
www.allitebooks.com

http://www.allitebooks.org

Magento Responsive Theme
Design

Leverage the power of Magento to successfully develop
and deploy a responsive Magento theme

Richard Carter

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Magento Responsive Theme Design

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-036-9

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Richard Carter

Reviewers
Oğuz Çelikdemir

Vinai Kopp

Acquisition Editor
Sam Wood

Commissioning Editor
Mohammed Fahad

Technical Editors
Neha Mankare

Siddhi Rane

Project Coordinator
Ankita Goenka

Proofreader
Lindsey Thomas

Indexer
Priya Subramani

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Richard Carter is a web designer and frontend web developer based in Newcastle
upon Tyne in the North East of England.

His experience includes many open source e-commerce and content management
systems, including Magento, MediaWiki, WordPress, and Drupal. He has worked
with clients including the University of Edinburgh, University College Dublin,
Directgov, NHS Choices, and BusinessLink.gov.uk.

He is a creative director at Peacock Carter Ltd (peacockcarter.co.uk), a web
design and development agency based in the North East of England. He graduated
from the University of Durham in Software Engineering, and currently lives in
Newcastle upon Tyne. He blogs at earlgreyandbattenburg.co.uk and tweets as
@RichardCarter and @PeacockCarter.

This is his sixth book. He has previously written MediaWiki Skins Design, Magento
1.3 Theme Design, Magento 1.4 Theme Design, Joomla! 1.5 Templates Cookbook, and The
Beginner's Guide to Drupal Commerce, and acted as a technical reviewer on MediaWiki
1.1 Beginners Guide, Inkscape 0.48 Illustrator's Cookbook, and Apress' The Definitive Guide
To Drupal 7.

In particular, my thanks are due to Matthew, who has kept Peacock
Carter on track while I've focused on the book! Thanks also to my
family and friends, whose constant support is much appreciated.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Oğuz Çelikdemir is a senior software developer specializing in web application
development who works for Metro Group (www.metrogroup.de), an affiliated
company in Turkey.

He has been working in the IT sector since 1990 and he has implemented many
e-commerce websites using Magento. He is also an experienced PHP and ExtJS
framework user.

He lives in Istanbul with his wife, Neşe, and his twins, Ece and Efe.

Vinai Kopp has worked as an independent web developer since 1998, learning
the nuts and bolts of protocols, databases, languages, and standards as the modern
Internet evolved. In March 2008, he specialized in development for the Magento
platform, and has since collected experience in many projects, sized from small
shops to large-scale projects in highly integrated implementations.

During 2012 and 2013, he worked as the senior manager of Developer Education
at Magento Inc., creating and delivering technical training for Magento developers
around the world.

Now he works as an independent consultant, developer, and trainer.

He has also played a part in the creation of the certifications for Magento
developers and frontend engineers, and is a co-author of the German Magento
Developer Handbook. At numerous Magento community events and at Magento
Imagine, he has presented as a subject matter expert on technical topics.

www.allitebooks.com

http://www.allitebooks.org

In his spare time, he develops and maintains popular free and open source Magento
modules, which can be found on GitHub at http://github.com/Vinai/.

He also loves running. At Magento events, you will often find him geeking out and
going for early morning runs with likeminded friends.

Besides having fun with development in general and Magento in particular, he has a
great wife and two lovely daughters.

www.allitebooks.com

http://github.com/Vinai/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for the support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
service@packtpub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Beginning a Responsive Magento Theme 5

Creating your Magento theme 5
Adding the basic CSS styling for your Magento theme 6
Adding the basic XML layout for your Magento theme 7
Adding the meta viewport element 8
A note on Magento theme hierarchy 9
Magento theme hierarchy 10

Enabling your new theme in Magento 11
Overwriting the default Magento templates 14

Adding the media queries to your Magento theme 15
Some other common breakpoints 19

Styling images responsively in your Magento theme 19
Styling e-commerce navigation responsively in Magento 24

Adding skip to footer navigation to your Magento store 25
Adding the skip-to link in your header template 26
Adding the footer sitemap navigation 29

Dropdown navigation for your Magento store 31
Summary 36

Chapter 2: Making Your Store Responsive 37
Laying out your website's header and footer 37

Adding the header and footer CSS 38
Adding CSS for larger screens 39
Adding CSS to change header and footer links 40

Responsive product page layout in Magento 42
Laying out the product image and product information 43
Making a definitive style 44

Responsive category page layout 46
Category list view 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Product pager, pagination, and sort by dropdown 48
Category grid view 50

Dealing with Magento search results responsively 52
Resizing product images 53

Removing the height and width attributes 54
Summary 56

Chapter 3: Responsive Checkout and Cart in Magento 57
Responsive shopping cart in Magento 57

Styling form elements 58
Removing the shipping estimate tool from the Magento cart page 62
Styling cart tables 62
Removing unnecessary table columns for mobile and smaller
screened devices 64

Responsive one page checkout in Magento 68
Styling Magento customer account pages responsively 73

Setting the account login page template to a one-column layout 73
Styling error messages 76
Removing the My Applications and My Downloadable Products
links from the Magento customer account area 78

Summary 80
Chapter 4: Enhancing Your Responsive Magento Theme 81

Supporting CSS media queries in Internet Explorer with
css3-mediaqueries.js 81

Adding a JavaScript file to your Magento theme through local.xml 83
Improving Magento store data entry for customers 84

Changing your Magento theme's doctype to HTML5 84
Changing the input type value for login 85
Changing the input type value for registration 86

Using the CSS @font-face rule to use custom fonts in your
Magento theme 89
Summary 91

Index 93

Preface
E-commerce has changed drastically in the last few years, with the need for
stores to provide a realistic interface for both mobile and desktop users becoming
increasingly important.

Responsive design is one approach to this requirement, and this book begins to help
you uncover how you can apply responsive web design techniques within Magento.

What this book covers
Chapter 1, Beginning a Responsive Magento Theme, begins building your new
responsive Magento theme and installing it on your Magento store.

Chapter 2, Making Your Store Responsive, adds to what you started in the previous
chapter, dealing with Magento-specific pages from product pages to category listings.

Chapter 3, Responsive Checkout and Cart in Magento, looks at the Magento cart and
checkout in more detail to address key issues customers are likely to have during
the order process.

Chapter 4, Enhancing Your Responsive Magento Theme, adds some improvements to
your new theme to improve your customers' experiences.

What you need for this book
You will need access to a recent copy of the Magento Community Edition
(1.7 or newer).

Preface

[2]

Who this book is for
This book is for web designers and developers with an existing knowledge
of modern HTML and CSS. Knowledge of Magento theming or responsive
web design techniques isn't required though may be advantageous.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Using the CSS @font-face rule to use custom fonts in your Magento theme."

A block of code is set as follows:

.breadcrumbs li {
 color: #777;
display: inline;
}
.breadcrumbs a {
 color:#777;
}

.quick-access {
 color: #777;
 text-align: right;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

.quick-access .links,

.footer ul {
 list-style-type: none;
}
.quick-access .links li,
.footer ul li {
 display: inline;
}

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"along with the My Account link and other related links."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Beginning a Responsive
Magento Theme

Every theme starts somewhere, and your responsive Magento theme is not any
different. In this chapter you will cover:

• Creating a basic Magento theme
• Enabling your new theme in Magento
• Adding media queries to your theme to establish breakpoints for different

device widths
• Styling static content pages in your Magento store
• The various options available to you to provide navigation for both desktop

and mobile/tablet users of your store

Creating your Magento theme
Before you can begin building your Magento theme, you will need to create the
directory structure that Magento requires its themes to follow. To do this, you
will need to create these directories in your Magento installation directory:

• app/design/frontend/default/responsive

• app/design/frontend/default/responsive/template

• app/design/frontend/default/responsive/layout

• skin/frontend/default/responsive

• skin/frontend/default/responsive/images

• skin/frontend/default/responsive/css

Beginning a Responsive Magento Theme

[6]

This means that we've created a Magento theme called responsive in the default
directory. Magento themes are split into a number of components. Theme files
that are directly included by the browser and processed there, are located in the
skin/ directory of your Magento theme.

Theme files such as .phtml templates and layout XML files, which first need to
be processed by Magento before they are sent to the browser, are located in the
app/design/ directory of your Magento installation.

No files in the app/ directory are directly accessible by browsers. If you try to
access files in this directory directly, you will receive a forbidden response.
The app/design directory will contain Magento's .phtml templates that define
the HTML that is output in to the page. The skin directory will contain the CSS
and images the design requires to function.

Finally, you will need to create two files to start your new Magento theme:

1. A CSS file called styles.css in the skin/frontend/default/responsive/
css directory; this is where you will start adding to the CSS for your
responsive Magento theme.

2. An XML layout file called local.xml in the app/design/frontend/
default/responsive/layout directory.

Adding the basic CSS styling for your
Magento theme
In the styles.css file you created in the preceding section, you can start by defining
some basic styles to reset browser defaults:

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126
 License: none (public domain)
*/
html, body, div, span, applet, object, iframe,h1, h2, h3, h4, h5,
 h6, p, blockquote, pre,a, abbr, acronym, address, big, cite,
 code,del, dfn, em, img, ins, kbd, q, s, samp,small, strike,
 strong, sub, sup, tt, var,b, u, i, center,dl, dt, dd, ol, ul,
 li,fieldset, form, label, legend,table, caption, tbody, tfoot,
 thead, tr, th, td,article, aside, canvas, details, embed,
 figure, figcaption, footer, header, hgroup, menu, nav, output,
 ruby, section, summary,time, mark, audio, video {margin:
 0;padding: 0;border: 0;font-size: 100%;font: inherit;
 vertical-align: baseline;}
/* HTML5 display-role reset for older browsers */

Chapter 1

[7]

article, aside, details, figcaption, figure, footer, header,
 hgroup, menu, nav, section {display: block;}
body {line-height: 1;}
ol, ul {list-style: none;}
blockquote, q {quotes: none;}
blockquote:before, blockquote:after,q:before, q:after {content:
 '';content: none;}
table {border-collapse: collapse;border-spacing: 0;}

Alternatively, you could use normalize.css in place of this,
which is available on Github at http://necolas.github.
io/normalize.css/.

Next, you can add some style to begin to help your Magento store take shape:

body
{
 background: #EFEFEF;
 font: normal 80%/150% Arial, Helvetica, sans-serif;
}
.page
{
 background: #fff;
 border-radius: 10px;
 margin: 10px;
 padding: 10px;
}
footer-container
{
 clear: both;
}

You can change your Magento store's logo by navigating
to System | Configuration | Design | Header in the
administration panel.

Adding the basic XML layout for your
Magento theme
In the local.xml file, add the following code:

<?xml version="1.0"?>
<layout version="0.1.0">

http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/

Beginning a Responsive Magento Theme

[8]

 <default>
 <reference name="root">
 <action method="setTemplate">
 <template>page/2columns-left.phtml</template>
 </action>
 <action method="setIsHandle">
 <applied>1</applied>
 </action>
 </reference>

 <remove name="checkout_cart_link"/>
 <remove name="right.permanent.callout"/>
 <remove name="right.poll"/>

 <remove name="paypal.partner.right.logo"/><remove name="cart_
sidebar"/>
 <remove name="left.permanent.callout"/>

 </default>
</layout>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The preceding code tells Magento to remove some blocks from all the pages
in your store that you are unlikely to use, such as the cart block for the sidebar,
and the advertising "callouts".

Adding the meta viewport element
So far, so good, but there is one last thing you'll need to take care of to get your
responsive theme functioning on mobile devices—the meta viewport element:

<meta name="viewport" content="width=device-width,
 initial-scale=1.0" />

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[9]

This element is placed in the <head> of your Magento theme, and tells browsers
to scale the width of the canvas that the website is drawn on, to be the width of
the device.

Without this, mobile browsers will ignore the breakpoints you added to your
Magento theme's CSS file and will attempt to draw your website at its full (desktop)
width. Breakpoints are used in your theme's CSS file(s), and tell browsers to only
apply the given CSS within the media query to browsers that match the screen width
(or height) specified in the media query itself.

To add this element to your Magento theme, open the local.xml file in
the app/design/frontend/base/default/layout/ directory and add the
following lines:

<default>
 <reference name="head">
 <block type="core/text" name="meta.viewport">
 <action method="setText">
 <meta><![CDATA[<meta name="viewport" content="width=
 device-width, initial-scale=1.0" />]]></meta>
 </action>
 </block>
 </reference>
</default>

Save the changes to your file in the app/design/frontend/default/responsive/
layout/ directory, and you're done!

A note on Magento theme hierarchy
Magento has a clever theme hierarchy system which allows a theme to only contain the
files it wants to overwrite from the fallback themes. If you don't include a file in your
new Magento theme, Magento looks at the fallback directories for the file instead.

Never make changes to the files in the fallback directories when
you're creating a Magento theme. The next upgrade to Magento is
likely to overwrite any changes made in the fallback directory!

This system makes upgrading Magento less intensive if you have a well written
theme, which only overwrites the specific elements of Magento pages that you
want to change.

www.allitebooks.com

http://www.allitebooks.org

Beginning a Responsive Magento Theme

[10]

For more information on how Magento's theme hierarchy and
inheritance system works, see http://www.magentocommerce.
com/knowledge-base/entry/magentos-theme-hierarchy.

Magento theme hierarchy
As mentioned, Magento uses a clever fallback system for theme files, meaning you
only have to overwrite the files you want to change from Magento's defaults. The
hierarchy of what Magento checks and in what order is as follows:

1. Check the configured file type specific theme in the configured package.
2. Check the configured default theme in the configured package.
3. Check the literal default theme in the configured package.
4. Check the literal default theme in the base package.

Fallback level 1 can be configured by specifying a theme setting for Templates,
Translations, Skin Files, and Layout files in the System | Configuration | Design
screen. Fallback level 2 can be configured by specifying a theme setting in the field
labeled as Default. In level 3 only the package is configurable, the theme is always
called default (in lower case). Fallback level 4 is not configurable.

If a design change is configured for a store view under the System | Design screen,
that theme will replace the level 1 setting for that store view.

For more information on Magento theme hierarchy and fallbacks,
see http://www.magentocommerce.com/knowledge-base/
entry/magentos-theme-hierarchy.

http://www.magentocommerce.com/knowledge-base/entry/magentos-theme-hierarchy
http://www.magentocommerce.com/knowledge-base/entry/magentos-theme-hierarchy
http://www.magentocommerce.com/knowledge-base/entry/magentos-theme-hierarchy
http://www.magentocommerce.com/knowledge-base/entry/magentos-theme-hierarchy

Chapter 1

[11]

Enabling your new theme in Magento
Now that your new theme is in place, you can enable it in Magento. Log in to
your Magento store's administration panel. Once you have logged in, navigate
to System | Configuration, as shown in the following screenshot:

Beginning a Responsive Magento Theme

[12]

From there, select the global configuration scope (labeled Default Config in the
following screenshot) you want to apply your new theme to, from the Current
Configuration Scope dropdown in the top left of your screen:

Once this has loaded, navigate to the Design tab under GENERAL in the left-hand
column and expand the Themes block in the right-hand column, as shown in the
following screenshot:

Chapter 1

[13]

From here, you can tell Magento to use your new theme. The values given here
correspond to the name you gave to the directories when creating your theme. The
example uses responsive as the value here, as shown in the following screenshot:

Click on the Save Config button at the top right of your screen to save the changes.

Beginning a Responsive Magento Theme

[14]

Next, check that your new theme has been activated. Remember the styles.css
file you added in the skin/frontend/default/responsive/css directory? The
presence of that file is telling Magento to load your new theme's CSS file instead
of the default styles.css file for Magento from the default package, so your store
now has none of the original CSS styling it. As such, you should see the following
screenshot when you attempt to view the frontend of your Magento store:

Overwriting the default Magento templates
Noticed the name of your Magento theme appearing next to the logo in the header
of your store? You can overwrite the default header.phtml that's causing it by
copying the contents of app/design/frontend/base/default/template/page/
html/header.phtml into app/design/frontend/default/responsive/template/
page/html/header.phtml. Open the file and find the following lines:

<?php if ($this->getIsHomePage()):?>
<h1 class="logo"><?php echo $this->getLogoAlt()
 ?><a href="<?php echo $this->getUrl('') ?>" title=
 "<?php echo $this->getLogoAlt() ?>" class="logo"><img src=

Chapter 1

[15]

 "<?php echo $this->getLogoSrc() ?>" alt="<?php echo
 $this->getLogoAlt() ?>" /></h1>
<?php else:?>
<a href="<?php echo $this->getUrl('') ?>" title="<?php echo
 $this->getLogoAlt() ?>" class="logo"><?php echo
 $this->getLogoAlt() ?><img src="<?php echo
 $this->getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt()
 ?>" />
<?php endif?>

Replace them with these lines:

<a href="<?php echo $this->getUrl('') ?>" title="<?php echo $this-
 >getLogoAlt() ?>" class="logo"><img src="<?php echo $this->
 getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt() ?>" />

Now if you save that file (and upload it to your server, if needed), you can see that
the logo now looks tidier, as shown in the following screenshot:

That's it! Your basic responsive Magento theme is up and running and you'll be
adding to it for the remainder of this book.

Adding the media queries to your
Magento theme
So, the basics of your responsive Magento theme are up and running, but to get
your layout to change based on the screen width available, you will need to add
CSS media queries to target browsers with specific viewport widths.

For some background reading on CSS media queries, see Mozilla's
Developer guide at https://developer.mozilla.org/en-
US/docs/Web/Guide/CSS/Media_queries.

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

Beginning a Responsive Magento Theme

[16]

A basic media query can be seen in the following code:

@media only screen and (min-width: 50em)
{
 body {background: red}
}

You are simply telling the browser to apply any CSS enclosed in the store if the
media query is matched; in this case, to turn the background of the <body> element
red if the viewport (space available within the browser window) has a minimum
width of 50 em.

For a good read on why pixels and other absolute units are not a
good idea in media queries, see http://blog.cloudfour.com/
the-ems-have-it-proportional-media-queries-ftw/.

Using this media query, we can start applying widths and floats to the key column
elements in Magento to provide a more traditional two-column or three-column
layout for desktop and larger tablet browsers:

@media only screen and (min-width: 50em)
{
 .col-main, .col-left, .col-right, .col-wrapper
 {
 display: inline;
 margin: 1%;
 padding: 2%;
 }
 .col-left,
 .col-right,
 .col-wrapper,
 .col2-right-layout .col-main
 {
 float: left
 }
 .col-wrapper,
 .col-main
 {
 width: 69%
 }
 .col-left,
 .col-right
 {
 width: 19%

http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/

Chapter 1

[17]

 }
 .col-main
 {
 float: right
 }

 /* Alter column widths for 3 column layout */
 .col3-layout .col-main
 {
 width: 60%
 }
 .col3-layout .col-left
 {
 width: 27%
 }
}

Add this CSS to your theme's styles.css file. By floating and setting widths on
the columns within the media query, you are telling browsers with a large enough
screen to present the columns for a two-column layout with a right-hand column,
as shown in the following screenshot:

Similarly, for a two-column layout with a left-hand column, you are telling the
browser to display the columns as shown in the following screenshot:

Beginning a Responsive Magento Theme

[18]

Finally, there is a three-column layout with both a left-hand and right-hand column,
as shown in the following screenshot:

If you now save those changes and review the frontend of your Magento store,
you should see that, on larger-width screens, these layouts are now working again
(the following screenshot is set to a three-column layout):

Chapter 1

[19]

That's it! The very basics of your responsive theme's media queries are in place. You
can add more media queries to target more specific devices as you wish. You may
want to add one for smaller tablet devices as an intermediate breakpoint between
smartphones and desktop computers.

Some other common breakpoints
So, you have used a breakpoint for desktop devices, but what about if you want to
target screen sizes of smaller tablet screens? You can use a breakpoint such as the
following code snippet:

@media only screen and (min-width: 35em)
{
 /* Add additional CSS here to target smaller tablets */
}

You can also target very large screens (which may include televisions) with the
following code snippet:

@media only screen and (min-width: 65em)
{
 /* Add additional CSS here to target much larger screens*/
}

Styling images responsively in your
Magento theme
One of the most obvious challenges to address in a responsive website is how to
handle images in your content. Consider the following screenshot, as viewed on a
desktop computer:

HEADER

LEFT
IMAGE

FOOTER

www.allitebooks.com

http://www.allitebooks.org

Beginning a Responsive Magento Theme

[20]

The following screenshot shows what happens if your very-wide image is now
viewed on a smaller screen, such as a smartphone screen:

LEFT COLUMN

IMAGE

FOOTER

HEADER

Without some CSS to resize the image to the available space, the image will be
displayed at its native size. So if the image was 800 x 500 pixels in size and the
screen available is 320 pixels wide, over half of the image would not be displayed
by default. Ideally, you want the image to fill the width available so that the entire
image is visible to your store's customers, as shown in the following screenshot:

LEFT COLUMN

IMAGE

FOOTER

HEADER

To put this CSS remedy in to action, open your Magento theme's styles.css file (it
should be in the /skin/frontend/default/responsive/css/ directory), and add
the following CSS to it:

img,
img[height],
img[width]
{
 height: auto;
 max-width: 100%;
}

Chapter 1

[21]

This CSS doesn't need to be within one of your media queries,
as you will (probably) want images in your store to resize to the
width available regardless of where they appear!

The img[height] and img[width] CSS selectors simply match any img elements in
your page that have an assigned width or height attribute, and overwrite them. The
height: auto CSS ensures that the height of the image remains in ratio to the width
of the image. To put it simply, it prevents your images from becoming distorted
when they're resized by the browser.

Next, log in to your Magento website's administration panel, and navigate to CMS |
Pages. Select one of the pages to edit (the example uses the About Us page, as shown
in the following screenshot):

Once this page has loaded, select the Content tab in the left-hand column, and insert
an image. You may find it useful to disable Magento's content editor toolbar using
the Show / Hide Editor button towards the top of your screen, as shown in the
following screenshot:

Beginning a Responsive Magento Theme

[22]

The example above uses http://placehold.it, a free image
placeholder service which will insert a grey image of the size you
request in to your page.

Once you have added your image, click on the Save Page button in the top right of
your screen and then view your page on the frontend of your website, as shown in
the following screenshot:

http://placehold.it

Chapter 1

[23]

If you view the Magento theme on your smartphone, or resize a suitable browser on
your desktop (for example, Firefox, Chrome, or Opera), you should now see that the
image is resized to fit the width available, as shown in the following screenshot:

Images in your Magento store's content should now behave as you'd expect.

Beginning a Responsive Magento Theme

[24]

Styling e-commerce navigation
responsively in Magento
Navigation is one of the core features of any e-commerce website. If customers
can't find products, they can't buy them! With the wide array of screen widths and
browser capabilities to consider, this makes responsive navigation a challenge. There
are two options this chapter considers:

• Simple navigation: It simply jumps the customer to the footer of the website
that contains all of the key categories and pages they'll need

• Advanced navigation: It restyles the navigation for smaller devices to
make items easier to select, and maintain Magento's dropdown styling
for desktop users

Before you attempt any of these, ensure that your Magento store has some categories
to navigate to in place. Do this by navigating to Catalog | Manage Categories in
your Magento store's administration panel. You will need to ensure that you add the
categories to the Default Category, and add a few categories each with their own
subcategories, to replicate a similar structure to the one in the following screenshot
that will be used in the example:

Chapter 1

[25]

If you now view your Magento store's frontend, you should be able to see (unstyled)
category navigation appear in the page, as shown in the following screenshot:

Adding skip to footer navigation to your
Magento store
This option is probably the easiest to implement for responsive navigation, and
should provide the broadest range of support across different mobile and desktop
browsers. To implement this option, you will need to perform the following steps:

1. Add a skip-to link in your store's header that is visible only on
mobile/smaller-screened devices.

2. Add a static block in your store's footer to enable you to add the navigation
you want your customers to see.

Beginning a Responsive Magento Theme

[26]

Adding the skip-to link in your header template
Open your Magento theme's header.phtml file (in the /app/design/frontend/
default/responsive/template/page/html/ directory of your Magento
installation) and do two things:

1. Hide the main Magento category navigation for mobile devices by wrapping
it in a div element with a class of mobile-hide.

2. Add a link to skip to the footer.

The changes made to the header.phtml copied from Magento's fallback theme are
highlighted in the following code:

<div class="header-container">
 <div class="header">
 <a href="<?php echo $this->getUrl('') ?>" title="<?php echo
 $this->getLogoAlt() ?>" class="logo"><img src="<?php echo
 $this->getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt()
 ?>" />
 <div class="quick-access">
 <?php echo $this->getChildHtml('topSearch') ?>
 <p class="welcome-msg"><?php echo $this->getWelcome() ?>
 <?php echo $this->getAdditionalHtml() ?></p>
 <?php echo $this->getChildHtml('topLinks') ?>
 <?php echo $this->getChildHtml('store_language') ?>
 </div>
 <?php echo $this->getChildHtml('topContainer'); ?>
 </div>
</div>

<div class="mobile-hide">
 <?php echo $this->getChildHtml('topMenu') ?>
</div>

<a class="mobile-nav" href="#footer-nav" title="Skip to store
 navigation"><?php $this->__('Skip to navigation'); ?>

In your theme's styles.css CSS file, add the following CSS above the desktop
media query that you created:

.mobile-hide
{
 display: none;
}
.mobile-nav
{

Chapter 1

[27]

 background: #EFEFEF url("../images/mobile-nav.png") no-repeat
 center left;
 border: 1px #CCC solid;
 border-radius: 5px;
 color: #333;
 display: block;
 padding: 5px 5px 5px 45px;
}
.mobile-nav:hover
{
 text-decoration: none;
}
.mobile-footer-nav
{
 background: #EFEFEF;
 clear: both;
 padding: 20px;
}
.mobile-footer-nav li
{
 display: inline;
 padding: 5px 10px;
}
.mobile-footer-nav li a
{
 color: #333;
}

Ensure that the image mobile-nav.png in the code sample pack
provided with this book is located in your theme's /skin/frontend/
default/responsive/images/ directory.

This CSS will hide any elements with this class applied from devices with smaller
screens, and provide some basic styling to the mobile navigation button in the
header, and the navigation links in the footer area too. Within your desktop media
query, you will need to add the following CSS to ensure the elements hidden for
mobile devices are shown for desktop visitors:

@media only screen and (min-width: 50em)
{
 .mobile-hide
 {
 display: block;
 }

Beginning a Responsive Magento Theme

[28]

 .mobile-nav,
 .mobile-footer-nav
 {
 display: none;
 }
 /* Other CSS in the media query */
}

If you view your Magento store's frontend at a desktop width, then the mobile
navigation button isn't there; but you can see the main category navigation
generated by Magento, as shown in the following screenshot:

Chapter 1

[29]

If you view the new changes of your theme on a smartphone or smaller desktop width,
you should see the new menu button appear, as shown in the following screenshot:

Adding the footer sitemap navigation
The skip-to button now appears, but you will need to edit your theme's footer.
phtml file to add a static block containing your store's navigation to finish this
navigation. Copy the footer.phtml file from the app/design/frontend/base/
default/template/page/html/ directory to the app/design/frontend/default/
responsive/template/page/html/ directory, and then open it for editing, adding
the content highlighted in the following code:

<div class="footer-container">
 <div class="footer">
 <?php echo $this->getChildHtml() ?>
 <p class="bugs"><?php echo $this->__('Help Us to Keep Magento
 Healthy') ?> - <a href="http://www.magentocommerce.com/
 bug-tracking" onclick="this.target='_blank'"><?php
 echo $this->__('Report All Bugs') ?> <?php echo
 $this->__('(ver. %s)', Mage::getVersion()) ?></p>
 <address><?php echo $this->getCopyright() ?></address>
 <div class="mobile-footer-nav" id="footer-nav">
 <?php echo $this->getLayout()->createBlock('cms/block')
 ->setBlockId('mobile-footer-nav')->toHtml() ?>
 </div>
 </div>
</div>

www.allitebooks.com

http://www.allitebooks.org

Beginning a Responsive Magento Theme

[30]

The ID attribute on the new <div> element you inserted will allow
the Skip to navigation button, in the preceding screenshot, to know
which element to skip down the page to when it is clicked.

You now need to create a static block in your Magento store. Log in to your
administration panel, and navigate to CMS | Static Blocks. Click on the Add
New Block button at the top right of your screen, and fill in the fields that appear
to add your new static block. Make sure that the Identifier field matches the value
in your reference to footer.phtml in the preceding code (the example uses
mobile-footer-nav as the value).

Click on the Save Block button towards the top right of your screen to save your
new static block, and refresh your Magento store's frontend to see the new block
appear for smaller-screened devices, as shown in the following screenshot:

That's it! Your simple mobile friendly navigation is ready and working!

Chapter 1

[31]

Dropdown navigation for your Magento store
An alternative method for navigation uses CSS within a media query to give
customers with larger screens a more traditional dropdown navigation, while
providing customers on smaller-screened devices with a more usable navigation
for your product categories.

This option can work well for stores with small numbers of
categories to list, but on larger Magento stores, you may find
that this begins to crowd the actual content of your store!

Firstly, you will need to copy the default Magento CSS for dropdown navigation that
starts with .nav-container or #nav (in /skin/frontend/default/default/css/
styles.css) and adapt the style for your own responsive Magento theme within
your desktop media query.

The adapted CSS for the example theme is provided in the following code:

@media only screen and (min-width: 50em)
{
 .nav-container
 {
 padding: 10px;
 }
 #nav
 {
 font-size:13px;
 margin:0 auto;
 padding:0 16px;
 width: 100%;
 }
 /* All Levels */
 #nav li
 {
 padding: 0;
 position:relative;
 text-align:left;
 }
 #nav li.over
 {
 z-index:998;
 }
 #nav a,
 #nav a:hover

Beginning a Responsive Magento Theme

[32]

 {
 display:block;
 line-height:1.3em;
 text-decoration:none;
 }
 #nav span
 {
 cursor:pointer;
 display:block;
 white-space:nowrap;
 }
 #nav li ul span
 {
 white-space:normal;
 }
 /* 0 Level */
 #nav li
 {
 float:left;
 }
 #nav li.active a
 {
 color:#d96708;
 }
 #nav a
 {
 color:#333;
 float:left;
 padding:5px 12px 6px 8px;
 font-weight:bold;
 }
 #nav li.over a,
 #nav a:hover
 {
 color:#333;
 }

 /* 1st Level */
 #nav ul li,
 #nav ul li.active
 {
 float:none;
 margin:0;
 padding-bottom:1px;

Chapter 1

[33]

 }
 #nav ul li.last
 {
 background:#EFEFEF;
 padding-bottom:0;
 }

 #nav ul a,
 #nav ul a:hover
 {
 background:none;
 float:none;
 padding:0;
 }
 #nav ul li a
 {
 font-weight:normal !important;
 }

 /* 2nd Level */
 #nav ul,
 #nav div
 {
 border:1px solid #CCC;
 position:absolute;
 width:15em;
 top:27px;
 left:-10000px;
 }
 #nav div ul
 {
 border:none;
 position:static;
 width:auto;
 }

 /* 3rd+ Level */
 #nav ul ul,
 #nav ul div
 {
 top:5px;
 }

 #nav ul li a

Beginning a Responsive Magento Theme

[34]

 {
 background:#EFEFEF;
 }
 #nav ul li a:hover
 {
 background:#333;
 color: #FC0;
 }
 #nav ul span,
 #nav ul li.last li span
 {
 padding:3px 15px 4px 15px;
 }

 /* Show menu */
 #nav li ul.shown-sub,
 #nav li div.shown-sub
 {
 left:0;
 z-index:999;
 }
 #nav li .shown-sub ul.shown-sub,
 #nav li .shown-sub li div.shown-sub
 {
 left:100px;
 }
 /* Other CSS within the desktop media query */
} /* End of the desktop media query */

The preceding CSS is provided in the code pack that
accompanies this book.

Once you have finished with this CSS, save your styles.css file to your Magento
theme, and view your store's frontend at the desktop width you have defined, and you
will see the dropdown style navigation appear, as shown in the following screenshot:

Chapter 1

[35]

If you look at the frontend of your Magento store on a smaller screen width or
on a smartphone device, you will not see any dropdown styling, as shown in
the following screenshot:

You can style this simplistically by adding to your theme's styles.css file, above
your media queries:

#nav a
{
 color: #333;
 text-decoration: none;
}
#nav a:hover
{
 text-decoration: underline;
}
#nav li,
#nav ul
{
 display: inline;
}
#nav li
{

Beginning a Responsive Magento Theme

[36]

 padding: 10px;
}
#nav ul li a
{
 color: #777;
}

Once saved, your navigation should be styled to be inline to preserve screen space,
with subcategories appearing in a lighter grey colored text.

Your simple responsive dropdown navigation is complete!

Summary
Your new responsive Magento theme's basics are up and running now, with this
chapter guiding you through:

• Creating the necessary directories for your Magento theme
• Enabling your new theme in Magento
• Adding media queries to your theme to establish breakpoints for different

device widths
• Styling static pages in your Magento store
• Some of the available options for responsive navigation

The subsequent chapters will provide a more in-depth look at specific areas of your
Magento store to theme.

Making Your Store
Responsive

So, you've now got the basics of your responsive Magento theme up and running,
but there's still plenty to do! This chapter covers:

• Laying out your website's header and footer
• Responsive product page layout
• Dealing with product images for multiple devices
• Responsive category page layout
• Creating a responsive search results page

Laying out your website's header and
footer
The previous chapter covered some minimal layout, and now you can start
altering the appearance of your Magento theme's header and footer to provide
a more intuitive format for the content in them.

Making Your Store Responsive

[38]

At the moment, your theme will look similar to the following screenshot:

Typically, the search feature is located to the top-left section of the screen, along with
the My Account link and other related links.

Adding the header and footer CSS
The most obvious place to begin styling your new Magento theme is the header
area which will incorporate your store's logo, navigation, and logo. You can also
begin to consider the footer area of your store which will appear on every page in
your store's website.

Chapter 2

[39]

Open your theme's styles.css file in the skin/frontend/default/responsive/css
directory and add the following CSS outside any media queries (so that it will be used
by all devices):

.breadcrumbs li {
 color: #777;
display: inline;
}
.breadcrumbs a {
 color:#777;
}

.quick-access {
 color: #777;
 text-align: right;
}
.quick-access a {
 color: #777;
}
.nav-container {
 clear: both;
}

This provides styling to the breadcrumbs and search feature, which are key
components of your ecommerce store in helping customers find what they're
looking for.

Adding CSS for larger screens
Next, you will need to add some further CSS to ensure it behaves as you'd expect
on larger screens, so in the desktop media query in the styles.css file, add the
following CSS code:

@media only screen and (min-width: 50em) {
 .logo {
 float: left;
 }
/* Your other CSS */
}

www.allitebooks.com

http://www.allitebooks.org

Making Your Store Responsive

[40]

If you now review the frontend of your Magento store, you will see things look
neater, similar to the following screenshot:

Adding CSS to change header and footer links
You can add the following CSS to your theme's styles.css file (outside any media
queries again) to change the links in the top-right corner of the screen to display
alongside each other:

.quick-access .links {
 list-style-type: none;
}
.quick-access .links li {
 display: inline;
}

You can treat the links in the footer of your Magento theme similarly, by adding the
following relevant classes to the preceding CSS code:

.quick-access .links,

.footer ul {
 list-style-type: none;
}
.quick-access .links li,
.footer ul li {
 display: inline;
}

Chapter 2

[41]

Finally, you can add the following CSS code:

.footer {
 background: #333;
 border-radius: 10px;
 color: #fff;
 clear: both;
 padding: 10px;
 text-align: center;
}
.footer a {
 color: #fff;
}

If you view the frontend of your Magento website once again, you should see
something similar to the following screenshot:

Making Your Store Responsive

[42]

Responsive product page layout in
Magento
One of the key features of any ecommerce website is the product pages, and effort
invested here can pay dividends on responsive websites. Ensure you have products
added to your Magento store, and navigate to view one of your product pages. At
the moment, it will look similar to the product page in the following screenshot on
tablets and desktop computers:

Chapter 2

[43]

Laying out the product image and product
information
The desired layout for a product page is typically with the primary product image to
be displayed next to the product name, price, and description. To achieve this, you
will need to copy the app/design/frontend/base/default/template/catalog/
product/view.phtml file to the app/design/frontend/default/responsive/
template/catalog/product/view.phtml file, and edit this file to add a class
named col-half here:

<div class="product-shop col-half">
<div class="product-name">
 <h1><?php echo $_helper->productAttribute($_product,
 $_product->getName(), 'name') ?></h1>
</div>

In the same file, add the following class to the <div> tag that contains the
product image:

<div class="product-img-box col-half">
 <?php echo $this->getChildHtml('media') ?>
</div>

The final step here is to define some CSS for this class, so open your theme's styles.
css file once more, and insert the following CSS highlighted in the following code
within the media query:

.col-main,

.col-left,

.col-right,

.col-wrapper,

.col-half {
 display: inline;
 margin: 1%;
 padding: 2%;
}
.col-left,
.col-right,
.col-wrapper,
.col2-right-layout .col-main,
.col-half {
 float: left;
}
.col-half {
 width: 44%;

Making Your Store Responsive

[44]

}
.col1-layout .col-main {
 float: none;
 width: 94%;
}

If you now preview your Magento store's frontend again, you should see the product
page now looks more useful than before, as shown in the following screenshot:

Making a definitive style
With a little more CSS, you can provide a more definitive style for the important
elements of the product page outside of the media queries you have created in
your styles.css file:

.add-to-box {
 background: #fff9de;
 border-radius: 10px;

Chapter 2

[45]

 margin: 20px 0;
 padding: 10px;
}
.btn-cart {
 background: #fc0;
 border: none;
 border-bottom: 3px #edbe00 solid;
 border-radius: 10px;
 color: #333;
 font-weight: bold;
 padding: 2px 5px;
}
.regular-price {
 font-size: 150%;
}
.add-to-links li {
 display: inline;
}

Your product page should now look similar to the following screenshot:

Making Your Store Responsive

[46]

Responsive category page layout
The category page, which lists related products, is a core component of many
ecommerce websites. A well-designed category page allows your customers to find
the product they're looking for more easily, and this is especially important when
considering both mobile and desktop users viewing the same responsive page.

Magento provides two methods for your customers to view products:

• List view: In this view, products are displayed one under the other
• Grid view: In this view, products are displayed in rows across the page, and

then down the page

Before you begin with the category page, ensure that you have a
number of products and categories added to your Magento store.

Category list view
If you view your store's category page in the list view, you should currently see
something similar to the following screenshot:

Chapter 2

[47]

This is about what you should expect from the list view, but you can add CSS to
alter the layout slightly. Open your theme's styles.css file (in the skin/frontend/
default/responsive/css directory), and add the following CSS to alter the layout
of the category products list outside of the desktop media query:

ol.products-list {
 list-style-type: none;
}
.products-list li.item {
 border-bottom: 1px #ccc solid;
 clear: both;
 display: block;
 padding: 40px 20px;
}
.products-list .product-image {
 display: block;
 float: left;
 margin-right: 20px;
}

Finally, you can target every other row of products in the list with the odd class:

.products-list li.item.odd {
 background: #fff9de;
}

View the category list once you have saved your changes, and you should see
the layout is now more sensible for browsing lists of products, as shown in the
following screenshot:

Making Your Store Responsive

[48]

Product pager, pagination, and sort by
dropdown
As you can see, the tools that control how many products are displayed, and how
they are ordered, aren't yet styled, as shown in the following screenshot:

You can control how many products are displayed in the
Magento's administration panel by navigating to System |
Configuration | Catalog | Frontend.

In the styles.css file, you can define the following generic style outside the
desktop media query:

.toolbar {
 clear: both;
}
.pager, .sorter {
 background: #fff9de;
 border-radius: 10px;
 margin: 10px;
 padding: 10px;
}
.pager li {
 display: inline;
 padding: 10px;
}

Next, copy the base/default/template/catalog/product/list/toolbar.phtml
file to the default/responsive/template/catalog/product/list directory, and
open it for editing, adding the col-half class to the pager first:

<div class="pager col-half">

Next, add the col-half class to the sorter's <div> tag:

<div class="sorter col-half">

Chapter 2

[49]

Within the media query for larger screens, you can add some additional layout
information to help reposition these elements when more space is available:

.sorter {
 text-align: right;
}

View your category page now to see the effect these changes have made to your
Magento store's design, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Making Your Store Responsive

[50]

On smaller screens, the sorter and pager blocks will be displayed above and below,
rather than alongside each other, as shown in the following screenshot:

Category grid view
Both Magento's list and grid view HTML are defined within the same file, so begin
by copying the file at app/design/frontend/base/default/template/catalog/
product/list.phtml to the app/design/frontend/default/responsive/
template/catalog/product directory. Edit the file, and add the col-half class to
each of the list items ():

<?php if ($i++%$_columnCount==0): ?>
<ul class="products-grid">
<?php endif ?>
<li class="col-half item<?php if(($i-1)%$_columnCount==0): ?>
 first<?php elseif($i%$_columnCount==0): ?> last<?php endif; ?>">

Chapter 2

[51]

View the category page on the frontend of your Magento store now, ensuring you
are seeing the products in the Grid mode, as shown in the following screenshot:

That's it: you now have a very simple responsive layout for your Magento store's
category grid view!

Making Your Store Responsive

[52]

Dealing with Magento search results
responsively
Search is another important component of your ecommerce website. By styling the
category grid and category list for products in the preceding section, you have made
a good start on styling the search results in Magento, which make use of the same
template(s) by default. Try searching for some of your products to bring up some
search results to demonstrate this, as shown in the following screenshot:

Can't see any results despite having added products to your
Magento store? Try these tips: clear the search indexes by
navigating to System | Index Management, and ensure your
products are in stock and have a positive quantity assigned to
them, if you have turned Magento's stock management feature on.

You can give more space to your Magento store's search results by assigning the one
column layout to this page. Open your theme's local.xml file in the /app/design/
frontend/default/responsive/layout directory.

Chapter 2

[53]

Resizing product images
This may be okay for your store, but you may want to ensure that the product
images—an important element in these pages to encourage customers to view
(and hopefully purchase) products from your store—are large enough to fill the
width of screen available to them. To do this, revisit your theme's list.phtml file in
the /app/design/frontend/default/responsive/template/catalog/product/
directory and find an instance of the product image in it (which should look similar
to the following code):

<a href="<?php echo $_product->getProductUrl() ?>" title="
 <?php echo $this->stripTags($this->getImageLabel
 ($_product, 'small_image'), null, true) ?>"
 class="product-image">
<img src="<?php echo $this->helper('catalog/image')->init
 ($_product, 'small_image')->resize(135); ?>" width="135"
 height="135" alt="<?php echo $this->stripTags($this->
 getImageLabel($_product, 'small_image'), null, true) ?>" />

This appears twice: once in the code for the list view, and once
for the grid view. Make sure you find both instances of the
product image in this file!

The size of the image is defined three times in the preceding code snippet, and this
is what you will need to change to alter the dimensions of product images in your
category pages. The value you change this to will depend on the maximum size
that the product image is likely to appear in your responsive Magento theme: the
maximum size of the store is set in the following code snippet using the CSS's
max-width property. As such, the following example changes the image's
dimensions to a height and width of 200 pixels:

<a href="<?php echo $_product->getProductUrl() ?>
 " title="<?php echo $this->stripTags($this->getImageLabel
 ($_product, 'small_image'), null, true) ?>"
 class="product-image">
<img src="<?php echo $this->helper('catalog/image')->init
 ($_product, 'small_image')->resize(200); ?>"
 alt="<?php echo $this->stripTags($this->getImageLabel
 ($_product, 'small_image'), null, true) ?>" />

Making Your Store Responsive

[54]

Removing the height and width attributes
As in the preceding example, you can also remove the height and width attributes
from the element, as these can be a hindrance when resizing images in a
responsive design.

Next, you can set a maximum width on the page class in your theme's styles.css
file in the skin/frontend/default/responsive/css directory, which will ensure
that your store never becomes so wide that content is difficult to read or interpret
(this already exists in your CSS file, so you will only need to add the two lines
highlighted in the following code!):

.page {
background: #fff;
border-radius: 10px;
margin: 10px auto; /* centre the store's design */
padding: 10px;
max-width: 1080px;
}

Once you have made these changes, view the frontend of your Magento store to see
the updated styling for the search results:

Chapter 2

[55]

As you resize your browser's window, the CSS in your theme's styles.css file
which you defined earlier, applies max-width: 100% to the element and
ensures that the image is always resized to, at most, the width of the container
(highlighted in red the following screenshot):

Some desktop browsers don't support media queries, though
modern browsers such as Firefox, Chrome, Opera, and Safari do.
See for http://caniuse.com/css-mediaqueries for native
browser support of media queries.

http://caniuse.com/css-mediaqueries

Making Your Store Responsive

[56]

Summary
In this chapter, you have begun to develop your responsive Magento theme more
deeply, concentrating on the Magento's category and product page templates.
Specifically, by now you will have:

• Customized the general look and feel of your store's header and footer areas
• Added support for a responsive product page layout
• Dealt with product images in a basic manner to accommodate your

responsive design
• Updated your Magento store's responsive category page layout template

The next chapter looks at customizing your Magento store's cart and checkout
areas responsively.

Responsive Checkout and
Cart in Magento

Your Magento theme is coming together nicely now, but there's still plenty you
can do to enhance other areas of your store, including the checkout and cart areas.
This chapter covers:

• Styling Magento's shopping cart pages responsively
• Styling Magento's one page checkout responsively
• Styling customer account pages

Responsive shopping cart in Magento
The shopping cart is the first port of call for your customers once they decide to
purchase something from your store.

This makes your store's cart page an important step in the checkout process, and
one that will require careful consideration to prevent it lowering your conversion
rate. One of the biggest challenges for responsive cart pages on smaller devices is
displaying the information required while keeping it clear and easy to both read
and use.

Responsive Checkout and Cart in Magento

[58]

At the moment, your theme's cart page will look similar to the following screenshot:

Styling form elements
As you can see, the cart page is not particularly attractive at the moment. You
can start making it more attractive by styling form elements. Open your theme's
styles.css file (in the skin/frontend/default/responsive/css directory) and
add the following CSS to restyle the submit input types:

.button {
 background: #000;

Chapter 3

[59]

 border: none;
 border-radius: 5px;
 color: #fff;
 padding: 5px 10px;
}
.button:active,
.button:focus {
background: #fc0;
 color: #000;
}
.button:hover {
 cursor: pointer;
}
.button:hover,
.button[disabled] {
 opacity: 0.7;
}
.btn-checkout {
 background: #fc0;
 color: #000;
 float: right;
 font-weight: bold;
}

Next, you can style the text inputs and dropdowns by targeting the classes Magento
provides. Add the following CSS to your theme's styles.css file outside the media
queries you created earlier:

.col-main input, .col-main textarea, .col-main select {
 margin-bottom: 20px;
}
input.input-text, .input-box select {
 border: 1px #ccc solid;
 border-radius: 5px;
 padding: 5px;
}

www.allitebooks.com

http://www.allitebooks.org

Responsive Checkout and Cart in Magento

[60]

If you save the changes to your Magento theme, you'll now see the form elements
look more in-keeping with your new theme, as shown in the following screenshot:

You can also add some separation between the various elements in the cart page to
help provide a visual hierarchy in the page and give customers cues as to where they
are in the checkout process. In your theme's styles.css file, add the following code:

.page-title,
#discount-coupon-form,
.shipping,
.data-table {
 margin-bottom: 20px;
}

Chapter 3

[61]

.discount,

.shipping {
 background-color: #FFF9DE;
 border-radius: 10px;
 padding: 10px;
}

Your cart page will now look similar to the following screenshot:

Responsive Checkout and Cart in Magento

[62]

Removing the shipping estimate tool from the
Magento cart page
By default, Magento adds the shipping estimate tool at the cart stage: this is great
if you want it, but not so useful if you offer free shipping on all orders, or a flat
shipping fee. To remove this block, you will need to edit your theme's local.xml
file in the app/design/frontend/default/responsive/layout directory and
add the XML highlighted in the following code:

<?xml version="1.0"?>
<layout version="0.1.0">
 <!-- other Magento layout instructions -->
<checkout_cart_index>
 <remove name="checkout.cart.shipping" />
</checkout_cart_index>
</layout>

Once saved, if you view your Magento cart page again, you will see that the block
has disappeared entirely, as shown in the following screenshot:

Styling cart tables
Our penultimate step for styling the Magento cart page responsively is styling the
table that contains the items your customer is buying. Once again in your theme's
styles.css file, add the following CSS:

.data-table,

Chapter 3

[63]

.cart form {
 clear: both;
 width: 100%;
}
.data-table th,
.data-table td {
 padding: 5px;
 vertical-align: top;
}
.data-table thead th {
 border-bottom: 1px #ccc solid;
}
.data-table th {
 font-weight: bold;
 text-align: left;
}
.data-table tbody tr:nth-of-type(even) td {
 background: #fff9De;
}

This styles the table to give it spacing inside each cell, making content easier to read,
and shades every alternate product listed with a pale yellow color to help your
customers differentiate long lists of products, as shown in the following screenshot:

Responsive Checkout and Cart in Magento

[64]

The CSS you just added will also shade every alternate product listed with a pale
yellow color to help your customers differentiate long items of products.

Removing unnecessary table columns for
mobile and smaller screened devices
If you view the cart page on a device with a smaller viewport width, you will see that
the cart's table content does not fit within the width of the screen available, as shown
in the following screenshot:

One workaround you can apply to this situation is to hide unnecessary columns,
and merge columns together. To do this, start by copying the cart.phtml file in
the app/design/frontend/base/default/template/checkout directory to
app/design/frontend/default/responsive/template/checkout.

Your first task is to merge the image and product name cells. To do this, find the
following line in the cart.phtml file:

<table id="shopping-cart-table" class="data-table cart-table">
<col width="1" />
<col />

Now remove the second line, so that it reads the same as the following line:

<table id="shopping-cart-table" class="data-table cart-table">
<col />

Next, locate the following section in the file:

<?php $mergedCells = ($this->helper('tax')->
 displayCartBothPrices() ? 2 : 1); ?>
<thead>
<tr>
<th rowspan="<?php echo $mergedCells; ?>"> </th>

Chapter 3

[65]

<th rowspan="<?php echo $mergedCells; ?>">
 <?php echo $this->__('Product Name') ?></th>

Remove the highlighted line so that it becomes the following code snippet:

<?php $mergedCells = ($this->helper('tax')->
 displayCartBothPrices() ? 2 : 1); ?>
<thead>
<tr>
<th rowspan="<?php echo $mergedCells; ?>">
 <?php echo $this->__('Product Name') ?></th>

Finally, copy the app/design/frontend/base/default/template/checkout/
cart/item/default.phtml file to app/design/frontend/default/responsive/
template/checkout/cart/item/default.phtml, and find the following lines
which output the product image into the cart table:

<td>
<?php if ($this->hasProductUrl()):?><a href="
 <?php echo $this->getProductUrl() ?>" title="
 <?php echo $this->htmlEscape($this->getProductName()) ?>"
 class="product-image"><?php endif;?><img src="
 <?php echo $this->getProductThumbnail()->resize(75); ?>" width="75"
 height="75" alt="<?php echo $this->htmlEscape
 ($this->getProductName()) ?>" /><?php if
 ($this->hasProductUrl()):?><?php endif;?>
</td>

Copy the preceding highlighted code, and remove the surrounding table cell elements
(<td> and </td> from the file). Paste it in to the following table cell, so that it now
looks similar to the following code snippet:

<td>
<?php if ($this->hasProductUrl()):?><a href="
 <?php echo $this->getProductUrl() ?>" title="
 <?php echo $this->htmlEscape($this->getProductName()) ?>"
 class="product-image"><?php endif;?><img src="
 <?php echo $this->getProductThumbnail()->resize(75); ?>" width="75"
 height="75" alt="<?php echo $this->htmlEscape
 ($this->getProductName()) ?>" /><?php if
 ($this->hasProductUrl()):?><?php endif;?>
<h2 class="product-name">
<?php if ($this->hasProductUrl()):?>
<a href="<?php echo $this->getProductUrl() ?>">
 <?php echo $this->htmlEscape($this->getProductName()) ?>
<?php else: ?>
<?php echo $this->htmlEscape($this->getProductName()) ?>
<?php endif; ?>
</h2>

Responsive Checkout and Cart in Magento

[66]

Once saved to your Magento theme, you should now see the slimmed-down version
of your cart, as shown in the following screenshot:

On larger screens, the product name and image may require some styling as you can
see in the following screenshot:

Chapter 3

[67]

Open your styles.css file and add the following code within your media query for
tablet and desktop viewport widths:

@media only screen and (min-width: 50em) {
 /* other CSS */
 .cart-table .product-image,
 .cart-table h2.product-name {
 display: inline;
 float: left;
 margin: 0 20px 20px 0;
 }
 .cart-table h2.product-name a {
 display: block;
 }
 .cart-table tbody td:first-of-type {
 min-width: 350px;
 }
}

That's it! The basics of your responsive Magento cart page are ready, as shown in the
following screenshot:

Responsive Checkout and Cart in Magento

[68]

Responsive one page checkout in
Magento
Your next step to create your responsive Magento theme is customizing the one page
Checkout, which is the Magento's one page checkout. At the moment, you will see
this is quite unstyled, as shown in the following screenshot:

Open your theme's styles.css file in the skin/frontend/default/responsive/
css directory and begin to style the one page checkout sections first. You can do by
adding the following CSS outside any media queries you have previously created so
it applies to all devices:

.opc .step {
 background: #fff9De;
 border-bottom-right-radius: 10px;
 border-bottom-left-radius: 10px;
 padding: 10px;
}
.opc .section {
 clear: both;
 margin-bottom: 20px;
}

Chapter 3

[69]

.opc .step-title {
 background: #777;
 border-top-right-radius: 10px;
 border-top-left-radius: 10px;
 color: #fff;
 padding: 10px;
}
.opc .allow .step-title {
 background: #333;
}
.opc .active .step-title {
 background: #FC0;
 color: #333;
}
.opc .active .step-title a,
.opc .active .step-title h2 {
 color: #333;
}
.step-title h2, .step-title a {
 color: #fff;
 vertical-align: middle;
}
.step-title .number {
 background: #fff;
 border-radius: 50%;
 color: #333;
 float: left;
 margin: 0 10px 0 0;
 padding: 0 5px;
}
.step-title a {
 float: right;
}

This provides some layout and styling to the elements in the one page checkout to give
the sections visual hierarchy and to make it clear which step the customer is currently
viewing, and which of the previous steps they are able to revisit and change.

Columns not being displayed correctly? If you're only viewing, you
will need to clear your floated items. Look in the styles.css file in
the skin/frontend/default/default/css directory and you
will see a section that begins with the comment: /* Clears. Copy this
block of CSS to the bottom of your own theme's styles.css file.

Responsive Checkout and Cart in Magento

[70]

Your next step defines some style for form elements within the one page checkout:

.wide .input-text {
 width: 95%;
}
input:focus, input:active, select:focus, select:active,
 textarea:focus, textarea:active {
 border: 1px #fc0 solid;
}
.required em {
 color: #C00;
 margin-right: 5px;
}

If you save your progress and view your Magento store's one page checkout
now, you will see it now looks more friendly to customers, as shown in the
following screenshot:

Chapter 3

[71]

You can now style the Your Checkout Progress block which appears in the
column on the right-hand side of your store. Once again in your theme's
styles.css file, add the following CSS to begin styling the generic blocks
that appear in Magento's sidebars:

.block {
 background: #fff9De;
 border-radius: 10px;
 margin-bottom: 20px;
 padding: 10px;
}
.block .block-title {
 border-bottom: 1px #fc0 solid;
 font-weight: bold;
 margin-bottom: 10px;
}

Once you have done this, you can begin to style the one page checkout progress
block specifically by adding the following CSS to your theme's styles.css file:

.block {
 background: #fff9De;
 border-radius: 10px;
 margin-bottom: 20px;
 padding: 10px;
}
.block .block-title {
 border-bottom: 1px #fc0 solid;
 font-weight: bold;
 margin-bottom: 10px;
}
.opc-block-progress dt {
 font-weight: bold;
}
.opc-block-progress dd {
 margin-bottom: 10px;
}

Responsive Checkout and Cart in Magento

[72]

Refreshing your store's checkout page and progressing through the first few initial
steps, you will see that the progress block in the sidebar is now more distinct, as
shown in the following screenshot:

On devices with smaller screens, the one page checkout defaults to a one-column
layout, as shown in the following screenshot:

Chapter 3

[73]

Styling Magento customer account pages
responsively
Previously in this chapter, you applied a general style to form elements, so part of
your work on the customer account pages is done already!

Setting the account login page template to a
one-column layout
At present, your login a page for customers will look similar to the following screenshot:

You can make better use of the space here by adding some CSS within your
desktop/larger screen media query. This ensures that pages with the one-column
layout assigned to them display the main column of content, the full width of the
screen, and can be done by adding the following CSS to your theme's styles.css file:

@media only screen and (min-width: 50em) {
 /* Other CSS */
 .col1-layout .col-main {
 float: none;
 width: 94%;
 }
 .customer-account-login .page-title {
 text-align: center;
 }
}

Responsive Checkout and Cart in Magento

[74]

The preceding code fills the screen for devices with larger screens, but the default
login screen does not work well for small screen devices because the Login and
Register buttons do not appear directly under their respective forms, as shown in
the following screenshot:

You can fix this by copying the file at app/design/frontend/base/default/
template/persistent/customer/form/login.phtml to app/design/frontend/
default/responsive/template/persistent/customer/form/login.phtml.
Once you have done this, open the file for editing, and move the buttons so that the
registration block looks similar to the following code:

<div class="col-1 new-users">
<div class="content">
<h2><?php echo $this->__('New Customers') ?></h2>
<p><?php echo $this->__('By creating an account with our store,
 you will be able to move through the checkout process faster,
 store multiple shipping addresses, view and track your orders in
 your account and more.') ?></p>
</div>
<div class="buttons-set">
 <button type="button" title="<?php echo $this->__
 ('Create an Account') ?>" class="button" onclick="window.location='
 <?php echo Mage::helper('persistent')->getCreateAccountUrl
 ($this->getCreateAccountUrl()) ?>';">
 <?php echo $this->__('Create an Account') ?></button>
</div>
</div>

Chapter 3

[75]

Similarly, your login section should look similar to the following code now:

<div class="col-2 registered-users">
<div class="content">
<h2><?php echo $this->__('Registered Customers') ?></h2>
<p><?php echo $this->__('If you have an account with us, please
 log in.') ?></p>
<ul class="form-list">

<label for="email" class="required">*
 <?php echo $this->__('Email Address') ?></label>
<div class="input-box">
<input type="text" name="login[username]" value="
 <?php echo $this->htmlEscape($this->getUsername()) ?>"
 id="email" class="input-text required-entry validate-email"
 title="<?php echo $this->__('Email Address') ?>" />
</div>

<label for="pass" class="required">*<?php echo
 $this->__('Password') ?></label>
<div class="input-box">
<input type="password" name="login[password]" class="input-text
 required-entry validate-password" id="pass" title="
 <?php echo $this->__('Password') ?>" />
</div>

<?php echo $this->getChildHtml('form.additional.info'); ?>
<?php echo $this->getChildHtml('persistent.remember.me'); ?>

<?php echo $this->getChildHtml('persistent.remember.me.tooltip');
 ?>
<p class="required"><?php echo $this->__('* Required Fields')
 ?></p>
<div class="buttons-set">
<a href="<?php echo $this->getForgotPasswordUrl() ?>"
 class="f-left"><?php echo $this->__('Forgot Your Password?') ?>
<button type="submit" class="button" title="<?php echo
 $this->__('Login') ?>" name="send" id="send2">
 <?php echo $this->__('Login') ?></button>
</div>
</div>
</div>

Responsive Checkout and Cart in Magento

[76]

Once you have uploaded this file and refreshed the page, you'll see that the
relevant button(s) have now appeared under the corresponding area, as shown
in the following screenshot:

Styling error messages
If you attempt to login and provide an incorrect e-mail address or password, you
will be presented with the following error message:

Chapter 3

[77]

This is okay, but a little styling added to your theme's styles.css file can give it
more prominence for customers, so they understand there's a problem. To do this,
add the following code snippet to your theme's stylesheet:

.messages {
 clear: both;
}
.error-msg {
 background: #fdf2f2;
 border-radius: 10px;
 color: #C00;
 margin-bottom: 5px;
 padding: 5px;
 text-align: center;
}
.col-main .messages ul ul {
 margin: 0;

}

If you now fail logging in again, you'll see the message is more prominent on the
page now, as shown in the following screenshot:

Responsive Checkout and Cart in Magento

[78]

Removing the My Applications and My
Downloadable Products links from the
Magento customer account area
For the next stage, you will need to have created a customer account on your
Magento store, and ensure you are logged in to the customer account area,
as shown in the following screenshot:

As you can see, the basic layout and styling are there already for the account pages,
but there may be a few links in the My Account block in the left-hand side column
that you may wish to remove, such as the My Applications and My Downloadable
Products links.

You can remove some through Magento's backend, so navigate to System |
Configuration in your Magento store's administration panel, and select the
Advanced tab in the left-hand side column, as shown in the following screenshot:

Chapter 3

[79]

In the Disable Modules Output section, you can set the drop-down value to Disable
for the modules you wish to disable, as shown in the following screenshot:

The My Applications, Recurring Profiles, and Billing Agreements links will remain
(even if you disable the Mage_OAuth module). To disable these links from your
accounts menu, create the following blank files in your app/design/frontend/
default/responsive/layout/sales directory:

• billing_agreement.xml

• recurring_profile.xml

This will remove the Billing Agreements and Recurring Profiles links respectively.
To remove the My Applications link, you will need to copy the oauth.xml file from
the app/design/frontend/base/default/layout directory to the app/design/
frontend/default/responsive/layout directory. You will then need to find the
following code in this file:

<customer_account>
<reference name="customer_account_navigation">
<action method="addLink" translate="label" module="oauth">
<name>OAuth Customer Tokens</name>
<path>oauth/customer_token</path>
<label>My Applications</label>
</action>
</reference>
</customer_account>
<oauth_customer_token_index translate="label">
<label>Customer My Account My OAuth Applications</label>
<update handle="customer_account"/>
<reference name="my.account.wrapper">
<block type="oauth/customer_token_list"
 name="oauth_customer_token_list"
 template="oauth/customer/token/list.phtml"/>
</reference>
</oauth_customer_token_index>

Responsive Checkout and Cart in Magento

[80]

Now remove it entirely from your theme's oauth.xml file. Save this file, and the
links will be removed once you refresh your Magento store's customer account
pages, as shown in the following screenshot:

Summary
This chapter developed your new responsive Magento theme further, adding
customizations for:

• Styling Magento's shopping cart pages responsively
• Styling Magento's one page checkout responsively
• Styling customer account pages

The final chapter will help to guide you through some further enhancements
that you can make to your Magento store to help customers on both small
and large-screened devices.

Enhancing Your Responsive
Magento Theme

You've now laid the basics of your responsive Magento theme; you can now go
about enhancing it for your customers. This chapter covers:

• Including css3-mediaqueries.js to better support older versions of
Internet Explorer

• Improving the data entry at checkout for mobile customers
• Using the CSS @font-face rule to use custom fonts in your Magento theme

While not strictly necessary for your responsive Magento theme, these tasks can
make your customers' experience of your store much easier and more enjoyable,
which will hopefully lead to better yields from your website!

Supporting CSS media queries in Internet
Explorer with css3-mediaqueries.js
By default, earlier versions of Internet Explorer (8 and before) do not support the
CSS media queries that you have used to make your Magento theme responsive.

For more information on browser support of CSS media queries, see
http://caniuse.com/css-mediaqueries.

http://caniuse.com/css-mediaqueries

Enhancing Your Responsive Magento Theme

[82]

If you view your store in Internet Explorer 8 or earlier at the moment, you will see
the following screenshot:

As the CSS relating to widths and layout of columns is within the media query for
larger-screened devices, and the browser doesn't understand media queries, this CSS is
ignored and no layout (or other styling within the media query) is applied to the page.

You can rectify this by including a JavaScript library called css3-mediaqueries.
js to your Magento theme. Firstly, go to https://code.google.com/p/css3-
mediaqueries-js/downloads/list and download the css3-mediaqueries.js file.
Save this to the skin/frontend/default/responsive/js directory.

It's worth noting that the css3-mediaqueries.js library only supports the @media
type and not media queries provided in the following format:

<link rel="stylesheet" type="text/css" href="style.css"
 media="screen and (min-width: 50em)">

https://code.google.com/p/css3-mediaqueries-js/downloads/list
https://code.google.com/p/css3-mediaqueries-js/downloads/list

Chapter 4

[83]

Adding a JavaScript file to your Magento
theme through local.xml
Open your theme's local.xml file in the app/design/frontend/default/
responsive/layout directory and locate the <default> handle which applies
its changes to every page on your Magento store. Save the following code in your
theme's local.xml file:

<?xml version="1.0"?>
<layout version="0.1.0">
<default>
<reference name="head">
<action method="addItem">
<type>skin_js</type>
<name>js/css3-mediaqueries.js</name>
<params/><if>lt IE 7</if>
</action>
</reference>
</default>
<!-- other layout -->
</layout>

If you now refresh your Magento theme in Internet Explorer 8, you'll see that styling
within the media query appears, providing columns for the layout and the additional
styling for the category navigation dropdowns, as shown in the following screenshot:

Enhancing Your Responsive Magento Theme

[84]

Improving Magento store data entry for
customers
One of the many potential barriers to mobile or smaller-screened devices being used to
complete e-commerce orders is data entry. For example, entering your e-mail address
when logging in on a mobile device such as an iPhone displays the following keypad:

This is okay. The user can find all of the keys they need, but it's not as efficient as
it could be. HTML5 introduced new input types which, on more modern devices,
provide a keyboard tailored to its use. So, for this field, you could change the input
type to be type="email" rather than the (default) type="text".

Changing your Magento theme's doctype
to HTML5
The first step in this process is to change your Magento theme's HTML
doctype from the default. To do this, copy the skeleton template files from
the app/design/frontend/base/default/template/page/html directory
to the app/design/frontend/default/responsive/template/page/html
directory. These should include:

• 1column.phtml

• 2columns-left.phtml

Chapter 4

[85]

• 2columns-right.phtml

• 3columns.phtml

In each of these files, locate the following two lines that read:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php echo
 $this->getLang() ?>" lang="<?php echo $this->getLang() ?>">

Change these lines to read the following code:

<!DOCTYPE html>
<!--[if lt IE 7]><html lang="<?php echo $this->getLang() ?>"
 class="no-js lt-ie9 lt-ie8 lt-ie7"><![endif]-->
<!--[if IE 7]><html lang="<?php echo $this->getLang() ?>"
 class="no-js lt-ie9 lt-ie8"><![endif]-->
<!--[if IE 8]><html lang="<?php echo $this->getLang() ?>"
 class="no-js lt-ie9"><![endif]-->
<!--[if gt IE 8]><!--><html lang="<?php echo $this->getLang() ?>"
 class="no-js"><!--<![endif]-->

Doing this also allows you to address independent versions of Internet
Explorer using the class assigned to the html element.

This changes your Magento theme's doctype to HTML5, which now allows you to
make use of the new input types available.

Changing the input type value for login
To change the login screen's e-mail field input type, you will need to edit the
login.phtml file in the app/design/frontend/default/responsive/template/
persistent/customer/form directory. Locate the current e-mail address field for
customers logging in, which should look similar to the following code snippet:

<label for="email" class="required">*
 <?php echo $this->__('Email Address') ?></label>
<div class="input-box">
<input type="text" name="login[username]" value="
 <?php echo $this->htmlEscape($this->getUsername()) ?>"
 id="email" class="input-text required-entry validate-email"
 title="<?php echo $this->__('Email Address') ?>" />
</div>

Enhancing Your Responsive Magento Theme

[86]

Change the type attribute on the input element here to read email:

<input type="email" name="login[username]" value="
 <?php echo $this->htmlEscape($this->getUsername()) ?>"
 id="email" class="input-text required-entry validate-email"
 title="<?php echo $this->__('Email Address') ?>" />

If you now save this file and attempt to edit the field's content on a smartphone
or tablet device which supports HTML5 input types, you should see a slightly
altered keypad better suited to entering an e-mail address, as shown in the
following screenshot:

Devices that don't support the input type="email" attribute simply
revert the type back to input type="text", which is supported.

Changing the input type value for registration
You're able to do this for the customer registration form on your Magento store too.
You can make similar substitutes throughout the forms in your Magento theme.
Some useful input types in addition to the type="email" attribute introduced in
the previous section that you might use are:

Chapter 4

[87]

• type="search": Used for search query fields. This can change modern
browser's behaviors, such as changing the submit button for the keypad
to Search instead of Go or Enter.

• type="url": Used for web addresses. Some web browsers may provide
client-side validation for the URL for this field.

• type="tel": Used for telephone numbers.

For some background reading on HTML5 input types, see
http://html5doctor.com/html5-forms-input-types/.

Copy the register.phtml form from app/design/frontend/base/default/
template/persistent/customer/form to app/design/frontend/default/
responsive/template/persistent/customer/form and open it to begin
making changes. First, you are likely to find the following code:

<div class="input-box">
<input type="text" name="email" id="email_address" value="
 <?php echo $this->escapeHtml($this->getFormData()->getEmail())
 ?>" title="<?php echo $this->__('Email Address') ?>"
 class="input-text validate-email required-entry" />
</div>

As before, change the type attribute in the preceding input element to email so that
it reads as follows:

<div class="input-box">
<input type="email" name="email" id="email_address" value="
 <?php echo $this->escapeHtml($this->getFormData()->getEmail())
 ?>" title="<?php echo $this->__('Email Address') ?>"
 class="input-text validate-email required-entry" />
</div>

Further down the template file, you will find an input for the customer's telephone
number, which you can change to be type="tel":

<div class="input-box">
<input type="tel" name="telephone" id="telephone" value="
 <?php echo $this->escapeHtml($this->getFormData()->
 getTelephone()) ?>" title="<?php echo $this->__('Telephone') ?>"
 class="input-text <?php echo $this->helper('customer/address')->
 getAttributeValidationClass('telephone') ?>" />
</div>

http://html5doctor.com/html5-forms-input-types/

Enhancing Your Responsive Magento Theme

[88]

At the moment, this field presents a keyboard when viewed on a smartphone,
as shown in the following screenshot:

Once uploaded, you can see the change take effect for those fields you changed.
If, for instance, you attempt to edit the Telephone field on the customer registration
page, you will now be presented with a more relevant numerical keypad on most
smartphone devices, as shown in the following screenshot:

Chapter 4

[89]

If you can't see the address or telephone number fields at the registration process,
you may need to add the following code to your theme's local.xml file:

<customer_account_create>
<reference name="customer_form_register">
<action method="setShowAddressFields"><param>true</param></action>
</reference>
</customer_account_create>

Using the CSS @font-face rule to use
custom fonts in your Magento theme
So far, your new Magento theme makes use of standard fonts provided by the
browser, as shown in the following screenshot:

By using CSS @font-face rule, it's possible to add your own custom fonts to your
theme. One of the nicest ways to do this is through Google Fonts. The Google Font
page (http://www.google.com/fonts) provides a HTML snippet to embed a URL
to the stylesheet specific to the font you want to use, which will look something
similar to the following code:

<link href='http://fonts.googleapis.com/css?family=Open+Sans'
 rel='stylesheet' type='text/css'>

http://www.google.com/fonts

Enhancing Your Responsive Magento Theme

[90]

All you require from this is the value of the href attribute—the URL to the font's
stylesheet itself at http://fonts.googleapis.com/css?family=Open+Sans.

Once you have selected your preferred font (for example, http://www.google.com/
fonts#UsePlace:use/Collection:Open+Sans), open your theme's styles.css file
in the skin/frontend/default/responsive/css directory and place the following
line at the top of your CSS file to import the new font in to your file:

@import url('http://fonts.googleapis.com/css?family=Open+Sans');

You can then use the new font in your Magento theme's stylesheet. For example,
to change all fonts throughout the website, to use the new font, and add the
font-family attribute to the body element:

body {
 /* Other CSS */
 font-family: "Open Sans", Arial, sans-serif;
}

Replace Open Sans in the preceding code with the
name of your chosen font.

If you save this change and then refresh your Magento store, you will see that the
font throughout has changed, as shown in the following screenshot:

http://www.google.com/fonts#UsePlace:use/Collection:Open+Sans
http://www.google.com/fonts#UsePlace:use/Collection:Open+Sans

Chapter 4

[91]

You will need to include the HTTPS URL for your chosen web font to
prevent SSL errors occurring in secure pages. Just replace http://
in the preceding code with https:// in the URL to the font file from
Google Fonts.

Summary
This chapter has helped you to enhance your Magento theme for your
customers, including:

• Using the css3-mediaqueries.js polyfill to help Internet Explorer support
media queries in older versions, so your website is functional for as many
customers as possible

• Making use of the CSS @font-face rule to customize the look and feel of
your store to customers

• Customizing Magento's form inputs to better help customers on mobile
and tablet devices to enter their details

Throughout this book, you have been guided towards creating a simple responsive
Magento theme. Magento is an extensive e-commerce system, so there is probably
much that you still want to change and update from this theme, but with the tips
and tricks here you should be off to a good start.

Index
A
account log

setting 73-76
Add New Block button 30
advanced navigation 24

C
cart tables

styling 62, 64
category grid view 50, 51
category list view 46, 47
common breakpoints 19
CSS

adding, for changing footer link 40, 41
adding, for changing header link 40, 41
adding, for larger screens 39

CSS @font-face rule
used, to add custom fonts in Magento

theme 89, 90
CSS footer

adding 38, 39
CSS header

adding 38, 39
CSS media queries

supporting, in Internet Explorer with
css3-mediaqueries.js 81, 82

URL 81
CSS styling

adding, for Magento theme 6, 7
custom fonts, adding

CSS @font-face rule, using 89, 90

D
definitive style

making 44, 45
dropdown navigation

for Magento store 31-36

E
e-commerce navigation

advanced navigation 24
simple navigation 24
styling, in Magento 24, 25

error messages
styling 76

F
footer sitemap navigation

adding 29, 30
form elements

styling 58-61

G
Github

URL 7
Google Font page

URL 89
Grid view 46

H
header template

skip-to link, adding 26-28

[94]

height attribute
removing 54, 55

href attribute 90
HTML5

Magento theme doctype, changing to 84, 85
HTML5 input types

URL 87

I
images

styling, in Magento theme 19-23
input type value

changing, for login 85, 86
changing, for registration 86-89

Internet Explorer
CSS media queries, supporting with

css3-mediaqueries.js 81, 82

J
JavaScript file

adding, to Magento theme through local.
xml 83

L
List view 46
login

input type value, changing for 85, 86

M
Magento

e-commerce navigation, styling 24, 25
Grid view 46
List view 46
Responsive one page checkout, using 68-72
Responsive product page layout 42
Responsive shopping cart, using 57

Magento cart page
shipping estimate tool, removing from 62

Magento customer account pages
account log, setting 73-76
error messages, styling 76
My Applications, removing from customer

account 78

My Applications, removing from Magento
customer account area 79

My Downloadable Products links,
removing from customer account 78,
79

styling 73
Magento inheritance system

working, URL 10
Magento search results

dealing with 52
product images, resizing 53

Magento store
dropdown navigation, using for 31-36
skip to footer navigation, adding 25

Magento store data entry
improving, for customers 84

Magento templates
overwriting 14, 15

Magento theme
basic CSS styling, adding for 6, 7
basic XML layout, adding for 7, 8
creating 5, 6
default Magento templates,

overwriting 14, 15
enabling 11-13
hierarchy 9, 10
images, styling 19-23
JavaScript file, adding through local.xml 83
media queries, adding 15-19
meta viewport element, adding 8, 9

Magento theme doctype
changing, to HTML5 84, 85

Magento theme hierarchy
working, URL 10

Magento theme hierarchy and fallbacks
URL 10

max-width property 53
media queries

adding, to Magento theme 15-19
meta viewport element

adding 8, 9
Mozilla's Developer

URL 15
My Applications

removing, from customer account 78, 79

[95]

My Downloadable Products links
removing, from customer account 78, 79

N
native browser support

of media queries, URL 55

P
pagination option 48, 49
product image

laying out 43
resizing 53

product information
laying out 43

product pager option 48, 49

R
registration

input type value, changing for 86-89
Responsive category page layout

about 46
category grid view 50, 51
category list view 46, 47
pagination option 48, 49
product pager option 48, 49
sort by dropdown option 48, 49

Responsive one page checkout
in Magento 68-72

Responsive product page layout
definitive style, making 44, 45
in Magento 42
product image, laying out 43
product information, laying out 43

Responsive shopping cart
cart tables, styling 62, 64
form elements, styling 58-61
in Magento 57
shipping estimate tool, removing from

Magento cart page 62

unnecessary table columns, removing for
mobile 64-67

S
Save Block button 30
Save Config button 13
Save Page button 22
shipping estimate tool

removing, from Magento cart page 62
Show / Hide Editor button 21
simple navigation 24
skip to footer navigation

adding, to Magento store 25
skip-to link

adding, in header template 26-28
Skip to navigation button 30
sort by dropdown option 48, 49

T
type attribute 86, 87

U
unnecessary table columns

removing, for mobile 64-67
removing, for smaller screened

devices 64-67

W
website footer

laying out 37, 38
website header

laying out 37, 38
width attribute

removing 54, 55

X
XML layout

adding, for Magento theme 7, 8

Thank you for buying
Magento Responsive Theme Design

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant E-Commerce with
Magento: Build a Shop
ISBN: 978-1-78216-486-9 Paperback: 52 pages

A fast-paced, practical guide to building your own
shop with Magento

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Learn how to install and configure an online
shop with Magento

3. Tackle difficult tasks like payment gateways,
shipping options, and custom theming

4. Full of clear screenshots and step-by-step
instructions

Magento 1.3: PHP Developer's
Guide
ISBN: 978-1-84719-742-9 Paperback: 260 pages

Design, develop, and deploy feature-rich Magento
online stores with PHP coding

1. Extend and customize the Magento e-commerce
system using PHP code

2. Set up your own data profile to import or
export data in Magento

3. Build applications that interface with the
customer, product, and order data using
Magento's Core API

4. Packed with examples for effective Magento
Development

Please check www.PacktPub.com for information on our titles

Instant Magento Shipping How-to
ISBN: 978-1-78216-540-8 Paperback: 58 pages

Making Magento shipping settings work for your
business

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Set up popular shipping methods such as Table
Rates

3. Easily manage orders with reports and tools

4. Order through the shipment phase

Magento Beginner's Guide -
Second Edition
ISBN: 978-1-78216-270-4 Paperback: 320 pages

Learn how to create a fully featured, attractive online
store with the most powerful open source solution for
e-commerce

1. Install, configure, and manage your own
e-commerce store

2. Extend and customize your store to reflect your
brand and personality

3. Handle tax, shipping, and custom orders

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Beginning a Responsive Magento Theme
	Creating your Magento theme
	Adding the basic CSS styling for your Magento theme
	Adding the basic XML layout for your Magento theme
	Adding the meta viewport element
	A note on Magento theme hierarchy
	Magento theme hierarchy

	Enabling your new theme in Magento
	Overwriting the default Magento templates

	Adding the media queries to your Magento theme
	Some other common breakpoints

	Styling images responsively in your Magento theme
	Styling e-commerce navigation responsively in Magento
	Adding skip to footer navigation to your Magento store
	Adding the skip-to link in your header template
	Adding the footer sitemap navigation

	Dropdown navigation for your Magento store

	Summary

	Chapter 2:Making your Store Responsive
	Laying out your website's header and footer
	Adding the header and footer CSS
	Adding CSS for larger screens
	Adding CSS to change header and footer links

	Responsive product page layout in Magento
	Laying out the product image and product information
	Making a definitive style

	Responsive category page layout
	Category list view
	Product pager, pagination, and sort by dropdown
	Category grid view

	Dealing with Magento search results responsively
	Resizing product images
	Removing the height and width attributes

	Summary

	Chapter 3:Responsive Checkout and Cart in Magento
	Responsive shopping cart in Magento
	Styling form elements
	Removing the shipping estimate tool from the Magento cart page
	Styling cart tables
	Removing unnecessary table columns for mobile and smaller screened devices

	Responsive one page checkout in Magento
	Styling Magento customer account pages responsively
	Setting the account login a page template to a one-column layout
	Styling error messages
	Removing the My Applications and My Downloadable Products links from the Magento customer account area

	Summary

	Chapter 4:Enhancing your Responsive Magento Theme
	Supporting CSS media queries in Internet Explorer with css3-mediaqueries.js
	Adding a JavaScript file to your Magento theme through local.xml

	Improving Magento store data entry for customers
	Changing your Magento theme's doctype
to HTML5
	Changing the input type value for login
	Changing the input type value for registration

	Using the CSS @font-face rule to use custom fonts in your Magento theme
	Summary

	Index

