

timedUUID: String = BFE1DDDA-92F6-4C7A-8BFC-1394546915011

We now have a cleaner invocation of safeStringOp, passing it the value parameter in
parentheses and the function parameter as a free-standing function literal block.

Here is an alternate example, one that takes a single by-name parameter. We’ll make the
function more generic with a type parameter used for the by-name parameter return
type and the main function’s return type:

scala> def timer[A](f: => A): A = {

 | def now = System.currentTimeMillis

 | val start = now; val a = f; val end = now

 | println(s"Executed in ${end - start} ms")

 | a

 | }

timer: [A](f: => A)A

scala> val veryRandomAmount = timer {

 | util.Random.setSeed(System.currentTimeMillis)

 | for (i <- 1 to 100000) util.Random.nextDouble

 | util.Random.nextDouble

 | }

Executed in 13 ms

veryRandomAmount: Double = 0.5070558765221892

The type parameter “A” helps the return type of the “f” by-name parameter
become the return type of the “timer” function, reducing the impact of wrapping
code with the “timer” function.

This inner, nested function is here for purely aesthetic reasons, enabling us to
retrieve the current millisecond amount compactly.

Invoking Higher-Order Functions with Function Literal Blocks | 79

Finally, we have reduced the expression block syntax for higher-order functions
to its simplest form: the function name and the block. You can view the code
between the braces as being an expression block, or as a function literal block,
or as regular code being wrapped by the “timer” function.

This line generates and discards 100,000 random floating-point numbers. It’s
useful for running out the clock for a timing demonstration, but I wouldn’t
recommend using this in production code.

The “timer” function is used here to wrap a discrete unit of code, but it could also be
integrated into an existing code base. You could use it to wrap the last part of any func‐
tion, measuring its performance while ensuring the function’s return value passes from
the code block through “timer” and is returned by the function.

Functions that can wrap indiscriminate blocks of code with utilities in this way are a
major benefit of using the “expression block” style of higher-order function invoca‐
tions. Some of the other uses for this invocation style include:

• Managing database transactions, where the higher-order function opens the ses‐
sion, invokes the function parameter, and then closes the transaction with a commit
or rollback.

• Handling expected errors with retries, by calling the function parameter a set num‐
ber of times until it stops causing errors.

• Conditionally invoking the function parameter based on local, global, or external
values (e.g., a database setting or environment variable).

As with many other features in Scala, you have more than one way to invoke higher-
order functions. I find the use of this syntax to be a clean break from using the traditional
parentheses, but the most important criteria for when and where to use it is if it seems
right to you.

Summary
Scala treats functions as first-class data types, as demonstrated throughout this chapter
and supported by the notions of higher-order functions, function literals, and function
types. While simply stated, until you have some experience working with first-class
functions you may find the concept a difficult one to understand. If you haven’t already
done so, I highly recommend trying out the code samples and experimenting with
writing your own first-class function-based code. And then, after you have become
familiar with storing functions as data and using them to invoke higher-order functions,
you’ll find the following exercises will help to increase your comfort level with this
challenging topic.

80 | Chapter 5: First-Class Functions

The real beauty and utility of higher-order functions, however, cannot be demonstrated
with the data types we have thus far learned. To really demonstrate them we will need
to learn a critical component of writing any kind of useful and data-driven code. I’m
talking about collections, data structures that scale from zero to many elements and
make it possible to collect multiple values of a given type. From lists to maps, Scala not
only supports the data structures that you’re well familiar with, but provides ample use
of higher-order functions to maximize your productivity. We’ll cover not only creating
and iterating through collections, but how you’ll use map(), reduce(), and filter() to
manage them with amazingly expressive code.

From this point forward you can expect to see first-class functions and higher-order
functions play a prominent role in code examples and exercises. Whether demonstrated
with the data types we have learned thus far or with the higher-order function-based
collections library, these are the shining stars of the Scala language.

Exercises
1. Write a function literal that takes two integers and returns the higher number. Then

write a higher-order function that takes a 3-sized tuple of integers plus this function
literal, and uses it to return the maximum value in the tuple.

2. The library function util.Random.nextInt returns a random integer. Use it to
invoke the “max” function with two random integers plus a function that returns
the larger of two given integers. Do the same with a function that returns the smaller
of two given integers, and then a function that returns the second integer every
time.

3. Write a higher-order function that takes an integer and returns a function. The
returned function should take a single integer argument (say, “x”) and return the
product of x and the integer passed to the higher-order function.

4. Let’s say that you happened to run across this function while reviewing another
developer’s code:

def fzero[A](x: A)(f: A => Unit): A = { f(x); x }

What does this function accomplish? Can you give an example of how you might
invoke it?

5. There’s a function named “square” that you would like to store in a function value.
Is this the right way to do it? How else can you store a function in a value?

def square(m: Double) = m * m

val sq = square

6. Write a function called “conditional” that takes a value x and two functions, p and
f, and returns a value of the same type as x. The p function is a predicate, taking the
value x and returning a Boolean b. The f function also takes the value x and returns

Exercises | 81

a new value of the same type. Your “conditional” function should only invoke the
function f(x) if p(x) is true, and otherwise return x. How many type parameters will
the “conditional” function require?

7. Do you recall the “typesafe” challenge from the exercises in Chapter 3? There is a
popular coding interview question I’ll call “typesafe,” in which the numbers 1-100
must be printed one per line. The catch is that multiples of 3 must replace the
number with the word “type,” while multiples of 5 must replace the number with
the word “safe.” Of course, multiples of 15 must print “typesafe.”

Use the “conditional” function from exercise 6 to implement this challenge.

Would your solution be shorter if the return type of “conditional” did not match
the type of the parameter x? Experiment with an altered version of the “conditional”
function that works better with this challenge.

82 | Chapter 5: First-Class Functions

CHAPTER 6

Common Collections

A collections framework provides data structures for collecting one or more values of a
given type such as arrays, lists, maps, sets, and trees. Most of the popular programming
languages have their own collections framework (or, at the least, lists and maps) because
these data structures are the building blocks of modern software projects.

The term “collections” was popularized by the Java collections library, a high-
performance, object-oriented, and type-parameterized framework. Because Scala is a
JVM language, you can access and use the entire Java collections library from your Scala
code. Of course, if you did, you would miss out on all the glory of the higher-order
operations in Scala’s own collections.

Scala has a high-performance, object-oriented, and type-parameterized collections
framework just as Java does. However, Scala’s collections also have higher-order oper‐
ations like map, filter, and reduce that make it possible to manage and manipulate
data with short and expressive expressions. It also has separate mutable versus immut‐
able collection type hierarchies, which make switching between immutable data (for
stability) and mutable data (when necessary) convenient.

The root of all iterable collections, Iterable, provides a common set of methods for
(you guessed it) iterating through and manipulating collection data. We’ll now explore
some of its most popular and immutable collections.

Lists, Sets, and Maps
Let’s start with the List type, an immutable singly linked list. You can create a list by
invoking it as a function, passing in its contents in the form of comma-separated pa‐
rameters:

scala> val numbers = List(32, 95, 24, 21, 17)

numbers: List[Int] = List(32, 95, 24, 21, 17)

83

scala> val colors = List("red", "green", "blue")

colors: List[String] = List(red, green, blue)

scala> println(s"I have ${colors.size} colors: $colors")

I have 3 colors: List(red, green, blue)

The size method, available on all collections and String instances, returns the number
of items in the collection. Defined without parentheses (see “Functions with Empty
Parentheses” on page 48), the size method is simply invoked by name.

In Chapter 4 you learned how functions can use type parameters to parameterize the
type of their input values and return values. Collections are also type-parameterized,
ensuring that they remember and adhere to the type they were initialized with. You can
see this in the preceding example, where the REPL displays the type-parameterized
collections as List[Int] and List[String].

Use the Lisp-style head() and tail() methods to access the first and remaining ele‐
ments of a list, respectively. To access a single element directly, invoke the list as a func‐
tion and pass it the zero-based index of that element:

scala> val colors = List("red", "green", "blue")

colors: List[String] = List(red, green, blue)

scala> colors.head

res0: String = red

scala> colors.tail

res1: List[String] = List(green, blue)

scala> colors(1)

res2: String = green

scala> colors(2)

res3: String = blue

In “Loops” on page 37 you learned about the Range collection, a consecutive range of
numbers, and how to iterate over it with a for-loop. It turns out that for-loops are also
excellent for iterating over lists (or any other collection, really).

Let’s try out using for-loops to iterate over the “numbers” and “colors” lists:

scala> val numbers = List(32, 95, 24, 21, 17)

numbers: List[Int] = List(32, 95, 24, 21, 17)

scala> var total = 0; for (i <- numbers) { total += i }

total: Int = 189

scala> val colors = List("red", "green", "blue")

colors: List[String] = List(red, green, blue)

scala> for (c <- colors) { println(c) }

84 | Chapter 6: Common Collections

red

green

blue

In Chapter 5 you learned how to use functions as data and pass them to higher-order
functions. Scala’s collections use higher-order functions extensively to iterate, map
(convert a list item-by-item to a different list), reduce (fold a list into a single element),
and perform a wide range of other useful operations.

Here’s an example of the foreach(), map(), and reduce() higher-order functions avail‐
able in List and other collections. Respectively, these functions iterate over the list,
convert the list, and reduce the list down to a single item. For each method, a function
literal is passed in, including the input parameter in parentheses and its function body:

scala> val colors = List("red", "green", "blue")

colors: List[String] = List(red, green, blue)

scala> colors.foreach((c: String) => println(c))

red

green

blue

scala> val sizes = colors.map((c: String) => c.size)

sizes: List[Int] = List(3, 5, 4)

scala> val numbers = List(32, 95, 24, 21, 17)

numbers: List[Int] = List(32, 95, 24, 21, 17)

scala> val total = numbers.reduce((a: Int, b: Int) => a + b)

total: Int = 189

foreach() takes a function (a procedure, to be accurate) and invokes it with
every item in the list.

map() takes a function that converts a single list element to another value and/or
type.

reduce() takes a function that combines two list elements into a single element.

A Set is an immutable and unordered collection of unique elements, but works similarly
to List. Here is an example of creating a Set with duplicate items. As another subtype
of Iterable, a Set instance supports the same operations as a List instance does:

scala> val unique = Set(10, 20, 30, 20, 20, 10)

unique: scala.collection.immutable.Set[Int] = Set(10, 20, 30)

scala> val sum = unique.reduce((a: Int, b: Int) => a + b)

sum: Int = 60

A Map is an immutable key-value store, also known as a hashmap, dictionary, or asso‐
ciative array in other languages. Values stored in a Map with a given unique key may be

Lists, Sets, and Maps | 85

retrieved using that key. The key and the value are type-parameterized; you can just as
easily create a mapping from strings to integers as a mapping from integers to strings.

When creating a Map, specify the key-value pairs as tuples (see “Tuples” on page 25).
You can use the relation operator (->) to specify the key and value tuple.

Here is an example of a color name to numeric color value Map built with pairs of relation
operators. As with Set, the Map type is a subtype of Iterable and so supports the same
operations as List does:

scala> val colorMap = Map("red" -> 0xFF0000, "green" -> 0xFF00,

 "blue" -> 0xFF)

colorMap: scala.collection.immutable.Map[String,Int] =

 Map(red -> 16711680, green -> 65280, blue -> 255)

scala> val redRGB = colorMap("red")

redRGB: Int = 16711680

scala> val cyanRGB = colorMap("green") | colorMap("blue")

cyanRGB: Int = 65535

scala> val hasWhite = colorMap.contains("white")

hasWhite: Boolean = false

scala> for (pairs <- colorMap) { println(pairs) }

(red,16711680)

(green,65280)

(blue,255)

In this section we were introduced to the common collections List, Map, and Set, all
subtypes of the root Iterable type. We also learned about some of the methods available
in Iterable and its subtypes, foreach(), map(), and reduce(). However, we have only
scratched the surface of what is possible with these collections.

In the rest of this chapter we’ll examine the structure and operations of these common
collections, focusing on the List type for consistency.

What’s in a List?
The standard way to create a List or other type of collection is by invoking it as a
function with the desired contents:

scala> val colors = List("red", "green", "blue")

colors: List[String] = List(red, green, blue)

You can store values of any type in collections, instead of just the numbers and strings
we have used so far. For example, you can create a collection of collections:

scala> val oddsAndEvents = List(List(1, 3, 5), List(2, 4, 6))

oddsAndEvents: List[List[Int]] = List(List(1, 3, 5), List(2, 4, 6))

86 | Chapter 6: Common Collections

Or you can have a collection of 2-sized tuples, and create a List that looks similar to a
Map:

scala> val keyValues = List(('A', 65), ('B',66), ('C',67))

keyValues: List[(Char, Int)] = List((A,65), (B,66), (C,67))

You can access a single element from a list by invoking it as a function with a (zero-
based) index number. Here is an example of accessing the first and fourth elements of
a List by their index:

scala> val primes = List(2, 3, 5, 7, 11, 13)

primes: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> val first = primes(0)

first: Int = 2

scala> val fourth = primes(3)

fourth: Int = 7

You can decompose a list into its head, the first item in the list, and its tail, the remaining
items in the list:

scala> val first = primes.head

first: Int = 2

scala> val remaining = primes.tail

remaining: List[Int] = List(3, 5, 7, 11, 13)

A List is an immutable and recursive data structure, so each item in the list has its own
head and incrementally shorter tail. You could use this to create your own List iterator,
by starting with the head and making your way through successive tails.

The challenging part in creating such an iterator would be in figuring out when you
arrived at the end of the list. We could try checking if list.size > 0 but, because this
is a linked list, the size method would have to traverse to the end of the list each time.
Fortunately, there is an isEmpty method on lists we can use that does not need to traverse
the list.

Here is an iterator built with a while loop that traverses the list until isEmpty returns
true:

scala> val primes = List(2, 3, 5, 7, 11, 13)

primes: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> var i = primes

i: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> while(! i.isEmpty) { print(i.head + ", "); i = i.tail }

2, 3, 5, 7, 11, 13,

What’s in a List? | 87

Or, in recursive form, here is a function that traverses the list without using a mutable
variable:

scala> val primes = List(2, 3, 5, 7, 11, 13)

primes: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> def visit(i: List[Int]) { if (i.size > 0) { print(i.head + ", ");

 visit(i.tail) } }

visit: (i: List[Int])Unit

scala> visit(primes)

2, 3, 5, 7, 11, 13,

This recursive function is representative of how many of the methods in List (and
Iterable collections in general) are implemented. Except that, in most cases, they are
written as functions whose return values can be collected into a single result or a
new list.

Calling isEmpty to check for the end of a list is efficient, but there is yet another efficient
way to do this. All lists end with an instance of Nil as their terminus, so an iterator can
check for the list’s end by comparing the current element to Nil:

scala> val primes = List(2, 3, 5, 7, 11, 13)

primes: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> var i = primes

i: List[Int] = List(2, 3, 5, 7, 11, 13)

scala> while(i != Nil) { print(i.head + ", "); i = i.tail }

2, 3, 5, 7, 11, 13,

Nil is essentially a singleton instance of List[Nothing]. The Nothing type, as you’ll
recall from Table 2-4, is a noninstantiable subtype of all other Scala types. A list of
Nothing types is thus compatible with lists of all other types and can be safely used as
their terminus.

Creating a new, empty list will actually return Nil instead of a fresh instance. Because
Nil is immutable, there is essentially no difference between it and a fresh, empty list
instance. Likewise, creating a new list that has a single entry just creates a single list
element that points to Nil as its tail.

Let’s demonstrate these points with some examples:

scala> val l: List[Int] = List()

l: List[Int] = List()

scala> l == Nil

res0: Boolean = true

scala> val m: List[String] = List("a")

m: List[String] = List(a)

88 | Chapter 6: Common Collections

scala> m.head

res1: String = a

scala> m.tail == Nil

res2: Boolean = true

I have used lists of two explicit types, Int and String, to demonstrate that regardless of
the type of their data, a List will always end with Nil.

The Cons Operator
There is an alternate way to construct lists that takes advantage of this relationship with
Nil. As another nod to Lisp, Scala supports use of the cons (short for construct) operator
to build lists. Using Nil as a foundation and the right-associative cons operator :: for
binding elements, you can build a list without using the traditional List(…) format.

Right-Associative Notation
All of the operators we have used so far in space-delimited operator
notation have been left-associative in that they are invoked on the
entity to their immediate left (e.g., 10 / 2). In right-associative no‐
tation, triggered when operators end with a colon (:), operators are
invoked on the entity to their immediate right.

Here is an example of building a list with the cons operator:

scala> val numbers = 1 :: 2 :: 3 :: Nil

numbers: List[Int] = List(1, 2, 3)

This may look a bit odd, but remember that :: is simply a method in List. It takes a
single value that becomes the head of a new list, its tail pointing to the list on
which :: was called. You could use traditional dot notation with the cons operator, but
it would look a bit odd.

OK, let’s try it out anyway:

scala> val first = Nil.::(1)

first: List[Int] = List(1)

scala> first.tail == Nil

res3: Boolean = true

As noted, this does look a bit odd, so let’s stick to using the cons operator (::) as a right-
associative operator. This time we will use it to prepend (insert at the front) a value to
an existing list, thus creating a brand new list. We have actually tried this before, because
it is the same as the operation of prepending a value to Nil, the empty list:

What’s in a List? | 89

scala> val second = 2 :: first

second: List[Int] = List(2, 1)

scala> second.tail == first

res4: Boolean = true

Although the “second” list includes the “first” list, both are valid lists that can be used
independently. This example of building one list by adding a value to another demon‐
strates the recursive and reusable nature of Scala’s immutable lists, and provides a good
summary of this section.

List Arithmetic
Now we have explored the essential internals of List types and written our own itera‐
tor. With this understanding, let’s leave this manual labor behind and start exploring
the rich array of List methods. In this section we will focus on basic arithmetic oper‐
ations on lists. By “arithmetic,” a term I use loosely, I mean operations that add, remove,
split, combine, and otherwise modify the organization of lists without changing the list
elements (i.e., their contents) themselves. And of course by “modify” I mean “return a
new list with the requested changes” because List is an immutable collection.

Table 6-1 shows a selection of the arithmetic methods on List. For a full list of all the
methods see the official Scaladoc page for the List type.

Table 6-1. Arithmetic operations on lists

Name Example Description

:: 1 :: 2 :: Nil Appends individual elements to this list.

A right-associative operator.

::: List(1, 2) ::: List(2, 3) Prepends another list to this one.

A right-associative operator.

++ List(1, 2) ++ Set(3, 4, 3) Appends another collection to this list.

== List(1, 2) == List(1, 2) Returns true if the collection types and contents are

equal.

distinct List(3, 5, 4, 3, 4).distinct Returns a version of the list without duplicate

elements.

drop List('a', 'b', 'c', 'd') drop 2 Subtracts the first n elements from the list.

filter List(23, 8, 14, 21) filter (_ > 18) Returns elements from the list that pass a true/

false function.

flatten List(List(1, 2), List(3, 4)).flatten Converts a list of lists into a single list of elements.

partition List(1, 2, 3, 4, 5) partition (_ < 3) Groups elements into a tuple of two lists based on

the result of a true/false function.

reverse List(1, 2, 3).reverse Reverses the list.

90 | Chapter 6: Common Collections

Name Example Description

slice List(2, 3, 5, 7) slice (1, 3) Returns a segment of the list from the first index up

to but not including the second index.

sortBy List("apple", "to") sortBy (_.size) Orders the list by the value returned from the given

function.

sorted List("apple", "to").sorted Orders a list of core Scala types by their natural value.

splitAt List(2, 3, 5, 7) splitAt 2 Groups elements into a tuple of two lists based on

if they fall before or after the given index.

take List(2, 3, 5, 7, 11, 13) take 3 Extracts the first n elements from the list.

zip List(1, 2) zip List("a", "b") Combines two lists into a list of tuples of elements

at each index.

Using Operator Versus Dot Notation
In Table 6-1 some examples used operator notation (e.g., list drop
2) whereas others used dot notation (e.g., list.flatten). Selecting
the right notation is a personal choice, except where dot notation is
required due to lack of an operation parameter (as in list.flatten).

Did you spot the higher-order functions in the table? Here are the three examples of
higher-order operations, filter, partition, and sortBy, executed in the Scala REPL:

scala> val f = List(23, 8, 14, 21) filter (_ > 18)

f: List[Int] = List(23, 21)

scala> val p = List(1, 2, 3, 4, 5) partition (_ < 3)

p: (List[Int], List[Int]) = (List(1, 2),List(3, 4, 5))

scala> val s = List("apple", "to") sortBy (_.size)

s: List[String] = List(to, apple)

The sortBy method takes a function that returns a value for use in ordering the elements
of the list, while the filter and partition methods each take a predicate function. A
predicate function takes an input value and returns either true or false. In the case of the
partition function, the predicate uses placeholder syntax (see “Placeholder Syntax”
on page 72) to return true if the input value is less than three and false otherwise.

Collection methods that are also higher-order functions, such as filter, map, and
partition, are excellent candidates for using placeholder syntax. The function param‐
eter they take as input acts on a single element in their list. Thus the underscore (_) in
an anonymous function sent to one of these methods represents each item in the list.

For example, the anonymous function we passed to the partition method, _ < 3,
indicates that each element in the list will be checked to see if it is less than 3. The values
1 and 2 were less than 3 and thus partitioned into a separate list.

List Arithmetic | 91

An important point to make about these arithmetic methods is that ::, drop, and take
act on the front of the list and thus do not have performance penalties. Recall that List
is a linked list, so adding items to or removing items from its front does not require a
full traversal. A list traversal is a trivial operation for short lists, but when you start
getting into lists of thousands or millions of items, an operation that requires a list
traversal can be a big deal.

That said, these operations have corollary operations that act on the end of the list and
thus do require a full list traversal. Additionally, because adding items to the end of a
list would mutate it, they require copying the entire list and returning the copy. Again,
not an important memory consideration unless you are working with large lists, but in
general it is best to operate on the front of a list, not its end.

The corollary operations to ::, drop, and take are +: (a left-associative operator),
dropRight, and takeRight. The arguments to these operators are the same as to their
corollary operations.

Here are examples of these list-appending operations:

scala> val appended = List(1, 2, 3, 4) :+ 5

appended: List[Int] = List(1, 2, 3, 4, 5)

scala> val suffix = appended takeRight 3

suffix: List[Int] = List(3, 4, 5)

scala> val middle = suffix dropRight 2

middle: List[Int] = List(3)

With the extremely small list sizes used in these examples, the additional time and
memory space required to traverse the list and copy its contents to a new array is min‐
iscule. However, it’s still considered good form to prefer operations on the start of a list
over those that work on the end.

Mapping Lists
Map methods are those that take a function and apply it to every member of a list,
collecting the results into a new list. In set theory, and the field of mathematics in general,
to map is to create an assocation between each element in one set to each element in
another set. In a sense, both definitions describe what the map methods in List are
doing: mapping each item from one list to another list, so that the other list has the same
size as the first but with different data or element types. Table 6-2 shows a selection of
these map methods available on Scala’s lists.

92 | Chapter 6: Common Collections

Table 6-2. List mapping operations

Name Example Description

collect List(0, 1, 0) collect {case 1 =>

"ok"}

Transforms each element using a partial function, retaining

applicable elements.

flatMap List("milk,tea")

flatMap (_.split(','))

Transforms each element using the given function and

“flattens” the list of results into this list.

map List("milk","tea")

map (_.toUpperCase)

Transforms each element using the given function.

Let’s see how these list-mapping operators work in the REPL:

scala> List(0, 1, 0) collect {case 1 => "ok"}

res0: List[String] = List(ok)

scala> List("milk,tea") flatMap (_.split(','))

res1: List[String] = List(milk, tea)

scala> List("milk","tea") map (_.toUpperCase)

res2: List[String] = List(MILK, TEA)

The flatMap example uses the String.split() method to convert pipe-delimited text
into a list of strings. Specifically this is the java.lang.String.split() method, and it
returns a Java array, not a list. Fortunately, Scala converts Java arrays to its own type,
Array, which extends Iterable. Because List is also a subtype of Iterable, and the
flatMap method is defined at the Iterable level, a list of string arrays can be safely
flattened into a list of strings.

Reducing Lists
We have studied ways to change the size and structure of lists, and ways to convert lists
into completely different values and types. Now let’s look at ways to shrink down all that
work to a single value, an action known as reducing a list.

List reduction is a common operation for working with collections. Need to sum up a
list of grades, or calculate the average duration of several benchmarks? How about if
you want to check if a collection contains a specific element, or to see if a predicate
function will return “true” for every element in the list? These are all list reductions,
because they use logic to reduce a list down to a single value.

Scala’s collections support mathematical reduction operations (e.g., finding the sum of
a list) and Boolean reduction operations (e.g., determining if a list contains a given
element). They also support generic higher-order operations known as folds that you
can use to create any other type of list reduction algorithm.

We’ll start by looking at the built-in mathematical reduction operations. See Table 6-3
for a selection of these methods.

Reducing Lists | 93

Table 6-3. Math reduction operations

Name Example Description

max List(41, 59, 26).max Finds the maximum value in the list.

min List(10.9, 32.5, 4.23, 5.67).min Finds the minimum value in the list.

product List(5, 6, 7).product Multiplies the numbers in the list.

sum List(11.3, 23.5, 7.2).sum Sums up the numbers in the list.

The next set of operations we’ll look at reduces lists down to a single Boolean value. See
Table 6-4 for a selection of these methods.

Table 6-4. Boolean reduction operations

Name Example Description

contains List(34, 29, 18) contains 29 Checks if the list contains this element.

endsWith List(0, 4, 3) endsWith List(4, 3) Checks if the list ends with a given list.

exists List(24, 17, 32) exists (_ < 18) Checks if a predicate holds true for at least one element

in the list.

forall List(24, 17, 32) forall (_ < 18) Checks if a predicate holds true for every element

in the list.

startsWith List(0, 4, 3) startsWith List(0) Tests whether the list starts with a given list.

These Boolean list reduction operations work great with infix operator notation, not
only because they take a single argument but also due to their names being verbs. The
phrase “list contains x” reads more like a written description about an operation, even
though it is actually a valid, statically typed function invocation.

In addition to being highly readable, they are also rather similar. Choosing the right
operation for a task may be more of a question of readability than suitability. As an
example of their similar nature, let’s search through a list of validation results for a “false”
entry using three different operations:

scala> val validations = List(true, true, false, true, true, true)

validations: List[Boolean] = List(true, true, false, true, true, true)

scala> val valid1 = !(validations contains false)

valid1: Boolean = false

scala> val valid2 = validations forall (_ == true)

valid2: Boolean = false

scala> val valid3 = validations.exists(_ == false) == false

valid3: Boolean = false

Logically, checking that a list of validations does not contain “false” is the same as en‐
suring that the list only contains “true.”

94 | Chapter 6: Common Collections

These operations are useful enough to have been included with Scala collections, but
are not so complex that we couldn’t implement them ourselves. Let’s create our own list
reduction operation to demonstrate how it is done. Doing so simply requires iterating
over a collection with an accumulator variable, which contains the current result so far,
and logic that updates the accumulator based on the current element:

scala> def contains(x: Int, l: List[Int]): Boolean = {

 | var a: Boolean = false

 | for (i <- l) { if (!a) a = (i == x) }

 | a

 | }

contains: (x: Int, l: List[Int])Boolean

scala> val included = contains(19, List(46, 19, 92))

included: Boolean = true

This works perfectly well, but could also stand to be improved. How about if we separate
the “contains” logic from the work of maintaining an accumulator value and iterating
through the list? By moving the “contains” logic to a function parameter, we could create
a reusable function to support additional list reduction operations.

Here’s the same logic as in the previous example except with the core “contains” logic
moved to a function parameter. We’ll name this common function boolReduce to in‐
dicate that it is a Boolean list reduction operation:

scala> def boolReduce(l: List[Int], start: Boolean)(f: (Boolean, Int) =>

 | Boolean): Boolean = {

 |

 | var a = start

 | for (i <- l) a = f(a, i)

 | a

 | }

boolReduce: (l: List[Int], start: Boolean)(f: (Boolean, Int) => Boolean)Boolean

scala> val included = boolReduce(List(46, 19, 92), false) { (a, i) =>

 | if (a) a else (i == 19)

 | }

included: Boolean = true

Our generic-sounding boolReduce function is no longer tied to determining if a list
contains an element, and could be reused for any of the other Boolean reduction oper‐
ations. We could theoretically implement exists, forall, startsWith, and the rest of
the Boolean operations.

Let’s take this example one step further and make it even more generally applicable. The
boolReduce function is fine for Boolean operations on integer lists, but we could “ge‐
nericize” it to make it applicable to lists and reduction operations of any type. Once this
function takes type parameters for its list elements and the accumulator value and result

Reducing Lists | 95

(which necessarily need to match), we could use it to implement max, sum, and other
mathematical operations.

Here is the boolReduce operation rewritten as reduceOp, renamed because it is no longer
Boolean-specific, with the Int and Boolean types replaced with the type parameters A
and B, respectively. What’s really nice is that our sample invocation doesn’t require any
changes from working with boolReduce thanks to Scala’s inference of type parameters.
To verify that this new operation isn’t limited to an integer list and a Boolean result, I
have added an implementation of the sum example:

scala> def reduceOp[A,B](l: List[A], start: B)(f: (B, A) => B): B = {

 | var a = start

 | for (i <- l) a = f(a, i)

 | a

 | }

reduceOp: [A, B](l: List[A], start: B)(f: (B, A) => B)B

scala> val included = reduceOp(List(46, 19, 92), false) { (a, i) =>

 | if (a) a else (i == 19)

 | }

included: Boolean = true

scala> val answer = reduceOp(List(11.3, 23.5, 7.2), 0.0)(_ + _)

answer: Double = 42.0

Replacing real types with type parameters can make the code less readable. If it
isn’t clear what the A and B parameters are referring to, have a look at the bool
Reduce function definition and compare the parameters in both functions.

I’ve chosen “a” as the name of the accumulator value and “i” as the name of the
current element in the list. Writing function literals gives you the option to define
your own names for input parameters!

In this case I chose placeholder syntax because the parameters are each accessed
only once in the function body.

Our reduceOp method is now a generic, left-to-right (or, start-to-finish) list reduction
operation. It could be used to implement a math reduction operation such as max or a
Boolean reduction operation such as contains. In fact, it could be used to create any
other list reduction operation, at least one that supports its use of scanning the list from
left to right (i.e., from the first element to the last).

Fortunately, you won’t need to write down or remember the reduceOp function in order
to take advantage of its functionality. Scala’s collections provide built-in operations
similar to reduceOp that are flexible enough to provide left-to-right, right-to-left, and
order-agnostic versions, as well as offering different ways to work with the accumulator
and accumulated values. These higher-order functions to reduce a list based on the input

96 | Chapter 6: Common Collections

function are popularly known as list-folding operations, because the function of reduc‐
ing a list is better known as a fold.

Table 6-5 displays a selection of the list-folding operations in Scala’s collections. To
simplify the process of comparing the functions, each operation’s example reuses the
“sum” function implemented in the previous example.

Table 6-5. Generic list reduction operations

Name Example Description

fold List(4, 5, 6).fold(0)(_ + _) Reduces the list given a starting value and a

reduction function.reduction function.

foldLeft List(4, 5, 6).foldLeft(0)(_ + _) Reduces the list from left to right given a starting value

and a reduction function.

foldRight List(4, 5, 6).foldRight(0)(_ + _) Reduces the list from right to left given a starting value

and a reduction function.

reduce List(4, 5, 6).reduce(_ + _) Reduces the list given a reduction function, starting

with the first element in the list.

reduceLeft List(4, 5, 6).reduceLeft(_ + _) Reduces the list from left to right given a reduction

function, starting with the first element in the list.

reduceRight List(4, 5, 6).reduceRight(_ + _) Reduces the list from right to left given a reduction

function, starting with the first element in the list.

scan List(4, 5, 6).scan(0)(_ + _) Takes a starting value and a reduction function and

returns a list of each accumulated value.

scanLeft List(4, 5, 6).scanLeft(0)(_ + _) Takes a starting value and a reduction function and

returns a list of each accumulated value from

left to right.

scanRight List(4, 5, 6).scanRight(0)(_ + _) Takes a starting value and a reduction function and

returns a list of each accumulated value from

right to left.

The three folding operations, fold, reduce, and scan, are really not very different from
each other. Can you figure out how you might implement reduce as a specific case of
fold, or implement fold if you were given the scan function?

Interestingly, the differences between the left/right directional varieties of each opera‐
tion, e.g., foldLeft, and the nondirectional variety, e.g., fold, may be more significant
than the differences between the three folding operations. For one thing, fold, re
duce, and scan are all limited to returning a value of the same type as the list elements,
while the left/right varities of each operation support unique return types. Thus you
could implement the forall Boolean operation on a list of integers with foldLeft but
would not be able to do so with fold.

Another major difference is in the ordering. Whereas foldLeft and foldRight, as an
example, specify the direction in which they will iterate through the list, the non-

Reducing Lists | 97

directional operations specify no order to their iteration. This often puzzles developers,
because it doesn’t make clear which direction will be used.

For example, what if your collection is not sequential but is distributed among a dozen
different computers? Or what if it is all on the same computer, but your fold operation
is so expensive that you want it to run in parallel? In such cases, it makes sense to
distinguish between a fold that iterates through the list sequentially versus a fold that
may, based on the collection that implements it, run in any order it needs to.

Unless you are specifically using distributed or parallel collections, or you are developing
a library that may be reused with such collections, it is safe to simply choose the left/
right directional varieties. I will also recommend that, unless you require right-to-left
iteration, it is better to select the “left” operations because they require fewer traversals
through the list in their implementation.

So, before studying the three list-folding operations we implemented the contains and
sum operations the hard way. Now let’s reimplement them using the new folding oper‐
ations we just covered:

scala> val included = List(46, 19, 92).foldLeft(false) { (a, i) =>

 | if (a) a else (i == 19)

 | }

included: Boolean = true

scala> val answer = List(11.3, 23.5, 7.2).reduceLeft(_ + _)

answer: Double = 42.0

Not much has changed here other than that we’re calling foldLeft, a list
operation. Would reduceLeft work here?

This operation is now even shorter thanks to reduceLeft, which uses the first
element in the list for a starting value instead of taking it as a parameter.

In this section we covered list reduction/folding operations, both specific and generic.
The numeric and Boolean list reduction operations are widely useful, but in case you
need additional operations, you now know how to create your own.

Converting Collections
Lists are ubiquitous, especially in the examples in this chapter, but the other collections
are certainly also important for their own uses. I find myself reaching for lists by default
when I need a collection, but sometimes you do need a map, set, or other type. Fortu‐
nately, it is easy to convert between these types, so you can create a collection with one
type and end up with the other.

98 | Chapter 6: Common Collections

Table 6-6 contains a selection of these methods. Because a List.toList() operation
would be silly (but possible), the examples demonstrate converting from one type to a
completely different type.

Table 6-6. Operations to convert collections

Name Example Description

mkString List(24, 99, 104).mkString(", ") Renders a collection to a Set using the given delimiters.

toBuffer List('f', 't').toBuffer Converts an immutable collection to a mutable one.

toList Map("a" -> 1, "b" -> 2).toList Converts a collection to a List.

toMap Set(1 -> true, 3 -> true).toMap Converts a collection of 2-arity (length) tuples to a Map.

toSet List(2, 5, 5, 3, 2).toSet Converts a collection to a Set.

toString List(2, 5, 5, 3, 2).toString Renders a collection to a String, including the

collection’s type.

Consider these operations when you have a map but only want a list of its keys, or are
given a list and want to generate a lookup map with it. As immutable collections, List,
Map, and Set cannot be built from empty collections and so are better suited to being
mapped from existing collections. With these operations you can map data in one type
to another type, even if you’re going from a sequence to a key-value store (or back).

Java and Scala Collection Compatibility
There is another important angle to converting collections that we need to cover. Be‐
cause Scala compiles to and runs on the JVM, interacting with the JDK as well as any
Java libraries you may add is a common requirement. Part of this task of interacting is
to convert between Java and Scala collections, because the two collection types are in‐
compatible by default.

You can add the following command to enable manual conversions between Java and
Scala collections. Although this command is a bit esoteric now, it’ll make more sense
when we study it in the context of object-oriented Scala later in the book:

scala> import collection.JavaConverters._

import collection.JavaConverters._

This import command adds JavaConverters and its methods to the current name‐
space. In the REPL this means the current session, while in source files this means the
rest of the file or local scope, wherever the import command is added. Table 6-7 displays
the operations added to Java and Scala collections when JavaConverters

has been imported.

Converting Collections | 99

Table 6-7. Java and Scala collection conversions

Name Example Description

asJava List(12, 29).asJava Converts this Scala collection to a corresponding

Java collection.

asScala new java.util.ArrayList(5).asScala Converts this Java collection to a corresponding

Scala collection.

By exercising this import of JavaConverters, a greater selection of Java libraries and
JVM functions is made available without significantly changing how you use Scala col‐
lections.

Pattern Matching with Collections
The final operation that we’ll review in this chapter isn’t a named collection method,
but the use of match expressions (see “Match Expressions” on page 31) with collec‐
tions. If you recall, we have used match expressions to match single value patterns:

scala> val statuses = List(500, 404)

statuses: List[Int] = List(500, 404)

scala> val msg = statuses.head match {

 | case x if x < 500 => "okay"

 | case _ => "whoah, an error"

 | }

msg: String = whoah, an error

With a pattern guard (see “Matching with Pattern Guards” on page 36), you could al‐
so match a single value inside a collection:

scala> val msg = statuses match {

 | case x if x contains(500) => "has error"

 | case _ => "okay"

 | }

msg: String = has error

Because collections support the equals operator (==) it shouldn’t be a surprise that they
also support pattern matching. To match the entire collection, use a new collection as
your pattern:

scala> val msg = statuses match {

 | case List(404, 500) => "not found & error"

 | case List(500, 404) => "error & not found"

 | case List(200, 200) => "okay"

 | case _ => "not sure what happened"

 | }

msg: String = error & not found

You can use value binding (see “Matching with Wildcard Patterns” on page 34) to bind
values to some or all elements of a collection in your pattern guard:

100 | Chapter 6: Common Collections

scala> val msg = statuses match {

 | case List(500, x) => s"Error followed by $x"

 | case List(e, x) => s"$e was followed by $x"

 | }

msg: String = Error followed by 404

Lists are decomposable into their head element and their tail. In the same way, as patterns
they can be matched on their head and tail elements:

scala> val head = List('r','g','b') match {

 | case x :: xs => x

 | case Nil => ' '

 | }

head: Char = r

Tuples, while not officially collections, also support pattern matching and value bind‐
ing. Because a single tuple can support values of different types, their pattern-matching
capability is at times even more useful than that of collections:

scala> val code = ('h', 204, true) match {

 | case (_, _, false) => 501

 | case ('c', _, true) => 302

 | case ('h', x, true) => x

 | case (c, x, true) => {

 | println(s"Did not expect code $c")

 | x

 | }

 | }

code: Int = 204

Pattern matching is a core feature of the Scala language, not simply another operation
in its standard collection library. It is broadly applicable to Scala’s data structures, and
when used wisely can shorten and simplify logic that would require expansive work in
other languages.

Summary
Working with collections, whether creating, mapping, filtering, or performing other
operations, is a major component of software development. And lists, maps, and sets,
some of the main building blocks for scalable data structures, are included as part of
the default libraries for Java, Ruby, Python, PHP, and C++. What sets Scala’s collections
library apart from the others is its core support for immutable data structures and
higher-order operations.

The core data structures in Scala, List, Map, and Set, are immutable. They cannot be
resized, nor can their contents be swapped out. As a way of giving precedence over
mutable collections, their package (collection.immutable) is automatically imported
into Scala namespaces by default. This precedence aims to steer developers toward the
immutable collections and immutable data in general, a “best practice” in functional

Summary | 101

programming circles. This is not to say that mutable collections are less powerful or less
capable than immutable ones. Scala’s mutable collections have all the same features as
the immutable ones and also support a range of modification operations. We’ll learn
about mutable collections and how to convert mutable to immutable ones (and vice
versa) in the next chapter.

The ability to take a collection and iterate or map it with an anonymous function is
common to many languages, including Ruby and Python. However, the ability to do so
while ensuring the type requirements of both the collection and the input and return
types of the anonymous functions is relatively uncommon. Collections with type-safe
higher-order functions support a declarative programming style, the ability to create
expressive code, and very few runtime type conversion errors. This powerful combi‐
nation of features helps to set the Scala collections library apart from those available in
other languages and frameworks and provides a fairly large productivity boost to its
users. In addition, Scala collections are monadic, supporting the ability to chain oper‐
ations together in a high-level, type-safe manner. We’ll learn about monadic collections
as well in the next chapter.

Exercises
Do you recall the suggestion I previously made (see “Exercises” on page 42) to switch
your development environment from inside-the-REPL to an external Scala source file?
If you haven’t made the switch yet, you’ll find working on these exercises in the REPL
to be downright impractical given their size and complexity.

I also recommend working on these exercises using a professional IDE such as IntelliJ
IDEA CE or the Eclipse-based Scala IDE. You’ll gain instant feedback about whether
code is compilable and get code completion and documentation for Scala library func‐
tions. There are also plug-ins for simpler editing environments like Sublime Text, VIM,
and Emacs that enable this functionality, but if you’re getting started with Scala a full-
fledged IDE will probably be easier and quicker to use.

The exercises in this section will help you become familiar with the core collections and
operations we have studied in this chapter. I recommend spending time to not only
write the most basic solution, but to find alternate methods for each implementation.
This will help you become familiar with the subtle differences between similar functions
such as fold and reduce, or head and slice, in addition to giving you the tools to bypass
these functions and develop your own solutions.

1. Create a list of the first 20 odd Long numbers. Can you create this with a for-loop,
with the filter operation, and with the map operation? What’s the most efficient
and expressive way to write this?

102 | Chapter 6: Common Collections

2. Write a function titled “factors” that takes a number and returns a list of its factors,
other than 1 and the number itself. For example, factors(15) should return
List(3, 5).

Then write a new function that applies “factors” to a list of numbers. Try using the
list of Long numbers you generated in exercise 1. For example, executing this func‐
tion with List(9, 11, 13, 15) should return List(3, 3, 5), because the factor
of 9 is 3 while the factors of 15 are 3 again and 5. Is this a good place to use map and
flatten? Or would a for-loop be a better fit?

3. Write a function, first[A](items: List[A], count: Int): List[A], that re‐
turns the first x number of items in a given list. For example,
first(List('a','t','o'), 2) should return List('a','t'). You could make
this a one-liner by invoking one of the built-in list operations that already performs
this task, or (preferably) implement your own solution. Can you do so with a for-
loop? With foldLeft? With a recursive function that only accesses head and tail?

4. Write a function that takes a list of strings and returns the longest string in the list.
Can you avoid using mutable variables here? This is an excellent candidate for the
list-folding operations (Table 6-5) we studied. Can you implement this with both
fold and reduce? Would your function be more useful if it took a function pa‐
rameter that compared two strings and returned the preferred one? How about if
this function was applicable to generic lists, i.e., lists of any type?

5. Write a function that reverses a list. Can you write this as a recursive function? This
may be a good place for a match expression.

6. Write a function that takes a List[String] and returns a
(List[String],List[String]), a tuple of string lists. The first list should be items
in the original list that are palindromes (written the same forward and backward,
like “racecar”). The second list in the tuple should be all of the remaining items
from the original list. You can implement this easily with partition, but are there
other operations you could use instead?

7. The last exercise in this chapter is a multipart problem. We’ll be reading and pro‐
cessing a forecast from the excellent and free OpenWeatherMap API.

To read content from the URL we’ll use the Scala library operation io.Source.
+fromURL(url: String), which returns an +io.Source instance. Then we’ll
reduce the source to a collection of individual lines using the getLines.toList
operation. Here is an example of using io.Source to read content from a URL,
separate it into lines, and return the result as a list of strings:

scala> val l: List[String] = io.Source.fromURL(url).getLines.toList

Here is the URL we will use to retrieve the weather forecast, in XML format:

scala> val url =

 "http://api.openweathermap.org/data/2.5/forecast?mode=xml&lat=55&lon=0"

Exercises | 103

Go ahead and read this URL into a list of strings. Once you have it, print out the
first line to verify you’ve captured an XML file. The result should look pretty much
like this:

scala> println(l(0))

<?xml version="1.0" encoding="utf-8"?>

If you don’t see an XML header, make sure that your URL is correct and your
Internet connection is up.

Let’s begin working with this List[String] containing the XML document.

a. To make doubly sure we have the right content, print out the top 10 lines of the
file. This should be a one-liner.

b. The forecast’s city’s name is there in the first 10 lines. Grab it from the correct
line and print out its XML element. Then extract the city name and country code
from their XML elements and print them out together (e.g., “Paris, FR”). This
is a good place to use regular expressions to extract the text from XML tags (see
“Regular expressions” on page 19).

If you don’t want to use regular expression capturing groups, you could instead
use the replaceAll() operation on strings to remove the text surrounding the
city name and country name.

c. How many forecast segments are there? What is the shortest expression you can
write to count the segments?

d. The “symbol” XML element in each forecast segment includes a description of
the weather forecast. Extract this element in the same way you extracted the city
name and country code. Try iterating through the forecasts, printing out the
description.

Then create an informal weather report by printing out the weather descriptions
over the next 12 hours (not including the XML elements).

e. Let’s find out what descriptions are used in this forecast. Print a sorted listing of
all of these descriptions in the forecast, with duplicate entries removed.

f. These descriptions may be useful later. Included in the “symbol” XML element
is an attribute containing the symbol number. Create a Map from the symbol
number to the description. Verify this is accurate by manually accessing symbol
values from the forecast and checking that the description matches the XML
document.

g. What are the high and low temperatures over the next 24 hours?

h. What is the average temperature in this weather forecast? You can use the “value”
attribute in the temperature element to calculate this value.

104 | Chapter 6: Common Collections

Now that you have solved the exercises, are there simpler or shorter solutions than the
ones you chose? Did you prefer infix dot notation or infix operator notation? Was using
for..yield easier than higher-order operations like map and filter?

This is a good place to rework some of your solutions to really find your favored coding
style, which is often the intersection between ease of writing, ease of reading,
and expressiveness.

Exercises | 105

CHAPTER 7

More Collections

In Chapter 6 we were introduced to the Iterable root type and three of its immutable
subtypes: the ordered collection List and the unordered collections Set and Map. These
collections were labeled common because they are ubiquitous in modern programming
languages, not to imply that they are basic and unadorned. In this chapter we will un‐
cover Scala collections that may not be ubiquitous but are just as important.

We’ll start with mutable collections, which probably can be considered ubiquitous be‐
cause more languages support them than they do immutable collections. Then we’ll
move on to arrays, streams, and other collections.

Mutable Collections
The List, Set, and Map immutable collections we are familiar with cannot be changed
after they have been created (see the definition of “immutable”). They can, however, be
transformed into new collections. For example, we can create an immutable map, and
then transform it by removing one mapping and adding another:

scala> val m = Map("AAPL" -> 597, "MSFT" -> 40)

m: scala.collection.immutable.Map[String,Int] =

 Map(AAPL -> 597, MSFT -> 40)

scala> val n = m - "AAPL" + ("GOOG" -> 521)

n: scala.collection.immutable.Map[String,Int] =

 Map(MSFT -> 40, GOOG -> 521)

scala> println(m)

Map(AAPL -> 597, MSFT -> 40)

A new map with “AAPL” and “MSFT” keys.

Removing “APPL” and adding “GOOG” gives us a different collection…

… while the original collection in “m” remains the same.

107

What you end up with is a completely new collection stored in “n”. The original collec‐
tion, stored in the “m” value, remains untouched. And this is exactly the point of im‐
mutable data, namely that data and data structures should not be mutable or change
their state in order to improve code stability and prevent bugs. As an example, data
structures that are rigid and never change state are safer to use with concurrent code
than data structures that may change at any point and are prone to corruption (e.g.,
reading a data structure while it is undergoing a state change).

However, there are times when you do want mutable data, and when it is arguably safe
to use it. For example, creating a mutable data structure that is only used within a
function, or one that is converted to immutability before being returned, are considered
to be safe use cases. You may want to add elements to a list in the course of a series of
“if ” condition blocks, or add them in the course of iterating over a separate data struc‐
ture, without having to store each transformation in a series of local values.

In this section we will explore three methods for building mutable collections.

Creating New Mutable Collections
The most straightforward way to modify collections is with a mutable collection type.
See Table 7-1 for the mutable counterparts to the standard immutable List, Map, and
Set types.

Table 7-1. Mutable collection types

Immutable type Mutable counterpart

collection.immutable.List collection.mutable.Buffer

collection.immutable.Set collection.mutable.Set

collection.immutable.Map collection.mutable.Map

Whereas the collection.immutable package is automatically added to the current
namespace in Scala, the collection.mutable package is not. When creating mutable
collections, make sure to include the full package name for the type.

The collection.mutable.Buffer type is a general-purpose mutable sequence, and
supports adding elements to its beginning, middle, and end.

Here is an example of using it to build a list of integers starting from a single element:

108 | Chapter 7: More Collections

scala> val nums = collection.mutable.Buffer(1)

nums: scala.collection.mutable.Buffer[Int] = ArrayBuffer(1)

scala> for (i <- 2 to 10) nums += i

scala> println(nums)

Buffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Here is an example of using the same buffer but starting with an empty collection.
Because there is no default value, we will have to specify the collection’s type with a type
parameter (Int, in this case):

scala> val nums = collection.mutable.Buffer[Int]()

nums: scala.collection.mutable.Buffer[Int] = ArrayBuffer()

scala> for (i <- 1 to 10) nums += i

scala> println(nums)

Buffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Building maps and sets is a similar process. Specifying the type parameter for a new set,
or the key and value type parameters for a new map, is only required when creating an
empty collection.

You can convert your mutable buffer back to an immutable list at any time with the
toList method:

scala> println(nums)

Buffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val l = nums.toList

l: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Likewise for sets and maps, use the toSet and toMap methods to convert these mutable
collections to their immutable counterparts.

Creating Mutable Collections from Immutable Ones
An alternative to creating mutable collections directly is to convert them from immut‐
able collections. This is useful when you already have a starting immutable collection
that you want to modify, or would just rather type “List()” instead of “collection.muta‐
ble.Buffer().”

The List, Map, and Set immutable collections can all be converted to the mutable
collection.mutable.Buffer type with the toBuffer method. For lists this is obviously
straightforward, because the buffer and list type are both sequences. Maps, as subtypes
of Iterable, can be considered as sequences as well, and are converted to buffers as
sequences of key-value tuples. Converting sets to buffers is trickier, however, because
buffers do not honor the uniqueness constraint of sets. Fortunately, any duplicates in
the buffer’s data will be removed when converted back to a Set.

Mutable Collections | 109

Here is an example of converting an immutable map to a mutable one and then changing
it back:

scala> val m = Map("AAPL" -> 597, "MSFT" -> 40)

m: scala.collection.immutable.Map[String,Int] =

 Map(AAPL -> 597, MSFT -> 40)

scala> val b = m.toBuffer

b: scala.collection.mutable.Buffer[(String, Int)] =

 ArrayBuffer((AAPL,597), (MSFT,40))

scala> b trimStart 1

scala> b += ("GOOG" -> 521)

res1: b.type = ArrayBuffer((MSFT,40), (GOOG,521))

scala> val n = b.toMap

n: scala.collection.immutable.Map[String,Int] =

 Map(MSFT -> 40, GOOG -> 521)

The map, containing key-value pairs, is now a sequence of tuples.

trimStart removes one or more items from the start of the buffer.

After removing the “AAPL” entry we’ll add a “GOOG” entry.

This buffer of tuples is now an immutable map again.

The buffer methods toList and toSet can be used in addition to toMap to convert a
buffer to an immutable collection.

Let’s try converting this buffer of 2-sized tuples to a List and to a Set. After all, there’s
no reason that a collection of 2-sized tuples created from a map must be converted back
to its original form.

To verify that Set imposes a uniqueness constraint, we’ll first add a duplicate entry to
the buffer. Let’s see how this works out:

scala> b += ("GOOG" -> 521)

res2: b.type = ArrayBuffer((MSFT,40), (GOOG,521), (GOOG,521))

scala> val l = b.toList

l: List[(String, Int)] = List((MSFT,40), (GOOG,521), (GOOG,521))

scala> val s = b.toSet

s: scala.collection.immutable.Set[(String, Int)] = Set((MSFT,40), (GOOG,521))

The list “l” and set “s” were created successfully, with the list containing the duplicated
entries and the set restricted to contain only unique entries.

110 | Chapter 7: More Collections

The Buffer type is a good, general-purpose mutable collection, similiar to a List but
able to add, remove, and replace its contents. The conversion methods it supports, along
with the toBuffer methods on its immutable counterparts, makes it a useful mechanism
for working with mutable data.

About the only drawback of a buffer is that it may be too broadly applicable. If all you
need is to put together a collection iteratively, e.g., inside a loop, a builder may be a good
choice instead.

Using Collection Builders
A Builder is a simplified form of a Buffer, restricted to generating its assigned collec‐
tion type and supporting only append operations.

To create a builder for a specific collection type, invoke the type’s newBuilder method
and include the type of the collection’s element. Invoke the builder’s result method to
convert it back into the final Set. Here is an example of creating a Set with a builder:

scala> val b = Set.newBuilder[Char]

b: scala.collection.mutable.Builder[Char,scala.collection.immutable.

 Set[Char]] = scala.collection.mutable.SetBuilder@726dcf2c

scala> b += 'h'

res3: b.type = scala.collection.mutable.SetBuilder@d13d812

scala> b ++= List('e', 'l', 'l', 'o')

res4: b.type = scala.collection.mutable.SetBuilder@d13d812

scala> val helloSet = b.result

helloSet: scala.collection.immutable.Set[Char] = Set(h, e, l, o)

Adding a single item, one of two append operations.

Adding multiple items, the second of two append operations.

Unlike with buffers, a builder knows its immutable counterpart.

So, why use Builder versus Buffer or one of the mutable collection types? The Build
er type is a good choice if you are only building a mutable collection iteratively in order
to convert it to an immutable collection. If you need Iterable operations while building
your mutable collection, or don’t plan on converting to an immutable collection, using
one of the Buffer or other mutable collection types is a better match.

In this section we have investigated methods to convert between immutable and mutable
collections, which are either unchangeable or fully modifiable. In the next section we’ll
cover a “collection” that breaks these rules, being immutable in size but mutable
in content.

Mutable Collections | 111

Arrays
An Array is a fixed-size, mutable, indexed collection. It’s not officially a collection, be‐
cause it isn’t in the “scala.collections” package and doesn’t extend from the root Itera
ble type (although it has all of the Iterable operations like map and filter). The Array
type is actually just a wrapper around Java’s array type with an advanced feature called
an implicit class allowing it to be used like a sequence. Scala provides the Array type for
compatibility with JVM libraries and Java code and as a backing store for indexed col‐
lections, which really require an array to be useful.

Here are some examples of working with arrays, demonstrating their cell mutability and
support for Iterable operations:

scala> val colors = Array("red", "green", "blue")

colors: Array[String] = Array(red, green, blue)

scala> colors(0) = "purple"

scala> colors

res0: Array[String] = Array(purple, green, blue)

scala> println("very purple: " + colors)

very purple: [Ljava.lang.String;@70cf32e3

scala> val files = new java.io.File(".").listFiles

files: Array[java.io.File] = Array(./Build.scala, ./Dependencies.scala,

 ./build.properties, ./JunitXmlSupport.scala, ./Repositories.scala,

 ./plugins.sbt, ./project, ./SBTInitialization.scala, ./target)

scala> val scala = files map (_.getName) filter(_ endsWith "scala")

scala: Array[String] = Array(Build.scala, Dependencies.scala,

 JunitXmlSupport.scala, Repositories.scala, SBTInitialization.scala)

Use a zero-based index to replace any item in an Array.

The Scala REPL knows how to print an Array …

… but not println(), which can only call a type’s toString() method.

The listFiles method in java.io.File, a JDK class, returns an array that we
can easily map and filter.

Java arrays do not override the toString() method inherent in all Java and Scala objects,
and thus use the default implementation of printing out the type parameter and refer‐
ence. Thus, calling toString() on an Array results in the unreadable output seen in
the last example. Fortunately you won’t see this output with Scala collections, because
they all override toString() to provide human-readable printouts of their contents
and structure.

112 | Chapter 7: More Collections

It’s important to hear about and understand the Array type, but I don’t recommend
using it in regular practice unless you need it for JVM code. There are many other fine
sequences that you can use instead, as you’ll see in the next section.

Seq and Sequences
Seq is the root type of all sequences, including linked lists like List and indexed (direct-
access) lists like Vector. The Array type, if it were a collection, could be considered an
indexed sequence because its elements are directly accessible without traversal. As a
root type, Seq itself cannot be instantiated, but you can invoke it as a shortcut for creating
a List:

scala> val inks = Seq('C','M','Y','K')

inks: Seq[Char] = List(C, M, Y, K)

The Seq hierarchy of sequence collections appears in Figure 7-1, and Table 7-2 contains
the descriptions for each of these types.

Figure 7-1. The sequence collections hierarchy

Seq and Sequences | 113

Table 7-2. Sequence types

Name Description

Seq The root of all sequences. Shortcut for List().

IndexedSeq The root of indexed sequences. Shortcut for Vector().

Vector A list backed by an Array instance for indexed access.

Range A range of integers. Generates its data on-the-fly.

LinearSeq The root of linear (linked-list) sequences.

List A singly linked list of elements.

Queue A first-in-last-out (FIFO) list.

Stack A last-in-first-out (LIFO) list.

Stream A lazy list. Elements are added as they are accessed.

String A collection of characters.

The Vector type is implemented with an Array for storage. As an indexed sequence
(since arrays are indexed), you can access items in a Vector directly by their index. By
contrast, accessing the nth item of a List (a linked list) requires n – 1 steps from the
head of its list. Java developers will recognize Vector as analogous to Java’s “ArrayList,”
whereas C++ developers will (more easily) recognize it as being similar to the “Vector”
template.

The Seq shortcut for List linked lists and the IndexedSeq shortcut for Vector indexed
lists are only marginally useful, because the savings for writing them is one character
and negative four characters, respectively. Unless you have a fondness for high-level
types (e.g., Seq) over concrete implementations (e.g., List), you may find little reason
to use them yourself.

Seeing the String type listed with sequences may be a surprise, but in Scala it is a valid
collection just like the others. A “string” derives its name, after all, from being a string
of characters, in this case a sequence of Char elements. The String type is an immutable
collection, extending Iterable and supporting its operations, while also serving as a
wrapper for Java strings and supporting such java.lang.String operations as split
and trim.

Here’s an example of using String as a subtype of Iterable and as a java.lang.String
wrapper, using methods from both types:

scala> val hi = "Hello, " ++ "worldly" take 12 replaceAll ("w","W")

hi: String = Hello, World

The ++ and take operations derive from Iterable and act on the sequence of characters,
while replaceAll is a java.lang.String operation invoked as a Scala operator.

114 | Chapter 7: More Collections

The last sequence we’ll discuss in this chapter is the Stream type, which builds itself as
its elements are accessed. It’s a popular collection in functional programming languages,
but it takes some extra time to learn so it has its own section. Take the time to try out
the examples and get familiar with Stream because it can be a very helpful collection to
know about.

Streams
The Stream type is a lazy collection, generated from one or more starting elements and
a recursive function. Elements are added to the collection only when they are accessed
for the first time, in constrast to other immutable collections that receive 100% of their
contents at instantiation time. The elements that a stream generates are cached for later
retrieval, ensuring that each element is only generated once. Streams can be unbounded,
theoretically infinite collections where elements are only realized upon access. They can
also be terminated with Stream.Empty, a counterpart to List.Nil.

Streams, like lists, are recursive data structures consisting of a head (the current element)
and a tail (the rest of the collection). They can be built with a function that returns a
new stream containing the head element and a recursive invocation of that function to
build the tail. You can use Stream.cons to construct a new stream with the head
and tail.

Here is an example function that builds and recursively generates a new stream. By
incrementing the starting integer value, it will end up creating a collection of consecu‐
tively increasing integers:

scala> def inc(i: Int): Stream[Int] = Stream.cons(i, inc(i+1))

inc: (i: Int)Stream[Int]

scala> val s = inc(1)

s: Stream[Int] = Stream(1, ?)

We have our stream but it only contains our starting value (1) and a promise of future
values (?). Let’s force it to build out the next four elements by “taking” them and re‐
trieving the contents as a list:

scala> val l = s.take(5).toList

l: List[Int] = List(1, 2, 3, 4, 5)

scala> s

res1: Stream[Int] = Stream(1, 2, 3, 4, 5, ?)

We took the first five elements and retrieved them as a plain old list. Printing out the
original stream instance shows that it now contains five elements and is ready to generate
more. We could follow this up by taking 20, or 200, or 2,000 elements. The stream
contains a recursive function call (specifically, a function value) that it can use to gen‐
erate new elements without end.

Streams | 115

An alternate syntax for the Stream.cons operator is the slightly cryptic #:: operator,
which we’ll just call the cons operator for streams. This performs the same function as
Stream.cons except with right-associative notation, complementing the cons operator
for lists, :: (see “The Cons Operator” on page 89).

Here’s the “inc” function again, using the cons operator #::. I’ve also renamed the pa‐
rameter to “head” to better demonstrate its use as the head element of the new Stream
instance:

scala> def inc(head: Int): Stream[Int] = head #:: inc(head+1)

inc: (head: Int)Stream[Int]

scala> inc(10).take(10).toList

res0: List[Int] = List(10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

Where Is the Stream Being Constructed?
Many developers find the stream cons operator syntax, #::, confus‐
ing because it lacks an explicit creation of the underlying collection.
The confusion is indeed warranted, because an advanced feature
called implicit conversion is used to generate the new Stream in‐
stance from the recursive function’s type, => Stream[A]. If you can
accept that the recursive function invocation (inc(i+1) in the pre‐
ceding example) magically generates a Stream that acts as the tail, then
prefixing this magic tail with your head element to create a new
Stream should be acceptable.

Let’s try creating a bounded stream. We’ll use two arguments to our recursive function,
one specifying the new head element and another specifying the last element to add:

scala> def to(head: Char, end: Char): Stream[Char] = (head > end) match {

 | case true => Stream.empty

 | case false => head #:: to((head+1).toChar, end)

 | }

to: (head: Char, end: Char)Stream[Char]

scala> val hexChars = to('A', 'F').take(20).toList

hexChars: List[Char] = List(A, B, C, D, E, F)

Using the new “to” function, we were able to create a bounded stream consisting of the
letters used in writing hexadecimal numbers. The stream’s take operation only returned
the available elements, ending after we placed Stream.empty to terminate the collection.

The recursive function is used to generate a new Stream and (in our examples thus far)
derive the new head element each time. We have used one or two parameter functions
in the examples thus far, but you could easily have a function that had zero or a dozen
parameters. The important part is defining the head value for your new stream.

116 | Chapter 7: More Collections

All of the collections we have covered can hold zero, one, two, or more items, with the
expectation that they can scale as far as your machine’s memory or the JVM environment
will allow. Next, we’ll learn about a set of collections that can scale no longer than a
single element, but are surprisingly applicable to situations where you never considered
a collection would fit.

Monadic Collections
The last set of collections we’ll discuss in this chapter are the monadic ones, which
support transformative operations like the ones in Iterable but can contain no more
than one element. The term “monadic” applies in its Greek origins to mean a single
unit, and in the category theory sense of a single link in a chain of operations.

We’ll start with the Option type, the one monadic collection that extends Iterable.

Option Collections
As a collection whose size will never be larger than one, the Option type represents the
presence or absence of a single value. This potentially missing value (e.g., it was never
initialized, or could not be calculated) can thus be wrapped in an Option collection and
have its potential absence clearly advertised.

Some developers see Option as a safe replacement for null values, notifying users that
the value may be missing and reducing the likelihood that its use will trigger a Null
PointerException. Others see it as a safer way to build chains of operations, ensuring
that only valid values will persist for the duration of the chain.

The Option type is itself unimplemented but relies on two subtypes for the implemen‐
tation: Some, a type-parameterized collection of one element; and None, an empty col‐
lection. The None type has no type parameters because it never contains contents. You
can work with these types directly, or invoke Option() to detect null values and let it
choose the appropriate subtype.

Let’s try creating an Option with nonnull and null values:

scala> var x: String = "Indeed"

x: String = Indeed

scala> var a = Option(x)

a: Option[String] = Some(Indeed)

scala> x = null

x: String = null

scala> var b = Option(x)

b: Option[String] = None

Monadic Collections | 117

You can use isDefined and isEmpty to check if a given Option is Some or None, respec‐
tively:

scala> println(s"a is defined? ${a.isDefined}")

a is defined? true

scala> println(s"b is not defined? ${b.isEmpty}")

b is not defined? true

Let’s use a more realistic example by defining a function that returns an Option value.
In this case we will wrap the divide operator (/) with a check to prevent division by zero.
Valid inputs will return a Some wrapper and invalid inputs will return None:

scala> def divide(amt: Double, divisor: Double): Option[Double] = {

 | if (divisor == 0) None

 | else Option(amt / divisor)

 | }

divide: (amt: Double, divisor: Double)Option[Double]

scala> val legit = divide(5, 2)

legit: Option[Double] = Some(2.5)

scala> val illegit = divide(3, 0)

illegit: Option[Double] = None

The return type is the Option with a Double type parameter, ensuring that valid
results will retain the correct type.

This will return a Some wrapper because the dividend will be a nonnull value.

With a valid divisor, our dividend comes wrapped in a Some.

With an invalid divisor we get None, the absence of a value.

A function that returns a value wrapped in the Option collection is signifying that it
may not have been applicable to the input data, and as such may not have been able to
return a valid result. It offers a clear warning to callers that its value is only potential,
and ensures that its results will need to be carefully handled. In this way, Option provides
a type-safe option for handling function results, far safer than the Java standard of
returning null values to indicate missing data.

Scala’s collections use the Option type in this way to provide safe operations for handling
the event of empty collections. For example, although the head operation works for non-
empty lists, it will throw an error for empty lists. A safer alternative is headOption, which
(as you may have guessed) returns the head element wrapped in an Option, ensuring
that it will work even on empty lists.

Here is an example of calling headOption to safely handle empty collections:

scala> val odds = List(1, 3, 5)

odds: List[Int] = List(1, 3, 5)

118 | Chapter 7: More Collections

scala> val firstOdd = odds.headOption

firstOdd: Option[Int] = Some(1)

scala> val evens = odds filter (_ % 2 == 0)

evens: List[Int] = List()

scala> val firstEven = evens.headOption

firstEven: Option[Int] = None

Another use of options in collections is in the find operation, a combination of fil
ter and headOption that returns the first element that matches a predicate function.
Here is an example of successful and unsuccessful collection searches with find:

scala> val words = List("risible", "scavenger", "gist")

words: List[String] = List(risible, scavenger, gist)

scala> val uppercase = words find (w => w == w.toUpperCase)

uppercase: Option[String] = None

scala> val lowercase = words find (w => w == w.toLowerCase)

lowercase: Option[String] = Some(risible)

In a way, we have used list reduction operations to reduce a collection down to a single
Option. Because Option is itself a collection, however, we can continue to transform it.

For example, we could use filter and map to transform the “lowercase” result in a way
that retains the value, or in a way that loses the value. Each of these operations is type-
safe and will not cause null pointer exceptions:

scala> val filtered = lowercase filter (_ endsWith "ible") map (_.toUpperCase)

filtered: Option[String] = Some(RISIBLE)

scala> val exactSize = filtered filter (_.size > 15) map (_.size)

exactSize: Option[Int] = None

In the second example, the filter is inapplicable to the “RISIBLE” value and so it
returns None. The ensuing map operation against None has no effect and simply returns
None again.

This is a great example of the Option as a monadic collection, providing a single unit
that can be executed safely (and type-safely) in a chain of operations. The operations
will apply to present values (Some) and not apply to missing values (None), but the
resulting type will still match the type of the final operation (an Option[Int] in the
preceding example).

We have covered creating and transforming the Option collection. You may be won‐
dering, however, what you do with an Option after you transform it into the desired
value, type, or existence.

Monadic Collections | 119

Extracting values from Options

The Option collection provides a safe mechanism and operations for storing and trans‐
forming values that may or may not be present. You shouldn’t be surprised that it also
provides safe operations to extract its potential value.

For the curious, there is also an unsafe extraction operation, the get() method. If you
call this for an Option that is actually a Some instance, you will successfully receive the
value it contains. However, if you call get() on an instance of None, a “no such element”
error will be triggered.

Avoid Option.get()
Option.get() is unsafe and should be avoided, because it disrupts
the entire goal of type-safe operations and can lead to runtime er‐
rors. If possible, use an operation like fold or getOrElse that al‐
lows you to define a safe default value.

We will focus on the safe operations for extracting Option values. The core strategy of
these operations is to provide a framework for handling missing values, such as a re‐
placement (aka “default”) value to use instead of the missing one, or a function that can
either generate a replacement or raise an error condition.

Table 7-3 has a selection of these operations. The examples in the table could have been
written with literal Option values like Some(10) or None, but these would not have helped
to illustrate the challenges of working with potential data. Instead, the following exam‐
ples call the function nextOption, which randomly returns either a valid or missing
Option value each time. Try out this function and the examples in the REPL to see how
Some and None change the result of these operations:

scala> def nextOption = if (util.Random.nextInt > 0) Some(1) else None

nextOption: Option[Int]

scala> val a = nextOption

a: Option[Int] = Some(1)

scala> val b = nextOption

b: Option[Int] = None

Table 7-3. Safe Option extractions

Name Example Description

fold nextOption.fold(-1)(x => x) Returns the value from the given function for Some

(in this case, based on the embedded value) or else the

starting value. The foldLeft, foldRight, and

reduceXXX methods are also available for reducing

an Option down to its embedded value or else a

computed value.

120 | Chapter 7: More Collections

Name Example Description

getOrElse nextOption getOrElse 5 or

nextOption getOrElse {

println("error!"); -1 }

Returns the value for Some or else the result of a by-

name parameter (see “By-Name Parameters” on page

75) for None.

orElse nextOption orElse nextOption Doesn’t actually extract the value, but attempts to fill

in a value for None. Returns this Option if it is

nonempty, otherwise returns an Option from the

given by-name parameter.

Match expressions nextOption match { case Some(x)

=> x; case None => -1 }

Use a match expression to handle the value if present.

The Some(x) expression extracts its data into the

named value “x”, which can be used as the return

value of the match expression or reused for further

transformation.

The Option type is a great example of a monadic collection, being a singular and chain‐
able unit. It is used throughout Scala’s collections library, for example in the find and
headOption operations for sequences. It is also helpful in your own functions for input
parameters and return values when you need to represent potential values. Many con‐
sider it a safer alternative than using null (i.e., the absence of an initialized value), as
its potential nature is made clear, because its use cannot prevent all null pointer errors.

Option is a general-purpose monadic collection for potential values, able to contain any
type of value as specified in its type parameters. We will now look at two monadic
collections for specific purposes: Try for successful values and Future for
eventual values.

Try Collections
The util.Try collection turns error handling into collection management. It provides
a mechanism to catch errors that occur in a given function parameter, returning either
the error or the result of the function if successful.

Scala provides the ability to raise errors by throwing exceptions, error types that may
include a message or other information. Throwing an exception in your Scala code will
disrupt your program’s flow and return control to the closest handler for that particular
exception. Unhandled exceptions will terminate applications, although most Scala ap‐
plication frameworks and web containers take care to prevent this.

Exceptions may be thrown by your own code, by library methods that you invoke, or
by the Java Virtual Machine (JVM). The JVM will throw a
java.util.NoSuchElementException if you call None.get or Nil.head (the head of an
empty list) or a java.lang.NullPointerException if you access a field or method of a
null value.

Monadic Collections | 121

To throw an exception, use the throw keyword with a new Exception instance. The text
message provided to Exception is optional:

scala> throw new Exception("No DB connection, exiting...")

java.lang.Exception: No DB connection, exiting...

 ... 32 elided

To really test out exceptions, let’s create a function that will throw an exception based
on the input criteria. We can then use it to trigger exceptions for testing:

scala> def loopAndFail(end: Int, failAt: Int): Int = {

 | for (i <- 1 to end) {

 | println(s"$i) ")

 | if (i == failAt) throw new Exception("Too many iterations")

 | }

 | end

 | }

loopAndFail: (end: Int, failAt: Int)Int

Let’s try loopAndFail with a larger iteration number than the check, ensuring we get
an exception. This will demonstrate how the for-loop and the function overall get dis‐
rupted by an exception:

scala> loopAndFail(10, 3)

1)

2)

3)

java.lang.Exception: Too many iterations

 at $anonfun$loopAndFail$1.apply$mcVI$sp(<console>:10)

 at $anonfun$loopAndFail$1.apply(<console>:8)

 at $anonfun$loopAndFail$1.apply(<console>:8)

 at scala.collection.immutable.Range.foreach(Range.scala:160)

 at .loopAndFail(<console>:8)

 ... 32 elided

The corollary to throwing exceptions is catching and handling them. To “catch” an
exception, wrap the potentially offending code in the util.Try monadic collection.

No try/catch Blocks?
Scala does support try {} .. catch {} blocks, where the catch block
contains a series of case statements that attempt to match the thrown
error. I recommend using util.Try() exclusively because it offers a
safer, more expressive, and fully monadic approach to handling er‐
rors.

The util.Try type, like Option, is unimplemented but has two implemented subtypes,
Success and Failure. The Success type contains the return value of the attempted
expression if no exception was thrown, and the Failure type contains the thrown
Exception.

122 | Chapter 7: More Collections

Let’s wrap some invocations of the loopAndFail function with util.Try and see what
we get:

scala> val t1 = util.Try(loopAndFail(2, 3))

1)

2)

t1: scala.util.Try[Int] = Success(2)

scala> val t2 = util.Try{ loopAndFail(4, 2) }

1)

2)

t2: scala.util.Try[Int] = Failure(

 java.lang.Exception: Too many iterations)

util.Try() takes a function parameter, so our invocation of loopAndFail is
automatically converted to a function literal.

The function literal (our safe invocation of loopAndFail) exited safely, so we
have a Success containing the return value.

Invoking util.Try with expression blocks (see “Function Invocation with
Expression Blocks” on page 49) is also acceptable.

An exception was thrown in this function literal, so we have a Failure
containing said exception.

Now we’ll look at how to handle potential errors. Because util.Try and its subtypes
are also monadic collections, you can expect to find a number of thrilling and yet familiar
methods for handling these situations. You may find that selecting the right error-
handling approach (including whether to handle them at all) for your application will
depend on its requirements and context, however. Few error-handling methods are
generally applicable, in my experience.

Table 7-4 has a selection of strategies for handling errors. To better portray the inherent
dichotomy of the success and failure states, let’s define a randomized error function for
use in the examples:

scala> def nextError = util.Try{ 1 / util.Random.nextInt(2) }

nextError: scala.util.Try[Int]

scala> val x = nextError

x: scala.util.Try[Int] = Failure(java.lang.ArithmeticException:

/ by zero)

scala> val y = nextError

y: scala.util.Try[Int] = Success(1)

Now when you try out the following examples you’ll be able to test them with successes
and failures.

Monadic Collections | 123

Table 7-4. Error-handling methods with Try

Name Example Description

flatMap nextError flatMap { _ => nextError } In case of Success, invokes a function that also

returns util.Try, thus mapping the current

return value to a new, embedded return value (or

an exception). Because our “nextError” demo

function does not take an input, we’ll use an

underscore to represent the unused input value

from the current Success.

foreach nextError foreach(x =>

println("success!" + x))

Executes the given function once in case of Suc

cess, or not at all in case of a Failure.

getOrElse nextError getOrElse 0 Returns the embedded value in the Success or

the result of a by-name parameter in case of a

Failure.

orElse nextError orElse nextError The opposite of flatMap. In case of Fail

ure, invokes a function that also returns a

util.Try. With orElse you can potentially

turn a Failure into a Success.

toOption nextError.toOption Convert your util.Try to Option, where a

Success becomes Some and a Failure

becomes None. Useful if you are more

comfortable working with options, but

the downside is you may lose the embedded

Exception.

map nextError map (_ * 2) In case of Success, invokes a function that maps

the embedded value to a new value.

Match expressions nextError match { case

util.Success(x) => x;

case util.Failure(error) => -1 }

Use a match expression to handle a Success

with a return value (stored in “x”) or a Fail

ure with an exception (stored in “error”). Not

shown: logging the error with a good logging

framework, ensuring it gets noticed and tracked.

Do nothing nextError This is the easiest error-handling method of all

and a personal favorite of mine. To use this

method, simply allow the exception to propagate

up the call stack until it gets caught or causes the

current application to exit. This method may be

too disruptive for certain sensitive cases, but

ensures that thrown exceptions will never

be ignored.

124 | Chapter 7: More Collections

A common exception that many developers have to work with is validating numbers
stored in strings. Here’s an example using the orElse operation to try to parse a number
out of a string, and the foreach operation to print the result if successful:

scala> val input = " 123 "

input: String = " 123 "

scala> val result = util.Try(input.toInt) orElse util.Try(input.trim.toInt)

result: scala.util.Try[Int] = Success(123)

scala> result foreach { r => println(s"Parsed '$input' to $r!") }

Parsed ' 123 ' to 123!

scala> val x = result match {

 | case util.Success(x) => Some(x)

 | case util.Failure(ex) => {

 | println(s"Couldn't parse input '$input'")

 | None

 | }

 | }

x: Option[Int] = Some(123)

I’ll repeat the assertion that the best error-handling strategy will depend on your current
requirements and context. The one error-handling method to avoid is to encounter an
exception and ignore it, e.g., by replacing it with a default value. If an exception was
thrown, it at least deserves to be reported and handled.

Future Collections
The final monadic collection we’ll review is concurrent.Future, which initiates a back‐
ground task. Like Option and Try, a future represents a potential value and provides
safe operations to either chain additional operations or to extract the value. Unlike with
Option and Try, a future’s value may not be immediately available, because the back‐
ground task launched when creating the future could still be working.

By now you know that Scala code executes on the Java Virtual Machine, aka the JVM.
What you may not know is that it also operates inside Java’s “threads,” lightweight con‐
current processes in the JVM. By default Scala code runs in the JVM’s “main” thread,
but can support running background tasks in concurrent threads. Invoking a future
with a function will execute that function in a separate thread while the current thread
continues to operate. A future is thus a monitor of a background Java thread in addition
to being a monadic container of the thread’s eventual return value.

Fortunately, creating a future is a trivial task—just invoke it with a function you want
to run in the background.

Let’s try creating a future with a function that prints a message. Before creating the
future, it is necessary to specify the “context” in the current session or application for

Monadic Collections | 125

running functions concurrently. We’ll use the default “global” context, which makes use
of Java’s thread library for this purpose:

scala> import concurrent.ExecutionContext.Implicits.global

import concurrent.ExecutionContext.Implicits.global

scala> val f = concurrent.Future { println("hi") }

hi

f: scala.concurrent.Future[Unit] =

 scala.concurrent.impl.Promise$DefaultPromise@29852487

Our background task printed “hi” before the future could even be returned to the value.
Let’s try another example that “sleeps” the background thread with Java’s Thread.sleep
to make sure we get the future back while the background task is still running!

scala> val f = concurrent.Future { Thread.sleep(5000); println("hi") }

f: scala.concurrent.Future[Unit] =

 scala.concurrent.impl.Promise$DefaultPromise@4aa3d36

scala> println("waiting")

waiting

scala> hi

The background task, after sleeping for 5 seconds (i.e., 5,000 milliseconds), printed the
“hi” message. In the meantime, our code in the “main” thread had time to print a “wait‐
ing” message before the background task completed.

You can set callback functions or additional futures to execute when a future’s task
completes. As an example, an API call could start an important but prolonged operation
in the background while it returns control to the caller. You can also choose to wait,
blocking the “main” thread until the background task completes. An already-
asynchronous event such as a network file transfer could be started in a future while the
“main” thread sleeps until the task completes or a “timeout” duration is reached.

Futures can be managed asynchronously (while the “main” thread continues to operate)
or synchronously (with the “main” thread waiting for the task to complete). Because
asynchronous operations are more efficient, allowing both the background and current
threads to continue executing, we will review them first.

Handling futures asynchronously

Futures, in addition to spawning background tasks, can be treated as monadic collec‐
tions. You can chain a function or another future to be executed following the comple‐
tion of a future, passing the first future’s successful result to the new function or feature.

A future handled this way will eventually return a util.Try containing either its func‐
tion’s return value or an exception. In case of success (with a return value), the chained
function or future will be passed to the return value and converted into a future to return

126 | Chapter 7: More Collections

its own success or failure. In case of a failure (i.e., an exception was thrown), no addi‐
tional functions or futures will be executed. In this way, the future-as-monadic-
collection is just a chain in a sequence of operations that carry an embedded value. This
is similar to Try, which breaks the chain when a failure is reached, and Option, which
breaks the chain when the value is no longer present.

To receive the eventual result of a future, or of a chain of futures, you can specify a
callback function. Your callback function receives the eventual successful value or the
exception, freeing the original code that created the future to move on to other tasks.

Table 7-5 has a selection of operations for chaining futures and setting callback func‐
tions. As with the previous tables of operations, we’ll start with a randomized function
that can provide us with a realistic test case. This function, nextFtr, will sleep and then
either return a value or throw an exception. Its inner function “rand” makes it easier to
set a sleep time (up to 5 seconds / 5,000 milliseconds) and determine whether to succeed
or fail:

scala> import concurrent.ExecutionContext.Implicits.global

import concurrent.ExecutionContext.Implicits.global

scala> import concurrent.Future

import concurrent.Future

scala> def nextFtr(i: Int = 0) = Future {

 | def rand(x: Int) = util.Random.nextInt(x)

 |

 | Thread.sleep(rand(5000))

 | if (rand(3) > 0) (i + 1) else throw new Exception

 | }

nextFtr: (i: Int)scala.concurrent.Future[Int]

Is Thread.sleep() Safe to Use?
Some of the examples in this section on futures use the Java library
method Thread.sleep to help demonstrate the concurrent and po‐
tentially delayed nature of running background tasks. However, ac‐
tually using Thread.sleep in your own futures is a practice best avoi‐
ded due to its inefficiences. If you really need to put a future to sleep,
you should consider using callback functions instead.

Table 7-5. Asynchronous future operations

Name Example Description

fallbackTo nextFtr(1) fallbackTo

nextFtr(2)

Chains the second future to the first and returns a new overall

future. If the first is unsuccessful, the second is invoked.

flatMap nextFtr(1) flatMap

nextFtr()

Chains the second future to the first and returns a new overall

future. If the first is successful, its return value will be used to

invoke the second.

Monadic Collections | 127

Name Example Description

map nextFtr(1) map (_ * 2) Chains the given function to the future and returns a new

overall future. If the future is successful, its return value will

be used to invoke the function.

onComplete nextFtr() onComplete { _

getOrElse 0 }

After the future’s task completes, the given function will be

invoked with a util.Try containing a value (if success) or

an exception (if failure).

onFailure nextFtr() onFailure

{ case _ => "Error!" }

If the future’s task throws an exception, the given function will

be invoked with that exception.

onSuccess nextFtr() onSuccess

{ case x => s"Got $x" }

If the future’s task completes successfully, the given function

will be invoked with the return value.

Future.sequence concurrent.Future se

quence List(nextFtr(1),

nextFtr(5))

Runs the futures in the given sequence concurrently, returning

a new future. If all futures in the sequence are successful, a

list of their return values will be returned. Otherwise the first

exception that occurs across the futures will be returned.

The code examples we have used with futures should help to illustrate how to create
and manage them. However, futures require creation, management, and extraction to
be useful. Let’s try a more realistic example of futures that shows how to work with them
from start to finish.

In this example we will use the OpenWeatherMap API (remember this from “Exerci‐
ses” on page 102 ?) to check the current temperature (in Kelvin!) for two cities and report
which one is warmer. Because calling a remote API can be time-intensive we will make
the API calls in concurrent futures, running concurrently with our main thread:

scala> import concurrent.Future

import concurrent.Future

scala> def cityTemp(name: String): Double = {

 | val url = "http://api.openweathermap.org/data/2.5/weather"

 | val cityUrl = s"$url?q=$name"

 | val json = io.Source.fromURL(cityUrl).mkString.trim

 | val pattern = """.*"temp":([\d.]+).*""".r

 | val pattern(temp) = json

 | temp.toDouble

 | }

cityTemp: (name: String)Double

scala> val cityTemps = Future sequence Seq(

 | Future(cityTemp("Fresno")), Future(cityTemp("Tempe"))

 |)

cityTemps: scala.concurrent.Future[Seq[Double]] =

 scala.concurrent.impl.Promise$DefaultPromise@51e0301d

scala> cityTemps onSuccess {

 | case Seq(x,y) if x > y => println(s"Fresno is warmer: $x K")

 | case Seq(x,y) if y > x => println(s"Tempe is warmer: $y K")

128 | Chapter 7: More Collections

 | }

Tempe is warmer: 306.1 K

Okay, sometimes typing “concurrent.Future” too many times is a pain. The
import command brings a package’s type into the current session’s namespace.

io.Source has many useful I/O operations for Scala applications.

Capturing the “temp” field in a JSON response.

Using Regex to produce a value from a capture group (see “Regular expressions”
on page 19 for a refresh on this topic).

By invoking Future.sequence, the sequence of futures are invoked concurrently
and a list of their results are returned.

Pattern matching on sequences using a pattern guard (see “Pattern Matching
with Collections” on page 100 for an overview of using pattern matching with
collections).

In this example we were able to make multiple concurrent calls to a remote API without
blocking the main thread, i.e. the Scala REPL session. Calling a remote API and parsing
its JSON result using regular expressions only took a few lines to implement (“few” =
“less then a dozen” here), and executing this concurrently took up about the same
amount of code.

You should now have a good understanding of how to create futures and work with
them asynchronously. In the next section we will cover what to do if you absolutely must
wait for a future to complete.

Handling futures synchronously

Blocking a thread while waiting for a background thread to complete is a potentially
resource-heavy operation. It should be avoided for high-traffic or high-performance
applications in favor of using callback functions like onComplete or onSuccess. How‐
ever, there are some times when you just need to block the current thread and wait for
a background thread to complete, successfully or otherwise.

To block the current thread and wait for another thread to complete, use concur
rent.Await.result(), which takes the background thread and a maximum amount of
time to wait. If the future completes in less time than the given duration, its result is
returned, but a future that doesn’t complete in time will result in a java.util.concur
rent.TimeoutException. This thrown unwieldy exception may require using util.Try
to manage timeout conditions safely, so be sure to choose acceptable durations that can
minimize the chance of this occurring.

To demonstrate the use of concurrent.Await.result, let’s use the “nextFtr” demon‐
stration function we created for testing asynchronous operations (see “Handling futures

Monadic Collections | 129

asynchronously” on page 126). We’ll start by importing the contents of the “duration”
package to get access to the Duration type for specifying time spans as well as the types
for their units:

scala> import concurrent.duration._

import concurrent.duration._

scala> val maxTime = Duration(10, SECONDS)

maxTime: scala.concurrent.duration.FiniteDuration = 10 seconds

scala> val amount = concurrent.Await.result(nextFtr(5), maxTime)

amount: Int = 6

scala> val amount = concurrent.Await.result(nextFtr(5), maxTime)

java.lang.Exception

 at $anonfun$nextFtr$1.apply$mcI$sp(<console>:18)

 at $anonfun$nextFtr$1.apply(<console>:15)

 at $anonfun$nextFtr$1.apply(<console>:15)

 ...

The underscore (_) at the end imports every member of the given package into
the current namespace.

SECONDS is a member of the concurrent.duration package and signifies that
the given duration (10, in this case) is in seconds.

When “nextFtr()” returns a successful value, concurrent.Await will return it…

… but when “nextFtr()” throws an exception, the current thread will be
disrupted.

While our first call to concurrent.Await.result gave us a successful call, the second
one caused an exception that disrupted the Scala REPL. When working with synchro‐
nous operations, you may want to add your own util.Try wrapper to ensure that ex‐
ceptions thrown in a future will not disrupt the current flow. Doing so is not a require‐
ment, because allowing exceptions to propagate may be a valid design choice.

Summary
Mutable collections, well known and available in most programming languages, have
the best of both worlds in Scala. They can be used as incremental buffers to expand
collections one item at a time using buffers, builders, or other approaches, but also
support the wide variety of operations available to immutable collections.

And collections are, especially as Scala broadly defines them, more than simple con‐
tainers for application data. Monadic collections provide type-safe chainable operations
and management for sensitive and complex situations such as missing data, error con‐
ditions, and concurrent processing.

130 | Chapter 7: More Collections

In Scala, immutable, mutable, and monadic collections are indispensable building
blocks and foundations for safe and expressive software development. They are ubiq‐
uitious in Scala code, and are generally applicable to a wide range of uses.

By learning and becoming familiar with the core operations of Iterable, and with the
safe operation chaining of monadic collections, you can better leverage them as a core
foundation for your applications in Scala.

This chapter concludes the Scala instructions for Part 1. In Part 2 we will cover object-
oriented Scala, a core feature of this programming language, while continuing to use
what we have learned thus far.

Exercises
1. The Fibonacci series starts with the numbers “1, 1” and then computes each suc‐

cessive element as the sum of the previous two elements. We’ll use this series to get
familiarized with the collections in this chapter.

a. Write a function that returns a list of the first x elements in the Fibonacci series
Can you write this with a Buffer? Would a Builder be appropriate here?

b. Write a new Fibonacci function that adds new Fibonacci numbers to an existing
list of numbers. It should take a list of numbers (List[Int]) and the count of
new elements to add and return a new list (List[Int]). Although the input list
and returned lists are immutable, you should be able to use a mutable list inside
your function. Can you also write this function using only immutable lists?
Which version, using mutable versus immutable collections, is more appropriate
and readable?

c. The Stream collection is a great solution for creating a Fibonacci series. Create
a stream that will generate a Fibonacci series. Use it to print out the first 100
elements in the series, in a formatted report of 10 comma-delimited elements
per line.

d. Write a function that takes an element in the Fibonacci series and returns the
following element in the series. For example, fibNext(8) should return 13. How
will you handle invalid input such as fixNext(9)? What are your options for
conveying the lack of a return value to callers?

2. In the example for Array collections (see “Arrays” on page 112) we used the
java.io.File(<path>).listFiles operation to return an array of files in the cur‐
rent directory. Write a function that does the same thing for a directory, and converts
each entry into its String representation using the toString method. Filter out any
dot-files (files that begin with the . character) and print the rest of the files separated
by a semicolon (;). Test this out in a directory on your computer that has a significant
number of files.

Exercises | 131

3. Take the file listing from exercise 2 and print a report showing each letter in the
alphabet followed by the number of files that start with that letter.

4. Write a function to return the product of two numbers that are each specified as a
String, not a numeric type. Will you support both integers and floating-point
numbers? How will you convey if either or both of the inputs are invalid? Can you
handle the converted numbers using a match expression? How about with
a for-loop?

5. Write a function to safely wrap calls to the JVM library method
System.getProperty(<String>), avoiding raised exceptions or null results.
System.getProperty(<String>) returns a JVM environment property value given
the property’s name. For example, System.getProperty("java.home") will return
the path to the currently running Java instance, while System.

getProperty("user.timezone") returns the time zone property from the operat‐
ing system. This method can be dangerous to use, however, because it may throw
exceptions or return null for invalid inputs. Try invoking
System.getProperty("") or System.getProperty("blah") from the Scala REPL
to see how it responds.

Experienced Scala developers build their own libraries of functions that wrap unsafe
code with Scala’s monadic collections. Your function should simply pass its input
to the method and ensure that exceptions and null values are safely handled and
filtered. Call your function with the example property names used here, including
the valid and invalid ones, to verify that it never raises exceptions or returns
null results.

6. Write a function that reports recent GitHub commits for a project. GitHub provides
an RSS feed of recent commits for a given user, repository, and branch, containing
XML that you can parse out with regular expressions. Your function should take
the user, repository, and branch, read and parse the RSS feed, and then print out
the commit information. This should include the date, title, and author of each
commit.

You can use the following RSS URL to retrieve recent commits for a given repository
and branch:

https://github.com/<user name>/<repo name>/commits/<branch name>.atom

Here is one way to grab the RSS feed as a single string:

scala> val u = "https://github.com/scala/scala/commits/2.11.x.atom"

u: String = https://github.com/scala/scala/commits/2.11.x.atom

scala> val s = io.Source.fromURL(u)

s: scala.io.BufferedSource = non-empty iterator

scala> val text = s.getLines.map(_.trim).mkString("")

text: String = <?xml version="1.0" encoding="UTF-8"?><feed xmlns=...

132 | Chapter 7: More Collections

Working with the XML will be a bit tricky. You may want to use text.split(<to
ken>) to split the text into the separate <entry> components, and then use regular
expression capture groups (see “Regular expressions” on page 19) to parse out the
<title> and other elements. You could also just try iterating through all the lines
of the XML file, adding elements to a buffer as you find them, and then converting
that to a new list.

Once you have completed this exercise (and there is a lot to do here), here are some
additional features worth investigating:

a. Move the user, repo, and branch parameters into a tuple parameter.

b. Following exercise (a), have the function take a list of GitHub projects and print
a report of each one’s commits, in order of specified project.

c. Following exercise (b), retrieve all of the projects, commit data concurrently
using futures, await the result (no more than 5 seconds), and then print a commit
report for each project, in order of project specified.

d. Following exercise (c), mix the commits together and sort by commit date, then
print your report with an additional “repo” column.

These additional features will take some time to implement, but are definitely
worthwhile for learning and improving your Scala development skills.

Once you have finished these features, test out your commit report using entries
from the following projects:

https://github.com/akka/akka/tree/master

https://github.com/scala/scala/tree/2.11.x

https://github.com/sbt/sbt/tree/0.13

https://github.com/scalaz/scalaz/tree/series/7.2.x

These features are all active (as of 2014), so you should see an interesting mix of
commit activity data in your report. It’s worthwhile to browse the repositories
for these core open source Scala projects, or at least their documentation, to
understand some of the excellent work being done.

7. Write a command-line script to call your GitHub commit report function from
exercise 6 and print out the results. This will require a Unix shell; if you are on a
Windows system you will need a compatible Unix environment such as Cygwin or
Virtualbox (running a Unix virtual machine). You’ll also need to install SBT (Simple
Build Tool), a build tool that supports dependency management and plug-ins and
is commonly used by Scala projects. You can download SBT from http://www.scala-
sbt.org/ for any environment, including an MSI Windows Installer version. SBT is
also available from popular package managers. If you are using Homebrew on OS
X you can install it with brew install sbt.

Exercises | 133

Isn’t SBT Hard to Learn?
Maybe. In this exercise we’ll only use it as a shell script launch‐
er, so you can get comfortable with writing and executing shell
scripts in Scala. We’ll cover how to write SBT-built scripts to
manage your own projects in later chapters.

Here is an example SBT-based Scala script that reads the command-line arguments
as a List and prints a greeting. The comment block starting with triple asterisks is
reserved for SBT settings. In this script we are specifying that we want version 2.11.1
of the Scala language to be used:

#!/usr/bin/env sbt -Dsbt.main.class=sbt.ScriptMain

/***

scalaVersion := "2.11.1"

*/

def greet(name: String): String = s"Hello, $name!"

// Entry point for our script

args.toList match {

 case List(name) => {

 val greeting = greet(name)

 println(greeting)

 }

 case _ =>

 println("usage: HelloScript.scala <name>")

}

Copy this into a file titled HelloScript.scala, and change the permissions to be exe‐
cutable (chmod a+x HelloScript.scala in a Unix environment). Then you can
run the script directly:

$./HelloScript.scala Jason

[info] Set current project to root-4926629s8acd7bce0b (in

 build file:/Users/jason/.sbt/boot/4926629s8acd7bce0b/)

Hello, Jason!

Your commit report script will need to take multiple GitHub projects as arguments.
To keep the arguments concise, you may want to combine each project’s input into
a single string to be parsed, such as scala/scala/2.11.x.

The printout should be clean, well-formatted, and easily readable. Using fixed col‐
umn widths could help, using the printf-style formatting codes in string interpo‐
lation (see “String interpolation” on page 18).

134 | Chapter 7: More Collections

PART II

Object-Oriented Scala

CHAPTER 8

Classes

In Part 1 of this book you learned about Scala’s core types and how to group them into
collections. Now it is time to build your own types with classes.

Classes are the core building block of object-oriented languages, a combination of data
structures with functions (“methods”). A class defined with values and variables can be
instantiated as many times as needed, each one initialized with its own input data. With
inheritance classes can extend other classes, creating a hierarchy of subclasses and su‐
perclasses. Polymorphism makes it possible for these subclasses to stand in for their
parent classes, while encapsulation provides privacy controls to manage the outward
appearance of a class. If these terms are unfamiliar to you, I recommend reading up on
general object-oriented programming methodology. Although we will cover the Scala
object-oriented features that make use of these concepts, we won’t be spending time on
learning the concepts themselves. Understanding them can help you to make the most
of Scala’s object-oriented features and design expressive and reusable types.

We’ll start by defining the simplest possible class and instantiating it:

scala> class User

defined class User

scala> val u = new User

u: User = User@7a8c8dcf

scala> val isAnyRef = u.isInstanceOf[AnyRef]

isAnyRef: Boolean = true

We now have our first class. When the REPL prints it out, you see the class name and
a hexadecimal string. This is the JVM’s internal reference for that instance. If you create
a new instance, you should see a different value printed out, because the second instance
would have a different memory location and thus a different reference from the
first instance.

137

The hexadecimal number printed after the name of our “User” clas may look a bit odd.
The actual method printing this is the JVM’s java.lang.Object.toString. The
java.lang.Object class is the root of all instances in the JVM, including Scala, and is
essentially equivalent to the Scala root type Any. By printing an instance, the REPL is
invoking the instance’s toString method, which it inherits from the root type. The
actual parent type of our User class is AnyRef (see Table 2-4), the root of all instantiable
types. Thus, invoking toString on our User class resulted in a call to its parent, Any
Ref, then to its parent, Any, which is the same as java.lang.Object and where the
toString method is located.

Let’s redesign our User class and make it more useful. We’ll add a value and some
methods that operate on the value. We’ll also override the default toString method and
provide a more informative version:

scala> class User {

 | val name: String = "Yubaba"

 | def greet: String = s"Hello from $name"

 | override def toString = s"User($name)"

 | }

defined class User

scala> val u = new User

u: User = User(Yubaba)

scala> println(u.greet)

Hello from Yubaba

We have values and methods, and a rockin’ toString method that actually reveals the
contents of this instance.

Let’s make this a bit more useful by converting the “name” field from a fixed value to a
parameterized value. After all, no one really needs multiple instances of a User class that
all have the same name. In Scala, class parameters (if any) are specified after the name
of the class, much like a function’s parameters follow the name of the function in its
definition:

scala> class User(n: String) {

 | val name: String = n

 | def greet: String = s"Hello from $name"

 | override def toString = s"User($name)"

 | }

defined class User

scala> val u = new User("Zeniba")

u: User = User(Zeniba)

scala> println(u.greet)

Hello from Zeniba

138 | Chapter 8: Classes

The class parameter “n” is used here to initialize the “name” value. However, it could
not be used inside either of the methods. Class parameters are available for initializ‐
ing fields (values and variables in a class) or for passing to functions, but once the class
has been created the parameters aren’t available.

Instead of using a class parameter for intitialization purposes, we can instead declare
one of the fields as a class parameter. By adding the keywords val or var before a class
parameter, the class parameter then becomes a field in the class. Let’s try this by moving
the “name” field to the class parameters:

scala> class User(val name: String) {

 | def greet: String = s"Hello from $name"

 | override def toString = s"User($name)"

 | }

defined class User

Now that we have a short and useful class, let’s put it to use. Here’s an example of using
this new class with lists:

scala> val users = List(new User("Shoto"), new User("Art3mis"),

 new User("Aesch"))

users: List[User] = List(User(Shoto), User(Art3mis), User(Aesch))

scala> val sizes = users map (_.name.size)

sizes: List[Int] = List(8, 7, 5)

scala> val sorted = users sortBy (_.name)

sorted: List[User] = List(User(Aesch), User(Art3mis), User(Shoto))

scala> val third = users find (_.name contains "3")

third: Option[User] = Some(User(Art3mis))

scala> val greet = third map (_.greet) getOrElse "hi"

greet: String = Hello from Art3mis

Did you notice that our new class is the type parameter to List? The to
String method that we’ve overridden ensures that the List contents are cleanly
displayed.

Do you recall how operator notation (“Methods and Operators” on page 57) and
placeholder syntax (“Placeholder Syntax” on page 72) work? Used together, they
serve to make this line short and expressive.

On this line we have a Scala operation (find, which returns the first match by a
predicate function, if available) and a Java operation (contains, in
java.lang.String) being used with operation notation.

Can you see why String is the correct result of a combination of map and
getOrElse against our Option[String]?

Classes | 139

Lists and list operations aren’t really the focus of this chapter, because we covered them
rather extensively in Chapter 6 and Chapter 7. However, when Scala developers develop
their own classes, they are more likely than not to use their own classes in collections.
This example should demonstrate how well Scala collections work for not only the core
Scala types, but any other classes you define yourself.

Let’s round up our introduction to classes by working through examples of inheritance
and polymorphism. A class can extend up to one other class in Scala with the ex
tends keyword, and override (i.e., supplant) the behavior of an inherited method with
the override keyword. The fields and methods in a class can be accessed (if strictly
necessary) with the this keyword, while the fields and methods in the parent class(es)
can be accessed with the super keyword. The super keyword is especially useful when
a method needs to still access the similar method in its parent class that it is overriding.

I’ll demonstrate this with a parent class, “A,” and subclass, “C,” and a class situtated
between these two, “B”:

scala> class A {

 | def hi = "Hello from A"

 | override def toString = getClass.getName

 | }

defined class A

scala> class B extends A

defined class B

scala> class C extends B { override def hi = "hi C -> " + super.hi }

defined class C

scala> val hiA = new A().hi

hiA: String = Hello from A

scala> val hiB = new B().hi

hiB: String = Hello from A

scala> val hiC = new C().hi

hiC: String = hi C -> Hello from A

A and B share the same “hi” method, because B inherits its parent’s method. C defines
its own version of “hi,” both overriding the version in A and invoking it to include it in
the message.

Are the results of these “hi” methods what you expected to see? Seeing an instance of B
print out “Hello from A” may be misleading, but this hardcoded message (including the
A class name) is what B picked up by extending A. A more informative “hi” method
could have included the current class’s name, as our “toString” method did, instead of
hardcoding the class name “A.” If we had done that, what do you think the “hi” method
would have printed for B and C?

140 | Chapter 8: Classes

Let’s try out Scala’s polymorphism next, the ability for classes to take on the shape of
other, compatible classes. By compatible I mean an instance of a subclass can be used
in place of an instance of its parent class, but not the inverse. A subclass extends its
parent class, and so supports 100% of the parent’s fields and methods, but the reverse
may not be true.

We’ll reuse the A, B, and C classes we defined to test this out:

scala> val a: A = new A

a: A = A

scala> val a: A = new B

a: A = B

scala> val b: B = new A

<console>:9: error: type mismatch;

 found : A

 required: B

 val b: B = new A

 ^

scala> val b: B = new B

b: B = B

Storing an instance with the same type as its value works every time, as does storing an
instance of a subclass into a value with its parent class’s type. However, storing an in‐
stance of a parent class into a value of the type of its subclass won’t work. The Scala
compiler will correctly point out that an instance of A isn’t compatible with the expected
type of B. Another term for this situation is that the instance of A does not conform to
the expected type of B. The B class is an extension of A, such that A’s fields and methods
are a subset of B’s, not the other way around. The fact that B doesn’t actually add any
unique fields or methods doesn’t change this situation.

Let’s put this knowledge to use to create a list of instances of A, B, and C. What should
we declare as the type of such a list, A, B, or C?

To ensure that the list can include instances of each of these classes, we should define
the list as List[A], which is compatible with all of these classes:

scala> val misc = List(new C, new A, new B)

misc: List[A] = List(C, A, B)

scala> val messages = misc.map(_.hi).distinct.sorted

messages: List[String] = List(Hello from A, hi C -> Hello from A)

Whoops! Despite my warning to define the list as List[A], I forgot to add an explicit
type. Fortunately, the Scala compiler was able to infer the common type of the three
instances as being A, the parent class, and set the list’s type parameter correctly. Come
to think of it, that’s a great use for the compiler’s type inference feature—finding the
lowest (most specific) common denominator of one or more instances.

Classes | 141

This wraps up our introduction to classes in Scala. In the rest of the chapter we’ll explore
the full syntax for defining classes with fields and methods, the alternate types of classes,
and the intricate details of specifying type parameters.

Defining Classes
A class is the definition of a type, containing fields (values and variables) of core types
and/or other classes. They also contain methods, functions that may act on the contained
fields, and nested class definitions. We’ll start this section with a basic class definition
and move on to more parameterized classes.

Syntax: Defining a Simple Class

class <identifier> [extends <identifier>] [{ fields, methods, and classes }]

The classes A, B, and C we defined in the introduction to this chapter demonstrate this
class definition (other than the nested classes). The identifier is the class/type name,
followed by the class being extended (if any), and then an optional set of curly braces
in which are defined the fields and methods for the class. Fields are values or variables,
and methods are functions defined as part of the class.

Like expressions and functions, classes can be nested inside each other. A nested class
may access the fields and methods of its parent class(es) in addition to its own. In fact,
expressions, functions, and classes can be nested inside each other, although it may look
odd to have an “if..else” expression block defining and using its own private class.

You can invoke a class’s methods, or access its fields, on an instance of the class, a memory
allocation that provides storage for the class’s fields. This action, of reversing memory
to allocate a class’s contents, is known as instantiation. Use the new keyword to instantiate
a class by its name, with or without parentheses.

To be more useful, a class should take class parameters, input values used to initialize
other fields and methods in the class or even to act as the class’s fields. Class parameters
are a comma-delimited list of names and types in the same format as a function’s (and
now, also a method’s) input parameters.

Syntax: Defining a Class with Input Parameters

class <identifier> ([val|var] <identifier>: <type>[, ...])

 [extends <identifier>(<input parameters>)]

 [{ fields and methods }]

A class with input parameters gives a programmer a reason to create multiple instances,
because each instance can have its own unique contents. Let’s try creating a class with
both value and variable fields as parameters:

scala> class Car(val make: String, var reserved: Boolean) {

 | def reserve(r: Boolean): Unit = { reserved = r }

 | }

142 | Chapter 8: Classes

defined class Car

scala> val t = new Car("Toyota", false)

t: Car = Car@4eb48298

scala> t.reserve(true)

scala> println(s"My ${t.make} is now reserved? ${t.reserved}")

My Toyota is now reserved? true

The fields and methods of a class can be accessed with standard infix dot notation, where
the instance and its field or method are delimited by a period (.). When invoking an
instance’s single-parameter method, infix operator notation may be used as well.

Like functions, class parameters can be invoked with named parameters (see “Calling
Functions with Named Parameters” on page 53). Any parameters invoked by position
(starting with the first one) must appear before the first named parameter, but following
this, named parameters may be used in any order.

As an example, we’ll create a new instance of “Car” using named parameters in the
opposite order of their position:

scala> val t2 = new Car(reserved = false, make = "Tesla")

t2: Car = Car@2ff4f00f

scala> println(t2.make)

Tesla

When you have classes that extend classes which take parameters, you’ll need to make
sure the parameters are included in the classes’ definition. The class identified following
the extends keyword should have its own set of input parameters as necessary.

In this example we have a new subclass of Car titled Lotus that specifies its parent’s input
parameters in the definition. I’ll include the Car class definition for reference:

scala> class Car(val make: String, var reserved: Boolean) {

 | def reserve(r: Boolean): Unit = { reserved = r }

 | }

defined class Car

scala> class Lotus(val color: String, reserved: Boolean) extends

 Car("Lotus", reserved)

defined class Lotus

scala> val l = new Lotus("Silver", false)

l: Lotus = Lotus@52c46334

scala> println(s"Requested a ${l.color} ${l.make}")

Requested a Silver Lotus

Defining Classes | 143

Our new subclass, Lotus, has its own new field, color, and takes a nonfield input pa‐
rameter to initialize its parent class, Car.

In addition to input parameters, another feature that class parameters borrow from
functions is the ability to define default values for parameters (see “Parameters with
Default Values” on page 53). This allows callers to instantiate the class without specifying
all of the class’s parameters.

Syntax: Defining a Class with Input Parameters and Default Values

class <identifier> ([val|var] <identifier>: <type> = <expression>[, ...])

 [extends <identifier>(<input parameters>)]

 [{ fields and methods }]

Let’s redefine the Car class to use a default value for the “reserved” field, making it
possible to instantiate the class with only the “make” field specified. We’ll add a third
field, also with a default value, so we can really experiment with mixing default and
required parameters:

scala> class Car(val make: String, var reserved: Boolean = true,

 | val year: Int = 2015) {

 | override def toString = s"$year $make, reserved = $reserved"

 | }

defined class Car

scala> val a = new Car("Acura")

a: Car = 2015 Acura, reserved = true

scala> val l = new Car("Lexus", year = 2010)

l: Car = 2010 Lexus, reserved = true

scala> val p = new Car(reserved = false, make = "Porsche")

p: Car = 2015 Porsche, reserved = false

Only the first parameter is required, and we can invoke it by position.

Here, the first and third parameters are specified. Because the third parameter
is out of order we’ll have to specify it by name.

This time none of the parameters are invoked by position, with the final one
skipped.

The borrowing of features from functions for class definitions doesn’t end with named
parameters and default values, however. Type parameters (see “Type Parameters” on
page 55), those nondata specifiers of input or return types in functions, are also available
in class definitions.

Come to think of it, you have already used classes that have type parameters, so this
shouldn’t be a surprise. The most common one we’ve used is List[A], which uses a type
parameter to determine the type of its elements and thus operations. For example, a

144 | Chapter 8: Classes

List[String] may contain String instances and support operations that take and re‐
turn a String.

Let’s revise our ever-growing class definition syntax to include support for one or more
type parameters in a class.

Syntax: Defining a Class with Type Parameters

class <identifier> [type-parameters]

 ([val|var] <identifier>: <type> = <expression>[, ...])

 [extends <identifier>[type-parameters](<input parameters>)]

 [{ fields and methods }]

You have seen collections as an example of classes using type parameters. A new list of
integers will have the Int type parameter, List[Int](1, 2, 3).

Let’s create our own collection and use a type parameter to ensure type safety. The new
collection will extend Traversable[A], the parent class of Iterable (see Chapter 6).

Of course, there’s not a lot of traversing going on due to only having one element.
However, by extending this base collection we can pick up all of the useful collection
operations we have become accustomed to using:

scala> class Singular[A](element: A) extends Traversable[A] {

 | def foreach[B](f: A => B) = f(element)

 | }

defined class Singular

scala> val p = new Singular("Planes")

p: Singular[String] = (Planes)

scala> p foreach println

Planes

scala> val name: String = p.head

name: String = Planes

A good example of passing a type parameter to the parent class in the class
definition.

By defining a foreach() operation, Traversable will ensure our class is a real
collection and can use this to enable every other collection operation.

Here is a validation of our type-parameterized class, with the REPL printing the
class name and the name of the parameterized type used to instantiate it (a
String).

An example usage of the foreach method we defined, reduced to its most
unadorned invocation.

Defining Classes | 145

Another example usage of foreach, indirectly this time, as we access Traversa
ble.head, which invokes foreach for us. By extending Traversable we can
access head and a range of other standard collection operations.

At this point we have covered named classes, inheritance, instantiation, input parame‐
ters, and type parameters. Believe it or not, there are still many other ways to customize
your class definitions in Scala that you’ll need to know. For example, controlling the
levels of encapsulation (i.e., privacy) and building layers of abstraction, or defining
methods in such a way that they can be accessed without their name! Read on for some
of the really interesting features of object-oriented Scala.

More Class Types
Scala offers more than the basic class definitions we have tried out until now. In this
section we will look at alternative ways to define and create classes.

Abstract Classes
An abstract class is a class designed to be extended by other classes but not instantiated
itself. Abstract classes are designated so by the abstract keyword, placed before the
class keyword when defining the class.

An abstract class can be used to define the core fields and methods required by its
subclasses without providing an actual implementation. Thanks to polymorphism, a
value with the type of the abstract class can actually point to an instance of one of its
nonabstract subclasses, and invoke methods that actually end up being invoked on the
subclass.

Abstract classes provide unimplemented fields and methods by declaring them without
defining them. A declared field or method will include the name and parameters but
not a starting value or implementation, respectively. A class that extends an abstract
class with declared fields and methods, and is not itself marked as abstract, must provide
their implementations. An abstract class can also have its own implemented fields and
methods, which would not require implementations in subclasses.

Let’s create our own abstract class with a declared value and method, and experiment
with implementations:

scala> abstract class Car {

 | val year: Int

 | val automatic: Boolean = true

 | def color: String

 | }

defined class Car

scala> new Car()

146 | Chapter 8: Classes

<console>:9: error: class Car is abstract; cannot be instantiated

 new Car()

scala> class RedMini(val year: Int) extends Car {

 | def color = "Red"

 | }

defined class RedMini

scala> val m: Car = new RedMini(2005)

m: Car = RedMini@5f5a33ed

An experiment with instantiating our abstract class Car by itself didn’t work, for the
obvious reason that it is abstract and uninstantiatable. Still, it’s nice to see that Scala’s
compiler pointed this out with a helpful message.

Creating a subclass that extends Car but adds a value parameter and a concrete imple‐
mentation of the color method solved the problem. The RedMini class is a successful
implementation of its parent abstract class and can be instantiated with only its year as
a parameter.

On the other hand, what good is an automobile that only comes in a single color? A
better version of a subclass should take the color as an input parameter. Let’s make that
change with a new subclass:

scala> class Mini(val year: Int, val color: String) extends Car

defined class Mini

scala> val redMini: Car = new Mini(2005, "Red")

redMini: Car = Mini@1f4dd016

scala> println(s"Got a ${redMini.color} Mini")

Got a Red Mini

Our new class, “Mini,” now takes the color as an input parameter.

Wait, Did You Just Implement an Abstract Method with a Value?
Invoking a parentheses- and parameter-free method on an instance
has the same appearance as accessing one of its values, so it should
be unsurprising that you can implement a required method using a
value. The syntax is the same to callers, and because parenthesis-
free methods are not expected to have side effects (see “Functions with
Empty Parentheses” on page 48), the behavior should be the same.

Abstract classes are a useful tool in object-oriented design, making it possible to create
a usable base type while delegating the implementation.

More Class Types | 147

Anonymous Classes
In the previous section we saw a class definition, Mini, that implemented its parent class’s
declared methods. A less formal way to provide the implementation for a parent class’s
methods is with an anonymous class, a nonreusable and nameless class definition.

To define a one-time anonymous class, instantiate the parent (and potentially abstract)
class and follow the class name and parameters with curly braces containing your im‐
plementation. The result is an instance that does extend the given parent class with a
one-time implementation, but can be used like an instance from a traditional class
definition.

Let’s try it out with a “listener” class, a design pattern for sending notifications that is
popularly used in Java applications:

scala> abstract class Listener { def trigger }

defined class Listener

scala> val myListener = new Listener {

 | def trigger { println(s"Trigger at ${new java.util.Date}") }

 | }

myListener: Listener = $anon$1@59831016

scala> myListener.trigger

Trigger at Fri Jan 24 13:08:51 PDT 2014

The myListener value is a class instance, but its class definition is part of the same
expression that instantiated itself. To create a new myListener it would be necessary to
redefine the anonymous class again.

Here’s a more illustrative example of when you may find it useful to create an anonymous
class. We have a class, Listening, that can register a Listener and trigger it later as
necessary. Instead of instantiating the anonymous class on one line and passing it to the
registration function on another, we can combine these into a single step of defining
the anonymous class as part of the method invocation. This should look familiar to
those with JavaScript experience, especially if you have worked on jQuery-style event
handlers:

scala> abstract class Listener { def trigger }

defined class Listener

scala> class Listening {

 | var listener: Listener = null

 | def register(l: Listener) { listener = l }

 | def sendNotification() { listener.trigger }

 | }

defined class Listening

scala> val notification = new Listening()

notification: Listening = Listening@66596c4c

148 | Chapter 8: Classes

scala> notification.register(new Listener {

 | def trigger { println(s"Trigger at ${new java.util.Date}") }

 | })

scala> notification.sendNotification

Trigger at Fri Jan 24 13:15:32 PDT 2014

With anonymous classes, class definitions don’t need to be stable or reusable. When a
subclass will only be needed once, the anonymous class syntax can help to simplify your
code base.

More Field and Method Types
We just covered alternative class types, but there’s also alternative fields and methods
you can use. Let’s have a look at some of the additional choices of fields (values and
variables) and methods available in classes.

Overloaded Methods
An overloaded method is a strategy for providing choices to callers. A class may have
two or more methods with the same name and return value but with different arrange‐
ments of input parameters. By overloading a method name with multiple implemen‐
tations, multiple choices for invoking a method with a specific name are made available.

Here is an example of overloaded methods, where the methods share the same name
but take different parameters. In the example the second overloaded method calls the
first after modifying its input parameters appropriately:

scala> class Printer(msg: String) {

 | def print(s: String): Unit = println(s"$msg: $s")

 | def print(l: Seq[String]): Unit = print(l.mkString(", "))

 | }

defined class Printer

scala> new Printer("Today's Report").print("Foggy" :: "Rainy" :: "Hot" :: Nil)

Today's Report: Foggy, Rainy, Hot

It is not possible to have two methods with the same name and input parameters, but
different return values. Doing so will cause a Scala compiler error, because there is no
way for only one of the methods to be specifically selected during compilation.

Overloading may be a useful feature, but many Scala developers prefer to use default-
value parameters versus overloading. A method that provides default values for its pa‐
rameters instead of two methods (where one method without a parameter could call
the other method, giving the default value) results in less unnecessary code
being written.

More Field and Method Types | 149

Apply Methods
Methods named “apply,” sometimes referred to as a default method or an injector meth‐
od, can be invoked without the method name. The apply method is essentially a shortcut,
providing functionality that can be triggered using parentheses but without a method
name.

Let’s try it with a class that multiplies numbers by a predefined amount:

scala> class Multiplier(factor: Int) {

 | def apply(input: Int) = input * factor

 | }

defined class Multiplier

scala> val tripleMe = new Multiplier(3)

tripleMe: Multiplier = Multiplier@339cde4b

scala> val tripled = tripleMe.apply(10)

tripled: Int = 30

scala> val tripled2 = tripleMe(10)

tripled2: Int = 30

Our “tripleMe” instance can be used with or without the “apply” name to triple a given
number. You might remember this syntax from retrieving an element from a list by its
index, which happens to use the List.apply method:

scala> val l = List('a', 'b', 'c')

l: List[Char] = List(a, b, c)

scala> val character = l(1)

character: Char = b

Here, the List.apply(index) method provides access to an element by index, an op‐
eration so common that it makes a good candidate for being the default method of lists.

One potential disadvantage to making a method be the default one is if it makes the
code look odd. Accessing the default method should be natural, like the accessor method
for lists. Try to only use the apply method where it makes sense, like an accessor method
for a list.

Lazy Values
We’ve looked at some really interesting things you can do with methods in Scala, but
now let’s see what you can do with fields. The fields (values and variables) we have used
so far in classes are all created when the class is first instantiated. Lazy values, however,
are only created the first time they are instantiated. You can create a lazy value by adding
the keyword lazy before the val keyword when defining a value.

150 | Chapter 8: Classes

In a way, lazy values are a mechanism situated between regular class values and methods.
The expression used to initialize a regular class value is only executed once and at in‐
stantiation time, whereas the expression that makes up a method is executed every time
the method is invoked. However, the expression that initializes a lazy value is executed
when the value is invoked, but only the very first time. In this way, a lazy value is a sort
of cached function result.

This concept is perhaps better explained with an example. Here’s one that shows when
a regular value is calculated versus a lazy value:

scala> class RandomPoint {

 | val x = { println("creating x"); util.Random.nextInt }

 | lazy val y = { println("now y"); util.Random.nextInt }

 | }

defined class RandomPoint

scala> val p = new RandomPoint()

creating x

p: RandomPoint = RandomPoint@6c225adb

scala> println(s"Location is ${p.x}, ${p.y}")

now y

Location is 2019268581, -806862774

scala> println(s"Location is ${p.x}, ${p.y}")

Location is 2019268581, -806862774

Our class, RandomPoint, initializes its two fields with expressions that print a message
before returning their randomly generated number. The “x” field, a regular value, is
initialized when our instance “p” is created. The “y” field, a lazy value, is initialized the
first time we access it, but only the first time. In the second printout, both values have
been initialized and are stable.

Lazy values are a great way to ensure that time- or performance-sensitive operations
can be executed only once in a class’s lifetime. They are popularly used to store infor‐
mation such as file-based properties, open database connections, and other immutable
data that should only be initialized if it is really necessary. By initializing this data in a
lazy val’s expression, you can ensure that it will only operate if the lazy val is accessed
at least once in the class instance’s lifetime.

Packaging
We have covered myriad ways to define classes, methods, and fields. After creating your
own classes, at some point you’ll want to start organizing them to prevent namespace
cluttering.

Packages are Scala’s (and Java’s) system for code organization. They make it possible to
organize Scala code by directory using period-separated paths. Use the package key‐

Packaging | 151

word at the top of a Scala source file to declare all classes in that file to be included in
the package.

Syntax: Defining the Package for a Scala File

package <identifier>

Scala follows the Java standard for package naming, where packages start with the re‐
verse domain of your organization or business and then are further classified with ad‐
ditional names on the path. For example, a Scala class that provides utility methods and
is developed at Netflix might be packaged in “com.netflix.utilities.”

Scala source files should be stored in directories that match their packages. For example,
a “DateUtilities” class in the “com.netflix.utilities” package should be stored under com/
netflix/utilities/DateUtilities.scala. The Scala compiler will store the generated .class files
(the standard binary format for JVM-executable code) in a directory structure that
matches the package.

Let’s try this out by creating a source file with a package and compiling it. We’ll use the
scalac command to compile the source file and generate a class file local to the current
directory:

$ mkdir -p src/com/oreilly

$ cat > src/com/oreilly/Config.scala

package com.oreilly

class Config(val baseUrl: String = "http://localhost")

$ scalac src/com/oreilly/Config.scala

$ ls com/oreilly/Config.class

com/oreilly/Config.class

The src directory is a nice way to separate the source code from whatever else is in the
current directory, but it wasn’t actually used by the compiler. It took the relative path to
the source file, compiled it, and generated a class file relative to the directory you
launched the compiler from.

Accessing Packaged Classes
A packaged class can be accessed by its full period-delimited package path and class
name. In the preceding “Config” example, the class named “Config” can be accessed as
“com.oreilly.Config.”

Let’s try this out by accessing the JDK’s Date class, located in the java.util package:

scala> val d = new java.util.Date

d: java.util.Date = Wed Jan 22 16:42:04 PDT 2014

152 | Chapter 8: Classes

A more convenient way to access classes in other packages is to import them into the
current namespace. That way, the class can be accessed without its package prefix. To
import a class, use the import keyword followed by the full package and name of
the class.

Syntax: Importing a Packaged Class

import <package>.<class>

Let’s create a new Date, but only after importing the class into the namespace so we can
refer to it by name:

scala> import java.util.Date

import java.util.Date

scala> val d = new Date

d: java.util.Date = Wed Jan 22 16:49:17 PDT 2014

The Date class we are instantiating still lives in its java.util package, but is now also
part of the current namespace.

The import command is a statement, because it doesn’t return a value. Unlike in Java
(which has a similar import keyword), an import can be placed anywhere in your code
where you might use a statement.

Let’s exercise the ability to place imports wherever we might use any other statement.
In this example I’ll add an import for Java’s UUID class in the middle of a println call:

scala> println("Your new UUID is " + {import java.util.UUID; UUID.randomUUID})

Your new UUID is 47ba6844-3df5-403e-92cc-e429e614c9e5

You may not always want to add imports in the restricted scope of a function call.
However, adding your imports near the code where you are using the imported classes
helps to make the intent of the import more clear. It may also prevent name conflicts
caused by importing multiple classes of the same name from different packages. By
adding the conflicting imports in separate scopes, as opposed to adding them at the top
of the file, the classes can be used without conflict.

An alternative to importing the full package and class is to import part of the pack‐
age, reducing the need to refer to the full package but not quite importing a class. Scala’s
imports are accumulative, so importing a package allows us to remove that package
from the full path of a class in the package.

Here’s the Date class again, accessed by its partial package path:

Packaging | 153

This Is a Good Time to Reset Your REPL Session and Namespace
If you’re trying out these examples in the Scala REPL (and if you’re
not, why not?), you’ll need to reset your session to verify that im‐
ports are working properly. This will clear out all previous imports
and allow you to test only the new imports you have defined. To do
so, type :reset to reset the session before reimporting a class into the
REPL’s namespace.

scala> import java.util

import java.util

scala> val d = new util.Date

d: java.util.Date = Wed Jan 2229 06:18:52 PDT 2014

Our accumulative import worked; we can now access classes in the java.util package
using the util package alone.

Scala also supports importing the entire contents of a package at once with the under‐
score (_) operator. After doing so, every class in that package will be added to the name‐
space. You might remember when we used this to import multiple Future helper classes
(see “Handling futures synchronously” on page 129) without importing them one
at a time.

Let’s use the import-all feature to import all of the mutable collections into our current
namespace, and then experiment with the ArrayBuffer and Queue collections in that
package:

scala> import collection.mutable._

import collection.mutable._

scala> val b = new ArrayBuffer[String]

b: scala.collection.mutable.ArrayBuffer[String] = ArrayBuffer()

scala> b += "Hello"

res0: b.type = ArrayBuffer(Hello)

scala> val q = new Queue[Int]

q: scala.collection.mutable.Queue[Int] = Queue()

scala> q.enqueue(3, 4, 5)

scala> val pop = q.dequeue

pop: Int = 3

scala> println(q)

Queue(4, 5)

154 | Chapter 8: Classes

The ArrayBuffer and Queue collections, fully packaged classes, are now accessible by
name without explicitly importing both classes from their package. Of course, they aren’t
the only ones we could have used. Because we imported the entire contents of the
collection.mutable package, the full range of mutable collections became available in
our namespace.

Speaking of ArrayBuffer, did you notice that we imported everything in the
collection.mutable package but the REPL printed its full class name as
scala.collection.mutable.ArrayBuffer? Scala does its own automatic imports in
every Scala class, importing the entire scala._ and java.lang._ packages. This makes
it possible to access the classes and packages in scala and java.lang directly without
using the full path. Thus, Scala’s class for random-based utilities is at
scala.util.Random but can be accessed as util.Random. Likewise, the class we use for
sleeping the current thread is officially defined as java.lang.Thread but we can access
it directly by its class name.

There is a potential downside to importing every class and subpackage from a package.
If the package you’re importing has a class name that duplicates one already in your
namespace, the class that was already in your namespace will no longer be accessible.
As an example, the collection.mutable package has a mutable version of Map with the
same name, Map. After importing the entire mutable package, any Map I create would
then be mutable. This may be the desired behavior, but in case it isn’t, make sure to check
the contents of packages that you mass-import.

An alternative to importing a full package is to use an import group. With this feature,
you can list a group of class names to import intead of a complete package.

Syntax: Using an Import Group

import <package>.{<class 1>[, <class 2>...]}

With an import group I could have imported the Queue and ArrayBuffer collections
directly without importing the mutable Map:

scala> import collection.mutable.{Queue,ArrayBuffer}

import collection.mutable.{Queue, ArrayBuffer}

scala> val q = new Queue[Int]

q: scala.collection.mutable.Queue[Int] = Queue()

scala> val b = new ArrayBuffer[String]

b: scala.collection.mutable.ArrayBuffer[String] = ArrayBuffer()

scala> val m = Map(1 -> 2)

m: scala.collection.immutable.Map[Int,Int] = Map(1 -> 2)

After importing only the mutable collections that we wanted, we can use the Queue and
ArrayBuffer mutable collections while still accessing the Map immutable collection. In

Packaging | 155

this example the import group is just a shortcut that saves us one line of code, but with
several classes from the same package they can visibly reduce the size of an
“import” section.

There’s actually a way to add both the immutable and the mutable Map collections to the
current namespace without having a conflict. To do this, use an import alias that renames
one of the types inside the local namespace. What’s renamed is the local namespace
reference to the class, not the class itself, so there is no actual change to classes outside
your namespace (typically the file you are editing).

Syntax: Using an Import Alias

import <package>.{<original name>=><alias>}

Let’s use an import alias to bring the collection.mutable.Map collection into our
namespace, but in a way that won’t conflict with our standard immutable Map:

scala> import collection.mutable.{Map=>MutMap}

import collection.mutable.{Map=>MutMap}

scala> val m1 = Map(1 -> 2)

m1: scala.collection.immutable.Map[Int,Int] = Map(1 -> 2)

scala> val m2 = MutMap(2 -> 3)

m2: scala.collection.mutable.Map[Int,Int] = Map(2 -> 3)

scala> m2.remove(2); println(m2)

Map()

With our aliased collection “MutMap” (short for “mutable,” not “mutt”!) we can create
both mutable and immutable maps by name, without specifying their packages.

Knowing how to access classes in other packages (whether your own or a library’s) is a
required skill for Scala developers. Organizing your own classes in packages is more of
an acquired art, because there is no real guide on how to best do this. I can only offer a
recommendation that your code should be organized for findability and abstraction, so
developers can find your code and will know which code they should be finding.

Packaging Syntax
We have covered the most popular form of stating the package for one or more classes,
the package <identifier> command at the top of the file. Everything that follows in
the file will then be considered as a member of that identified package.

A less common form of specifying a package is with the packaging syntax, where the
package is a block that wraps its classes with curly braces. In this format, only the classes
within the package block are designated to be members of that package. This makes it
possible for the same file to contain classes that are members of different packages. It

156 | Chapter 8: Classes

also makes it possible to clearly demarcate packages within a nonfile environment such
as a REPL.

Syntax: Packaging Classes

package <identifier> { <class definitions> }

Let’s rewrite our “Config” example (from “Packaging” on page 151) using packaging
syntax. Because we aren’t relying on a file to delimit the end of the package, we can write
the entire package in the REPL:

The Scala REPL Requires “Raw” Paste Mode for Packages
Packages are traditionally used to mark files, and thus are unsuppor‐
ted in the standard editing mode in the REPL. The workaround is to
enter the “raw” paste mode with :paste -raw and then paste the
contents of a Scala file, which will be fully compiled but available from
the REPL.

scala> :paste -raw

// Entering paste mode (ctrl-D to finish)

package com {

 package oreilly {

 class Config(val baseUrl: String = "http://localhost")

 }

}

// Exiting paste mode, now interpreting.

scala> val url = new com.oreilly.Config().baseUrl

url: String = http://localhost

Our new class is now available at com.oreilly.Config and clearly packaged.

Would you expect that packaging syntax can be nested? Given that expressions, func‐
tions, and class definitions can be nested this shouldn’t come as a surprise, but you can
indeed nest your packages. A benefit to nesting packages is that the package path is
derived from the sum of the nested package names. Thus a multipart package like
“com.oreilly” can be built from an outer package of “com” and inner package of “oreilly.”

Okay, let’s try that out. We’ll enter the “raw” paste mode again to enable package support
in the REPL:

scala> :paste -raw

// Entering paste mode (ctrl-D to finish)

package com {

 package oreilly {

 class Config(val baseUrl: String = "http://localhost")

 }

Packaging | 157

}

// Exiting paste mode, now interpreting.

scala> val url = new com.oreilly.Config().baseUrl

url: String = http://localhost

We now have two ways to define packages for our classes: by file and by packaging
syntax. Although the former tends to be the most popular among Scala developers (in
my opinion), both versions are acceptable and end up with the exact same result after
compilation.

Privacy Controls
A corollary to packaging code is using privacy controls to manage its access. While you
are organizing your code into separate packages (or subpackages), you’ll probably find
certain functionality in one package that ought to be hidden from other packages. For
example, low-level persistence code could be hidden from your user interface-level code
to force your layers to use a middle layer for communication. Or you may want to limit
who can extend a subclass so that your parent class can keep track of its implementers.

By default, Scala does not add privacy controls. Any class you write will be instantiable
and its fields and methods accessible by any other code. If you have a class with stateless
methods, such as utility functions, this may be perfectly acceptable to you.

If you do have some reason to add privacy controls, such as mutable state that should
only be handled inside the class, you can add them on a field and method basis in
your class.

One privacy control is marking fields and methods as protected, which will limit their
access to code from the same class or its subclasses. No other code except that class or
subclasses will have access. Use the protected keyword before a val, var, or def key‐
word to mark that entity as being protected.

Here’s an example of protecting a field from access by outside classes. The field is still
accessible by a subclass, however:

scala> class User { protected val passwd = util.Random.nextString(10) }

defined class User

scala> class ValidUser extends User { def isValid = ! passwd.isEmpty }

defined class ValidUser

scala> val isValid = new ValidUser().isValid

isValid: Boolean = true

To verify that the “passwd” field is only accessible to “User” and its subclasses, try cre‐
ating a new instance of “User” and access its protected field directly. You should see an

158 | Chapter 8: Classes

error from the compiler alerting you that the “passwd” field is not accessible from out‐
side the class (or subclasses).

When you need a more stringent level of protection, mark fields and methods as pri‐
vate to limit their access to only the class in which they are defined. No other code
outside the class, and not even subclasses, will have access to that field.

Let’s take another stab at this “User” class. If we’re really storing a password in plain text
in a class, making it accessible to any subclass means that any code anywhere can subclass
our class and get access to it. Of course you would need an instance of that subclass to
access the field, but this could still be a problem for some applications. In our new
version, we’ll fix this by making the password private so only our “User” class can get
to it. We’ll also make it mutable, adding a public setter method with an alerting system
so we’ll be able to check the logs for password changes. Finally, we’ll add a validation
system, again without exposing our private (literally!) password to external reads
or writes:

scala> class User(private var password: String) {

 | def update(p: String) {

 | println("Modifying the password!")

 | password = p

 | }

 | def validate(p: String) = p == password

 | }

defined class User

scala> val u = new User("1234")

u: User = User@94f6bfb

scala> val isValid = u.validate("4567")

isValid: Boolean = false

scala> u.update("4567")

Modifying the password!

scala> val isValid = u.validate("4567")

isValid: Boolean = true

By removing access to the password field, the User class is made (slightly) more secure
and more flexible. With the backing data decoupled from the methods, you have the
ability to change where you’re storing the data, such as a secure identification system,
without changing how callers access the class. Protecting mutable state from unplanned
changes and providing the ability to decouple it from its current usage are only some
of the benefits of encapsulation and privacy control.

Privacy Controls | 159

Privacy Access Modifiers
The private and protected keywords provide class-hierarchy restrictions, but there
are times when you want more fine-grained access control for your class’s members.
For example, a class in a persistence package may only want to reveal some of its
database-level methods to other classes in the same package to reduce bugs and ensure
a single point of access.

You can add this level of control by specifying access modifiers in addition to your
private or protected designation. An access modifier specifies that such a designation
is only active up to a given point, such as a package, class, or instance, and then is inactive
within that point. For example, a method may be private but only so for callers outside
its package (i.e., “up to” its package), and then freely accessible within the package. A
field may be marked as private not just within the package but from other instances of
the same class, and thus can only be accessed from code within the same instance.

An additional benefit of access modifiers is that they enable access controls for classes.
There’s not much benefit to marking a class as private for everyone (how would you go
about instantiating it?), but a class marked as private for everything outside its package
could be very useful.

To specify an access modifier, write the name of the package or class, or else use this
inside brackets after the private or protected keyword. The package or class name
will specify that the keyword is only active up to that package or class (and freely available
within), but this limits access to only the same instance.

Let’s try this out with an example of specifying both package-level and instance-level
protections. We’ll use the packaging syntax to denote the class’s package, and thus the
“raw” paste mode in the REPL to support the packaging:

scala> :paste -raw

// Entering paste mode (ctrl-D to finish)

package com.oreilly {

 private[oreilly] class Config {

 val url = "http://localhost"

 }

 class Authentication {

 private[this] val password = "jason" // TODO change me

 def validate = password.size > 0

 }

 class Test {

 println(s"url = ${new Config().url}")

 }

160 | Chapter 8: Classes

}

// Exiting paste mode, now interpreting.

scala> val valid = new com.oreilly.Authentication().validate

valid: Boolean = true

scala> new com.oreilly.Test

url = http://localhost

res0: com.oreilly.Test = com.oreilly.Test@4c309d4d

scala> new com.oreilly.Config

<console>:8: error: class Config in package oreilly cannot be

 accessed in package com.oreilly

 new com.oreilly.Config

 ^

Access to the “Config” class is now restricted to the “com.oreilly” package. Only
the last part of the package path is required here.

Our secretive “password” field is now off-limits to everyone except code within
the same instance of the same class.

Here we are verifying “password” access from the same instance.

The “Test” class was able to successfully instantiate a “Config” class…

… but we were not able to do the same from outside the package.

Scala’s access modifiers provide a useful complement to the notion of the strict access
policy for private members and inheritance access policy for protected members. In
the case of package-level protection, these policies can be overridden based on the
proximity of another class. Instance-level protection, on the other hand, adds an addi‐
tional restriction to these policies based on the actual instances of the classes. Using
access modifiers to either loosen or restrict access can be helpful, if used correctly, in
improving the encapsulation and security of your applications.

Final and Sealed Classes
The protected and private access controls and their modifiers can limit access to a
class or its members overall or based on location. However, they lack the abililty to
restrict creating subclasses. Well, unless you mark a class as being private outside of its
package, but then it can neither be subclassed nor used in that circumstance.

Final class members can never be overridden in subclasses. Marking a value, variable,
or method with the final keyword ensures that the implementation is the one that all

Final and Sealed Classes | 161

subclasses will use. Entire classes can be marked as final as well, preventing any possible
subclasses of that class.

If final classes are too restrictive for your needs, consider sealed classes instead. Sealed
classes restrict the subclasses of a class to being located in the same file as the parent
class. By sealing a class, you can write code that makes safe assumptions about its hier‐
archy. Classes are sealed by prefixing the class definition and class keyword with the
sealed keyword.

One popular sealed class is Option, one of the monadic collections we covered in “Mo‐
nadic Collections” on page 117. The Option class is both abstract and sealed, and im‐
plemented with the (proper!) assumption that it will only ever have two subclasses, Some
and None. By ensuring that no other subclasses will ever exist, Option can refer to these
implementations explicitly in its code. An unsealed version of this collection would be
more difficult to implement, because anyone could add an extra subclass that may not
follow the assumed behavior of Some and None.

As with the Option implementation, sealed classes are a useful way to implement an
abstract parent class that “knows” and refers to specific subclasses. By restricting sub‐
classes outside the same file, assumptions can be made about a class hierarchy that would
otherwise have severe repercussions (read: bugs).

Summary
Classes are often a starting point for learning a programming language. Because they
are built on a foundation of values and functions, however, it seemed more appropriate
to cover those features first. Now that you have a solid understanding of classes, it is
safe to point out that values and functions (now “methods”) don’t really exist outside of
classes. Classes are the core building blocks of Scala applications, and values and meth‐
ods make up their bodies.

They are not, however, the exclusive containers of values and methods. In the next
chapter we’ll explore how objects, the singletons of the Scala world, can be used alone
or alongside classes. We’ll also see how traits can contain their own values and functions
before being combined and mixed into classes.

Exercises
1. We’re working on a gaming site, and need to track popular consoles like the Xbox

Two and Playstation 5 (I’m planning for the future here).

a. Create a console class that can track the make, model, debut date, WiFi
type, physical media formats supported, and maximum video resolution. Over‐

162 | Chapter 8: Classes

ride the default toString method to print a reasonably sized description of the
instance (< 120 chars).

• The debut date (or launch date) should be an instance of java.util.Date.

• Keep the WiFi type (b/g, b/g/n, etc.) field optional, in case some consoles
don’t have WiFi.

• The physical media formats should be a list. Is a String the best bet here, or
an Int that matches a constant value?

• The maximum video resolution should be in a format that would make it
possible to sort consoles in order of greatest number of pixels.

b. Test your new console class by writing a new class that creates four instances of
this console class. All of the instances should have reasonably accurate values.

c. Now it’s time for games. Create a game class that includes the name, maker, and
a list of consoles it supports, plus an “isSupported” method that returns true if
a given console is supported.

d. Test out this game class by generating a list of games, each containing one or
more instances of consoles. Can you convert this list to a lookup table for con‐
soles with a list of supported games? How about a function that prints a list of
the games, sorted first by maker and then by game name?

2. Create a linked list, object-oriented-style.

a. Create a container class that has an instance of itself plus an instance of a para‐
meterized type. The constructor should take a variable number of the instances
(e.g., strings or ints or any other parameterized type), which can be implemented
with vararg parameters (see “Vararg Parameters” on page 54). Implement a
“foreach” method that users can call to iterate over the list, invoking their func‐
tion for every element.

• How will you determine the end of the list?

• C-style lists often use a null value to denote the end of the list. Is that the
best approach here?

• Do you have a good use for the apply() method here?

b. I’m sure your linked list works great, but let’s try refactoring it with a more
interesting approach. Make your container class abstract with two subclasses:
one representing a node with a valid item and one representing a node without
a valid item, signifying the last item in the list.

• Will you ever need more than one instance of the second subclass?

• Are there any helper methods that should be private?

Exercises | 163

• How about abstract methods that the subclasses will need to implement?

• If you implemented the apply() method, should each subclass have its own
implementation?

c. Add the standard head, tail, filter, size, and map collection methods for your
linked list. Can you implement any of these using lazy values? Which of these
should be implemented in the parent class versus being implemented in its sub‐
classes?

d. Implement the head, tail, filter, size, and map collection methods using re‐
cursion instead of iteration. Can you ensure these all use tail recursion (see
“Recursive Functions” on page 50) to prevent stack overflow errors for massive
collections?

3. For a change of pace, let’s create a directory listing class. The constructor fields
should be the full path to the directory and a predicate function that takes a String
(the filename) and returns true if the file should be included. The method “list”
should then list the files in the directory.

To implement this, create an instance of java.io.File and use its listFiles(fil
ter: FilenameFilter) to list files that match the given filter. You’ll find Javadocs
for this method and for the java.io.FilenameFilter class, but you will need to
figure out how this would be called from Scala. You should pass in the Filename
Filter argument as an anonymous class.

• Is there any part of this class that would work well as a lazy value?

• Would it make sense to store the anonymous subclass of
java.io.FilenameFilter as a lazy val?

• How about the filtered directory listing?

4. The JVM library includes a working MIDI sound synthesizer. Here’s an example of
playing a short set of notes:

scala> val synth = javax.sound.midi.MidiSystem.getSynthesizer

synth: javax.sound.midi.Synthesizer = com.sun.media.sound

 .SoftSynthesizer@283a8ad6

scala> synth.open()

scala> val channel = synth.getChannels.head

channel: javax.sound.midi.MidiChannel = com.sun.media.sound

 .SoftChannelProxy@606d6d2c

scala> channel.noteOn(50, 80); Thread.sleep(250); channel.noteOff(30)

scala> synth.close()

164 | Chapter 8: Classes

Create a simpler interface to this by writing a class that plays a series of notes. The
class’s constructor should take the volume (set to 80 in the example) but always use
the same duration (250 milliseconds in the example). Its “play” method should take
a list of the notes, for example Seq(30, 35, 40, 45, 50, 55, 60, 65, 70), and
play them in the synthesizer.

• Assume the getSynthesizer method call is expensive. How can you prevent
unnecessarily calling it in case the “play” method is never called?

• Make sure to hide fields that callers don’t need to know about.

• Can you support a Range as input, e.g., play(30 to 70 by 5) ?

• Can you support multiple ranges, for example a series of notes that rise, fall, and
then rise again?

• Assume we only ever need one instance, ever, with the volume set to 95. Can you
use access controls to ensure that there will never be more than one instance of
this class?

Exercises | 165

CHAPTER 9

Objects, Case Classes, and Traits

In the previous chapter we covered classes, a core component of object-oriented Scala.
As you’ll recall, classes are defined once but can be instantiated an unlimited number
of times. In this chapter we will discover new components that may be used to com‐
plement and embellish classes, or replace some classes entirely, depending on your
object-oriented design preferences. Many developers choose the latter, using them in
place of “regular” classes when they can. Therefore I highly recommend taking the time
to learn about each component, not only because you also may end up preferring them
over classes but also because they all have something new to offer most developers.

The three new components—objects, case classes, and traits—are sufficiently discrete
that there is little point in writing a common introduction for them. Therefore, in this
chapter we will have separate introductions for each component, starting with the sec‐
tion on objects.

Objects
An object is a type of class that can have no more than one instance, known in object-
oriented design as a singleton. Instead of creating an instance with a new keyword, just
access the object directly by name. An object gets automatically instantiated the first
time it is accessed in a running JVM, which also means that until it is accessed the first
time it won’t get instantiated.

Java and other languages have the ability to designate certain fields and methods of a
class as being “static” or “global,” meaning that they are not tied to an instance’s data and
so can be accessed without instantiating a class. Objects provide similar functionality
but decouple them from instantiable classes. This separation helps to clarify the differ‐
ence between global and instance-based fields and methods and provides a safer and
more understandable design. With this model there is less chance of accidentally

167

invoking a global method on a class, or of mistakenly storing mutable data in a globally
accessible field.

Objects and classes are not completely decoupled. An object can extend another class,
making its fields and methods available in a global instance. The reverse is not true,
however, because an object cannot itself be extended. This should make sense, because
there is no reason to subclass one. If only one of the objects or its subclasses could ever
be instantiated, why wouldn’t you just add the features you would have wanted into the
object itself?

Use the object keyword, in place of class, to define an object. Objects do not take any
parameters (they are automatically instantiated), but you can define the same fields,
methods, and internal classes as you can with regular classes.

Syntax: Defining an Object

object <identifier> [extends <identifier>] [{ fields, methods, and classes }]

Let’s design an object that will demonstrate how objects are automatically instantiated:

scala> object Hello { println("in Hello"); def hi = "hi" }

defined object Hello

scala> println(Hello.hi)

in Hello

hi

scala> println(Hello.hi)

hi

The println at the top level of the object is invoked at instantiation/initialization, which
only occurs when it is accessed for the first time. Repeating the call to the object’s “hi”
method reused the same global instance so there was no additional initialization.

The standard class method is one that reads from or writes to the fields of its instance,
providing complementary access points and business logic for the data. Likewise, the
kinds of methods best suited for objects are pure functions and the functions that work
with external I/O (Input/Output). Pure functions are ones that return results calculated
exclusively from their inputs, have no side effects, and are referentially transparent
(indistinguishable if replaced by the result of the function). I/O functions are those that
work with external data, such as with files, databases, and external services. Neither of
these function types are well suited to being class methods because they have little to
do with a class’s fields.

As an example, we’ll create an object that provides pure functions as utilities, one of my
favorite uses for objects:

scala> object HtmlUtils {

 | def removeMarkup(input: String) = {

 | input

168 | Chapter 9: Objects, Case Classes, and Traits

 | .replaceAll("""</?\w[^>]*>""","")

 | .replaceAll("<.*>","")

 | }

 | }

defined object HtmlUtils

scala> val html = "<html><body><h1>Introduction</h1></body></html>"

html: String = <html><body><h1>Introduction</h1></body></html>

scala> val text = HtmlUtils.removeMarkup(html)

text: String = Introduction

Our example utility method, removeMarkup, is a pure function that returns a result based
only on the input data. As a member of the object HtmlUtils it is now globally accessible
by any other code, available without explicitly initializing a class.

A Referential Transparency Test
As a test of referential transparency, we could replace the function
with one that just returns the result, “Introduction,” and there would
have been no other effect on our system. A class method that reads
from one of its fields or an object method that writes to the console
could not make the same claim, because they are either dependent on
their environment or make a change to the environment. The point
is that, when possible, consider using pure functions to reduce de‐
pendency problems and make your code self-sufficient.

We have covered the basic use of objects as global (or static, if you prefer) classes, but
you can do much more with them than just storing your functions. You can use them
as companions to classes of the same name, granting them special permissions, or have
them act as entry points for command-line applications. We’ll look at more uses of
objects in the next several sections.

Apply Methods and Companion Objects
We have covered the apply method for classes (see “Apply Methods” on page 150), which
makes it possible to invoke an instance. The same feature works for objects, making it
possible to invoke an object by name. By defining one or more of these methods, your
object can be invoked by name, much like List(1, 2, 3).

In fact, this is how lists are instantiated in Scala. The List object has an apply() method
that takes arguments and returns a new collection from them. You have also experienced
this feature when creating monadic collections (see “Monadic Collections” on page
117). The apply() method on the Option object takes a single value and returns Some[A]
containing the value if it is nonnull or else None. The Future object uses apply() to take
your function parameter and invoke it in a background thread. This is known as the

Objects | 169

factory pattern in object-oriented programming, and is a popular use of the apply()
method in objects.

Specifically, the factory pattern is a popular way to generate new instances of a class
from its companion object. A companion object is an object that shares the same name
as a class and is defined together in the same file as the class. Having a companion object
for a class is a common pattern in Scala, but there is also a feature from which they can
benefit. Companion objects and classes are considered a single unit in terms of access
controls, so they can access each other’s private and protected fields and methods.

Let’s try out the apply() factory pattern and the companion object pattern in the same
example. We will use the REPL’s :paste mode to simulate a class and object defined
together in the same file, because otherwise the REPL would assume they are separate:

scala> :paste

// Entering paste mode (ctrl-D to finish)

class Multiplier(val x: Int) { def product(y: Int) = x * y }

object Multiplier { def apply(x: Int) = new Multiplier(x) }

// Exiting paste mode, now interpreting.

defined class Multiplier

defined object Multiplier

scala> val tripler = Multiplier(3)

tripler: Multiplier = Multiplier@5af28b27

scala> val result = tripler.product(13)

result: Int = 39

The example class, Multiplier, takes an amount and provides a method, product, that
multiplies it by another amount. Our companion object of the same name has an “apply”
method with the exact same parameters as the instance, which makes it clear to users
that it serves as a factory method for the class.

However, we haven’t yet seen the benefit of a companion object, namely the special
access controls that it shares with a companion class. Let’s try this out in a new example
where the class accesses private members of its companion object:

scala> :paste

// Entering paste mode (ctrl-D to finish)

object DBConnection {

 private val db_url = "jdbc://localhost"

 private val db_user = "franken"

 private val db_pass = "berry"

 def apply() = new DBConnection

170 | Chapter 9: Objects, Case Classes, and Traits

}

class DBConnection {

 private val props = Map(

 "url" -> DBConnection.db_url,

 "user" -> DBConnection.db_user,

 "pass" -> DBConnection.db_pass

)

 println(s"Created new connection for " + props("url"))

}

// Exiting paste mode, now interpreting.

defined object DBConnection

defined class DBConnection

scala> val conn = DBConnection()

Created new connection for jdbc://localhost

conn: DBConnection = DBConnection@4d27d9d

Our new DBConnection object stores the database connection data in private constants,
while the class of the same name can read them when creating a connection. The con‐
stants are global, because the settings are constant across the application, and safe from
being read by any other part of the system.

Another benefit to using the REPL’s paste mode is that both the object and the class are
compiled together at the same time. Besides the special companion access to private
fields, we could not have entered them in the REPL without paste mode because the
class and object refer to each other. A class referring to an undefined object, being
compiled without the object, would have led to a compilation error.

In the exercises for previous chapters you may have been writing .scala files executed
directly by the scala command. Defining classes and objects together in a .scala file will
work, because they are part of the same namespace. And you can add commands to
access the classes and objects right inside the .scala file, executed when you run it
with scala.

This approach is suitable for testing, but doesn’t make it possible to reuse your code.
The scala command will execute the contents of your file as if they were entered in a
REPL, but you don’t end up with compiled classes. In order to write reusable, compiled
code, you’ll need to compile your classes and objects with the scalac command and
then execute them from your own application. In the next section we’ll learn how to
write command-line applications with Scala so you can start reusing your classes
and objects.

Objects | 171

Command-Line Applications with Objects
Most languages have the ability to create command-line applications, ones that can be
executed from a shell. At the most basic level they read input arguments, perhaps read
from the input stream, and then write to the output stream. More complex applications
may work with persistent data such as files and databases, access other computers over
a network, or launch new applications.

Scala also supports this feature, using a “main” method in objects as the entry point for
the application. To create a command-line application in Scala, add a “main” method
that takes an array of strings as input arguments. When you have compiled your code,
execute it by running the scala command with the name of the object.

Here’s an example of a short command-line application that prints out the current date.
Included are steps to create the file, compile it, and execute it as an application, all inside
a shell. The entry point is a “main” method defined in an object:

$ cat > Date.scala

object Date {

 def main(args: Array[String]) {

 println(new java.util.Date)

 }

}

$ scalac Date.scala

$ scala Date

Mon Sep 01 22:03:09 PDT 2014

After compiling our “Date” object into .class files (the binary format for JVM classes),
we are able to execute it as an application. This example demonstrated the basics of
creating, compiling, and executing a command-line application, although it didn’t really
demonstrate the use of the input arguments.

Here is a new example that emulates the Unix command cat, which prints the contents
of a file to the console. It takes one or more filenames (or paths) and prints each one to
the console:

$ cat > Cat.scala

object Cat {

 def main(args: Array[String]) {

 for (arg <- args) {

 println(io.Source.fromFile(arg).mkString)

 }

 }

}

$ scalac Cat.scala

$ scala Cat Date.scala

172 | Chapter 9: Objects, Case Classes, and Traits

object Date {

 def main(args: Array[String]) {

 println(new java.util.Date)

 }

}

This time we’re making use of the input arguments. The fromFile method in the Scala
library’s io.Source object (we can call it by its correct name now) is used to read each
file, and the collection method mkString is used to convert the lines back into a single
String for printing.

In a way, the best command-line applications are like pure functions: they read input,
process it, and write output. Like the operations in Scala’s collections they are only good
for a single task, but when chained together they create a bounty of new opportunities
and possibilities. Command-line applications written in Scala may not replace native
tools and shell scripts, because their slower startup time (a known problem in the JVM)
and greater memory requirements may make them less desirable for all environments.
They do make writing command-line tools more fun, however, and are a great way to
learn the language. I recommend taking the time to rewrite some of your favorite (and
shorter) shell scripts in Scala. It’s a great way to continue learning and practicing with
the language, and you may find your Scala applications to be shorter and more stable
than those written in other languages.

To summarize this section, objects are not only a global alternative to instance-based
classes and a way to create command-line applications. When paired with classes as
companion objects they create a new synergy for creating cleaner, decoupled, and more
readable applications.

Now that you have some experience using objects with classes, it’s time to learn how to
automate their interaction using case classes.

Case Classes
A case class is an instantiable class that includes several automatically generated meth‐
ods. It also includes an automatically generated companion object with its own auto‐
matically generated methods. All of these methods in the class and in the companion
object are based on the class’s parameter list, with the parameters being used to formulate
methods like an equals implemention that iteratively compares every field and a to
String method that cleanly prints out the class name and all of its field values.

Case classes work great for data transfer objects, the kind of classes that are mainly used
for storing data, given the data-based methods that are generated. They don’t work well
in hierarchical class structures, however, because inherited fields aren’t used to build its
utility methods. And extending a case class with a regular class could lead to invalid
results from the generated methods, which can’t take into account fields added by sub‐

Case Classes | 173

classes. However, if you want a class with a definitive set of fields, and these automatically
generated methods are useful, then a case class may be right for you.

To create a case class, just add the keyword case before your class definition.

Syntax: Defining a Case Class

case class <identifier> ([var] <identifier>: <type>[, ...])

 [extends <identifier>(<input parameters>)]

 [{ fields and methods }]

The val Keyword Is Assumed for Case Class Parameters
By default, case classes convert parameters to value fields so it isn’t
necessary to prefix them with the val keyword. You can still use the
var keyword if you need a variable field.

Table 9-1 displays the class and object methods that get automatically generated for case
classes.

Table 9-1. Generated case class methods

Name Location Description

apply Object A factory method for instantiating the case class.

copy Class Returns a copy of the instance with any requested changes. The parameters are the class’s fields with

the default values set to the current field values.

equals Class Returns true if every field in another instance match every field in this instance. Also invocable by the

operator ==.

hashCode Class Returns a hash code of the instance’s fields, useful for hash-based collections.

toString Class Renders the class’s name and fields to a String.

unapply Object Extracts the instance into a tuple of its fields, making it possible to use case class instances for

pattern matching.

The methods generated by the Scala compiler for case classes aren’t special in any way,
other than that they are automatically generated for you. You could skip using case
classes and add the methods and companion object yourself. The benefit that case classes
bring is convenience, because writing all of these methods correctly for every data-based
class would require a lot of work and maintenance. They also add a certain level of
consistency, because all case classes carry the same features.

Now that we have exhaustively reviewed what case classes can do let’s see them in action.
In this example we’ll create a case class and see how many of its automatically generated
methods we can hit:

scala> case class Character(name: String, isThief: Boolean)

defined class Character

174 | Chapter 9: Objects, Case Classes, and Traits

scala> val h = Character("Hadrian", true)

h: Character = Character(Hadrian,true)

scala> val r = h.copy(name = "Royce")

r: Character = Character(Royce,true)

scala> h == r

res0: Boolean = false

scala> h match {

 | case Character(x, true) => s"$x is a thief"

 | case Character(x, false) => s"$x is not a thief"

 | }

res1: String = Hadrian is a thief

Here’s our companion object’s factory method, Character.apply().

The generated toString method, printed here by the REPL, is a clean and simple
representation of the fields in our instance.

Our second instance shares the same value for the second field, so we only need
to specify a new value for the first field in the copy method.

If both instances are nonnull, the == operator triggers an instance’s equals
method, acting as a useful shortcut to the field comparison–based method
generated for us.

The companion object’s unapply method allows us to decompose the instance
into its parts, binding the first field (see “Matching with Wildcard Patterns” on
page 34) and using a literal value to match the second field.

All of the generated methods we used in the example depended on the case class having
two fields, name and isThief, based on the case class parameters. If our case class had
extended another class with its own fields, but we hadn’t added the fields as case class
parameters, the generated methods wouldn’t have been able to make use of them. This
is an important caveat to know about before using case classes.

If your case class doesn’t need to take into account the fields of a parent class, you’ll find
case classes to be wildly useful throughout your code. They can reduce the need to write
your own boilerplate code, make debugging and logging easier with their helpful to
String methods, and overall make object-oriented programming more enjoyable.

I find myself using case classes over classes for data storage, and objects over classes for
writing most functions. Well, objects and traits for writing functions, because traits
provide convenience for reusing functions in the same way that case classes provide
convenience for managing your data. We’ll cover traits, the final type of class to intro‐
duce in this chapter, in the next section.

Case Classes | 175

Traits
A trait is a kind of class that enables multiple inheritance. Classes, case classes, objects,
and (yes) traits can all extend no more than one class but can extend multiple traits at
the same time. Unlike the other types, however, traits cannot be instantiated.

Traits look about the same as any other type of class. However, like objects, they cannot
take class parameters. Unlike objects, however, traits can take type parameters, which
can help to make them extremely reusable.

To define a trait, use the trait keyword in place of where you would normally use the
class keyword.

Syntax: Defining a Trait

trait <identifier> [extends <identifier>] [{ fields, methods, and classes }]

Remember the HtmlUtils object (from “Objects” on page 167) we created as an exam‐
ple? Let’s implement that as a trait instead:

scala> trait HtmlUtils {

 | def removeMarkup(input: String) = {

 | input

 | .replaceAll("""</?\w[^>]*>""","")

 | .replaceAll("<.*>","")

 | }

 | }

defined trait HtmlUtils

scala> class Page(val s: String) extends HtmlUtils {

 | def asPlainText = removeMarkup(s)

 | }

defined class Page

scala> new Page("<html><body><h1>Introduction</h1></body></html>").asPlainText

res2: String = Introduction

Our Page class can now use the removeMarkup method directly without specifying an
object name.

This works pretty well, but a class version of HtmlUtils could have done the same job.
Let’s make it more interesting by adding a second trait. This time we’ll use a new key‐
word, with, which is required for extending the second and later traits:

Traits Come After the Parent Class
If you are extending a class and one or more traits, you will need to
extend the class before you can add the traits using the with key‐
word. A parent class, if specified, must always come before any par‐
ent traits.

176 | Chapter 9: Objects, Case Classes, and Traits

scala> trait SafeStringUtils {

 |

 | // Returns a trimmed version of the string wrapped in an Option,

 | // or None if the trimmed string is empty.

 | def trimToNone(s: String): Option[String] = {

 | Option(s) map(_.trim) filterNot(_.isEmpty)

 | }

 | }

defined trait SafeStringUtils

scala> class Page(val s: String) extends SafeStringUtils with HtmlUtils {

 | def asPlainText: String = {

 | trimToNone(s) map removeMarkup getOrElse "n/a"

 | }

 | }

defined class Page

scala> new Page("<html><body><h1>Introduction</h1></body></html>").asPlainText

res3: String = Introduction

scala> new Page(" ").asPlainText

res4: String = n/a

scala> new Page(null).asPlainText

res5: String = n/a

Our new, more robust Page class now extends two traits and can handle null or empty
strings by returning the message n/a.

If you’re familiar with the JVM you may be wondering how Scala can support multiple
inheritance with traits. After all, JVM classes can only extend one parent class. The
answer is that although the language supports multiple inheritance in theory, the com‐
piler actually creates copies of each trait to form a tall, single-column hierarchy of the
class and traits. So, a class extending class A and traits B and C is actually extending one
class, which extends another class, which extends another class, when compiled to
the .class binary file.

This process of taking a horizontal list of a class and traits being extended, and reforming
them into a vertical chain of one class extending another, is known as linearization. It
is a kind of coping mechanism for supporting multiple inheritance in an execution
environment that only supports single inheritance. The fact that the JVM only supports
single inheritance ensures that all class hierarchies are nondeterministic and prevents
the possibility of confusing two traits that have competing members.

Traits | 177

What Happens If You Have Traits with Competing Members?
A class importing two traits that have the same field or method, but
lack an override keyword, will fail to compile. The compilation er‐
ror is the same as if you were extending a class and providing your
own version of a method but failed to add an override keyword. In
the case of the traits, adding a common base class and then overrid‐
ing the field or method with the override keyword will ensure the
traits can be extended by the same class.

The most important point to understand about linearization is in what order the Scala
compiler arranges the traits and optional class to extend one another. The multiple
inheritance ordering, from the lowest subclass up to the highest base class, is right to left.

Thus, a class defined as class D extends A with B with C, where A is a class and B
and C are traits, would be reimplemented by the compiler as class D extends C ex
tends B extends A. The rightmost trait is the immediate parent of the class being
defined, and either the class or the first trait becomes the last parent class.

This is a lot to remember, so let’s write a quick test to verify this ordering:

scala> trait Base { override def toString = "Base" }

defined trait Base

scala> class A extends Base { override def toString = "A->" + super.toString }

defined class A

scala> trait B extends Base { override def toString = "B->" + super.toString }

defined trait B

scala> trait C extends Base { override def toString = "C->" + super.toString }

defined trait C

scala> class D extends A with B with C { override def toString = "D->" +

 super.toString }

defined class D

scala> new D()

res50: D = D->C->B->A->Base

The toString method overridden in D prints the class name and then appends the
output of its parent class’s implementation. Fortunately all of its parent classes also
override this method, so we can see the exact ordering of methods called. First the
toString in D was invoked, followed by the one in trait C, trait B, class A, and finally the
common base class Base.

The process of linearization may seem odd, but it’s a useful compromise between the
theory of a language supporting multiple inheritance versus the practice of an envi‐
ronment that doesn’t. It also provides a solid method for determining invocation, be‐

178 | Chapter 9: Objects, Case Classes, and Traits

cause the constructed hierarchy ensures that method handling is decided at compile
time and never at runtime.

Another benefit of linearization is that you can write traits to override the behavior of
a shared parent class. Here’s an example of a solid base class plus traits that add extra
functionality when combined with a subclass. The example is rather lengthy so we’ll
cover it in two parts. First, here’s the parent class and two traits that extend it:

scala> class RGBColor(val color: Int) { def hex = f"$color%06X" }

defined class RGBColor

scala> val green = new RGBColor(255 << 8).hex

green: String = 00FF00

scala> trait Opaque extends RGBColor { override def hex = s"${super.hex}FF" }

defined trait Opaque

scala> trait Sheer extends RGBColor { override def hex = s"${super.hex}33" }

defined trait Sheer

The two traits, Opaque and Sheer, extend the RGBColor class and add an opacity level
to the red-green-blue color of its parent. The extra byte is often known as an alpha
channel in computer graphics, so the traits are convering an RGB color value to an
RGBA (a for alpha) color value, in hexadecimal format.

Now let’s put these new traits to use. We’ll extend both the parent class and one of the
traits that extends the parent class. If we were just to extend the trait, there wouldn’t be
any way to pass a class parameter to RGBColor. Therefore, we’ll extend both the parent
class and functionality-adding trait:

scala> class Paint(color: Int) extends RGBColor(color) with Opaque

defined class Paint

scala> class Overlay(color: Int) extends RGBColor(color) with Sheer

defined class Overlay

scala> val red = new Paint(128 << 16).hex

red: String = 800000FF

scala> val blue = new Overlay(192).hex

blue: String = 0000C033

Because trait linearization is ordered from right to left, the hierarchy of “Paint” is “Paint”
→ “Opaque” → “RGBColor.” The class parameter added to the Paint class is used to
initialize the RGBColor class, while the Opaque trait between Paint and RGBColor over‐
rides the hex method to add extra functionality.

In other words, our Paint class will output an opaque color value and our Overlay will
output a sheer (i.e., translucent) color value. We were able to take advantage of trait
linearization to insert extra functionality.

Traits | 179

At this point you should know how to define traits and extend them with classes. Un‐
derstanding where and when to use them, however, may take some time and experience.
Traits look similar to abstract classes, and like an implementation-based version of Java’s
interfaces, but it’s important to understand how linearization shapes the hierarchy of
any class that extends them.

If you’re still uncertain about using traits, the features we’ll cover in the next two sections
may bring you around. We’ll look at a method to restrict traits to only be used with
certain classes, in case you want to depend on the fields and methods of a class without
directly extending it. We’ll also see how traits can be used not only in class definitions
but in class instantiations as well, providing built-in dependency injection.

Self Types
A self type is a trait annotation that asserts that the trait must be mixed in with a specific
type, or its subtype, when it is added to a class. A trait with a self type cannot be added
to a class that does not extend the specified type. In a way, it is a guarantee that the trait
will always be extending that type, while not actually directly extending it.

A popular use of self types is to add functionality with traits to classes that require input
parameters. A trait cannot easily extend a class that takes input parameters, because the
trait itself cannot take input parameters. However, it can declare itself to be a subtype
of that parent class with a self type and then add its functionality.

A self type is added immediately following the opening brace of the trait definition, and
includes an identifier, the requested type, and an arrow (=>). A trait with a self type can
access fields of that type as if it explicitly extended that type.

Syntax: Defining a Self Type

trait { <identifier>: <type> => }

The standard identifier used in self types is “self,” although any other identifier may be
used. That is, except for a keyword like this. The benefit of using the common identifier
“self ” is that it can help to make your code more readable to other Scala developers.

Here is an example of a trait using a self type to ensure that it will always be a subtype
of the specified type when mixed into a class:

scala> class A { def hi = "hi" }

defined class A

scala> trait B { self: A =>

 | override def toString = "B: " + hi

 | }

defined trait B

scala> class C extends B

<console>:9: error: illegal inheritance;

180 | Chapter 9: Objects, Case Classes, and Traits

 self-type C does not conform to B's selftype B with A

 class C extends B

 ^

scala> class C extends A with B

defined class C

scala> new C()

res1: C = B: hi

Our trait B has a self type, adding the requirement that the trait can only ever
be mixed into a subtype of the specified type, the A class.

… but just to prove it, let’s try defining a class with trait B but without the
requested class. No luck.

This time, trait B is directly extending its requested type, A, so its self type
requirement has been met.

When our C class is instantiated, B.toString is invoked, which then invokes
A.hi. The B trait is indeed used as a subtype of A here and can invoke one of its
methods.

This example demonstrated the restrictions that self types add to traits. However, it
didn’t really distinguish self types as an important feature, because the trait B could have
just extended A directly.

Let’s try an example that demonstrates the benefit of self types. We’ll define a class that
requires parameters and then create a trait that should only be used to extend the class:

scala> class TestSuite(suiteName: String) { def start() {} }

defined class TestSuite

scala> trait RandomSeeded { self: TestSuite =>

 | def randomStart() {

 | util.Random.setSeed(System.currentTimeMillis)

 | self.start()

 | }

 | }

defined trait RandomSeeded

scala> class IdSpec extends TestSuite("ID Tests") with RandomSeeded {

 | def testId() { println(util.Random.nextInt != 1) }

 | override def start() { testId() }

 |

 | println("Starting...")

 | randomStart()

 | }

defined class IdSpec

Here is the base class, TestSuite, which takes an input parameter.

Traits | 181

Our trait needs to invoke TestSuite.start() but cannot extend TestSuite
because it would require hardcoding the input parameter. By using a self type,
the trait can expect to be a subtype of TestSuite without explicitly being
declared as one.

The test class IdSpec defines our self-typed trait as a subclass, allowing its ran
domStart() to be invocable.

With self types, a trait can take advantage of extending a class without specifying its
input parameters. It is also a safe way to add restrictions and/or requirements to your
traits, ensuring they are only used in a specific context.

And now that we have studied a feature that can help to ensure safer and more stable
type definitions, lets move on to something crazy: adding type definitions when you
instantiate a class.

Instantiation with Traits
In this chapter we have used traits by having classes extend them, using the extends or
with keyword in the class definition. The class that extends the trait will pick up the
fields and methods of that trait, whether they are implemented by the trait or inherited
from its own subtypes.

An alternate method for using traits is to add them to a class when the class is instanti‐
ated. A class defined without a dependency on, or even knowledge of, a given trait can
take advantage of that trait’s functionality. The only catch is that traits added at a class’s
instantiation extend the class, not the other way around. The left-to-right order of trait
linearization includes the instantiated class in its ordering, so all of the traits extend the
class and not the other way around.

You can add one or more traits to a class using the with keyword. The extends keyword
cannot be used here, which is appropriate; your class is not actually extending the traits
but instead being extended by them.

Let’s verify that a class instantiated with a trait becomes the base class of that trait, by
using the self types we learned about in the previous section. Here is an example of a
class extended by a trait with a self type of that class, ensuring that the trait will extend
the class:

scala> class A

defined class A

scala> trait B { self: A => }

defined trait B

scala> val a = new A with B

a: A with B = $anon$1@26a7b76d

182 | Chapter 9: Objects, Case Classes, and Traits

Our new instance, a, is given the class name $anon$1, a numerically based shortened
version of the word “anonymous.” The instance’s class is indeed anonymous, because it
contains a combination of a class and trait that are not formally included in any named
class definition. More to the point, we created an instance where trait B extended trait A.

The real value in instantiating with traits is in adding new functionality or configurations
to existing classes. This feature is commonly known as dependency injection, because
the actual functionality the parent class is dependent on isn’t added until after the class
definition, so the feature is “injected” into the class when instantiated. This also means
that two instances of the class can operate under completely different configurations,
because they may have had different configurable traits added during their instantia‐
tions.

Java developers may be familiar with the Spring or Google Guice, which perform a
similar function via custom Java annotations and initialization modules. Scala’s traits,
however, do not require any specific annotations or special packages to make depend‐
ency injection work. Just initialize a given class with another trait and you have a
dependency-injected class that’s ready to go.

Let’s experiment with dependency injection by taking a data-oriented class common in
most applications, User, and altering its output in new and mysterious ways:

scala> class User(val name: String) {

 | def suffix = ""

 | override def toString = s"$name$suffix"

 | }

defined class User

scala> trait Attorney { self: User => override def suffix = ", esq." }

defined trait Attorney

scala> trait Wizard { self: User => override def suffix = ", Wizard" }

defined trait Wizard

scala> trait Reverser { override def toString = super.toString.reverse }

defined trait Reverser

scala> val h = new User("Harry P") with Wizard

h: User with Wizard = Harry P, Wizard

scala> val g = new User("Ginny W") with Attorney

g: User with Attorney = Ginny W, esq.

scala> val l = new User("Luna L") with Wizard with Reverser

l: User with Wizard with Reverser = draziW ,L anuL

Our three new users, who are completely nonfictitious and whose resemblance to fic‐
titious characters is purely coincidental, have acquired either magical new titles or new

Traits | 183

ways of printing their name. The suffixes of “Wizard” and “esq” were hardcoded in traits,
but added to separate user instances at instantiation time.

Adding traits to classes at instantiation time is a kind of replacement shortcut for defin‐
ing classes to perform the same job. In our example we could have defined three new
individual classes that combined the class and traits and used them instead. However,
we gained flexibility and simplicity with these instantiation traits, and avoided writing
unnecessary code. By adding traits at instantiation time an infinite number of functional
combinations becomes available.

Importing Instance Members
In “Accessing Packaged Classes” on page 152 we covered the use of the import keyword
to add classes from external packages so they could be accessed without their package
prefix. To wrap up this chapter on additional object-oriented features (notably objects,
case classes, and traits), we’ll look at an additional way to use namespace importing.

The import keyword can also be used to import members of classes and objects into the
current namespace. This makes it possible to access them directly without specifying
their enclosing instance (for classes) or name (for objects).

The syntax for importing class and object members is the same as importing packaged
classes. You can import a single member of a class instance by name, or the entire set
of fields and methods with the underscore character. Importing fields and methods does
not override privacy controls, so only those that would be normally accessible can be
imported.

Here is an example of a case class’s members being imported for better accessibility:

scala> case class Receipt(id: Int, amount: Double, who: String, title: String)

defined class Receipt

scala> {

 | val latteReceipt = Receipt(123, 4.12, "fred", "Medium Latte")

 | import latteReceipt._

 | println(s"Sold a $title for $amount to $who")

 | }

Sold a Medium Latte for 4.12 to fred

By importing the fields from a value with a lengthy name, latteReceipt, we could
access them directly in our println statement with a much simpler line of code.

Importing class and case class instance members can be tricky, however, when you are
working with multiple instances. Importing members from multiple classes would cre‐
ate a naming conflict, so keeping the import statements close to where they are being
used is a good practice to follow.

184 | Chapter 9: Objects, Case Classes, and Traits

The fields and methods of objects can be imported in the same manner. In fact, we have
already seen examples of importing object members in previous chapters. The members
of the collection.JavaConverters object were imported in “Java and Scala Collection
Compatibility” on page 99 to demonstrate Java and Scala compatibility functions. Like‐
wise, the global field of the concurrent.ExecutionContext.Implicits object was
imported in “Future Collections” on page 125 to enable the creation of new futures.

As an example of object imports, let’s add all of the methods from the util.Random
object. This object extends the util.Random class, providing a single global instance
that’s useful to use when you don’t need to set a new seed for random number generation:

scala> import util.Random._

import util.Random._

scala> val letters = alphanumeric.take(20).toList.mkString

letters: String = MwDR3EyHa1cr0JqsP9Tf

scala> val numbers = shuffle(1 to 20)

numbers: scala.collection.immutable.IndexedSeq[Int] = Vector(5, 10, 18, 1,

 16, 8, 20, 14, 19, 11, 17, 3, 15, 7, 4, 9, 6, 12, 13, 2)

The alphanumeric(): Stream and shuffle(Traversable) methods, members of the
util.Random object (and parent class), are here made accessible without their
object’s prefix.

Importing instance members is a great way to streamline your code. Care must be taken
to avoid naming conflicts, however, as well as any reductions in code readability. If
readers of your code will get confused by the source of the imported members you are
using, consider locating your import statement closer to the affected code.

Summary
While classes continue to be the core building block of Scala applications, they may be
enhanced by traits and complemented or supplanted by objects. By supporting multiple
inheritance by classes, traits extend the possibilities of highly reusable code. And based
on the ordering of traits, in a class definition or at instantiation time, the possible va‐
rieties of functionality are staggering. Objects are less flexible than traits, but provide a
built-in singleton mechanism with far less boilerplate than Java’s singleton tricks or its
static members and classes.

To be more precise, case classes should be included with classes as the core building
block of Scala applications. In many applications case classes are used exclusively in
place of classes, because the extra features they bring outweigh their subclassing limi‐
tations. To be even more precise, case classes aren’t only classes. They also generate
unseen companion objects. You may consider case class instances to be the same as class
instances, but case classes overall are more than classes.

Summary | 185

Every class instance and literal corresponds to a specific type. In this and the previous
chapter you have learned how to create your own types with Scala. But a type is more
than just a class. A class that takes a type parameter is a type, but every time it is in‐
stantiated with a type parameter, that too is a type. You can consider List, List[Int],
and List[String] to all correspond to the same class even though they have different
types. The same is true with a given class, and that class mixed in with a trait
at instantiation.

In the next chapter we will sort out the difference between classes and types. We’ll also
learn about new types that have been hidden by Scala’s expressive syntax, and cover ways
to improve the flexibility and specifications of your classes.

Break—Configuring Your First Scala Project
At this point we have covered the main body of content for this chapter. Before starting
with the exercises, however, we’ll need a short break to configure your first Scala project.
The current approach of editing in the REPL and/or executing .scala files directly won’t
work for the applications you’ll need to build.

With the introduction of objects as application entry points we now have a mechanism
for executing our compiled code. We can compile classes in different files and packages
and then access them from our application.

What we need now is a way to organize these dependencies and manage our project.
Any code we run may have external dependencies such as Java and Scala libraries hosted
in Maven repositories, local library dependencies, internal dependencies on our own
code in other files and packages, and dependencies on the Scala libraries and runtimes.
By using a dependency management and build tool, we can compile and execute against
these dependencies while letting the tool handle library downloading and path config‐
uration. We can also leverage dependency management to get our project imported into
an Integrated Development Environment (or “IDE”), so we can edit and run code from
the IDE or command line.

If you worked through the exercises in Chapter 7 (see “Exercises” on page 131) you’ll
know what tool I’m talking about. It is the Simple Build Tool (SBT), a Scala-based de‐
pendency management and build tool that you can use to configure, compile, and ex‐
ecute the Scala code in your project. If you haven’t installed this tool yet, see Isn’t SBT
Hard to Learn? for the instructions.

Now that you have SBT installed, create an empty project directory. To avoid naming
your project “MyProject” or “Project1,” let’s use the exciting phrase “HardyHeron” as
the project name. You may want to use this as the directory name as well.

Inside this new directory, run the following commands in your shell to add a command-
line application and execute it:

186 | Chapter 9: Objects, Case Classes, and Traits

[HardyHeron] > mkdir -p src/main/scala

[HardyHeron] > cat > src/main/scala/Hello.scala

object Hello {

 def main(args: Array[String]) {

 println("Hello from SBT")

 }

}

[HardyHeron] > sbt run

[info] Set current project to hardyheron (in build file:~/HardyHeron/)

[info] Updating {file:~/HardyHeron/}hardyheron...

[info] Resolving org.fusesource.jansi#jansi;1.4 ...

[info] Done updating.

[info] Compiling 1 Scala source to ~/HardyHeron/target/scala-2.10/classes...

[info] Running Hello

Hello from SBT

[success] Total time: 3 s, completed June 6, 2014 10:38:08 PM

[HardyHeron] >

Did you notice that we were able to compile and run an application without a build
script in place? SBT favors convention over configuration. Without a specific build script
it will look for mainstream Scala code under src/main/scala and test-only Scala code
under src/test/scala. The command sbt run invokes SBT with the “run” command,
which executes any command-line application it can find in the code base.

Now let’s add a build script. Although we clearly don’t need one to compile and run an
application, we will need it when we start adding external dependencies, i.e., external
Java and Scala libraries. Let’s add it now to simplify the process of adding
dependencies later.

SBT supports writing a build script in its own Scala-like script language, stored in the
file build.sbt at the root level of the project. It also supports writing a build script in
Scala, stored in the “project” directory, containing an object that extends its sbt.Build
parent class. Both types of SBT build scripts use some nonstandard Scala operators such
as assignments (:=) and dependency grouping (%). Fortunately, when you see them in
context they will likely make sense.

As of this writing in 2014, the SBT documentation recommends using the first approach,
writing a build.sbt in your project’s root directory. For this tutorial I’m going with the
second approach, which may not be recommended but avoids the use of the SBT .sbt
file format language in favor of the regular Scala syntax used in the second approach.

At the command line, run these commands to create a Scala-based build script and
execute our “Hello” application. We’ll start with one external dependency, the ScalaTest
testing framework:

Break—Configuring Your First Scala Project | 187

[HardyHeron] > cat > project/HardyHeronBuild.scala

import sbt._

import sbt.Keys._

object HardyHeronBuild extends Build

{

 val hardyHeronDependencies = List(

 "org.scalatest" % "scalatest_2.11" % "2.2.1" % "test"

)

 val hardyHeronSettings = List(

 name := "HardyHeron",

 version := "1.0",

 scalaVersion := "2.11.2",

 libraryDependencies := hardyHeronDependencies

)

 override lazy val settings = super.settings ++ hardyHeronSettings

}

[HardyHeron] >

[HardyHeron] > sbt compile

[info] Loading project definition from ~/HardyHeron/project

[info] Compiling 1 Scala source to ~/HardyHeron/project/target/scala-2.10/

 sbt-0.13/classes...

[info] Set current project to hardyheron (in build file:~/HardyHeron/)

[info] Updating {file:~/HardyHeron/}hardyheron...

[info] Resolving jline#jline;2.12 ...

[info] downloading http://repo1.maven.org/maven2/org/scalatest/

 scalatest_2.11/2.2.1/scalatest_2.11-2.2.1.jar ...

[info] [SUCCESSFUL] org.scalatest#scalatest_2.11;2.2.1!scalatest_2.11.jar

 (bundle) (5232ms)

[info] Done updating.

[success] Total time: 7 s, completed June 7, 2014 12:49:44 AM

[HardyHeron] > sbt "run Hello"

[info] Loading project definition from ~/HardyHeron/project

[info] Set current project to hardyheron (in build file:~/HardyHeron/)

[info] Running Hello

Hello from SBT

[success] Total time: 0 s, completed June 7, 2014 12:58:43 AM

[HardyHeron] >

Import the contents of the sbt package and sbt.Keys at the top of Scala-based
build files. This will pick up the Build base class, the property names (aka
“settings”) like name and version, and the special SBT operators like :=, %, and
%%.

188 | Chapter 9: Objects, Case Classes, and Traits

The name of the object, and the filename, are up to you. SBT is just looking for
subclasses of its sbt.Build class here.

This is the standard format for defining Maven/Ivy library (aka “artifact”)
dependencies in SBT. The four components, in order, are the group, artifact,
version, and the SBT component to which it applies, in this case to denote the
library is for tests only. There are several public Maven repository search engines
for finding libraries that include support for formatting the library as a
dependency in SBT. The last component to note is the double-percent, %%, which
instructs SBT to append _2.11 (the major version of Scala we are using) to the
artifact name. Scala libraries are generally compiled for specific major versions
of Scala such as 2.10 and 2.11, and this format is a standard Scala addition that
denotes the target version of the library.

This is just a list of settings, using the operator := to define settings based on
keys in sbt.Keys._.

The only field we’re directly overriding is the lazy val settings, a regular List of
SBT configurations. We’ll start with the parent class’s settings and then add in
our project’s settings.

Our ScalaTest library is downloaded from the main public Maven repository,
installed in a cache in your user directory, and added to the JVM “classpath”
when you next execute your application.

Let’s run “Hello” to verify our build is successful. Because we’ll be running this
from the command line we’ll use double quotes to surround run-main Hello
so that SBT interprets it as a single argument.

Now that we have a working build script, let’s import the project into an IDE. You’ll gain
instant compilation, code analysis, and discoverability in a modern IDE. If you are more
familiar with text-editing environments like Sublime Text, Vim, or Emacs, you should
spend some time becoming familiar with working in an IDE. Although these text editors
have extensions to support Scala development, you’ll likely find greater productivity
gains with this statically typed language in an IDE that can anticipate and verify every
line you write.

For this tutorial we’ll be using the IntelliJ IDEA 13 (or later) IDE. You can download its
excellent community edition for free. Make sure to install at least version 13 and also
IntelliJ’s Scala plug-in. You don’t need any third-party SBT plug-ins, because IntelliJ
IDEA 13 with Scala can open SBT projects directly.

To import the project, open IntelliJ IDEA and choose “Open Project,” then select our
“HardyHeron” project directory. In the “Import Project from SBT project” dialog, select
all of the options and set the “Project SDK” to your installation of Java 1.8 (aka Java 8).
If it doesn’t appear you may need to click “New…” to configure IntelliJ IDEA to support

Break—Configuring Your First Scala Project | 189

your Java installation. Figure 9-1 shows how this dialog should appear after you have
selected the options.

Figure 9-1. The Import Project dialog in IntelliJ IDEA 13

After importing the project, a project window should appear in IntelliJ IDEA. Navigate
through the “Project” view (or select it from View → Tool Windows if it is not already
open) until you find the Hello.scala file and open it up. You should see a view similar to
Figure 9-2, with the project structure in the “Project” view and the source for the “Hello”
class appearing with syntax highlighting to its right.

Figure 9-2. Viewing the project in IntelliJ IDEA

190 | Chapter 9: Objects, Case Classes, and Traits

Now that we have the source loaded in the IDE, let’s run it from here. Right-click in the
“Hello.scala” source view and select Run Hello. You should see the output message from
the “Hello” application appear in a new view, “Run,” below the source.

At this point you should have a fully working SBT project up and running inside IntelliJ
IDEA, and be able to add and edit your own classes, objects, and traits right here. If you
haven’t used this IDE before, you may want to read more about it by visiting the IntelliJ
IDEA product website. It has screencasts, tutorials, and guides that will help to explain
many of the features you’ll encounter while working on the exercises in this chapter.
We’ll just be using the most basic features in the IDE, but understanding how to take
advantage of core IDE features can help you to better experiment with and explore the
Scala language.

Now that you have Scala running in the IDE, it’s time to start some exercises.

Exercises
1. Let’s cover how to write a unit test in Scala with the ScalaTest framework. This

exercise will consist of adding a test to the IDE, executing it, and verifying its suc‐
cessful outcome. If you’re already familiar with executing tests in an IDE this should
be a fairly simple exercise. To better understand the ScalaTest framework, I rec‐
ommend that you take a break from this exercise and browse the official docu‐
mentation at the ScalaTest website.

We’ll start with the “HtmlUtils” object (see “Objects” on page 167). Create a new
Scala class by right-clicking the src/main/scala directory in the IDE and selecting
New → Scala Class. Type the name, HtmlUtils, and set the type to an object. Replace
the skeleton object with the following source:

object HtmlUtils {

 def removeMarkup(input: String) = {

 input

 .replaceAll("""</?\w[^>]*>""","")

 .replaceAll("<.*>","")

 }

}

The new HtmlUtils.scala file should be located in src/main/scala, the root directory
for source code in our project. Now add a new “HtmlUtilsSpec” class under src/test/
scala, creating the directory if necessary. Both SBT and IntelliJ will look for tests in
this directory, a counterpart to the main src/main/scala directory. Add the following
source to the HtmlUtilsSpec.scala file:

import org.scalatest._

class HtmlUtilsSpec extends FlatSpec with ShouldMatchers {

 "The Html Utils object" should "remove single elements" in {

Exercises | 191

 HtmlUtils.removeMarkup("
") should equal("")

 }

 it should "remove paired elements" in {

 HtmlUtils.removeMarkup("Hi") should equal("Hi")

 }

 it should "have no effect on empty strings" in {

 val empty = true

 HtmlUtils.removeMarkup("").isEmpty should be(empty)

 }

}

We’re only using the FlatSpec and ShouldMatchers types from this package, but
we will import everything so we can easily add additional test utilities in the future
(such as “OptionValues,” a favorite of mine). The class FlatSpec is one of several
different test types you can choose from, modeled after Ruby’s RSpec. ShouldMatch
ers adds the should and be operators to your test, creating a domain-specific lan‐
guage that can help make your tests more readable.

The first test starts off a bit differently from the other tests. With the FlatSpec, the
first test in a file should start with a textual description of what you are testing in
this file. Later tests will use the it keyword to refer to this description. This helps
to create highly readable test reports.

In the test body, the equal operator ensures that the value preceding should is equal
to its argument, here the empty string "". If not equal, it will cause the test to fail
and exit immediately. Likewise, the be operator fails the test if the value before
should isn’t the same instance, useful for comparing global instances like true,
Nil, and None.

Before running the test, open the IntelliJ Plugins preference panel under Prefer‐
ences and ensure that the “jUnit” plug-in is installed. The plug-in will ensure that
your test results will be easily viewable and browsable.

Once you have added the test to your project, go ahead and compile it in the IDE.
If it doesn’t compile, or it otherwise complains about the lack of a “ScalaTest” pack‐
age, make sure your build script has the ScalaTest dependency and that you can
view it in the “External Libraries” section of the “Project” view in IntelliJ.

Now we’ll run it. Right-click the test class’s name, HtmlUtilsSpec, and choose Run
HtmlUtilsSpec. Executing the test will take no more than a few seconds, and if you
entered the test and original application in correctly they will all be successful.
Figure 9-3 shows how the test results should appear when the test completes.

192 | Chapter 9: Objects, Case Classes, and Traits

Figure 9-3. The Test Results view in IntelliJ IDEA

Let’s conclude this exercise with an actual exercise for you to implement: add ad‐
ditional tests to our HtmlUtilsSpec test class. Are there there any feature areas that
aren’t yet tested? Are all valid HTML markup possibilities supported?

There’s also the question of whether JavaScript contained within “script” tags should
be stripped or appear along with the rest of the text. Consider this a bug in the
original version of HtmlUtils. Add a test to verify that the JavaScript text will be
stripped out and then run the test. When it fails, fix HtmlUtils and rerun the test
to verify it has been fixed.

Congratulations, you are now writing tests in Scala! Remember to keep writing tests
as you work through the rest of the exercises in this book, using them to assert how
your solutions should work and to catch any (unforseeable!) bugs in them.

2. Let’s work on a different example from this chapter. Create a new Scala trait titled
“SafeStringUtils” and add the following source:

trait SafeStringUtils {

 // Returns a trimmed version of the string wrapped in an Option,

 // or None if the trimmed string is empty.

 def trimToNone(s: String): Option[String] = {

 Option(s) map(_.trim) filterNot(_.isEmpty)

 }

}

Verify that the trait compiles in the IDE. If it all works, complete the following steps:

a. Create an object version of the trait.

Exercises | 193

b. Create a test class, SafeStringUtilsSpec, to test the SafeStringUtils.trimTo
None() method. Verify that it trims strings and safely handles null and empty
strings. You should have three to five separate tests in your test class. Run the
test class and verify it completes successfully.

c. Add a method that safely converts a string to an integer, without throwing an
error if the string is unparseable. Write and execute tests for valid and invalid
input. What are the most appropriate monadic collections to use in this func‐
tion?

d. Add a method that safely converts a string to a long, without throwing an error
if the string is unparseable. Write and execute tests for valid and invalid input.
What are the most appropriate monadic collections to use in this function?

e. Add a method that returns a randomly generated string of the given size, limited
to only upper- and lowercase letters. Write and execute tests that verify the cor‐
rect contents are return and that invalid input is handled. Are there any appro‐
priate monadic collections to use in this function?

3. Write a command-line application that will search and replace text inside files. The
input arguments are a search pattern, a regular expression, the replacement text,
and one or more files to search.

a. Start by writing a skeleton command-line application that parses the input ar‐
guments: the search pattern, the replacement text arguments, and the files to
process as a list of strings. Print these out to verify you have captured them
correctly.

b. Execute this skeleton application by running it from the command line with sbt
"run-main <object name> <input arguments>". The input arguments must
be in the same double quotes as the “run-main” argument so that the SBT tool
reads it all as a single command. You can also run it from the IDE by selecting
Run → Run… and creating a runtime configuration. Runtime configurations
allow you to specify the input arguments once, or else to show the entire con‐
figuration every time it is executed. Verify that your search pattern, replacement
text, and list of files is successfully parsed.

c. Implement the core of the application by reading each input file, searching for
and replacing the specified pattern, and then printing the result out to the con‐
sole. Try this with a few input files to verify your pattern gets replaced.

d. Now write the modified text back to the file it was read from. Here is an example
of using the Java library to write a string to a file:

import java.io._

val writer = new PrintWriter(new File("out.txt"))

writer.write("Hello, World!\nHere I am!")

writer.close()

194 | Chapter 9: Objects, Case Classes, and Traits

e. Make your application safer to use by having it create a backup of its input files
before modifying them. You can create a backup by first writing the unmodified
contents out to a file with the input’s name plus .bak. Use new

java.io.File(<file name>).exists() to ensure that the backup file’s name
does not exist before creating it. You can try incremental numbers such
as .bak1 and .bak2" to find unique backup filenames.

f. Create a test class and write tests to verify that your application will work as
expected. The core functionality of your application should be invocable as
methods without actually launching the application. Make sure the functionality
is broken down into methods of a readable and manageable size, and then write
individual tests for the core methods as well as the main method. To end the
exercise, run your tests and verify they all succeed, then run your application
from the command line with a test file.

4. Write an application that summarizes a file. It will take a single text file as input and
print an overall summary including the number of characters, words, and para‐
graphs as well as a list of the top 20 words by usage.

The application should be smart enough to filter out nonwords. Parsing a Scala file
should reveal words, for example, and not special characters such as “{” or “//”. It
should also be able to count paragraphs that have real content versus empty space.

Write tests that use your own multiline strings to verify the output. Your application
should be modularized into discrete methods for easier testing. You should be able
to write a test that gives the string “this is is not a test” and receives an instance that
will reveal the word “is” as the top used word.

To really test out your knowledge of this chapter’s contents, make sure to use objects,
traits, and case classes in your solution.

5. Write an application that reports on the most recently closed issues in a given Git‐
Hub project. The input arguments should include the repository name, project
name, and an optional number of issues to report with a default value of 10. The
output will have a report header and display each issue’s number, title, username,
number of comments, and label names. The output should be well-formatted, with
fixed-width columns delimited with pipes (|) and a header delimited with equals
signs (=).

You’ll need to read in the issues from the GitHub API (see exercise 7 in “Exerci‐
ses” on page 102 for information on reading a URL’s contents), parse the JSON
values, and then print a detailed format. Here is an example URL for returning the
10 most recent closed issues from the official Scala project on GitHub:

https://api.github.com/repos/scala/scala/issues?state=closed&per_page=10

We’ll use the Json4s library to parse the JSON response into a list of our own case
classes. First, add this dependency to your build script and rebuild the project:

Exercises | 195

"org.json4s" %% "json4s-native" % "3.2.10"

This can go either before or after the ScalaTest dependency. IntelliJ should pick up
the change, download the library, and rebuild your project. If it is not doing so,
open the SBT view in IntelliJ and refresh the project, or run sbt clean compile
from the command line.

The JSON response from the API is rather large, but you don’t need to parse all of
the fields. You should design a case class that contains the exact fields you want to
parse from the JSON, using the Option type for nullable or optional fields. When
you parse the JSON response, Json4s will insert only the fields you have defined in
your case class and ignore the rest.

Here is an example of using Json4s to parse the “labels” array from the larger GitHub
issue document. If you study the output from the API for a single record, you should
be able to design a series of case classes that will only contain the information you
need. Note that the JSON document returned by the API is an array, so you will
probably need to invoke the extract method with a List (e.g., ex

tract[List[GithubIssue]]):

import org.json4s.DefaultFormats

import org.json4s.native.JsonMethods

val jsonText = """

{

 "labels": [

 {

 "url": "https://api.github.com/repos/scala/scala/labels/tested",

 "name": "tested",

 "color": "d7e102"

 }

]

}

"""

case class Label(url: String, name: String)

case class LabelDocument(labels: List[Label])

implicit val formats = DefaultFormats

val labelDoc = JsonMethods.parse(jsonText).extract[LabelDocument]

val labels = labelDoc.labels

val firstLabel = labels.headOption.map(_.name)

DefaultFormats has support for common date formats as well as numbers
and strings.

We’re using the “native” JSON parser in JsonMethods to parse JSON
documents and extract them into case class instances.

196 | Chapter 9: Objects, Case Classes, and Traits

A “Label” is what I’m calling an item in the “labels” JSON array. Note that
I didn’t need to specify the “color” field.

The total JSON document has a single field, “labels,” so we need a case class
that represents the document.

The implicit keyword is one we’ll study in Chapter 10. I’m sorry to spring
this on you before we have had a chance to cover it, but you’ll need this line
to ensure that Json4s can parse your JSON document.

JsonMethods parses the JSON text to its own intermediate format, which
can then be extracted with a given case class.

6. This exercise depends on the previous exercise being finished. Once you have the
completed GitHub report application, let’s work on refactoring it for better reusabil‐
ity and reliability.

a. Start by writing tests for the GitHub report to verify the correct behavior of each
component. How much of the logic in the application can you test if your com‐
puter lacked an Internet connection? You should be able to test most of the logic
without being able to actually connect to the GitHub site.

b. Refactor the JSON handling code out to its own trait, e.g., “JsonSupport.” Write
tests to verify that it parses JSON code correctly, and handles exceptions that
may be thrown by the Json4s library. Would it be useful to provide an object
version of this trait?

c. Do the same for the web handling code. Create your own “HtmlClient” trait and
object that can take a URL and return the content as a list of strings. Can you
include the server’s status response in a class along with the content? Make sure
to write tests to verify the web handling code can prevent any exceptions from
being thrown.

d. Finally, refactor your report generation code, the part that handles the clean
fixed-width columns, into a reusable trait. Can it take a tuple of any size and
print out its contents? Is there a more appropriate data type that it should take,
one that supports variable numbers of columns but knows how to print out
strings versus double values? Make sure your report generation code takes the
maximum line width as an argument.

Exercises | 197

CHAPTER 10

Advanced Typing

By this point in the book you should have a pretty good understanding of the Scala
language. If you have read the chapters and pursued the exercises, then you are already
pretty good at defining classes, writing functions, and working with collections. You
know everything you need to in order to go out and start building your own Scala
applications.

However, if you want to be able to read other developers’ Scala code, read and under‐
stand the Scala API, or understand how Scala works, you will want to read this chapter.
In it we will cover many of the type features that make the language possible.

One interesting feature is how the apparently high-level tuples and function literals are
built with regular classes. Their fancy syntax belies their humble foundation, which you
can validate by creating them as class instances:

scala> val t1: (Int, Char) = (1, 'a')

t1: (Int, Char) = (1,a)

scala> val t2: (Int, Char) = Tuple2[Int, Char](1, 'a')

t2: (Int, Char) = (1,a)

scala> val f1: Int=>Int = _ + 2

f1: Int => Int = <function1>

scala> val f2: Int=>Int = new Function1[Int, Int] { def apply(x: Int) = x * 2 }

f2: Int => Int = <function1>

Another interesting type feature is implicit classes. Implicit classes provide a type-safe
way to “monkey-patch” new methods and fields onto existing classes. Through auto‐
matic conversion from the original class to the new class, methods and fields in the
implicit class can be invoked directly on the original class without any changes to the
class’s structure:

199

scala> object ImplicitClasses {

 | implicit class Hello(s: String) { def hello = s"Hello, $s" }

 | def test = {

 | println("World".hello)

 | }

 | }

defined object ImplicitClasses

scala> ImplicitClasses.test

Hello, World

Implicit parameters share a similar behavior to implicit classes, providing parameters
in the local namespace that may be added to implicit-ready methods. A method that
defines some of its parameters as being “implicit” can be invoked by code that has a
local implicit value, but can also be invoked with an explicit parameter:

scala> object ImplicitParams {

 | def greet(name: String)(implicit greeting: String) = s"$greeting, $name"

 | implicit val hi = "Hello"

 | def test = {

 | println(greet("Developers"))

 | }

 | }

defined object ImplicitParams

scala> ImplicitParams.test

Hello, Developers

Finally, we’ll get down to types themselves. The type parameters we have used for classes,
traits, and functions are actually quite flexible. Instead of allowing any type to be used
as a type parameter, you can specify that one meet an upper bound (with <:) or a lower
bound (with >:):

scala> class Base { var i = 10 }; class Sub extends Base

defined class Base

defined class Sub

scala> def increment[B <: Base](b: Base) = { b.i += 1; b }

increment: [B <: Base](b: Base)Base

Type parameters can also morph into compatible types, even when bound in a new
instance. When a type parameter is specified as covariant (with +), it can change into a
compatible base type. The List collection is covariant, so a list of a subclass can be
converted to a list of a base class:

scala> val l: List[Base] = List[Sub]()

l: List[Base] = List()

Learning these advanced type features will give you extra tools for writing better Scala
code. You will also be better able to understand the official Scala library documentation,

200 | Chapter 10: Advanced Typing

as the library makes heavy use of advanced type features. Finally, they will help you to
see and understand the machinery that installs many Scala features in place.

In the next section, we’ll take a closer look at the foundation of tuples and functions as
regular classes, and how you can start taking advantage of their methods.

Tuple and Function Value Classes
If you have already read the previous chapters in this book there will be no need to
introduce tuples and function values to you. They were well covered in “Tuples” on page
25 and “Function Types and Values” on page 66, respectively. What we haven’t yet
covered about them is that behind their special syntax is a set of regular classes.

That’s right, the special sauce that makes tuples like (1, 2, true)) and function literals
like (n: String) => s"Hello, $n" possible is just… sauce. The syntax shortcuts to
create these instances are short and expressive, but the actual implementation is plain
old classes that you could have written yourself. Don’t be disappointed by this discovery,
however. The good news is it means these high-level constructs are backed by safe, type-
parameterized classes.

Tuples are implemented as instances of the TupleX[Y] case class, where “X” is a number
from 1 to 22 signifying its arity (the number of input parameters). The type parameter
“Y” varies from a single type parameters for Tuple1 to 22 type parameters for Tu
ple22. Tuple1[A] has the single field _1, Tuple2[A,B] has the fields _1 and _2, and so
on. When you create a tuple with the parentheses syntax (e.g., (1, 2, true), a tuple
class with the same number of parameters gets instantiated with the values. In other
words, the expressive syntax of tuples is simply a shortcut to a case class you could have
written yourself.

The TupleX[Y] case classes each extend a ProductX trait with the same number. These
traits offer operations such as productArity, returning the arity of the tuple, and pro
ductElement, a nontype-safe way to access the nth element of a tuple. They also provide
companion objects that implement unapply (see Table 9-1) to enable pattern matching
on tuples.

Let’s try an example of creating a tuple not with the parentheses syntax but by instan‐
tiating the Tuple2 case class:

scala> val x: (Int, Int) = Tuple2(10, 20)

x: (Int, Int) = (10,20)

scala> println("Does the arity = 2? " + (x.productArity == 2))

Does the arity = 2? true

Tuple case classes are just a data-centric implementation of an expressive syntax. Func‐
tion value classes are similar but provide a logic-centric implementation.

Tuple and Function Value Classes | 201

Function values are implemented as instances of the FunctionX[Y] trait, numbered
from 0 to 22 based on the arity of the function. The type parameter “Y” varies from a
single type parameter for Function0 (because the return value needs a parameter) to
23 type parameters for Function22. The actual logic for the function, whether an in‐
vocation of an existing function or a new function literal, is implemented in the class’s
apply() method.

In other words, when you write a function literal, the Scala compiler converts it to the
body of the apply() method in a new class extending FunctionX. This forcing mecha‐
nism makes Scala’s function values compatible with the JVM, which restricts all func‐
tions to being implemented as class methods.

Let’s try out FunctionX types by writing a function literal with the regular syntax we
have used thus far, and then as the body of a FunctionX.apply() method. We’ll create
an anonymous class that extends the Function1[A,B] trait:

scala> val hello1 = (n: String) => s"Hello, $n"

hello1: String => String = <function1>

scala> val h1 = hello1("Function Literals")

h1: String = Hello, Function Literals

scala> val hello2 = new Function1[String,String] {

 | def apply(n: String) = s"Hello, $n"

 | }

hello2: String => String = <function1>

scala> val h2 = hello2("Function1 Instances")

h2: String = Hello, Function1 Instances

scala> println(s"hello1 = $hello1, hello2 = $hello2")

hello1 = <function1>, hello2 = <function1>

The function values stored in hello1 and hello2 are essentially equivalent. And the
Function1 class, along with all of the other FunctionX classes, overrides toString with
its name in lowercase surrounded by angle brackets. Therefore, when you print out
hello1 and hello2 you get the same output, <function1>. If this looks familiar to you,
it’s probably because you’ve seen this in every single code sample in the book where we
have stored function values. Except, of course, where we have seen <function2> emitted
by values of Function2 and so on.

The Function1 trait contains two special methods not available in Function0 or any of
the other FunctionX traits. You can use them to combine two or more Function1
instances into a new Function1 instance that will execute all of the functions in order
when invoked. The only restriction is that the return type of the first function must
match the input type of the second function, and so on.

202 | Chapter 10: Advanced Typing

The method andThen creates a new function value from two function values, executing
the instance on the left followed by the instance on the right. The method compose works
the same way but in opposite order.

Let’s try them out with regular function literals:

scala> val doubler = (i: Int) => i*2

doubler: Int => Int = <function1>

scala> val plus3 = (i: Int) => i+3

plus3: Int => Int = <function1>

scala> val prepend = (doubler compose plus3)(1)

prepend: Int = 8

scala> val append = (doubler andThen plus3)(1)

append: Int = 5

Understanding how first-class functions are implemented as FunctionX classes is an
important first step to learning Scala’s type model. The language provides a concise and
expressive syntax while the compiler takes care of supporting the JVM’s less-expressive
runtime model, all while supporting type-safety for more stable applications.

Implicit Parameters
In “Partially Applied Functions and Currying” on page 74 we studied partially applied
functions, where a function could be invoked without its full set of parameters. The
result was a function value that could be invoked with the remaining set of unspecified
parameters, invoking the original function.

What if you could invoke a function without specifying all of the parameters, but the
function would actually be executed? The missing, unspecified parameters would have
to come from somewhere to ensure the function would operate correctly. One approach
would be to define default parameters for your function, but this would require having
the function know what the correct values for the missing parameters should be.

Another approach is to use implicit parameters, where the caller provides the default
value in its own namespace. Functions can define an implicit parameter, often as a
separate parameter group from the other nonimplicit parameters. Invokers can then
denote a local value as implicit so it can be used to fill in as the implicit parameter. When
the function is invoked without specifying a value for the implicit parameter, the local
implicit value is then picked up and added to the function invocation.

Use the implicit keyword to mark a value, variable, or function parameter as being
implicit. An implicit value or variable, if available in the current namespace, may be
used to fill in for an implicit parameter in a function invocation.

Implicit Parameters | 203

Here’s one example of a function defined with an implicit parameter. The function is
defined as a method in an object to keep its namespace separate from the invoker’s
namespace:

scala> object Doubly {

 | def print(num: Double)(implicit fmt: String) = {

 | println(fmt format num)

 | }

 | }

defined object Doubly

scala> Doubly.print(3.724)

<console>:9: error: could not find implicit value for parameter fmt: String

 Doubly.print(3.724)

scala> Doubly.print(3.724)("%.1f")

3.7

Our new print method has an implicit parameter, so we’ll either need to specify an
implicit value/variable in our namespace or add the parameter explicitly. Fortunately,
adding the explicit parameter works fine.

This time we’ll add an implicit local value to invoke the print method without explicitly
passing the implicit parameter:

scala> case class USD(amount: Double) {

 | implicit val printFmt = "%.2f"

 | def print = Doubly.print(amount)

 | }

defined class USD

scala> new USD(81.924).print

81.92

Our implicit value was picked up as the second parameter group for the Dou
bly.print method, without the need to explicitly pass it.

Implicit parameters are heavily used in Scala’s library. They mostly provide functionality
that callers can choose to override but otherwise may ignore, such as collection builders
or default collection ordering.

If you use implicit parameters, keep in mind that excessive use can make your code hard
to read and understand. Developers usually like to know what’s being passed to a func‐
tion they are invoking. Finding out that their function invocation included implicit
parameters without their knowledge may be an unwelcome surprise. You can avoid this
by limiting your implicit parameters to circumstances that support a function’s imple‐
mentation without changing its expected logic or data.

204 | Chapter 10: Advanced Typing

Implicit Classes
Another implicit feature in Scala, similar only in nature to implicit parameters, is im‐
plicit conversions with classes. An implicit class is a type of class that provides an auto‐
matic conversion from another class. By providing an automatic conversion from in‐
stances of type A to type B, an instance of type A can appear to have fields and methods
as if it were an instance of type B.

What About Implicit Defs?
Until Scala 2.10, implicit conversion was handled by implicit def
methods that took the original instance and returned a new in‐
stance of the desired type. Implicit methods have been supplanted by
implicit classes, which provide a safer and more limited scope for
converting existing instances. If you want to use implicit defs in your
own code, see the scala.language.implicitConversions() meth‐
od in the Scaladocs for instructions on how to fully enable this feature.

The Scala compiler uses implicit conversions when it finds an unknown field or method
being accessed on an instance. It checks the current namespace for any implicit con‐
version that (1) takes the instance as an argument and (2) implements that missing field
or method. If it finds a match it will add an automatic conversion to the implicit class,
supporting the field or method access on the implicit type. Of course if a match isn’t
found, you will get a compilation error, which is the normal course of action for invoking
unknown fields or methods on your instances.

Here is an example of an implicit class that adds a “fishes” method to any integer val‐
ue. The implicit class takes an integer and defines the “fishes” method it wants to add
to integers:

scala> object IntUtils {

 | implicit class Fishies(val x: Int) {

 | def fishes = "Fish" * x

 | }

 | }

defined object IntUtils

scala> import IntUtils._

import IntUtils._

scala> println(3.fishes)

FishFishFish

Fishies, defined inside an object, implicitly converts integers to itself …

… so that the fishes() method will be defined for all integers.

Before using it, the implicit class must be added to the namespace …

Implicit Classes | 205

… and then the fishes() method can be invoked on any integer.

Implicit classes make this kind of field and method grafting possible, but there are some
restrictions about how you can define and use them:

1. An implicit class must be defined within another object, class, or trait. Fortunately,
implicit classes defined within objects can be easily imported to the current name‐
space.

2. They must take a single nonimplicit class argument. In the preceding example, the
Int parameter was sufficient to convert an Int to a Fishies class in order to access
the fishes method.

3. The implicit class’s name must not conflict with another object, class, or trait in the
current namespace. Thus, a case class could not be used as an implicit class because
its automatically generated companion object would break this rule.

The preceding example follows all of these rules. It is implemented inside an object
(“IntUtils”), takes a single argument with the instance to be converted, and has no name
conflicts with other types. Although you can implement your implicit classes in objects,
classes, or traits, I find it works better to implement them in objects. Objects aren’t
subclassable, so you will never automatically pick up an implicit conversion from them.
Also, you can easily add an object’s implicit classes to your namespace by importing
some or all of the object’s members.

To be precise, you will never automatically pick up an implicit conversion other than

the ones in the scala.Predef object. The members of this object, a part of the Scala
library, are automatically added to the namespace. It includes, among other type fea‐
tures, implicit conversions that enable some of Scala’s expressive syntax. Among them
is the arrow operator (->) that you have already used (see “Tuples” on page 25) to
generate 2-sized tuples from any two values.

Here’s a simplified version of the implicit class that makes the arrow operator possible:

implicit class ArrowAssoc[A](x: A) {

 def ->[B](y: B) = Tuple2(x, y)

}

As an example, take the expression 1 → "a", which generates a tuple with an integer
and a string. What’s really occurring is an implicit conversion of an integer to an instance
of ArrowAssoc followed by an invocation of the “→” method, which finally returns a
new Tuple2. But because the implicit conversion was added to the namespace… im‐
plicitly… the expression is no greater than two values separated by an arrow.

Implicit classes are a great way to add useful methods to existing classes. Used carefully,
they can help to make your code more expressive. Take care to avoid hurting readability,

206 | Chapter 10: Advanced Typing

however. You wouldn’t want developers who hadn’t seen the Fishies implicit class be
forced to wonder, “What the heck is a fishes method and where is it implemented?”

Types
We just devoted several sections in this chapter to type-related features such as implicit
conversions and function classes. In this section we’ll move on from type-related fea‐
tures to focus on the core subject of types themselves.

A class is an entity that may include data and methods, and has a single, specific defi‐
nition. A type is a class specification, which may match a single class that conforms to
its requirements or a range of classes. The Option class, for example, is a type, but so is
Option[Int]. A type could be a relation, specifying “class A or any of its descendants,”
or “class B or any of its parent classes.” It could also be more abstract, specifying “any
class that defines this method.”

The same can be said for traits, being entities that can include data and methods and
have single, specific definitions. Types are class specifications but work equally well with
traits. Objects, however, are not considered to be types. They are singletons, and while
they may extend types they are not types themselves.

The examples I have used to describe the concept of types in Scala all pertain to some
wonderful features we’ll explore in this section. They can help you to write stricter, safer,
stabler, and better-documented code, which is the entire point of having a strong type
system.

We’ll start with the ability to define your own types without creating a single class.

Type Aliases
A type alias creates a new named type for a specific, existing type (or class). This new
type alias is treated by the compiler as if it were defined in a regular class. You can create
a new instance from a type alias, use it in place of classes for type parameters, and specify
it in value, variable, and function return types. If the class being aliased has type pa‐
rameters, you can either add the type parameters to your type alias or fix them with
specific types.

Like implicit conversions, however, type aliases can only be defined inside objects,
classes, or traits. They only work on types, also, so objects cannot be used to create type
aliases.

You can use the type keyword to define a new type alias.

Types | 207

Syntax: Defining a Type Alias

type <identifier>[type parameters] = <type name>[type parameters]

Okay, this is the type section, so let’s create some types!

scala> object TypeFun {

 | type Whole = Int

 | val x: Whole = 5

 |

 | type UserInfo = Tuple2[Int,String]

 | val u: UserInfo = new UserInfo(123, "George")

 |

 | type T3[A,B,C] = Tuple3[A,B,C]

 | val things = new T3(1, 'a', true)

 | }

defined object TypeFun

scala> val x = TypeFun.x

x: TypeFun.Whole = 5

scala> val u = TypeFun.u

u: TypeFun.UserInfo = (123,George)

scala> val things = TypeFun.things

things: (Int, Char, Boolean) = (1,a,true)

In this example, the type Whole is now an alias for the abstract class Int. Also, the type
UserInfo is an alias for a tuple with an integer in the first position and a string in the
second. Because a Tuple2 is an instantiable case class, we were able to instantiate it
directly from the type alias UserInfo. Finally, our T3 type doesn’t fix its type parameters,
and so can be instantiated with any types.

Type aliases are a useful way to refer to existing types with a local, specific name. A
Tuple2[Int,String] used regularly inside a class may be more useful if it were named
UserInfo. However, as with other advanced type features, type aliases should not replace
careful object-oriented design. A real class named UserInfo will be more stable and
intuitive in the long term than using type aliases.

Abstract Types
Whereas type aliases resolve to a single class, abstract types are specifications that may
resolve to zero, one, or many classes. They work in a similar way to type aliases, but
being specifications they are abstract and cannot be used to create instances. Abstract
types are popularly used for type parameters to specify a range of acceptable types that
may be passed. They can also be used to create type declarations in abstract classes,
which declare types that concrete (nonabstract) subclasses must implement.

208 | Chapter 10: Advanced Typing

As an example of the latter, a trait may contain a type alias with an unspecified type.
That type declaration can be reused in method signatures, and must be filled in by a
subclass.

Let’s create such a trait:

scala> class User(val name: String)

defined class User

scala> trait Factory { type A; def create: A }

defined trait Factory

scala> trait UserFactory extends Factory {

 | type A = User

 | def create = new User("")

 | }

defined trait UserFactory

The abstract type A in Factory is used as the return type from the create method. In a
concrete subclass the type is redefined with a type alias to a specific class.

Another way of writing this trait and class would be to use type parameters. Here’s an
example of implementing the preceding trait and class with them:

scala> trait Factory[A] { def create: A }

defined trait Factory

scala> trait UserFactory extends Factory[User] { def create = new User("") }

defined trait UserFactory

Abstract types are an alternative to type parameters when designing generic classes. If
you want a parameterizable type, then type parameters work great. Otherwise, abstract
types may be more suitable. The UserFactory example class works just as well with a
parameterizable type versus defining its own type alias.

In this example there were no restrictions on the type allowed for subclasses of the
Factory trait. However, it is often more useful to be able to specify bounds for the type,
an upper or lower bound that ensures that any type implementation meets a certain
standard.

Bounded Types
A bounded type is restricted to being either a specific class or else its subtype or base
type. An upper bound restricts a type to only that type or one of its subtypes. Another
way of saying this is that an upper bound defines what a type must be, and through
polymorphism accepts subtypes. A lower bound restricts a type to only that type or else
one of the base types it extends.

You can use the upper-bound relation operator (<:) to specify an upper bound for
a type.

Types | 209

Syntax: Upper Bounded Types

<identifier> <: <upper bound type>

Before trying out a bounded type, let’s define a few classes for testing:

scala> class BaseUser(val name: String)

defined class BaseUser

scala> class Admin(name: String, val level: String) extends BaseUser(name)

defined class Admin

scala> class Customer(name: String) extends BaseUser(name)

defined class Customer

scala> class PreferredCustomer(name: String) extends Customer(name)

defined class PreferredCustomer

Now we’ll define a function that takes a parameter with an upper bound:

scala> def check[A <: BaseUser](u: A) { if (u.name.isEmpty) println("Fail!") }

check: [A <: BaseUser](u: A)Unit

scala> check(new Customer("Fred"))

scala> check(new Admin("", "strict"))

Fail!

Our type parameter A is limited to only types that are equal to or extend the BaseUser
type. This makes it possible for our parameter u to access the “name” field. Without the
upper-bound restriction, accessing the “name” field on an unknown type would have
led to a compilation error. The exact type of the u parameter is preserved, so a future
version of this check function could safely return it with the correct type if necessary.

A less restrictive form of the upper-bound operator is available using the view-bound
operator (<%). While an upper bound requires a type (and is compatible with subtypes),
a view bound also supports anything that can be treated as that type. Thus view bounds
are open to implicit conversion, allowing types that are not the requested type but can
be converted to it. An upper bound is more restrictive, because implicit conversions are
not considered as part of the type requirements.

The opposite of upper bounds are lower bounds, which specify the lowest acceptable
class. Use the lower-bound relation operator (>:) to specify a lower bound for a type:

Syntax: Lower Bounded Types

<identifier> >: <lower bound type>

Let’s create a function that returns no lower than a Customer type, although the actual
implmentation may be lower.

210 | Chapter 10: Advanced Typing

scala> def recruit[A >: Customer](u: Customer): A = u match {

 | case p: PreferredCustomer => new PreferredCustomer(u.name)

 | case c: Customer => new Customer(u.name)

 | }

recruit: [A >: Customer](u: Customer)A

scala> val customer = recruit(new Customer("Fred"))

customer: Customer = Customer@4746fb8c

scala> val preferred = recruit(new PreferredCustomer("George"))

preferred: Customer = PreferredCustomer@4cd8db31

Although a new PreferredCustomer instance was returned, the type of the prefer
red value is set by the return type, which guarantees no lower than a Customer.

Bounded types can also be used to declare abstract types. Here is an example of an
abstract class declaring an abstract type and using it in a declared method. The concrete
(nonabstract) subclasses then implement the type declaration as a type alias and use the
type alias in the defined method. The result is that implementations of the class imple‐
ment the method but assure that only a compatible type is used:

scala> abstract class Card {

 | type UserType <: BaseUser

 | def verify(u: UserType): Boolean

 |

 | }

defined class Card

scala> class SecurityCard extends Card {

 | type UserType = Admin

 | def verify(u: Admin) = true

 | }

defined class SecurityCard

scala> val v1 = new SecurityCard().verify(new Admin("George", "high"))

v1: Boolean = true

scala> class GiftCard extends Card {

 | type UserType = Customer

 | def verify(u: Customer) = true

 | }

defined class GiftCard

scala> val v2 = new GiftCard().verify(new Customer("Fred"))

v2: Boolean = true

As with nonbounded types, the choice of using abstract types defined inside base classes
versus type parameters isn’t always clear. Many developers prefer type parameters for
their more expressive syntax. However, using bounded types is often preferred over
nonbounded types. They not only restrict invalid type usage in the subclasses but also

Types | 211

work as a kind of self-documentation. They make it clear which types are expected to
be used with a set of classes.

Type Variance
Whereas adding upper or lower bounds will make type parameters more restrictive,
adding type variance makes type parameters less restrictive. Type variance specifies how
a type parameter may adapt to meet a base type or subtype.

By default, type parameters are invariant. An instance of a type-parameterized class is
only compatible with that class and parameterized type. It could not be stored in a value
where the type parameter is a base type.

This behavior often surprises developers, who are familiar with Scala’s support for poly‐
morphism. With polymorphism, a value with a given type may take the shape of one of
its base types. For example, an instance of a type can be assigned to a value with the
explicit type of its base type.

Here’s an example of Scala’s polymorphism, allowing lower types to be stored in values
with higher types. We’ll use this two-part vehicular class hierarchy for the rest of the
examples in this section:

scala> class Car { override def toString = "Car()" }

defined class Car

scala> class Volvo extends Car { override def toString = "Volvo()" }

defined class Volvo

scala> val c: Car = new Volvo()

c: Car = Volvo()

The same polymorphic adaptation doesn’t hold for type parameters, however:

scala> case class Item[A](a: A) { def get: A = a }

defined class Item

scala> val c: Item[Car] = new Item[Volvo](new Volvo)

<console>:12: error: type mismatch;

 found : Item[Volvo]

 required: Item[Car]

Note: Volvo <: Car, but class Item is invariant in type A.

You may wish to define A as +A instead. (SLS 4.5)

 val c: Item[Car] = new Item[Volvo](new Volvo)

While a Volvo instance may be assigned to a value of type Car, an Item[Volvo] instance
may not be assigned to a value of type Item[Car]. Type parameters, being invariant by
default, cannot adapt to alternate types even if they are compatible.

To fix this, you’ll need to make the type parameter in Item covariant. Covariant type
parameters can automatically morph into one of their base types when necessary. You

212 | Chapter 10: Advanced Typing

can mark a type parameter as being covariant by adding a plus sign (+) in front of the
type parameter.

Types | 213

Let’s redefine the Item class with a covariant type parameter so that the Item[Volvo]
type can change into Item[Car]:

scala> case class Item[+A](a: A) { def get: A = a }

defined class Item

scala> val c: Item[Car] = new Item[Volvo](new Volvo)

c: Item[Car] = Item(Volvo())

scala> val auto = c.get

auto: Car = Volvo()

The type parameter “A” is now covariant and can morph from a subtype to a base type.
In other words, an instance of Item[Volvo] can be assigned to a value with the type
Item[Car].

The Item.get() method likewise supports the type parameter’s covariance. While the
instance is a Item[Volvo] and contains an actual Volvo, the value’s type is Item[Car]
and so the return type of c.get is Car.

Covariance is a great tool for morphing type parameters into their base types. However,
it is not always applicable. For example, an input parameter to a method cannot be
covariant, for the same reasons that a base type cannot be converted to a subtype.

An input parameter being covariant means that it would be bound to a subtype but be
invokable with a base type. This is an impossible conversion, because a base type cannot
be converted to a subtype.

Let’s see what the Scala compiler says when we try to use a covariant type parameter as
an input parameter type for a method:

scala> class Check[+A] { def check(a: A) = {} }

<console>:7: error: covariant type A occurs in contravariant position in

 type A of value a

 class Check[+A] { def check(a: A) = {} }

As the error from the Scala compiler explains, a type parameter used in a method pa‐
rameter is contravariant, not covariant. Contravariance is where a type parameter may
morph into a subtype, in the opposite direction of a polymorphic transition from sub‐
type to base type.

Contravariant type parameters are marked with a minus sign (–) in front of the type
parameter. They can be used for input parameters to methods but not as their return
types. Return types are covariant, because their result may be a subtype that is poly‐
morphically converted to a base type.

Let’s redefine this example with a contravariant type parameter so it can compile:

scala> class Check[-A] { def check(a: A) = {} }

defined class Check

214 | Chapter 10: Advanced Typing

Alternatively, you could also leave the type parameter invariant. Then the check()
method could only be invoked with an input parameter of the exact same type as its
class’s type parameter:

scala> class Check[A] { def check(a: A) = {} }

defined class Check

This demonstrates how to solve the “covariant parameter in contravariant position”
error, but we’ll need a better example to demonstrate contravariance versus covariance.
Let’s run through the experience of defining covariant and contravariant type parame‐
ters with a more comprehensive example.

In the first of two parts we’ll define the classes and methods to use. We’ll use the Car
class, its subclass Volvo, and a new subclass of Volvo called VolvoWagon. With this three-
level class hierarchy we can pick a middle class, Volvo, and try to replace it with either
its subclass or base class. Then we’ll use Item to test covariance and Check to test con‐
travariance. Finally we’ll define methods that require Item and Check with the middle
class Volvo. This way we’ll be able to experiment with its subclass and base class to find
out what works:

scala> class Car; class Volvo extends Car; class VolvoWagon extends Volvo

defined class Car

defined class Volvo

defined class VolvoWagon

scala> class Item[+A](a: A) { def get: A = a }

defined class Item

scala> class Check[-A] { def check(a: A) = {} }

defined class Check

scala> def item(v: Item[Volvo]) { val c: Car = v.get }

item: (v: Item[Volvo])Unit

scala> def check(v: Check[Volvo]) { v.check(new VolvoWagon()) }

check: (v: Check[Volvo])Unit

The Item class clearly needs a covariant type parameter. When bound to type Volvo its
get() method will return a Volvo, which we should be able to store in a value with the
type Car. This follows the standard rules of polymorphism where a base class value can
store an instance of its subclass.

Likewise, the Check class clearly needs a contravariant type parameter. When bound to
type Volvo its check() method takes a Volvo, so we should be able to pass it an instance
of VolvoWagon. This also follows the standard rules of polymorphism, where an instance
of a subclass can be passed to a method that expects its base class.

In the second of two parts we’ll invoke the methods with the base class, exact class, and
subclass:

Types | 215

scala> item(new Item[Car](new Car()))

<console>:14: error: type mismatch;

 found : Item[Car]

 required: Item[Volvo]

 item(new Item[Car](new Car()))

 ^

scala> item(new Item[Volvo](new Volvo))

scala> item(new Item[VolvoWagon](new VolvoWagon()))

scala> check(new Check[Car]())

scala> check(new Check[Volvo]())

scala> check(new Check[VolvoWagon]())

<console>:14: error: type mismatch;

 found : Check[VolvoWagon]

 required: Check[Volvo]

 check(new Check[VolvoWagon]())

The Item class has a covariant type parameter, which can morph from a subclass
to a base class but not the other way around.

Here we see covariance in action, as Item[VolvoWagon] becomes Item[Volvo].

Here is contravariance in action, as Check[Car] becomes Check[Volvo].

But not the other way around, because a contravariant type parameter cannot
move from a base class to a subclass.

Covariance and contravariance can make type parameters less restrictive, but have their
own restrictions about how they may be used. If you are unsure whether to use them,
consider leaving your type parameters invariant. This is the default state for type pa‐
rameters, and you may find it safer to keep all type parameters invariant unless a need
arises to change them.

Package Objects
Most of the advanced types we have covered in this chapter, such as implicit parameters,
implicit conversions, and type aliases, can only be defined within other types. This
restriction helps to corral these entities, ensuring that in most cases they are only added
to the namespace explicitly through imports.

One exception is the scala.Predef object, whose contents are added automatically to
the namespace in Scala. Another exception is through package objects, a unique object
for each package that also gets imported into the namespace of any code in that package.

216 | Chapter 10: Advanced Typing

Package objects are defined in their own file, package.scala, located in the package they
will be affecting. You can define a package object by adding the package keyword before
the object in the definition.

Here is an example package object that defines a new type alias, Mappy:

// located on com/oreilly/package.scala

package object oreilly {

 type Mappy[A,B] = collection.mutable.HashMap[A,B]

}

Any class, trait, or object defined in this package will pick up the Mappy[A,B] type alias
and be able to use it directly.

The core “scala” package in the Scala library includes a package object like this one,
adding many popular immutable collections to the namespace (albeit without fun
names like “Mappy”).

Package objects are a good solution for defining type aliases, implicit conversions, and
other advanced types. They extend the range of these features, removing the need to
manually import a class, trait, or object just to pick them up.

Summary
Scala combines the paradigms of functional programming and object-oriented pro‐
gramming, supporting both first-class functions and class definitions. What we know
now is that its first-class functions are class definitions.

The type features in Scala can make your classes and methods safer and more restrictive.
By specifying bounds to acceptable type parameters, your code can declare its require‐
ments and ensure type safety.

They can also make them less restrictive, while also providing the same amount of type-
safety. Covariant and contravariant type parameters give your types flexibility in how
they accept and return compatible types. And implicit classes and parameters free your
code from the restrictions of fixed methods and explicit parameters, while preventing
unexpected type violations.

At this point you should have no limitations on the Scala code you can understand. This
would be a good time to review the Scala API in depth, becuase its frequent use of
variance annotation and implicit parameters will be understandable now. You could go
even further by reading through the source of the Scala library itself. I suggest starting
with collections you’re well familiar with such as Option and Future.

In addition to working through the exercises in this chapter, you may want to start
getting familiar with some of Scala’s excellent open source libraries. We have covered
only a fraction of the SBT build system, but you’ll need to know it well to build more
than a beginning application. Apache Spark is a popular way to do data analysis and

Summary | 217

other calculations with Scala. Typesafe, the company that manages the Scala code base,
also provides the Play web framework and the Akka distributed computing frame‐
work. The Spray and Finagle libraries are great for building networked applications, but
if all you need is a REST API, the Scalatra framework may be more suitable for you.

Finally, if you really enjoyed this section on Scala’s type system and want to explore more
Haskell-like type safety features, check out the Scalaz library. Pronounced “Scala-Zed,”
the library will help you write safer and more expressive code than we could have cov‐
ered in this book. Learning the Scalaz library, as well as other projects by the Typelevel
group, may also help you to become a better developer.

Questions
While this is an important chapter to read and comprehend, its techniques are rather
advanced. You may not find some of them to be useful until you start writing your own
libraries or advanced applications in Scala.

In this chapter I’ll depart from the standard exercises section followed in previous
chapters. If you have completed all of the previous exercises then you should be familiar
with developing concise classes and functions in the REPL, and larger applications in
an IDE. Instead, let me ask you some questions about the advanced typing features and
capabilities you have read about in this chapter.

You may want to find solutions to the questions by experimenting in the REPL or an
IDE. It may also be useful to consider the questions a thought experiment to be com‐
pleted when you have more experience using the language.

1. How would you extend a function? What are some of the applications for a class
or trait that extends Function1[A,B]? If you are writing such a class or trait, would
you extend Function1[A,B] or choose to extend A => B ?

2. How would you write a function type for a function that has two parameter lists,
each with a single integer, and returns a single integer? If you wrote it as a Func
tionX class, what would the exact class and type parameters contain?

3. A popular use for implicit parameters is for a default setting that works most of the
time but may be overridden in special cases. Assume you are writing a sorting
function that takes lines of text, and the lines may start with a right-aligned number.
If you want to sort using the numbers, which may be prefixed by spaces, how would
you encode this ability in an implicit parameter? How would you allow users to
override this behavior and ignore the numbers for sorting?

4. Assume you wrote your own version of Option[A], calling it Perhaps[A], and im‐
plemented one or two methods to access its contents. What kind of implicit con‐
version would you need to provide in order to allow it to be treated as a collection?

218 | Chapter 10: Advanced Typing

How would you be able to invoke flatMap and filter on your instance without
implementing those methods?

5. How would you implement your own string class named Characters that supports
all of the JVM’s java.lang.String methods but can also be treated as a Scala col‐
lection? Would a combination of types and conversions do most of the work for
you? I suggest perusing the source code for scala.Predef to find some hints.

6. How would you add a “sum” method on all tuples, which returns the sum of all
numeric values in a tuple? For example, (a, "hi", 2.5, 1, true).sum should
return 3.5.

7. A Function1 type takes type parameters, one for the input value and one for the
output value. Which one should be covariant? Which one should be contravariant?

Questions | 219

APPENDIX A

Reserved Words

Table A-1 displays the reserved words in Scala. Reserved words are part of the Scala
language definition, and cannot be used as identifiers. To keep the definitions concise,
I have used “class” where “class, object, and trait” may be more accurate.

Table A-1. Scala’s reserved words

Name Description

_ The wildcard operator, representing an expected value.

: Delimits a value, variable, or function from its type.

@ Defines an annotation for a class or its member. Annotations are a JVM feature but are seldomly used in Scala,

with @annotation.tailrec being a popular exception.

A type projection, which delimits a type from its subtype.

<- Delimits a generator from its identifier in a for-loop.

← A single-character (\u2190) alternative to <-.

<: The upper-bound operator, restricting types to those that are equal to or extend the given type.

<% The view-bound operator, allowing any type that may be treated as the given type.

= The assignment operator.

=> Used in match expressions and partial functions to indicate a conditional expression, in function types to indicate

a return type, and in function literals to define the function body.

⇒ A single-character (\u21D2) alternative to =>.

>: The lower-bound operator, restricting types to those that are equal to or are extended by the given type.

abstract Marks a class or trait as being abstract and uninstantiable.

case Defines a matching pattern in match expressions and partial functions.

catch Catches an exception. An alternate syntax that predates the util.Try monadic collection.

class Defines a new class.

def Defines a new method.

221

Name Description

do Part of the do..while loop definition.

else The second part of an if..else conditional expression.

extends Defines a base type for a class.

false One of the two Boolean values.

final Marks a class or trait as being nonextendable.

finally Executes an expression following a try block. An alternate syntax that predates the util.Try monadic

collection.

for Begins a for-loop.

forSome Defines an existential type. Existential types are a flexible method for specifying type requirements, but are

discouraged in general Scala development. See SIP-18 (Scala Improvement Process #18) for details on why

existential types are considered an “opt-in” feature in Scala.

if The first part of an if..else conditional expression, or the main part of an if conditional statement.

implicit Defines an implicit conversion or parameter.

import Imports a package, class, or members of a class to the current namespace.

lazy Defines a value as being lazy, only defined the first time it is accessed.

match Begins a match expression.

new Creates a new instance of a class.

null A value that indicates the lack of an instance. Has the type Null.

object Defines a new object.

override Marks a value or method as replacing the member of the same name in a base type.

package Defines the current package, an incremental package name, or a package object.

private Marks a class member as being inaccessible outside the class definition.

protected Marks a class member as being inaccessible outside the class definition or its subclasses.

return Explicitly states the return value for a method. By default, the last expression in a method is used as the return

value.

sealed Marks a class as only allowing subclasses within the current file.

super Marks a class member reference as one in the base type, versus one overridden in the current class.

this Marks a class member reference as one in the current class, versus a parameter with the same name.

throw Raises an error condition that breaks the current flow of operation and only resumes if the error is caught

elsewhere.

trait Defines a new trait.

true One of the two Boolean values.

try Marks a range of code for catching an exception. An alternate syntax that predates the util.Try monadic

collection.

type Defines a new type alias.

val Defines a new, immutable value.

222 | Appendix A: Reserved Words

Name Description

var Defines a new, mutable variable.

while Part of the do..while loop definition.

with Defines a base trait for a class.

yield Yields the return value from a for-loop.

Where Are My Favorite :: and ++ Operators?
The :: and ++ operators are valid method identifiers, not reserved
words. The Scala collections library defines methods with these iden‐
tifiers, which means you can also use them for your own methods.

Reserved Words | 223

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
" (quotation marks, double)

enclosing string literals, 17
“"” (triple quotes), for multiline strings, 18

$ (dollar sign)
referencing external data in string interpola‐

tion, 18
& (ampersand)

& (Boolean and) operator, 23
&& versus & operator, 23

' (quotation marks, single)
enclosing Char literals, 23

() (parentheses)
defining capture group in regular expres‐

sions, 20
denoting a Unit literal, 24
enclosing Boolean expression in if expres‐

sion, 36
enclosing tuples, 25
grouping function parameters, 55
in for-loops, 38
in functions, 48, 50

leaving out for single-parameter func‐
tions, 67

* (asterisk)
in vararg parameters, 54
multiplication operator, 13

-> relation operator, 86
. (period), member access operator, 13

. dot notation, 57, 91
accessing class fields and methods, 143

/ (slash)
division operator, 118

: (colon)
:: (cons) operator, 89

<% view-bound operator, 210
<: upper-bound relation operator, 209
<< (left shift operator), 40
= (equals sign)

== (equals) operator, string comparisons, 18
before procedure body, 48

>: lower-bound relation operator, 210
@annotation.tailrec, 51
@param keyword in Scaladoc, 61
[] (square bracets), for type parameterization,

13
\ (backslash)

escaping special characters in string literals,
17

_ (underscore)
wildcard operator, 154

`` (backquotes), names enclosed in, 14
{ } (curly braces)

enclosing expression blocks, 27, 28
in for-loops, 38
in if expressions, 31
in references to external data, 18

225

| (vertical line)
using pipes with pattern alternatives, 33
|| versus | operator, 23

̲ (underscore)
wildcard operator, 35

assigning a function with, 67
in partially applied functions, 74
placeholder syntax in functions, 72

“classes”
“using with collections”))(((“collections”

“working with classes”), 140

A
abstract classes, 146

subclass extending, 147
type declarations in, 208

abstract types, 208
declaring using bounded types, 211

access control
shared by companion object and class, 170

access modifiers, 160
accumulative imports, 153
accumulator variable, 95
annotations, 51
anonymous classes, 148

defining as part of method invocation, 148
anonymous functions, 69

(see also function literals)
Any type, 22

as return type for if block, 31
Int type value assigned to, 36
Object class and, 138

AnyRef type, 22, 138
AnyVal type, 22
apply methods, 150

case classes, 174
for objects, 169
in classes extending FunctionX, 202

arithmetic operations, 5
arithmetic operators, Scala methods as, 59
arity, 201
ArrayBuffer class, 155
arrays

Array type as fixed-size, mutable, indexed
collection, 112

Java, conversion to Scala Array type, 93
arrow syntax in function literals, 69
asInstanceOf method, 24

avoiding runtime errors with, 25

associative arrays, 85

B
Boolean expressions, 30

in do/while loops, 41
in while loops, 40

Boolean reduction operations, 94
Boolean type, 22

obtaining Boolean values from comparison
and logic operators, 23

booleans
no automatic conversion of other types to in

Scala, 23
bounded types, 209

using to declare abstract types, 211
Buffer type, 108

converting to a List, 109
buffers

advantages and drawbacks of Buffer type,
111

converting immutable collections to, 109
of 2-sized tuples, converting to a List and a

Set, 110
builders (collection), 111

creating for a specific collection type, 111
use case for, 111

by-name parameters, 75, 79
Byte type, 15

conversion to other types, 15

C
camel case, 14
capture groups, 20
case blocks (in match expressions), 32

pattern alternatives and, 33
case classes, 173

benefits of, 175
convenience of automatically generated

methods, 174
creating, 174
creating and examining automatially gener‐

ated methods, 174
generated methods for, 174
importing members into current namespace,

184
parent class fields and, 175
TupleX[Y], 201

case keyword, 174

226 | Index

cat command (Unix), command-line applica‐
tion emulating, 172

Char type, 11, 22
Char literals enclosed in single quotes, 23

class files, 152, 172
classes, 207

case classes, 173
class parameters, 138
declaring a field as class parameter, 139
defined, 137
defining, 142

class parameters, 142
defining together with objects in .scala files,

171
example of simple class, 137
extending traits, 182
final and sealed, 161
implicit, 199, 205
importing into current namespace

using import aliases, 156
using import groups, 155

importing members into current namespace,
184

inheritance and polymorphism, 140
instantiation with traits, 182
more class types, 146

abstract classes, 146
anonymous classes, 148

more field and method types, 149
apply methods, 150
lazy values in fields, 150
overloaded methods, 149

objects and, 168
packaging, 151

accessing packaged classes, 152
using packaging syntax, 156

privacy access modifiers, 160
privacy controls, 158
static or global fields and methods, 167
traits, 176
type parameters, 200

collection.immutable package, 108
collection.mutable package, 108

importing into current namespace, 154
collections, 83–105

arrays, 112
converting, 98

Java and Scala collection compatibility, 99
higher-order functions in, 85

lists, 83
arithmetic operations on, 90
constructing with cons operator, 89
creating and manipulating, 86
mapping, 92
reducing, 93

maps, 85
monadic, 117

Future collections, 125–130
Option collections, 117–121
Try collections, 121–125

mutable, 107
creating from immutable collections, 109
creating new, 108
using collection builders, 111

pattern matching with, 100
return value of expressions with yield key‐

word, 38
Seq and sequences, 113
sets, 85
streams, 115

colon-and-type format (function definitions),
47

command-line applications, 172
creating in Scala, 172
creating, compiling, and executing, 172
similarity to pure functions, 173

comments, 61
companion objects, 170

for case classes, 173
special access controls shared with compan‐

ion class, 170
comparison operators

obtaining Boolean values from, 23
compilation

traits and multiple inheritance, 177
traits with competing members and, 178

compiled code, reusable, 171
compiler, 152

compiling Scala source file, 152
concurrent.Await.result(), 129
concurrent.ExecutionContext.Implicits.global,

125, 185
concurrent.Future, importing, 128
cons operator, 89

for streams, 116
contravariance, 214, 216
contravariant type parameters, 214

Index | 227

copy method
case classes, 174

covariance, 216
covariant type parameters, 200, 212
currying functions, 74

D
data types (see types)
Date class

importing, 152
declarative programming, 65
default methods, 150
dependency injection, 183
dependency problems, reducing with use of

pure functions, 169
dictionaries, 85
directories for Scala source files, 152
do/while loops, 41
dot notation, 57, 143

versus operator notation in list methods, 91
Double type, 10, 15

methods, 58
Duration type, 130

E
else blocks, 30
else if blocks, Scala and, 30
empty collections

Option type providing safe handling of, 118
encapsulation, 137
equals method

case classes, 174
equals operator (==), 18
error-handling strategy, 125
event handlers

jQuery-style, 148
exceptions, 121

catching and handling with Try collection,
122

from synchronous futures operations, 130
function to throw exception based in input

criteria, 122
thrown in asynchronous future execution,

127
validating numbers stored in strings, 125

ExecutionContext for running functions con‐
currently, 126

expression blocks, 27
function invocation with, 49

expressions, 27–29
defined, 27
defining values and variables with, 28
expression blocks, 28
functions as named wrappers for, 46
if .. else expression blocks, 30

if .. else expressions, 31
if expressions, 30

in loops, 37–41
match expressions, 31–37
multiple, in a case block, 32
no ternary expressions in Scala, 31
parameterized, function literals as, 70
statements, 29

extends keyword, 140
traits added to classes and, 182

extensions (class), 141

F
factory pattern, 170
Failure type, 122
fields (class), 139

in abstract classes, 146
lazy values, 150
private, 159
protected, 158

filter function
using with Option collection, 119

filter() function
in List, 91

filters, 39
(see also iterator guards)

final classes, 161
find operation, 139

in collections, 119
first-class functions, 65–82

by-name parameters, 75
function types and values, 66–68
higher-order functions, 68
invoking higher-order functions with func‐

tion literal blocks, 78
partial functions, 76
partially applied functions and currying, 74
placeholder syntax for function literals, 72

Float type, 15
floating-point numbers, 15

228 | Index

folds, 93, 97
order of, 97

for comprehensions, 37
(see also for-loops)

for-loops, 37
defining with parentheses or curly braces, 38
iterator guards in, 39
nested iterators in, 39
using to iterate over lists, 84
value binding in, 40
yield keyword in, 38

foreach() function
in List, 85

forEach() function
in class extending Traversable, 145
printing out results of parsing a number out

of a string, 125
fromFile method, io.Source object, 173
function annotation

for tail recursion, 50
function literals, 69

built with regular classes, 199
classes, 201
comparing with function assignment, 70
conversion to body of apply method in class

extending FunctionX, 202
defined within higher-order function invo‐

cations, 71
invoking higher-order functions with, 78
without input arguments, 71
writing with regular syntax and as body of

FunctionX.apply method, 202
function overloading, 53
function value classes, 201
function0, function1, function2, .., 69
functional programming, 45

recursive functions in, 50
functions, 45–63

by-name parameters, 75
calling with named parameters, 53
defining a function with a return type, 46
defining an input-less function, 46
full function definition, 47
higher-order, 68

invoking with function literal blocks, 78
I/O (input/output), 168
implicit parameters, 203
in Scala, 45
invocation with expression blocks, 49

nested, 52
parameter groups, 55
partial, 76
partially applied, 74

currying, 74
placeholder syntax in function literals, 72
predicate, 91
procedures, 48
pure functions as utilities, object providing,

168
pure, benefits of, 45
readable

adding comments, 61
adding Scaladoc headers, 61

recursive, 50
signature, 66
type of, 66

function with multiple parameters, 67
function with no inputs, 68

type parameters, 55, 200
vararg parameters, 54
with default values, 53
with empty parentheses, 48
writing readable functions, 60

FunctionX[Y] trait, 202
Future collections, 125–130

creating a future with function that prints a
message, 125

handling futures asynchronously, 126
operations to chain futures and set call‐

back functions, 127
working with from start to finish (exam‐

ple), 128
handling futures synchronously, 129

using concurrent.Await.result(), 129

G
getClass method, 24
global modifier

class fields and methods, 167
Google Guice, 183

H
hashCode method, 24

case classes, 174
hashmaps, 85
headOption method, 118

Index | 229

higher-order functions, 65, 68
available in List and other collections, 85
in collections

lists, 91
invocations of, function literals defined

within, 71
invoking with function literal blocks, 78

organizing parameters, 79
invoking with function literals

benefits and uses of, 80

I
I/O (input/output) functions, 168
identifiers

rules for, 13
self, in self types, 180

identity functions, 56
IDEs

support for Scaladoc headers for functions,
61

if .. else expression blocks, 30
if expressions, 30
if..else expressions, 31

if .. else if .. else blocks, 30, 32
if expressions

in match expression pattern guards, 36
immutable collections, 99

mutable counterparts to, 108
immutable data, 108
imperative programming, 65
implicit class, 112
implicit classes, 199, 205

example, 205
restrictions on defining and use of, 206

implicit conversion, 116
implicit def methods, 205
implicit keyword, 203
implicit parameters, 200, 203
import aliases, 156
import collection.JavaConverters command, 99
import groups, 155
import statement, 153

importing instance members into current
namespace, 184

importing a packaged class, 153
IndexedSeq type, 38
infix dot notation, 57, 143
infix operator notation, 59

inheritance, 137
example of, 140
multiple inheritance enabled with traits, 176

injector methods, 150
instance members

importing, 184
instance of a class, 142
instantiation, 142
Int type, 11, 15

asssigned to Any, resolving true type with
match expression, 36

automatic conversion to Double, 13
converting Long to, using toInt method, 16

invariant type parameters, 212
io.Source object

fromFile method, 173
isInstanceOf method, 24
Iterable type, 83

Array type support for Iterable operations,
112

need for, while building mutable collections,
111

iterator guards, 39
iterators, 39

creating for lists, 87
nested, 39

J
Java

collections
converting Scala collections to, 99

collections library, 83
interoperability of Scala with, 16
verifying your version, 3

Java 8 JDK, 3
java.lang.Object class, 138
java.util.concurrent.TimeoutException, 129
java.util.Date class, 152
java.util.Formatter, 19
java.util.regex.Pattern, 19
JavaConverters, importing, 99
JVM (Java Virtual Machine)

Scala code execution, 125
Scala command-line applications in, 173
throwing exceptions, 121
traits and multiple inheritance, 177

230 | Index

K
key-value pairs

in maps, 85

L
lambda expressions (or lambdas), 69

(see also function literals)
lazy collections, 115
lazy values, 150
left shift operator (<<), 40
left-associative notation, 89
line comments, 61
linearization, 177

benefits of, 178
multiple inheritance ordering and, 178

list-folding operations, 97
listener class (example), 148
lists, 83

accessing elements, 84
arithmetic operations on, 90

adding items to end of list, 92
constructing with cons operator, 89
converting buffer of 2-sized tuples to, 110
converting mutable collections to, 109
converting other collection types to and

from, 98
covariant type parameters of List, 200
creating and manipulating, 86

checking for end of a list, 88
creating a List iterator, 87

empty, head element wrapped in an Option,
118

higher-order functions available in List, 85
iterating over, using for-loops, 84
List type, official documentation, 90
mapping, 92
matching on head and tail elements, 101
reducing, 93

Boolean reduction operations, 94
creating your own reduction operation,

95
list-folding operations, 97

retrieving an element by its index, using
List.apply(), 150

Seq as root type, 113
type parameters, 84
using User class with (example), 139

literals, 16
assigning to new values without stating type,

17
case-insensitive characters in, 17
Char, 23
defined, 9

logical operators
obtaining Boolean values from, 23

Long type, 15
converting to Int, using toInt method, 16

loops, 37–41
for-loops, 37
iterator guards in, 39
nested iterators in, 39
value binding in, 40
while and do/while, 40

lower bounds, 209
lower-bound relation operator (>:), 210

M
map function

using with Option collection, 119
map operations

for-loop as, 38
map() function, 65

in List, 85
mapping, defined, 92
maps, 85

building, 109
converting mutable collections to, 109
converting other collection types to, 98
immutable, converting to and from buffers,

110
mutable and immutable versions of Map,

155
adding both to current namespace, 156

match expressions, 31–37
failing to provide matching pattern for input

expression, 34
in partial functions, 77
matching types with pattern variables, 36
matching with pattern guards, 36
matching with wildcard patterns, 34
pattern alternative in, 33
syntax, 32
taking integer status code and returning ap‐

propriate messsage, 32
using with collections, 100
versus if .. else blocks, 32

Index | 231

MatchError type, 34, 77
methods, 57

and operator notation, 59
methods with more than one parameter,

60
apply methods, 150
chaining method calls, 60
defined, 57
for case classes and companion objects

automatically generated methods, 174
implementing abstract method with a value,

147
implicit parameters in, 200
in abstract classes, 146
in case classes and companion objects, 173
inherited, overriding methods in parent

class, 140
object, 168
overloaded, 149
private, 159
protected, 158

mkString method, 173
monadic collections, 117

Future, 125–130
Option, 117–121
Try, 121–125

mutable collections, 107
converting to immutable, 109
creating from immutable ones, 109
creating new, 108
importing all into current namespace, 154
using collection builders, 111

N
named parameters, 53

in classes, 143
placeholders for, 72

namespaces
duplicate class names in, 155
importing class into current namespace, 153
importing instance members into current

namespace, 184
resetting namespace in REPL, 154
scala.Predef object automatically added to,

216
naming conventions, 13

for packages, 152
for pattern variables, 36

nested classes, 142

nested functions, 52
nested iterators, 39
Nil type

lists ending with instance of, 88
None type, 117
Nothing type, 22

lists and, 88
null keyword, 22
Null type, 22
null values

avoiding a method call on null, 68
creating Option object with, 117
using a pattern guard to differentiate be‐

tween nonnull and null response, 36
numeric data types, 15

automatic type conversions, 15
numeric literals, 16

O
Object class, 138
object-oriented Scala

classes, 137
abstract, 146
anonymous, 148
apply methods, 150
defining, 142
final and sealed, 161
lazy values in fields, 150
more class types, 146
more field and method types, 149
overloaded methods in, 149
packaging, 151
privacy controls, 158

objects, 167–173, 207
advantages of using, 173
and case classes, 173
apply methods and companion objects, 169
classes and, 168
command-line applications with, 172
defining, 168
importing members into current namespace,

184
pure functions as utilities, 168
types having AnyRef as root, 22
using for writing functions, 175

operator notation, 59
benefits and drawbacks of, 60
versus dot notation in list methods, 91

232 | Index

operators, 13
left-associative and right-associative nota‐

tion, 89
Option collections, 117–121

defining a function that returns an Option
value, 118

extracting values from, 120
avoiding Option.get(), 120
safe extraction methods, 120

sealed Option class, 162
type-safe option for handling function re‐

sults, 118
use in find operation, 119

orElse operation, Try collection, 125
overloaded methods, 149
override keyword, 140, 178

P
package keyword, 152, 217
package objects, 216
package.scala files, 217
packages, 151

accessing classes in, 152
creating a source file with a package and

compiling it, 152
defining a package for a Scala file, 152
importing entire contents of, 154
importing part of, 153
importing parts of, using import groups, 155
naming, 152
packaging syntax, 156
using packaging syntax

nesting packages, 157
parameters (class), 138, 142

classes extending classes with parameters,
143

defining default values for, 144
named parameters, 143
type parameters, 144

parameters (function)
@param keyword in Scaladoc, 61
by-name, 75
grouped, 55
implicit, 203
in higher-order function invoked with func‐

tion literal block, 79
in overloaded methods, 149
named, 53
type parameters, 55

vararg, 54
with default values, 53

parent class
extending, traits and, 176

partial functions, 76
match expressions as, 77
versus partially applied functions, 77

partially applied functions, 203
currying, 74

partially applying functions, 74
partition() function

in List, 91
paste mode, raw (in REPL), 157
pattern alternatives, 33
pattern guards, 36, 100
pattern matching, 32

(see also match expressions)
with collections, 100

pattern variables, 36
performance

appending items to the end of lists, 92
placeholder syntax, 72

in collection methods that are higher-order
functions, 91

ordering of placeholders, 72
working with data structures and collections,

74
polymorphic types, 36
polymorphism, 137

example of, 212
of classes in Scala, example of, 141

Predef object, 206, 216
predicate functions, 91
primitive types, Scala and, 15
printf function

using printf formatting to control data for‐
matting, 19

println statement, 33
println() function, 5
privacy access modifiers, 160
privacy controls, 158

imports of members and, 184
private keyword, 159

access modifiers with, 160
private modifier

private companion object members, access
by companion class, 170

procedures, 48
defining, 48

Index | 233

ProductX traits, 201
protected keyword, 158

access modifiers with, 160
pure functions, 45, 168

referential transparency test, 169
similarity of command-line applications to,

173

Q
Queue class, 155

R
r operator, converting a string to a regular ex‐

pression type, 20
range comments, 61
Range type

creating a numeric range, 37
recursive functions, 50

iterating a list, 88
reduce() function, 65

in list, 85
reduction operations

reducing a collection to a single Option, 119
reference types, 22
referential transparency test, 169
regular expressions, 19

converting string types to, 20
String type operations supporting, 19

relation operator (->);, 86
REPL (Read-Eval-Print-Loop) shell, 4

defining a value, 9
Hello, World application, 5
paste mode, 170
raw paste mode for packages, 157
resetting session and namespace, 154

res (result) variables, 6
using, 10

reserved words, 221–223
return keyword, 47

return type of Nothing, 22
return type

of functions, 46
right-associative notation, 89

S
Scala

background, 3

installing, 3
interoperability with Java, 16
reasons for learning, x
REPL (Read-Eval-Print-Loop), 4

Scala API Documentation, 58
scala command, 4
.scala files, defining classes and objects together

in, 171
Scala Language Specification, 13, 70
scala.language.implicitConversions() method,

205
scala.Predef object, 216
SCAlable LAnguage (see Scala)
scalac command, 152
Scaladoc comments, 61
scalar values, 25
scals.Predef object, 206
sealed classes, 162
self types, 180

and classes instantiated with traits, 182
benefits of using with traits, 181
in trait definitions, 180
restrictions added to traits, 180

sequences
Seq hierarchy of sequence collections, 113
Seq type and, 113

sets
building, 109
converting buffer of 2-sizes tuples to, 110
converting mutable collections to, 109
converting other collection types to, 98
converting to and from buffers, 109
creating with a builder, 111
Set type, 85

Short type, 15
side effects, 27

functions with, defining with parentheses, 49
singletons, 167
size method, 84
Some type, 117
sortBy() function

in List, 91
source files, 152
Spring framework, 183
Stack Overflow error, 50
statements, 29

functions (or procedures) ending in, 48
if blocks as, 30

234 | Index

static modifier
for class fields and methods, 167

stdout stream, 5
Stream.Empty, 115
streams

creating a bounded stream, 116
example function building and recursively

generating a new stream, 115
Stream type as lazy collection, 115
Stream.cons and cons operator for streams,

116
string interpolation functions, vararg parame‐

ters, 54
String type, 11, 17, 22

documentation, 58
String.endsWith() method, 58
strings

converting collections to, 98
string interpolation, 18
string literals and string values, 70
String type as sequence collection, 114
String type as subtype of Iterable and as

java.lang.String wrapper, 114
String variable assigned to null, 22
toString method, 24
using regular expressions with, 19

converting a string to a regular expres‐
sion type, 20

subclasses
polymorphism and compatible classes, 141

sublclasses
restricting creation of with final classes, 161

Success type, 122
super keyword, 140
supertypes, 22
switch statements (in Java and C), 31
syntax notation in this book, xii

T
tail recursion, 50
this keyword, 140
threads

blocking whle wating for background thread
to complete, 129

running background tasks in concurrent
threads, 125

synchronous or asynchronous execution,
126

Thread.sleep, 126

Thread.sleep()
avoiding due to inefficiencies, 127

TimeoutException, 129
to operator, 37
to<Type> method, 24
toString method, 24, 138

arrays and, 112
case classes, 174
List type, 139

traits, 176, 207
classes instantiated with, 182
defining, 176
extending a second trait, 176
FunctionX[Y], 202
instantiation with, 182
linearization process and, 177
self types, 180

adding restrictions to traits, 180
benefits of using, 181

TupleX[Y] case class extending ProductX
trait, 201

type alias with unspecified type, 209
type parameters, 200
with competing members, 178
writing to override behavior of a shared par‐

ent class, 179
Traversable type, 145
Try collections, 121–125

error handling methods, 123
handling exceptions when parsing a number

from a string, 125
Success and Failure subtypes, 122
Try returned by asynchronous future execu‐

tion, 126
try {} .. catch {}+ blocks, 122
tuples, 25

classes, 201
creating by instantiating Tuple2 case class,

201
high-level, built with regular classes, 199
pattern matching and value binding support,

101
specifying Map key-value pairs as, 86
type aliases for, 208

TupleX[Y] case class, 201
type declarations in abstract classes, creating

with abstract types, 208
type inference, 11, 57

determining return type for if block, 30

Index | 235

in function literal definitions, 71
with instances, 141

types, 15, 199, 207–217
(see also typing, advanced)
abstract, 208
assigning literals without stating type, 17
automatic conversions, 13

not allowed from higher ranked to lower
ranked types, 16

bounded, 209
defined, 9
defining value with type incompatible with

initial value, 11
function, 66
in variable definitions, 12
leaving out type in value definitions, 11
matching with pattern variables in match ex‐

pressions, 36
numeric, 15

automatic conversions to other types, 15
operations available to all types, 24
overview of core types, 21–24

Scala type hierarchy, 21
package objects, 216
return type of functions, 46
Sting, 17
type aliases, 207
type parameters, 200

in class definitions, 144
type parameters in collections, 84

maps, 86
type parameters in functions, 55, 73, 79
type variance, 212

typing, advanced, 199
high-level tuples and function literals built

with regular classes, 199
implicit classes, 199
implicit parameters, 200, 203
tuple and function value classes, 201
type parameters and types, 200
types, 207–217

U
unapply method, case classes, 174
Unit type, 22

denoting lack of data, 24
return type for procedures, 48
statement return values, 29

until operator, 37

upper bounds, 209
util.matching.Regex, 20
util.Try monadic collection, 122

V
val keyword, 10, 139

case class parameters and, 174
value binding, 34, 100

in for-loops, 40
value types, 22
values, 9

defining, 9
without an explicit type, 11

defining with expressions, 28
implicit, 203
lazy, 150
names of, 14
preferred over variables in Scala, 12

var keyword, 12, 139
vararg parameters, 54
variables

defined, 9, 12
defining, 10, 12
defining with expressions, 28
implicit, 203
names of, 14

Vector type, 38, 114
view-bound operator (<%), 210
void keyword (in Java and C), 24

W
while loops, 40

list iterator built with, 87
wildcard operator (_), 67

importing entire package contents with, 154
wildcard operator (̲), 35

in partially applied functions, 74
placeholder syntax in function literals, 72

wildcard patterns in match expressions, 34
with keyword, 176, 182

Y
yield keyword, 38

converting for-loop into expression return‐
ing a collection, 38

236 | Index

About the Author
Jason Swartz is a Software Engineer in the San Francisco Bay Area, developing Scala
applications at Loyal3 and Netflix. Before making the switch to functional programming
he managed the developer docs and support team at eBay, wrote advertising and mer‐
chandising platforms in Java, and built tools and UI prototypes at Apple.

Colophon
The animal on the cover of Learning Scala is the American Ostrich, or the greater rhea
(Rhea americana), a tall, flightless bird found in eastern South America. Known locally
as the ñandú, it is one of the two birds that comprise the rhea species, along with its
smaller, more uncommon counterpart, the lesser rhea (rhea pennata).

Endemic to Argentina, Bolivia, Brazil, Paraguay, and Uruguay, the greater rhea inhabits
open areas with tall vegetation, such as grasslands, savanna, and grassy wetlands.
Curiously, a small nonindigenous population also exists in rural northwest Germany,
established in 2000 after several escaped from a farm. These birds have prospered in the
wild, defying all expectations.

While markedly similar to the African ostrich, the greater rhea has three toes rather
than two and is about half the size; adult rheas stand at about five feet tall and weigh
between 44 and 60 pounds. Its fluffy plumage is gray, with dark patches on the crown,
neck, and upper back. The bird’s long, powerful legs make it a fast runner, capable of
reaching speeds of over 35 miles per hour. Its large wings, which help maintain balance
while running, are also flaunted in elaborate courtship displays.

The American Ostrich typically nests near water. Rheas are polygamous, and so each
male may mate with up to twelve females during the spring and summer, its breeding
season. Males become extremely territorial during this period, behaving aggressively
toward one another. After mating, the female will deposit her eggs into the nest and
often move on to a new partner. The male alone will incubate the eggs of all of its mates,
typically in the same nest. Later, he will forcefully guard and care for the young.

Apart from breeding rituals, they are communal birds, amassing flocks of 10 to 100 and
even mixing with other large animals, such as deer. The greater rhea enjoys a diet of
plants, seeds, and fruit but also has been known to consume insects, small rodents,
reptiles, and small birds. It also swallows pebbles to aid digestion.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Why Write “Learning Scala”?
	Why Learn Scala (or, Why Should You Read “Learning Scala”)?
	Reason 1—Your Code Will Be Better
	Reason 2—You’ll Be a Better Engineer
	Reason 3—You’ll Be a Happier Engineer

	Why Learning Scala May Not Be for You
	About the Syntax Notation in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Core Scala
	Chapter 1. Getting Started with the Scalable Language
	Installing Scala
	Using the Scala REPL
	Summary
	Exercises

	Chapter 2. Working with Data: Literals, Values, Variables, and Types
	Values
	Variables
	Naming
	Types
	Numeric Data Types
	Strings
	An Overview of Scala Types
	Tuples

	Summary
	Exercises

	Chapter 3. Expressions and Conditionals
	Expressions
	Defining Values and Variables with Expressions
	Expression Blocks
	Statements

	If..Else Expression Blocks
	If Expressions
	If-Else Expressions

	Match Expressions
	Matching with Wildcard Patterns
	Matching with Pattern Guards
	Matching Types with Pattern Variables

	Loops
	Iterator Guards
	Nested Iterators
	Value Binding
	While and Do/While Loops

	Summary
	Exercises

	Chapter 4. Functions
	Procedures
	Functions with Empty Parentheses
	Function Invocation with Expression Blocks
	Recursive Functions
	Nested Functions
	Calling Functions with Named Parameters
	Parameters with Default Values
	Vararg Parameters
	Parameter Groups
	Type Parameters
	Methods and Operators
	Writing Readable Functions
	Summary
	Exercises

	Chapter 5. First-Class Functions
	Function Types and Values
	Higher-Order Functions
	Function Literals
	Placeholder Syntax
	Partially Applied Functions and Currying
	By-Name Parameters
	Partial Functions
	Invoking Higher-Order Functions with Function Literal Blocks
	Summary
	Exercises

	Chapter 6. Common Collections
	Lists, Sets, and Maps
	What’s in a List?
	The Cons Operator

	List Arithmetic
	Mapping Lists
	Reducing Lists
	Converting Collections
	Java and Scala Collection Compatibility

	Pattern Matching with Collections
	Summary
	Exercises

	Chapter 7. More Collections
	Mutable Collections
	Creating New Mutable Collections
	Creating Mutable Collections from Immutable Ones
	Using Collection Builders

	Arrays
	Seq and Sequences
	Streams
	Monadic Collections
	Option Collections
	Try Collections
	Future Collections

	Summary
	Exercises

	Part II. Object-Oriented Scala
	Chapter 8. Classes
	Defining Classes
	More Class Types
	Abstract Classes
	Anonymous Classes

	More Field and Method Types
	Overloaded Methods
	Apply Methods
	Lazy Values

	Packaging
	Accessing Packaged Classes
	Packaging Syntax

	Privacy Controls
	Privacy Access Modifiers
	Final and Sealed Classes
	Summary
	Exercises

	Chapter 9. Objects, Case Classes, and Traits
	Objects
	Apply Methods and Companion Objects
	Command-Line Applications with Objects

	Case Classes
	Traits
	Self Types
	Instantiation with Traits

	Importing Instance Members
	Summary
	Break—Configuring Your First Scala Project
	Exercises

	Chapter 10. Advanced Typing
	Tuple and Function Value Classes
	Implicit Parameters
	Implicit Classes
	Types
	Type Aliases
	Abstract Types
	Bounded Types
	Type Variance
	Package Objects

	Summary
	Questions

	Appendix A. Reserved Words

	Index
	About the Author

