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Preface
Big data has become a popular buzzword across many industries. An increasing number of 
people have been exposed to the term and are looking at how to leverage big data in their 
own businesses, to improve sales and profitability. However, collecting, aggregating, and 
visualizing data is just one part of the equation. Being able to extract useful information from 
data is another task, and much more challenging.

Traditionally, most researchers perform statistical analysis using historical samples of 
data. The main downside of this process is that conclusions drawn from statistical analysis 
are limited. In fact, researchers usually struggle to uncover hidden patterns and unknown 
correlations from target data. Aside from applying statistical analysis, machine learning has 
emerged as an alternative. This process yields a more accurate predictive model with the 
data inserted into a learning algorithm. Through machine learning, the analysis of business 
operations and processes is not limited to human-scale thinking. Machine-scale analysis 
enables businesses to discover hidden values in big data.

The most widely used tool for machine learning and data analysis is the R language. In 
addition to being the most popular language used by data scientists, R is open source and is 
free for use for all users. The R programming language offers a variety of learning packages 
and visualization functions, which enable users to analyze data on the fly. Any user can 
easily perform machine learning with R on their dataset without knowing every detail of the 
mathematical models behind the analysis.

Machine Learning with R Cookbook takes a practical approach to teaching you how to perform 
machine learning with R. Each of the 12 chapters are introduced to you by dividing this topic 
into several simple recipes. Through the step-by-step instructions provided in each recipe, the 
reader can construct a predictive model by using a variety of machine learning packages.
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In this book, readers are first directed how to set up the R environment and use simple R 
commands to explore data. The next topic covers how to perform statistical analysis with 
machine learning analysis and assessing created models, which are covered in detail later on 
in the book. There is also content on learning how to integrate R and Hadoop to create a big 
data analysis platform. The detailed illustrations provide all the information required to start 
applying machine learning to individual projects.

With Machine Learning with R Cookbook, users will feel that machine learning has never been 
easier.

What this book covers
Chapter 1, Practical Machine Learning with R, describes how to create a ready-to-use R 
environment. Furthermore, we cover all the basic R operations, from reading data into R, 
manipulating data, and performing simple statistics, to visualizing data.

Chapter 2, Data Exploration with RMS Titanic, provides you an opportunity to perform 
exploratory analysis in R. In this chapter, we walk you through the process of transforming, 
analyzing, and visualizing the RMS Titanic data. We conclude by creating a prediction model 
to identify the possible survivors of the Titanic tragedy.

Chapter 3, R and Statistics, begins with an emphasis on data sampling and probability 
distribution. Subsequently, the chapter demonstrates how to perform descriptive statistics 
and inferential statistics on data.

Chapter 4, Understanding Regression Analysis, analyzes the linear relationship between a 
dependent (response) variable and one or more independent (predictor) sets of explanatory 
variables. You will learn how to use different regression models to make sense of numeric 
relationships, and further apply a fitted model to data for continuous value prediction.

Chapter 5, Classification (I) – Tree, Lazy, Probabilistic, teaches you how to fit data into a tree-
based classifier, k-nearest neighbor classifier, logistic regression classifier, or the Naïve Bayes 
classifier. In order to understand how classification works, we provide an example with the 
purpose of identifying possible customer churns from a telecom dataset.

Chapter 6, Classification (II) – Neural Network, SVM, introduces two complex but powerful 
classification methods: neural networks and support vector machines. Despite the complex 
nature of these methods, this chapter shows how easy it is to make an accurate prediction 
using these algorithms in R.

Chapter 7, Model Evaluation, reveals some measurements that you can use to evaluate the 
performance of a fitted model. With these measurements, we can select the optimum model 
that accurately predicts responses for future subjects.
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Chapter 8, Ensemble Learning, introduces how to use the power of ensemble learners to 
produce better classification and regression results, as compared to a single learner. As an 
ensemble learner is frequently the winning approach in many data prediction competitions; 
you should know how to apply ensemble learners to your projects.

Chapter 9, Clustering, explores different types of clustering methods. Clustering can group 
similar points of data together. In this chapter, we demonstrate how to apply the clustering 
technique to segment customers and further compare differences between each clustering 
method.

Chapter 10, Association Analysis and Sequence Mining, exposes you to the common methods 
used to discover associated items and underlying frequent patterns from transaction data. 
This chapter is a must read for those of you interested in finding out how researchers 
discovered the famous association between customers that purchase beer and those who 
purchase diapers.

Chapter 11, Dimension Reduction, teaches you how to select and extract features from 
original variables. With this technique, we can remove the effect from redundant features, and 
reduce the computational cost to avoid overfitting. For a more concrete example, this chapter 
reveals how to compress and restore an image with the dimension reduction approach.

Chapter 12, Big Data Analysis (R and Hadoop), reveals how you can use RHadoop, which 
allows R to leverage the scalability of Hadoop, so as to process and analyze big data. We 
cover all the steps, from setting up the RHadoop environment to actual big data processing 
and machine learning on big data. Lastly, we explore how to deploy an RHadoop cluster using 
Amazon EC2.

Appendix A, Resources for R and Machine Learning, will provide you with all the resources for 
R and machine learning.

Appendix B, Dataset – Survival of Passengers on the Titanic, shows you the dataset for 
survival of passengers on the Titanic.

What you need for this book
To follow the book's examples, you will need a computer with access to the Internet and 
the ability to install the R environment. You can download R from http://www.cran.r-
project.org/. Detailed installation instructions are available in the first chapter.

The examples provided in this book were coded and tested with R Version 3.1.2 on a 
computer with Microsoft Windows installed on it. These examples should also work with any 
recent version of R installed on either MAC OSX or a Unix-like OS.

http://www.cran.r-project.org/
http://www.cran.r-project.org/
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Who this book is for
This book is ideal for those of you who want to learn how to use R for machine learning and 
gain insights from data. Regardless of your level of experience, this book covers the basics 
of applying R to machine learning through advanced techniques. While it is helpful if you 
are familiar with basic programming or machine learning concepts, you do not require prior 
experience to benefit from this book.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous 
section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.
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Conventions
This book contains a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"Use the rpart function to build a classification tree model."

A block of code is set as follows:

> churn.rp = rpart(churn ~ ., data=trainset)

Any command-line input or output is written as follows:

$ sudo R CMD INSTALL rmr2_3.3.0.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in text in the following format: "In R, a missing value 
is noted with the symbol NA (not available), and an impossible value is NaN (not a number)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles 
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

www.allitebooks.com

www.packtpub.com/authors
http://www.allitebooks.org
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


1
Practical Machine 

Learning with R

In this chapter, we will cover the following topics:

ff Downloading and installing R

ff Downloading and installing RStudio

ff Installing and loading packages

ff Reading and writing data

ff Using R to manipulate data

ff Applying basic statistics

ff Visualizing data

ff Getting a dataset for machine learning

Introduction
The aim of machine learning is to uncover hidden patterns, unknown correlations, and find 
useful information from data. In addition to this, through incorporation with data analysis, 
machine learning can be used to perform predictive analysis. With machine learning, the 
analysis of business operations and processes is not limited to human scale thinking; 
machine scale analysis enables businesses to capture hidden values in big data.
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Machine learning has similarities to the human reasoning process. Unlike traditional analysis, 
the generated model cannot evolve as data is accumulated. Machine learning can learn from 
the data that is processed and analyzed. In other words, the more data that is processed, the 
more it can learn.

R, as a dialect of GNU-S, is a powerful statistical language that can be used to manipulate 
and analyze data. Additionally, R provides many machine learning packages and visualization 
functions, which enable users to analyze data on the fly. Most importantly, R is open source 
and free.

Using R greatly simplifies machine learning. All you need to know is how each algorithm 
can solve your problem, and then you can simply use a written package to quickly generate 
prediction models on data with a few command lines. For example, you can either perform 
Naïve Bayes for spam mail filtering, conduct k-means clustering for customer segmentation, 
use linear regression to forecast house prices, or implement a hidden Markov model to 
predict the stock market, as shown in the following screenshot:

Stock market prediction using R

Moreover, you can perform nonlinear dimension reduction to calculate the dissimilarity  
of image data, and visualize the clustered graph, as shown in the following screenshot.  
All you need to do is follow the recipes provided in this book.
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A clustered graph of face image data

This chapter serves as an overall introduction to machine learning and R; the first few recipes 
introduce how to set up the R environment and integrated development environment, RStudio. 
After setting up the environment, the following recipe introduces package installation and 
loading. In order to understand how data analysis is practiced using R, the next four recipes 
cover data read/write, data manipulation, basic statistics, and data visualization using R. The 
last recipe in the chapter lists useful data sources and resources.

Downloading and installing R
To use R, you must first install it on your computer. This recipe gives detailed instructions on 
how to download and install R.

Getting ready
If you are new to the R language, you can find a detailed introduction, language history, and 
functionality on the official website (http://www.r-project.org/). When you are ready to 
download and install R, please access the following link: http://cran.r-project.org/.

http://www.r-project.org
http://cran.r-project.org/
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How to do it...
Please perform the following steps to download and install R for Windows and Mac users:

1.	 Go to the R CRAN website, http://www.r-project.org/, and click on the 
download R link, that is, http://cran.r-project.org/mirrors.html):

2.	 You may select the mirror location closest to you:

CRAN mirrors

http://www.r-project.org/
http://cran.r-project.org/mirrors.html
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3.	 Select the correct download link based on your operating system:

Click on the download link based on your OS

As the installation of R differs for Windows and Mac, the steps required to install R for each 
OS are provided here.

For Windows users:

1.	 Click on Download R for Windows, as shown in the following screenshot, and then 
click on base:

Go to "Download R for Windows" and click "base"
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2.	 Click on Download R 3.x.x for Windows:

Click "Download R 3.x.x for Windows" 

3.	 The installation file should be downloaded. Once the download is finished, you can 
double-click on the installation file and begin installing R:

4.	 The Windows installation of R is quite straightforward; the installation GUI may 
instruct you on how to install the program step by step (public license, destination 
location, select components, startup options, startup menu folder, and select 
additional tasks). Leave all the installation options as the default settings if you do 
not want to make any changes.
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5.	 After successfully completing the installation, a shortcut to the R application will 
appear in your Start menu, which will open the R Console:

The Windows R Console

For Mac OS X users:

1.	 Go to Download R for (Mac) OS X, as shown in this screenshot.

2.	 Click on the latest version (.pkg file extension) according to your Mac OS version:
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3.	 Double-click on the downloaded installation file (.pkg extension) and begin to install 
R. Leave all the installation options as the default settings if you do not want to make 
any changes:

4.	 Follow the onscreen instructions, Introduction, Read Me, License, Destination 
Select, Installation Type, Installation, Summary, and click on continue to complete 
the installation.

5.	 After the file is installed, you can use Spotlight Search or go to the application folder 
to find R:

Use "Spotlight Search" to find R
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6.	 Click on R to open R Console:

As an alternative to downloading a Mac .pkg file to install R, Mac users can also install R 
using Homebrew:

1.	 Download XQuartz-2.X.X.dmg from https://xquartz.macosforge.org/
landing/.

2.	 Double-click on the .dmg file to mount it.

3.	 Update brew with the following command line:
$ brew update

4.	 Clone the repository and symlink all its formulae to homebrew/science:
$ brew tap homebrew/science

5.	 Install gfortran:
$ brew install gfortran

6.	 Install R:
$ brew install R

For Linux users, there are precompiled binaries for Debian, Red Hat, SUSE, and Ubuntu. 
Alternatively, you can install R from a source code. Besides downloading precompiled binaries, 
you can install R for Linux through a package manager. Here are the installation steps for 
CentOS and Ubuntu.

www.allitebooks.com

https://xquartz.macosforge.org/landing/
https://xquartz.macosforge.org/landing/
http://www.allitebooks.org
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Downloading and installing R on Ubuntu:

1.	 Add the entry to the /etc/apt/sources.list file:
$ sudo sh -c "echo 'deb http:// cran.stat.ucla.edu/bin/linux/
ubuntu precise/' >> /etc/apt/sources.list"

2.	 Then, update the repository:
$ sudo apt-get update

3.	 Install R with the following command:
$ sudo apt-get install r-base

4.	 Start R in the command line:
$ R

Downloading and installing R on CentOS 5:

1.	 Get rpm CentOS5 RHEL EPEL repository of CentOS5:
$ wget http://dl.fedoraproject.org/pub/epel/5/x86_64/epel-
release-5-4.noarch.rpm

2.	 Install CentOS5 RHEL EPEL repository:
$ sudo rpm -Uvh epel-release-5-4.noarch.rpm

3.	 Update the installed packages:
$ sudo yum update

4.	 Install R through the repository:
$ sudo yum install R

5.	 Start R in the command line:
$ R

Downloading and installing R on CentOS 6:

1.	 Get rpm CentOS5 RHEL EPEL repository of CentOS6:
$ wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

2.	 Install the CentOS5 RHEL EPEL repository:
$ sudo rpm -Uvh epel-release-6-8.noarch.rpm

3.	 Update the installed packages:
$ sudo yum update
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4.	 Install R through the repository:
$ sudo yum install R

5.	 Start R in the command line:
$ R

How it works...
CRAN provides precompiled binaries for Linux, Mac OS X, and Windows. For Mac and Windows 
users, the installation procedures are straightforward. You can generally follow onscreen 
instructions to complete the installation. For Linux users, you can use the package manager 
provided for each platform to install R or build R from the source code.

See also
ff For those planning to build R from the source code, refer to R Installation and 

Administration (http://cran.r-project.org/doc/manuals/R-admin.
html), which illustrates how to install R on a variety of platforms.

Downloading and installing RStudio
To write an R script, one can use R Console, R commander, or any text editor (EMACS, VIM, or 
sublime). However, the assistance of RStudio, an integrated development environment (IDE) 
for R, can make development a lot easier.

RStudio provides comprehensive facilities for software development. Built-in features such 
as syntax highlighting, code completion, and smart indentation help maximize productivity. 
To make R programming more manageable, RStudio also integrates the main interface into 
a four-panel layout. It includes an interactive R Console, a tabbed source code editor, a panel 
for the currently active objects/history, and a tabbed panel for the file browser/plot window/
package install window/R help window. Moreover, RStudio is open source and is available for 
many platforms, such as Windows, Mac OS X, and Linux. This recipe shows how to download 
and install RStudio.

Getting ready
RStudio requires a working R installation; when RStudio loads, it must be able to locate a 
version of R. You must therefore have completed the previous recipe with R installed on your 
OS before proceeding to install RStudio.

http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html
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How to do it...
Perform the following steps to download and install RStudio for Windows and Mac users:

1.	 Access RStudio's official site by using the following URL: http://www.rstudio.
com/products/RStudio/.

2.	 For a desktop version installation, click on Download RStudio Desktop (http://
www.rstudio.com/products/rstudio/download/) and choose the RStudio 
recommended for your system. Download the relevant packages:

http://www.rstudio.com/products/RStudio/
http://www.rstudio.com/products/RStudio/
http://www.rstudio.com/products/rstudio/download/
http://www.rstudio.com/products/rstudio/download/
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3.	 Install RStudio by double-clicking on the downloaded packages. For Windows users, 
follow the onscreen instruction to install the application:
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4.	 For Mac users, simply drag the RStudio icon to the Applications folder:

5.	 Start RStudio:

The RStudio console

Perform the following steps for downloading and installing RStudio for Ubuntu/Debian and 
RedHat/Centos users:

For Debian(6+)/Ubuntu(10.04+) 32-bit:

$ wget http://download1.rstudio.org/rstudio-0.98.1091-i386.deb

$ sudo gdebi rstudio-0.98. 1091-i386.deb

For Debian(6+)/Ubuntu(10.04+) 64-bit:

$ wget http://download1.rstudio.org/rstudio-0.98. 1091-amd64.deb

$ sudo gdebi rstudio-0.98. 1091-amd64.deb
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For RedHat/CentOS(5,4+) 32 bit:

$ wget http://download1.rstudio.org/rstudio-0.98. 1091-i686.rpm

$ sudo yum install --nogpgcheck rstudio-0.98. 1091-i686.rpm

For RedHat/CentOS(5,4+) 64 bit:

$ wget http://download1.rstudio.org/rstudio-0.98. 1091-x86_64.rpm

$ sudo yum install --nogpgcheck rstudio-0.98. 1091-x86_64.rpm

How it works
The RStudio program can be run on the desktop or through a web browser. The desktop 
version is available for Windows, Mac OS X, and Linux platforms with similar operations across 
all platforms. For Windows and Mac users, after downloading the precompiled package of 
RStudio, follow the onscreen instructions, shown in the preceding steps, to complete the 
installation. Linux users may use the package management system provided for installation.

See also
ff In addition to the desktop version, users may install a server version to provide 

access to multiple users. The server version provides a URL that users can access 
to use the RStudio resources. To install RStudio, please refer to the following link: 
http://www.rstudio.com/ide/download/server.html. This page provides 
installation instructions for the following Linux distributions: Debian (6+), Ubuntu 
(10.04+), RedHat, and CentOS (5.4+).

ff For other Linux distributions, you can build RStudio from the source code.

Installing and loading packages
After successfully installing R, users can download, install, and update packages from 
the repositories. As R allows users to create their own packages, official and non-official 
repositories are provided to manage these user-created packages. CRAN is the official 
R package repository. Currently, the CRAN package repository features 6,379 available 
packages (as of 02/27/2015). Through the use of the packages provided on CRAN, users 
may extend the functionality of R to machine learning, statistics, and related purposes. CRAN 
is a network of FTP and web servers around the world that store identical, up-to-date versions 
of code and documentation for R. You may select the closest CRAN mirror to your location to 
download packages.

Getting ready
Start an R session on your host computer.

http://www.rstudio.com/ide/download/server.html
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How to do it...
Perform the following steps to install and load R packages:

1.	 To load a list of installed packages:
> library()

2.	 Setting the default CRAN mirror:

> chooseCRANmirror()

R will return a list of CRAN mirrors, and then ask the user to either type a mirror ID to select it, 
or enter zero to exit:

1.	 Install a package from CRAN; take package e1071 as an example:
> install.packages("e1071")

2.	 Update a package from CRAN; take package e1071 as an example:
> update.packages("e1071")

3.	 Load the package the package:
> library(e1071)

4.	 If you would like to view the documentation of the package, you can use the help 
function:
> help(package ="e1071")

5.	 If you would like to view the documentation of the function, you can use the help 
function:
> help(svm, e1071)

6.	 Alternatively, you can use the help shortcut, ?, to view the help document for this 
function:
> ?e1071::svm

7.	 If the function does not provide any documentation, you may want to search the 
supplied documentation for a given keyword. For example, if you wish to search for 
documentation related to svm:
> help.search("svm")

8.	 Alternatively, you can use ?? as the shortcut for help.search:
> ??svm

9.	 To view the argument taken for the function, simply use the args function. For 
example, if you would like to know the argument taken for the lm function:
> args(lm)
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10.	 Some packages will provide examples and demos; you can use example or demo to 
view an example or demo. For example, one can view an example of the lm package 
and a demo of the graphics package by typing the following commands:
> example(lm)

> demo(graphics)

11.	 To view all the available demos, you may use the demo function to list all of them:

> demo()

How it works
This recipe first introduces how to view loaded packages, install packages from CRAN, and 
load new packages. Before installing packages, those of you who are interested in the listing 
of the CRAN package can refer to http://cran.r-project.org/web/packages/
available_packages_by_name.html.

When a package is installed, documentation related to the package is also provided. You are, 
therefore, able to view the documentation or the related help pages of installed packages and 
functions. Additionally, demos and examples are provided by packages that can help users 
understand the capability of the installed package.

See also
ff Besides installing packages from CRAN, there are other R package repositories, 

including Crantastic, a community site for rating and reviewing CRAN packages, 
and R-Forge, a central platform for the collaborative development of R packages. In 
addition to this, Bioconductor provides R packages for the analysis of genomic data.

ff If you would like to find relevant functions and packages, please visit the list of task 
views at http://cran.r-project.org/web/views/, or search for keywords at 
http://rseek.org.

Reading and writing data
Before starting to explore data, you must load the data into the R session. This recipe will 
introduce methods to load data either from a file into the memory or use the predefined data 
within R.

Getting ready
First, start an R session on your machine. As this recipe involves steps toward the file IO, if 
the user does not specify the full path, read and write activity will take place in the current 
working directory.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/views/
http://rseek.org
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You can simply type getwd() in the R session to obtain the current working directory 
location. However, if you would like to change the current working directory, you can use 
setwd("<path>"), where <path> can be replaced as your desired path, to specify the 
working directory.

How to do it...
Perform the following steps to read and write data with R:

1.	 To view the built-in datasets of R, type the following command:
> data()

2.	 R will return a list of datasets in a dataset package, and the list comprises the 
name and description of each dataset.

3.	 To load the dataset iris into an R session, type the following command:
> data(iris)

4.	 The dataset iris is now loaded into the data frame format, which is a common  
data structure in R to store a data table.

5.	 To view the data type of iris, simply use the class function:
> class(iris)

[1] "data.frame"

6.	 The data.frame console print shows that the iris dataset is in the structure of 
data frame.

7.	 Use the save function to store an object in a file. For example, to save the loaded iris 
data into myData.RData, use the following command:
> save(iris, file="myData.RData")

8.	 Use the load function to read a saved object into an R session. For example, to load 
iris data from myData.RData, use the following command:
> load("myData.RData")

9.	 In addition to using built-in datasets, R also provides a function to import data from 
text into a data frame. For example, the read.table function can format a given 
text into a data frame:
> test.data = read.table(header = TRUE, text = "

+ a b

+ 1 2

+ 3 4

+ ")
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10.	 You can also use row.names and col.names to specify the names of columns  
and rows:
> test.data = read.table(text = "

+ 1 2

+ 3 4", 

+ col.names=c("a","b"),

+ row.names = c("first","second"))

11.	 View the class of the test.data variable:
> class(test.data)

[1] "data.frame"

12.	 The class function shows that the test.data variable contains a data frame.

13.	 In addition to importing data by using the read.table function, you can use the 
write.table function to export data to a text file:
> write.table(test.data, file = "test.txt" , sep = " ")

14.	 The write.table function will write the content of test.data into test.txt  
(the written path can be found by typing getwd()), with a separation delimiter as 
white space.

15.	 Similar to write.table, write.csv can also export data to a file. However, 
write.csv uses a comma as the default delimiter:
> write.csv(test.data, file = "test.csv")

16.	 With the read.csv function, the csv file can be imported as a data frame. However, 
the last example writes column and row names of the data frame to the test.csv 
file. Therefore, specifying header to TRUE and row names as the first column within 
the function can ensure the read data frame will not treat the header and the first 
column as values:

> csv.data = read.csv("test.csv", header = TRUE, row.names=1)

> head(csv.data)

  a b

1 1 2

2 3 4

How it works
Generally, data for collection may be in multiple files and different formats. To exchange data 
between files and RData, R provides many built-in functions, such as save, load, read.csv, 
read.table, write.csv, and write.table.

www.allitebooks.com

http://www.allitebooks.org
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This example first demonstrates how to load the built-in dataset iris into an R session.  
The iris dataset is the most famous and commonly used dataset in the field of machine 
learning. Here, we use the iris dataset as an example. The recipe shows how to save RData 
and load it with the save and load functions. Furthermore, the example explains how to  
use read.table, write.table, read.csv, and write.csv to exchange data from files  
to a data frame. The use of the R IO function to read and write data is very important as most 
of the data sources are external. Therefore, you have to use these functions to load data into 
an R session.

See also
For the load, read.table, and read.csv functions, the file to be read can also be a 
complete URL (for supported URLs, use ?url for more information).

On some occasions, data may be in an Excel file instead of a flat text file. The WriteXLS 
package allows writing an object into an Excel file with a given variable in the first argument 
and the file to be written in the second argument:

1.	 Install the WriteXLS package:
> install.packages("WriteXLS")

2.	 Load the WriteXLS package:
> library("WriteXLS")

3.	 Use the WriteXLS function to write the data frame iris into a file named iris.xls:

> WriteXLS("iris", ExcelFileName="iris.xls")

Using R to manipulate data
This recipe will discuss how to use the built-in R functions to manipulate data. As data 
manipulation is the most time consuming part of most analysis procedures, you should  
gain knowledge of how to apply these functions on data.

Getting ready
Ensure you have completed the previous recipes by installing R on your operating system.

How to do it...
Perform the following steps to manipulate the data with R.

Subset the data using the bracelet notation:
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1.	 Load the dataset iris into the R session:
> data(iris)

2.	 To select values, you may use a bracket notation that designates the indices of the 
dataset. The first index is for the rows and the second for the columns:
> iris[1,"Sepal.Length"]

[1] 5.1

3.	 You can also select multiple columns using c():
> Sepal.iris = iris[, c("Sepal.Length", "Sepal.Width")]

4.	 You can then use str() to summarize and display the internal structure of Sepal.
iris:
> str(Sepal.iris)

'data.frame':  150 obs. of  2 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ..

5.	 To subset data with the rows of given indices, you can specify the indices at the first 
index with the bracket notation. In this example, we show you how to subset data 
with the top five records with the Sepal.Length column and the Sepal.Width 
selected:
> Five.Sepal.iris = iris[1:5, c("Sepal.Length", "Sepal.Width")]

> str(Five.Sepal.iris)

'data.frame':	5 obs. of  2 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6

6.	 It is also possible to set conditions to filter the data. For example, to filter returned 
records containing the setosa data with all five variables. In the following example, 
the first index specifies the returning criteria, and the second index specifies the 
range of indices of the variable returned:
> setosa.data = iris[iris$Species=="setosa",1:5]

> str(setosa.data)

'data.frame':	50 obs. of  5 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 
1 1 1 1 1 1 1 1 ...
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7.	 Alternatively, the which function returns the indexes of satisfied data. The following 
example returns indices of the iris data containing species equal to setosa:
> which(iris$Species=="setosa")

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

8.	 The indices returned by the operation can then be applied as the index to select the 
iris containing the setosa species. The following example returns the setosa with all 
five variables:

> setosa.data = iris[which(iris$Species=="setosa"),1:5]

> str(setosa.data)

'data.frame':	50 obs. of  5 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 
1 1 1 1 1 1 1 1 ...

Subset data using the subset function:

1.	 Besides using the bracket notation, R provides a subset function that enables users 
to subset the data frame by observations with a logical statement.

2.	 First, subset species, sepal length, and sepal width out of the iris data. To select 
the sepal length and width out of the iris data, one should specify the column to be 
subset in the select argument:
> Sepal.data = subset(iris, select=c("Sepal.Length", "Sepal.
Width"))

> str(Sepal.data)

'data.frame': 150 obs. of  2 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

This reveals that Sepal.data contains 150 objects with the Sepal.Length variable and 
Sepal.Width.

1.	 On the other hand, you can use a subset argument to get subset data containing 
setosa only. In the second argument of the subset function, you can specify the 
subset criteria:
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> setosa.data = subset(iris, Species =="setosa")

> str(setosa.data)

'data.frame': 50 obs. of  5 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 
1 1 1 1 1 1 1 1 ...

2.	 Most of the time, you may want to apply a union or intersect a condition while 
subsetting data. The OR and AND operations can be further employed for this 
purpose. For example, if you would like to retrieve data with Petal.Width >=0.2 
and Petal.Length < = 1.4:
> example.data= subset(iris, Petal.Length <=1.4 & Petal.Width >= 
0.2, select=Species )

> str(example.data)

'data.frame': 21 obs. of  1 variable:

 $ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 
1 1 1 1 1 ...

Merging data: merging data involves joining two data frames into a merged data frame by a 
common column or row name. The following example shows how to merge the flower.type 
data frame and the first three rows of the iris with a common row name within the Species 
column:

> flower.type = data.frame(Species = "setosa", Flower = "iris")

> merge(flower.type, iris[1:3,], by ="Species")

  Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width

1  setosa   iris          5.1         3.5          1.4         0.2

2  setosa   iris          4.9         3.0          1.4         0.2

3  setosa   iris          4.7         3.2          1.3         0.2

Ordering data: the order function will return the index of a sorted data frame with a 
specified column. The following example shows the results from the first six records with the 
sepal length ordered (from big to small) iris data

> head(iris[order(iris$Sepal.Length, decreasing = TRUE),])

    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species

132          7.9         3.8          6.4         2.0 virginica

118          7.7         3.8          6.7         2.2 virginica
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119          7.7         2.6          6.9         2.3 virginica

123          7.7         2.8          6.7         2.0 virginica

136          7.7         3.0          6.1         2.3 virginica

106          7.6         3.0          6.6         2.1 virginica

How it works
Before conducting data analysis, it is important to organize collected data into a structured 
format. Therefore, we can simply use the R data frame to subset, merge, and order a dataset. 
This recipe first introduces two methods to subset data: one uses the bracket notation, while 
the other uses the subset function. You can use both methods to generate the subset data 
by selecting columns and filtering data with the given criteria. The recipe then introduces the 
merge function to merge data frames. Last, the recipe introduces how to use order to sort 
the data.

There's more...
The sub and gsub functions allow using regular expression to substitute a string. The sub and 
gsub functions perform the replacement of the first and all the other matches, respectively:

> sub("e", "q", names(iris))

[1] "Sqpal.Length" "Sqpal.Width"  "Pqtal.Length" "Pqtal.Width"  "Spqcies"     

> gsub("e", "q", names(iris))

[1] "Sqpal.Lqngth" "Sqpal.Width"  "Pqtal.Lqngth" "Pqtal.Width"  "Spqciqs"

Applying basic statistics
R provides a wide range of statistical functions, allowing users to obtain the summary statistics 
of data, generate frequency and contingency tables, produce correlations, and conduct 
statistical inferences. This recipe covers basic statistics that can be applied to a dataset.

Getting ready
Ensure you have completed the previous recipes by installing R on your operating system.

How to do it...
Perform the following steps to apply statistics on a dataset:

1.	 Load the iris data into an R session:
> data(iris)
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2.	 Observe the format of the data:
> class(iris)

  [1] "data.frame"

3.	 The iris dataset is a data frame containing four numeric attributes: petal length, 
petal width, sepal width, and sepal length. For numeric values, you can 
perform descriptive statistics, such as mean, sd, var, min, max, median, range, 
and quantile. These can be applied to any of the four attributes in the dataset:
> mean(iris$Sepal.Length)

[1] 5.843333

> sd(iris$Sepal.Length)

[1] 0.8280661

> var(iris$Sepal.Length)

[1] 0.6856935

> min(iris$Sepal.Length)

[1] 4.3

> max(iris$Sepal.Length)

[1] 7.9

> median(iris$Sepal.Length)

[1] 5.8

> range(iris$Sepal.Length)

[1] 4.3 7.9

> quantile(iris$Sepal.Length)

  0%  25%  50%  75% 100% 

 4.3  5.1  5.8  6.4  7.9

4.	 The preceding example demonstrates how to apply descriptive statistics on a single 
variable. In order to obtain summary statistics on every numeric attribute of the 
data frame, one may use sapply. For example, to apply the mean on the first four 
attributes in the iris data frame, ignore the na value by setting na.rm as TRUE:
> sapply(iris[1:4], mean, na.rm=TRUE)

Sepal.Length  Sepal.Width Petal.Length  Petal.Width 

    5.843333     3.057333     3.758000     1.199333 

5.	 As an alternative to using sapply to apply descriptive statistics on given attributes, R 
offers the summary function that provides a full range of descriptive statistics. In the 
following example, the summary function provides the mean, median, 25th and 75th 
quartiles, min, and max of every iris dataset numeric attribute:
> summary(iris)

Sepal.Length    Sepal.Width     Petal.Length    Petal.Width    
Species  
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 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   
setosa    :50  

 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   
versicolor:50  

 Median :5.800   Median :3.000   Median :4.350   Median :1.300   
virginica :50  

 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199                  

 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800                  

 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500

6.	 The preceding example shows how to output the descriptive statistics of a single 
variable. R also provides the correlation for users to investigate the relationship 
between variables. The following example generates a 4x4 matrix by computing the 
correlation of each attribute pair within the iris:
> cor(iris[,1:4])

             Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length    1.0000000  -0.1175698    0.8717538   0.8179411

Sepal.Width    -0.1175698   1.0000000   -0.4284401  -0.3661259

Petal.Length    0.8717538  -0.4284401    1.0000000   0.9628654

Petal.Width     0.8179411  -0.3661259    0.9628654   1.0000000

7.	 R also provides a function to compute the covariance of each attribute pair within  
the iris:
> cov(iris[,1:4])

             Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length    0.6856935  -0.0424340    1.2743154   0.5162707

Sepal.Width    -0.0424340   0.1899794   -0.3296564  -0.1216394

Petal.Length    1.2743154  -0.3296564    3.1162779   1.2956094

Petal.Width     0.5162707  -0.1216394    1.2956094   0.5810063

8.	 Statistical tests are performed to access the significance of the results; here we 
demonstrate how to use a t-test to determine the statistical differences between 
two samples. In this example, we perform a t.test on the petal width an of an iris in 
either the setosa or versicolor species. If we obtain a p-value less than 0.5, we can be 
certain that the petal width between the setosa and versicolor will vary significantly:
> t.test(iris$Petal.Width[iris$Species=="setosa"], 

+        iris$Petal.Width[iris$Species=="versicolor"])

  Welch Two Sample t-test
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data:  iris$Petal.Width[iris$Species == "setosa"] and iris$Petal.
Width[iris$Species == "versicolor"]

t = -34.0803, df = 74.755, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1.143133 -1.016867

sample estimates:

mean of x mean of y 

    0.246     1.326

9.	 Alternatively, you can perform a correlation test on the sepal length to the sepal 
width of an iris, and then retrieve a correlation score between the two variables. 
The stronger the positive correlation, the closer the value is to 1. The stronger the 
negative correlation, the closer the value is to -1:

> cor.test(iris$Sepal.Length, iris$Sepal.Width)

  Pearson's product-moment correlation

data:  iris$Sepal.Length and iris$Sepal.Width

t = -1.4403, df = 148, p-value = 0.1519

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 -0.27269325  0.04351158

sample estimates:

       cor 

-0.1175698 

How it works...
R has a built-in statistics function, which enables the user to perform descriptive statistics 
on a single variable. The recipe first introduces how to apply mean, sd, var, min, max, 
median, range, and quantile on a single variable. Moreover, in order to apply the statistics 
on all four numeric variables, one can use the sapply function. In order to determine the 
relationships between multiple variables, one can conduct correlation and covariance. 
Finally, the recipe shows how to determine the statistical differences of two given samples by 
performing a statistical test.
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There's more...
If you need to compute an aggregated summary statistics against data in different groups,  
you can use the aggregate and reshape functions to compute the summary statistics of  
data subsets:

1.	 Use aggregate to calculate the mean of each iris attribute group by the species:
> aggregate(x=iris[,1:4],by=list(iris$Species),FUN=mean)

2.	 Use reshape to calculate the mean of each iris attribute group by the species:

>  library(reshape)

>  iris.melt <- melt(iris,id='Species')

>  cast(Species~variable,data=iris.melt,mean,

     subset=Species %in% c('setosa','versicolor'),

     margins='grand_row')   

For information on reshape and aggregate, refer to the help documents by using ?reshape  
or ?aggregate.

Visualizing data
Visualization is a powerful way to communicate information through graphical means. Visual 
presentations make data easier to comprehend. This recipe presents some basic functions  
to plot charts, and demonstrates how visualizations are helpful in data exploration.

Getting ready
Ensure that you have completed the previous recipes by installing R on your operating system.

How to do it...
Perform the following steps to visualize a dataset:

1.	 Load the iris data into the R session:
> data(iris)

2.	 Calculate the frequency of species within the iris using the table command:
> table.iris = table(iris$Species)

> table.iris

    setosa versicolor  virginica 

        50         50         50 
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3.	 As the frequency in the table shows, each species represents 1/3 of the iris data. We 
can draw a simple pie chart to represent the distribution of species within the iris:
> pie(table.iris)

The pie chart of species distribution 

4.	 The histogram creates a frequency plot of sorts along the x-axis. The following 
example produces a histogram of the sepal length:
> hist(iris$Sepal.Length)

The histogram of the sepal length

5.	 In the histogram, the x-axis presents the sepal length and the y-axis presents the 
count for different sepal lengths. The histogram shows that for most irises, sepal 
lengths range from 4 cm to 8 cm.

www.allitebooks.com

http://www.allitebooks.org
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6.	 Boxplots, also named box and whisker graphs, allow you to convey a lot of information 
in one simple plot. In such a graph, the line represents the median of the sample. The 
box itself shows the upper and lower quartiles. The whiskers show the range:
> boxplot(Petal.Width ~ Species, data = iris)

The boxplot of the petal width

7.	 The preceding screenshot clearly shows the median and upper range of the petal 
width of the setosa is much shorter than versicolor and virginica. Therefore, the petal 
width can be used as a substantial attribute to distinguish iris species.

8.	 A scatter plot is used when there are two variables to plot against one another. This 
example plots the petal length against the petal width and color dots in accordance 
to the species it belongs to:
> plot(x=iris$Petal.Length, y=iris$Petal.Width, col=iris$Species)

The scatter plot of the sepal length 
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9.	 The preceding screenshot is a scatter plot of the petal length against the petal width. 
As there are four attributes within the iris dataset, it takes six operations to plot all 
combinations. However, R provides a function named pairs, which can generate 
each subplot in one figure:
> pairs(iris[1:4], main = "Edgar Anderson's Iris Data", pch = 21, 
bg = c("red", "green3", "blue")[unclass(iris$Species)])

Pairs scatterplot of iris data

How it works...
R provides many built-in plot functions, which enable users to visualize data with different kinds 
of plots. This recipe demonstrates the use of pie charts that can present category distribution. A 
pie chart of an equal size shows that the number of each species is equal. A histogram plots the 
frequency of different sepal lengths. A box plot can convey a great deal of descriptive statistics, 
and shows that the petal width can be used to distinguish an iris species. Lastly, we introduced 
scatter plots, which plot variables on a single plot. In order to quickly generate a scatter plot 
containing all the pairs of iris data, one may use the pairs command.

See also
ff ggplot2 is another plotting system for R, based on the implementation of Leland 

Wilkinson's grammar of graphics. It allows users to add, remove, or alter components 
in a plot with a higher abstraction. However, the level of abstraction results is slow 
compared to lattice graphics. For those of you interested in the topic of ggplot, you 
can refer to this site: http://ggplot2.org/.

http://ggplot2.org/
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Getting a dataset for machine learning
While R has a built-in dataset, the sample size and field of application is limited. Apart from 
generating data within a simulation, another approach is to obtain data from external data 
repositories. A famous data repository is the UCI machine learning repository, which contains 
both artificial and real datasets. This recipe introduces how to get a sample dataset from the 
UCI machine learning repository.

Getting ready
Ensure that you have completed the previous recipes by installing R on your operating system.

How to do it...
Perform the following steps to retrieve data for machine learning:

1.	 Access the UCI machine learning repository: http://archive.ics.uci.edu/ml/.

UCI data repository

http://archive.ics.uci.edu/ml/
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2.	 Click on View ALL Data Sets. Here you will find a list of datasets containing field 
names, such as Name, Data Types, Default Task, Attribute Types, # Instances, # 
Attributes, and Year:

3.	 Use Ctrl + F to search for Iris:
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4.	 Click on Iris. This will display the data folder and the dataset description:

5.	 Click on Data Folder, which will display a directory containing the iris dataset:

6.	 You can then either download iris.data or use the read.csv function to read the 
dataset:
> iris.data = read.csv(url("http://archive.ics.uci.edu/ml/machine-
learning-databases/iris/iris.data"), header = FALSE,  col.names = 
c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", 
"Species"))

> head(iris.data)
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  Sepal.Length Sepal.Width Petal.Length Petal.Width   Species

1         5.1         3.5          1.4         0.2 Iris-setosa

2         4.9         3.0          1.4         0.2 Iris-setosa

3         4.7         3.2          1.3         0.2 Iris-setosa

4         4.6         3.1          1.5         0.2 Iris-setosa

5         5.0         3.6          1.4         0.2 Iris-setosa

6         5.4         3.9          1.7         0.4 Iris-setosa

How it works...
Before conducting data analysis, it is important to collect your dataset. However, to collect 
an appropriate dataset for further exploration and analysis is not easy. We can, therefore, 
use the prepared dataset with the UCI repository as our data source. Here, we first access 
the UCI dataset repository and then use the iris dataset as an example. We can find the iris 
dataset by using the browser's find function (Ctrl + F), and then enter the file directory. Last, 
we can download the dataset and use the R IO function, read.csv, to load the iris dataset 
into an R session.

See also
ff KDnuggets (http://www.kdnuggets.com/datasets/index.html) offers  

a resourceful list of datasets for data mining and data science. You can explore  
the list to find the data that satisfies your requirements.

http://www.kdnuggets.com/datasets/index.html
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Data Exploration with  
RMS Titanic

In this chapter, we will cover the following recipes:

ff Reading a Titanic dataset from a CSV file

ff Converting types on character variables

ff Detecting missing values

ff Imputing missing values

ff Exploring and visualizing data

ff Predicting passenger survival with a decision tree

ff Validating the power of prediction with a confusion matrix

ff Assessing performance with the ROC curve

Introduction
Data exploration helps a data consumer to focus on searching for information, with a view to 
forming a true analysis from the gathered information. Furthermore, with the completion of 
the steps of data munging, analysis, modeling, and evaluation, users can generate insights 
and valuable points from their focused data.

In a real data exploration project, there are six steps involved in the exploration process.  
They are as follows:

1.	 Asking the right questions.

2.	 Data collection.

3.	 Data munging.

2
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4.	 Basic exploratory data analysis.

5.	 Advanced exploratory data analysis.

6.	 Model assessment.

A more detailed explanation of these six steps is provided here:

1.	 Asking the right questions: When the user presents their question, for example 
"What are my expected findings after the exploration is finished?", or "What kind of 
information can I extract through the exploration?," different results will be given. 
Therefore, asking the right question is essential in the first place, for the question 
itself determines the objective and target of the exploration.

2.	 Data collection: Once the goal of exploration is determined, the user can start 
collecting or extracting relevant data from the data source, with regard to the 
exploration target. Mostly, data collected from disparate systems appears 
unorganized and diverse in format. Clearly, the original data may be from different 
sources, such as files, databases, or the Internet. To retrieve data from these sources 
requires the assistance of the file IO function, JDBC/ODBC, web crawler, and so on. 
This extracted data is called raw data, which is because it has not been subjected 
to processing, or been through any other manipulation. Most raw data is not easily 
consumed by the majority of analysis tools or visualization programs.

3.	 Data munging: The next phase is data munging (or wrangling), a step to help map 
raw data into a more convenient format for consumption. During this phase, there 
are many processes, such as data parsing, sorting, merging, filtering, missing value 
completion, and other processes to transform and organize the data, and enable it to 
fit into a consume structure. Later, the mapped data can be further utilized for data 
aggregation, analysis, or visualization.

4.	 Basic exploratory data analysis: After the data munging phase, users can conduct 
further analysis toward data processing. The most basic analysis is to perform 
exploratory data analysis. Exploratory data analysis involves analyzing a dataset by 
summarizing its characteristics. Performing basic statistical, aggregation, and visual 
methods are also crucial tasks to help the user understand data characteristics, 
which are beneficial for the user to capture the majority, trends, and outliers easily 
through plots.

5.	 Advanced exploratory data analysis: Until now, the descriptive statistic gives 
a general description of data features. However, one would like to generate an 
inference rule for the user to predict data features based on input parameters. 
Therefore, the application of machine learning enables the user to generate an 
inferential model, where the user can input a training dataset to generate a predictive 
model. After this, the prediction model can be utilized to predict the output value or 
label based on given parameters.
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6.	 Model assessment: Finally, to assess whether the generating model performs the 
best in the data estimation of a given problem, one must perform a model selection. 
The selection method here involves many steps, including data preprocessing, tuning 
parameters, and even switching the machine learning algorithm. However, one thing 
that is important to keep in mind is that the simplest model frequently achieves the 
best results in predictive or exploratory power; whereas complex models often result 
in over fitting.

For the following example, we would like to perform a sample data exploration based on the 
dataset of passengers surviving the Titanic shipwreck. The steps we demonstrate here follow 
how to collect data from the online source, Kaggle; clean data through data munging; perform 
basic exploratory data analysis to discover important attributes that might give a prediction 
of the survival rate; perform advanced exploratory data analysis using the classification 
algorithm to predict the survival rate of the given data; and finally, perform model assessment 
to generate a prediction model.

Reading a Titanic dataset from a CSV file
To start the exploration, we need to retrieve a dataset from Kaggle (https://www.kaggle.
com/). We had look at some of the samples in Chapter 1, Practical Machine Learning with R. 
Here, we introduce methods to deal with real-world problems.

Getting ready
To retrieve data from Kaggle, you need to first sign up for a Kaggle account (https://www.
kaggle.com/account/register). Then, log in to the account for further exploration:

Kaggle.com

www.allitebooks.com

https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/account/register
https://www.kaggle.com/account/register
http://www.allitebooks.org
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How to do it...
Perform the following steps to read the Titanic dataset from the CSV file:

1.	 Go to http://www.kaggle.com/c/titanic-gettingStarted/data to retrieve 
the data list.

2.	 You can see a list of data files for download, as shown in the following table:

Filename Available formats

train .csv (59.76 kb)

genderclassmodel .py (4.68 kb)

myfirstforest .csv (3.18 kb)

myfirstforest .py (3.83 kb)

gendermodel .csv (3.18 kb)

genderclassmodel .csv (3.18 kb)

test .csv (27.96 kb)

gendermodel .py (3.58 kb)

3.	 Download the training data (https://www.kaggle.com/c/titanic-
gettingStarted/download/train.csv) to a local disk.

4.	 Then, make sure the downloaded file is placed under the current directory. You can 
use the getwd function to check the current working directory. If the downloaded file 
is not located in the working directory, move the file to the current working directory. 
Or, you can use setwd() to set the working directory to where the downloaded files 
are located:
> getwd()

[1] "C:/Users/guest"

5.	 Next, one can use read.csv to load data into the data frame. Here, one can use 
the read.csv function to read train.csv to frame the data with the variable 
names set as train.data. However, in order to treat the blank string as NA, one can 
specify that na.strings equals either "NA" or an empty string:
> train.data = read.csv("train.csv", na.strings=c("NA", ""))

6.	 Then, check the loaded data with the str function:

> str(train.data)

'data.frame': 891 obs. of  12 variables:

 $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...

 $ Survived   : int  0 1 1 1 0 0 0 0 1 1 ...

 $ Pclass     : int  3 1 3 1 3 3 1 3 3 2 ...

http://www.kaggle.com/c/titanic-gettingStarted/data
https://www.kaggle.com/c/titanic-gettingStarted/download/train.csv
https://www.kaggle.com/c/titanic-gettingStarted/download/train.csv
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 $ Name       : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 
191 358 277 16 559 520 629 417 581 ...

 $ Sex        : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 
2 1 1 ...

 $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...

 $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...

 $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...

 $ Ticket     : Factor w/ 681 levels "110152","110413",..: 524 597 
670 50 473 276 86 396 345 133 ...

 $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...

 $ Cabin      : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 
1 1 131 1 1 1 ...

 $ Embarked   : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 
4 2 ...

How it works...
To begin the data exploration, we first downloaded the Titanic dataset from Kaggle, a website 
containing many data competitions and datasets. To load the data into the data frame, 
this recipe demonstrates how to apply the read.csv function to load the dataset with the 
na.strings argument, for the purpose of converting blank strings and "NA" to NA values. 
To see the structure of the dataset, we used the str function to compactly display train.
data; you can find the dataset contains demographic information and survival labels of the 
passengers. The data collected here is good enough for beginners to practice how to process 
and analyze data.

There's more...
On Kaggle, much of the data on science is related to competitions, which mostly refer to 
designing a machine learning method to solve real-world problems.

Most competitions on Kaggle are held by either academia or corporate bodies, such as 
Amazon or Facebook. In fact, they create these contests and provide rewards, such as 
bonuses, or job prospects (see https://www.kaggle.com/competitions). Thus, there 
are many data scientists who are attracted to registering for a Kaggle account to participate 
in competitions. A beginner in a pilot exploration can participate in one of these competitions, 
which will help them gain experience by solving real-world problems with their machine 
learning skills.

To create a more challenging learning environment as a competitor, a participant needs to 
submit their output answer and will receive the assessment score, so that each one can 
assess their own rank on the leader board.

https://www.kaggle.com/competitions
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Converting types on character variables
In R, since nominal, ordinal, interval, and ratio variable are treated differently in statistical 
modeling, we have to convert a nominal variable from a character into a factor.

Getting ready
You need to have the previous recipe completed by loading the Titanic training data into the R 
session, with the read.csv function and assigning an argument of na.strings equal to NA 
and the blank string (""). Then, assign the loaded data from train.csv into the train.data 
variables.

How to do it...
Perform the following steps to convert the types on character variables:

1.	 Use the str function to print the overview of the Titanic data:
> str(train.data)

'data.frame':  891 obs. of  12 variables:

 $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...

 $ Survived   : int  0 1 1 1 0 0 0 0 1 1 ...

 $ Pclass     : int  3 1 3 1 3 3 1 3 3 2 ...

 $ Name       : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 
191 358 277 16 559 520 629 417 581 ...

 $ Sex        : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 
2 1 1 ...

 $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...

 $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...

 $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...

 $ Ticket     : Factor w/ 681 levels "110152","110413",..: 524 597 
670 50 473 276 86 396 345 133 ...

 $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...

 $ Cabin      : Factor w/ 147 levels "A10","A14","A16",..: NA 82 
NA 56 NA NA 130 NA NA NA ...

 $ Embarked   : Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3 
1 ...
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2.	 To transform the variable from the int numeric type to the factor categorical type, 
you can cast factor:
> train.data$Survived = factor(train.data$Survived)

> train.data$Pclass = factor(train.data$Pclass)

3.	 Print out the variable with the str function and again, you can see that Pclass and 
Survived are now transformed into the factor as follows:
> str(train.data)

'data.frame':  891 obs. of  12 variables:

 $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...

 $ Survived   : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 
...

 $ Pclass     : Factor w/ 3 levels "1","2","3": 3 1 3 1 3 3 1 3 3 
2 ...

 $ Name       : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 
191 358 277 16 559 520 629 417 581 ...

 $ Sex        : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 
2 1 1 ...

 $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...

 $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...

 $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...

 $ Ticket     : Factor w/ 681 levels "110152","110413",..: 524 597 
670 50 473 276 86 396 345 133 ...

 $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...

 $ Cabin      : Factor w/ 147 levels "A10","A14","A16",..: NA 82 
NA 56 NA NA 130 NA NA NA ...

 $ Embarked   : Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3 
1 ...

How it works...
Talking about statistics, there are four measurements: nominal, ordinal, interval, and ratio. 
Nominal variables are used to label variables, such as gender and name; ordinal variables, 
and are measures of non-numeric concepts, such as satisfaction and happiness. Interval 
variables shows numeric scales, which tell us not only the order but can also show the 
differences between the values, such as temperatures in Celsius. A ratio variable shows the 
ratio of a magnitude of a continuous quantity to a unit magnitude. Ratio variables provide 
order, differences between the values, and a true zero value, such as weight and height. In R, 
different measurements are calculated differently, so you should perform a type conversion 
before applying descriptive or inferential analytics toward the dataset.
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In this recipe, we first display the structure of the train data using the str function. From 
the structure of data, you can find the attribute name, data type, and the first few values 
contained in each attribute. From the Survived and Pclass attribute, you can see the 
data type as int. As the variable description listed in Chart 1 (Preface), you can see that 
Survived (0 = No; 1 = Yes) and Pclass (1 = 1st; 2 = 2nd; 3 = 3rd) are categorical variables. 
As a result, we transform the data from a character to a factor type via the factor function.

There's more...
Besides factor, there are more type conversion functions. For numeric types, there are 
is.numeric() and as.numeric(); for character, there are: is.character() and 
as.character(). For vector, there are: is.vector() and as.vector(); for matrix, there 
are is.matrix() and as.matrix(). Finally, for data frame, there are: is.data.frame() 
and as.data.frame().

Detecting missing values
Missing values reduce the representativeness of the sample, and furthermore, might distort 
inferences about the population. This recipe will focus on detecting missing values within the 
Titanic dataset.

Getting ready
You need to have completed the previous recipes by the Pclass attribute and Survived to a 
factor type.

In R, a missing value is noted with the symbol NA (not available), and an impossible value is 
NaN (not a number).

How to do it...
Perform the following steps to detect the missing value:

1.	 The is.na function is used to denote which index of the attribute contains the NA 
value. Here, we apply it to the Age attribute first:
> is.na(train.data$Age)

2.	 The is.na function indicates the missing value of the Age attribute. To get a general 
number of how many missing values there are, you can perform a sum to calculate 
this:
> sum(is.na(train.data$Age) == TRUE)

[1] 177
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3.	 To calculate the percentage of missing values, one method adopted is to count the 
number of missing values against nonmissing values:
> sum(is.na(train.data$Age) == TRUE) /  length(train.data$Age)

[1] 0.1986532

4.	 To get a percentage of the missing value of the attributes, you can use sapply to 
calculate the percentage of all the attributes:
> sapply(train.data, function(df) {

+               sum(is.na(df)==TRUE)/ length(df);

+           }) 

PassengerId    Survived      Pclass        Name         Sex         
Age 

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 
0.198653199 

      SibSp       Parch      Ticket        Fare       Cabin    
Embarked 

0.000000000 0.000000000 0.000000000 0.000000000 0.771043771 
0.002244669 

5.	 Besides simply viewing the percentage of missing data, one may also use the 
Amelia package to visualize the missing values. Here, we use install.packages 
and require to install Amelia and load the package. However, before the 
installation and loading of the Amelia package, you are required to install Rcpp, 
beforehand:
> install.packages("Amelia")

> require(Amelia)

6.	 Then, use the missmap function to plot the missing value map:
> missmap(train.data, main="Missing Map")

Missing map of the Titanic dataset
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How it works...
In R, a missing value is often noted with the "NA" symbol, which stands for not available. 
Most functions (such as mean or sum) may output NA while encountering an NA value in the 
dataset. Though you can assign an argument such as na.rm to remove the effect of NA, it is 
better to impute or remove the missing data in the dataset to prevent propagating the effect 
of the missing value. To find out the missing value in the Titanic dataset, we first sum up all 
the NA values and divide them by the number of values within each attribute, Then, we apply 
the calculation to all the attributes with sapply.

In addition to this, to display the calculation results using a table, you can utilize the Amelia 
package to plot the missing value map of every attribute on one chart. The visualization of 
missing values enables users to get a better understanding of the missing percentage within 
each dataset. From the preceding screenshot, you may have observed that the missing value 
is beige colored, and its observed value is dark red. The x-axis shows different attribute 
names, and the y-axis shows the recorded index. Clearly, most of the cabin shows missing 
data, and it also shows that about 19.87 percent of the data is missing when counting the 
Age attribute, and two values are missing in the Embarked attribute.

There's more...
To handle the missing values, we introduced Amelia to visualize them. Apart from typing 
console commands, you can also use the interactive GUI of Amelia and AmeliaView, 
which allows users to load datasets, manage options, and run Amelia from a windowed 
environment.

To start running AmeliaView, simply type AmeliaView() in the R Console:

> AmeliaView()

AmeliaView
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Imputing missing values
After detecting the number of missing values within each attribute, we have to impute the 
missing values since they might have a significant effect on the conclusions that can be drawn 
from the data.

Getting ready
This recipe will require train.data loaded in the R session and have the previous recipe 
completed by converting Pclass and Survived to a factor type.

How to do it...
Perform the following steps to impute the missing values:

1.	 First, list the distribution of Port of Embarkation. Here, we add the useNA = 
"always" argument to show the number of NA values contained within train.
data:
> table(train.data$Embarked, useNA = "always")

   C    Q    S <NA> 

 168   77  644    2 

2.	 Assign the two missing values to a more probable port (that is, the most counted 
port), which is Southampton in this case:
> train.data$Embarked[which(is.na(train.data$Embarked))] = 'S';

> table(train.data$Embarked, useNA = "always")

   C    Q    S <NA> 

 168   77  646    0 

3.	 In order to discover the types of titles contained in the names of train.data, we 
first tokenize train.data$Name by blank (a regular expression pattern as "\\s+"), 
and then count the frequency of occurrence with the table function. After this, since 
the name title often ends with a period, we use the regular expression to grep the 
word containing the period. In the end, sort the table in decreasing order:
> train.data$Name = as.character(train.data$Name)

> table_words = table(unlist(strsplit(train.data$Name, "\\s+")))

> sort(table_words [grep('\\.',names(table_words))], 
decreasing=TRUE)
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      Mr.     Miss.      Mrs.   Master. 

      517       182       125        40 

      Dr.      Rev.      Col.    Major. 

        7         6         2            2 

    Mlle.     Capt. Countess.    Don. 

        2         1         1                1 

Jonkheer.        L.     Lady .      Mme. 

        1         1         1         1 

      Ms.      Sir. 

        1         1 

4.	 To obtain which title contains missing values, you can use str_match provided by 
the stringr package to get a substring containing a period, then bind the column 
together with cbind. Finally, by using the table function to acquire the statistics of 
missing values, you can work on counting each title:
> library(stringr) 

> tb = cbind(train.data$Age, str_match(train.data$Name, " 
[a-zA-Z]+\\."))

> table(tb[is.na(tb[,1]),2])

     Dr.  Master.    Miss.      Mr.     Mrs. 

       1        4            36       119       17 

5.	 For a title containing a missing value, one way to impute data is to assign the mean 
value for each title (not containing a missing value):
> mean.mr = mean(train.data$Age[grepl(" Mr\\.", train.data$Name) & 
!is.na(train.data$Age)])

> mean.mrs = mean(train.data$Age[grepl(" Mrs\\.", train.data$Name) 
& !is.na(train.data$Age)])

> mean.dr = mean(train.data$Age[grepl(" Dr\\.", train.data$Name) & 
!is.na(train.data$Age)])

> mean.miss = mean(train.data$Age[grepl(" Miss\\.", train.
data$Name) & !is.na(train.data$Age)])

> mean.master =  mean(train.data$Age[grepl(" Master\\.", train.
data$Name) & !is.na(train.data$Age)])

6.	 Then, assign the missing value with the mean value of each title:

> train.data$Age[grepl(" Mr\\.", train.data$Name) & is.na(train.
data$Age)] = mean.mr

> train.data$Age[grepl(" Mrs\\.", train.data$Name) & is.na(train.
data$Age)] = mean.mrs
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> train.data$Age[grepl(" Dr\\.", train.data$Name) & is.na(train.
data$Age)] = mean.dr

> train.data$Age[grepl(" Miss\\.", train.data$Name) & is.na(train.
data$Age)] = mean.miss

> train.data$Age[grepl(" Master\\.", train.data$Name) & 
is.na(train.data$Age)] = mean.master

How it works...
To impute the missing value of the Embarked attribute, we first produce the statistics of 
the embarked port with the table function. The table function counts two NA values in 
train.data. From the dataset description, we recognize C, Q, and S(C = Cherbourg, Q = 
Queenstown, S = Southampton). Since we do not have any knowledge about which category 
these two missing values are in, one possible way is to assign the missing value to the most 
likely port, which is Southampton.

As for another attribute, Age, though about 20 percent of the value is missing, users can still 
infer the missing value with the title of each passenger. To discover how many titles there 
are within the name of the dataset, we suggest the method of counting segmented words in 
the Name attribute, which helps to calculate the number of missing values of each given title. 
The resultant word table shows common titles such as Mr, Mrs, Miss, and Master. You may 
reference an English honorific entry from Wikipedia to get the description of each title.

Considering the missing data, we reassign the mean value of each title to the missing value 
with the corresponding title. However, for the Cabin attribute, there are too many missing 
values, and we cannot infer the value from any referencing attribute. Therefore, we find it does 
not work by trying to use this attribute for further analysis.

There's more...
Here we list the honorific entry from Wikipedia for your reference. According to it  
(http://en.wikipedia.org/wiki/English_honorific):

ff Mr: This is used for a man, regardless of his marital status

ff Master: This is used for young men or boys, especially used in the UK

ff Miss: It is usually used for unmarried women, though also used by married female 
entertainers

ff Mrs: It is used for married women

ff Dr: It is used for a person in the US who owns his first professional degree

www.allitebooks.com

http://en.wikipedia.org/wiki/English_honorific
http://www.allitebooks.org


Data Exploration with RMS Titanic

62

Exploring and visualizing data
After imputing the missing values, one should perform an exploratory analysis, which involves 
using a visualization plot and an aggregation method to summarize the data characteristics. 
The result helps the user gain a better understanding of the data in use. The following 
recipe will introduce how to use basic plotting techniques with a view to help the user with 
exploratory analysis.

Getting ready
This recipe needs the previous recipe to be completed by imputing the missing value in the 
age and Embarked attribute.

How to do it...
Perform the following steps to explore and visualize data:

1.	 First, you can use a bar plot and histogram to generate descriptive statistics for each 
attribute, starting with passenger survival:
> barplot(table(train.data$Survived), main="Passenger Survival",  
names= c("Perished", "Survived"))

Passenger survival
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2.	 We can generate the bar plot of passenger class:
> barplot(table(train.data$Pclass), main="Passenger Class",  
names= c("first", "second", "third"))

Passenger class

3.	 Next, we outline the gender data with the bar plot:
> barplot(table(train.data$Sex), main="Passenger Gender")

Passenger gender

4.	 We then plot the histogram of the different ages with the hist function:
> hist(train.data$Age, main="Passenger Age", xlab = "Age")

Passenger age
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5.	 We can plot the bar plot of sibling passengers to get the following:
> barplot(table(train.data$SibSp), main="Passenger Siblings")

Passenger siblings

6.	 Next, we can get the distribution of the passenger parch:
> barplot(table(train.data$Parch), main="Passenger Parch")

Passenger parch

7.	 Next, we plot the histogram of the passenger fares:
> hist(train.data$Fare, main="Passenger Fare", xlab = "Fare")

Passenger fares
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8.	 Finally, one can look at the port of embarkation:
> barplot(table(train.data$Embarked), main="Port of Embarkation")

Port of embarkation

9.	 Use barplot to find out which gender is more likely to perish during shipwrecks:
> counts = table( train.data$Survived, train.data$Sex)

> barplot(counts,  col=c("darkblue","red"), legend = c("Perished", 
"Survived"), main = "Passenger Survival by Sex")

Passenger survival by sex
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10.	 Next, we should examine whether the Pclass factor of each passenger may affect 
the survival rate:
> counts = table( train.data$Survived, train.data$Pclass)

> barplot(counts,  col=c("darkblue","red"), legend =c("Perished", 
"Survived"), main= "Titanic Class Bar Plot" )

Passenger survival by class

11.	 Next, we examine the gender composition of each Pclass:
> counts = table( train.data$Sex, train.data$Pclass)

> barplot(counts,  col=c("darkblue","red"), legend = 
rownames(counts), main= "Passenger Gender by Class")

Passenger gender by class
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12.	 Furthermore, we examine the histogram of passenger ages:
> hist(train.data$Age[which(train.data$Survived == "0")], main= 
"Passenger Age Histogram", xlab="Age", ylab="Count", col ="blue", 
breaks=seq(0,80,by=2))

> hist(train.data$Age[which(train.data$Survived == "1")], col 
="red", add = T, breaks=seq(0,80,by=2))

Passenger age histogram

13.	 To examine more details about the relationship between the age and survival rate, 
one can use a boxplot:
> boxplot(train.data$Age ~ train.data$Survived, 

+         main="Passenger Survival by Age",

+         xlab="Survived", ylab="Age")

Passenger survival by age
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14.	 To categorize people with different ages into different groups, such as children (below 
13), youths (13 to 19), adults (20 to 65), and senior citizens (above 65), execute the 
following commands:

>train.child = train.data$Survived[train.data$Age < 13]

> length(train.child[which(train.child == 1)] ) / length(train.
child)

 [1] 0.5797101

> train.youth = train.data$Survived[train.data$Age >= 15 & train.
data$Age < 25]

> length(train.youth[which(train.youth == 1)] ) / length(train.
youth)

[1] 0.4285714

> train.adult  = train.data$Survived[train.data$Age >= 20 & train.
data$Age < 65]

> length(train.adult[which(train.adult == 1)] ) / length(train.
adult)

 [1] 0.3659218

> train.senior  = train.data$Survived[train.data$Age >= 65]

> length(train.senior[which(train.senior == 1)] ) / length(train.
senior)

[1] 0.09090909

How it works...
Before we predict the survival rate, one should first use the aggregation and visualization 
method to examine how each attribute affects the fate of the passengers. Therefore, we begin 
the examination by generating a bar plot and histogram of each attribute.

The plots from the screenshots in the preceding list give one an outline of each attribute of 
the Titanic dataset. As per the first screenshot, more passengers perished than survived 
during the shipwreck. Passengers in the third class made up the biggest number out of 
the three classes on board, which also reflects the truth that the third class was the most 
economical class on the Titanic (step 2). For the sex distribution, there were more male 
passengers than female (step 3). As for the age distribution, the screenshot in step 4 shows 
that most passengers were aged between 20 to 40. According to the screenshot in step 5, 
most passengers had one or fewer siblings. The screenshot in step 6 shows that most of the 
passengers have 0 to 2 parch. 
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In the screenshot in step 7, the fare histogram shows there were fare differences, which may 
be as a result of the different passenger classes on the Titanic. At last, the screenshot in step 
8 shows that the boat made three stops to pick up passengers.

As we began the exploration from the sex attribute, and judging by the resulting bar plot, 
it clearly showed that female passengers had a higher rate of survival than males during 
the shipwreck (step 9). In addition to this, the Wikipedia entry for RMS Titanic (http://
en.wikipedia.org/wiki/RMS_Titanic) explains that 'A disproportionate number of 
men were left aboard because of a "women and children first" protocol followed by some 
of the officers loading the lifeboats'. Therefore, it is reasonable that the number of female 
survivors outnumbered the male survivors. In other words, simply using sex can predict 
whether a person will survive with a high degree of accuracy.

Then, we examined whether the passenger class affected the survival rate (step 10). Here, 
from the definition of Pclass, the fares for each class were priced accordingly with the 
quality; high fares for first class, and low fares for third class. As the class of each passenger 
seemed to indicate their social and financial status, it is fair to assume that the wealthier 
passengers may have had more chances to survive.

Unfortunately, there was no correlation between the class and survival rate, so the result 
does not show the phenomenon we assumed. Nevertheless, after we examined sex in the 
composition of pclass (step 11), the results revealed that most third-class passengers were 
male; the assumption of wealthy people tending to survive more may not be that concrete.

Next, we examined the relationship between the age and passenger fate through a histogram 
and box plot (step 12). The bar plot shows the age distribution with horizontal columns in 
which red columns represent the passengers that survived, while blue columns represent 
those who perished. It is hard to tell the differences in the survival rate from the ages of 
different groups. The bar plots that we created did not prove that passengers in different age 
groups were more likely to survive. On the other hand, the plots showed that most people on 
board were aged between 20 to 40, but does not show whether this group was more likely to 
survive compared to elderly or young children (step 13). Here, we introduced a box plot, which 
is a standardized plotting technique that displays the distribution of data with information, 
such as minimum, first quartile, median, third quartile, maximum, and outliers.

Later, we further examined whether age groups have any relation to passenger fates, by 
categorizing passenger ages into four groups. The statistics show the the children group 
(below 13) was more likely to survive than the youths (13 to 20), adults (20 to 65), and senior 
citizens (above 65). The results showed that people in the younger age groups were more 
likely to survive the shipwreck. However, we noted that this possibly resulted from the 'women 
and children first' protocol.

http://en.wikipedia.org/wiki/RMS_Titanic
http://en.wikipedia.org/wiki/RMS_Titanic
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There's more...
Apart from using bar plots, histograms, and boxplots to visualize data, one can also apply 
mosaicplot in the vcd package to examine the relationship between multiple categorical 
variables. For example, when we examine the relationship between the Survived and 
Pclass variables, the application is performed as follows:

> mosaicplot(train.data$Pclass ~ train.data$Survived, 

+           main="Passenger Survival Class", color=TRUE,  

+  xlab="Pclass", ylab="Survived")

Passenger survival by class

See also
ff For more information about the shipwreck, one can read the history of RMS 

Titanic (please refer to the entry Sinking of the RMS Titanic in Wikipedia http://
en.wikipedia.org/wiki/Sinking_of_the_RMS_Titanic), as some of  
the protocol practiced at that time may have substantially affected the passenger 
survival rate.

Predicting passenger survival with a 
decision tree

The exploratory analysis helps users gain insights into how single or multiple variables may 
affect the survival rate. However, it does not determine what combinations may generate a 
prediction model, so as to predict the passengers' survival. On the other hand, machine learning 
can generate a prediction model from a training dataset, so that the user can apply the model to 
predict the possible labels from the given attributes. In this recipe, we will introduce how to use 
a decision tree to predict passenger survival rates from the given variables.

http://en.wikipedia.org/wiki/Sinking_of_the_RMS_Titanic
http://en.wikipedia.org/wiki/Sinking_of_the_RMS_Titanic
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Getting ready
We will use the data, train.data, that we have already used in our previous recipes.

How to do it...
Perform the following steps to predict the passenger survival with the decision tree:

1.	 First, we construct a data split split.data function with three input parameters: 
data, p, and s. The data parameter stands for the input dataset, the p parameter 
stands for the proportion of generated subset from the input dataset, and the s 
parameter stands for the random seed:
> split.data = function(data, p = 0.7, s = 666){

+     set.seed(s)

+     index = sample(1:dim(data)[1])

+     train = data[index[1:floor(dim(data)[1] * p)], ]

+     test = data[index[((ceiling(dim(data)[1] * p)) + 
1):dim(data)[1]], ]

+     return(list(train = train, test = test))

+ } 

2.	 Then, we split the data, with 70 percent assigned to the training dataset and the 
remaining 30 percent for the testing dataset:
> allset= split.data(train.data, p = 0.7) 

> trainset = allset$train 

> testset = allset$test

3.	 For the condition tree, one has to use the ctree function from the party package; 
therefore, we install and load the party package:
> install.packages('party')

> require('party')

4.	 We then use Survived as a label to generate the prediction model in use. After that, 
we assign the classification tree model into the train.ctree variable:
> train.ctree = ctree(Survived ~ Pclass + Sex + Age + SibSp + Fare 
+ Parch + Embarked, data=trainset)

> train.ctree

   Conditional inference tree with 7 terminal nodes

Response:  Survived 
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Inputs:  Pclass, Sex, Age, SibSp, Fare, Parch, Embarked 

Number of observations:  623 

1) Sex == {male}; criterion = 1, statistic = 173.672

  2) Pclass == {2, 3}; criterion = 1, statistic = 30.951

    3) Age <= 9; criterion = 0.997, statistic = 12.173

      4) SibSp <= 1; criterion = 0.999, statistic = 15.432

        5)*  weights = 10 

      4) SibSp > 1

        6)*  weights = 11 

    3) Age > 9

      7)*  weights = 282 

  2) Pclass == {1}

    8)*  weights = 87 

1) Sex == {female}

  9) Pclass == {1, 2}; criterion = 1, statistic = 59.504

    10)*  weights = 125 

  9) Pclass == {3}

    11) Fare <= 23.25; criterion = 0.997, statistic = 12.456

      12)*  weights = 85 

    11) Fare > 23.25

      13)*  weights = 23 
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5.	 We use a plot function to plot the tree:

> plot(train.ctree, main="Conditional inference tree of Titanic 
Dataset")

Conditional inference tree of the Titanic dataset

How it works...
This recipe introduces how to use a conditional inference tree, ctree, to predict passenger 
survival. While the conditional inference tree is not the only method to solve the classification 
problem, it is an easy method to comprehend the decision path to predict passenger survival.

We first split the data into a training and testing set by using our implemented function, 
split.data. So, we can then use the training set to generate a prediction model and later 
employ the prediction model on the testing dataset in the recipe of the model assessment. 
Then, we install and load the party package, and use ctree to build a prediction model, 
with Survived as its label. Without considering any particular attribute, we put attributes 
such as Pclass, Sex, Age, SibSp, Parch, Embarked, and Fare as training attributes, 
except for Cabin, as most of this attribute's values are missing.
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After constructing the prediction model, we can either print out the decision path and node 
in a text mode, or use a plot function to plot the decision tree. From the decision tree, the 
user can see what combination of variables may be helpful in predicting the survival rate. 
As per the preceding screenshot, users can find a combination of Pclass and Sex, which 
served as a good decision boundary (node 9) to predict the survival rates. This shows 
female passengers who were in first and second class mostly survived the shipwreck. Male 
passengers, those in second and third class and aged over nine, almost all perished during 
the shipwreck. From the tree, one may find that attributes such as Embarked and Parch 
are missing. This is because the conditional inference tree regards these attributes as less 
important during classification.

From the decision tree, the user can see what combination of variables may be helpful in 
predicting the survival rate. Furthermore, a conditional inference tree is helpful in selecting 
important attributes during the classification process; one can examine the built tree to see 
whether the selected attribute matches one's presumption.

There's more...
This recipe covers issues relating to classification algorithms and conditional inference trees. 
Since we do not discuss the background knowledge of the adapted algorithm, it is better 
for the user to use the help function to view the documents related to ctree in the party 
package, if necessary.

There is a similar decision tree based package, named rpart. The difference between party 
and rpart is that ctree in the party package avoids the following variable selection bias of 
rpart and ctree in the party package, tending to select variables that have many possible 
splits or many missing values. Unlike the others, ctree uses a significance testing procedure 
in order to select variables, instead of selecting the variable that maximizes an information 
measure.

Besides ctree, one can also use svm to generate a prediction model. To load the svm 
function, load the e1071 package first, and then use the svm build to generate this prediction:

> install.packages('e1071')

> require('e1071')

> svm.model = svm(Survived ~ Pclass + Sex + Age + SibSp + Fare + Parch + 
Embarked, data = trainset, probability = TRUE)

Here, we use svm to show how easy it is that you can immediately use different machine 
learning algorithms on the same dataset when using R. For further information on how to use 
svm, please refer to Chapter 6, Classification (II) – Neural Network, SVM.
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Validating the power of prediction with a 
confusion matrix

After constructing the prediction model, it is important to validate how the model performs 
while predicting the labels. In the previous recipe, we built a model with ctree and pre-split 
the data into a training  and testing set. For now, users will learn to validate how well ctree 
performs in a survival prediction via the use of a confusion matrix.

Getting ready
Before assessing the prediction model, first be sure that the generated training set and 
testing dataset are within the R session.

How to do it...
Perform the following steps to validate the prediction power:

1.	 We start using the constructed train.ctree model to predict the survival of the 
testing set:
> ctree.predict = predict(train.ctree, testset)

2.	 First, we install the caret package, and then load it:
> install.packages("caret")

> require(caret)

3.	 After loading caret, one can use a confusion matrix to generate the statistics of the 
output matrix:

> confusionMatrix(ctree.predict, testset$Survived)

Confusion Matrix and Statistics

          Reference

Prediction   0   1

         0 160  25

         1  16  66

                                          

               Accuracy : 0.8464          

                 95% CI : (0.7975, 0.8875)

    No Information Rate : 0.6592          

    P-Value [Acc > NIR] : 4.645e-12       
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                  Kappa : 0.6499          

 Mcnemar's Test P-Value : 0.2115          

                                          

            Sensitivity : 0.9091          

            Specificity : 0.7253          

         Pos Pred Value : 0.8649          

         Neg Pred Value : 0.8049          

             Prevalence : 0.6592          

         Detection Rate : 0.5993          

   Detection Prevalence : 0.6929          

      Balanced Accuracy : 0.8172          

                                          

       'Positive' Class : 0

How it works...
After building the prediction model in the previous recipe, it is important to measure the 
performance of the constructed model. The performance can be assessed by whether the 
prediction result matches the original label contained in the testing dataset. The assessment 
can be done by using the confusion matrix provided by the caret package to generate a 
confusion matrix, which is one method to measure the accuracy of predictions.

To generate a confusion matrix, a user needs to install and load the caret package first. The 
confusion matrix shows that purely using ctree can achieve accuracy of up to 84 percent. 
One may generate a better prediction model by tuning the attribute used, or by replacing the 
classification algorithm to SVM, glm, or random forest.

There's more...
A caret package (Classification and Regression Training) helps make iterating and comparing 
different predictive models very convenient. The package also contains several functions, 
including:

ff Data splits

ff Common preprocessing: creating dummy variables, identifying zero- and near-zero-
variance predictors, finding correlated predictors, centering, scaling, and so on

ff Training (using cross-validation)

ff Common visualizations (for example, featurePlot)
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Assessing performance with the ROC curve
Another measurement is by using the ROC curve (this requires the ROCR package), which plots 
a curve according to its true positive rate against its false positive rate. This recipe will introduce 
how we can use the ROC curve to measure the performance of the prediction model.

Getting ready
Before applying the ROC curve to assess the prediction model, first be sure that the  
generated training set, testing dataset, and built prediction model, ctree.predict,  
are within the R session.

How to do it...
Perform the following steps to assess prediction performance:

1.	 Prepare the probability matrix:
> train.ctree.pred = predict(train.ctree, testset)

> train.ctree.prob =  1- unlist(treeresponse(train.ctree, 
testset), use.names=F)[seq(1,nrow(testset)*2,2)]

2.	 Install and load the ROCR package:
> install.packages("ROCR")

> require(ROCR)

3.	 Create an ROCR prediction object from probabilities:
> train.ctree.prob.rocr = prediction(train.ctree.prob, 
testset$Survived)

4.	 Prepare the ROCR performance object for the ROC curve (tpr=true positive 
rate, fpr=false positive rate) and the area under curve (AUC):
> train.ctree.perf = performance(train.ctree.prob.rocr, 
"tpr","fpr")

> train.ctree.auc.perf =  performance(train.ctree.prob.rocr, 
measure = "auc", x.measure = "cutoff")
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5.	 Plot the ROC curve, with colorize as TRUE, and put AUC as the title:
> plot(train.ctree.perf, col=2,colorize=T, main=paste("AUC:", 
train.ctree.auc.perf@y.values))

ROC of the prediction model

How it works...
Here, we first create the prediction object from the probabilities matrix, and then prepare 
the ROCR performance object for the ROC curve (tpr=true positive rate, fpr=false 
positive rate) and the AUC. Lastly, we use the plot function to draw the ROC curve.

The result drawn in the preceding screenshot is interpreted in the following way: the larger 
under the curve (a perfect prediction will make AUC equal to 1), the better the prediction 
accuracy of the model. Our model returns a value of 0.857, which suggests that the simple 
conditional inference tree model is powerful enough to make survival predictions.

See also
ff To get more information on the ROCR, you can read the paper Sing, T., Sander, O., 

Berenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier performance in 
R. Bioinformatics, 21(20), 3940-3941.
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R and Statistics

In this chapter, we will cover the following topics:

ff Understanding data sampling in R

ff Operating a probability distribution in R

ff Working with univariate descriptive statistics in R

ff Performing correlations and multivariate analysis

ff Operating linear regression and a multivariate analysis

ff Conducting an exact binomial test

ff Performing student's t-test

ff Performing the Kolmogorov-Smirnov test

ff Understanding the Wilcoxon Rank Sum and Signed Rank test

ff Working with Pearson's Chi-squared test

ff Conducting a one-way ANOVA

ff Performing a two-way ANOVA

Introduction
The R language, as the descendent of the statistics language, S, has become the preferred 
computing language in the field of statistics. Moreover, due to its status as an active 
contributor in the field, if a new statistical method is discovered, it is very likely that this 
method will first be implemented in the R language. As such, a large quantity of statistical 
methods can be fulfilled by applying the R language.

3
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To apply statistical methods in R, the user can categorize the method of implementation into 
descriptive statistics and inferential statistics:

ff Descriptive statistics: These are used to summarize the characteristics of the data. 
The user can use mean and standard deviation to describe numerical data, and use 
frequency and percentages to describe categorical data.

ff Inferential statistics: Based on the pattern within a sample data, the user can infer 
the characteristics of the population. The methods related to inferential statistics are 
for hypothesis testing, data estimation, data correlation, and relationship modeling. 
Inference can be further extended to forecasting, prediction, and estimation of 
unobserved values either in or associated with the population being studied.

In the following recipe, we will discuss examples of data sampling, probability distribution, 
univariate descriptive statistics, correlations and multivariate analysis, linear regression and 
multivariate analysis, Exact Binomial Test, student's t-test, Kolmogorov-Smirnov test, Wilcoxon 
Rank Sum and Signed Rank test, Pearson's Chi-squared Test, One-way ANOVA, and Two-way 
ANOVA.

Understanding data sampling in R
Sampling is a method to select a subset of data from a statistical population, which can use 
the characteristics of the population to estimate the whole population. The following recipe 
will demonstrate how to generate samples in R.

Getting ready
Make sure that you have an R working environment for the following recipe.

How to do it...
Perform the following steps to understand data sampling in R:

1.	 In order to generate random samples of a given population, the user can simply use 
the sample function:
> sample(1:10)

2.	 To specify the number of items returned, the user can set the assigned value to the 
size argument:
> sample(1:10, size = 5)

3.	 Moreover, the sample can also generate Bernoulli trials by specifying replace = 
TRUE (default is FALSE):

> sample(c(0,1), 10, replace = TRUE)
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How it works...
As we saw in the preceding demonstration, the sample function can generate random 
samples from a specified population. The returned number from records can be designated 
by the user simply by specifying the argument of size. Assigning the replace argument to 
TRUE, you can generate Bernoulli trials (a population with 0 and 1 only).

See also
ff In R, the default package provides another sample method, sample.int, where 

both n and size must be supplied as integers:
> sample.int(20, 12)

Operating a probability distribution in R
Probability distribution and statistics analysis are closely related to each other. For statistics 
analysis, analysts make predictions based on a certain population, which is mostly under a 
probability distribution. Therefore, if you find that the data selected for prediction does not 
follow the exact assumed probability distribution in experiment design, the upcoming results 
can be refuted. In other words, probability provides the justification for statistics. The following 
examples will demonstrate how to generate probability distribution in R.

Getting ready
Since most distribution functions originate from the stats package, make sure the library 
stats are loaded.

How to do it...
Perform the following steps:

1.	 For a normal distribution, the user can use dnorm, which will return the height of a 
normal curve at 0:
> dnorm(0)

[1] 0.3989423

2.	 Then, the user can change the mean and the standard deviation in the argument:
> dnorm(0,mean=3,sd=5)

[1] 0.06664492
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3.	 Next, plot the graph of a normal distribution with the curve function:
> curve(dnorm,-3,3)

Standard normal distribution

4.	 In contrast to dnorm, which returns the height of a normal curve, the pnorm function 
can return the area under a given value:
> pnorm(1.5)

[1] 0.9331928

5.	 Alternatively, to get the area above a certain value, you can specify the option, 
lower.tail, to FALSE:
> pnorm(1.5, lower.tail=FALSE)

[1] 0.0668072

6.	 To plot the graph of pnorm, the user can employ a curve function:
> curve(pnorm(x), -3,3)

Cumulative density function (pnorm)
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7.	 To calculate the quantiles for a specific distribution, you can use qnorm. The function, 
qnorm, can be treated as the inverse of pnorm, which returns the Z-score of a given 
probability:
> qnorm(0.5)

[1] 0

> qnorm(pnorm(0))

[1] 0

8.	 To generate random numbers from a normal distribution, one can use the rnorm 
function and specify the number of generated numbers. Also, one can define optional 
arguments, such as the mean and standard deviation:
> set.seed(50)

> x = rnorm(100,mean=3,sd=5)

> hist(x)

Histogram of a normal distribution
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9.	 To calculate the uniform distribution, the runif function generates random numbers 
from a uniform distribution. The user can specify the range of the generated numbers 
by specifying variables, such as the minimum and maximum. For the following 
example, the user generates 100 random variables from 0 to 5:
> set.seed(50)

> y = runif(100,0,5)

> hist(y)

Histogram of a uniform distribution

10.	 Lastly, if you would like to test the normality of the data, the most widely used test 
for this is the Shapiro-Wilks test. Here, we demonstrate how to perform a test of 
normality on both samples from the normal and uniform distributions, respectively:

> shapiro.test(x)

  Shapiro-Wilk normality test

data:  x 

W = 0.9938, p-value = 0.9319

> shapiro.test(y)

  Shapiro-Wilk normality test

data:  y 

W = 0.9563, p-value = 0.002221



Chapter 3

85

How it works...
In this recipe, we first introduce dnorm, a probability density function, which returns the height 
of a normal curve. With a single input specified, the input value is called a standard score or 
a z-score. Without any other arguments specified, it is assumed that the normal distribution is 
in use with a mean of zero and a standard deviation of one. We then introduce three ways to 
draw standard and normal distributions.

After this, we introduce pnorm, a cumulative density function. The function, pnorm, can 
generate the area under a given value. In addition to this, pnorm can be also used to 
calculate the p-value from a normal distribution. One can get the p-value by subtracting 1 from 
the number, or assigning True to the option, lower.tail. Similarly, one can use the plot 
function to plot the cumulative density.

In contrast to pnorm, qnorm returns the z-score of a given probability. Therefore, the example 
shows that the application of a qnorm function to a pnorm function will produce the exact 
input value.

Next, we show you how to use the rnrom function to generate random samples from a 
normal distribution, and the runif function to generate random samples from the uniform 
distribution. In the function, rnorm, one has to specify the number of generated numbers 
and we may also add optional augments, such as the mean and standard deviation. Then, by 
using the hist function, one should be able to find a bell-curve in figure 3. On the other hand, 
for the runif function, with the minimum and maximum specifications, one can get a list of 
sample numbers between the two. However, we can still use the hist function to plot the 
samples. It is clear that the output figure (shown in the preceding figure) is not in a bell-shape, 
which indicates that the sample does not come from the normal distribution.

Finally, we demonstrate how to test data normality with the Shapiro-Wilks test. Here, we 
conduct the normality test on both the normal and uniform distribution samples, respectively. 
In both outputs, one can find the p-value in each test result. The p-value shows the changes, 
which show that the sample comes from a normal distribution. If the p-value is higher than 
0.05, we can conclude that the sample comes from a normal distribution. On the other hand, 
if the value is lower than 0.05, we conclude that the sample does not come from a normal 
distribution.

There's more...
Besides the normal distribution, you can obtain a t distribution, binomial distribution, and 
Chi-squared distribution by using the built-in functions of R. You can use the help function to 
access further information about this:

ff For a t distribution:
> help(TDist)
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ff For a binomial distribution:
>help(Binomial)

ff For the Chi-squared distribution:
>help(Chisquare)

To learn more about the distributions in the package, the user can access the help function 
with the keyword distributions to find all related documentation on this:

> help(distributions)

Working with univariate descriptive 
statistics in R

Univariate descriptive statistics describes a single variable for unit analysis, which is also the 
simplest form of quantitative analysis. In this recipe, we introduce some basic functions used 
to describe a single variable.

Getting ready
We need to apply descriptive statistics to a sample data. Here, we use the built-in mtcars 
data as our example.

How to do it...
Perform the following steps:

1.	 First, load the mtcars data into a data frame with a variable named mtcars:
> data(mtcars)

2.	 To obtain the vector range, the range function will return the lower and upper bound 
of the vector:
> range(mtcars$mpg)

[1] 10.4 33.9

3.	 Compute the length of the variable:
> length(mtcars$mpg)

[1] 32

4.	 Obtain the mean of mpg:
> mean(mtcars$mpg)

[1] 20.09062
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5.	  Obtain the median of the input vector:
> median(mtcars$mpg)

[1] 19.2

6.	 To obtain the standard deviation of the input vector:
> sd(mtcars$mpg)

[1] 6.026948

7.	 To obtain the variance of the input vector:
> var(mtcars$mpg)

[1] 36.3241

8.	 The variance can also be computed with the square of standard deviation:
> sd(mtcars$mpg) ^ 2

[1] 36.3241

9.	 To obtain the Interquartile Range (IQR):
> IQR(mtcars$mpg)

[1] 7.375

10.	 To obtain the quantile:
> quantile(mtcars$mpg,0.67)

 67% 

21.4

11.	 To obtain the maximum of the input vector:
> max(mtcars$mpg)

[1] 33.9

12.	 To obtain the minima of the input vector:
> min(mtcars$mpg)

[1] 10.4

13.	 To obtain a vector with elements that are the cumulative maxima:
> cummax(mtcars$mpg)

 [1] 21.0 21.0 22.8 22.8 22.8 22.8 22.8 24.4 24.4 24.4 24.4 24.4 
24.4 24.4 24.4 24.4

[17] 24.4 32.4 32.4 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 
33.9 33.9 33.9 33.9
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14.	 To obtain a vector with elements that are the cumulative minima:
> cummin(mtcars$mpg)

 [1] 21.0 21.0 21.0 21.0 18.7 18.1 14.3 14.3 14.3 14.3 14.3 14.3 
14.3 14.3 10.4 10.4

[17] 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 
10.4 10.4 10.4 10.4

15.	 To summarize the dataset, you can apply the summary function:
> summary(mtcars)

16.	 To obtain a frequency count of the categorical data, take cyl of mtcars as an 
example:
> table(mtcars$cyl)

 4  6  8 

11  7 14 

17.	 To obtain a frequency count of numerical data, you can use a stem plot to outline the 
data shape; stem produces a stem-and-leaf plot of the given values:
> stem(mtcars$mpg)

  The decimal point is at the |

  10 | 44

  12 | 3

  14 | 3702258

  16 | 438

  18 | 17227

  20 | 00445

  22 | 88

  24 | 4

  26 | 03

  28 | 

  30 | 44

  32 | 49
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18.	 You can use a histogram of ggplot to plot the same stem-and-leaf figure:

> library(ggplot2)

> qplot(mtcars$mpg, binwidth=2)

Histogram of mpg of mtcars

How it works...
Univariate descriptive statistics generate the frequency distribution of datasets. Moreover, 
they can be used to identify the obvious patterns in the data and the characteristics of the 
variates to provide a better understanding of the data from a holistic viewpoint. Additionally, 
they can provide information about the central tendency and descriptors of the skewness of 
individual cases. Therefore, it is common to see that univariate analysis is conducted at the 
beginning of the data exploration process.

To begin the exploration of data, we first load the dataset, mtcars, to an R session. From the 
data, we apply range, length, mean, median, sd, var, IQR, quantile, min, max, cumin, 
and cumax to obtain the descriptive statistic of the attribute, mpg. Then, we use the summary 
function to obtain summary information about mtcars.

Next, we obtain a frequency count of the categorical data (cyl). To obtain a frequency 
count of the numerical data, we use a stem plot to outline the data shape. Lastly, we use a 
histogram with the binwidth argument in 2 to generate a plot similar to the stem-and-leaf 
plot.
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There's more...
One common scenario in univariate descriptive statistics is to find the mode of a vector. In R, 
there is no built-in function to help the user obtain the mode of the data. However, one can 
implement the mode function by using the following code:

> mode = function(x) {

+ temp = table(x)

+ names(temp)[temp == max(temp)]

+ }

By applying the mode function on the vector, mtcars$mpg, you can find the most frequently 
occurring numeric value or category of a given vector:

> x = c(1,2,3,3,3,4,4,5,5,5,6)

> mode(x)

[1] "3" "5"

Performing correlations and multivariate 
analysis

To analyze the relationship of more than two variables, you would need to conduct multivariate 
descriptive statistics, which allows the comparison of factors. Additionally, it prevents the effect 
of a single variable from distorting the analysis. In this recipe, we will discuss how to conduct 
multivariate descriptive statistics using a correlation and covariance matrix.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session.

How to do it...
Perform the following steps:

1.	 Here, you can get the covariance matrix by inputting the first three variables in 
mtcars to the cov function:
> cov(mtcars[1:3])

             mpg        cyl       disp

mpg    36.324103  -9.172379  -633.0972

cyl    -9.172379   3.189516   199.6603

disp -633.097208 199.660282 15360.7998
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2.	 To obtain a correlation matrix of the dataset, we input the first three variables of 
mtcars to the cor function:

> cor(mtcars[1:3])

            mpg        cyl       disp

mpg   1.0000000 -0.8521620 -0.8475514

cyl  -0.8521620  1.0000000  0.9020329

disp -0.8475514  0.9020329  1.0000000

How it works...
In this recipe, we have demonstrated how to apply correlation and covariance to discover the 
relationship between multiple variables.

First, we compute a covariance matrix of the first three mtcars variables. Covariance can 
measure how variables are linearly related. Thus, a positive covariance (for example, cyl 
versus mpg) indicates that the two variables are positively linearly related. On the other 
hand, a negative covariance (for example, mpg versus disp) indicates the two variables are 
negatively linearly related. However, due to the variance of different datasets, the covariance 
score of these datasets is not comparable. As a result, if you would like to compare the 
strength of the linear relation between two variables in a different dataset, you should use the 
normalized score, that is, the correlation coefficient instead of covariance.

Next, we apply a cor function to obtain a correlation coefficient matrix of three variables 
within the mtcars dataset. In the correlation coefficient matrix, the numeric element of the 
matrix indicates the strength of the relationship between the two variables. If the correlation 
coefficient of a variable against itself scores 1, the variable has a positive relationship against 
itself. The cyl and mpg variables have a correlation coefficient of -0.85, which means they 
have a strong, negative relationship. On the other hand, the disp and cyl variables score 
0.90, which may indicate that they have a strong, positive relationship.
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See also
ff You can use ggplot to plot the heatmap of the correlation coefficient matrix:

> library(reshape2)

> qplot(x=Var1, y=Var2, data=melt(cor(mtcars[1:3])), fill=value, 
geom="tile")

The correlation coefficient matrix heatmap

Operating linear regression and multivariate 
analysis

Linear regression is a method to assess the association between dependent and independent 
variables. In this recipe, we will cover how to conduct linear regression for multivariate analysis.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session.
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How to do it...
Perform the following steps:

1.	 To fit variables into a linear model, you can use the lm function:
> lmfit = lm(mtcars$mpg ~ mtcars$cyl)

> lmfit

Call:

lm(formula = mtcars$mpg ~ mtcars$cyl)

Coefficients:

(Intercept)   mtcars$cyl  

     37.885       -2.876 

2.	 To get detailed information on the fitted model, you can use the summary function:
> summary(lmfit)

Call:

lm(formula = mtcars$mpg ~ mtcars$cyl)

Residuals:

    Min      1Q  Median      3Q     Max 

-4.9814 -2.1185  0.2217  1.0717  7.5186 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  37.8846     2.0738   18.27  < 2e-16 ***

mtcars$cyl   -2.8758     0.3224   -8.92 6.11e-10 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.206 on 30 degrees of freedom

Multiple R-squared:  0.7262,  Adjusted R-squared:  0.7171 

F-statistic: 79.56 on 1 and 30 DF,  p-value: 6.113e-10
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3.	 To create an analysis of a variance table, one can employ the anova function:
> anova(lmfit)

Analysis of Variance Table

Response: mtcars$mpg

           Df Sum Sq Mean Sq F value    Pr(>F)    

mtcars$cyl  1 817.71  817.71  79.561 6.113e-10 ***

Residuals  30 308.33   10.28                      

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.	 To plot the regression line on a scatter plot of two variables, you first plot cyl against 
mpg in it, then use the abline function to add a regression line on the plot:

> lmfit = lm(mtcars$mpg ~ mtcars$cyl)

> plot(mtcars$cyl, mtcars$mpg)

> abline(lmfit)

The regression plot of cyl against mpg
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How it works...
In this recipe, we apply the linear model function, lm, which builds a linear fitted model of two 
variables and returns the formula and coefficient. Next, we apply the summary function to 
retrieve the detailed information (including F-statistic and P-value) of the model. The purpose 
of F-statistic is to test the statistical significance of the model. It produces an F-value, which is 
the ratio of the model mean square to the error mean square. Thus, a large F-value indicates 
that more of the total variability is accounted for by the regression model. Then, we can use 
the F-value to support or reject the null hypothesis that all of the regression coefficients 
are equal to zero. In other words, the null hypothesis is rejected if the F-value is large and 
shows that the regression model has a predictive capability. On the other hand, P-values of 
each attribute test the null hypothesis that the coefficient is equal to zero (no effect on the 
response variable). In other words, a low p-value can reject a null hypothesis and indicates 
that a change in the predictor's value is related to the value of the response variable.

Next, we apply the anova function on the fitted model to determine the variance. The function 
outputs the sum of squares, which stands for the variability of the model's predicted value. 
Further, to visualize the linear relationship between two variables, the abline function can 
add a regression line on a scatter plot of mpg against cyl. From the preceding figure, it is 
obvious that the mpg and cyl variables are negatively related.

See also
ff For more information on how to perform linear and nonlinear regression analysis, 

please refer to the Chapter 4, Understanding Regression Analysis

Conducting an exact binomial test
While making decisions, it is important to know whether the decision error can be controlled 
or measured. In other words, we would like to prove that the hypothesis formed is unlikely to 
have occurred by chance, and is statistically significant. In hypothesis testing, there are two 
kinds of hypotheses: null hypothesis and alternative hypothesis (or research hypothesis). The 
purpose of hypothesis testing is to validate whether the experiment results are significant. 
However, to validate whether the alternative hypothesis is acceptable, it is deemed to be true 
if the null hypothesis is rejected.

In the following recipes, we will discuss some common statistical testing methods. First, we 
will cover how to conduct an exact binomial test in R.

Getting ready
Since the binom.test function  originates from the stats package, make sure the stats 
library is loaded.
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How to do it...
Perform the following step:

1.	 Assume there is a game where a gambler can win by rolling the number-six-on a dice. 
As part of the rules, gamblers can bring their own dice. If a gambler tried to cheat in a 
game, he would use a loaded dice to increase his chance of winning. Therefore, if we 
observe that the gambler won 92 out of 315 games, we could determine whether the 
dice was fair by conducting an exact binomial test:

> binom.test(x=92, n=315, p=1/6)

  Exact binomial test

data:  92 and 315

number of successes = 92, number of trials = 315, p-value = 
3.458e-08

alternative hypothesis: true probability of success is not equal 
to 0.1666667

95 percent confidence interval:

 0.2424273 0.3456598

sample estimates:

probability of success 

             0.2920635 

How it works...
A binomial test uses the binomial distribution to find out whether the true success rate is likely 
to be P for n trials with the binary outcome. The formula of the probability, P, can be defined in 
following equation:

( ) k n kn
P X k p q

k
− 

= =  
 

Here, X denotes the random variables, counting the number of outcomes of the interest; n 
denotes the number of trials; k indicates the number of successes; p indicates the probability 
of success; and q denotes the probability of failure.
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After we have computed the probability, P, we can then perform a sign test to determine 
whether the success probability is similar to what we expected. If the probability is not equal 
to what we expected, we can reject the null hypothesis.

By definition, the null hypothesis is a skeptical perspective or a statement about the 
population parameter that will be tested. The null hypothesis is denoted by H0. An alternative 
hypothesis is represented by a range of population values, which are not included in the null 
hypothesis. The alternative hypothesis is denoted by H1. In this case, the null and alternative 
hypothesis, respectively, are illustrated as:

ff H0 (null hypothesis): The true probability of success is equal to what we expected

ff H1 (alternative hypothesis): The true probability of success is not equal to what we 
expected

In this example, we demonstrate how to use a binomial test to determine the number of times 
the dice is rolled, the frequency of rolling the number six, and the probability of rolling a six 
from an unbiased dice. The result of the t-test shows that the p-value = 3.458e-08 (lower than 
0.05). For significance, at the five percent level, the null hypothesis (the dice is unbiased) is 
rejected as too many sixes were rolled (the probability of success = 0.2920635).

See also
ff To read more about the usage of the exact binomial test, please use the help 

function to view related documentation on this:

> ?binom.test

Performing student's t-test
A one sample t-test enables us to test whether two means are significantly different; a two 
sample t-test allows us to test whether the means of two independent groups are different. In 
this recipe, we will discuss how to conduct one sample t-test and two sample t-tests using R.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session. As the 
t.test function originates from the stats package, make sure the library, stats, is loaded.
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How to do it...
Perform the following steps:

1.	 First, we visualize the attribute, mpg, against am using a boxplot:
> boxplot(mtcars$mpg, mtcars$mpg[mtcars$am==0], ylab = "mpg", name
s=c("overall","automobile"))

> abline(h=mean(mtcars$mpg),lwd=2, col="red")

> abline(h=mean(mtcars$mpg[mtcars$am==0]),lwd=2, col="blue")

The boxplot of mpg of the overall population and automobiles

2.	 We then perform a statistical procedure to validate whether the average mpg of 
automobiles is lower than the average of the overall mpg:
> mpg.mu = mean(mtcars$mpg)

> mpg_am = mtcars$mpg[mtcars$am == 0]

> t.test(mpg_am,mu = mpg.mu)

  One Sample t-test

data:  mpg_am

t = -3.3462, df = 18, p-value = 0.003595

alternative hypothesis: true mean is not equal to 20.09062

95 percent confidence interval:



Chapter 3

99

 15.29946 18.99528

sample estimates:

mean of x 

 17.14737 

3.	 We begin visualizing the data by plotting a boxplot:
>boxplot(mtcars$mpg~mtcars$am,ylab='mpg',names=c('automatic','manu
al'))

> abline(h=mean(mtcars$mpg[mtcars$am==0]),lwd=2, col="blue")

> abline(h=mean(mtcars$mpg[mtcars$am==1]),lwd=2, col="red")

The boxplot of mpg of automatic and manual transmission cars

4.	 The preceding figure reveals that the mean mpg of automatic transmission cars is 
lower than the average mpg of manual transmission vehicles:
> t.test(mtcars$mpg~mtcars$am)

  Welch Two Sample t-test

data:  mtcars$mpg by mtcars$am

t = -3.7671, df = 18.332, p-value = 0.001374

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -11.280194  -3.209684
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sample estimates:

mean in group 0 mean in group 1 

       17.14737        24.39231 

How it works...
Student's t-test is where the test statistic follows a normal distribution (the student's t 
distribution) if the null hypothesis is true. It can be used to determine whether there is a 
difference between two independent datasets. Student's t-test is best used with the problems 
associated with an inference based on small samples.

In this recipe, we discuss one sample student's t-test and two sample student's t-tests. In 
the one sample student's t-test, a research question often asked is, "Is the mean of the 
population different from the null hypothesis?" Thus, in order to test whether the average 
mpg of automobiles is lower than the overall average mpg, we first use a boxplot to view 
the differences between populations without making any assumptions. From the preceding 
figure, it is clear that the mean of mpg of automobiles (the blue line) is lower than the average 
mpg (red line) of the overall population. Then, we apply one sample t-test; the low p-value of 
0.003595 (< 0.05) suggests that we should reject the null hypothesis that the mean mpg for 
automobiles is less than the average mpg of the overall population.

As a one sample t-test enables us to test whether two means are significantly different, 
a two sample t-test allows us to test whether the means of two independent groups are 
different. Similar to a one sample t-test, we first use a boxplot to see the differences between 
populations and then apply a two-sample t-test. The test results shows the p-value = 0.01374 
(p< 0.05). In other words, the test provides evidence that rejects the null hypothesis, which 
shows the mean mpg of cars with automatic transmission differs from the cars with manual 
transmission.

See also
ff To read more about the usage of student's t-test, please use the help function to 

view related documents:

> ?t.test
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Performing the Kolmogorov-Smirnov test
A one-sample Kolmogorov-Smirnov test is used to compare a sample with a reference 
probability. A two-sample Kolmogorov-Smirnov test compares the cumulative distributions of 
two datasets. In this recipe, we will demonstrate how to perform the Kolmogorov-Smirnov test 
with R.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session. As the 
ks.test function is originated from the stats package, make sure the stats library is 
loaded.

How to do it...
Perform the following steps:

1.	 Validate whether the dataset, x (generated with the rnorm function), is distributed 
normally with a one-sample Kolmogorov-Smirnov test:
> x = rnorm(50)

> ks.test(x,"pnorm")

  One-sample Kolmogorov-Smirnov test

data:  x

D = 0.1698, p-value = 0.0994

alternative hypothesis: two-sided

2.	 Next, you can generate uniformly distributed sample data:
> set.seed(3)

> x = runif(n=20, min=0, max=20)

> y = runif(n=20, min=0, max=20)



R and Statistics

102

3.	 We first plot ecdf of two generated data samples:  
> plot(ecdf(x), do.points = FALSE, verticals=T, xlim=c(0, 20))

> lines(ecdf(y), lty=3, do.points = FALSE, verticals=T)

The ecdf plot of two generated data samples

4.	 Finally, we apply a two-sample Kolmogorov-Smirnov test on two groups of data:

> ks.test(x,y)

  Two-sample Kolmogorov-Smirnov test

data:  x and y

D = 0.3, p-value = 0.3356

alternative hypothesis: two-sided

How it works...
The Kolmogorov-Smirnov test (K-S test) is a nonparametric and statistical test, used for 
the equality of continuous probability distributions. It can be used to compare a sample with 
a reference probability distribution (a one sample K-S test), or it can directly compare two 
samples (a two sample K-S test). The test is based on the empirical distribution function 
(ECDF). Let 1 2, nx x x�  be a random sample of size, n; the empirical distribution function, 
( )xnF , is defined as:
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( ) { }1

1x n
n ii
F I x x

n =
= ≤∑

Here, { }iI x x≤  is the indicator function. If ix x≤ , the function equals to 1. Otherwise, the 
function equals to 0.

The Kolmogorov-Smirnov statistic (D) is based on the greatest (where supx denotes the 
supremum) vertical difference between F(x) and Fn(x). It is defined as:

( ) ( )n x nD sup F x F x= −

H0 is the sample follows the specified distribution. H1 is the sample does not follow the 
specified distribution.

If Dn is greater than the critical value obtained from a table, then we reject H0 at the level of 
significance α.

We first test whether a random number generated from a normal distribution is normally 
distributed. At the 5 percent significance level, the p-value of 0.0994 indicates that the input 
is normally distributed.

Then, we plot an empirical cumulative distribution function (ecdf) plot to show how a two-
sample test calculates the maximum distance D (showing 0.3), and apply the two-sample 
Kolmogorov-Smirnov test to discover whether the two input datasets possibly come from the 
same distribution.

The p-value is above 0.05, which does not reject the null hypothesis. In other words, it means 
the two datasets are possibly from the same distribution.

See also
ff To read more about the usage of the Kolmogorov-Smirnov test, please use the help 

function to view related documents:
> ?ks.test

ff As for the definition of an empirical cumulative distribution function, please refer to 
the help page of ecdf:
> ?ecdf
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Understanding the Wilcoxon Rank Sum and 
Signed Rank test

The Wilcoxon Rank Sum and Signed Rank test (or Mann-Whitney-Wilcoxon) is a nonparametric 
test of the null hypothesis, which shows that the population distribution of two different 
groups are identical without assuming that the two groups are normally distributed. This 
recipe will show how to conduct the Wilcoxon Rank Sum and Signed Rank test in R.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session. As the 
wilcox.test function is originated from the stats package, make sure the library, stats, 
is loaded.

How to do it...
Perform the following steps:

1.	 We first plot the data of mtcars with the boxplot function:
> boxplot(mtcars$mpg~mtcars$am,ylab='mpg',names=c('automatic','man
ual'))

The boxplot of mpg of automatic cars and manual transmission cars

2.	 Next, we still perform a Wilcoxon Rank Sum test to validate whether the distribution 
of automatic transmission cars is identical to that of manual transmission cars:
> wilcox.test(mpg ~ am, data=mtcars)

  Wilcoxon rank sum test with continuity correction
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data:  mpg by am

W = 42, p-value = 0.001871

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(21.4, 18.7, 18.1, 14.3, 24.4, 22.8,  
:

  cannot compute exact p-value with ties

How it works...
In this recipe, we discuss a nonparametric test method, the Wilcoxon Rank Sum test (also 
known as the Mann-Whitney U-test). For student's t-test, it is assumed that the differences 
between the two samples are normally distributed (and it also works best when the two 
samples are normally distributed). However, when the normality assumption is uncertain, one 
can adopt the Wilcoxon Rank Sum Test to test a hypothesis.

Here, we used a Wilcoxon Rank Sum test to determine whether the mpg of automatic and 
manual transmission cars in the dataset, mtcars, is distributed identically. From the test 
result, we see that the p-value = 0.001871 (< 0.05) rejects the null hypothesis, and also 
reveals that the distribution of mpg in automatic and manual transmission cars is not 
identical. When performing this test, you may receive the warning message, "cannot compute 
exact p-value with ties", which indicates that there are duplicate values within the dataset. The 
warning message will be cleared once the duplicate values are removed.

See also
ff To read more about the usage of the Wilcoxon Rank Sum and Signed Rank Test, 

please use the help function to view the concerned documents:
> ? wilcox.test

Working with Pearson's Chi-squared test
In this recipe, we introduce Pearson's Chi-squared test, which is used to examine whether 
the distributions of categorical variables of two groups differ. We will discuss how to conduct 
Pearson's Chi-squared Test in R.
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Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session.  
Since the chisq.test function is originated from the stats? package, make sure the 
library, stats, is loaded.

How to do it
Perform the following steps:

1.	 To make the counting table, we first use the contingency table built with the inputs of 
the transmission type and number of forward gears:
> ftable = table(mtcars$am, mtcars$gear)

> ftable

   

     3  4  5

  0 15  4  0

  1  0  8  5

2.	 We then plot the mosaic plot of the contingency table:
> mosaicplot(ftable, main="Number of Forward Gears Within 
Automatic and Manual Cars", color = TRUE)

Number of forward gears in automatic and manual cars
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3.	 Next, we perform the Pearson's Chi-squared test on the contingency table to  
test whether the numbers of gears in automatic and manual transmission cars  
is the same:
> chisq.test(ftable)

  Pearson's Chi-squared test

data:  ftable

X-squared = 20.9447, df = 2, p-value = 2.831e-05

Warning message:

In chisq.test(ftable) : Chi-squared approximation may be incorrect

How it works...
Pearson's Chi-squared test is a statistical test used to discover whether there is a relationship 
between two categorical variables.  It is best used for unpaired data from large samples. 
If you would like to conduct Pearson's Chi-squared test, you need to make sure that the 
input samples satisfy two assumptions: firstly, the two input variables should be categorical. 
Secondly, the variable should include two or more independent groups.

In Pearson's Chi-squared test, the assumption is that we have two variables, A and B; we can 
illustrate the null and alternative hypothesis in the following statements:

ff H0: Variable A and variable B are independent

ff H1: Variable A and variable B are not independent

To test whether the null hypothesis is correct or incorrect, the Chi-squared test takes  
these steps.

It calculates the Chi-squared test statistic, 2X :

( )2, ,2

1 1 ,

r c
i j i j

i j i j

O E
X

E= =

−
=∑∑

Here, r is the number of rows in the contingency table, c is the number of columns in the 
contingency table, Oi,j is the observed frequency count, Ei,j is the expected frequency count.
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It determines the degrees of freedom, df, of that statistic. The degree of freedom is equal to:

( ) ( )1 1df r c= − × −

Here, r is the number of levels for one variable, and c is the number of levels for  
another variable.

It compares 2X  to the critical value from the Chi-squared distribution with the degrees of 
freedom.

In this recipe, we use a contingency table and mosaic plot to illustrate the differences in count 
numbers. It is obvious that the number of forward gears is less in automatic transmission cars 
than in manual transmission cars.

Then, we perform the Pearson's Chi-squared test on the contingency table to determine 
whether the gears in automatic and manual transmission cars are the same. The output, 
p-value  = 2.831e-05 (< 0.05), refutes the null hypothesis and shows the number of forward 
gears is different in automatic and manual transmission cars. However, the output message 
contains a warning message that Chi-squared approximation may be incorrect, which is 
because the number of samples in the contingency table is less than five.

There's more...
To read more about the usage of the Pearson's Chi-squared test, please use the help 
function to view the related documents:

> ? chisq.test

Besides some common hypothesis testing methods mentioned in previous examples, there 
are other hypothesis methods provided by R:

ff The Proportional test (prop.test): It is used to test whether the proportions in 
different groups are the same

ff The Z-test (simple.z.test in the UsingR package): It compares the sample mean 
with the population mean and standard deviation

ff The Bartlett Test (bartlett.test): It is used to test whether the variance of 
different groups is the same

ff The Kruskal-Wallis Rank Sum Test (kruskal.test): It is used to test whether the 
distribution of different groups is identical without assuming that they are normally 
distributed

ff The Shapiro-Wilk test (shapiro.test): It is used test for normality
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Conducting a one-way ANOVA
Analysis of variance (ANOVA) investigates the relationship between categorical independent 
variables and continuous dependent variables. It can be used to test whether the means of 
several groups are equal. If there is only one categorical variable as an independent variable, 
you can perform a one-way ANOVA. On the other hand, if there are more than two categorical 
variables, you should perform a two-way ANOVA. In this recipe, we discuss how to conduct a 
one-way ANOVA with R.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session. Since the 
oneway.test and TukeyHSD functions originated from the stats package, make sure the 
library, stats, is loaded.

How to do it...
Perform the following steps:

1.	 We begin exploring by visualizing the data with a boxplot:
> boxplot(mtcars$mpg~factor(mtcars$gear),xlab='gear',ylab='mpg')

Comparison of mpg of different numbers of forward gears
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2.	 Next, we conduct a one-way ANOVA to examine whether the mean of mpg changes 
with different numbers of forward gears. We use the function, oneway.test:
> oneway.test(mtcars$mpg~factor(mtcars$gear))

  One-way analysis of means (not assuming equal variances)

data:  mtcars$mpg and factor(mtcars$gear)

F = 11.2848, num df = 2.000, denom df = 9.508, p-value = 0.003085

3.	 In addition to oneway.test, a standard function, aov, is used for the ANOVA 
analysis:
> mtcars.aov = aov(mtcars$mpg ~ as.factor(mtcars$gear))

> summary(mtcars.aov)

                       Df Sum Sq Mean Sq F value   Pr(>F)    

as.factor(mtcars$gear)  2  483.2  241.62    10.9 0.000295 ***

Residuals              29  642.8   22.17                     

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.	 The model generated by the aov function can also generate a summary as a fitted 
table:
> model.tables(mtcars.aov, "means")

Tables of means

Grand mean

         

20.09062 

 as.factor(mtcars$gear) 

        3     4     5

    16.11 24.53 21.38

rep 15.00 12.00  5.00

5.	 For the aov model, one can use TukeyHSD for a post hoc comparison test:
> mtcars_posthoc =TukeyHSD(mtcars.aov)

> mtcars_posthoc

  Tukey multiple comparisons of means

    95% family-wise confidence level
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Fit: aov(formula = mtcars$mpg ~ as.factor(mtcars$gear))

$`as.factor(mtcars$gear)`

         diff        lwr       upr     p adj

4-3  8.426667  3.9234704 12.929863 0.0002088

5-3  5.273333 -0.7309284 11.277595 0.0937176

5-4 -3.153333 -9.3423846  3.035718 0.4295874

6.	 Further, we can visualize the differences in mean level with a plot function:

The Tukey mean-difference plot of groups with different numbers of gears

How it works...
In order to understand whether cars with a different number of forward gears have different 
means in mpg, we first plot the boxplot of mpg by the numbers of forward gears. This offers 
a simple indication if cars with a different number of forward gears have different means of 
mpg. We then perform the most basic form of ANOVA, a one-way ANOVA, to test whether the 
populations have different means.

In R, there are two functions to perform the ANOVA test: oneway.test and aov. The 
advantage of oneway.test is that the function applies a Welch correction to address 
the nonhomogeneity of a variance. However, it does not provide as much information as 
aov, and it does not offer a post hoc test. Next, we perform oneway.test and aov on the 
independent variable, gear, with regard to the dependent variable, mpg. Both test results 
show a small p-value, which rejects the null hypothesis that the mean between cars with a 
different number of forward gears have the same mpg mean.
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As the results of ANOVA only suggest that there is a significant difference in the means within 
overall populations, you may not know which two populations differ in terms of their mean. 
Therefore, we apply the TukeyHSD post hoc comparison test on our ANOVA model. The result 
shows that cars with four forward gears and cars with three gears have the largest difference, 
as their confidence interval is the furthest to the right within the plot.

There's more...
ANOVA relies on an F-distribution as the basis of all probability distribution. An F score is 
obtained by dividing the between-group variance by the in-group variance. If the overall F test 
was significant, you can conduct a post hoc test (or multiple comparison tests) to measure the 
differences between groups. The most commonly used post hoc tests are Scheffé's method, 
the Tukey-Kramer method, and the Bonferroni correction.

In order to interpret the output of ANOVA, you need to have a basic understanding of certain 
terms, including the degrees of freedom, the sum of square total, the sum of square groups, 
the sum of square errors, the mean square errors, and the F statistic. If you require more 
information about these terms, you may refer to Using multivariate statistics (Fidell, L. S., & 
Tabachnick, B. G. (2006) Boston: Allyn & Bacon.), or refer to the Wikipedia entry of Analysis of 
variance (http://en.wikipedia.org/wiki/Analysis_of_variance#cite_ref-31).

Performing a two-way ANOVA
A two-way ANOVA can be viewed as the extension of a one-way ANOVA, for the analysis covers 
more than two categorical variables rather than one. In this recipe, we will discuss how to 
conduct a two-way ANOVA in R.

Getting ready
Ensure that mtcars has already been loaded into a data frame within an R session. Since 
the twoway.test, TukeyHSD and interaction.plot functions are originated from the 
stats package, make sure the library, stats, is loaded.

How to do it...
Perform the following steps:

1.	 First we plot the two boxplots of factor gears in regard to mpg, with the plot separated 
from the transmission type:
> par(mfrow=c(1,2))

> boxplot(mtcars$mpg~mtcars$gear,subset=(mtcars$am==0),xlab='ge
ar', ylab = "mpg",main='automatic')

http://en.wikipedia.org/wiki/Analysis_of_variance#cite_ref-31
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> boxplot(mtcars$mpg~mtcars$gear,subset=(mtcars$am==1),xlab='ge
ar', ylab = "mpg", main='manual')

The boxplots of mpg by the gear group and the transmission type

2.	 Also, you may produce a boxplot of mpg by the number of forward gears * 
transmission type, with the use of the * operation in the boxplot function:
> boxplot(mtcars$mpg~factor(mtcars$gear)* 
factor(mtcars$am),xlab='gear * transmission', ylab = 
"mpg",main='Boxplot of mpg by gear * transmission')

The boxplot of mpg by the gear * transmission type
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3.	 Next, we use an interaction plot to characterize the relationship between variables:
> interaction.plot(mtcars$gear, mtcars$am, mtcars$mpg, type="b", 
col=c(1:3),leg.bty="o", leg.bg="beige", lwd=2, pch=c(18,24,22), 
xlab="Number of Gears", ylab="Mean Miles Per Gallon", 
main="Interaction Plot")

Interaction between the transmission type and the number of gears with the main effects, mpg

4.	 We then perform a two-way ANOVA on mpg with a combination of the gear and 
transmission-type factors:
> mpg_anova2 = aov(mtcars$mpg~factor(mtcars$gear)*factor(mtcars$
am))

> summary(mpg_anova2) 

                    Df Sum Sq Mean Sq F value   Pr(>F)    

factor(mtcars$gear)  2  483.2  241.62  11.869 0.000185 ***

factor(mtcars$am)    1   72.8   72.80   3.576 0.069001 .  

Residuals           28  570.0   20.36                     

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.	 Similar to a one-way ANOVA, we can perform a post hoc comparison test to see the 
results of the two-way ANOVA model:
> TukeyHSD(mpg_anova2)

  Tukey multiple comparisons of means

    95% family-wise confidence level

Fit: aov(formula = mtcars$mpg ~ factor(mtcars$gear) * 
factor(mtcars$am))

$`factor(mtcars$gear)`

         diff        lwr       upr     p adj

4-3  8.426667  4.1028616 12.750472 0.0001301

5-3  5.273333 -0.4917401 11.038407 0.0779791

5-4 -3.153333 -9.0958350  2.789168 0.3999532

$`factor(mtcars$am)`

        diff       lwr     upr     p adj

1-0 1.805128 -1.521483 5.13174 0.2757926

6.	 We then visualize the differences in mean levels with the plot function:

> par(mfrow=c(1,2))

> plot(TukeyHSD(mpg_anova2))

The comparison plot of differences in mean levels by the transmission type and the number of gears
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How it works...
In this recipe, we perform a two-way ANOVA to examine the influences of the independent 
variables, gear and am, on the dependent variable, mpg. In the first step, we use a boxplot 
to examine the mean of mpg by the number of gears and the transmission type. Secondly, 
we apply an interaction plot to visualize the change in mpg through the different numbers of 
gears with lines separated by the transmission type.

The resulting plot shows that the number of gears does have an effect on the mean of mpg, 
but does not show a positive relationship either. Thirdly, we perform a two-way ANOVA with the 
aov function. The output shows that the p-value of the gear factor rejects the null hypothesis, 
while the factor, transmission type, does not reject the null hypothesis. In other words, 
cars with different numbers of gears are more likely to have different means of mpg. Finally, 
in order to examine which two populations have the largest differences, we perform a post 
hoc analysis, which reveals that cars with four gears and three gears, respectively, have the 
largest difference in terms of the mean, mpg.

See also
ff For multivariate analysis of variances, the function, manova, can be used to examine 

the effect of multiple independent variables on multiple dependent variables. Further 
information about MANOVA is included within the help function in R:
> ?MANOVA
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Understanding 
Regression Analysis

In this chapter, we will cover the following recipes:

ff Fitting a linear regression model with lm
ff Summarizing linear model fits
ff Using linear regression to predict unknown values
ff Generating a diagnostic plot of a fitted model
ff Fitting a polynomial regression model with lm
ff Fitting a robust linear regression model with rlm
ff Studying a case of linear regression on SLID data
ff Applying the Gaussian model for generalized linear regression
ff Applying the Poisson model for generalized linear regression
ff Applying the Binomial model for generalized linear regression
ff Fitting a generalized additive model to data
ff Visualizing a generalized additive model
ff Diagnosing a generalized additive model

Introduction
Regression is a supervised learning method, which is employed to model and analyze 
the relationship between a dependent (response) variable and one or more independent 
(predictor) variables. One can use regression to build a prediction model, which can first be 
used to find the best fitted model with minimum squared errors of the fitted values. The fitted 
model can then be further applied to data for continuous value predictions.

4
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There are many types of regression. If there is only one predictor variable, and the relationship 
between the response variable and independent variable is linear, we can apply a linear 
model. However, if there is more than one predictor variable, a multiple linear regression 
method should be used. When the relationship is nonlinear, one can use a nonlinear model to 
model the relationship between the predictor and response variables.

In this chapter, we introduce how to fit a linear model into data with the lm function. Next, for 
distribution in other than the normal Gaussian model (for example, Poisson or Binomial), we use 
the glm function with an appropriate link function correspondent to the data distribution. Finally, 
we cover how to fit a generalized additive model into data using the gam function.

Fitting a linear regression model with lm
The simplest model in regression is linear regression, which is best used when there is 
only one predictor variable, and the relationship between the response variable and the 
independent variable is linear. In R, we can fit a linear model to data with the lm function.

Getting ready
We need to prepare data with one predictor and response variable, and with a linear 
relationship between the two variables.

How to do it...
Perform the following steps to perform linear regression with lm:

1.	 You should install the car package and load its library:
> install.packages("car")

> library(car)

2.	 From the package, you can load the Quartet dataset:
> data(Quartet)

3.	 You can use the str function to display the structure of the Quartet dataset:
> str(Quartet)

'data.frame':   11 obs. of  6 variables:

 $ x : int  10 8 13 9 11 14 6 4 12 7 ...

 $ y1: num  8.04 6.95 7.58 8.81 8.33 ...

 $ y2: num  9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...

 $ y3: num  7.46 6.77 12.74 7.11 7.81 ...

 $ x4: int  8 8 8 8 8 8 8 19 8 8 ...

 $ y4: num  6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
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4.	 Draw a scatter plot of the x and y variables with plot, and append a fitted line 
through the lm and abline function:
> plot(Quartet$x, Quartet$y1)

> lmfit = lm(y1~x, Quartet) 

> abline(lmfit, col="red")  

A simple regression plot fitted by lm

5.	 To view the fit model, execute the following:

> lmfit

Call:

lm(formula = y1 ~ x, data = Quartet)

Coefficients:

(Intercept)            x  

     3.0001       0.5001 

How it works...
The regression model has the response ~ terms form, where response is the response 
vector, and terms is a series of terms that specifies a predictor. We can illustrate a simple 
regression model in the formula y=α+βx, where α is the intercept while the slope, β, describes 
the change in y when x changes. By using the least squares method, we can estimate [ ]

[ ]
,cov x y

var x
β =  

and y xα β= −  (where y  indicates the mean value of y and x  denotes the mean value of x).
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To perform linear regression, we first prepare the data that has a linear relationship between 
the predictor variable and response variable. In this example, we load Anscombe's quartet 
dataset from the package car. Within the dataset, the x and y1 variables have a linear 
relationship, and we prepare a scatter plot of these variables. To generate the regression line, 
we use the lm function to generate a model of the two variables. Further, we use abline 
to plot a regression line on the plot. As per the previous screenshot, the regression line 
illustrates the linear relationship of x and y1 variables. We can see that the coefficient of the 
fitted model shows the intercept equals 3.0001 and coefficient equals 0.5001. As a result, we 
can use the intercept and coefficient to infer the response value. For example, we can infer 
the response value when x at 3 is equal to 4.5103 (3 * 0.5001 + 3.0001).

There's more...
Besides the lm function, you can also use the lsfit function to perform simple linear 
regression. For example:

> plot(Quartet$x, Quartet$y1)

> lmfit2 = lsfit(Quartet$x,Quartet$y1)

> abline(lmfit2, col="red")  

A simple regression fitted by the lsfit function.

Summarizing linear model fits
The summary function can be used to obtain the formatted coefficient, standard errors, degree 
of freedom, and other summarized information of a fitted model. This recipe introduces how to 
obtain overall information on a model through the use of the summary function.
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Getting ready
You need to have completed the previous recipe by computing the linear model of the x and 
y1 variables from the quartet, and have the fitted model assigned to the lmfit variable.

How to do it...
Perform the following step to summarize linear model fits:

1.	 Compute a detailed summary of the fitted model:
> summary(lmfit)

Call:

lm(formula = y1 ~ x)

Residuals:

     Min       1Q   Median       3Q      Max 

-1.92127 -0.45577 -0.04136  0.70941  1.83882 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   3.0001     1.1247   2.667  0.02573 * 

Quartet$x     0.5001     0.1179   4.241  0.00217 **

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R-squared:  0.6665,    Adjusted R-squared:  0.6295 

F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217

How it works...
The summary function is a generic function used to produce summary statistics. In this case, 
it computes and returns a list of the summary statistics of the fitted linear model. Here, it will 
output information such as residuals, coefficient standard error R-squared, f-statistic, and 
a degree of freedom. In the Call section, the function called to generate the fitted model 
is displayed. In the Residuals section, it provides a quick summary (min, 1Q, median, 3Q, 
max) of the distribution. 
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In the Coefficients section, each coefficient is a Gaussian random variable. Within this 
section, Estimate represents the mean distribution of the variable; Std.Error displays 
the standard error of the variable; the t value is Estimate divided by Std.Error and the p 
value indicates the probability of getting a value larger than the t value. In this sample, the p 
value of both intercepts (0.002573) and x (0.00217) have a 95 percent level of confidence.

Residual standard error outputs the standard deviation of residuals, while the degree of 
freedom indicates the differences between the observation in training samples and the 
number used in the model. Multiple R-squared is obtained by dividing the sum of squares. 
One can use R-squared to measure how close the data is to fit into the regression line. Mostly, 
the higher the R-squared, the better the model fits your data. However, it does not necessarily 
indicate whether the regression model is adequate. This means you might get a good model 
with a low R-squared or you can have a bad model with a high R-squared. Since multiple 
R-squared ignore a degree of freedom, the calculated score is biased. To make the calculation 
fair, an adjusted R-squared (0.6295) uses an unbiased estimate, and will be slightly less than 
multiple R-squared (0.6665). F-statistic is retrieved by performing an f-test on the model. A 
p value equal to 0.00217 (< 0.05) rejects the null hypothesis (no linear correlation between 
variables) and indicates that the observed F is greater than the critical F value. In other words, 
the result shows that there is a significant positive linear correlation between the variables.

See also
ff For more information on the parameters used for obtaining a summary of the fitted 

model, you can use the help function or ? to view the help page:
> ?summary.lm

ff Alternatively, you can use the following functions to display the properties of the 
model:

>  coefficients(lmfit) # Extract model coefficients

>  confint(lmfit, level=0.95)  # Computes confidence intervals for 
model parameters.

>  fitted(lmfit) # Extract model fitted values

>  residuals(lmfit) # Extract model residuals 

>  anova(lmfit) # Compute analysis of variance tables for fitted 
model object

>  vcov(lmfit) # Calculate variance-covariance matrix for a fitted 
model object

>  influence(lmfit) # Diagnose quality of regression fits
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Using linear regression to predict unknown 
values

With a fitted regression model, we can apply the model to predict unknown values. For 
regression models, we can express the precision of prediction with a prediction interval and a 
confidence interval. In the following recipe, we introduce how to predict unknown values under 
these two measurements.

Getting ready
You need to have completed the previous recipe by computing the linear model of the x and 
y1 variables from the quartet dataset.

How to do it...
Perform the following steps to predict values with linear regression:

1.	 Fit a linear model with the x and y1 variables:
> lmfit = lm(y1~x, Quartet)

2.	 Assign values to be predicted into newdata:
> newdata = data.frame(x = c(3,6,15))

3.	 Compute the prediction result using the confidence interval with level set as 0.95:
> predict(lmfit, newdata, interval="confidence", level=0.95)

        fit      lwr       upr

1  4.500364 2.691375  6.309352

2  6.000636 4.838027  7.163245

3 10.501455 8.692466 12.310443

4.	 Compute the prediction result using this prediction interval:
> predict(lmfit, newdata, interval="predict")

        fit      lwr       upr

1  4.500364 1.169022  7.831705

2  6.000636 2.971271  9.030002

3 10.501455 7.170113 13.832796
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How it works...
We first build a linear fitted model with x and y1 variables. Next, we assign values to be 
predicted into a data frame, newdata. It is important to note that the generated model is in 
the form of y1 ~ x.

Next, we compute the prediction result using a confidence interval by specifying confidence 
in the argument interval. From the output of row 1, we get fitted y1 of the x=3 input, which 
equals to 4.500364, and a 95 percent confidence interval (set 0.95 in the level argument) 
of the y1 mean for x=3 is between 2.691375 and 6.309352. In addition to this, row 2 and 3 
give the prediction result of y1 with an input of x=6 and x=15.

Next, we compute the prediction result using a prediction interval by specifying prediction 
in the argument interval. From the output of row 1, we can see fitted y1 of the x=3 input 
equals to 4.500364, and a 95 percent prediction interval of y1 for x=3 is between 
1.169022 and 7.831705. Row 2 and 3 output the prediction result of y1 with an input of 
x=6 and x=15.

See also
ff For those who are interested in the differences between prediction intervals 

and confidence intervals, you can refer to the Wikipedia entry contrast with 
confidence intervals at http://en.wikipedia.org/wiki/Prediction_
interval#Contrast_with_confidence_intervals.

Generating a diagnostic plot of a fitted 
model

Diagnostics are methods to evaluate assumptions of the regression, which can be used to 
determine whether a fitted model adequately represents the data. In the following recipe, we 
introduce how to diagnose a regression model through the use of a diagnostic plot.

Getting ready
You need to have completed the previous recipe by computing a linear model of the x and y1 
variables from the quartet, and have the model assigned to the lmfit variable.

http://en.wikipedia.org/wiki/Prediction_interval#Contrast_with_confidence_intervals
http://en.wikipedia.org/wiki/Prediction_interval#Contrast_with_confidence_intervals


Chapter 4

125

How to do it...
Perform the following step to generate a diagnostic plot of the fitted model:

1.	 Plot the diagnostic plot of the regression model:
> par(mfrow=c(2,2))

> plot(lmfit)

Diagnostic plots of the regression model

How it works...
The plot function generates four diagnostic plots of a regression model:

ff The upper-left plot shows residuals versus fitted values. Within the plot, residuals 
represent the vertical distance from a point to the regression line. If all points fall 
exactly on the regression line, all residuals will fall exactly on the dotted gray line. The 
red line within the plot is a smooth curve with regard to residuals, and if all the dots 
fall exactly on the regression line, the position of the red line should exactly match 
the dotted gray line.

ff The upper-right shows the normal of residuals. This plot verifies the assumption that 
residuals were normally distributed. Thus, if the residuals were normally distributed, 
they should lie exactly on the gray dash line.
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ff The Scale-Location plot on the bottom-left is used to measure the square root of 
the standardized residuals against the fitted value. Therefore, if all dots lie on the 
regression line, the value of y should be close to zero. Since it is assumed that the 
variance of residuals does not change the distribution substantially, if the assumption 
is correct, the red line should be relatively flat.

ff The bottom-right plot shows standardized residuals versus leverage. The leverage is a 
measurement of how each data point influences the regression. It is a measurement 
of the distance from the centroid of regression and level of isolation (measured by 
whether it has neighbors). Also, you can find the contour of Cook's distance, which 
is affected by high leverage and large residuals. You can use this to measure how 
regression would change if a single point is deleted. The red line is smooth with 
regard to standardized residuals. For a perfect fit regression, the red line should be 
close to the dashed line with no points over 0.5 in Cook's distance.

There's more...
To see more of the diagnostic plot function, you can use the help function to access further 
information:

> ?plot.lm

In order to discover whether there are points with large Cook's distance, one can use the 
cooks.distance function to compute the Cook's distance of each point, and analyze the 
distribution of distance through visualization:

> plot(cooks.distance(lmfit))

A plot of Cook's distance

In this case, where the point on index 3 shows greater Cook's distance than other points, one 
can investigate whether this point might be an outlier.
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Fitting a polynomial regression model with 
lm

Some predictor variables and response variables may have a non-linear relationship, and their 
relationship can be modeled as an nth order polynomial. In this recipe, we introduce how to 
deal with polynomial regression using the lm and poly functions.

Getting ready
Prepare the dataset that includes a relationship between the predictor and response variable 
that can be modeled as an nth order polynomial. In this recipe, we will continue to use the 
Quartet dataset from the car package.

How to do it...
Perform the following steps to fit the polynomial regression model with lm:

1.	 First, we make a scatter plot of the x and y2 variables:
> plot(Quartet$x, Quartet$y2)

Scatter plot of variables x and y2
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2.	 You can apply the poly function by specifying 2 in the argument:
> lmfit = lm(Quartet$y2~poly(Quartet$x,2))

> lines(sort(Quartet$x), lmfit$fit[order(Quartet$x)], col = "red")

A quardratic fit example of the regression plot of variables x and y2

How it works
We can illustrate the second order polynomial regression model in formula, 2y x cxα β= + + , 
where α is the intercept while β, illustrates regression coefficients.

In the preceding screenshot (step 1), the scatter plot of the x and y2 variables does not fit in a 
linear relationship, but shows a concave downward curve (or convex upward) with the turning 
point at x=11. In order to model the nonlinear relationship, we apply the poly function with 
an argument of 2 to fit the independent x variable and the dependent y2 variable. The red 
line in the screenshot shows that the model perfectly fits the data.

There's more...
You can also fit a second order polynomial model with an independent variable equal to the 
formula of the combined first order x variable and the second order x variable:

> plot(Quartet$x, Quartet$y2)

> lmfit = lm(Quartet$y2~ I(Quartet$x)+I(Quartet$x^2))
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Fitting a robust linear regression model with 
rlm

An outlier in the dataset will move the regression line away from the mainstream. Apart from 
removing it, we can apply a robust linear regression to fit datasets containing outliers. In 
this recipe, we introduce how to apply rlm to perform robust linear regression to datasets 
containing outliers.

Getting ready
Prepare the dataset that contains an outlier that may move the regression line away from the 
mainstream. Here, we use the Quartet dataset loaded from the previous recipe.

How to do it...
Perform the following steps to fit the robust linear regression model with rlm:

1.	 Generate a scatter plot of the x variable against y3:
> plot(Quartet$x, Quartet$y3)

Scatter plot of variables x and y3
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2.	 Next, you should import the MASS library first. Then, you can apply the rlm function to 
fit the model, and visualize the fitted line with the abline function:

> library(MASS)

> lmfit = rlm(Quartet$y3~Quartet$x)

> abline(lmfit, col="red")

Robust linear regression to variables x and y3

How it works
As per the preceding screenshot (step 1), you may encounter datasets that include outliers 
away from the mainstream. To remove the effect of an outlier, we demonstrate how to apply 
a robust linear regression (rlm) to fit the data. In the second screenshot (step 2), the robust 
regression line ignores the outlier and matches the mainstream.

There's more...
To see the effect of how an outlier can move the regression line away from the mainstream, 
you may replace the rlm function used in this recipe to lm, and replot the graph:

> plot(Quartet$x, Quartet$y3)

> lmfit = lm(Quartet$y3~Quartet$x)

> abline(lmfit, col="red")
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Linear regression on variables x and y3

It is obvious that outlier (x=13) moves the regression line away from the mainstream.

Studying a case of linear regression on SLID 
data

To summarize the contents of the previous section, we explore more complex data with linear 
regression. In this recipe, we demonstrate how to apply linear regression to analyze the 
Survey of Labor and Income Dynamics (SLID) dataset.

Getting ready
Check whether the car library is installed and loaded, as it is required to access the 
dataset SLID.

How to do it...
Follow these steps to perform linear regression on SLID data:

1.	 You can use the str function to get an overview of the data:
> str(SLID)

'data.frame':  7425 obs. of  5 variables:

 $ wages    : num  10.6 11 NA 17.8 NA ...

 $ education: num  15 13.2 16 14 8 16 12 14.5 15 10 ...

 $ age      : int  40 19 49 46 71 50 70 42 31 56 ...

 $ sex      : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 1 1 1 
2 1 ...

 $ language : Factor w/ 3 levels "English","French",..: 1 1 3 3 1 
1 1 1 1 1 ..



Understanding Regression Analysis

132

2.	 First, we visualize the variable wages against language, age, education, and sex:
> par(mfrow=c(2,2))

> plot(SLID$wages ~ SLID$language)

> plot(SLID$wages ~ SLID$age)

> plot(SLID$wages ~ SLID$education)

> plot(SLID$wages ~ SLID$sex)

Plot of wages against multiple combinations

3.	 Then, we can use lm to fit the model:
> lmfit = lm(wages ~ ., data = SLID)

4.	 You can examine the summary of the fitted model through the summary function:
> summary(lmfit)

Call:

lm(formula = wages ~ ., data = SLID)

Residuals:

    Min      1Q  Median      3Q     Max 

-26.062  -4.347  -0.797   3.237  35.908 

Coefficients:

                Estimate Std. Error t value Pr(>|t|)    

(Intercept)    -7.888779   0.612263 -12.885   <2e-16 ***

education       0.916614   0.034762  26.368   <2e-16 ***
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age             0.255137   0.008714  29.278   <2e-16 ***

sexMale         3.455411   0.209195  16.518   <2e-16 ***

languageFrench -0.015223   0.426732  -0.036    0.972    

languageOther   0.142605   0.325058   0.439    0.661    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.6 on 3981 degrees of freedom

  (3438 observations deleted due to missingness)

Multiple R-squared:  0.2973,	 Adjusted R-squared:  0.2964 

F-statistic: 336.8 on 5 and 3981 DF,  p-value: < 2.2e-16

5.	 Drop the language attribute, and refit the model with the lm function:
> lmfit = lm(wages ~ age + sex + education, data = SLID)

> summary(lmfit)

Call:

lm(formula = wages ~ age + sex + education, data = SLID)

Residuals:

    Min      1Q  Median      3Q     Max 

-26.111  -4.328  -0.792   3.243  35.892 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -7.905243   0.607771  -13.01   <2e-16 ***

age          0.255101   0.008634   29.55   <2e-16 ***

sexMale      3.465251   0.208494   16.62   <2e-16 ***

education    0.918735   0.034514   26.62   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.602 on 4010 degrees of freedom

  (3411 observations deleted due to missingness)

Multiple R-squared:  0.2972,	 Adjusted R-squared:  0.2967 

F-statistic: 565.3 on 3 and 4010 DF,  p-value: < 2.2e-16
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6.	 We can then draw a diagnostic plot of lmfit:
> par(mfrow=c(2,2))

> plot(lmfit)

Diagnostic plot of fitted model

7.	 Next, we take the log of wages and replot the diagnostic plot:
> lmfit = lm(log(wages) ~ age + sex + education, data = SLID)

> plot(lmfit)

Diagnostic plot of adjusted fitted model
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8.	 Next, you can diagnose the multi-colinearity of the regression model using the vif 
function:
> vif(lmfit)

      age       sex education 

 1.011613  1.000834  1.012179 

> sqrt(vif(lmfit)) > 2

      age       sex education 

    FALSE     FALSE     FALSE

9.	 Then, you can install and load the lmtest package and diagnose the 
heteroscedasticity of the regression model with the bptest function:
> install.packages("lmtest")

> library(lmtest)

> bptest(lmfit)

  studentized Breusch-Pagan test

data:  lmfit

BP = 29.0311, df = 3, p-value = 2.206e-06

10.	 Finally, you can install and load the rms package. Then, you can correct standard 
errors with robcov:

> install.packages("rms")

> library(rms)

> olsfit = ols(log(wages) ~ age + sex + education, data= SLID, x= 
TRUE, y= TRUE)

> robcov(olsfit)

Linear Regression Model

ols(formula = log(wages) ~ age + sex + education, data = SLID, 

    x = TRUE, y = TRUE)

Frequencies of Missing Values Due to Each Variable

log(wages)        age        sex  education 

      3278          0          0        249 
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                Model Likelihood     Discrimination    

                   Ratio Test           Indexes        

Obs     4014    LR chi2   1486.08    R2       0.309    

sigma 0.4187    d.f.            3    R2 adj   0.309    

d.f.    4010    Pr(> chi2) 0.0000    g        0.315    

Residuals

     Min       1Q   Median       3Q      Max 

-2.36252 -0.27716  0.01428  0.28625  1.56588 

          Coef   S.E.   t     Pr(>|t|)

Intercept 1.1169 0.0387 28.90 <0.0001 

age       0.0176 0.0006 30.15 <0.0001 

sex=Male  0.2244 0.0132 16.96 <0.0001 

education 0.0552 0.0022 24.82 <0.0001

How it works...
This recipe demonstrates how to conduct linear regression analysis on the SLID dataset. First, 
we load the SLID data and display its structure through the use of the str function. From the 
structure of the data, we know that there are four independent variables that will affect the 
wages of the dependent variable.

Next, we explore the relationship of each independent variable to the dependent variable, 
wages, through visualization; the visualization result is shown in the preceding screenshot 
(step 2). In the upper-left section of this screenshot, you can find the box plot of three 
different languages against wages; the correlation between the languages and wages is not 
obvious. The upper-right section of the screenshot shows that the age appears to have a 
positive relationship with the dependent variable, wages. In the bottom-left of the screenshot, 
it is shown that education also appears to have a positive relationship with wages. Finally, 
the box plot in the bottom-right section of the screenshot shows that the wages of males are 
slightly higher than females.

Next, we fit all the attributes except for wages to the model as predictor variables. By 
summarizing the model, it is shown that education, age, and sex show a significance (p-value 
< 0.05). As a result, we drop the insignificant language attribute (which has a p-value greater 
than 0.05) and fit the three independent variables (education, sex, and age) with regard to 
the dependent variable (wages) in the linear model. This accordingly raises the f-statistic from 
336.8 to 565.3.
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Next, we generate the diagnostic plot of the fitted model. Within the diagnostic plot, all the 
four plots indicate that the regression model follows the regression assumption. However, 
from residuals versus fitted and scale-location plot, residuals of smaller fitted values are 
biased toward the regression model. Since wages range over several orders of magnitude, 
to induce the symmetry, we apply a log transformation to wages and refit the data into a 
regression model. The red line of residuals versus fitted values plot and the Scale-Location 
plot are now closer to the gray dashed line.

Next, we would like to test whether multi-colinearity exists in the model. Multi-colinearity 
takes place when a predictor is highly correlated with others. If multi-colinearity exists in 
the model, you might see some variables have a high R-squared value but are shown as 
variables insignificant. To detect multi-colinearity, we can calculate the variance inflation and 
generalized variance inflation factors for linear and generalized linear models with the vif 
function. If multi-colinearity exists, we should find predictors with the square root of variance 
inflation factor above 2. Then, we may remove redundant predictors or use a principal 
component analysis to transform predictors to a smaller set of uncorrelated components.

Finally, we would like to test whether heteroscedasticity exists in the model. Before 
discussing the definition of heteroscedasticity, we first have to know that in classic 
assumptions, the ordinary regression model assumes that the variance of the error is 
constant or homogeneous across observations. On the contrary, heteroscedasticity means 
that the variance is unequal across observations. As a result, heteroscedasticity may be 
biased toward the standard errors of our estimates and, therefore, mislead the testing of the 
hypothes. To detect and test heteroscedasticity, we can perform the Breusch-Pagan test for 
heteroscedasticity with the bptest function within the lmtest package. In this case, the 
p-value shows 2.206e-06 (<0.5), which rejects the null hypothesis of homoscedasticity (no 
heteroscedasticity). Here, it implies that the standard errors of the parameter estimates are 
incorrect. However, we can use robust standard errors to correct the standard error (do not 
remove the heteroscedasticity) and increase the significance of truly significant parameters 
with robcov from the rms package. However, since it only takes the fitted model from the 
rms series as an input, we have to fit the ordinary least squares model beforehand.

See also
ff For more information about the SLID dataset, you can use the help function to view 

the related documentation:
>  ?SLID    
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Applying the Gaussian model for generalized 
linear regression

Generalized linear model (GLM) is a generalization of linear regression, which can include 
a link function to make a linear prediction. As a default setting, the family object for glm is 
Gaussian, which makes the glm function perform exactly the same as lm. In this recipe, we 
first demonstrate how to fit the model into the data using the glm function, and then show 
that glm with a Gaussian model performs exactly the same as lm.

Getting ready
Check whether the car library is installed and loaded as we require the SLID dataset from 
this package.

How to do it...
Perform the following steps to fit a generalized linear regression model with the  
Gaussian model:

1.	 Fit the independent variables, age, sex, and education, and dependent variable 
wages to glm:
> lmfit1 = glm(wages ~ age + sex + education, data = SLID, 
family=gaussian)

> summary(lmfit1)

Call:

glm(formula = wages ~ age + sex + education, family = gaussian, 

    data = SLID)

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-26.111   -4.328   -0.792    3.243   35.892  

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -7.905243   0.607771  -13.01   <2e-16 ***

age          0.255101   0.008634   29.55   <2e-16 ***

sexMale      3.465251   0.208494   16.62   <2e-16 ***
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education    0.918735   0.034514   26.62   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gaussian family taken to be 43.58492)

    Null deviance: 248686  on 4013  degrees of freedom

Residual deviance: 174776  on 4010  degrees of freedom

  (3411 observations deleted due to missingness)

AIC: 26549

Number of Fisher Scoring iterations: 2

2.	 Fit the independent variables, age, sex, and education, and the dependent 
variable wages to lm:
> lmfit2 = lm(wages ~ age + sex + education, data = SLID)

> summary(lmfit2)

Call:

lm(formula = wages ~ age + sex + education, data = SLID)

Residuals:

    Min      1Q  Median      3Q     Max 

-26.111  -4.328  -0.792   3.243  35.892 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -7.905243   0.607771  -13.01   <2e-16 ***

age          0.255101   0.008634   29.55   <2e-16 ***

sexMale      3.465251   0.208494   16.62   <2e-16 ***

education    0.918735   0.034514   26.62   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.602 on 4010 degrees of freedom

  (3411 observations deleted due to missingness)

Multiple R-squared:  0.2972,	 Adjusted R-squared:  0.2967 

F-statistic: 565.3 on 3 and 4010 DF,  p-value: < 2.2e-16



Understanding Regression Analysis

140

3.	 Use anova to compare the two fitted models:
> anova(lmfit1, lmfit2)

Analysis of Deviance Table

Model: gaussian, link: identity

Response: wages

Terms added sequentially (first to last)

          Df Deviance Resid. Df Resid. Dev

NULL                       4013     248686

age        1    31953      4012     216733

sex        1    11074      4011     205659

education  1    30883      4010     174776

How it works...
The glm function fits a model to the data in a similar fashion to the lm function. The only 
difference is that you can specify a different link function in the parameter, family (you 
may use ?family in the console to find different types of link functions). In this recipe, we 
first input the independent variables, age, sex, and education, and the dependent wages 
variable to the glm function, and assign the built model to lmfit1. You can use the built 
model for further prediction.

Next, to determine whether glm with a Gaussian model is exactly the same as lm, we fit the 
independent variables, age, sex, and education, and the dependent variable, wages, to 
the lm model. By applying the summary function to the two different models, it reveals that 
the residuals and coefficients of the two output summaries are exactly the same.

Finally, we further compare the two fitted models with the anova function. The result of the 
anova function shows that the two models are similar, with the same residual degrees of 
freedom (Res.DF) and residual sum of squares (RSS Df).

See also
ff For a comparison of generalized linear models with linear models, you can refer to 

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.
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Applying the Poisson model for generalized 
linear regression

Generalized linear models allow response variables that have error distribution models other 
than a normal distribution (Gaussian). In this recipe, we demonstrate how to apply Poisson as 
a family object within glm with regard to count data.

Getting ready
The prerequisite of this task is to prepare the count data, with all the input data values as 
integers.

How to do it...
Perform the following steps to fit the generalized linear regression model with the  
Poisson model:

1.	 Load the warpbreaks data, and use head to view the first few lines:
> data(warpbreaks)

> head(warpbreaks)

  breaks wool tension

1     26    A       L

2     30    A       L

3     54    A       L

4     25    A       L

5     70    A       L

6     52    A       L

2.	 We apply Poisson as a family object for the independent variable, tension, and the 
dependent variable, breaks:

> rs1 = glm(breaks ~ tension, data=warpbreaks, family="poisson")

> summary(rs1)

Call:

glm(formula = breaks ~ tension, family = "poisson", data = 
warpbreaks)

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  
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-4.2464  -1.6031  -0.5872   1.2813   4.9366  

Coefficients:

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)  3.59426    0.03907  91.988  < 2e-16 ***

tensionM    -0.32132    0.06027  -5.332 9.73e-08 ***

tensionH    -0.51849    0.06396  -8.107 5.21e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Poisson family taken to be 1)

    Null deviance: 297.37  on 53  degrees of freedom

Residual deviance: 226.43  on 51  degrees of freedom

AIC: 507.09

Number of Fisher Scoring iterations: 4

How it works...
Under the assumption of a Poisson distribution, the count data can be fitted to a log-linear 
model. In this recipe, we first loaded a sample count data from the warpbreaks dataset, 
which contained data regarding the number of warp breaks per loom. Next, we applied the 
glm function with breaks as a dependent variable, tension as an independent variable,  
and Poisson as a family object. Finally, we viewed the fitted log-linear model with the  
summary function.

See also
ff To understand more on how a Poisson model is related to count data, you can refer 

to Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (No. 53). 
Cambridge university press.

Applying the Binomial model for generalized 
linear regression

For a binary dependent variable, one may apply a binomial model as the family object in the 
glm function.
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Getting ready
The prerequisite of this task is to prepare a binary dependent variable. Here, we use the vs 
variable (V engine or straight engine) as the dependent variable.

How to do it...
Perform the following steps to fit a generalized linear regression model with the  
Binomial model:

1.	 First, we examine the first six elements of vs within mtcars:
> head(mtcars$vs)

[1] 0 0 1 1 0 1

2.	 We apply the glm function with binomial as the family object:

> lm1 = glm(vs ~ hp+mpg+gear,data=mtcars, family=binomial)

> summary(lm1)

Call:

glm(formula = vs ~ hp + mpg + gear, family = binomial, data = 
mtcars)

Deviance Residuals: 

     Min        1Q    Median        3Q       Max  

-1.68166  -0.23743  -0.00945   0.30884   1.55688  

Coefficients:

            Estimate Std. Error z value Pr(>|z|)  

(Intercept) 11.95183    8.00322   1.493   0.1353  

hp          -0.07322    0.03440  -2.129   0.0333 *

mpg          0.16051    0.27538   0.583   0.5600  

gear        -1.66526    1.76407  -0.944   0.3452  

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
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    Null deviance: 43.860  on 31  degrees of freedom

Residual deviance: 15.651  on 28  degrees of freedom

AIC: 23.651

Number of Fisher Scoring iterations: 7

How it works...
Within the binary data, each observation of the response value is coded as either 0 or 1. 
Fitting into the regression model of the binary data requires a binomial distribution function. 
In this example, we first load the binary dependent variable, vs, from the mtcars dataset. 
The vs is suitable for the binomial model as it contains binary data. Next, we fit the model into 
the binary data using the glm function by specifying binomial as the family object. Last, by 
referring to the summary, we can obtain the description of the fitted model.

See also
ff If you specify the family object in parameters only, you will use the default link to fit 

the model. However, to use an alternative link function, you can add a link argument. 
For example:
> lm1 = glm(vs ~ hp+mpg+gear,data=mtcars, 
family=binomial(link="probit"))

ff If you would like to know how many alternative links you can use, please refer to the 
family document via the help function:
 > ?family

Fitting a generalized additive model to data
Generalized additive model (GAM), which is used to fit generalized additive models, can be 
viewed as a semiparametric extension of GLM. While GLM holds the assumption that there 
is a linear relationship between dependent and independent variables, GAM fits the model 
on account of the local behavior of data. As a result, GAM has the ability to deal with highly 
nonlinear relationships between dependent and independent variables. In the following 
recipe, we introduce how to fit regression using a generalized additive model.

Getting ready
We need to prepare a data frame containing variables, where one of the variables is a 
response variable and the others may be predictor variables.
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How to do it...
Perform the following steps to fit a generalized additive model into data:

1.	 First, load the mgcv package, which contains the gam function:
> install.packages("mgcv")

> library(mgcv)

2.	 Then, install the MASS package and load the Boston dataset:
> install.packages("MASS")

> library(MASS)

> attach(Boston)

> str(Boston)

3.	 Fit the regression using gam:
> fit = gam(dis ~ s(nox))

4.	 Get the summary information of the fitted model:
> summary(fit)

Family: gaussian 

Link function: identity 

Formula:

dis ~ s(nox)

Parametric coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.79504    0.04507   84.21   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

         edf Ref.df   F p-value    

s(nox) 8.434  8.893 189  <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.768   Deviance explained = 77.2%

GCV = 1.0472  Scale est. = 1.0277    n = 506
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How it works
GAM is designed to maximize the prediction of a dependent variable, y, from 
various distributions by estimating the nonparametric functions of the predictors 
that link to the dependent variable through a link function. The notion of GAM is 

( )( ) ( ) ( ) ( )1 1 2 2 n ng E y f x f x f xβ= + + +� , where an exponential family, E, is specified for y,  
along with the g link function; f denotes the link function of predictors.

The gam function is contained in the mgcv package, so, install this package first and load it 
into an R session. Next, load the Boston dataset (Housing Values in the Suburbs of Boston) 
from the MASS package. From the dataset, we use dis (the weighted mean of the distance 
to five Boston employment centers) as the dependent variable, and nox (nitrogen oxide 
concentration) as the independent variable, and then input them into the gam function to 
generate a fitted model.

Similar to glm, gam allows users to summarize the gam fit. From the summary, one can find 
the parametric parameter, significance of smoothed terms, and other useful information.

See also
ff Apart from gam, the mgcv package provides another generalized additive model, bam, 

for large datasets. The bam package is very similar to gam, but uses less memory and 
is relatively more efficient. Please use the help function for more information on this 
model:
 > ? bam

ff For more information about generalized additive models in R, please refer to Wood, S. 
(2006). Generalized additive models: an introduction with R. CRC press.

Visualizing a generalized additive model
In this recipe, we demonstrate how to add a gam fitted regression line to a scatter plot.  
In addition, we visualize the gam fit using the plot function.

Getting ready
Complete the previous recipe by assigning a gam fitted model to the fit variable.
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How to do it...
Perform the following steps to visualize the generalized additive model:

1.	 Generate a scatter plot using the nox and dis variables:
> plot(nox, dis)

Scatter plot of variable nox against dis

2.	 Add the regression to the scatter plot:
> x = seq(0, 1, length = 500)

> y = predict(fit, data.frame(nox = x))

> lines(x, y, col = "red", lwd = 2)

Fitted regression of gam on a scatter plot
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3.	 Alternatively, you can plot the fitted model using the plot function:

> plot(fit)

Plot of fitted gam

How it works...
To visualize the fitted regression, we first generate a scatter plot using the dis and nox 
variables. Then, we generate the sequence of x-axis, and respond y through the use of the 
predict function on the fitted model, fit. Finally, we use the lines function to add the 
regression line to the scatter plot.

Besides using the lines to add fitted regression lines on the scatter plot, gam has a plot 
function to visualize the fitted regression lines containing the confidence region. To shade the 
confidence region, we assign shade = TRUE within the function.

There's more...
The vis.gam function is used to produce perspective or contour plot views of the gam 
model predictions. It is helpful to observe how response variables interact with two predictor 
variables. The following is an example of a contour plot on the Boston dataset:

> fit2=gam(medv~crim+zn+crim:zn, data=Boston)

> vis.gam(fit2)
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A sample contour plot produced by vis.gam

Diagnosing a generalized additive model
GAM also provides diagnostic information about the fitting procedure and results of the 
generalized additive model. In this recipe, we demonstrate how to plot diagnostic plots 
through the gam.check function.

Getting ready
Ensure that the previous recipe is completed with the gam fitted model assigned to the fit 
variable.

How to do it...
Perform the following step to diagnose the generalized additive model:

1.	 Generate the diagnostic plot using gam.check on the fitted model:

> gam.check(fit)

Method: GCV   Optimizer: magic

Smoothing parameter selection converged after 7 iterations.

The RMS GCV score gradient at convergence was 8.79622e-06 .

The Hessian was positive definite.

The estimated model rank was 10 (maximum possible: 10)

Model rank =  10 / 10 
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Basis dimension (k) checking results. Low p-value (k-index<1) may

indicate that k is too low, especially if edf is close to k'.

          k'   edf k-index p-value

s(nox) 9.000 8.434   0.397       0

Diagnostic plot of fitted gam

How it works...
The gam.check function first produces the smoothing parameter estimation convergence 
information. In this example, the smoothing parameter, GCV/UBRE (Generalized Cross 
Validation/ Unbiased Risk Estimator) score converges after seven iterations. The mean 
absolute gradient of the GCV/UBRE function at the minimum is 8.79622e-06 and the 
estimated rank is 10. The dimension check is to test whether the basis dimension for a 
smooth function is adequate. From this example, the low p-value indicates that the k is set too 
low. One may adjust the dimension choice for smooth by specifying the argument, k, by fitting 
gam to the data.

In addition to providing information regarding smoothing parameter estimation convergence, 
the function returns four diagnostic plots. The upper-left section of the plot in the screenshot 
shows a quantile-comparison plot. This plot is useful to identify outliers and heavy tails. The 
upper-right section of the plot shows residuals versus linear predictors, which are useful in 
finding nonconstant error variances. The bottom-left section of the plot shows a histogram 
of the residuals, which is helpful in detecting non-normality. The bottom-right section shows 
response versus the fitted value.
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There's more...
You can access the help function for more information on gam.check. In particular, this 
includes a detailed illustration of smoothing parameter estimation convergence and four 
returned plots:

> ?gam.check

In addition, more information for choose.k can be accessed by the following command:

> ?choose.k
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Classification (I) – Tree, 
Lazy, and Probabilistic

In this chapter, we will cover the following recipes:

ff Preparing the training and testing datasets

ff Building a classification model with recursive partitioning trees

ff Visualizing a recursive partitioning tree

ff Measuring the prediction performance of a recursive partitioning tree

ff Pruning a recursive partitioning tree

ff Building a classification model with a conditional inference tree

ff Visualizing a conditional inference tree

ff Measuring the prediction performance of a conditional inference tree

ff Classifying data with a k-nearest neighbor classifier

ff Classifying data with logistic regression

ff Classifying data with the Naïve Bayes classifier

Introduction
Classification is used to identify a category of new observations (testing datasets) based on 
a classification model built from the training dataset, of which the categories are already 
known. Similar to regression, classification is categorized as a supervised learning method 
as it employs known answers (label) of a training dataset to predict the answer (label) of the 
testing dataset. The main difference between regression and classification is that regression 
is used to predict continuous values. 

5
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In contrast to this, classification is used to identify the category of a given observation. 
For example, one may use regression to predict the future price of a given stock based on 
historical prices. However, one should use the classification method to predict whether the 
stock price will rise or fall.

In this chapter, we will illustrate how to use R to perform classification. We first build a training 
dataset and a testing dataset from the churn dataset, and then apply different classification 
methods to classify the churn dataset. In the following recipes, we will introduce the tree-
based classification method using a traditional classification tree and a conditional inference 
tree, lazy-based algorithm, and a probabilistic-based method using the training dataset to 
build up a classification model, and then use the model to predict the category (class label) of 
the testing dataset. We will also use a confusion matrix to measure the performance.

Preparing the training and testing datasets
Building a classification model requires a training dataset to train the classification model, 
and testing data is needed to then validate the prediction performance. In the following 
recipe, we will demonstrate how to split the telecom churn dataset into  training and testing 
datasets, respectively.

Getting ready
In this recipe, we will use the telecom churn dataset as the input data source, and split the 
data into training and testing datasets.

How to do it...
Perform the following steps to split the churn dataset into training and testing datasets:

1.	 You can retrieve the churn dataset from the C50 package:
> install.packages("C50")

> library(C50)

> data(churn)

2.	 Use str to read the structure of the dataset:
> str(churnTrain)

3.	 We can remove the state, area_code, and account_length attributes, which 
are not appropriate for classification features:
> churnTrain = churnTrain[,! names(churnTrain) %in% c("state", 
"area_code", "account_length") ]
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4.	 Then, split 70 percent of the data into the training dataset and 30 percent of the data 
into the testing dataset:
> set.seed(2)

> ind = sample(2, nrow(churnTrain), replace = TRUE, prob=c(0.7, 
0.3))

> trainset = churnTrain[ind == 1,]

> testset = churnTrain[ind == 2,]

5.	 Lastly, use dim to explore the dimensions of both the training and testing datasets:
> dim(trainset)

[1] 2315   17

> dim(testset)

[1] 1018   17

How it works...
In this recipe, we use the telecom churn dataset as our example data source. The dataset 
contains 20 variables with 3,333 observations. We would like to build a classification model 
to predict whether a customer will churn, which is very important to the telecom company as 
the cost of acquiring a new customer is significantly more than retaining one.

Before building the classification model, we need to preprocess the data first. Thus, we load 
the churn data from the C50 package into the R session with the variable name as churn. As 
we determined that attributes such as state, area_code, and account_length are not 
useful features for building the classification model, we remove these attributes.

After preprocessing the data, we split it into training and testing datasets, respectively. We 
then use a sample function to randomly generate a sequence containing 70 percent of the 
training dataset and 30 percent of the testing dataset with a size equal to the number of 
observations. Then, we use a generated sequence to split the churn dataset into the training 
dataset, trainset, and the testing dataset, testset. Lastly, by using the dim function, 
we found that 2,315 out of the 3,333 observations are categorized into the training dataset, 
trainset, while the other 1,018 are categorized into the testing dataset, testset.

There's more...
You can combine the split process of the training and testing datasets into the split.data 
function. Therefore, you can easily split the data into the two datasets by calling this function 
and specifying the proportion and seed in the parameters:

> split.data = function(data, p = 0.7, s = 666){

+   set.seed(s)

+   index = sample(1:dim(data)[1])
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+   train = data[index[1:floor(dim(data)[1] * p)], ]

+   test = data[index[((ceiling(dim(data)[1] * p)) + 1):dim(data)[1]], ]

+   return(list(train = train, test = test))

+ } 

Building a classification model with 
recursive partitioning trees

A classification tree uses a split condition to predict class labels based on one or multiple 
input variables. The classification process starts from the root node of the tree; at each node, 
the process will check whether the input value should recursively continue to the right or left 
sub-branch according to the split condition, and stops when meeting any leaf (terminal) nodes 
of the decision tree. In this recipe, we will introduce how to apply a recursive partitioning tree 
on the customer churn dataset.

Getting ready
You need to have completed the previous recipe by splitting the churn dataset into the training 
dataset (trainset) and testing dataset (testset), and each dataset should contain exactly 
17 variables.

How to do it...
Perform the following steps to split the churn dataset into training and testing datasets:

1.	 Load the rpart package:
> library(rpart)

2.	 Use the rpart function to build a classification tree model:
> churn.rp = rpart(churn ~ ., data=trainset)

3.	 Type churn.rp to retrieve the node detail of the classification tree:
> churn.rp 

4.	 Next, use the printcp function to examine the complexity parameter:
> printcp(churn.rp)

Classification tree:

rpart(formula = churn ~ ., data = trainset)

Variables actually used in tree construction:
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[1] international_plan            number_customer_service_calls

[3] total_day_minutes             total_eve_minutes            

[5] total_intl_calls              total_intl_minutes           

[7] voice_mail_plan              

Root node error: 342/2315 = 0.14773

n= 2315 

        CP nsplit rel error  xerror     xstd

1 0.076023      0   1.00000 1.00000 0.049920

2 0.074561      2   0.84795 0.99708 0.049860

3 0.055556      4   0.69883 0.76023 0.044421

4 0.026316      7   0.49415 0.52632 0.037673

5 0.023392      8   0.46784 0.52047 0.037481

6 0.020468     10   0.42105 0.50877 0.037092

7 0.017544     11   0.40058 0.47076 0.035788

8 0.010000     12   0.38304 0.47661 0.035993

5.	 Next, use the plotcp function to plot the cost complexity parameters:
> plotcp(churn.rp)

Figure 1: The cost complexity parameter plot

6.	 Lastly, use the summary function to examine the built model:
> summary(churn.rp)
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How it works...
In this recipe, we use a recursive partitioning tree from the rpart package to build a  
tree-based classification model. The recursive portioning tree includes two processes: 
recursion and partitioning. During the process of decision induction, we have to consider a 
statistic evaluation question (or simply a yes/no question) to partition the data into different 
partitions in accordance with the assessment result. Then, as we have determined the child 
node, we can repeatedly perform the splitting until the stop criteria is satisfied.

For example, the data (shown in the following figure) in the root node can be partitioned 
into two groups with regard to the question of whether f1 is smaller than X. If so, the data 
is divided into the left-hand side. Otherwise, it is split into the right-hand side. Then, we can 
continue to partition the left-hand side data with the question of whether f2 is smaller than Y:

Figure 2: Recursive partioning tree

In the first step, we load the rpart package with the library function. Next, we build a 
classification model using the churn variable as a classification category (class label) and the 
remaining variables as input features.

After the model is built, you can type the variable name of the built model, churn.rp, to 
display the tree node details. In the printed node detail, n indicates the sample size, loss 
indicates the misclassification cost, yval stands for the classified membership (no or yes, in 
this case), and yprob stands for the probabilities of two classes (the left value refers to the 
probability reaching label no, and the right value refers to the probability reaching label, yes).
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Then, we use the printcp function to print the complexity parameters of the built tree model. 
From the output of printcp, one should find the value of CP, a complexity parameter, which 
serves as a penalty to control the size of the tree. In short, the greater the CP value, the  
fewer the number of splits there are (nsplit). The output value (the rel error) represents 
the average deviance of the current tree divided by the average deviance of the null tree.  
A xerror value represents the relative error estimated by a 10-fold classification. xstd 
stands for the standard error of the relative error.

To make the CP (cost complexity parameter) table more readable, we use plotcp to 
generate an information graphic of the CP table. As per the screenshot (step 5), the x-axis at 
the bottom illustrates the cp value, the y-axis illustrates the relative error, and the upper x-axis 
displays the size of the tree. The dotted line indicates the upper limit of a standard deviation. 
From the screenshot, we can determine that minimum cross-validation error occurs when the 
tree is at a size of 12.

We can also use the summary function to display the function call, complexity parameter table 
for the fitted tree model, variable importance, which helps identify the most important variable 
for the tree classification (summing up to 100), and detailed information of each node.

The advantage of using the decision tree is that it is very flexible and easy to interpret. It works 
on both classification and regression problems, and more; it is nonparametric. Therefore, one 
does not have to worry about whether the data is linear separable. As for the disadvantage 
of using the decision tree, it is that it tends to be biased and over-fitted. However, you can 
conquer the bias problem through the use of a conditional inference tree, and solve the 
problem of over-fitting through a random forest method or tree pruning.

See also
ff For more information about the rpart, printcp, and summary functions, please 

use the help function:
> ?rpart

> ?printcp

> ?summary.rpart

ff C50 is another package that provides a decision tree and a rule-based model. If you 
are interested in the package, you may refer to the document at http://cran.r-
project.org/web/packages/C50/C50.pdf.

Visualizing a recursive partitioning tree
From the last recipe, we learned how to print the classification tree in a text format. To make 
the tree more readable, we can use the plot function to obtain the graphical display of a 
built classification tree.

http://cran.r-project.org/web/packages/C50/C50.pdf
http://cran.r-project.org/web/packages/C50/C50.pdf
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Getting ready
One needs to have the previous recipe completed by generating a classification model, and 
assign the model into the churn.rp variable.

How to do it...
Perform the following steps to visualize the classification tree:

1.	 Use the plot function and the text function to plot the classification tree:
> plot(churn.rp, margin= 0.1)

> text(churn.rp, all=TRUE, use.n = TRUE)

Figure 3: The graphical display of a classification tree

2.	 You can also specify the uniform, branch, and margin parameter to adjust  
the layout:
> plot(churn.rp, uniform=TRUE, branch=0.6, margin=0.1)

> text(churn.rp, all=TRUE, use.n = TRUE)

Figure 4: Adjust the layout of the classification tree
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How it works...
Here, we demonstrate how to use the plot function to graphically display a classification 
tree. The plot function can simply visualize the classification tree, and you can then use the 
text function to add text to the plot.

In Figure 3, we assign margin = 0.1 as a parameter to add extra white space around the 
border to prevent the displayed text being truncated by the margin. It shows that the length 
of the branches displays the relative magnitude of the drop in deviance. We then use the text 
function to add labels for the nodes and branches. By default, the text function will add a 
split condition on each split, and add a category label in each terminal node. In order to add 
extra information on the tree plot, we set the parameter as all equal to TRUE to add a label 
to all the nodes. In addition to this, we add a parameter by specifying use.n = TRUE to add 
extra information, which shows that the actual number of observations fall into two different 
categories (no and yes).

In Figure 4, we set the option branch to 0.6 to add a shoulder to each plotted branch. In 
addition to this, in order to display branches of an equal length rather than relative magnitude 
of the drop in deviance, we set the option uniform to TRUE. As a result, Figure 4 shows a 
classification tree with short shoulders and branches of equal length.

See also
ff You may use ?plot.rpart to read more about the plotting of the classification 

tree. This document also includes information on how to specify the parameters, 
uniform, branch, compress, nspace, margin, and minbranch, to adjust the 
layout of the classification tree.

Measuring the prediction performance of a 
recursive partitioning tree

Since we have built a classification tree in the previous recipes, we can use it to predict the 
category (class label) of new observations. Before making a prediction, we first validate the 
prediction power of the classification tree, which can be done by generating a classification 
table on the testing dataset. In this recipe, we will introduce how to generate a predicted label 
versus a real label table with the predict function and the table function, and explain how 
to generate a confusion matrix to measure the performance.

Getting ready
You need to have the previous recipe completed by generating the classification model, 
churn.rp. In addition to this, you have to prepare the training dataset, trainset,  
and the testing dataset, testset, generated in the first recipe of this chapter.
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How to do it...
Perform the following steps to validate the prediction performance of a classification tree:

1.	 You can use the predict function to generate a predicted label of testing the dataset:
> predictions = predict(churn.rp, testset, type="class")

2.	 Use the table function to generate a classification table for the testing dataset:
> table(testset$churn, predictions)

     predictions

      yes  no

  yes 100  41

  no   18 859

3.	 One can further generate a confusion matrix using the confusionMatrix function 
provided in the caret package:

> library(caret)

> confusionMatrix(table(predictions, testset$churn))

Confusion Matrix and Statistics

           

predictions yes  no

        yes 100  18

        no   41 859

                                          

               Accuracy : 0.942           

                 95% CI : (0.9259, 0.9556)

    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.7393          

 Mcnemar's Test P-Value : 0.004181        

                                          

            Sensitivity : 0.70922         

            Specificity : 0.97948         

         Pos Pred Value : 0.84746         

         Neg Pred Value : 0.95444         

             Prevalence : 0.13851         
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         Detection Rate : 0.09823         

   Detection Prevalence : 0.11591         

      Balanced Accuracy : 0.84435         

                                          

       'Positive' Class : yes             

How it works...
In this recipe, we use a predict function and built up classification model, churn.rp, to 
predict the possible class labels of the testing dataset, testset. The predicted categories 
(class labels) are coded as either no or yes. Then, we use the table function to generate 
a classification table on the testing dataset. From the table, we discover that there are 
859 correctly predicted as no, while 18 are misclassified as yes. 100 of the yes predictions 
are correctly predicted, but 41 observations are misclassified into no. Further, we use the 
confusionMatrix function from the caret package to produce a measurement of the 
classification model.

See also
ff You may use ?confusionMatrix to read more about the performance 

measurement using the confusion matrix

ff For those who are interested in the definition output by the confusion matrix, please 
refer to the Wikipedia entry, Confusion_matrix (http://en.wikipedia.org/
wiki/Confusion_matrix)

Pruning a recursive partitioning tree
In previous recipes, we have built a complex decision tree for the churn dataset. However, 
sometimes we have to remove sections that are not powerful in classifying instances to avoid 
over-fitting, and to improve the prediction accuracy. Therefore, in this recipe, we introduce the 
cost complexity pruning method to prune the classification tree.

Getting ready
You need to have the previous recipe completed by generating a classification model, and 
assign the model into the churn.rp variable.

http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Confusion_matrix
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How to do it...
Perform the following steps to prune the classification tree:

1.	 Find the minimum cross-validation error of the classification tree model:
> min(churn.rp$cptable[,"xerror"])

[1] 0.4707602

2.	 Locate the record with the minimum cross-validation errors:
> which.min(churn.rp$cptable[,"xerror"])

7 

3.	 Get the cost complexity parameter of the record with the minimum cross-validation 
errors:
> churn.cp = churn.rp$cptable[7,"CP"]

> churn.cp

[1] 0.01754386

4.	 Prune the tree by setting the cp parameter to the CP value of the record with 
minimum cross-validation errors:
> prune.tree = prune(churn.rp, cp= churn.cp)

5.	 Visualize the classification tree by using the plot and text function:
> plot(prune.tree, margin= 0.1)

> text(prune.tree, all=TRUE , use.n=TRUE)

Figure 5: The pruned classification tree
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6.	 Next, you can generate a classification table based on the pruned classification  
tree model:
> predictions = predict(prune.tree, testset, type="class")

> table(testset$churn, predictions)

     predictions

      yes  no

  yes  95  46

  no   14 863

7.	 Lastly, you can generate a confusion matrix based on the classification table:

> confusionMatrix(table(predictions, testset$churn))

Confusion Matrix and Statistics

           

predictions yes  no

        yes  95  14

        no   46 863

                                          

               Accuracy : 0.9411          

                 95% CI : (0.9248, 0.9547)

    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : 2.786e-16       

                                          

                  Kappa : 0.727           

 Mcnemar's Test P-Value : 6.279e-05       

                                          

            Sensitivity : 0.67376         

            Specificity : 0.98404         

         Pos Pred Value : 0.87156         

         Neg Pred Value : 0.94939         

             Prevalence : 0.13851         

         Detection Rate : 0.09332         

   Detection Prevalence : 0.10707         

      Balanced Accuracy : 0.82890         

                                          

       'Positive' Class : yes             
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How it works...
In this recipe, we discussed pruning a classification tree to avoid over-fitting and producing 
a more robust classification model. We first located the record with the minimum cross-
validation errors within the cptable, and we then extracted the CP of the record and 
assigned the value to churn.cp. Next, we used the prune function to prune the 
classification tree with churn.cp as the parameter. Then, by using the plot function, 
we graphically displayed the pruned classification tree. From Figure 5, it is clear that the 
split of the tree is less than the original classification tree (Figure 3). Lastly, we produced a 
classification table and used the confusion matrix to validate the performance of the pruned 
tree. The result shows that the accuracy (0.9411) is slightly lower than the original model 
(0.942), and also suggests that the pruned tree may not perform better than the original 
classification tree as we have pruned some split conditions (Still, one should examine the 
change in sensitivity and specificity). However, the pruned tree model is more robust as it 
removes some split conditions that may lead to over-fitting.

See also
ff For those who would like to know more about cost complexity pruning, please refer to 

the Wikipedia article for Pruning (decision_trees): http://en.wikipedia.org/
wiki/Pruning_(decision_trees

Building a classification model with a 
conditional inference tree

In addition to traditional decision trees (rpart), conditional inference trees (ctree)  
are another popular tree-based classification method. Similar to traditional decision trees, 
conditional inference trees also recursively partition the data by performing a univariate 
split on the dependent variable. However, what makes conditional inference trees different 
from traditional decision trees is that conditional inference trees adapt the significance test 
procedures to select variables rather than selecting variables by maximizing information 
measures (rpart employs a Gini coefficient). In this recipe, we will introduce how to adapt  
a conditional inference tree to build a classification model.

Getting ready
You need to have the first recipe completed by generating the training dataset, trainset, 
and the testing dataset, testset.
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How to do it...
Perform the following steps to build the conditional inference tree:

1.	 First, we use ctree from the party package to build the classification model:
> library(party)

> ctree.model = ctree(churn ~ . , data = trainset)

2.	 Then, we examine the built tree model:
> ctree.model

How it works...
In this recipe, we used a conditional inference tree to build a classification tree. The use of 
ctree is similar to rpart. Therefore, you can easily test the classification power using either 
a traditional decision tree or a conditional inference tree while confronting classification 
problems. Next, we obtain the node details of the classification tree by examining the built 
model. Within the model, we discover that ctree provides information similar to a split 
condition, criterion (1 – p-value), statistics (test statistics), and weight (the case weight 
corresponding to the node). However, it does not offer as much information as rpart does 
through the use of the summary function.

See also
ff You may use the help function to refer to the definition of Binary Tree Class and 

read more about the properties of binary trees:
 > help("BinaryTree-class")

Visualizing a conditional inference tree
Similar to rpart, the party package also provides a visualization method for users to plot 
conditional inference trees. In the following recipe, we will introduce how to use the plot 
function to visualize conditional inference trees.

Getting ready
You need to have the first recipe completed by generating the conditional inference tree 
model, ctree.model. In addition to this, you need to have both, trainset and testset, 
loaded in an R session.
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How to do it...
Perform the following steps to visualize the conditional inference tree:

1.	 Use the plot function to plot ctree.model built in the last recipe:
> plot(ctree.model)

Figure 6: A conditional inference tree of churn data

2.	 To obtain a simple conditional inference tree, one can reduce the built model with 
less input features, and redraw the classification tree:

> daycharge.model = ctree(churn ~ total_day_charge, data = 
trainset)

> plot(daycharge.model)
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Figure 7: A conditional inference tree using the total_day_charge variable as only split condition

How it works...
To visualize the node detail of the conditional inference tree, we can apply the plot function 
on a built classification model. The output figure reveals that every intermediate node shows 
the dependent variable name and the p-value. The split condition is displayed on the left and 
right branches. The terminal nodes show the number of categorized observations, n, and the 
probability of a class label of either 0 or 1.

Taking Figure 7 as an example, we first build a classification model using total_day_
charge as the only feature and churn as the class label. The built classification tree shows 
that when total_day_charge is above 48.18, the lighter gray area is greater than the 
darker gray in node 9, which indicates that the customer with a day charge of over 48.18 has 
a greater likelihood to churn (label = yes).

See also
ff The visualization of the conditional inference tree comes from the plot.

BinaryTree function. If you are interested in adjusting the layout of the 
classification tree, you may use the help function to read the following document:

> ?plot.BinaryTree
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Measuring the prediction performance of a 
conditional inference tree

After building a conditional inference tree as a classification model, we can use the 
treeresponse and predict functions to predict categories of the testing dataset, testset, 
and further validate the prediction power with a classification table and a confusion matrix.

Getting ready
You need to have the previous recipe completed by generating the conditional inference tree 
model, ctree.model. In addition to this, you need to have both trainset and testset 
loaded in an R session.

How to do it...
Perform the following steps to measure the prediction performance of a conditional  
inference tree:

1.	 You can use the predict function to predict the category of the testing dataset, 
testset:
> ctree.predict = predict(ctree.model ,testset)

> table(ctree.predict, testset$churn)

             

ctree.predict yes  no

          yes  99  15

          no   42 862

2.	 Furthermore, you can use confusionMatrix from the caret package to generate 
the performance measurements of the prediction result:
> confusionMatrix(table(ctree.predict, testset$churn))

Confusion Matrix and Statistics

             

ctree.predict yes  no

          yes  99  15

          no   42 862

                                          

               Accuracy : 0.944           

                 95% CI : (0.9281, 0.9573)
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    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.7449          

 Mcnemar's Test P-Value : 0.0005736       

                                          

            Sensitivity : 0.70213         

            Specificity : 0.98290         

         Pos Pred Value : 0.86842         

         Neg Pred Value : 0.95354         

             Prevalence : 0.13851         

         Detection Rate : 0.09725         

   Detection Prevalence : 0.11198         

      Balanced Accuracy : 0.84251         

                                          

       'Positive' Class : yes             

3.	 You can also use the treeresponse function, which will tell you the list of  
class probabilities:
> tr = treeresponse(ctree.model, newdata = testset[1:5,])

> tr

[[1]]

[1] 0.03497409 0.96502591

[[2]]

[1] 0.02586207 0.97413793

[[3]]

[1] 0.02586207 0.97413793

[[4]]

[1] 0.02586207 0.97413793

[[5]]

[1] 0.03497409 0.96502591
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How it works...
In this recipe, we first demonstrate that one can use the prediction function to predict the 
category (class label) of the testing dataset, testset, and then employ a table function to 
generate a classification table. Next, you can use the confusionMatrix function built into 
the caret package to determine the performance measurements.

In addition to the predict function, treeresponse is also capable of estimating the 
class probability, which will often classify labels with a higher probability. In this example, we 
demonstrated how to obtain the estimated class probability using the top five records of the 
testing dataset, testset. The treeresponse function returns a list of five probabilities. You 
can use the list to determine the label of instance.

See also
ff For the predict function, you can specify the type as response, prob, or node. 

If you specify the type as prob when using the predict function (for example, 
predict(… type="prob")), you will get exactly the same result as what 
treeresponse returns.

Classifying data with the k-nearest neighbor 
classifier

K-nearest neighbor (knn) is a nonparametric lazy learning method. From a nonparametric 
view, it does not make any assumptions about data distribution. In terms of lazy learning, 
it does not require an explicit learning phase for generalization. The following recipe will 
introduce how to apply the k-nearest neighbor algorithm on the churn dataset.

Getting ready
You need to have the previous recipe completed by generating the training and testing 
datasets.

How to do it...
Perform the following steps to classify the churn data with the k-nearest neighbor algorithm:

1.	 First, one has to install the class package and have it loaded in an R session:
> install.packages("class")

> library(class)
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2.	 Replace yes and no of the voice_mail_plan and international_plan 
attributes in both the training dataset and testing dataset to 1 and 0:
> levels(trainset$international_plan) = list("0"="no", "1"="yes")

> levels(trainset$voice_mail_plan) = list("0"="no", "1"="yes")

> levels(testset$international_plan) = list("0"="no", "1"="yes")

> levels(testset$voice_mail_plan) = list("0"="no", "1"="yes")

3.	 Use the knn classification method on the training dataset and the testing dataset:
> churn.knn  = knn(trainset[,! names(trainset) %in% c("churn")], 
testset[,! names(testset) %in% c("churn")], trainset$churn, k=3)

4.	 Then, you can use the summary function to retrieve the number of predicted labels:
> summary(churn.knn)

yes  no 

 77 941 

5.	 Next, you can generate the classification matrix using the table function:
> table(testset$churn, churn.knn)

     churn.knn

      yes  no

  yes  44  97

  no   33 844

6.	 Lastly, you can generate a confusion matrix by using the confusionMatrix 
function:

> confusionMatrix(table(testset$churn, churn.knn))

Confusion Matrix and Statistics

     churn.knn

      yes  no

  yes  44  97

  no   33 844

                                          

               Accuracy : 0.8723          

                 95% CI : (0.8502, 0.8922)

    No Information Rate : 0.9244          

    P-Value [Acc > NIR] : 1               

                                          

                  Kappa : 0.339           
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 Mcnemar's Test P-Value : 3.286e-08       

                                          

            Sensitivity : 0.57143         

            Specificity : 0.89692         

         Pos Pred Value : 0.31206         

         Neg Pred Value : 0.96237         

             Prevalence : 0.07564         

         Detection Rate : 0.04322         

   Detection Prevalence : 0.13851         

      Balanced Accuracy : 0.73417         

                                          

       'Positive' Class : yes   

How it works...
knn trains all samples and classifies new instances based on a similarity (distance) measure. 
For example, the similarity measure can be formulated as follows:

ff Euclidian Distance: ( )21

k
i ii
x y

=
−∑

ff Manhattan Distance: ( )1

k
i ii
x y

=
−∑

In knn, a new instance is classified to a label (class) that is common among the k-nearest 
neighbors. If k = 1, then the new instance is assigned to the class where its nearest neighbor 
belongs. The only required input for the algorithm is k. If we give a small k input, it may lead 
to over-fitting. On the other hand, if we give a large k input, it may result in under-fitting. To 
choose a proper k-value, one can count on cross-validation.

The advantages of knn are:

ff The cost of the learning process is zero

ff It is nonparametric, which means that you do not have to make the assumption  
of data distribution

ff You can classify any data whenever you can find similarity measures of  
given instances
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The main disadvantages of knn are:

ff It is hard to interpret the classified result.

ff It is an expensive computation for a large dataset.

ff The performance relies on the number of dimensions. Therefore, for a high dimension 
problem, you should reduce the dimension first to increase the process performance.

The use of knn does not vary significantly from applying a tree-based algorithm mentioned 
in the previous recipes. However, while a tree-based algorithm may show you the decision 
tree model, the output produced by knn only reveals classification category factors. However, 
before building a classification model, one should replace the attribute with a string type to 
an integer since the k-nearest neighbor algorithm needs to calculate the distance between 
observations. Then, we build up a classification model by specifying k=3, which means 
choosing the three nearest neighbors. After the classification model is built, we can generate 
a classification table using predicted factors and the testing dataset label as the input. 
Lastly, we can generate a confusion matrix from the classification table. The confusion matrix 
output reveals an accuracy result of (0.8723), which suggests that both the tree-based 
methods mentioned in previous recipes outperform the accuracy of the k-nearest neighbor 
classification method in this case. Still, we cannot determine which model is better depending 
merely on accuracy, one should also examine the specificity and sensitivity from the output.

See also
ff There is another package named kknn, which provides a weighted k-nearest 

neighbor classification, regression, and clustering. You can learn more about 
the package by reading this document: http://cran.r-project.org/web/
packages/kknn/kknn.pdf.

Classifying data with logistic regression
Logistic regression is a form of probabilistic statistical classification model, which can be 
used to predict class labels based on one or more features. The classification is done by 
using the logit function to estimate the outcome probability. One can use logistic regression 
by specifying the family as a binomial while using the glm function. In this recipe, we will 
introduce how to classify data using logistic regression.

Getting ready
You need to have completed the first recipe by generating training and testing datasets.

http://cran.r-project.org/web/packages/kknn/kknn.pdf
http://cran.r-project.org/web/packages/kknn/kknn.pdf
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How to do it...
Perform the following steps to classify the churn data with logistic regression:

1.	 With the specification of family as a binomial, we apply the glm function on the 
dataset, trainset, by using churn as a class label and the rest of the variables as 
input features:
> fit = glm(churn ~ ., data = trainset, family=binomial)

2.	 Use the summary function to obtain summary information of the built logistic 
regression model:
> summary(fit)

Call:

glm(formula = churn ~ ., family = binomial, data = trainset)

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-3.1519   0.1983   0.3460   0.5186   2.1284  

Coefficients:

                                Estimate Std. Error z value 
Pr(>|z|)

(Intercept)                    8.3462866  0.8364914   9.978  < 2e-
16

international_planyes         -2.0534243  0.1726694 -11.892  < 2e-
16

voice_mail_planyes             1.3445887  0.6618905   2.031 
0.042211

number_vmail_messages         -0.0155101  0.0209220  -0.741 
0.458496

total_day_minutes              0.2398946  3.9168466   0.061 
0.951163

total_day_calls               -0.0014003  0.0032769  -0.427 
0.669141

total_day_charge              -1.4855284 23.0402950  -0.064 
0.948592

total_eve_minutes              0.3600678  1.9349825   0.186 
0.852379
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total_eve_calls               -0.0028484  0.0033061  -0.862 
0.388928

total_eve_charge              -4.3204432 22.7644698  -0.190 
0.849475

total_night_minutes            0.4431210  1.0478105   0.423 
0.672367

total_night_calls              0.0003978  0.0033188   0.120 
0.904588

total_night_charge            -9.9162795 23.2836376  -0.426 
0.670188

total_intl_minutes             0.4587114  6.3524560   0.072 
0.942435

total_intl_calls               0.1065264  0.0304318   3.500 
0.000464

total_intl_charge             -2.0803428 23.5262100  -0.088 
0.929538

number_customer_service_calls -0.5109077  0.0476289 -10.727  < 2e-
16

                                 

(Intercept)                   ***

international_planyes         ***

voice_mail_planyes            *  

number_vmail_messages            

total_day_minutes                

total_day_calls                  

total_day_charge                 

total_eve_minutes                

total_eve_calls                  

total_eve_charge                 

total_night_minutes              

total_night_calls                

total_night_charge               

total_intl_minutes               

total_intl_calls              ***

total_intl_charge                

number_customer_service_calls ***

---
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1938.8  on 2314  degrees of freedom

Residual deviance: 1515.3  on 2298  degrees of freedom

AIC: 1549.3

Number of Fisher Scoring iterations: 6

3.	 Then, we find that the built model contains insignificant variables, which would 
lead to misclassification. Therefore, we use significant variables only to train the 
classification model:
> fit = glm(churn ~ international_plan + voice_mail_plan+total_
intl_calls+number_customer_service_calls, data = trainset, 
family=binomial)

> summary(fit)

Call:

glm(formula = churn ~ international_plan + voice_mail_plan + 

    total_intl_calls + number_customer_service_calls, family = 
binomial, 

    data = trainset)

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-2.7308   0.3103   0.4196   0.5381   1.6716  

Coefficients:

                              Estimate Std. Error z value

(Intercept)                    2.32304    0.16770  13.852

international_planyes         -2.00346    0.16096 -12.447

voice_mail_planyes             0.79228    0.16380   4.837

total_intl_calls               0.08414    0.02862   2.939

number_customer_service_calls -0.44227    0.04451  -9.937

                              Pr(>|z|)    
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(Intercept)                    < 2e-16 ***

international_planyes          < 2e-16 ***

voice_mail_planyes            1.32e-06 ***

total_intl_calls               0.00329 ** 

number_customer_service_calls  < 2e-16 ***

---

Signif. codes:  

0  es:    des:  **rvice_calls  < '.  es:    de

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1938.8  on 2314  degrees of freedom

Residual deviance: 1669.4  on 2310  degrees of freedom

AIC: 1679.4

Number of Fisher Scoring iterations: 5

4.	 Then, you can then use a fitted model, fit, to predict the outcome of testset. You 
can also determine the class by judging whether the probability is above 0.5:
> pred = predict(fit,testset, type="response")

> Class = pred >.5

5.	 Next, the use of the summary function will show you the binary outcome count, and 
reveal whether the probability is above 0.5:
> summary(Class)

   Mode   FALSE    TRUE    NA's 

logical      29     989       0 

6.	 You can generate the counting statistics based on the testing dataset label and 
predicted result:
> tb = table(testset$churn,Class)

> tb

     Class

      FALSE TRUE

  yes    18  123

  no     11  866
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7.	 You can turn the statistics of the previous step into a classification table, and then 
generate the confusion matrix:

> churn.mod = ifelse(testset$churn == "yes", 1, 0)

> pred_class = churn.mod

> pred_class[pred<=.5] = 1- pred_class[pred<=.5]

> ctb = table(churn.mod, pred_class)

> ctb

         pred_class

churn.mod   0   1

        0 866  11

        1  18 123

> confusionMatrix(ctb)

Confusion Matrix and Statistics

         pred_class

churn.mod   0   1

        0 866  11

        1  18 123

                                          

               Accuracy : 0.9715          

                 95% CI : (0.9593, 0.9808)

    No Information Rate : 0.8684          

    P-Value [Acc > NIR] : <2e-16          

                                          

                  Kappa : 0.8781          

 Mcnemar's Test P-Value : 0.2652          

                                          

            Sensitivity : 0.9796          

            Specificity : 0.9179          

         Pos Pred Value : 0.9875          

         Neg Pred Value : 0.8723          

             Prevalence : 0.8684          

         Detection Rate : 0.8507          

   Detection Prevalence : 0.8615          

      Balanced Accuracy : 0.9488          

                                          

       'Positive' Class : 0  
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How it works...
Logistic regression is very similar to linear regression; the main difference is that the 
dependent variable in linear regression is continuous, but the dependent variable in logistic 
regression is dichotomous (or nominal). The primary goal of logistic regression is to use logit 
to yield the probability of a nominal variable is related to the measurement variable. We can 
formulate logit in following equation: ln(P/(1-P)), where P is the probability that certain event 
occurs.

The advantage of logistic regression is that it is easy to interpret, it directs model logistic 
probability, and provides a confidence interval for the result. Unlike the decision tree, which 
is hard to update the model, you can quickly update the classification model to incorporate 
new data in logistic regression. The main drawback of the algorithm is that it suffers from 
multicollinearity and, therefore, the explanatory variables must be linear independent. glm 
provides a generalized linear regression model, which enables specifying the model in the 
option family. If the family is specified to a binomial logistic, you can set the family as a 
binomial to classify the dependent variable of the category.

The classification process begins by generating a logistic regression model with the use of 
the training dataset by specifying Churn as the class label, the other variables as training 
features, and family set as binomial. We then use the summary function to generate the 
model's summary information. From the summary information, we may find some insignificant 
variables (p-values > 0.05), which may lead to misclassification. Therefore, we should 
consider only significant variables for the model.

Next, we use the fit function to predict the categorical dependent variable of the testing 
dataset, testset. The fit function outputs the probability of a class label, with a result 
equal to 0.5 and below, suggesting that the predicted label does not match the label of 
the testing dataset, and a probability above 0.5 indicates that the predicted label matches 
the label of the testing dataset. Further, we can use the summary function to obtain the 
statistics of whether the predicted label matches the label of the testing dataset. Lastly, in 
order to generate a confusion matrix, we first generate a classification table, and then use 
confusionMatrix to generate the performance measurement.

See also
ff For more information of how to use the glm function, please refer to Chapter 4, 

Understanding Regression Analysis, which covers how to interpret the output of  
the glm function
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Classifying data with the Naïve Bayes 
classifier

The Naïve Bayes classifier is also a probability-based classifier, which is based on applying the 
Bayes theorem with a strong independent assumption. In this recipe, we will introduce how to 
classify data with the Naïve Bayes classifier.

Getting ready
You need to have the first recipe completed by generating training and testing datasets.

How to do it...
Perform the following steps to classify the churn data with the Naïve Bayes classifier:

1.	 Load the e1071 library and employ the naiveBayes function to build the classifier:
> library(e1071) 

> classifier=naiveBayes(trainset[, !names(trainset) %in% 
c("churn")], trainset$churn)

2.	 Type classifier to examine the function call, a-priori probability, and conditional 
probability:
> classifier

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = trainset[, !names(trainset) %in% 
c("churn")], 

    y = trainset$churn)

A-priori probabilities:

trainset$churn

      yes        no 

0.1477322 0.8522678 

Conditional probabilities:

              international_plan
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trainset$churn         no        yes

           yes 0.70467836 0.29532164

           no  0.93512418 0.06487582

3.	 Next, you can generate a classification table for the testing dataset:
> bayes.table = table(predict(classifier, testset[, 
!names(testset) %in% c("churn")]), testset$churn)

> bayes.table

     

      yes  no

  yes  68  45

  no   73 832

4.	 Lastly, you can generate a confusion matrix from the classification table:
> confusionMatrix(bayes.table)

Confusion Matrix and Statistics

     

      yes  no

  yes  68  45

  no   73 832

                                          

               Accuracy : 0.8841          

                 95% CI : (0.8628, 0.9031)

    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : 0.01880         

                                          

                  Kappa : 0.4701          

 Mcnemar's Test P-Value : 0.01294         

                                          

            Sensitivity : 0.4823          

            Specificity : 0.9487          

         Pos Pred Value : 0.6018          

         Neg Pred Value : 0.9193          

             Prevalence : 0.1385          

         Detection Rate : 0.0668          

   Detection Prevalence : 0.1110          

      Balanced Accuracy : 0.7155          

                                          

       'Positive' Class : yes    
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How it works...
Naive Bayes assumes that features are conditionally independent, which the effect  
of a predictor(x) to class (c) is independent of the effect of other predictors to class(c).  
It computes the posterior probability, P(c|x), as the following formula:

( ) ( ) ( )
( )
|

P c | x
P x c P c

P x
=

Where P(x|c) is called likelihood, p(x) is called the marginal likelihood, and p(c) is called  
the prior probability. If there are many predictors, we can formulate the posterior probability  
as follows:

( ) ( ) ( ) ( ) ( )1 2P c | x | | |nP x c P x c P x c P c= × × ×…

The advantage of Naïve Bayes is that it is relatively simple and straightforward to use. It is 
suitable when the training set is relative small, and may contain some noisy and missing data. 
Moreover, you can easily obtain the probability for a prediction. The drawbacks of Naïve Bayes 
are that it assumes that all features are independent and equally important, which is very 
unlikely in real-world cases.

In this recipe, we use the Naïve Bayes classifier from the e1071 package to build a 
classification model. First, we specify all the variables (excluding the churn class label) as 
the first input parameters, and specify the churn class label as the second parameter in 
the naiveBayes function call. Next, we assign the classification model into the variable 
classifier. Then, we print the variable classifier to obtain information, such as function call, 
A-priori probabilities, and conditional probabilities. We can also use the predict function to 
obtain the predicted outcome and the table function to retrieve the classification table of the 
testing dataset. Finally, we use a confusion matrix to calculate the performance measurement 
of the classification model.
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At last, we list a comparison table of all the mentioned algorithms in this chapter:

Algorithm Advantage Disadvantage
Recursive 
partitioning tree

ff Very flexible and easy to 
interpret

ff Works on both classification 
and regression problems 

ff Nonparametric

ff Prone to bias and over-
fitting

Conditional 
inference tree

ff Very flexible and easy to 
interpret

ff Works on both classification 
and regression problems

ff Nonparametric

ff Less prone to bias than a 
recursive partitioning tree

ff Prone to over-fitting

K-nearest 
neighbor 
classifier

ff The cost of the learning 
process is zero 

ff Nonparametric

ff You can classify any data 
whenever you can find 
similarity measures of any 
given instances

ff Hard to interpret the 
classified result

ff Computation is expensive 
for a large dataset

ff The performance relies on 
the number of dimensions

Logistic 
regression

ff Easy to interpret

ff Provides model logistic 
probability

ff Provides confidence interval

ff You can quickly update 
the classification model to 
incorporate new data

ff Suffers multicollinearity

ff Does not handle 
the missing value of 
continuous variables

ff Sensitive to extreme 
values of continuous 
variables

Naïve Bayes ff Relatively simple and 
straightforward to use

ff Suitable when the training set 
is relative small

ff Can deal with some noisy and 
missing data

ff Can easily obtain the 
probability for a prediction

ff Assumes all features are 
independent and equally 
important, which is very 
unlikely in real-world cases

ff Prone to bias when the 
number of training sets 
increase
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See also
ff To learn more about the Bayes theorem, you can refer to the following Wikipedia 

article: http://en.wikipedia.org/wiki/Bayes'_theorem

http://en.wikipedia.org/wiki/Bayes'_theorem
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Classification (II) – 
Neural Network  

and SVM

In this chapter, we will cover the following recipes:

ff Classifying data with a support vector machine 

ff Choosing the cost of a support vector machine

ff Visualizing an SVM fit

ff Predicting labels based on a model trained by a support vector machine

ff Tuning a support vector machine

ff Training a neural network with neuralnet

ff Visualizing a neural network trained by neuralnet

ff Predicting labels based on a model trained by neuralnet

ff Training a neural network with nnet

ff Predicting labels based on a model trained by nnet

Introduction
Most research has shown that support vector machines (SVM) and neural networks (NN) are 
powerful classification tools, which can be applied to several different areas. Unlike tree-based 
or probabilistic-based methods that were mentioned in the previous chapter, the process of 
how support vector machines and neural networks transform from input to output is less clear 
and can be hard to interpret. As a result, both support vector machines and neural networks 
are referred to as black box methods.

6
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The development of a neural network is inspired by human brain activities. As such, this type 
of network is a computational model that mimics the pattern of the human mind. In contrast 
to this, support vector machines first map input data into a high dimension feature space 
defined by the kernel function, and find the optimum hyperplane that separates the training 
data by the maximum margin. In short, we can think of support vector machines as a linear 
algorithm in a high dimensional space.

Both these methods have advantages and disadvantages in solving classification problems. 
For example, support vector machine solutions are the global optimum, while neural networks 
may suffer from multiple local optimums. Thus, choosing between either depends on the 
characteristics of the dataset source. In this chapter, we will illustrate the following:

ff How to train a support vector machine

ff Observing how the choice of cost can affect the SVM classifier

ff Visualizing the SVM fit

ff Predicting the labels of a testing dataset based on the model trained by SVM

ff Tuning the SVM

In the neural network section, we will cover:

ff How to train a neural network

ff How to visualize a neural network model

ff Predicting the labels of a testing dataset based on a model trained by neuralnet

ff Finally, we will show how to train a neural network with nnet, and how to use it to 
predict the labels of a testing dataset

Classifying data with a support vector 
machine

The two most well known and popular support vector machine tools are libsvm and 
SVMLite. For R users, you can find the implementation of libsvm in the e1071 package and 
SVMLite in the klaR package. Therefore, you can use the implemented function of these 
two packages to train support vector machines. In this recipe, we will focus on using the svm 
function (the libsvm implemented version) from the e1071 package to train a support vector 
machine based on the telecom customer churn data training dataset.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
train the support vector machine. For those who have not prepared the dataset, please refer 
to Chapter 5, Classification (I) – Tree, Lazy, and Probabilistic, for details.
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How to do it...
Perform the following steps to train the SVM:

1.	 Load the e1071 package:
> library(e1071)

2.	 Train the support vector machine using the svm function with trainset as the input 
dataset, and use churn as the classification category:
> model  = svm(churn~., data = trainset, kernel="radial", cost=1, 
gamma = 1/ncol(trainset))

3.	 Finally, you can obtain overall information about the built model with summary:

> summary(model)

Call:

svm(formula = churn ~ ., data = trainset, kernel = "radial", cost 
= 1, gamma = 1/ncol(trainset))

Parameters:

   SVM-Type:  C-classification 

 SVM-Kernel:  radial 

       cost:  1 

      gamma:  0.05882353 

Number of Support Vectors:  691

 ( 394 297 )

Number of Classes:  2 

Levels: 

 yes no
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How it works...
The support vector machine constructs a hyperplane (or set of hyperplanes) that maximize 
the margin width between two classes in a high dimensional space. In these, the cases that 
define the hyperplane are support vectors, as shown in the following figure:

Figure 1: Support Vector Machine

Support vector machine starts from constructing a hyperplane that maximizes the margin 
width. Then, it extends the definition to a nonlinear separable problem. Lastly, it maps the 
data to a high dimensional space where the data can be more easily separated with a  
linear boundary.

The advantage of using SVM is that it builds a highly accurate model through an engineering 
problem-oriented kernel. Also, it makes use of the regularization term to avoid over-fitting. It 
also does not suffer from local optimal and multicollinearity. The main limitation of SVM is its 
speed and size in the training and testing time. Therefore, it is not suitable or efficient enough 
to construct classification models for data that is large in size. Also, since it is hard to interpret 
SVM, how does the determination of the kernel take place? Regularization is another problem 
that we need tackle. 

In this recipe, we continue to use the telecom churn dataset as our example data source. 
We begin training a support vector machine using libsvm provided in the e1071 package. 
Within the training function, svm, one can specify the kernel function, cost, and the gamma 
function. For the kernel argument, the default value is radial, and one can specify the kernel 
to a linear, polynomial, radial basis, and sigmoid. As for the gamma argument, the default 
value is equal to (1/data dimension), and it controls the shape of the separating hyperplane. 
Increasing the gamma argument usually increases the number of support vectors. 
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As for the cost, the default value is set to 1, which indicates that the regularization term is 
constant, and the larger the value, the smaller the margin is. We will discuss more on how the 
cost can affect the SVM classifier in the next recipe. Once the support vector machine is built, 
the summary function can be used to obtain information, such as calls, parameters, number 
of classes, and the types of label.

See also
Another popular support vector machine tool is SVMLight. Unlike the e1071 package, which 
provides the full implementation of libsvm, the klaR package simply provides an interface 
to SVMLight only. To use SVMLight, one can perform the following steps:

1.	 Install the klaR package:
> install.packages("klaR")

> library(klaR)

2.	 Download the SVMLight source code and binary for your platform from http://
svmlight.joachims.org/. For example, if your guest OS is Windows 64-bit, you 
should download the file from http://download.joachims.org/svm_light/
current/svm_light_windows64.zip.

3.	 Then, you should unzip the file and put the workable binary in the working directory; 
you may check your working directory by using the getwd function:
> getwd()

4.	 Train the support vector machine using the svmlight function:
> model.light  = svmlight(churn~., data = trainset, 
kernel="radial", cost=1, gamma = 1/ncol(trainset))

Choosing the cost of a support vector 
machine

The support vector machines create an optimum hyperplane that separates the training data 
by the maximum margin. However, sometimes we would like to allow some misclassifications 
while separating categories. The SVM model has a cost function, which controls training errors 
and margins. For example, a small cost creates a large margin (a soft margin) and allows 
more misclassifications. On the other hand, a large cost creates a narrow margin (a hard 
margin) and permits fewer misclassifications. In this recipe, we will illustrate how the large 
and small cost will affect the SVM classifier.

http://svmlight.joachims.org/
http://svmlight.joachims.org/
http://download.joachims.org/svm_light/current/svm_light_windows64.zip
http://download.joachims.org/svm_light/current/svm_light_windows64.zip
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Getting ready
In this recipe, we will use the iris dataset as our example data source.

How to do it...
Perform the following steps to generate two different classification examples with  
different costs:

1.	 Subset the iris dataset with columns named as Sepal.Length, Sepal.Width, 
Species, with species in setosa and virginica:
> iris.subset = subset(iris, select=c("Sepal.Length", "Sepal.
Width", "Species"), Species %in% c("setosa","virginica"))

2.	 Then, you can generate a scatter plot with Sepal.Length as the x-axis and the 
Sepal.Width as the y-axis:
> plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width, 
col=iris.subset$Species, pch=19)

Figure 2: Scatter plot of Sepal.Length and Sepal.Width with subset of iris dataset

3.	 Next, you can train SVM based on iris.subset with the cost equal to 1:
> svm.model = svm(Species ~ ., data=iris.subset, kernel='linear', 
cost=1, scale=FALSE)
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4.	 Then, we can circle the support vector with blue circles:
> points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)

Figure 3: Circling support vectors with blue ring

5.	 Lastly, we can add a separation line on the plot:
> w = t(svm.model$coefs) %*% svm.model$SV

> b = -svm.model$rho

> abline(a=-b/w[1,2], b=-w[1,1]/w[1,2], col="red", lty=5)

Figure 4: Add separation line to scatter plot
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6.	 In addition to this, we create another SVM classifier where cost = 10,000:

> plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width, 
col=iris.subset$Species, pch=19)

> svm.model = svm(Species ~ ., data=iris.subset, type='C-
classification', kernel='linear', cost=10000, scale=FALSE)

> points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)

> w = t(svm.model$coefs) %*% svm.model$SV

> b = -svm.model$rho

> abline(a=-b/w[1,2], b=-w[1,1]/w[1,2], col="red", lty=5)

Figure 5: A classification example with large cost

How it works...
In this recipe, we demonstrate how different costs can affect the SVM classifier. First, we create 
an iris subset with the columns, Sepal.Length, Sepal.Width, and Species containing 
the species, setosa and virginica. Then, in order to create a soft margin and allow some 
misclassification, we use an SVM with small cost (where cost = 1) to train the support of the 
vector machine. Next, we circle the support vectors with blue circles and add the separation 
line. As per Figure 5, one of the green points (virginica) is misclassified (it is classified to 
setosa) to the other side of the separation line due to the choice of the small cost.

In addition to this, we would like to determine how a large cost can affect the SVM classifier. 
Therefore, we choose a large cost (where cost = 10,000). From Figure 5, we can see that 
the margin created is narrow (a hard margin) and no misclassification cases are present. As a 
result, the two examples show that the choice of different costs may affect the margin created 
and also affect the possibilities of misclassification.
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See also
ff The idea of soft margin, which allows misclassified examples, was suggested by 

Corinna Cortes and Vladimir N. Vapnik in 1995 in the following paper: Cortes, C., and 
Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Visualizing an SVM fit
To visualize the built model, one can first use the plot function to generate a scatter plot of 
data input and the SVM fit. In this plot, support vectors and classes are highlighted through 
the color symbol. In addition to this, one can draw a contour filled plot of the class regions to 
easily identify misclassified samples from the plot.

Getting ready
In this recipe, we will use two datasets: the iris dataset and the telecom churn dataset. For 
the telecom churn dataset, one needs to have completed the previous recipe by training a 
support vector machine with SVM, and to have saved the SVM fit model.

How to do it...
Perform the following steps to visualize the SVM fit object:

1.	 Use SVM to train the support vector machine based on the iris dataset, and use the 
plot function to visualize the fitted model:
> data(iris)

> model.iris  = svm(Species~., iris)

> plot(model.iris, iris, Petal.Width ~ Petal.Length, slice = 
list(Sepal.Width = 3, Sepal.Length = 4))

Figure 6: The SVM classification plot of trained SVM fit based on iris dataset
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2.	 Visualize the SVM fit object, model, using the plot function with the dimensions of 
total_day_minutes and total_intl_charge:

> plot(model, trainset, total_day_minutes ~ total_intl_charge)

Figure 7: The SVM classification plot of trained SVM fit based on churn dataset

How it works...
In this recipe, we demonstrate how to use the plot function to visualize the SVM fit. In the 
first plot, we train a support vector machine using the iris dataset. Then, we use the plot 
function to visualize the fitted SVM.

In the argument list, we specify the fitted model in the first argument and the dataset  
(this should be the same data used to build the model) as the second parameter. The third 
parameter indicates the dimension used to generate the classification plot. By default, the 
plot function can only generate a scatter plot based on two dimensions (for the x-axis and 
y-axis). Therefore, we select the variables, Petal.Length and Petal.Width as the two 
dimensions to generate the scatter plot.

From Figure 6, we find Petal.Length assigned to the x-axis, Petal.Width assigned to the 
y-axis, and data points with X and O symbols scattered on the plot. Within the scatter plot, the 
X symbol shows the support vector and the O symbol represents the data points. These two 
symbols can be altered through the configuration of the svSymbol and dataSymbol options. 
Both the support vectors and true classes are highlighted and colored depending on their 
label (green refers to viginica, red refers to versicolor, and black refers to setosa). The last 
argument, slice, is set when there are more than two variables. Therefore, in this example, 
we use the additional variables, Sepal.width and Sepal.length, by assigning a constant 
of 3 and 4.
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Next, we take the same approach to draw the SVM fit based on customer churn data. In this 
example, we use total_day_minutes and total_intl_charge as the two dimensions 
used to plot the scatterplot. As per Figure 7, the support vectors and data points in red and 
black are scattered closely together in the central region of the plot, and there is no simple 
way to separate them.

See also

ff There are other parameters, such as fill, grid, symbolPalette, and so on, that 
can be configured to change the layout of the plot. You can use the help function to 
view the following document for further information:

> ?svm.plot    

Predicting labels based on a model trained 
by a support vector machine

In the previous recipe, we trained an SVM based on the training dataset. The training process 
finds the optimum hyperplane that separates the training data by the maximum margin. We 
can then utilize the SVM fit to predict the label (category) of new observations. In this recipe, 
we will demonstrate how to use the predict function to predict values based on a model 
trained by SVM.

Getting ready
You need to have completed the previous recipe by generating a fitted SVM, and save the 
fitted model in model.

How to do it...
Perform the following steps to predict the labels of the testing dataset:

1.	 Predict the label of the testing dataset based on the fitted SVM and attributes of the 
testing dataset:
> svm.pred = predict(model, testset[, !names(testset) %in% 
c("churn")])

2.	 Then, you can use the table function to generate a classification table with the 
prediction result and labels of the testing dataset:
> svm.table=table(svm.pred, testset$churn)

> svm.table
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svm.pred yes  no

     yes  70  12

     no   71 865

3.	 Next, you can use classAgreement to calculate coefficients compared to the 
classification agreement:
> classAgreement(svm.table)

$diag

[1] 0.9184676

$kappa

[1] 0.5855903

$rand

[1] 0.850083

$crand

[1] 0.5260472

4.	 Now, you can use confusionMatrix to measure the prediction performance based 
on the classification table:

> library(caret)

> confusionMatrix(svm.table)

Confusion Matrix and Statistics

        

svm.pred yes  no

     yes  70  12

     no   71 865

                                          

               Accuracy : 0.9185          

                 95% CI : (0.8999, 0.9345)

    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : 1.251e-08       

                                          

                  Kappa : 0.5856          

 Mcnemar's Test P-Value : 1.936e-10       
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            Sensitivity : 0.49645         

            Specificity : 0.98632         

         Pos Pred Value : 0.85366         

         Neg Pred Value : 0.92415         

             Prevalence : 0.13851         

         Detection Rate : 0.06876         

   Detection Prevalence : 0.08055         

      Balanced Accuracy : 0.74139         

                                          

       'Positive' Class : yes             

                  

How it works...
In this recipe, we first used the predict function to obtain the predicted labels of the testing 
dataset. Next, we used the table function to generate the classification table based on the 
predicted labels of the testing dataset. So far, the evaluation procedure is very similar to the 
evaluation process mentioned in the previous chapter.

We then introduced a new function, classAgreement, which computes several coefficients 
of agreement between the columns and rows of a two-way contingency table. The coefficients 
include diag, kappa, rand, and crand. The diag coefficient represents the percentage of 
data points in the main diagonal of the classification table, kappa refers to diag, which 
is corrected for an agreement by a change (the probability of random agreements), rand 
represents the Rand index, which measures the similarity between two data clusters, and 
crand indicates the Rand index, which is adjusted for the chance grouping of elements.

Finally, we used confusionMatrix from the caret package to measure the performance 
of the classification model. The accuracy of 0.9185 shows that the trained support vector 
machine can correctly classify most of the observations. However, accuracy alone is not a good 
measurement of a classification model. One should also reference sensitivity and specificity.

There's more...
Besides using SVM to predict the category of new observations, you can use SVM to predict 
continuous values. In other words, one can use SVM to perform regression analysis.

In the following example, we will show how to perform a simple regression prediction based on 
a fitted SVM with the type specified as eps-regression.
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Perform the following steps to train a regression model with SVM:

1.	 Train a support vector machine based on a Quartet dataset:
> library(car)

> data(Quartet)

> model.regression = svm(Quartet$y1~Quartet$x,type="eps-
regression")

2.	 Use the predict function to obtain prediction results:
> predict.y = predict(model.regression, Quartet$x) 

> predict.y

       1        2        3        4        5        6        7        
8 

8.196894 7.152946 8.807471 7.713099 8.533578 8.774046 6.186349 
5.763689 

       9       10       11 

8.726925 6.621373 5.882946 

3.	 Plot the predicted points as squares and the training data points as circles on the 
same plot:

> plot(Quartet$x, Quartet$y1, pch=19)

> points(Quartet$x, predict.y, pch=15, col="red")

Figure 8: The scatter plot contains predicted data points and training data points
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Tuning a support vector machine
Besides using different feature sets and the kernel function in support vector machines, one 
trick that you can use to tune its performance is to adjust the gamma and cost configured in 
the argument. One possible approach to test the performance of different gamma and cost 
combination values is to write a for loop to generate all the combinations of gamma and 
cost as inputs to train different support vector machines. Fortunately, SVM provides a tuning 
function, tune.svm, which makes the tuning much easier. In this recipe, we will demonstrate 
how to tune a support vector machine through the use of tune.svm.

Getting ready
You need to have completed the previous recipe by preparing a training dataset, trainset.

How to do it...
Perform the following steps to tune the support vector machine:

1.	 First, tune the support vector machine using tune.svm:
> tuned = tune.svm(churn~., data = trainset, gamma = 10^(-6:-1), 
cost = 10^(1:2))

2.	 Next, you can use the summary function to obtain the tuning result:
> summary(tuned)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation 

- best parameters:

 gamma cost

  0.01  100

- best performance: 0.08077885 

- Detailed performance results:

   gamma cost      error dispersion

1  1e-06   10 0.14774780 0.02399512

2  1e-05   10 0.14774780 0.02399512
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3  1e-04   10 0.14774780 0.02399512

4  1e-03   10 0.14774780 0.02399512

5  1e-02   10 0.09245223 0.02046032

6  1e-01   10 0.09202306 0.01938475

7  1e-06  100 0.14774780 0.02399512

8  1e-05  100 0.14774780 0.02399512

9  1e-04  100 0.14774780 0.02399512

10 1e-03  100 0.11794484 0.02368343

11 1e-02  100 0.08077885 0.01858195

12 1e-01  100 0.12356135 0.01661508

3.	 After retrieving the best performance parameter from tuning the result, you can 
retrain the support vector machine with the best performance parameter:
> model.tuned = svm(churn~., data = trainset, gamma = tuned$best.
parameters$gamma, cost = tuned$best.parameters$cost)

> summary(model.tuned)

Call:

svm(formula = churn ~ ., data = trainset, gamma = 10^-2, cost = 
100)

Parameters:

   SVM-Type:  C-classification 

 SVM-Kernel:  radial 

       cost:  100 

      gamma:  0.01 

Number of Support Vectors:  547

 ( 304 243 )

Number of Classes:  2 

Levels: 

 yes no
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4.	 Then, you can use the predict function to predict labels based on the fitted SVM:
> svm.tuned.pred = predict(model.tuned, testset[, !names(testset) 
%in% c("churn")])

5.	 Next, generate a classification table based on the predicted and original labels of the 
testing dataset:
> svm.tuned.table=table(svm.tuned.pred, testset$churn)

> svm.tuned.table

              

svm.tuned.pred yes  no

           yes  95  24

           no   46 853

6.	 Also, generate a class agreement to measure the performance:
> classAgreement(svm.tuned.table)

$diag

[1] 0.9312377

$kappa

[1] 0.691678

$rand

[1] 0.871806

$crand

[1] 0.6303615

7.	 Finally, you can use a confusion matrix to measure the performance of the  
retrained model:
> confusionMatrix(svm.tuned.table)

Confusion Matrix and Statistics

              

svm.tuned.pred yes  no

           yes  95  24

           no   46 853

                                         

               Accuracy : 0.9312         
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                 95% CI : (0.9139, 0.946)

    No Information Rate : 0.8615         

    P-Value [Acc > NIR] : 1.56e-12       

                                         

                  Kappa : 0.6917         

 Mcnemar's Test P-Value : 0.01207        

                                         

            Sensitivity : 0.67376        

            Specificity : 0.97263        

         Pos Pred Value : 0.79832        

         Neg Pred Value : 0.94883        

             Prevalence : 0.13851        

         Detection Rate : 0.09332        

   Detection Prevalence : 0.11690        

      Balanced Accuracy : 0.82320        

                                         

       'Positive' Class : yes            

How it works...
To tune the support vector machine, you can use a trial and error method to find the best 
gamma and cost parameters. In other words, one has to generate a variety of combinations of 
gamma and cost for the purpose of training different support vector machines.

In this example, we generate different gamma values from 10^-6 to 10^-1, and cost with a 
value of either 10 or 100. Therefore, you can use the tuning function, svm.tune, to generate 
12 sets of parameters. The function then makes 10 cross-validations and outputs the error 
dispersion of each combination. As a result, the combination with the least error dispersion  
is regarded as the best parameter set. From the summary table, we found that gamma with  
a value of 0.01 and cost with a value of 100 are the best parameters for the SVM fit.

After obtaining the best parameters, we can then train a new support vector machine with 
gamma equal to 0.01 and cost equal to 100. Additionally, we can obtain a classification 
table based on the predicted labels and labels of the testing dataset. We can also obtain a 
confusion matrix from the classification table. From the output of the confusion matrix, you 
can determine the accuracy of the newly trained model in comparison to the original model.
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See also
ff For more information about how to tune SVM with svm.tune, you can use the help 

function to access this document:

> ?svm.tune

Training a neural network with neuralnet
The neural network is constructed with an interconnected group of nodes, which involves the 
input, connected weights, processing element, and output. Neural networks can be applied to 
many areas, such as classification, clustering, and prediction. To train a neural network in R, 
you can use neuralnet, which is built to train multilayer perceptron in the context of regression 
analysis, and contains many flexible functions to train forward neural networks. In this recipe, 
we will introduce how to use neuralnet to train a neural network.

Getting ready
In this recipe, we will use an iris dataset as our example dataset. We will first split the iris 
dataset into a training and testing datasets, respectively.

How to do it...
Perform the following steps to train a neural network with neuralnet:

1.	 First load the iris dataset and split the data into training and testing datasets:
> data(iris)

> ind = sample(2, nrow(iris), replace = TRUE, prob=c(0.7, 0.3))

> trainset = iris[ind == 1,]

> testset = iris[ind == 2,]

2.	 Then, install and load the neuralnet package:
> install.packages("neuralnet")

> library(neuralnet)

3.	 Add the columns versicolor, setosa, and virginica based on the name matched value 
in the Species column:
> trainset$setosa = trainset$Species == "setosa"

> trainset$virginica = trainset$Species == "virginica"

> trainset$versicolor = trainset$Species == "versicolor"
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4.	 Next, train the neural network with the neuralnet function with three hidden 
neurons in each layer. Notice that the results may vary with each training, so you 
might not get the same result. However, you can use set.seed at the beginning, so 
you can get the same result in every training process
> network = neuralnet(versicolor + virginica + setosa~ Sepal.
Length + Sepal.Width + Petal.Length + Petal.Width, trainset, 
hidden=3)

> network

Call: neuralnet(formula = versicolor + virginica + setosa ~ Sepal.
Length +     Sepal.Width + Petal.Length + Petal.Width, data = 
trainset,     hidden = 3)

1 repetition was calculated.

         Error Reached Threshold Steps

1 0.8156100175    0.009994274769 11063

5.	 Now, you can view the summary information by accessing the result.matrix 
attribute of the built neural network model:
> network$result.matrix

                                          1
error                        0.815610017474
reached.threshold            0.009994274769
steps                    11063.000000000000
Intercept.to.1layhid1        1.686593311644
Sepal.Length.to.1layhid1     0.947415215237
Sepal.Width.to.1layhid1     -7.220058260187
Petal.Length.to.1layhid1     1.790333443486
Petal.Width.to.1layhid1      9.943109233330
Intercept.to.1layhid2        1.411026063895
Sepal.Length.to.1layhid2     0.240309549505
Sepal.Width.to.1layhid2      0.480654059973
Petal.Length.to.1layhid2     2.221435192437
Petal.Width.to.1layhid2      0.154879347818
Intercept.to.1layhid3       24.399329878242
Sepal.Length.to.1layhid3     3.313958088512
Sepal.Width.to.1layhid3      5.845670010464
Petal.Length.to.1layhid3    -6.337082722485
Petal.Width.to.1layhid3    -17.990352566695
Intercept.to.versicolor     -1.959842102421
1layhid.1.to.versicolor      1.010292389835
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1layhid.2.to.versicolor      0.936519720978

1layhid.3.to.versicolor      1.023305801833

Intercept.to.virginica      -0.908909982893

1layhid.1.to.virginica      -0.009904635231

1layhid.2.to.virginica       1.931747950462

1layhid.3.to.virginica      -1.021438938226

Intercept.to.setosa          1.500533827729

1layhid.1.to.setosa         -1.001683936613

1layhid.2.to.setosa         -0.498758815934

1layhid.3.to.setosa         -0.001881935696

6.	 Lastly, you can view the generalized weight by accessing it in the network:

> head(network$generalized.weights[[1]])

How it works...
The neural network is a network made up of artificial neurons (or nodes). There are three 
types of neurons within the network: input neurons, hidden neurons, and output neurons. 
In the network, neurons are connected; the connection strength between neurons is called 
weights. If the weight is greater than zero, it is in an excitation status. Otherwise, it is in an 
inhibition status. Input neurons receive the input information; the higher the input value, the 
greater the activation. Then, the activation value is passed through the network in regard to 
weights and transfer functions in the graph. The hidden neurons (or output neurons) then 
sum up the activation values and modify the summed values with the transfer function. The 
activation value then flows through hidden neurons and stops when it reaches the output 
nodes. As a result, one can use the output value from the output neurons to classify the data.

Figure 9: Artificial Neural Network
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The advantages of a neural network are: first, it can detect nonlinear relationships between 
the dependent and independent variable. Second, one can efficiently train large datasets 
using the parallel architecture. Third, it is a nonparametric model so that one can eliminate 
errors in the estimation of parameters. The main disadvantages of a neural network are that 
it often converges to the local minimum rather than the global minimum. Also, it might over-fit 
when the training process goes on for too long.

In this recipe, we demonstrate how to train a neural network. First, we split the iris dataset 
into training and testing datasets, and then install the neuralnet package and load the 
library into an R session. Next, we add the columns versicolor, setosa, and virginica 
based on the name matched value in the Species column, respectively. We then use the 
neuralnet function to train the network model. Besides specifying the label (the column 
where the name equals to versicolor, virginica, and setosa) and training attributes in the 
function, we also configure the number of hidden neurons (vertices) as three in each layer.

Then, we examine the basic information about the training process and the trained network 
saved in the network. From the output message, it shows the training process needed 
11,063 steps until all the absolute partial derivatives of the error function were lower than 
0.01 (specified in the threshold). The error refers to the likelihood of calculating Akaike 
Information Criterion (AIC). To see detailed information on this, you can access the result.
matrix of the built neural network to see the estimated weight. The output reveals that the 
estimated weight ranges from -18 to 24.40; the intercepts of the first hidden layer are 1.69, 
1.41 and 24.40, and the two weights leading to the first hidden neuron are estimated as 0.95 
(Sepal.Length), -7.22 (Sepal.Width), 1.79 (Petal.Length), and 9.94 (Petal.Width). 
We can lastly determine that the trained neural network information includes generalized 
weights, which express the effect of each covariate. In this recipe, the model generates 
12 generalized weights, which are the combination of four covariates (Sepal.Length, 
Sepal.Width, Petal.Length, Petal.Width) to three responses (setosa, virginica, 
versicolor).

See also
ff For a more detailed introduction on neuralnet, one can refer to the following paper: 

Günther, F., and Fritsch, S. (2010). neuralnet: Training of neural networks. The R 
journal, 2(1), 30-38.
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Visualizing a neural network trained by 
neuralnet

The package, neuralnet, provides the plot function to visualize a built neural network and 
the gwplot function to visualize generalized weights. In following recipe, we will cover how to 
use these two functions.

Getting ready
You need to have completed the previous recipe by training a neural network and have all 
basic information saved in the network.

How to do it...
Perform the following steps to visualize the neural network and the generalized weights:

1.	 You can visualize the trained neural network with the plot function:
> plot(network)

Figure 10: The plot of the trained neural network
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2.	 Furthermore, you can use gwplot to visualize the generalized weights:

> par(mfrow=c(2,2))

> gwplot(network,selected.covariate="Petal.Width")

> gwplot(network,selected.covariate="Sepal.Width")

> gwplot(network,selected.covariate="Petal.Length")

> gwplot(network,selected.covariate="Petal.Width")

Figure 11: The plot of generalized weights

How it works...
In this recipe, we demonstrate how to visualize the trained neural network and the generalized 
weights of each trained attribute. As per Figure 10, the plot displays the network topology of 
the trained neural network. Also, the plot includes the estimated weight, intercepts and basic 
information about the training process. At the bottom of the figure, one can find the overall 
error and number of steps required to converge.

Figure 11 presents the generalized weight plot in regard to network$generalized.weights. 
The four plots in Figure 11 display the four covariates: Petal.Width, Sepal.Width, Petal.
Length, and Petal.Width, in regard to the versicolor response. If all the generalized weights 
are close to zero on the plot, it means the covariate has little effect. However, if the overall 
variance is greater than one, it means the covariate has a nonlinear effect.
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See also
ff For more information about gwplot, one can use the help function to access the 

following document:

> ?gwplot

Predicting labels based on a model trained 
by neuralnet

Similar to other classification methods, we can predict the labels of new observations based 
on trained neural networks. Furthermore, we can validate the performance of these networks 
through the use of a confusion matrix. In the following recipe, we will introduce how to use 
the compute function in a neural network to obtain a probability matrix of the testing dataset 
labels, and use a table and confusion matrix to measure the prediction performance.

Getting ready
You need to have completed the previous recipe by generating the training dataset, trainset, 
and the testing dataset, testset. The trained neural network needs to be saved in the network.

How to do it...
Perform the following steps to measure the prediction performance of the trained neural 
network:

1.	 First, generate a prediction probability matrix based on a trained neural network and 
the testing dataset, testset:
> net.predict = compute(network, testset[-5])$net.result

2.	 Then, obtain other possible labels by finding the column with the greatest probability:
> net.prediction = c("versicolor", "virginica", "setosa")
[apply(net.predict, 1, which.max)]

3.	 Generate a classification table based on the predicted labels and the labels of the 
testing dataset:
> predict.table = table(testset$Species, net.prediction)

> predict.table

            prediction

             setosa versicolor virginica
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  setosa         20          0         0

  versicolor      0         19         1

  virginica       0          2        16

4.	 Next, generate classAgreement from the classification table:
> classAgreement(predict.table)

$diag

[1] 0.9444444444

$kappa

[1] 0.9154488518

$rand

[1] 0.9224318658

$crand

[1] 0.8248251737

5.	 Finally, use confusionMatrix to measure the prediction performance:

> confusionMatrix(predict.table)

Confusion Matrix and Statistics

            prediction

             setosa versicolor virginica

  setosa         20          0         0

  versicolor      0         19         1

  virginica       0          2        16

Overall Statistics

                                                  

               Accuracy : 0.9482759               

                 95% CI : (0.8561954, 0.9892035)  

    No Information Rate : 0.362069                

    P-Value [Acc > NIR] : < 0.00000000000000022204

                                                  

                  Kappa : 0.922252                

 Mcnemar's Test P-Value : NA                      
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Statistics by Class:

                     Class: setosa Class: versicolor Class: 
virginica

Sensitivity              1.0000000         0.9047619        
0.9411765

Specificity              1.0000000         0.9729730        
0.9512195

Pos Pred Value           1.0000000         0.9500000        
0.8888889

Neg Pred Value           1.0000000         0.9473684        
0.9750000

Prevalence               0.3448276         0.3620690        
0.2931034

Detection Rate           0.3448276         0.3275862        
0.2758621

Detection Prevalence     0.3448276         0.3448276        
0.3103448

Balanced Accuracy        1.0000000         0.9388674        
0.9461980

How it works...
In this recipe, we demonstrate how to predict labels based on a model trained by neuralnet. 
Initially, we use the compute function to create an output probability matrix based on the 
trained neural network and the testing dataset. Then, to convert the probability matrix to class 
labels, we use the which.max function to determine the class label by selecting the column 
with the maximum probability within the row. Next, we use a table to generate a classification 
matrix based on the labels of the testing dataset and the predicted labels. As we have 
created the classification table, we can employ a confusion matrix to measure the prediction 
performance of the built neural network.

See also
ff In this recipe, we use the net.result function, which is the overall result of 

the neural network, used to predict the labels of the testing dataset. Apart from 
examining the overall result by accessing net.result, the compute function also 
generates the output from neurons in each layer. You can examine the output of 
neurons to get a better understanding of how compute works:

> compute(network, testset[-5])
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Training a neural network with nnet
The nnet package is another package that can deal with artificial neural networks. This 
package provides the functionality to train feed-forward neural networks with traditional 
back propagation. As you can find most of the neural network function implemented in 
the neuralnet package, in this recipe we provide a short overview of how to train neural 
networks with nnet.

Getting ready
In this recipe, we do not use the trainset and trainset generated from the previous step; 
please reload the iris dataset again.

How to do it...
Perform the following steps to train the neural network with nnet:

1.	 First, install and load the nnet package:
> install.packages("nnet")

> library(nnet)

2.	 Next, split the dataset into training and testing datasets:
> data(iris)

> set.seed(2)

> ind = sample(2, nrow(iris), replace = TRUE, prob=c(0.7, 0.3))

> trainset = iris[ind == 1,]

> testset = iris[ind == 2,]

3.	  Then, train the neural network with nnet:
> iris.nn = nnet(Species ~ ., data = trainset, size = 2, rang = 
0.1, decay = 5e-4, maxit = 200)

# weights:  19

initial  value 165.086674 

iter  10 value 70.447976

iter  20 value 69.667465

iter  30 value 69.505739

iter  40 value 21.588943

iter  50 value 8.691760

iter  60 value 8.521214

iter  70 value 8.138961
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iter  80 value 7.291365

iter  90 value 7.039209

iter 100 value 6.570987

iter 110 value 6.355346

iter 120 value 6.345511

iter 130 value 6.340208

iter 140 value 6.337271

iter 150 value 6.334285

iter 160 value 6.333792

iter 170 value 6.333578

iter 180 value 6.333498

final  value 6.333471 

converged

4.	 Use the summary to obtain information about the trained neural network:

> summary(iris.nn)

a 4-2-3 network with 19 weights

options were - softmax modelling  decay=0.0005

 b->h1 i1->h1 i2->h1 i3->h1 i4->h1 

 -0.38  -0.63  -1.96   3.13   1.53 

 b->h2 i1->h2 i2->h2 i3->h2 i4->h2 

  8.95   0.52   1.42  -1.98  -3.85 

 b->o1 h1->o1 h2->o1 

  3.08 -10.78   4.99 

 b->o2 h1->o2 h2->o2 

 -7.41   6.37   7.18 

 b->o3 h1->o3 h2->o3 

  4.33   4.42 -12.16 

How it works...
In this recipe, we demonstrate steps to train a neural network model with the nnet package. 
We first use nnet to train the neural network. With this function, we can set the classification 
formula, source of data, number of hidden units in the size parameter, initial random 
weight in the rang parameter, parameter for weight decay in the decay parameter, and the 
maximum iteration in the maxit parameter. As we set maxit to 200, the training process 
repeatedly runs till the value of the fitting criterion plus the decay term converge. Finally, we 
use the summary function to obtain information about the built neural network, which reveals 
that the model is built with 4-2-3 networks with 19 weights. Also, the model shows a list of 
weight transitions from one node to another at the bottom of the printed message.
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See also
For those who are interested in the background theory of nnet and how it is made, please 
refer to the following articles:

ff Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge

ff Venables, W. N., and Ripley, B. D. (2002). Modern applied statistics with S. Fourth 
edition. Springer

Predicting labels based on a model trained 
by nnet

As we have trained a neural network with nnet in the previous recipe, we can now predict 
the labels of the testing dataset based on the trained neural network. Furthermore, we can 
assess the model with a confusion matrix adapted from the caret package.

Getting ready
You need to have completed the previous recipe by generating the training dataset, 
trainset, and the testing dataset, testset, from the iris dataset. The trained neural 
network also needs to be saved as iris.nn.

How to do it...
Perform the following steps to predict labels based on the trained neural network:

1.	 Generate the predictions of the testing dataset based on the model, iris.nn:
> iris.predict = predict(iris.nn, testset, type="class")

2.	 Generate a classification table based on the predicted labels and labels of the testing 
dataset:
> nn.table = table(testset$Species, iris.predict)

            iris.predict

             setosa versicolor virginica

  setosa         17          0         0

  versicolor      0         14         0

  virginica       0          1        14
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3.	 Lastly, generate a confusion matrix based on the classification table:

> confusionMatrix(nn.table)

Confusion Matrix and Statistics

            iris.predict

             setosa versicolor virginica

  setosa         17          0         0

  versicolor      0         14         0

  virginica       0          1        14

Overall Statistics

                                                  

               Accuracy : 0.9782609               

                 95% CI : (0.8847282, 0.9994498)  

    No Information Rate : 0.3695652               

    P-Value [Acc > NIR] : < 0.00000000000000022204

                                                  

                  Kappa : 0.9673063               

 Mcnemar's Test P-Value : NA                      

Statistics by Class:

                     Class: setosa Class: versicolor

Sensitivity              1.0000000         0.9333333

Specificity              1.0000000         1.0000000

Pos Pred Value           1.0000000         1.0000000

Neg Pred Value           1.0000000         0.9687500

Prevalence               0.3695652         0.3260870

Detection Rate           0.3695652         0.3043478

Detection Prevalence     0.3695652         0.3043478

Balanced Accuracy        1.0000000         0.9666667

                     Class: virginica

Sensitivity                 1.0000000

Specificity                 0.9687500

Pos Pred Value              0.9333333
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Neg Pred Value              1.0000000

Prevalence                  0.3043478

Detection Rate              0.3043478

Detection Prevalence        0.3260870

Balanced Accuracy           0.9843750

How it works...
Similar to other classification methods, one can also predict labels based on the neural 
networks trained by nnet. First, we use the predict function to generate the predicted 
labels based on a testing dataset, testset. Within the predict function, we specify the 
type argument to the class, so the output will be class labels instead of a probability matrix. 
Next, we use the table function to generate a classification table based on predicted labels 
and labels written in the testing dataset. Finally, as we have created the classification table, 
we can employ a confusion matrix from the caret package to measure the prediction 
performance of the trained neural network.

See also
ff For the predict function, if the type argument to class is not specified,  

by default, it will generate a probability matrix as a prediction result, which is  
very similar to net.result generated from the compute function within the 
neuralnet package:
> head(predict(iris.nn, testset))
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Model Evaluation 

In this chapter, we will cover the following topics:

ff Estimating model performance with k-fold cross-validation

ff Performing cross-validation with the e1071 package

ff Performing cross-validation with the caret package

ff Ranking the variable importance with the caret package

ff Ranking the variable importance with the rminer package

ff Finding highly correlated features with the caret package

ff Selecting features using the caret package

ff Measuring the performance of a regression model

ff Measuring the prediction performance with the confusion matrix

ff Measuring the prediction performance using ROCR

ff Comparing an ROC curve using the caret package

ff Measuring performance differences between models with the caret package

Introduction
Model evaluation is performed to ensure that a fitted model can accurately predict responses 
for future or unknown subjects. Without model evaluation, we might train models that over-fit 
in the training data. To prevent overfitting, we can employ packages, such as caret, rminer, 
and rocr to evaluate the performance of the fitted model. Furthermore, model evaluation can 
help select the optimum model, which is more robust and can accurately predict responses 
for future subjects.

7
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In the following chapter, we will discuss how one can implement a simple R script or use one of 
the packages (for example, caret or rminer) to evaluate the performance of a fitted model.

Estimating model performance with k-fold 
cross-validation

The k-fold cross-validation technique is a common technique used to estimate the 
performance of a classifier as it overcomes the problem of over-fitting. For k-fold cross-
validation, the method does not use the entire dataset to build the model, instead it splits the 
data into a training dataset and a testing dataset. Therefore, the model built with a training 
dataset can then be used to assess the performance of the model on the testing dataset. By 
performing n repeats of the k-fold validation, we can then use the average of n accuracies 
to truly assess the performance of the built model. In this recipe, we will illustrate how to 
perform a k-fold cross-validation.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
train the support vector machine. For those who have not prepared the dataset, please refer 
to Chapter 5, Classification (I) – Tree, Lazy, and Probabilistic, for detailed information.

How to do it...
Perform the following steps to cross-validate the telecom churn dataset:

1.	 Split the index into 10 fold using the cut function:
> ind = cut(1:nrow(churnTrain), breaks=10, labels=F)

2.	 Next, use for loop to perform a 10 fold cross-validation, repeated 10 times:
> accuracies = c()

> for (i in 1:10) {

+   fit = svm(churn ~., churnTrain[ind != i,])

+   predictions = predict(fit, churnTrain[ind == i, ! 
names(churnTrain) %in% c("churn")])

+   correct_count = sum(predictions == churnTrain[ind == 
i,c("churn")])

+   accuracies = append(correct_count / nrow(churnTrain[ind == 
i,]), accuracies)

+ }
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3.	 You can then print the accuracies:
> accuracies

 [1] 0.9341317 0.8948949 0.8978979 0.9459459 0.9219219 0.9281437 
0.9219219 0.9249249 0.9189189 0.9251497

4.	 Lastly, you can generate average accuracies with the mean function:
> mean(accuracies)

[1] 0.9213852

How it works...
In this recipe, we implement a simple script performing 10-fold cross-validations. We first 
generate an index with 10 fold with the cut function. Then, we implement a for loop to 
perform a 10-fold cross-validation 10 times. Within the loop, we first apply svm on 9 folds  
of data as the training set. We then use the fitted model to predict the label of the rest  
of the data (the testing dataset). Next, we use the sum of the correctly predicted labels  
to generate the accuracy. As a result of this, the loop stores 10 generated accuracies.  
Finally, we use the mean function to retrieve the average of the accuracies.

There's more...
If you wish to perform the k-fold validation with the use of other models, simply replace the 
line to generate the variable fit to whatever classifier you prefer. For example, if you would like 
to assess the Naïve Bayes model with a 10-fold cross-validation, you just need to replace the 
calling function from svm to naiveBayes:

> for (i in 1:10) {

+   fit = naiveBayes(churn ~., churnTrain[ind != i,])

+   predictions = predict(fit, churnTrain[ind == i, ! names(churnTrain) 
%in% c("churn")])

+   correct_count = sum(predictions == churnTrain[ind == i,c("churn")])

+   accuracies = append(correct_count / nrow(churnTrain[ind == i,]), 
accuracies)

+ }
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Performing cross-validation with the  
e1071 package

Besides implementing a loop function to perform the k-fold cross-validation, you can use the 
tuning function (for example, tune.nnet, tune.randomForest, tune.rpart, tune.
svm, and tune.knn.) within the e1071 package to obtain the minimum error value. In this 
recipe, we will illustrate how to use tune.svm to perform the 10-fold cross-validation and 
obtain the optimum classification model.

Getting ready
In this recipe, we continue to use the telecom churn dataset as the input data source to 
perform 10-fold cross-validation.

How to do it...
Perform the following steps to retrieve the minimum estimation error using cross-validation:

1.	 Apply tune.svm on the training dataset, trainset, with the 10-fold cross-validation 
as the tuning control. (If you find an error message, such as could not find 
function predict.func, please clear the workspace, restart the R session and 
reload the e1071 library again):
> tuned = tune.svm(churn~., data = trainset, gamma = 10^-2, cost = 
10^2, tunecontrol=tune.control(cross=10))

2.	 Next, you can obtain the summary information of the model, tuned:
> summary(tuned)

Error estimation of 'svm' using 10-fold cross validation: 
0.08164651

3.	 Then, you can access the performance details of the tuned model:
> tuned$performances
  gamma cost      error dispersion
1  0.01  100 0.08164651 0.02437228

4.	 Lastly, you can use the optimum model to generate a classification table:
> svmfit = tuned$best.model
> table(trainset[,c("churn")], predict(svmfit))
     
       yes   no
  yes  234  108
  no    13 1960
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How it works...
The e1071 package provides miscellaneous functions to build and assess models, therefore, 
you do not need to reinvent the wheel to evaluate a fitted model. In this recipe, we use the 
tune.svm function to tune the svm model with the given formula, dataset, gamma, cost, and 
control functions. Within the tune.control options, we configure the option as cross=10, 
which performs a 10-fold cross validation during the tuning process. The tuning process will 
eventually return the minimum estimation error, performance detail, and the best model 
during the tuning process. Therefore, we can obtain the performance measures of the tuning 
and further use the optimum model to generate a classification table.

See also
ff In the e1071 package, the tune function uses a grid search to tune parameters.  

For those interested in other tuning functions, use the help function to view the  
tune document:

> ?e1071::tune

Performing cross-validation with the  
caret package

The Caret (classification and regression training) package contains many functions in regard 
to the training process for regression and classification problems. Similar to the e1071 
package, it also contains a function to perform the k-fold cross validation. In this recipe,  
we will demonstrate how to the perform k-fold cross validation using the caret package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
perform the k-fold cross validation.

How to do it...
Perform the following steps to perform the k-fold cross-validation with the caret package:

1.	 First, set up the control parameter to train with the 10-fold cross validation in 3 
repetitions:
> control = trainControl(method="repeatedcv", number=10, 
repeats=3)



Model Evaluation 

224

2.	 Then, you can train the classification model on telecom churn data with rpart:
> model = train(churn~., data=trainset, method="rpart", 
preProcess="scale", trControl=control)

3.	 Finally, you can examine the output of the generated model:
> model

CART 

2315 samples

  16 predictor

   2 classes: 'yes', 'no' 

Pre-processing: scaled 

Resampling: Cross-Validated (10 fold, repeated 3 times) 

Summary of sample sizes: 2084, 2083, 2082, 2084, 2083, 2084, ... 

Resampling results across tuning parameters:

  cp      Accuracy  Kappa  Accuracy SD  Kappa SD

  0.0556  0.904     0.531  0.0236       0.155   

  0.0746  0.867     0.269  0.0153       0.153   

  0.0760  0.860     0.212  0.0107       0.141   

Accuracy was used to select the optimal model using the largest 
value.

The final value used for the model was cp = 0.05555556.

How it works...
In this recipe, we demonstrate how convenient it is to conduct the k-fold cross-validation using 
the caret package. In the first step, we set up the training control and select the option to 
perform the 10-fold cross-validation in three repetitions. The process of repeating the k-fold 
validation is called repeated k-fold validation, which is used to test the stability of the model. If 
the model is stable, one should get a similar test result. Then, we apply rpart on the training 
dataset with the option to scale the data and to train the model with the options configured in 
the previous step.
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After the training process is complete, the model outputs three resampling results. Of these 
results, the model with cp=0.05555556 has the largest accuracy value (0.904), and is 
therefore selected as the optimal model for classification.

See also
ff You can configure the resampling function in trainControl, in which you can 

specify boot, boot632, cv, repeatedcv, LOOCV, LGOCV, none, oob, adaptive_
cv, adaptive_boot, or adaptive_LGOCV. To view more detailed information of 
how to choose the resampling method, view the trainControl document:

> ?trainControl

Ranking the variable importance with the 
caret package

After building a supervised learning model, we can estimate the importance of features. 
This estimation employs a sensitivity analysis to measure the effect on the output of a given 
model when the inputs are varied. In this recipe, we will show you how to rank the variable 
importance with the caret package.

Getting ready
You need to have completed the previous recipe by storing the fitted rpart object in the 
model variable.

How to do it...
Perform the following steps to rank the variable importance with the caret package:

1.	 First, you can estimate the variable importance with the varImp function:
> importance = varImp(model, scale=FALSE)

> importance

rpart variable importance

                              Overall

number_customer_service_calls 116.015

total_day_minutes             106.988

total_day_charge              100.648

international_planyes          86.789
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voice_mail_planyes             25.974

total_eve_charge               23.097

total_eve_minutes              23.097

number_vmail_messages          19.885

total_intl_minutes              6.347

total_eve_calls                 0.000

total_day_calls                 0.000

total_night_charge              0.000

total_intl_calls                0.000

total_intl_charge               0.000

total_night_minutes             0.000

total_night_calls               0.000

2.	 Then, you can generate the variable importance plot with the plot function:
> plot(importance)

Figure 1: The visualization of variable importance using the caret package

How it works...
In this recipe, we first use the varImp function to retrieve the variable importance and obtain 
the summary. The overall results show the sensitivity measure of each attribute. Next, we 
plot the variable importance in terms of rank, which shows that the number_customer_
service_calls attribute is the most important variable in the sensitivity measure.
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There's more...
In some classification packages, such as rpart, the object generated from the training model 
contains the variable importance. We can examine the variable importance by accessing the 
output object:

> library(rpart)

> model.rp = rpart(churn~., data=trainset)

> model.rp$variable.importance

            total_day_minutes              total_day_charge 

                   111.645286                    110.881583 

number_customer_service_calls            total_intl_minutes 

                    58.486651                     48.283228 

            total_intl_charge              total_eve_charge 

                    47.698379                     47.166646 

            total_eve_minutes            international_plan 

                    47.166646                     42.194508 

             total_intl_calls         number_vmail_messages 

                    36.730344                     19.884863 

              voice_mail_plan             total_night_calls 

                    19.884863                      7.195828 

              total_eve_calls            total_night_charge 

                     3.553423                      1.754547 

          total_night_minutes               total_day_calls 

                     1.754547                      1.494986  

Ranking the variable importance with the 
rminer package

Besides using the caret package to generate variable importance, you can use the rminer 
package to generate the variable importance of a classification model. In the following recipe, 
we will illustrate how to use rminer to obtain the variable importance of a fitted model.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
rank the variable importance.
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How to do it...
Perform the following steps to rank the variable importance with rminer:

1.	 Install and load the package, rminer:
> install.packages("rminer")

> library(rminer)

2.	 Fit the svm model with the training set:
> model=fit(churn~.,trainset,model="svm")

3.	 Use the Importance function to obtain the variable importance:
> VariableImportance=Importance(model,trainset,method="sensv")

4.	 Plot the variable importance ranked by the variance:

> L=list(runs=1,sen=t(VariableImportance$imp),sresponses=VariableI
mportance$sresponses)

> mgraph(L,graph="IMP",leg=names(trainset),col="gray",Grid=10)

Figure 2: The visualization of variable importance using the rminer package

How it works...
Similar to the caret package, the rminer package can also generate the variable 
importance of a classification model. In this recipe, we first train the svm model on the 
training dataset, trainset, with the fit function. Then, we use the Importance function 
to rank the variable importance with a sensitivity measure. Finally, we use mgraph to plot the 
rank of the variable importance. Similar to the result obtained from using the caret package, 
number_customer_service_calls is the most important variable in the measure of 
sensitivity.
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See also
ff The rminer package provides many classification models for one to choose from. If 

you are interested in using models other than svm, you can view these options with 
the following command:

> ?rminer::fit

Finding highly correlated features with the 
caret package

When performing regression or classification, some models perform better if highly correlated 
attributes are removed. The caret package provides the findCorrelation function, which 
can be used to find attributes that are highly correlated to each other. In this recipe, we will 
demonstrate how to find highly correlated features using the caret package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
find highly correlated features.

How to do it...
Perform the following steps to find highly correlated attributes:

1.	 Remove the features that are not coded in numeric characters:
> new_train = trainset[,! names(churnTrain) %in% c("churn", 
"international_plan", "voice_mail_plan")]

2.	 Then, you can obtain the correlation of each attribute:
>cor_mat = cor(new_train)

3.	 Next, we use findCorrelation to search for highly correlated attributes with a cut 
off equal to 0.75:
> highlyCorrelated = findCorrelation(cor_mat, cutoff=0.75)

4.	 We then obtain the name of highly correlated attributes:

> names(new_train)[highlyCorrelated]

[1] "total_intl_minutes"  "total_day_charge"    "total_eve_
minutes"   "total_night_minutes"
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How it works...
In this recipe, we search for highly correlated attributes using the caret package. In order 
to retrieve the correlation of each attribute, one should first remove nonnumeric attributes. 
Then, we perform correlation to obtain a correlation matrix. Next, we use findCorrelation 
to find highly correlated attributes with the cut off set to 0.75. We finally obtain the names of 
highly correlated (with a correlation coefficient over 0.75) attributes, which are total_intl_
minutes, total_day_charge, total_eve_minutes, and total_night_minutes. You 
can consider removing some highly correlated attributes and keep one or two attributes for 
better accuracy.

See also
ff In addition to the caret package, you can use the leaps, genetic, and anneal 

functions in the subselect package to achieve the same goal

Selecting features using the caret package
The feature selection method searches the subset of features with minimized predictive 
errors. We can apply feature selection to identify which attributes are required to build an 
accurate model. The caret package provides a recursive feature elimination function,  
rfe, which can help automatically select the required features. In the following recipe,  
we will demonstrate how to use the caret package to perform feature selection.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source  
for feature selection.

How to do it...
Perform the following steps to select features:

1.	 Transform the feature named as international_plan of the training dataset, 
trainset, to intl_yes and intl_no:
> intl_plan = model.matrix(~ trainset.international_plan - 1, 
data=data.frame(trainset$international_plan))

> colnames(intl_plan) = c("trainset.international_planno"="intl_
no", "trainset.international_planyes"= "intl_yes")
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2.	 Transform the feature named as voice_mail_plan of the training dataset, 
trainset, to voice_yes and voice_no:
> voice_plan = model.matrix(~ trainset.voice_mail_plan - 1, 
data=data.frame(trainset$voice_mail_plan))

> colnames(voice_plan) = c("trainset.voice_mail_planno" ="voice_
no", "trainset.voice_mail_planyes"="voidce_yes")

3.	 Remove the international_plan and voice_mail_plan attributes and 
combine the training dataset, trainset with the data frames, intl_plan  
and voice_plan:
> trainset$international_plan = NULL

> trainset$voice_mail_plan = NULL

> trainset = cbind(intl_plan,voice_plan, trainset)

4.	 Transform the feature named as international_plan of the testing dataset, 
testset, to intl_yes and intl_no:
> intl_plan = model.matrix(~ testset.international_plan - 1, 
data=data.frame(testset$international_plan))

> colnames(intl_plan) = c("testset.international_planno"="intl_
no", "testset.international_planyes"= "intl_yes")

5.	 Transform the feature named as voice_mail_plan of the training dataset, 
trainset, to voice_yes and voice_no:
> voice_plan = model.matrix(~ testset.voice_mail_plan - 1, 
data=data.frame(testset$voice_mail_plan))

> colnames(voice_plan) = c("testset.voice_mail_planno" ="voice_
no", "testset.voice_mail_planyes"="voidce_yes")

6.	 Remove the international_plan and voice_mail_plan attributes and 
combine the testing dataset, testset with the data frames, intl_plan and 
voice_plan:
> testset$international_plan = NULL

> testset$voice_mail_plan = NULL

> testset = cbind(intl_plan,voice_plan, testset)

7.	 We then create a feature selection algorithm using linear discriminant analysis:
> ldaControl = rfeControl(functions = ldaFuncs, method = "cv")
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8.	 Next, we perform a backward feature selection on the training dataset, trainset 
using subsets from 1 to 18:
> ldaProfile = rfe(trainset[, !names(trainset) %in% c("churn")], 
trainset[,c("churn")],sizes = c(1:18), rfeControl = ldaControl)

> ldaProfile

Recursive feature selection

Outer resampling method: Cross-Validated (10 fold) 

Resampling performance over subset size:

 Variables Accuracy  Kappa AccuracySD KappaSD Selected

         1   0.8523 0.0000   0.001325 0.00000         

         2   0.8523 0.0000   0.001325 0.00000         

         3   0.8423 0.1877   0.015468 0.09787         

         4   0.8462 0.2285   0.016593 0.09610         

         5   0.8466 0.2384   0.020710 0.09970         

         6   0.8466 0.2364   0.019612 0.09387         

         7   0.8458 0.2315   0.017551 0.08670         

         8   0.8458 0.2284   0.016608 0.09536         

         9   0.8475 0.2430   0.016882 0.10147         

        10   0.8514 0.2577   0.014281 0.08076         

        11   0.8518 0.2587   0.014124 0.08075         

        12   0.8544 0.2702   0.015078 0.09208        *

        13   0.8544 0.2721   0.015352 0.09421         

        14   0.8531 0.2663   0.018428 0.11022         

        15   0.8527 0.2652   0.017958 0.10850         

        16   0.8531 0.2684   0.017897 0.10884         

        17   0.8531 0.2684   0.017897 0.10884         

        18   0.8531 0.2684   0.017897 0.10884         

The top 5 variables (out of 12):

   total_day_charge, total_day_minutes, intl_no, number_customer_
service_calls, total_eve_charge
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9.	 Next, we can plot the selection result:
> plot(ldaProfile, type = c("o", "g"))

Figure 3: The feature selection result

10.	 We can then examine the best subset of the variables:
> ldaProfile$optVariables

 [1] "total_day_charge"             

 [2] "total_day_minutes"            

 [3] "intl_no"                      

 [4] "number_customer_service_calls"

 [5] "total_eve_charge"             

 [6] "total_eve_minutes"            

 [7] "voidce_yes"                   

 [8] "total_intl_calls"             

 [9] "number_vmail_messages"        

[10] "total_intl_charge"            

[11] "total_intl_minutes"           

[12] "total_night_minutes"  

11.	 Now, we can examine the fitted model:
> ldaProfile$fit

Call:

lda(x, y)
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Prior probabilities of groups:

      yes        no 

0.1477322 0.8522678 

Group means:

    total_day_charge total_day_minutes   intl_no

yes         35.00143          205.8877 0.7046784

no          29.62402          174.2555 0.9351242

    number_customer_service_calls total_eve_charge

yes                      2.204678         18.16702

no                       1.441460         16.96789

    total_eve_minutes voidce_yes total_intl_calls

yes          213.7269  0.1666667         4.134503

no           199.6197  0.2954891         4.514445

    number_vmail_messages total_intl_charge

yes              5.099415          2.899386

no               8.674607          2.741343

    total_intl_minutes total_night_minutes

yes           10.73684            205.4640

no            10.15119            201.4184

Coefficients of linear discriminants:

                                       LD1

total_day_charge               0.715025524

total_day_minutes             -0.130486470

intl_no                        2.259889324

number_customer_service_calls -0.421997335

total_eve_charge              -2.390372793

total_eve_minutes              0.198406977

voidce_yes                     0.660927935

total_intl_calls               0.066240268

number_vmail_messages         -0.003529233

total_intl_charge              2.315069869

total_intl_minutes            -0.693504606

total_night_minutes           -0.002127471
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12.	 Finally, we can calculate the performance across resamples:
> postResample(predict(ldaProfile, testset[, !names(testset) %in% 
c("churn")]), testset[,c("churn")])

Accuracy     Kappa

0.8605108 0.2672027

How it works...
In this recipe, we perform feature selection using the caret package. As there are  
factor-coded attributes within the dataset, we first use a function called model.matrix to 
transform the factor-coded attributes into multiple binary attributes. Therefore, we transform 
the international_plan attribute to intl_yes and intl_no. Additionally, we transform 
the voice_mail_plan attribute to voice_yes and voice_no.

Next, we set up control parameters for training using the cross-validation method, cv, with 
the linear discriminant function, ldaFuncs. Then, we use the recursive feature elimination, 
rfe, to perform feature selection with the use of the control function, ldaFuncs. The 
rfe function generates the summary of feature selection, which contains resampling a 
performance over the subset size and top variables.

We can then use the obtained model information to plot the number of variables against 
accuracy. From Figure 3, it is obvious that using 12 features can obtain the best accuracy. 
In addition to this, we can retrieve the best subset of the variables in (12 variables in total) 
the fitted model. Lastly, we can calculate the performance across resamples, which yields an 
accuracy of 0.86 and a kappa of 0.27.

See also
ff In order to specify the algorithm used to control feature selection, one can change 

the control function specified in rfeControl. Here are some of the options you can 
use:

caretFuncs      SVM (caret) 
lmFuncs         lm (base) 
rfFuncs         RF(randomForest) 
treebagFuncs    DT (ipred) 
ldaFuncs        lda(base) 
nbFuncs         NB(klaR) 
gamFuncs        gam(gam)
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Measuring the performance of the 
regression model

To measure the performance of a regression model, we can calculate the distance from 
predicted output and the actual output as a quantifier of the performance of the model. Here, 
we often use the root mean square error (RMSE), relative square error (RSE) and R-Square 
as common measurements. In the following recipe, we will illustrate how to compute these 
measurements from a built regression model.

Getting ready
In this recipe, we will use the Quartet dataset, which contains four regression datasets, as 
our input data source.

How to do it...
Perform the following steps to measure the performance of the regression model:

1.	 Load the Quartet dataset from the car package:
> library(car)

> data(Quartet)

2.	 Plot the attribute, y3, against x using the lm function:
> plot(Quartet$x, Quartet$y3)

> lmfit = lm(Quartet$y3~Quartet$x)

> abline(lmfit, col="red")

Figure 4: The linear regression plot

3.	 You can retrieve predicted values by using the predict function:
> predicted= predict(lmfit, newdata=Quartet[c("x")])
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4.	 Now, you can calculate the root mean square error:
> actual = Quartet$y3

> rmse = (mean((predicted - actual)^2))^0.5

> rmse

[1] 1.118286

5.	 You can calculate the relative square error:
> mu = mean(actual)

> rse = mean((predicted - actual)^2) / mean((mu - actual)^2) 

> rse

[1] 0.333676

6.	 Also, you can use R-Square as a measurement:
> rsquare = 1 - rse

> rsquare

[1] 0.666324

7.	 Then, you can plot attribute, y3, against x using the rlm function from the  
MASS package:
> library(MASS)

> plot(Quartet$x, Quartet$y3)

> rlmfit = rlm(Quartet$y3~Quartet$x)

> abline(rlmfit, col="red")

Figure 5: The robust linear regression plot on the Quartet dataset
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8.	 You can then retrieve the predicted value using the predict function:
> predicted = predict(rlmfit, newdata=Quartet[c("x")])

9.	 Next, you can calculate the root mean square error using the distance of the 
predicted and actual value:
> actual = Quartet$y3

> rmse = (mean((predicted - actual)^2))^0.5

> rmse

[1] 1.279045

10.	 Calculate the relative square error between the predicted and actual labels:
> mu = mean(actual)

> rse =mean((predicted - actual)^2) / mean((mu - actual)^2) 

> rse

[1] 0.4365067

11.	 Now, you can calculate the R-Square value:
> rsquare = 1 - rse

> rsquare

[1] 0.5634933

How it works...
The measurement of the performance of the regression model employs the distance between 
the predicted value and the actual value. We often use these three measurements, root 
mean square error, relative square error, and R-Square, as the quantifier of the performance 
of regression models. In this recipe, we first load the Quartet data from the car package. 
We then use the lm function to fit the linear model, and add the regression line on a scatter 
plot of the x variable against the y3 variable. Next, we compute the predicted value using the 
predict function, and begin to compute the root mean square error (RMSE), relative square 
error (RSE), and R-Square for the built model.

As this dataset has an outlier at x=13, we would like to quantify how the outlier affects 
the performance measurement. To achieve this, we first train a regression model using 
the rlm function from the MASS package. Similar to the previous step, we then generate a 
performance measurement of the root square mean error, relative error and R-Square. From 
the output measurement, it is obvious that the mean square error and the relative square 
errors of the lm model are smaller than the model built by rlm, and the score of R-Square 
shows that the model built with lm has a greater prediction power. However, for the actual 
scenario, we should remove the outlier at x=13. This comparison shows that the outlier may 
be biased toward the performance measure and may lead us to choose the wrong model.
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There's more…
If you would like to perform cross-validation on a linear regression model, you can use the 
tune function within the e1071 package:

> tune(lm, y3~x, data = Quartet)

Error estimation of 'lm' using 10-fold cross validation: 2.33754

Other than the e1071 package, you can use the train function from the caret package to 
perform cross-validation. In addition to this, you can also use cv.lm from the DAAG package 
to achieve the same goal.

Measuring prediction performance with a 
confusion matrix

To measure the performance of a classification model, we can first generate a classification 
table based on our predicted label and actual label. Then, we can use a confusion matrix 
to obtain performance measures such as precision, recall, specificity, and accuracy. In this 
recipe, we will demonstrate how to retrieve a confusion matrix using the caret package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as our example dataset.

How to do it...
Perform the following steps to generate a classification measurement:

1.	 Train an svm model using the training dataset:
> svm.model= train(churn ~ .,
+                   data = trainset,
+                   method = "svmRadial")

2.	 You can then predict labels using the fitted model, svm.model:
> svm.pred = predict(svm.model, testset[,! names(testset) %in% 
c("churn")])

3.	 Next, you can generate a classification table:
> table(svm.pred, testset[,c("churn")])
        

svm.pred yes  no
     yes  73  16
     no   68 861
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4.	 Lastly, you can generate a confusion matrix using the prediction results and the 
actual labels from the testing dataset:

> confusionMatrix(svm.pred, testset[,c("churn")])

Confusion Matrix and Statistics

          Reference

Prediction yes  no

       yes  73  16

       no   68 861

                                          

               Accuracy : 0.9175          

                 95% CI : (0.8989, 0.9337)

    No Information Rate : 0.8615          

    P-Value [Acc > NIR] : 2.273e-08       

                                          

                  Kappa : 0.5909          

 Mcnemar's Test P-Value : 2.628e-08       

                                          

            Sensitivity : 0.51773         

            Specificity : 0.98176         

         Pos Pred Value : 0.82022         

         Neg Pred Value : 0.92680         

             Prevalence : 0.13851         

         Detection Rate : 0.07171         

   Detection Prevalence : 0.08743         

      Balanced Accuracy : 0.74974         

                                          

       'Positive' Class : yes              

How it works...
In this recipe, we demonstrate how to obtain a confusion matrix to measure the performance 
of a classification model. First, we use the train function from the caret package to 
train an svm model. Next, we use the predict function to extract the predicted labels of 
the svm model using the testing dataset. Then, we perform the table function to obtain 
the classification table based on the predicted and actual labels. Finally, we use the 
confusionMatrix function from the caret package to a generate a confusion matrix to 
measure the performance of the classification model.
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See also
ff If you are interested in the available methods that can be used in the train function, 

you can refer to this website: http://topepo.github.io/caret/modelList.
html

Measuring prediction performance using 
ROCR

A receiver operating characteristic (ROC) curve is a plot that illustrates the performance of 
a binary classifier system, and plots the true positive rate against the false positive rate for 
different cut points. We most commonly use this plot to calculate the area under curve (AUC) 
to measure the performance of a classification model. In this recipe, we will demonstrate 
how to illustrate an ROC curve and calculate the AUC to measure the performance of a 
classification model.

Getting ready
In this recipe, we will continue using the telecom churn dataset as our example dataset.

How to do it...
Perform the following steps to generate two different classification examples with  
different costs:

1.	 First, you should install and load the ROCR package:
> install.packages("ROCR")

> library(ROCR)

2.	 Train the svm model using the training dataset with a probability equal to TRUE:
> svmfit=svm(churn~ ., data=trainset, prob=TRUE)

3.	 Make predictions based on the trained model on the testing dataset with the 
probability set as TRUE:
>pred=predict(svmfit,testset[, !names(testset) %in% c("churn")], 
probability=TRUE)

4.	 Obtain the probability of labels with yes:
> pred.prob = attr(pred, "probabilities") 

> pred.to.roc = pred.prob[, 2] 

http://topepo.github.io/caret/modelList.html
http://topepo.github.io/caret/modelList.html
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5.	 Use the prediction function to generate a prediction result:
> pred.rocr = prediction(pred.to.roc, testset$churn)

6.	 Use the performance function to obtain the performance measurement:
> perf.rocr = performance(pred.rocr, measure = "auc", x.measure = 
"cutoff") 

> perf.tpr.rocr = performance(pred.rocr, "tpr","fpr") 

7.	 Visualize the ROC curve using the plot function:
> plot(perf.tpr.rocr, colorize=T,main=paste("AUC:",(perf.rocr@y.
values)))

Figure 6: The ROC curve for the svm classifier performance

How it works...
In this recipe, we demonstrated how to generate an ROC curve to illustrate the performance 
of a binary classifier. First, we should install and load the library, ROCR. Then, we use svm, 
from the e1071 package, to train a classification model, and then use the model to predict 
labels for the testing dataset. Next, we use the prediction function (from the package, ROCR) to 
generate prediction results. We then adapt the performance function to obtain the performance 
measurement of the true positive rate against the false positive rate. Finally, we use the plot 
function to visualize the ROC plot, and add the value of AUC on the title. In this example, the AUC 
value is 0.92, which indicates that the svm classifier performs well in classifying telecom user 
churn datasets.

See also
ff For those interested in the concept and terminology of ROC, you can refer to 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Comparing an ROC curve using the  
caret package

In previous chapters, we introduced many classification methods; each method has its own 
advantages and disadvantages. However, when it comes to the problem of how to choose 
the best fitted model, you need to compare all the performance measures generated from 
different prediction models. To make the comparison easy, the caret package allows us to 
generate and compare the performance of models. In this recipe, we will use the function 
provided by the caret package to compare different algorithm trained models on the same 
dataset.

Getting ready
Here, we will continue to use telecom dataset as our input data source.

How to do it...
Perform the following steps to generate an ROC curve of each fitted model:

1.	 Install and load the library, pROC:
> install.packages("pROC")

> library("pROC")

2.	 Set up the training control with a 10-fold cross-validation in 3 repetitions:
> control = trainControl(method = "repeatedcv",

+                            number = 10,

+                            repeats = 3,

+                            classProbs = TRUE,

+                            summaryFunction = twoClassSummary)

3.	 Then, you can train a classifier on the training dataset using glm:
> glm.model= train(churn ~ .,

+                     data = trainset,

+                     method = "glm",

+                     metric = "ROC",

+                     trControl = control)

4.	 Also, you can train a classifier on the training dataset using svm:
> svm.model= train(churn ~ .,

+                   data = trainset,
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+                   method = "svmRadial",

+                   metric = "ROC",

+                   trControl = control)

5.	 To see how rpart performs on the training data, we use the rpart function:
> rpart.model= train(churn ~ .,

+                   data = trainset,

+                   method = "rpart",

+                   metric = "ROC",

+                   trControl = control)

6.	 You can make predictions separately based on different trained models:
> glm.probs = predict(glm.model, testset[,! names(testset) %in% 
c("churn")], type = "prob")

> svm.probs = predict(svm.model, testset[,! names(testset) %in% 
c("churn")], type = "prob")

> rpart.probs = predict(rpart.model, testset[,! names(testset) 
%in% c("churn")], type = "prob")

7.	 You can generate the ROC curve of each model, and plot the curve on the  
same figure:
> glm.ROC = roc(response = testset[,c("churn")],

+                predictor =glm.probs$yes,

+                levels = levels(testset[,c("churn")]))

> plot(glm.ROC, type="S", col="red") 

Call:

roc.default(response = testset[, c("churn")], predictor = glm.
probs$yes,     levels = levels(testset[, c("churn")]))

Data: glm.probs$yes in 141 controls (testset[, c("churn")] yes) > 
877 cases (testset[, c("churn")] no).

Area under the curve: 0.82

> svm.ROC = roc(response = testset[,c("churn")],

+                predictor =svm.probs$yes,

+                levels = levels(testset[,c("churn")]))

> plot(svm.ROC, add=TRUE, col="green") 
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Call:

roc.default(response = testset[, c("churn")], predictor = svm.
probs$yes,     levels = levels(testset[, c("churn")]))

Data: svm.probs$yes in 141 controls (testset[, c("churn")] yes) > 
877 cases (testset[, c("churn")] no).

Area under the curve: 0.9233

> rpart.ROC = roc(response = testset[,c("churn")],

+                predictor =rpart.probs$yes,

+                levels = levels(testset[,c("churn")]))

> plot(rpart.ROC, add=TRUE, col="blue")

Call:

roc.default(response = testset[, c("churn")], predictor = rpart.
probs$yes,     levels = levels(testset[, c("churn")]))

Data: rpart.probs$yes in 141 controls (testset[, c("churn")] yes) 
> 877 cases (testset[, c("churn")] no).

Area under the curve: 0.7581

Figure 7: The ROC curve for the performance of three classifiers
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How it works...
Here, we demonstrate how we can compare fitted models by illustrating their ROC curve in 
one figure. First, we set up the control of the training process with a 10-fold cross validation 
in 3 repetitions with the performance evaluation in twoClassSummary. After setting up 
control of the training process, we then apply glm, svm, and rpart algorithms on the training 
dataset to fit the classification models. Next, we can make a prediction based on each 
generated model and plot the ROC curve, respectively. Within the generated figure, we find 
that the model trained by svm has the largest area under curve, which is 0.9233 (plotted in 
green), the AUC of the glm model (red) is 0.82, and the AUC of the rpart model (blue) is 
0.7581. From Figure 7, it is obvious that svm performs the best among all the fitted models 
on this training dataset (without requiring tuning).

See also
ff We use another ROC visualization package, pROC, which can be employed to display 

and analyze ROC curves. If you would like to know more about the package, please 
use the help function:

> help(package="pROC")

Measuring performance differences between 
models with the caret package

In the previous recipe, we introduced how to generate ROC curves for each generated model, 
and have the curve plotted on the same figure. Apart from using an ROC curve, one can 
use the resampling method to generate statistics of each fitted model in ROC, sensitivity 
and specificity metrics. Therefore, we can use these statistics to compare the performance 
differences between each model. In the following recipe, we will introduce how to measure 
performance differences between fitted models with the caret package.

Getting ready
One needs to have completed the previous recipe by storing the glm fitted model, svm fitted 
model, and the rpart fitted model into glm.model, svm.model, and rpart.model, 
respectively.
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How to do it...
Perform the following steps to measure performance differences between each fitted model:

1.	 Resample the three generated models:
> cv.values = resamples(list(glm = glm.model, svm=svm.model, rpart 
= rpart.model))

2.	 Then, you can obtain a summary of the resampling result:
> summary(cv.values)

Call:

summary.resamples(object = cv.values)

Models: glm, svm, rpart 

Number of resamples: 30 

ROC 

        Min. 1st Qu. Median   Mean 3rd Qu.   Max. NA's

glm   0.7206  0.7847 0.8126 0.8116  0.8371 0.8877    0

svm   0.8337  0.8673 0.8946 0.8929  0.9194 0.9458    0

rpart 0.2802  0.7159 0.7413 0.6769  0.8105 0.8821    0

Sens 

         Min. 1st Qu. Median   Mean 3rd Qu.   Max. NA's

glm   0.08824  0.2000 0.2286 0.2194  0.2517 0.3529    0

svm   0.44120  0.5368 0.5714 0.5866  0.6424 0.7143    0

rpart 0.20590  0.3742 0.4706 0.4745  0.5929 0.6471    0

Spec 

        Min. 1st Qu. Median   Mean 3rd Qu.   Max. NA's

glm   0.9442  0.9608 0.9746 0.9701  0.9797 0.9949    0

svm   0.9442  0.9646 0.9746 0.9740  0.9835 0.9949    0

rpart 0.9492  0.9709 0.9797 0.9780  0.9848 0.9949    0
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3.	 Use dotplot to plot the resampling result in the ROC metric:
> dotplot(cv.values, metric = "ROC")

Figure 8: The dotplot of resampling result in ROC metric

4.	 Also, you can use a box-whisker plot to plot the resampling result:

> bwplot(cv.values, layout = c(3, 1))

Figure 9: The box-whisker plot of resampling result
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How it works...
In this recipe, we demonstrate how to measure the performance differences among three 
fitted models using the resampling method. First, we use the resample function to generate 
the statistics of each fitted model (svm.model, glm.model, and rpart.model). Then, 
we can use the summary function to obtain the statistics of these three models in the ROC, 
sensitivity and specificity metrics. Next, we can apply a dotplot on the resampling result to 
see how ROC varied between each model. Last, we use a box-whisker plot on the resampling 
results to show the box-whisker plot of different models in the ROC, sensitivity and specificity 
metrics on a single plot.

See also
ff Besides using dotplot and bwplot to measure performance differences, one can 

use densityplot, splom, and xyplot to visualize the performance differences of 
each fitted model in the ROC, sensitivity, and specif﻿icity metrics.
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Ensemble Learning 

In this chapter, we will cover the following topics:

ff Classifying data with the bagging method

ff Performing cross-validation with the bagging method

ff Classifying data with the boosting method

ff Performing cross-validation with the boosting method 

ff Classifying data with gradient boosting

ff Calculating the margins of a classifier 

ff Calculating the error evolution of the ensemble method

ff Classifying the data with random forest

ff Estimating the prediction errors of different classifiers

Introduction
Ensemble learning is a method to combine results produced by different learners into one 
format, with the aim of producing better classification results and regression results. In 
previous chapters, we discussed several classification methods. These methods take different 
approaches but they all have the same goal, that is, finding an optimum classification 
model. However, a single classifier may be imperfect, which may misclassify data in certain 
categories. As not all classifiers are imperfect, a better approach is to average the results by 
voting. In other words, if we average the prediction results of every classifier with the same 
input, we may create a superior model compared to using an individual method.

8
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In ensemble learning, bagging, boosting, and random forest are the three most  
common methods:

ff Bagging is a voting method, which first uses Bootstrap to generate a different training 
set, and then uses the training set to make different base learners. The bagging 
method employs a combination of base learners to make a better prediction.

ff Boosting is similar to the bagging method. However, what makes boosting different is 
that it first constructs the base learning in sequence, where each successive learner 
is built for the prediction residuals of the preceding learner. With the means to create 
a complementary learner, it uses the mistakes made by previous learners to train the 
next base learner.

ff Random forest uses the classification results voted from many classification trees. 
The idea is simple; a single classification tree will obtain a single classification result 
with a single input vector. However, a random forest grows many classification trees, 
obtaining multiple results from a single input. Therefore, a random forest will use the 
majority of votes from all the decision trees to classify data or use an average output 
for regression.

In the following recipes, we will discuss how to use bagging and boosting to classify data.  
We can then perform cross-validation to estimate the error rate of each classifier. In addition 
to this, we'll introduce the use of a margin to measure the certainty of a model. Next, we  
cover random forests, similar to the bagging and boosting methods, and introduce how to 
train the model to classify data and use margins to estimate the model certainty. Lastly,  
we'll demonstrate how to estimate the error rate of each classifier, and use the error rate  
to compare the performance of different classifiers.

Classifying data with the bagging method
The adabag package implements both boosting and bagging methods. For the bagging 
method, the package implements Breiman's Bagging algorithm, which first generates  
multiple versions of classifiers, and then obtains an aggregated classifier. In this recipe,  
we will illustrate how to use the bagging method from adabag to generate a classification 
model using the telecom churn dataset.

Getting ready
In this recipe, we continue to use the telecom churn dataset as the input data source for 
the bagging method. For those who have not prepared the dataset, please refer to Chapter 5, 
Classification (I) – Tree, Lazy, and Probabilistic, for detailed information.
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How to do it...
Perform the following steps to generate a classification model for the telecom churn dataset:

1.	 First, you need to install and load the adabag package (it might take a while to install 
adabag):
> install.packages("adabag")

> library(adabag)

2.	 Next, you can use the bagging function to train a training dataset (the result may 
vary during the training process):
> set.seed(2)

> churn.bagging = bagging(churn ~ ., data=trainset, mfinal=10)

3.	 Access the variable importance from the bagging result:
> churn.bagging$importance

           international_plan number_customer_service_calls 

                   10.4948380                    16.4260510 

        number_vmail_messages               total_day_calls 

                    0.5319143                     0.3774190 

             total_day_charge             total_day_minutes 

                    0.0000000                    28.7545042 

              total_eve_calls              total_eve_charge 

                    0.1463585                     0.0000000 

            total_eve_minutes              total_intl_calls 

                   14.2366754                     8.7733895 

            total_intl_charge            total_intl_minutes 

                    0.0000000                     9.7838256 

            total_night_calls            total_night_charge 

                    0.4349952                     0.0000000 

          total_night_minutes               voice_mail_plan 

                    2.3379622                     7.7020671 

4.	 After generating the classification model, you can use the predicted results from the 
testing dataset:
> churn.predbagging= predict.bagging(churn.bagging, 
newdata=testset)
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5.	 From the predicted results, you can obtain a classification table:
> churn.predbagging$confusion

               Observed Class

Predicted Class yes  no

            no   35 866

            yes 106  11

6.	 Finally, you can retrieve the average error of the bagging result:
> churn.predbagging$error

[1] 0.0451866

How it works...
Bagging is derived from the name Bootstrap aggregating, which is a stable, accurate, and 
easy to implement model for data classification and regression. The definition of bagging 
is as follows: given a training dataset of size n, bagging performs Bootstrap sampling and 
generates m new training sets, Di, each of size n. Finally, we can fit m Bootstrap samples  
to m models and combine the result by averaging the output (for regression) or voting  
(for classification):

An illustration of bagging method

The advantage of using bagging is that it is a powerful learning method, which is easy to 
understand and implement. However, the main drawback of this technique is that it is  
hard to analyze the result.
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In this recipe, we use the boosting method from adabag to classify the telecom churn data. 
Similar to other classification methods discussed in previous chapters, you can train a 
boosting classifier with a formula and a training dataset. Additionally, you can set the number 
of iterations to 10 in the mfinal argument. Once the classification model is built, you can 
examine the importance of each attribute. Ranking the attributes by importance reveals that 
the number of customer service calls play a crucial role in the classification model.

Next, with a fitted model, you can apply the predict.bagging function to predict the labels 
of the testing dataset. Therefore, you can use the labels of the testing dataset and predicted 
results to generate a classification table and obtain the average error, which is 0.045 in  
this example.

There's more...
Besides adabag, the ipred package provides a bagging method for a classification tree. 
We demonstrate here how to use the bagging method of the ipred package to train a 
classification model:

1.	 First, you need to install and load the ipred package:
> install.packages("ipred")

> library(ipred)

2.	 You can then use the bagging method to fit the classification method:
> churn.bagging = bagging(churn ~ ., data = trainset, coob = T)

> churn.bagging

Bagging classification trees with 25 bootstrap replications 

Call: bagging.data.frame(formula = churn ~ ., data = trainset, 
coob = T)

Out-of-bag estimate of misclassification error:  0.0605 

3.	 Obtain an out of bag estimate of misclassification of the errors:
> mean(predict(churn.bagging) != trainset$churn)

[1] 0.06047516

4.	 You can then use the predict function to obtain the predicted labels of the  
testing dataset:
> churn.prediction = predict(churn.bagging, newdata=testset, 
type="class")



Ensemble Learning

256

5.	 Obtain the classification table from the labels of the testing dataset and  
prediction result:
> prediction.table = table(churn.prediction, testset$churn)

                

churn.prediction yes  no

             no   31 869

             yes 110   8

Performing cross-validation with the 
bagging method

To assess the prediction power of a classifier, you can run a cross-validation method to 
test the robustness of the classification model. In this recipe, we will introduce how to use 
bagging.cv to perform cross-validation with the bagging method.

Getting ready
In this recipe, we continue to use the telecom churn dataset as the input data source to 
perform a k-fold cross-validation with the bagging method.

How to do it...
Perform the following steps to retrieve the minimum estimation errors by performing cross-
validation with the bagging method:

1.	 First, we use bagging.cv to make a 10-fold classification on the training dataset 
with 10 iterations:
> churn.baggingcv = bagging.cv(churn ~ ., v=10, data=trainset, 
mfinal=10)

2.	 You can then obtain the confusion matrix from the cross-validation results:
> churn.baggingcv$confusion

               Observed Class

Predicted Class  yes   no

            no   100 1938

            yes  242   35

3.	 Lastly, you can retrieve the minimum estimation errors from the cross-validation results:
> churn.baggingcv$error

[1] 0.05831533
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How it works...
The adabag package provides a function to perform the k-fold validation with either the 
bagging or boosting method. In this example, we use bagging.cv to make the k-fold cross-
validation with the bagging method. We first perform a 10-fold cross validation with 10 
iterations by specifying v=10 and mfinal=10. Please note that this is quite time consuming 
due to the number of iterations. After the cross-validation process is complete, we can obtain 
the confusion matrix and average errors (0.058 in this case) from the cross-validation results.

See also
ff For those interested in tuning the parameters of bagging.cv, please view the 

bagging.cv document by using the help function:
> help(bagging.cv)

Classifying data with the boosting method
Similar to the bagging method, boosting starts with a simple or weak classifier and gradually 
improves it by reweighting the misclassified samples. Thus, the new classifier can learn from 
previous classifiers. The adabag package provides implementation of the AdaBoost.M1 
and SAMME algorithms. Therefore, one can use the boosting method in adabag to perform 
ensemble learning. In this recipe, we will use the boosting method in adabag to classify the 
telecom churn dataset.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
perform classifications with the boosting method. Also, you need to have the adabag package 
loaded in R before commencing the recipe.

How to do it...
Perform the following steps to classify the telecom churn dataset with the boosting method:

1.	 You can use the boosting function from the adabag package to train the  
classification model:
> set.seed(2)

> churn.boost = boosting(churn ~.,data=trainset,mfinal=10, 
coeflearn="Freund", boos=FALSE , control=rpart.
control(maxdepth=3))
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2.	 You can then make a prediction based on the boosted model and testing dataset:
> churn.boost.pred = predict.boosting(churn.boost,newdata=testset)

3.	 Next, you can retrieve the classification table from the predicted results:
> churn.boost.pred$confusion

               Observed Class

Predicted Class yes  no

            no   41 858

            yes 100  19

4.	  Finally, you can obtain the average errors from the predicted results:
> churn.boost.pred$error

[1] 0.0589391

How it works...
The idea of boosting is to "boost" weak learners (for example, a single decision tree) into 
strong learners. Assuming that we have n points in our training dataset, we can assign a 
weight, Wi (0 <= i <n), for each point. Then, during the iterative learning process (we assume 
the number of iterations is m), we can reweigh each point in accordance with the classification 
result in each iteration. If the point is correctly classified, we should decrease the weight. 
Otherwise, we increase the weight of the point. When the iteration process is finished, we 
can then obtain the m fitted model, fi(x) (0 <= i <n). Finally, we can obtain the final prediction 
through the weighted average of each tree's prediction, where the weight, b, is based on the 
quality of each tree:

An illustration of boosting method

Both bagging and boosting are ensemble methods, which combine the prediction power of 
each single learner into a strong learner. The difference between bagging and boosting is 
that the bagging method combines independent models, but boosting performs an iterative 
process to reduce the errors of preceding models by predicting them with successive models.
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In this recipe, we demonstrate how to fit a classification model within the boosting method. 
Similar to bagging, one has to specify the formula and the training dataset used to train 
the classification model. In addition, one can specify parameters, such as the number of 
iterations (mfinal), the weight update coefficient (coeflearn), the weight of how each 
observation is used (boos), and the control for rpart (a single decision tree). In this recipe, 
we set the iteration to 10, using Freund (the AdaBoost.M1 algorithm implemented method) 
as coeflearn, boos set to false and max depth set to 3 for rpart configuration.

We use the boosting method to fit the classification model and then save it in churn.boost. 
We can then obtain predicted labels using the prediction function. Furthermore, we can 
use the table function to retrieve a classification table based on the predicted labels and 
testing the dataset labels. Lastly, we can get the average errors of the predicted results.

There's more...
In addition to using the boosting function in the adabag package, one can also use the 
caret package to perform a classification with the boosting method:

1.	 First, load the  mboost and pROC package:
> library(mboost)

> install.packages("pROC")

> library(pROC)

2.	 We can then set the training control with the trainControl function and use the 
train function to train the classification model with adaboost:
> set.seed(2)

> ctrl = trainControl(method = "repeatedcv", repeats = 1, 
classProbs = TRUE, summaryFunction = twoClassSummary)

> ada.train = train(churn ~ ., data = trainset, method = "ada", 
metric = "ROC", trControl = ctrl)

3.	 Use the summary function to obtain the details of the classification model:
> ada.train$result

   nu maxdepth iter       ROC      Sens        Spec      ROCSD     
SensSD      SpecSD

1 0.1        1   50 0.8571988 0.9152941 0.012662155 0.03448418 
0.04430519 0.007251045

4 0.1        2   50 0.8905514 0.7138655 0.006083679 0.03538445 
0.10089887 0.006236741

7 0.1        3   50 0.9056456 0.4036134 0.007093780 0.03934631 
0.09406015 0.006407402

2 0.1        1  100 0.8550789 0.8918487 0.015705276 0.03434382 
0.06190546 0.006503191

5 0.1        2  100 0.8907720 0.6609244 0.009626724 0.03788941 
0.11403364 0.006940001
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8 0.1        3  100 0.9077750 0.3832773 0.005576065 0.03601187 
0.09630026 0.003738978

3 0.1        1  150 0.8571743 0.8714286 0.016720505 0.03481526 
0.06198773 0.006767313

6 0.1        2  150 0.8929524 0.6171429 0.011654617 0.03638272 
0.11383803 0.006777465

9 0.1        3  150 0.9093921 0.3743697 0.007093780 0.03258220 
0.09504202 0.005446136

4.	 Use the plot function to plot the ROC curve within different iterations:
> plot(ada.train)

The repeated cross validation plot

5.	 Finally, we can make predictions using the predict function and view the 
classification table:
> ada.predict = predict(ada.train, testset, "prob")

> ada.predict.result = ifelse(ada.predict[1] > 0.5, "yes", "no")

> table(testset$churn, ada.predict.result)

     ada.predict.result

       no yes

  yes  40 101

  no  872   5
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Performing cross-validation with the 
boosting method

Similar to the bagging function, adabag provides a cross-validation function for the  
boosting method, named boosting.cv. In this recipe, we will demonstrate how to  
perform cross-validation using boosting.cv from the package, adabag.

Getting ready
In this recipe, we continue to use the telecom churn dataset as the input data source to 
perform a k-fold cross-validation with the boosting method.

How to do it...
Perform the following steps to retrieve the minimum estimation errors via cross-validation  
with the boosting method:

1.	 First, you can use boosting.cv to cross-validate the training dataset:
> churn.boostcv = boosting.cv(churn ~ ., v=10, data=trainset, 
mfinal=5,control=rpart.control(cp=0.01))

2.	 You can then obtain the confusion matrix from the boosting results:
> churn.boostcv$confusion

               Observed Class

Predicted Class  yes   no

            no   119 1940

            yes  223   33

3.	 Finally, you can retrieve the average errors of the boosting method:
> churn.boostcv$error

[1] 0.06565875

How it works...
Similar to bagging.cv, we can perform cross-validation with the boosting method using 
boosting.cv. If v is set to 10 and mfinal is set to 5, the boosting method will perform 
10-fold cross-validations with five iterations. Also, one can set the control of the rpart fit 
within the parameter. We can set the complexity parameter to 0.01 in this example. Once  
the training is complete, the confusion matrix and average errors of the boosted results  
will be obtained.
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See also
ff For those who require more information on tuning the parameters of boosting.cv, 

please view the boosting.cv document by using the help function:
> help(boosting.cv)

Classifying data with gradient boosting
Gradient boosting ensembles weak learners and creates a new base learner that maximally 
correlates with the negative gradient of the loss function. One may apply this method on 
either regression or classification problems, and it will perform well in different datasets.  
In this recipe, we will introduce how to use gbm to classify a telecom churn dataset.

Getting ready
In this recipe, we continue to use the telecom churn dataset as the input data source for the 
bagging method. For those who have not prepared the dataset, please refer to Chapter 5, 
Classification (I) – Tree, Lazy, and Probabilistic, for detailed information.

How to do it...
Perform the following steps to calculate and classify data with the gradient boosting method:

1.	 First, install and load the package, gbm:
> install.packages("gbm")

> library(gbm)

2.	 The gbm function only uses responses ranging from 0 to 1; therefore, you should 
transform yes/no responses to numeric responses (0/1):
> trainset$churn = ifelse(trainset$churn == "yes", 1, 0)

3.	 Next, you can use the gbm function to train a training dataset:
> set.seed(2)

> churn.gbm = gbm(formula = churn ~ .,distribution = 
"bernoulli",data = trainset,n.trees = 1000,interaction.depth = 
7,shrinkage = 0.01, cv.folds=3)
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4.	 Then, you can obtain the summary information from the fitted model:
> summary(churn.gbm)

                                         var    rel.inf

total_day_minutes          total_day_minutes 28.1217147

total_eve_minutes                total_eve_minutes 16.8097151

number_customer_service_calls number_customer_service_calls 
12.7894464

total_intl_minutes             total_intl_minutes  9.4515822

total_intl_calls                   total_intl_calls  8.1379826

international_plan               international_plan  8.0703900

total_night_minutes             total_night_minutes  4.0805153

number_vmail_messages         number_vmail_messages  3.9173515

voice_mail_plan                  voice_mail_plan  2.5501480

total_night_calls              total_night_calls  2.1357970

total_day_calls                     total_day_calls  1.7367888

total_eve_calls                     total_eve_calls  1.4398047

total_eve_charge                 total_eve_charge  0.5457486

total_night_charge              total_night_charge  0.2130152

total_day_charge                total_day_charge  0.0000000

total_intl_charge                 total_intl_charge  0.0000000

Relative influence plot of fitted model
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5.	 You can obtain the best iteration using cross-validation:
> churn.iter = gbm.perf(churn.gbm,method="cv")

The performance measurement plot

6.	 Then, you can retrieve the odd value of the log returned from the Bernoulli  
loss function:
> churn.predict = predict(churn.gbm, testset, n.trees = churn.
iter)

> str(churn.predict)

 num [1:1018] -3.31 -2.91 -3.16 -3.47 -3.48 ...

7.	 Next, you can plot the ROC curve and get the best cut off that will have the maximum 
accuracy:
> churn.roc = roc(testset$churn, churn.predict)

> plot(churn.roc)

Call:

roc.default(response = testset$churn, predictor = churn.predict)

Data: churn.predict in 141 controls (testset$churn yes) > 877 
cases (testset$churn no).

Area under the curve: 0.9393

The ROC curve of fitted model
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8.	 You can retrieve the best cut off with the coords function and use this cut off to 
obtain the predicted label:
> coords(churn.roc, "best")

  threshold specificity sensitivity 

 -0.9495258   0.8723404   0.9703535 

> churn.predict.class = ifelse(churn.predict > coords(churn.roc, 
"best")["threshold"], "yes", "no")

9.	 Lastly, you can obtain the classification table from the predicted results:
> table( testset$churn,churn.predict.class)

     churn.predict.class

       no yes

  yes  18 123

  no  851  26

How it works...
The algorithm of gradient boosting involves, first, the process computes the deviation of 
residuals for each partition, and then, determines the best data partitioning in each stage. 
Next, the successive model will fit the residuals from the previous stage and build a new 
model to reduce the residual variance (an error). The reduction of the residual variance 
follows the functional gradient descent technique, in which it minimizes the residual variance 
by going down its derivative, as show here:

Gradient descent method
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In this recipe, we use the gradient boosting method from gbm to classify the telecom churn 
dataset. To begin the classification, we first install and load the gbm package. Then, we use 
the gbm function to train the classification model. Here, as our prediction target is the churn 
attribute, which is a binary outcome, we therefore set the distribution as bernoulli in the 
distribution argument. Also, we set the 1000 trees to fit in the n.tree argument, the 
maximum depth of the variable interaction to 7 in interaction.depth, the learning rate 
of the step size reduction to 0.01 in shrinkage, and the number of cross-validations to 3 in 
cv.folds. After the model is fitted, we can use the summary function to obtain the relative 
influence information of each variable in the table and figure. The relative influence shows 
the reduction attributable to each variable in the sum of the square error. Here, we can find 
total_day_minutes is the most influential one in reducing the loss function.

Next, we use the gbm.perf function to find the optimum iteration. Here, we estimate the 
optimum number with cross-validation by specifying the method argument to cv. The function 
further generates two plots, where the black line plots the training error and the green one 
plots the validation error. The error measurement here is a bernoulli distribution, which 
we have defined earlier in the training stage. The blue dash line on the plot shows where the 
optimum iteration is.

Then, we use the predict function to obtain the odd value of a log in each testing case 
returned from the Bernoulli loss function. In order to get the best prediction result, one can 
set the n.trees argument to an optimum iteration number. However, as the returned value is 
an odd value log, we still have to determine the best cut off to determine the label. Therefore, 
we use the roc function to generate an ROC curve and get the cut off with the maximum 
accuracy.

Finally, we can use the function, coords, to retrieve the best cut off threshold and use 
the ifelse function to determine the class label from the odd value of the log. Now, we 
can use the table function to generate the classification table and see how accurate the 
classification model is.

There's more...
In addition to using the boosting function in the gbm package, one can also use the mboost 
package to perform classifications with the gradient boosting method:

1.	 First, install and load the mboost package:
> install.packages("mboost")

> library(mboost)

2.	 The mboost function only uses numeric responses; therefore, you should transform 
yes/no responses to numeric responses (0/1):
> trainset$churn = ifelse(trainset$churn == "yes", 1, 0)
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3.	 Also, you should remove nonnumerical attributes, such as voice_mail_plan and 
international_plan:
> trainset$voice_mail_plan = NULL

> trainset$international_plan = NULL

4.	 We can then use mboost to train the classification model:
> churn.mboost = mboost(churn ~ ., data=trainset,  control = 
boost_control(mstop = 10))

5.	 Use the summary function to obtain the details of the classification model:
> summary(churn.mboost)

   Model-based Boosting

Call:

mboost(formula = churn ~ ., data = trainset, control = boost_
control(mstop = 10))

   Squared Error (Regression) 

Loss function: (y - f)^2 

 

Number of boosting iterations: mstop = 10 

Step size:  0.1 

Offset:  1.147732 

Number of baselearners:  14 

Selection frequencies:

            bbs(total_day_minutes) bbs(number_customer_service_
calls) 

                0.6                                0.4 
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6.	 Lastly, use the plot function to draw a partial contribution plot of each attribute:
> par(mfrow=c(1,2))

> plot(churn.mboost)

The partial contribution plot of important attributes

Calculating the margins of a classifier
A margin is a measure of the certainty of classification. This method calculates the difference 
between the support of a correct class and the maximum support of an incorrect class. In this 
recipe, we will demonstrate how to calculate the margins of the generated classifiers.

Getting ready
You need to have completed the previous recipe by storing a fitted bagging model in the 
variables, churn.bagging and churn.predbagging. Also, put the fitted boosting classifier 
in both churn.boost and churn.boost.pred.

How to do it...
Perform the following steps to calculate the margin of each ensemble learner:

1.	 First, use the margins function to calculate the margins of the boosting classifiers:
> boost.margins = margins(churn.boost, trainset)

> boost.pred.margins = margins(churn.boost.pred, testset)
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2.	 You can then use the plot function to plot a marginal cumulative distribution graph 
of the boosting classifiers:
> plot(sort(boost.margins[[1]]), (1:length(boost.margins[[1]]))/
length(boost.margins[[1]]), type="l",xlim=c(-1,1),main="Boosting: 
Margin cumulative distribution graph", xlab="margin", ylab="% 
observations", col = "blue")

> lines(sort(boost.pred.margins[[1]]), (1:length(boost.pred.
margins[[1]]))/length(boost.pred.margins[[1]]), type="l", col = 
"green")

> abline(v=0, col="red",lty=2)

The margin cumulative distribution graph of using the boosting method

3.	 You can then calculate the percentage of negative margin matches training errors 
and the percentage of negative margin matches test errors:
> boosting.training.margin = table(boost.margins[[1]] > 0)

> boosting.negative.training = as.numeric(boosting.training.
margin[1]/boosting.training.margin[2])

> boosting.negative.training

 [1] 0.06387868

> boosting.testing.margin = table(boost.pred.margins[[1]] > 0)

> boosting.negative.testing = as.numeric(boosting.testing.
margin[1]/boosting.testing.margin[2])

> boosting.negative.testing

[1] 0.06263048
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4.	 Also, you can calculate the margins of the bagging classifiers. You might see the 
warning message showing "no non-missing argument to min". The message 
simply indicates that the min/max function is applied to the numeric of the 0  
length argument:
> bagging.margins = margins(churn.bagging, trainset)

> bagging.pred.margins = margins(churn.predbagging, testset)

5.	 You can then use the plot function to plot a margin cumulative distribution graph of 
the bagging classifiers:
> plot(sort(bagging.margins[[1]]), (1:length(bagging.
margins[[1]]))/length(bagging.margins[[1]]), type="l",xlim=c(-
1,1),main="Bagging: Margin cumulative distribution graph", 
xlab="margin", ylab="% observations", col = "blue")

> lines(sort(bagging.pred.margins[[1]]), (1:length(bagging.pred.
margins[[1]]))/length(bagging.pred.margins[[1]]), type="l", col = 
"green")

> abline(v=0, col="red",lty=2)

The margin cumulative distribution graph of the bagging method

6.	 Finally, you can then compute the percentage of negative margin matches training 
errors and the percentage of negative margin matches test errors:
> bagging.training.margin = table(bagging.margins[[1]] > 0)

> bagging.negative.training = as.numeric(bagging.training.
margin[1]/bagging.training.margin[2])

> bagging.negative.training

[1] 0.1733401
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> bagging.testing.margin = table(bagging.pred.margins[[1]] > 0)

> bagging.negative.testing = as.numeric(bagging.testing.margin[1]/
bagging.testing.margin[2])

> bagging.negative.testing

[1] 0.04303279

How it works...
A margin is the measurement of certainty of the classification; it is computed by the support 
of the correct class and the maximum support of the incorrect class. The formula of margins 
can be formulated as:

( ) ( ) ( )margin maxi c i j ij c
x support x support x

≠
= −

Here, the margin of the xi sample equals the support of a correctly classified sample (c 
denotes the correct class) minus the maximum support of a sample that is classified to class 
j (where j≠c and j=1…k). Therefore, correctly classified examples will have positive margins 
and misclassified examples will have negative margins. If the margin value is close to one, 
it means that correctly classified examples have a high degree of confidence. On the other 
hand, examples of uncertain classifications will have small margins.

The margins function calculates the margins of AdaBoost.M1, AdaBoost-SAMME, or the 
bagging classifier, which returns a vector of a margin. To visualize the margin distribution, one 
can use a margin cumulative distribution graph. In these graphs, the x-axis shows the margin 
and the y-axis shows the percentage of observations where the margin is less than or equal to 
the margin value of the x-axis. If every observation is correctly classified, the graph will show a 
vertical line at the margin equal to 1 (where margin = 1).

For the margin cumulative distribution graph of the boosting classifiers, we can see that there 
are two lines plotted on the graph, in which the green line denotes the margin of the testing 
dataset, and the blue line denotes the margin of the training set. The figure shows about 6.39 
percent of negative margins match the training error, and 6.26 percent of negative margins 
match the test error. On the other hand, we can find that 17.33% of negative margins match 
the training error and 4.3 percent of negative margins match the test error in the margin 
cumulative distribution graph of the bagging classifiers. Normally, the percentage of negative 
margins matching the training error should be close to the percentage of negative margins 
that match the test error. As a result of this, we should then examine the reason why the 
percentage of negative margins that match the training error is much higher than the negative 
margins that match the test error.
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See also
ff If you are interested in more details on margin distribution graphs, please refer to the 

following source: Kuncheva LI (2004), Combining Pattern Classifiers: Methods and 
Algorithms, John Wiley & Sons.

Calculating the error evolution of the 
ensemble method

The adabag package provides the errorevol function for a user to estimate the ensemble 
method errors in accordance with the number of iterations. In this recipe, we will demonstrate 
how to use errorevol to show the evolution of errors of each ensemble classifier.

Getting ready
You need to have completed the previous recipe by storing the fitted bagging model in the 
variable, churn.bagging. Also, put the fitted boosting classifier in churn.boost.

How to do it...
Perform the following steps to calculate the error evolution of each ensemble learner:

1.	 First, use the errorevol function to calculate the error evolution of the  
boosting classifiers:
> boosting.evol.train = errorevol(churn.boost, trainset)

> boosting.evol.test = errorevol(churn.boost, testset)

> plot(boosting.evol.test$error, type = "l", ylim = c(0, 1),

+       main = "Boosting error versus number of trees", xlab = 
"Iterations",

+       ylab = "Error", col = "red", lwd = 2)

> lines(boosting.evol.train$error, cex = .5, col = "blue", lty = 
2, lwd = 2)

> legend("topright", c("test", "train"), col = c("red", "blue"), 
lty = 1:2, lwd = 2)
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Boosting error versus number of trees

2.	 Next, use the errorevol function to calculate the error evolution of the  
bagging classifiers:

> bagging.evol.train = errorevol(churn.bagging, trainset)

> bagging.evol.test = errorevol(churn.bagging, testset)

> plot(bagging.evol.test$error, type = "l", ylim = c(0, 1),

+       main = "Bagging error versus number of trees", xlab = 
"Iterations",

+       ylab = "Error", col = "red", lwd = 2)

> lines(bagging.evol.train$error, cex = .5, col = "blue", lty = 2, 
lwd = 2)

> legend("topright", c("test", "train"), col = c("red", "blue"), 
lty = 1:2, lwd = 2)

Bagging error versus number of trees
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How it works...
The errorest function calculates the error evolution of AdaBoost.M1, AdaBoost-SAMME, 
or the bagging classifiers and returns a vector of error evolutions. In this recipe, we use the 
boosting and bagging models to generate error evolution vectors and graph the error versus 
number of trees.

The resulting graph reveals the error rate of each iteration. The trend of the error rate can help 
measure how fast the errors reduce, while the number of iterations increases. In addition to 
this, the graphs may show whether the model is over-fitted.

See also
ff If the ensemble model is over-fitted, you can use the predict.bagging and 

predict.boosting functions to prune the ensemble model. For more information, 
please use the help function to refer to predict.bagging and predict.boosting:
> help(predict.bagging)

> help(predict.boosting)

Classifying data with random forest
Random forest is another useful ensemble learning method that grows multiple decision 
trees during the training process. Each decision tree will output its own prediction results 
corresponding to the input. The forest will use the voting mechanism to select the most voted 
class as the prediction result. In this recipe, we will illustrate how to classify data using the 
randomForest package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
perform classifications with the random forest method.

How to do it...
Perform the following steps to classify data with random forest:

1.	 First, you have to install and load the randomForest package;
> install.packages("randomForest")

> library(randomForest)
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2.	 You can then fit the random forest classifier with a training set:
> churn.rf = randomForest(churn ~ ., data = trainset, importance = 
T)

> churn.rf

Call:

 randomForest(formula = churn ~ ., data = trainset, importance = 
T) 

               Type of random forest: classification

                     Number of trees: 500

No. of variables tried at each split: 4

        OOB estimate of  error rate: 4.88%

Confusion matrix:

    yes   no class.error

yes 247   95 0.277777778

no   18 1955 0.009123163

3.	 Next, make predictions based on the fitted model and testing dataset:
> churn.prediction = predict(churn.rf, testset)

4.	 Similar to other classification methods, you can obtain the classification table:
> table(churn.prediction, testset$churn)

                

churn.prediction yes  no

             yes 110   7

             no   31 870
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5.	 You can use the plot function to plot the mean square error of the forest object:
> plot(churn.rf)

The mean square error of the random forest

6.	 You can then examine the importance of each attribute within the fitted classifier:
> importance(churn.rf)

                                      yes         no

international_plan            66.55206691 56.5100647

voice_mail_plan               19.98337191 15.2354970

number_vmail_messages         21.02976166 14.0707195

total_day_minutes             28.05190188 27.7570444

7.	 Next, you can use the varImpPlot function to obtain the plot of variable importance:
> varImpPlot(churn.rf)

The visualization of variable importance
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8.	 You can also use the margin function to calculate the margins and plot the margin 
cumulative distribution:
> margins.rf=margin(churn.rf,trainset)

> plot(margins.rf)

The margin cumulative distribution graph for the random forest method

9.	 Furthermore, you can use a histogram to visualize the margin distribution of the 
random forest:
> hist(margins.rf,main="Margins of Random Forest for churn 
dataset")

The histogram of margin distribution
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10.	 You can also use boxplot to visualize the margins of the random forest by class:
> boxplot(margins.rf~trainset$churn, main="Margins of Random 
Forest for churn dataset by class")

Margins of the random forest by class

How it works...
The purpose of random forest is to ensemble weak learners (for example, a single decision 
tree) into a strong learner. The process of developing a random forest is very similar to the 
bagging method, assuming that we have a training set containing N samples with M features. 
The process first performs bootstrap sampling, which samples N cases at random, with the 
replacement as the training dataset of each single decision tree. Next, in each node, the 
process first randomly selects m variables (where m << M), then finds the predictor variable 
that provides the best split among m variables. Next, the process grows the full tree without 
pruning. In the end, we can obtain the predicted result of an example from each single tree. 
As a result, we can get the prediction result by taking an average or weighted average (for 
regression) of an output or taking a majority vote (for classification):
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A random forest uses two parameters: ntree (the number of trees) and mtry (the number  
of features used to find the best feature), while the bagging method only uses ntree as  
a parameter. Therefore, if we set mtry equal to the number of features within a training 
dataset, then the random forest is equal to the bagging method.

The main advantages of random forest are that it is easy to compute, it can efficiently process 
data, and is fault tolerant to missing or unbalanced data. The main disadvantage of random 
forest is that it cannot predict the value beyond the range of a training dataset. Also, it is 
prone to over-fitting of noisy data.

In this recipe, we employ the random forest method adapted from the randomForest 
package to fit a classification model. First, we install and load randomForest into an R 
session. We then use the random forest method to train a classification model. We set 
importance = T, which will ensure that the importance of the predictor is assessed.

Similar to the bagging and boosting methods, once the model is fitted, one can perform 
predictions using a fitted model on the testing dataset, and furthermore, obtain the 
classification table.

In order to assess the importance of each attribute, the randomForest package provides 
the importance and varImpPlot functions to either list the importance of each attribute in 
the fitted model or visualize the importance using either mean decrease accuracy or mean 
decrease gini.

Similar to adabag, which contains a method to calculate the margins of the bagging and 
boosting methods, randomForest provides the margin function to calculate the margins of 
the forest object. With the plot, hist, and boxplot functions, you can visualize the margins 
in different aspects to the proportion of correctly classified observations.

There's more...
Apart from the randomForest package, the party package also provides an 
implementation of random forest. In the following steps, we illustrate how to use the cforest 
function within the party package to perform classifications:

1.	 First, install and load the party package:
> install.packages("party")

> library(party)

2.	 You can then use the cforest function to fit the classification model:
> churn.cforest = cforest(churn ~ ., data = trainset, 
controls=cforest_unbiased(ntree=1000, mtry=5))

> churn.cforest
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   Random Forest using Conditional Inference Trees

Number of trees:  1000 

Response:  churn 

Inputs:  international_plan, voice_mail_plan, number_vmail_
messages, total_day_minutes, total_day_calls, total_day_charge, 
total_eve_minutes, total_eve_calls, total_eve_charge, total_
night_minutes, total_night_calls, total_night_charge, total_intl_
minutes, total_intl_calls, total_intl_charge, number_customer_
service_calls 

Number of observations:  2315 

3.	 You can make predictions based on the built model and the testing dataset:
> churn.cforest.prediction = predict(churn.cforest, testset, 
OOB=TRUE, type = "response")

4.	 Finally, obtain the classification table from the predicted labels and the labels of the 
testing dataset:
> table(churn.cforest.prediction, testset$churn)

                        

churn.cforest.prediction yes  no

                     yes  91   3

                     no   50 874

Estimating the prediction errors of different 
classifiers

At the beginning of this chapter, we discussed why we use ensemble learning and how 
it can improve the prediction performance compared to using just a single classifier. We 
now validate whether the ensemble model performs better than a single decision tree by 
comparing the performance of each method. In order to compare the different classifiers,  
we can perform a 10-fold cross-validation on each classification method to estimate test 
errors using erroreset from the ipred package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
estimate the prediction errors of the different classifiers.
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How to do it...
Perform the following steps to estimate the prediction errors of each classification method:

1.	 You can estimate the error rate of the bagging model:
> churn.bagging= errorest(churn ~ ., data = trainset, model = 
bagging)

> churn.bagging

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model = 
bagging)

   10-fold cross-validation estimator of misclassification error 

Misclassification error:  0.0583 

2.	 You can then estimate the error rate of the boosting method:
> install.packages("ada")

> library(ada)

> churn.boosting= errorest(churn ~ ., data = trainset, model = 
ada)

> churn.boosting

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model = 
ada)

   10-fold cross-validation estimator of misclassification error 

Misclassification error:  0.0475 

3.	 Next, estimate the error rate of the random forest model:
> churn.rf= errorest(churn ~ ., data = trainset, model = 
randomForest)

> churn.rf

Call:
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errorest.data.frame(formula = churn ~ ., data = trainset, model = 
randomForest)

   10-fold cross-validation estimator of misclassification error 

Misclassification error:  0.051 

4.	 Finally, make a prediction function using churn.predict, and then use the function 
to estimate the error rate of the single decision tree:
> churn.predict = function(object, newdata) {predict(object, 
newdata = newdata, type = "class")}

> churn.tree= errorest(churn ~ ., data = trainset, model = 
rpart,predict = churn.predict)

> churn.tree

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model = 
rpart, 

    predict = churn.predict)

   10-fold cross-validation estimator of misclassification error 

Misclassification error:  0.0674 

How it works...
In this recipe, we estimate the error rates of four different classifiers using the errorest 
function from the ipred package. We compare the boosting, bagging, and random forest 
methods, and the single decision tree classifier. The errorest function performs a 10-fold 
cross-validation on each classifier and calculates the misclassification error. The estimation 
results from the four chosen models reveal that the boosting method performs the best with 
the lowest error rate (0.0475). The random forest method has the second lowest error rate 
(0.051), while the bagging method has an error rate of 0.0583. The single decision tree 
classifier, rpart, performs the worst among the four methods with an error rate equal to 
0.0674. These results show that all three ensemble learning methods, boosting, bagging,  
and random forest, outperform a single decision tree classifier.

See also
ff In this recipe we mentioned the ada package, which contains a method to perform 

stochastic boosting. For those interested in this package, please refer to: Additive 
Logistic Regression: A Statistical View of Boosting by Friedman, et al. (2000).
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Clustering

In this chapter, we will cover the following topics:

ff Clustering data with hierarchical clustering

ff Cutting a tree into clusters

ff Clustering data with the k-means method

ff Drawing a bivariate cluster plot

ff Comparing clustering methods 

ff Extracting silhouette information from clustering

ff Obtaining optimum clusters for k-means

ff Clustering data with the density-based method 

ff Clustering data with the model-based method

ff Visualizing a dissimilarity matrix

ff Validating clusters externally

Introduction
Clustering is a technique used to group similar objects (close in terms of distance) together 
in the same group (cluster). Unlike supervised learning methods (for example, classification 
and regression) covered in the previous chapters, a clustering analysis does not use any label 
information, but simply uses the similarity between data features to group them into clusters.

Clustering can be widely adapted in the analysis of businesses. For example, a marketing 
department can use clustering to segment customers by personal attributes. As a result of 
this, different marketing campaigns targeting various types of customers can be designed.

9
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The four most common types of clustering methods are hierarchical clustering, k-means 
clustering, model-based clustering, and density-based clustering:

ff Hierarchical clustering: It creates a hierarchy of clusters, and presents the hierarchy 
in a dendrogram. This method does not require the number of clusters to be specified 
at the beginning.

ff k-means clustering: It is also referred to as flat clustering. Unlike hierarchical 
clustering, it does not create a hierarchy of clusters, and it requires the number of 
clusters as an input. However, its performance is faster than hierarchical clustering.

ff Model-based clustering: Both hierarchical clustering and k-means clustering  
use a heuristic approach to construct clusters, and do not rely on a formal model. 
Model-based clustering assumes a data model and applies an EM algorithm to find 
the most likely model components and the number of clusters.

ff Density-based clustering: It constructs clusters in regard to the density measurement. 
Clusters in this method have a higher density than the remainder of the dataset.

In the following recipes, we will discuss how to use these four clustering techniques to cluster 
data. We discuss how to validate clusters internally, using within clusters the sum of squares, 
average silhouette width, and externally, with ground truth.

Clustering data with hierarchical clustering
Hierarchical clustering adopts either an agglomerative or divisive method to build a hierarchy 
of clusters. Regardless of which approach is adopted, both first use a distance similarity 
measure to combine or split clusters. The recursive process continues until there is only 
one cluster left or you cannot split more clusters. Eventually, we can use a dendrogram 
to represent the hierarchy of clusters. In this recipe, we will demonstrate how to cluster 
customers with hierarchical clustering.

Getting ready
In this recipe, we will perform hierarchical clustering on customer data, which involves 
segmenting customers into different groups. You can download the data from this Github 
page: https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9.

How to do it...
Perform the following steps to cluster customer data into a hierarchy of clusters:

1.	 First, you need to load data from customer.csv and save it into customer:
> customer= read.csv('customer.csv', header=TRUE)
> head(customer)

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9
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  ID Visit.Time Average.Expense Sex Age
1  1          3             5.7   0  10
2  2          5            14.5   0  27
3  3         16            33.5   0  32
4  4          5            15.9   0  30
5  5         16            24.9   0  23
6  6          3            12.0   0  15

2.	 You can then examine the dataset structure:
> str(customer)

'data.frame':  60 obs. of  5 variables:

 $ ID             : int  1 2 3 4 5 6 7 8 9 10 ...

 $ Visit.Time     : int  3 5 16 5 16 3 12 14 6 3 ...

 $ Average.Expense: num  5.7 14.5 33.5 15.9 24.9 12 28.5 18.8 23.8 
5.3 ...

 $ Sex            : int  0 0 0 0 0 0 0 0 0 0 ...

 $ Age            : int  10 27 32 30 23 15 33 27 16 11 ...

3.	 Next, you should normalize the customer data into the same scale:
> customer = scale(customer[,-1])

4.	 You can then use agglomerative hierarchical clustering to cluster the customer data:
> hc = hclust(dist(customer, method="euclidean"), method="ward.
D2")

> hc

Call:

hclust(d = dist(customer, method = "euclidean"), method = "ward.
D2")

Cluster method   : ward.D2 

Distance         : euclidean 

Number of objects: 60
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5.	 Lastly, you can use the plot function to plot the dendrogram:
> plot(hc, hang = -0.01, cex = 0.7)

The dendrogram of hierarchical clustering using "ward.D2"

6.	 Additionally, you can use the single method to perform hierarchical clustering and see 
how the generated dendrogram differs from the previous:
> hc2 = hclust(dist(customer), method="single")
> plot(hc2, hang = -0.01, cex = 0.7)

The dendrogram of hierarchical clustering using "single"
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How it works...
Hierarchical clustering is a clustering technique that tries to build a hierarchy of clusters 
iteratively. Generally, there are two approaches to build hierarchical clusters:

ff Agglomerative hierarchical clustering: This is a bottom-up approach.  
Each observation starts in its own cluster. We can then compute the similarity  
(or the distance) between each cluster and then merge the two most similar  
ones at each iteration until there is only one cluster left.

ff Divisive hierarchical clustering: This is a top-down approach. All observations  
start in one cluster, and then we split the cluster into the two least dissimilar  
clusters recursively until there is one cluster for each observation:

An illustration of hierarchical clustering

Before performing hierarchical clustering, we need to determine how similar the two clusters 
are. Here, we list some common distance functions used for the measurement of similarity:

ff Single linkage: This refers to the shortest distance between two points in each cluster:

( ) ( )
,

dist , min ,
i j

i j a C b C
C C dist a b

∈ ∈
=

ff Complete linkage: This refers to the longest distance between two points in  
each cluster:

( ) ( )
,

dist , max ,
i j

i j a C b C
C C dist a b

∈ ∈
=
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ff Average linkage: This refer to the average distance between two points in each 
cluster (where iC  is the size of cluster iC  and jC  is the size of cluster jC ):

( ) ( )
,

1dist , ,
i j

i j
a C b Ci j

C C dist a b
C C ∈ ∈

= ∑

ff Ward method: This refers to the sum of the squared distance from each point to the 
mean of the merged clusters (where µ  is the mean vector of i jC C∪ ):

( )dist ,
i j

i j
a C C

C C a µ
∈ ∪

= −∑

In this recipe, we perform hierarchical clustering on customer data. First, we load the data 
from customer.csv, and then load it into the customer data frame. Within the data, we 
find five variables of customer account information, which are ID, number of visits, average 
expense, sex, and age. As the scale of each variable varies, we use the scale function to 
normalize the scale.

After the scales of all the attributes are normalized, we perform hierarchical clustering using 
the hclust function. We use the Euclidean distance as distance metrics, and use Ward's 
minimum variance method to perform agglomerative clustering.

Finally, we use the plot function to plot the dendrogram of hierarchical clusters. We specify 
hang to display labels at the bottom of the dendrogram, and use cex to shrink the label to 
70 percent of the normal size. In order to compare the differences using the ward.D2 and 
single methods to generate a hierarchy of clusters, we draw another dendrogram using 
single in the preceding figure (step 6).

There's more...
You can choose a different distance measure and method while performing hierarchical 
clustering. For more details, you can refer to the documents for dist and hclust:

> ? dist
> ? hclust

In this recipe, we use hclust to perform agglomerative hierarchical clustering; if you would 
like to perform divisive hierarchical clustering, you can use the diana function:

1.	 First, you can use diana to perform divisive hierarchical clustering:
> dv = diana(customer, metric = "euclidean")
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2.	 Then, you can use summary to obtain the summary information:
> summary(dv)

3.	 Lastly, you can plot a dendrogram and banner with the plot function:
> plot(dv)

If you are interested in drawing a horizontal dendrogram, you can use the dendextend 
package. Use the following procedure to generate a horizontal dendrogram:

1.	 First, install and load the dendextend and magrittr packages (if your R version is 
3.1 and above, you do not have to install and load the magrittr package):
> install.packages("dendextend")
> library(dendextend)
> install.packages("margrittr")
> library(magrittr)

2.	 Set up the dendrogram:
> dend = customer %>% dist %>% hclust %>% as.dendrogram

3.	 Finally, plot the horizontal dendrogram:
dend %>% plot(horiz=TRUE, main = "Horizontal Dendrogram")

The horizontal dendrogram
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Cutting trees into clusters
In a dendrogram, we can see the hierarchy of clusters, but we have not grouped data 
into different clusters yet. However, we can determine how many clusters are within the 
dendrogram and cut the dendrogram at a certain tree height to separate the data into 
different groups. In this recipe, we demonstrate how to use the cutree function to  
separate the data into a given number of clusters.

Getting ready
In order to perform the cutree function, you need to have the previous recipe completed by 
generating the hclust object, hc.

How to do it...
Perform the following steps to cut the hierarchy of clusters into a given number of clusters:

1.	 First, categorize the data into four groups:
> fit = cutree(hc, k = 4)

2.	 You can then examine the cluster labels for the data:
> fit
 [1] 1 1 2 1 2 1 2 2 1 1 1 2 2 1 1 1 2 1 2 3 4 3 4 3 3 4 4 3 4
[30] 4 4 3 3 3 4 4 3 4 4 4 4 4 4 4 3 3 4 4 4 3 4 3 3 4 4 4 3 4
[59] 4 3

3.	 Count the number of data within each cluster:
> table(fit)
fit
 1  2  3  4 
11  8 16 25 

4.	 Finally, you can visualize how data is clustered with the red rectangle border:
> plot(hc)
> rect.hclust(hc, k = 4 , border="red")
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Using the red rectangle border to distinguish different clusters within the dendrogram

How it works...
We can determine the number of clusters from the dendrogram in the preceding figure. In this 
recipe, we determine there should be four clusters within the tree. Therefore, we specify the 
number of clusters as 4 in the cutree function. Besides using the number of clusters to cut 
the tree, you can specify the height as the cut tree parameter.

Next, we can output the cluster labels of the data and use the table function to count the 
number of data within each cluster. From the counting table, we find that most of the data 
is in cluster 4. Lastly, we can draw red rectangles around the clusters to show how data is 
categorized into the four clusters with the rect.hclust function.
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There's more...
Besides drawing rectangles around all hierarchical clusters, you can place a red rectangle 
around a certain cluster:

> rect.hclust(hc, k = 4 , which =2, border="red")

Drawing a red rectangle around a certain cluster.

Also, you can color clusters in different colors with a red rectangle around the clusters by 
using the dendextend package. You have to complete the instructions outlined in the  
There's more section of the previous recipe and perform the following steps:

1.	 Color the branch according to the cluster it belongs to:
> dend %>% color_branches(k=4) %>% plot(horiz=TRUE, main = 
"Horizontal Dendrogram")

2.	 You can then add a red rectangle around the clusters:
> dend %>% rect.dendrogram(k=4,horiz=TRUE)
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Drawing red rectangles around clusters within a horizontal dendrogram

3.	 Finally, you can add a line to show the tree cutting location:
> abline(v = heights_per_k.dendrogram(dend)["4"] + .1, lwd = 2, 
lty = 2, col = "blue")

Drawing a cutting line within a horizontal dendrogram
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Clustering data with the k-means method
k-means clustering is a flat clustering technique, which produces only one partition with 
k clusters. Unlike hierarchical clustering, which does not require a user to determine the 
number of clusters at the beginning, the k-means method requires this to be determined first. 
However, k-means clustering is much faster than hierarchical clustering as the construction of 
a hierarchical tree is very time consuming. In this recipe, we will demonstrate how to perform 
k-means clustering on the customer dataset.

Getting ready
In this recipe, we will continue to use the customer dataset as the input data source to 
perform k-means clustering.

How to do it...
Perform the following steps to cluster the customer dataset with the k-means method:

1.	 First, you can use kmeans to cluster the customer data:
> set.seed(22)
> fit = kmeans(customer, 4)
> fit
K-means clustering with 4 clusters of sizes 8, 11, 16, 25

Cluster means:
  Visit.Time Average.Expense        Sex        Age
1  1.3302016       1.0155226 -1.4566845  0.5591307
2 -0.7771737      -0.5178412 -1.4566845 -0.4774599
3  0.8571173       0.9887331  0.6750489  1.0505015
4 -0.6322632      -0.7299063  0.6750489 -0.6411604

Clustering vector:
 [1] 2 2 1 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 4 3 4 3 3 4 4 3
[29] 4 4 4 3 3 3 4 4 3 4 4 4 4 4 4 4 3 3 4 4 4 3 4 3 3 4 4 4
[57] 3 4 4 3

Within cluster sum of squares by cluster:
[1]  5.90040 11.97454 22.58236 20.89159
 (between_SS / total_SS =  74.0 %)

Available components:

[1] "cluster"      "centers"      "totss"       
[4] "withinss"     "tot.withinss" "betweenss"   
[7] "size"         "iter"         "ifault
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2.	 You can then inspect the center of each cluster using barplot:
> barplot(t(fit$centers), beside = TRUE,xlab="cluster", 
ylab="value")

The barplot of centers of different attributes in four clusters

3.	 Lastly, you can draw a scatter plot of the data and color the points according to  
the clusters:
> plot(customer, col = fit$cluster)

The scatter plot showing data colored with regard to its cluster label
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How it works...
k-means clustering is a method of partitioning clustering. The goal of the algorithm is to partition 
n objects into k clusters, where each object belongs to the cluster with the nearest mean. The 
objective of the algorithm is to minimize the within-cluster sum of squares (WCSS). Assuming x 
is the given set of observations, S = { }1 2, kS S S�  denotes k partitions, and iµ  is the mean of iS
, then we can formulate the WCSS function as follows:

2

1
f

i

k

i
i x S

x µ
= ∈

= −∑∑

The process of k-means clustering can be illustrated by the following five steps:

1.	 Specify the number of k clusters.

2.	 Randomly create k partitions.

3.	 Calculate the center of the partitions.

4.	 Associate objects closest to the cluster center.

5.	 Repeat steps 2, 3, and 4 until the WCSS changes very little (or is minimized).

In this recipe, we demonstrate how to use k-means clustering to cluster customer data. In 
contrast to hierarchical clustering, k-means clustering requires the user to input the number 
of K. In this example, we use K=4. Then, the output of a fitted model shows the size of each 
cluster, the cluster means of four generated clusters, the cluster vectors with regard to each 
data point, the within cluster sum of squares by the clusters, and other available components.

Further, you can draw the centers of each cluster in a bar plot, which will provide more details 
on how each attribute affects the clustering. Lastly, we plot the data point in a scatter plot and 
use the fitted cluster labels to assign colors with regard to the cluster label.

See also
ff In k-means clustering, you can specify the algorithm used to perform clustering 

analysis. You can specify either Hartigan-Wong, Lloyd, Forgy, or MacQueen as the 
clustering algorithm. For more details, please use the help function to refer to the 
document for the kmeans function:
>help(kmeans)
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Drawing a bivariate cluster plot
In the previous recipe, we employed the k-means method to fit data into clusters. However, 
if there are more than two variables, it is impossible to display how data is clustered in two 
dimensions. Therefore, you can use a bivariate cluster plot to first reduce variables into two 
components, and then use components, such as axis and circle, as clusters to show how  
data is clustered. In this recipe, we will illustrate how to create a bivariate cluster plot.

Getting ready
In this recipe, we will continue to use the customer dataset as the input data source to draw 
a bivariate cluster plot.

How to do it...
Perform the following steps to draw a bivariate cluster plot:

1.	 Install and load the cluster package:
> install.packages("cluster")
> library(cluster)

2.	 You can then draw a bivariate cluster plot:
> clusplot(customer, fit$cluster, color=TRUE, shade=TRUE)

The bivariate clustering plot of the customer dataset
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3.	 You can also zoom into the bivariate cluster plot:
> par(mfrow= c(1,2))
> clusplot(customer, fit$cluster, color=TRUE, shade=TRUE)
> rect(-0.7,-1.7, 2.2,-1.2, border = "orange", lwd=2)
> clusplot(customer, fit$cluster, color = TRUE, xlim = c(-
0.7,2.2), ylim = c(-1.7,-1.2))

The zoom-in of the bivariate clustering plot

How it works...
In this recipe, we draw a bivariate cluster plot to show how data is clustered. To draw a 
bivariate cluster plot, we first need to install the cluster package and load it into R. We  
then use the clusplot function to draw a bivariate cluster plot from a customer dataset.  
In the clustplot function, we can set shade to TRUE and color to TRUE to display a 
cluster with colors and shades. As per the preceding figure (step 2) we found that the bivariate 
uses two components, which explains 85.01 percent of point variability, as the x-axis and 
y-axis. The data points are then scattered on the plot in accordance with component 1 and 
component 2. Data within the same cluster is circled in the same color and shade.

Besides drawing the four clusters in a single plot, you can use rect to add a rectangle around 
a specific area within a given x-axis and y-axis range. You can then zoom into the plot to 
examine the data within each cluster by using xlim and ylim in the clusplot function.
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There's more
The clusplot function uses princomp and cmdscale to reduce the original feature 
dimension to the principal component. Therefore, one can see how data is clustered in 
a single plot with these two components as the x-axis and y-axis. To learn more about 
princomp and cmdscale, one can use the help function to view related documents:

> help(cmdscale)
> help(princomp)

For those interested in how to use cmdscale to reduce the dimensions, please perform the 
following steps:

> mds = cmdscale(dist(customer), k = 2)
> plot(mds, col = fit$cluster)

The scatter plot of data with regard to scaled dimensions 

Comparing clustering methods
After fitting data into clusters using different clustering methods, you may wish to measure 
the accuracy of the clustering. In most cases, you can use either intracluster or intercluster 
metrics as measurements. We now introduce how to compare different clustering methods 
using cluster.stat from the fpc package.

Getting ready
In order to perform a clustering method comparison, one needs to have the previous recipe 
completed by generating the customer dataset.



Clustering

300

How to do it...
Perform the following steps to compare clustering methods:

1.	 First, install and load the fpc package:
> install.packages("fpc")
> library(fpc)

2.	 You then need to use hierarchical clustering with the single method to cluster 
customer data and generate the object hc_single:
> single_c =  hclust(dist(customer), method="single")

> hc_single = cutree(single_c, k = 4)

3.	 Use hierarchical clustering with the complete method to cluster customer data and 
generate the object hc_complete:
> complete_c =  hclust(dist(customer), method="complete")
> hc_complete =  cutree(complete_c, k = 4)

4.	 You can then use k-means clustering to cluster customer data and generate the 
object km:
> set.seed(22)
> km = kmeans(customer, 4)

5.	 Next, retrieve the cluster validation statistics of either clustering method:
> cs = cluster.stats(dist(customer), km$cluster)

6.	 Most often, we focus on using within.cluster.ss and avg.silwidth to 
validate the clustering method:
> cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489

$avg.silwidth
[1] 0.4640587

7.	 Finally, we can generate the cluster statistics of each clustering method and list them 
in a table:
> sapply(list(kmeans = km$cluster, hc_single = hc_single, hc_
complete = hc_complete), function(c) cluster.stats(dist(customer), 
c)[c("within.cluster.ss","avg.silwidth")])
                  kmeans    hc_single hc_complete
within.cluster.ss 61.3489   136.0092  65.94076
avg.silwidth      0.4640587 0.2481926 0.4255961
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How it works...
In this recipe, we demonstrate how to validate clusters. To validate a clustering method, 
we often employ two techniques: intercluster distance and intracluster distance. In these 
techniques, the higher the intercluster distance, the better it is, and the lower the intracluster 
distance, the better it is. In order to calculate related statistics, we can apply cluster.stat 
from the fpc package on the fitted clustering object.

From the output, the within.cluster.ss measurement stands for the within clusters sum of 
squares, and avg.silwidth represents the average silhouette width. The within.cluster.ss 
measurement shows how closely related objects are in clusters; the smaller the value, the more 
closely related objects are within the cluster. On the other hand, a silhouette is a measurement 
that considers how closely related objects are within the cluster and how clusters are separated 
from each other. Mathematically, we can define the silhouette width for each point x as follows:

( ) ( ) ( )
( ) ( )( )

Silhouette x
max ,
b x a x
b x a x
−

=
  

In the preceding equation, a(x) is the average distance between x and all other points within 
the cluster, and b(x) is the minimum of the average distances between x and the points in the 
other clusters. The silhouette value usually ranges from 0 to 1; a value closer to 1 suggests 
the data is better clustered.

The summary table generated in the last step shows that the complete hierarchical clustering 
method outperforms a single hierarchical clustering method and k-means clustering in 
within.cluster.ss and avg.silwidth.

See also
ff The kmeans function also outputs statistics (for example, withinss and 

betweenss) for users to validate a clustering method:
> set.seed(22)
> km = kmeans(customer, 4)
> km$withinss
[1]  5.90040 11.97454 22.58236 20.89159
> km$betweenss
[1] 174.6511
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Extracting silhouette information from 
clustering

Silhouette information is a measurement to validate a cluster of data. In the previous recipe, 
we mentioned that the measurement of a cluster involves the calculation of how closely the 
data is clustered within each cluster, and measures how far different clusters are apart from 
each other. The silhouette coefficient combines the measurement of the intracluster and 
intercluster distance. The output value typically ranges from 0 to 1; the closer to 1, the better 
the cluster is. In this recipe, we will introduce how to compute silhouette information.

Getting ready
In order to extract the silhouette information from a cluster, you need to have the previous 
recipe completed by generating the customer dataset.

How to do it...
Perform the following steps to compute the silhouette information:

1.	 Use kmeans to generate a k-means object, km:
> set.seed(22)
> km = kmeans(customer, 4)

2.	 You can then compute the silhouette information:
> kms = silhouette(km$cluster,dist(customer))
> summary(kms)
Silhouette of 60 units in 4 clusters from silhouette.default(x = 
km$cluster, dist = dist(customer)) :
 Cluster sizes and average silhouette widths:
        8        11        16        25 
0.5464597 0.4080823 0.3794910 0.5164434 
Individual silhouette widths:
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1931  0.4030  0.4890  0.4641  0.5422  0.6333 

3.	 Next, you can plot the silhouette information:
> plot(kms)
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The silhouette plot of the k-means clustering result

How it works...
In this recipe, we demonstrate how to use the silhouette plot to validate clusters. You can first 
retrieve the silhouette information, which shows cluster sizes, the average silhouette widths, 
and individual silhouette widths. The silhouette coefficient is a value ranging from 0 to 1; the 
closer to 1, the better the quality of the cluster.

Lastly, we use the plot function to draw a silhouette plot. The left-hand side of the plot shows 
the number of horizontal lines, which represent the number of clusters. The right-hand column 
shows the mean similarity of the plot of its own cluster minus the mean similarity of the next 
similar cluster. The average silhouette width is presented at the bottom of the plot.

See also
ff For those interested in how silhouettes are computed, please refer to the 

Wikipedia entry for Silhouette Value: http://en.wikipedia.org/wiki/
Silhouette_%28clustering%29

Obtaining the optimum number of clusters 
for k-means

While k-means clustering is fast and easy to use, it requires k to be the input at the beginning. 
Therefore, we can use the sum of squares to determine which k value is best for finding the 
optimum number of clusters for k-means. In the following recipe, we will discuss how to find 
the optimum number of clusters for the k-means clustering method.

http://en.wikipedia.org/wiki/Silhouette_%28clustering%29
http://en.wikipedia.org/wiki/Silhouette_%28clustering%29
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Getting ready
In order to find the optimum number of clusters, you need to have the previous recipe 
completed by generating the customer dataset.

How to do it...
Perform the following steps to find the optimum number of clusters for the k-means clustering:

1.	 First, calculate the within sum of squares (withinss) of different numbers of clusters:
> nk = 2:10
> set.seed(22)
> WSS = sapply(nk, function(k) {
+     kmeans(customer, centers=k)$tot.withinss
+ })
> WSS
[1] 123.49224  88.07028  61.34890  48.76431  47.20813
[6]  45.48114  29.58014  28.87519  23.21331

2.	 You can then use a line plot to plot the within sum of squares with a different number  
of k:
> plot(nk, WSS, type="l", xlab= "number of k", ylab="within sum of 
squares")

The line plot of the within sum of squares with regard to the different number of k
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3.	 Next, you can calculate the average silhouette width (avg.silwidth) of different 
numbers of clusters:
> SW = sapply(nk, function(k) {
+   cluster.stats(dist(customer), kmeans(customer, 
centers=k)$cluster)$avg.silwidth
+ })
> SW
[1] 0.4203896 0.4278904 0.4640587 0.4308448 0.3481157
[6] 0.3320245 0.4396910 0.3417403 0.4070539

4.	 You can then use a line plot to plot the average silhouette width with a different 
number of k:
> plot(nk, SW, type="l", xlab="number of clusers", ylab="average 
silhouette width")

The line plot of average silhouette width with regard to the different number of k

5.	 Retrieve the maximum number of clusters:
> nk[which.max(SW)]
[1] 4

How it works...
In this recipe, we demonstrate how to find the optimum number of clusters by iteratively 
getting within the sum of squares and the average silhouette value. For the within sum of 
squares, lower values represent clusters with better quality. By plotting the within sum of 
squares in regard to different number of k, we find that the elbow of the plot is at k=4.
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On the other hand, we also compute the average silhouette width based on the different 
numbers of clusters using cluster.stats. Also, we can use a line plot to plot the average 
silhouette width with regard to the different numbers of clusters. The preceding figure (step 4) 
shows the maximum average silhouette width appears at k=4. Lastly, we use which.max  
to obtain the value of k to determine the location of the maximum average silhouette width.

See also
ff For those interested in how the within sum of squares is computed, please refer to 

the Wikipedia entry of K-means clustering: http://en.wikipedia.org/wiki/
K-means_clustering

Clustering data with the density-based 
method

As an alternative to distance measurement, you can use a density-based measurement  
to cluster data. This method finds an area with a higher density than the remaining area.  
One of the most famous methods is DBSCAN. In the following recipe, we will demonstrate  
how to use DBSCAN to perform density-based clustering.

Getting ready
In this recipe, we will use simulated data generated from the mlbench package.

How to do it...
Perform the following steps to perform density-based clustering:

1.	 First, install and load the fpc and mlbench packages:
> install.packages("mlbench")
> library(mlbench)
> install.packages("fpc")
> library(fpc)

2.	 You can then use the mlbench library to draw a Cassini problem graph:
> set.seed(2)
> p = mlbench.cassini(500)
> plot(p$x)

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
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The Cassini problem graph

3.	 Next, you can cluster data with regard to its density measurement:
> ds = dbscan(dist(p$x),0.2, 2, countmode=NULL, method="dist")
> ds
dbscan Pts=500 MinPts=2 eps=0.2
        1   2   3
seed  200 200 100
total 200 200 100

4.	 Plot the data in a scatter plot with different cluster labels as the color:
> plot(ds, p$x)

The data scatter plot colored with regard to the cluster label
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5.	 You can also use dbscan to predict which cluster the data point belongs to. In this 
example, first make three inputs in the matrix p:
> y = matrix(0,nrow=3,ncol=2)
> y[1,] = c(0,0)
> y[2,] = c(0,-1.5)
> y[3,] = c(1,1)
> y
     [,1] [,2]
[1,]    0  0.0
[2,]    0 -1.5
[3,]    1  1.0

6.	 You can then predict which cluster the data belongs to:
> predict(ds, p$x, y)
[1] 3 1 2

How it works...
Density-based clustering uses the idea of density reachability and density connectivity, which 
makes it very useful in discovering a cluster in nonlinear shapes. Before discussing the 
process of density-based clustering, some important background concepts must be explained. 
Density-based clustering takes two parameters into account: eps and MinPts. eps stands for 
the maximum radius of the neighborhood; MinPts denotes the minimum number of points 
within the eps neighborhood. With these two parameters, we can define the core point as 
having points more than MinPts within eps. Also, we can define the board point as having 
points less than MinPts, but is in the neighborhood of the core points. Then, we can define 
the core object as if the number of points in the eps-neighborhood of p is more than MinPts.

Furthermore, we have to define the reachability between two points. We can say that a point, 
p, is directly density reachable from another point, q, if q is within the eps-neighborhood of p 
and p is a core object. Then, we can define that a point, p, is generic and density reachable 
from the point q, if there exists a chain of points, p1,p2...,pn, where p1 = q, pn = p, and pi+1 is 
directly density reachable from pi with regard to Eps and MinPts for 1 <= i <= n:

Point p and q is density reachable
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With a preliminary concept of density-based clustering, we can then illustrate the process of 
DBSCAN, the most popular density-based clustering, as shown in these steps:

1.	 Randomly select a point, p.

2.	 Retrieve all the points that are density-reachable from p with regard to Eps and 
MinPts.

3.	 If p is a core point, then a cluster is formed. Otherwise, if it is a board point and no 
points are density reachable from p, the process will mark the point as noise and 
continue visiting the next point.

4.	 Repeat the process until all points have been visited.

In this recipe, we demonstrate how to use the DBSCAN density-based method to cluster 
customer data. First, we have to install and load the mlbench and fpc libraries. The mlbench 
package provides many methods to generate simulated data with different shapes and sizes.  
In this example, we generate a Cassini problem graph.

Next, we perform dbscan on a Cassini dataset to cluster the data. We specify the reachability 
distance as 0.2, the minimum reachability number of points to 2, the progress reporting as 
null, and use distance as a measurement. The clustering method successfully clusters data 
into three clusters with sizes of 200, 200, and 100. By plotting the points and cluster labels 
on the plot, we see that three sections of the Cassini graph are separated in different colors.

The fpc package also provides a predict function, and you can use this to predict the 
cluster labels of the input matrix. Point c(0,0) is classified into cluster 3, point c(0, -1.5)  
is classified into cluster 1, and point c(1,1) is classified into cluster 2.

See also
ff The fpc package contains flexible procedures of clustering, and has useful 

clustering analysis functions. For example, you can generate a discriminant 
projection plot using the plotcluster function. For more information,  
please refer to the following document:
> help(plotcluster)

Clustering data with the model-based 
method

In contrast to hierarchical clustering and k-means clustering, which use a heuristic approach 
and do not depend on a formal model. Model-based clustering techniques assume varieties of 
data models and apply an EM algorithm to obtain the most likely model, and further use the 
model to infer the most likely number of clusters. In this recipe, we will demonstrate how to 
use the model-based method to determine the most likely number of clusters.
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Getting ready
In order to perform a model-based method to cluster customer data, you need to have the 
previous recipe completed by generating the customer dataset.

How to do it...
Perform the following steps to perform model-based clustering:

1.	 First, please install and load the library mclust:
> install.packages("mclust")
> library(mclust)

2.	 You can then perform model-based clustering on the customer dataset:
> mb = Mclust(customer)
> plot(mb)

3.	 Then, you can press 1 to obtain the BIC against a number of components:

Plot of BIC against number of components
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4.	 Then, you can press 2 to show the classification with regard to different combinations  
of features:

Plot showing classification with regard to different combinations of features

5.	 Press 3 to show the classification uncertainty with regard to different combinations  
of features:

Plot showing classification uncertainty with regard to different combinations of features
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6.	 Next, press 4 to plot the density estimation:

A plot of density estimation

7.	 Then, you can press 0 to plot density to exit the plotting menu.

8.	 Lastly, use the summary function to obtain the most likely model and number  
of clusters:
> summary(mb)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm 
----------------------------------------------------

Mclust VII (spherical, varying volume) model with 5 components:

 log.likelihood  n df       BIC       ICL
      -218.6891 60 29 -556.1142 -557.2812

Clustering table:
 1  2  3  4  5
11  8 17 14 10
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How it works...
Instead of taking a heuristic approach to build a cluster, model-based clustering uses a 
probability-based approach. Model-based clustering assumes that the data is generated 
by an underlying probability distribution and tries to recover the distribution from the data. 
One common model-based approach is using finite mixture models, which provide a flexible 
modeling framework for the analysis of the probability distribution. Finite mixture models are 
a linearly weighted sum of component probability distribution. Assume the data y=(y1,y2…yn) 
contains n independent and multivariable observations; G is the number of components; the 
likelihood of finite mixture models can be formulated as:
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Where kf  and kθ  are the density and parameters of the kth component in the mixture, and kτ   

( 0kτ ≥  and 1
1G

kk
τ

=
=∑ ) is the probability that an observation belongs to the kth component.

The process of model-based clustering has several steps: First, the process selects the 
number and types of component probability distribution. Then, it fits a finite mixture model 
and calculates the posterior probabilities of a component membership. Lastly, it assigns the 
membership of each observation to the component with the maximum probability.

In this recipe, we demonstrate how to use model-based clustering to cluster data. We first 
install and load the Mclust library into R. We then fit the customer data into the model-based 
method by using the Mclust function.

After the data is fit into the model, we plot the model based on clustering results. There are 
four different plots: BIC, classification, uncertainty, and density plots. The BIC plot shows the 
BIC value, and one can use this value to choose the number of clusters. The classification plot 
shows how data is clustered in regard to different dimension combinations. The uncertainty 
plot shows the uncertainty of classifications in regard to different dimension combinations. 
The density plot shows the density estimation in contour.

You can also use the summary function to obtain the most likely model and the most possible 
number of clusters. For this example, the most possible number of clusters is five, with a BIC 
value equal to -556.1142.

See also
ff For those interested in detail on how Mclust works, please refer to the following 

source: C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4  
for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and  
Density Estimation. Technical Report No. 597, Department of Statistics, University  
of Washington.
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Visualizing a dissimilarity matrix
A dissimilarity matrix can be used as a measurement for the quality of a cluster. To visualize 
the matrix, we can use a heat map on a distance matrix. Within the plot, entries with 
low dissimilarity (or high similarity) are plotted darker, which is helpful to identify hidden 
structures in the data. In this recipe, we will discuss some techniques that are useful to 
visualize a dissimilarity matrix.

Getting ready
In order to visualize the dissimilarity matrix, you need to have the previous recipe completed by 
generating the customer dataset. In addition to this, a k-means object needs to be generated 
and stored in the variable km.

How to do it...
Perform the following steps to visualize the dissimilarity matrix:

1.	 First, install and load the seriation package:
> install.packages("seriation")
> library(seriation)

2.	 You can then use dissplot to visualize the dissimilarity matrix in a heat map:
> dissplot(dist(customer), labels=km$cluster, 
options=list(main="Kmeans Clustering With k=4"))

A dissimilarity plot of k-means clustering
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3.	 Next, apply dissplot on hierarchical clustering in the heat map:
> complete_c =  hclust(dist(customer), method="complete")
> hc_complete =  cutree(complete_c, k = 4)
> dissplot(dist(customer), labels=hc_complete, 
options=list(main="Hierarchical Clustering"))

A dissimilarity plot of hierarchical clustering

How it works...
In this recipe, we use a dissimilarity plot to visualize the dissimilarity matrix. We first install 
and load the package seriation, and then apply the dissplot function on the k-means 
clustering output, generating the preceding figure (step 2).

It shows that clusters similar to each other are plotted darker, and dissimilar combinations are 
plotted lighter. Therefore, we can see clusters against their corresponding clusters (such as 
cluster 4 to cluster 4) are plotted diagonally and darker. On the other hand, clusters dissimilar 
to each other are plotted lighter and away from the diagonal.

Likewise, we can apply the dissplot function on the output of hierarchical clustering. The 
generated plot in the figure (step 3) shows the similarity of each cluster in a single heat map.
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There's more...
Besides using dissplot to visualize the dissimilarity matrix, one can also visualize a 
distance matrix by using the dist and image functions. In the resulting graph, closely  
related entries are plotted in red. Less related entries are plotted closer to white:

> image(as.matrix(dist(customer)))

A distance matrix plot of customer dataset

In order to plot both a dendrogram and heat map to show how data is clustered, you can use 
the heatmap function:

> cd=dist(customer)
> hc=hclust(cd)
> cdt=dist(t(customer))
> hcc=hclust(cdt)
> heatmap(customer, Rowv=as.dendrogram(hc), Colv=as.dendrogram(hcc))

A heat map with dendrogram on the column and row side
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Validating clusters externally
Besides generating statistics to validate the quality of the generated clusters, you can use 
known data clusters as the ground truth to compare different clustering methods. In this recipe, 
we will demonstrate how clustering methods differ with regard to data with known clusters.

Getting ready
In this recipe, we will continue to use handwriting digits as clustering inputs; you can find the 
figure on the author's Github page: https://github.com/ywchiu/ml_R_cookbook/
tree/master/CH9.

How to do it...
Perform the following steps to cluster digits with different clustering techniques:

1.	 First, you need to install and load the package png:
> install.packages("png")
> library(png)

2.	 Then, please read images from handwriting.png and transform the read data into 
a scatter plot:
> img2 = readPNG("handwriting.png", TRUE)
> img3 = img2[,nrow(img2):1]
> b = cbind(as.integer(which(img3 < -1) %% 28), which(img3 < -1) / 
28)
> plot(b, xlim=c(1,28), ylim=c(1,28))

A scatter plot of handwriting digits

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9
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3.	 Perform a k-means clustering method on the handwriting digits:
> set.seed(18)
> fit = kmeans(b, 2)
> plot(b, col=fit$cluster)
> plot(b, col=fit$cluster,  xlim=c(1,28), ylim=c(1,28))

k-means clustering result on handwriting digits

4.	 Next, perform the dbscan clustering method on the handwriting digits:
> ds = dbscan(b, 2)
> ds
dbscan Pts=212 MinPts=5 eps=2
       1   2
seed  75 137
total 75 137
> plot(ds, b,  xlim=c(1,28), ylim=c(1,28))

DBSCAN clustering result on handwriting digits
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How it works...
In this recipe, we demonstrate how different clustering methods work in regard to a 
handwriting dataset. The aim of the clustering is to separate 1 and 7 into different clusters. 
We perform different techniques to see how data is clustered in regard to the k-means and 
DBSCAN methods.

To generate the data, we use the Windows application paint.exe to create a PNG file with 
dimensions of 28 x 28 pixels. We then read the PNG data using the readPNG function and 
transform the read PNG data points into a scatter plot, which shows the handwriting digits  
in 17.

After the data is read, we perform clustering techniques on the handwriting digits. First, we 
perform k-means clustering, where k=2 on the dataset. Since k-means clustering employs 
distance measures, the constructed clusters cover the area of both the 1 and 7 digits. We 
then perform DBSCAN on the dataset. As DBSCAN is a density-based clustering technique,  
it successfully separates digit 1 and digit 7 into different clusters.

See also
ff If you are interested in how to read various graphic formats in R, you may refer to the 

following document:
> help(package="png")
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Association Analysis 
and Sequence Mining

In this chapter, we will cover the following topics:

ff Transforming data into transactions

ff Displaying transactions and associations 

ff Mining associations with the Apriori rule

ff Pruning redundant rules

ff Visualizing associations rules

ff Mining frequent itemsets with Eclat

ff Creating transactions with temporal information

ff Mining frequent sequential patterns with cSPADE

Introduction
Enterprises accumulate a large amount of transaction data (for example, sales orders from 
retailers, invoices, and shipping documentations) from daily operations. Finding hidden 
relationships in the data can be useful, such as, "What products are often bought together?" 
or "What are the subsequent purchases after buying a cell phone?" To answer these two 
questions, we need to perform association analysis and frequent sequential pattern mining  
on a transaction dataset.

Association analysis is an approach to find interesting relationships within a transaction dataset. 
A famous association between products is that customers who buy diapers also buy beer. While 
this association may sound unusual, if retailers can use this kind of information or rule to cross-
sell products to their customers, there is a high likelihood that they can increase their sales.

10
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Association analysis is used to find a correlation between itemsets, but what if you want to 
find out the order in which items are frequently purchased? To achieve this, you can adopt 
frequent sequential pattern mining to find frequent subsequences from transaction datasets 
with temporal information. You can then use the mined frequent subsequences to predict 
customer shopping sequence orders, web click streams, biological sequences, and usages  
in other applications.

In this chapter, we will cover recipes to create and inspect transaction datasets, performing 
association analysis with an Apriori algorithm, visualizing associations in various graph 
formats, and finding frequent itemsets using the Eclat algorithm. Lastly, we will create 
transactions with temporal information and use the cSPADE algorithm to discover frequent 
sequential patterns.

Transforming data into transactions
Before creating a mining association rule, you need to transform the data into transactions.  
In the following recipe, we will introduce how to transform either a list, matrix, or data frame 
into transactions.

Getting ready
In this recipe, we will generate three different datasets in a list, matrix, or data frame. We can 
then transform the generated dataset into transactions.

How to do it...
Perform the following steps to transform different formats of data into transactions:

1.	 First, you have to install and load the package arule:
> install.packages("arules")
> library(arules)

2.	 You can then make a list with three vectors containing purchase records:
> tr_list = list(c("Apple", "Bread", "Cake"),
+                c("Apple", "Bread", "Milk"),
+                c("Bread", "Cake", "Milk"))
> names(tr_list) = paste("Tr",c(1:3), sep = "")

3.	 Next, you can use the as function to transform the data frame into transactions:
> trans = as(tr_list, "transactions")
> trans
transactions in sparse format with
 3 transactions (rows) and
 4 items (columns)
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4.	 You can also transform the matrix format data into transactions:
> tr_matrix = matrix(
+   c(1,1,1,0,
+     1,1,0,1,
+     0,1,1,1), ncol = 4)
> dimnames(tr_matrix) =  list(
+   paste("Tr",c(1:3), sep = ""),
+   c("Apple","Bread","Cake", "Milk")
+   )
> trans2 =  as(tr_matrix, "transactions")
> trans2
transactions in sparse format with
 3 transactions (rows) and
 4 items (columns)

5.	 Lastly, you can transform the data frame format datasets into transactions:
> Tr_df = data.frame(
+   TrID= as.factor(c(1,2,1,1,2,3,2,3,2,3)),
+   Item = as.factor(c("Apple","Milk","Cake","Bread",
+                      "Cake","Milk","Apple","Cake",
+                      "Bread","Bread"))  
+ )
> trans3 = as(split(Tr_df[,"Item"], Tr_df[,"TrID"]), 
"transactions")
> trans3
transactions in sparse format with
 3 transactions (rows) and
 4 items (columns)

How it works...
Before mining frequent itemsets or using the association rule, it is important to prepare 
the dataset by the class of transactions. In this recipe, we demonstrate how to transform 
a dataset from a list, matrix, and data frame format to transactions. In the first step, we 
generate the dataset in a list format containing three vectors of purchase records. Then, 
after we have assigned a transaction ID to each transaction, we transform the data into 
transactions using the as function.

Next, we demonstrate how to transform the data from the matrix format into transactions. 
To denote how items are purchased, one should use a binary incidence matrix to record the 
purchase behavior of each transaction with regard to different items purchased. Likewise, we 
can use an as function to transform the dataset from the matrix format into transactions.
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Lastly, we illustrate how to transform the dataset from the data frame format into transactions. 
The data frame contains two factor-type vectors: one is a transaction ID named TrID, while the 
other shows purchased items (named in Item) with regard to different transactions. Also, one 
can use the as function to transform the data frame format data into transactions.

See also
ff The transactions class is used to represent transaction data for rules or frequent 

pattern mining. It is an extension of the itemMatrix class. If you are interested in 
how to use the two different classes to represent transaction data, please use the 
help function to refer to the following documents:
> help(transactions)
> help(itemMatrix)

Displaying transactions and associations
The arule package uses its own transactions class to store transaction data. As such, 
we must use the generic function provided by arule to display transactions and association 
rules. In this recipe, we will illustrate how to display transactions and association rules via 
various functions in the arule package.

Getting ready
Ensure that you have completed the previous recipe by generating transactions and storing 
these in the variable, trans.

How to do it...
Perform the following steps to display transactions and associations:

1.	 First, you can obtain a LIST representation of the transaction data:
> LIST(trans)
$Tr1
[1] "Apple" "Bread" "Cake" 

$Tr2
[1] "Apple" "Bread" "Milk" 

$Tr3
[1] "Bread" "Cake"  "Milk"
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2.	 Next, you can use the summary function to show a summary of the statistics and 
details of the transactions:
> summary(trans)
transactions as itemMatrix in sparse format with
 3 rows (elements/itemsets/transactions) and
 4 columns (items) and a density of 0.75 

most frequent items:
  Bread   Apple    Cake    Milk (Other) 
      3       2       2       2       0 

element (itemset/transaction) length distribution:
sizes
3 
3 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      3       3       3       3       3       3 

includes extended item information - examples:
  labels
1  Apple
2  Bread
3   Cake

includes extended transaction information - examples:
  transactionID
1           Tr1
2           Tr2
3           Tr3

3.	 You can then display transactions using the inspect function:
> inspect(trans)
  items   transactionID
1 {Apple,              
   Bread,              
   Cake}            Tr1
2 {Apple,              
   Bread,              
   Milk}            Tr2
3 {Bread,              
   Cake,               
   Milk}            Tr3
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4.	 In addition to this, you can filter the transactions by size:
> filter_trains = trans[size(trans) >=3]
> inspect(filter_trains)
  items   transactionID
1 {Apple,              
   Bread,              
   Cake}            Tr1
2 {Apple,              
   Bread,              
   Milk}            Tr2
3 {Bread,              
   Cake,               
   Milk}            Tr3

5.	 Also, you can use the image function to visually inspect the transactions:
> image(trans)

Visual inspection of transactions

6.	 To visually show the frequency/support bar plot, one can use itemFrequenctPlot:
> itemFrequencyPlot (trans)
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Item frequency bar plot of transactions

How it works...
As the transaction data is the base for mining associations and frequent patterns, we have 
to learn how to display the associations to gain insights and determine how associations are 
built. The arules package provides various methods to inspect transactions. First, we use 
the LIST function to obtain the list representation of the transaction data. We can then use 
the summary function to obtain information, such as basic descriptions, most frequent items, 
and the transaction length distribution.

Next, we use the inspect function to display the transactions. Besides displaying all 
transactions, one can first filter the transactions by size and then display the associations by 
using the inspect function. Furthermore, we can use the image function to visually inspect 
the transactions. Finally, we illustrate how to use the frequency/support bar plot to display the 
relative item frequency of each item.

See also
ff Besides using itemFrequencyPlot to show the frequency/bar plot, you can use 

the itemFrequency function to show the support distribution. For more details, 
please use the help function to view the following document:
> help(itemFrequency)
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Mining associations with the Apriori rule
Association mining is a technique that can discover interesting relationships hidden in 
transaction datasets. This approach first finds all frequent itemsets, and generates strong 
association rules from frequent itemsets. Apriori is the most well-known association mining 
algorithm, which identifies frequent individual items first and then performs a breadth-first 
search strategy to extend individual items to larger itemsets until larger frequent itemsets 
cannot be found. In this recipe, we will introduce how to perform association analysis using 
the Apriori rule.

Getting ready
In this recipe, we will use the built-in transaction dataset, Groceries, to demonstrate how to 
perform association analysis with the Apriori algorithm in the arules package. Please make 
sure that the arules package is installed and loaded first.

How to do it...
Perform the following steps to analyze the association rules:

1.	 First, you need to load the dataset Groceries:
> data(Groceries)

2.	 You can then examine the summary of the Groceries dataset:
> summary(Groceries)

3.	 Next, you can use itemFrequencyPlot to examine the relative item frequency  
of itemsets:
> itemFrequencyPlot(Groceries, support = 0.1, cex.names=0.8, 
topN=5)
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The top five item frequency bar plot of groceries transactions

4.	 Use apriori to discover rules with the support over 0.001 and confidence over 0.5:
> rules = apriori(Groceries, parameter = list(supp = 0.001, conf = 
0.5, target= "rules"))
> summary(rules)
set of 5668 rules

rule length distribution (lhs + rhs):sizes
   2    3    4    5    6 
  11 1461 3211  939   46 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2.00    3.00    4.00    3.92    4.00    6.00 

summary of quality measures:
    support           confidence          lift       
 Min.   :0.001017   Min.   :0.5000   Min.   : 1.957  
 1st Qu.:0.001118   1st Qu.:0.5455   1st Qu.: 2.464  
 Median :0.001322   Median :0.6000   Median : 2.899  
 Mean   :0.001668   Mean   :0.6250   Mean   : 3.262  
 3rd Qu.:0.001729   3rd Qu.:0.6842   3rd Qu.: 3.691  
 Max.   :0.022267   Max.   :1.0000   Max.   :18.996  

mining info:
      data ntransactions support confidence
 Groceries          9835   0.001        0.5
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5.	 We can then inspect the first few rules:
> inspect(head(rules))
  lhs                    rhs              support confidence     
lift
1 {honey}             => {whole milk} 0.001118454  0.7333333 
2.870009
2 {tidbits}           => {rolls/buns} 0.001220132  0.5217391 
2.836542
3 {cocoa drinks}      => {whole milk} 0.001321810  0.5909091 
2.312611
4 {pudding powder}    => {whole milk} 0.001321810  0.5652174 
2.212062
5 {cooking chocolate} => {whole milk} 0.001321810  0.5200000 
2.035097
6 {cereals}           => {whole milk} 0.003660397  0.6428571 
2.515917

6.	 You can sort rules by confidence and inspect the first few rules:
> rules=sort(rules, by="confidence", decreasing=TRUE)
> inspect(head(rules))
  lhs                     rhs                    support 
confidence     lift
1 {rice,                                                                    
   sugar}              => {whole milk}       0.001220132          
1 3.913649
2 {canned fish,                                                             
   hygiene articles}   => {whole milk}       0.001118454          
1 3.913649
3 {root vegetables,                                                         
   butter,                                                                  
   rice}               => {whole milk}       0.001016777          
1 3.913649
4 {root vegetables,                                                         
   whipped/sour cream,                                                      
   flour}              => {whole milk}       0.001728521          
1 3.913649
5 {butter,                                                                  
   soft cheese,                                                             
   domestic eggs}      => {whole milk}       0.001016777          
1 3.913649
6 {citrus fruit,                                                            
   root vegetables,                                                         
   soft cheese}        => {other vegetables} 0.001016777          
1 5.168156
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How it works...
The purpose of association mining is to discover associations among items from the 
transactional database. Typically, the process of association mining proceeds by finding 
itemsets that have the support greater than the minimum support. Next, the process uses 
the frequent itemsets to generate strong rules (for example, milk => bread; a customer 
who buys milk is likely to buy bread) that have the confidence greater than minimum the 
confidence. By definition, an association rule can be expressed in the form of X=>Y, where 
X and Y are disjointed itemsets. We can measure the strength of associations between 
two terms: support and confidence. Support shows how much of the percentage of a rule 
is applicable within a dataset, while confidence indicates the probability of both X and Y 
appearing in the same transaction:

ff Support = 
( )x y
N

σ ∪

ff Confidence = 
( )
( )
x y
x

σ
σ
∪

Here, σ  refers to the frequency of a particular itemset; N denotes the populations.

As support and confidence are metrics for the strength rule only, you might still obtain many 
redundant rules with a high support and confidence. Therefore, we can use the third measure, 
lift, to evaluate the quality (ranking) of the rule. By definition, lift indicates the strength of a 
rule over the random co-occurrence of X and Y, so we can formulate lift in the following form:

Lift = 
( )

( ) ( )
x y
x y

σ
σ σ

∪
×

Apriori is the best known algorithm for mining associations, which performs a level-wise, 
breadth-first algorithm to count the candidate itemsets. The process of Apriori starts by finding 
frequent itemsets (a set of items that have minimum support) level-wisely. For example, the 
process starts with finding frequent 1-itemsets. Then, the process continues by using frequent 
1-itemsets to find frequent 2-itemsets. The process iteratively discovers new frequent k+1-
itemsets from frequent k-itemsets until no frequent itemsets are found.
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Finally, the process utilizes frequent itemsets to generate association rules:

An illustration of Apriori algorithm (Where support = 2)

In this recipe, we use the Apriori algorithm to find association rules within transactions. 
We use the built-in Groceries dataset, which contains one month of real-world point-of-
sale transaction data from a typical grocery outlet. We then use the summary function to 
obtain the summary statistics of the Groceries dataset. The summary statistics shows 
that the dataset contains 9,835 transactions, which are categorized into 169 categories. 
In addition to this, the summary shows information, such as most frequent items, itemset 
distribution, and example extended item information within the dataset. We can then use 
itemFrequencyPlot to visualize the five most frequent items with support over 0.1.

Next, we apply the Apriori algorithm to search for rules with support over 0.001 and 
confidence over 0.5. We then use the summary function to inspect detailed information 
on the generated rules. From the output summary, we find the Apriori algorithm generates 
5,668 rules with support over 0.001 and confidence over 0.5. Further, we can find the rule 
length distribution, summary of quality measures, and mining information. In the summary 
of the quality measurement, we find descriptive statistics of three measurements, which are 
support, confidence, and lift. Support is the proportion of transactions containing a certain 
itemset. Confidence is the correctness percentage of the rule. Lift is the response target 
association rule divided by the average response.

To explore some generated rules, we can use the inspect function to view the first six  
rules of the 5,668 generated rules. Lastly, we can sort rules by confidence and list rules  
with the most confidence. Therefore, we find that rich sugar associated to whole  
milk is the most confident rule with the support equal to 0.001220132, confidence  
equal to 1, and lift equal to 3.913649.
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See also
For those interested in the research results using the Groceries dataset, and how the support, 
confidence, and lift measurement are defined, you can refer to the following papers:

ff Michael Hahsler, Kurt Hornik, and Thomas Reutterer (2006) Implications of 
probabilistic data modeling for mining association rules. In M. Spiliopoulou,  
R. Kruse, C. Borgelt, A

ff Nuernberger, and W. Gaul, editors, From Data and Information Analysis  
to Knowledge Engineering, Studies in Classification, Data Analysis, and  
Knowledge Organization, pages 598–605. Springer-Verlag

Also, in addition to using the summary and inspect functions to inspect association rules, 
you can use interestMeasure to obtain additional interest measures:

> head(interestMeasure(rules, c("support", "chiSquare", "confidence", 
"conviction","cosine", "coverage", "leverage", "lift","oddsRatio"), 
Groceries))

Pruning redundant rules
Among the generated rules, we sometimes find repeated or redundant rules (for example,  
one rule is the super rule or subset of another rule). In this recipe, we will show you how to 
prune (or remove) repeated or redundant rules.

Getting ready
In this recipe, you have to complete the previous recipe by generating rules and have it stored 
in the variable rules.

How to do it...
Perform the following steps to prune redundant rules:

1.	 First, follow these steps to find redundant rules:
> rules.sorted = sort(rules, by="lift")
> subset.matrix = is.subset(rules.sorted, rules.sorted)
> subset.matrix[lower.tri(subset.matrix, diag=T)] = NA
> redundant = colSums(subset.matrix, na.rm=T) >= 1

2.	 You can then remove redundant rules:
> rules.pruned = rules.sorted[!redundant]
> inspect(head(rules.pruned))
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  lhs                        rhs                  support 
confidence     lift
1 {Instant food products,                                                    
   soda}                  => {hamburger meat} 0.001220132  
0.6315789 18.99565
2 {soda,                                                                     
   popcorn}               => {salty snack}    0.001220132  
0.6315789 16.69779
3 {flour,                                                                    
   baking powder}         => {sugar}          0.001016777  
0.5555556 16.40807
4 {ham,                                                                      
   processed cheese}      => {white bread}    0.001931876  
0.6333333 15.04549
5 {whole milk,                                                               
   Instant food products} => {hamburger meat} 0.001525165  
0.5000000 15.03823
6 {other vegetables,                                                         
   curd,                                                                     
   yogurt,                                                                   
   whipped/sour cream}    => {cream cheese }  0.001016777  
0.5882353 14.83409

How it works...
The two main constraints of association mining are to choose between the support and 
confidence. For example, if you use a high support threshold, you might remove rare item 
rules without considering whether these rules have a high confidence value. On the other 
hand, if you choose to use a low support threshold, the association mining can produce  
huge sets of redundant association rules, which make these rules difficult to utilize and 
analyze. Therefore, we need to prune redundant rules so we can discover meaningful 
information from these generated rules.

In this recipe, we demonstrate how to prune redundant rules. First, we search for redundant 
rules. We sort the rules by a lift measure, and then find subsets of the sorted rules using the 
is.subset function, which will generate an itemMatrix object. We can then set the lower 
triangle of the matrix to NA. Lastly, we compute colSums of the generated matrix, of which 
colSums >=1 indicates that the specific rule is redundant.
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After we have found the redundant rules, we can prune these rules from the sorted rules. 
Lastly, we can examine the pruned rules using the inspect function.

See also
ff In order to find subsets or supersets of rules, you can use the is.superset and 

is.subset functions on the association rules. These two methods may generate  
an itemMatrix object to show which rule is the superset or subset of other rules. 
You can refer to the help function for more information:
> help(is.superset)
> help(is.subset)

Visualizing association rules
Besides listing rules as text, you can visualize association rules, making it easier to find  
the relationship between itemsets. In the following recipe, we will introduce how to use  
the aruleViz package to visualize the association rules.

Getting ready
In this recipe, we will continue using the Groceries dataset. You need to have completed  
the previous recipe by generating the pruned rule rules.pruned.

How to do it...
Perform the following steps to visualize the association rule:

1.	 First, you need to install and load the package arulesViz:
> install.packages("arulesViz")
> library(arulesViz)
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2.	 You can then make a scatter plot from the pruned rules:
> plot(rules.pruned)

 

The scatter plot of pruned association rules

3.	 Additionally, to prevent overplotting, you can add jitter to the scatter plot:
> plot(rules.pruned, shading="order", control=list(jitter=6))

The scatter plot of pruned association rules with jitters

4.	 We then produce new rules with soda on the left-hand side using the Apriori algorithm:
> soda_rule=apriori(data=Groceries, parameter=list(supp=0.001,conf 
= 0.1, minlen=2), appearance = list(default="rhs",lhs="soda"))
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5.	 Next, you can plot soda_rule in a graph plot:
> plot(sort(soda_rule, by="lift"), method="graph", 
control=list(type="items"))

Graph plot of association rules

6.	 Also, the association rules can be visualized in a balloon plot:
> plot(soda_rule, method="grouped")

Balloon plot of association rules
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How it works...
Besides presenting association rules as text, one can use arulesViz to visualize association 
rules. The arulesViz is an arules extension package, which provides many visualization 
techniques to explore association rules. To start using arulesViz, first install and load the 
package arulesViz. We then use the pruned rules generated in the previous recipe to make 
a scatter plot. As per the figure in step 2, we find the rules are shown as points within the 
scatter plot, with the x-axis in support and y-axis in confidence. The shade of color shows the 
lift of the rule; the darker the shade, the higher the lift. Next, in order to prevent overplotting 
points, we can include the jitter as an argument in the control list. The plot with the jitter 
added is provided in the figure in step 3.

In addition to plotting the rules in a scatter plot, arulesViz enables you to plot rules in a 
graph and grouped matrix. Instead of printing all the rules on a single plot, we choose to 
produce new rules with soda on the left-hand side. We then sort the rules by using the lift 
and visualize the rules in the graph in the figure in step 4. From the graph, every itemset is 
presented in a vertex and their relationship is presented in an edge. The figure (step 4) shows 
it is clear that the rule with soda on the left-handside to whole milk on the right-handside 
has the maximum support, for the size of the node is greatest. Also, the rule shows that soda 
on the left-hand side to bottled water on the right-hand side has the maximum lift as the 
shade of color in the circle is the darkest. We can then use the same data with soda on the 
left-handside to generate a grouped matrix, which is a balloon plot shown in the figure in step 
5, with the left-handside rule as column labels and the right-handside as row labels. Similar to 
the graph plot in the figure in step 4, the size of the balloon in the figure in step 5 shows the 
support of the rule, and the color of the balloon shows the lift of the rule.

See also
ff In this recipe, we introduced three visualization methods to plot association  

rules. However, arulesViz also provides features to plot parallel coordinate  
plots, double-decker plots, mosaic plots, and other related charts. For those  
who are interested in how these plots work, you may refer to: Hahsler, M.,  
and Chelluboina, S. (2011). Visualizing association rules: Introduction to the 
R-extension package arulesViz. R project module.

ff In addition to generating a static plot, you can generate an interactive plot by  
setting interactive equal to TRUE through the following steps:
> plot(rules.pruned,interactive=TRUE)
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The interactive scatter plots

Mining frequent itemsets with Eclat
In addition to the Apriori algorithm, you can use the Eclat algorithm to generate frequent 
itemsets. As the Apriori algorithm performs a breadth-first search to scan the complete database, 
the support counting is rather time consuming. Alternatively, if the database fits into the memory, 
you can use the Eclat algorithm, which performs a depth-first search to count the supports. 
The Eclat algorithm, therefore, performs quicker than the Apriori algorithm. In this recipe, we 
introduce how to use the Eclat algorithm to generate frequent itemsets.

Getting ready
In this recipe, we will continue using the dataset Groceries as our input data source.

How to do it...
Perform the following steps to generate a frequent itemset using the Eclat algorithm:

1.	 Similar to the Apriori method, we can use the eclat function to generate the 
frequent itemset:
> frequentsets=eclat(Groceries,parameter=list(support=0.05,maxl
en=10))

2.	 We can then obtain the summary information from the generated frequent itemset:
> summary(frequentsets)
set of 31 itemsets
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most frequent items:
      whole milk other vegetables           yogurt 
               4                2                2 
      rolls/buns      frankfurter          (Other) 
               2                1               23 

element (itemset/transaction) length distribution:sizes
 1  2 
28  3 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   1.000   1.000   1.097   1.000   2.000 

summary of quality measures:
    support       
 Min.   :0.05236  
 1st Qu.:0.05831  
 Median :0.07565  
 Mean   :0.09212  
 3rd Qu.:0.10173  
 Max.   :0.25552  

includes transaction ID lists: FALSE 

mining info:
      data ntransactions support
 Groceries          9835    0.05

3.	 Lastly, we can examine the top ten support frequent itemsets:
> inspect(sort(frequentsets,by="support")[1:10])

   items                 support

1  {whole milk}       0.25551601

2  {other vegetables} 0.19349263

3  {rolls/buns}       0.18393493

4  {soda}             0.17437722

5  {yogurt}           0.13950178

6  {bottled water}    0.11052364

7  {root vegetables}  0.10899847

8  {tropical fruit}   0.10493137

9  {shopping bags}    0.09852567

10 {sausage}          0.09395018



Chapter 10

341

How it works...
In this recipe, we introduce another algorithm, Eclat, to perform frequent itemset generation. 
Though Apriori is a straightforward and easy to understand association mining method, the 
algorithm has the disadvantage of generating huge candidate sets and performs inefficiently 
in support counting, for it takes multiple scans of databases. In contrast to Apriori, Eclat uses 
equivalence classes, depth-first searches, and set intersections, which greatly improves the 
speed in support counting.

In Apriori, the algorithm uses a horizontal data layout to store transactions. On the other  
hand, Eclat uses a vertical data layout to store a list of transaction IDs (tid) for each  
item. Then, Eclat determines the support of any k+1-itemset by intersecting tid-lists of  
two k-itemsets. Lastly, Eclat utilizes frequent itemsets to generate association rules:

An illustration of Eclat algorithm

Similar to the recipe using the Apriori algorithm, we can use the eclat function to generate a 
frequent itemset with a given support (assume support = 2 in this case) and maximum length.

Generating frequent itemset

We can then use the summary function to obtain summary statistics, which include: most 
frequent items, itemset length distributions, summary of quality measures, and mining 
information. Finally, we can sort frequent itemsets by the support and inspect the top ten 
support frequent itemsets.

See also
ff Besides Apriori and Eclat, another popular association mining algorithm is FP-

Growth. Similar to Eclat, this takes a depth-first search to count supports. However, 
there is no existing R package that you can download from CRAN that contains this 
algorithm. However, if you are interested in knowing how to apply the FP-growth 
algorithm in your transaction dataset, you can refer to Christian Borgelt's page at 
http://www.borgelt.net/fpgrowth.html for more information.

http://www.borgelt.net/fpgrowth.html
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Creating transactions with temporal 
information

In addition to mining interesting associations within the transaction database, we can mine 
interesting sequential patterns using transactions with temporal information. In the following 
recipe, we demonstrate how to create transactions with temporal information.

Getting ready
In this recipe, we will generate transactions with temporal information. We can use the 
generated transactions as the input source for frequent sequential pattern mining.

How to do it...
Perform the following steps to create transactions with temporal information:

1.	 First, you need to install and load the package arulesSequences:
> install.packages("arulesSequences")
> library(arulesSequences)

2.	 You can first create a list with purchasing records:
> tmp_data=list(c("A"),
+                c("A","B","C"),
+                c("A","C"),
+                c("D"),
+                c("C","F"),
+                c("A","D"),
+                c("C"),
+                c("B","C"),
+                c("A","E"),
+                c("E","F"),
+                c("A","B"),
+                c("D","F"),
+                c("C"),
+                c("B"),
+                c("E"),
+                c("G"),
+                c("A","F"),
+                c("C"),
+                c("B"),
+                c("C"))



Chapter 10

343

3.	 You can then turn the list into transactions and add temporal information:
>names(tmp_data) = paste("Tr",c(1:20), sep = "")
>trans =  as(tmp_data,"transactions")
>transactionInfo(trans)$sequenceID
=c(1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4)
>transactionInfo(trans)$eventID=c(10,20,30,40,50,10,20,30,40,10,20
,30,40,50,10,20,30,40,50,60)
> trans
transactions in sparse format with
 20 transactions (rows) and
 7 items (columns)

4.	 Next, you can use the inspect function to inspect the transactions:
> inspect(head(trans))
  items transactionID sequenceID eventID
1 {A}             Tr1          1      10
2 {A,                                   
   B,                                   
   C}             Tr2          1      20
3 {A,                                   
   C}             Tr3          1      30
4 {D}             Tr4          1      40
5 {C,                                   
   F}             Tr5          1      50
6 {A,                                   
   D}             Tr6          2      10

5.	 You can then obtain the summary information of the transactions with the  
temporal information:
> summary(trans)
transactions as itemMatrix in sparse format with
 20 rows (elements/itemsets/transactions) and
 7 columns (items) and a density of 0.2214286 

most frequent items:
      C       A       B       F       D (Other) 
      8       7       5       4       3       4 

element (itemset/transaction) length distribution:
sizes
 1  2  3 
10  9  1 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
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   1.00    1.00    1.50    1.55    2.00    3.00 

includes extended item information - examples:
  labels
1      A
2      B
3      C

includes extended transaction information - examples:
  transactionID sequenceID eventID
1           Tr1          1      10
2           Tr2          1      20
3           Tr3          1      30

6.	 You can also read the transaction data in a basket format:
> zaki=read_baskets(con = system.file("misc", "zaki.txt", package 
= "arulesSequences"), info = c("sequenceID","eventID","SIZE"))

> as(zaki, "data.frame")

   transactionID.sequenceID transactionID.eventID transactionID.
SIZE     items

1                         1                    10                  
2     {C,D}

2                         1                    15                  
3   {A,B,C}

3                         1                    20                  
3   {A,B,F}

4                         1                    25                  
4 {A,C,D,F}

5                         2                    15                  
3   {A,B,F}

6                         2                    20                  
1       {E}

7                         3                    10                  
3   {A,B,F}

8                         4                    10                  
3   {D,G,H}

9                         4                    20                  
2     {B,F}

10                        4                    25                  
3   {A,G,H}
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How it works...
Before mining frequent sequential patterns, you are required to create transactions with 
the temporal information. In this recipe, we introduce two methods to obtain transactions 
with temporal information. In the first method, we create a list of transactions, and assign 
a transaction ID for each transaction. We use the as function to transform the list data into 
a transaction dataset. We then add eventID and sequenceID as temporal information; 
sequenceID is the sequence that the event belongs to, and eventID indicates when the 
event occurred. After generating transactions with temporal information, one can use this 
dataset for frequent sequential pattern mining.

In addition to creating your own transactions with temporal information, if you already have 
data stored in a text file, you can use the read_basket function from arulesSequences  
to read the transaction data into the basket format. We can also read the transaction dataset 
for further frequent sequential pattern mining.

See also
ff The arulesSequences function provides two additional data structures, 

sequences and timedsequences, to present pure sequence data and  
sequence data with the time information. For those who are interested in these  
two collections, please use the help function to view the following documents:
> help("sequences-class")

> help("timedsequences-class")

Mining frequent sequential patterns  
with cSPADE

In contrast to association mining, which only discovers relationships between itemsets,  
we may be interested in exploring patterns shared among transactions where a set of 
itemsets occurs sequentially.

One of the most famous frequent sequential pattern mining algorithms is the Sequential 
PAttern Discovery using Equivalence classes (SPADE) algorithm, which employs the 
characteristics of a vertical database to perform an intersection on an ID list with an  
efficient lattice search and allows us to place constraints on mined sequences. In this  
recipe, we will demonstrate how to use cSPADE to mine frequent sequential patterns.

Getting ready
In this recipe, you have to complete the previous recipes by generating transactions with  
the temporal information and have it stored in the variable trans.
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How to do it...
Perform the following steps to mine the frequent sequential patterns:

1.	 First, you can use the cspade function to generate frequent sequential patterns:
> s_result=cspade(trans,parameter = list(support = 0.75),control = 
list(verbose = TRUE))

2.	 You can then examine the summary of the frequent sequential patterns:
> summary(s_result)

set of 14 sequences with

most frequent items:

      C       A       B       D       E (Other) 

      8       5       5       2       1       1 

most frequent elements:

    {C}     {A}     {B}     {D}     {E} (Other) 

      8       5       5       2       1       1 

element (sequence) size distribution:

sizes

1 2 3 

6 6 2 

sequence length distribution:

lengths

1 2 3 

6 6 2 

summary of quality measures:

    support      

 Min.   :0.7500  

 1st Qu.:0.7500  

 Median :0.7500  

 Mean   :0.8393  

 3rd Qu.:1.0000  
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 Max.   :1.0000  

includes transaction ID lists: FALSE 

mining info:

  data ntransactions nsequences support

 trans            20          4    0.75

3.	 Transform a generated sequence format data back to the data frame:
> as(s_result, "data.frame")

        sequence support

1          <{A}>    1.00

2          <{B}>    1.00

3          <{C}>    1.00

4          <{D}>    0.75

5          <{E}>    0.75

6          <{F}>    0.75

7      <{A},{C}>    1.00

8      <{B},{C}>    0.75

9      <{C},{C}>    0.75

10     <{D},{C}>    0.75

11 <{A},{C},{C}>    0.75

12     <{A},{B}>    1.00

13     <{C},{B}>    0.75

14 <{A},{C},{B}>    0.75

How it works...
The object of sequential pattern mining is to discover sequential relationships or patterns in 
transactions. You can use the pattern mining result to predict future events, or recommend 
items to users.
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One popular method of sequential pattern mining is SPADE. SPADE uses a vertical data 
layout to store a list of IDs. In these, each input sequence in the database is called SID, and 
each event in a given input sequence is called EID. The process of SPADE is performed by 
generating patterns level-wisely by an Apriori candidate generation. In detail, SPADE generates 
subsequent n-sequences from joining (n-1)-sequences from the intersection of ID lists. If the 
number of sequences is greater than the minimum support (minsup), we can consider the 
sequence to be frequent enough. The algorithm stops until the process cannot find more 
frequent sequences:

An illustration of SPADE algorithm

In this recipe, we illustrate how to use a frequent sequential pattern mining algorithm, 
cSPADE, to mine frequent sequential patterns. First, as we have transactions with temporal 
information loaded in the variable trans, we can use the cspade function with the support 
over 0.75 to generate frequent sequential patterns in the sequences format. We can then 
obtain summary information, such as most frequent items, sequence size distributions,  
a summary of quality measures, and mining information. Lastly, we can transform the 
generated sequence information back to the data frame format, so we can examine  
the sequence and support of frequent sequential patterns with the support over 0.75.

See also
ff If you are interested in the concept and design of the SPADE algorithm, you can refer 

to the original published paper: M. J. Zaki. (2001). SPADE: An Efficient Algorithm for 
Mining Frequent Sequences. Machine Learning Journal, 42, 31–60.
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Dimension Reduction

In this chapter, we will cover the following topics:

ff Performing feature selection with FSelector

ff Performing dimension reduction with PCA

ff Determining the number of principal components using a scree test

ff Determining the number of principal components using the Kaiser method

ff Visualizing multivariate data using biplot

ff Performing dimension reduction with MDS

ff Reducing dimensions with SVD

ff Compressing images with SVD

ff Performing nonlinear dimension reduction with ISOMAP

ff Performing nonlinear dimension deduction with Local Linear Embedding

Introduction
Most datasets contain features (such as attributes or variables) that are highly redundant. 
In order to remove irrelevant and redundant data to reduce the computational cost and 
avoid overfitting, you can reduce the features into a smaller subset without a significant loss 
of information. The mathematical procedure of reducing features is known as dimension 
reduction.

The reduction of features can increase the efficiency of data processing. Dimension reduction 
is, therefore, widely used in the fields of pattern recognition, text retrieval, and machine learning. 
Dimension reduction can be divided into two parts: feature extraction and feature selection. 
Feature extraction is a technique that uses a lower dimension space to represent data in a 
higher dimension space. Feature selection is used to find a subset of the original variables.

11



Dimension Reduction

350

The objective of feature selection is to select a set of relevant features to construct the model. 
The techniques for feature selection can be categorized into feature ranking and feature 
selection. Feature ranking ranks features with a certain criteria and then selects features 
that are above a defined threshold. On the other hand, feature selection searches the optimal 
subset from a space of feature subsets.

In feature extraction, the problem can be categorized as linear or nonlinear. The linear method 
searches an affine space that best explains the variation of data distribution. In contrast, the 
nonlinear method is a better option for data that is distributed on a highly nonlinear curved 
surface. Here, we list some common linear and nonlinear methods.

Here are some common linear methods:

ff PCA: Principal component analysis maps data to a lower dimension, so that the 
variance of the data in a low dimension representation is maximized.

ff MDS: Multidimensional scaling is a method that allows you to visualize how near 
(pattern proximities) objects are to each other and can produce a representation of 
your data with lower dimension space. PCA can be regarded as the simplest form of 
MDS if the distance measurement used in MDS equals the covariance of data.

ff SVD: Singular value decomposition removes redundant features that are linear 
correlated from the perspective of linear algebra. PCA can also be regarded as a 
specific case of SVD.

Here are some common nonlinear methods:

ff ISOMAP: ISOMAP can be viewed as an extension of MDS, which uses the distance 
metric of geodesic distances. In this method, geodesic distance is computed by 
graphing the shortest path distances.

ff LLE: Locally linear embedding performs local PCA and global eigen-decomposition. 
LLE is a local approach, which involves selecting features for each category of the 
class feature. In contrast, ISOMAP is a global approach, which involves selecting 
features for all features.

In this chapter, we will first discuss how to perform feature ranking and selection. Next, we will 
focus on the topic of feature extraction and cover recipes in performing dimension reduction 
with both linear and nonlinear methods. For linear methods, we will introduce how to perform 
PCA, determine the number of principal components, and its visualization. We then move on 
to MDS and SVD. Furthermore, we will introduce the application of SVD to compress images. 
For nonlinear methods, we will introduce how to perform dimension reduction with ISOMAP 
and LLE.
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Performing feature selection with FSelector
The FSelector package provides two approaches to select the most influential features 
from the original feature set. Firstly, rank features by some criteria and select the ones that 
are above a defined threshold. Secondly, search for optimum feature subsets from a space 
of feature subsets. In this recipe, we will introduce how to perform feature selection with the 
FSelector package.

Getting ready
In this recipe, we will continue to use the telecom churn dataset as the input data source to 
train the support vector machine. For those who have not prepared the dataset, please refer 
to Chapter 5, Classification (I) – Tree, Lazy, and Probabilistic, for detailed information.

How to do it...
Perform the following steps to perform feature selection on a churn dataset:

1.	 First, install and load the package, FSelector:
> install.packages("FSelector")

> library(FSelector)

2.	 Then, we can use random.forest.importance to calculate the weight for each 
attribute, where we set the importance type to 1:
> weights = random.forest.importance(churn~., trainset, 
importance.type = 1)

> print(weights)

                              attr_importance

international_plan                 96.3255882

voice_mail_plan                    24.8921239

number_vmail_messages              31.5420332

total_day_minutes                  51.9365357

total_day_calls                    -0.1766420

total_day_charge                   53.7930096

total_eve_minutes                  33.2006078

total_eve_calls                    -2.2270323

total_eve_charge                   32.4317375

total_night_minutes                22.0888120

total_night_calls                   0.3407087

total_night_charge                 21.6368855
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total_intl_minutes                 32.4984413

total_intl_calls                   51.1154046

total_intl_charge                  32.4855194

number_customer_service_calls     114.2566676

3.	 Next, we can use the cutoff function to obtain the attributes of the top five weights:
> subset = cutoff.k(weights, 5)

> f = as.simple.formula(subset, "Class")

> print(f)

Class ~ number_customer_service_calls + international_plan + 

    total_day_charge + total_day_minutes + total_intl_calls

<environment: 0x00000000269a28e8>

4.	 Next, we can make an evaluator to select the feature subsets:
> evaluator = function(subset) {

+   k = 5  

+   set.seed(2)

+   ind = sample(5, nrow(trainset), replace = TRUE)

+   results = sapply(1:k, function(i) {

+     train = trainset[ind ==i,]

+     test  = trainset[ind !=i,]

+     tree  = rpart(as.simple.formula(subset, "churn"), trainset)

+     error.rate = sum(test$churn != predict(tree, test, 
type="class")) / nrow(test)

+     return(1 - error.rate)

+   })

+   return(mean(results))

+ }

5.	 Finally, we can find the optimum feature subset using a hill climbing search:

> attr.subset = hill.climbing.search(names(trainset)
[!names(trainset) %in% "churn"], evaluator)

> f = as.simple.formula(attr.subset, "churn")

> print(f)

churn ~ international_plan + voice_mail_plan + number_vmail_
messages + 

    total_day_minutes + total_day_calls + total_eve_minutes + 
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    total_eve_charge + total_intl_minutes + total_intl_calls + 

    total_intl_charge + number_customer_service_calls

<environment: 0x000000002224d3d0>

How it works...
In this recipe, we present how to use the FSelector package to select the most influential 
features. We first demonstrate how to use the feature ranking approach. In the feature 
ranking approach, the algorithm first employs a weight function to generate weights for each 
feature. Here, we use the random forest algorithm with the mean decrease in accuracy 
(where importance.type = 1) as the importance measurement to gain the weights of 
each attribute. Besides the random forest algorithm, you can select other feature ranking 
algorithms (for example, chi.squared, information.gain) from the FSelector 
package. Then, the process sorts attributes by their weight. At last, we can obtain the top 
five features from the sorted feature list with the cutoff function. In this case, number_
customer_service_calls, international_plan, total_day_charge, total_
day_minutes, and total_intl_calls are the five most important features.

Next, we illustrate how to search for optimum feature subsets. First, we need to make a five-
fold cross-validation function to evaluate the importance of feature subsets. Then, we use the 
hill climbing searching algorithm to find the optimum feature subsets from the original feature 
sets. Besides the hill-climbing method, one can select other feature selection algorithms 
(for example, forward.search) from the FSelector package. Lastly, we can find that 
international_plan + voice_mail_plan + number_vmail_messages + total_
day_minutes + total_day_calls + total_eve_minutes + total_eve_charge 
+ total_intl_minutes + total_intl_calls + total_intl_charge + number_
customer_service_calls are optimum feature subsets.

See also
ff You can also use the caret package to perform feature selection. As we have 

discussed related recipes in the model assessment chapter, you can refer to Chapter 
7, Model Evaluation, for more detailed information.

ff For both feature ranking and optimum feature selection, you can explore the 
package, FSelector, for more related functions:

> help(package="FSelector")
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Performing dimension reduction with PCA
Principal component analysis (PCA) is the most widely used linear method in dealing with 
dimension reduction problems. It is useful when data contains many features, and there is 
redundancy (correlation) within these features. To remove redundant features, PCA maps high 
dimension data into lower dimensions by reducing features into a smaller number of principal 
components that account for most of the variance of the original features. In this recipe, we 
will introduce how to perform dimension reduction with the PCA method.

Getting ready
In this recipe, we will use the swiss dataset as our target to perform PCA. The swiss dataset 
includes standardized fertility measures and socio-economic indicators from around the year 
1888 for each of the 47 French-speaking provinces of Switzerland.

How to do it...
Perform the following steps to perform principal component analysis on the swiss dataset:

1.	 First, load the swiss dataset:
> data(swiss)

2.	 Exclude the first column of the swiss data:
> swiss = swiss[,-1]

3.	 You can then perform principal component analysis on the swiss data:
> swiss.pca = prcomp(swiss,

+ center = TRUE,

+ scale  = TRUE)

> swiss.pca

Standard deviations:

[1] 1.6228065 1.0354873 0.9033447 0.5592765 0.4067472

Rotation:

                         PC1         PC2          PC3        PC4         
PC5

Agriculture      0.52396452 -0.25834215  0.003003672 -0.8090741  
0.06411415

Examination  -0.57185792 -0.01145981 -0.039840522 -0.4224580 
-0.70198942
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Education       -0.49150243  0.19028476  0.539337412 -0.3321615  
0.56656945

Catholic            0.38530580  0.36956307  0.725888143 0.1007965 
-0.42176895

Infant.Mortality 0.09167606 0.87197641 -0.424976789 -0.2154928 
0.06488642

4.	 Obtain a summary from the PCA results:
> summary(swiss.pca)

Importance of components:

                          PC1    PC2    PC3     PC4     PC5

Standard deviation     1.6228 1.0355 0.9033 0.55928 0.40675

Proportion of Variance 0.5267 0.2145 0.1632 0.06256 0.03309

Cumulative Proportion  0.5267 0.7411 0.9043 0.96691 1.00000

5.	 Lastly, you can use the predict function to output the value of the principal 
component with the first row of data:
> predict(swiss.pca, newdata=head(swiss, 1))

                  PC1       PC2        PC3      PC4       PC5

Courtelary -0.9390479 0.8047122 -0.8118681 1.000307 0.4618643

How it works...
Since the feature selection method may remove some correlated but informative features, you 
have to consider combining these correlated features into a single feature with the feature 
extraction method. PCA is one of the feature extraction methods, which performs orthogonal 
transformation to convert possibly correlated variables into principal components. Also, you 
can use these principal components to identify the directions of variance.

The process of PCA is carried on by the following steps: firstly, find the mean vector,  
1

1 n
ii
x

n
µ

=
= ∑ , where ix  indicates the data point, and n denotes the number of points. Secondly, 

compute the covariance matrix by the equation, ( )( )1

1 n T
i ii

C x x
n

µ µ
=

= − −∑ . Thirdly, compute the 
eigenvectors,ϕ , and the corresponding eigenvalues. In the fourth step, we rank and choose 
the top k eigenvectors. In the fifth step, we construct a d x k dimensional eigenvector matrix, U. 
Here, d is the number of original dimensions and k is the number of eigenvectors. Finally, we 
can transform data samples to a new subspace in the equation, Ty U x= ⋅ .
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In the following figure, it is illustrated that we can use two principal components, 1ϕ , and 2ϕ , to 
transform the data point from a two-dimensional space to new two-dimensional subspace:

A sample illustration of PCA

In this recipe we use the prcomp function from the stats package to perform PCA on the 
swiss dataset. First, we remove the standardized fertility measures and use the rest of the 
predictors as input to the function, prcomp. In addition to this, we set swiss as an input 
dataset; the variable should be shifted to the zero center by specifying center=TRUE; scale 
variables into the unit variance with the option, scale=TRUE, and store the output in the 
variable, swiss.pca.

Then, as we print out the value stored in swiss.pca, we can find the standard deviation 
and rotation of the principal component. The standard deviation indicates the square root of 
the eigenvalues of the covariance/correlation matrix. On the other hand, the rotation of the 
principal components shows the coefficient of the linear combination of the input features. 
For example, PC1 equals Agriculture * 0.524 + Examination * -0.572 + Education * -0.492 + 
Catholic* 0.385 + Infant.Mortality * 0.092. Here, we can find that the attribute, Agriculture, 
contributes the most for PC1, for it has the highest coefficient.

Additionally, we can use the summary function to obtain the importance of components. The 
first row shows the standard deviation of each principal component, the second row shows the 
proportion of variance explained by each component, and the third row shows the cumulative 
proportion of the explained variance. Finally, you can use the predict function to obtain 
principal components from the input features. Here, we input the first row of the dataset, and 
retrieve five principal components.

There's more...
Another principal component analysis function is princomp. In this function, the calculation 
is performed by using eigen on a correlation or covariance matrix instead of a single value 
decomposition used in the prcomp function. In general practice, using prcomp is preferable; 
however, we cover how to use princomp here:
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1.	 First, use princomp to perform PCA:
> swiss.princomp = princomp(swiss,

+ center = TRUE,

+ scale  = TRUE)

> swiss.princomp

Call:

princomp(x = swiss, center = TRUE, scale = TRUE)

Standard deviations:

   Comp.1    Comp.2    Comp.3    Comp.4    Comp.5 

42.896335 21.201887  7.587978  3.687888  2.721105 

 5 variables and 47 observations.

2.	 You can then obtain the summary information:
> summary(swiss.princomp)

Importance of components:

                           Comp.1     Comp.2     Comp.3      
Comp.4      Comp.5

Standard deviation     42.8963346 21.2018868 7.58797830 
3.687888330 2.721104713

Proportion of Variance  0.7770024  0.1898152 0.02431275 
0.005742983 0.003126601

Cumulative Proportion   0.7770024  0.9668177 0.99113042 
0.996873399 1.000000000

3.	 You can use the predict function to obtain principal components from the input 
features:
> predict(swiss.princomp, swiss[1,])

              Comp.1    Comp.2   Comp.3   Comp.4   Comp.5

Courtelary -38.95923 -20.40504 12.45808 4.713234 -1.46634

In addition to the prcomp and princomp functions from the stats package, you can use the 
principal function from the psych package:

1.	 First, install and load the psych package:
> install.packages("psych")

> install.packages("GPArotation")

> library(psych)
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2.	 You can then use the principal function to retrieve the principal components:
> swiss.principal = principal(swiss, nfactors=5, rotate="none")

> swiss.principal

Principal Components Analysis

Call: principal(r = swiss, nfactors = 5, rotate = "none")

Standardized loadings (pattern matrix) based upon correlation 
matrix

                   PC1   PC2   PC3   PC4   PC5 h2       u2

Agriculture      -0.85 -0.27  0.00  0.45 -0.03  1 -6.7e-16

Examination       0.93 -0.01 -0.04  0.24  0.29  1  4.4e-16

Education         0.80  0.20  0.49  0.19 -0.23  1  2.2e-16

Catholic         -0.63  0.38  0.66 -0.06  0.17  1 -2.2e-16

Infant.Mortality -0.15  0.90 -0.38  0.12 -0.03  1 -8.9e-16

                       PC1  PC2  PC3  PC4  PC5

SS loadings           2.63 1.07 0.82 0.31 0.17

Proportion Var        0.53 0.21 0.16 0.06 0.03

Cumulative Var        0.53 0.74 0.90 0.97 1.00

Proportion Explained  0.53 0.21 0.16 0.06 0.03

Cumulative Proportion 0.53 0.74 0.90 0.97 1.00

Test of the hypothesis that 5 components are sufficient.

The degrees of freedom for the null model are 10 and the objective 
function was 2.13

The degrees of freedom for the model are -5  and the objective 
function was  0 

The total number of observations was  47  with MLE Chi Square =  0  
with prob <  NA 

Fit based upon off diagonal values = 1
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Determining the number of principal 
components using the scree test

As we only need to retain the principal components that account for most of the variance of 
the original features, we can either use the Kaiser method, scree test, or the percentage of 
variation explained as the selection criteria. The main purpose of a scree test is to graph the 
component analysis results as a scree plot and find where the obvious change in the slope 
(elbow) occurs. In this recipe, we will demonstrate how to determine the number of principal 
components using a scree plot.

Getting ready
Ensure that you have completed the previous recipe by generating a principal component 
object and save it in the variable, swiss.pca.

How to do it...
Perform the following steps to determine the number of principal components with the  
scree plot:

1.	 First, you can generate a bar plot by using screeplot:
> screeplot(swiss.pca, type="barplot")

The scree plot in bar plot form
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2.	 You can also generate a line plot by using screeplot:

> screeplot(swiss.pca, type="line")

The scree plot in line plot form

How it works...
In this recipe, we demonstrate how to use a scree plot to determine the number of principal 
components. In a scree plot, there are two types of plots, namely, bar plots and line plots. As 
both generated scree plots reveal, the obvious change in slope (the so-called elbow or knee) 
occurs at component 2. As a result, we should retain component 1, where the component is 
in a steep curve before component 2, which is where the flat line trend commences. However, 
as this method can be ambiguous, you can use other methods (such as the Kaiser method) to 
determine the number of components.

There's more...
By default, if you use the plot function on a generated principal component object, you can 
also retrieve the scree plot. For more details on screeplot, please refer to the following 
document:

> help(screeplot)
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You can also use nfactors to perform parallel analysis and nongraphical solutions to the 
Cattell scree test:

> install.packages("nFactors")

> library(nFactors)

> ev = eigen(cor(swiss))

> ap = parallel(subject=nrow(swiss),var=ncol(swiss),rep=100,cent=.05)

> nS = nScree(x=ev$values, aparallel=ap$eigen$qevpea)

> plotnScree(nS)

Non-graphical solution to scree test

Determining the number of principal 
components using the Kaiser method

In addition to the scree test, you can use the Kaiser method to determine the number of 
principal components. In this method, the selection criteria retains eigenvalues greater than 
1. In this recipe, we will demonstrate how to determine the number of principal components 
using the Kaiser method.
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Getting ready
Ensure that you have completed the previous recipe by generating a principal component 
object and save it in the variable, swiss.pca.

How to do it...
Perform the following steps to determine the number of principal components with the Kaiser 
method:

1.	 First, you can obtain the standard deviation from swiss.pca:
> swiss.pca$sdev 

[1] 1.6228065 1.0354873 0.9033447 0.5592765 0.4067472

2.	 Next, you can obtain the variance from swiss.pca:
> swiss.pca$sdev ^ 2

[1] 2.6335008 1.0722340 0.8160316 0.3127902 0.1654433

3.	 Select components with a variance above 1:
> which(swiss.pca$sdev ^ 2> 1)

[1] 1 2

4.	 You can also use the scree plot to select components with a variance above 1:

> screeplot(swiss.pca, type="line")

> abline(h=1, col="red", lty= 3)

Select component with variance above 1 
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How it works...
You can also use the Kaiser method to determine the number of components. As the 
computed principal component object contains the standard deviation of each component, 
we can compute the variance as the standard deviation, which is the square root of variance. 
From the computed variance, we find both component 1 and 2 have a variance above 1. 
Therefore, we can determine the number of principal components as 2 (both component 1 
and 2). Also, we can draw a red line on the scree plot (as shown in the preceding figure) to 
indicate that we need to retain component 1 and 2 in this case.

See also
In order to determine which principal components to retain, please refer to:

ff Ledesma, R. D., and Valero-Mora, P. (2007). Determining the Number of Factors to 
Retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis. 
Practical Assessment, Research & Evaluation, 12(2), 1-11.

Visualizing multivariate data using biplot
In order to find out how data and variables are mapped in regard to the principal component, 
you can use biplot, which plots data and the projections of original features on to the first 
two components. In this recipe, we will demonstrate how to use biplot to plot both variables 
and data on the same figure.

Getting ready
Ensure that you have completed the previous recipe by generating a principal component 
object and save it in the variable, swiss.pca.
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How to do it...
Perform the following steps to create a biplot:

1.	 You can create a scatter plot using component 1 and 2:
>  plot(swiss.pca$x[,1], swiss.pca$x[,2], xlim=c(-4,4))

> text(swiss.pca$x[,1], swiss.pca$x[,2], rownames(swiss.pca$x), 
cex=0.7, pos=4, col="red")

The scatter plot of first two components from PCA result
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2.	 If you would like to add features on the plot, you can create biplot using the 
generated principal component object:
> biplot(swiss.pca)

The biplot using PCA result

How it works...
In this recipe, we demonstrate how to use biplot to plot data and projections of original 
features on to the first two components. In the first step, we demonstrate that we can 
actually use the first two components to create a scatter plot. Furthermore, if you want to add 
variables on the same plot, you can use biplot. In biplot, you can see the provinces with 
higher indicators in the agriculture variable, lower indicators in the education variable, and 
examination variables scores that are higher in PC1. On the other hand, the provinces with 
higher infant mortality indicators and lower agriculture indicators score higher in PC2.
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There's more...
Besides biplot in the stats package, you can also use ggbiplot. However, you may not 
find this package from CRAN; you have to first install devtools and then install ggbiplot 
from GitHub:

> install.packages("devtools")

> library(ggbiplot)

> g = ggbiplot(swiss.pca, obs.scale = 1, var.scale = 1, 

+ ellipse = TRUE, 

+ circle = TRUE)

> print(g)

The ggbiplot using PCA result
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Performing dimension reduction with MDS
Multidimensional scaling (MDS) is a technique to create a visual presentation of similarities 
or dissimilarities (distance) of a number of objects. The multi prefix indicates that one can 
create a presentation map in one, two, or more dimensions. However, we most often use MDS 
to present the distance between data points in one or two dimensions.

In MDS, you can either use a metric or a nonmetric solution. The main difference between 
the two solutions is that metric solutions try to reproduce the original metric, while nonmetric 
solutions assume that the ranks of the distance are known. In this recipe, we will illustrate 
how to perform MDS on the swiss dataset.

Getting ready
In this recipe, we will continue using the swiss dataset as our input data source.

How to do it...
Perform the following steps to perform multidimensional scaling using the metric method:

1.	 First, you can perform metric MDS with a maximum of two dimensions:
> swiss.dist =dist(swiss)

> swiss.mds = cmdscale(swiss.dist, k=2)

2.	 You can then plot the swiss data in a two-dimension scatter plot:
> plot(swiss.mds[,1], swiss.mds[,2], type = "n", main = "cmdscale 
(stats)")

> text(swiss.mds[,1], swiss.mds[,2], rownames(swiss), cex = 0.9, 
xpd = TRUE)

The 2-dimension scatter plot from cmdscale object
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3.	 In addition, you can perform nonmetric MDS with isoMDS:
> library(MASS)

> swiss.nmmds = isoMDS(swiss.dist, k=2)

initial  value 2.979731 

iter   5 value 2.431486

iter  10 value 2.343353

final  value 2.338839 

converged

4.	 You can also plot the data points in a two-dimension scatter plot:
> plot(swiss.nmmds$points, type = "n", main = "isoMDS (MASS)")

> text(swiss.nmmds$points, rownames(swiss), cex = 0.9, xpd = TRUE)

The 2-dimension scatter plot from isoMDS object

5.	 You can then plot the data points in a two-dimension scatter plot:

> swiss.sh = Shepard(swiss.dist, swiss.mds)

> plot(swiss.sh, pch = ".")

> lines(swiss.sh$x, swiss.sh$yf, type = "S")
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The Shepard plot from isoMDS object

How it works...
MDS reveals the structure of the data by providing a visual presentation of similarities among 
a set of objects. In more detail, MDS places an object in an n-dimensional space, where the 
distances between pairs of points corresponds to the similarities among the pairs of objects. 
Usually, the dimensional space is a two-dimensional Euclidean space, but it may be non-
Euclidean and have more than two dimensions. In accordance with the meaning of the input 
matrix, MDS can be mainly categorized into two types: metric MDS, where the input matrix is 
metric-based, nonmetric MDS, where the input matrix is nonmetric-based.

Metric MDS is also known as principal coordinate analysis, which first transforms a distance 
into similarities. In the simplest form, the process linearly projects original data points to a 
subspace by performing principal components analysis on similarities. On the other hand, 
the process can also perform a nonlinear projection on similarities by minimizing the stress 
value, ( ) ( ) 2
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k l

S d k l d k l
≠

′= −  ∑ , where ( ),d k l  is the distance measurement between the two 
points, kx  and lx  , and ( ),d k l′  is the similarity measure of two projected points, kx′  and lx′. As 
a result, we can represent the relationship among objects in the Euclidean space.

In contrast to metric MDS, which use a metric-based input matrix, a nonmetric-based 
MDS is used when the data is measured at the ordinal level. As only the rank order of the 
distances between the vectors is meaningful, nonmetric MDS applies a monotonically 
increasing function, f, on the original distances and projects the distance to new 
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In this recipe, we illustrate how to perform metric and nonmetric MDS on the swiss dataset. 
To perform metric MDS, we first need to obtain the distance metric from the swiss data. 
In this step, you can replace the distance measure to any measure as long as it produces 
a similarity/dissimilarity measure of data points. You can use cmdscale to perform metric 
multidimensional scaling. Here, we specify k = 2, so the maximum generated dimensions 
equals 2. You can also visually present the distance of the data points on a two-dimensional 
scatter plot.

Next, you can perform nonmetric MDS with isoMDS. In nonmetric MDS, we do not match 
the distances, but only arrange them in order. We also set swiss as an input dataset with 
maximum dimensions of two. Similar to the metric MDS example, we can plot the distance 
between data points on a two-dimensional scatter plot. Then, we use a Shepard plot, which 
shows how well the projected distances match those in the distance matrix. As per the figure 
in step 4, the projected distance matches well in the distance matrix.

There's more...
Another visualization method is to present an MDS object as a graph. A sample code is  
listed here:

> library(igraph)

> swiss.sample = swiss[1:10,]

> g = graph.full(nrow(swiss.sample))

> V(g)$label = rownames(swiss.sample)

> layout = layout.mds(g, dist = as.matrix(dist(swiss.sample)))

> plot(g, layout = layout, vertex.size = 3)

The graph presentation of MDS object
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You can also compare differences between the generated results from MDS and PCA. You can 
compare their differences by drawing the projected dimensions on the same scatter plot. If 
you use a Euclidean distance on MDS, the projected dimensions are exactly the same as the 
ones projected from PCA:

> swiss.dist = dist(swiss)

> swiss.mds = cmdscale(swiss.dist, k=2)

> plot(swiss.mds[,1], swiss.mds[,2], type="n")

> text(swiss.mds[,1], swiss.mds[,2], rownames(swiss), cex = 0.9, xpd = 
TRUE)

> swiss.pca = prcomp(swiss)

> text(-swiss.pca$x[,1],-swiss.pca$x[,2], rownames(swiss), 

+      ,col="blue", adj = c(0.2,-0.5),cex = 0.9, xpd = TRUE)

The comparison between MDS and PCA

Reducing dimensions with SVD
Singular value decomposition (SVD) is a type of matrix factorization (decomposition), which 
can factorize matrices into two orthogonal matrices and diagonal matrices. You can multiply 
the original matrix back using these three matrices. SVD can reduce redundant data that is 
linear dependent from the perspective of linear algebra. Therefore, it can be applied to feature 
selection, image processing, clustering, and many other fields. In this recipe, we will illustrate 
how to perform dimension reduction with SVD.
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Getting ready
In this recipe, we will continue using the dataset, swiss, as our input data source.

How to do it...
Perform the following steps to perform dimension reduction using SVD:

1.	 First, you can perform svd on the swiss dataset:
> swiss.svd = svd(swiss)

2.	 You can then plot the percentage of variance explained and the cumulative variance 
explained in accordance with the SVD column:
> plot(swiss.svd$d^2/sum(swiss.svd$d^2), type="l", xlab=" Singular 
vector", ylab = "Variance explained")

The percent of variance explained

> plot(cumsum(swiss.svd$d^2/sum(swiss.svd$d^2)), type="l", 
xlab="Singular vector", ylab = "Cumulative percent of variance 
explained")
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Cumulative percent of variance explained

3.	 Next, you can reconstruct the data with only one singular vector:
> swiss.recon = swiss.svd$u[,1] %*% diag(swiss.svd$d[1], 
length(1), length(1)) %*% t(swiss.svd$v[,1])

4.	 Lastly, you can compare the original dataset with the constructed dataset in an 
image:

> par(mfrow=c(1,2))

> image(as.matrix(swiss), main="swiss data Image")

> image(swiss.recon,  main="Reconstructed Image")

The comparison between original dataset and re-constructed dataset
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How it works...
SVD is a factorization of a real or complex matrix. In detail, the SVD of m x n matrix, A, is 
the factorization of A into the product of three matrices, TA UDV= . Here, U is an m x m 
orthonormal matrix, D has singular values and is an m x n diagonal matrix, and VT is an n x n 
orthonormal matrix.

In this recipe, we demonstrate how to perform dimension reduction with SVD. First, you can 
apply the svd function on the swiss dataset to obtain factorized matrices. You can then 
generate two plots: one shows the variance explained in accordance to a singular vector, the 
other shows the cumulative variance explained in accordance to a singular vector.

The preceding figure shows that the first singular vector can explain 80 percent of variance. 
We now want to compare the differences from the original dataset and the reconstructed 
dataset with a single singular vector. We, therefore, reconstruct the data with a single singular 
vector and use the image function to present the original and reconstructed datasets side-by-
side and see how they differ from each other. The next figure reveals that these two images 
are very similar.

See also
ff As we mentioned earlier, PCA can be regarded as a specific case of SVD. Here, we 

generate the orthogonal vector from the swiss data from SVD and obtained the 
rotation from prcomp. We can see that the two generated matrices are the same:

> svd.m = svd(scale(swiss))

> svd.m$v

            [,1]        [,2]         [,3]       [,4]        [,5]

[1,]  0.52396452 -0.25834215  0.003003672 -0.8090741  0.06411415

[2,] -0.57185792 -0.01145981 -0.039840522 -0.4224580 -0.70198942

[3,] -0.49150243  0.19028476  0.539337412 -0.3321615  0.56656945

[4,]  0.38530580  0.36956307  0.725888143  0.1007965 -0.42176895

[5,]  0.09167606  0.87197641 -0.424976789 -0.2154928  0.06488642

> pca.m = prcomp(swiss,scale=TRUE)

> pca.m$rotation

                         PC1         PC2          PC3        PC4         
PC5

Agriculture      0.52396452 -0.25834215  0.003003672 -0.8090741  
0.06411415

Examination  -0.57185792 -0.01145981 -0.039840522 -0.4224580 
-0.70198942



Chapter 11

375

Education       -0.49150243  0.19028476  0.539337412 -0.3321615  
0.56656945

Catholic          0.38530580  0.36956307  0.725888143  0.1007965 
-0.42176895

Infant.Mortality 0.09167606 0.87197641 -0.424976789 -0.2154928 
0.06488642

Compressing images with SVD
In the previous recipe, we demonstrated how to factorize a matrix with SVD and then 
reconstruct the dataset by multiplying the decomposed matrix. Furthermore, the application of 
matrix factorization can be applied to image compression. In this recipe, we will demonstrate 
how to perform SVD on the classic image processing material, Lenna.

Getting ready
In this recipe, you should download the image of Lenna beforehand (refer to http://www.
ece.rice.edu/~wakin/images/lena512.bmp for this), or you can prepare an image of 
your own to see how image compression works.

How to do it...
Perform the following steps to compress an image with SVD:

1.	 First, install and load bmp:
> install.packages("bmp")

> library(bmp)

2.	 You can then read the image of Lenna as a numeric matrix with the read.bmp 
function. When the reader downloads the image, the default name is lena512.bmp:
> lenna = read.bmp("lena512.bmp")

http://www.ece.rice.edu/~wakin/images/lena512.bmp
http://www.ece.rice.edu/~wakin/images/lena512.bmp
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3.	 Rotate and plot the image:
> lenna = t(lenna)[,nrow(lenna):1]

> image(lenna) 

The picture of Lenna

4.	 Next, you can perform SVD on the read numeric matrix and plot the percentage of 
variance explained:
> lenna.svd = svd(scale(lenna))

> plot(lenna.svd$d^2/sum(lenna.svd$d^2), type="l", xlab=" Singular 
vector", ylab = "Variance explained")

The percentage of variance explained

5.	 Next, you can obtain the number of dimensions to reconstruct the image:
> length(lenna.svd$d)

[1] 512

6.	 Obtain the point at which the singular vector can explain more than 90 percent  
of the variance:
> min(which(cumsum(lenna.svd$d^2/sum(lenna.svd$d^2))> 0.9))

[1] 18
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7.	 You can also wrap the code into a function, lenna_compression, and you can then 
use this function to plot compressed Lenna:
> lenna_compression = function(dim){

+     u=as.matrix(lenna.svd$u[, 1:dim])

+     v=as.matrix(lenna.svd$v[, 1:dim])

+     d=as.matrix(diag(lenna.svd$d)[1:dim, 1:dim])

+     image(u%*%d%*%t(v))

+ }

8.	 Also, you can use 18 vectors to reconstruct the image:
> lenna_compression(18)

The reconstructed image with 18 components

9.	 You can obtain the point at which the singular vector can explain more than 99 
percent of the variance;

> min(which(cumsum(lenna.svd$d^2/sum(lenna.svd$d^2))> 0.99))

[1] 92

> lenna_compression(92)

The reconstructed image with 92 components
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How it works...
In this recipe, we demonstrate how to compress an image with SVD. In the first step, we use 
the package, bmp, to load the image, Lenna, to an R session. Then, as the read image is 
rotated, we can rotate the image back and use the plot function to plot Lenna in R (as shown 
in the figure in step 3). Next, we perform SVD on the image matrix to factorize the matrix. We 
then plot the percentage of variance explained in regard to the number of singular vectors.

Further, as we discover that we can use 18 components to explain 90 percent of the variance, 
we then use these 18 components to reconstruct Lenna. Thus, we make a function named 
lenna_compression with the purpose of reconstructing the image by matrix multiplication. 
As a result, we enter 18 as the input to the function, which returns a rather blurry Lenna 
image (as shown in the figure in step 8). However, we can at least see an outline of the image. 
To obtain a clearer picture, we discover that we can use 92 components to explain 99 percent 
of the variance. We, therefore, set the input to the function, lenna_compression, as 92. 
The figure in step 9 shows that this generates a clearer picture than the one constructed 
using merely 18 components.

See also
ff The Lenna picture is one of the most widely used standard test images for 

compression algorithms. For more details on the Lenna picture, please refer to 
http://www.cs.cmu.edu/~chuck/lennapg/.

Performing nonlinear dimension reduction 
with ISOMAP

ISOMAP is one of the approaches for manifold learning, which generalizes linear framework to 
nonlinear data structures. Similar to MDS, ISOMAP creates a visual presentation of similarities 
or dissimilarities (distance) of a number of objects. However, as the data is structured in 
a nonlinear format, the Euclidian distance measure of MDS is replaced by the geodesic 
distance of a data manifold in ISOMAP. In this recipe, we will illustrate how to perform a 
nonlinear dimension reduction with ISOMAP.

Getting ready
In this recipe, we will use the digits data from RnavGraphImageData as our input source.

http://www.cs.cmu.edu/~chuck/lennapg/
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How to do it...
Perform the following steps to perform nonlinear dimension reduction with ISOMAP:

1.	 First, install and load the RnavGraphImageData and vegan packages:
> install.packages("RnavGraphImageData")

> install.packages("vegan")

> library(RnavGraphImageData)

> library(vegan)

2.	 You can then load the dataset, digits:
> data(digits)

3.	 Rotate and plot the image:
> sample.digit = matrix(digits[,3000],ncol = 16, byrow=FALSE)

> image(t(sample.digit)[,nrow(sample.digit):1])

A sample image from the digits dataset

4.	 Next, you can randomly sample 300 digits from the population:
> set.seed(2)

> digit.idx = sample(1:ncol(digits),size = 600)

> digit.select = digits[,digit.idx]

5.	 Transpose the selected digit data and then compute the dissimilarity between objects 
using vegdist:
> digits.Transpose = t(digit.select)

> digit.dist = vegdist(digits.Transpose, method="euclidean")
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6.	 Next, you can use isomap to perform dimension reduction:
> digit.isomap = isomap(digit.dist,k = 8, ndim=6, fragmentedOK = 
TRUE)

> plot(digit.isomap)

A 2-dimension scatter plot from ISOMAP object

7.	 Finally, you can overlay the scatter plot with the minimum spanning tree, marked  
in red;

> digit.st = spantree(digit.dist)

> digit.plot = plot(digit.isomap, main="isomap k=8")

> lines(digit.st, digit.plot, col="red")

A 2-dimension scatter plot overlay with minimum spanning tree
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How it works...
ISOMAP is a nonlinear dimension reduction method and a representative of isometric 
mapping methods. ISOMAP can be regarded as an extension of the metric MDS, where 
pairwise the Euclidean distance among data points is replaced by geodesic distances induced 
by a neighborhood graph.

The description of the ISOMAP algorithm is shown in four steps. First, determine the neighbor 
of each point. Secondly, construct a neighborhood graph. Thirdly, compute the shortest 
distance path between two nodes. At last, find a low dimension embedding of the data by 
performing MDS.

In this recipe, we demonstrate how to perform a nonlinear dimension reduction using ISOMAP. 
First, we load the digits data from RnavGraphImageData. Then, after we select one digit 
and plot its rotated image, we can see an image of the handwritten digit (the numeral 3, in the 
figure in step 3).

Next, we randomly sample 300 digits as our input data to ISOMAP. We then transpose the 
dataset to calculate the distance between each image object. Once the data is ready, we 
calculate the distance between each object and perform a dimension reduction. Here, we use 
vegdist to calculate the dissimilarities between each object using a Euclidean measure. We 
then use ISOMAP to perform a nonlinear dimension reduction on the digits data with the 
dimension set as 6, number of shortest dissimilarities retained for a point as 8, and ensure 
that you analyze the largest connected group by specifying fragmentedOK as TRUE.

Finally, we can use the generated ISOMAP object to make a two-dimension scatter plot (figure 
in step 6), and also overlay the minimum spanning tree with lines in red on the scatter plot 
(figure in step 7).

There's more...
You can also use the RnavGraph package to visualize high dimensional data (digits in 
this case) using graphs as a navigational infrastructure. For more information, please refer 
to http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/
RnavGraph.pdf.

Here is a description of how you can use RnavGraph to visualize high dimensional data  
in a graph:

1.	 First, install and load the RnavGraph and graph packages:
> install.packages("RnavGraph")

> source("http://bioconductor.org/biocLite.R")

> biocLite("graph")

> library(RnavGraph)

http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/RnavGraph.pdf
http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/RnavGraph.pdf
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2.	 You can then create an NG_data object from the digit data:
> digit.group = rep(c(1:9,0), each = 1100)

> digit.ng_data = ng_data(name = "ISO_digits",

+ data = data.frame(digit.isomap$points),

+ shortnames = paste('i',1:6, sep = ''),

+ group = digit.group[digit.idx],

+ labels = as.character(digits.group[digit.idx]))

3.	 Create an NG_graph object from NG_data:
>  V = shortnames(digit.ng_data)

>  G = completegraph(V)

>  LG =linegraph(G)

>  LGnot = complement(LG)

>  ng.LG = ng_graph(name = "3D Transition", graph = LG)

> ng.LGnot = ng_graph(name = "4D Transition", graph = LGnot)

4.	 Finally, you can visualize the graph in the tk2d plot:
> ng.i.digits = ng_image_array_gray('USPS Handwritten Digits',

+ digit.select,16,16,invert = TRUE,

+ img_in_row = FALSE)

> vizDigits1 = ng_2d(data = digit.ng_data, graph = ng.LG, images = 
ng.i.digits)

> vizDigits2 = ng_2d(data = digit.ng_data, graph = ng.LGnot, 
images = ng.i.digits)

> nav = navGraph(data = digit.ng_data, graph = list(ng.LG, 
ng.LGnot), viz = list(vizDigits1, vizDigits2))

A 3-D Transition graph plot
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5.	 One can also view a 4D transition graph plot:

A 4D transition graph plot

Performing nonlinear dimension reduction 
with Local Linear Embedding

Locally linear embedding (LLE) is an extension of PCA, which reduces data that lies on a 
manifold embedded in a high dimensional space into a low dimensional space. In contrast to 
ISOMAP, which is a global approach for nonlinear dimension reduction, LLE is a local approach 
that employs a linear combination of the k-nearest neighbor to preserve local properties of 
data. In this recipe, we will give a short introduction of how to use LLE on an s-curve data.

Getting ready
In this recipe, we will use digit data from lle_scurve_data within the lle package as our 
input source.
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How to do it...
Perform the following steps to perform nonlinear dimension reduction with LLE:

1.	 First, you need to install and load the package, lle:
> install.packages("lle")

> library(lle)

2.	 You can then load ll_scurve_data from lle:
> data( lle_scurve_data )

3.	 Next, perform lle on lle_scurve_data:
> X = lle_scurve_data

> results = lle( X=X , m=2, k=12,  id=TRUE)

finding neighbours

calculating weights

intrinsic dim: mean=2.47875, mode=2

computing coordinates

4.	 Examine the result with the str and plot function:
> str( results )

List of 4

 $ Y     : num [1:800, 1:2] -1.586 -0.415 0.896 0.513 1.477 ...

 $ X     : num [1:800, 1:3] 0.955 -0.66 -0.983 0.954 0.958 ...

 $ choise: NULL

 $ id    : num [1:800] 3 3 2 3 2 2 2 3 3 3 ...

>plot( results$Y, main="embedded data", xlab=expression(y[1]), 
ylab=expression(y[2]) )

A 2-D scatter plot of embedded data
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5.	 Lastly, you can use plot_lle to plot the LLE result:
> plot_lle( results$Y, X, FALSE, col="red", inter=TRUE )

A LLE plot of LLE result

How it works...

LLE is a nonlinear dimension reduction method, which computes a low dimensional, 
neighborhood, preserving embeddings of high dimensional data. The algorithm of LLE can be 
illustrated in these steps: first, LLE computes the k-neighbors of each data point, ix . Secondly, 
it computes a set of weights for each point, which minimizes the residual sum of errors, which 
can best reconstruct each data point from its neighbors. The residual sum of errors can be 
described as ( )

2

1

n
i ij ji j i

RSS w x w x
= ≠

= −∑ ∑ , where 0ijw =  if jx  is not one of ix 's k-nearest 
neighbor, and for each i, 1iji

w =∑ . Finally, find the vector, Y, which is best reconstructed by 
the weight, W. The cost function can be illustrated as ( )

2

1

n
i ij ji j i

Y y w yϕ
= ≠

= −∑ ∑ , with the 
constraint that 0iji

Y =∑ , and TY Y I= .

In this recipe, we demonstrate how to perform nonlinear dimension reduction using LLE. First, 
we load lle_scurve_data from lle. We then perform lle with two dimensions and 12 
neighbors, and list the dimensions for every data point by specifying id =TRUE. The LLE has 
three steps, including: building a neighborhood for each point in the data, finding the weights 
for linearly approximating the data in that neighborhood, and finding the low dimensional 
coordinates.

Next, we can examine the data using the str and plot functions. The str function returns 
X,Y, choice, and ID. Here, X represents the input data, Y stands for the embedded data, choice 
indicates the index vector of the kept data, while subset selection and ID show the dimensions 
of every data input. The plot function returns the scatter plot of the embedded data. Lastly, 
we use plot_lle to plot the result. Here, we enable the interaction mode by setting the inter 
equal to TRUE.
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See also
ff Another useful package for nonlinear dimension reduction is RDRToolbox, which is 

a package for nonlinear dimension reduction with ISOMAP and LLE. You can use the 
following command to install RDRToolbox:

> source("http://bioconductor.org/biocLite.R")

> biocLite("RDRToolbox")

> library(RDRToolbox)
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Big Data Analysis  
(R and Hadoop)

In this chapter, we will cover the following topics:

ff Preparing the RHadoop environment

ff Installing rmr2

ff Installing rhdfs

ff Operating HDFS with rhdfs

ff Implementing a word count problem with RHadoop

ff Comparing the performance between an R MapReduce program and a standard R 
program

ff Testing and debugging the rmr2 program

ff Installing plyrmr

ff Manipulating data with plyrmr

ff Conducting machine learning with RHadoop

ff Configuring RHadoop clusters on Amazon EMR

Introduction
RHadoop is a collection of R packages that enables users to process and analyze big data 
with Hadoop. Before understanding how to set up RHadoop and put it in to practice, we have 
to know why we need to use machine learning to big-data scale.

12
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In the previous chapters, we have mentioned how useful R is when performing data analysis 
and machine learning. In traditional statistical analysis, the focus is to perform analysis on 
historical samples (small data), which may ignore rarely occurring but valuable events and 
results to uncertain conclusions.

The emergence of Cloud technology has made real-time interaction between customers and 
businesses much more frequent; therefore, the focus of machine learning has now shifted to 
the development of accurate predictions for various customers. For example, businesses can 
provide real-time personal recommendations or online advertisements based on personal 
behavior via the use of a real-time prediction model.

However, if the data (for example, behaviors of all online users) is too large to fit in the 
memory of a single machine, you have no choice but to use a supercomputer or some other 
scalable solution. The most popular scalable big-data solution is Hadoop, which is an open 
source framework able to store and perform parallel computations across clusters. As a 
result, you can use RHadoop, which allows R to leverage the scalability of Hadoop, helping to 
process and analyze big data. In RHadoop, there are five main packages, which are:

ff rmr: This is an interface between R and Hadoop MapReduce, which calls the Hadoop 
streaming MapReduce API to perform MapReduce jobs across Hadoop clusters. To 
develop an R MapReduce program, you only need to focus on the design of the map 
and reduce functions, and the remaining scalability issues will be taken care of by 
Hadoop itself.

ff rhdfs: This is an interface between R and HDFS, which calls the HDFS API to access 
the data stored in HDFS. The use of rhdfs is very similar to the use of the Hadoop 
shell, which allows users to manipulate HDFS easily from the R console.

ff rhbase: This is an interface between R and HBase, which accesses Hbase and is 
distributed in clusters through a Thrift server. You can use rhbase to read/write data 
and manipulate tables stored within HBase.

ff plyrmr: This is a higher-level abstraction of MapReduce, which allows users to 
perform common data manipulation in a plyr-like syntax. This package greatly lowers 
the learning curve of big-data manipulation.

ff ravro: This allows users to read avro files in R, or write avro files. It allows R to 
exchange data with HDFS.

In this chapter, we will start by preparing the Hadoop environment, so that you can install 
RHadoop. We then cover the installation of three main packages: rmr, rhdfs, and plyrmr. 
Next, we will introduce how to use rmr to perform MapReduce from R, operate an HDFS file 
through rhdfs, and perform a common data operation using plyrmr. Further, we will explore 
how to perform machine learning using RHadoop. Lastly, we will introduce how to deploy 
multiple RHadoop clusters on Amazon EC2.
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Preparing the RHadoop environment 
As RHadoop requires an R and Hadoop integrated environment, we must first prepare an 
environment with both R and Hadoop installed. Instead of building a new Hadoop system, we 
can use the Cloudera QuickStart VM (the VM is free), which contains a single node Apache 
Hadoop Cluster and R. In this recipe, we will demonstrate how to download the Cloudera 
QuickStart VM.

Getting ready
To use the Cloudera QuickStart VM, it is suggested that you should prepare a 64-bit guest OS 
with either VMWare or VirtualBox, or the KVM installed.

If you choose to use VMWare, you should prepare a player compatible with WorkStation 8.x or 
higher: Player 4.x or higher, ESXi 5.x or higher, or Fusion 4.x or higher.

Note, 4 GB of RAM is required to start VM, with an available disk space of at least 3 GB.

How to do it...
Perform the following steps to set up a Hadoop environment using the Cloudera QuickStart VM:

1.	 Visit the Cloudera QuickStart VM download site (you may need to update the link 
as Cloudera upgrades its VMs , the current version of CDH is 5.3) at http://www.
cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-
5-3-x.html.

A screenshot of the Cloudera QuickStart VM download site

http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
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2.	 Depending on the virtual machine platform installed on your OS, choose the 
appropriate link (you may need to update the link as Cloudera upgrades its VMs) to 
download the VM file:

�� To download VMWare: You can visit https://downloads.cloudera.
com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-
vmware.7z

�� To download KVM: You can visit https://downloads.cloudera.com/
demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-kvm.7z

�� To download VirtualBox: You can visit https://downloads.cloudera.
com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-
virtualbox.7z

3.	 Next, you can start the QuickStart VM using the virtual machine platform installed on 
your OS. You should see the desktop of Centos 6.2 in a few minutes.

The screenshot of Cloudera QuickStart VM.

https://downloads.cloudera.com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-vmware.7z
https://downloads.cloudera.com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-vmware.7z
https://downloads.cloudera.com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-vmware.7z
https://downloads.cloudera.com/demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-kvm.7z
https://downloads.cloudera.com/demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-kvm.7z
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-virtualbox.7z
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-virtualbox.7z
https://downloads.cloudera.com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-virtualbox.7z
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4.	 You can then open a terminal and type hadoop, which will display a list of functions 
that can operate a Hadoop cluster.

The terminal screenshot after typing hadoop

5.	 Open a terminal and type R. Access an R session and check whether version 3.1.1 is 
already installed in the Cloudera QuickStart VM. If you cannot find R installed in the 
VM, please use the following command to install R:

$ yum install R R-core R-core-devel R-devel

How it works...
Instead of building a Hadoop system on your own, you can use the Hadoop VM application 
provided by Cloudera (the VM is free). The QuickStart VM runs on CentOS 6.2 with a single 
node Apache Hadoop cluster, Hadoop Ecosystem module, and R installed. This helps you to 
save time, instead of requiring you to learn how to install and use Hadoop.

The QuickStart VM requires you to have a computer with a 64-bit guest OS, at least 4 GB of 
RAM, 3 GB of disk space, and either VMWare, VirtualBox, or KVM installed. As a result, you 
may not be able to use this version of VM on some computers. As an alternative, you could 
consider using Amazon's Elastic MapReduce instead. We will illustrate how to prepare a 
RHadoop environment in EMR in the last recipe of this chapter.

Setting up the Cloudera QuickStart VM is simple. Download the VM from the download site 
and then open the built image with either VMWare, VirtualBox, or KVM. Once you can see 
the desktop of CentOS, you can then access the terminal and type hadoop to see whether 
Hadoop is working; then, type R to see whether R works in the QuickStart VM.
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See also
ff Besides using the Cloudera QuickStart VM, you may consider using a Sandbox VM 

provided by Hontonworks or MapR. You can find Hontonworks Sandbox at http://
hortonworks.com/products/hortonworks-sandbox/#install and mapR 
Sandbox at https://www.mapr.com/products/mapr-sandbox-hadoop/
download.

Installing rmr2
The rmr2 package allows you to perform big data processing and analysis via MapReduce on 
a Hadoop cluster. To perform MapReduce on a Hadoop cluster, you have to install R and rmr2 
on every task node. In this recipe, we will illustrate how to install rmr2 on a single node of a 
Hadoop cluster.

Getting ready
Ensure that you have completed the previous recipe by starting the Cloudera QuickStart 
VM and connecting the VM to the Internet, so that you can proceed with downloading and 
installing the rmr2 package.

How to do it...
Perform the following steps to install rmr2 on the QuickStart VM:

1.	 First, open the terminal within the Cloudera QuickStart VM.

2.	 Use the permission of the root to enter an R session:
$ sudo R

3.	 You can then install dependent packages before installing rmr2:
> install.packages(c("codetools", "Rcpp", "RJSONIO", "bitops", 
"digest", "functional", "stringr", "plyr", "reshape2", "rJava", 
"caTools"))

4.	 Quit the R session:
> q()

5.	 Next, you can download rmr-3.3.0 to the QuickStart VM. You may need to update 
the link if Revolution Analytics upgrades the version of rmr2:
$ wget --no-check-certificate https://raw.githubusercontent.com/
RevolutionAnalytics/rmr2/3.3.0/build/rmr2_3.3.0.tar.gz

http://hortonworks.com/products/hortonworks-sandbox/#install
http://hortonworks.com/products/hortonworks-sandbox/#install
https://www.mapr.com/products/mapr-sandbox-hadoop/download
https://www.mapr.com/products/mapr-sandbox-hadoop/download
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6.	 You can then install rmr-3.3.0 to the QuickStart VM:
$ sudo R CMD INSTALL rmr2_3.3.0.tar.gz

7.	 Lastly, you can enter an R session and use the library function to test whether the 
library has been successfully installed:
$ R

> library(rmr2)

How it works...
In order to perform MapReduce on a Hadoop cluster, you have to install R and RHadoop on 
every task node. Here, we illustrate how to install rmr2 on a single node of a Hadoop cluster. 
First, open the terminal of the Cloudera QuickStart VM. Before installing rmr2, we first access 
an R session with root privileges and install dependent R packages.

Next, after all the dependent packages are installed, quit the R session and use the wget 
command in the Linux shell to download rmr-3.3.0 from GitHub to the local filesystem. 
You can then begin the installation of rmr2. Lastly, you can access an R session and use the 
library function to validate whether the package has been installed.

See also
ff To see more information and read updates about RHadoop, you can refer 

to the RHadoop wiki page hosted on GitHub: https://github.com/
RevolutionAnalytics/RHadoop/wiki

Installing rhdfs
The rhdfs package is the interface between R and HDFS, which allows users to access HDFS 
from an R console. Similar to rmr2, one should install rhdfs on every task node, so that one 
can access HDFS resources through R. In this recipe, we will introduce how to install rhdfs 
on the Cloudera QuickStart VM.

Getting ready
Ensure that you have completed the previous recipe by starting the Cloudera QuickStart 
VM and connecting the VM to the Internet, so that you can proceed with downloading and 
installing the rhdfs package.

https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki
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How to do it...
Perform the following steps to install rhdfs:

1.	 First, you can download rhdfs 1.0.8 from GitHub. You may need to update the link 
if Revolution Analytics upgrades the version of rhdfs:
$wget --no-check-certificate https://raw.github.com/
RevolutionAnalytics/rhdfs/master/build/rhdfs_1.0.8.tar.gz

2.	 Next, you can install rhdfs under the command-line mode:
$ sudo HADOOP_CMD=/usr/bin/hadoop  R CMD INSTALL rhdfs_1.0.8.tar.
gz

3.	 You can then set up JAVA_HOME. The configuration of JAVA_HOME depends on the 
installed Java version within the VM:
$ sudo JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera R CMD javareconf

4.	 Last, you can set up the system environment and initialize rhdfs. You may need to 
update the environment setup if you use a different version of QuickStart VM:

$ R

> Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

> Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar")

> library(rhdfs)

> hdfs.init()

How it works...
The package, rhdfs, provides functions so that users can manage HDFS using R. Similar to 
rmr2, you should install rhdfs on every task node, so that one can access HDFS through the 
R console.

To install rhdfs, you should first download rhdfs from GitHub. You can then install rhdfs 
in R by specifying where the HADOOP_CMD is located. You must configure R with Java support 
through the command, javareconf.

Next, you can access R and configure where HADOOP_CMD and HADOOP_STREAMING are 
located. Lastly, you can initialize rhdfs via the rhdfs.init function, which allows you to 
begin operating HDFS through rhdfs.
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See also
ff To find where HADOOP_CMD is located, you can use the which hadoop command 

in the Linux shell. In most Hadoop systems, HADOOP_CMD is located at /usr/bin/
hadoop.

ff As for the location of HADOOP_STREAMING, the streaming JAR file is often located in 
/usr/lib/hadoop-mapreduce/. However, if you cannot find the directory, /usr/
lib/Hadoop-mapreduce, in your Linux system, you can search the streaming JAR 
by using the locate command. For example:

$ sudo updatedb

$ locate streaming | grep jar | more

Operating HDFS with rhdfs
The rhdfs package is an interface between Hadoop and R, which can call an HDFS API in 
the backend to operate HDFS. As a result, you can easily operate HDFS from the R console 
through the use of the rhdfs package. In the following recipe, we will demonstrate how to 
use the rhdfs function to manipulate HDFS.

Getting ready
To proceed with this recipe, you need to have completed the previous recipe by installing 
rhdfs into R, and validate that you can initial HDFS via the hdfs.init function.

How to do it...
Perform the following steps to operate files stored on HDFS:

1.	 Initialize the rhdfs package:
> Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

> Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar")

> library(rhdfs)

> hdfs.init ()

2.	 You can then manipulate files stored on HDFS, as follows:

�� hdfs.put: Copy a file from the local filesystem to HDFS:
> hdfs.put('word.txt', './')

�� hdfs.ls: Read the list of directory from HDFS:
> hdfs.ls('./')
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�� hdfs.copy: Copy a file from one HDFS directory to another:
> hdfs.copy('word.txt', 'wordcnt.txt')

�� hdfs.move : Move a file from one HDFS directory to another:
> hdfs.move('wordcnt.txt', './data/wordcnt.txt')

�� hdfs.delete: Delete an HDFS directory from R:
> hdfs.delete('./data/')

�� hdfs.rm: Delete an HDFS directory from R:
> hdfs.rm('./data/')

�� hdfs.get: Download a file from HDFS to a local filesystem:
> hdfs.get(word.txt', '/home/cloudera/word.txt')

�� hdfs.rename: Rename a file stored on HDFS:
hdfs.rename('./test/q1.txt','./test/test.txt')

�� hdfs.chmod: Change the permissions of a file or directory:
> hdfs.chmod('test', permissions= '777')

�� hdfs.file.info: Read the meta information of the HDFS file:

> hdfs.file.info('./')

3.	 Also, you can write stream to the HDFS file:
> f = hdfs.file("iris.txt","w")

> data(iris)

> hdfs.write(iris,f)

> hdfs.close(f)

4.	 Lastly, you can read stream from the HDFS file:

> f = hdfs.file("iris.txt", "r")

> dfserialized = hdfs.read(f)

> df = unserialize(dfserialized)

> df

> hdfs.close(f)

How it works...
In this recipe, we demonstrate how to manipulate HDFS using the rhdfs package. Normally, 
you can use the Hadoop shell to manipulate HDFS, but if you would like to access HDFS from 
R, you can use the rhdfs package.
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Before you start using rhdfs, you have to initialize rhdfs with hdfs.init(). After 
initialization, you can operate HDFS through the functions provided in the rhdfs package.

Besides manipulating HDFS files, you can exchange streams to HDFS through hdfs.read 
and hdfs.write. We, therefore, demonstrate how to write a data frame in R to an HDFS file, 
iris.txt, using hdfs.write. Lastly, you can recover the written file back to the data frame 
using the hdfs.read function and the unserialize function.

See also
ff To initialize rhdfs, you have to set HADOOP_CMD and HADOOP_STREAMING in the 

system environment. Instead of setting the configuration each time you're using 
rhdfs, you can put the configurations in the .rprofile file. Therefore, every time 
you start an R session, the configuration will be automatically loaded.

Implementing a word count problem with 
RHadoop

To demonstrate how MapReduce works, we illustrate the example of a word count, which 
counts the number of occurrences of each word in a given input set. In this recipe, we will 
demonstrate how to use rmr2 to implement a word count problem.

Getting ready
In this recipe, we will need an input file as our word count program input. You can download 
the example input from https://github.com/ywchiu/ml_R_cookbook/tree/
master/CH12.

How to do it...
Perform the following steps to implement the word count program:

1.	 First, you need to configure the system environment, and then load rmr2 and 
rhdfs into an R session. You may need to update the use of the JAR file if you use a 
different version of QuickStart VM:
> Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

> Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar ")

> library(rmr2)

> library(rhdfs)

> hdfs.init()

https://github.com/ywchiu/ml_R_cookbook/tree/master/CH12
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH12
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2.	 You can then create a directory on HDFS and put the input file into the newly created 
directory:
> hdfs.mkdir("/user/cloudera/wordcount/data")

> hdfs.put("wc_input.txt", "/user/cloudera/wordcount/data")

3.	 Next, you can create a map function:
> map = function(.,lines) { keyval(

+   unlist(

+     strsplit(

+       x = lines, 

+       split = " +")),

+   1)}

4.	 Create a reduce function:
> reduce = function(word, counts) { 

+   keyval(word, sum(counts)) 

+ }

5.	 Call the MapReduce program to count the words within a document:
> hdfs.root = 'wordcount'  
> hdfs.data = file.path(hdfs.root, 'data')

> hdfs.out = file.path(hdfs.root, 'out')

> wordcount = function (input, output=NULL) { 

+  mapreduce(input=input, output=output, input.format="text", 
map=map, 

+  reduce=reduce) 

+ } 

> out = wordcount(hdfs.data, hdfs.out)

6.	 Lastly, you can retrieve the top 10 occurring words within the document:

> results = from.dfs(out) 

> results$key[order(results$val, decreasing = TRUE)][1:10]

How it works...
In this recipe, we demonstrate how to implement a word count using the rmr2 package. First, 
we need to configure the system environment and load rhdfs and rmr2 into R. Then, we 
specify the input of our word count program from the local filesystem into the HDFS directory, 
/user/cloudera/wordcount/data, via the hdfs.put function.



Chapter 12

399

Next, we begin implementing the MapReduce program. Normally, we can divide the 
MapReduce program into the map and reduce functions. In the map function, we first use the 
strsplit function to split each line into words. Then, as the strsplit function returns a 
list of words, we can use the unlist function to character vectors. Lastly, we can return key-
value pairs with each word as a key and the value as one. As the reduce function receives 
the key-value pair generated from the map function, the reduce function sums the count and 
returns the number of occurrences of each word (or key).

After we have implemented the map and reduce functions, we can submit our job via the 
mapreduce function. Normally, the mapreduce function requires four inputs, which are the 
HDFS input path, the HDFS output path, the map function, and the reduce function. In this 
case, we specify the input as wordcount/data, output as wordcount/out, map function 
as map, reduce function as reduce, and wrap the mapreduce call in function, wordcount. 
Lastly, we call the function, wordcount and store the output path in the variable, out.

We can use the from.dfs function to load the HDFS data into the results variable, which 
contains the mapping of words and number of occurrences. We can then generate the top 10 
occurring words from the results variable.

See also
ff In this recipe, we demonstrate how to write an R MapReduce program to solve a 

word count problem. However, if you are interested in how to write a native Java 
MapReduce program, you can refer to http://hadoop.apache.org/docs/
current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html.

Comparing the performance between an 
R MapReduce program and a standard R 
program

Those not familiar with how Hadoop works may often see Hadoop as a remedy for big data 
processing. Some might believe that Hadoop can return the processed results for any size 
of data within a few milliseconds. In this recipe, we will compare the performance between 
an R MapReduce program and a standard R program to demonstrate that Hadoop does not 
perform as quickly as some may believe.

Getting ready
In this recipe, you should have completed the previous recipe by installing rmr2 into  
the R environment.

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html


Big Data Analysis (R and Hadoop)

400

How to do it...
Perform the following steps to compare the performance of a standard R program and an R 
MapReduce program:

1.	 First, you can implement a standard R program to have all numbers squared:
> a.time = proc.time() 

> small.ints2=1:100000 

> result.normal = sapply(small.ints2, function(x) x^2) 

> proc.time() - a.time

2.	 To compare the performance, you can implement an R MapReduce program to have 
all numbers squared:

> b.time = proc.time() 

> small.ints= to.dfs(1:100000) 

> result = mapreduce(input = small.ints, map = function(k,v)       
cbind(v,v^2)) 

> proc.time() - b.time

How it works...
In this recipe, we implement two programs to square all the numbers. In the first program, we 
use a standard R function, sapply, to square the sequence from 1 to 100,000. To record the 
program execution time, we first record the processing time before the execution in a.time, 
and then subtract a.time from the current processing time after the execution. Normally, the 
execution takes no more than 10 seconds. In the second program, we use the rmr2 package 
to implement a program in the R MapReduce version. In this program, we also record the 
execution time. Normally, this program takes a few minutes to complete a task.

The performance comparison shows that a standard R program outperforms the MapReduce 
program when processing small amounts of data. This is because a Hadoop system often 
requires time to spawn daemons, job coordination between daemons, and fetching data 
from data nodes. Therefore, a MapReduce program often takes a few minutes to a couple of 
hours to finish the execution. As a result, if you can fit your data in the memory, you should 
write a standard R program to solve the problem. Otherwise, if the data is too large to fit in the 
memory, you can implement a MapReduce solution.
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See also
ff In order to check whether a job will run smoothly and efficiently in Hadoop, you can 

run a MapReduce benchmark, MRBench, to evaluate the performance of the job:

$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-test.jar 
mrbench -numRuns 50

Testing and debugging the rmr2 program
Since running a MapReduce program will require a considerable amount of time, varying from 
a few minutes to several hours, testing and debugging become very important. In this recipe, 
we will illustrate some techniques you can use to troubleshoot an R MapReduce program.

Getting ready
In this recipe, you should have completed the previous recipe by installing rmr2 into an R 
environment.

How to do it...
Perform the following steps to test and debug an R MapReduce program:

1.	 First, you can configure the backend as local in rmr.options:
> rmr.options(backend = 'local')

2.	 Again, you can execute the number squared MapReduce program mentioned in the 
previous recipe:
> b.time = proc.time() 

> small.ints= to.dfs(1:100000) 

> result = mapreduce(input = small.ints, map = function(k,v)       
cbind(v,v^2)) 

> proc.time() - b.time

3.	 In addition to this, if you want to print the structure information of any variable in the 
MapReduce program, you can use the rmr.str function:

> out = mapreduce(to.dfs(1), map = function(k, v) rmr.str(v))

Dotted pair list of 14

 $ : language mapreduce(to.dfs(1), map = function(k, v) rmr.
str(v))
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 $ : language mr(map = map, reduce = reduce, combine = 
combine, vectorized.reduce, in.folder = if (is.list(input)) {     
lapply(input, to.dfs.path) ...

 $ : language c.keyval(do.call(c, lapply(in.folder, 
function(fname) {     kv = get.data(fname) ...

 $ : language do.call(c, lapply(in.folder, function(fname) {     
kv = get.data(fname) ...

 $ : language lapply(in.folder, function(fname) {     kv = get.
data(fname) ...

 $ : language FUN("/tmp/Rtmp813BFJ/file25af6e85cfde"[[1L]], ...)

 $ : language unname(tapply(1:lkv, ceiling((1:lkv)/(lkv/(object.
size(kv)/10^6))), function(r) {     kvr = slice.keyval(kv, r) ...

 $ : language tapply(1:lkv, ceiling((1:lkv)/(lkv/(object.
size(kv)/10^6))), function(r) {     kvr = slice.keyval(kv, r) ...

 $ : language lapply(X = split(X, group), FUN = FUN, ...)

 $ : language FUN(X[[1L]], ...)

 $ : language as.keyval(map(keys(kvr), values(kvr)))

 $ : language is.keyval(x)

 $ : language map(keys(kvr), values(kvr))

 $ :length 2 rmr.str(v)

  ..- attr(*, "srcref")=Class 'srcref'  atomic [1:8] 1 34 1 58 34 
58 1 1

  .. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' 
<environment: 0x3f984f0> 

v

 num 1

How it works...
In this recipe, we introduced some debugging and testing techniques you can use while 
implementing the MapReduce program. First, we introduced the technique to test a 
MapReduce program in a local mode. If you would like to run the MapReduce program in a 
pseudo distributed or fully distributed mode, it would take you a few minutes to several hours 
to complete the task, which would involve a lot of wastage of time while troubleshooting your 
MapReduce program. Therefore, you can set the backend to the local mode in rmr.options 
so that the program will be executed in the local mode, which takes lesser time to execute.

Another debugging technique is to list the content of the variable within the map or reduce 
function. In an R program, you can use the str function to display the compact structure of a 
single variable. In rmr2, the package also provides a function named rmr.str, which allows 
you to print out the content of a single variable onto the console. In this example, we use 
rmr.str to print the content of variables within a MapReduce program.
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See also
ff For those who are interested in the option settings for the rmr2 package, you can 

refer to the help document of rmr.options:

> help(rmr.options)

Installing plyrmr
The plyrmr package provides common operations (as found in plyr or reshape2) for users 
to easily perform data manipulation through the MapReduce framework. In this recipe, we will 
introduce how to install plyrmr on the Hadoop system.

Getting ready
Ensure that you have completed the previous recipe by starting the Cloudera QuickStart VM 
and connecting the VM to the Internet. Also, you need to have the rmr2 package installed 
beforehand.

How to do it...
Perform the following steps to install plyrmr on the Hadoop system:

1.	 First, you should install libxml2-devel and curl-devel in the Linux shell:
$ yum install libxml2-devel

$ sudo yum install curl-devel

2.	 You can then access R and install the dependent packages:
$ sudo R

> Install.packages(c(" Rcurl", "httr"),  dependencies = TRUE

> Install.packages("devtools", dependencies = TRUE)

> library(devtools)

> install_github("pryr", "hadley")

> install.packages(c(" R.methodsS3", "hydroPSO"),  dependencies = 
TRUE)

> q()

3.	 Next, you can download plyrmr 0.5.0 and install it on Hadoop VM. You may need 
to update the link if Revolution Analytics upgrades the version of plyrmr:
$ wget -no-check-certificate https://raw.github.com/
RevolutionAnalytics/plyrmr/master/build/plyrmr_0.5.0.tar.gz

$ sudo R CMD INSTALL plyrmr_0.5.0.tar.gz
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4.	 Lastly, validate the installation:

$ R

> library(plyrmr)

How it works...
Besides writing an R MapReduce program using the rmr2 package, you can use the plyrmr 
to manipulate data. The plyrmr package is similar to hive and pig in the Hadoop ecosystem, 
which is the abstraction of the MapReduce program. Therefore, we can implement an R 
MapReduce program in plyr style instead of implementing the map f and reduce functions.

To install plyrmr, first install the package of libxml2-devel and curl-devel, using 
the yum install command. Then, access R and install the dependent packages. Lastly, 
download the file from GitHub and install plyrmr in R.

See also
ff To read more information about plyrmr, you can use the help function to refer to 

the following document:

> help(package=plyrmr) 

Manipulating data with plyrmr
While writing a MapReduce program with rmr2 is much easier than writing a native Java 
version, it is still hard for nondevelopers to write a MapReduce program. Therefore, you can 
use plyrmr, a high-level abstraction of the MapReduce program, so that you can use plyr-like 
operations to manipulate big data. In this recipe, we will introduce some operations you can 
use to manipulate data.

Getting ready
In this recipe, you should have completed the previous recipes by installing plyrmr and rmr2 
in R.

How to do it...
Perform the following steps to manipulate data with plyrmr:

1.	 First, you need to load both plyrmr and rmr2 into R:
> library(rmr2)

> library(plyrmr)
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2.	 You can then set the execution mode to the local mode:
> plyrmr.options(backend="local")

3.	 Next, load the Titanic dataset into R:
> data(Titanic)

> titanic = data.frame(Titanic)

4.	 Begin the operation by filtering the data:
> where(

+    Titanic, 

+ Freq >=100)

5.	 You can also use a pipe operator to filter the data:
> titanic %|% where(Freq >=100)

6.	 Put the Titanic data into HDFS and load the path of the data to the variable, tidata:
> tidata = to.dfs(data.frame(Titanic), output = '/tmp/titanic')

> tidata

7.	 Next, you can generate a summation of the frequency from the Titanic data:
> input(tidata) %|% transmute(sum(Freq))

8.	 You can also group the frequency by sex:
> input(tidata) %|% group(Sex) %|% transmute(sum(Freq))

9.	 You can then sample 10 records out of the population:
> sample(input(tidata), n=10)

10.	 In addition to this, you can use plyrmr to join two datasets:
> convert_tb = data.frame(Label=c("No","Yes"), Symbol=c(0,1))

ctb = to.dfs(convert_tb, output = 'convert')

> as.data.frame(plyrmr::merge(input(tidata), input(ctb), 
by.x="Survived", by.y="Label"))

> file.remove('convert')

How it works...
In this recipe, we introduce how to use plyrmr to manipulate data. First, we need to load 
the plyrmr package into R. Then, similar to rmr2, you have to set the backend option of 
plyrmr as the local mode. Otherwise, you will have to wait anywhere between a few minutes 
to several hours if plyrmr is running on Hadoop mode (the default setting).
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Next, we can begin the data manipulation with data filtering. You can choose to call the 
function nested inside the other function call in step 4. On the other hand, you can use the 
pipe operator, %|%, to chain multiple operations. Therefore, we can filter data similar to step 4, 
using pipe operators in step 5.

Next, you can input the dataset into either the HDFS or local filesystem, using to.dfs in 
accordance with the current running mode. The function will generate the path of the dataset 
and save it in the variable, tidata. By knowing the path, you can access the data using the 
input function. Next, we illustrate how to generate a summation of the frequency from the 
Titanic dataset with the transmute and sum functions. Also, plyrmr allows users to sum up 
the frequency by gender.

Additionally, in order to sample data from a population, you can also use the sample function 
to select 10 records out of the Titanic dataset. Lastly, we demonstrate how to join two 
datasets using the merge function from plyrmr.

See also
Here we list some functions that can be used to manipulate data with plyrmr. You may refer 
to the help function for further details on their usage and functionalities:

ff Data manipulation:

�� bind.cols: This adds new columns

�� select: This is used to select columns

�� where: This is used to select rows

�� transmute: This uses all of the above plus their summaries

ff From reshape2:

�� melt and dcast: It converts long and wide data frames

ff Summary:

�� count

�� quantile

�� sample

ff Extract:

�� top.k

�� bottom.k
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Conducting machine learning with RHadoop
In the previous chapters, we have demonstrated how powerful R is when used to solve 
machine learning problems. Also, we have shown that the use of Hadoop allows R to process 
big data in parallel. At this point, some may believe that the use of RHadoop can easily solve 
machine learning problems of big data via numerous existing machine learning packages. 
However, you cannot use most of these to solve machine learning problems as they cannot 
be executed in the MapReduce mode. In the following recipe, we will demonstrate how to 
implement a MapReduce version of linear regression and compare this version with the one 
using the lm function.

Getting ready
In this recipe, you should have completed the previous recipe by installing rmr2 into the R 
environment.

How to do it...
Perform the following steps to implement a linear regression in MapReduce:

1.	 First, load the cats dataset from the MASS package:
> library(MASS)

> data(cats)

> X = matrix(cats$Bwt)

> y = matrix(cats$Hwt)

2.	 You can then generate a linear regression model by calling the lm function:
> model = lm(y~X)

> summary(model)

Call:

lm(formula = y ~ X)

Residuals:

    Min      1Q  Median      3Q     Max 

-3.5694 -0.9634 -0.0921  1.0426  5.1238 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    
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(Intercept)  -0.3567     0.6923  -0.515    0.607    

X             4.0341     0.2503  16.119   <2e-16 ***

---

Signif. codes:  

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.452 on 142 degrees of freedom

Multiple R-squared:  0.6466,  Adjusted R-squared:  0.6441 

F-statistic: 259.8 on 1 and 142 DF,  p-value: < 2.2e-16

3.	 You can now make a regression plot with the given data points and model:
> plot(y~X)

> abline(model, col="red")

Linear regression plot of cats dataset
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4.	 Load rmr2 into R:
> Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")

> Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-mapreduce/hadoop-> 
streaming-2.5.0-cdh5.2.0.jar")

> library(rmr2)

> rmr.options(backend="local")

5.	 You can then set up X and y values:
> X = matrix(cats$Bwt)

> X.index = to.dfs(cbind(1:nrow(X), X))

> y = as.matrix(cats$Hwt)

6.	 Make a Sum function to sum up the values: 
> Sum = 

+   function(., YY) 

+     keyval(1, list(Reduce('+', YY)))

7.	 Compute Xtx in MapReduce, Job1:
> XtX = 

+    values(

+      from.dfs(

+        mapreduce(

+          input = X.index,

+          map = 

+            function(., Xi) {

+              Xi = Xi[,-1]

+              keyval(1, list(t(Xi) %*% Xi))},

+          reduce = Sum,

+          combine = TRUE)))[[1]]
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8.	 You can then compute Xty in MapReduce, Job2:
Xty = 

+    values(

+      from.dfs(

+        mapreduce(

+          input = X.index,

+          map = function(., Xi) {

+            yi = y[Xi[,1],]

+            Xi = Xi[,-1]

+            keyval(1, list(t(Xi) %*% yi))},

+          reduce = Sum,

+          combine = TRUE)))[[1]]

9.	 Lastly, you can derive the coefficient from XtX and Xty:

> solve(XtX, Xty)

         [,1]

[1,] 3.907113

How it works...
In this recipe, we demonstrate how to implement linear logistic regression in a MapReduce 
fashion in R. Before we start the implementation, we review how traditional linear models 
work. We first retrieve the cats dataset from the MASS package. We then load X as the body 
weight (Bwt) and y as the heart weight (Hwt).

Next, we begin to fit the data into a linear regression model using the lm function. We can 
then compute the fitted model and obtain the summary of the model. The summary shows 
that the coefficient is 4.0341 and the intercept is -0.3567. Furthermore, we draw a scatter 
plot in accordance with the given data points and then draw a regression line on the plot.

As we cannot perform linear regression using the lm function in the MapReduce form, 
we have to rewrite the regression model in a MapReduce fashion. Here, we would like to 
implement a MapReduce version of linear regression in three steps, which are: calculate the 
Xtx value with the MapReduce, job1, calculate the Xty value with MapReduce, job2, and 
then derive the coefficient value:

ff In the first step, we pass the matrix, X, as the input to the map function. The map 
function then calculates the cross product of the transposed matrix, X, and, X. The 
reduce function then performs the sum operation defined in the previous section.
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ff In the second step, the procedure of calculating Xty is similar to calculating XtX.  
The procedure calculates the cross product of the transposed matrix, X, and, y.  
The reduce function then performs the sum operation.

ff Lastly, we use the solve function to derive the coefficient, which is 3.907113.

As the results show, the coefficients computed by lm and MapReduce differ slightly. Generally 
speaking, the coefficient computed by the lm model is more accurate than the one calculated 
by MapReduce. However, if your data is too large to fit in the memory, you have no choice but 
to implement linear regression in the MapReduce version.

See also
ff You can access more information on machine learning algorithms at: https://

github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests

Configuring RHadoop clusters on Amazon 
EMR

Until now, we have only demonstrated how to run a RHadoop program in a single Hadoop 
node. In order to test our RHadoop program on a multi-node cluster, the only thing you need to 
do is to install RHadoop on all the task nodes (nodes with either task tracker for mapreduce 
version 1 or node manager for map reduce version 2) of Hadoop clusters. However, the 
deployment and installation is time consuming. On the other hand, you can choose to 
deploy your RHadoop program on Amazon EMR, so that you can deploy multi-node clusters 
and RHadoop on every task node in only a few minutes. In the following recipe, we will 
demonstrate how to configure RHadoop cluster on an Amazon EMR service.

Getting ready
In this recipe, you must register and create an account on AWS, and you also must know how 
to generate a EC2 key-pair before using Amazon EMR.

For those who seek more information on how to start using AWS, please refer to the  tutorial 
provided by Amazon at http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
EC2_GetStarted.html.

https://github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests
https://github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
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How to do it...
Perform the following steps to configure RHadoop on Amazon EMR:

1.	 First, you can access the console of the Amazon Web Service (refer to https://us-
west-2.console.aws.amazon.com/console/) and find EMR in the analytics 
section. Then, click on EMR.

Access EMR service from AWS console.

2.	 You should find yourself in the cluster list of the EMR dashboard (refer to 
https://us-west-2.console.aws.amazon.com/elasticmapreduce/
home?region=us-west-2#cluster-list::); click on Create cluster.

Cluster list of EMR

https://us-west-2.console.aws.amazon.com/console/
https://us-west-2.console.aws.amazon.com/console/
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#cluster-list::
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#cluster-list::
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3.	 Then, you should find yourself on the Create Cluster page (refer to https://us-
west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-
west-2#create-cluster:).

4.	 Next, you should specify Cluster name and Log folder S3 location in the cluster 
configuration.

Cluster configuration in the create cluster page

5.	 You can then configure the Hadoop distribution on Software Configuration.

Configure the software and applications

https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#create-cluster:
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#create-cluster:
https://us-west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-west-2#create-cluster:
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6.	 Next, you can configure the number of nodes within the Hadoop cluster.

Configure the hardware within Hadoop cluster

7.	 You can then specify the EC2 key-pair for the master node login.

Security and access to the master node of the EMR cluster

8.	 To set up RHadoop, one has to perform bootstrap actions to install RHadoop on 
every task node. Please write a file named bootstrapRHadoop.sh, and insert the 
following lines within the file:
echo 'install.packages(c("codetools", "Rcpp", "RJSONIO", "bitops", 
"digest", "functional", "stringr", "plyr", "reshape2", "rJava", 
"caTools"), repos="http://cran.us.r-project.org")' > /home/hadoop/
installPackage.R
sudo Rscript /home/hadoop/installPackage.R
wget --no-check-certificate https://raw.githubusercontent.com/
RevolutionAnalytics/rmr2/master/build/rmr2_3.3.0.tar.gz
sudo R CMD INSTALL rmr2_3.3.0.tar.gz
wget --no-check-certificate https://raw.github.com/
RevolutionAnalytics/rhdfs/master/build/rhdfs_1.0.8.tar.gz
sudo HADOOP_CMD=/home/hadoop/bin/hadoop R CMD INSTALL 
rhdfs_1.0.8.tar.gz
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9.	 You should upload bootstrapRHadoop.sh to S3.

10.	 You now need to add the bootstrap action with Custom action, and add 
s3://<location>/bootstrapRHadoop.sh within the S3 location.

Set up the bootstrap action

11.	 Next, you can click on Create cluster to launch the Hadoop cluster.

Create the cluster
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12.	 Lastly, you should see the master public DNS when the cluster is ready. You can now 
access the terminal of the master node with your EC2-key pair:

A screenshot of the created cluster

How it works...
In this recipe, we demonstrate how to set up RHadoop on Amazon EMR. The benefit of this is 
that you can quickly create a scalable, on demand Hadoop with just a few clicks within a few 
minutes. This helps save you time from building and deploying a Hadoop application. However, 
you have to pay for the number of running hours for each instance. Before using Amazon EMR, 
you should create an AWS account and know how to set up the EC2 key-pair and the S3. You 
can then start installing RHadoop on Amazon EMR.

In the first step, access the EMR cluster list and click on Create cluster. You can see a list of 
configurations on the Create cluster page. You should then set up the cluster name and log 
folder in the S3 location in the cluster configuration. 

Next, you can set up the software configuration and choose the Hadoop distribution you would 
like to install. Amazon provides both its own distribution and the MapR distribution. Normally, 
you would skip this section unless you have concerns about the default Hadoop distribution.

You can then configure the hardware by specifying the master, core, and task node. By 
default, there is only one master node, and two core nodes. You can add more core and task 
nodes if you like. You should then set up the key-pair to login to the master node.

You should next make a file containing all the start scripts named bootstrapRHadoop.
sh. After the file is created, you should save the file in the S3 storage. You can then specify 
custom action in Bootstrap Action with bootstrapRHadoop.sh as the Bootstrap script. 
Lastly, you can click on Create cluster and wait until the cluster is ready. Once the cluster 
is ready, one can see the master public DNS and can use the EC2 key-pair to access the 
terminal of the master node.
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Beware! Terminate the running instance if you do not want to continue using the EMR service. 
Otherwise, you will be charged per instance for every hour you use.

See also
ff Google also provides its own cloud solution, the Google compute engine. For those 

who would like to know more, please refer to https://cloud.google.com/
compute/.

https://cloud.google.com/compute/
https://cloud.google.com/compute/
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Resources for R and 
Machine Learning

The following table lists all the resources for R and machine learning:

R introduction
Title Link Author

R in Action http://www.amazon.com/R-Action-
Robert-Kabacoff/dp/1935182390

Robert Kabacoff

The Art of R 
Programming: A 
Tour of Statistical 
Software Design

http://www.amazon.com/The-Art-
Programming-Statistical-Software/
dp/1593273843

Norman Matloff

An Introduction to R http://cran.r-project.org/doc/
manuals/R-intro.pdf

W. N. Venables, D. 
M. Smith, and the R 
Core Team

Quick-R http://www.statmethods.net/ Robert I. Kabacoff, 
PhD

Online courses
Title Link Instructor

Computing for Data 
Analysis (with R)

https://www.coursera.org/course/
compdata

Roger D. Peng, Johns 
Hopkins University

Data Analysis https://www.coursera.org/course/
dataanalysis

Jeff Leek, Johns 
Hopkins University

Data Analysis and 
Statistical Inference

https://www.coursera.org/course/
statistics

Mine Çetinkaya-
Rundel, Duke 
University

http://www.amazon.com/R-Action-Robert-Kabacoff/dp/1935182390
http://www.amazon.com/R-Action-Robert-Kabacoff/dp/1935182390
http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843
http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843
http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.statmethods.net/
https://www.coursera.org/course/compdata
https://www.coursera.org/course/compdata
https://www.coursera.org/course/dataanalysis
https://www.coursera.org/course/dataanalysis
https://www.coursera.org/course/statistics
https://www.coursera.org/course/statistics
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Machine learning
Title Link Author

Machine Learning 
for Hackers

http://www.amazon.com/dp/144930371
4?tag=inspiredalgor-20

Drew Conway and 
John Myles White

Machine Learning 
with R

http://www.packtpub.com/machine-
learning-with-r/book

Brett Lantz

Online blog
Title Link

R-bloggers http://www.r-bloggers.com/

The R Journal http://journal.r-project.org/

CRAN task view
Title Link

CRAN Task View: Machine 
Learning and Statistical 
Learning

http://cran.r-project.org/web/views/
MachineLearning.html

http://www.amazon.com/dp/1449303714?tag=inspiredalgor-20
http://www.amazon.com/dp/1449303714?tag=inspiredalgor-20
http://www.packtpub.com/machine-learning-with-r/book
http://www.packtpub.com/machine-learning-with-r/book
http://www.r-bloggers.com/
http://journal.r-project.org/
http://cran.r-project.org/web/views/MachineLearning.html
http://cran.r-project.org/web/views/MachineLearning.html
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Dataset – Survival  
of Passengers on  

the Titanic

Before the exploration process, we would like to introduce the example adopted here. It is 
the demographic information on passengers aboard the RMS Titanic, provided by Kaggle 
(https://www.kaggle.com/, a platform for data prediction competitions). The result we 
are examining is whether passengers on board would survive the shipwreck or not.

There are two reasons to apply this dataset:

ff RMS Titanic is considered as the most infamous shipwreck in history, with a death 
toll of up to 1,502 out of 2,224 passengers and crew. However, after the ship sank, 
the passengers' chance of survival was not by chance only; actually, the cabin class, 
sex, age, and other factors might also have affected their chance of survival.

ff The dataset is relatively simple; you do not need to spend most of your time on data 
munging (except when dealing with some missing values), but you can focus on the 
application of exploratory analysis.

https://www.kaggle.com/
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The following chart is the variables' descriptions of the target dataset:

Judging from the description of the variables, one might have some questions in mind, 
such as, "Are there any missing values in this dataset?", "What was the average age of the 
passengers on the Titanic?", "What proportion of the passengers survived the disaster?", 
"What social class did most passengers on board belong to?". All these questions presented 
here will be answered in Chapter 2, Data Exploration with RMS Titanic.

Beyond questions relating to descriptive statistics, the eventual object of Chapter 2, Data 
Exploration with RMS Titanic, is to generate a model to predict the chance of survival given 
by the input parameters. In addition to this, we will assess the performance of the generated 
model to determine whether the model is suited for the problem.



423

Index
A
adabag package  252
AdaBoost.M1 algorithm  257
advanced exploratory data analysis  50
agglomerative hierarchical clustering  287
aggregate function  40
Akaike Information Criterion (AIC)  208
alternative hypothesis (H1)  97
Amazon EMR

reference link  412
RHadoop, configuring  411-416

analysis of variance (ANOVA)
about  109
one-way ANOVA, conducting  109-112
reference link  112
two-way ANOVA, performing  112-116

area under curve (AUC)  241
association analysis  321, 322
associations

displaying  324-327
mining, with Apriori rule  328-333
rules, visualizing  335-338

AWS
reference link  411

B
bagging method

about  252
used, for classifying data  252-255
used, for performing  

cross-validation  256, 257
bam package

using  146
Bartlett Test  108

basic exploratory data analysis  50
basic statistics

applying  36-39
Bayes theorem

reference link  186
Binary Tree Class  167
Binomial model

applying, for generalized linear  
regression  142-144

binomial test
alternative hypothesis (H1)  97
conducting  95, 96
null hypothesis (H0)  97

biplot
used, for visualizing multivariate  

data  363-365
bivariate cluster plot

drawing  297, 298
boosting method

about  252
used, for classifying data  257-260
used, for performing cross-validation  261

Breusch-Pagan test  137

C
C50

about  159
URL  159

caret package
about  76, 216
features, selecting  230-235
highly correlated features,  

searching  229, 230
k-fold cross-validation, performing  223-225
used, for comparing ROC curve  243-246
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used, for measuring performance differences 
between models  246-249

variable importance, ranking  225-227
character variables

converting  54, 55
classification

about  153
margin, calculating of classifier  268-271
versus regression  153

classification model
building, with conditional inference  

tree  166, 167
building, with recursive partitioning  

tree  156-159
testing dataset, preparing  154, 155
training dataset, preparing  154, 155

Cloudera QuickStart VM
about  389
references  390
URL  389
used, for preparing RHadoop  

environment  389-391
clustering

about  283
clustering methods, comparing  299-301
density-based clustering  284
hierarchical clustering  284
k-means clustering  284
model-based clustering  284
silhouette information, extracting  302, 303

clusters
validating, externally  317-319

conditional inference tree
advantages  185
classification model, building  166, 167
disadvantages  185
prediction performance, measuring  170-172
visualizing  167-169

confidence intervals
reference link  124

confusion matrix
reference link  163
used, for measuring prediction  

performance  239, 240
used, for validating survival prediction  75, 76

correlations
performing  90, 91

CP (cost complexity parameter)  159
CRAN

about  27
URL  16, 29

Crantastic  29
cross-validation

performing, with bagging method  256, 257
performing, with boosting method  261

cSPADE algorithm
used, for mining frequent sequential  

patterns  345-348
cutree function

used, for separating data into  
clusters  290-293

D
data

classifying, with K-nearest neighbor (knn)  
classifier  172-174

classifying, with logistic regression  175-181
classifying, with Naïve Bayes  

classifier  182-186
exploring  62-70
manipulating  32-34
manipulating, subset function used  34
merging  35
ordering, with order function  35
reading  29-32
transforming, into transactions  322, 323
visualizing  40-43, 62-70
writing  29-32

data exploration
about  49
advanced exploratory data analysis  50
basic exploratory data analysis  50
data collection  50
data munging  50
model assessment  51
right questions, asking  50

data exploration, with RMS Titanic
character variables, converting  54, 55
data, exploring  62-70
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dataset, reading from CSV file  51-53
data, visualizing  62-70
missing values, detecting  56-58
missing values, imputing  59-61
passenger survival, predicting with  

decision tree  70-74
survival prediction, assessing with ROC  

curve  77, 78
survival prediction, validating with  

confusion matrix  75, 76
data sampling  80, 81
dataset

obtaining, for machine learning  44-47
DBSCAN

about  306
used, for performing density-based  

clustering  306-309
decision tree

used, for predicting passenger survival  70-74
density-based clustering

about  284
performing, with DBSCAN  306-309
used, for clustering data  306-309

descriptive statistics
about  80
univariate descriptive statistics  86-89

diagnostic plot
generating  124-126

dimension reduction
about  349
feature extraction  349
feature selection  349
performing, MDS used  367-371
performing, PCA used  354-357
performing, SVD used  371-374

dissimilarity matrix
about  314
visualizing  314-316

distance functions
average linkage  288
complete linkage  287
single linkage  287
ward method  288

divisive hierarchical clustering  287

E
e1071 package

k-fold cross-validation, performing  222, 223
Eclat algorithm

used, for mining frequent itemsets  339-341
ensemble learning

about  251
bagging method  252
boosting method  252
random forest  252

erroreset function  280
error evolution

calculating, of ensemble method  272-274

F
feature extraction  349
feature selection

about  349
performing, FSelector package used  351-353

FP-Growth
about  341
reference link  341

G
generalized addictive model (GAM)

about  144
diagnosing  149-151
fitting, to data  144-146
visualizing  146-148

Generalized Cross Validation (GCV)  150
generalized linear model (GLM)  138
ggplot2

about  43
URL  43

generalized linear regression
fitting, with Binomial model  142-144
fitting, with Gaussian model  138-140
fitting, with Poisson model  141, 142

Google compute engine
URL  417

gradient boosting
about  262
used, for classifying data  262-268

gsub function  36
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H
HDFS

operating, rhdfs package used  395, 396
heteroscedasticity  137
hierarchical clustering

about  284
agglomerative hierarchical clustering  287
divisive hierarchical clustering  287
used, for clustering data  284-289

honorific entry
reference link  61

Hontonworks Sandbox
URL  392

hypothesis methods
Bartlett Test  108
Kruskal-Wallis Rank Sum Test  108
Proportional test  108
Shapiro-Wilk test  108
Z-test  108

I
images

compressing, SVD used  375-378
inferential statistics  80
installation

integrated development environment (IDE)  23
packages  27-29
plyrmr package  403, 404
rhdfs package  393, 394
rmr2 package  392, 393
RStudio  23-27

installation, R
about  15, 16, 23
on CentOS 5  22
on CentOS 6  22
on Mac OS X  19-21
on Ubuntu  22
on Windows  17, 18

Interquartile Range (IQR)  87
interval variables  55
ipred package  255, 280
ISOMAP

about  350
nonlinear dimension reduction,  

performing  378-382
itemsets  322

K
Kaggle

URL  51
Kaiser method

used, for determining number of principal 
components  361-363

KDnuggets
about  47
URL  47

k-fold cross-validation
performing, with caret package  223-225
performing, with e1071 package  222, 223
used, for estimating model  

performance  220, 221
k-means clustering

about  284
optimum number of clusters,  

obtaining  303-306
reference link  306
used, for clustering data  294-296

K-nearest neighbor (knn) classifier
about  172-174
advantages  174, 185
data, classifying  172-174
disadvantages  175, 185
URL  175

Kolmogorov-Smirnov test (K-S test)
about  102
performing  101-103

Kruskal-Wallis Rank Sum Test  108

L
labels

predicting, of trained neural network by  
neuralnet  211-213

predicting, of trained neural network by  
nnet package  216-218

predicting, of trained neural network by  
SVM  197-199

libsvm  188
linear methods

MDS  350
PCA  350
SVD  350
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linear regression model
case study  131-137
conducting, for multivariate analysis  92-95
fitting, with lm function  118, 119
information obtaining, summary function  

used  120-122
used, for predicting unknown  

values  123, 124
LLE (locally linear embedding)

about  350
nonlinear dimension reduction,  

performing  383-385
lm function

used, for fitting linear regression  
model  118, 119

used, for fitting polynomial regression  
model  127, 128

logistic regression
advantages  185
disadvantages  185
used, for classifying data  175-181

M
machine learning

about  13
dataset, obtaining  44-47
reference link, for algorithms  411
with R  13-15
with RHadoop  407-410

Mann-Whitney-Wilcoxon. See  Wilcoxon 
Signed Rank test

mapR Sandbox
URL  392

margin
about  268
calculating, of classifier  268-271

mboost package  266
MDS

about  350
used, for performing dimension  

reduction  367-371
minimum support (minsup)  348
missing values

detecting  56-58
imputing  59-61

model assessment  51
model-based clustering

about  284
used, for clustering data  309-313

model evaluation  219
multidimensional scaling. See  MDS
multivariate analysis

linear regression, conducting  92-95
performing  90, 91

multivariate data
visualizing, biplot used  363-365

N
Naïve Bayes classifier

advantages  185
data, classifying  182-186
disadvantages  185

NaN (not a number)  56
NA (not available)  56
neuralnet

labels, predicting of trained neural  
networks  211-213

neural networks (NN), training  205-208
neural networks (NN), visualizing  209, 210

neural networks (NN)
about  187
advantages  208
training, with neuralnet  205-208
training, with nnet package  214, 215
versus SVM  188
visualizing, by neuralnet  209, 210

nnet package
about  214
labels, predicting of trained neural  

network  216-218
used, for training neural  

networks (NN)  214, 215
nominal variables  55
nonlinear dimension reduction

performing, with ISOMAP  378-382
performing, with LLE  383-385

nonlinear methods
ISOMAP  350
LLE  350

null hypothesis (H0)  97
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O
one-way ANOVA

conducting  109-112
order function

using  35
ordinal variables  55

P
packages

installing  27-29
loading  27-29

party package  74, 279
PCA

about  350
used, for performing dimension  

reduction  354-357
Pearson's Chi-squared test

about  105
conducting  105-108

plyrmr package
about  388
installing  403, 404
used, for manipulating data  404-406

Poisson model
applying, for generalized linear  

regression  141, 142
poly function

using  127
polynomial regression model

fitting, with lm function  127, 128
prediction errors

estimating, of different classifiers  280-282
principal component analysis. See  PCA
probability distribution

about  81
generating  81-85

Proportional test  108
Pruning (decision_trees)

reference link  166

Q
quantile-comparison plot  150

R
R

about  14
data, manipulating  32-36
downloading  15-23
installing  15-17, 23
installing, on CentOS 5  22
installing, on CentOS 6  22
installing, on Mac OS X  19-21
installing, on Ubuntu  22
installing, on Windows  17, 18
URL  15
using, for machine learning  14, 15

random forest
about  252
advantages  279
mtry parameter  279
ntree parameter  279
used, for classifying data  274-280

ratio variables  55
raw data  50
receiver operating characteristic (ROC)

about  241
reference link  242

recursive partitioning tree
advantages  185
disadvantages  185
prediction performance, measuring  161-163
pruning  163-166
used, for building classification  

model  156-159
visualizing  159-161

redundant rules
pruning  333-335

regression
about  117
types  118
versus classification  153

regression model
performance, measuring  236-238

relative square error (RSE)  236, 238
reshape function  40
R-Forge  29
RHadoop

about  387, 388
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configuring, on Amazon EMR  411-416
input file, URL  397
integrated environment, preparing  389-391
Java MapReduce program, URL  399
machine learning  407-410
plyrmr package  388
ravro package  388
rhbase package  388
rhdfs package  388
rmr package  388
word count problem, implementing  397-399

rhdfs package
installing  393, 394
used, for operating HDFS  395, 396

rlm function
used, for fitting robust linear regression  

model  129-131
R MapReduce program

comparing, to standard R program  399, 400
debugging  401, 402
testing  401, 402

rminer package
variable importance, ranking  227-229

rmr2 package
installing  392, 393

RnavGraph package
about  381
URL  381

robust linear regression model
fitting, with rlm function  129-131

ROC curve
used, for assessing survival prediction  77, 78

ROCR package
installing  241
used, for measuring prediction  

performance  241, 242
root mean square error (RMSE)  236, 238
rpart package  74
RStudio

downloading  23-27
installing  23-27
URL  24, 27

S
SAMME algorithm  257
Scale-Location plot  126

scree test
used, for determining number of principal 

components  359, 360
Sequential PAttern Discovery using Equiva-

lence classes (SPADE)  345, 348
Shapiro-Wilk test  108
silhouette information

about  302
extracting, from clustering  302, 303

Silhouette Value
reference link  303

singular value decomposition. See  SVD
standard R program

comparing, to R MapReduce  
program  399, 400

statistical methods
descriptive statistics  80
inferential statistics  80

student's t-test
about  100
performing  97-100

sub function  36
subset function  34
summary function

used, for obtaining information of linear  
regression model  120-122

Survey of Labor and Income Dynamics  
(SLID) dataset  131

SVD
about  350, 371
used, for compressing images  375-378
used, for performing dimension  

reduction  371-374
SVM (support vector machines)

about  187
advantages  190
cost, selecting  191-194
data, classifying  188-191
labels, predicting of testing dataset  197-199
tuning  201-204
versus neural networks (NN)  188
visualizing  195, 196

SVMLight
about  191
reference link  191

SVMLite  188
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T
training data, Kaggle

URL  52
transactions

creating, with temporal information  342-345
data, transforming  322, 323
displaying  324-327

two-way ANOVA
performing  112-116

U
UCI machine learning repository

URL  44
Unbiased Risk Estimator (UBRE)  150
univariate descriptive statistics

about  86
working with  86-89

V
visualization, data  40-43

W
Wilcoxon Rank Sum test

about  104
performing  104, 105

Wilcoxon Signed Rank test
about  104
performing  104, 105

within-cluster sum of squares (WCSS)  296

X
XQuartz-2.X.X.dmg

URL, for downloading  21

Z
Z-test  108
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