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Foreword

Recent advances in Information and Communication Technologies (ICT) have
increased the computational power of computers, while at the same time, various
mobile devices are embedded in them. The combination of the two leads to an
enormous increase in the extent and complexity of data generation, storage, and
sharing. “Big data” is the term commonly used to describe data so extensive and
complex that they may overwhelm their user, overload him/her with information,
and eventually, frustrate him/her. YouTube for example, has more than 1 billion
unique visitors each month, uploading 72 hours of video every minute! It would be
extremely difficult for a user of YouTube to retrieve the content he/she is really
interested in unless some help is provided.

Similar difficulties arise with all types of multimedia data, such as audio, image,
video, animation, graphics, and text. Thus, innovative methods to address the
problem of extensive and complex data are expected to prove useful in many and
diverse data management applications.

In order to reduce the risk of information overload of users, recommender
system research and development aims at providing ways of individualizing the
content returned to a user via attempts to understand the user’s needs and interests.
Specific recommender systems have proven useful in assisting users in selecting
books, music, movies, clothes, and content of various other forms.

At the core of recommender systems lie machine learning algorithms, which
monitor the actions of a recommender system user and learn about his/her needs
and interests. The fundamental idea is that a user provides directly or indirectly
examples of content he/she likes (“positive examples”) and examples of content he/
she dislikes (“negative examples”) and the machine learning module seeks and
recommends content “similar” to what the user likes and avoids recommending
content “similar” to what the user dislikes. This idea sounds intuitively correct and
has, indeed, led to useful recommender systems. Unfortunately, users may be
willing to provide examples of content they like, but are very hesitant when asked
to provide examples of content they dislike. Recommender systems built on the
assumption of availability of both positive and negative examples do not perform
well when negative examples are rare.
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It is exactly this problem that the authors have tackled in their book. They collect
results from their own recently-published research and propose an innovative
approach to designing recommender systems in which only positive examples are
made available by the user. Their approach is based on one-class classification
methodologies in recent machine learning research.

The blending of recommender systems and one-class classification seems to be
providing a new very fertile field for research, innovation, and development.
I believe the authors have done a good job addressing the book topic. I consider the
book at hand particularly timely and expect that it will prove very useful to
researchers, practitioners, and graduate students dealing with problems of extensive
and complex data.

March 2015 Dumitru Dan Burdescu
Professor, Eng., Math., Ph.D.

Head of Software Engineering Department, Director of
“Multimedia Application Development” Research Centre

Faculty of Automation, Computers and Electronics
University of Craiova, Craiova, Romania
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Preface

Recent advances in electronic media and computer networks have allowed the
creation of large and distributed repositories of information. However, the imme-
diate availability of extensive resources for use by broad classes of computer users
gives rise to new challenges in everyday life. These challenges arise from the fact
that users cannot exploit available resources effectively when the amount of
information requires prohibitively long user time spent on acquaintance with and
comprehension of the information content. Thus, the risk of information overload of
users imposes new requirements on the software systems that handle the infor-
mation. Such systems are called Recommender Systems (RS) and attempt to
provide information in a way that will be most appropriate and valuable to its users
and prevent them from being overwhelmed by huge amounts of information that, in
the absence of RS, they should browse or examine.

In this monograph, first, we explore the use of objective content-based features
to model the individualized (subjective) perception of similarity between multi-
media data. We present a content-based RS which constructs music similarity
perception models of its users by associating different similarity measures to dif-
ferent users. The results of the evaluation of the system verify the relation between
subsets of objective features and individualized (music) similarity perception and
exhibit significant improvement in individualized perceived similarity in sub-
sequent recommended items. The investigation of these relations between objective
feature subsets and user perception offer an indirect explanation and justification for
the items one selects. The users are clustered according to specific subsets of
features that reflect different aspects of the music signal. This assignment of a user
to a specific subset of features allows us to formulate indirect relations between
his/her perception and corresponding item similarity (e.g., music similarity) that
involve his/her preferences. Consequently, the selection of a specific feature subset
can provide a justification/reasoning of the various factors that influence the user's
perception of similarity to his/her preferences.

Secondly, we address the recommendation process as a hybrid combination of
one-class classification with collaborative filtering. Specifically, we follow a cas-
cade scheme in which the recommendation process is decomposed into two levels.
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In the first level, our approach attempts to identify for each user only the desirable
items from the large amount of all possible items, taking into account only a small
portion of his/her available preferences. Toward this goal, we apply a one-class
classification scheme, in the training stage of which only positive examples
(desirable items for which users have expressed an opinion-rating value) are
required. This is very important, as it is sensibly hard in terms of time and effort for
users to explicitly express what they consider as non-desirable to them. In the
second level, either a content-based or a collaborative filtering approach is applied
to assign a corresponding rating degree to these items. Our cascade scheme first
builds a user profile by taking into consideration a small amount of his/her pref-
erences and then selects possible desirable items according to these preferences
which are refined and into a rating scale in the second level. In this way, the cascade
hybrid RS avoids known problems of content-based or collaborative filtering RS.

The fundamental idea behind our cascade hybrid recommendation approach is to
mimic the social recommendation process in which someone has already identified
some items according to his/her preferences and seeks the opinions of others about
these items, so as to make the best selection of items that fall within his/her
individual preferences. Experimental results reveal that our hybrid recommendation
approach outperforms both a pure content-based approach or a pure collaborative
filtering technique. Experimental results from the comparison between the pure
collaborative and the cascade content-based approaches demonstrate the efficiency
of the first level. On the other hand, the comparison between the cascade content-
based and the cascade hybrid approaches demonstrates the efficiency of the second
level and justifies the use of the collaborative filtering method in the second level.

Piraeus, Greece Aristomenis S. Lampropoulos
March 2015 George A. Tsihrintzis
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Chapter 1
Introduction

Abstract Recent advances in electronicmedia and computer networks have allowed
the creation of large and distributed repositories of information. However, the imme-
diate availability of extensive resources for use by broad classes of computer users
gives rise to new challenges in everyday life. These challenges arise from the fact that
users cannot exploit available resources effectively when the amount of information
requires prohibitively long user time spent on acquaintance with and comprehension
of the information content. Thus, the risk of information overload of users imposes
new requirements on the software systems that handle the information. One of these
requirements is the incorporation into the software systems of mechanisms that help
their users when they face difficulties during human-computer interaction sessions
or lack the knowledge to make decisions by themselves. Such mechanisms attempt
to identify user information needs and to personalize human-computer interactions.
(Personalized) Recommender Systems (RS) provide an example of software systems
that attempt to address some of the problems caused by information overload. This
chapter provides an introduction to Recommender Systems.

1.1 Introduction to Recommender Systems

RS are defined in [16] as software systems in which “people provide recommenda-
tions as inputs, which the system then aggregates and directs to appropriate recipi-
ents.” Today, the term includes a wider spectrum of systems describing any system
that provides individualization of the recommendation results and leads to a pro-
cedure that helps users in a personalized way to interesting or useful objects in a
large space of possible options. RS form an important research area because of the
abundance of their potential practical applications.

Clearly, the functionality of RS is similar to the social process of recommenda-
tion and reduction of information that is useless or uninteresting to the user. Thus,
one might consider RS as similar to search engines or information retrieval systems.
However, RS are to be differentiated from search engines or information retrieval
systems as a RS not only finds results, but additionally uses its embedded individ-
ualization and personalization mechanisms to select objects (items) that satisfy the
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specific querying user needs. Thus, unlike search engines or information retrieval
systems, a RS provides information in a way that will be most appropriate and valu-
able to its users and prevents them from being overwhelmed by huge amounts of
information that, in the absence of RS, they should browse or examine. This is to
be contrasted with the target of a search engine or an information retrieval system
which is to “match” items to the user query. This means that a search engine or an
information retrieval system tries to form and return a ranked list of all those items
that match the query. Techniques of active learning such as relevance-feedback may
give these systems the ability to refine their results according to the user preferences
and, thus, provide a simple form of recommendation. More complex search engines
such as GOOGLE utilize other kinds of criteria such as “authoritativeness”, which
aim at returning as many useful results as possible, but not in an individualized way.

A learning-based RS typically works as follows: (1) the recommender system
collects all given recommendations at one place and (2) applies a learning algorithm,
thereafter. Predictions are then made either with a model learnt from the dataset
(model-based predictions) using, for example, a clustering algorithm [3, 18] or on
the fly (memory-based predictions) using, for example, a nearest neighbor algorithm
[3, 15].A typical prediction can be a list of the top-N recommendations or a requested
prediction for a single item [7].

Memory-based methods store training instances during training which are can
be retrieved when making predictions. In contrast, model-based methods generalize
into a model from the training instances during training and the model needs to
be updated regularly. Then, the model is used to make predictions. Memory-based
methods learn fast but make slow predictions, while model-based methods make fast
predictions but learn slowly.

The roots of RS can be traced back toMalone et al. [11], who proposed three forms
of filtering: cognitive filtering (now called content-based filtering), social filtering
(now called collaborative filtering (CF)) and economic filtering. They also suggested
that the best approach was probably to combine these approaches into the category
of, so-called, hybrid RS.

1.2 Formulation of the Recommendation Problem

In general, the recommendation problem is defined as the problem of estimating
ratings for the items that have not been seen by a user. This estimation is based on:

• ratings given by the user to other items,
• ratings given to an item by other users,
• and other user and item information (e.g. item characteristics, user demographics).

The recommendation problem can be formulated [1] as follows:
Let U be the set of all users U = {u1, u2, ..., um} and let I be the set of all

possible items I = {i1, i2, ..., in} that can be recommended, such as music files,
images, movies, etc. The space I of possible items can be very large.
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Let f be a utility function that measures the usefulness of item i to user u,

f : U × I → R, (1.1)

where R is a totally ordered set (e.g. the set of nonnegative integers or real numbers
within a certain range). Then, for each user u ∈ U , we want to choose an item i ′ ∈ I
that maximizes the user utility function, i.e.

∀u ∈ U, i ′u = argmax
i∈I

f (u, i). (1.2)

In RS, the utility of an item is usually represented by a rating, which indicates
how a particular user liked a particular item, e.g., user u1 gave the object i1 the rating
of R(1, 1) = 3, where R(u, i) ∈ {1, 2, 3, 4, 5}.

Each user uk , where k = 1, 2, ...,m, has a list of items Iuk about which the user
has expressed his/her preferences. It is important to note that Iuk ⊆ I , while it is
also possible for Iuk to be the null set. This latter means that users are not required
to express their preferences for all existing items.

Each element of the user space U can be defined with a profile that includes
various user characteristics, such as age, gender, income, marital status, etc. In
the simplest case, the profile can contain only a single (unique) element, such as
User ID.

Recommendation algorithms enhance various techniques by operating

• either on rows of the matrix R, which correspond to ratings of a single user about
different items,

• or on columns of the matrix R, which correspond to different users’ ratings for a
single item.

However, in general, the utility function can be an arbitrary function, including a
profit function. Depending on the application, a utility f can either be specified by
the user, as is often done for the user-defined ratings, or computed by the application,
as can be the case for a profit-based utility function. Each element of the user space
U can be defined with a profile that includes various user characteristics, such as
age, gender, income, marital status, etc. In the simplest case, the profile can contain
only a single (unique) element, such as User ID.

Similarly, each element of the item space I is defined via a set of characteristics.
The central problem of RS lies in that a utility function f is usually not defined on
the entire U × I space, but only on some subset of it. This means that f needs to
be generalized to the entire space U × I . In RS, a utility is typically represented by
ratings and is initially defined only on the items previously rated by the users.

Generalizations from known to unknown ratings are usually done by:

• specifying heuristics that define the utility function and empirically validating its
performance, or

• estimating the utility function that optimizes a certain performance criterion, such
as Mean Absolute Error (MAE).
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Once the unknown ratings are estimated, actual recommendations of an item to
a user are made by selecting the highest rating among all the estimated ratings for
that user, according to Eq.1.2. Alternatively, we can recommend the N best items to
a user. Additionally, we can recommend a set of users to an item.

1.2.1 The Input to a Recommender System

The input to a RS depends on the type of the filtering algorithm employed. The input
belongs to one of the following categories:

1. Ratings (also called votes), which express the opinion of users on items. Ratings
are normally providedby the user and followa specifiednumerical scale (example:
1-bad to 5-excellent). A common rating scheme is the binary rating scheme,which
allows only ratings of either 0 or 1. Ratings can also be gathered implicitly from
the users purchase history, web logs, hyper-link visits, browsing habits or other
types of information access patterns.

2. Demographic data, which refer to information such as the age, the gender and
the education of the users. This kind of data is usually difficult to obtain. It is
normally collected explicitly from the user.

3. Content data, which are based on content analysis of items rated by the user. The
features extracted via this analysis are used as input to the filtering algorithm in
order to infer a user profile.

1.2.2 The Output of a Recommender System

The output of a RS can be either a prediction or a recommendation.

• A prediction is expressed as a numerical value, Ra, j = R(ua, i j ), which represents
the anticipated opinion of active user ua for item i j . This predicted value should
necessarily be within the same numerical scale (example: 1-bad to 5-excellent) as
the input referring to the opinions provided initially by active user ua . This form
of RS output is also known as Individual Scoring.

• A recommendation is expressed as a list of N items, where N ≤ n, which the active
user is expected to like themost. The usual approach in that case requires this list to
include only items that the active user has not already purchased, viewed or rated.
This form of RS output is also known as Top-N Recommendation or Ranked
Scoring.
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1.3 Methods of Collecting Knowledge About
User Preferences

To generate personalized recommendations that are tailored to the specific needs of
the active user, RS collect ratings of items by users and build user-profiles in ways
that depend on the methods that the RS utilize to collect personal information about
user preferences. In general, these methods are categorized into three approaches:

• an Implicit approach, which is based on recording user behavior,
• an Explicit approach, which is based on user interrogation,
• a Mixing approach, which is a combination of the previous two.

1.3.1 The Implicit Approach

This approach does not require active user involvement in the knowledge acquisition
task, but, instead, the user behavior is recorded and, specifically, the way that he/she
reacts to each incoming piece of data. The goal is to learn from the user reaction
about the relevance of the data item to the user. Typical examples for implicit ratings
are purchase data or reading time of Usenet news [15]. In the CF system in [9], they
monitored reading times as an indicator for relevance. This revealed a relationship
between time spent on reviewing data items and their relevance. In [6], the system
learns the user profile by passively observing the hyperlinks clicked on and those
passed over and by measuring user mouse and scrolling activity in addition to user
browsing activity. Also, in [14] they utilize agents that operate as adaptive Web site
RS. Through analysis of Web logs and web page structure, the agents infer knowl-
edge of the popularity of various documents as well as a combination of document
similarity. By tracking user actions and his/her acceptance of the agent recommen-
dations, the agent can make further estimations about future recommendations to the
specific user. The main benefits of implicit feedback over explicit ratings are that
they remove the cognitive cost of providing relevance judgements explicitly and can
be gathered in large quantities and aggregated to infer item relevance [8].

However, the implicit approach bears some serious implications. For instance,
some purchases are gifts and, thus, do not reflect the active user interests. More-
over, the inference that purchasing implies liking does not always hold. Owing to the
difficulty of acquiring explicit ratings, some providers of product recommendation
services adopt bilateral approaches. For instance, Amazon.com computes recom-
mendations based on explicit ratings whenever possible. In case of unavailability,
observed implicit ratings are used instead.
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1.3.2 The Explicit Approach

Users are required to explicitly specify their preference for any particular item, usu-
ally by indicating their extent of appreciation on 5-point or 7-point Thurstone scales.
These scales are mapped to numeric values, e.g. Ri, j ∈ [1, 2, 3, 4, 5]. Lower val-
ues commonly indicate least favorable preferences, while higher values express the
user’s liking.1 Explicit ratings impose additional efforts on users. Consequently, users
often tend to avoid the burden of explicitly stating their preferences and either leave
the system or rely upon “free-riding” [2]. Ratings made on these scales allow these
judgments to be processed statistically to provide averages, ranges, or distributions.
A central feature of explicit ratings is that the user who evaluates items has to exam-
ine them and, then, to assign to them values from the rating scale. This imposes a
cognitive cost on the evaluator to assess the performance of an object [12].

1.3.3 The Mixing Approach

Newsweeder [10], a Usenet filtering system, is an example of a system that uses
a combination of the explicit and the implicit approach, as it requires minimum
user involvement. In this system, the users are required to rate documents for their
relevance. The ratings are used as training examples for amachine learning algorithm
that is executed nightly to generate user interest profiles for the next day. Newsweeder
is successful in reducing user involvement. However, the batch profiling used in
Newsweeder is a shortcoming as profile adaptation is delayed significantly.

1.4 Motivation of the Book

The motivation of this book is based on the following facts that constitute important
open research problems in RS. It is well known that users hardly provide explicit
feedbacks in RS. More specifically, users tend to provide ratings only for items
that they are interested in and belong to their preferences and avoid, to provide
feedback in the form of negative examples, i.e. items that they dislike or they are
not interested in. As stated in [5, 17], “It has been known for long time in human
computer interaction that users are extremely reluctant to perform actions that are
not directed towards their immediate goal if they do not receive immediate benefits”.
However, common RS based on machine learning approaches use classifiers that, in
order to learn user interests, require both positive (desired items that users prefer) and

1The Thurstone scale was used in psychology for measuring an attitude. It was developed by Louis
Leon Thurstone in 1928, as a means of measuring attitudes towards religion. It is made up of
statements about a particular issue. A numerical value is associated with each statement, indicating
how favorable or unfavorable the statement is judged to be.

www.allitebooks.com

http://www.allitebooks.org


1.4 Motivation of the Book 7

negative examples (items that users dislike or are not interested in). Additionally, the
effort for collecting negative examples is arduous as these examples should uniformly
represent the entire set of items, excluding the class of positive items. Manually
collecting negative samples could be biased and require additional effort by users.
Moreover, especially in web applications, users consider it very difficult to provide
personal data and rather avoid to be related with internet sites due to lack of faith
in the privacy of modern web sites [5, 17]. Therefore, RS based on demographic
data or stereotypes that resulted from such data are very limited since there is a high
probability that the user-supplied information suffers from noise induced by the fact
that users usually give fake information in many of these applications.

Thus, machine learning methods need to be used in RS, that utilize only positive
examples provided by users without additional information either in the form of
negative examples or in the form of personal information for them. PEBL [19] is an
example of a RS to which only positive examples are supplied by its users. Specifi-
cally, PEBL is a web page classification approach that works within the framework
of learning based only on positive examples and uses themapping-convergence algo-
rithm combined with SVM.

On the other hand, user profiles can be either explicitly obtained from user ratings
or implicitly learnt from the recorded user interaction data (i.e. user play-lists). In the
literature, collaborative filtering based on explicit ratings has been widely studied
while binary collaborative filtering based on user interaction data has been only
partially investigated.Moreover, most of the binary collaborative filtering algorithms
treat the items that users have not yet played/watched as the “un-interested in” items
(negative class), which, however, is a practically invalid assumption.

Collaborative filtering methods assume availability of a range of high and low
ratings or multiple classes in the data matrix of Users-Items. One-class collabora-
tive filtering proposed in [13] provides weighting and sampling schemes to handle
one-class settingswith unconstrained factorizations based on the squared loss. Essen-
tially, the idea is to treat all non-positive user-item pairs as negative examples, but
appropriately control their contribution in the objective function via either uniform,
user-specific or item-specific weights.

Thereby, we must take into consideration that the recommendation process could
not only be expanded in a classification scheme about users’ preferences as in [19],
but should also take into account the opinion of other users in order to eliminate the
problemof “local optima” of the content-based approaches [5, 17].On the other hand,
pure collaborative approaches have the main drawback that they tend to recommend
items that could possibly be biased by a group of users and to ignore information
that could be directly related to item content and a specific user’s preferences. Thus,
an approach is required that pays particular attention to the above matters.

Most of the existing recommendation methods have as a goal to provide accu-
rate recommendations. However, an important factor for a RS is its ability to adapt
according to user perception and to provide a kind of justification to a recommen-
dation which allow its recommendations to be accepted and trusted by users. Rec-
ommendations based only on ratings, without taking into account the content of the
recommended items fail to provide qualitative justifications. As stated in [4], “when
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the users can understand the strengths and limitations of a RS, the acceptance of its
recommendations is increased.” Thus, new methods are needed that make enhanced
use of similarity measures to provide both individualization and an indirect way for
justifications for the items that are recommended to the users.

1.5 Contribution of the Book

The contribution of this book is two-fold. The first contribution develops, presents
and evaluates a content-based RS based on multiple similarity measures that attempt
to capture user perception of similarity and to provide individualization and justifi-
cations of recommended items according to the similarity measure that was assigned
to each user. Specifically, a content-based RS, calledMUSIPER,2 is presented which
constructs music similarity perception models of its users by associating different
similarity measures with different users. Specifically, a user-supplied relevance feed-
back procedure and related neural network-based incremental learning allow the
system to determine which subset of a full set of objective features approximates
more accurately the subjective music similarity perception of a specific user. Our
implementation and evaluation of MUSIPER verifies the relation between subsets
of objective features and individualized music similarity perception and exhibits
significant improvement in individualized perceived similarity in subsequent rec-
ommended items. Additionally, the investigation of the relation between objective
feature subsets and user perception offers an explanation and justification for the
items one selects.

The selection of the objective feature subsets in MUSIPER was based on seman-
tic categorization of the features in a way that formed groups of features that
reflect semantically different aspects of the music signal. This semantic catego-
rization helped us to formulate indirect relations between a user’s specific percep-
tion and corresponding item similarity (in this case, music similarity) that involves
his/her preferences. Thus, the selected features in a specific feature subset provides
a justification-reasoning for the factors that influence the specific user’s perception
of similarity between objects and, consequently, for his/her preferences. As it was
observed, no single feature subset outperformed the other subsets for all uses. More-
over, it was experimentally observed that the users of MUSIPER were clustered by
the eleven feature subsets in MUSIPER into eleven corresponding clusters. It was
also observed that, in this clustering scheme, empty user clusters appeared, which
implies that the corresponding feature subsets failed to model the music similarity
perception of any user at all. On the other hand, there were other feature subsets the
corresponding clusters of which contained approximately 27 and 18% of the users of
MUSIPER. These twofindings are indicative of the effect of qualitative differences of
the corresponding feature subsets. They provide strong evidence justifying our initial
hypothesis that relates feature subsets with the similarity perception of an individual.

2MUSIPER is an acronym that stands for MUsic SImilarity PERception.
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Additionally, they indicate that users tend to concentrate around particular factors
(features) that eventually influence their perception of item similarity and corre-
sponding item preferences.

The second contribution of this book concerns the development and evaluation
of a hybrid cascade RS that utilizes only positive examples from a user Specifically,
a content-based RS is combined with collaborative filtering techniques in order pri-
marily to predict ratings and secondly to exploit the content-based component to
improve the quality of recommendations. Our approach focuses on:

1. using only positive examples provided by each user and
2. avoiding the “local optima” of the content-based RS component that tends to rec-

ommend only items that a specific user has already seen without allowing him/her
to view the full spectrum of items. Thereby, a need arises for enhancement of col-
laborative filtering techniques that combine interests of users that are comparable
to the specific user.

Thus, we decompose the recommendation problem into a two-level cascaded
recommendation scheme. In the first level, we formulate a one-class classification
problem based on content-based features of items in order to model the individual-
ized (subjective) user preferences into the recommendation process. In the second
level, we apply either a content-based approach or a collaborative filtering technique
to assign a corresponding rating degree to these items. Our realization and evaluation
of the proposed cascade hybrid recommender approach demonstrates its efficiency
clearly. Our recommendation approach benefits from both content-based and collab-
orative filtering methodologies. The content-based level eliminates the drawbacks of
the pure collaborative filtering that do not take into account the subjective preferences
of an individual user, as they are biased towards the items that are most preferred by
the remaining users. On the other hand, the collaborative filtering level eliminates
the drawbacks of the pure content-based recommender which ignores any benefi-
cial information related to users with similar preferences. The combination of the
two approaches into a cascade form mimics the social process where someone has
selected some items according to his/her preferences and, to make a better selection,
seeks opinions about these from others.

1.6 Outline of the Book

The book is organized as follows:
In Chap.2, related works are presented on approaches to address fundamental

problems of RS. In Chap. 3, the general problem and key definitions, paradigms, and
results are presented of the scientific discipline of learning, with particular empha-
sis on machine learning. More specifically, we focus on statistical learning and the
two main paradigms that have developed in statistical inference: the parametric par-
adigm and the general non-parametric paradigm. We concentrate our analysis on
classification problems solved with the use of Support Vector Machines (SVM) as

http://dx.doi.org/10.1007/978-3-319-19135-5_2
http://dx.doi.org/10.1007/978-3-319-19135-5_3
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applicable to our recommendation approaches. Particularly, we summarize the One-
Class Classification approach and the application of One-Class SVM Classification
to the recommendation problem.

Next, Chap. 4 presents features that are utilized to analyze the content of multi-
media data. Specifically, we present the MPEG-7 framework which forms a widely
adopted standard for processing multimedia files. Additionally, we present the
MARSYAS framework for extraction of features from audio files.

In Chap.5, the content-based RS, called MUSIPER, is presented and analyzed.
MUSIPER uses multiple similarity measures in order to capture the perception of
similarity of different users and to provide individualization and justifications for
items recommended according to the similarity measure assigned to each user.

In the following two Chaps. 6 and 7, we present our cascade recommendation
methods based on a two-level combination of one-class SVM classifiers with col-
laborative filtering techniques.

Finally, we summarize the book, draw conclusions and point to future related
research work in Chap.8.
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Chapter 2
Review of Previous Work Related
to Recommender Systems

Abstract The large amount of information resources that are available to users
imposes new requirements on the software systems that handle the information.
This chapter reviews the state of the art of the main approaches to designing RSs
that address the problems caused by information overload. In general, the methods
implemented in a RS fall within one of the following categories: (a) Content-based
Methods, (b) Collaborative Methods and (c) Hybrid Methods.

2.1 Content-Based Methods

Modern information systems embed the ability to monitor and analyze users’ actions
to determine the best way to interact with them. Ideally, each users actions are logged
separately and analyzed to generate an individual user profile. All the information
about a user, extracted either by monitoring user actions or by examining the objects
the user has evaluated [9], is stored and utilized to customize services offered. This
user modeling approach is known as content-based learning. The main assumption
behind it is that a user’s behavior remains unchanged through time; therefore, the
content of past user actions may be used to predict the desired content of their future
actions [4, 27]. Therefore, in content-based recommendation methods, the rating
R(u, i) of the item i for the user u is typically estimated based on ratings assigned
by user u to the items In ∈ I that are “similar” to item i in terms of their content, as
defined by their associated features.

To be able to search through a collection of items and make observations about
the similarity between objects that are not directly comparable, we must transform
raw data at a certain level of information granularity. Information granules refer
to a collection of data that contain only essential information. Such granulation
allows more efficient processing for extracting features and computing numerical
representations that characterize an item. As a result, the large amount of detailed
information of one item is reduced to a limited set of features. Each feature is a vector
of low dimensionality, which captures some aspects of the item and can be used to
determine item similarity. Therefore, an item i could be described by a feature vector

F(i) = [ feature1(i), feature2(i), feature3(i), . . . featuren(i)]. (2.1)
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For example, in a music recommendation application, in order to recommend
music files to user u, the content-based RS attempts to build a profile of the user’s
preferences based on features presented in music files that the user u has rated with
high rating degrees. Consequently, only music files that have a high degree of simi-
larity with these highly rated files would be recommended to the user. This method
is known as “item-to-item correlation” [41]. The type of user profile derived by a
content-based RS depends on the learning method which is utilized by the system.
This approach to the recommendation process has its roots in information retrieval
and information filtering [3, 36]. Retrieval-based approaches utilize interactive learn-
ing techniques such as relevance feedback methods, in order to organize and retrieve
data in an effective personalized way. In relevance feedback methods, the user is part
of the item-management process, which means that the user evaluates the results
provided by the system. Then, the system adapts, its performance according to the
user’s preferences. In this way, the method of relevance feedback has the efficiency
not only to take into account the user subjectivity in perceiving the content of items,
but also to eliminate the gap between high-level semantics and low-level features
which are usually used for the content description of items [12, 13, 35].

Besides the heuristics that are based mostly on information retrieval methods [3,
12, 13, 35, 36] such as the Rocchio algorithm or correlation-based schemes, other
techniques for content-based recommendation utilize Pattern Recognition/Machine
Learning approaches, such as Bayesian classifiers [28], clustering methods, decision
trees, and artificial neural networks.

These techniques differ from information retrieval-based approaches as they cal-
culate utility predictions based not on a heuristic formula, such as a cosine similarity
measure, but rather are based on a model learnt from the underlying data using sta-
tistical and machine learning techniques. For example, based on a set of Web pages
that were rated by the user as “relevant” or “irrelevant,” the naive Bayesian classifier
is used in [28] to classify unrated Web pages.

Some examples of content-based methods come from the area of music data. In
[10, 19, 24, 25, 47], they recommend pieces that are similar to users’ favorites in
terms of music content such as mood and rhythm. This allows a rich artist variety
and various pieces, including unrated ones, to be recommended. To achieve this, it
is necessary to associate user preferences with music content by using a practical
database where most users tend to rate few pieces as favorites.

A relevance feedback approach for music recommendation was presented in [19]
and based on the TreeQ vector quantization process initially proposed by Foote
[14]. More specifically, relevance feedback was incorporated into the user model by
modifying the quantization weights of desired vectors. Also, a relevance feedback
music retrieval system, based on SVMActive Learning, was presented in [25], which
retrieves the desired music piece according to mood and style similarity.

In [2], the authors explore the relation between the user’s rating input, musical
pieceswith high degree of rating thatwere defined as the listener’s favoritemusic, and
music features. Specifically, labeled music pieces from specific artists were analyzed
in order to build a correlation between user ratings and artists throughmusic features.
Their system forms the user profile as preference for music pieces of a specific artist.
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They confirmed that favorite music pieces were concentrated along certain music
features.

The system in [52] proposes the development of a user-driven similarity func-
tion by combining timbre-, tempo-, genre-, mood-, and year-related features into the
overall similarity function. More specifically, similarity is based on a weighted com-
bination of these features and the end-user can specify his/her personal definition of
similarity by weighting them.

The work in [15] tries to extend the use of signal approximation and characteriza-
tion from genre classification to recognition of user taste. The idea is to learn music
preferences by applying instance-based classifiers to user profiles. In other words,
this system does not build an individual profile for every user, but instead tries to
recognize his/her favorite genre by applying instance-based classifiers to user rating
preferences by his/her music playlist.

2.2 Collaborative Methods

CFmethods are based on the assumption that similar users prefer similar items or that
a user expresses similar preferences for similar items. Instead of performing content
indexing or content analysis, CF systems rely entirely on interest ratings from the
members of a participating community [18]. CF methods are categorized into two
general classes, namely model-based and memory-based [1, 7].

Model-based algorithms use the underlying data to learn a probabilistic model,
such as a cluster model or a Bayesian network model [7, 53], using statistical and
machine learning techniques. Subsequently, they use the model to make predictions.
The clustering model [5, 51] works by clustering similar users in the same class and
estimating the probability that a particular user is in a particular class. From there,
the clustering model computes the conditional probability of ratings.

Memory-based methods, store raw preference information in computer memory
and access it as needed to find similar users or items and to make predictions. In [29],
CF was formulated as a classification problem. Specifically, based on a set of user
ratings about items, they try to induce a model for each user that would allow the
classification of unseen items into two or more classes, each of which corresponds
to different points in the accepted rating scale.

Memory-based CF methods can be further divided into two groups, namely user-
based and item-based [37] methods. On the one hand, user-based methods look for
users (also called “neighbors”) similar to the active user and calculate a predicted
rating as a weighted average of the neighbor’s ratings on the desired item. On the
other hand, item-based methods look for similar items for an active user.

2.2.1 User-Based Collaborative Filtering Systems

User-basedCF systems are systems that utilizememory-based algorithms, meaning
that they operate over the entire user-itemmatrix R, tomake predictions. Themajority
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of such systems mainly deal with user-user similarity calculations, meaning that
they utilize user neighborhoods, constructed as collections of similar users. In other
words, they deal with the rows of the user-item matrix, R, in order to generate their
results. For example, in a personalized music RS called RINGO [43], similarities
between the tastes of different users are utilized to recommend music items. This
user-basedCF approachworks as follows:Anewuser ismatched against the database
to discover neighbors, which are other customers who, in the past, have had a similar
taste as the new user, i.e. who have bought similar items as the new user. Items
(unknown to the new user) that these neighbors like are then recommended to the
new user. The main steps of this process are:

1. Representation of Input data,
2. Neighborhood Formation, and
3. Recommendation Generation.

2.2.1.1 Representation of Input Data

To represent input data, one needs to define a set of ratings of users into a user-item
matrix, R, where each R(u, i) represents the rating value assigned by the user u
to the item i . As users are not obligated to provide their opinion for all items, the
resulting user-item matrix may be a sparse matrix. This sparsity of the user-item
matrix is the main reason causing filtering algorithms not to produce satisfactory
results. Therefore, a number of techniques were proposed to reduce the sparsity of
the initial user-item matrix to improve the efficiency of the RS. Default Voting is
the simplest technique used to reduce sparsity. A default rating value is inserted to
items for which there does not exist a rating value. This rating value is selected to be
neutral or somewhat indicative of negative preferences for unseen items [7].

An extension of the method of Default Voting is to use either the User Average
Scheme or the Item Average Scheme or theComposite Scheme [39].More specifically:

• In the User Average Scheme, for each user, u, the average user rating over all the
items is computed, R(u). This is expressed as the average of the corresponding
row in the user-item matrix. The user average is then used to replace any missing
R(u, i) value. This approach is based on the idea that a user’s rating for a new item
could be simply predicted if we take into account the same user’s past ratings.

• In the Item Average Scheme, for each item, the item average over all users is
computed, R(i). This is expressed as the average of the corresponding column in
the user-item matrix. The item average is then used as a fill-in for missing values
R(u, i) in the matrix.

• In the Composite Scheme, the collected information for items and users both con-
tribute to the final result. The main idea behind this method is to use the average
of user u on item i as a base prediction and then add a correction term to it based
on how the specific item was rated by other users.



2.2 Collaborative Methods 17

The scheme works as follows: When a missing entry regarding the rating of user
u on item i is located, initially, the user average R(u) is calculated as the average
of the corresponding user-item matrix row. Then, we search for existing ratings
in the column which correspond to item i . Assuming that a set of l users, U =
{u1, u2, . . . , ul}, has provided a rating for item i , we can compute a correction
term for each user u ∈ L equal to δk = R(uk, i) − R(uk). After the corrections
for all users in U are computed, the composite rating can be calculated as:

R(u, i) =
⎧
⎨

⎩
R(u) +

l∑

k=1
δk

l , if user u has not rated item i
R, if user u has rated item i with R .

(2.2)

An alternative way of utilizing the composite scheme is through a simple trans-
position: first compute the item average, R(ik), (i.e., average of the column which
corresponds to item i) and then compute the correction terms, δk , by scanning
through all l items I = {i1, i2, . . . , il} rated by user k. The fill-in value of R(u, i)
would then be:

R(u, i) = R(i) +

l∑

k=1
δk

l
, (2.3)

where l is the count of items rated by user u and the correction terms are computed
for all items in I as δk = R(u, ik) − R(ik)

After generating a reduced-dimensionalitymatrix,we could use a vector similarity
metric to compute the proximity between users and hence to form neighborhoods of
users [38], as discussed in the following.

2.2.1.2 Neighborhood Formation

In this step of the recommendation process, the similarity between users is calculated
in the user-item matrix, R, i.e., users similar to the active user, ua , form a proximity-
based neighborhood with him. More specifically, neighborhood formation is imple-
mented in two steps: Initially, the similarity between all the users in the user-item
matrix, R, is calculated with the help of some proximity metrics. The second step is
the actual neighborhood generation for the active user, where the similarities of users
are processed in order to select those users that will constitute the neighborhood of
the active user. To find the similarity between users ua and ub, we can utilize the
Pearson correlation metric. The Pearson correlation was initially introduced in the
context of the GroupLens project [33, 43], as follows: Let us assume that a set of
m users uk , where k = 1, 2, . . . , m, Um = {u1, u2, . . . , um}, have provided a rating
R(uk, il) for item il , where l = 1, 2, . . . , n, In = {i1, i2, . . . , in} is the set of items.
The Pearson correlation coefficient is given by:

www.allitebooks.com
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sim(ua, ub) =

n∑

l=1
(R(ua, il) − R(ua))(R(ub, il) − R(ub))

√
n∑

l=1
(R(ua, il) − R(ua))2

n∑

l=1
(R(ub, il) − R(ub))2

. (2.4)

Another metric similarity uses the cosine-based approach [7], according to which
the two users ua and ub, are considered as two vectors in n-dimensional item-space,
where n = |In|. The similarity between two vectors can be measured by computing
the cosine angle between them:

sim(ua, ub) = cos(−→ua ,
−→ub ) =

n∑

l=1
R(ua, il)R(ub, il)

√
n∑

l=1
R(ua, il)2

√
n∑

l=1
R(ub, il)2

. (2.5)

In RS, the use of the Pearson correlation similarity metric to estimate the proximity
among users performs better than the cosine similarity [7].

At this point in the recommendation process, a single user is selected who is called
the active user. The active user is the user for whom the RS will produce predictions
and proceed with generating his/her neighborhood of users. A similarity matrix S is
generated, containing the similarity values between all users. For example, the i th
row in the similarity matrix represents the similarity between user ui and all the other
users. Therefore, from this similarity matrix S various schemes can be used in order
to select the users that are most similar to the active user. One such scheme is the
center-based scheme, in which from the row of the active user ua are selected those
users who have the highest similarity value with the active user.

Another scheme for neighborhood formation is the aggregate neighborhood for-
mation scheme. In this scheme, a neighborhood of users is created by finding users
who are closest to the centroid of the current neighborhood and not by finding the
users who are closest to the active user himself/herself. This scheme allows all users
to take part in the formation of the neighborhood, as they are gradually selected and
added to it.

2.2.1.3 Generation of Recommendations

The generation of recommendations is represented by predicting a rating, i.e., by
computing a numerical value which constitutes a predicted opinion of the active
user ua for an item i j unseen by him/her. This predicted value should be within the
same accepted numerical scale as the other ratings in the initial user-item matrix
R. In the generation of predictions, only those users participate that lie within the
neighborhood of the active user. In other words, only a subset of k users participate
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from the m users in the set Um that have provided ratings for the specific item i j ,
Uk ⊆ Um . Therefore, a prediction score Pua ,i j is computed as follows [33]:

Pua ,i j = R(ua) +

k∑

t=1
(R(ut , i j ) − R(ut )) ∗ sim(ua, ut )

k∑

t=1
|sim(ua, ut )|

, where Uk ⊆ Ul (2.6)

Here, R(ua) and R(ut ) are the average rating of the active user ua and ut , respec-
tively, while R(ut , i j ) is the rating given by user ut to item i j . Similarity sim(ua, ut )

is the similarity among users ua and ut , computed using the Pearson correlation in
Eq.2.4. Finally, the RS will output several items with the best predicted ratings as
the recommendation list.

An alternative output of a RS is the top-N recommendations output. In this case,
recommendations form a list of N items that the active user is expected to like the
most. For the generation of this list, users are ranked first according to their similarity
to the active user. The k most similar (i.e. most highly ranked) users are selected as
the k-nearest neighbors of the active user ua . The frequency count of an item is
calculated by scanning the rating of the item by the k-nearest neighbors. Then, the
items are sorted based on frequency count. The N most frequent items that have not
been rated by the active user are selected as the top-N recommendations [23].

2.2.2 Item-Based Collaborative Filtering Systems

Adifferent approach [20, 37] is based on item relations and not on user relations, as in
classic CF. Since the relationships between users are relatively dynamic, as they con-
tinuously buy new products, it is computationally hard to calculate the user-to-user
matrix online. This causes the user-based CF approach to be relatively expensive in
terms of computational load. In the item-based CF algorithm, we look into the set of
items, denoted by Iua , that the active user, ua , has rated and compute how similar they
are to the target item it . Then, we select the k most similar items Ik = {i1, i2, . . . , ik},
based on their corresponding similarities {sim(it , i1), sim(it , i2), . . . , sim(it , ik)}.
The predictions can then be computed by taking a weighted average of the active
user’s ratings on these similar items. The main steps in this approach are the same
as in user-based CF. The difference in the present approach is that instead of cal-
culating similarities between two users who have provided ratings for a common
item, we calculate similarities between two items it , i j which have been rated by a
common user ua . Therefore, the Pearson correlation coefficient and cosine similarity
are, respectively, given as:
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sim(it , i j ) =

n∑

l=1
(R(ul , it ) − R(it ))(R(ul , i j ) − R(i j ))

√
n∑

l=1
(R(ul , it ) − R(it ))2

n∑

l=1
(R(ul , i j ) − R(i j ))2

(2.7)

sim(it , i j ) = cos(
−→
it ,

−→
i j ) =

n∑

l=1
R(ul , it )R(ul , i j )

√
n∑

l=1
R(ul , it )2

√
n∑

l=1
R(ul , i j )2

. (2.8)

Next, the similarities between all items in the initial user-item matrix, R, are
calculated. The final step in the CF procedure is to isolate k items from n, (Ik ⊆ In)
in order to share the greatest similarity with item it for which we are seeking a
prediction, form its neighborhood of items, and proceed with prediction generation.
A prediction on item it for active user ua is computed as the sum of ratings given
by the active user on items belonging to the neighborhood Ik . These ratings are
weighted by the corresponding similarity, sim(it , i j ) between item it and item i j ,
with j = 1, 2, . . . , k, taken from neighborhood Ik :

Pua ,i j =

k∑

j=1
sim(it , i j ) ∗ R(ua, i j )

k∑

j=1

∣
∣sim(it , i j )

∣
∣

where Ik ⊆ In . (2.9)

In [16], the authors proposed that the long-term interest profile of a user (task
profile) be established either by explicitly providing some items associated with the
current task or by implicitly observing the user behavior (intent). By utilizing the
item-to-item correlation matrix, items that resemble the items in the task profile are
selected for recommendation. Since they match the task profile, these items fit the
current task of the user. Before recommending them to the user, these items will be
re-ranked to fit the user interests based on the interest prediction.

2.2.3 Personality Diagnosis

Personality diagnosis may be thought of as a hybrid between memory and model-
based approaches of CF. The main characteristic is that predictions have meaningful
probabilistic semantics. Moreover, this approach assumes that preferences constitute
a characterization of their underlying personality type for each user. Therefore, taking
into consideration the active user’s known ratings of items, it is possible to estimate
the probability that he/she has the same personality type with another user. The
personality type of a given user is taken to be the vector of “true” ratings for items
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the user has seen. A true rating differs from the actually reported rating given by
a user by an amount of (Gaussian) noise. Given the personality type of a user, the
personality diagnosis approach estimates the probability that the given user is of the
same personality type as other users in the system, and, consequently, estimates the
probability that the user will like some new item [30].

The personality type for each user uk is formulated as follows, where k =
1, 2, . . . , m, Um = {u1, u2, . . . , um}, and the user uk has a number of preferred
items in In = {i1, i2, . . . , in}:

true
R (uk) =

{
true
R (uk, i1),

true
R (uk, i2), . . . ,

true
R (uk, in)

}

. (2.10)

Here,
true
R (uk, il), with il ∈ In and l = 1, 2, . . . , n, stands for true rating by user uk of

the item il . It is important to note the difference between true and reported (given)
ratings of the user. The true ratings encode the underlying internal preferences for a
user that are not directly accessible by the designer of the RS. However, the reported
ratings are those which were provided by users and utilized by the RS.

It is assumed that the reported ratings given by users include Gaussian noise. This
assumption has the meaning that one user could report different ratings for the same
items under different situations, depending on the context. Thus, we can assume that
the rating reported by the user for an item il is drawn from an independent normal

distribution with mean
true
R (uk, il). Particularly:

Pr

(

R(uk, il) = x | true
R (uk, il) = y

)

∝ e− (x−y)2

2σ2 , (2.11)

where σ is a free parameter, x is the rating that the user has reported to the RS, and
y is the true rating value that the user uk would have reported if there no noise were
present.

Furthermore, we assume that the distribution of personality types in the rating
array R of users-items is representative of the personalities found in the target popu-
lation of users. Therefore, taking into account this assumption, we can formulate the

prior probability Pr

(
true
R (ua) = υ

)

that the active user ua rates items accordingly

to a vector υ as given by the frequency that the other users rate according to υ.

Thereby, instead of explicitly counting occurrences, we simply define
true
R (ua) to be

a random variable that can take one of m values, (R(u1), R(u2), . . . , R(um)), each
with probability 1

m :

Pr

(
true
R (ua) = R(uk)

)

= 1

m
. (2.12)

Combining Eqs. 2.11 and 2.12 and given the active user’s ratings, we can compute
the probability that the active user is of the same personality type as any other user,
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by applying the Bayes rule:

Pr

(
true
R (ua) = R(uk)|R(ua, i1) = x1, . . . , R(ua, in) = xn

)

∝ Pr

(

R(ua, i1) = x1|
true
R (ua, i1) = R(ua, i1)

)

. . . Pr

(

R(ua, in) = xn| true
R (ua, in) = R(ua, in)

)

·Pr

(
true
R (ua) = R(uk)

)

.

(2.13)

Hence, computing this quantity for each user uk , we can compute the probability
distribution for the active user’s rating of an unseen item i j . This probability distribu-
tion corresponds to the prediction Pua ,i j produced by the RS and equals the expected
rating value of active user ua for the item i j :

Pua ,i j = Pr
(
R(ua, i j ) = x j |R(ua, i1) = x1, . . . , R(ua, in) = xn

)

=
m∑

k=1
Pr

(

R(ua, i j ) = x j |
true
R (ua) = R(uk)

)

·Pr
(

true
R (ua) = R(uk)|R(ua, i1) = x1, . . . , R(ua, in) = xn

)

.

(2.14)

Themodel is depicted as a naive Bayesian network with the structure of a classical
diagnostic model as follows:

• Firstly, we observe ratings and, using Eq.2.13, compute the probability that each
personality type is the cause. Ratings can be considered as “symptoms” while
personality types as “diseases” leading to those symptoms in the diagnostic model.

• Secondly, we can compute the probability of rating values for an unseen item using
Eq.2.14. The most probable rating is returned as the prediction of the RS.

An alternative interpretation of personality diagnosis is to consider it as a cluster-
ingmethodwith exactly one user per cluster. This is so because each user corresponds
to a single personality type and the effort is to assign the active user to one of these
clusters [7, 51].

An additional interpretation of personality diagnosis is that the active user is
assumed to be “generated” by choosing one of the other users uniformly at random
and adding Gaussian noise to his/her ratings. Given the active user’s known ratings,
we can infer the probability that he/she be actually one of other users and then
compute probabilities for ratings of other items.

2.3 Hybrid Methods

Hybrid methods combine two or more recommendation techniques to achieve better
performance and to take out drawbacks of each technique separately. Usually, CF
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methods are combined with content-based methods. According to [1], hybrid RS
could be classified into the following categories:

• Combining Separate Recommenders
• Adding Content-Based Characteristics to Collaborative Models
• Adding Collaborative Characteristics to Content-Based Models
• A Single Unifying Recommendation Model.

Combining Separate Recommenders

TheHybrid RS of this category include two separate systems, a collaborative one and
a content-based one. There are four different ways of combining these two separate
systems, namely the following:

• Weighted Hybridization Method. The outputs (ratings) acquired by individual RS
are combined together to produce a single final recommendation using either a lin-
ear combination [11] or a voting scheme [29]. The P-Tango system [11] initially
gives equal weights to both recommenders, but gradually adjusts the weights as
predictions about user ratings are confirmed or not. The system keeps the two fil-
tering approaches separate and this allows the benefit from individual advantages.

• Switched Hybridization Method. The system switches between recommendation
techniques selecting the method that gives better recommendations for the current
situation depending on some recommendation “quality” metric. A characteris-
tic example of such a recommender is The Daily Learner [6], which selects the
recommender sub-system that provides the higher level of confidence. Another
example of this method is presented in [50] where either the content-based or the
collaborative filtering technique is selected according to which of the two provided
better consistency with past ratings of the user.

• Mixed Hybridization Method. In this method, the results from different recom-
mender sub-systems are presented simultaneously. An example of such a recom-
mender is given in [45] where they utilize a content-based technique based on
textual descriptions of TV shows and collaborative information about users’ pref-
erences. Recommendations from both techniques are provided together in the final
suggested program.

• Cascade Hybridization Method. In this method, one recommendation technique
is utilized to produce a coarse ranking of candidates, while the second technique
focuses only on those items forwhich additional refinement is needed. Thismethod
is more efficient than the weighted hybridization method which applies all of its
techniques on all items. The computational burden of this hybrid approach is rel-
atively small because recommendation candidates in the second level are partially
eliminated in the first level. Moreover this method is more tolerant to noise in
the operation of low-priority recommendations, since ratings of the high level
recommender can only be refined, but never over-turned [9]. In other words, cas-
cade hybridization methods can be analyzed into two sequential stages. The first
stage (content-basedmethod or knowledge-based/collaborative) selects intermedi-
ate recommendations. Then, the second stage (collaborative/content-basedmethod
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or knowledge-based) selects appropriate items from the recommendations of the
first stage. Burke [8] developed a restaurant RS called EntreeC. The system first
selects several restaurants that match a user’s preferred cuisine (e.g., Italian, Chi-
nese, etc.) with a knowledge-based method. In the knowledge-based method, the
authors construct a feature vector according to defined attributes that characterize
the restaurants. This method is similar to content-based methods; however, it must
be noted that these metadata are content-independent and for this reason the term
knowledge-based is utilized. These restaurants are then rankedwith a collaborative
method.

2.3.1 Adding Content-Based Characteristics
to Collaborative Models

In [29], the authors proposed collaboration via content. This is a method that uses a
prediction scheme similar to the standard CF, in which similarity among users is not
computed on provided ratings, but rather on the content-based profile of each user.
The underlying intuition is that like-minded users are likely to have similar content-
based models and that this similarity relation can be detected without requiring
overlapping ratings. The main limitation of this approach is that the similarity of
users is computed using Pearson’s correlation coefficient between content-based
weight vectors.

On the other hand, in [26] the authors proposed the content-boosted collaborative
filtering approach, which exploits a content-based predictor to enhance existing user
data and then provides personalized suggestions through CF. The content-based
predictor is applied to each row of the initial user-item matrix, corresponding to
each user, and gradually generates a pseudo user-item matrix that is a full dense
matrix. The similarity between the active user, ua , and another user, ui , is computed
with CF using the new pseudo user-item matrix.

2.3.2 Adding Collaborative Characteristics
to Content-Based Models

The main technique of this category is to apply dimensionality reduction on a group
of content-based profiles. In [46], the authors used latent semantic indexing to create
a collaborative view of a collection of user profiles represented as term vectors.
This technique results in performance improvement in comparison with the pure
content-based approach.
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2.3.3 A Single Unifying Recommendation Model

A general unifying model that incorporates content-based and collaborative charac-
teristics was proposed in [5], where the authors present the use of content-based and
collaborative characteristics (e.g., the age or gender of users or the genre of movies)
in a single rule-based classifier. Single unifying models were also presented in [31],
where the authors utilized a unified probabilistic method for combining collaborative
and content-based recommendations.

2.3.4 Other Types of Recommender Systems

Demographics-based RS. The basis for recommendations in demographics-based
RS is the use of prior knowledgeondemographic information about the users and their
opinions for the recommended items. Demographics-based RS classify their users
according to personal demographic data (e.g. age and gender) and classify items
into user classes. Approaches falling into this group can be found in Grundy [34],
a system for book recommendation, and in [21] for marketing recommendations.
Similarly to CF, demographic techniques also employ user-to-user correlations, but
differ in the fact that they do not require a history of user ratings. An additional
example of a demographics-based RS is described in [29], in which information
about users is taken from their home-pages to avoid the need to maintain a history
of user ratings. Demographic characteristics for users (e.g. their age and gender) is
also utilized in [5].

Knowledge-based RS. Knowledge-based RS use prior knowledge on how the
recommended items fulfill the user needs. Thus, the goal of a knowledge-based RS
is to reason about the relationship between a need and a possible recommendation.
The user profile should encompass some knowledge structure that supports this
inference. An example of such a RS is presented in [8], where the system Entree
uses some domain knowledge about restaurants, cuisines, and foods to recommend
a restaurant to its users. The main advantage using a knowledge-based system is
that there is no bootstrapping problem. Because the recommendations are based on
prior knowledge, there is no learning time before making good recommendations.
However, the main drawback of knowledge-based systems is a need for knowledge
acquisition for the specific domain which makes difficult the adaptation in another
domain and not easily adapted to the individual user as it is enhanced by predefined
recommendations.

2.4 Fundamental Problems of Recommender Systems

Cold Start Problem. The cold-start problem [42] is related to the learning rate curve
of a RS. The problem could be analyzed into two different sub-problems:
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• New-User Problem, i.e., the problem of making recommendations to a new user
[32], where almost nothing is known about his/her preferences.

• New-Item Problem, i.e., the problem where ratings are required for items that
have not been rated by users. Therefore, until the new item is rated by a satis-
factory number of users, the RS would not be able to recommend this item. This
problem appears mostly in collaborative approaches and could be eliminated with
the use of content-based or hybrid approaches where content information is used
to infer similarities among items.

This problem is also related, with the coverage of a RS, which is a measure for
the domain of items over which the system could produce recommendations. For
example, low coverage of the domain means that only a limited space of items is
used in the results of theRS and these results usually could be biased by preferences
of other users. This is also known as the problem of over-specialization. When the
system can only recommend items that score highly against a user’s profile, the
user is limited to being recommended items that are similar to those already rated.
This problem, which has also been studied in other domains, is often addressed
by introducing some randomness. For example, the use of genetic algorithms has
been proposed as a possible solution in the context of information filtering [44].

Novelty Detection—Quality of Recommendations. From those items that a RS
recommends to users, there are items that are already known to the users and items
that are new (novel) and unknown to them. Therefore, there is a competitiveness
between the desire for novelty and the desire for high quality recommendations. One
hand, the quality of the recommendations [38] is related to “trust” that users express
for the recommendations. This means that a RS should minimize false positive errors
and, more specifically, the RS should not recommend items that are not desirable.
On the other hand, novelty is related with the “timestamp—age” of items: the older
items should be treated as less relevant than the newer ones and this causes increase
to the novelty rate. Thus, a high novelty rate will produce poor quality recommen-
dations because the users will not be able to identify most of the items in the list of
recommendations.

Sparsity of Ratings. The sparsity problem [1, 22] is related to the unavailability
of a large number of rated items for each active user. The number of items that are
rated by users is usually a very small subset of those items that are totally available.
For example, in Amazon, if the active users may have purchased 1% of the items
and the total amount of items is approximately 2 millions of books, this means
that there are only 20,000 of books which are rated. Consequently, such sparsity in
ratings degrades the accurate selection of the neighbors in the step of neighborhood
formation and leads to poor recommendation results.

A number of possible solutions have been proposed to overcome the sparsity
problem such as content-based similarities, item-based CF methods, use of demo-
graphic data and a number of hybrid approaches [9]. A different approach to deal
with this problem is proposed in [40], where the authors utilized dimension reduction
techniques, such as singular value decomposition, in order to transform the sparse
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user-itemmatrix R into a dense matrix. The SVD is a method for matrix factorization
that produces the best lower-rank approximations to the original matrix [29].

Scalability. RS, especially with large electronic sites, have to deal with a con-
stantly growing number of users and items [7, 51]. Therefore, an increasing amount
of computational resources is required as the amount of data grows. A recommen-
dation method, that could be efficient when the number of data is limited, could be
very time-consuming and scale poorly. Such a method would be unable to generate
a satisfactory number of recommendations from a large amount of data. Thus, it is
important that the recommendation approach be capable of scaling up in a successful
manner [37].

Lack of Transparency Problem. RS are usually black boxes, which means that
RS are not able to explain to their users why they recommend those specific items.
In content-based approaches [47, 48], this problem could be minimized. However,
in collaborative approaches, predictions may be harder to explain than predictions
made by content-based models [17].

Gray Sheep User Problem. The majority of users falls into the class of so called
“white-sheep”, i.e. those who have high correlation with many other users. For these
users, it should be easy to find recommendations. In a small or even medium commu-
nity of users, there are userswhose opinions do not consistently agree or disagreewith
any group of people [11]. There are users whose preferences are atypical (uncom-
mon) and vary significantly from the norm. After neighborhood formation, these
users will not have many other users as neighbors. As a result, there will be poor
recommendations for them. From a statistical point of view, as the number of users
of a system increases, so does the probability of finding other people with similar
preferences, which means that better recommendations could be provided [49].
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Chapter 3
The Learning Problem

Abstract In general, Learning can be defined as the modification of a behavior
tendency according to experienceswhich have been acquired. Thus, Learning embeds
distinctive attributes of intelligent behavior. Machine Learning is the study of how
to develop algorithms, computer applications, and systems that have the ability to
learn and, thus, improve through experience their performance at some tasks. This
chapter presents the formalization of the Machine Learning Problem.

3.1 Introduction

Learning is an essential human function which allows change in order to become bet-
ter, according to a given criterion, when a similar situation occurs. Learning does not
adopt the situation of rote learning. Rote learning describes the raw direct implanta-
tion of knowledge into a learner without the need of inference or other transformation
of knowledge to be required by him/her. Rote learning focuses only onmemorization
of given facts without the need to draw inferences from the incoming information.
However, the learning process deals with the difficulty to extract inferences and to
generalize a behavior when a novel situation arises. Therefore, learning could be
considered as a type of intelligence which covers a large spectrum of processes and
is difficult to define precisely.

Most definitions of learning refer to it as the process to gain knowledge or skills, by
study, instruction or experience. The learning process, as it is referred to in [5], could
be decomposed into a number of tasks such as “the acquisition of new declarative
knowledge, the development of motor and cognitive skills through instruction or
practice, the organization of new knowledge into general effective representations,
and the discovery of new facts through observations and experimentation”.

Taking into consideration the above aspects of the learning process, we could
define as Machine Learning the computer science discipline which is related with
the computational modeling of learning into computers. Therefore, if a system is
able to learn and adapt to such changes, this helps the system designers to provide
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only the sufficient and necessary situations without the need to foresee all possible
situations. Consequently, we may not be able to implement completely and exactly
the desired process required of a system, but we could construct a good and useful
approximation to it.

3.2 Types of Learning

The machine learning model includes two main entities, the entity of teacher and
the entity of learner [5, 10]. The teacher plays the role of the entity that contains the
required knowledge in order to perform a given task, while the learner has to learn
the knowledge to perform the task. The amount of inference performed by the learner
on the information provided by the teacher defines the learning strategies. Usually
there is a trade-off in the amount of effort required by the learner and the teacher. As
the learner is able to perform a larger amount of inference, the effort of the teacher
is decreasing and vice versa. Hence, we can define three types of learning:

Learning from Instruction This type of learning consists of the learner acquiring
knowledge from the teacher and transforming it into an internal representation for
performing inferences. In this kind of learning, the role of the teacher is crucial
as he/she is responsible for organizing the knowledge in a way that incrementally
increases the learner’s actual knowledge.

Learning by Analogy This type of learning consists of acquiring new facts or skills
by transforming and increasing existing knowledge that bears strong similarity
to the desired new concept or skill into a form effective and useful in the new
situation. This type of learning requires more inference on the part of the learner
than does learning by heart (rote learning) or learning from instruction. A fact or
skill analogous in relevant parameters should be retrieved from memory and then
the retrieved knowledge should be applied to new situations.

Learning from Examples This the most important type of learning in terms of rel-
evance to computer science and constitutes the core of what is meant by the term
machine learning. Specifically, this is the learning approach which could be con-
sidered as a problem of finding desired dependencies using a “limited” number
of observations. This type of learning is driven from statistics, where the problem
focuses on how to use samples drawn from an unknown probability distribution in
order to decide from which distribution a new sample has been drawn. A related
problem is how to estimate the value of an unknown function at a new point given
the values of this function at a set of sample points. In other words, given a set
of a examples of a concept, the learner induces a general concept description that
describe the examples. In this type of learning, the amount of inference performed
by the learner is not limited as in learning from instruction or in learning by anal-
ogy, but is, comparatively, much greater.
Generally, there are two subcategories of this type of learning namely induc-
tive and deductive learning. Inductive learning aims at obtaining or discovering
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general relations-dependencies-rules from particular given examples which are
called training data. On the other hand, deductive learning attempts to use a set
of known relations-dependencies-rules that fit the observed training data. Most
machine learning approaches belong to the inductive learning category and it is
these methods that we will focus on in this chapter.
More specifically, learning from examples could be discriminated in three cat-
egories according to the way that the training data are utilized to find either a
dependence or an inference or a description for the general set of data in a specific
problem. These categories are:

Supervised Learning includes prediction and classification tasks and constitutes
the main category of learning that we will focus on in our analysis. In supervised
learning, the objects that are related to a specific concept are pairs of input-
output patterns. This means that data that belong to the same concept are already
associated with target values, as, for example, classes which define the identities
of concepts [2, 9, 15, 33, 36].

Unsupervised Learning is about understanding or finding a concise description
of data by passively mapping or clustering data according to some order prin-
ciples. This means that the data constitute only a set of objects where a label
is not available to define the specific associated concept as it is in supervised
learning. Thus, the goal of unsupervised learning is to create groups-clusters
of similar objects according to a similarity criterion and then to infer a concept
that is shared among of these objects [15, 33].
Also, unsupervised learning includes algorithms that aim at providing a repre-
sentation from high-dimensional to low-dimensional spaces, while preserving
the initial information of data and offering a more efficient computation. These
techniques, called Dimensionality Reduction Methods, focus mainly on con-
fronting R. Belman’s phenomenon known as “the curse of dimensionality.”
This phenomenon is essentially the observation that increasing the number of
variables in multivariate problems requires exponentially increasing the amount
of computational resources.

Reinforcement Learning involves performing actions to achieve a goal [30]. In
reinforcement learning, an agent learns by trial and error to perform an action to
receive a reward, thereby yielding an efficient method to develop goal-directed
action strategies. Reinforcement learning was inspired by related phycological
theories and is strongly related to the basal ganglia in the brain. Reinforcement
learning methodologies are related to problems where the learning agent does
not a priori knowwhat it must do. Thus, the agentmust discover an action policy
formaximizing the “expected gain” definedby the rewards that the agents get in a
given state. Reinforcement learning differs from supervised learning because in
reinforcement learning neither input/output pairs are presented, nor sub-optimal
actions explicitly corrected, but the agents at a specific time t fall into a state
and upon this information select an action. As a consequence, the agent receives
for its action a reinforcement signal or reward. Hence, as a given state has no
optimal action, the challenge of a reinforcement learning algorithm is to find a
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balance between exploration of possible actions and exploitation of its current
knowledge in order to maximize its reward. Additionally, the reinforcement
learning algorithm has to face the challenge to discover new actions not tried
in the past and thus to explore the state space. Taking these facts into account,
it is clear that there is not a predefined recipe to give answers to the above
dilemma. The environment of this type of learning is typically formulated as a
finite-state Markov Decision Process and reinforcement learning algorithms are
highly related to dynamic programming techniques. Most of these algorithms
are based on estimating value functions, i.e. functions of pairs of state-action
that estimate how good it is for the agent to be in a given state (or how good it is
to perform a given action in a given state). The notion of “how good” is defined
in terms of future rewards that can be expected or, more precisely, in terms of
expected returns. Of course, the rewards the agent may expect to receive in the
future depend on what actions it will take.

In the next section, we will analyze further only the statistical supervised learning
paradigms that are utilized mostly in RS and related algorithms in order to extract
inferences from user preferences on a set of items.

3.3 Statistical Learning

The learning process faces problems that are partially unknown, too complex or
too noisy. As we mentioned in the previous section, statistical learning techniques
deal with the difficult learning process of finding desired dependence-relation for an
infinite domain using a finite amount of given data [9, 35, 36]. In fact, there is an
infinite number of such relations. Thus, the problem is to select the relation (i.e., to
infer the dependence) which is the most appropriate. The answer to this problem is
provided by the principle of Occam’s razor (also known as principle of parsimony):
“Entities should not be multiplied beyond necessity.” This principle means that one
should not increase the number of entities unnecessarily or make further assumptions
than are needed to explain anything. In general, one should pursue the simplest
hypothesis available. Thereby,whenmany solutions are available for a given problem
we should select the simplest one because according to the interpretation of Occam’s
razor, “the simplest explanation is the best” [9, 35, 36].

Consequently, we have to define what is considered as the simplest solution.
In order to define what a simple solution is, we need to use prior knowledge of
the problem to be solved. Often, this prior knowledge is the principle of smooth-
ness. Specifically, the smoothness principle states that physical changes do not occur
instantaneously, but all changes take place in a continuous way. If two points x1, x2
are close, then so should be the corresponding outputs y1, y2. For example, if we
have two points, one of which is red and the other one is green, then if we will get a
new point which is very close to the red one, the principle of smoothness says that
this point will most probably be red. This means that the function (which describes
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the relation among location of points and color) does not change abruptly, but its
change takes place in a continuous way. Therefore, the learning problem could be
described as the search to find a function which solves our task.

Taking into consideration the previous facts, two main paradigms are developed
in statistical inference: the particular parametric paradigm (parametric inference)
and the general paradigm (nonparametric inference).

3.3.1 Classical Parametric Paradigm

The classical parametric paradigm aims at creating simple statistical methods of
inference [36]. This approach of statistical inference was influenced by Fisher’s
work in the area of discriminant analysis. The problem was to infer a functional
dependence by a given collection of empirical data. In other words, the investigator
of a specific problem knows the physical law that generates the stochastic properties
of the data in the form of a function to be determined up to a finite number of
parameters. Thus, the problem is reduced to the estimation of the parameters using
the data. Fisher’s goal was to estimate the model that generates the observed signal.
More specifically, Fisher proposed that any signal X could be modeled as the sum
of two components, namely a deterministic component and random component:

Y = f (x, a) + ε. (3.1)

In this model, f (x, a) is the deterministic part defined by values of a function
which is determined up to a limited number of parameters. On the other hand, ε

corresponds to the random part describing noise added to the signal, which is defined
by a known density function. Thus, the goal was the estimation of the unknown
parameters in the function f (x, a). For this purpose, Fisher adopted the Maximum
Likelihood Method. The classical parametric paradigm could be called as Model
Identification as the main philosophical idea is the traditional goal of science to
discover or to identify an existing law of nature that generates the statistical properties
of data.

The classical parametric paradigm is based on three beliefs. The first belief states
that the number of free parameters, that define a set of functions linear to them
and contain a good approximation to the desired function, is small. This belief is
based on Weiestrass’s theorem, according to which “any continuous function can be
approximated by polynomials at any degree of accuracy” [36].

The second belief refers to the Central Limit Theorem which states that “the sum
of a large number of variables, under wide conditions, is approximated by normal
(Gaussian) law.” Therefore, the underlying belief is that formost real life problems, if
randomness is the result of interaction among large numbers of random components,
then the statistical law of the stochastic element is the normal law [36].

The third belief states that themaximum likelihoodmethod as an induction engine
is a good tool for estimating parameters of models even for small sample sizes. This
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belief was supported by many theorems that are related with conditional optimality
of the method [36].

However, the parametric paradigm demonstrates shortcomings in all of the beliefs
that it was based on. In real lifemultidimensional problems, it seems naive to consider
that we could define a small set of functions that contained the desired functions,
because it is known that, if the desired function is not very smooth, the desired level
of accuracy causes an exponential increase of the number of free terms with an
increasing amount of variables. Additionally, real life problems cannot be described
by only classical distribution functions, while it has also been proven that the max-
imum likelihood method is not the best one even for simple problems of density
estimation [36].

3.3.2 General Nonparametric—Predictive Paradigm

The shortcomings of the parametric paradigm for solving high-dimensional prob-
lems have led to the creation of new paradigms as an attempt to analyze the problem
of generalization of statistical inference for the problem of pattern recognition. This
study started byGlivenko, Cantelli andKolmogorov [36], who proved that the empir-
ical distribution function always converges to the actual distribution function. The
main philosophical idea of this paradigm arises from the fact that there is no reliable
a priori information about the desired function that we would like to approximate.
Due to this fact, we need a method to infer an approximation of the desired function
utilizing the given data under this situation. This means that this method should be
the best for the given data and a description of conditions should be provided in order
to achieve the best approximation to the desired function that we are looking for.

As a result of the previous reasons, the need was created to state the general
principle of inductive inference which is known as the principle of Empirical Risk
Minimization (ERM). The principle of ERM suggests a decision rule (an indicator
function) that minimizes the so-called “empirical risk”, i.e. the number of training
errors [9, 36].

The construction of a general type of learning machine started in 1962, where
Rosenblatt [2, 36] proposed the first model of a learning machine known as per-
ceptron. The underlying idea of the perceptron was already known in the literature
of neurophysiology. However, Rosenblatt was the first to formulate the physiolog-
ical concepts of learning with reward and punishment stimulus of perceptron as a
program for computers and showed with his experiments that this model can be
generalized. He proposed a simple algorithm of constructing a rule for separating
data into categories using given examples. The main idea was to choose appropriate
coefficients of each neuron during the learning process. The next step was done in
1986 with the construction of the back-propagation algorithm for simultaneously
finding the weights for multiple neurons of a neural network.

At the end of the 1960s, Vapnik and Chervonenkis started a new paradigm known
as Model Predictions or Predictive Paradigm [36]. The focus here is not on an
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accurate estimation of the parameters or on the adequacy of a model on past observa-
tions, but on the predictive ability, for example the capacity of making good predic-
tions for new observations. The classical paradigm (Model for Identification) looks
for a parsimonious function f (x, a) belonging to a predefined set. On the other hand,
in the predictive paradigm the aim is not to approximate the true function (the optimal
solution) f (x, a0), but to get a function f (x, a) which gives as accurate predictions
as possible. Hence, the goal is not to discover the hidden mechanism, but to perform
well. This is known as “black boxmodel” [34], which illustrates the above conception
while keeping the same formulation of the classical paradigm y = f (x, a) + ε.

For example in the pattern recognition problem (also known as the classification
problem), understanding the phenomenon (the statistical law that causes the stochas-
tic properties of data) would be a very complex task. In the predictive paradigm,
models such as artificial neural networks, support vector machines etc. attempt to
achieve a good accuracy in predictions of eventswithout the needof the identification-
deep understanding of the events which are observed. The fundamental idea behind
models that belong to the predictive paradigm is that the problem of estimating a
model of events is “hard” or “ill-posed” as it requires a large number of observations
to be solved “well” [36]. According to Hadamard, a problem is “well-posed” if its
solution

1. exists,
2. is unique, and
3. is stable.

If the solution of the problem violates at least one of the above requirements, then
the problem is considered ill-posed.

Consequently, finding a function for the estimation problem has led to the deriva-
tion of bounds on the quality of any possible solution. In other words, these bounds
express the generalization ability of this function. This resulted in the adoption of
the inductive principle of Structural Risk Minimization which controls these bounds.
This theory was constructed by Vapnik and Chervonenkis and its quintessence is
the use of what is called a capacity concept for a set of events (a set of indicator
functions). Specifically, Vapnik and Chervonenkis introduce the Vapnik Capacity
(VC) Dimension which characterizes the variability of a set of indicator functions
implemented by a learning machine. Thus, the underlying idea to controlling the
generalization ability of the learning machine pertains to “achieving the smallest
bound on the test error by controlling (minimizing) the number of the training
errors; the machine (the set of functions) with the smallest VC-dimension should
be used” [9, 36].

Thus, there is a trade-off between the following two requirements:

• to minimize the number of training errors and
• to use a set of functions with small VC-dimension.

On the one hand, the minimization of the number of training errors needs a selection
of function from a wide set of functions. On the other hand, the selection of this
function has to be from a narrow set of functions with small VC-dimension.
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As a result, the selection of the indicator function that we will utilize to minimize
the number of errors, has to compromise the accuracy of approximation of training
data and the VC-dimension of the set of functions. The control of these two con-
tradictory requirements is provided by the Structural Risk Minimization principle
[9, 36].

3.3.3 Transductive Inference Paradigm

The next step beyond the model prediction paradigm was introduced by Vladimir
Vapnik with the publication of the Transductive Inference Paradigm [34]. The key
ideas behind the transductive inference paradigm arose from the need to create effi-
cient methods of inference from small sample sizes. Specifically, in transductive
inference an effort is made to estimate the values of an unknown predictive function
at a given restricted subset of its domain in which we are interested and not in the
entire domain of its definition. This led Vapnik to formulate the Main Principle [9,
34, 36]:

If you possess a restricted amount of information for solving some problem, try to solve the
problemdirectly and never solve amore general problemas an intermediate step. It is possible
that the available information is sufficient for a direct solution, but may be insufficient to
solve a more general intermediate problem.

The main principle constitutes the essential difference between newer approaches
and the classical paradigm of statistical inference based on use of the maximum
likelihood method to estimate a number of free parameters. While the classical para-
digm is useful in simple problems that can be analyzed with few variables, real world
problems are much more complex and require large numbers of variables. Thus, the
goal when dealing with real life problems that are by nature of high dimensionality
is to define a less demanding (i.e. less complex) problem which admits well-posed
solutions. This fact involves finding values of the unknown function reasonably well
only at given points of interest, while outside of the given points of interest that
function may not be well-estimated.

The setting of the learning problem in the predictive paradigm, which is analyzed
in the next section, uses a two step procedure. The first step is the induction stage,
in which we estimate the function from a given set of functions using an induction
principle. The second step is the deduction stage, in which we evaluate the values
of the unknown function only at given points of interest. In other words, the solu-
tion given by the inductive principle derives results first from particular to general
(inductive step) and then from general to particular (deductive step).

On the contrary, the paradigm of transductive inference forms a solution that
derives results directly from particular (training samples) to particular (testing
samples).

In many problems, we do not care about finding a specific function with good
generalization ability, but rather are interested in classifying a given set of examples
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(i.e. a test set of data) with minimum possible error. For this reason, the inductive
formulation of the learning problem is unnecessarily complex.

Transductive inference embeds the unlabeled (test) data in the decision making
process that will be responsible for their final classification. Transductive inference
“works because the test set can give you a non-trivial factorization of the (discrimina-
tion) function class” [7]. Additionally, the unlabeled examples provide information
on the prior information of the labeled examples and “guide the linear boundary
away from the dense region of labeled examples” [39].

For a given set of labeled data points Train − Set = {(x1, y1), (x2, y2), . . . ,
(xn, yn)}, with yi ∈ {−1, 1} and a set of test data pointsTest−Set = {xn+1, xn+2, . . . ,

xn+k}, where xi ∈ R
d , transduction seeks among the feasible corresponding labels

the one y∗
n+1, y∗

n+2, . . . , y∗
n+k that has the minimum number of errors.

Also, transduction would be useful among other ways of inference in which there
are either a small amount of labeled data points available or the cost for annotating
data points is prohibitive. Hence, the use of the ERM principle helps in selections of
the “best function from the set of indicator functions defined inRd , while transductive
inference targets only the functions defined on the working set Working − Set =
Train − Set

⋃
Test − Set,” which is a discrete space.

To conclude, the goal of inductive learning (classical parametric paradigm and
predictive paradigm) is to generalize for any future test set, while the goal of trans-
ductive inference is to make predictions for a specific working set. In inductive
inference, the error probability is not meaningful when the prediction rule is updated
very abruptly and the data pointmay be not independently and identically distributed,
as, for example, in data streaming. On the contrary, Vapnik [36] illustrated that the
results from transductive inference are accurate even when the data points of interest
and the training data are not independently and identically distributed. Therefore,
the predictive power of transductive inference can be estimated at any time instance
in a data stream for both future and previously observed data points that are not
independently and identically distributed. In particular, empirical findings suggest
that transductive inference is more suitable than inductive inference for problems
with small training sets and large test sets [39].

3.4 Formulation of the Learning Problem

In here, we will follow the formulation of the problem of learning from data for the
predictive paradigm [9, 36, 37], in accordancewith concepts developed in theVapnik
and Chervonenkis learning theory. The general learning problem of estimation of an
unknown dependence (function) between input and output of a system using a limited
number of observations constitutes of three components, as is illustrated in Fig. 3.1:

1. The Generator (sampling distribution) produces random vectors x ∈ R
d , drawn

independently from a fixed probability density P(x) which is unknown.
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Fig. 3.1 Learning from examples

2. The System (also known as the supervisor) produces an output value y for every
input vector x according to the fixed conditional density P(x |y) which is also
unknown.

3. The Learning Machine is capable of implementing a set of approximating func-
tions f (x, a), which depend on a set of parameters a ∈ Λ, where Λ is a set of
allowed parameter values.

Hence, the learning problem can be defined as follows: Given a set of n training
samples (xi , yi ), i = 1, . . . , n, which constitute n independent identically distributed
random observations produced according to an unknown joint probability density
function (pdf): P(x, y) = P(x)P(y|x), select a function from the given set of
approximating functions f (x, a) which best approximates the System response.

We have to mention that the set of approximating functions of the Learning
Machine should be chosen a priori and before the learning process is started. In the
best case, the selection of a set of approximating functions reflects prior knowledge
about the System. This selection is dependent on the particular application at hand
and lies outside the scope of the learning problem. Common sets of approximating
functions may be radial based functions, multi-layer perceptrons, wavelets etc.

In order to measure the quality of an approximation function and to select the best
available approximation, one may measure the loss or discrepancy L(y, f (x, a))

between the System and the Learning Machine outputs for a given point x . In other
words, aLoss Function is defined as a non-negative function thatmeasures the quality
of the approximating function f .

The expected value of the loss function is called the expected or prediction risk
functional:

R(a) =
∫

L(y, f (x, a))P(x, y) dx dy. (3.2)

Thereby, learning is the process of estimating the function f (x, a) which minimizes
the risk functional R(a) over the set of functions f (x, a) supported by the Learning
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Fig. 3.2 Learning as a searching of the desired function

Machine using only the training data, as the joint probability distribution P(x, y) is
not known.

We cannot necessarily expect to find the optimal solution f (x, a0), so we denote
with f (x, a) as the estimate of the optimal solution obtained with finite training data
using some learning procedure. This is illustrated in Fig. 3.2.

The learning process is divided into the following main problems:

• The problem of Pattern Recognition—Classification
• The problem of Regression Estimation
• The Problem of Density Estimation.

For each of these problems, we have different corresponding Loss functions as
the output y differs. However the goal of minimizing the risk functional based only
on training data, is common for all learning problems. In the next section, we will
give the formulation and the loss functions for the problem of Classification [9, 36,
37], which is of interest in here.

3.5 The Problem of Classification

The output y of the System in the classification problem takes on only two symbolic
values y ∈ {0, 1}, which correspond to the input x belonging to one or the other of two
classes. Within the framework of RS, the two classes could correspond, for example,
to items with low rating value (e.g. rating value in {1, 2}) and items with high rating
value (e.g. rating value in {3, 4, 5}), respectively. Consequently, the output of the
Learning Machine needs only to take on the two values 0 and 1. Thereby, the set
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of functions f (x, a), a ∈ Λ, which take these two values become a set of indicator
functions. The following loss function for this problem measures the classification
error:

L(y, f (x, a)) = |y − f (x, a)| (3.3)

or

L(y, f (x, a)) =
{
0
1

if y = f (x, a)

if y �= f (x, a)
(3.4)

Using the loss function, the risk functional 3.2 provides the probability of clas-
sification errors to occur. As a result, learning becomes the problem of finding the
indicator function f (x, a0) which minimizes the probability of misclassification
using only the training data.

It is useful to mention that, if the density P(x, y) is known, the given learning task
(classification in this case) can be solved by minimizing Eq. 3.2 directly, without a
need for training data.

This implies that the density estimation problem is the most general of all learning
problems and, therefore, the most difficult to solve with a finite amount of data.
This remark has led Vapnik to define the Main Principle [36], to which we referred
in a previous section. According to the main principle, we do not need to solve
a given learning problem by indirectly solving a harder problem such as that of
density estimation as an intermediate step. This principle is rarely followed under
other approaches, such as artificial neural networks [2, 18] where the classification
problem is solved via density estimation.

3.5.1 Empirical Risk Minimization

With the above analysis taken into account, we can estimate the indicator function
f (x, a0) which minimizes the empirical risk (also known as the training error). In
Eq.3.2, the expected risk functional R(a) is replaced by the empirical risk functional:

Remp(a) = 1

n

n∑

i=1

L(yi , f (xi , a)). (3.5)

This inductive principle is called as Empirical Risk Minimization [36] and is
utilized to approximate the function f (x, a0) which minimizes the risk in Eq.3.2 by
the function f (x, an) which minimizes the empirical risk in Eq.3.5.

The ERM principle chooses the function f (x, a) that minimizes the empirical
risk or the average loss for the training data. The key problem according to Vapnik
[9, 36, 37] for a learning process based on the ERMprinciple is to ensure consistency
of the learning process that minimizes the empirical risk. This will guarantee that
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the minimization of the empirical risk will converge to the true risk which cannot be
computed. Vapnik andChervonenkis [35, 36] proved that the necessary and sufficient
conditions for consistency of the ERM principle is that the ratio of the VC-entropy of
the set of indicator functions on a sample of size n approaches to zero as the number
of observed data n approaches infinity. VC entropy of the set of indicator functions
provides a measure of the expected diversity of the set of indicator functions with
respect to a sample of a given size, generated from some (unknown) distribution.
This definition of entropy is given in Vapnik [35, 36] in the context of statistical
learning theory and should not be confused with Shannon’s entropy commonly used
in information theory. Thus, the ERM principle is intended for dealing with large
sample sizes.

Another important result of the VC theory on the generalization ability of the
learning machine from a set of totally bounded non-negative functions f (x, a) is the
following Inequality 3.6. This inequality is useful in model selection, as it provides
an upper limit for complexity for a given sample size and confidence level, with no
assumptions about the type of approximating function and noise level in the data.

Specifically, the inequality for the classification problem of two classes is:

R(a) ≤ Remp(a) + ε(n)

2

(

1 +
√

1 + 4Remp(a)

ε(n)

)

(3.6)

with probability 1−η simultaneously for all functions f (x, a), including the function
f (x, a0) and

ε(n) = 4
h

(
ln 2n

h + 1
) − ln(η)

n
, (3.7)

such that h is a VC-dimension and n data points of training set.
As stated previously, the VC dimension h of a set of indicator functions is the

maximum number of samples for which all possible binary classifications can be
induced (without error). For example, h will be the VC dimension of a set of indicator
functions, if there existh samples that canbe shatteredby this set of functions but there
are no h −1 samples that can be shattered by this set of functions. Here, shattering is
the process of finding all possible 2h ways with correctly assigned labels. The ERM
principle works well when a large number of observed data is available, since the
law of large numbers states that

lim
n→∞ Remp(a) = R(a). (3.8)

From the above Inequality 3.6, we observe that, when n
h is large, the second

summand on the right side of 3.6, which corresponds to the confidence interval for
the empirical risk, approaches zero. Then, the true expected risk R(a) is close to the
value of the empirical risk Remp(a).
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However, if n
h is small, as with a limited number of observed data, there is no guar-

antee for a solution based on expected risk minimization because a small empirical
risk Remp(a) requires a small true expected risk R(a).

We have to mention that the empirical risk Remp(a) in Inequality 3.6, depends on
a specific function from the set of functions, whereas the second term depends on
the VC dimension of the set of functions. Hence, minimization of the upper bound
of the true expected risk R(a) in Inequality 3.6 needs to minimize both terms of the
right hand side of the inequality. This means that it is necessary to make the VC
dimension a controlling variable. More precisely, we need to find the set of functions
with optimal VC dimension for a given training data. Thus, Vapnik proposed a new
principle known as Structural Risk Minimization.

3.5.2 Structural Risk Minimization

Structural Risk Minimization (SRM) attempts to minimize the true expected risk
R(a), while paying attention to minimizing the Empirical Risk Remp(a) along with
the VC dimension of the set of functions. Thus, the VC dimension defines the com-
plexity of the set of functions and will not be confused with the number of free
parameters or degree of freedoms [9, 36, 37]. For a finite training sample of size n,
there exists an optimal element of a structure providing minimum of prediction risk.
The SRM principle seeks to minimize the expected risk while avoiding underfitting
and overfitting using function complexity control [9, 36]. Underfitting occurs when
the selected function is not adequate to approximate the training data. On the other
hand, there is overfitting when the selected function is so complex that it approxi-
mates excessively the training data and results into being insufficient to generalize
well. Thus, the SRM principle provides a complexity ordering of the approximating
functions. More specifically, “the SRM principle suggests a trade-off between the
quality of approximation and the complexity of the approximating function” [36].

The empirical risk Remp(a) decreases as the VC dimension increases. As the VC
dimension h is low compared to the number of training examples n, the confidence
interval is narrow. This is illustrated in Fig. 3.3 (adapted from [36]).

The inductive principle SRM provides a formal mechanism for choosing an opti-
mal complexity of a set of functions for a finite sample. SRM has been originally
proposed and applied for classification [36]. However, it is applicable to any learning
problem, in which the risk functional has to be minimized.

Let the set S of functions f (x, a), a ∈ Λ have a structure that consists of nested
subsets Si , i = 1, 2, . . . of totally bounded non-negative functions

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ . . . , (3.9)

such that the VC dimension hi , i = 1, 2, . . . of the subsets satisfies

h1 ≤ h2 ≤ h3 ≤ · · · ≤ hn ≤ . . . . (3.10)
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Fig. 3.3 Upper bound on expected true risk R(a) and empirical risk Remp(a) as a function of VC
dimension h

Then, the SRM principle chooses an optimal subset of the structure as a solution
to the learning problem. This particular optimal subset has a specific VC dimension
that yields the minimal guaranteed (i.e. lowest upper) bound on the true (expected)
risk.

There are two strategies to implement the SRM inductive principle in learning
algorithms and these are related to the two terms that participate in the upper bound
of 3.6:

• The first strategy is to minimize the empirical risk Remp(a) for a fixed VC dimen-
sion h and

• the second strategy is tominimize theVC dimension, which involvesminimization
of the confidence interval term in 3.6 for the problem of classification, while the
empirical risk Remp(a) remains constant (small).

3.6 Support Vector Machines

The Support Vector Machine (SVM) is a supervised classification system that finds
an optimal hyperplane which separates data points that will generalize best to future
data [4, 9, 11, 12, 35, 37]. Such a hyperplane is the, so-called, maximum margin
hyperplane and maximizes the distance to the closest points from each class.
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The SVM mainly relies on the following assumptions: In pattern recognition
applications, usually we map the input vectors into a set of new variables (features),
which are selected according to a priori assumptions about the learning problem.
These features, rather than the original inputs, are then used by the learning machine.
This type of feature selection often has the additional goal of controlling complexity
for approximation schemes, where complexity is dependent on input dimensionality.
In other words, the feature selection process has the goal to reduce redundancy in the
data in order to reduce the problem complexity. On the contrary, SVM transform data
into a high-dimensional space which may convert complex classification problems
(with complex decision surfaces) into simpler problems that can use linear discrim-
inant functions. SVM do not place any restriction on the number of basis functions
(features) used to construct a high-dimensional mapping of the input data points.
Consequently, the dimensionality of data points (feature vectors), that describe our
data, does not influence significantly the learning process. Hence, it is not necessary
to apply techniques of dimensionality reduction as in the classical paradigm in which
the dimensionality of the data points is a critical factor.

Moreover, linear functions with constraints on complexity are used to approxi-
mate or discriminate the input data points in the high-dimensional space. SVM use
linear estimators to perform approximation. This in contrast with artificial neural
networks which depend on nonlinear approximations applied directly on the input
space. Nonlinear estimators can potentially provide amore compact representation of
the approximation function; however, they suffer from two serious drawbacks: lack
of complexity measures and lack of optimization approaches that would provide a
globally optimal solution.

Additionally, the linear approximating function that corresponds to the solution
of the dual quadratic optimization problem is given in the kernel representation
rather than in the typical basis function representation. The solution in the kernel
representation is written as a weighted sum of the support vectors. The support
vectors are a subset of the training data corresponding to the solution of the learning
problem.

Also, SVM are based on using only those training patterns that are near the
decision surface assuming they provide themost useful information for classification.
SVM are based on statistical learning theory that we have analyzed in previous
sections and implement the structural risk minimization (SRM) inductive principle
in order to effectively generalize data sets of limited size. Specifically, SVM define
a special structure on a set of equivalence classes. In this structure, each element is
indexed by the margin size.

For these reasons, we select the use of SVM to address our problem. In the
remainder of this section, the basic theory of SVMwill be given.Additionally,wewill
present One Class SVM that are utilized in the new approach to the recommendation
process proposed in here.
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Fig. 3.4 Two class classification. Support vectors are indicated with crosses

3.6.1 Basics of Support Vector Machines

Let X = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where x ∈ R
d , y ∈ {−1, 1} be a set

of d-dimensional feature vectors corresponding to data points (e.g. recommended
items).

3.6.1.1 Linearly Separable Data

In the simple case of separable training data, there exists a hyperplane decision
function which separates the positive from the negative examples

f (x) = (w · x) − b, (3.11)

with appropriate parameters w, b [12, 37].
Let dpositive be the shortest distance from the separating hyperplane to the closest

positive example and dnegative the corresponding shortest distance from the separating
hyperplane to the closest negative example. The margin of the hyperplane is defined
as D = dpositive + dnegative. Consequently, the optimal hyperplane is defined as the
hyperplane with maximal margin. The optimal hyperplane separates the data without
error. Then, if all the training data satisfy the above requirements, we have:

(w · xi ) − b ≥ 1 if yi = 1 hyperplane H1
(w · xi ) − b ≤ −1 if yi = −1 hyperplane H−1

(3.12)

The above inequalities can be combined in the following form:

yi [(w · xi ) − b] ≥ 1, i = 1, . . . , n. (3.13)
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Thereby, the optimal hyperplane can be found by solving the primal optimization
problem:

minimize Φ(w) = 1
2‖w‖2 = 1

2 (w
T · w)

subject to yi [(w · xi ) − b] ≥ 1, i = 1, . . . , n.
(3.14)

In order to solve this optimization problem, we form the following Lagrange
functional:

L(w, b) = 1

2
‖w‖2 −

n∑

i=1

ai [yi f (xi ) − 1], (3.15)

where the ai are Lagrange multipliers with ai ≥ 0. The Lagrangian L(w, b) must be
minimized with respect to the w and b so that the saddle point w0, b0 and a0

i satisfy
the conditions:

∂L(w0,b0)
∂b =

n∑

i=1
a0

i yi = 0

∂L(w0,b0)
∂w = w0 −

n∑

i=1
yi a0

i xi = 0.
(3.16)

From the above equations, we obtain

n∑

i=1

a0
i yi = 0, a0

i ≥ 0 (3.17)

and

w0 =
n∑

i=1

yi a
0
i xi , a0

i ≥ 0. (3.18)

Also, the solution must satisfy the Karush-Kuhn-Tucker conditions:

a0
i yi [(w0 · xi ) − b0] − 1 = 0, i = 1, . . . , n. (3.19)

The Karush-Kuhn-Tucker conditions are satisfied at the solution of any con-
strained optimization problem whether it is convex or not and for any kind of con-
straints, provided that the intersection of the set of feasible directions with the set
of descent directions coincides with the intersection of the set of feasible directions
for linearized constraints with the set of descent directions. The problem for SVM is
convex and for convex problems the Karush-Kuhn-Tucker conditions are necessary
and sufficient for w0, b0 and a0

i to be a solution. Thus, solving the SVM problem
is equivalent to finding a solution to the Karush-Kuhn-Tucker conditions. Note that
there is a Lagrange multiplier ai for every training point.

The data points for which the above conditions are satisfied and can have nonzero
coefficients a0

i in the expansion of 3.18 are called support vectors. As the support
vectors are the closest data points to the decision surface, they determine the location
of the optimal separating hyperplane (see Fig. 3.4).
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Thereby, we can substitute Eq.3.18 back into Eq.3.15 and, taking into account
the Karush-Kuhn-Tucker conditions, we obtain the functional

W (a) =
n∑

i=1

ai − 1

2

n∑

i=1

n∑

j=1

ai a j yi y j (xi · x j ). (3.20)

Consequently, we arrive at the, so-called, dual optimization problem:

maximize W (a) =
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j yi y j (xi · x j )

subject to b
n∑

i=1
ai yi = 0,

ai ≥ 0.

(3.21)

We can obtain the optimal hyperplane as a linear combination of support vectors
(SV)

f (x) =
n∑

i=1
yi a0

i (xi · x) + b0

= ∑

i∈ SV
yi a0

i (xi · x) + b0.
(3.22)

The VC dimension h of a set of hyperplanes with margin b0 = 1
‖w0‖2 has the

upper bound
h ≤ min{‖ w0 ‖2, d} + 1. (3.23)

The optimal separating hyperplane can be found following the SRM principle. Since
the data points are linearly separable, one finds a separating hyperplane that has
minimum empirical risk (i.e., zero empirical error) from the subset of functions with
the smallest VC-dimension.

3.6.1.2 Linearly Nonseparable Data

Usually, data collected under real conditions are affected by outliers. Sometimes,
outliers are caused by noisy measurements. In this case, outliers should be taken
into consideration. This means that the data are not linearly separable and some of
the training data points fall inside the margin. Thus, the SVM has to achieve two
contradicting goals. On one hand, the SVM has to maximize the margin and on the
other hand the SVM has to minimize the number of nonseparable data [4, 12, 37].

We can extend the previous ideas of separable data to nonseparable data by intro-
ducing a slack positive variable ξi ≥ 0 for each training vector. Thereby, we can
modify Eq.3.12 in the following way
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(w · xi ) − b ≥ 1 − ξi if yi = 1 hyperplane H1
(w · xi ) − b ≤ −1 + ξi if yi = −1 hyperplane H−1

ξi ≥ 0, i = 1, . . . , n.

(3.24)

The above inequalities can be combined in the following form:

yi [(w · xi ) − b] ≥ 1 − ξi , i = 1, . . . , n. (3.25)

Obviously, if we take ξi large enough, the constraints in Eq.3.25 will be met for
all i . For an error to occur, the corresponding ξi must exceed unity, therefore the
upper bound on the number of training errors is given by

∑

i=1
ξi . To avoid the trivial

solution of large ξi , we introduce a penalization cost C in the objective function in
Eq.3.25, which controls the degree of penalization of the slack variables ξi , so that,
when C increases, fewer training errors are permitted. In other words, the parameter
C controls the tradeoff between complexity (VC-dimension) and proportion of non-
separable samples (empirical risk) andmust be selected by the user. A given value for
C implicitly specifies the size of margin. Hence, the SVM solution can then be found
by (a) keeping the upper bound on the VC-dimension small and (b) byminimizing an
upper bound on the empirical risk so the primal optimization formulation (1-Norm
Soft Margin or the Box Constraint) becomes:

minimize Φ(ξ) = 1
2‖w‖2 + C

n∑

i=1
ξi

subject to yi [(w · xi ) − b] ≥ 1 − ξi , i = 1, . . . , n.

(3.26)

Following the same formalism of Lagrange multipliers leads to the same dual
problem as in Eq.3.21, but with the positivity constraints on ai replaced by the
constraints 0 ≤ ai ≤ C . Correspondingly, we end up with the Lagrange functional:

L(w, b, ξ) = 1

2
‖ w ‖2 + + C

n∑

i=1

ξi −
n∑

i=1

ai [yi ((w · xi ) + b) − 1 − ξi ] −
n∑

i=1

riξi

(3.27)
with i ≥ 0 and ri ≥ 0. The optimal solution has to fulfil the Karush-Kuhn-Tucker
conditions:

∂L(w0,b0,ξ0)
∂b =

n∑

i=1
a0

i yi = 0

∂L(w0,b0,ξ0)
∂w = w0 −

n∑

i=1
yi a0

i xi = 0

∂L(w0,b0,ξ0)
∂ξi

= C − ai − ri = 0.

(3.28)

Substituting back the Karush-Kuhn-Tucker conditions, into the initial Lagrange
functional we obtain the following objective function:



3.6 Support Vector Machines 51

L(w, b, ξ) =
n∑

i=1

ai − 1

2

n∑

i=1

n∑

j=1

ai a j yi y j (xi · x j ). (3.29)

This objective function is identical to that for the separable case, with the additional
constraints C −ai −ri = 0 and ri ≥ 0 to enforce ai ≤ C , while ξi �= 0 only if ri = 0
and therefore ai = C . Thereby the complementary Karush-Kuhn-Tucker conditions
become

ai [yi ((xi · w) + b) − 1 + ξi ] = 0, i = 1, . . . , n,

ξi (ai − C) = 0, i = 1, . . . , n.
(3.30)

The Karush-Kuhn-Tucker conditions imply that non-zero slack variables can only
occur when ai = C . The points with non-zero slack variables are 1

‖w‖ − ξi , as

their geometric margin is less than 1
‖w‖ . Points for which 0 < ai < C lie at the

target distance of 1
‖w‖ from the hyperplane. Hence, the dual optimization problem is

formulated as follows:

maximize W (a) =
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j yi y j (xi · x j )

subject to
n∑

i=1
ai yi = 0,

0 ≤ ai ≤ C.

(3.31)

Thus, from the primal solution (w0, b0, ξ0i ), it can be shown that the optimal
solution has to fulfil the following Karush-Kuhn-Tucker optimality conditions:

ai = 0 ⇒ yi [(w · xi ) − b] ≥ 1 and ξi = 0 ignored vectors
0 < ai < C ⇒ yi [(w · xi ) − b] = 1 and ξi = 0 error support vectors
ai = C ⇒ yi [(w · xi ) − b] ≤ 1 and ξi > 0 margin support vectors

(3.32)

and

w0 =
n∑

i=1

a0
i yi xi . (3.33)

The above equations indicate one of the most significant characteristics of SVM:
since most patterns lie outside the margin area, their optimal ai are zero. Only those
training patterns xi which lie on the margin surface that is equal to the a priori chosen
penalty parameterC (margin support vectors), or inside themargin area (error support
vectors) have non-zero ai and are named support vectors SV [4, 12, 37].

The optimal solution gives rise to a decision function for the classification problem
which consists of assigning any input vector x to one of the two classes according
to the following rule:
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f (x) = sign

(
∑

i∈ SV

yi a
0
i (xi · x) + b0

)

. (3.34)

According to Eq.3.23, in an (infinite-dimensional) Hilbert space, the VC-dimen-
sion h of the set of separating hyperplanes with margin b0 = 1

‖w0‖2 depends only on

‖ w0 ‖2. An effective way to construct the optimal separating hyperplane in a Hilbert
space without explicitly mapping the input data points into the Hilbert space can be
done using Mercer’s Theorem. The inner product (Φ(xi ) · Φ(x j )) in some Hilbert
space (feature space) H of input vectors xi and x j can be defined by a symmetric
positive definite function K (xi , x j ) (called kernel) in the input space X

(Φ(xi ) · Φ(x j )) = K (xi , x j ). (3.35)

In other words, for a non-linearly separable classification problem, we map the
data x from input space X ∈ R

d to some other (possibly infinite dimensional)
Euclidean space H where the data are linearly separable, using a mapping function
which we will call Φ:

Φ : X ∈ R
d �→ H. (3.36)

Thus, we replace all inner products (xi · x) by a proper K (xi , x j ) and the dual
optimization problem for the Lagrangian multipliers is formulated as follows:

maximize W (a) =
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j yi y j K (xi , x j )

subject to
n∑

i=1
ai yi = 0,

0 ≤ ai ≤ C.

(3.37)

Different kernel functions K (xi , x j ) result in different description boundaries in
the original input space. In here, we utilize the gaussian or the polynomial kernel
functions. These are of the respective forms:

K (xi , x j ) = exp

{

−
∥
∥xi − x j

∥
∥2

2σ 2

}

. (3.38)

and
K (xi , x j ) = ((xi − x j ) + 1)k, (3.39)

where k is the order of the polynomial kernel function. Thus, the corresponding
decision function is

f (x) = sign

(
∑

i∈ SV

yi a
0
i K (xi , x) + b0

)

. (3.40)
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We have to note that we get linear decision functions (Eq.3.40) in the feature
space that are equivalent to nonlinear functions (Eq.3.14). The computations do not
involve the Φ function explicitly, but depend only on the inner product defined in H
feature space which in turn is obtained efficiently from a suitable kernel function.
The learning machines which construct functions of the form of Eq.3.40 are called
Support Vector Machines (SVM).

3.6.2 Multi-class Classification Based on SVM

Let X be a labeled dataset containing n data points from K classes, ω1, ω2, . . . ,
ωK . The goal is to classify new data points from the same distribution in one of
the K classes. The conventional way is to decompose the K -class problem into a
series of two-class problems and construct several binary classifiers. This problem
of constructing and combining K binary classifiers, such as SVM, constitutes an on
on-going research issue [1, 3].

The first approach to the problem follows a One Against All (OAA) strategy. The
OAA approach constructs K binary SVM with the ith one separating class i from all
the remaining classes. Given a data point x to classify, all the K SVM are evaluated
and the label of the class that has the largest value of the decision function is selected.

The second approach is the One Against One (OAO) or Pairwise strategy. The
OAO approach is constructed by training binary SVM to classify between pairs
of classes. Thus, the OAO model consists of K (K−1)

2 binary SVM for a K -class

classification problem. Each of the K (K−1)
2 SVM gives one vote for its of the target

class and, eventually, the given input sample x is assigned to the class with highest
number of votes [22].

Neither the OAA approach nor the OAO approach significantly outperform one
another in terms of classification accuracy. Their differencemainly lies in the training
time, testing speed and the size of the trained classifier model. Although the OAA
approachonly requires K binarySVM, its training is computationallymore expensive
because each binary SVM is optimized on all the n training samples. Contrarily, the
OAO approach has K (K−1)

2 binary SVM to train; however, each SVM is trained on
2n
K samples. The overall training speed is significantly faster than that of the OAA
approach. As for the total size of the classifier model, the OAO has much fewer
support vectors than the OAA.

In addition to the previous, the combination of classifiers in the voting scheme
of the OAO approach can result in the possibility of ties or contradictory votings
[15]. Also, in OAA voting can lead in many rejections although the accuracy on
the accepted data points is very good. In order to overcome these problems a lot of
alternative methods have been proposed. In [31], it is proposed to fit a simple logis-
tic function on the outputs and combine them with the maximum combining rule
in the case of the OAA approach. This does not improve over the voting method
with rejections, but no data points are rejected. Also, in [14] they make use of
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error-correcting output codes, which changes the definition of the class a single
classifier has to learn.

Moreover, there are methods that cast the output of the SVM classifier into a
confidencemeasure, such as posterior probability, since standardSVMdonot provide
such probabilities. In [24, 27], the authors developed a post-processing method for
mapping the outputs of a single SVM into posterior probabilities.

The results presented in [38] on a comparison of several multi-class SVM meth-
ods indicate that all these approaches are fundamentally very similar. However, the
authors conclude that the OAO approach is more practical, because the training
process is faster. This is corroborated further in [1], where the authors conclude
that the OAO and ECOC approaches are more accurate than the OAA approach. In
LIBSVM [6], which is utilized in here for muticlass SVM classification, the OAO
approach is followed.

3.7 One-Class Classification

One-class classification problems arise in many real world machine learning appli-
cations [17, 19–21, 25, 26], where a single class of patterns has to be distinguished
against the remainder of the pattern space. A main characteristic of this special type
of machine learning problems is that the class to be recognized, i.e. the target class,
occupies only a negligible volume in pattern space when compared to the volume
occupied by the complementary space. This setting is encountered within the broader
framework of class imbalance problems where inductive learning systems attempt
to recognize the positive instances of a target concept. The target class, also referred
to as the target concept, is represented by only a few available positive patterns in
contrast to the vast complementary space of negative patterns. Identifying the nature
of the class imbalance problem is of crucial importance within the field of machine
learning which specifically relates to (a) the degree of class imbalance which can be
measured by the differences in the prior class probabilities, (b) the complexity of the
concept represented by the positive patterns, (c) the overall size of the training set
and (d) the classifier involved.

In [20], the authors attempted to unify the relative research by focusing on the
nature of the class imbalance problem. Their findings indicate that the higher the
degree of class imbalance, the higher the complexity of the concept and the smaller the
overall training set, the greater the effect of class imbalances in classifier performance.
This conclusion is justified by the fact that high complexity and imbalance levels as
well as small training set sizes give rise to very small subclusters that classifiers fail to
classify correctly. Their experiments involved several artificially generated domains
of varying concept complexity, training set size and degree of imbalance. The results
of those experiments revealed that theC5.0 classifierwas themost sensitive compared
againstMLPandSVMwhich demonstrated the best overall performance as theywere
not very sensitive to the problem.
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In [13], it is stated that classification problems with uneven class distributions
present several difficulties during training as well as during the evaluation process
of the classifiers. The context within which the authors conducted their experiments
was the customer insolvency problem which is characterized by (a) very uneven
distributions for the two classes of interest, namely the solvent and insolvent class of
customers (b) small number of instances within the insolvent class (minority class)
and (c) different misclassification costs for the two classes. In order to assess the
effect of imbalances in class distributions on the accuracy of classification perfor-
mance, several classifiers were employed such as Neural Networks (MLP), Multino-
mial Logistic Regression, Bayesian Networks (hill climbing search), Decision Tree
(pruned C4.5), SVM and Linear Logistic Regression. The classification results based
on the True Positive ratio which represents the ability of the classifiers in recogniz-
ing the minority (positive) class (TP = Pr{predicted Minority|actually Minority})
demonstrate poor efficiency. More specifically the best overall classifier was MLP
while SVM and Logistic Linear Regression treated all minority samples as noise.

The authors in [8] mention that in cases where the number of patterns originating
from the majority class greatly outnumber the number of patterns from the minor-
ity class, certain discriminative learners tend to overfit. As an alternative approach
the authors propose the utilization of recognition-based learning paradigms often
referred to as novelty detection approaches where the model built by the classifiers
is based on samples from the target (minority) class alone. Their findings suggest
that one—class (recognition based) learning, under certain conditions such as multi-
modality of the domain space, may, in fact, be superior to discriminative approaches
such as decision trees or neural networks. Similar results are also presented in [28]
where they demonstrate the optimality of one-class SVM [32] over two-class ones in
certain important imbalanced-data domains. Additionally, they argue that one-class
learning is related to aggressive feature selection methods which are more practical
since feature selection can often be too expensive to apply.

In [23], the authors show that the novelty detection approach is a viable solution to
the class imbalance problem. Specifically, the authors conducted experiments using
SVM-based classifiers, on classification problems where the class imbalance was
extreme, and found that novelty detectors aremore accurate than balanced and unbal-
anced binary classifiers. Their findings also demonstrate that novelty detectors are
more effective when the two classes under consideration exhibit a non-symmetrical
class relationship. This situation arises in practical classification problemswhen each
class does not consist of homogeneous patterns. Specifically, a problem is called non-
symmetrical when only one-class is of interest and everything else belongs to another
class. The one-class classification approach was also reported as a remedy for class
imbalance problems by [16] where they claim that one-class classification can be
considered as an alternative solution at the algorithmic level.
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3.7.1 One-Class SVM Classification

A classifier based on one-class support vector machines (One-Class SVM) is a super-
vised classification system that finds an optimal hypersphere which encompasses
within its bounds as many training data points as possible. The training patterns
originate only from one-class, namely the class of positive patterns. In the context of
item-based recommendation, the class of positive patterns is interpreted as the class
of desirable items for a particular user. A one-class SVM classifier attempts to obtain
a hypersphere of minimal radius into a feature space H using an appropriate kernel
function that will generalize best on future data. This means that the majority of
incoming data pertaining to the class of positive patterns will fall within the bounds
of the learnt hypersphere. In this section we will describe the method for one-class
SVM proposed by [29].

Assuming that we have a set X of d dimensional data points xi X = {x1, x2, . . . ,
xn},where x ∈ R

d , i = {1, 2, . . . , n}.Also, we have a function (map)Φ : Rd �→ H
that maps the data points into a higher dimensional feature (inner product) space H
such that the inner product in the image ofΦ can be computed by evaluating a kernel
K (xi , x j ) = (Φ(xi ) · Φ(x j )).

The purpose of one-class SVM is to construct a function (hyperplane) f that holds
most of the data points in its positive side, which means that f takes the value +1
in the “small” region of data points and −1 elsewhere. The goal of the proposed
method is to map the data points into the feature space through the kernel function
and to separate them from the origin with maximum margin.

The following quadratic problem can be formulated:

minimize 1
2‖w‖2 + 1

νl

n∑

i=1
ξi − ρ

subject to (w · Φ(xi )) ≥ ρ − ξi , i = 1, . . . , n,

where ξi ≥ 0 and ν ∈ (0, 1].
(3.41)

In order to solve this optimization problem, we form the following Lagrange
functional:

L(w, ρ, ξ) = 1

2
‖ w ‖2 + 1

νl

n∑

i=1

ξi − ρ −
n∑

i=1

ai [(w · Φ(xi )) − ρ + ξi ] −
n∑

i=1

ri ξi (3.42)

with ai ≥ 0 and ri ≥ 0.
The optimal solution has to fulfil the Karush-Kuhn-Tucker conditions:

∂L(w0,ρ0,ξ0)
∂ρ

=
n∑

i=1
a0

i − 1 = 0

∂L(w0,ρ0,ξ0)
∂w = w0 −

n∑

i=1
a0

i Φ(xi ) = 0

∂L(w0,ρ0,ξ0)
∂ξi

= 1
νl − ai − ri = 0

(3.43)
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Substituting back into the initial Lagrange, functional we obtain the following objec-
tive function:

L(w, ρ, ξ) =
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j (Φ(xi ) · Φ(x j ))

=
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j K (xi , x j ).

(3.44)

Hence, the dual optimization problem is formulated as follows:

maximize W (a) =
n∑

i=1
ai − 1

2

n∑

i=1

n∑

j=1
ai a j K (xi , x j )

subject to
n∑

i=1
ai = 1,

0 ≤ ai ≤ 1
νl .

(3.45)

The optimal solution gives rise to a decision function of the following form:

f (x) =
∑

i∈ SV

a0
i K (xi , x j ) + ρ0 (3.46)

such that

f (x) =
{+1, if x ∈ X

−1, if x ∈ X ,

}

(3.47)

where

0 ≤ ai ≤ 1

υn
,

n∑

j=1

ai = 1. (3.48)

The corresponding data points that the ai coefficients are non-zero, so that w0 =
n∑

i=1
a0

i Φ(xi ), are the margin support vectors and define the decision function.

The parameter ν controls the trade-off between two goals. On one hand, the goal
is that the decision function be positive for most of the data points that belong to
the training set. On the other hand, the goal is to also keep the complexity (VC
dimension) small, which depends on w according to Eq.3.23. In [29], it was shown
that ν = 1

nC is an upper bound for the fraction of the target class data points outside
the estimated region and a lower bound on the fraction of the numbers of support
vectors. If ν = 0 involves that the penalization of errors becomes infinite C = ∞
and no target data points are allowed outside the estimated region. If ν = 1 then the
kernel function of Eq.3.46 reduces to a Parzen windows estimate of the underlying
density. If ν < 1 ensures that the density of the data points will be represented only
from those that constitute the subset of support vectors.
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Assume, that we are given X (ua) ⊆ X , which is the set of positive samples that
a particular user (active user, ua) provides to the system as an initial estimate of the
kind of items (files) that he/she considers desirable. In other words, X (ua) is a subset
of indices that are rated as preferable items by the active user. The One-Class SVM
classifier subsequently learns a hypersphere in the feature space that encompasses
as many as possible of the given positive samples. The induction principle which
forms the basis for the classification of new items is stated as follows: a new sample
is assigned to the class of desirable patterns if the corresponding feature vector lies
within the bounds of the learnt hypersphere, otherwise it is assigned to the class of
non-desirable patterns [25].

3.7.2 Recommendation as a One-Class Classification Problem

The CF approach constitutes the major technique utilized in most of RS. As stated
in the previous section, such systems are hindered mainly by the New-Item Problem
and the Sparsity Problem. These problems arise as a consequence of the fact that it is
difficult to collect a sufficient amount of ratings for themajority of our items. Thus,we
needmethods that need to utilize only a small fraction of the total set of items that are
positively rated and confront the problem of missing negative (non-desirable) items.
An efficient approach would be to decompose the initial recommendation problem
into the following form:

1. firstly, identify only the desirable items from the large amount of all possible
items and

2. secondly, assign a corresponding rating degree to these.

Thus, a natural solution to the problem of identification of only appropriate items
is to adopt the one class classification approach in order to identify the desirable
items for a particular user.

The main problem dominating the design of an efficient multimedia RS is the
difficulty faced by its users when attempting to articulate their needs. However, users
are extremely good at characterizing a specific instance of multimedia information
as preferable or not. This entails that it is possible to obtain a sufficient number
of positive and negative examples from the user in order to employ an appropriate
machine learning methodology to acquire a user preference profile. Positive and
negative evidence concerning the preferences of a specific user are utilized by the
machine learning methodology so as to derive a model of how that particular user
valuates the information content of a multimedia file. Such a model could enable
a RS to classify unseen multimedia files as desirable or non-desirable according to
the acquired model of the user preferences. Thus, the problem of recommendation is
formulated as a binary classification problemwhere the set of probable classes would
include two class instances, C+ = prefer/like and C− = not prefer/dislike. However,
the burden of obtaining a sufficient number of positive and negative examples from
a user is not negligible. Additionally, users find it sensibly hard to explicitly express
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what they consider as non desirable since the reward they will eventually receive
does not outweigh the cost undertaken in terms of time and effort. It is also very
important to mention that the class of desirable patterns occupies only a negligible
volume of the patterns space since the multimedia instances that a particular user
would characterize as preferable are only few compared to the vast majority of the
non-desirable patterns.

This fact justifies the highly unbalanced nature of the recommendation problem,
since non-targets occur only occasionally and their measurements are very costly.
Moreover, if there were available patterns from the non-target class, they could
not be trusted in principle as they would be badly sampled, with unknown priors
and ill-defined distributions. In essence, non-targets are weakly defined since they
appear as any kind of deviation or anomaly from the target objects. Since samples
from both classes are not available, machine learning models based on defining a
boundary between the two classes are not applicable. Therefore, a natural choice in
order to overcome this problem is to build a model that either provides a statistical
description for the class of the available patterns or a description concerning the
shape/structure of the class that generated the training samples. This insight has
led us to reformulate the problem of recommendation as a one-class classification
problem, where the only available patterns originate from the target class to be learnt.
Specifically, the class to be considered as the target class is the class of desirable
patterns while the complementary space of the universe of discourse corresponds to
the class on non-desirable patterns. Otherwise stated, our primary concern is to derive
an inductive bias which will form the basis for the classification of unseen patterns
as preferable or not. In the context of building an item-based RS, available training
patterns correspond to those multimedia instances that a particular user assigned to
the class of preferable patterns. The recommendation of new items is then performed
by utilizing the one-class classifier for assigning unseen items in the database either
in the class of desirable patterns or in the complementary class of non-desirable
patterns.

The general setting of the recommendation problem, where there is a unique
class of interest and everything else belongs to another class, manifests its extremely
non-symmetrical nature. Additionally, the probability density for the class of target
patterns may be scattered along the different intrinsic classes of the data. For exam-
ple, the universe of discourse for our music piece RS is a music database which is
intrinsically partitioned into 10 disjoint classes of musical genres. Thus, the target
class of preferable patterns for a particular may be formed as a mixing of the various
musical genres in arbitrary proportions. The non-symmetrical nature of the recom-
mendation problem is an additional fact validating its formulation as a one-class
learning problem.

Another important factor that leads toward the selection of one-class learning as a
valid paradigm for the problem of recommendation is that the related misclassifica-
tion costs are analogously unbalanced. The quantities of interest are the false positive
rate and the false negative rate. The false positive rate expresses how often a classifier
falsely predicts that a specific pattern belongs to the target class of patterns while
it originated from the complementary class. The false negative rate expresses how



60 3 The Learning Problem

often a classifier falsely predicts that a specific pattern belongs to the complementary
class of patterns while it originated from the target class. In the context of designing a
music piece RS, the cost related to the false positive rate is of greater impact than the
cost related to the false negative rate. False positives result in recommending items
that a particular user would classify as non-desirable and, thus, effect the quality of
recommendation. In contrast, false negatives result in not recommending items that a
particular user would classify as desirable. Thus, it is of vital importance to minimize
the false positive rate which results in improving the accuracy of recommendation.
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Chapter 4
Content Description of Multimedia Data

Abstract The rapid growth of multimedia technologies has led to the creation of
large collections of various types of multimedia data accessed and controlled by a
wide range of users, systems, applications and services. Here, the term multimedia
data refers mainly to data contained in audio, image, video, and text files. Such data
are characterized by their large quantities, high complexity and format diversity.
Thus, intelligentmethods, applications, systems, and services are needed that are able
to process the content in massive multimedia data collections and extract meaningful
and useful information. This chapter presents the process of content description of
multimedia data.

4.1 Introduction

The ever-expanding range of web-based and mobile applications that use audio,
image, video, and text file collections have triggered significant research efforts into
the direction of development of advanced tools for effective retrieval andmanagement
of multimedia data [3, 16, 19–23, 27, 28].

The processing tasks of multimedia data are two-fold. On one hand, the aim is to
enhance the description of the content of multimedia data by annotating meta-data
to them [7, 28]. On the other hand, methodologies, techniques and processes are
developed that make use of the meta-information that has been extracted from the
multimedia data.

In general, two categories of meta-data are common: The first category includes
content-independent, also referred to as knowledge-based, meta-data. These meta-
data are not concerned directly with the content (i.e., the raw multimedia data),
but rather are related to it. Thus, these meta-data are not extracted automatically in
the form of a function of the multimedia data content, but rather require efforts to
be made by the multimedia data collection administrator and/or its users towards
their creation and maintenance. Usually, this kind of information (meta-data) is text-
based or categorical and utilized to offer a semantic description of multimedia data.
An example of this kind of meta-data for music file organization is the ID3 format,
an extension to the popular mp3 format which allows the user to add specific tags
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such as song title, album name, artist or group name, etc. Two of the main drawbacks
of these meta-data are the following: (1) they reflect the subjectivity of the annotator
and (2) the annotation process is prone to be inconsistent, incomplete, ambiguous,
and very difficult to become automated.

The second category of meta-data includes content-dependent, also referred to as
content-based, meta-data. These meta-data are extracted as a function of the multi-
media data content via well-defined numerical computations. This meta-information
(meta-data) is based mainly on signal processing methodologies for multimedia data
[26] and aims at capturing the perceptual saliency of content. For this purpose, use
is made of methodologies from audio and [4, 24] and image processing [14, 15]
in order to extract information that describes the content in an objective way. This
processing is usually made by an extractor and leads to the transformation of raw
multimedia data into an essential level of information which is known as feature
extraction. The features consist a number of measures or variables or parameters
that allow a compact description of (aspects of) the raw data. In other words, the fea-
tures allow a computational representation of (aspects of) the multimedia content. A
number of features are organized in a vector form known as feature vector. Thereby,
for each multimedia item (audio/image/video/text) of a multimedia collection, the
values for each feature are extracted and used to construct the corresponding feature
vector which stands for the identity/signature of the initial multimedia file.

Regarding the development of methodologies, techniques and processes that uti-
lize the meta-information for organizing and manipulating the multimedia data, ma-
chine learning techniques and algorithms can offer an efficient paradigm for address-
ing these issues and providing an insight into the domain from which the data are
drawn [1, 5]. Machine learning techniques offer the possibility of integration of both
low-level, content-based features addressing the more detailed perceptual aspects
and high-level semantic features underlying the more general conceptual aspects of
multimedia data. Hence, classification, pattern recognition and information retrieval
based on the machine learning paradigm play an important role for finding and man-
aging the latent correlation between low-level features and high-level concepts of
large collections of multimedia data. Thereby, the use of machine learning method-
ologies provides an efficient way to organize [2, 19] and access multimedia data
collections in a manner that surpasses the limitations of conventional databases and
text-based retrieval systems.Machine learning is capable of copingwith the challenge
to bridge the gap between the semantic information enclosed in knowledge-based
meta-data, that represent the relatively more important interpretations of multime-
dia objects as perceived by users, with the low-level content-based features, that are
directly related to aspects of multimedia content. As it is feasible to apply statistical
learning methods and create similarity measures by using the statistical properties
of low-level features, a learning machine can be trained to model perceptual aspects
of users represented in high-level conceptual information by using the information
contained in the low-level content-based features [18].
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4.2 MPEG-7

MPEG-7 [8, 9, 11] is the ISO/IEC 15938 standard developed by theMoving Pictures
Expert Group. MPEG-7 aims at standardizing the description of multimedia content
data. It defines a standard set of descriptors that can be used to describe various types
of multimedia information. The standard is not aimed at any particular application
area, instead it is designed to support as broad a range of applications as possible.
Thus, it defines a library of elementary meta-data descriptors, which can be grouped
to hierarchical description schemes. Additionally, it provides a language Description
Definition Language (DDL) that allows the standard to be available in extensions.
The tools provided for capturing multimedia characteristics include not only basic
features such as timbre, colors, etc., but also provide the ability to extract high
level abstract features such as objects, time and interaction which require human
annotation.

4.2.1 Visual Content Descriptors

MPEG-7 standard [8, 10, 11, 17] specifies a set of descriptors, each defining the
syntax and the semantics of an elementary visual low-level feature e.g., color or
shape. A brief overview of each descriptor is presented below, while more details
can be found in [8, 17].

In order to extract visual low-level features, we utilized the MPEG-7 eXperimen-
tation Model (MPEG-7 XM) [10, 12]. There are three subsets of low-level visual
descriptors:

• Color is one of the most important visual features in image and video content
analysis. Color features are relatively robust to changes in the background colors
and are independent of image size and orientation.

• Texture refers to the visual patterns that have or lack properties of homogeneity,
that result from the presence of multiple colors or intensities in the image. It is a
property of virtually any surface, including clouds, trees, bricks, hair, and fabric.
It contains important structural information of surfaces and their relationship to
the surrounding environment.

• Shape In many image database applications, the shape of image objects provides a
powerful visual clue for similaritymatching. Typical examples of such applications
include binary images with written characters, trademarks, pre-segmented object
contours and 2-D/3-D virtual object boundaries. In image retrieval, it is usually
required that the shape descriptor be invariant to scaling, rotation, and translation.
Depending on the application, shape information can be 2-D or 3-D in nature. In
general, 2-D shape description can be divided into two categories, namely contour-
based and region-based. The former uses only boundary information of objects,
suitable to describe objects that have similar contour characteristics. The latter
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uses the entire shape region to extract a meaningful description which is most
useful when objects have similar spatial distributions of pixels in objects.

4.2.1.1 Visual Color Descriptors

Scalable Color descriptor (SC) is a color histogram in the HSV color space, which is
uniformly quantized into 256 bins according to the tables provided in the normative
part. Histogram values are nonlinearly quantized using the Haar transform, down to
a preferred level. The binary presentation is scalable in terms of number of bins (256
in this study) and number of bitplanes.

Color Structure descriptor (CS) captures both global color content similar to a
color histogram and information about the local spatial structure of the content. The
spatial organization of colors in local neighborhoods is determined with a square
structuring element, the size of which is determined from the dimensions of the
input image. Descriptor produces a histogram.

Color Layout descriptor (CL) specifies a spatial distribution of colors for high-
speed retrieval and browsing. Descriptor are extracted from an (8 × 8) array of local
dominant colors determined from the 64 (8 × 8) blocks the image is divided into.
Descriptors are matched using a tailored similarity metric.

4.2.1.2 Visual Texture Descriptors

The Edge Histogram descriptor (EH) captures the spatial distribution of edges. Four
directions of edges (0, 45, 90, 135) are detected in addition to non-directional ones.
The input image is divided into 16 non-overlapping blocks and a block-based ex-
traction scheme is applied to extract the types of edges and calculate their relative
populations, resulting in a 80-dimensional vector.

The Homogeneous Texture descriptor (HT) filters the image with a bank of ori-
entation and scale tuned filters that are modeled using Gabor functions. The first
and second moments of the energy in the frequency domain in the corresponding
sub-bands are then used as the components of the texture descriptor.

4.2.1.3 Visual Shape Descriptors

Region-Based Shape Descriptor using Angular Radial Transformation (ART) be-
longs to the class of moment invariants methods for shape description. This descrip-
tor is suitable for shapes that can be best described by shape regions rather than
contours. The main idea behind moment invariants is to use region-based moments
which are invariant to transformations, as the shape feature. The MPEG-7 ART de-
scriptor employs a complex Angular Radial Transformation defined on a unit disk
in polar coordinates to achieve this goal. Coefficients of ART basis functions are
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quantized and used for matching. The descriptor is very compact (140 bits/region)
and also very robust to segmentation noise.

Contour-Based Shape Descriptor is based on curvature scale-space (CCS) rep-
resentations of contours and also includes of eccentricity and circularity values of
the original and filtered contours. A CCS index is used for matching and indicates
the heights of the most prominent peak, and the horizontal and vertical positions on
the remaining peaks in the so-called CSS image. The average size of the descriptor
is 122 bits/contour. Contour-Based Shape Descriptor allows to discriminate shapes
which have similar region but different contour properties.

3-D Shape Descriptor or Shape Spectrum Descriptor is useful to compare natural
or virtual 3-D objects. The descriptor is based on a shape spectrum concept. Roughly
speaking, the shape spectrum is defined as the histogram of a shape index, computed
over the entire 3-D surface. The shape index itself measures local convexity of each
local 3-D surface. Histograms with 100 bins are used, each quantized by 12 bits.

4.2.2 Audio Content Descriptors

The MPEG-7 Audio Framework [6, 11, 13] consists of seventeen Descriptors, rep-
resenting spectral and temporal features. They play an important role in describing
audiomaterial and therefore provide a basis for the construction of higher-level audio
applications. The low-level audio descriptors can be categorized into the following
groups:

• Basic: Audio Waveform (AWF), Audio Power (AP).
• Basic Spectral: Audio SpectrumEnvelop (ASE), Audio SpectrumCentroid (ASC),
Audio Spectrum Spread (ASS), Audio Spectrum Flatness (ASF).

• Basic Signal Parameters: Audio Fundamental Frequency (AFF) of quasi-periodic
signals and Audio Harmonicity (AH).

• Temporal Timbral descriptors: Log Attack Time (LAT), Temporal Centroid (TC).
• Timbral Spectral descriptors: Harmonic Spectral Centroid (HSC),Harmonic Spec-
tral Deviation (HSD), Harmonic Spectral Spread (HSS), Harmonic Spectral Vari-
ation (HSV) and Spectral Centroid.

• Spectral Basis: Audio Spectrum Basis (ASB) and Audio Spectrum Projection
(ASP).

4.2.2.1 Basic Descriptors

The two basic audio descriptors are temporally sampled scalar values for general use,
applicable to all kinds of signals. The AWF descriptor describes the audio waveform
envelope (minimum and maximum), typically for display purposes. It is used to
describe the minimum and maximum sampled amplitude values reached by audio
signal within the same period.
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The AP describes the temporally-smoothed instantaneous power of samples in the
frame, (the mean of 10ms frame is the fundamental resolution of this descriptor). In
otherwords it is a temporallymeasure of signal content as a function of time andoffers
a quick summary of a signal in conjunction with other basic spectral descriptors.

4.2.2.2 Basic Spectral Descriptors

The basic spectral audio descriptors all share a common basis, all deriving from the
short term audio signal spectrum (analysis of frequency over time). They are all based
on the ASE Descriptor, which is a logarithmic-frequency spectrum. This descriptor
provides a compact description of the signal spectral content and represents the
similar approximation of logarithmic response of the human ear. The ASE is a vector
that describes the short-term power spectrum of an audio signal. The resolution of
the ASE ranges between 1

16 of an octave and 8 octaves. Consequently, the wide range
of the ASE allows a suitable selection of level of spectral description information
in terms of spectral resolution of the logarithmic bands. The lowest band loEdge
is normally 62.5Hz and the width of the spectrum is then 8 octaves to the hiEdge
of 16kHz. This which was chosen as a realistic limit of human hearing. The ASE
is computed by power spectrum based on a Fast Fourier Transform (FFT) of the
frame of audio signal samples. Usually, a frame size of 30ms is utilized together
with a Hamming window function. Zero padding of the frame is used to allow for
discrimination power of two FFT sizes.

The ASC descriptor describes the center of gravity of the ASE. This Descriptor is
an economical description of the shape of the power spectrum. It is an indicator as to
whether the spectral content of a signal is dominated by high or low frequencies. The
ASC Descriptor could be considered as an approximation of perceptual sharpness
of the signal.

The ASS descriptor complements the ASC descriptor and equals the second mo-
ment of the ASE. Specifically, this decriptor indicates whether the signal content,
as it is represented by the power spectrum, is concentrated around its centroid or
spread out over a wider range of the spectrum. This gives a measure which allows
the distinction of noise-like sounds from tonal sounds.

The ASF describes the flatness properties of the spectrum of an audio signal
for each of a number of frequency bands. Thus, the signal is divided into nominal
quarter-octave resolution, logarithmically spaced, overlapping frequency bands and
the spectral flatness is computed for each band. Spectral flatness is the ratio of the
geometric mean to the arithmetic mean of spectral power within a band. When this
vector indicates a high deviation from a flat spectral shape for a given band, this is
indicative of the presence of tonal components.

4.2.2.3 Signal Parameters

The signal parameters constitute a simple parametric description of the audio signal.
This group includes the computation of an estimate for the fundamental frequency
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(F0) of the audio signal. The fundamental frequency is by itself a research area
in audio signal processing. For the purposes of the MPEG-7 standard there is no
normative algorithm for estimation of the fundamental frequency of the audio signal
as the scope of the standard is to remain open to future techniques that may become
available.

However, the specific requirement of the standard from all of these algorithms is
to provide a measure of periodicity for the signal analysis interval. The parameters
requiredby the standard are the loLimit andhiLimit which correspond to the lower and
upper limits of the frequency range inwhich F0 is contained.Ameasure of confidence
on the presence of periodicity in the analysed part is a value belongs to [0, 1] in which
0 indicates non-periodic signal. These measures are stored in the Weight field of a
Series Of Scalar that stores a temporal series of AFF descriptors. Thus, the AFF
descriptor provides estimates of the fundamental frequency in segments in which the
audio signal is assumed to be periodic. This measure can be used by sound matching
algorithms as a weight for handling portions of a signal that are not clearly periodic.

The AH represents the harmonicity of a signal, allowing distinction between
sounds with a harmonic spectrum (e.g., musical tones or voiced speech [e.g., vow-
els]), sounds with an inharmonic spectrum (e.g., metallic or bell-like sounds) and
sounds with a non-harmonic spectrum (e.g., noise, unvoiced speech, or dense mix-
tures of instruments). The AH provides two measures of the harmonic properties
of a signal spectrum. These are the Harmonic Ratio (HR) and the Upper Limit of
Harmonicity (ULH). The HR gives the ratio of the harmonic components in the to-
tal power spectrum. The ULH is the frequency in the spectrum beyond which the
spectrum cannot be considered that possess harmonic content.

4.2.2.4 Timbral Descriptors

Timbral descriptors aim at describing perceptual features of instrument sounds. Tim-
bre refers to features that allow one to distinguish two sounds that are equal in pitch,
loudness and subjective duration. These descriptors are taking into account several
perceptual dimensions at the same time in a complex way.

Timbral Temporal Descriptors The Timbral Temporal descriptors describe tem-
poral characteristics of segments of sounds, and are especially useful for the de-
scription of musical timbre (characteristic tone quality independent of pitch and
loudness). The Timbral Temporal descriptors are used only within an audio seg-
ment and are intended to compute parameters of the signal envelope. The signal
envelope describes the energy change of the signal over time and is generally
equivalent to the known ADSR (Attack, Delay, Sustain, Release) phases and the
corresponding time limits of a musical sound. Attack is the length of time required
to reach its initial maximum volume. Decay is the time taken for the volume to
reach a second volume level known as sustain level. The sustain level is the volume
level at which sound sustains after the decay phase. Usually, the sustain level is
lower than the attack volume. Release, is the time it takes for the volume to reduce
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to zero. However, it is not necessary for a sound signal to include all four phases.
Temporal Timbral descriptors describe the signal power function over time. The
power function is estimated as a local mean square value of the signal amplitude
value within a running window.
The Log Attack Time (LAT) descriptor characterizes the “attack” of a sound, the
time it takes for the signal to rise from silence to its maximum amplitude. The LAT
is utilized for the description of onsets of single sound samples from different mu-
sical instruments. In MPEG-7, the LAT is defined as the decimal base logarithm
of the duration of the attack phase. This feature signifies the difference between a
sudden and a smooth sound.
TheTemporal Centroid (TC) descriptor computes a time-based centroid as the time
average over the energy envelope of the signal. This descriptor can be utilized to
distinguish between a decaying piano note and a sustained organ note, when the
lengths and the attacks of the two notes are identical.

Timbral Spectral Descriptors The Timbral Spectral descriptors are spectral fea-
tures extracted in a linear-frequency space. The analysis of harmonic structure is
particularly useful to capture the perception of musical timbre. Pitched musical
instruments illustrate a high degree of harmonic spectral quality.
The Harmonic Spectral Centroid (HSC) descriptor is defined as the average, over
the signal duration, of the amplitude-weighted mean of the frequency of the bins
(the harmonic peaks of the spectrum) in the linear power spectrum. HSC has a
semantic similar to the other centroid descriptors such as the Audio Spectrum
Centroid (ASC), but applies only to the harmonic (non-noise) parts of the musical
tone and is used in distinguishing musical instrument timbres. It is has a high
correlation with the perceptual feature of “sharpness” of a sound.
Other timbral spectral descriptors are the following:
The Harmonic Spectral Deviation (HSD) measures the spectral deviation of the
harmonic peaks from the envelopes of the local envelopes.
The Harmonic Spectral Spread (HSS) measures the amplitude-weighted standard
deviation (Root Mean Square) of the harmonic peaks of the spectrum, normalized
by the HSC.
The Harmonic Spectral Variation (HSV) is the normalized correlation between
the amplitude of the harmonic peaks between two subsequent time-slices of the
signal.

4.2.2.5 Spectral Basis Representations

The Spectral Basis descriptors represent low-dimensional projections of a high-
dimensional spectral space to aid compactness and recognition. These descriptors
are utilized for audio classification and indexing applications.

The Audio Spectrum Basis (ASB) is a series of (potentially time-varying and/or
statistically independent) basis functions that are derived from the Singular Value
Decomposition (SVD) or Independent Component Analysis (ICA) of a normalized
power spectrum.
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The Audio Spectrum Projection descriptor is used together with the ASB descrip-
tor and represents low-dimensional features of a spectrum after projection upon a
reduced-rank basis. Together, the descriptors may be used to view and to represent
compactly the independent subspaces of a spectrogram. Often these independent
subspaces correlate strongly with different sound sources.

4.3 MARSYAS: Audio Content Features

MARSYAS [24, 25] is a framework which provides a set of content-based features
for audio files. In this section, we will present a summary of those features that are
utilized in this dissertation for the content-based analysis of music files. Specifically,
each music piece is represented by a 30-dimensional objective feature vector, which
forms a mathematical abstraction attempting to encapsulate the information content
of the audio signal contained in each music file. More specifically, the objective (i.e.,
computed directly from the audio signal) music characteristics can be categorized
into three different types of features that are identified as (a) Music Surface-, (b)
Rhythm-, and (c) Pitch-related features.

Each file, which has a duration of 30s, is used as input to a feature extraction
module. Specifically, short time audio analysis is used in order to break the signal
into small, possibly overlapping temporal segments of duration of 50ms (covering
the entire duration of 30 s) and process each segment separately. These segments
are called “analysis windows” or “frames” and need to be short enough for the
frequency characteristics of the magnitude spectrum to be relatively stable. On the
other hand, the term “texture window” describes the shortest window (minimum
amount of sound) that is necessary to identify music texture. The texture window is
set equal to 30 s in our system.

The actual objective features used in our system are the running mean, median
and standard deviation of audio signal characteristics computed over a number of
analysis windows. The feature vector constituents appear in Table4.1.

4.3.1 Music Surface Features

For the purpose of pattern recognition/classification of music files, we use the sta-
tistics of the spectral distribution over time of the corresponding audio signals and
represent the “musical surface” [4, 24, 25]. Some of these statistics are defined next.

• Spectral Centroid: This feature reflects the brightness of the audio signal and is
computed as the balancing point (centroid) of the spectrum. It can be calculated
as
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C =

N−1∑

n=0
Mt [n] · n

N−1∑

n=0
Mt [n]

(4.1)

where Mt [n] is the magnitude of the Fourier transform at frame t and frequency
bin n.

• Spectral Rolloff : This feature describes the spectral shape and is defined as the
frequency R = R(r) that corresponds to r% of the magnitude distribution. It can
be seen as a generalization of the spectral centroid, as the spectral centroid is
the roll-off value that corresponds to r = 50% of the magnitude distribution. In
our system, we used a roll-off value r = 95% which has been experimentally
determined. N is the length of the discrete signal stored in vector x .

R∑

n=0

Mt [n] = r ·
N−1∑

n=0

Mt [n] (4.2)

• Spectral Flux: This feature describes the evolution of frequency with time and
is computed as the difference of the magnitude of the short-time Fourier trans-
form between the current and the previous frame. Therefore, the spectral flux is a
measure of local spectral change, given by the equation

SF =
N−1∑

n=0

(Nt [n] − Nt−1[n])2 (4.3)

where Nt [n] and Nt−1[n] is the normalized magnitude of the short-time Fourier
transform at window t and t − 1, respectively.

• Zero-Crossings: A zero-crossing occurs when successive samples in a digital
signal have different signs. The corresponding feature is defined as the number of
time-domain zero-crossings in the signal. This feature is useful in detecting the
amount of noise in a signal and can be calculated as

Zn =
∑

m

|sgn[x(m)] − sgn[x(m − 1)]| · w(n − m) (4.4)

where

sgn[x(n)] =
{
1, x(n) ≥ 0
0, x(n) < 0

(4.5)

and

w(m) =
{ 1

2 , 0 ≤ m ≤ N − 1
0, otherwise.

(4.6)
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• Short-Time Energy Function: The short-time energy of an audio signal x(m) is
defined as

En = 1

N

∑

m

[x(m) · w(n − m)]2 (4.7)

where

w(m) =
{
1, 0 ≤ m ≤ N − 1
0, otherwise.

(4.8)

In Eqs. 4.4 and 4.8, x(m) is the discrete-time audio signal, n is the time index of
the short time energy and w(m) is a rectangular window. This feature provides a
convenient representation of the temporal evolution of the audio signal amplitude
variation.

• Mel-Frequency Cepstral Coefficients (MFCCs): These coefficients are designed
to capture short-term spectral features. After taking the logarithm of the ampli-
tude spectrum obtained from the short-time Fourier transform of each frame, the
frequency bins are grouped and smoothed according to theMel-frequency scaling,
which has been designed in agreement with human auditory perception. mfccs
are generated by decorrelating the Mel-spectral vectors with a discrete cosine
transform.

4.3.2 Rhythm Features and Tempo

Rhythm features characterize the movement of music signals over time and contain
information as regularity of the tempo. The feature set for representing rhythm is
extracted from a beat histogram, that is a curve describing beat strength as a function
of tempo values, and can be used to obtain information about the complexity of
the beat in the music file. The feature set for representing rhythm structure is based
on detecting the most salient periodicities of the signal and it is usually extracted
from the beat histogram. To construct the beat histogram, the time domain amplitude
envelope of each band is first extracted by decomposing the music signal into a
number of octave frequency band. Then, the envelopes of each band are summed
together followed by the computation of the autocorrelation of resulting sum envelop.
The dominant peaks of the autocorrelation function, corresponding to the various
periodicities of the signal envelope, are accumulated over the entire sound file into a
beat histogram, in which each bin corresponds to the peak lag. The rhythmic content
features are then extracted from the beat histogram and, generally, include the relative
amplitude of the first and the second histogram peak, the ratio of the amplitude of
the second peak divided by the amplitude of the first peak, the periods of the first
and second peak, and the overall sum of the histogram.
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4.3.3 Pitch Features

The pitch features describe melody and harmony information in a music signal.
A pitch detection algorithm decomposes the signal into two frequency bands and
amplitude envelopes are extracted for each frequency band where the envelope ex-
traction is performed via half-way rectification and low-pass filtering. The envelopes
are summed and an enhanced autocorrelation function is computed so as to reduce
the effect of integer multiples of the peak of frequencies to multiple pitch detection.
The dominant peaks of the autocorrelation function are accumulated into pitch his-
tograms and the pitch content features extracted from the pitch histograms. The pitch
content features typically include the amplitudes and periods of maximum peaks in
the histogram, pitch intervals between the two most prominent peaks, and the overall
sums of the histograms.

Table4.1 summarizes the objective feature vector description.

Table 4.1 Feature vector of MARSYAS

Feature ID Feature name

1 Mean centroid

2 Mean rolloff

3 Mean flux

4 Mean zero-crossings

5 STD of centroid

6 STD of rolloff

7 STD of flux

8 STD of zero-crossings

9 Low energy

[10 . . . 19] MFCCs

20 Beat A0

21 Beat A1

22 Beat RA

23 Beat P1

24 Beat P2

25 Beat sum

26 Pitch FA0

27 Pitch UP0

28 Pitch FP0

29 Pitch IP0

30 Pitch sum
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Chapter 5
Similarity Measures for Recommendations
Based on Objective Feature Subset Selection

Abstract In this chapter, we present a content-based RS for music files, called
MUSIPER, in which individualized (subjective) music similarity perception models
of the system users are constructed from objective audio signal features by associat-
ing different music similarity measures to different users. Specifically, our approach
in developingMUSIPER is based on investigating certain subsets in the objective fea-
ture set and their relation to the subjective music similarity perception of individuals.

5.1 Introduction

Our starting point has been the fact that each individual perceives differently the infor-
mation features contained in a music file and assigns different degrees of importance
to music features when assessing similarity between music files. This leads to the
hypothesis that different individuals possibly assess music similarity via different
feature sets and there might even exist certain features that are entirely unidentifiable
by certain users. On the basis of this assumption, we utilize relevance feedback from
individual users in a neural network-based incremental learning process in order to
specify that feature subset and the corresponding similarity measure which exhibit
the maximum possible accordance with the user’s music similarity perception. The
approach followed in MUSIPER can be followed with any type of multimedia data.
For example, a variation of MUSIPER has been implemented and evaluated to func-
tion with image data [5].

5.2 Objective Feature-Based Similarity Measures

In Chap.4, we described in detail the procedure which computes the (Marsyas
30-dimensional feature vector) feature vector, the constituents of which are uti-
lized as the objective features to rank similarity between music pieces. In this

The acronym MUSIPER stands for MUsic SImilarity PERception.
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section, we describe the process through which the values of the constituents of the
corresponding feature vectors are combined to generate a single value that represents
the degree of similarity between two music pieces. Simply listing all features for a
pair of music pieces and determining their overlap is not sufficient to model music
similarity perception [3, 7]. In our approach, this is achieved through the definition
of an appropriate similarity measure that exhibits the intrinsic ability to combine the
constituent values of the heterogeneous feature vector into the corresponding sim-
ilarity value between two music pieces. Moreover, the required similarity measure
ought to involve a substantially plastic learning ability that would serve the primary
purpose ofMUSIPER, that is the ability to construct efficient user models that reflect
the information provided by their corresponding users.

Radial Basis Function Networks (rbfns) can serve as an ideal computational
equivalent of the previously described similarity measure as they are capable of real-
izing essentially any non-linear mapping between spaces of high dimensions and,
therefore, approximating the non-linear function that maps the set of heterogeneous
feature vector values into a single similarity value [1, 2]. Moreover the back propa-
gation learning rule empowers them with the learning capability that justifies these
computational models as suitable user model constructors.

Our approach was based on investigating links between objective audio signal
features and subjective music similarity perception. More specifically, we hypoth-
esized that there exist certain subsets of the original feature vector that could be
more salient for a certain individual as he/she valuates the perceived similarity of
two music pieces. For this reason, we utilized a number of neural networks forced
to function on the basis of different feature subsets of the original feature vector
and, thus, realize different similarity measures. Each feature subset corresponded to
a different type of audio features or their combinations. A detailed description of the
specific feature subsets realized in MUSIPER is included in the following section.

5.3 Architecture of MUSIPER

Modeling the subjective similarity perception of a certain individualmaybe computa-
tionally realized by the development of an appropriate similarity measure providing
the degree of resemblance between two music pieces as a real value in the [0, 1]
interval. Thus, the user modeling functionality embedded in our system consists
of developing similarity measures which would approximate the similarity values
that would be assigned by a specific user to pairs of music pieces. From a math-
ematical point of view a similarity measure may be interpreted as a continuous
non-linear mapping (F : Rn × Rn → [0, 1], n ≤ 30) from the space of objective
features to the [0, 1] interval of similarity degrees which naturally leads us to the
choice of Radial Basis Functions Networks (RBFN’s) that are capable of implement-
ing arbitrary nonlinear transformations of the input space. Moreover, the adopted
incremental learning procedure lies in the core of the training process where the
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internal network parameters are modified according to the back propagation rule
in response to the user supplied similarity values concerning certain pairs of music
pieces.

5.4 Incremental Learning

The overall system architecture is based on the adapted incremental learning tech-
nique depicted in Fig. 5.1. Specifically, our scheme consists of the following steps:

1. Seed the search with the target music piece corresponding to an existing music
piece in the system database. This step uses an offline process, where the feature
extractor extracts the set of values for the complete set of 30 features. Afterwards,
a predefined number of subsets from the original feature vectors set, C1,…,CM ,
(e.g. M = 11 neural networks in the MUSIPER) are assessed for their ability to
capture the subjective music piece similarity perception of a specific user. These
subsets of the feature vector are fed into the corresponding neural networks, which
constitute database searchers (DBSearchers) running in parallel and realizing M
different similarity measures (Fig. 5.1).

Fig. 5.1 MUSIPER architecture
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2. Each neural network retrieves the most similar music piece according to the
similarity measure it realizes.

3. The user valuates the set of the retrieved music pieces and ranks the degree of
similarity between the retrievedmusic pieces and the targetmusic piece according
to his/her own perception. The user supplied similarity values are stored in matrix
E where E = [e0, e1, . . . , en]T .

4. This information is subsequently used by the system in order to adjust the neural
network parameters stored in matrix W where W = [w0, w1, . . . , wn]T as it is
implied by Eq.5.13. This latter parameter refinement involves the adaptation of
the entire neural network parameter set and constitutes the fundamental part of
the adopted training scheme.

5. The procedure is repeated for a preset number of times, during which the network
performance is recorded. In the end, we identify the neural network and the
corresponding feature subset that exhibited the most effective performance in
modeling the music similarity perception of the specific user.

5.5 Realization of MUSIPER

The topology of a RBFN involves a set of three layers as shown in Fig. 5.2, where
the first layer constitutes the input layer, the second layer is a hidden layer and the
third layer is the output layer. We must clarify that the number of hidden nodes for
each neural network is the same and does not depend on the number of the selected
features for that network as it was experimentally set to five in order to ensure that
the networks converge. Generally, the input, hidden and output layers contain a set of
p+1 (equal to the number of signals/features to be processed), N and only one node,
respectively. Each input node is connected with every hidden layer node and each
hidden layer node is connected with the output node. All these connections are called
synapses and are given associated synaptic weights. From the system theoretic point
of view, the transfer function between the input and the hidden layer is non-linear,
while the transfer function between the hidden and the output layer is linear

In more detail, the output layer node realizes the function:

yout(n) = uout(n), (5.1)

Fig. 5.2 RBFN architecture
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where

uout(n) =
N∑

j=0

wj · yj(n). (5.2)

In Eq.5.2, wj is the connection weight between the jth hidden layer node and the
output node, yj(n) is the output of the jth node in the hidden layer corresponding to
the nth input pattern, and yout(n) is the output of the output node after the nth input
pattern has been presented to the network and represents the similarity value between
two music pieces MA, MB. The jth node of the hidden layer realizes the following
function:

y0(n) = 1 (5.3)

and

yj(n) = exp−
{∥

∥vn − μj(n)
∥
∥2

2 · σ2
j (n)

}

, 1 ≤ j ≤ N . (5.4)

The zeroth node of the hidden layer can be considered as a bias term which
is added to the overall output of the network. Moreover, vn is the nth input pattern,
μj(n) and σj(n) are the center and the spread, respectively, of the radial basis function
realized by the jth node in the hidden layer, and yj(n) is the output of the jth hidden
node. The parameter n indicates that we refer to the time instant after the nth input
pattern has been presented to the network. On the other hand, the term

∥
∥vn − μj(n)

∥
∥

corresponds to the Euclidean distance between the vectors vn and μj(n), where vn,
μj(n) ε Rp.

Now, assume that CA and CB are the feature vector values that have been
extracted from the music pieces MA and MB, where CA = [CA1 , . . . , CAp ] and
CB = [CB1 , . . . , CBp ]. According to the previous definitions of CA and CB, the
input to the neural network is denoted by v = [v1, . . . , vp], where

vi = ∣
∣CAi − CBi

∣
∣ , 1 ≤ i ≤ p. (5.5)

The fundamental adjustable parameters of the RBFN are those related to the
radial basis functions realized by the nodes of the hidden layer and the connection
weights between the hidden nodes and the output node of the network. Thus, the
set of the RBFN parameters includes the parameter set of each of the N nodes of
the hidden layer (and the corresponding radial basis functions Φj, 1 ≤ j ≤ N) that
can be presented in the general form Φj(v;μj;σj), together with the weight vector
w = [w0, w1, . . . , wN ]. Each of the used radial basis functions performs a mapping
Φ : Rp −→ R where Φj is given by the equation

Φj = exp

(

−
∥
∥v − μj

∥
∥2

2 · σ2
j

)

. (5.6)
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The approximation ability of the RBFN lies in the adaptability of its parameters,
which allows us to train the RBFN to learn (approximate) essentially any desirable
similarity measure. The appropriate parameter values can be determined by using
a training set of input patterns that will force the RBFN parameters and the corre-
sponding input-output relation to attain the appropriate form. Specifically, the set of
training patterns is comprised of pairs of music feature vectors and the corresponding
similarity values as subjectively perceived by a certain user.

The training process of the RBFN can be reduced to a set of two distinct train-
ing stages. The first stage can be considered as a pretraining process in which the
weight values are the only parameters to be modified. This stage serves as a weight
initialization procedure that corrects a random initial parameter setting. The input
pattern set used in the first training stage contains a number of elements equal to the
number of nodes in the hidden layer of the network. Thus, we need a set of pairs of
music feature vectors and corresponding similarity values that reflect the objective
degree of similarity. We made use of a static objective similarity measure during the
first training stage, so as to achieve the weight values that are most appropriate for
modeling the subjective perception of a specific user.

After the end of the first training stage, the parameter modification procedure
changes so that the entire parameter set (μj,σj, w) is adjusted with the presentation
of every training pattern. In this way, the network behavior is refined in order to
approximate the desirable subjective similarity perception.

In order to compute the initial weight values, we must first consider the train-
ing input pattern set which consists of N + 1 music piece feature vectors, namely
(C0

A, C0
B), (C1

A, C1
B), . . . , (CN

A , CN
B ). The corresponding similarity values are

denoted by the variables e0, e1, . . . , eN where

ek =
∥
∥
∥Ck

A − Ck
B

∥
∥
∥ , 0 ≤ k ≤ N . (5.7)

The input vectors for the corresponding feature vectors are: v0, v1, . . . , vN , where:

vk
i =

∣
∣
∣Ck

Ai
− Ck

Bi

∣
∣
∣ , 0 ≤ k ≤ N, 1 ≤ i ≤ p. (5.8)

Each of the desired similarity values e0, e1, . . . , eN must equal the network output
after the presentation of the corresponding difference feature vectors v0, v1, . . . , vN .
Thus, we get the set of equations

ek = w0 +
N∑

j=1

Φj(

∥
∥
∥vk − μj

∥
∥
∥ ;σj) · wj. (5.9)
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Equation5.7 is readily put into the matrix form:

⎡

⎢
⎢
⎢
⎣

e0
e1
...

eN

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 Φ1(
∥
∥v0 − μ1

∥
∥ ;σ1) · · · ΦN (

∥
∥v0 − μN

∥
∥ ;σN )

1 Φ1(
∥
∥v1 − μ1

∥
∥ ;σ1) · · · ΦN (

∥
∥v1 − μN

∥
∥ ;σN )

...
...

. . .
...

1 Φ1(
∥
∥vN − μ1

∥
∥ ;σ1) · · · ΦN (

∥
∥vN − μN

∥
∥ ;σN )

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w0
w1
...

wN

⎤

⎥
⎥
⎥
⎦

(5.10)

or in the abbreviated form:

E = ΦW (5.11)

where E = [e0, e1, . . . , en]T , W = [w0, w1, . . . , wn]T and

Φr,c =
{
1, 0 ≤ r ≤ N, c = 1
Φc(‖vr − μc‖ ;σc), 0 ≤ r ≤ N, 1 ≤ c ≤ N .

(5.12)

Clearly, the initial weight vector can derived from the equation:

W = Φ−1E. (5.13)

However, the matrix Φ in the previous equations is usually substituted by the matrix
(Φ + λI) where λ ≥ 0 so that matrix (Φ + λI) is always invertible. Thus, Eq.5.13
becomes:

W = (Φ + λI)−1E. (5.14)

5.5.1 Computational Realization of Incremental Learning

In order to complete the description of the training process of the RBFN, we refer to
the second training stage. This stage coincides with the adopted incremental learning
procedure, during which the entire parameter set is modified simultaneously. Our
description at this point will be restricted to giving the equations for modifying each
of the network parameters as they are derived via application of the back-propagation
algorithm. We have:

w0(n + 1) = w0(n) + �w0(n), (5.15)

where �w0(n) is the correction for the w0 weight constituent after the presentation
of the nth training pattern.
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Similarly,

wj(n + 1) = wj(n) + �wj(n), 1 ≤ j ≤ N, (5.16)

where �wj(n) is the correction for the wj weight constituent after the presentation
of the nth training pattern. Also:

μji(n + 1) = μji(n) + �μji(n), 1 ≤ j ≤ N, (5.17)

where �μji(n) is the correction of the ith constituent of the jth function center and

σj(n + 1) = σj(n) + �σj(n), 1 ≤ j ≤ N, (5.18)

where �σj(n) is the correction of the jth function spread.
The correction values are given by the following equations

�w0(n) = n1 · e(n), (5.19)

where
e(n) = en − yout(n) (5.20)

is the network error at the presentation of the nth training pattern, en is the desired
similarity value and yout(n) is the network response with respect to the input
pattern vn.

Similarly:

�wj(n) = n2 · e(n) · exp
(

−
∥
∥vn − μj(n)

∥
∥2

2 · σ2
j (n)

)

, (5.21)

�μji(n) = n3 · wj(n) · exp
(

−
∥
∥vn − μj(n)

∥
∥2

2 · σ2
j (n)

)

· vn
i − μji(n)

2 · σ2
j (n)

, (5.22)

�σj(n) = n4 · wj(n) · exp
(

−
∥
∥vn − μj(n)

∥
∥2

2 · σ2
j (n)

)

·
∥
∥vn − μj(n)

∥
∥2

2 · σ3
j (n)

, (5.23)

where n1, n2, n3, n4 are the corresponding learning rates for the parameters.

5.6 MUSIPER Operation Demonstration

MUSIPER has been developed as a desktop application whose main graphical user
interface window appears in Fig. 5.3. The application window can be thought of as
being divided into two regions by a vertical line. This line separates and rounds up
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Fig. 5.3 MUSIPER interface

the different kinds of user activities that are supported by the system. Specifically, the
left region accumulates the user interface components that are related to the music
pieces database selection and the neural network manipulation. Moreover, this part
provides the basic query conduction operations that incorporate the target music
piece specification.

The user must provide his/her own similarity estimation for each one of the music
pieces retrieved by the corresponding neural networks. This functionality is provided
in the right part of the application window and allows the user to listen to pairs of
music pieces by interacting with two different components of Media Player and
subsequently typing in his/her own similarity estimation value. The user interaction
session ends when the user evaluates the music similarity for the complete set of
training examples for the total amount of training stages.

A very important functionality provided byMUSIPER is that its user is not oblig-
ated to train MUSIPER in a single session. Instead, there is the capability of saving
the training session at any instant and continuing at a future moment after loading
his/her training profile.

5.7 MUSIPER Evaluation Process

MUSIPER was evaluated by one hundred (100) users belonging to different age
groups andhaving variousmusic style preferences and relatedmusic education levels.
As a test database, we used a collection of one thousand (1000) westernmusic pieces.
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Table 5.1 Statistics of evaluation stage I

Overall favorite music genre Pop 54%

Age range 18 to 61 (μ = 29, σ2 = 5, 44)

CDs owned 10 to 200 (μ = 113, σ2 = 235, 11)

Hours spent per week listening to music 1 to 15 (μ = 7, σ2 = 2, 77)

Get music from filesharing P2P MP3 (47%)

Get music from internet music stores MP3 (17%)

Get music from music stores CDs (36%)

Play musical instrument 41%, mostly the guitar or the piano

Professionally involved in music 4%

Participation in evaluation of other systems 56%

This collection is publicly accessible and has been used as a test bed for assessing
the relative performance of various musical genre classification algorithms [4, 6].
The collection contains one hundred (100) pieces from each of the following ten (10)
classes of western music: blues, classical, country, disco, hiphop, jazz, metal, pop,
regge, and rock. Each piece has a duration of thirty (30) seconds.

The evaluation process consisted of three stages: At first, each participant was
asked to complete a questionnaire regarding user background information, which
was collected for statistical purposes and is summarized in Table5.1.

In the second step of the evaluation process, each participant was given a pre-
defined set of 11 pre-trained neural networks with corresponding feature subsets
as in Table5.2. The process of selecting the feature subsets was not arbitrary. More
specifically, first we defined feature subsets containing features fromonly one seman-
tic category. The corresponding networks are identified with numbers 2, 5, and 7,
respectively. Next, we considered combinations of the previous features from vari-
ous semantic categories in order to identify combinations of features from different
semantic categories which appear to be efficient. Corresponding networks included
those identified with numbers 6, 8, 9 and 10. For example, neural networks iden-
tified with numbers 6 and 10 combine features from two (namely, pitch and beat
related features) and three (combination of beat, pitch and MFCC features) semantic
categories, respectively. Both networks are examples of feature combinations that
exhibit poor efficiency in modeling music similarity perception. In contrast, neural
networks identified with numbers 8 and 9 combine features from two semantic cate-
gories, namely, MFCC and pitch related features and music surface and pitch related
features, respectively. These networks are examples of feature combinations that
exhibit high efficiency in modeling music similarity perception. The participants
were asked to feed back into the system a perceived degree of similarity to the target
piece of the returns of each network. Each participant fed back into the system for
a total number of six (6) training stages (epochs). Specifically, during the course
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Table 5.2 Feature subsets per neural network

Network IDs Feature subsets Feature IDs

1 Complete feature set [1 . . . 30]
2 All beat-related features [20 . . . 25]
3 All mean-, standard deviation-

and low energy-related
features

[1 . . . 9]

4 All MFCC-related features [10 . . . 19]
5 All pitch-related features [26 . . . 30]
6 All beat- and pitch-related

features
[20 . . . 30]

7 All mean-, standard deviation-,
MFCC- and low
energy-related features

[1 . . . 19]

8 All MFCC- and pitch-related
features

[10 . . . 19], [26 . . . 30]

9 All mean-, standard deviation-,
MFCC-, pitch- and low
energy-related features

[1 . . . 19], [26 . . . 30]

10 All beat-, MFCC- and
pitch-related features

[10 . . . 30]

11 Mean and standard deviation
of zero-crossings and low
energy features

[4, 8, 9]

of each training stage, the user listened to a previously selected music piece which
served as the target song of the query and the corresponding most similar music
pieces were retrieved from the database by each neural network. Next, the user was
directed to supply his/her own similarity perception estimate for each one of the 11
pairs of songs by typing in a similarity value in the [0, 1] interval. At this point, the
user was given the option to adapt the estimated similarity value provided by the
system. After completing all of the six training stages for every RBFN by provid-
ing a total of 66 similarity values, each user conducted a save operation in order to
update the record of RBFN performance history and the newly estimated adjustable
parameter values.

Finally, completion of the neural network training stage was followed by the
third evaluation stage during which each participant was prompted to provide some
information concerning the overall training and retrieval performance of the system.
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5.8 System Evaluation Results

The second stage of the evaluation process revealed that:

1. During the training session of each user, there were neural networks whose
relevant performance in approximating the music similarity perception of that
particular userwas consistently better than that of the remaining neural networks.
Figures5.4 and 5.5 illustrate typical examples of this fact, as seen from the plots
of the time evolution of the error rates of the various networks. More specifically
in Fig. 5.4 it is clear that the feature subsets with identification numbers (IDs)
{4, 9, 11} correspond to the neural networks with the best performance while in
Fig. 5.5 the best neural networks are those functioning on the basis of the feature
subsets with IDs {4, 8, 9}.
We evaluated the retrieval performance of our system for each user taking as
a measure of accuracy the mean error rate of the best neural network for that
user. The best network for a user was the one that exhibited the lowest error rate.
Table5.3 summarizes the best neural network and corresponding mean error rate
for a set of 25 users.

Fig. 5.4 Typical user behavior I
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Fig. 5.5 Typical user behavior II

A further justification for the existence of certain neural networks, the ability of
which in modeling the subjective similarity perception of a user was consistently
better than that of the other networks is provided by comparing corresponding
precision evolutions. Specifically, precision is computed as in Eq.5.24 for the
set of 11 neural networks. Figures5.6 and 5.7 illustrate the precision evolution
(precision value versus number of relevance feedbacks) for the complete set
of neural networks for a specific user whose feedbacks produced the results in
Fig. 5.12. Clearly, the neural network identified by number 7 demonstrates the
best overall performance in modeling that specific user’s similarity perception,
since the corresponding precision value sequence reaches a stable saturation
point after 9 retrievals/feedbacks. A similar saturated behavior is observed for
the neural network identified by number 8, the precision of which saturates to a
considerably lower value.

2. A second justification of the user modeling ability of our system lies in the
observation that, even when certain neural network retrievals were assessed by
the user as unsatisfactory, the similarity values estimated by the neural networks
were quite close to the perceived similarity values provided by the user. A typical
example of this observation is presented in Figs. 5.8 and 5.9, which compare the
similarity values estimated by each neural network to the corresponding simi-
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Table 5.3 Best neural network per user

User no Mean error rate NNs IDs

1 0.052567305 9

2 0.068916158 7

3 0.080797066 8

4 0.093290161 7

5 0.099306121 7

6 0.101553771 4

7 0.105191415 4

8 0.106715587 9

9 0.110695984 4

10 0.11238125 9

11 0.121527443 11

12 0.122296543 4

13 0.123571513 1

14 0.125683542 9

15 0.128536126 9

16 0.129964756 2

17 0.130741697 9

18 0.134278904 11

19 0.147017443 1

20 0.155501906 2

21 0.164345701 11

22 0.165889964 9

23 0.167231585 7

24 0.171717066 7

25 0.174795191 8

larity values provided by a user for a set of 6 relevance feedbacks. Specifically,
it is observed that, even though neural networks identified by the numbers 1, 4
and 11 fail to provide efficient retrievals, their estimated similarity values are
quite close to the ones provided by that user.

3. A third observation is that no single neural network and corresponding feature
subset outperformed all networks in all training sessions. On the contrary, the
system users are clustered by the eleven neural networks into 11 corresponding
clusters as in Fig. 5.10.We observe that the neural networks numbered 5, 6 and 10
produce emptyuser clusters,which implies that the corresponding feature subsets
fail to model the music similarity perception of any user. On the other hand, the
neural networks numbered 9 and 7 produce clusters containing approximately
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Fig. 5.6 Precision of neural networks 1–6 for the one user

27 and 18% of the users. This difference in network performance lies with the
qualitative differences of the corresponding feature subsets. Specifically, the
feature subsets used by neural networks 9 and 7 describe both acoustic and
psychoacoustic music information. This observation constitutes strong evidence
justifying our initial hypothesis that relates feature subsets with the similarity
perception of an individual user.

4. The convergence of the incremental learning process was examined and illus-
trated in Fig. 5.11. Specifically, the time evolution of the error rates of all the
neural networks is shown over a total of 56 training cycles by the same user.
During this training, a total of 8 different target music pieces were given and the
system was trained for 7 epochs per given target.
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Fig. 5.7 Precision of neural networks 7–11 for the one user

5. It is important to observe the evolution of RBF centres and spreads during the
incremental learning process (relevance feedbacks). Such observation reveals a
smooth evolution of the centers and spreads of those RBFNs whose precision
value saturated after a number of relevance feedbacks. We also noticed a strong
correlation between the saturated precision value of a neural network and the
corresponding evolution of its internal parameters. Specifically, when the preci-
sion saturated to a value and stabilized in its vicinity, the corresponding evolution
of the network internal parameter values followed a smoother transition in sub-
sequent feedbacks.
The evolution of RBF centres and spreads during the incremental learning
process is illustrated in Figs. 5.12, 5.13, 5.14 and 5.15 for four different users,
respectively. Specifically, for each of the four users, the centre and spread evo-
lution are shown for the neural network that exhibited the most effective per-
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Fig. 5.8 Comparison between network-estimated and user-supplied similarity values

formance among all eleven networks in modeling the user music similarity per-
ception. In each figure, the upper sub-figure shows Euclidean distance evolution
of the RBF centres and spreads of the five nodes of the hidden network layer
during the incremental learning process. The vertical and horizontal axes indi-
cate Euclidean distance and number of relevance feedbacks, respectively. On
the other hand, the lower sub-figure shows precision with respect to number of
feedbacks, where precision is computed as

precision = relevant music files retrieved in top N returns

N
, (5.24)

with N = 25.
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Fig. 5.9 Comparison between network-estimated and user-supplied similarity values

6. Further system tests were conducted, in which we experimented with various
initialization patterns and presence of outliers in the user supplied relevance
feedbacks. During the initialization process of MUSIPER (pretraining stage)
there is no reason to expect that certain training patterns would be more “appro-
priate” to adjust the internal network parameters. This is because the system is
initially trained so as to reflect the Euclidean distance between patterns. As the
Euclidean distance is an objective similarity measure, there exist no preferable
training patterns and any pair of target-retrieved feature vectors is equally appro-
priate for pretraining. The incremental learning process transforms the objective
similarity measure provided by the Euclidean distance into a subjective one
using the similarity values supplied by the user. Thus, the incremental learning
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Fig. 5.10 Preferences distribution

procedure tunes the initial settings of the internal network parameters. However,
the incremental learning process cannot be used for training from scratch as it
would require a prohibitively high number of relevance feedbacks and system
training time. These conclusions were experimentally corroborated.
On the other hand, the presence of outliers in the user-supplied feedbacks affects
the training process by extending the time needed (number of training stages) for
the neural networks to converge. However, as the number of relevance feedbacks
increases the effect of outliers is gradually eliminated. This too was experimen-
tally observed.

Table5.4 summarizes the information collected during the third evaluation stage
emphasizing the fact that the majority of the users observed the existence of certain
neural networks whose retrievals were significantly better than the others. More-
over, most of the participants noticed a gradual improvement of the neural network
responses from training stage to training stage.
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Fig. 5.11 Error rate convergence



5.8 System Evaluation Results 97

Fig. 5.12 Centers—spreads
evolution precision of neural
network—user 1

Fig. 5.13 Centers—spreads
evolution precision of neural
network—user 2
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Fig. 5.14 Centers—spreads
evolution precision of neural
network—user 3

Fig. 5.15 Centers—spreads
evolution precision of neural
network—user 4
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Table 5.4 Statistics of evaluation stage III

How long (in minutes) did you spent training
the system?

27 mins on average (%)

Did you observe a difference in the retrievals
returned by the various neural networks during
the same training epoch? 1 (minimum
difference) to 5 (maximum difference)

1 : 2
2 : 11
3 : 54
4 : 24
5 : 9

Did you observe an improvement in the
retrievals returned by the various neural
networks from training stage to training stage 1
(minimum improvement) to 5 (maximum
improvement)

1 : 3
2 : 11
3 : 32
4 : 46
5 : 8

Did you observe any specific neural network
that systematically returned better retrievals
than the other networks 1 (minimum
difference) to 5 (maximum difference)

1 : 2
2 : 22
3 : 34
4 : 36
5 : 6

Overall system assessment:
1 (Misleading)
2 (Not helpful)
3 (Good)
4 (Very good)
5 (Excellent)

2
17
27
32
22
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Chapter 6
Cascade Recommendation Methods

Abstract In this chapter, we address the problem of recommendation by devel-
oping a two-level cascade classification architecture. The first-level classification
step involves the incorporation of a one-class classifier which is trained exclusively
on positive patterns. The one-class learning component of the first-level serves the
purpose of recognizing instances from the class of desirable patterns as opposed
to non-desirable patterns. On the other hand, the second-level classification step is
based on a multi-class classifier, which is also trained exclusively on positive data.
However, the second-level classifier is trained to discriminate among the various
(sub-)classes from which positive patterns originate.

6.1 Introduction

It must bementioned that, within the entire pattern spaceV , the class of negative/non-
desirable patterns occupies a significantly larger volume in comparison to the volume
occupied by the positive/desirable patterns. This is anticipated, as user preferences
are concentrated within a small fraction of the universe of discourse. Thus, in the
context of building an efficient RS, it is crucial that the RS be able to recognize
the majority of instances that belong to the complementary space of non-desirable
data. This particular problem is addressed by the first-level component of the cascade
classification architecture by developing a one-class classifier trained exclusively on
samples from the smaller class of desirable patterns. In other words, the purpose of
the first-level classifier is to address the extremely unbalanced nature of the machine
learning problem that ariseswhen a content-based, item-oriented approach is adopted
to address the problem of recommendation. On the other hand, the second-level
classifier addresses the problem of discriminating among the various (sub-)classes
of desirable patterns. The task of the second-level classifier may be formulated as a
balanced multi-class machine learning problem, as the users’ preferences are (more
or less) evenly distributed over the classes of desirable patterns.

In order to formulate the problem of recommendation as a two-level machine
learning problem, it is necessary to precisely define the training and testing proce-
dures followed for both classifiers. Clearly, the training procedure of classifiers at
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both levels is conducted exclusively on positive data. This is a very important aspect
of our approach, as, during the training process, we completely ignore the larger class
of non-desirable patterns. Negative (non-desirable) patterns are only used within the
testing procedure to accurately measure the efficiency of the two-level classifier in
predicting the class of unseen patterns.

6.2 Cascade Content-Based Recommendation

First-Level: One-Class SVM—Second-Level: Multi-Class SVM
Let U = {u1, u2, . . . , um} and I = {i1, i2, . . . , in} be the sets of users and items,

respectively of the database from which our RS makes recommendations. Each itam
in the database corresponds to a feature vector (e.g., a 30-dimensional MARSYAS
feature vector) in a high-dimensional Euclidean vector space V . Each user assigns a
unique rating value for each item in the databasewithin the range of {0, 1, 2, 3}. Thus,
user ratings define four disjoint classes of increasing degree of interest, namely C0,
C1, C2 and C3. C0 corresponds to the class of non-desirable/negative patterns, while
the class of desirable/positive patterns may be defined as the union (C1 ∪C2 ∪C3) of
C1, C2 and C3. In order to indicate the user involvement in defining the four classes
of interest, we may write that

∀u ∈ U, V = C0(u) ∪ C1(u) ∪ C2(u) ∪ C3(u), (6.1)

where
C0(u) ∩ C1(u) ∩ C2(u) ∩ C3(u) = ∅. (6.2)

More specifically, letting R(u, i) be the rating value that the user u assigned to
item i, the four classes of interest may be defined via the following equations:

C0(u) = {i ∈ I : R(u, i) = 0}
C1(u) = {i ∈ I : R(u, i) = 1}
C2(u) = {i ∈ I : R(u, i) = 2}
C3(u) = {i ∈ I : R(u, i) = 3}

(6.3)

At this point, we need to mention that if I(u) denotes the subset of items for
which user u provided a rating, it follows that ∀u ∈ U, I(u) = I . Thus, the positive
(desirable) and the negative (non-desirable) classes of patterns for each user may be
defined as follows:

∀u ∈ U, P(u) = C1(u) ∪ C2(u) ∪ C3(u)
∀u ∈ U, N(u) = C0(u)

(6.4)

The training/testing procedure for the classifiers at both levels involves partitioning
each class of the desirable patterns for each user into K disjoint subsets such that:
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∀u ∈ U, j ∈ {1, 2, 3}, Cj(u) =
⋃

k∈[K]
Cj(u, k), (6.5)

where

∀k ∈ [K], |Cj(u, k)| = 1

K
|Cj(u)| such that

⋂

k∈[K]
Cj(u, k) = ∅. (6.6)

LettingCj(u, k) be the set of patterns from the positive class j that is used through-
out the testing procedure, the corresponding set of training patterns will be denoted
as Ĉj(u, k) and the following equation holds:

∀j ∈ {1, 2, 3},∀k ∈ [K], Ĉj(u, k) ∪ Cj(u, k) = Cj(u). (6.7)

In other words, Eq.6.7 defines the K-fold cross validation partitioning that is uti-
lized to measure the performance accuracy of our cascade classification scheme. Let
P(u, k) and N(u, k) be the sets of positive and negative patterns, respectively, as
they are presented to the first-level classifier during the testing stage at fold k for a
particular user u. We have:

P(u, k) = C1(u, k) ∪ C2(u, k) ∪ C3(u, k) (6.8)

N(u, k) = C0(u, k) = C0(u) = N(u) (6.9)

In case the K-fold cross validation partitioning is not taken into consideration, the
set of positive patterns for a particular user may be referred to as P(u), so that
P(u) = C1(u) ∪ C2(u) ∪ C3(u).

The training procedure of the first level of our cascade classification architecture
aims at developing one one-class classifier per user. These one-class classifiers are
trained to recognize those data instances that have originated from the positive class
of patterns. In other words, each one-class classifier realizes a discrimination func-
tion denoted by fu(v), where v is a vector in V that is learnt from the fraction of
training positive patterns. More specifically, if fu,k(v) is the discrimination function
that corresponds to user u at fold k, then this function would be the result of training
the one-class classifier on Ĉ1(u, k) ∪ Ĉ2(u, k) ∪ Ĉ3(u, k). The purpose of each dis-
crimination function fu(v) is to recognize the testing positive patterns P(u) against
the complete set of negative patterns N(u).

On the other hand, the training procedure of the second level of our cascade
classification architecture aims at developing one multi-class classifier per user. This
is achieved by training the multi-class classifier on the same set of positive data,
Ĉ1(u, k)∪ Ĉ2(u, k)∪ Ĉ3(u, k), but this time with the purpose to discriminate among
the various (sub-)classes of the data pertaining to the set P(u, k). In other words,
each second-level classifier realizes a discrimination function denoted by gu(v), the
purpose of which is to partition the space of testing (positive) data P(u) into the 3
corresponding subspaces,C1(u),C2(u) andC3(u), of desirable patterns. To explicitly
indicate the discrimination function concerning user u at fold k, we use gu,k(v).
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Fig. 6.1 Cascade content-based recommender

The recommendation ability of our system is based on its efficiency when predict-
ing the rating value that a particular user assigned to an item which was not included
in the training set. Having in mind that P(u, k) ∪ N(u, k) is the full set of testing
data presented to the fist level of our cascade classification mechanism, the one-class
component operates as a filter that recognizes the items that a user assigned to the
class of desirable patterns. Specifically, the first-level discrimination function fu,k(v)
for user u at fold k partitions the set of testing data into positive and negative pat-
terns as illustrated in Fig. 6.1. In other words, the testing procedure concerning the
first-level of our cascade classifier involves the assignment of a unique value within
the set {−1, 1} for each input element such that:

∀u ∈ U, ∀k ∈ [K], ∀v ∈ P(u, k) ∪ N(u, k), fu,k(v) ∈ {−1,+1}. (6.10)

The subset of testing instances that are assigned to the class of desirable patterns
are subsequently fed into the second-level classifierwhich assigns to themaparticular
rating value within the range of {1, 2, 3}. Specifically,
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∀u ∈ U,∀k ∈ [K],∀v ∈ P(u, k) ∪ N(u, k) : fu,k(v) = +1, gu,k(v) ∈ {1, 2, 3}
(6.11)

Let the true rating value concerning an object v ∈ V for a particular user u at fold k
be Ru,k(v) so that the following equation holds:

∀u ∈ U, ∀k ∈ [K], ∀j ∈ {0, 1, 2, 3}, Ru,k(v) = j ⇔ v ∈ Cj(u, k). (6.12)

The estimated rating value assigned by our system will be indicated as R̂u,k(v) and
can be computed as in the following equation:

R̂u,k(v) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ∀v ∈ P(u, k) ∪ N(u, k) : fu,k(v) = −1;
1, ∀v ∈ P(u, k) ∪ N(u, k) : fu,k(v) = +1 and gu,k(v) = 1
2, ∀v ∈ P(u, k) ∪ N(u, k) : fu,k(v) = +1 and gu,k(v) = 2
3, ∀v ∈ P(u, k) ∪ N(u, k) : fu,k(v) = +1 and gu,k(v) = 3.

(6.13)

6.3 Cascade Hybrid Recommendation

First-Level: One-Class SVM—Second-Level: Collaborative Filtering
As stated previously, the problem addressed in this chapter is that of building an

efficient RS in the complete absence of negative examples. Since negative examples
are, in general, extremely difficult to obtain, we employed classification paradigms
that operate exclusively on the basis of positive patterns. This justifies the incorpo-
ration of the one-class classification component within the first-level of our cascade
classification architecture. Thus, the first classification level serves the purpose of
filtering out the majority of the non-desirable patterns. However, as the ultimate
purpose of any RS is to provide its users with high quality recommendations, a com-
ponent is needed which predicts the true class of unseen patterns with high accuracy.
This is the rationale behind the second classification level which takes as input the set
of patterns that were assigned to the class of desirable items by the first classification
level. In order to provide high quality recommendations, it is vital that the second-
level classifier correctly discriminate among the various (sub-)classes of desirable
patterns. Thus, the second-level classifier is a multi-class one.

Anaturalmodification of our cascade classification architecture consists of replac-
ing the second (multi-class) classification level with a CF component, as illustrated in
Fig. 6.2. Having in mind that the first classification level realizes the broader distinc-
tion between positive and negative patterns, the subsequent CF component produces
specific rating values within the range of {1, 2, 3}. Specifically, the CF methods that
we utilized were:

• Pearson Correlation [1]
• Vector Similarity [1] and
• Personality Diagnosis [2].
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Fig. 6.2 Cascade hybrid recommender

Personality Diagnosis (PD) may be thought of as a hybrid between memory and
model-based approaches of CF. Its main characteristic is that predictions have mean-
ingful probabilistic semantics. Moreover, this approach assumes that preferences
constitute a characterization of their underlying personality type for each user. There-
fore, taking into consideration the active user’s known ratings of items, it is possible
to estimate the probability that he/she has the same personality type with another
user. The personality type of a given user is taken to be the vector of “true” ratings
for items the user has seen. A true rating differs by an amount of Gaussian noise from
the actual rating given by a user. Given the personality type of a user A, PD finds the
probability that the given user is of the same personality type as other users in the
system and, subsequently, the probability that the user will like some new item [2].

The training and testing procedures concerning the second-level CF compo-
nent are identical to the ones used for the multi-class classification component.
Specifically, training was conducted on the ratings that correspond to the set
of patterns Ĉ1(u, k) ∪ Ĉ2(u, k) ∪ Ĉ3(u, k). Accordingly, the testing procedure
was conducted on the rating values that correspond to the set of testing patterns
∪C1(u, k) ∪ C2(u, k) ∪ C3(u, k).
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6.4 Measuring the Efficiency of the Cascade Classification
Scheme

The efficiency of the adapted cascade classification scheme was measured in terms
of the Mean Absolute Error and the Ranked Scoring measures. The Mean Absolute
Error (MAE) constitutes the most commonly measure used to evaluate the efficiency
of RS. More formally, the MAE concerning user u at fold k may be defined as:

MAE(u, k) = 1

|P(u, k)| + |N(u, k)|
∑

v∈P(u,k)∪N(u,k)

|Ru,k(v) − R̂u,k(v)| (6.14)

The Ranked Scoring (RSC) [1] assumes that the recommendation is presented to
the user as a list of items ranked by their predicted ratings. Specifically, RSC assesses
the expected utility of a ranked list of items by multiplying the utility of an item for
the user by the probability that the item will be viewed by the user. The utility of
an item is computed as the difference between its observed rating and the default or
neutral rating d in the domain, which can be either the midpoint of the rating scale or
the average rating in the dataset. On the other hand, the probability of viewing decays
exponentially as the rank of items increases. Formally, the RSC of a ranked list of
items vj ∈ P(ui, k) ∪ N(ui, k) sorted according to the index j in order of declining
Rui,k(vj) for a particular user ui at fold k is given by:

RSui,k =
∑

vj∈P(ui,k)∪N(ui,k)

max {Rui,k(vj) − d), 0} × 1

2(j−1)(i−1)
(6.15)

Having in mind that the set of testing patterns for the first-level classifier at fold k
is formed by the patterns pertaining to the setsC0(u),C1(u, k),C2(u, k) andC3(u, k),
we may write that

|P(u, k)| = |C1(u, k)| + |C2(u, k)| + |C3(u, k)| (6.16)

and
|N(u, k)| = |C0(u)|. (6.17)

According to Eqs. 6.16 and 6.17, we may define the true positive rate (TPR),
false negative rate (FNR), true negative rate (TNR), and false positive rate (FPR)
concerning user u for the kth fold of the testing stage as follows:

TPR(u, k) = TP(u, k)

|P(u, k)| (6.18)

FNR(u, k) = FP(u, k)

|P(u, k)| (6.19)
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TNR(u, k) = TN(u, k)

|N(u, k)| (6.20)

and

FPR(u, k) = FP(u, k)

|N(u, k)| (6.21)

It is important to note that the quantities defined in Eqs. 6.18, 6.19, 6.20, and 6.21
refer to the classification performance of the first-level classifier in the adapted cas-
cade classification scheme. More specifically, True Positive, TP(u, k), is the number
of positive/desirable patterns that were correctly assigned to the positive class of
patterns while False Negative, TN(u, k), is the number of positive/desirable patterns
that were incorrectly assigned to the negative class of patterns. Similarly, True Neg-
ative, TN(u, k), is the number of negative/non-desirable patterns that were correctly
assigned to the negative class of patterns, while False Positive, FP(u, k), is the num-
ber of negative/non-desirable patterns that were incorrectly assigned to the positive
class. More formally, having in mind Eq.6.13, the above quantities may be described
as follows:

TP(u, k) = {v ∈ P(u, k) : fu,k(v) = +1} (6.22)

FP(u, k) = {v ∈ N(u, k) : fu,k(v) = +1} (6.23)

TN(u, k) = {v ∈ N(u, k) : fu,k(v) = −1} (6.24)

FN(u, k) = {v ∈ P(u, k) : fu,k(v) = −1} (6.25)

Computing the mean value for the above quantities over different folds results in
the following equations:

TPR(u) = 1

K

∑

f ∈F

TPR(u, k) (6.26)

FNR(u) = 1

K

∑

f ∈F

FNR(u, k) (6.27)

TNR(u) = 1

K

∑

f ∈F

TNR(u, k) (6.28)

FPR(u) = 1

K

∑

f ∈F

FPR(u, k) (6.29)

It is possible to bound the MAE for the complete two-level classifier according to
its performance during the second stage of the multi-class classification scheme.
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The best case scenario concerning the classification performance of the second-level
(multi-class) classifier suggests that all the true positive patterns, which are passed
to the second classification level, are correctly classified. Moreover, the best case
scenario requires that all the false negative patterns of the first classification level
originated from C1. Thus, the following inequality holds:

∀u ∈ U ∀k ∈ [K] MAE(u, k) ≥ FN(u, k) + FP(u, k)

|P(u, k)| + |N(u, k)| (6.30)

Given Eqs. 6.18, 6.19, 6.20, and 6.21 and letting

λ(u, k) = |P(u, k)|
|N(u, k)| = |P(u)|

|N(u)| = λ(u) (6.31)

as the numbers of positive and negative patterns used during the testing stage do not
change for each fold and for each user, inequality 6.30 may be written as

MAE(u, k) ≥ FNR(u, k) × λ(u)

λ(u) + 1
+ FPR(u, k) × 1

λ(u) + 1
. (6.32)

Given that

MAE(u) = 1

K

∑

k∈[K]
MAE(u, k), (6.33)

inequality 6.32 may be written as:

MAE(u) ≥ FNR(u) × λ(u)

λ(u) + 1
+ FPR(u) × 1

λ(u) + 1
. (6.34)

If we consider the average value for the MAE over all users, we may write that:

MAE = 1

|U|
∑

u∈U

MAE(u). (6.35)

This results in:

MAE ≥ 1

|U|
∑

u∈U

FNR(u) × λ(u)

λ(u) + 1
+ FPR(u) × 1

λ(u) + 1
(6.36)

The worst case scenario concerning the classification performance of the second
level is that the second-level (multi-class) classifier incorrectly assigns all true pos-
itive patterns to C3 while they truly originated from C1. In addition, all the false
negative patterns originate from C3 and all the false positive patterns are assigned to
C3. Thus, we may write the following inequality:
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∀u ∈ U ∀f ∈ [K] MAE(u, k) ≤ 3 × FN(u, k) + 2 × TP(u, k) + 3 × FP(u, k)

P(u, k) + N(u, k)
(6.37)

Given Eqs. 6.18, 6.19, 6.20, 6.21 and 6.31, Eq.6.37 may be written as:

MAE(u, k) ≤ 3 × FNR(u, k) × λ(u)

λ(u) + 1
+ 2 × TPR(u, k) × λ(u)

λ(u) + 1
+ 3 × FPR(u, k)

λ(u) + 1
(6.38)

Now, given Eq.6.33, inequality 6.38 results in:

MAE(u) ≤ 3 × FNR(u) × λ(u)

λ(u) + 1
+ 2 × TPR(u) × λ(u)

λ(u) + 1
+ 3 × FPR(u)

λ(u) + 1
(6.39)

Thus, the average value for the MAE has an upper bound given by the following
inequality:

MAE ≤ 1

|U|
∑

u∈U

3 × FNR(u) × λ(u)

λ(u) + 1
+ 2 × TPR(u) × λ(u)

λ(u) + 1
+ 3 × FPR(u)

λ(u) + 1
.

(6.40)

Inequalities 6.36 and 6.40 imply that the minimum value for the average MAE
over all users is given as:

minu∈U MAE = 1
|U|

∑
u∈U

FNR(u)×λ(u)
λ(u)+1 + FPR(u)

λ(u)+1 . (6.41)

Similarly, the maximum value for the average MAE over all users is given as:

maxu∈U MAE = 1
|U|

∑
u∈U

3×FNR(u)×λ(u)
λ(u)+1 + 2×TPR(u)×λ(u)

λ(u)+1 +
1

|U|
∑

u∈U
3×FPR(u)
λ(u)+1 .

(6.42)
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Chapter 7
Evaluation of Cascade Recommendation
Methods

Abstract The experimental results provided in this chapter correspond to the test-
ing stage of our system. The evaluation process compared three recommendation
approaches: (a) the standard Collaborative Filtering methodologies, (b) the Cascade
Content-based Recommendation methodology and (c) the Cascade Hybrid Recom-
mendation methodology. To evaluate our system, we tested its performance as a RS
for music files. In the following sections of this chapter, a detailed description is
provided of the three types of experiments that were conducted in order to evaluate
the efficiency of our cascade recommendation architecture.

7.1 Introduction

The evaluation process involved three recommendation approaches:

1. The first approach corresponds to the standard collaborative filtering methodolo-
gies, namely the Pearson Correlation, the Vector Similarity and the Personality
Diagnosis.

2. The second approach corresponds to the Cascade Content-based Recommenda-
tion methodology which was realized on the basis of a two-level classification
scheme. Specifically, we tested one-class SVM for the first level, while the second
classification level was realized as a multi-class SVM.

3. Finally, the third approach corresponds to the Cascade Hybrid Recommendation
methodology which was implemented by a one-class SVM classification compo-
nent at the first level and a CF counterpart at the second level. Specifically, the
third recommendation approach involves three different recommenders which
correspond to the different CF methodologies that were embedded within the
second level.

Three types of experiments were conducted in order to evaluate the efficiency of
our cascade recommendation architecture.

• The first type of experiments is described in Sect. 7.2 and demonstrates the con-
tribution of the one-class classification component at the first level of our cascade
recommendation system. Specifically, we provide MAE and RSC measurements
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concerning the mean overall performance of the standard collaborative filter-
ing methodologies in the hybrid recommendation approach for the complete
set of users. Additionally, we measure the relative performance of the Cascade
Content-based Recommender against the performance of other recommendation
approaches in order to identify the recommendation system that exhibits the best
overall performance.

• The second type of experiments is described in Sect. 7.3 and demonstrates the
contribution of the second (multi-class) classification level within the framework
of the Cascade Content-based Recommendation methodology. The main purpose
of this experimentation session is to reveal the benefit in recommendation quality
obtained via the second (multi-class) classification level.

7.2 Comparative Study of Recommendation Methods

In this section, we provide a detailed description concerning the first type of ex-
periments. Our primary concern focused on conducting a comparative study of the
various recommendation approaches that were implemented. It is very important to
assess the recommendation ability of each individual system in order to identify the
one that exhibited the best overall performance. Specifically, the recommendation
accuracy was measured in terms of the average MAE over all folds for the com-
plete set of users. Our findings indicate that there was no recommendation approach
that outperformed the other approaches for the complete set of users. This means
that there were occasions for which the best recommendations for a particular user
were given by the standard CF approach. On the other hand, there were occasions
for which either the Cascade Content-based Recommender or the Cascade Hybrid
Recommender provided more accurate predictions concerning the true user ratings.

Typical examples of the previouslymentioned situations are illustrated inFigs. 7.1,
7.2 and 7.3. Specifically, Fig. 7.1 demonstrates that the best recommendation ap-
proach for User1 was the Cascade Content-based Recommender. In order of decreas-
ing efficiency, the other recommendation approaches for User1 were the Cascade
Hybrid Recommender and standard CF. Furthermore, Fig. 7.2 demonstrates that the
best recommendation approach for User13 was the standard CF. The remaining
recommendation approaches for this user were the Cascade Hybrid Recommender,
which ranked second, and the Cascade Content-based Recommender, which ranked
third. Finally, Fig. 7.3 demonstrates that the Cascade Content-based Recommender
and the standard CF rank second and third, respectively, in terms of efficiency.

The most important finding which results from the first set of experiments is that
the overall best recommendation approach over all users and folds was provided by
the Cascade Hybrid Recommender. This fact is explicitly illustrated in Fig. 7.4 in
which the hybrid approach presents the lowest average MAE taken over all users
and folds during the testing stage. It is worth mentioning that the pure content-based
and CF methodologies rank second and third, respectively, in terms of the overall
recommendation accuracy. This is not an accidental fact, but is rather an immediate
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Fig. 7.1 Content-based Recommender is the best for user 1

Fig. 7.2 Collaborative filtering Recommender is the best for user 13
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Fig. 7.3 Hybrid Recommender is the best for user3

Fig. 7.4 MAE (mean for all users)
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consequence of the incorporation of the one-class classification component at the
first level of the cascade recommendation scheme.

The recommendation approaches that rely exclusively on CF estimate the rating
value that a particular user would assign to an unseen item on the basis of the ratings
that the other users have provided for the given item. In other words, the pure CF
approaches do not take into account the subjective preferences of an individual user,
as they are biased towards the items that are most preferred by the other users. The
major drawback of the standard CF approaches is that they disorientate the user
by operating exclusively on a basis formed by the preferences of the other users,
ignoring the particular preferences an individual user might have.

On the other hand, the pure content-based recommendation approaches fail to
exploit neighborhood information for a particular user. They operate exclusively on
classifiers which are trained to be user-specific, ignoring any beneficial information
related to users with similar preferences. A natural solution to the problems related
to the CF and content-based recommendation approaches would be the formation
of a hybrid RS. Such a system would incorporate the classification power of the
content-based recommenders and the ability of standard CF approaches to estimate
user ratings on the basis of similar users’ profiles.

The Cascade Hybrid Recommendation approach presented in here mimics the
social process in which someone has selected items according to his/her preferences
and seeks other people’s opinions about these, in order to make a better selection. In
other words, the one-class classification component, at the first level, provides spe-
cialized recommendations by filtering out those items that a particular user would
characterize as non-desirable. This is achieved through the user-specific training
process of the one-class classifiers which are explicitly trained on user-defined pos-
itive classes of patterns. On the other hand, the second level of recommendation
exploits the neighborhood of preferences formed by users with similar opinions.
The recommendation superiority exhibited by the Cascade Hybrid Recommender
is based on the more efficient utilization of its CF component. This is achieved by
constraining its operation only on the subset of patterns that are already recognized
as desirable. Therefore, this approach resolves the problem of user disorientation by
asking for the opinions of other users only for the items that a particular user assigns
to the positive class of patterns.

7.3 One-Class SVM—Fraction: Analysis

The purpose of this set of experiments is to reveal the contribution of the second
(multi-class) classification level in the overall recommendation ability of the Cascade
Content-based Recommender. Equations6.41 and 6.42 provide the minimum and
maximum values for the average MAE over all users, given the classification perfor-
mance of the first (one-class) classification level. Having inmind that these lower and
upper bounds on the average MAE concern the overall performance of the cascade
recommender at both levels, they reflect the impact of the second (multi-class)

http://dx.doi.org/10.1007/978-3-319-19135-5_6
http://dx.doi.org/10.1007/978-3-319-19135-5_6
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Fig. 7.5 MSE (mean for all users)

classification component. The lower bound on the average MAE corresponds to
the best case scenario in which the second (multi-class) classification level performs
inerrably. On the other hand, the upper bound on the average MAE corresponds to
the worst case scenario, in which the second (multi-class) classification level fails
completely. In this context, if we measure the actual value of the average MAE over
all users, we can assess the influence of the second classification level on the overall
recommendation accuracy of our system. Thus, if the actual value of the average
MAE is close to the lower bound, this implies that the second classification level
operated close to the highest possible performance level. On the other hand, if the
actual value of the average MAE is closer to its upper bound, this implies that the
second classification level did not contribute significantly to the overall performance
of our recommender (Fig. 7.5).

Figure7.7 shows the actual average MAE relative to its corresponding lower and
upper bound curves. Each curve is generated by parameterizing the one-class SVM
classifier with respect to the fraction of the positive data that should be rejected
during the training process.

The relative performance of one-class SVM-based classifier was measured in
terms of precision, recall, F1-measure and MAE, which are defined in the following.
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Fig. 7.6 Ranked Scoring (mean for all users)

The precision is defined as an average over all users and folds in relation to the
average values for the true positives and the false positives:

Precision = T P

T P + F P
. (7.1)

On the other hand, the recall is defined as the average over all users and folds in
relation to the average values for the true positives and the false negatives:

Recall = T P

T P + F N
. (7.2)
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Fig. 7.7 MAE Boundaries for one-class SVM

Fig. 7.8 Hybrid Recommender 2nd level personality diagnosis: Fraction analysis
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Fig. 7.9 Hybrid Recommender 2nd level Pearson correlation: Fraction analysis

Fig. 7.10 Hybrid Recommender 2nd level vector similarity: Fraction analysis
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Finally, the F1-measure is defined as the average value for the F1-measure over all
users and folds.

F1 = 2× Precision × Recall

Precision + Recall
(7.3)

The precision quantifies the amount of information that is not lost, while the recall
expresses the amount of data that is not lost. Higher precision and recall values
indicate superior classification performance. The F1-measure is a combination of
precision and recall which ranges within the [0, 1] interval. The minimum value (0)
indicates the worst possible performance, while the maximum value (1) indicates
the highest possible performance.

The MAE is a measure related to the overall classification performance of the
Cascade Recommender. MAE values closer to zero indicate higher recommendation
accuracy. It is very important to note that in the context of the highly unbalanced
classification problem related to recommendation, the quality that dominates the
level of the MAE is the number of the correctly classified negative patterns, i.e.
the true negatives. Since the vast majority of patterns belong to the negative class,
correctly identifying them reduces the overall classification error. Thus, a lower
MAE value for the one-class SVM classifier indicates that this classifier performs
better in filtering out non-desirable patterns. On the other hand, the F1-measure,
that specifically relates to precision and recall according to Eq.7.3, is dominated
by the amount of positive patterns that are correctly classified (i.e., true positives),
according to Eqs. 7.1 and 7.2. The F1-measure quantifies the amount of true (thus,
useful) positive recommendations that the system provides to the user.

Fig. 7.11 One class SVM (precision, recall, F1)
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The previous findings are characteristic of the behavior of the one-class classifiers
with respect to the fraction of positive and negative patterns that they identify during
their testing process. Our experiments indicate the following:

• The precision performance of the one-class SVM classifier involves increasing
true negative rates as the fraction of positive patterns rejected during training
approaches 95%.

• On the other hand, the recall performance of the one-class SVM classifier involves
increasing true positive rates as the fraction of positive patterns rejected during
training approaches 5%.

An efficient one-class classifier attempts to achieve one of two goals: (1) to mini-
mize the fraction of false positives and (2) to minimize the fraction of false negatives.
Thus, it is a matter of choice whether the recommendation process will focus on in-
creasing the true positive rate or increasing the true negative rate. Increasing the
true negative rate results in lower MAE levels, while increasing the true positive
rate results in higher F1-measure levels. Specifically, the fact that the non-desirable
patterns are significantly higher in number than the desirable ones, suggests that the
quality of recommendation is crucially influenced by the number of the correctly
identified negative patterns. In other words, constraining the amount of the false pos-
itive patterns that pass to the second level of the RS increases the reliability (quality)
of the recommended items. The most appropriate measure to describe the quality of
recommendation is given by the RSC, as the RSC illustrates the amount of true posi-
tive items that are placed at the top of the ranked list. This fact is clearly demonstrated
in Fig. 7.6, where the RSC for the Cascade Content-based RS of the one-class SVM
classifier outperforms the other recommendation approaches (Figs. 7.7, 7.8, 7.9, 7.10
and 7.11).



Chapter 8
Conclusions and Future Work

Abstract Recommender Systems (RS) attempt to provide information in a way
that will be most appropriate and valuable to its users and prevent them from being
overwhelmed by huge amounts of information that, in the absence of RS, they should
browse or examine. In this book, we presented a number of innovative RS, which are
summarized in this chapter. Conclusions are drawn and avenues of future research
are identified.

8.1 Summary and Conclusions

Recent advances in electronic media and computer networks have allowed the cre-
ation of large and distributed repositories of information. However, the immediate
availability of extensive resources for use by broad classes of computer users gives
rise to new challenges in everyday life. These challenges arise from the fact that
users cannot exploit available resources effectively when the amount of information
requires prohibitively long user time spent on acquaintance with and comprehension
of the information content. The risk of information overload of users imposes new
requirements on the software systems that handle the information.

In this book, firstly, we explored the use of objective content-based features to
model the individualized (subjective) perception of similarity between multimedia
data. We present a content-based RS which constructs music similarity perception
models of its users by associating different similarity measures to different users.
The results of the evaluation of the system verified the relation between subsets
of objective features and individualized (music) similarity perception and exhibits
significant improvement in individualized perceived similarity in subsequent recom-
mended items. The investigation of these relations between objective feature subsets
and user perception offer an indirect explanation and justification for the items one
selects. The users are clustered according to specific subsets of features that reflect
different aspects of the music signal. This assignment of a user to a specific subset of
features allows us to formulate indirect relations between his/her perception and cor-
responding item similarity (e.g. music similarity) that involves his/her preferences.
Consequently, the selection of a specific feature subset can provide a justification-
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reasoning of the various factors that influence the user’s perception of similarity to
his/her preferences.

Secondly, we addressed the recommendation process as a hybrid combination
of one-class classification with CF. Specifically, we followed a cascade scheme in
which the recommendation process is decomposed into two levels. In the first level,
our approach attempts to identify for each user only the desirable items from the
large amount of all possible items, taking into account only a small portion of his/her
available preferences. Towards this goal we apply a one-class classification scheme,
in the training stage of which only positives examples (desirable items for which
users have express an opinion-rating value) are required. This is very important, as
it is sensibly hard in terms of time and effort for users to explicitly express what
they consider as non-desirable to them. In the second level, either a content-based
or a CF approach is applied to assign a corresponding rating degree to these items.
Our cascade scheme first builds a user profile by taking into consideration a small
amount of his/her preferences and then selects possible desirable items according to
these preferences which are refined and into a rating scale in the second level. In this
way, the cascade hybrid RS avoids known problems of content-based or CF RS.

The fundamental idea behind our cascade hybrid recommendation approach was
to mimic the social recommendation process in which someone has already identi-
fied some items according to his/her preferences and seeks the opinions of others
about these items, so as to make the best selection of items that fall within his/her
individual preferences. Experimental results reveal that our hybrid recommendation
approach outperforms both a pure content-based approach or a pure CF technique.
Experimental results from the comparison between the pure collaborative and the
cascade content-based approaches demonstrate the efficiency of the first level. On
the other hand, the comparison between the cascade content-based and the cascade
hybrid approaches demonstrates the efficiency of the second level and justifies the
use of the CF method in the second level.

8.2 Current and Future Work

In relation to the work reported in this book, we are currently investigating the
possibility of incorporating similar ideas into the construction of RS that are able
to recommend items not only to specific user, but also to groups of users. Such RS
utilize a combination (fusion) of RS based on game theory.

Another direction of current and future work is along the exploration of machine
learning approaches based on the transductive inference paradigm. Transductive
SVMapproaches that utilize only positive andunlabelled data formanew, unexplored
direction for RS. Related research has the potential to lead to efficient solutions to the
highly unbalanced nature of the classification problem of RS. As mentioned earlier
in this book, it is common to be facedwith situations in which positive and unlabelled
examples are available but negative examples cannot be obtained without paying an
additional cost. Therefore, the utilization of additional information that is contained
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in unlabelled data can offer the RS new possibilities to learn the users preferences
more efficiently and to provide better recommendations.

These and other research avenues are currently being explored and related results
will be presented elsewhere in the future.
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