
www.allitebooks.com

http://www.allitebooks.org

What readers are saying about Mastering Dojo

I’m so glad to see this book released. Dojo has a lot of power, but

there’s also a lot of complexity to knowing which API methods to use

when, and how to use them, and this book goes beyond just explain-

ing the Dojo API to explaining what developers need to know to use it

effectively.

Bill Keese

Project lead for Dijit

IBM, Emerging Technology Group

Mastering Dojo will teach you how to build an Internet application

that will impress your end users and delight you while you’re writing

it. The book also explains Dojo’s JavaScript underpinnings, both for

newcomers and for refugees from other languages.

Ian Dees

Software engineer

The book really rolls out the red carpet for Dojo to emerge with guns

blazing! The authors show you how easy it is to use impressive

widgets without installing a thing. I was amazed to discover that

JavaScript is not just a toy language, how Dojo is built on top of it,

and how both are invaluable in any web development project. Buy

this book. It’s the next best thing to having the authors working at

your side.

Brian C. Reeve

Application developer, bluecomIT.com

Mastering Dojo is an understandable, in-depth guide to learning the

Dojo Toolkit. It’s a great supplement to the Dojo Toolkit’s online docu-

mentation.

Steve Orvell

Senior Engineer, WaveMaker Software

www.allitebooks.com

http://www.allitebooks.org

Mastering Dojo
JavaScript and Ajax Tools
for Great Web Experiences

Rawld Gill

Craig Riecke

Alex Russell

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

The Browser Application Framework code is Copyright © 2000-2008, Vista Information

Technologies, Inc., and released under the BSD license.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Rawld Gill, Craig Riecke and Alex Russell.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-11-5

ISBN-13: 978-1-934356-11-1

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

www.allitebooks.com

http://www.allitebooks.org

Contents
1 Introduction 9

1.1 Key Aspects of Dojo . 12

1.2 Using the Book . 15

1.3 Acknowledgments . 17

I Ajax the Dojo Way 19

2 Powerful Web Forms Made Easy 20

2.1 What Customers Are Saying About Your Form 21

2.2 Installing Dojo on Your Own Server 21

2.3 Adding Dojo and Dijit to a Page 22

2.4 Laying Out the Form . 26

2.5 Improved Form Controls 31

2.6 Wrapping It Up . 34

3 Connecting to Outside Services 37

3.1 Dojo Remote Scripting 37

3.2 JavaScript Idioms for Calling XHR 39

3.3 A Wish List with dojo.data and dojox.grid.Grid 46

3.4 Researching Cigars Using JSONP 56

3.5 Reviews with dojo.xhrGet 63

3.6 Errors and Debugging 67

II The Dojo APIs 70

4 Dojo In Depth 71

4.1 Modularizing JavaScript 71

4.2 Dojo Source Code Organization 75

4.3 Loading Dojo . 78

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 6

5 JavaScript Language Extensions 83

5.1 Binding with dojo.hitch 83

5.2 JavaScript 1.6 Array Methods 90

5.3 Support for Polymorphism 94

5.4 Combining, Structuring, and Copying Objects 96

6 Asynchronous Programming 101

6.1 Programming DOM Events with Dojo 101

6.2 Connecting to User-Defined Events with Dojo 117

6.3 Publish-Subscribe . 120

6.4 Managing Callbacks with dojo.Deferred 123

7 DOM Utilities 140

7.1 Core Dojo DOM Utility Functions 140

7.2 Finding and Editing Nodes 145

7.3 Inserting, Moving, and Deleting DOM Nodes 158

7.4 Positioning DOM Nodes 161

7.5 Animation . 168

8 Remote Scripting with XHR, script, and iframe 178

8.1 Native Remote Scripting 178

8.2 Using the Dojo XHR Framework 180

8.3 Remote Scripting with script 199

8.4 Remote Scripting with iframe 207

8.5 Leveraging Remote Scripting to Access Web Services . 211

8.6 Bookmarking and the Back Button Without Navigating 218

9 Defining Classes with dojo.declare 225

9.1 Why Use Object-Oriented Programming in JavaScript? 225

9.2 Defining a Simple Class 226

9.3 Defining a Subclass with Single Inheritance 234

9.4 Mixins and Multiple Inheritance 239

9.5 Preprocessing Constructor Arguments 248

9.6 Resolving Property Name Clashes 252

9.7 Two-Phase Construction 255

9.8 Creating Custom Objects Without Constructors 257

10 dojo.data 260

10.1 The Big Picture . 261

10.2 dojo.data and Incremental Search 268

10.3 Partitioning with QueryReadStore 272

10.4 Calling Read Methods from JavaScript 275

10.5 A Yahoo Search Driver 280

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 7

11 The Dojo Loader and Build System 286

11.1 The Big Picture . 287

11.2 The Dojo Loader . 290

11.3 Optimizing Deployment with the Dojo Build System . . 299

11.4 Compressing JavaScript Resources with Dojo-Rhino . 313

III Advanced Dijit 318

12 Scripting Widgets 319

12.1 What Exactly Is a Widget? 319

12.2 Finding and Manipulating Declarative Widgets 322

12.3 Creating Instances Programmatically 327

12.4 Extension Points . 331

12.5 Example: Live Forms . 338

13 Tree 341

13.1 A Simple Tree . 341

13.2 Hierarchical Data Stores 344

13.3 Extension Points . 349

13.4 Manipulating the Tree . 351

13.5 Drag and Drop . 356

14 Grid 366

14.1 Grid Display and Design 367

14.2 Programmatic Structures 372

14.3 Extension Points . 375

14.4 Cell Editing . 385

14.5 Grid Manipulation . 389

15 Form Controls 394

15.1 Form Control Features 394

15.2 Streamlined Editing . 397

15.3 Feedback . 405

15.4 Dates, Numbers, and i18n 409

15.5 Action Buttons, Toolbars, and Menus 418

15.6 A11y . 422

16 Dijit Themes, Design, and Layout 428

16.1 Theme Structure . 428

16.2 Changing Look and Feel 435

16.3 A11y and Themes . 440

16.4 Panes: ContentPane and TitlePane 442

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 8

16.5 The Alignment Container: BorderContainer 447

16.6 Stack Containers . 451

17 Creating and Extending Widget Classes 455

17.1 Widget Classes Using dijit.Declaration 456

17.2 Widget Classes Using dojo.declare 461

17.3 The Widget Life Cycle . 466

17.4 Extending Widgets . 469

17.5 Example: A Yahoo Answers Widget 470

IV Rich Internet Applications 476

18 Building a Rich Internet Application 477

18.1 The Big Picture . 477

18.2 Step 1: Create the Application Skeleton 486

18.3 Step 2: The Main Menu and Command System 491

18.4 Step 3: A Custom Statusbar Widget 499

19 Adding Dynamic Content to an RIA 505

19.1 Step 4: The Navigator Pane and On-Demand Data Store 505

19.2 Step 5: Workspace Objects 515

20 Going Forward 529

20.1 Foundations . 529

20.2 Graphics . 531

20.3 Dojo Data and Storage 532

V Appendixes 533

A Bibliography 534

Index 536

www.allitebooks.com

http://www.allitebooks.org

Oh Kate, nice customs curtsy to great kings. Dear Kate, you

and I cannot be confined within the weak list of a country’s

fashion. We are the makers of manners.

William Shakespeare, Henry V

Chapter 1

Introduction
There’s a new king in town.

Over the past couple of years we’ve seen new technologies redefine the

rules of server-side web app development. It’s the client’s turn. Get

ready to throw out your current “customs” of client-side development.

With Dojo, we’re entering a new era of browser-based applications.

Dojo is a set of tools that helps you build better browser-based applica-

tions. Dojo is built mostly using client-side JavaScript, and it expands

the capabilities of the modern browser (and even Internet Explorer) far

enough that the line between local, native applications and browser-

based applications has all but disappeared.

This is a pretty significant statement. It means that browser-based

(and, therefore, web-based) user interfaces can be made indistinguish-

able from those included with the best local, native applications. And it

means that the user interface of local applications can be implemented

in the browser rather than through one of the heavy, platform-sensitive,

and complex native GUI frameworks (Windows, Tk, Qt, Fox, AWT, SWT,

Swing, Cocoa, and the rest).

The ubiquitous browser becomes the user interface platform. It no

longer matters where the back end lives: on a network of distant HTTP

servers or in a small local program that implements the HTTP protocol.

Unfortunately, the “modern” browser provides an incomplete, incon-

venient, and incompatible programming environment. You could get

around these problems using a plug-in such as ActionScript, but this

breaks an important rule: locally installed software is strictly forbidden.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1. INTRODUCTION 10

Although it may be OK to break this rule for a local application, it is

certainly not OK to break it for a web-based application.1 Enter Dojo.

Dojo fixes browser defects such as browser incompatibilities and mem-

ory leaks, and it adds important capabilities such as HTML user inter-

face controls and DOM querying. Although many JavaScript libraries

are available, most focus on one particular idea. Some include effects

libraries, others concentrate on perceived core JavaScript omissions,

and still others implement one or more HTML widgets (user interface

controls). In contrast, Dojo addresses all of these functional areas—and

many others—extensively. In this respect, we say that Dojo has breadth

and depth unlike any other open source solution.

For example, looking at Dojo’s depth, Dojo normalizes the event system

among the popular browsers (Internet Explorer does not implement the

W3C event model, and it leaks memory; most other browsers do the

opposite). If you want to connect to a click event in Dojo, you can write

the following:

dojo.connect(myButton, "click", myFunction);

This code will work perfectly on any supported browser. You can include

a tree control on a web page by writing this:

<div dojoType="dijit.Tree" label="Order" id="ordTree" store="ordJson" ></div>

This is quite a bit easier than what’s required in many native frame-

works.

Dojo also has incredible breadth. It includes some forty user interface

controls, a graphics framework, cometd support,2 a packaging system,

and much more. Today, Dojo stands alone in its vast capabilities.

You may be concerned that all of this capability implies increased com-

plexity. We think the opposite it true—at least if you compare apples to

apples. Dojo is organized into a hierarchy of functionality. This allows

you to focus on just the area you need for the current work at hand.

As your needs change and expand, Dojo will be ready to answer those

needs precisely because of its breath and depth. Contrast this to a

smaller, less-ambitious library. Although such an alternative may be

1. In the corporate world, installing anything on company computers is a big deal. If

you eliminate this road block, you can instantly open markets that were previously

untouchable.
2. Cometd is a low-latency communications technique that allows the server to push

data to the browser. See http://cometd.com/.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1. INTRODUCTION 11

Buzzwords

The terms Ajax, Web 2.0, and Rich Internet Application (RIA) are
so popular these days that sometimes it is not completely clear
what they mean. Given what we can do with modern browser
programming techniques, Ajax has come to mean “the way
we do modern web apps.” That’s the way we use it. Web 2.0 is
as much a business strategy as a technical term. We’ll avoid it.
Finally, a local, browser-based application that communicates
with an on-host HTTP server is usually considered an example
of an RIA, yet such a program isn’t an Internet application. But
the word is pervasive, so we’ll use it. When we do, we mean a
mostly single-page, browser-based application. Ahh, precision.

easier to digest on day one (and we dispute even this), three or six

months later when you need a capability that the library does not pro-

vide, you are left with either learning another library or implementing

something yourself. Both of these choices imply much more complexity

and cost than using Dojo from the beginning.

Further, one of the core values of the Dojo contributor community is

“beat down complexity.” All key attributes of Dojo’s design have been

vigorously debated, implemented and reimplemented, tested, and used

with this value in mind. Rather than ignore defects and build beautiful

new buildings on sinking swamp land, the Dojo community has mixed

the mature, rational, even skeptical engineer’s approach with the fast-

moving forward thinking of the young hacker. There is real substance

behind these words: the community spent most of 2007 refactoring the

core system. This is surely a sign of commitment to excellence and pro-

fessionalism, which can sometimes be missing in open source projects.

Finally, you should know that Dojo is not an academic project. It’s being

used in hundreds of projects at hundreds of companies. Navigate to

http://www.myaol.com, and hit View Source. Dojo is there. IBM is a major

contributor to the Dojo foundation—and is using Dojo in its WebSphere

stack. BEA and Sun ship Dojo with their products. With this kind of

Fortune 100 usage and sponsorship, you can be sure that Dojo is here

for the long haul.

KEY ASPECTS OF DOJO 12

1.1 Key Aspects of Dojo

Let’s survey the broad landscape that is Dojo.

Not Just a Library—A Toolkit

Dojo is a collection of static, client-side JavaScript scripts. There is no

client-side plug-in or server-side components. It includes the following:

• A design and implementation that normalizes the browser, allow-

ing the same source code to work in several browsers (no more

browser/feature sniffing and resulting browser-dependent code).

• Functions/libraries that abstract the sometimes-obtuse, arcane,

and inconvenient W3C DOM programming model into a conve-

nient, parsimonious, efficient interface.

• Functions/libraries that fix several gross browser errors such as

memory leaks; others that provide functionality likely to be avail-

able natively in the browser in a few years—today!

• A library of arguably the largest single set of HTML widgets avail-

able today.

• A module system coupled with a build system that lets you divide

code into small, manageable chunks during development and later

package the release system for optimal download performance—

without any modifications to the source code. The build system

even lets you slice and dice Dojo itself in a way that’s optimal for

your project.

• Independent libraries (that is, you can load them on demand) that

implement several other advanced capabilities.

Several of the libraries result in frameworks for the following:

• Building custom HTML widgets

• Internationalization (i18n)

• Localization (l10n)

• Accessibility (a11y)

Dojo also includes a utility application called the build system that

packages large projects that may include hundreds of files into small,

optimal sets of compressed files for deployment on production servers.

KEY ASPECTS OF DOJO 13

At the time of this writing, Dojo officially supports Internet Explorer

(6+), Firefox (1.5+), Safari (3+), and Opera (9+, Dijit doesn’t support

Opera).

Since Dojo is pure JavaScript, it can be used in nonbrowser, Spider-

Monkey-embedded, and Rhino-embedded environments. Of course,

much of Dojo—anything that leverages HTML, CSS, and/or XHR—is

not applicable in these environments. Still, there is an inner core of

functionality that is useful. The loader, language extensions, asynchro-

nous programming, object-oriented programming, and Common Locale

Data Repository functionality depend upon nothing but JavaScript and

can be used in these nonbrowser environments.3

Dojo Targets a Wide Audience

Dojo aggressively targets a broad range of users, from designers of sim-

ple web sites through enterprise application developers. This is a very

tough requirement to get right since design decisions that are optimal

for one group are often less so for another. Most “web design” tasks can

be accomplished by simply loading the script dojo.js. In this respect,

Dojo is as lightweight and easy to use as the best competing libraries.

On the other hand, larger projects require more. Dojo includes machin-

ery to load different function families upon demand. This design gives

Dojo users the luxury of digesting exactly as much complexity as they

need to solve the problem at hand.

Dojo Targets the Future

The state of the browser-based programming environment is another

major force behind Dojo’s philosophy and content. If the browsers were

standards-compliant (or, at least compatible), if JavaScript and the

DOM API fixed some glaring shortcomings, and if HTML included user

interface controls more modern than 1989, then much of Dojo wouldn’t

be required. The architects of Dojo recognize that, eventually, these

defects will be fixed. And when native functionality becomes available,

you’ll want to use it rather than a scripted alternative. Dojo was created

to solve key defects in the browser-based programming environment so

that modern, highly capable programs (indeed, programs rivaling native

applications) can be targeted to the browser—while preparing for a for-

ward upgrade path as the native browser environment improves.

3. Using Dojo outside the browser is beyond the scope of this book.

KEY ASPECTS OF DOJO 14

Since browsers won’t be fixed in a single flash, Dojo’s modular design

can hook into these facilities directly—on a per-facility/per-browser

level—as they become available. In short, Dojo provides a stable,

browser-based programming environment, even as we enter the next

round of browser wars.

Dojo Is Open Source

The source code is free and available. It is dual-licensed under either

the terms of the modified BSD license or the Academic Free License

version 2.1. The BSD license is very friendly to commercial products;

it allows you to use or modify Dojo in your own commercial products

without any requirement to open source anything that you do. Nat-

urally, you can change whatever you want for such products. (Heck,

under the BSD license, you could sell unmodified copies of Dojo.)

The development process is rigorous and open. Source code is main-

tained in an SVN repository; defects and enhancements are tracked

by Trac. Anonymous access is available to both. Coding style guide-

lines are enforced, and code must be accompanied by unit tests prior

to inclusion in the key release sets.

There are avenues of free support through forums and mailing lists as

well as companies that provide for-fee services.

Unlike many open source projects, Dojo is backed by a foundation. The

Dojo Foundation is a 501(c)(6) nonprofit organized to help promote the

adoption of Dojo and to provide a healthy environment for JavaScript

engineering of every stripe. One of the key benefits that the foundation

affords is the ability to insulate users from hidden liabilities (for exam-

ple, patent or copyright infringement) regarding the use of the code.

All things Dojo discussed here start at http://dojotoolkit.org/.

Dojo Is Divided Into Three Projects

Dojo includes three projects:

• Dojo: The foundation upon which everything else is built. Alto-

gether, it includes about fifty JavaScript scripts and several other

resources that handle browser normalization, JavaScript modu-

larization, extensions to the core JavaScript library, extensions to

the W3C DOM API (including a parsing and querying the DOM),

remote scripting, Firebug Lite, drag and drop, a data store API,

USING THE BOOK 15

localization and internationalization, and a few other miscella-

neous functions.

• Dijit: The Dojo widget framework and built-in widgets (about forty

HTML user interface widgets).

• Dojox: Dojo extensions. This includes everything from the grid

widget to graphics libraries. Dojox is the Wild West of Dojo—there

are some very sophisticated and stable libraries that are currently

deployed in real-world, for-profit systems as well as some com-

pletely experimental systems. Each library includes a readme that

describes the project.

Each of these three projects resides in its own source code tree. Typi-

cally Dojo and Dijit coordinate releases; so far, Dojox has released with

Dojo and Dijit, but this may change in future releases. We’ll cover Dojo

and Dijit exhaustively in this book while only touching on a couple

Dojox projects.

Dojo Has a High Degree of Conceptual Integrity

Despite the size of Dojo, the design and implementation possess a

high degree of conceptual integrity. In Fred Brooks’ classical software

engineering tome The Mythical Man-Month [Bro95], Brooks postulates

that conceptual integrity (the ratio of functionality to complexity) is the

most important attribute of any programming project. This is a well-

established and frequently missing attribute of long-lived software. We

already noted that beating down complexity is one of the Dojo project’s

core values. Further, the Dojo and Dijit project trees are each man-

aged by a single individual who guides and coordinates project evolu-

tion. This fulfills another of Brooks’ requirements to achieve conceptual

integrity—designating a single system architect. Finally, as we explore

Dojo, you’ll see that it just feels right. It seems to surprise the least...to

be natural.4 All of these are attributes of high conceptual integrity.

1.2 Using the Book

Here are a few last preliminary remarks that will help you maximize the

value of the book.

4. Although Dojo is mature, like any significant software system, it isn’t perfect. We’ll

occasionally point out weaknesses.

USING THE BOOK 16

Assumptions

We assume you have at least some minimal web programming experi-

ence. Dojo builds on top of standards-based technologies, most notably,

(X)HTML, CSS, DOM, and JavaScript. Although we’ll often provide a

few orienting remarks on an underlying technology when discussing

a particular Dojo functional area, we will not attempt to teach these

technologies—that’s at least four more books! In case you are fairly

new to all of this, here are some recommendations:

• Yahoo has published an excellent set of lectures about JavaScript

and DOM programming by Douglas Crockford.5

• The canonical JavaScript reference is JavaScript: The Definitive

Guide [Fla06]. It also includes a very good DOM tutorial and ref-

erence.

• CSS is often arcane and obtuse. Cascading Style Sheets: The Defin-

itive Guide [Mey06] makes a good attempt, but there are several

other references with different strengths and weaknesses.

• On the other hand, HTML is fairly simple to grasp. HTML and

XHTML: The Definitive Guide [MK08] is a nice reference, but any

number of free, online references are also probably sufficient.

JavaScript is a great language. Contrary to popular—and very mis-

informed—belief, it is closer to Lisp than BASIC. It allows you to express

very powerful ideas quickly and with elegance. Dojo pushes JavaScript

hard; so will we.

The Example Code

We’ve constructed real, working examples throughout the book. We’ve

tried to find a good balance between including enough code in line with

the narrative so that you can understand the code but not so much that

the flow is interrupted with pages of code. If you find that a particular

code fragment is missing some detail that you find perplexing, you can

find the complete working examples online at http://www.pragprog.com/

titles/rgdojo/source_code.

5. http://yuiblog.com/blog/2007/01/24/video-crockford-tjpl, http://yuiblog.com/blog/2006/11/27/video-crockford-advjs/,

and http://yuiblog.com/blog/2006/10/20/video-crockford-domtheory/

ACKNOWLEDGMENTS 17

Debugging

Web programming is a very dynamic activity. Typically, you’ll write a few

lines, hit Refresh in your browser, and see what happens. Still, a good

debugging environment is critical to maximize programmer efficiency.

Since Firefox + Firebug are among the best options (and they’re free!),

we use them in the narrative. If you’re using something other than

Firefox (for example, Internet Explorer), then you probably already have

a good debugging environment scoped out. If not, Dojo includes the

Firebug Lite console that you can use with any browser. See the Alex

Says. . . , on page 79 for more debugging advice from Alex.

The Plan

The book is divided into four parts. Part I demonstrates how Dojo helps

you build powerful apps quickly and easily. These chapters include

complete details on the examples they present, but they intentionally

do not dissect the areas of Dojo they touch. Part II gives an exten-

sive exploration of Dojo Core—the foundation upon which all things

Dojo are built. Part III covers Dijit, the Dojo widget system, and Part IV

demonstrates how to construct a Rich Internet Application.

1.3 Acknowledgments

Above all, the three of us would like to recognize and thank the Dojo

contributors. Without such a dedicated and truly talented community

Dojo simply wouldn’t be. We hope this book reflects well upon their her-

culean efforts. We also owe special thanks to Bill Keese, Adam Peller,

Ian Dees, and Brian Reeve for taking the time to read and critique the

manuscript. Nearly every page includes improvements recommended

by these experts. Finally, a tip of the hat to the folks at Pragmatic

Programmers—clearly a publisher by programmers for programmers.

Thanks for giving us the opportunity and all of the support along the

way. —Rawld, Craig, and Alex

I would like to especially thank my coauthors, Craig and Alex, and the

development editor, Jackie. What a wonderful set of people to work

with, each highly skilled in completely different ways, all helping me

get out a better product. —Rawld

At the risk of sounding like a long Academy Awards speech, I would

like to thank my writing teachers Carolyn Goodwin, James Alsop, Gerry

Shapiro, and Judith Sornberger. They encouraged me to keep writing,

ACKNOWLEDGMENTS 18

even though the last thing the world wants is another writer. And to

Kathy, thank you for the Starbucks card, your love, and your limitless

patience that made this book possible. If life were fair, the first pub-

lished book between us would’ve been yours. —Craig

First, I’d like to thank Craig and Rawld, whose book this really is. Their

dedication, talent, and willingness to plumb the deepest depths of Dojo

has produced a book whose quality and clarity will be an asset to Dojo

developers for years to come. I feel lucky to have had the opportunity to

contribute in the small ways that I have to this effort. Rawld, Craig, and

Jackie Carter have made the process easier than I could have possibly

imagined. My humblest thanks to them.

I’d like to thank the contributors and committers who have made Dojo

the outstanding achievement that it is. They have given their time and

astonishing efforts to the project without any expectation of material

reward, and I am lucky to lead and work in such a team. Their bound-

less optimism, perseverance, and dedication have pushed the open Web

forward in ways that many often wrote off as impractical. Their work

has improved the lives of millions of users every day. My particular

thanks go to Dylan Schiemann, Tom Trenka, Bill Keese, David Schont-

zler, Paul Sowden, Eugene Lazutkin, Adam Peller, Becky Gibson, Pete

Higgins, James Burke, Brad Neuberg, and Owen Williams. I owe so

much to so many.

My deepest thanks go to my wife, Jennifer, who has supported me and

inspired me in so many ways. Her help, advice, and patience have been

boundless. She has not only made Dojo possible but has made me a

better person. —Alex

Part I

Ajax the Dojo Way

Chapter 2

Powerful Web Forms Made Easy
Approximately five minutes after JavaScript was invented, people began

messing around with their web forms. They split long forms into tabbed

pages, wrote validators to check input, and developed easy-to-use con-

trols such as date entry calendars. These features are so prevalent now

that users don’t think twice about them. But you do. They’re still not

native features in HTML, so you must either write your own compo-

nents or shoehorn someone else’s into your application.

There’s an easier way. Dijit, the widget system built on Dojo, can do the

heavy lifting for you. A widget, also called a Dijit component, is a user

interface control built from HTML and JavaScript. You create one by

adding a simple dojoType= attribute to an HTML tag. It’s a remarkably

simple way to add form functionality.

dojoType= is nonstandard HTML, but Dijit uses the attribute to endow

special features onto the enclosing tag. This is called a declarative wid-

get because you write no actual code for it. But you can create the

same widgets through JavaScript, a subject we’ll touch on in Chap-

ter 12, Scripting Widgets, on page 319. These are called programmatic

widgets. For the next couple chapters, we’ll use only declarative widgets

because of their simple learning curve.

There are widgets to control layout and validate input. There are wid-

gets that emulate native application controls such as sliders, tooltips,

and progress bars. There are widgets to model complex data such as

hierarchical trees and tables. Dijit comes with more than forty pre-

packaged widgets, and many work well without a stitch of extra Java-

Script!

www.allitebooks.com

http://www.allitebooks.org

WHAT CUSTOMERS ARE SAYING ABOUT YOUR FORM 21

In this chapter, we will take a traditional fill-and-submit form and turn

it into a more functional, intuitive, and feature-rich form. We’ll “super-

size” the regular HTML controls into Dijit components, adding tons of

useful functionality with almost zero programming. When we’re done,

you’ll have a form that’s so neat and functional that you’ll want to tape

a copy of it to your refrigerator.

Dijit components solve common web design issues, and you can drop

them in and make them work in a matter of minutes. And that’s good,

because you have a problem form on your hands. . .

2.1 What Customers Are Saying About Your Form

So, let’s talk about that web page. You know the one. It’s where sub-

scribers change their address, look up their order information, manage

their subscription preferences, and so on. It’s called Account Prefer-

ences or My Account or something like that.

You know that page? Well. . . people hate it.

No one told you? Of course not. It’s easier to mutter under your breath

than send a comment to “Contact Us.” Here’s what they’re saying:

• Customer Looking for Their Order History: “OK, phone number,

phone number. Where is it? [scroll, scroll, scroll, scroll] Oh, here

it is. Way down at the bottom. Nice.”

• Customer Service Representative: “Oh, great. Someone typed Rover

as their email address. Stupid web server. Doesn’t it know all email

addresses have an @ sign?”

Hmmm. Your form has an attitude problem. Fortunately, Dijit is here

to help. Its layout, verification, and user interface elements will solve

these problems, and the overall design will be much prettier to boot.

So, what are we waiting for? The sooner we get it installed, the sooner

we can get started!

2.2 Installing Dojo on Your Own Server

Dojo is a client-side JavaScript toolkit, and its heart lies in some well-

tuned JavaScript scripts. In a Dojo-based web application, you create

small bits of HTML and JavaScript that call the Dojo toolkit code.

Technically, Dojo doesn’t need a web server. You can install Dojo into

any directory, build Dojo-based web applications, and load them all

ADDING DOJO AND DIJIT TO A PAGE 22

with the file:// protocol. But a web server lets you do more interest-

ing things such as proxying (introduced in the sidebar on page 48)

and partitioning (in Section 10.3, Partitioning with QueryReadStore,

on page 272). For that reason, we recommend installing a web server

first—and here, you can choose any one that fits your needs. Dojo is

stubbornly server-agnostic. There are no special procedures for serving

it from a Windows, Linux, or Mac OS X server.

You can download the latest Dojo package from http://dojotoolkit.org. It

comes bundled with Dojo, all the Dijit components, the extension com-

ponents of Dojox, and utilities such as the DOH unit tester and the

ShrinkSafe source code compressor.1 Follow the directions for expand-

ing the .zip or .tar.gz file on your computer. If you know what you’re

doing, you can pick any directory you want for installation. This book’s

example code assumes the files are in the /dojoroot directory on your

web server. The Dojo archive file contains four directories: dojo, dijit,

dojox, and util.

Finally, if you’re picky about such details like “Did I install it right?”

then simply hit the URL http://yourserver.com/dojoroot/dojo/tests/runTests.

html. This will run Dojo through a battery of unit tests.

We should note here that for serving dynamic content from your own

data sources, you’ll need to use a server-based programming language

such as PHP, ASP, or JSP. Since our focus here is Dojo, the examples in

this book are server-agnostic. Instead, we’ll hook either to third-party

data sources, such as Yahoo, or to static files that emulate dynamic

data sources.

2.3 Adding Dojo and Dijit to a Page

Dojo and Dijit act much like other JavaScript libraries. You add a few

statements to the top of each page, and these statements transfer the

Dojo/Dijit JavaScript code to the browser. Below those statements, you

can call Dojo methods and/or use Dijit components. Dijit components

rely on Dojo methods, but the loading processes handle all the depen-

dencies for you.

You must add a few statements to the <head> and <body> sections

of each page to accomplish that. Fortunately, the statements are fairly

1. This is the “binary distribution” of Dojo. You can also download the entire source

version, which allows you to do custom builds. We explain the other differences in Sec-

tion 4.2, Getting the Source, on page 77.

ADDING DOJO AND DIJIT TO A PAGE 23

boilerplate. You can add these statements to a text editor template file,

a macro, or a snippet within easy reach. Or, if your site uses a standard

include file, you can place the boilerplate in that file. In short, you need

to do the following:

1. Add the standard Dojo headers to the <head> section.

2. Set the class for the <body> tag to a Dijit theme.

3. Add dojo.require statements for the components you need.

If you are using Dojo without Dijit, some of these steps can be elim-

inated or reduced. We’ll note where you can do this. But there’s no

harm, except for a small increase in load time, in including all of them.

So, let’s begin.

Step 1: Add the Standard Dojo Headers

The following statements load the Dojo toolkit and style sheets from

your server:

Download advanced_forms_made_easy/hello_dojo_world.html

<style type="text/css">

@import "/dojoroot/dijit/themes/tundra/tundra.css";

@import "/dojoroot/dojo/resources/dojo.css"

</style>

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

The @import rule loads the standard Dojo styles and the theme Tun-

dra. In Dijit terminology, a theme is a set of fonts, colors, and siz-

ing settings for components so they look good together. Three themes

come prepackaged with Dijit—Tundra, Soria, and Nihilo—and you can

develop your own themes as well, a process we describe in Chapter 16,

Dijit Themes, Design, and Layout, on page 428. You must always import

dojo.css, but if you’re using Dojo without Dijit, you can omit the theme

style sheet import.

The <script> tag pulls the Dojo code from your server. The djCon-

fig="parseOnLoad:true" attribute is required to use Dojo elements declar-

atively. The declarative vs. programmatic distinction in Dojo is one we’ll

cover throughout the book, but for now we’ll be using just declarative

widgets because they’re easier to learn. If you can’t wait for the details,

see the sidebar on the following page.

ADDING DOJO AND DIJIT TO A PAGE 24

Declarative vs. Programmatic: A Preview for the Impatient

You can create Dijit widgets declaratively or programmatically.
In a nutshell, declarative widgets are nestled in HTML like this:

Download advanced_forms_made_easy/declarative_vs_programmatic.html

<div dojoType="dijit.layout.ContentPane"
href="http://www.yahoo.com" ></div>

Programmatic widgets are built from JavaScript like this:

Download advanced_forms_made_easy/declarative_vs_programmatic.html

var programmaticPane =
new dijit.layout.ContentPane(

{ href: 'http://www.yahoo.com' }
);

Declarative widgets use nonstandard HTML attributes such as
dojoType=. Although this may bother purists, the utility of declar-
ative widgets makes them an acceptable trade-off.∗

So, with that said, declarative is the easiest method for using
Dijit and the one we’ll use for most of the book. In Chap-
ter 12, Scripting Widgets, on page 319, we’ll see program-
matic Dijit components. If you use only programmatic Dijit or
use plain Dojo without Dijit, you don’t need dojo.parser or djCon-

fig="parseOnLoad:true". Omitting them makes the page load a
smidge faster.

∗. Not convinced? See the Alex Says. . . , on page 81 for an explanation of
nonstandard attributes and their role in Dojo.

Step 2: Set the Class of the Body

Next, you set the class of the body to match the theme. In our case,

we’re using Tundra, so we add the following:

Download advanced_forms_made_easy/hello_dojo_world.html

</head>

<body class="tundra">

The class name will match the theme name in lowercase: tundra, soria,

or nihilo. (The a11y theme is autoapplied under certain conditions that

you’ll learn about in Section 16.3, A11y and Themes, on page 440.)

You might ask, “Why do I need to specify my theme here? I loaded

it in the style sheet.” The biggest reason is that Dojo doesn’t per-

ADDING DOJO AND DIJIT TO A PAGE 25

form “magic.” Simply including something in the page shouldn’t have

huge side effects, and every modification of your page should be at

your control. By scoping theme rules to the tundra (or other theme-

appropriate) prefix, Dijit puts you in control. Second, placing the theme

in the <body> tag partitions the styles into a neat namespace hierar-

chy. We’ll show you how this works in Section 16.1, Theme Structure,

on page 428.

The theme is used for Dijit components only. If you’re using Dojo with-

out Dijit, you can omit loading it.

Step 3: Add dojo.require Statements

Dojo and Dijit components, like big treasures, come in small packages;

they’re called modules, and you will need to include a dojo.require for

each module referenced in your page. dojo.require acts like require_once

in PHP or require in Ruby.

You add code like this to the <head> section:

Download advanced_forms_made_easy/hello_dojo_world.html

<script type="text/javascript">

dojo.require("dojo.parser");

dojo.require("dijit.layout.ContentPane");

</script>

The dojo.parser module is required for all pages using declarative Dijit.

(See the sidebar on the previous page for details.) Then you load the

dijit.layout.ContentPane module, required to draw Dijit content panes.

Dojo modules correspond roughly to JavaScript files under /dojoroot.

For example, requiring dijit.layout.TabContainer loads the JavaScript

script /dojoroot/dijit/layout/TabContainer.js. The story is more complex, as

we’ll see in Chapter 4, Dojo In Depth, on page 71, but this is the general

idea.

dojo.require is one of the most important functions in Dojo. But how do

you know which modules to include? In this book, we’ll always intro-

duce a new component or Dojo API, say the Date API, with its module

name, for example, dojo.date. These module names are also shown in

the Dojo online API guide at http://dojotoolkit.org/api.

You will be applying these three steps to every page using Dojo or

Dijit. Once the browser loads the theme style sheet and executes the

Dojo script, processes the dojo.require statements, and sets the <body>

class, you’re ready to roll. Meanwhile back on our Account Preferences

form, we have problems to solve.

LAYING OUT THE FORM 26

Figure 2.1: Our form before adding dijit

2.4 Laying Out the Form

In Figure 2.1, you can see Account Preferences as it exists now. The

form is too long, and users hate scrolling through it. It would be eas-

ier to use if the fields were presented in logical groups. We will do that

by using the Dijit components dijit.layout.ContentPane, a widget that

separates parts of a page, and dijit.layout.TabContainer, which adds tabs

to them.

Tabs along the top will group the form into sections: Personal Data,

Address, and so on. Only one tab shows at a time. Clicking a tab label

on the top brings the corresponding section to the front. It looks like a

file cabinet—intuitive and friendly.

Preparing the Page

To get to the tabbed interface, we must first add Dojo and Dijit to the

page, as outlined in the previous section.

LAYING OUT THE FORM 27

First, add the <style> and <script> tags:

Download advanced_forms_made_easy/form_with_dijit.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Account Preferences With Dijit</title>

<style type="text/css">

@import "/dojoroot/dijit/themes/tundra/tundra.css";

@import "/dojoroot/dojo/resources/dojo.css"

</style>

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

(The lines marked with a triangle in the margin are the ones we added.)

Then, add the <body> class for the theme, which is tundra in our case.

Download advanced_forms_made_easy/form_with_dijit.html

<body class="tundra">

Finally, add the dojo.require statements. In this case, the page needs the

dijit.layout.TabContainer and dijit.layout.ContentPane components:

Download advanced_forms_made_easy/form_with_dijit.html

<script>

dojo.require("dojo.parser");

dojo.require("dijit.layout.ContentPane");

dojo.require("dijit.layout.TabContainer");

</script>

<style>

.formContainer {

width:600px;

height:600px;

}

label {

width:150px;

float:left;

}

</style>

</head>

The styles will line up the labels and textboxes we will add in a sec-

ond. With the preliminaries out of the way, we can now add our Dijit

components.

LAYING OUT THE FORM 28

Organizing the Form with Tabs

In Dijit, “adding a component” really means “adding the dojoType= at-

tribute to an HTML tag.” Dijit components nestle right inside your

HTML code. Most components begin life as <div> tags, but others are

built on <input>, , or other tags.

The two components we need, again, are as follows:

• A dijit.layout.ContentPane, which holds one “tabful” of data. Each

ContentPane has a label that appears on the tab.

• A dijit.layout.TabContainer, which holds a group of ContentPanes.

To turn a form fragment into a ContentPane, just surround it with <div>

tags and specify a dojoType= of dijit.layout.ContentPane, like this:

Download advanced_forms_made_easy/form_with_dijit.html

<div dojoType="dijit.layout.ContentPane" title="Personal Data">

<label for="first_name">First Name:</label>

<input type="text" name="first_name" id="first_name"

size="30" />

<label for="last_name">Last Name:</label>

<input type="text" name="last_name" id="last_name"

size="30" />

<label for="middle_initial">Middle Initial:</label>

<input type="text" name="middle_initial" id="middle_initial"

size="1" />

</div>

Then repeat this for all the tabs:

Download advanced_forms_made_easy/form_with_dijit.html

<div dojoType="dijit.layout.ContentPane" title="Address">

<label for="address_line_1">Address Line 1:</label>

<input type="text" name="address_line_1" id="address_line_1"

size="30" />

<label for="address_line_2">Address Line 2:</label>

<input type="text" name="address_line_2" id="address_line_2"

size="30" />

<label for="city">City:</label>

<input type="text" name="city" id="city"

size="30" />

<label for="state">State:</label>

<input type="text" name="state" id="state"

size="2" />

<label for="postal_code">Postal Code:</label>

<input type="text" name="postal_code" id="postal_code"

size="15" />

<label for="country">Country:</label>

<input type="text" name="country" id="country"

size="30" />

LAYING OUT THE FORM 29

<label for="date_move">Date of Move to this Address:</label>

<input type="text" name="date_move" id="date_move"

size="11" />

</div>

<div dojoType="dijit.layout.ContentPane" title="Phones">

<label for="home_phone">Home Phone:</label>

<input type="text" name="home_phone" id="home_phone"

size="30" />

<label for="work_phone">Work Phone:</label>

<input type="text" name="work_phone" id="work_phone"

size="30" />

<label for="cell_phone">Cell Phone:</label>

<input type="text" name="cell_phone" id="cell_phone"

size="30" />

</div>

Wrap up these panes in a <div> with dijit.layout.TabContainer:

Download advanced_forms_made_easy/form_with_dijit.html

<div class="formContainer" dojoType="dijit.layout.TabContainer"

style="width:600px;height:600px">

Notice the height style on the TabContainer. That’s required, and if you

leave it off, the tabs will not appear at all. (Consider yourself warned!)

The width, on the other hand, is optional.

So, let’s get this party started! Download the code, and place it into a

new directory called dojobook/advanced_forms_made_easy. Fire up your

favorite browser, and hit the URL http://yourserver/dojobook/advanced_

forms_made_easy/form_with_dijit.html. Up pops your tabbed form, which

should like Figure 2.2, on the following page.

It looks and works great! Click a tab, and the data pops out in front.

The Tundra theme makes the design elements look good. It acts like

you’d expect. What would have taken you hours to code in JavaScript

takes just a few <div> tags and two JavaScript statements.

Something Wrong?

Things happen. The most common novice problem is seeing no for-

matting appear so that our form looks more like the form we started

with—see Figure 2.1, on page 26. If this is you and you’re using Inter-

net Explorer, you probably also saw a script error pop up or a Script

Error icon in the browser’s lower-right corner. If you’re running Firefox

with the JavaScript console open, you probably saw the error there. But

when things go wrong, you could use some industrial-strength help.

LAYING OUT THE FORM 30

Figure 2.2: A tabbed container

Enter Firebug. Firebug is a combination debugger, DOM viewer, console

logger, and profiler. The full version is an open source Firefox extension,

and to install it in Firefox, simply visit http://www.getfirebug.com and

click the Install button.

But if you use Internet Explorer or Safari, never fear! Dojo comes pack-

aged with Firebug Lite, which includes the more useful features of Fire-

bug. To turn on Firebug Lite, simply change your script-loading state-

ment to the following:

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true, isDebug: true"></script>

Firebug Lite will appear in the browser window unlike Firebug, which

keeps itself hidden. So, you’ll want to turn the isDebug flag off in pro-

duction apps.

When running Firebug or Firebug Lite, you get a bit more information

on the console, as shown in Figure 2.3, on the following page.

Here, it looks like whatever statements are referencing dijit.layout.

TabbedContainer are wrong. Taking a quick look into the directory /dojo-

root/dijit/layout, you see TabContainer.js, not TabbedContainer.js. That’s the

problem. We’re trying to use TabbedContainer instead of TabContainer.

If there is still no formatting but no errors in the console either, check

these things:

• Make sure your dojoType= attributes are correct. Case matters

here.

• Double-check the <body> tag to make sure it has class="tundra".

www.allitebooks.com

http://www.allitebooks.org

IMPROVED FORM CONTROLS 31

Figure 2.3: Firebug finds the problem.

• Double-check the <style> tag to ensure you’re loading the Tundra

CSS from the correct place.

Once you have that working, step back and take a look at your new

tabbed form. It cuts a very fine figure, indeed! And easy to use? Abso-

lutely! And this is only the beginning.

2.5 Improved Form Controls

Getting back to our problem form, one issue concerns bad data. A little

behavioral psychology on the user will help: make the good choices easy

to pick and the bad choices difficult. Unfortunately, HTML controls go

for the lowest common denominator, leaving choices wide open. Dijit’s

validation controls can fix that. Controls like dijit.form.ValidationTextBox

flag the unacceptable choices immediately. Finally, input helpers such

as dijit.form.DateTextBox make choosing dates very easy.

Validating Fields

Client-side data validation is win-win: it helps you by keeping the data

clean and helps the user by giving immediate, targeted feedback. In

fact, validation is so useful that it was one of JavaScript’s first and most

popular applications. Dijit goes one step further by making popular

validations available via HTML attributes with no visible JavaScript.

We need some data cleanliness, so let’s start with the fields on the Per-

sonal Data tab. First start with a regular <input> or <textarea> tag.

Add a dojoType= attribute of dijit.form.ValidationTextBox. Then add valida-

tions and field-cleansing attributes:

Download advanced_forms_made_easy/validating.html

<label for="first_name">First Name:</label>

<input type="text" name="first_name" id="first_name"

dojoType="dijit.form.ValidationTextBox" trim="true"

propercase="true" required="true" size="30"

missingMessage="You must enter your first name" />

IMPROVED FORM CONTROLS 32

Alex Says. . .

Debugging Tools

If I were allowed to give but one piece of debugging
advice, it would be this: start with Firebug (get it at
http://www.getfirebug.com/). For a long time the development
tools for doing development in a browser were so poor as
to be laughable. Luckily, Firebug has almost single-handedly
dragged the state of the art forward by a tremendous amount.
As a response to Firebug, new versions of Internet Explorer,
Opera, and Safari are all beginning to include improved
debugging facilities. Despite this renewed arms race for devel-
oper mind-share, Firebug remains the gold standard.

Perhaps the most compelling feature of Firebug is its JavaScript
console. Firebug exposes APIs for logging events from pages
that you may be interacting with, but the console builds on
that to let you type or paste in some JavaScript and execute
it on-the-fly. This lets you "poke around" the environment fluidly,
often drastically shortening the time it takes to prototype a new
feature or debug a problematic one. Firebug’s DOM tree, CSS
style, and layout exploration tools are so convenient that they
frequently eliminate the need to dump messages and objects
to the console or to programmatically change properties and
styles. Finally, Firebug sports a full-featured JavaScript debugger
with complete stack and variable inspection, breakpoint, and
stepping functionality. In fact, we’re so enamored of Firebug
that Dojo includes a beefed-up version of “Firebug Lite” as part
of the toolkit to give you a console on browsers that otherwise
wouldn’t provide one.

IMPROVED FORM CONTROLS 33

And don’t forget to add dojo.require to the header:

Download advanced_forms_made_easy/validating.html

dojo.require("dijit.form.ValidationTextBox");

These extra attributes do an incredible amount of work:

• required="true" makes the field required, of course. When the field

is blank, the background is colored yellow, as is the case with any

erroneous fields.

• trim="true" automatically removes leading and trailing spaces in the

input. So when you type a string and tab out of the field, the

spaces are trimmed.

• propercase="true" is similar to trim. When the box loses focus, the

first letter is capitalized, and the rest are lowercased.

In a similar vein, we can validate the email address with Validation-

TextBox’s regular expression option:

Download advanced_forms_made_easy/validating.html

<label for="email">Email:</label>

<input type="text" name="email" id="email" size="30"

dojoType="dijit.form.ValidationTextBox" regExp=".*@.*"

/>

Here you have the full power of JavaScript regular expressions. In

our case, .*@.* matches all strings with any prefix (including an empty

string), then @, and then any suffix.

ValidationTextBox has many other kinds of validation, which we’ll cover in

Chapter 15, Form Controls, on page 394. As powerful as Dijit validation

is, however, it should always be backed up with server-side validations.

That way, bad people cannot introduce bad data by merely turning off

JavaScript.

Easier Date Entry

How many ways can you specify a date? No one really knew until HTML

forms were invented—evidently, the answer is “millions of ways.” Of

course, we’d much rather have consistently formatted dates, and users

would rather have easier ways to pick them.

With Dijit, you use dijit.form.DateTextBox to turn any textbox into a widget

with a calendar. First, add it to the header:

Download advanced_forms_made_easy/validating.html

dojo.require("dijit.form.DateTextBox");

WRAPPING IT UP 34

Figure 2.4: Dijit DateTextBox

Then, add it to the textbox:

Download advanced_forms_made_easy/validating.html

<label for="date_move">Date of Move to this Address:</label>

<input type="text" name="date_move" id="date_move" size="11"

dojoType="dijit.form.DateTextBox" />

By clicking the textbox, the user can unfold a calendar underneath. In

Figure 2.4, you can see the DateTextBox in its open state.

DateTextBox also respects the value= attribute of the textbox, provided it

is in ISO date format, which we’ll cover in Section 15.4, Standard Form,

on page 410.

2.6 Wrapping It Up

Well, that was a rush! Here’s the form source code we’ve built bit by bit:

Download advanced_forms_made_easy/finished_form.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Account Preferences Final Form</title>

<style type="text/css">

@import "/dojoroot/dijit/themes/tundra/tundra.css";

@import "/dojoroot/dojo/resources/dojo.css"

</style>

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

WRAPPING IT UP 35

<script>

dojo.require("dojo.parser");

dojo.require("dijit.layout.ContentPane");

dojo.require("dijit.layout.TabContainer");

dojo.require("dijit.form.ValidationTextBox");

dojo.require("dijit.form.DateTextBox");

</script>

<style>

.formContainer {

width:600px;

height:600px;

}

label {

width:150px;

float:left;

}

</style>

</head>

<body class="tundra">

<div class="formContainer" dojoType="dijit.layout.TabContainer">

<div dojoType="dijit.layout.ContentPane" title="Personal Data">

<label for="first_name">First Name:</label>

<input type="text" name="first_name" id="first_name"

dojoType="dijit.form.ValidationTextBox" trim="true"

propercase="true" required="true" size="30"

missingMessage="You must enter your first name" />

<label for="last_name">Last Name:</label>

<input type="text" name="last_name" id="last_name" size="30"

dojoType="dijit.form.ValidationTextBox" trim="true"

propercase="true" required="true" length="30"

missingMessage="You must enter your last name"/>

<label for="middle_initial">Middle Initial:</label>

<input type="text" name="middle_initial" id="middle_initial"

size="1" />

<label for="email">Email:</label>

<input type="text" name="email" id="email" size="30"

dojoType="dijit.form.ValidationTextBox" regExp=".*@.*"

/>

</div>

<div dojoType="dijit.layout.ContentPane" title="Address">

<label for="address_line_1">Address Line 1:</label>

<input type="text" name="address_line_1" id="address_line_1"

size="30" />

<label for="address_line_2">Address Line 2:</label>

<input type="text" name="address_line_2" id="address_line_2"

size="30" />

<label for="city">City:</label>

<input type="text" name="city" id="city" size="30" />

<label for="state">State:</label>

WRAPPING IT UP 36

<input type="text" name="state" id="state" size="2" />

<label for="postal_code">Postal Code:</label>

<input type="text" name="postal_code" id="postal_code"

size="15" />

<label for="country">Country:</label>

<input type="text" name="country" id="country" size="30" />

<label for="date_move">Date of Move to this Address:</label>

<input type="text" name="date_move" id="date_move" size="11"

dojoType="dijit.form.DateTextBox" />

</div>

<div dojoType="dijit.layout.ContentPane" title="Phones">

<label for="home_phone">Home Phone:</label>

<input type="text" name="home_phone" id="home_phone"

size="30" />

<label for="work_phone">Work Phone:</label>

<input type="text" name="work_phone" id="work_phone"

size="30" />

<label for="cell_phone">Cell Phone:</label>

<input type="text" name="cell_phone" id="cell_phone"

size="30" />

</div>

</div>

</body>

</html>

This form is easier to navigate, is easier for adding data, and is patient

but firm about accepting good data. Yet it takes only a few lines of

JavaScript and some extra HTML attributes. Dijit is a very powerful

thing indeed! Out of the entire Dijit catalog of more than forty widgets,

you now know four of them:

• dijit.layout.ContentPane creates boundaries around content to place

in containers.

• dijit.layout.TabContainer stacks ContentPanes on top of one another

and lets the user choose one with tabs on the top.

• dijit.form.ValidationTextBox performs validations on individual con-

trols.

• dijit.form.DateTextBox adds a pop-up calendar to a textbox.

All of this takes place without any extra server communication. In the

next chapter, we’ll leave Dijit for a bit and see how Dojo can create

small, chatty conversations with servers—your own or someone else’s.

Chapter 3

Connecting to Outside Services
In the previous chapter, we used Dijit to improve the user-to-browser

experience. Now we’re going to go the other direction: from the browser

to the server. Ajax, or Asynchronous JavaScript and XML, uses this

communication path to free the browser from the shackles of form

submission and the tedium of constant page redrawing. This, in turn,

improves the user interface, making web apps look and behave more

like regular programs.

3.1 Dojo Remote Scripting

Google Maps was to Ajax what Elvis Presley was to rock ’n’ roll. Unlike

the popular map programs of the time such as MapQuest, Google Maps

could scroll in any direction, zoom in, and place markers all without

the flicker of a page submit. Users loved it! Developers, eager to please

users and show their prowess, immediately dug into the details of Xml-

HttpRequest, or XHR.

But here’s the thing: XHR is hard! Or more accurately, XHR is easy

to use naively but hard to use correctly. Some of its many weirdisms

include the following:

• An unfamiliar syntax. Many developers simply copied and pasted

XHR code snippets but had no idea what the code was doing. That

makes debugging. . . ehhhhh, not so fun.

• Poor handling of content types. Though XHR is supposed to speak

XML fluently, you could hand back valid XML from the server and

still get a head-scratching “Not valid XML” message from XHR.

DOJO REMOTE SCRIPTING 38

• No help in creating the parameter string. You had to do all the URL

encoding yourself, or perhaps you didn’t do it at all. . . and the first

& in a textbox broke your application.

But don’t worry. XHR may have saved the Internet, but Dojo will save

you from XHR!

Dojo’s remote scripting facilities enable a client-side script to communi-

cate with a server without a page reload. Remote scripting’s easy-to-use

XHR and pseudo-XHR APIs extend the walls of the application, reach-

ing out to services from your own server and beyond. And Dojo does all

this without excessive JavaScript on your part. Dojo and Dijit provide

control and data translation services layered on top of XHR, making

it easy to use. In this chapter, we’ll look at three Dojo techniques for

service connections:

• dojo.data is an API specification like JDBC or ODBC. A dojo.data

driver implements this specification and responds to requests

from your data-enabled widgets or JavaScript code. Traditionally,

each driver is in charge of a different data provider format, for

example, JavaScript Object Notation (JSON) or XML. But it could

also abstract a web service or an in-memory JavaScript object.

You use common APIs to read or write the data, no matter what

the source and format is.

• The dojo.io.script method accesses JSON with Padding (JSONP) ser-

vices in other domains.1 XHR must follow the same-origin rule—

you can call only those services housed on the same server as

the outer page. JSONP removes this restriction in a clever way by

using <script> tags. More and more web services from Yahoo and

Google are available in JSONP format, and dojo.io.script calls them

in a way that mimics XHR.

• The dojo.xhrGet, dojo.xhrPost, dojo.rawXhrPost, dojo.xhrPut, dojo.

rawXhrPut, dojo.xhrDelete, and dojo.xhr methods are the lowest-level

remote scripting services. These methods, collectively called dojo.

xhr*, don’t provide the common API layer and translation services

that dojo.data does. They also require a server-side proxy to call

services outside your domain. But dojo.xhr* works without writing

1. The acronym JSONP was proposed by Bob Ippolito in

http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/. Many providers

use the JSONP technique for servicing cross-domain requests, but

do not call it JSONP. Yahoo, for example, calls it “JSON with

callbacks.”

JAVASCRIPT IDIOMS FOR CALLING XHR 39

a compatible dojo.data driver, and they can use data in any format.

They are best for off-site services that don’t support JSONP.

Generally, dojo.data is the most sophisticated of the three. Its drivers

are built on the dojo.io.script and dojo.xhr* methods. If you’re already

used to XHR, the latter two methods will feel more familiar. All of these

methods require fluency with less-common JavaScript idioms such as

hashes and function literals, so we’ll take a slight detour to learn those

first. Then we’ll build three working examples: a grid of wish-list entries,

a list of Yahoo Search matches, and a web service for gathering reviews.

3.2 JavaScript Idioms for Calling XHR

Before we plunge into calling web services, we need to look at some

JavaScript features that are used in Dojo XHR but are less common in

the real world. They may look unfamiliar to you even if you have used

JavaScript for a while. But they will be extremely useful here and down

the road.

Literals and Hashes

A literal is a notation for a fixed value in source code. So in JavaScript,

"Foo" is a string literal, 1 is a number literal, and [1, 2, 3] is an Array

literal. Literals are the atoms of a particular JavaScript type.

A hash is a collection of name-value pairs called properties. Each prop-

erty name can be used only once in a hash. So, you can have the prop-

erties ("bun", "wheat") and ("burger", "beef") in the same hash, but not both

("bun", "wheat") and ("bun","white"). This concept is probably familiar to

you already—in Perl it’s called a hash, in PHP it’s an associative array,

and in Java it’s a Map. Or if you like to think in relational database

terms, properties are two-column rows with the property name acting

as a primary key. Fair enough.

In JavaScript, any instance of the type Object is a collection of proper-

ties. Although we’ll see objects can be used for much more than sim-

ple collections of properties, sometimes just bundling some properties

together in one place is all you need. When an object is used like this,

we’ll call it a hash; if the object happens to be a literal, we’ll call it a

hash literal. The general form is as follows:

{

«propertyName1»:«value1»,

«propertyName2»:«value2»,

...

«propertyNameN»:«valueN»

JAVASCRIPT IDIOMS FOR CALLING XHR 40

}

www.allitebooks.com

http://www.allitebooks.org

JAVASCRIPT IDIOMS FOR CALLING XHR 41

Figure 3.1: A hash printed with console.dir

One important note: you should never end the last property-value pair

with a comma. Firefox is forgiving about this, but other browsers are

not. It’s better to be on the safe side.

The following code assigns a hash literal to a variable:

var burger = {patties: 2, type: "gardenburger", bun: "wheat"};

// displays the object structure in the Firebug console

console.dir(burger);

That console.dir statement looks interesting. This method, along with

console.debug, console.log, and console.error, is your passport to Firebug

and Firebug Lite’s logging mechanism. If you have spent your web life

debugging JavaScript with alert boxes, you’ll find this a welcome change

of pace.

The console.dir method prints the hash properties on the log, similar to

Figure 3.1. It’s also handy for printing objects, arrays, and all kinds

of complex data structures. Its low-power cousin console.debug prints

strings, numbers, and other primitives. Finally, console.log and con-

sole.error do the same thing as console.debug, but with different mes-

sage levels and different icons appearing in the console. You can filter

messages by these different levels in Firebug.

So, now back to hash literals. Like array literals, these are a nice syn-

tactic shortcut. Just as var a = [2, 4]; is equivalent to a[0] = 2; a[1] = 4;, so

is the hash literal example equivalent to the following:

var burger2 = {};

burger2.patties = 2;

burger2.type = "gardenburger";

burger2.bun = "wheat";

// Should be exactly the same as previous example

console.dir(burger2);

JAVASCRIPT IDIOMS FOR CALLING XHR 42

Here we have three properties named patties, type, and bun with values

2, "gardenburger", and "wheat", respectively.

Many documents (including the Dojo API documentation) don’t use the

word hash. We find it useful because it says, no matter its origin, “It’s

an object that’s just being used to bundle up some properties—nothing

more, nothing less.”

We’ll have lots more to say about objects and classes in Chapter 9,

Defining Classes with dojo.declare, on page 225, but for now we’ll con-

centrate on plain ol’ hashes and their usefulness in Dojo.

Hash literals can contain other literals, including array literals and

other hash literals:

var burger3 = {

// an array literal

patties: ["gardenburger", "bocaburger"],

toppings: {

cheese: "American",

meat: "bacon"

},

bun: "wheat"

};

console.dir(burger3);

(The fact that you can mix a vegetarian patty with a nonvegetarian

topping proves JavaScript is very loosely typed!) Notice the formatting

here—when we nest hashes with more than a few properties, it helps to

indent them inward like structured code. The extra whitespace reveals

the structure at a glance.

For the property-value pairs, the property name can be placed in quo-

tation marks, so "patties":2 is the same as patties:2. The right sides of the

colon can be any expression: numeric and string literals, array literals,

nested hash literals, function calls, or object constructor calls.

Hash literals are important in Dojo because they make function calls

more readable. Take, for example, dojo.io.script.get, a Dojo function we’ll

use later in this chapter for Yahoo Search.

Even without knowing dojo.io.script.get, the parameters here are clear

and readable:

dojo.io.script.get({

// URL for Yahoo Search

url: "http://search.yahooapis.com/WebSearchService/V1/webSearch",

JAVASCRIPT IDIOMS FOR CALLING XHR 43

// Send search term parameters:

content: {

appid: "DEMO",

query: searchTerms,

output: "json"

},

// If the response takes longer than 10000ms (= 10 seconds), error out

timeout: 10000,

// Yahoo API requires you to send the callback function name in the

// parameter "callback"

callbackParamName: "callback"

// The full call will have load and error parameters too

// ...

});

All of the data is passed as one hash with properties url, content, and

so forth. This could be simulated with individual primitive parameters,

but there are big advantages to doing it with a hash literal:

• The hash literal is more descriptive than a set of parameters. To

replace dojo.io.script.get with dojo.io.script.get(1, ’someNode’, ...), we’d

have to review the API documentation to learn what “1” refers to.

Put another way, though JavaScript has only positional parame-

ters, you can simulate named parameters by passing a hash.

• You can reorder or skip properties in a hash literal with no penalty.

This is especially important in dojo.io.script.get, where a normal call

specifies only about half the possible parameters.

• Finally, let’s suppose you call a function several times with the

same parameters. Building a hash and then passing it to the func-

tion over and over is more efficient than parsing the arguments

each time.

You can create complex hashes with many levels of nesting, all by sep-

arating elements with commas and wrapping hashes with braces. This

is handy in XHR and other Dojo APIs and is indispensable in declar-

ing class structures. We’ll see an example of the latter in Chapter 9,

Defining Classes with dojo.declare, on page 225.

Function Literals

Unlike hash literals, which make a good deal of sense, function literals

might throw you for a loop.

Before diving into function literals, you need to understand JavaScript’s

idea of “functions as data.” In JavaScript numbers, strings, hashes,

JAVASCRIPT IDIOMS FOR CALLING XHR 44

arrays, objects, and multitudes of other types of data can be assigned

to a variable or passed to a function or method. That’s nothing special.

But in JavaScript, functions can be assigned to variables and passed to

functions too. The function name represents a function definition, not

a function call.

This technique makes your code shorter, simpler, and more expressive.

An example will clarify. Suppose you have an array of hashes that you’d

like to make into a list. Each hash has a few properties, each of which

will be made into a hyperlink, like so:

// Assume there's a <ul id="listOfUrls"> present.

var listNode = document.getElementById("listOfUrls");

// You want to turn this:

var urls = [

{ url: "http://www.yahoo.com", title: "Yahoo" },

{ url: "http://www.ask.com", title: "Ask" },

{ url: "http://www.google.com", title: "Google" }

];

/* into this:

Yahoo

Ask

Google

*/

Your first shot at it looks like plain ol’ procedural JavaScript:

for (var i=0; i < urls.length; i++) {

var listItem = document.createElement("li");

listItem.innerHTML =

"<a href='"

+ urls[i].url

+ "'>"

+ urls[i].title

+ "";

listNode.appendChild(listItem);

}

Bluggh! That middle assignment statement is nasty looking. Are the

quotes balanced right? Are the subscripts off? You have to look awfully

close to find out. So, we use a trick from dojo.string:

for (var i=0; i < urls.length; i++) {

var listItem = document.createElement("li");

listItem.innerHTML =

dojo.string.substitute("${title}", result);

listNode.appendChild(listItem);

}

JAVASCRIPT IDIOMS FOR CALLING XHR 45

That’s much better. The dojo.string.substitute method takes the hash in

oneResult and applies the properties to a template. This template uses

${...}-style placeholders. So, ${url} is replaced with oneResult.url, and ${title}

is replaced with oneResult.title.

Now about that for loop. How many times have you used i only to find it

was being used by some other inner or outer loop? OK, you don’t have

to admit it. But isn’t there a better way to loop through arrays?

Dojo has a similar method, dojo.forEach, with an interesting signature.

You pass an array and a function—not a function call, an actual func-

tion. This function must define one parameter: an item. Here’s what we

mean: the following function mirrors the inside of the previous exam-

ple’s for loop:

var listNode = document.getElementById("listOfUrls");

function appendNewListItem(oneResult) {

var listItem = document.createElement("li");

listItem.innerHTML =

dojo.string.substitute("${title}", oneResult);

listNode.appendChild(listItem);

}

You pass the name of this function to dojo.forEach:

dojo.forEach(urls, appendNewListItem);

Your fingers will instinctively reach for the parentheses when typing

appendNewListItem. Don’t do it! You’re not passing the result of the func-

tion call; you’re passing the function itself. Amazingly, dojo.forEach calls

appendNewListItem(urls[0]); and then appendNewListItem(urls[1]);, and so

on. Hmmmmm. That saves you an entire for loop. Now we’re getting

somewhere!

And now we can talk about function literals. Just as you can use a

hash literal in place of a hash, you can use a function literal in place of

a function. Their general form is as follows:

function(«parameters») {

«body»

}

Function literals are sometimes called anonymous functions because

they look like a function definition without a name. So, you can write

the previous code using a function literal.

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 46

var listNode = document.getElementById("listOfUrls");

dojo.forEach(urls, function(oneResult) {

var listItem = document.createElement("li");

listItem.innerHTML =

dojo.string.substitute("${title}", oneResult);

listNode.appendChild(listItem);

});

We’ll see plenty more examples of function literals, but here’s what we

need to know for Dojo XHR: XmlHttpRequest calls are asynchronous,

meaning they return control to the JavaScript program immediately

while they work in the background. We need to tell XHR, “This is what

you do when the result comes back.” That’s perfect for a function literal,

because most often the function is used only for that XHR call. Defining

a named function to call it only once feels like too much overhead. A

function we pass to an asynchronous request is called a handler, or

equivalently a callback. We want the process to “call back” our function

when it’s ready.

The functions-as-data concept of JavaScript turns out to be extremely

useful. Dojo uses it in XHR and also in surprising places such as ani-

mations and declaring subclasses. We’ll discuss those later, but for now

let’s dig into the first project.

3.3 A Wish List with dojo.data and dojox.grid.Grid

The Justa Cigar Corporation is overhauling its web site, and we’ve just

won the contract to write it. Customers on the Justa site are gung

ho about cigars, and Justa wants to help them connect to each other,

share information, and (Justa hopes) purchase cigars.2

Each Justa customer has a wish list of cigars with brand names, sizes,

country of origin, and other information. The execs want to list this

in a scrollable table and give the customer the ability to add, delete,

and edit cigars in place without leaving the page. In Figure 3.2, on the

next page, you can see the “cocktail napkin” view of what Justa wants.

Already this is impossible with the old web technology because of the

don’t-leave-the-page requirement. We’re going to need XHR to send add,

delete, and edit requests to the server.

2. Just for the record, we don’t condone such carcinogenic activities. The point is you

can use the same techniques for finding ice cream, cross-country skis, or flat-screen

televisions. Whatever floats your boat. Dojo will not judge you.

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 47

Figure 3.2: Wish-list user interface design (coffee stain omitted)

dojox.grid.Grid is a good fit for the user interface part. Grid acts like

a mini-spreadsheet where you can view, sort, filter, and edit tabu-

lar information. dojo.data provides plumbing between Grid and server-

based data. Together they’ll form the backbone of the wish list.

Because Justa controls the web site and database, its IT department

can write web services in any format we want. These web services will

read from the wish-list database, translate the data to the right format,

and send. Writing these server-side scripts is beyond the scope of this

book, but Dojo can generally work with any server-side language and

any database because they communicate over HTTP. If this notion is

foreign to you, the sidebar on the following page gives you some help

on where to start.

Fortunately, we can stub out the web services while writing the client.

After all, XHR simply sends a request to a URL and gets data back in

some standard format. A plain old text file will suffice—it has a URL,

and we can write it in some format. That makes the job small and

easier to manage. But we still need to pick a data format. dojo.data

has drivers for commonly used data formats such as XML, comma-

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 48

Server-Side Options

Dojo enables a significant architectural shift. When scripting fill-
and-submit pages in a middle-tier language such as PHP, ASP,
or JSP, both the navigation and HTML generation rest mostly in
that language. With Dojo, more code executes on the client
and less on the middle tier. But you still need some middle-tier
code for the following:

• Connecting to a database and passing the results in a
format Dojo understands

• Proxying calls to external web services

PHP is a particularly adept language for these calls because
proxying is a one-line call and JSON support is built in (at least to
5.2 and newer). But any language that can talk to HTTP servers
and use databases will work.

Alternatively, you can use an enterprise service bus (ESB). This
software is made for proxying and translation, and many require
declarative configuration in lieu of programming. Many ESB
products are large and expensive, but Apache Synapse is an
open source, lightweight ESB that’s a good match for Dojo.

separated variables (CSV), JSON, and HTML tables. Seeing this list,

you might think XML is the way to go. But hold up a minute!

JSON, the Language

JavaScript Object Notation is a better choice for sending the wish-list

data in our example. If you haven’t seen or used it before, you might

wonder why we’d pick JSON over XML. After all, practically every pro-

gramming language and every browser on Earth speaks XML. It’s self-

descriptive, standardized, and mature.

But in browsers, XML suffers from two problems. First, browsers don’t

implement XML standards uniformly. Second, and this is the deal-

breaker, browser-based XML implementations are slow. That’s a prob-

lem because the more interactive you want your interface, the chattier

you have to be with the server, and the faster your data interchange

format must be.

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 49

Enter JSON. In a nutshell, JSON data looks like the right side of a

JavaScript assignment. For comparison, here is a snippet of XML data

from our Justa wish lists:

<wishListItem>

<wishId>4455</wishId>

<description>Don Pepin Garcia Delicias</description>

<size>7-50</size>

...

</wishListItem>

This is equivalent to the following JSON:

"wishListItem": {

"wishId": 4455,

"description": "Don Pepin Garcia Delicias",

"size": "7-50",

...

}

This looks suspiciously like a hash literal. And it is! However, JSON has

more restrictions placed on it:

• All strings, including the names on the left side of the colon (:),

must be quoted. (Hash literals are not as strict.)

• Nested hashes and arrays are allowed on the right side of the

colon. But the only primitive data allowed are single- or double-

quoted strings, numbers, the boolean constants true and false, and

the constant null. No expressions or variable names are allowed.

It’s really that simple. Dojo feeds the data to a JavaScript eval, gets back

a hash, and gives it to you. But it also enforces the JSON quoting rules

behind the scenes, and that’s an important security feature. Otherwise,

someone could type in a wish-list item named while(1); and lock up

someone’s browser.

If you’re given the choice of web service output to consume by Dojo,

JSON is usually preferable to XML. It’s expressive, flexible, and easy to

manipulate in JavaScript. Adapters for popular server-side languages

are plentiful, as you can see at http://www.json.org. And it’s fast, fast,

fast! Some studies have clocked it at 100 times faster than XML in a

browser. This makes sense because JSON is “closer to the metal” of

JavaScript and requires less translation. When you need cigar data,

those extra clock cycles count!

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 50

A Stub Data Source

dojo.data has its own terminology, which we will cover completely in

Chapter 10, dojo.data, on page 260. But here’s enough to build our

test wish-list data. A data source is the URL from which the data comes.

In our test case, the URL will be very simple: services/cigar_wish_list.json.

When we fill out the stubs, we’ll probably send parameters along with

it, as in services/cigar_wish_list.php?userid=99555. A data store is the cor-

responding dojo.data object that holds the data. Finally, an item is one

data object. An item is like a database record but can have a more

complex structure.

So, here’s a snippet from our data source, in services/cigar_wish_list.json:

Download xhr_techniques/services/cigar_wish_list_abbrv.json

{

"identifier": "wishId",

"label": "description",

"items":

[

{

"wishId": 4455, "description": "Don Pepin Garcia Delicias",

"size": "7-50", "origin": "Nicaragua", "wrapper": "Corojo",

"shape": "Straight"

},

{

"wishId": 4456, "description": "601 Habano Robusto",

"size": "5-50", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

{

"wishId": 4457, "description": "Black Pearl Rojo Robusto",

"size": "4 3/4-52", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

/* ... */

]

}

The structure may look complex on first glance. Judicious use of white-

space makes things a bit easier—here we use a style similar to a Java-

Script program, lining up brackets and indenting common levels. Work-

ing from the inside out, a wish-list item...

Download xhr_techniques/services/cigar_wish_list_abbrv.json

{

"wishId": 4455, "description": "Don Pepin Garcia Delicias",

"size": "7-50", "origin": "Nicaragua", "wrapper": "Corojo",

"shape": "Straight"

},

www.allitebooks.com

http://www.allitebooks.org

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 51

is a simple hash literal following the JSON rules. The brackets sur-

rounding these hashes create an array of wish-list objects:

Download xhr_techniques/services/cigar_wish_list_abbrv.json

[

{

"wishId": 4455, "description": "Don Pepin Garcia Delicias",

"size": "7-50", "origin": "Nicaragua", "wrapper": "Corojo",

"shape": "Straight"

},

{

"wishId": 4456, "description": "601 Habano Robusto",

"size": "5-50", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

{

"wishId": 4457, "description": "Black Pearl Rojo Robusto",

"size": "4 3/4-52", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

/* ... */

]

Finally, this array becomes the items property of the data source, as we

saw earlier:

Download xhr_techniques/services/cigar_wish_list_abbrv.json

{

"identifier": "wishId",

"label": "description",

"items":

[

{

"wishId": 4455, "description": "Don Pepin Garcia Delicias",

"size": "7-50", "origin": "Nicaragua", "wrapper": "Corojo",

"shape": "Straight"

},

{

"wishId": 4456, "description": "601 Habano Robusto",

"size": "5-50", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

{

"wishId": 4457, "description": "Black Pearl Rojo Robusto",

"size": "4 3/4-52", "origin": "Nicaragua", "wrapper": "Natural",

"shape": "Straight"

},

/* ... */

]

}

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 52

Figure 3.3: The wish list: scrollable, sortable, and full of tasty cigars

We are then going to feed this into the dojo.data driver dojo.data.

ItemFileReadStore. This driver expects JSON data in a specific format

with the following properties: identifier is the field containing an item’s

ID; label is the field with the human-readable identifier; and items is the

data itself, which is an array of hashes. Not all dojo.data drivers are this

restrictive: CSV and XML data sources do not require an identifier field,

for example.

The IT people at Justa will write a server-side component that reads

database records and writes the data into this format. But this fixed

data source will do for now.

The Data-Enabled Widget, dojox.grid.Grid

Grid widgets are very familiar to GUI designers. A grid is a spreadsheet-

like “supertable” that allows editing, sophisticated display, and a well-

structured event system. Grids are unfamiliar to most web program-

mers, though, because they’re difficult to construct from scratch.

The Dojox grid component is the state-of-the-art in web-enabled data

grids, and it gives client-server grids a run for their money in features,

performance, and stability. You can pipe dojo.data data stores into it

with just a few lines of code.

The goal is to get to Figure 3.3. It looks pretty sophisticated, but every

journey begins with a small step, so let’s begin.

Every grid needs data. A grid’s model is the set of data that is feeding

the grid, named after the M in MVC architecture.

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 53

We’ve already built our data source, and making this a model requires

just one <div> tag:

Download xhr_techniques/wish_list_grid.html

<div dojoType="dojo.data.ItemFileReadStore"

jsId="wishStore" url="services/cigar_wish_list.json">

</div>

This looks a lot like a Dijit component, but it’s not. It doesn’t display

anything—which is usually a tip-off that it’s not from Dijit. And the dojo-

Type= value does not begin with dijit. (In Section 12.1, What Exactly Is a

Widget?, on page 319, we’ll learn the full story.) Instead, it acts more

like an assignment statement. The jsId= attribute declares a JavaScript

variable to hold the object. You can use these variables in your own

JavaScript code, or, as we do here, feed the contents of one object into

another. So, this tag sets up a dojo.data.ItemFileReadStore, a data store

using JSON in the special format we used for cigar_wish_list.json.

With the model taken care of, we can define the grid itself:

Download xhr_techniques/wish_list_grid.html

<table id="grid" dojoType="dojox.grid.Grid" store="wishStore"

query="{ wishId: '*' }" clientSort="true">

<thead>

<tr>

<th field="description" width="15em">Cigar</th>

<th field="size">Length/Ring</th>

<th field="origin">Origin</th>

<th field="wrapper">Wrapper</th>

<th field="shape">Shape</th>

</tr>

</thead>

</table>

Hmmm, that sure looks like an HTML <table>. . . although there’s a few

extra attributes. But those extra attributes wield tremendous power.

First, dojox.grid.Grid takes in the data store wishStore, defined earlier.

The grid can apply sorting and filtering to the data store, designated by

the attributes clientSort= and query=. The former is straightforward. The

latter involves another hash literal defining filter criteria. In this case, {

wishId: ’*’ } means “Match every item that has a wishId property.” In our

case, that’s all the records in the store.

Inside the <table> tag, it looks like a table with exactly one row. For our

simple two-dimensional table type of grid, all we need are a few <th>

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 54

tags, each of which define column characteristics. The field property

points to a field in our data source. (You’ll learn more about that later.)

And the body of the tag is used as the column header.

Let’s step back, review our work, and fold in some last-minute touches.

Here’s the full script:

Download xhr_techniques/wish_list_grid.html

Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
- "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <head>
5 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
- <title>Justa Cigar Wish List</title>
- <style type="text/css">
- @import "/dojoroot/dijit/themes/tundra/tundra.css";
- @import "/dojoroot/dojo/resources/dojo.css";

10 @import "/dojoroot/dojox/grid/_grid/tundraGrid.css";
- </style>
- <script type="text/javascript" src="/dojoroot/dojo/dojo.js"
- djConfig="parseOnLoad: true"></script>
- <script>

15 dojo.require("dojo.parser");
- dojo.require("dojo.data.ItemFileReadStore");
- dojo.require("dojox.grid.Grid");
-

- </script>
20 <style>

- #grid {
- border: 1px solid #333;
- width: 550px;
- margin: 10px;

25 height: 200px;
- font-size: 0.9em;
- font-family: Geneva, Arial, Helvetica, sans-serif;
-

- }
30 </style>

-

- </head>
- <body class="tundra">
-

35 <h1>Justa Cigar Corporation</h1>
- <h3>"Sometimes a cigar is a Justa Cigar!"</h3>
-

- <div dojoType="dojo.data.ItemFileReadStore"
- jsId="wishStore" url="services/cigar_wish_list.json">

40 </div>
-

A WISH LIST WITH DOJO.DATA AND DOJOX.GRID.GRID 55

- <table id="grid" dojoType="dojox.grid.Grid" store="wishStore"
- query="{ wishId: '*' }" clientSort="true">
- <thead>

45 <tr>
- <th field="description" width="15em">Cigar</th>
- <th field="size">Length/Ring</th>
- <th field="origin">Origin</th>
- <th field="wrapper">Wrapper</th>

50 <th field="shape">Shape</th>
- </tr>
- </thead>
- </table>
-

55 </body>
- </html>

There are two things to note here. First, we must add an extra style

sheet to make the Grid match the Tundra theme, which you see at line

10. Second, the two dojo.require calls starting at line 16 load the Grid

and ItemFileReadStore components.

Run this script, and the grid pops up, as shown in Figure 3.3, on

page 52. And dig the functionality! The grid has the following char-

acteristics:

• Alternately striped: Odd/even colors are automatically applied for

easy reading.

• Scrollable: Scroll bars automatically appear if needed for horizon-

tal or vertical scrolling.

• Column sizable: Point between columns on the top, and drag left

or right.

• Row-selectable: Just click anywhere on a row to select it. The row

changes color.

• Sortable: Just click a column header to sort by that field. Click

again to switch the sort direction.

If you have the Firebug debugger installed in your browser, you can

watch the XHR packets go over the network, as shown in Figure 3.4,

on the next page.

dojo.data and dojox.grid provide a quick way to get XHR up and running

against your domain’s web services, but what if you want to use ser-

vices outside your network? You can write your own proxy in a server-

side language that calls the outside service on your behalf. But for some

specially written web services, there’s an even easier way.

RESEARCHING CIGARS USING JSONP 56

Figure 3.4: Firebug view of getting the wish list over XHR

3.4 Researching Cigars Using JSONP

The second part of the project adds lists of cigar-specific hyperlinks

from Yahoo Search. Yahoo publishes its Search API through a JSONP-

based web service, and we’ll use dojo.io.script to stitch it to the applica-

tion. The user clicks a cigar name; Dojo calls the Yahoo web service, gets

the hyperlinks, and displays them in a list underneath the grid. Click-

ing another cigar name erases the previous list and displays results for

the new cigar. The results look like Figure 3.5, on the following page.

http://developer.yahoo.com is a good starting place for researching Yahoo

web services. From there, the Search API documentation is a few clicks

away at http://developer.yahoo.com/search/web/V1/webSearch.html. For

this example, we’ll use the most current API at the time of this writ-

ing, version 1. Yahoo is very good about keeping old APIs running for

backward compatibility, so all the techniques here should work even if

updated APIs are available.

Once there, we find the following information about Yahoo Search.

You need a Yahoo web application ID, for which you fill out a form

at http://search.yahooapis.com/webservices/register_application. Under the

terms and conditions, you are not obligated to keep this application ID

protected. This is important to know for JSONP services, because the

application ID must be sent down to the client browser.

Yahoo Search uses the HTTP GET command and a query string to pass

parameters individually. This is called a REpresentational State Trans-

fer (REST) protocol. The interesting parameter for us is query, which

defines the search terms. The output can be returned in one of three

formats: XML, serialized PHP, and JSON, depending on which output

parameter you send. Obviously we want JSON here, but other situa-

tions may call for other formats.

RESEARCHING CIGARS USING JSONP 57

Figure 3.5: Click a cigar, get a free search.

Generally, to use a web service, you need to know the following:

• What URL do you call?

• Where are the input parameters? For this service, we need the

search terms, which are available in our grid. dojo.io.script func-

tions can send an entire HTML form, a hash literal, or both. For

JSONP services, the form field names or the hash literal property

names must match the web service parameters exactly.

• How long should Dojo wait for a response? Since the Dojo XHR

calls are asynchronous, you must define a comfortable waiting

period before an error occurs.3

• For JSONP services, which input parameter names the callback

function?

• What should be done when the answer arrives? And what if there’s

an error? Dojo handles these through callbacks—JavaScript func-

tions called when an asynchronous function completes.

The first four metadata items—url, timeout, content, and callbackParam-

Name—are fairly straightforward, so let’s tackle those. From the API

documentation, we find the Yahoo Search URL is http://search.yahooapis.

com/WebSearchService/V1/webSearch. We set the timeout to ten seconds

initially—during the testing phase, we may increase or decrease this

time depending on the speeds we observe. For content, it seems we need

three parameters for the call to succeed. Two of them—appid and out-

put—are constants we fix in the program. The other parameter, query,

needs to be extracted from the grid. We’ll put a placeholder there for

the time being.

3. Dojo can perform XHR calls synchronously as well. But because synchronous calls

may fail to connect and cause the browser to lock up, they are generally not recom-

mended. This is not Dojo’s fault per se; it’s a problem with any toolkit calling the browser’s

XHR implementation.

RESEARCHING CIGARS USING JSONP 58

Finally, JSONP requires you to send a function name with the request,

which it will use as the callback. Yahoo Search requires the callback

function name to be sent in the callback parameter. Other JSONP ser-

vices may require it in a different parameter, such as callthis. The call-

backParamName variable of dojo.io.script.get serves this purpose, so you

can specify "callback" for Yahoo Search (as we’ve done here), "callthis", or

whatever the service requires.

Here’s what we have so far:

Download xhr_techniques/yahoo_remote_script.html

dojo.io.script.get({

// URL for Yahoo Search

url: "http://search.yahooapis.com/WebSearchService/V1/webSearch",

// Send search term parameters:

content: {

appid: "DEMO",

query: searchTerms,

output: "json"

},

// If the response takes longer than 10000ms (= 10 seconds), error out

timeout: 10000,

// Yahoo API requires you to send the callback function name in the

// parameter "callback"

callbackParamName: "callback",

// The load and error functions will be filled in here

});

Just as we saw in Section 3.2, Literals and Hashes, on page 39, dojo.io.

script.get takes just one parameter, which is a hash with many proper-

ties. This makes it easy to read and understand. But. . . that searchTerms

variable from the Yahoo Search API is bugging us. We need a good way

to get it.

The Grid and Events

It looks easy enough. You click a grid row, the row highlights, and you

extract the search term from the list. But where do you start? Is the

grid a table? Do the cells have IDs?

Luckily, you don’t have to piece together the cigar name by “screen-

scraping.” Remember that grids have a model. The model has all the

unprocessed data in it. If you could just get the clicked row and map it

to an item in the model, you could easily get the value you need.

RESEARCHING CIGARS USING JSONP 59

Fortunately, the Grid widget provides hooks for you called events. You

are probably already used to HTML’s familiar events such as onClick or

onMouseOut. These are the DOM level 0 events. Grid events are simi-

lar and are named things like onRowDoubleClick or onCellHover. As we’ll

learn in Section 6.2, Connecting to User-Defined Events with Dojo, on

page 117, these are Dojo user-defined events that carry rich event infor-

mation to functions we provide.

We’ll save most of the information for later. But for now, let’s just dive

right into an event function for onRowClick:

Download xhr_techniques/yahoo_remote_script_demo.html

<table id="grid" dojoType="dojox.grid.Grid" store="wishStore"

query="{ wishId: '*' }" clientSort="true">

<script type="dojo/connect" event="onRowClick" args="evt">

var searchTerms = this.model.getRow(evt.rowIndex).description;

console.debug(searchTerms);

</script>

<thead>

<tr>

<th field="description" width="15em">Cigar</th>

<th field="size">Length/Ring</th>

<th field="origin">Origin</th>

<th field="wrapper">Wrapper</th>

<th field="shape">Shape</th>

</tr>

</thead>

</table>

That <script> tag looks strange. Generally, <script> tags have type=

"text/javascript", right? Browsers, upon finding a type= they don’t recog-

nize, will simply skip over it. That’s good for us. We don’t want the

browser to simply execute this code on page load. Making the type

"dojo/connect" tags this script for use only by Dojo.

The args= attribute takes a list of JavaScript variable names and

matches these up with the signature parameters. You can consider

them the formal parameters of the method. So when Dijit calls the

handler code, it will put the event object into the variable evt, which

you can then use in the body of the handler. (Recall that handler is

synonymous with callback.)

Let’s work from the inside out on that assignment statement. Events

such as onRowClick send useful information through the argument, in

our case evt.

RESEARCHING CIGARS USING JSONP 60

One of the properties in evt is rowIndex, which contains the 0-based

index of the row we just clicked. That’s useful. Then this.model.getRow

(this meaning the grid) gets the row hash, which looks exactly like the

hash in our model. For example, this.model.getRow(2) is just the follow-

ing:

{

"wishId": 4457, "description": "Black Pearl Rojo Robusto", "size": "4 3/4-52",

"origin": "Nicaragua", "wrapper": "Natural", "shape": "Straight"

}

We just grab the description property, and we’re done!

That’s pretty elegant. The method is defined right in the tag that needs

it, and a lot of the infrastructure is there for you. So, where do you find

these events? And how do you know the event data passed back? One

way is to consult the online guide at http://www.dojotoolkit.org, which

lists all the event method signatures. As far as grid goes, we’ll be talking

a lot about events in Chapter 14, Grid, on page 366 as well.

XHR Callbacks

Now, back to the business at hand. We have most of the properties

ready for dojo.io.script.get except for the two meatiest ones: load and

error. These two properties are callbacks—functions that run after an

asynchronous event completes.

What do those functions look like? Here’s the rest of our dojo.io.script.get

call:

Download xhr_techniques/yahoo_remote_script.html

// Function runs when Yahoo returns with the answer

load: function(searchResult) {

// Zero out the current list

listNode = dojo.byId("resultUl");

listNode.innerHTML = "";

dojo.forEach(searchResult.ResultSet.Result, function(result) {

var listItem = document.createElement("li");

listItem.innerHTML =

dojo.string.substitute(

"${Title}
${Summary}",

result

);

listNode.appendChild(listItem);

});

},

www.allitebooks.com

http://www.allitebooks.org

RESEARCHING CIGARS USING JSONP 61

// And this is the callback used when a web service communication error or

// timeout occurs. Note that errors returned from Yahoo in the response

// are still handled with load()

error: function(text) {

alert("An error has occurred.");

return text;

}

});

We’ll go over the code inside load and error in a minute, but for now

let’s concentrate on the form of these callbacks. load and error are

called when the XHR answer arrives at the client PC. The browser calls

either one or the other, but never both. The notion of callbacks may

look a little strange at first. Your natural inclination might be to call

dojo.io.script.get like this:

// WRONG! response won't hold the value you think

var response = dojo.io.script.get(...);

// Do something with the response

Well, that sure looks easy, but it’s incorrect.4 It’s also not desirable. To

guarantee a value in response, the JavaScript interpreter in the browser

would have to block, that is, pause at this statement until the XHR mes-

sage arrives. Remember, the Internet is involved. We can’t guarantee

a response from the web service—their server might die, the Internet

connections may be slow, and so on. That wouldn’t be so bad except

Internet Explorer and Firefox both lock up waiting for an answer—

their implementations of XHR, on which Dojo must rely, synchronously

block the entire browser process. Your user is stuck. The Stop button

won’t even work—killing the browser process is the only option.

The dojo.io.script.get method returns immediately, before the server has

responded. When the response does come back, Dojo calls the load or

error callback you specified in dojo.io.script.get. In Figure 3.6, on the next

page, you can see a good overview of the process.

Let’s take the error callback first since it’s the easiest. error must be a

function with the signature function(someVariable), where the text of the

error message is send back through someVariable. In our example, we

call it simply text.

4. If dojo.io.script doesn’t return a response, what does it return? It returns a dojo.Deferred

object, which we’ll see in Section 6.4, Managing Callbacks with dojo.Deferred, on

page 123. With dojo.Deferred, you can chain callbacks to load and error, as in “When

you’re done with all the successful callbacks, also do this one.” This allows for easy reuse

of callbacks among XHR requests.

RESEARCHING CIGARS USING JSONP 62

Your Code

Load/Error Handler

xhrGet() Web Service

Figure 3.6: UML sequence diagram of a Dojo XHR call

Note that error is called only when the process of sending or receiving

fails. An incorrect URL, a bad Internet connection, or a slow response

time (longer than our timeout property) will cause this to fire.

However, it will not be called if the web service itself returns an error.

For example, an address verification web service could return an

<error> tag if the address is not legal, but this is not considered an

error by Dojo.

load is the most important callback. This is where we can first view the

response, which Dojo places in the searchResult parameter. But how do

we extract the stuff we need from searchResult? Here’s where Firebug is

really useful. The call console.dir(searchResult); dumps the entire contents

of searchResult to the debug log. From there, as pictured in Figure 3.7,

on the following page, we can view its structure.

We see that searchResults contains a ResultSet property, which in turn

houses a Result array of hashes, each with the interesting properties

title, url, and summary. Pay dirt!

And now it’s clear why we did that example back in Section 3.2, Func-

tion Literals, on page 43. It’s easy to write a dojo.forEach loop that creates

list items from these results and puts them in the list at the bottom.

dojo.require ends the prologue.

REVIEWS WITH DOJO.XHRGET 63

Figure 3.7: Firebug showing the structure

Download xhr_techniques/yahoo_remote_script.html

dojo.require("dojo.io.script");

And when we run the app and click a grid row, the search results pop

out at the bottom, as shown in Figure 3.5, on page 57. Click a new row,

get another list, and so on.

All in all, that was fairly painless XHR. With one small server-side com-

ponent and one call to dojo.io.script.get, you have extended the reach of

your application quite far. On-the-fly searches like this were unthink-

able just a few years ago.

JSONP services are nice, but not all web services are built on it. By far

the most common web services use REST and XML. But even that isn’t

so hard, as we’ll find out.

3.5 Reviews with dojo.xhrGet

Justa has a great opportunity. The magazine Cigars Unlimited now

offers its world-renowned cigar reviews via a web service. Justa pays

a small fee each time the service is called, but it will make up that

money easily by selling more cigars. The company wants an icon added

to the grid, which the user will click to fire the request and put the

reviews in a list.

It would be nice to connect Dojo and JavaScript directly to the Cigars

Unlimited web service. But there are two issues:

• Cigars Unlimited’s web services, like most web services, don’t use

JSONP. They use plain-vanilla REST and XML. We must call them

with XHR, but an XHR request must obey the same-origin policy

of browser-based JavaScript. That is, JavaScript can send XHR

requests only to the same server from which it was loaded.

REVIEWS WITH DOJO.XHRGET 64

• The terms of the web service agreement stipulate that you can

request reviews only from a fixed IP. If every Tom, Dick, and Mary

could access the service from their client PC, Cigars Unlimited

would make no money.

At the time of this writing, browser producers are discussing options

for relaxing the same-origin policy. But even if that problem is solved,

that service agreement stipulation is the showstopper.

This is a common Ajax problem, and a common solution is a proxy

service. If the browser can’t communicate directly with the service, it

can communicate with the proxy, and the proxy will communicate with

the service. After all, your server-side language—be it PHP, JSP, ASP,

Ruby on Rails—has no same-origin policy.

Since this book concentrates on Dojo, a client-side toolkit, we won’t dis-

cuss how to write the proxy. There are many options for this, and the

sidebar on page 48 gives a few of them. Instead, we’ll use the same tech-

nique as in Section 3.3, A Wish List with dojo.data and dojox.grid.Grid,

on page 46 and just place a sample XML file on the server. This will

simulate the output of Cigar Unlimited’s web service:

Download xhr_techniques/services/ratings.xml

<?xml version="1.0" encoding="UTF-8"?>

<rating>

<numerical>4</numerical>

<descriptive>

Rolled in an aesthetically pleasing

reddish-brown wrapper, this cigar smokes well

exuding a pleasant aroma. The smoke has a buttery,

leathery quality with tea and cocoa bean notes,

and a long, pleasant finish.

</descriptive>

</rating>

But how do you get the data from the server? Dojo provides low-level

functions dojo.xhrGet, dojo.xhrPost, and others for this purpose. Fortu-

nately, they share many characteristics with dojo.io.script.get, so learn-

ing them will be a snap.

One more thing: we need to deal with XML and its APIs, which are less

elegant than JSON’s. Dojo is heavily skewed toward using JSON and

provides almost no facilities for helping out with XML. In our case, we

will use the native DOM APIs to read XML data. There are other options:

you can use a third-party JavaScript XML toolkit like Google’s or do a

server-side translation of XML to JSON before hitting the client.

REVIEWS WITH DOJO.XHRGET 65

Using dojo.xhrGet

First we’ll gather the web service information, as we did in the previous

example:

• URL: services/ratings.xml, which is our stub data source. We call it

with HTTP GET.

• Input parameters: The Cigars Unlimited web site uses a query pa-

rameter, and we also use that parameter to the proxy. Of course,

our stub data source, since it’s not a program, will ignore this.

• Timeout: Ten seconds.

• Content type: XML. Note that JSONP services do not need this pa-

rameter, but dojo.xhr* functions do.

Also unlike dojo.io.script.get, there is no callbackParamName. But like

dojo.io.script.get, the load and error callbacks are required.

Dojo’s four low-level XHR methods—dojo.xhrGet, dojo.xhrPost, dojo.xhrPut,

and dojo.xhrDelete—correspond to the four HTTP commands GET, POST,

PUT, and DELETE. The method you use is determined by the web service,

but most of the time it’s GET or POST.

So, let’s start coding! First we’ll place a blank <p> tag above the search

result list to hold the rating description:

Download xhr_techniques/ratings_xml.html

<p id="ratingP" style="width:550px"></p>

<ul id="resultUl" style="width:550px">

Then we’ll add to our onRowClick handler. Since the script is getting a

little large, we delegate this code to a JavaScript function:

Download xhr_techniques/ratings_xml.html

var searchTerms = this.model.getRow(evt.rowIndex).description;

getRating(searchTerms);

The calls to dojo.io.script.get and dojo.xhrGet will use the same error han-

dler. So, we wisely refactor this into a separate function:

Download xhr_techniques/ratings_xml.html

// Share this error function

function commonError(text) {

alert("An error has occurred.");

return text;

}

REVIEWS WITH DOJO.XHRGET 66

And finally, there’s the meat and potatoes of the rating system:

Download xhr_techniques/ratings_xml.html

function getRating(searchTerms) {

dojo.xhrGet({

// URL for our proxy that calls the rating service

url: "services/ratings.xml",

content: { query: searchTerms },

timeout: 10000,

// Set this to parse response into XML

handleAs: "xml",

// Function run when web service returns with the answer

load: function(ratingResult) {

// Make an object out of the dynamic data for substitute.

var reviewObj = { name: searchTerms };

var ratingNodes = ratingResult.getElementsByTagName("numerical");

reviewObj.numerical = ratingNodes[0].firstChild.nodeValue;

var reviewNodes = ratingResult.getElementsByTagName("descriptive");

reviewObj.descriptive = reviewNodes[0].firstChild.nodeValue;

var reviewPara = document.getElementById("ratingP");

reviewPara.innerHTML =

dojo.string.substitute(

"${name}: ${numerical} stars
${descriptive}",

reviewObj

);

},

error: commonError

});

}

Much of the code is similar to the Yahoo Search lookup. The differences

are as follows:

• You must specify the handleAs parameter as XML. Other values

you can use here are json and text.

• The load callback extracts data as parsed XML. Note the use of

document.getElementsByTagName, which is standard JavaScript. It

is rather inelegant compared to JSON’s rating.numerical equivalent,

but it does the job.

• There’s no dojo.require needed for dojo.xhr*. This and the other low-

level XHR methods are part of Dojo Core.

ERRORS AND DEBUGGING 67

Figure 3.8: Getting a cigar rating

So, now we’re ready to roll. Pull up the page, click a row, and the rat-

ing appears between the Grid and the search result list, as pictured in

Figure 3.8.

3.6 Errors and Debugging

In both of our examples, the error callback is admittedly somewhat mea-

ger. Unlike standard submit-and-redraw web processing, XHR happens

behind the scenes and will not display an error by default. Without

adequate feedback, the user will not know anything has gone wrong.

Still, an alert box is Draconian. Consider the effect if multiple errors

happen at once and the user is bombarded with annoying feedback.

A lightweight alternative to alert() is the Toaster widget, also known as

dojox.widget.Toaster. A Toaster widget is a box that pops up in the corner

of the browser and then waits for a mouse click or simply fades out.

It’s a good way to draw attention without being modal. We show one in

Figure 3.9, on the following page.

Toaster comes from Dojox, the Dojo extension package. So, let’s toast

that error! First we add dojo.require:

Download xhr_techniques/ratings_xml_with_toaster.html

dojo.require("dojox.widget.Toaster");

The Toaster widget usually works best at the bottom of the web page.

It’s not displayed until invoked, so in theory it could go anywhere. But

placing it outside all other code keeps the DOM straight:

Download xhr_techniques/ratings_xml_with_toaster.html

<div dojoType="dojox.widget.Toaster" duration="0"

messageTopic="xhrError" positionDirection="tr-left" />

positionDirection= specifies tr-left, meaning “in the top-right corner,

moving in from the left.” messageTopic= is the topic that the Toaster

ERRORS AND DEBUGGING 68

Figure 3.9: dojox.widget.Toaster displays an error.

widget listens to for a message. Topics are part of Dojo’s publish-sub-

scribe event system, which we’ll cover in great detail in Chapter 6, Asyn-

chronous Programming, on page 101. But for now, think of a topic as

a magazine subscription where one publisher sends out magazines to

a list of interested subscribers. Here the magazine is xhrError, the error

handler is the publisher, the Toaster is the subscriber, and a particular

error message is a magazine issue.

Download xhr_techniques/ratings_xml_with_toaster.html

function commonError(text) {

dojo.publish("xhrError",

[{ message: text, type: "error", duration: 0 }]

);

return text;

}

And once again, hash literals swoop in to save the day. The publish-

subscribe system passes messages of many different formats between

components. Toasters understand message hashes with the properties

message=, type=, and duration=. A duration= of 0 means keep the message

displayed until the user clicks it. Toaster widgets stay in the corner of

the screen, even as you scroll up and down the page. To test it, simply

change the XHR URL to a file that doesn’t exist:

Download xhr_techniques/ratings_xml_with_toaster.html

url: "services/file_doesnt_exist.xml",

Of course, errors are sometimes debuggable, and you need a good tool

to see the XHR communication in the background. Firebug is a great

tool for that. To see XHR traffic, open Firebug, and make sure the

ERRORS AND DEBUGGING 69

Figure 3.10: XHR Request tab in Firebug

Figure 3.11: XHR Response tab in Firebug

Console tab is showing. When you fire off an XHR request of any kind,

the Headers tab tells you the endpoints of the communication and any

HTTP status codes. In Figure 3.10, you can see the parameters sent,

nicely parsed, and displayed. In Figure 3.11, you can see the actual

data received. It looks like this particular request was successful.

Dojo XHR does a lot with a little bit of code on your part. It handles

cross-browser support, asynchronous processing, constructing query

strings, and parsing the output all in the background. You provide the

metadata for calling the service, and you provide the input data. By

using JSON, when available, you can write efficient, easy-to-read out-

put processors in a few lines of code. What better way to plug your web

applications into the vast network of services?

Part II

The Dojo APIs

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

Dojo In Depth
Now that you’ve had a taste of what Dojo can do, we’re going to take

a step back and explore Dojo in depth. Like any well-designed system,

Dojo layers higher-level functionality on top of lower-level functionality.

We’re going to start at the bottom and work our way up. This chapter

sets the table for our journey. It covers a few foundational details that

you’ll use in every Dojo application you write: how Dojo is organized,

how to get a development copy, and how to load and initialize Dojo in

your web pages.

4.1 Modularizing JavaScript

Dojo is implemented through static, client-side JavaScript scripts to-

gether with a few supporting HTML templates and CSS style sheets. No

server-side processing is required other than sending a static file, just

as there’s no browser-side extension or plug-in.

Between Dojo and Dijit, there are about 150 scripts.1 Since Dojo is

strictly a client-side toolkit, you must somehow load the particular

script that contains the functionality you want to use. Further, since

JavaScript does not include any formal concept of modules, names-

paces, or source file composition, the sheer size of Dojo could lead

to unmanageable complexity. How do you know which script to load

to get a particular function? Do scripts depend on each other? How

do you avoid loading the same script more than once? What about

performance?

1. This number should stay fairly constant. Although existing scripts are undergoing

constant refinement, most new features are developed in Dojox.

MODULARIZING JAVASCRIPT 72

These problems are addressed by organizing the various Dojo function

families into a hierarchy of modules. The term module is used loosely

since JavaScript does not formally define the concept of a module. A

Dojo module manifests itself as a JavaScript object; we’ll term this

object the module object. All JavaScript objects (functions and data)

that are members of a particular module exist as properties of that

module object. Some of these properties may be other module objects—

this results in a hierarchy of modules.

A Dojo module object is defined (that is, a JavaScript object variable

is instantiated) by one JavaScript source file; we’ll term this file the

module primary script.2 When a module primary script is loaded, it

may cause other scripts to load (see Section 11.2, The Dojo Loader,

on page 290). In this sense, a module may be decomposed into several

source files, but exactly one of these files is responsible for defining

the module object. Finally, module primary scripts and module names

reflect each other:

• The files that make up all the modules are stored in a directory

tree so that the path/filename of a module primary script gives

the module name. For example, the Dojo drag-and-drop man-

ager module dojo.dnd.manager is stored at dojo-module-path/dnd/

manager.js (dojo-module-path gives the absolute path to the dojo

module).

• For the most part, when a module primary script is loaded into

your JavaScript program, all JavaScript objects defined by that

module, with the exception of child module objects, are created

as properties of the module object.3 Continuing the example, all

public objects defined by the module dojo.dnd.manager are created

as properties of the JavaScript object dojo.dnd.manager. The root

module in any such hierarchy of modules is defined in the global

scope. So, dojo is a global variable.

Here’s another way to look at the design: the module primary script

filename implies the module name, which implies the JavaScript object

name that holds all JavaScript objects defined by the module. The con-

verse equation is also true.

2. Module primary script is not an official Dojo term but rather a device we’re using to

explain how things work.
3. There are a few exceptions to this rule. Some module primary scripts create additional

objects that are not part of the module. For example, the Dijit module dijit.form.Button

creates dijit.form.DropDownButton, dijit.form.ComboButton, and dijit.form.ToggleButton in addition

to dijit.form.Button.

MODULARIZING JAVASCRIPT 73

The source code directory tree defines the hierarchy of JavaScript ob-

jects that hold the Dojo function families. You can visualize these

objects as a hierarchy of nested namespaces. This design allows for

extremely flexible organization. Here’s what the dojo/ tree looks like (we

opened only the subdirectories dnd and io—the other subdirectories are

not empty):

Line 1 /dojo
- /_base---------------->names that begin with a leading underscore
- /_firebug are considered private (for internal use)
- /cldr
5 /data
- /date
- /dnd
- autoscroll.js
- Avatar.js

10 common.js
- Container.js
- Manager.js-------->defines the module "dojo.dnd.Manager"
- move.js which happens to be a constructor function
- Moveable.js

15 Mover.js
- Selector.js
- Source.js
- /io
- iframe.js--------->defines the module "dojo.io.iframe"

20 script.js which is a regular module object
- /nls
- /resources
- /rpc
- /tests

25 _base.js
- AdapterRegistry.js
- back.js
- behavior.js
- colors.js

30 cookie.js
- currency.js
- date.js
- DeferredList.js
- dojo.js--------------->the entry point for the toolkit

35 fx.js must be loaded first by a script tag
- i18n.js
- NodeList-fx.js
- number.js
- OpenAjax.js

40 parer.js
- regexp.js
- string.js
- tests.js

MODULARIZING JAVASCRIPT 74

The tree shown here calls out a few conventions used throughout the

toolkit. First, if a module defines a single constructor function, then its

name is capitalized to indicate that the module defines a class.4 Second,

a few scripts and modules have names that begin with an underscore.

These are considered private and are used internally by other modules.

Since they will be automatically included if you need them, you can

pretty much ignore them.

The breadth and depth of Dojo is one of its greatest strengths, but Dojo

is big. Classifying functions into smaller and smaller subgroups makes

such a large system easier to digest than a single massive list of func-

tions. Needless to say, the reference manual (see http://api.dojotoolkit.

org/) is organized along the same hierarchy. This is nothing but good

design—reassuring, if not terribly novel.

Furthermore, we don’t have to download the entire, massive toolkit in

order to get just a few key functions. Since the toolkit is divided up

into small chunks, we are required to download only the parts that we

actually use and then only when we actually need them.

Let’s take it one last step. Since the script filename can be deduced

from the module name, why not write some JavaScript code to manage

the whole script downloading process for us? This is the function of the

Dojo loader, which we’ll discuss in Section 11.2, The Dojo Loader, on

page 290. Further, once all the development is done and we’re ready

to release our new application to production, why not package sev-

eral modules together so they can all be sent to the browser in a sin-

gle JavaScript file? This is the function of the Dojo build system (see

Section 11.3, Optimizing Deployment with the Dojo Build System, on

page 299).

Consider the implications of the last two features taken together. Dojo

divides source code up optimally from the programmer’s point of view

while suffering no performance penalty when it comes time to publish

the application on the Web (serving lots of little script files would result

in sluggish performance). And you can use Dojo’s module, loader, and

build system when developing and deploying your own code. Although

this functionality is necessary for large applications, it can be com-

4. JavaScript doesn’t explicitly include the concept of a class as do other languages.

But, most aspects of the class concept are available in terms of constructor functions

and prototypal inheritance. We’ll discuss these concepts in detail in Chapter 9, Defining

Classes with dojo.declare, on page 225.

DOJO SOURCE CODE ORGANIZATION 75

pletely ignored if all you need is some basic Ajax or browser normal-

ization functionality. Just load the modules you need, and forget about

the loader and the build system.

4.2 Dojo Source Code Organization

The module decomposition (and therefore the source code) for the Dojo

toolkit is divided into three trees:

• Dojo: The core toolkit that includes libraries that are useful in

nearly any program; the contents of this tree is referred to as Dojo

Core.

• Dijit (Dojo widgets): A framework for building HTML user interface

controls (widgets) as well as a library of many prebuilt widgets.

Dijit depends on Dojo.

• Dojox (Dojo extensions): Projects that may not be needed in every

single app or may not be 100% stable yet because they’re push-

ing on the edge of what’s possible in browsers today (say, GFX).

Many of the projects in Dojox would be considered highly mature

in the context of other toolkits. But Dojo sets the bar so high for

Core (API documentation and tests) and Dijit (API documentation,

tests, a11y, and i18n) that it’s easier in many cases for projects to

continue to mature as extensions. Each project in Dojox includes

a readme file that explains the state of the project. We’ll look at the

occasional Dojox module, but most of Dojox is beyond the scope

of this book.

The root directory of the dojo/ tree includes the file dojo.js; a script ele-

ment must load it before you do anything else with the toolkit. dojo.js

is the module primary script for the module dojo. When dojo.js is evalu-

ated, the global variable dojo (an object) is created, and properties are

added to it that make up the minimal runtime system defined by Dojo.

In addition to dojo.js, the root of the dojo/ tree defines several other mod-

ules. Each of these is a child to the dojo module (remember, modules

can contain other modules). For example, the module primary script

number.js is located in the root directory of the dojo/ tree and defines

the module dojo.number. In this sense, dojo.js is different from any other

file in the root: dojo.js causes the module dojo to be created; all other

siblings to dojo.js cause modules that are children of dojo to be cre-

ated (for example, dojo.number). Similarly, the root directory of the Dijit

DOJO SOURCE CODE ORGANIZATION 76

tree includes the file dijit.js, which serves as the entry point for Dijit and

exhibits the same kind of special behavior.

As far as possible, the directory trees capture dependencies. So, for

example, it is always true that for some imaginary modules dojo.x and

dojo.x.y, dojo.x.y depends on module dojo.x. There is nothing to be gained

by learning all of the module dependencies. Each module will ensure

that its prerequisite modules are loaded.

The Catalog of Dojo Modules

Now that we’ve seen how Dojo is organized, let’s see what’s actually

in it. First and foremost, there is the module dojo that includes the

following functionality:5

• Environment properties: A small set of variables that indicate var-

ious properties of the runtime environment (for example, browser

version and capabilities).

• Language extensions: Functions that fill in a few elements miss-

ing from the core JavaScript library (see Chapter 5, JavaScript

Language Extensions, on page 83).

• Asynchronous programming: Functions for programming events

and asynchronous callbacks (see Chapter 6, Asynchronous Pro-

gramming, on page 101).

• DOM programming: A library of functions that makes program-

ming the DOM more pleasant (see Chapter 7, DOM Utilities, on

page 140).

• XHR programming: Functions for communicating with the server

via XHR objects (see Chapter 8, Remote Scripting with XHR, script,

and iframe, on page 178).

• Object-oriented programming: A function for creating powerful,

flexible class hierarchies (see Chapter 9, Defining Classes with

dojo.declare, on page 225).

• The Dojo loader: Functions that load JavaScript scripts and Dojo

modules (see Chapter 11, The Dojo Loader and Build System, on

page 286).

The dojo/ tree includes several other modules that are not loaded auto-

matically as a result of loading dojo.js in a script tag; you must thus

5. Most of the dojo module is implemented in the scripts contained in the directory _base.

But this is an implementation detail that doesn’t affect the typical user.

DOJO SOURCE CODE ORGANIZATION 77

explicitly load them with a dojo.require function call, which we’ll see in

Section 4.3, dojo.require, on page 80. They include the following:

• dojo.back: Back button functionality for browser applications that

don’t navigate by loading new URLs

• dojo.behavior: “Behaviors” attachable to sets of nodes

• dojo.cldr: A Common Locale Data Repository (CLDR) implementa-

tion; works in concert with dojo.i18n

• dojo.colors: Convenient CSS color manipulation functions

• dojo.cookie: Simple HTTP cookie manipulation

• dojo.currency: Parse, format, and i18n functions for currency data

• dojo.data: Functions to access a generalized data source together

with an implementation for several types of data sources

• dojo.date: Parse, format, and i18n functions for date data

• dojo.dnd: DOM drag and drop

• dojo.fx: DOM effects

• dojo.i18n: Support for multiple locales; works in concert with dojo.

cldr

• dojo.io: Functions for communicating with a server via script and/

or iFrame elements

• dojo.number: Parse, format, and i18n functions for number data

• dojo.parser: HTML parser

• dojo.regexp: Functions that help with building regular expressions

• dojo.rpc: Remote procedure call (RPC) framework

• dojo.string: A few common, otherwise-missing, string functions

We will be covering the module dojo thoroughly, and along the way,

we’re also going to cover many of the other modules found in Dojo Core.

Dijit Modules

The Dijit modules are contained in a separate source code tree and are

defined from the root module dijit (not dojo.dijit). These modules imple-

ment Dojo’s HTML widget system, which is fully described in Part III of

the book.

Getting the Source

At the time of this writing, Dojo is available from four primary sources:

• You can find the current release at http://dojotoolkit.org/downloads

where the Dojo Foundation publishes one gzipped tarball that

includes the dojo/, dijit/, and dojox/ trees of the latest release. The

LOADING DOJO 78

dojo, dijit, and dijit-all modules are packaged in both compressed

and uncompressed resources; all the remaining resources are not

compressed. We’ll discuss compressing and packaging in Chap-

ter 11, The Dojo Loader and Build System, on page 286.

Sometimes this is referred to as the binary build because some

resources are packaged and compressed. Except for a few images,

no true binary (that is, something other than text) resources are

included; every resource is a JavaScript, CSS, or HTML file. Distri-

butions that don’t contain any packaged or compressed resources

are referred to as source builds.

• You can find current and previous, binary, and source builds, in

zipped and gzipped tarball resources, together with MD5 check-

sums at http://download.dojotoolkit.org/.

• AOL serves binary builds from its content delivery network (CDN);

see http://dev.aol.com/dojo.

• The source is also available for anonymous checkout from the

SVN repository at http://svn.dojotoolkit.org/src/. The current develop-

ment trunks are rooted at /dojo/trunk, /dijit/trunk, /dojox/trunk, and

/util/trunk. Tagged releases are stored in /tags. There’s also a set of

svn:externals definitions at http://svn.dojotoolkit.org/src/view/anon/

all/trunk/ that pulls in all four trunks in one anonymous checkout.

• Finally, the Trac bug-tracking database includes browser access

to the SVN trees. All things Trac start at http://trac.dojotoolkit.org.

4.3 Loading Dojo

Now it’s time to actually load the toolkit so we can start using it. dojo.js

must be loaded before any other Dojo module or any of your own code

that uses Dojo. Here is the absolute minimum statement required in

your HTML document:

<script type="text/javascript" src="/dojoroot/dojo/dojo.js" /></script>

This line assumes that dojo.js is in the directory /dojoroot/dojo/.

A few runtime configuration switches can be set when loading dojo.js.

Let’s look at that next.

LOADING DOJO 79

Alex Says. . .

Debugging Tools for Internet Explorer

The biggest debugging headaches always seem to occur
on Internet Explorer 6 and 7. Since the full-blown Firebug
isn’t available there, we need to augment the arsenal. First,
you’ll need the Internet Explorer Developer Toolbar exten-
sion (available at http://www.microsoft.com/Downloads/details.

aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038). This is a
marginally passable clone of the excellent Web Developer tool-
bar for Firefox. Despite its warts, the Internet Explorer Web Devel-
oper toolbar makes clearing the Internet Explorer cache much
faster, and some of its DOM inspection facilities are useful in a
pinch. Next, make sure you avoid the Microsoft Script Debug-
ger (a toy) and instead use the Microsoft Script Editor (not a
toy), which is found on the Office 2003 install discs. Microsoft
pushes the full-blown Visual Studio and its Visual Web Devel-
oper variant for handling this kind of deep debugging, but I
wouldn’t touch them with a pole. The downloads are gigan-
tic, the install interminable, and the benefit over MSE marginal
(if that). That matters all the more when you’re installing your
debugging tools in a virtual machine. All of my Internet Explorer
development and debugging is done in VMs, and I can’t rec-
ommend that highly enough. Don’t bother with things that pre-
tend to let you run Internet Explorer 6 side by side with Inter-
net Explorer 7 or Internet Explorer 8—they’re not the same as
having the “real thing” because of some fundamental fea-
tures of Internet Explorer’s design. Microsoft has recognized
this flaw and makes prerolled virtual machine images avail-
able (available at http://www.microsoft.com/Downloads/details.

aspx?familyid=21EABB90-958F-4B64-B5F1-73D0A413C8EF), although
they’re available only for Microsoft’s Windows-only (albeit free)
Virtual PC runtime. I personally use a mix of Parallels and
VMware for my virtualization needs, but use whatever works
best for you—just make sure you’re testing!

LOADING DOJO 80

Runtime Configuration

Back in the tutorial given in Chapter 2, Powerful Web Forms Made Easy,

on page 20, we used the djConfig attribute in the script element that

loaded dojo.js to specify the configuration switch parseOnLoad. Here is

what that script element looked like:

Line 1 <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js"
- djConfig="parseOnLoad: true">
5 </script>

The same thing could be accomplished by explicitly setting the global

variable djConfig. Since this must be set before dojo.js is loaded, the

client program must create and initialize djConfig. This can be done in

a single statement:

Line 1 <script type="text/javascript">
- djConfig= {parseOnLoad: true};
- </script>
-

5 <!-- now load dojo.js; note no djConfig attribute -->
- <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js">
- </script>

Each of these methods accomplishes the same result. We prefer the

djConfig attribute method since the configuration settings are encap-

sulated in the element that loads dojo.js. But if you are troubled by

including nonstandard attributes, then use the other method (see the

Alex Says. . . , on the next page if you really are troubled). If you hap-

pen to use both methods, any configuration switch set by the djConfig

attribute will override any properties set in the djConfig global variable.

dojo.require

What if you need something that’s not in the module dojo (that is, not

loaded as a result of script including dojo.js)? For example, what if you

need to do some remote scripting with dojo.io.script? How do you get this

module loaded?

The answer is that everything else gets loaded with the function dojo.

require.6 It keeps track of the modules already loaded and ensures that

6. It can also load scripts that don’t define modules. This is an advanced feature we’ll

discuss in Chapter 11, The Dojo Loader and Build System, on page 286.

LOADING DOJO 81

Alex Says. . .

Using Nonstandard HTML Attributes

Dojo uses nonstandard HTML attributes to set configuration
switches and configure Dijit widgets. This may raise some eye-
brows, but in every case where it’s allowed, we also provide
ways to do equivalent things without nonstandard attributes.

We agree that, as a general principle, standards should be
followed—so long as they don’t get in the way of doing real
work. After all, the very reason for standardizing is to make
doing real work easier. But, when the cost of following them
is greater than the cost of ignoring them, then they ought to be
ignored. Dojo is above all (pardon the word) pragmatic. It exists
solely to help build great applications. And anything that gets
in the way of this goal is fungible, particularly when the default
behavior of every browser on the planet is to allow the behavior
in question. Nonstandard attributes are a “spirit of the law” type
of technique, and we’re happy to see that HTML 5 (currently in
draft form) explicitly allows these so-called expando attributes,
in effect legitimizing the approach Dojo has taken for years.

It is sad, though, that we even need to be having this discus-
sion. Internet Explorer had HTCs for defining new element types
and Mozilla implemented XBL, but they are not compatible with
each other, so Dojo’s widget system jumps into the breech to
allow you to easily specify new “elements” in your document.
It’s our sincere hope that someday in the future all of this will
be deprecated in favor of something like XBL2, but until then,
pragmatism rules.

LOADING DOJO 82

modules aren’t loaded more than once (it simply returns immediately

if the module already exists). It guarantees the requested module has

loaded successfully before returning or throws an exception.

The sole required argument (a string) to dojo.require gives a module

name. As discussed above in Section 4.1, Modularizing JavaScript, on

page 71, these names map to the file system. For example, "dojo.a.b.c"

maps to the script dojo-module-path/a/b/c.js, and loading the script is

as simple as writing the following:

dojo.require("dojo.a.b.c");

There’s actually a bit more to say about dojo.require, but since this addi-

tional material overlaps deployment issues, we’re going to put the rest

of the story on hold until Chapter 11, The Dojo Loader and Build Sys-

tem, on page 286.

Now that we have Dojo loaded and initialized, let’s start using it. We’ll

begin with several little but useful extensions to core JavaScript. That’s

the subject of the next chapter.

Chapter 5

JavaScript Language Extensions
Dojo provides some functions that, loosely speaking, extend the core

JavaScript library. These functions are not attached to a particular

problem domain but rather are foundational to JavaScript program-

ming. They are also at the very bottom of the dependency hierarchy.

The material in this chapter demonstrates some of JavaScript’s true

beauty and power. We’ll see functions that write other little JavaScript

functions on the fly, resulting in highly expressive, powerful, yet easy

code. If you’re already a JavaScript (or functional programming) guru,

then you’ll breeze through the material; if not, get set to use JavaScript

for something more than glorified BASIC!

We’ll begin by exploring dojo.hitch, a function that, directly or indi-

rectly, is pervasive in Dojo. Next we’ll look at Dojo’s array functions—

which actually are Mozilla JavaScript 1.6 core library functions. Unfor-

tunately, not all browsers implement them yet. We’ll conclude with a

few utilities functions that test/manipulate an object’s type/structure.

All in all, the functions described will make your programs easier and

more enjoyable to write.

5.1 Binding with dojo.hitch

Sometimes you need to pass a method of an object to another function

as an argument. At one time or another, just about every programmer

has tried to write something like someFunction(someObject.someMethod)

to solve this problem...and failed. dojo.hitch solves this problem of bind-

ing context to a method.

BINDING WITH DOJO.HITCH 84

Alex Says. . .

dojo.hitch Is Important

dojo.hitch is very important for two reasons. First, JavaScript
functions are not bound to the scope in which they’re defined.
Languages such as Python have “implicit binding,” which
allows the assignment of function references to pseudomagi-
cally hold on to their “enclosing” object. JavaScript has no such
implicit wrapping. Said another way, JavaScript functions are
“promiscuous.” They take easily to whatever scope you exe-
cute them in, and understanding how and why this is so pro-
vides deep insight into JavaScript as a language. Binding con-
text and/or arguments is an idiom used frequently in functional
programming (aka currying).∗

Understanding JavaScript as a functional language can make
you a much better JavaScript programmer. Second, many
important Dojo functions take a context and a function as
arguments, so getting used to the pattern will make many parts
of Dojo feel more familiar. In each case, the semantics of these
arguments are the same as with dojo.hitch.

∗. Pure functional programs have no concept of state. In practical
terms, this means they don’t have an assignment operation or other side
effects. If such a concept sounds exciting, check out [AS96], [Mac90], or
my slides on aspect-oriented and functional programming in JavaScript
(http://alex.dojotoolkit.org/wp-content/AOP_and_FP_in_JS.pdf).

Binding Context

Let’s begin by exploring that naive attempt mentioned earlier to pass a

method (m) of an object (o) as an argument to some function that will

call o.m. Here’s a simple object that accumulates a sum and returns

the result. We’ll use theAccumulator.getResult for o.m in our example:

Line 1 var theAccumulator= {
- total: 0,
- clear: function() {
- this.total= 0;
5 },
- add: function(x) {
- this.total+= x;
- },
- getResult: function() {

10 return this.total;
- }
- };

BINDING WITH DOJO.HITCH 85

Next, we need a function that takes another function as an argument

to demonstrate passing theAccumulator.getResult as a parameter. A func-

tion that prints the return value of calling its single argument will work:

Line 1 //display a message box with the result of calling f...
- function printResult(f) {
- alert("result= " + f());
- }

With this in place, let’s use theAccumulator to add 100 to 200 and then

print the total by calling printResult, passing theAccumulator.getResult as

the argument. At one time or another, just about every programmer has

tried something like this:

Line 1 theAccumulator.clear();
- theAccumulator.add(100);
- theAccumulator.add(200);
-

5 //this is wrong!
- printResult(theAccumulator.getResult);

We expect to see “result= 300” printed in the message box, but instead,

the message box prints “result= undefined.” Here’s the problem: when

theAccumulator.getResult is passed to printResult, the function isn’t bound

to any context. So, when the parameter f is invoked by printResult, this ref-

erences the global object space and the global variable total is evaluated,

not theAccumulator ’s total. The problem can be corrected by writing this:

printResult(function(){return theAccumulator.getResult();});

When the function function(){return theAccumulator.getResult();} is called by

printResult, getResult is explicitly bound to theAccumulator, and “result=

300” is printed in the message box as expected.

The function dojo.hitch manufactures these little functions for us. For

the moment, we’ll limit the discussion to cases where dojo.hitch is given

one or two arguments (it can take more, which we will discuss shortly).

If two arguments are given, then the first argument (an object) gives the

context in which the second argument (a function or string designat-

ing a function) should execute. dojo.hitch takes these arguments and

returns a function that invokes the second argument in the context of

the first. Here’s how dojo.hitch works in code:

Line 1 dojo.hitch(o, o.f);
- //o an object, f a member function of o, returns...
- function() {return o.f.apply(o, arguments);}
-

5 dojo.hitch(o, "f");
- //o an object, f the name of a member function of o, returns...
- function() {return o["f"].apply(o, arguments);}

BINDING WITH DOJO.HITCH 86

The only difference between the two forms is that the second argument

is given as an identifier in the first example and a string in the second.

When the second argument is a member function of the first argument

as shown earlier (we’ll see that this need not be the case in a moment),

the second form saves some typing.

We can use dojo.hitch to write the function in the motivating example.

This...

Line 1 printResult(function(){return theAccumulator.getResult();});

becomes the following:

printResult(dojo.hitch(theAccumulator, "getResult"));

Binding a member function to an object that defines that member is

almost always what you want, but it is perfectly legal to bind an ordi-

nary function or a function that’s a member of another object. Here’s

how dojo.hitch works in both cases:

Line 1 dojo.hitch(o, f);
- //o an object, f a function, returns...
- function() {return f.apply(o, arguments);}
-

5 dojo.hitch(o, p.f);
- //o, p objects, o!=p, f a member function of p, returns...
- function() {return p.f.apply(o, arguments);}

By definition, this type of binding causes f, which is not a member of

o to execute in the context of o. You can visualize this as a kind of

dynamic, per-function mixing (as in mixin). This technique is actually

a lot more useful than you might think; here’s an example that demon-

strates the use pattern.

Assume you have the function showData that gets a number from a data

source and pushes it into a document element. The function might look

something like this:

Line 1 function showData() {
- var x= this.getData();
- dojo.byId("showData").innerHTML= "The result= " + x;
- }

Notice that the data displayed by showData depends upon the value of

this when showData is invoked. So, showData must be bound to a context

that defines getData, and binding showData to different contexts will

cause it to show different data.

BINDING WITH DOJO.HITCH 87

Here are a couple of different data sources to exercise showData:

Line 1 //generates 1, 2, 3, ...
- var dataSrc1 = {
- value: 0,
- getData: function() {return this.value++;}
5 };
-

- //generates 5, 10, 15, ...
- var dataSrc2 = {
- value: 0,

10 getData: function() {return (this.value+= 5);}
- };

Finally, here’s an example of binding showData to these different data

sources and hooking them to a click event.1

dojo.byId("f3").onclick= dojo.hitch(dataSrc1, showData);

dojo.byId("f4").onclick= dojo.hitch(dataSrc2, showData);

Clicking the "f3" element causes the first data source to be accessed,

while clicking the "f4" element causes the second data source to be

accessed.

If only one argument is given to dojo.hitch, then it is assumed that the

context argument was omitted. Specifying null for the first argument has

the same effect. Either way, the function is executed in the global object

space. Here’s how dojo.hitch works with these types of arguments:

Line 1 //note: dojo.global holds a reference to the global object space
-

- //first form
- dojo.hitch(null, f); //f a function, is the same as...
5 dojo.hitch(f); //which returns...
- f
-

- //second form
- dojo.hitch(null, "f"); //is the same as...

10 dojo.hitch("f"); //which returns...
- function() {return dojo.global[f].apply(dojo.global, arguments);}

The first form selects f from the current scope, while the second form

selects global f (that is, f in the global scope). In both cases, using

dojo.hitch to bind a function with null isn’t very useful—until we also

bind arguments, the next topic in our discussion.

1. If we weren’t trying to demonstrate hitch, we would actually bind showData to dataSrc1

and connect to the click event by writing dojo.connect(dojo.byId("f3"), "click", dataSrc1, show-

Data); it’s similar for binding dataSrc2. See Section 6.1, Programming DOM Events with

Dojo, on page 101 for details about dojo.connect.

BINDING WITH DOJO.HITCH 88

Binding Arguments

If you step back and think about it for a moment, you’ll realize that the

context in which a function is executed could be viewed as just another

argument to the function. Since we just showed how dojo.hitch is used

to bind context, you might ask, “Is it possible to bind other arguments?”

As you probably guessed, the answer is “yes.”

To motivate our discussion, consider a case where you want to pass

additional arguments to an event handler and these arguments are

determined when the handler is connected rather than when the han-

dler is invoked. Heuristically, you’d like to do something like this:

//this won't work!

dojo.byId("someId").click= handler(someArg);

This won’t work because the statement immediately calls handler and

then passes the result as the handler—not a function that invokes han-

dler(someArg). We can fix it by using a function literal:

dojo.byId("someId").click= function(){handler(someArg);};

Just like binding context, dojo.hitch can be used to build these lit-

tle functions on the fly. If more than two arguments are provided to

dojo.hitch, then a function object is manufactured that executes the

passed function in the correct context and provides the extra argu-

ments when the manufactured function object is executed. Here’s what

it looks like in pseudo-JavaScript:

Line 1 dojo.hitch(context, f, a1, ..., an); //returns...
- function(){return context.f.apply(
- context, [a1, ..., an].concat(arguments));};

[a1,..., an].concat(arguments) creates an array of arguments that’s passed

to context.f when it is invoked. The first n arguments are those that

were provided when dojo.hitch was called; the remaining arguments (if

any) are provided when the function object manufactured by dojo.hitch

is invoked.

Since this can be a bit confusing, here’s a quick example to drive it all

home. First, define a function that takes three arguments and prints

out the concatenated arguments to a message box:

function print3Args(a1, a2, a3) {

alert(a1 + a2 + a3);

}

Next, use dojo.hitch to preset two of the arguments:

var printArg= dojo.hitch(null, print3Args, "this", " is ");

BINDING WITH DOJO.HITCH 89

Finally, exercise printArg by invoking it with a single argument:

Line 1 printArg("easy."); //...prints "this is easy"
- //effectively, print3Args("this", " is ", "easy.") was called.
-

- printArg("beautiful."); //...prints "this is beautiful"
5 //effectively, print3Args("this", " is ", "beautiful.") was called.
-

- printArg("not the key to life!"); //...prints "this is not the key to life!"
- //effectively, print3Args("this", " is ", "not the key to life!) was called.

In the previous code, dojo.hitch manufactured a function called print-

Arg, which calls print3Args with the first and second arguments set to

"this" and "is", respectively. Any arguments provided to printArg when it

is invoked are passed along to print3Args subsequent to the first two

arguments.

We also illustrated that both the context and the function must be spec-

ified when binding arguments. If the function is a method on another

object, then there’s nothing new here. But if the function is just an ordi-

nary function defined in the current scope when passed to dojo.hitch,

then null must be specified for context when binding arguments.

Recognizing that forcing null to be provided in these situations is a

bit inconvenient, Dojo provides the function dojo.partial that does not

accept a context argument. In effect, dojo.hitch(null, f,...) is equivalent to

dojo.partial(f,...).

If we return to our motivating example, we wanted to bind arguments to

an event handler when it was connected rather than when it is invoked.

dojo.hitch allows us to solve the problem without explicitly writing out a

function literal.

So the following...

dojo.byId("someId").click= function(){handler(someArg);};

becomes...

dojo.byId("someId").click= dojo.hitch(null, handler, someArg);

or, equivalently...

dojo.byId("someId").click= dojo.partial(handler, someArg);

Binding context and arguments to a function and returning another

function is a cornerstone of functional programming. You will use dojo.

hitch —directly or indirectly—all the time. You simply can’t be a good

Dojo programmer without understanding it well.

JAVASCRIPT 1.6 ARRAY METHODS 90

5.2 JavaScript 1.6 Array Methods

Ask yourself, how many times have you written something like for (var i=

0; i<someArray.length; i++)? Although the body of the loop is unique each

time, the looping control statement is not, and this is an excellent time

to employ the power of JavaScript to eliminate such rote code.

Indeed, JavaScript 1.6, as defined by Mozilla, includes several built-

in array methods that help with these kinds of tasks.2 Dojo provides

the same functions for browsers that don’t implement JavaScript 1.6

natively:

• dojo.indexOf: Returns the first index of a matching item in an array

or -1 if not found

• dojo.lastIndexOf: Returns the last index of a matching item in an

array or -1 if not found

• dojo.every: Tests whether all elements in an array cause a test

function to return true

• dojo.some: Tests whether some elements in an array cause a test

function to return true

• dojo.filter: Creates a new array composed of all elements in a array

that pass through a filter function

• dojo.map: Creates a new array composed of the results of calling a

function on every element in a array

• dojo.forEach: Passes each element in an array to a function

There are good reasons to use these Dojo functions. Certainly the code

is cleaner and more expressive. Further, there is less opportunity to

make many common coding mistakes since you don’t have to hand-

code a loop each time you need one of the algorithms.

Notice that dojo.every, dojo.some, dojo.filter, dojo.map, and dojo.forEach

iterate through an array, applying a function (that we’ll call the call-

back function) to each element in the array to achieve some result. Not

surprisingly, these functions have the same signature: (a, f, context),

where a is the array, f is the callback function, and context (optional)

is the context in which to execute f. Effectively, given f and context, the

callback function is given by dojo.hitch(context, f).

Similarly, a single signature is defined for the callback function: (item,

index, array), where item and index are the current array element and

index in the iteration and array is the array.

2. See http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:Array.

JAVASCRIPT 1.6 ARRAY METHODS 91

Let’s work through a few quick examples here. A for loop that iterates

through an array is probably the most frequently uttered code phrase

of all time. Usually, it looks like this:

for (var i= 0, end= theArray.length; i<end; i++) {

//do something interesting with theArray[i]

}

dojo.forEach is a drop-in replacement:

dojo.forEach(theArray, function(x){

//called once for each array element

//do something interesting with x which is theArray[i]

});

We specified a function literal for the callback function—a common

idiom. Further, in our callback function, we didn’t define the index and

array arguments. This is perfectly legal and quite common. Of course,

the arguments will be passed even if you don’t use them.

There is one gotcha here. The JavaScript 1.6 array methods are defined

by the built-in Array class, whereas the Dojo counterparts are just plain

functions that must be given the target array as the first argument.

Therefore, there is an extra argument required (the array) when the

Dojo versions of these functions are used. Just for comparison, here is

forEach in JavaScript 1.6:

theArray.forEach(function(x){

//called once for each array element

//do something interesting with x which is theArray[i]

});

Now that we’ve seen the basics, let’s exercise each function in the API.

We’ll use the array src= [1, 2, 3, 4, 5] as input. Here’s the code required to

see whether all or some of the contents of src are odd numbers:

Line 1 var src= [1, 2, 3, 4, 5];
-

- //see if every element is odd...
- var allOdd= dojo.every(src, function(x){
5 return x%2;
- });
- //allOdd is now false
-

- //see if some element is odd...
10 var someOdd= dojo.some(src, function(x){

- return x%2;
- });
- //someOdd is now true

JAVASCRIPT 1.6 ARRAY METHODS 92

We can also make a new array that has just the odd numbers:

Line 1 //filter just the odd numbers out of src...
- var odds= dojo.filter(src, function(x){
- return x%2;
- });
5 //odds is now [1, 3, 5]
- //src is STILL [1, 2, 3, 4, 5]

Next, let’s make a new array by doubling each element in the src array:

Line 1 //make a new array by doubling each element in src...
- var multiplyBy2= dojo.map(src, function(x){
- return x*2;
- });
5 //multiplyBy2 is now [2, 4, 6, 8, 10];
- //src is STILL [1, 2, 3, 4, 5]

None of this is particularly surprising or complicated. And that’s exactly

the point. It’s much better than handwritten loops for all the reasons

listed in the beginning of this section.

To demonstrate the context argument, let’s calculate the sum of the

contents of src. First, we need an accumulator object:

Line 1 var accumulator= {
- total: 0,
- add: function(x){this.total+= x;}
- };

Now we’ll use dojo.forEach to pass each element in src to accumulator:

accumulator.total= 0;

dojo.forEach(src, accumulator.add, accumulator);

//accumulator.total is now 15

In the previous examples, notice that passing a function literal implies

a fair amount of rote syntax:

Line 1 function(item [, index] [, array]) {
- //function-body
- }

The really interesting part is the function body. Recognizing this, these

functions can accept the function body as a string. When this technique

is used, a function is created on the fly with the parameter names item,

index, and array. Here are all the examples rewritten in this alternate

syntax:

Line 1 //see if every element is odd...
- var allOdd= dojo.every(src, "return item%2;");
- //allOdd is now false
-

JAVASCRIPT 1.6 ARRAY METHODS 93

5 //see if some element is odd...
- var someOdd= dojo.some(src, "return item%2;");
- //someOdd is now true
-

- //filter just the odd numbers out of src...
10 var odds= dojo.filter(src, "return item%2;");

- //odds is now [1, 3, 5]
- //src is STILL [1, 2, 3, 4, 5]
-

- //make a new array by doubling each element in src...
15 var multiplyBy2= dojo.map(src, "return item*2;");

- //multiplyBy2 is now [2, 4, 6, 8, 10];
- //src is STILL [1, 2, 3, 4, 5]
-

- var accumulator = {total: 0};
20 dojo.forEach(src, "this.total+= item;", accumulator);

- //accumulator.total is now 15

The last example that accumulates a sum demonstrates a gotcha: the

function is executed in the global scope unless a context argument is

provided and is not closed on any local variables. For example, you can

close on local variables when using the function literal syntax:

Line 1 var total= 0;
- dojo.forEach(src, function(x){
- total+= x;
- });
5 //total is now 15

But something similar won’t work using the function-body-as-a-string

syntax:

Line 1 var total= 0;
- try {
- dojo.forEach(src, "total+= item;");
- } catch (e) {
5 alert(e);
- }

The previous code will throw an exception since total is not defined in

the global scope.

This leaves us with the trivial dojo.indexOf and dojo.lastIndexOf. These

functions search an array for the first/last occurrence of an object.

Both have the signature (a, target, startIndex), where a is the array, target

is the element to search for, and startIndex is the location in the array

to begin the search. The JavaScript operator == is used to satisfy the

search condition, and -1 is returned if a match is not found.

SUPPORT FOR POLYMORPHISM 94

Here are a few examples:

Line 1 var src= [1, 2, 3, 3, 3, 4, 5];
- var result;
- result= dojo.indexOf(src, 3); //result is now 2
- result= dojo.indexOf(src, 3, result+1); //result is now 3
5 result= dojo.lastIndexOf(src, 3); //result is now 4
- result= dojo.lastIndexOf(src, 3, result-1); //result is now 3

Simple. Expressive. Too bad everything isn’t so easy!

5.3 Support for Polymorphism

Polymorphism allows us to invoke a function and have the function do

the right thing depending upon the types of the arguments provided.

For example, invoking the method area on an instance of type Circle

does something different than invoking area on an instance of type Rect-

angle. In both cases, the instance could be viewed as the first argument

to the function area, which performs a computation depending upon

the type of this first argument. In this sense, area is polymorphic.

It happens that most polymorphic functions resolve on a single type.

It is easy enough to build such functions—just make them a method

of each type that supports the function. However, sometimes this isn’t

practical for one or both of the following reasons:

• It is undesirable to include the method in the type definition (for

example, the type’s interface may be sprawling or closed, or the

method may depend on several concepts independent of the type).

• The function’s behavior depends on more than one argument’s

type.

In both cases we’re left with branching to different execution paths

based on the arguments’ types. Most of the time, you’ll be able to use

JavaScript’s instanceof operator to determine argument types. Occa-

sionally instanceof doesn’t work with the fundamental types. For exam-

ple:

Line 1 function t1(theObject){
- return (theObject instanceof String);
- }
- function t2(theObject){
5 return (typeof theObject == "string");
- }
-

- var b;

SUPPORT FOR POLYMORPHISM 95

- b= t1("test"); //b is false
10 b= t2("test"); //b is true

- s= new String("test");
- b= t1(s); //b is true
- b= t2(s); //b is false

Certain JavaScript interpreters included in various browsers also con-

tain errors that further confound the problem with other types (for

example, calculating whether an object is a function in Safari).

Dojo rescues us with a set of functions that abstract away all these

problems:

• dojo.isString(test): Returns true if test is either a string literal or a

string variable

• dojo.isArray(test): Returns true if test is an Array or derives from

Array

• dojo.isFunction(test): Returns true if test is a function or derives from

function

• dojo.isObject(test): Returns true if test is null, an object, an array,

or a function

• dojo.isArrayLike(test): Returns true if test has a finite length property

and is not a string, a function, or a DOM form node

• dojo.isAlien(test): Returns true if test is a built-in function that

should report as a function but does not

Although JavaScript 1.x does not include the concept of function over-

loading, you can get the same effect by using these functions to branch

code based on argument types. Essentially, this allows you to build

functions that have semantics based upon not only their name but also

upon the types of the arguments provided to the function at runtime.

Here’s an example of the use pattern:

Line 1 function someFunction(theValue){
- if (dojo.isString(theValue)) {
- _someFunction_string(theValue);
- } else if (dojo.isFunction(theValue)) {
5 _someFunction_func(theValue);
- } else {
- throw new Error("improper type for someFunction");
- }
- }

In the example, we dispatched to “private” functions based on the ac-

tual type of theValue.

COMBINING, STRUCTURING, AND COPYING OBJECTS 96

This question arises: when should type calculations (that is, expres-

sions that use types as operands) be used to alter the behavior of a sin-

gle function compared to just defining multiple functions and instruct-

ing client code to call the correct version? There are two reasons to use

type calculations to simulate function overloading:

• When the function is called by client code that may not know the

argument types, factoring the type calculations into the function

eliminates this code from being duplicated at every location that

the function is called.

• To simplify the client API by providing fewer functions that work

in more situations.

Clearly, a single function should always be used when conditions given

by the first reason exist. On the other hand, the second reason is largely

a matter of taste. But remember, if type calculations are used, then

those calculations will be executed every time the function is executed,

resulting in a performance hit. If the calculations are complicated and

the function is invoked frequently, this performance hit may be notice-

able. We generally use the following heuristic:

1. Always factor argument type calculations into the function when

the calling clients do not know the types of the arguments.

2. Tend to factor argument type calculations into the function when

the function call is written frequently (that is, written in the code)

with a few, well-understood argument signatures.

3. Otherwise, tend to define a family of functions that requires differ-

ent parameter signatures if any of the following conditions exist:

• When the function is private

• When the function is called frequently during execution

• When the type calculations are complicated

5.4 Combining, Structuring, and Copying Objects

We’re going to spend an entire chapter exploring how to use the function

dojo.declare to build constructor functions that create classes of objects

(see Chapter 9, Defining Classes with dojo.declare, on page 225). Some-

times dojo.declare is much more than you need. For example, copy-

ing the properties from one object into another object is a common

COMBINING, STRUCTURING, AND COPYING OBJECTS 97

JavaScript programming pattern, and you shouldn’t have to define a

new class just to get this functionality. Dojo helps by defining several

lightweight functions that accomplish per-object structure and content

manipulations.

Mixing Objects

The function dojo.mixin(dest, src1, [src2, [...]]) copies all the properties from

the object(s) src1, src2, ..., into dest. Copying is accomplished with the

JavaScript assignment operator. So, numbers, booleans, and strings

are copied by value, while all other types are copied by reference.

Let’s look at a couple of common use patterns. Say you have an object

myObject and you want to copy several properties into it. You could do

it manually:

Line 1 myObject.prop1= 123.456;
- myObject.prop2= "hello, world";
- myObject.someProp= yourObject;

Or, you could use dojo.mixin to accomplish the same thing:

Line 1 dojo.mixin(myObject, {
- prop1: 123.456,
- prop2: "hello, world",
- someProp: yourObject});

Of course, this works with named objects...

Line 1 myObject.prop1= yourObject.prop1;
- myObject.prop2= yourObject.prop2;
- myObject.someProp= yourObject.someProp;

which becomes the following:

dojo.mixin(myObject, yourObject);

dojo.mixin is slightly less verbose and adds a bit of modularity when

compared to the manual method—both good things.

There are a few things to notice about dojo.mixin. First, if the destination

object already has a property that is specified in a source object, then

the original property will be overwritten. Further, when more than one

source object is provided, the rightmost source wins. Here’s an example

that demonstrates this phenomenon:

myObject= {p: 1};

dojo.mixin(myObject, {p:2}, {p:3});

//myOjbect.p is now set to 3!

COMBINING, STRUCTURING, AND COPYING OBJECTS 98

What Is a Prototype?

Every object in JavaScript contains a reference to another
object termed its prototype. Since the prototype is another
object itself, it also contains a reference to its prototype. This
forms a chain of objects. The chain terminates with the proto-
type for the built-in Object type.

When a property of an object is read, JavaScript looks for the
property in the object. If not found, JavaScript then looks in the
prototype object, the prototype of the prototype, and so on,
up the prototype chain until the property is found or the chain
is exhausted. Since a method is just a property that happens to
be a function, this is how method dispatching occurs, and this
system is called prototypal inheritance.

Second, with the exception of any property in Object’s prototype, prop-

erties from the source object are fully enumerated. This means that any

property that is defined in the prototype chain of each source object

will be copied—up to but not including Object’s prototype. If you need

a quick refresher on prototypes, see the sidebar on the current page.

Finally, sometimes the name can be misleading. dojo.mixin does not cre-

ate a mixin class (we’ll talk about mixin classes in Chapter 9, Defin-

ing Classes with dojo.declare, on page 225). Instead, it is augmenting

the source object by “mixing in” the properties from one or more other

objects.

Copying Objects

Sometimes you need to copy a variable by value. This is easy if the

variable is a number, boolean, or string since the semantics of the

JavaScript assignment operator copy these types by value. But, if you

need to copy any other type, the JavaScript assignment operator won’t

work (remember, it copies anything other than numbers, booleans,

and strings by reference). Instead, you must traverse the entire object,

including any nested objects, and create new instances at each node

in the traversal. The function dojo.clone(src) accomplishes exactly this

functionality.

To visualize the differences between assigning, mixing, and cloning,

we’ll create an object, exercise all three copy techniques, and then

COMBINING, STRUCTURING, AND COPYING OBJECTS 99

���������	
����������

�

���
����

�����

����
��� ������
�����
�

��������
��

�����
���

����

���������	
����������

����

�����

����
���

���������	
����������

�����

����
���
������
�����
�

��������
��

�������

����
��	�
��
�	�	����
���
��������	������

Figure 5.1: Effects of different copy methods

draw out the resulting object space. The source object contains another

object to fully demonstrate the differences. Here is the code:

Line 1 //create an object with some properties
- var bicester= {city: "Bicester", country: "UK"};
- var attraction= {name: "Blenheim Palace", cost: 15, location: bicester};
-

5 var try1, try2, try3;
- try1= attraction;
- try2= dojo.mixin({}, attraction);
- try3= dojo.clone(attraction);

In Figure 5.1, you can see the objects that are created by the code. Note

how the JavaScript assignment operator (try1= attraction) just added

another name to the source object (this is an example of a so-called

shallow copy). At the other extreme, dojo.clone ensured that a com-

pletely new object space was created (a so-called deep copy).

Copying Array-like Objects

The last kind of copying that comes up occasionally involves turning

array-like objects (for example, the built-in arguments object) into a real

array. The function dojo._toArray(src, start) creates an array and fills it

with src[start], src[start+1],..., src[src.length-1]. start is optional and, if miss-

ing, is assumed to be zero.

COMBINING, STRUCTURING, AND COPYING OBJECTS 100

Privacy in the Bedroom

Remember when you were a kid playing and you tried to hide
by jumping into a bed and pulling the covers over your head?
You couldn’t be seen, but everybody knew you were there
because of the big breathing, laughing lump in the bed.

We jokingly call variables with names that start with an under-
score bed lump functions. They are supposed to be private,
but everybody can see and use them. These kinds of private
functions are every bit as robust as those found in the public
interface. The only potential downside is that they are slightly
(depending upon the function) more likely to change in future
releases. As we explore the Dojo APIs, we’ll describe a few
bed lump functions that are particularly useful and unlikely to
change in future releases.

Note the requirements for the source object: it must be an object and

define the property length that returns an integer. In Dojo, functions

that begin with an underscore are “kinda, sorta” private; see the sidebar

on this page for details.

Chapter 6

Asynchronous Programming
If you want to program the browser to do anything dynamically—and

we mean anything—you must hook up your code to a DOM event. Then

you find out that there are two different event APIs. Not to be outdone,

Internet Explorer provides a third API—complete with memory leaks

for good measure. And a detailed study of these APIs reveals several

browser-dependent inconsistencies and idiosyncrasies. Event program-

ming quickly becomes a huge headache.

Fortunately for us, Dojo includes a complete event programming frame-

work that fixes these problems. But Dojo doesn’t stop with events.

Event programming is an example of the asynchronous programming

model, and Dojo includes several function families to build all kinds of

interesting and powerful programs using this model.

This chapter is all about asynchronous programming with Dojo. We

start by exploring Dojo’s solution to the event programming mess cre-

ated by the browser vendors. Then we look at how Dojo extends the

event framework to handle user-defined events and further leverages

user-defined events to provide a publish-subscribe framework—very

cool stuff. We conclude the chapter with an in-depth example of Dojo’s

Deferred class, which manages complex interactions between asynchro-

nous functions, their callbacks, and other interested processes.

6.1 Programming DOM Events with Dojo

Dojo provides a single DOM event framework that works identically

across all supported browsers; Dojo even fixes the memory leaks that

come for free with Internet Explorer. Dojo’s DOM event framework func-

tions mostly like the W3C DOM Level 2 event model (available from

PROGRAMMING DOM EVENTS WITH DOJO 102

���������	��
���

��������	
���
���������
������������

�������	����
����������	����

�

�������������		���

�����

���������
����������

���	�� ������

! "

#

$

Figure 6.1: Event processing in the browser

http://www.w3.org/TR/DOM-Level-2-Events/). In cases where the browser

does this anyway, Dojo simply passes event handler connection/

disconnection requests to the DOM functions addEventListener/

removeEventListener. Where the browser model is grossly different from

the W3C model, Dojo simulates the W3C model. Finally, where the

W3C model leaves openings for implementation-defined behavior, Dojo

defines this behavior.

Here’s the event-driven programming model in a nutshell: when some-

thing happens (the event), a function is automatically invoked (the han-

dler). The event, sometimes called a signal, may be a device event such

as a mouse gesture or a software event such as submitting a form. The

handler, also called a listener or callback, is a function that’s passed a

well-defined set of arguments and that executes in a well-defined con-

text. In Figure 6.1, you can see a conceptual view of how event pro-

gramming works in the browser.

Writing Event Handlers

We’ll explore Dojo’s DOM event framework by writing a simple event

handler that prints out information about an event; later, we’ll use

Dojo to connect the handler to a click event. Along the way we will

describe event propagation and default processing—both of which can

be affected by an event handler. We’ll also look at Dojo’s extension to

the W3C model for handling keyboard events.

PROGRAMMING DOM EVENTS WITH DOJO 103

The Handler Signature

Handlers are functions. The Dojo event framework provides a single

argument termed the event object to handler functions; this object con-

tains several properties/methods that describe/control the event as

specified by the W3C event model—even when the browser happens

to be Internet Explorer, which doesn’t implement this model natively. If

you’re writing a handler that doesn’t need the event object, just define

a function with no parameters.1 Since we’ll use the event object to log

information about the event, our handler function includes a parameter

to receive the event object:

Line 1 function handleClick(eventObj){
- //TODO...print information about the event
- }

Three types of event objects form a single-inheritance chain: MouseEvent

derives from UIEvent, which derives from Event. The complete event type

space is shown in Figure 6.2, on the following page (the diagram also

shows keyboard event objects, which we’ll discuss in a moment). The

diagram includes the read-only properties available with each event

object type.

The actual type of event object passed to a handler function depends

upon the type of event being processed. In Figure 6.3, on page 116, you

can see the event catalog that gives the event object type provided with

each event.

Since we’re eventually going to hook up our handler to a click event,

we’ll receive an event object of type UIEvent. Our handler uses this object

to print out information about the event to the debugging console:

Line 1 function handleClick(eventObj){
- console.log(
- "Event(" + eventObj.type +
- ") on DOM node " + eventObj.target.id +
5 "; currentTarget= " + eventObj.currentTarget.id);
- }

Notice that our handler doesn’t return a value. Handlers shouldn’t

return values, and anything returned will be ignored.

1. In JavaScript, it’s perfectly legal to provide a function with more arguments than

defined parameters. Dojo will provide an event object to the handler even if the handler

doesn’t define a parameter to receive it (that is, arguments[0] will always hold the event

object).

PROGRAMMING DOM EVENTS WITH DOJO 104

����

������
����������	������
�������
�����������

������

��	
���

�����������������������
��������������������������
�������
����������
����������������

�����
��������������
�������� �	�����������������	��������
�

�	���
�������

��	
���

����������!���
����������
�������

��������������
�������
�������� �	�����������������	��������
�

���
�
����

����
�

��"���������������!������������������������
�!����������������
����#�$�#%&�������

�
����'('')*+&$,-#���������� �	�����������������	��������
�

���������

���

��������.���������������
�������������

�	�����

����
�
������	�������
�������������	�������������������� �	�����������������	��������
�

����

���
��

����/��������0����������������������
����

���������

������

����
�

�
���.��!��������������������	��������������

 �

�	���

����
�
1�23���	���4�23���������5�23���
���

������

����
��
������	�������"����!��������	���������������

�������

����
��
������	��������"����!��������	���������������

�������

����
��
������	��������"����!��������	���������������

��������

����
��
������	����	����"����!��������	���������������

����
����

����
�

����
���!�����������������	�����������

!����������������
���������������������������

�����
���

����
�

������������������������	�����������

!�������

�������������

��	
���

�������������������0������	��	���������
���

�
���������
�����"�	�������������
�����

��
���������

����
�

������	�������	�����!��������
������������!��������
�������"�����������������������������

�����������
���������������������	�������������������� �	�����������������	���������
�

�������
���6

������(*�
���6

������7�����
���6

������

����
��
������	�������"����!��������	���������������

�������

����
��
������	��������"����!��������	���������������

��������

����
��
������	����	����"����!��������	���������������

�������

����
�

����
���������"�������	�������"�!������8

���������

��������

����
�

����!���������������������!������"�����

��"9�����	�����!!�"��
��������	������������

��"�������������

�������

��	
���

#������
�������������������9�������

:����9����;�

�����
�	���9���9��������9�����6�<<:�

!��!�������������	���

��"�������
����

����������	
�

����
�������

�
���������

=��
����)�
���

����6�����"�����.���"�!��!��������������

�
������0��������������������
�������������

Figure 6.2: The event interfaces

PROGRAMMING DOM EVENTS WITH DOJO 105

Now that we have our event handler, the next step is to connect it to

the event. We’ll do that soon, but first, let’s look at a few details of the

Dojo DOM event framework.

Keyboard Event Objects

The Event, UIEvent, and MouseEvent types are standardized by the W3C

DOM Level 2 event model. Unfortunately, W3C doesn’t mention key-

board events (oops!). Dojo augments the model slightly by adding prop-

erties to the Event interface for key up/down/press events (also depicted

in Figure 6.2, on the preceding page).

When writing handlers that connect to keyboard events, beware that

different browsers use different virtual key codes for the same key.

For example, F10 is 121 in Firefox and Internet Explorer but 63245

in Safari. Dojo rescues us with dojo.keys, which provides a map from a

special key name to a virtual key code. For example, we can write the

following:

Line 1 function someKeyDownHandler(eventObj) {
- switch (eventObj.keyCode) {
- case dojo.keys.F10: //process F10 key....
- console.log("you just pressed the F10 key");
5 break;
-

- //etc...
-

- }
10 }

This code will work in any Dojo-supported browser. The following spe-

cial keys are available as properties of dojo.keys:

• SHIFT, CTRL, ALT, CAPS_LOCK, NUM_LOCK, SCROLL_LOCK

• TAB, SPACE

• ENTER, ESCAPE, PAUSE

• SELECT, CLEAR

• PAGE_(UP|DOWN|LEFT|RIGHT), HOME, END, (LEFT|RIGHT)_ARROW,

• INSERT, BACKSPACE, DELETE

• NUMPAD_0..NUMPAD_9, NUMPAD_PLUS, NUMPAD_MINUS, NUMPAD_

MULTIPLY, NUMPAD_DIVIDE, NUMPAD_ENTER, NUMPAD_PERIOD

• (LEFT|RIGHT)_WINDOW

• F1..F15

• HELP

PROGRAMMING DOM EVENTS WITH DOJO 106

Event Propagation

Depending upon the event, the browser may dispatch a single event to

many DOM nodes; this process is called event propagation. Handlers

can affect propagation, and it’s important to understand propagation

in order to construct optimal handler code.

Consider a click event: when a user clicks a DOM node, a click event

is dispatched to the target node (the node upon which an event occurs

is the target node) and then to its parent, grandparent, and so on, up

to the top of the document tree. This dispatching process is called bub-

bling. Right or wrong, the W3C Event specification does not fully bubble

some events, and Dojo does not change this behavior. In Figure 6.3, on

page 116, you can see that events that bubble are marked with a B.

Bubbling allows us to consolidate code at parent nodes. For example,

let’s say we have a div node that contains 100 child subtrees that are

all identical in structure and all require an identical handler for a click

event. We could attach the same handler to the 100 subtrees, or we

could attach a single handler to the parent div. The single handler can

then inspect the target property of the event object to determine the

actual subtree that was clicked. This is clearly a better way.

Often, you will want to stop bubbling. For example, if a node lower

in the tree handles an event and that handler directly calls a handler

higher in the tree, then we surely don’t want to call the higher handler

again as a consequence of bubbling. This is easily accomplished:

Line 1 function someHandler(eventObj) {
- //do something interesting...
-

- //now, stop bubbling...
5 eventObj.stopProgagation();
- }

Many browsers can execute capturing before the event is dispatched to

the target node. Capturing works exactly the opposite of bubbling: the

event dispatcher calls every click handler attached to every node that

is an ancestor of the target node, starting with its most distant relative

and ending with its parent.

So, the maximum event propagation path is given as follows:

1. Capturing phase: call handlers attached to ancestors of the target

node, starting with the most distant and ending with the parent

2. Call handlers attached to the target node

PROGRAMMING DOM EVENTS WITH DOJO 107

3. Bubbling phase: call handlers attached to ancestors of the target

node, starting with the parent and ending with the most distant

When a handler is attached to an event, it is attached to either the

capturing phase or the bubbling phase; if you want to see the event

during both phases, then two handlers must be attached (although

both handlers could be the same function).

Propagation can be stopped by any handler anywhere along the process

by calling stopPropagation on the event object.

It is also possible to skip the capturing phase without affecting the last

two steps, and this is exactly how the Dojo event framework works.

This is a Good Thing. When you think about it, capturing is usually

wrong.2 Capturing implies that more-general handlers are called before

more-specific handlers. Why bother putting a handler lower in the DOM

tree unless you want to “override” some handling higher in the tree? Of

course, the higher-level handler can still be called directly from the

lower-level handler if desired. This is much like calling a superclass

method from within an overridden subclass method.

Let’s enhance our click handler to prevent bubbling when Shift + click

is pressed:

Line 1 function handleClick(eventObj){
- console.log(
- "Event(" + eventObj.type +
- ") on target " + eventObj.target.id +
5 "; currentTarget= " + eventObj.currentTarget.id);
-

- //eventObj is of type MouseEvent
- if (eventObj.shiftKey) {
- //stop bubbling shift-click was pressed.

10 eventObj.stopPropagation();
- }
- }

In a moment we’ll hook this handler up to every node in a small DOM

tree. The example will show bubbling in action (by pressing click), and

bubbling stops immediately (by pressing Shift + click).

2. There is one case where handling an event during the capturing phase is required:

capturing the mouse (that is, intercepting all mouse messages). Currently, Dojo does not

expose a public interface to this functionality, and you must implement mouse capturing

directly.

PROGRAMMING DOM EVENTS WITH DOJO 108

Default Processing

Each DOM event causes the browser to execute some default process-

ing whether or not a handler is attached. For example, when the user

clicks the submit button on a form, the browser sends the form data to

the server. Event handlers can cancel the default processing for some

kinds of events. For example, a submit event handler might prevent

submitting a form to the server by canceling the default processing if

errors are detected on the form.

Event handlers can cancel default processing by calling the preventDe-

fault method on the event object like this:

Line 1 function someHandler(eventObj) {
- //do something interesting...
-

- //now, prevent the default processing...
5 eventObj.preventDefault();
- }

See Figure 6.3, on page 116, which shows a list of the events that are

cancelable.

Finally, the convenience function dojo.stopEvent(event) calls both event.

preventDefault() and event.stopPropagation().

Line 1 function someHandler(eventObj) {
- //do something interesting...
-

- //the statement...
5 dojo.stopEvent(eventObj);
-

- //...is exactly equivalent to...
- eventObj.stopProgagation();
- eventObj.preventDefault();

10 }

That’s all there is to writing handlers. Next, we’ll solve the problem of

connecting handlers to DOM events.

Connecting Handlers

Dojo provides the function dojo.connect for connecting handlers to DOM

events (later, we’ll see that dojo.connect can do more). It is the key to the

Dojo event framework since it causes event handlers to work as we’ve

described, independent of any particular browser. It has the following

signature:

handle= dojo.connect(obj, event, context, handler)

PROGRAMMING DOM EVENTS WITH DOJO 109

Essentially, calling dojo.connect(obj, event, context, handler) connects a

handler to a DOM node event as if the W3C DOM method obj.

addEventListener(event, dojo.hitch(context, handler), false) had been called.

And Dojo does this even if the current browser is an Internet Explorer

version that does not directly support addEventLister.

The first two parameters, obj (a DOM node) and event (a string), define

the event. In Figure 6.3, on page 116, you can see a list of avail-

able DOM events and their names. The second two parameters, context

(optional, an object) and handler (a function or string), define the han-

dler. The context parameter is syntactic sugar for designating a handler

that requires binding a function to a context (for example, a method

to an object) without calling dojo.hitch explicitly. We’ll see this pattern

used frequently in Dojo. If dojo.hitch is a little hazy, take a quick trip to

Section 5.1, Binding with dojo.hitch, on page 83 for a refresher.

Armed with dojo.connect, we can connect the event handler on which

we’ve been working. First, let’s build a little document to exercise our

handler:

Download asynchronous-programming/event.htm

Line 1 <body id="body">
- <div id="body-div">
- <p id="body-div-p">
- Now is the time to understand events!
5 </p>
- <ol id="body-div-ol">
- <li id="body-div-ol-li-1">
- connect/disconnect handlers with dojo.connect/disconnect.
- <li id="body-div-ol-li-2">

10 Handlers are always passed an event-object.
- <li id="body-div-ol-li-3">
- Don't use "this" to reference the current target.
- <li id="body-div-ol-li-4">
- Events that can bubble always bubble; events never propagate.

15 <li id="body-div-ol-li-5">
- Keyboard events and associated event objects are fully defined.
-
-
- </div>

20 </body>

We’ll connect the handler to each DOM node in the body subtree:

Line 1 function connectExercise() {
- dojo.connect(dojo.byId("body"), "click", handleClick);
- dojo.connect(dojo.byId("body-div"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-p"), "click", handleClick);

PROGRAMMING DOM EVENTS WITH DOJO 110

5 dojo.connect(dojo.byId("body-div-ol"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-1"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-2"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-3"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-4"), "click", handleClick);

10 dojo.connect(dojo.byId("body-div-ol-li-5"), "click", handleClick);
-

- //Note!!
- //all the lines above can be replaced with
- //dojo.query("body *").connect("click", handleClick);

15 //see Chapter 7
- }

Since our handler does not require any particular context, we omitted

the context argument.

It’s important to keep in mind that we’re building a demonstration of

various event framework functionality—not optimal code to handle click

events on all nodes of a DOM subtree. For example, although we’ve con-

nected to every node to demonstrate bubbling, a “real” program would

just connect the handler to the root of the subtree since the handler

does the same thing no matter where it’s connected. Also, we explic-

itly connected each node by finding the node by its id attribute. We’ll

see how this can be done in a single line when we explore dojo.query in

Section 7.2, Finding and Editing Nodes, on page 145.

When the document is loaded and the second list item is clicked, the

console will fill up with the following messages:

Line 1 Event(click) on target body-div-ol-li-2; currentTarget= body-div-ol-li-2
- Event(click) on target body-div-ol-li-2; currentTarget= body-div-ol
- Event(click) on target body-div-ol-li-2; currentTarget= body-div
- Event(click) on target body-div-ol-li-2; currentTarget= body

Notice how the first message shows that eventObj.currentTarget and even-

tObject.target are identical. As the event bubbles up, eventObject.target

stays constant, but eventObject.currentTarget changes to reflect the han-

dler’s position in the subtree. Clicking the same list item with the Shift

key pressed causes the handler to stop bubbling, resulting in a single

message being sent to the debug console:

Line 1 Event(click) on DOM node body-div-ol-li-2; currentTarget= body-div-ol-li-2

Several different handlers can be connected to the same (node, event)

using dojo.connect. In this case, the handlers may be called in any

order. This is usually enough to suggest that it is a bad idea to con-

nect multiple handlers. If you need to connect multiple handlers, it is

PROGRAMMING DOM EVENTS WITH DOJO 111

almost always better to write a function that combines the handlers in

a well-defined order. For example:

Line 1 function myClickHander1(event) {
- /* as required */
- }
- function myClickHander2(event) {
5 /* as required */
- }
- dojo.connect(someDomNode, "click",
- function(event){ myHandler1(event); myHandler2(event); }
-);

The example uses a function literal to create a handler that calls two

other handlers in a well-defined order. Also notice that we omitted the

context argument. Remember, dojo.connect calculates the handler func-

tion by calling dojo.hitch(context, handler). Since context was not pro-

vided, the handler in the example is calculated as follows:

Line 1 dojo.hitch(
- function(event){ myHandler1(event); myHandler2(event); }
-);

This is exactly the effect we want. It also demonstrates a gotcha: the

value of this will not reference the current target node when the han-

dler is called. Although not specified by any standard, most native

browser event APIs set this to reference the current target DOM node

when the handler is invoked. But dojo.connect connects the result of

dojo.hitch(context, handler) to the event, and the whole purpose of hitch

is to call handler with this==context.3

Our advice: don’t write code that assumes this references the current

target in event handlers. Doing so will lead to brittle code that is not

standards-compliant. Instead, use event.target or event.currentTarget, de-

pending upon the semantics of the handler.

At this point, we can write handlers and connect them to events, but

where do we put all the calls to dojo.connect? We’ll answer that next.

Executing Initialization Code with dojo.addOnLoad

When we call dojo.connect to connect a handler to a DOM node, we’d

better make sure that the DOM tree has been built by the browser

3. Of course you could force the context to be the node by writing something like

dojo.connect(node, "click", node, f).

PROGRAMMING DOM EVENTS WITH DOJO 112

Alex Says. . .

The Good, the Bad, and Internet Explorer

The Dojo event system attempts to fill in the most common
problems with browser event system implementations, but we
wouldn’t need to if all browsers implemented the W3C DOM
Level 2 event model correctly. Internet Explorer 6 and 7 haven’t
even attempted to implement the W3C model, but that’s the
tip of the iceberg.

Internet Explorer has the potential to leak memory when event
handlers contain circular references or when the handler ref-
erences an object that points back to the DOM node to
which the handler is attached. This happens all the time, some-
times by accident. When a circular reference chain is created
between native browser objects and user JavaScript code,
Internet Explorer isn’t “smart” enough to decrement the refer-
ence counts to zero even though both objects are no longer
referenced. The solution to this problem is to track all the
connections and disconnect them manually before the page
unloads, allowing the built-in garbage collector to fully flush its
references. With Internet Explorer 7, Microsoft implemented a
system to try to flush references more completely, but it also
falls down when nodes are left “dangling” in the JavaScript
object space but aren’t attached to the visible document. The
web community is still waiting on Microsoft to fix this decade-
old problem definitively. Tracking connections by hand is long-
winded and error prone, and Dojo handles it for you if you use
dojo.connect.

Of course, for relatively simple web pages with a short
lifetime, browser resource leaks are inconsequential. Your
objects may not grow very large, and users may not spend
enough time in the application for the cumulative leakage to
slow things down noticeably. When writing more advanced
applications—particularly single-page applications—resource
leaks can cause huge performance hits to the point of mak-
ing the application unusable. So long as you connect using
Dojo’s event API, you can ignore these types of browser errors
completely.

PROGRAMMING DOM EVENTS WITH DOJO 113

and any other JavaScript that the handler references has been down-

loaded and evaluated. And what if our application requires other ini-

tialization work—maybe it creates some bookkeeping data structures

or does some DOM manipulation? Here, again, we need to be sure

that the JavaScript resources that we’ve dojo.required and/or the DOM

tree are ready for use. All of these problems are solved by the function

dojo.addOnLoad.

dojo.addOnLoad takes a reference to a function and guarantees that

the provided function is executed immediately after the following three

conditions are met:

• The DOM tree has been built by the browser and is available for

use by client code. Note, this is different from saying that every

resource (for example, images) has been loaded.

• All JavaScript resources demanded through the Dojo loader have

been loaded.

• All Dojo widget parsing has been completed. As we saw in Chap-

ter 2, Powerful Web Forms Made Easy, on page 20, Dojo lets you

specify widgets directly in the HTML code. When you include Dojo

widgets like this, Dojo must parse the HTML and replace each

embedded widget with the actual HTML that implements the wid-

get. If djConfig.parseOnLoad is true, then this is accomplished as

soon as the DOM tree is loaded by the browser but before any

function registered with dojo.addOnLoad is executed.

dojo.addOnLoad can be called any number of times, and each function

given as an argument will be executed in the order it was provided. The

argument can be either a reference to a function or a method name on

an object. Here is an example of each usage:

Line 1 dojo.addOnLoad(f); //the function f
- dojo.addOnLoad(function(){/* statements */}); //a function literal
- dojo.addOnLoad(o, "f"); //the function o["f"]

Let’s cross the final “t” in the event example. Here’s the completed code,

including the call to dojo.addOnLoad:

Download asynchronous-programming/event.htm

Line 1 function handleClick(eventObj){
- console.log(
- "Event(" + eventObj.type +
- ") on DOM node " + eventObj.target.id +
5 "; currentTarget= " + eventObj.currentTarget.id);
-

PROGRAMMING DOM EVENTS WITH DOJO 114

- //eventObj is of type MouseEvent
- if (eventObj.shiftKey) {
- //stop bubbling shift-click was pressed.

10 eventObj.stopPropagation();
- }
- }
-

- function connectExercise() {
15 dojo.connect(dojo.byId("body"), "click", handleClick);

- dojo.connect(dojo.byId("body-div"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-p"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-1"), "click", handleClick);

20 dojo.connect(dojo.byId("body-div-ol-li-2"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-3"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-4"), "click", handleClick);
- dojo.connect(dojo.byId("body-div-ol-li-5"), "click", handleClick);
- }

25

- dojo.addOnLoad(connectExercise);

That’s all there is to the Dojo DOM event framework. From the pro-

grammer’s point of view, the Dojo event framework couldn’t be simpler:

• dojo.connect/disconnect connects/disconnects handlers.

• Handlers are always passed an event-dependent event object that

gives details about the event.

• Use the target/currentTarget property of the event object instead of

this to get to the target/current target DOM nodes.

• Events that can bubble always bubble; the capturing phase is

always disabled.

• Keyboard events and associated event objects are defined (unlike

the W3C specifications).

• Initialization functions that connect events should be called by

registering them with dojo.addOnLoad.

And, most important, all of this is browser-independent.

We’ll conclude this section with a handy table that includes everything

you need to know about the catalog of DOM events.

PROGRAMMING DOM EVENTS WITH DOJO 115

Alex Says. . .

Use dojo.addOnLoad Rather Than DOM onload

Simple pages perform initialization by attaching to the onload event of

the window object, but this won’t scale. What if some other bit of code

wants to listen to onload? If they register after you, will your code get

called? How can you ensure that your onload handler isn’t breaking

someone else’s handler? I’ve seen large development teams stopped

in their tracks because someone checked in a stray window.onload =

function(){.... Dojo’s onload mechanism gives you a simple way to reg-

ister multiple handlers, and using it can save you serious headaches.

Then there’s the question of what we mean by “onload.” The browser’s

default onload event is not fired until all external resources referenced

on the page are loaded. This means we must wait for all images,

objects, CSS files, and the rest to download. If the page contains many

and/or large external resources and/or the connection is slow, the user

is presented with a dysfunctional page (since the initialization code

hasn’t run)—perhaps for a significant period of time. We want our wid-

gets and progressive enhancements to start rendering as soon as pos-

sible, and in an ideal world, the browsers would give us events for all of

these steps in the page-building process (“oncssload,” “onimgload,”

“ondomparsed,” and so on). Instead, there is a patchwork of browser-

specific hacks and workarounds that let us try to determine whether

we can say that things are “loaded” well before all the images are

fully resolved...but these may also not be what we want. If our code

is counting on the layout being “stabilized” and then some extra bit

of CSS gets loaded that changes the rules, our widgets may appear

to be “broken.” The semantic we’d really like to implement is some-

thing like “onlayoutstable,” which is roughly the point at which all CSS

rules are applied and all images have dimensions (if not actual con-

tent). There’s no native event for this, but Dojo does its best to figure

out when this happens, and that is when handlers registered through

dojo.addOnLoad are called.

If you’re using the cross-domain loader, say by loading Dojo from

AOL’s CDN, then some of the JavaScript resources that your page

needs may not be available even when the native onload fires.

dojo.addOnLoad is smart about this and won’t fire until all the mod-

ules are available, no matter what package mode you’re using.

Lastly, if you prefer using dojo.connect, you can connect to the

dojo.loaded event instead of dojo.addOnLoad since all three meth-

ods are defined as soon as dojo.js is included.

PROGRAMMING DOM EVENTS WITH DOJO 116

��������� 	
 ���
��������
������
���
������������������

������� 	
 ���
��������
������
���
�������������������

��������� 	 ���
��������
������
���
����������������

��������� 	
 ���������
����
���
��������
������
�����
����
��
������������������

�������� 	
 ���������
����
���
��������
������
�����
���
��
��
������������������

����� 	

���������
��
���������
�����������
��������
��
�������
�����
��
��
���������
��������

���
���������
���
�������
������!�
����������

������� 	
 "
��������
���
���
�����
����
���
��
��������
��
���
����
����������������

����� 	
 "
��������
���
���
�����
����
���
����
��������
��
���
��
����������������

�������� 	

"
��������
���
���
�����
��
���
����
��������
��
���
����
����
��
���
����
��������
����

������
��
�������������
������
�������
���������
#��
��
����
��������
������
���
������

��������
��
������
�������$�����
�������

�������

���� ���
�������
���
��������
�������
�
��������
������
������
�
��������
��
��
��%���
�������������

������ ���
�������
���
������
��������
�
��������
����
�
������
��
�����������

����� 	 ���
�������
�������
�������
��
�����������

����� 	 "�
�����
����&�
����
��������
��
��
�����
�������
������
������
�'�������������

������ 	 ���
����
��������
����
��'�
������
�
��'�������

������ 	 "
�������&�
�����
���
�������
���
����
����
����������

������ 	
 "
����
���
��������������

����� 	 "
����
���
�����������

����� "�
�������
��������
���
�����(
�������
����
��
����
��������������

���� "�
�������
����
���
�����(
�������
����
��
����
��������������

����)� 	 ���
��������
����
���
����)��������

������ 	 ���
��������
����
���
��������������

*#�+����,� 	 "�
�������
��������
���
�����(
�������
����
��
���
�������-,�����

*#�+����#�� 	 "�
�������
����
���
�����(
�������
����
��
���
�������-,�����

*#�"������� 	
 "�
�������
���
����������-,�����

�����

*����������
�����
��%���

����

�
�
�

�
��

�
.

�
�
�
�
�
��

�
��

.
Figure 6.3: The event catalog

DOM Event Catalog

The Dojo event framework works with the events shown in Figure 6.3.4

The table lists each event name (this is the name you provide as the

event argument to dojo.connect), a description of what causes the event

to occur, and the following three attributes that apply to each event:

• The type of event object passed to handlers

• Whether the event bubbles (B means yes)

• Whether the default processing associated with the event is can-

celable (C means yes)

4. Actually, almost all of these events are fired by the browser, and Dojo leverages this

fact. Some keyboard events in some browsers are fired synthetically by Dojo.

CONNECTING TO USER-DEFINED EVENTS WITH DOJO 117

Now that we’ve looked at DOM events, you might ask yourself whether

the idea of events could be extended to your own objects. With Dojo,

the answer is a resounding “yes!” Let’s see how.

6.2 Connecting to User-Defined Events with Dojo

To understand user-defined events, let’s think about what’s happening

behind the scenes when an event is fired. What, exactly, is the “thing”

that causes a handler to be called? For example, you might respond, “a

mouse click.” But the browser is several layers of abstraction above a

hardware device driver, so it’s not the switch on the mouse that causes

the event—at least not directly. And, semantic events certainly have

nothing to do with hardware. Really, it’s the execution of some func-

tion that causes handlers to be invoked. For example, in Windows,

when a mouse button is pressed, a message is inserted into the mes-

sage queue. The browser’s message loop retrieves this message and

calls a function that processes the message. The execution of this func-

tion (that we’ll call the trigger function) is the “event” that causes the

mouse click handlers to be invoked. Dojo takes this idea to the obvious

extreme: dojo.connect can hook up handlers to any function—not just

DOM events.

This functionality often eliminates the need for scaffolding machinery.

For example, in a traditional application system, you might have a set

of command objects (say, menus) and a set of command handlers. Then

you would build some scaffolding to hook the two objects together.

The command handlers “register” with the scaffolding, the command

objects signal the scaffolding, and the scaffolding marshals signals from

the command objects to the command handlers. All of this is unneces-

sary with dojo.connect. Just connect the command handler directly to

the command object, and you’re done.

Let’s see how such a system might be implemented—it will help you to

visualize what’s going on behind the scenes if this concept is new.

Hooking JavaScript Functions

Say we have a function, f, and we want to augment f with a call to

console.log("exiting f") after f completes. Here’s one way to do it:

Line 1 var g= f;
- f= function() {
- var result= g.apply(this, arguments);
- console.log("exiting f");
5 return result;
- };

CONNECTING TO USER-DEFINED EVENTS WITH DOJO 118

A function is an object like any other object. Indeed, when we say the

“function f,” we are really saying the “function object that the variable

f references.” The previous code uses this fact to hold a reference to

the original definition of f in the variable g. Then f is replaced by a new

function that calls to the original f, saves the result, writes to the debug

console, and finally returns the saved result.

Dojo uses this idea as follows: when the dojo.connect parameters obj

and event specify a JavaScript function rather than a DOM node event,

dojo.connect replaces that function with a new function that first calls

the original function and then fires the handler given by the context and

handler parameters. Let’s try it by first defining a function that prints

out “hello, world” and then hook an event to it:

function f() {

console.log("hello, world");

}

function myHandler() {

console.log("Hello from f's handler!");

}

var handle= dojo.connect("f", myHandler);

When f is invoked, you’ll see two console messages: “hello, world” fol-

lowed by “Hello from f’s handler!”

Connecting User-Defined Events

dojo.connect is an overloaded function that connects a handler to either

a DOM event or a trigger function based upon the obj argument:

• If obj is a DOM node, then event (a string) must specify a DOM

event defined by that node. This type of event was the subject of

Section 6.1, Programming DOM Events with Dojo, on page 101.

• If obj is an object but not a DOM node, then obj[event] (event, a

string) must specify a function, and this function is used as the

trigger function.

• If obj is null or missing, then dojo.global[event] (event, a string) must

specify a function, and this function is used as the trigger func-

tion. Notice that event is always a string; this gives dojo.connect a

way to determine whether obj was omitted.

CONNECTING TO USER-DEFINED EVENTS WITH DOJO 119

Here are examples of the last two usages:

Line 1 //missing obj; event is a string:
- dojo.connect("functionName", context, handler);
- //is equivalent to explicitly specifying null for eventOwner
- dojo.connect(null, "functionName", context, handler);
5 //in both cases, the triggering function is dojo.global["functionName"]
- //(recall that dojo.global references the global object space)
-

- //with a non-null obj, an object, not a DOM node:
- dojo.connect(obj, "functionName", context, handler);

10 //the triggering function is obj["functionName"]

When dojo.connect is used to connect a handler to a trigger function,

the handler is automatically invoked after the trigger function com-

pletes and is passed the same arguments that were provided to the

trigger function. Unlike connecting multiple handlers to a DOM event,

when multiple handler functions are connected to a triggering function,

they are fired in the order in which they were connected.

The rest of dojo.connect works just as we’ve already discussed. The

handler is always calculated to be dojo.hitch(context, handler) (context,

optional, an object; handler, a string or function), and the returned value

can be used to dojo.disconnect the handler.

Let’s drive these points home with a quick example. We’ll define a func-

tion printArgs that simply prints out its arguments to the console. Then

we’ll hook up two handlers to printArgs that also print their arguments.

So we can keep everything straight in the output, we’ll have each func-

tion print it name. Here is the code:

Line 1 //print functionName (a string) and all of the elements of args (an array)
- //to the console
- function giveMessage(functionName, args) {
- var message= "In " + functionName + "; the arguments are: ";
5 dojo.forEach(args, function(arg){message+= arg.toString() + " ";});
- console.log(message);
- }
-

- //here is the function that we'll hook up to generate the event...
10 function printArgs() {

- giveMessage("printArgs", arguments);
- }
-

- //here is the first event handler...
15 function firstHandler() {

- //this handler uses the arguments object to gain access to its arguments
- giveMessage("firstHandler", arguments);
- }
-

PUBLISH-SUBSCRIBE 120

20 //and the second event handler...
- function secondHandler(a1, a2) {
- //this handler explicitly declares what it expects for arguments
- giveMessage("secondHandler", [a1, a2]);
- }

25

- //connect the firstHandler to fire whenever printArgs is invoked...
- dojo.connect("printArgs", null, "firstHandler");
-

- //and likewise for secondHandler....
30 dojo.connect("printArgs", null, "secondHandler");

-

- //let's exercise our exercise...
- printArgs(1, 2);

When you run this code, you’ll see the following console messages, in

order:

1. “In printArgs; the arguments are: 1 2”

2. “In firstHandler; the arguments are: 1 2”

3. “In secondHandler; the arguments are: 1 2”

Notice that the handlers were called in the order that they were con-

nected, and the arguments passed to the handlers were exactly those

passed to the triggering function.

There is one small gotcha: in order to work its magic, Dojo replaces the

original trigger function with a new function that orchestrates calling

both the original trigger function and the handlers. If you come along

later and replace the Dojo-provided trigger function with another func-

tion, the events will stop firing. So if you need to replace a triggering

function, you must reconnect any handlers connected to that function.

Disconnecting the old handlers is optional. So long as you don’t hold

on to a copy of the handles returned by dojo.connect, all objects created

after the old connections will be garbage collected.

Dojo itself leverages dojo.connect to provide a publish-subscribe frame-

work.

6.3 Publish-Subscribe

In Section 3.6, Errors and Debugging, on page 67, we used publish-

subscribe to publish messages (XHR failure information) about xhrError.

A Toaster widget that subscribed to the topic popped up on the screen

and displayed the failure information when an XHR transaction failed.

The cool thing about the whole design was that a single Toaster widget

PUBLISH-SUBSCRIBE 121

that subscribed to the xhrError topic just once could receive and process

any number of messages from any number of sources; similarly, the

XHR error functions didn’t even know that a Toaster widget existed. We

skipped a lot of detail when we gave the Toaster example; let’s cover the

whole story now.

In the publish-subscribe pattern, several functions register their inter-

est in a “topic.” Later, some process can publish something about the

topic. Of course, in the context of a JavaScript program, the “some-

thing” published is just a set of arguments, and the action of “publish-

ing” is accomplished by calling each subscriber with the given argu-

ments. Dojo implements this pattern by providing three functions:

handle= dojo.subscribe(topic, context, handler)

Causes the function given by dojo.hitch(context, handler) to be in-

voked when topic (a string) is published via dojo.publish. Returns

handle that may be used to take down the connection by dojo.

unsubscribe (see next).

dojo.unsubscribe(handle)

Removes the connection previously made by dojo.subscribe. handle

is the object returned by dojo.subscribe.

dojo.publish(topic, args)

Publishes topic (a string) by calling all subscribers to the topic,

passing the arguments given by args (an array) to each subscriber.

The subscribing functions are called in the order in which they

were subscribed.

Dojo leverages its own event machinery to implement publish-subscribe

in about four lines of code. For all of us old C++ systems programmers,

that’s impressive! Take a look at connect.js in the Dojo source if you are

interested.

Let’s create a little example to demonstrate just how publish-subscribe

works. Assume we have the topic “Numbers” that “publishes” numbers

one at a time. Further assume that we are interested in accumulat-

ing the total of the numbers published as well as printing the current

total after each publication. Here’s one way to solve this problem with

publish-subscribe:

1. Define an accumulator object that has a method that accumulates

a running total; subscribe the method to the “Numbers” topic.

2. Define a function that prints the current total as given by the

accumulator; subscribe this function to the “Numbers” topic.

PUBLISH-SUBSCRIBE 122

Here is the code:

Line 1 //a simple object that accumulates a sum of numbers...
- var numberAccumulator = {
- total: 0,
- add: function(x){this.total+= x;}
5 };
-

- //subscribe numberAccumulator.add to the topic "Numbers"
- dojo.subscribe("Numbers", numberAccumulator, "add");
-

10 //prints numberAccumulator.total
- function showTotal() {
- console.log("The total is: " + numberAccumulator.total);
- }
-

15 //subscribe showTotal to the topic "Numbers"
- dojo.subscribe("Numbers", showTotal);
-

- //test it...
- //NOTE: arguments passed as an array!

20 dojo.publish("Numbers", [1]);
- dojo.publish("Numbers", [2]);

The program prints the following messages to the console in order:

1. “The total is 1”

2. “The total is 3”

dojo.publish("numbers", [1]) causes a call to numberAccumulator.add(1) fol-

lowed by a call to showTotal(1). This demonstrates how dojo.publish must

be provided an array for its second argument, but it deals the contents

of the array out as individual arguments to all subscribed functions.

Since showTotal doesn’t care about the arguments, it just ignores them.

Also notice that the example demonstrates how to connect a handler

that is a method on an object (line 8) as well as just a simple function

(line 16).

Publish-subscribe is a very useful design pattern. The key to its power

lies in its ability to separate concerns. The “publishing” process need

not concern itself with the consequences of publishing but rather is

concerned only with knowing when and what to publish. On the other

hand, subscribers need concern themselves only with taking actions

consequent to some publication. Indeed, publishers and subscribers

don’t even need to know about each other. Since each process (that is,

each publisher and each subscriber) is independent, the complexity of

MANAGING CALLBACKS WITH DOJO.DEFERRED 123

each process is consequently decreased, which, in turn, increases the

chances that each process will function as desired.

All things considered, both DOM and user-defined events are fairly

easy to understand and use, particularly since Dojo works out browser

incompatibilities for us. When we start working with more complicated

asynchronous processes, this won’t be true, and we’ll want and need

more capabilities. So, let’s turn our attention to these more advanced

models starting with Dojo’s Deferred class.

6.4 Managing Callbacks with dojo.Deferred

Event programming is an example of a simple, loosely coupled asyn-

chronous programming system. Communications between triggering

functions and handlers are conceptually limited to a binary signal that

says an event occurred. Yes, there is the event object, but the informa-

tion contained within the object is very generic in nature. There is no

provision for communicating more-elaborate results (for example, error

conditions), and there isn’t any process control (for example, canceling

or chaining the handlers). Sometimes, more is needed.

In this section, we’re going to explore dojo.Deferred—a Dojo class that

manages more advanced interactions between an asynchronous func-

tion and one or more callback functions. Since some of the conceptual

framework can be a bit abstract and theoretical, we’ll work through

a real-world example that illustrates how to use Deferreds effectively.

Along the way, we’ll see that building systems with Deferreds results in

powerful, simple, and elegant solutions to otherwise-complicated asyn-

chronous programming problems.

The Example: Building a High-Performance Display Engine

Let us consider the example of displaying a panel of data from a data-

base. The process is governed by a display engine that makes a request

to the server for both the metadata (background decoration, layout

information, and user interaction logic) and the data (ultimately defined

by some query). When the metadata arrives, the panel is created and

initialized with various HTML controls, decorations, and event logic.

Similarly, the data is stored in a cache when it arrives. Finally, after

both the metadata and the data arrive, the data is pushed into the

HTML controls on the panel, and the panel is released to the user.

MANAGING CALLBACKS WITH DOJO.DEFERRED 124��� ����
'(��� ��������
'0"

4567$.

'(

.

9"2"&

������	�
� �����
	��
Figure 6.4: Naïve display engine design

A naïve implementation might use the algorithm given in Figure 6.4.

The good thing about this design is that it is very simple and would

surely work. Unfortunately, the browser may freeze for several seconds

while the data and metadata are being retrieved. Further, the design

retrieves and processes the metadata and data serially rather than con-

currently as expressed by the process description. Our goal is to come

up with an implementation that solves these problems while keeping

the design simple.

MANAGING CALLBACKS WITH DOJO.DEFERRED 125

��������������	�
��

������

������������
������

������������������	�
��

������

��
����
���������������

�
���
�������

�������������
������

�
���
���������������

������
�����

��������������������

�������

�	
��
� �	
�	
���
�

��
���	��
���
��
��
���	��
��	
���
��

������

Figure 6.5: Asynchronous display engine design

To achieve our goal, the metadata and data service requests are exe-

cuted independently and asynchronously. This will keep the browser

from freezing. Here are a few other reasons for this design:

• It is possible—even likely—that the metadata is already in a local

browser cache. However, if we bundle the metadata with the data,

then there is no chance that the metadata would ever be cached

since the data is always changing.

• It’s also possible that the metadata may be cached at an edge

server, a physically different server than where the data resides.

Clearly, two independent queries ought to be used in this scenario.

• After either the metadata or the data is received, there is some pro-

cessing that takes place before both items are required to complete

the overall task. Why not get this work done with the first arriving

component while the other component is still transmitting?

MANAGING CALLBACKS WITH DOJO.DEFERRED 126

In Figure 6.5, on the previous page, you can see a revised design that

uses two asynchronous processes. The algorithm gets started by call-

ing display, which sets up some infrastructure to coordinate the rest of

the work, fires off two asynchronous functions (getData and getMeta-

data), and then returns. The asynchronous functions signal two call-

back functions (continueWithData and continueWithMetadata) when they

complete. The callbacks take processing as far as possible along each

fork and then call finish, which joins the two asynchronous processes

into a single thread of execution that finishes up by displaying the data

as given by the metadata.

If we implemented this system in terms of user-defined events, we’d

have to build a fair amount of scaffolding that has nothing to do with

the problem at hand. Fortunately, dojo.deferred already contains this

scaffolding. So, we’ll use it to build the solution. Let’s start by imple-

menting display.

Implementing the Controlling Process

Notice that the various functions are tightly coupled, as depicted in Fig-

ure 6.5, on the preceding page. Each function takes some information

from the function before it, does something, and passes information to

the next function. By defining all the functions within the display func-

tion, we can implement this coupling by sharing a local variable. Here

is our first attempt:

Line 1 //implements a display engine:
- //display the data given by query in the panel given by panelId
- function display(panelId, query){
-

5 //displayInfo is a shared bookkeeping area
- var displayInfo = {
- panelId: panelId,
- query: query,
- processCompleteCount: 0

10 };
-

- //get an HTML div in which to place the panel
- //allocatePanel is provided by the pane management logic of our application
- displayInfo.div = allocatePanel(displayInfo);

15

- //TODO #1
- //make an asynchronous call to get the data
- //after the asynchronous call finishes,
- //continue by calling continueWithData

20

MANAGING CALLBACKS WITH DOJO.DEFERRED 127

- //TODO #2
- //make an asynchronous call to get the metadata
- //after the asynchronous call finishes,
- //continue by calling continueWithMetadata

25

- //process the data as far as we can without the metadata
- function continueWithData(data){
- //put the data in an application-wide cache
- //for use with other requests

30 //no need to wait for the metadata to do this!
- cacheData(data);
-

- //save quick access to the data
- displayInfo.data = data;

35

- finishDisplay();
- }
-

- //process the metadata as far as we can without the data
40 function continueWithMetadata(metadata){

- //set up the HTML and other control structures
- //given by the metadata
- //no need to wait for the data to do this!
- preparePanel(metadata);

45

- //save quick access to the metadata
- displayInfo.metadata = metadata;
-

- finishDisplay();
50 }

-

- //when continueWithData and continueWithMetadata have completed,
- //finish with the display process
- function finishDisplay(){

55 //TODO #3
- }
- }

Try reading the code like a novel. Read each line, including comments,

sequentially. We think this code is really elegant, and it’s all because of

the powerful programming paradigm that dojo.Deferred provides.

As for the TODOs, somehow we have to query the server for the data/

metadata asynchronously and then, upon completion of each of these

functions, call continueWithData/continueWithMetaData, passing the re-

ceived data/metadata. So, we need machinery to coordinate an asyn-

chronous function call with a callback function. This is exactly what

dojo.Deferred does.

MANAGING CALLBACKS WITH DOJO.DEFERRED 128

Registering Callbacks with dojo.Deferred

dojo.Deferred is a constructor function that creates objects that manage

the interaction between a single asynchronous function call, a chain of

one or more callback functions, and other clients that are interested in

the asynchronous operation.5 The Deferred interface includes methods

for the asynchronous function to signal normal or abnormal completion

and return results as well as methods that let other clients:

• Specify a chain of functions to execute upon normal and/or ab-

normal completion of the asynchronous function (that is, a chain

of callbacks).

• Check to see whether the asynchronous function completed and,

if so, access any results returned.

• Cancel waiting for the asynchronous function.

Typically, the process making the asynchronous call creates a Deferred

instance, shares it with the asynchronous function, adds one or more

callbacks, and then forgets about it.

Getting back to our example, we have two independent callback func-

tions, namely, continueWithData and continueWithMetadata, which con-

tinue after the asynchronous functions that get the data and metadata

complete. We can use Deferreds to set this up:

Line 1 //TODO #1 partial implementation...
- displayInfo.dataDeferred= new dojo.Deferred();
- displayInfo.dataDeferred.addCallback(continueWithData);
- //still TODO:
5 //somehow, get the data asynchronously and signal
- //displayInfo.dataDeferred when this completes
-

- //TODO #2 partial implementation...
- displayInfo.metadataDeferred= new dojo.Deferred();

10 displayInfo.metadataDeferred.addCallback(continueWithMetadata);
- //still TODO:
- //somehow, get the metadata asynchronously and signal
- //displayInfo.metadataDeferred when this completes

The example shows that callback functions are registered by calling

the Deferred method addCallback. We will discuss registering callback

functions in detail in Section 6.4, Specifying Callbacks and Errbacks,

on page 132.

5. Remember, any Dojo function that starts with a capital letter is a constructor function

and consequently defines a class.

MANAGING CALLBACKS WITH DOJO.DEFERRED 129

The asynchronous functions that retrieve the data and metadata could

be some kind of remote scripting call (see Chapter 8, Remote Scripting

with XHR, script, and iframe, on page 178) or a call to a Java applet,

plug-in, or some other kind of browser extension. From the perspective

of the display engine, it doesn’t matter how the data/metadata is actu-

ally retrieved; all that matters is that when the data/metadata arrives,

the Deferred objects are notified of the result.

We’ve implemented the asynchronous functions as mock services. They

take a reference to the passed Deferred as well as the data query/meta-

data panelId. The completed example included in the code download

displays a form with buttons to signal success or failure. If the success

button is clicked, then the mock service calls the callback method of the

associated Deferred, passing back the query/panelId. We’ll talk about

handling errors after we get the success case worked out. Here is how

the asynchronous mock data service is implemented:

Line 1 var theDataRequest; //holds the data query
- var theDataDeferred; //holds the Deferred that controls the data service
-

- //the data service asynchronous function call...
5 function makeAsynchronousServerDataCall(theDeferred, theRequest){
- theDataDeferred= theDeferred;
- theDataRequest= theRequest;
-

- //the "real" asynchronous call would go here;
10 //the mock server just displays the request in the form...

- dojo.byId("serverMockDataQuery").innerHTML= theRequest;
- }
-

- //success and fail event handlers to simulate a service...
15 function returnData(e){

- dojo.stopEvent(e);
- theDataDeferred.callback("result("+theDataRequest+")");
- }
- function failData(e){

20 dojo.stopEvent(e);
- theDataDeferred.errback("failed");
- }
- //hook up the handlers to the form buttons...
- dojo.addOnLoad(function(){

25 dojo.connect(dojo.byId("dataReturn"), "click", returnData);
- dojo.connect(dojo.byId("dataError"), "click", failData);
- });

Deferred.callback is always passed a single argument that holds the

result of the asynchronous function computation (line 17). Since Java-

Script is not capable of returning multiple results as some languages

MANAGING CALLBACKS WITH DOJO.DEFERRED 130

do, exactly one argument is expected. In the event you need to pass

multiple results, simply wrap the results in either an array or an object.

Here is the HTML form that makes the mock service go:

Line 1 <div>
- <h1>Server Mock</h1>
- <form class="request">
- <p>The data query is...</p>
5 <p id= "serverMockDataQuery"></p>
- <p>
- <input id="dataReturn" type="submit" name="dataReturn" value="Send It!">
- </p>
- <p>

10 <input id="dataError" type="submit" name="dataError" value="Signal Error">
- </p>
- </form>
- </div>

With this and similar code in place for the metadata service, we can

complete TODO #1 and #2:

Line 1 //TODO #1 implementation...
- displayInfo.dataDeferred= new dojo.Deferred();
- displayInfo.dataDeferred.addCallback(continueWithData);
- makeAsynchronousServerDataCall(displayInfo.dataDeferred, query);
5

- //TODO #2 implementation...
- displayInfo.metadataDeferred= new dojo.Deferred();
- displayInfo.metadataDeferred.addCallback(continueWithMetadata);
- makeAsynchronousServerMetadataCall(displayInfo.metadataDeferred, panelId);

Let’s now turn to TODO #3, which joins the two asynchronous callback

functions once they’ve both completed. The idea is to keep track of how

many asynchronous processes have completed and, when they’ve all

completed, continue with the process. Here is the JavaScript:

Line 1 //when continueWithData and continueWithMetadata have completed,
- //finish with the display process
- function finishDisplay() {
- //TODO #3 implementation...
5 displayInfo.processCompleteCount++;
- if (displayInfo.processCompleteCount==2) {
- //both have completed...
- populatePanelWithData(displayInfo);
- releasePanelToUser(displayInfo);

10 }
- }

The example also nicely demonstrates how to fork a single process into

several processes (implemented as asynchronous function calls) and

later join the processes back into a single process.

MANAGING CALLBACKS WITH DOJO.DEFERRED 131

At this point, the basic display engine is complete and works perfectly

so long as no abnormal conditions are encountered. If you step back

for a moment, you’ll notice a fairly complex algorithm was expressed

in very clear and concise code. This was one of the promises we made

at the beginning. Next we’ll expand on the solution to include error

handling.

Handling Errors

What should we do if either or both asynchronous calls fail? Perhaps

the panel div was initialized with a message saying “Retrieving Data.”

If either asynchronous function fails, this message will stay forever,

without any further notification to the user about the true status of the

request. We must do better.

dojo.Deferred can register callback functions to execute if/when an error

occurs. To avoid confusing “error path” callbacks with normal path call-

backs, we’ll call them errbacks. Naturally, they are registered with the

dojo.Deferred method addErrback.

For our display engine, upon failure of either asynchronous function,

we can use addErrback to hook up an errback that asks the user if he

would like to retry the operation. If the user says “OK,” then a new

asynchronous function call is made; if the user says “cancel,” then the

div can be filled with a message saying the request failed.

Since the new design sets up the asynchronous function calls twice—

the initial call and the call made by the retry—let’s encapsulate this

work in a couple of functions. Here’s the code for getting the data (the

code for getting the metadata looks similar):

Line 1 //important: this is put inside the function display()
- function getData() {
- displayInfo.dataDeferred= new dojo.Deferred();
- displayInfo.dataDeferred.addCallback(continueWithData);
5 displayInfo.dataDeferred.addErrback(handleDataError);
- makeAsynchronousServerDataCall(displayInfo.dataDeferred, query);
- }

We’ve done two things here. First, we encapsulated TODO #1 in the

function getData. getData must be defined within the body of the func-

tion display so that all the referenced functions and data are visible.

Second, in addition to registering a callback function, we registered the

errback function handleDataError (line 5).

MANAGING CALLBACKS WITH DOJO.DEFERRED 132

Next, let’s write handleDataError; it’s trivial:

Line 1 //important: this is put inside the function display()
-

- //informs the user that an error occurred retrieving the data
- //gives the user the option to retry or cancel
5 function handleDataError(){
- giveRetryCancelMessage(
- "The server failed to deliver the data.",
- getData, //retry function
- function() { //cancel function

10 doCancel(displayInfo.dataDeferred);
- }
-);
- }

The implementation of giveRetryCancelMessage isn’t important to the

discussion. It simply displays a dialog box that presents a message,

asks the user whether she would like to retry or cancel, and provides

OK/cancel push buttons. When the user clicks one of the buttons,

giveRetryCancelMessage calls the appropriate function. Since getData is

given as the retry function, another asynchronous call will be attempted

if the user selects retry. Similarly, if the user clicks cancel, doCancel will

be called. We’ll say more about doCancel in a moment.

Our display engine is nearly complete. But before we do more, let’s take

a closer look at registering callbacks and errbacks.

Specifying Callbacks and Errbacks

The callback processing in the example is simple: if the asynchronous

call succeeds, call one function (for example, continueWithData); other-

wise, call another function (for example, handleDataError). Most of the

time, this is all you’ll need. For more-complex scenarios, Deferreds are

capable of registering a list of callback and errback functions, and the

functions will be executed in the order they were registered.

Deferreds maintain a queue that holds the functions waiting to execute.

Callback/errbacks are always added to the queue in pairs—a callback

paired with an errback. As the queue is traversed, one or the other

functions is called depending upon whether the Deferred instance is in

a normal or error state (we’ll discuss these states in a moment).

MANAGING CALLBACKS WITH DOJO.DEFERRED 133

There are four methods for appending continuation functions to the

end of the queue:

addCallback(context, f)

Add the (callback, errback) pair given by (dojo.hitch(context, f), null).

When a null is encountered while traversing the queue, the entry

is just ignored, and processing proceeds to the next entry.

addErrback(context, f)

Add the (callback, errback) pair given by (null, dojo.hitch(context, f));

null is handled as described previously.

addBoth(context, f)

Add the (callback, errback) pair given by (dojo.hitch(context,

f), dojo.hitch(context, f)).

addCallbacks(callback, errback)

Add the (callback, errback) pair given by (callback, errback).

Any of these methods can be called during the lifetime of the Deferred

object. If the asynchronous call has already been completed and the

queue is empty, then the newly registered callback/errback is executed

immediately; otherwise, it goes to the back of the queue.

Each successive callback/errback is passed the result of the previ-

ous function in the queue. So, the first callback/errback is passed the

result of the asynchronous function, the second callback/errback is

passed the result of the first, and so on.

A Deferred enters an error state under any of the following conditions:

• The asynchronous function returns a result by calling the Deferred

method errback.

• The asynchronous function or any subsequent callback/errback

returns a result that is an instanceof Error.

• Any callback/errback throws an exception. If this occurs, then the

Deferred instance will catch the exception, and the caught excep-

tion object becomes the next result.

On the other hand, a Deferred enters a nonerror state when the original

asynchronous function or any subsequent callback/errback returns a

result that is not an instanceof Error. This means that a Deferred object

can enter into and out of an error state, and as the queue is traversed,

either the callback or errback function is executed depending on the

MANAGING CALLBACKS WITH DOJO.DEFERRED 134

error state (that is, processing can switch back and forth between the

callback and errback functions).

You can always query the current state of a Deferred object through its

fired property:

• -1 indicates that the Deferred object is still waiting for the asyn-

chronous function to finish computing.

• 0 indicates that the Deferred object has received results and is in

a nonerror state.

• 1 indicates that the Deferred object has received results and is in

a error state.

Given a Deferred instance d, the last results computed are also always

available through d.results[d.fired].

Of course, there’s no limitation on the type of single argument that is

returned. This brings up the mind-boggling possibility that a callback/

errback might return a Deferred. When this happens, any subsequent

callback/errback function is not called until the returned Deferred has

results.

Canceling Callback Processing

Let’s get back to our example. So far, the panel starts life by telling

the user that it is working on retrieving the data. If everything goes

as planned, the data is displayed after both the data and the metadata

arrive. On the other hand, if an error occurs, the user is given the option

to retry or cancel the operation. So at this point, the user can cancel

the request only if an error occurs.

There are other situations where the request should be cancelable. For

example, the user may want to cancel the operation before it either

completes or returns an error. Other processes may like to cancel asyn-

chronous processing as well. Deferred provides a solution to just this

problem.

When the Deferred method cancel is called on a Deferred instance that

is still waiting on the asynchronous function, it stops waiting, sets

its internal state to indicate an error (sets its fired property to 1), and

begins traversing the callback queue. On the other hand, if the asyn-

chronous function has already returned results and the queue has

already been traversed, cancel has no effect except for one very odd cir-

MANAGING CALLBACKS WITH DOJO.DEFERRED 135

cumstance: if the last callback/errback executed returned yet another

Deferred instance as its result, then this other Deferred is canceled.

The default cancel processing can be a bit harsh since it just creates

a JavaScript Error instance and starts down the error callback queue.

Fortunately, there is a gentler way. The Deferred constructor takes an

optional single argument—a function termed the canceler. If cancel is

invoked on a Deferred instance that was created with a canceler, then

the canceler is called with that Deferred instance passed as an argu-

ment. Armed with this information, we can make the final adjustments

to the function display.

First we need to write a canceler function. It should cancel the other

Deferred and clean up the panel. Here it is:

Line 1 //Important: this function is put inside the function display().
- function doCancel(theDeferred) {
-

- //execute this routine for the first Deferred canceled only...
5 if (!displayInfo.dataDeferred) {
- return;
- }
-

- //figure out which Deferred was canceled and take
10 //a reference to the other Deferred

- var temp= displayInfo.dataDeferred==theDeferred ?
- displayInfo.metadataDeferred : displayInfo.dataDeferred;
-

- //ensure this routine is executed only once
15 displayInfo.dataDeferred= null;

- displayInfo.metadataDeferred= null;
-

- //cancel the other Deferred
- temp.cancel();

20

- //clean up the display
- destroyPanel(displayInfo);
- }

Because the Deferred instance that is canceled first must cancel the

other Deferred instance, a little care is required to avoid infinite recur-

sion. The first Deferred instance canceled clobbers both displayInfo.

metadataDeferred and displayInfo.dataDeferred so that the canceler will

return immediately when the other Deferred instance is canceled.

The canceler should be hooked up to both Deferred instances when they

are created, so the following line...

displayInfo.dataDeferred= new dojo.Deferred();

MANAGING CALLBACKS WITH DOJO.DEFERRED 136

should be replaced with this line:

displayInfo.dataDeferred= new dojo.Deferred(doCancel);

And this must also be done for displayInfo.metadataDeferred. It is impor-

tant to remember that when a Deferred instance is canceled, the error

functions in the callback queue will be invoked. Since we don’t want to

give the user a “retry/cancel” message after she cancels, we’ll modify

the function handleDataError to give the message box only if the process

has not been canceled. Here is the revised handleDataError (the errback

for getMetadata looks similar):

Line 1 //informs the user that an error occurred retrieving the metadata
- //gives the user the option to retry or cancel
- function handleDataError(){
- if (displayInfo.dataDeferred) {
5 giveRetryCancelMessage(
- "The server failed to deliver the data.",
- getData, //retry function
- function() { //cancel function
- doCancel(displayInfo.dataDeferred);

10 }
-);
- } else {
- //the process was canceled
- }

15 }

Finally, a cancel button could be placed on the initial panel that cur-

rently says “Retrieving Data,” and a click handler should be connected

that executes displayInfo.dataDeferred.cancel().

That’s it for our display example. We included the completed display

function here so that you can read the finished code in a single, con-

tinuous presentation. A fully operational example, including mock data

and metadata services, is available in the code download.

Download asynchronous-programming/deferred.htm

Line 1 function display(panelId, query) {
-

- //displayInfo is a shared bookkeeping area
- var displayInfo= {
5 panelId: panelId,
- query: query,
- processCompleteCount: 0};
-

- //get an HTML div in which to place the panel
10 displayInfo.div= allocatePanel(displayInfo);

-

- getData();

MANAGING CALLBACKS WITH DOJO.DEFERRED 137

- getMetadata();
-

15 function getData() {
- displayInfo.dataDeferred= new dojo.Deferred(doCancel);
- displayInfo.dataDeferred.addCallback(continueWithData);
- displayInfo.dataDeferred.addErrback(handleDataError);
- makeAsynchronousServerDataCall(displayInfo.dataDeferred, query);

20 }
-

- function getMetadata() {
- displayInfo.metadataDeferred= new dojo.Deferred(doCancel);
- displayInfo.metadataDeferred.addCallback(continueWithMetadata);

25 displayInfo.metadataDeferred.addErrback(handleMetadataError);
- makeAsynchronousServerMetadataCall(displayInfo.metadataDeferred, panelId);
- }
-

- //process the data as far as we can without the metadata
30 function continueWithData(data){

- //put the data in an application-wide cache
- //for use with other requests...
- cacheData(data);
-

35 //save quick access to the data
- displayInfo.data= data;
-

- finishDisplay();
- }

40

- //process the metadata as far as we can without the data
- function continueWithMetadata(metadata) {
- //start to set up the HTML and other control structures
- //given by the metadata...

45 preparePanel(metadata);
-

- //save quick access to the metadata
- displayInfo.metadata= metadata;
-

50 finishDisplay();
- }
-

- //when continueWithData and continueWithMetadata have completed,
- //finish with the display process

55 function finishDisplay() {
- displayInfo.processCompleteCount++;
- if (displayInfo.processCompleteCount==2) {
- //both have completed...
- populatePanelWithData(displayInfo);

60 releasePanelToUser(displayInfo);
- }
- }
-

MANAGING CALLBACKS WITH DOJO.DEFERRED 138

- function handleDataError(){
65 if (displayInfo.dataDeferred) {

- giveRetryCancelMessage(
- "The server failed to deliver the data.",
- getData, //retry function
- function() { //cancel function

70 doCancel(displayInfo.dataDeferred);
- }
-);
- } else {
- //the process was canceled

75 }
- }
-

- function handleMetadataError(){
- if (displayInfo.metadataDeferred) {

80 giveRetryCancelMessage(
- "The server failed to deliver the metadata.",
- getMetadata, //retry function
- function() { //cancel function
- doCancel(displayInfo.metadataDeferred);

85 }
-);
- } else {
- //the process was canceled
- }

90 }
-

- function doCancel(theDeferred) {
-

- //execute this routine for the first Deferred canceled only...
95 if (!displayInfo.dataDeferred) {

- return;
- }
-

- //figure out which Deferred was canceled and take
100 //a reference to the other Deferred

- var temp= displayInfo.dataDeferred==theDeferred ?
- displayInfo.metadataDeferred : displayInfo.dataDeferred;
-

- //ensure this routine is executed only once
105 displayInfo.dataDeferred= null;

- displayInfo.metadataDeferred= null;
-

- //cancel the other Deferred
- temp.cancel();

110

- //clean up the display
- destroyPanel(displayInfo);
- }
- }

MANAGING CALLBACKS WITH DOJO.DEFERRED 139

The example is fairly powerful. It has normal processing, has full error

recovery, and is user cancelable. The code is easy to read and under-

stand while also being very concise. We could have wired all this func-

tionality together with events, but Dojo’s Deferred did most of the work

for us, so this was unnecessary.

If you find yourself having trouble with Deferreds, try not to worry too

much about how they do things; instead, concentrate on what they do.

Also, there’s no need to bother with Deferreds unless the design includes

problems like chaining callbacks and/or canceling. Deferreds shine in

these situations, transforming an unmanageable mess of spaghetti into

clean code.

Chapter 7

DOM Utilities
Document Object Model (DOM) programming seems almost trivial. The

document is represented by a tree of nodes, and each node has a set

of properties. You control the appearance of the document by inserting,

deleting, and/or moving nodes and editing their properties. Too bad it’s

really not that easy.

As usual, the browser environment makes simple things difficult. Al-

though the W3C-specified DOM API is fairly complete, it’s frequently

inconvenient.1 Often, several lines of JavaScript are required to accom-

plish a trivial programming chore. And then there’s the always-present

browser incompatibilities.

Much of Dojo was built to solve this problem. We’ve already seen this

at a high level of abstraction with Dijit widgets back in Chapter 2, Pow-

erful Web Forms Made Easy, on page 20. But sometimes you need to

be closer to the metal and manipulate raw DOM nodes directly. Dojo

includes low-level functions that make this work easier, allowing you to

do more in fewer lines than you thought possible. We’ll show you how

in this chapter as we explore Dojo functions that find, insert, delete,

and move nodes as well as functions that get/set styles, classes, and

other attributes.

7.1 Core Dojo DOM Utility Functions

We’ll spend most of this chapter refining an ugly, static HTML docu-

ment into an elegant, dynamic user interface; it’ll even include a little

animation. But, first we need to cover some basic Dojo DOM utility

1. The W3C DOM specifications begin at http://www.w3.org/DOM/DOMTR.

CORE DOJO DOM UTILITY FUNCTIONS 141

functions that you just can’t live without. Knocking these out now will

also keep us moving quickly through the rest of the material.

Perhaps the most basic DOM programming task is grabbing a Java-

Script reference to a DOM node using the value of an id attribute. The

W3C DOM API provides the function getElementById to do this. Unfortu-

nately, Internet Explorer figured out how to implement it incorrectly.2

Dojo includes the function dojo.byId that works across all browsers.

dojo.byId takes a string argument that gives the value of the id attribute

for a target DOM node and returns a reference to that node.3 An op-

tional second argument (a DOM Document object) may be provided to

indicate the document to search. If missing, then dojo.doc—equivalent

to window["document"] unless explicitly changed—is assumed.

Given a reference to a DOM node, setting/getting the node’s class, style,

and/or other attributes are chores you’ll do again and again. The native

APIs provided by the major browsers are all somewhat painful owing to

the W3C specification, browser incompatibilities, or both. Dojo provides

alternative functions:

• dojo.hasClass/dojo.addClass/dojo.removeClass/dojo.toggleClass:

Tests for/adds/removes/toggles a class string within a node’s class

attribute. Since the class attribute can contain a list of several

classes, these functions eliminate the tedious string work that is

required when working with single class names within the list.

• dojo.style: Gets and sets the style for a node; normalizes for browser

incompatibilities.

• dojo.attr/dojo.hasAttr/dojo.removeAttr: Gets and sets/tests/removes

attribute values from a node.

The first argument to all of these functions is either a DOM node or a

string that gives the id attribute value of a DOM node. If an id string is

given, then the target node is always retrieved by calling dojo.byId. The

operation of these functions is fairly trivial, but each function has a few

subtleties that are easily missed by skimming the reference manual.

So, we’ll demonstrate each function, including the subtleties.

The class functions (hasClass, removeClass, toggleClass, and addClass) all

take two arguments—a node and a class string. Usually, the class string

contains a single class name, but this need not be the case.

2. getElementById will fail in Internet Explorer and Opera (fixed at v9.50a1) in some cases;

see http://webbugtrack.blogspot.com/2007/08/bug-152-getelementbyid-returns.html for the story.
3. dojo.byId also accepts a DOM node for the first argument in which case it just returns

the node. This can be useful for writing functions that take either a DOM node or an id

attribute value—as do most of Dojo’s DOM utility functions.

CORE DOJO DOM UTILITY FUNCTIONS 142

Here’s a Firebug console session that shows some examples:

Download dom/core-dom-utils.js

Line 1 >>> //get a node to play with...
- >>> var node= dojo.byId("top");
-

- >>> //class names are added to the right side...
5 >>> dojo.addClass(node, "c1");
- >>> node.className;
- "c1"
- >>> dojo.addClass(node, "c2");
- >>> node.className;

10 "c1 c2"
-

- >>> //adding a class already there does nothing...
- >>> dojo.addClass(node, "c2");
- >>> node.className

15 "c1 c2"
-

- >>> //"c2 c1" NOT already there...
- >>> dojo.addClass(node, "c2 c1");
- >>> node.className;

20 "c1 c2 c2 c1"
-

- >>> //nothing surprising here...
- >>> dojo.hasClass(node, "c1");
- true

25 >>> dojo.hasClass(node, "c2");
- true
- >>> dojo.hasClass(node, "c1 c2 c2");
- true
- >>> dojo.hasClass(node, "c3");

30 false
-

- >>> //classes are removed from the left side...
- >>> dojo.removeClass(node, "c1");
- >>> node.className;

35 "c2 c2 c1"
- >>> dojo.removeClass(node, "c2 c2");
- >>> node.className;
- "c1"
-

40 >>> //nothing surprising here...
- >>> dojo.toggleClass(node, "c2");
- >>> node.className;
- "c1 c2"
- >>> dojo.toggleClass(node, "c2");

45 >>> node.className;
- "c1"

At line 18, adding the class string "c2 c1" to the className attribute with

a current value of "c1 c2" demonstrates the biggest gotcha. dojo.addClass

CORE DOJO DOM UTILITY FUNCTIONS 143

appends a string value (not necessarily a single class name) to a class-

Name attribute value if that string value doesn’t already exist in the

current value. Since "c2 c1" does not exist in "c1 c2", it is appended,

resulting in a new className attribute value of "c1 c2 c2 c1".

dojo.toggleClass can take a third argument (a boolean) that explicitly

adds or removes the class string. This provides some syntactic sugar

that can make some expressions more palatable:

Download dom/core-dom-utils.js

Line 1 //assume error is a boolean...
-

- if (error) {
- dojo.addClass(someNode, "displayAsError");
5 } else {
- dojo.removeClass(someNode, "displayAsError");
- }
-

- //becomes...
10

- dojo.toggleClass(someNode, "displayAsError", error);

Next, we’ll look at dojo.style. This function can take one, two, or three

arguments. As usual, the first argument is a DOM node or id string.

If only one argument is given, then a W3C computed style object is

returned. The second argument (a string) identifies a style to get or

set. Finally, the third argument (a string) provides a style value to set.

Here’s more of the previous Firebug console session that demonstrates

these functions:

Download dom/core-dom-utils.js

Line 1 >>> //single-argument variety => a getter
- >>> //returns a reference to a computed style object just
- >>> //like the DOM Window.getComputedStyle function
- >>> dojo.style(node);
5 ComputedCSSStyleDeclaration borderLeftWidth=0px borderTopWidth=0px
-

- >>> //three-argument variety => a setter
- >>> //styles values are just like in a style sheet
- >>> dojo.style(node, "border", "2px solid black");

10 "2px solid black"
-

- >>> //two-argument variety => a getter for a particular style
- >>> //NOTE: style names are CAMEL CASE!
- >>> dojo.style(node, "borderTopWidth");

15 2
-

- >>> //this WILL NOT WORK! (style names are camel case)
- >>> dojo.style(node, "border-top-width");
- 0

CORE DOJO DOM UTILITY FUNCTIONS 144

Notice that style names are the same as those defined by the style prop-

erty of a DOM node, not the names used in a style sheet (for example,

borderTopWidth, not border-top-width).

Finally, the attribute functions take a DOM node or id string, an attri-

bute name (a string), and optionally an attribute value (a string). The

two-argument varieties test, get, or remove the attribute; the three-

argument version sets the attribute:

Download dom/core-dom-utils.js

Line 1 >>> //3 arguments => setter
- >>> //sets the attribute "name" to "foo"
- >>> dojo.attr(node, "name", "foo");
-

5 >>> //2 arguments => getter
- >>> //returns "foo"
- >>> dojo.attr(node, "name");
- "foo"
-

10 >>> //no surprise here...
- >>> dojo.hasAttr(node, "name");
- true
-

- >>> //this all works with user-defined attributes...
15 >>> //add an attribute..

- >>> dojo.attr(node, "myAttrib", "myValue");
-

- >>> //get its value...
- >>> dojo.attr(node, "myAttrib");

20 "myValue"
-

- >>> //check existence...
- >>> dojo.hasAttr(node, "myAttrib");
- true

25

- >>> //remove it...
- >>> dojo.removeAttr(node, "myAttrib");
- >>> dojo.hasAttr(node, "myAttrib");
- false

There’s also an alternative two-argument setter that takes a hash for

the second argument that contains a set of (attribute-name, attribute-

value) pairs to set. This is quite convenient when setting multiple attri-

butes on the same node:

Download dom/core-dom-utils.js

Line 1 dojo.attr("nodeId", {
- tabIndex: "-1",
- customAttr: "custom value",
- title: "an awesome node"
5 });

FINDING AND EDITING NODES 145

That’s it for the necessary foundation. Let’s move on to something more

interesting.

7.2 Finding and Editing Nodes

We have a challenge. We’ve been given some trivial HTML that displays

a list of questions:

Download dom/questions-book-frags.htm

Line 1 <body><div><form>
- <p>Programmer Interview Questions</p>
- <div class="questions">
- <p>
5 <input type="radio" name="q1" value="yes">Yes
- <input type="radio" name="q1" value="no">No
- Are you a C programmer?
- </p><p>
- <input type="radio" name="q1-yes" value="yes">Yes

10 <input type="radio" name="q1-yes" value="no">No
- <input type="radio" name="q1-yes" value="maybe">Don't know
- Have you read Kernighan and Ritchie?
- </p><p>
-

15 <!-- etc. -->
-

- </div>
- </form></div></body>

When rendered, it looks like Figure 7.1, on the following page. Not too

good. We need to fix it so that the questions are shown on alternating

bands of light and dark gray, the options are lined up in columns, and

the layout keeps looking good even when the user dynamically changes

the viewport or text size. Also, notice how the second, fourth, sixth, and

eighth questions are relevant only if the preceding question is answered

“yes.” We’ll change the behavior of the form to animate an even question

into view when its owning question is marked “yes” and out of view

when marked “no.”

But (there’s always a but!), there are rules: we can’t modify the source

HTML (we can modify the contents of the head element); we can modify

the DOM tree after the source is parsed by the browser; and, no, we

can’t cheat by replacing the whole thing with a JavaScript-generated

table. We’ll call this the “question-list challenge”; as we solve the puz-

zle, we’ll demonstrate each major area covered by Dojo’s DOM utility

functions.

FINDING AND EDITING NODES 146

Figure 7.1: A poorly formatted set of questions

dojo.query

As a first step, we’ll color the background of the questions alternate

shades of gray. To do this, we need to get the set of question nodes

and then set the background color style as we traverse the list. Specif-

ically, we need to get the set of p nodes that are descendents of the

div node with the class questions. Hmmm...sounds like a CSS selector.

But browsers don’t give JavaScript access to their CSS query engines;

fortunately, Dojo includes this functionality.4

The function dojo.query takes a CSS selector and returns an array of

nodes that match the selector. The array of nodes is returned in a Dojo

NodeList object, which behaves as if it were a subclass of Array. NodeLists

include the Mozilla JavaScript 1.6 array extensions (discussed in Sec-

tion 5.2, JavaScript 1.6 Array Methods, on page 90) as well as a few con-

venience functions for common node manipulation (we’ll look at these

in Section 7.2, dojo.NodeList Capabilities, on page 154).5

4. If you’re not familiar with CSS selectors, [Mey06] is an excellent reference.
5. NodeList is not a subclass of Array but rather an Array object with several per-object

FINDING AND EDITING NODES 147

dojo.query also accepts an optional second argument that gives the

subtree to search; if the second argument is missing, then the docu-

ment is assumed. Providing a subtree limits the search, resulting in a

sometimes-dramatic performance improvement. As usual when speci-

fying a DOM node, the second argument can be either a node or the id

(a string) of the target node.

We have enough information to use dojo.query to get all the question

nodes in our document. Here’s how to do it:

Download dom/frags.js

Line 1 dojo.query("div.questions p");

This returns a Dojo NodeList that contains all the question nodes. Since

NodeList defines the method forEach, setting the background color could

not be easier:

Download dom/questions1.htm

Line 1 dojo.query("div.questions p").forEach(function(node, i){
- dojo.addClass(node, (i % 2) ? "lightBand" : "darkBand");
- });

The code sets the class attribute on odd lines to lightBand and on even

lines to darkBand.

The same technique can be used to fix up the form’s title paragraph (the

p element that contains the text “Programming Interview Questions”).

We’re after the first p element child of the form. The CSS selector form >

p serves this up perfectly:

Download dom/questions1.htm

Line 1 dojo.addClass(dojo.query("form > p")[0], "formTitle");

There is a big gotcha here. dojo.query always returns a Dojo NodeList.

It just doesn’t matter that the particular CSS selector will find only a

single element. So when you need to access a NodeList as if it were just

a single element, you must specify this by selecting the first element

with [0].6

methods added. Currently, it’s impossible to derive from Array without undesirable side

effects.
6. As we’ll see in Section 7.2, dojo.NodeList Capabilities, on page 154, this line could

also be written as dojo.query("form > p").addClass("formTitle");.

FINDING AND EDITING NODES 148

To make any of this work, we have to load dojo.js and a style sheet.

Here’s the head element:

Download dom/questions1.htm

Line 1 <head>
- <title>
- Mastering Dojo - DOM Utilities Demonstration - Question List Challenge Step 1
- </title>
5

- <style type="text/css">
- @import "questions.css";
- </style>
-

10 <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js"
- djConfig="isDebug: true">
- </script>

15

- <script type="text/javascript">
- (function(){
- function layout1(){
- dojo.addClass(dojo.query("form > p")[0], "formTitle");

20 dojo.query("div.questions p").forEach(function(node, i){
- dojo.addClass(node, (i % 2) ? "lightBand" : "darkBand");
- });
- }
-

25 dojo.addOnLoad(layout1);
- })();
- </script>
- </head>

See Section 6.1, Executing Initialization Code with dojo.addOnLoad, on

page 111 if dojo.addOnLoad is hazy. Here is the style sheet:

Download dom/questions.css

Line 1 * {
- margin:0;
- border:0;
- padding:0;
5 font-family:arial;
- }
-

- body {
- background-color:#FCFCFC;

10 }
-

- .formTitle {
- padding: .5em;

FINDING AND EDITING NODES 149

- font-size:larger;
15 font-weight:bold;

- }
-

- div.question {
- overflow:hidden;

20 }
-

- .questions {
- border-top: 2px solid black;
- border-bottom: 2px solid black;

25 padding: 1em;
- }
-

- .questions p {
- padding: .5em;

30 }
-

- .lightBand {
- background-color:#EFEFEF;
- }

35

- .darkBand {
- background-color:#E0E0E0;
- }
-

40 .choice {
- float:left;
- padding: .5em;
- }

At this point, the form looks like Figure 7.2, on the next page. We still

have some work to do, but before we finish the challenge, let’s take a

moment to talk about dojo.query selectors and dojo.NodeList in detail.

dojo.query Selectors

dojo.query supports many (but not all) CSS 3 selectors, as specified at

http://www.w3.org/TR/css3-selectors/#selectors. In Figure 7.3, on page 152,

you can see the rows of the selector summary table, as it appears in

the W3C standard, that are supported by dojo.query at the time of this

writing [GÇH+05]. The second column gives an example of each query

that can be used with the demonstration we’ll develop in a moment.

dojo.query is likely to evolve and support more selectors as well as other

types of query languages (for example, XPath). Currently, dojo.query

is implemented in JavaScript since most browsers fail to give public

access to their internal CSS query engines.

FINDING AND EDITING NODES 150

Figure 7.2: Improvement

If/when browsers provide access, dojo.query will simply pass query re-

quests through to the native CSS engine.

Let’s build a demonstrator page that we can use to experiment with

CSS selectors. First we need a little HTML document with enough ele-

ments, structure, classes, and attributes to demonstrate each selector

in action:

Download dom/query-demo.htm

Line 1 <div id="fixture">
- <div class="section1">
- <h1>
- Section 1
5 </h1>
- <p>
- Introduction Text
- </p>
- <div class="section1-1" >

10 <h2>
- Section 1.1
- </h2>

FINDING AND EDITING NODES 151

- <p>
- Section 1.1, Paragraph-1

15 </p>
- <p class="special">
- Section 1.1, Paragraph-2 (class=special)
- </p>
- <p myAttrib="special">

20 Section 1.1, Paragraph-3 (myAttrib="special")
- </p>
- <p myAttrib="special-1 special-2 special-3">
- Section 1.1, Paragraph-4 (myAttrib="special-1 special-2 special-3")
- </p>

25 </div>
- </div>
- </div>

Next, we’ll add a form to the bottom of the page that collects a CSS

selector string. When the form is submitted, dojo.query finds the set of

nodes described by the selector string, and then each node in the set is

outlined in a red border. Here’s the code:

Download dom/query-demo.htm

Line 1 <div class="queryTester" style="background-color:#DDDDDD; padding: 5px;">
- <form id="qform">
- Enter selector string; press <enter> to process:
- <input id="query" type="text" name="querySelector" size="40">
5 <input type="submit">
- </form>
- </div>
- <script type="text/javascript">
- dojo.addOnLoad(function(){

10 dojo.connect(dojo.byId("qform"), "submit", function(e){
- //stop default processing and propagation
- //(we really don't want to submit the form)
- dojo.stopEvent(e);
-

15 //erase any previous borders...
- dojo.query("*", "fixture").style("border", "");
-

- //set all elements found by the query to have a red border...
- var query= dojo.byId("query").value;

20 dojo.query(query, "fixture").style("border", "2px solid red");
- });
- });
- </script>

If we type “.special” into the input box and hit Enter , the second para-

graph of section 1.1 will be outlined by a red border, as shown in Fig-

ure 7.4, on page 153.

FINDING AND EDITING NODES 152

Selector Meaning
example

* any element
*

E an element of type E
h1

E[foo] an E element with a “foo” attribute
p[myAttrib]

E[foo="bar"] an E element whose “foo” attribute value is exactly equal
to “bar”

p[myAttrib="special"]

E[foo~="bar"] an E element whose “foo” attribute value is a list of space-
separated values, one of which is exactly equal to “bar”

p[myAttrib~="special-2"]

E[foo^="bar"] an E element whose “foo” attribute value begins exactly
with the string “bar”

p[myAttrib^="special-1"]

E[foo$="bar"] an E element whose “foo” attribute value ends exactly
with the string “bar”

p[myAttrib$="special-3"]

E[foo*="bar"] an E element whose “foo” attribute value contains the
substring “bar”

p[myAttrib*="spec”]

E:nth-child(n) an E element, the n-th child of its parent
div.section1-1 :nth-child(3)

E:nth-child(even) an E element, the 2nd, 4th, … children
div.section1-1 :nth-child(even)

E:nth-child(odd) an E element, the 1st, 3rd, … children
div.section1-1 :nth-child(odd)

E:first-child an E element, first child of its parent
div.section1-1 :first-child

E:last-child an E element, last child of its parent
div.section1-1 :last-child

E:not(s) an E element that does not match simple selector s
p:not(.special)

E:empty an E element that has no children (including text nodes)
div:empty

#myid an element with ID equal to “myid”
#fixture

E.myclass An E element with class “myclass”
p.special

E > F an F element child of an E element
div > p

E ~ F an F element preceded by an E element
h2 ~ p

E + F an F element immediately preceded by an E element
h2 + p

s1 s2 The set of elements returned by selector s2 that are
decedents of the set of elements returned by s1

div p

s1, s2 The set of elements returned by selector s1 union the set
of elements returned by selector s2

h1, h2

Figure 7.3: CSS 3 selectors supported by dojo.query

FINDING AND EDITING NODES 153

Figure 7.4: Query demonstrator in action

The code also demonstrates the NodeList method style, which calls dojo.

style for each item in the NodeList. So, the following...

dojo.query(selector).style(style, value);

is equivalent to this:

dojo.query(selector).forEach(function(n){dojo.style(n, style, value);});

You can use this technique in your own development work. When you’re

having trouble understanding the behavior of a CSS selector, you can

add a form like the one we just developed to the bottom of your HTML

document. Or, if you’re using Firebug, forget about the form, and just

type the dojo.query function call into the console to see what it returns.

Before we leave dojo.query, let’s explore the NodeList objects it returns.

FINDING AND EDITING NODES 154

Alex Says. . .

dojo.query Today, querySelectorAll Tomorrow

Where it makes sense, Dojo is built to be compatible with
upcoming standards. Eventually, these standards should be
implemented by all browsers, and when they are, they’ll
be faster and easier to use than the scripted alternatives.
dojo.query is a great example. The W3C Selectors API standard
(http://www.w3.org/TR/selectors-api) describes an API for query-
ing the DOM tree with CSS selectors and the Web API’s work-
ing group has specified a programmatic variant, the func-
tion querySelectorAll, which returns an array of nodes just like
dojo.query does. Dojo’s CSS query engine has always been fast,
and by keeping the query syntax to just what CSS provides, the
design avoids getting into a situation where sending a scripted
query engine down the wire will always be required. Instead,
Dojo uses querySelectorAll on the browsers that support it sanely.
Sooner or later, dojo.query will become nothing more than a call
into querySelectorAll plus some syntactic sugar on the returned
array. Best yet, the API won’t change and you can get the
speedup of having the query engine implemented in C++ on
the browsers that support it now, knowing full well that things
will only get faster and smaller in the future without backward-
compatibility headaches. Investing in a toolkit that is paying
attention to the evolution of the Web is already paying divi-
dends for Dojo users.

dojo.NodeList Capabilities

NodeList objects are arrays with several additional per-object methods.

They include all of the JavaScript core Array methods (concat, join, pop,

and the rest).7 These all work as expected. For example, given myN-

odeList (a NodeList), myNodeList.slice(2, 5) returns a new NodeList object

that consists of the third through fifth elements of myNodeList.

We already mentioned that NodeList also includes the Mozilla JavaScript

1.6 array functions indexOf, lastIndexOf, every, some, map, and forEach.

So, instead of writing this...

dojo.forEach(someNodelist, function(node){/*do something with node*/});

7. NodeList does not override join; consequently, join will return a result, but it usually

isn’t very useful.

FINDING AND EDITING NODES 155

you can write this:

someNodelist.forEach(function(node){/*do something with node*/});

Finally, NodeList includes a few methods that are syntactic sugar for

applying common functions to each element. These methods are sum-

marized here (myNodeList is a NodeList object):

• coords: Gets the top, left, height, and width of each node with

dojo.coords (see Section 7.4, Positioning with CSS and Dojo, on

page 161).

Download dom/frags.js

Line 1 result= myNodeList.coords();
- //is equivalent to...
- result= myNodeList.map(dojo.coords);

• attr: Gets or sets an HTML attribute of each node with dojo.attr. The

get version returns an array of attribute values; the set version

returns the source NodeList.

Download dom/frags.js

Line 1 //getter...
- result= myNodeList.attr(property);
- //is equivalent to...
- result= myNodeList.map(
5 function(node){return dojo.attr(node, property);}
-);
- //result is an array of strings
-

- //setter...
10 result= myNodeList.attr(property, value);

- //is equivalent to...
- myNodeList.forEach(
- function(node){dojo.attr(node, property, value);}
-);

15 result= myNodeList;
- //result is the original MyNodeList

• style: Works just like attr except for dojo.style.

• addClass: Adds a class string to each node with dojo.addClass; it

returns the source NodeList.

Download dom/frags.js

Line 1 result= myNodeList.addClass(className);
- //is equivalent to...
- myNodeList.forEach(
- function(node){dojo.addClass(node, className);}
5);

FINDING AND EDITING NODES 156

- result= myNodeList;
- //result is the original MyNodeList

• removeClass: Works just like addClass except for dojo.removeClass.

• place: Places a node relative to a reference node with dojo.place

(see Section 7.3, Moving Nodes with dojo.place, on page 160). The

reference node can be given as either a DOM node or a query

string.

Download dom/frags.js

Line 1 //referenceNode is a DOM node...
- result= myNodeList.place(referenceNode, position);
- //is equivalent to...
- myNodeList.forEach(
5 function(node){dojo.place(node, referenceNode, position);}
-);
- result= myNodeList;
- //result is the original MyNodeList
-

10 //referenceNode is a selector...
- result= myNodeList.place(selector, position);
- //is equivalent to...
- myNodeList.forEach(
- function(node){dojo.place(node, dojo.query(selector)[0], position);}

15);
- result= myNodeList;
- //result is the original MyNodeList

• connect: Connects a handler to an event with dojo.connect.

Download dom/frags.js

Line 1 //no handler context provided
- result= myNodeList.connect(event, handler);
- //is equivalent to...
- myNodeList.forEach(
5 function(node){dojo.connect(node, event, handler);}
-);
- result= myNodeList;
- //result is the original MyNodeList
-

10 //with handler context
- result= myNodeList.connect(event, context, handler);
- //is equivalent to...
- myNodeList.forEach(
- function(node){dojo.connect(node, event, context, handler);}

15);
- result= myNodeList;
- //result is the original MyNodeList

FINDING AND EDITING NODES 157

Alex Says. . .

Extending dojo.query

dojo.query is quite powerful out of the box. But, depending on
your needs, you may find it convenient to add methods to the
objects that dojo.query returns. For example, you might want to
“yellow-fade” all the elements with the HTML class changed and
then remove the class—that is, you’d like to write something like
this:

dojo.query("#container .changed").fadeAndClear();

The key to extending dojo.query is understanding that it returns
a dojo.NodeList instance. So to get the desired effect, you must
add a property to the prototype object (see Section 9.2, Proto-
types and Prototypal Inheritance, on page 226 for a discussion
of prototypes) of the NodeList constructor function:

dojo.NodeList.prototype.fadeAndClear= function() {
this.forEach(function(node){

dojo.anim(node, {backgroundColor:yellow});
dojo.removeClass(node, "changed"); }

);
return this;

};

Typically, you’ll want to ensure that methods added to
dojo.NodeList return the source instance so that several functions
can be chained like this:

dojo.query("#container .changed").doThis().doThat().doTheOther();

• orphan: Removes nodes that are caught in a filter from their par-

ent by the DOM function Node.removeChild; the nodes are also

removed from the source NodeList. The filter must be a single-

expression CSS selector (for example, .someClass); if the filter is

missing, then all nodes in the NodeList are removed. It returns the

removed nodes. Note that since the nodes are returned, they are

not destroyed.

Notice how attr (setter version), style (setter version), addClass, remove-

Class, place, and connect all return the source NodeList. This allows sev-

eral of these functions to be chained so that many operations can be

accomplished in one statement.

INSERTING, MOVING, AND DELETING DOM NODES 158

Figure 7.5: The basic structure for two questions

For example, you can add the class "error" and remove the class "warning"

to myNodeList in one statement by writing this:

myNodeList.addClass("error").removeClass("warning");

Now that we have a good handle on how to find DOM nodes and edit

their properties, let’s turn to the other side of DOM programming—

manipulating the contents and structure of the DOM tree.

7.3 Inserting, Moving, and Deleting DOM Nodes

When we left the question-list challenge, the questions were colored

with alternating shades of gray. As a second step, we’ll get the options

to line up in columns and make sure they stay lined up when the user

changes the text size.

Example of DOM Tree Manipulation

To solve this part of the challenge, we’ll change the structure of the doc-

ument slightly. Each question will be contained in a div.question node

(a div element with the class question). Each question option and the

question text will be contained in p nodes that are children of the new

div.question node with the classes qOption and qText, respectively. We’ll

finish the structure by decorating it with nodes from the original docu-

ment. In Figure 7.5 you can see the basic structure for two questions.

The new structure makes it easy to position the options and question

text in columns. The option paragraphs are floated left, and their widths

are set to the maximum width of all options in the containing column.

The question text is padded on the left enough to accommodate the sum

INSERTING, MOVING, AND DELETING DOM NODES 159

Figure 7.6: Original and new structure for a single question

of the widths of all the option columns. This design causes the options

and the questions to line up.8

In Figure 7.6, you can see the before and after shots for a single ques-

tion. Looking at the diagram, here’s what needs to be done:

For each question...

1. Create a div.question node (A).

2. For each option in the current question (3 then 6)...

a) Create a p.qOption node (B then C). Place this new node as the

last child of the div.question node (A).

b) Place the original span node (3 then 6) in the new p.qOption

node.

8. Of course, there are many ways to solve the problem at hand (for example, it could

be done without any node manipulation, relying solely on CSS styles). This is a teaching

example constructed to demonstrate some Dojo functions.

INSERTING, MOVING, AND DELETING DOM NODES 160

3. At this point, the only thing left in the original question node (1)

is the question text (2). Placing the original question node (1) as

the last child of the div.question node (A) finishes the structure for

a single question.

Moving Nodes with dojo.place

The function dojo.place inserts a node relative to another node. This one

function is easier to use and replaces the W3C functions appendChild,

replaceChild, and insertBefore. dojo.place takes a source node, a reference

node, and a position ("before"; "after"; "first"; "last"; an integer; or missing,

which implies "last") and inserts the node relative to the reference node

as given by position:

• before/after: The node is placed before/after the reference node as

a sibling.

• first/last: The node is placed as the first/last child of the reference

node.

• n: The node is placed as the nth child of the reference node; zero

implies the first child.

As usual, the node to be placed and/or the reference node can be spec-

ified by providing a DOM node or an id value for the target DOM node.

dojo.place and dojo.query make implementing the algorithm a snap:

Download dom/questions2.htm

Line 1 function restructure(){
- var questionGroup= dojo.query("div.questions")[0];//note [0]!
- dojo.query("p", questionGroup).forEach(function(node){
- var question= createNode("div", "question");
5 dojo.place(question, questionGroup, "last");
- dojo.query("span", node).forEach(function(choiceNode){
- var choice= createNode("p", "choice");
- dojo.place(choice, question, "last");
- dojo.place(choiceNode, choice, "last");

10 });
- dojo.place(node, question, "last");
- });
- }

restructure is hooked up to fire by dojo.addOnLoad. The function does not

include the alternate shading accomplished earlier; this will be weaved

back into the loop later. Finally, the function createNode is a little three-

liner that creates a new DOM node and sets its class attribute.

POSITIONING DOM NODES 161

Download dom/questions2.htm

Line 1 function createNode(tag, className){
- var newNode= document.createElement(tag);
- dojo.addClass(newNode, className);
- return newNode;
5 }

There are a couple of other DOM structure functions that we should

mention since they didn’t make it into the example. First, there’s dojo.

isDescendant(node, ancestor), which returns true if node is a descendant

of ancestor. And there’s the bed lump function dojo._destroyElement(node)

that destroys node and all of its children in a browser-independent

manner that doesn’t leak. The arguments in these functions can be

either DOM nodes or ids.

Now that we have the structure set, we can move on to positioning

elements.

7.4 Positioning DOM Nodes

Dojo provides several functions that take all the pain and mystery out

of positioning DOM nodes. For example, to set the (top, left) position of

a DOM node with CSS styles, you must write something like this:

dojo.style(myNode, "top", 20); dojo.style(myNode, "left", 30);

That’s pretty verbose code for something as simple as setting a couple

of coordinates. Dojo’s positioning functions are more concise; they also

clean up a few browser incompatibilities. After a quick review of CSS

positioning, we’ll describe Dojo’s positioning functions, and then we’ll

use them to align the columns in the question-list challenge.

Positioning with CSS and Dojo

In addition to positioning a DOM element with the normal flow (position

style static), CSS provides for positioning and sizing a block-level DOM

element relative to the browser’s viewport (fixed), relative to its contain-

ing parent node (absolute), or relative to its position in the normal flow

(relative).9 The various metrics defined by CSS are shown in Figure 7.7,

on the next page.

9. Internet Explorer (at least up to version 7) does not support fixed positioning, and

even Dojo cannot rectify this.

POSITIONING DOM NODES 162

Figure 7.7: CSS positioning metrics

The diagram shows the two “box models” provided by CSS; these define

the semantics of the width and height styles.

• “content-box” where the width/height style is equal to the content

width/height. This is the default model.

• “border-box” where the width/height is equal to the width/height

of the (left border + content width + right border)/(top border +

content height + bottom border). This is available in browsers that

support the CSS style box-sizing.10

The left, right, top, and bottom styles are the offset from the containing

block’s margin edge to the target block’s margin edge (for example, see

Figure 7.8, on the following page).

Consult [Mey06] for a detailed discussion of the arcana of CSS posi-

tioning if any of this is new to you.

Dojo defines positions and sizes by a JavaScript object with the prop-

erties l (left position or extent), t (top position or extent), w (width or

left+right extent), h (height or top+bottom extent), x (horizontal scroll

offset), and y (vertical scroll offset)—all in pixels. We’ll term this object

10. Peter-Paul Koch has a nice write-up on this at http://www.quirksmode.org/css/box.html.

POSITIONING DOM NODES 163

Figure 7.8: CSS positioning metrics

a Dojo box object, and it is used with most of the positioning functions.

For example:

var box= dojo.marginBox(myNode);

box is a Dojo box object with the properties l, t, w, and h, which give the

left, top, width, and height of the margin box of myNode.

The semantics of a box object property (whether the property is a posi-

tion or an extent) depend upon the context in which the box object is

used. For example, the function dojo.marginBox returns (top position,

left position, width, height), whereas dojo._getMarginExtents returns (top

extent, left extent, top+bottom extent, left+right extent) of the margins.

Dojo provides two public functions, dojo.marginBox(node, box) and dojo.

borderBox(node, box), that can be used to get or set the position and/or

size of the DOM node given by node. In both cases, box (optional) is a

Dojo box object, without the x and y scroll offsets. If box is missing, then

the functions get the current value of the appropriate box (the margin

box or border box, depending upon which function you call). You can

move and/or size a box by providing a box object.

POSITIONING DOM NODES 164

For example:

Download dom/core-dom-utils.js

Line 1 //node is a DOM node
-

- //move node to 20 pixels right and 30 pixels down from the reference box
- //the box size is not changed.
5 dojo.marginBox(node, {l:20, t:30});
-

- //size the box to 40 pixels wide by 50 pixels high
- //the box top-left corner is not moved
- dojo.marginBox(node, {h:40, w:50});

10

- //do both of the operations above at once
- dojo.marginBox(node, {l:20, t:30, h:40, w:50});

Now that’s easy! Dojo also includes quite a few bed lump functions that

get/set various other box metrics:

• _getMarginExtents(node, computedStyle): Gets the height/width of

the node’s margins.

• _getPadExtents(node, computedStyle): Gets the height/width of the

node’s padding.

• _getBorderExtents(node, computedStyle): Gets the height/width of the

node’s borders.

• _getPadBorderExtents(node, computedStyle): Gets the height/width of

the sum of the node’s padding and border.

• _getMarginBox(node, computedStyle): Gets the left, top, width, height

of the node’s margin box.

• _getBorderBox(node, computedStyle): Gets the left, top, width, height

of the node’s border box.

• _getContentBox(node, computedStyle): Gets the left, top, width,

height of the node’s content box.

• _setBox(node, l, t, w, h, u): Sets the node’s left, top, width, height. Pass

NaN to omit setting any dimension. u (the metric units to use) is

optional and defaults to pixels; specify a string (for example %) to

override default behavior.

• _usesBorderBox(node): Returns dojo.boxModel=="border-box" || node.

tagName=="TABLE" || node.tagName=="BUTTON" (browsers seem to

treat table and button elements as the border box even if not explic-

itly set in the style sheet).

• _setContentSize(node, w, h, computedStyle): Sets the node’s content

box size.

POSITIONING DOM NODES 165

• _setMarginBox(node, l, t, w, h, computedStyle): Sets the node’s margin

box; pass NaN to omit setting any dimension.

• coords(node, includeScroll): Gets the margin box and scroll offset for

a node with absolute positioning. The scroll offset is given relative

to the browser viewport when includeScroll is true and relative to

the document otherwise.

• getComputedStyle(node): Returns the CSS computed style object

for the node.

Finally, boxModel is a string ("content-box" or "border-box") that affects

how box getters/setters compute space. It defaults to "content-box" un-

less Internet Explorer or Opera is in quirks mode but can be changed

by user code.

Many of these functions take a computedStyle object that can be created

by dojo.getComputedStyle. In all cases, this object is optional and will

be automatically initialized if not passed (this design allows a small

optimization when a get/set sequence is called on the same node).

The _get*Extents functions all return an object with the properties l, t,

w, and h. In each case, l/t is the size of the left/top metric, and w/h is

the size of the left+right/top+bottom metric. For example, assume the

node myNode has left/top/right/bottom borders of 5/10/15/20. Then

dojo._getBorderExtents will return the object {l: 5, t: 10, w: 20, h: 30}.

We have more than enough to solve the question-list positioning prob-

lem, so let’s do that next.

Dynamic Positioning Nodes

To finish the question-list challenge layout, we need to calculate the

widest option in each column; this value determines the width of each

column. Then each option’s margin box is set to the calculated width

for the column in which it resides and floated left. The question text

is padded by the total of all the column widths so that the questions

always line up. Here’s the code:

Download dom/questions3.htm

Line 1 //get the questions in a NodeList...
- var questions= dojo.query("div.question");
-

- //find the maximum width of each column...
5 var widths= [];

POSITIONING DOM NODES 166

- questions.forEach(function(qNode){
- dojo.query("p.choice", qNode).forEach(function(choiceNode, i){
- var w= widths[i] || 0;
- widths[i]= Math.max(w, dojo.marginBox(choiceNode).w);

10 });
- });
-

- //set each option to the maximum width just calculated...
- questions.forEach(function(qNode){

15 dojo.query("p.choice", qNode).forEach(function(choiceNode, i){
- dojo.marginBox(choiceNode, {w: widths[i]});
- });
- });
-

20 //calculate the total width of all the columns...
- var paddingLeft= 0;
- dojo.forEach(widths, function(w){paddingLeft+= w;});
-

- //pad the question text by this width...
25 dojo.query(".questionText").forEach(function(node){

- dojo.style(node, "paddingLeft", paddingLeft+10+"px");
- });

Since the algorithm iterates through the questions two times, the code

takes a reference to the NodeList that holds the questions rather than

issuing two identical queries (line 2). Although dojo.query is fast, this

kind of small optimization is usually a good idea.

Next, the maximum width of each column is found by iterating through

each option list for each question (lines 6 and 7); dojo.marginBox is used

to get the width of each option. The calculations are applied by setting

the margin box of each option with dojo.marginBox (line 16), computing

the sum of the option column widths (line 21 and 22), and setting the

padding-left style of the question text with the sum (line 26).

The question list now looks like Figure 7.9, on the next page.

Part of the challenge included ensuring the layout looks good when the

user resizes the viewport or text size. For example, the layout must

recalculate when the user presses Ctrl + .

Since there’s no event that’s fired when this happens, the code must

monitor the text size. We did this by wiring the layout function to a

timer that fires every two seconds.

POSITIONING DOM NODES 167

Figure 7.9: Done

The layout function is augmented with a couple of lines that check to

see whether the text size actually changed since the last time it was

called:

Download dom/questions3.htm

Line 1 function layout3(){
- layout3.titleNode= layout3.titleNode || dojo.query("form > p")[0];
- var box= dojo.marginBox(layout3.titleNode);
- if (layout3.basis && box.w==layout3.basis.w && box.h==layout3.basis.h) {
5 return;
- }
- layout3.basis= {w: box.w, h: box.h};
-

- //the rest of the function omitted...

The code checks the size of the title paragraph and compares it to the

last check. If it changes, then the text size must have changed, and the

layout is recomputed. Both the title node and the last check are stored

as properties of the layout function so that they persist between timer

events.

ANIMATION 168

The layout function is hooked to a timer:

Download dom/questions3.htm

window.setInterval(layout3, 2000);

7.5 Animation

Neither HTML nor the W3C DOM model includes any support for ani-

mation. However, animation can be implemented by setting a timer and

drawing a new object on each timer event. Dojo includes a small but

powerful set of functions to help you do this, which we’ll explore next.

We’ll finish our discussion with an enhancement to the question-list

challenge.

DHTML Animation Basics

Let’s begin by briefly describing the underlying concept. Computer-

based animation, whether in the browser or some other environment,

works just like a movie or cartoon. A series of individual pictures (or

frames) is rapidly displayed. So long as there is not too much time or

difference between each picture, the human brain puts the pictures

together so that they look like a smooth motion.

Here’s a quick demonstration—we will refer to this example as the

“bouncing-div”—that moves a div node across the browser viewport,

bouncing off each side:

Download dom/bouncing-div.htm

Line 1 <html>
- <head>
- <title>
- Mastering Dojo - DOM Utilities - Bouncing DIV
5 </title>
-

- <style type="text/css">
- #ball {
- position: absolute;

10 width: 20px;
- height: 20px;
- background-color: blue;
- }
- </style>

15

- <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js"
- djConfig="isDebug: true">

20 </script>
-

ANIMATION 169

- <script type="text/javascript">
- var currentPosition= 0;
- var leftToRight= true;

25

- function moveNode(){
- //get the ball node
- var ball= dojo.byId("ball");
-

30 //move it
- (leftToRight ? currentPosition++ : currentPosition--);
- dojo.marginBox(ball, {l: currentPosition});
-

- ///twiddle leftToRight if about to go off the end
35 var containerBox= dojo.marginBox("frame");

- var ballBox= dojo.marginBox(ball);
- if (leftToRight) {
- if (currentPosition+ballBox.w-1 > containerBox.l+containerBox.w) {
- leftToRight= false;

40 }
- } else {
- if (currentPosition < containerBox.l) {
- leftToRight= true;
- }

45 }
- }
-

- dojo.addOnLoad(function(){
- window.setInterval(moveNode, 20);

50 });
- </script>
- </head>
- <body>
- <div id="frame">

55 <p id="ball"></p>
- </div>
- </body>
- </html>

The timer is set to call moveNode every 20ms (line 50). moveNode (line

27) moves the div.ball node 1 pixel to the right until it hits the end of

the containing box, then reverses course, and so on, forever. If you try

the demo on your own computer, you’ll see the limits of DOM-based

animation—particularly as you crank the timer interval down toward

zero.11 Although there is a little jerkiness, it’s good enough for most

uses. And, it’s the only way to do animation without a plug-in.

11. You can try setting the timer to 1ms and see that the browser will fail to execute a

timeout this fast. Currently, the shortest interval the browser will fire is between 10ms

and 20ms.

ANIMATION 170

Animating with dojo.animateProperty

The function dojo.animateProperty returns a dojo._Animation object that

can be used to animate a set of style properties on a DOM node. It takes

a hash that includes a node, a set of styles to animate on the node, and

optionally, several other properties. The animation is then executed by

calling the play method on the returned object. So, the bouncing-div

could be moved from one side to the other with dojo.animateProperty like

this:

Download dom/animation-examples.htm

Line 1 var ball= dojo.marginBox("ball");
- var containerBox= dojo.marginBox("frame");
- dojo.animateProperty({
- node: dojo.byId("ball"),
5 properties: {
- left: {
- start: containerBox.l,
- end: containerBox.l+containerBox.w-ball.w
- }

10 }
- }).play();

Not all styles can be animated. For example, animating the style overflow

(which takes on the values visible, hidden, and scroll) is meaningless.

Animating works only for styles that can take on continuous numeric

values (like left in the previous example). And, as we’ll see in a minute,

this includes colors—even when specified as words. For example, it is

legal to animate between red and blue.

As shown in the example, the properties to animate are themselves

given in a hash. The manner in which each property is animated is

controlled by the values of start, end, and units, which give the starting

and ending values of the style. The units suffix “px” is assumed.

If the desired animation needs something else (for example “%”), then

set units explicitly; otherwise, omit it as we did. start or end can be

omitted in which case the value of the style immediately before the

animation is played is used for missing specification. So if you spec-

ify backgroundColor: {start: yellow} and the current background color is

white when the animation is played, then the animation will play back-

groundColor: {start: "yellow", end: "white"}. And, yes, this is the so-called

yellow-fade animation.

ANIMATION 171

Here’s the complete function call:

Download dom/animation-examples.htm

Line 1 dojo.animateProperty({
- node: someNode,
- properties: {
- backgroundColor: {
5 start: "yellow"
- }
- }
- }).play();

The previous examples invoked play immediately without saving the

returned object to a local variable. However, taking a reference to the

returned object and manipulating it directly is perfectly legal. Argu-

ments can be set/reset, and methods can be called. For example, here

are two calls that look quite different but accomplish the same thing:

Download dom/animation-examples.htm

Line 1 dojo.animateProperty({
- node: someNode,
- properties: {
- backgroundColor: {
5 start: "yellow"
- }
- }
- }).play();
-

10 //can also be stated like...
-

- var myAnimation1= dojo.animateProperty({});
- myAnimation1.node= someNode;
- myAnimation1.properties= {backgroundColor: {start: "yellow"}};

15 myAnimation1.play();

Specifically, you can call the same animation object several times:

Download dom/animation-examples.htm

Line 1 //take a reference to the returned object...
- var myAnimation= dojo.animateProperty({
- node: someNode,
- properties: {
5 backgroundColor: {
- start: "red", end: "blue"
- }
- }
- });

10

- //play it...
- myAnimation.play();

ANIMATION 172

- //play it again, sam...after waiting 3s
- myAnimation.play(3000);

The example illustrates an important point: the method play returns

immediately; the animation plays in the background consequent to

timer interrupts. So, writing myAnimation.play(); myAnimation.play() would

cause the animation to immediately restart. You would not see two dis-

tinct animations. The example used a timer to play the animation the

second time well after the first animation completed.12

As implied by the function signature, you can animate several proper-

ties at once. Here’s the div moving across the screen and changing its

color:

Download dom/animation-examples.htm

Line 1 var ball= dojo.marginBox("ball");
- var containerBox= dojo.marginBox("frame");
- var animation= dojo.animateProperty({
- node: dojo.byId("ball"),
5 properties: {
- left: {
- start: containerBox.l,
- end: containerBox.l+containerBox.w-ball.w
- },

10 backgroundColor: {end: "red"}
- }
- }).play();

_Animation objects include several properties that can be set either by

the argument to dojo.animateProperty or on the object itself:

• duration: The length of the animation in milliseconds; defaults to

1000

• repeat: The number of times to repeat the animation; defaults to 0

• rate: Frequency of timer in milliseconds for animation; defaults to

10

• delay: The number of milliseconds to delay the animation after

play is called; defaults to 0

_Animation objects are controlled through the following methods:

• play: Plays the animation

• pause: Pauses the animation; animation can be restarted from the

paused position by calling play

12. There is a better way to do this: dojo.fx.chain(myAnimation, myAnimation). We’ll talk about

dojo.fx at the end of this section.

ANIMATION 173

• stop: Stops the animation; calling play will restart from the begin-

ning

• gotoPercent: Goes to a certain point in the animation

• status: One of paused, playing, stopped

As their descriptions indicate, the operation of these methods is quite

straightforward. Finally, there are several events defined on _Animation

objects:

• onBegin: Fired after play returns during first timer event

• onAnimate: Fired before each timer event

• onEnd: Fired after the last timer event

• onPlay: Fired every time play is invoked

• onPause: Fired if/when the animation is paused

• onStop: Fired if/when the animation is stopped

Client code must connect to these events by dojo.connect (or equiva-

lent). Here’s an example that connects the bounding-div animation to

the onBegin, onAnimate, onEnd, and onPlay events:

Download dom/animation-examples.htm

Line 1 var ball= dojo.marginBox("ball");
- var containerBox= dojo.marginBox("frame");
- var animation= dojo.animateProperty({
- node: dojo.byId("ball"),
5 properties: {
- left: {
- start: containerBox.l,
- end: containerBox.l+containerBox.w-ball.w
- }

10 }
- });
-

- var feedbackNode= dojo.byId("target2");
- feedbackNode.innerHTML= "";

15 function append(text) {
- feedbackNode.innerHTML= feedbackNode.innerHTML + " " + text;
- }
-

- dojo.connect(animation, "onBegin", dojo.partial(append, "onBegin"));
20 dojo.connect(animation, "onAnimate", dojo.partial(append, "."));

- dojo.connect(animation, "onEnd", dojo.partial(append, "onEnd"));
- dojo.connect(animation, "onPlay", dojo.partial(append, "onPlay"));
-

- animation.play();

Each handler prints out its feedback by adding text to the target para-

graph node.

ANIMATION 174

Animating with dojo.anim

Although dojo.animateProperty is very powerful, it’s also a bit cumber-

some to use for many common animation tasks. The function dojo.anim

solves this problem by wrapping dojo.animateProperty with a more con-

venient, if somewhat less powerful, interface. The easiest way to under-

stand dojo.anim is to simply look at its implementation:

Download dom/animation-examples.htm

Line 1 dojo.anim = function(node, properties, duration, easing, onEnd, delay){
- return dojo.animateProperty({
- node: node,
- duration: duration || dojo._Animation.prototype.duration,
5 properties: properties,
- easing: easing,
- onEnd: onEnd
- }).play(delay||0);
- };

For example, this makes the yellow-fade task a one-liner:

Download dom/animation-examples.htm

Line 1 dojo.anim(someNode, {backgroundColor: {start: "yellow"}});

In practice, you should use dojo.anim anywhere you don’t need to con-

trol any of the dojo.animateProperty features that dojo.anim doesn’t rec-

ognize (for example, any of the events other than onEnd) and want the

animation to unconditionally play (perhaps after a delay).

Let’s get back to the question-list challenge and bring it to life with

dojo.animateProperties.

Animating the Question-List Challenge

Remember how the second, fourth, sixth, and eighth questions are rel-

evant only if the preceding question is answered “yes” (see Figure 7.9,

on page 167)? Now, we’ll change the behavior of the form to animate an

even question into view when its owning question is marked “yes” and

out of view when marked “no.”

We’ll call the odd questions “pQuestions” for primary questions and the

event questions “sQuestions” for secondary questions. Here’s the plan:

1. Connect a click event to one of each of the pQuestions’ option

nodes; this gets fired if any of the option nodes change value. The

handler will animate the sQuestion into view if the pQuestion was

marked “yes” and out of view if marked “no.”

ANIMATION 175

2. Change the color banding to color a pQuestion/sQuestion pair the

same color. This signals that an sQuestion is part of a pQuestion

when it is shown and makes the interface look good when it’s not.

3. Calculate the height of each sQuestion; record the value as the

custom attribute qHeight of the sQuestion node.

4. Initialize the height of an sQuestion to zero if the owning pQues-

tion is not answered “yes.”

The changes to the restructure function are quite minor:

Download dom/questions4.htm

Line 1 function restructure(){
-

- dojo.query("form > p").addClass("formTitle");
-

5 var questionsDiv= dojo.query("div.questions")[0];
- dojo.query("p", questionsDiv).forEach(function(node, questionNumber){
- var pQuestion= !(questionNumber % 2);
-

- var band= (questionNumber % 4)<2 ? "lightBand" : "darkBand";
10

- var className= "question " + band;
- var question= createElement("div", className);
- dojo.place(question, questionsDiv, "last");
- dojo.query("span", node).forEach(function(choiceNode){

15 var choice= createElement("p", "choice");
- dojo.place(choiceNode, choice, "last");
- dojo.place(choice, question, "last");
-

- if (pQuestion && choiceNode.firstChild.value=="yes") {
20 dojo.connect(question, "click",

- dojo.partial(checkSQuestion, question, choiceNode.firstChild));
- }
-

- });
25 dojo.addClass(node, "questionText");

- dojo.place(node, question, "last");
- });
- }

Deciding how to color a question (line 8) involves trivial arithmetic: the

color changes every two questions instead of every other question.

We used dojo.partial to construct the handler (line 20). This way, when

the handler is called, the required nodes are passed into the handler

already initialized and ready to go—no need to query or navigate from

ANIMATION 176

the event object. Here is the event handler that’s fired when the pQues-

tion option is changed:

Download dom/questions4.htm

Line 1 function checkSQuestion(pQuestion, choiceNode){
-

- var sQuestion= pQuestion.nextSibling;
-

5 //assume we're showing the sQuestion...
- var start= 0, end= dojo.attr(sQuestion, "qHeight");
-

- //if hiding, then reverse start and end...
- if (!choiceNode.checked) {

10 start= end; end= 0;
- }
-

- dojo.anim(sQuestion, {
- backgroundColor: {start: "yellow"},

15 height: {start: start, end: end}
- }).play();
- }

The routine animates the height to end at the value that the layout

routine (see the next code snippet) saves in the custom attribute qHeight

if the pQuestion is marked “yes” or to end at zero otherwise. Leveraging

dojo.anim makes this routine trivial! When a pQuestion is changed to

“yes,” the question list after that pQuestion slides down, revealing the

sQuestion. The opposite occurs when a pQuestion is marked “no.”

Finally, here is the changed main loop in the layout routine:

Download dom/questions4.htm

Line 1 //find the maximum width of each column and
- //calculate height and show/hide the sQuestions...
- var widths= [];
- questions.forEach(function(qNode, questionNumber){
5 dojo.query("p.choice", qNode).forEach(function(choiceNode, i){
- var w= widths[i] || 0;
- widths[i]= Math.max(w, dojo.marginBox(choiceNode).w);
- });
-

10 //calculate the height of the sQuestions;
- //hide if the primary is NOT "yes"
- if (questionNumber % 2) {
- //let the browser layout engine calculate the height...
- dojo.style(qNode, "height", "");

15 var height= dojo.style(qNode, "height");
-

- //stuff the height into a custom attribute for use by the event handler...

ANIMATION 177

- dojo.attr(qNode, "qHeight", height);
-

20 //hide the question if the pQuestion isn't yes...
- if (!dojo.query("input[value='yes']", qNode.previousSibling)[0].checked) {
- dojo.style(qNode, "height", 0);
- }
- }

25 });

Remember, this routine may get called anytime the user does some-

thing that changes the layout (for example, resizes the viewport or

changes the text size). So before we get the height of the sQuestion

(line 15), the height style is set to empty (line 4), which lets the browser

calculate the height as if it were shown. After we record this value in the

qHeight attribute, the sQuestion height is set back to zero if the owning

pQuestion is not marked “yes.”

The technique of sliding in a box like we did here is so common in

modern browser user interface design that Dojo includes the functions

dojo.wipeIn and dojo.wipeOut that wrap this functionality. Each function

takes a hash with semantics just like dojo.animateProperty and returns

a dojo._Animate object that will wipe in/out the node given in the args

hash. Here is the event handler implemented with dojo.wipeIn/Out:

Download dom/questions4.htm

Line 1 function checkSQuestion(pQuestion, choiceNode){
- var f= dojo.fx[choiceNode.checked ? "wipeIn" : "wipeOut"];
- f({node:pQuestion.nextSibling}).play();
- }

dojo.wipeIn/Out are part of the module dojo.fx, which is not included

in Dojo base, so you must dojo.require("dojo.fx") for this to work. dojo.fx

includes a few other useful functions:

• slideTo: Slides a node from its current position to a position given

by the top, left styles of properties

• chain: Chains an array of separate _Animate objects into a single

new _Animate object that runs each of the provided objects one

after the other

• combine: Chains an array of separate _Animate objects into a

single new _Animate object that runs all the provided objects

concurrently

Chapter 8

Remote Scripting with XHR,
script, and iframe

Remote scripting is the process of communicating with a server from a

client-side script without requiring a page reload. Several techniques

have evolved that implement remote scripting using only the browser’s

native capabilities.1 These are some of the most important advances

in browser-based programming since they eliminate the page-at-a-time

paradigm and allow the browser to behave like any other modern client

in a client-server system. Remote scripting is also the basis for a wide

range of UI techniques. Controls that change behavior based on partial

user input (for example, displaying a list of words after a few characters

are typed), forms that validate on the server without reloading when an

error is detected, and single-page web applications are all examples of

UIs that require remote scripting.

8.1 Native Remote Scripting

There are three well-known methods to implement native remote

scripting:

• Using an XMLHttpRequest (XHR) object

• Dynamically loading an iframe element

• Dynamically loading a script element

1. Although this is one of the cornerstones of Ajax, these techniques were known well

before 2005 when the term Ajax was coined; Ajax implies much more than just remote

scripting.

NATIVE REMOTE SCRIPTING 179

Each method has advantages and disadvantages. Although XHR began

life as a Microsoft-only technology, it is now available in all modern

browsers. It allows for full control of the HTTP transaction (URL, head-

ers, content), can use any HTTP method (GET, POST, PUT, DELETE, HEAD),

and can be executed both synchronously and asynchronously. On the

other hand, because of the same-origin policy, an XHR object cannot

communicate with a server that resides at a different origin than the

document that contains the script making the service request.2 Finally,

the XHR API cannot send files to the server like a normal form POST.

Dynamic iframes are still subject to the same-origin policy, but they

solve the problem of POSTing a file without reloading the page. On the

other hand, the script technique is free from the same-origin policy and

can address any URL.

iframes expect an HTML response message, while dynamic script ele-

ments expect a script for the response message. In either case, receiving

content types other than those expected (for example, XML or JSON) is

problematic. In such cases, machinery is required to wrap the response

message appropriately at the server and unwrap it at the client.

Both iframe and script techniques offer very limited HTTP method sup-

port: POST and GET are possible with iframe; script supports only GET.

In the final analysis, you need all three techniques:

• When you need to send a file to the server asynchronously, use

the iframe technique.

• When you need to get around the same-origin restriction, use the

script technique (typically JSONP).

• Use XHR for everything else.

Unfortunately, each of the three methods are implemented quite dif-

ferently. And then there’s the usual browser mess of incompatibilities

and memory leaks to deal with. It shouldn’t be this hard to make a

quick server request and receive a response. But, unless and until the

browser venders agree on a unified API, this is what we’re left with.

Dojo rescues us by providing a simple, consistent, and powerful set of

functions that execute an HTTP transaction through any of the three

methods on all supported browsers. These functions are the main sub-

ject of this chapter. We’ll finish up by showing one application of remote

2. Origin is given by protocol, domain name, and port number. The same-origin policy

is a security feature.

USING THE DOJO XHR FRAMEWORK 180

scripting (web services) and solving a problem that comes with remote

scripting (making the browser’s Back button work).

8.2 Using the Dojo XHR Framework

Much has been written about native XHR objects elsewhere, so rehash-

ing this information is beyond the scope of this book.3 We do want to

mention that not all browsers create XHR objects in the same way. Nor

do the objects they create all work the same way. And finally, there are

sequences of asynchronous and synchronous calls that can be made

on some browsers that will lock the browser. Of course, Dojo fixes all

of these problems behind the scenes, so you don’t need to give them

another thought.

But even if none of these problems existed, native XHRs would still lack

several important features required for the construction of modern web

applications:

• Support functions to encode URL parameters and HTML form ele-

ments

• Functions for processing common types of response text (for ex-

ample, JSON)

• The ability to time out a request

• The ability to cancel a request

• Robust and easy-to-use error recovery

Dojo’s remote scripting functions include all of these features. The

core functions are dojo.xhrGet, dojo.xhrPost, dojo.rawXhrPost, dojo.xhrPut,

dojo.rawXhrPut, and dojo.xhrDelete, which correspond to the HTTP meth-

ods GET, POST (two variants), PUT (two variants), and DELETE.4 We’ll refer

to these functions collectively as the Dojo dojo.xhr* functions.

Calling dojo.xhr*

Each of the dojo.xhr* functions takes a single argument hash named

args that fully describes the request. The properties defined by args are

the same for all six functions, and default values are defined for many

of these properties. The dojo.xhr* functions are quite powerful, and args

3. Chapter 20 in [Fla06] provides a nice description about native XHR programming.
4. As of Dojo version 1.1, there’s also the function dojo.xhr that takes the XHR verb (GET,

POST, and so on) as the first argument.

USING THE DOJO XHR FRAMEWORK 181

controls this power. We’ll start with a simple proof-of-concept exam-

ple, and then we’ll build and use a web page to demonstrate each args

property.

We’ve made every attempt to avoid discussing server-side issues, but

remote scripting involves making a request to and receiving a response

from a server. The code download includes a very simple Ruby WEBrick

server that implements all of the server-side functionality included in

this chapter.

Let’s start with a simple dojo.xhrGet function call. Here’s how to HTTP

GET from the URL demo/id1 (a relative URL) and display the contents of

the response in an alert box:

Download remote-scripting/remote-scripting.js

Line 1 function example1(){
- dojo.xhrGet({
- url: "demo/id1",
- load: function(response){alert(response);},
5 error: function(error){alert(error.message);}
- });
- }

In this example, the server returns a response that includes the text

“hello, world” when the resource demo/id1 is requested.

In the example, args specified three items:

• url (a string): Typically, the URL does not include the user or pass-

word components (if necessary at all) or any component after the

path (the parameter or query components). We’ll see how these are

specified in a moment. Because of the same-origin policy, the URL

is almost always a relative URL.

• load: The function to call on successful completion of the request.

• error: The function to call upon failure of the request.

And we relied upon default values for these items:

• handleAs (a string): How to preprocess the response; defaults to

handle as "text", which implies no preprocessing is executed on

the response

• sync (a boolean): Sends the XHR synchronously or not; defaults to

send asynchronously

• preventCache (a boolean): Prevents cached resources from being

returned; defaults to false

USING THE DOJO XHR FRAMEWORK 182

We’ll discuss each of these items in more detail later in this section.

The example sends the response to an alert box if the XHR was suc-

cessful; if the XHR fails, then the message given by the Error instance

created as a result of the failure is sent to the alert box.

The result of a dojo.xhr* call is passed as the first argument to the load

(upon success) or error (upon failure) functions. If the call succeeded,

then the result is the content that was retrieved by the XHR call after

it’s passed through a content handler. The default content handler just

passes the content as received from the server; we’ll discuss other con-

tent handlers shortly. If the call failed, then the result is a JavaScript

Error object that describes the error.

It is also possible to specify one function to handle both success and

failure conditions by providing a function for the args property handle.

For example:

Download remote-scripting/remote-scripting.js

Line 1 function example2(){
- dojo.xhrGet({
- url: "demo/id1",
- handle: function(response){
5 if (response instanceof Error) {
- //failed...
- alert("failed: " + response.message);
- }
- else {

10 //success...
- alert('succeeded: "' + response + '"');
- }
- }
- });

15 }

args, ioArgs, and Handler Functions

When the dojo.xhr* functions orchestrate the XHR call, they synthesize

the full set of arguments required to make the call and place the result

in a hash named ioArgs. The synthesized arguments come from three

places:

• Directly from args (for example, the URL in the previous example)

• Indirectly from args (for example, a parameter string may be cal-

culated from a HTML form node given in args)

• Default values (for example, sync in the previous example)

USING THE DOJO XHR FRAMEWORK 183

ioArgs is always passed as the second argument to the load, error, and

handle functions (from now on, we’ll refer to the load/error/handle func-

tions collectively as the handler functions). Finally, the handler func-

tions are called in the context of args—that is, when these functions are

executed, this references args.

Before we go further, let’s set up an example framework that we’ll use to

demonstrate Dojo’s remote scripting functions. Here’s a web page that

can select and trigger an example. It also contains a pre element to hold

the response and a div element to hold object dumps.

Download remote-scripting/remote-scripting.htm

Line 1 <html>
- <head>
- <title>
- Mastering Dojo - Remote Scripting
5 </title>
-

- <style type="text/css">
- @import "/dojoroot/dojo/resources/dojo.css";
- @import "remote-scripting.css";

10 </style>
-

- <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js"

15 djConfig="isDebug: true"></script>
-

- <!--
- this script contains code to call an example
- function and dump the results

20 -->
- <script
- type="text/javascript"
- src="remote-scripting-lib.js"></script>
-

25 <!--
- this script contains all the example functions
- -->
- <script
- type="text/javascript"

30 src="remote-scripting.js"></script>
- </head>
- <body>
- <div>
- <h1>Remote Scripting Exercises</h1>

35 <form><p>
- Example Identifier:
- <input id="exId" type="text" size="2" maxLength="2" name="exId">

USING THE DOJO XHR FRAMEWORK 184

- <input id="exTrigger" type="submit" name="exTrigger" value="Go!">
- </p></form>

40 </div>
- <div>
- <h1>Result:</h1>
- <pre id="result"></pre>
- </div>

45 <div>
- <h1>Object Dumps:</h1>
- <div id="objects"></div>
- </div>
- </body>

50 </html>

Next, the input text field (input#exId) and button (input#exTrigger) are

wired to fire an example function:
Download remote-scripting/remote-scripting-lib.js

Line 1 function doExample(e){
- //prevent submitting the form...
- dojo.stopEvent(e);
-

5 var exampleId= Number(dojo.byId("exId").value);
- if (window["example"+exampleId]) {
- //clear out the last results...
- var resultNode= dojo.byId("result");
- resultNode.innerHTML= ""

10 dojo.toggleClass(resultNode, "error", false);
- dojo.byId("objects").innerHTML= "";
-

- //run the example...
- window["example"+exampleId]();

15 } else {
- alert("Invalid example identifier provided. Try again.");
- }
- }
-

20 dojo.addOnLoad(function(){
- dojo.connect(dojo.byId("exTrigger"), "click", doExample);
- })

When the button is pressed, the value is retrieved from the text field.

If it is a valid example function, then the function is executed; other-

wise, a warning is given. For example, entering “1” and clicking the

button results in executing the function example1. The event is stopped

because we don’t want to submit the form. Now we can go about writing

several example functions to demonstrate the dojo.xhr* functions.

To begin, let’s improve the “hello, world” example by writing a handler

function that dynamically fills the pre element with the response and

dumps the contents of this and ioArgs.

USING THE DOJO XHR FRAMEWORK 185

Here’s that code:

Download remote-scripting/remote-scripting.js

Line 1 function handler1(response, ioArgs){
- var error= response instanceof Error;
- var responseText= error ? response.message : response;
- var resultNode= dojo.byId("result");
5 resultNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(resultNode, "error", error);
- dojo.byId("objects").innerHTML=
- dumpObject({"this": this, ioArgs: ioArgs});
- }

10

- function example3(){
- dojo.xhrGet({
- url: "demo/id1",
- handle: handler1

15 });
- }

The handler function is trivial. If the call was successful, it pushes the

response into the pre element; otherwise, it pushes the text of the Error

object into the element. Any left-angle brackets in the response are

escaped so that we can see the contents of the response rather than

the rendering in case the response is HTML. Finally, handler1 uses the

function dumpObject to format an object into a set of nested tables.5

Executing exercise3 results in the output given in Figure 8.1, on the

next page in Firefox.6

There you can see that both this and ioArgs.args reference the args hash

that was passed to dojo.xhrGet. The second argument passed to handler1

is the ioArgs hash that was constructed by dojo.xhrGet. Within ioArgs, you

can see the following:

• ioArgs.url (a string) gives the URL for the call; in this case, it’s equiv-

alent to args.url, but we’ll see that the URL can also be read from a

form attribute.

• ioArgs.query (a string) gives any URL query parameters.

• ioArgs.handleAs (a string) says how to preprocess the response be-

fore passing to the handler functions.

5. dumpObject doesn’t do anything that a Firebug console dump couldn’t accomplish

other than make the screen shots for this dead-tree book easier to read. The full text of

dumpObject is included in the code download.
6. Executing this example in different browsers shows how native XHR objects are struc-

tured quite differently across different vendors.

USING THE DOJO XHR FRAMEWORK 186

Figure 8.1: Objects returned by dojo.xhr

• ioArgs.xhr (a native XHR object) is the actual XHR object used to

execute the XHR call.

If you need to access objects in the handler functions that are deter-

mined when the XHR call is made, then two techniques are available.

(Of course, you can also use a global variable, but that’s a bit sloppy.)

First, the handler function can be closed on the objects like this:

Download remote-scripting/remote-scripting.js

Line 1 function example4(){
- //get some variables that we'll use in the handler function...
- var targetNode= dojo.byId("result");
-

5 //make a handler closed on the variables we made...
- function handler2(response){
- var error= response instanceof Error;
- var responseText= error ? response.message : response;

USING THE DOJO XHR FRAMEWORK 187

- targetNode.innerHTML= responseText.replace(/</g, "<");
10 dojo.toggleClass(targetNode, "error", error);

-

- //note: NOT dumping anything...
- dojo.byId("objects").innerHTML= "";
- }

15

- //make the XHR call...
- dojo.xhrGet({
- url: "demo/id1",
- handle: handler2

20 });
- }

When handler2 is called, targetNode on lines 9 and 10 will still hold the

value calculated at line 3.

Second, you can also pass the objects directly in the args hash. A little

caution is required to avoid using a property name that’s already in

use by the Dojo functions; we’ll use the property _user. Here’s the same

example with targetNode passed in args:

Download remote-scripting/remote-scripting.js

Line 1 function example5(){
- function handler3(response){
- var error= response instanceof Error;
- var responseText= error ? response.message : response;
5 this._user.targetNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(this._user.targetNode, "error", error);
-

- //note: ONLY dumping this...
- dojo.byId("objects").innerHTML=

10 dumpObject({"this": this});
- }
-

- //make the XHR call...
- dojo.xhrGet({

15 url: "demo/id1",
- handle: handler3,
- _user: {targetNode: dojo.byId("result")}
- });
- }

Since this references args when handler3 is called and also since args._user.

targetNode was initialized prior to the XHR call, it will be there waiting

for us in the handler. Passing objects around in this manner is slightly

more efficient than creating a closure, but in most cases the speed

differences are inconsequential, and you should look to other factors

such as clarity of expression to decide which technique to employ.

USING THE DOJO XHR FRAMEWORK 188

Alex Says. . .

JSON Vulnerabilities

Given the obvious security issues surrounding cross-domain
scripts and data, it might then surprise you to learn that the
dynamic nature of JavaScript also places regular JSON data
at risk via an attack inartfully named cross-site request forgery
(aka CSRF) and JavaScript hijacking. Briefly, CSRF uses your ses-
sion cookies against you. Say you’re logged into FooBlog and it
uses cookies to authenticate users. Part of the FooBlog applica-
tion hands back a list of private comments that users have left
for the moderators, not to be seen by other users; furthermore,
let’s assume that FooBlog hands this data back as a JSON doc-
ument. Seems pretty straightforward.

Now, during your daily FooBlog moderation work, you see a
message that is interesting, but you haven’t heard of the com-
menter, so you click the link to go to the website. Upon visiting
the site (Evil.com), the page at Evil.com tries to make a cross-
site script request to include the moderation feed JSON into the
document. Because JSON is just JavaScript and will be eval-
uated as such and because your browser is already authen-
ticated on FooBlog, this request will succeed. But remember
that this is all happening inside your browser, not on Evil.com’s
servers. How could your data be at risk here? Well, it turns out
that the dynamic nature of JavaScript allows you to reprogram
the constructor function for even the most fundamental classes
like Object. Since the included JSON file will execute as a script
and the anonymous objects inside it will be instantiated via the
Object constructor, this gives a script on the Evil.com page an in.
Using this language loophole, it’s possible to use CSRF to attack
sensitive JSON data living at stable or predictable URLs.

USING THE DOJO XHR FRAMEWORK 189

Content Handlers

When the response is successfully received, it is passed through the

content handler specified by the handleAs property (a string) of args. Six

content handlers are available:

• "text" (the default handler): No processing takes place; the response

text is returned without any transformation.

• "json": The response is processed as JSON by the function dojo.

fromJson, and the resulting object is returned. dojo.fromJson takes

a single argument string, evaluates it, and returns the result.

• "json-comment-filtered": The text within a /*... */ comment is pro-

cessed as JSON by dojo.fromJson, and the resulting object is then

returned. See the Alex Says. . . , on page 195 to learn about com-

ment-filtered JSON.

• "json-comment-optional": If the response contains a /*... */ comment,

then the text within the comment is processed as JSON by dojo.

fromJson, and the resulting object is returned; otherwise, the entire

response is processed as JSON by dojo.fromJson.

• "javascript": The response is processed as JavaScript by dojo.eval;

and the result is returned; dojo.eval evaluates the response in the

global scope.

• "xml": The result of the XHR method responseXML is returned.

In the examples so far, we did not specify a value for args.handleAs;

therefore, the response was handled as "text", and no transformation

took place before the response was passed to the handler functions. To

exercise each of the content handlers, assume the server returns the

following responses when sent these URLs (note that the responses are

strings of characters, not JavaScript objects):

demo/id2

{"firstName": "George", "lastName": "Bush", "address": {"street": "1600 Penn-

sylvania Avenue NW", "city": "Washington", "state": "DC", "zip": "20500"}}

demo/id3

/*{"firstName": "George", "lastName": "Bush", "address": {"street": "1600 Penn-

sylvania Avenue NW", "city": "Washington", "state": "DC", "zip": "20500"}}*/

demo/id4

Number(dojo.byId("exId").value) * 10

USING THE DOJO XHR FRAMEWORK 190

demo/id5

<contact><firstName>George</firstName><lastName>Bush</lastName>

<address street="1600 Pennsylvania Avenue NW" city="Washington"

state="DC" zip="20500" /></contact>

Now we can demonstrate retrieving JSON by setting args.handleAs to

"json":

Download remote-scripting/remote-scripting.js

Line 1 function handler4(response, ioArgs){
- var error= response instanceof Error;
- var responseText= error ? response.message : ioArgs.xhr.responseText;
- var resultNode= dojo.byId("result");
5 resultNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(resultNode, "error", error);
- dojo.byId("objects").innerHTML=
- dumpObject({response: response});
- }

10

- function example6(){
- dojo.xhrGet({
- url: "demo/id2",
- handleAs: "json",

15 handle: handler4
- });
- }

The example constructs a new handler (handler4) that displays both the

raw response and the final result after applying the content handler to

the raw response. Usually, you won’t be interested in the raw response,

but it is available at ioArgs.xhr.responseText (line 3). Notice that the pro-

cessed response is not text but, rather, is a full-fledged JavaScript

object. In Figure 8.2, on the next page, you can see the result of running

example 6.

If you run the example with the debug console open, you will see a

warning appear something like ”Consider using mimetype:text/json-

comment-filtered to avoid potential security issues with JSON end-

points (use djConfig.usePlainJson=true to turn off this message).”

There are two solutions to eliminating this message. First, you can

follow the instructions and set djConfig.usePlainJson to true when load-

ing dojo.js (see Section 4.3, Loading Dojo, on page 78). Otherwise, you

can change the server to send comment-filtered JSON and specify "json-

comment-filtered" for args.handleAs.

USING THE DOJO XHR FRAMEWORK 191

Figure 8.2: Retrieving JSON

Here’s what that looks like:

Download remote-scripting/remote-scripting.js

Line 1 function example7(){
- dojo.xhrGet({
- url: "demo/id3",
- handleAs: "json-comment-filtered",
5 handle: handler4
- });
- }

The resulting output is given in Figure 8.3, on the next page.

Notice that the "json" handler prohibits comment-filtered JSON, while

"json-comment-filtered" requires it. The handler "json-comment-optional"

solves this problem by treating the response as "json-comment-filtered"

and falling back to "json" if this fails. The code download includes exam-

ples 8 and 9 that demonstrate the "json-comment-optional" handler.

Specifying "javascript" for args.handleAs causes the response text to be

evaluated in the global scope by dojo.eval. Our test server has concocted

a little calculation based on the value of the input#exId element when the

URL demo/id4 is requested.

USING THE DOJO XHR FRAMEWORK 192

Figure 8.3: Retrieving comma-filtered JSON

Here’s the example:

Download remote-scripting/remote-scripting.js

Line 1 function example10(){
- dojo.xhrGet({
- url: "demo/id4",
- handleAs: "javascript",
5 handle: handler4
- });
- //returns "Number(dojo.byId("exId").value) * 10"
- }

The resulting output is given in Figure 8.4, on the following page.

Finally, specifying "xml" for args.handleAs causes the XHR responseXML

property to be returned as the result. Some help is given in certain

cases where Internet Explorer fails to properly parse a good document.

USING THE DOJO XHR FRAMEWORK 193

Figure 8.4: Retrieving JavaScript

Here’s the example to get an XML document:

Download remote-scripting/remote-scripting.js

Line 1 function example11(){
- function handler5(response, ioArgs){
- var error= response instanceof Error;
- var responseText= error ? response.message : ioArgs.xhr.responseText;
5 var resultNode= dojo.byId("result");
- resultNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(resultNode, "error", error);
- dojo.byId("objects").innerHTML=
- dumpObject({response: response});

10 }
-

- dojo.xhrGet({
- url: "demo/id5",
- handleAs: "xml",

15 handle: handler5
- });
- }

The resulting output is given in Figure 8.5, on the next page.

Controlling the HTTP Transaction

At its heart, an XHR simply executes an HTTP transaction. So far, we’ve

seen only how to specify the URL. Let’s look at other aspects of the HTTP

transaction that can be configured.

USING THE DOJO XHR FRAMEWORK 194

Figure 8.5: Retrieving XML

First, the XHR open method can accept optional user and password

values for servers that require authentication. These values can be

set by the args properties user and password, respectively. Setting args.

preventCache to true causes the parameter "dojo.preventCache=current-

timestamp" to be appended to the URL. Since the current time will

change with each XHR execution, the URL will change, and any cache

should be defeated.

A hash of headers to be sent with the transaction can be given at

args.headers. The Content-Type header can be specified in either args.

contentType or args.headers["content-type"]. At most, one of these loca-

tions should be used; if completely missing, then Content-Type defaults

to "application/x-www-form-urlencoded". If you make a mistake and spec-

ify the content type in both places, the value of args.contentType wins.

USING THE DOJO XHR FRAMEWORK 195

Alex Says. . .

Securing JSON

First, it should be noted that securing JSON is an issue only for
sensitive data. Serving public data via JSON or JSONP at stable
URLs is often a good idea. For sensitive data, you need to do
something different, though. You want to ensure that your use
of the data on the same domain (usually retreived with XHR)
exhibits some property that thwarts cross-domain requests via
a <script> tag. To do this, you’ll either add JavaScript com-
ments around the contents of your JSON or put a while(1); line
at the beginning of your data. Both techniques allow process-
ing of the text via a regex before parsing the JSON when
requested on the same domain (via XHR) but thwart inclu-
sion via <script> tags. The while(1); solution is considered supe-
rior because it reduces the risk of data attempting to inject
escape sequences, although Dojo today uses json-comment-

filtered (JSON with comments around it) as a default and warns
if JSON data is requested via XHR without this kind of protection.

In any case, the strongest solutions to these problems are on the
server side: sensitive data should not be served at predictable
URLs, and some security token other than cookies should be
used to validate a request. One good solution is to force the
requesting system to include the contents of one of the cook-
ies in the body of the request, which is something a script on the
same domain can easily do but Evil.com’s script can’t. Regard-
less, assertions that JavaScript toolkits need to “do something”
about CSRF and JavaScript hijacking are largely bogus. Dojo
goes as far as it can to help developers do the right thing, but
real solutions to CSRF all require server-side code to be fixed.

USING THE DOJO XHR FRAMEWORK 196

Setting args.sync to hold the identity true causes the XHR to be executed

synchronously. Note carefully that args.sync must be set to the boolean

value true (that is, sync===true must evaluate to true) in order for to send

the XHR synchronously. So, for example, sync:1 would not do the trick;

you must say something like sync:true or sync:(!!callSynchronously). You

should avoid making synchronous XHR calls since the browser will be

locked until the call returns.

Finally, URL query parameters can be specified by providing them in

the args.content hash directly.

Let’s put all of this together and execute an XHR transaction that exer-

cises these properties. Here’s an example:

Download remote-scripting/remote-scripting.js

Line 1 dojo.xhrGet({
- url: "demo/id6",
- user: "john",
- password: "open-sesame",
5 content: {
- param1: "someParamValue",
- param2: 2.7183
- },
- contentType: "text/plain",

10 headers: {
- myKey: "someValue",
- anotherKey: 3.1416
- },
- synch: true,

15 preventCache: true,
- handleAs: "json-comment-filtered",
- handle: handler12
- });
- }

When you run the example in Firefox with Firebug, you’ll see the actual

URL used is http://john:open-sesame@localhost:8002/remote-scripting/

demo/id6?param1 = someParamValue¶m2 = 2.7183&dojo.preventCache=

1209234790968. Notice the URL includes the user ID/password fragment

john:open-sesame@. The parameter fragment ?param1=someParamValue&

param2=2.7183&dojo.preventCache=1209234790968. param1 and param2

were set by args.content, while dojo.preventCache was set since args.

preventCache was true (1203402063531 was the current time the XHR was

executed).

USING THE DOJO XHR FRAMEWORK 197

The args property timeout can be used to set the time in milliseconds

to wait for the XHR to complete. Of course, timeout is meaningful only

when the XHR is executed asynchronously. If the XHR has not com-

pleted within the allotted time period, then it will be aborted, and the

error and/or handle function will be called. If timeout is omitted, the

XHR will time out as provided by the browser.

Using Forms

Often a form is used to collect information that is passed to the server

through an XHR transaction. Unlike native XHR objects that provide

no help in bundling the information contained in the form, the dojo.xhr*

functions do most of this work for you. Let’s look at an example; first

we need a form:

Download remote-scripting/remote-scripting2.htm

Line 1 <form id="exForm" method="post" action="demo/id7" enctype="text/plain">
- <p>Name:

- <input type="text" name="name" size="40"></p>
- <p>Sex:

5 <input type="radio" name="sex" value="m"> Male

- <input type="radio" name="sex" value="f"> Female</p>
- </form>

The contents of the form can be transacted with the server by specifying

the form node or id attribute of the form node in the args.form property.

The URL is taken from the form’s action attribute. Here’s the code:

Download remote-scripting/remote-scripting.js

Line 1 function example13(){
- dojo.xhrGet({
- form: "exForm",
- handleAs: "json-comment-filtered",
5 handle: handler4
- });
- }

Assuming the user supplied “Jane Doe” for the name and clicked the

female radio button, then an HTTP GET transaction is executed with the

relative URL demo/id7&name=Jane%20Doe&sex=f. What could be

simpler?

There are two places where certain XHR parameters can be “overde-

termined.” For example, the URL can be specified both in args.url and

in the form’s action attribute. Similarly, both the contents of the form

and the value of args.contents are destined to the parameters portion of

the URL (or, as we’ll see in a moment, the POST body content). In each

USING THE DOJO XHR FRAMEWORK 198

case, when there is a clash, the values in args win. For example, writing

this...

Download remote-scripting/remote-scripting.js

Line 1 function example14(){
- dojo.xhrGet({
- form: "exForm",
- content: {sex: "m", anotherParam: 3.1416},
5 handleAs: "json-comment-filtered",
- handle: handler4
- });
- }

results in the parameter string demo/id7?name=Jane%20Doe&sex=m&

anotherParam=3.1416. Notice how "sex=f" from the form was overwritten

by "sex=m" as specified by content. Sorry, Jane.

Posting and Other HTTP Methods

dojo.xhrPost works just like dojo.xhrGet except that an HTTP POST transac-

tion is executed and parameters given by args.content and args.form are

sent in the HTTP request body rather than as a query string encoded in

the URL.

dojo.rawXhrPost also executes an HTTP POST transaction, but it com-

pletely ignores args.content and args.form. Instead, the string value of

the args.postData property is sent verbatim in the request body.

dojo.xhrPut and dojo.rawXhrPut work like dojo.xhrPost and dojo.rawXhrPost

except that an HTTP PUT transaction is executed. In similar fashion,

dojo.xhrDelete works like dojo.xhrGet.

It’s easy to get confused about all of this; here’s a summary of how

parameters are specified:

• The request parameters for dojo.xhrGet, dojo.xhrDelete, dojo.xhrPost,

and dojo.xhrPut are specified by args.content and args.form (both

properties are optional). When there is a clash and both args.

content and args.form try to specify a value for the same property,

args.content wins.

• The request parameters for dojo.rawXhrPost and dojo.rawXhrPut are

specified, verbatim, by the postData and putData properties of args,

respectively; the parameters in args.content and args.form are

ignored.

REMOTE SCRIPTING WITH SCRIPT 199

And here’s a summary of how parameters are sent in the request:

• The request parameters for dojo.xhrGet and dojo.xhrDelete are en-

coded as a parameter string and appended to the URL.

• The request parameters for dojo.xhrPost, dojo.xhrPut, dojo.rawXhrPost,

and dojo.rawXhrPut are sent in the request body.

The Rest of the Story

In most cases, XHR calls should be made asynchronously (this is easily

accomplished by leaving args.sync uninitialized). When the native XHR

object returns a response, the dojo.xhr* functions first call the content

handler and then pass the results of this call to the load/error/handler

function specified in args. This pattern of a chain of functions executing

after an asynchronous function completes should sound familiar since

it is precisely the pattern dojo.Deferred manages that we discussed in

Section 6.4, Managing Callbacks with dojo.Deferred, on page 123. So,

it’s no surprise that the dojo.xhr* functions use dojo.Deferred instances

to manage the XHR call.

Each of the dojo.xhr* functions constructs a dojo.Deferred object that

manages the XHR process, and the dojo.xhr* function calls the Deferred’s

callback with the result of the content handler. This starts processing

down the Deferred callback queue. Usually, there is only one callback

function waiting—the function specified by args.load or args.handle. If

an error occurred (for example, the XHR fails or times out), then the

dojo.xhr* function calls the Deferred’s errback, passing the Error object.

Again, this usually results in executing the function specified by args.

error or args.handle.

In most cases, you won’t care about all this gory detail—you’ll just

specify a handler function. But some designs can be expressed quite

elegantly in terms of the callback queue implemented by dojo.Deferred.

Since the dojo.xhr* functions return the dojo.Deferred object that con-

trols the XHR process, you can add functions to the callback/errback

queues as well as cancel the XHR.

8.3 Remote Scripting with script

When you need to dynamically load a JavaScript resource from a server

that resides at a different origin than the document, XHR won’t work

because of the same-origin policy. Instead, inserting a script element

into the document is the method of choice. The idea is simple: create

REMOTE SCRIPTING WITH SCRIPT 200

a script element, set its source attribute to reference the resource, and

then attach the element to the document. Here’s the code:

Download remote-scripting/remote-scripting.js

Line 1 var element = dojo.doc.createElement("script");
- element.type = "text/javascript";
- element.src = url;
- dojo.doc.getElementsByTagName("head")[0].appendChild(element);

The resource identified by the URL given at line 3 will be downloaded

and evaluated. And since there is no restriction on the src attribute of a

script element, any resource on any server can be referenced. This gets

around the same-origin restriction.7 There is still one problem to solve:

how do you know when the script has arrived and been evaluated?

Detecting Dynamically Loaded Scripts

This problem has two common solutions. First, assuming the client-

side code downloading the script has knowledge of some variable de-

fined by the script, then the client-side code could set a timer and watch

for this variable to become defined. Finding the variable exists indicates

that the script has been downloaded and evaluated. Here is a complete

example that implements this idea:

Download remote-scripting/remote-scripting.js

Line 1 function example15(){
- function loadScript(url, checkString){
- var element = dojo.doc.createElement("script");
- element.type = "text/javascript";
5 element.src = url;
- dojo.doc.getElementsByTagName("head")[0].appendChild(element);
- var intervalId= setInterval(check, 50);
-

- function check(){
10 if (eval("typeof(" + checkString + ") != 'undefined'")) {

- clearInterval(intervalId);
- o = dojo.getObject(checkString);
- dojo.byId("result").innerHTML = o.result.replace(/</g, "<");
- }

15 }
- }
-

- loadScript("demo/id8", "id8Object")
- }

7. While dynamic script technique solves the same-origin restriction, it still has the lim-

itation that only JavaScript content can be transferred. If you need to retrieve something

else (for example, text, HTML, or XML), then that something else must be wrapped in a

JSON object.

REMOTE SCRIPTING WITH SCRIPT 201

Alex Says. . .

Cross-Domain Scripts and Security

Browsers are naive. For as much commerce is done online and
for as much effort is put into web application security, browsers
today enforce more or less the same set of rules about where
code and data comes from as they did a decade ago. The
same-origin policy (see http://en.wikipedia.org/wiki/Same_origin_

policy) that browsers enforce isn’t part of any W3C specification,
and for the most part, it has served to keep private data private
when implemented robustly enough. The theory has been that
if you can keep bad things from getting into the page, then
there’s no problem. All data and code that live on the same
page therefore have unfettered access to each other.

But things are changing, and as mashups become ever more
common, it has become accepted practice to pull in data
and scripts from multiple domains. In many cases, this is actu-
ally desirable for performance reasons, and browsers make no
attempt to stop this unless a page is served in “SSL mode.”
Because browsers are designed to trust things that somehow
got into the page, scripts loaded from other servers can pro-
vide both code and data to applications. In fact, the Web
critically depends on this feature: without it, most ad services
would fail because they use cross-domain script loading to
hand pages customized, targeted ads for each visitor. The
JSONP style of data loading takes advantage of this feature,
but as you can imagine, there are some security risks involved.
What if the script that you’re pulling in is compromised? Or what
if the data isn’t correctly escaped? These are serious issues that
need server-side solutions for now and browser-based solutions
soon (Google Gears’ cross-domain thread worker is a promis-
ing option). Today, it’s best to pull in cross-domain scripts from
places that you can trust and avoid it otherwise.

REMOTE SCRIPTING WITH SCRIPT 202

For this to work, the server must send back some JavaScript that actu-

ally defines the watched variable. Our test server sends back the fol-

lowing code for the URL demo/id8:

Download remote-scripting/remote-scripting.js

id8Object= {};

id8Object.result= "exercise15--hello, world";

When this code is evaluated, the function dojo.setObject causes the

object exercise15.myObject to be defined. The next timer interrupt will

find eval("typeof(exercise15.myObject) != ’undefined’") to evaluate to true,

stop the timer, and push the result into the web page.

This method isn’t ideal since it requires all scripts downloaded in this

manner to maintain at least one object name that is unique to each

script. This is to say, scripts that may have no knowledge of each other

must somehow construct identifiers that are unique—which requires

some knowledge of each other!8

The second method to determine when the script has been downloaded

requires some coordination between the browser and the server. When

the browser makes a request for a script, it informs the server of a

callback function name through the URL query string. The server then

delivers a script that calls the designated function with the result of the

script. Exercise 16 demonstrates this technique:

Download remote-scripting/remote-scripting.js

Line 1 function example16(){
- function loadScript(url, callback){
- dojo.setObject(callback, function(o){
- dojo.byId("result").innerHTML = o.result.replace(/</g, "<");
5 })
-

- var element = dojo.doc.createElement("script");
- element.type = "text/javascript";
- element.src = url + "?callbackName=" + callback;

10 dojo.doc.getElementsByTagName("head")[0].appendChild(element);
- }
-

- loadScript("demo/id9", "exercise16.myCallback")
- }

8. In practice, there are techniques for choosing names (for example, the Microsoft Guid-

Gen program) that virtually assure clashes will not occur.

REMOTE SCRIPTING WITH SCRIPT 203

Our test server sends back the following code for the URL demo/id9:

Download remote-scripting/remote-scripting.js

exercise16.myCallback({"result": "hello, world"});

When the previous code is downloaded and evaluated by the dynamic

script element, exercise16.myCallback is executed, and result is pushed

into the web page. Notice that the example effectively delivers a JSON

object to the callback function. This technique is called JSONP because

it prepends JSON with a function call. JSONP is becoming increasingly

common and used by several large information suppliers.

Dojo Support for Dynamic Script Elements

While these techniques are implemented quite differently when com-

pared to orchestrating an XHR call, functionally they are very similar: a

URL is specified, and a response is received. Dojo leverages this fact and

provides the function dojo.io.script.get that works much like dojo.xhrGet.

dojo.io.script.get takes a single argument hash called args, which has

semantics mostly the same as the args used with the dojo.xhr* func-

tions (we’ll term the args hash used with dojo.io.script.get “script args” to

avoid confusion). The script args properties content, headers, query, time-

out, and preventCache have the same semantics as the dojo.xhr* func-

tions. Since the response is always JavaScript and usually JSON (JSON

could be used to encode any other type—HTML, XML, or others), there

is no need to specify a content handler, and args.handleAs is ignored.

There are also a couple of additional properties that orchestrate the

two dynamic scripting techniques we just discussed.

To make a dynamic script call that signals completion by defining a

variable, set args.checkString to the variable name. Here is example 15

reimplemented using dojo.io.script.get:

Download remote-scripting/remote-scripting.js

Line 1 dojo.require("dojo.io.script");
- function example17(){
-

- function handler17(response, ioArgs){
5 var error= response instanceof Error;
- var responseText= error ? response.message : id8Object.result;
- var resultNode= dojo.byId("result");
- resultNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(resultNode, "error", error);

10 dojo.byId("objects").innerHTML=
- dumpObject({response: response, ioArgs: ioArgs});
- }
-

REMOTE SCRIPTING WITH SCRIPT 204

- dojo.io.script.get({
15 url:"demo/id8",

- checkString:"id8Object",
- handle:handler17
- });
- }

dojo.io.script is not included in dojo.js, so it must be dojo.required explic-

itly. This is done at line 1. The resulting output is given in Figure 8.6,

on the next page. Note that, upon success, the result passed to the han-

dler function is ioArgs, not the response. In fact, it is impossible to gain

access to the verbatim text that is sent to fill the script element. Presum-

ably, the client side knows which objects to expect from the script, so

the result of the dynamic script can be accessed directly, as we’ve done

at line 6 in the example. In keeping with the idea that dojo.io.script.get

works like dojo.xhr*, ioArgs is also passed as the second argument. Sim-

ilarly, an Error object and ioArgs are passed to error/handle functions if

an error occurs (for example, if a timeout as specified by args.timeout

occurs).

dojo.io.script.get also implements the JSONP protocol. The parameter

name in which to stuff the callback function name is specified by args.

callbackParamName. Here is example 18 reimplemented using dojo.io.

script.get:

Download remote-scripting/remote-scripting.js

Line 1 function example18(){
- dojo.require("dojo.io.script");
-

- function handler18(response, ioArgs){
5 var error= response instanceof Error;
- var responseText= error ? response.message : response.result;
- var resultNode= dojo.byId("result");
- resultNode.innerHTML= responseText.replace(/</g, "<");
- dojo.toggleClass(resultNode, "error", error);

10 dojo.byId("objects").innerHTML=
- dumpObject({"response": response, ioArgs: ioArgs});
- }
-

- dojo.io.script.get({
15 url:"demo/id9",

- callbackParamName:"callbackName",
- handle:handler18
- });
- }

The resulting output is given in Figure 8.7, on page 206. Notice that

Dojo constructed the URL demo/id9?callbackName=dojo.io.script.jsonp_

dojoIoScript1._jsonpCallback. The query parameter was "callbackName" as

REMOTE SCRIPTING WITH SCRIPT 205

Figure 8.6: Executing dojo.io.script.get

specified in args.callbackParamName, and dojo.io.script.get created a call-

back function named dojo.io.script.jsonp_dojoIoScript1._jsonpCallback. It

was up to the server to return a script that calls this function, passing

a single argument according to the semantics of the delivered script.

The callback function implemented by dojo.io.script.get is simply a func-

tion that receives a single argument, and whatever is passed for this

argument is forwarded to the load/handle functions. Usually the sin-

gle argument is a JavaScript object, in which case the call is just a

simple JSONP transaction, but there is nothing preventing the server

from sending a script that passes something other than an object (for

example, a number or string) to the callback function.

REMOTE SCRIPTING WITH SCRIPT 206

Figure 8.7: dojo.io.script.get with a callback

The single argument sent to the callback function is passed on as the

first argument to the load/handle functions; the second argument is

ioArgs. Errors are handled as usual.

As with the dojo.xhr* functions, dojo.io.script.get returns a dojo.Deferred

instance that manages the process. ioArgs contains two additional pub-

lic properties:

• id: The HTML id attribute for the dynamically created script element

• json: The argument passed to the callback function (applicable only

when args.callbackParamName is specified)

If JSONP is used (by providing args.callbackParamName), then the dy-

namically created script element will be automatically destroyed some

time after the callback function has executed. On the other hand, if

args.checkString is given, then it is left to the client code to manage the

lifetime of the script element. You can destroy this element by calling the

function dojo.io.script.remove(ioArgs.id).

REMOTE SCRIPTING WITH IFRAME 207

Finally, Dojo’s script machinery includes the function dojo.io.script.

attach that takes two arguments, id and url (both strings), and dynami-

cally creates a script element with the id attribute value given by the id

and the src attribute given by the url. This is just a convenience function

when you need to dynamically add a script element.

8.4 Remote Scripting with iframe

The last native remote scripting technique that Dojo supports uses an

iframe element to retrieve a response from the server. This is similar to

the dynamic script technique just discussed. A hidden iframe element

is dynamically created and attached to the document. Then either the

iframe’s src attribute is set to the target URL (resulting in an HTTP GET)

or a form is submitted with its target attribute set to the URL (resulting

in either GET or POST depending upon the form’s method attribute). The

completion of the HTTP transaction is detected by hooking an event

to the iframe’s onload event, and the contents of the iframe hold the

response.

The server response must be an HTML document since this is the only

content that an iframe can legally contain. If the URL is actually deliver-

ing some other content type (for example, JSON), then the server-side

and client-side code must agree on a method to wrap and unwrap the

content in HTML. Finally, the iframe technique is subject to the same-

origin policy. So if the source URL references a different origin than the

main document, it is impossible to share data between the two docu-

ments. Given all this pain, why would you ever want to use the iframe

technique?

Historically, some browsers didn’t implement the XHR API. In this case,

the iframe technique was essentially equivalent to the script technique

when retrieving from the same origin as the main document (retrieving

HTML is slightly easier with iframes; retrieving JavaScript is slightly

easier with script elements). Now that XHR is universally available, XHR

should be favored over iframes since iframes are a hack. But there is

still one place where iframes are required: XHRs can’t post a file; iframes

can. So if you want to post a file asynchronously without a plug-in, the

iframe technique is your only choice.

Dojo Support for Scripting with iframes

The function dojo.io.iframe.send implements scripting with iframes and

has semantics almost identical to the dojo.xhrGet and dojo.xhrPost func-

REMOTE SCRIPTING WITH IFRAME 208

tions. It takes a single argument, args, that defines the same properties

as dojo.xhr* args (we’ll term the args hash used with dojo.io.iframe.send

“iframe args” to avoid confusion). iframe args also defines the additional

property method (a string) that designates which HTTP method (GET or

POST) to use for the transaction.

Let’s look at an example; first we need a form with a file input element:

Download remote-scripting/remote-scripting3.htm

Line 1 <div>
- <form id="exForm" method="post" action="demo/id11"
- enctype="multipart/form-data">
- <p>Name:

5 <input type="text" name="name" size="40"></p>
- <p>Sex:

- <input type="radio" name="sex" value="m"> Male

- <input type="radio" name="sex" value="f"> Female</p>
- <p>About me:

10 <input type="file" name="aboutMe" size="40" maxlength="255"></p>
- </form>
- </div>

And here’s how to use dojo.io.frame.send to HTTP POST the contents of

the form asynchronously:

Download remote-scripting/remote-scripting.js

Line 1 dojo.require("dojo.io.iframe");
- function handler20(response, ioArgs){
- if (!(response instanceof Error)) {
- dojo.byId("objects").innerHTML=
5 dumpObject({response: response, ioArgs: ioArgs});
- } else {
- var resultNode= dojo.byId("result");
- resultNode.innerHTML= response.message;
- dojo.toggleClass(resultNode, "error", true);

10 dojo.byId("objects").innerHTML=
- dumpObject({response: response, ioArgs: ioArgs});
- }
- }
-

15 function example20(){
- dojo.io.iframe.send({
- form: "exForm",
- url: "demo/id11",
- method: "post",

20 handleAs: "json",
- handle: handler20
- });
- }

REMOTE SCRIPTING WITH IFRAME 209

dojo.io.iframe is not included in dojo.js, so it must be dojo.required explic-

itly. This is done at line 1. The iframe args argument should look familiar.

The example explicitly set args.url and args.method, but these two prop-

erties could have been omitted in which case they would have been

taken implicitly from the form’s action and method attributes, respec-

tively. If you specify these properties in both places, args wins. Finally,

dojo.io.iframe.send returns the dojo.Deferred object that controls the pro-

cess just like dojo.xhr*.

The example gave "json" for args.handleAs. dojo.io.iframe.send also allows

"html", "text", and "javascript", but it does not support "xml". When "html" is

given, the document object that is contained by the iframe is returned.

Other response types require more work since the result is embedded in

the HTML document that is contained by the iframe. dojo.io.iframe.send

makes the assumption that the response will contain a single HTML

textarea element that holds the result. For the example, the server

returned the following HTML:

Download remote-scripting/remote-scripting.js

Line 1 <html>
- <body>
- <textarea>{result: "OK"}</textarea>
- </body>
5 </html>

textarea elements are fairly easy to work with, but certain kinds of con-

tent will cause problems. For example, if the JSON {"nasty": "</textarea>"}

were embedded in a textarea element, the browser would fail to parse

the document correctly, and the transaction would fail. These problems

can be avoided by using HTML character entities to encode ampersand

and left-angle bracket characters.

Following this advice, the nasty example looks like <textarea>{nasty:

"</textarea>"}</textarea>, which parses successfully. This is a server-

side issue and can largely be avoided by minimizing the use of iframes

for anything other than posting a file; if you need to retrieve complicated

content, use dojo.xhr*.

There is one small gotcha in dojo.io.iframe. When dojo.io.iframe.send is

called the first time, it dynamically creates an iframe element and ap-

pends it to the main document. When this element is created, the src

attribute is set to dojo-module-path/resources/blank.html (remember, dojo-

module-path gives the path to the dojo module). So long as you are

serving Dojo from your own server, everything will work perfectly. How-

REMOTE SCRIPTING WITH IFRAME 210

ever, if you’re retrieving Dojo from another server (for example, from

a CDN server) or you are executing HTTPS GET transactions through

dojo.io.iframe.send after loading dojo.js with the HTTP scheme, then the

transaction will fail since the src of an iframe can’t change the origin.

The djConfig property dojoBlankHtmlUrl can be used to specify the src

attribute when the iframe is created. So, for example, if the main doc-

ument resides at https://www.someCompany.com/main.htm and you are

using the cross-domain version of Dojo sourced from the AOL CDN

server, you must specify dojoBlankHtmlUrl like this:

Download remote-scripting/remote-scripting.js

Line 1 <script
- type="text/javascript"
- src="http://o.aolcdn.com/dojo/1.1.0/dojo/dojo.xd.js"
- djConfig=
5 "dojoBlankHtmlUrl: 'http://www.someCompany.com/dojo/resources/blank.html'">
- </script>

If you forget to set dojoBlankHtmlUrl under these circumstances, you

will get a console warning message, and dojo.io.iframe.send will fail as

described earlier.

iframe Utility Functions

dojo.io.iframe includes three utility functions that are useful if you are

building machinery that uses iframes. The function dojo.io.iframe.create

creates a new iframe and appends it to the document. It takes the

name, onload, and src attribute values (all strings) as arguments. The

onload and src arguments are optional; if the src argument is miss-

ing, then the value of dojo.config["dojoBlankHtmlUrl"] || dojo.moduleUrl("dojo",

"resources/blank.html") is used. To create the iframe element <iframe

name="myIframe" onload="loadMyIframe();" src="demo/id11"></iframe>, write

the following:

dojo.io.iframe.create("myIframe", "loadMyIframe();", "demo/id11");

Once you have an iframe, you can force a new document to dynami-

cally load with the function dojo.io.iframe.setSrc. This function takes an

iframe name that’s been previously created and a URL and reloads the

iframe. A third parameter (a boolean) instructs the function to use the

DOM function location.replace, instead assigning to the location property

when specifying the new URL. This results in keeping the navigation out

of the browser history.

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 211

So, to change the content of the iframe we created earlier to some other

content (say "other/content"), write the following:

dojo.io.iframe.setSrc("myIframe", "other/content", true);

Finally, dojo.io.iframe.doc takes a DOM node that references an iframe

element and returns the document contained by that element.

8.5 Leveraging Remote Scripting to Access Web Services

The three native remote scripting techniques we’ve been discussing are

fairly primitive: send a request; get a response. The formulation and

semantics of both the request and the response are left to the program-

mer. It is possible to build higher levels of abstraction. What’s even

better is that we can use these higher abstractions to interface with

several commercial web service providers (for example, Yahoo Search

Services, http://developer.yahoo.com/search).

Broadly speaking, a web service is a set of information products that

are accessible by executing an HTTP transaction. For example, con-

coct a magical URL, and you’ll get back a JSON object that describes

the result of a web search from Yahoo. While not required, many web

services publish a description of the service in a computer-readable

language. This presents an opportunity to build abstractions by using

these service descriptions to automatically produce code that interfaces

with the described services. Dojo’s remote procedure call machinery

implements this idea.

Remote Procedure Calls Defined

Loosely speaking, a remote procedure call (RPC) is a mechanism for one

process to execute a function in another process and receive the result

as if the function call were local. Although it’s true that any interprocess

communication (IPC) ultimately executes a function in another process,

the bit about “as if the function were local” is what differentiates RPC

from generic IPC.

All RPC systems have similar design. A package is constructed by the

calling process that contains the identification of the function to call

as well as the argument values to pass to that function. The package

is sent to the executing process, which executes the function, creates

a package that contains the result, and sends the result package back

to the calling process. For example, say an HTTP server publishes the

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 212

function add at the URL http://calculator.com and uses JSON to package

the request and results. We could calculate “1 + 2” by sending the server

{proc: "add", op1: 1, op2: 2}; the server should return {"result": 3}. The full

call might look like this:

Download remote-scripting/remote-scripting.js

Line 1 function example21(){
-

- function add(x, y) {
- var result;
5 dojo.xhrPut({
- url: "http://calculator.com",
- content: {proc: "add", op1: x, op2: y},
- synch: true,
- handle: function(result_) {

10 result= result_;
- }
- });
- return result;
- }

15

- var one_plus_two= add(1, 2);
-

- alert("add(1, 2)= " + one_plus_two);
-

20 }

The call add(1, 2) at line 16 looks just like a local function call, yet the

function is actually executed on a remote server.

Most RPC systems include a description language that is used to de-

scribe the functions published by the remote server. Descriptions are

fed into machinery that generates proxies to the remote functions. In

the previous example, the function add starting at line 3 is a proxy.

There are two popular ways to package the RPC request and response

over HTTP: JSON-RPC9 and XML-RPC.10 In our view, JSON is lighter

and easier to use than XML (at least in the web app arena) without

losing any significant functionality.

The service description language for JSON-RPC is the Simple Method

Description (SMD) language. At the time of this writing, there is no offi-

cial, approved standard for SMD. However, the Dojo developers respon-

sible for Dojo’s RPC machinery (Dustin Machi and Kris Zyp) are work-

9. See http://json-rpc.org/wd/JSON-RPC-1-1-WD-20060807.html.
10. See http://www.xmlrpc.com/.

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 213

ing hard within the JSON-RPC community11 to finalize a standard. It

is likely that SMD will eventually look like the example given at http://

dojotoolkit.org/~dmachi/rpc/V2example-3.smd.

As of version 1.1, Dojo provides some support for JSON-RPC in both

Dojo and Dojox. Since neither JSON-RPC nor SMD is an approved stan-

dard, this part of Dojo is likely to experience some evolution in the near

future. Still, the architecture is stable, and it is unlikely that new func-

tionality will break existing functionality. Most important, the current

RPC system is worth knowing about since it can be used to build and

deploy elegant and useful services.

Executing RPCs with dojo.rpc

Dojo’s RPC machinery takes an SMD description and produces an ob-

ject that can be used to make remote procedure calls. Here’s an exam-

ple SMD description for a service that publishes the functions add and

subtract:

Download remote-scripting/remote-scripting.js

Line 1 var arithmeticService = {
- serviceURL: "demo/id7",
- methods: [{
- name: "add",
5 parameters: [{
- name: "op1",
- type: "number"
- }, {
- name: "op2",

10 type: "number"
- }]
- }, {
- name: "subtract",
- parameters: [{

15 name: "op1",
- type: "number"
- }, {
- name: "op2",
- type: "number"

20 }]
- }]
- };

Assuming the server at demo/id7 accepts requests and delivers respon-

ses in JSON, the function dojo.rpc.JsonService will take this description

11. http://groups.google.com/group/json-rpc

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 214

and return an object that can be used to make the function calls.12 dojo.

rpc.JsonService expects a single argument that specifies the SMD de-

scription in one of three ways:

• As a URL (a string) that delivers a JSON-comment-optional re-

sponse that contains the SMD description; an HTTP GET transac-

tion is used.

• As an SMD description object in the form of a JSON string. The

string must be provided in an object at the property smdStr so the

constructor can differentiate it from a URL string.

• As an SMD object (an object).

Assuming the SMD description of arithmeticService given earlier, here is

an example of passing the SMD as an object:

Download remote-scripting/remote-scripting.js

//don't forget the keyword new!

var calculator = new dojo.rpc.JsonService(arithmeticService);

We’ll term the objects created by dojo.rpc.JsonService RPC dispatchers.

They include a method for each item in the methods array of the SMD

description; we’ll term these RPC dispatcher methods. RPC dispatcher

methods should be called with arguments described by the associ-

ated params array in the SMD description and return a dojo.Deferred

object that executes the remote procedure call (we’ll term this the call-

controlling Deferred). You access the results by providing callback func-

tions to call-controlling Deferred. For example, we could use arithmetic-

Service to calculate 3 + 4 and send the result to an alert like this:

Download remote-scripting/remote-scripting.js

Line 1 calculator.add(3, 4).addCallback(function(result){
- alert("3 + 4= " + result);
- });

calculator is the RPC dispatcher, add is an RPC dispatcher method, and

calculator.add(3, 4) returns a call-controlling Deferred that controls the

remote procedure call to add.

RPC dispatcher methods execute a dojo.xhrPost to make the remote pro-

cedure call. The contents of the post is a JSON object with the proper-

ties method (a string, the method name), params (an array, the argu-

ments provided), and id (an integer, starting at 1 and incremented

12. Notice that JsonService is capitalized, indicating that the function is a constructor that

returns new objects of the class dojo.rpc.JsonService.

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 215

with each remote procedure call made on a particular RPC dispatcher

object). The example will post the following:

Download remote-scripting/remote-scripting.js

{"params":[3,4],"method":"add","id":1}

The response from the server must be a JSON object; this object is

passed to the call-controlling Deferred’s errback or callback methods as

follows:

Line 1 //resultObject is the JSON object returned...
- if (resultObject.error!=null) {
- call_controlling_deferred.errback(parseError(resultObject));
- } else {
5 call_controlling_deferred.callback(owning_rpc_dispatcher.parseResults(obj));
- }

If an error is indicated, then the call-controlling Deferred’s errback

method is called, as shown earlier (line 3). Otherwise, the call is as-

sumed to have completed successfully, and the result object is trans-

formed by the owning RPC dispatcher method parseResults and then

passed to the call-controlling Deferred’s callback method (line 5). dojo.

rpc.JsonService provides the following default parseResults method:

Line 1 //resultObject is the JSON object returned...
- function parseResults(resultObject) {
- if (dojo.isObject(resultObject)) {
- if ("result" in resultObject) {
5 return resultObject.result;
- }
- if ("Result" in resultObject) {
- return resultObject.Result;
- }

10 if ("ResultSet" in resultObject) {
- return resultObject.ResultSet;
- }
- }
- return resultObject;

15 }

For our example, the server returns {"result": "7"}, which achieves the

desired effect with the default implementation of parseResults. parseRe-

sults can be replaced if the semantics of the server require something

else. For example, assuming arithmeticService returns JSON objects like

{"arithmeticServiceResult": "7"}, a customized parseResults could be used like

this:

var calculator = new dojo.rpc.JsonService(arithmeticService);

calculator.parseResults= function(resultObject){

return resultObject.arithmeticServiceResult;

}

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 216

A server can indicate an error by returning an object that includes the

properties error and id. The property error may be an object, string, or

number. If an object, then it must contain the properties message (a

string), code (no type requirements), and error (no type requirements).

RPC dispatcher methods extract information out of the response object

when an error is indicated as follows:

Line 1 //resultObject is the JSON object returned...
- function parseError(resultObject) {
- var error;
- if (typeof resultObject.error == 'object') {
5 error = new Error(resultObject.error.message);
- error.code = resultObject.error.code;
- error.error = resultObject.error.error;
- } else {
- error = new Error(resultObject.error);

10 }
- error.id = resultObject.id;
- error.errorObject = resultObject;
- return error;
- }

Dojo also includes the function dojo.rpc.JsonpService that works with

servers that return JSONP instead of JSON. dojo.rpc.JsonpService lever-

ages dojo.io.script to execute the JSONP transaction. The script args call-

backParamName property defaults to "callback" but can explicitly be set

by specifying a value for the property callbackParamName in the RPC

dispatcher returned by dojo.rpc.JsonpService. For example, assume that

arithmeticService returns JSONP and expects that callback parameter

name to be specified in the URL parameter "arithmeticService-callback-

name". Here’s how to do it:

var calculator = new dojo.rpc.JsonpService(arithmeticService);

calculator.callbackParamName = "arithmeticService-callback-name";

Now, we can use calculator very much as with the dojo.io.JsonService:

Download remote-scripting/remote-scripting.js

calculator.add({op1: 3, op2: 4}).addCallback(function(result){

alert("3 + 4= " + result);

});

Notice that the parameters must be passed in a hash with their names

("{op1: 3, op2: 4}"). Since JSONP uses the dynamic script remote script-

ing technique, the parameters have to be passed in the URL, and con-

sequently, they need names. The calculator.add resulted in the URL

demo/id7?op1=3&op2=4&dojo.preventCache=1203893657656&arithmeticSer\

vice-callback-name=dojo.io.script.jsonp_dojoIoScript1._jsonpCallback.

LEVERAGING REMOTE SCRIPTING TO ACCESS WEB SERVICES 217

Using Dojo RPC with Yahoo

Yahoo offers a number of free services that are easy to use with dojo.rpc.

We’ll demonstrate how to use the web search service (http://developer.

yahoo.com/search/web/V1/webSearch.html). To actually use this example,

you’ll have to navigate to Yahoo developer services and register to get

your own appid—a key that gives you access to the services (we didn’t

publish our real appid in the book).

The first thing we need is some SMD that describes the service. Lucky

for us, this is already done: the file tests/resources/yahoo_smd_v1.smd in

the dojo/ directory of the source release includes a JSON object that

describes many of the Yahoo services. We simply cut out the web search

service used for this example. Here’s what that looks like:

Download remote-scripting/rpc-demo.htm

Line 1 var smd= {
- "SMDVersion":".1",
- "objectName":"yahoo",
- "serviceType":"JSON-P",
5 "required": {
- "appid": "dojotoolkit",
- "output": "json"
- },
- "methods":[

10 //
- // WEB SEARCH
- //
- {
- // http://developer.yahoo.com/search/web/V1/webSearch.html

15 "name":"webSearch",
- "serviceURL": "http://api.search.yahoo.com/WebSearchService/V1/webSearch",
- "parameters":[
- { "name":"query", "type":"STRING" },
- { "name":"type", "type":"STRING" },

20 { "name":"region", "type":"STRING" },
- { "name":"results", "type":"INTEGER" },
- { "name":"start", "type":"INTEGER" },
- { "name":"format", "type":"STRING" },
- { "name":"adult_ok", "type":"INTEGER" },

25 { "name":"similar_ok", "type":"INTEGER" },
- { "name":"language", "type":"STRING" },
- { "name":"country", "type":"STRING" },
- { "name":"site", "type":"STRING" },
- { "name":"subscription", "type":"STRING" },

30 { "name":"license", "type":"STRING" }
-]
- }
-]
- }

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 218

Next we need to use this SMD to create an RPC dispatcher. Since Yahoo

is at a different origin than the main document, dojo.rpc.JsonpService

must be used:

Download remote-scripting/rpc-demo.htm

Line 1 dojo.require("dojo.rpc.JsonpService");
- dojo.addOnLoad(function() {
- var service= new dojo.rpc.JsonpService(
- smd, {appid: "your-appid-goes-here"});
5 });

Notice that the call to create the RPC dispatcher is made by a function

registered to dojo.addOnLoad. This ensures that dojo.rpc.JsonpService

will be loaded before any attempt is made to access objects defined

by dojo.rpc.JsonpService.

Finally, the service is called through the RPC dispatcher method web-

Search. In the following example, the query asks for web pages that

contain “mastering dojo” located on the pragprog.com site. webSearch

returns a dojo.Deferred.

Download remote-scripting/rpc-demo.htm

Line 1 dojo.require("dojo.rpc.JsonpService");
- dojo.addOnLoad(function() {
- var service= new dojo.rpc.JsonpService(
- smd, {appid: "your-appid-goes-here"});
5 var theResult= service.webSearch(
- {query:'"mastering dojo"', site:"pragprog.com"});
- theResult.addCallback(function(result){
- console.dir(result);
- });

10 });

The example dumps the result to the debug console. In a real appli-

cation, the result would be traversed, and HTML would be built that

displayed the results.

8.6 Bookmarking and the Back Button Without Navigating

None of the remote scripting techniques we’ve been discussing changes

the DOM window.location property. As a result, it is impossible to book-

mark a remote scripting operation, and therefore the state of the web

page cannot be moved backward and forward through the browser’s

Back and Forward buttons. In many cases, it doesn’t matter. For exam-

ple, displaying an error message shouldn’t be bookmarked. But, if you

are building a web site that displays significant static content without

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 219

Figure 8.8: Acmecorp single web page

changing the page URL, the Back/Forward buttons and bookmarking

are important. Dojo includes machinery to fix this problem.

A Simple Single-Page Web App

Let’s build a web site that sells products to Wile E. Coyote and Tom the

Cat. It has four pages: Home, Dynamite, Rockets, and Contraptions.

Each of these pages has identical title banners and menus; only the

content is different. In Figure 8.8, you can see the Home page.

The web site is implemented by a single HTML file that dynamically

loads the content portion of the page through an XHR call when a menu

item is clicked. Here’s the file:

Download remote-scripting/acme-corp/acme-corp0.htm

Line 1 <html><head>
- <title>
- Mastering Dojo - Remote Scripting
- </title>
5

- <style type="text/css">
- @import "acme-corp.css";
- </style>
-

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 220

10 <script
- type="text/javascript"
- src="/dojoroot/dojo/dojo.js"
- djConfig="isDebug: true"></script>
-

15 <script
- type="text/javascript"
- src="acme-corp0.js"></script>
- </head><body>
- <div class="titleBanner">

20 <h1>Acme Corporation</h1>
- <p class="tagline">Tools for Coyotes and Cats Named Tom</p>
- </div>
- <div id="menu">
- <p>

25 Home
- Dynamite
- Rockets
- Contraptions
- </p>

30 </div>
- <div id="content">
- </div>
- </body></html>

The menu is implemented by the set of anchors within div#menu. When

an anchor is clicked, a handler executes a dojo.xhrGet to retrieve the

content and then push it into div#content:

Download remote-scripting/acme-corp/acme-corp0.js

Line 1 function loadContent(fragment){
- dojo.xhrGet({
- url: fragment + ".htm",
- handleAs: "text",
5 handle: function(response){
- dojo.byId("content").innerHTML = response;
- }
- });
- }

10

- function doMainMenu(e){
- dojo.stopEvent(e);
- var fragment= e.target.getAttribute("href").split("#")[1]
- loadContent(fragment);

15 }
-

- dojo.addOnLoad(function(){
- dojo.connect(dojo.byId("menu"), "click", doMainMenu);
- loadContent("home");

20 })

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 221

As usual, initialization is accomplished by a function that is fired by

dojo.addOnLoad. The anchor click events are handled by the div#menu

handler; the event object target property will hold the actual anchor that

was clicked. Since acme-corp.htm doesn’t actually contain any content,

the Home page content is also loaded as part of initialization.

The design assumes that the content is included in the resources home.

html, dynamite.html, and the rest. Here’s what dynamite.htm looks like:

Download remote-scripting/acme-corp/dynamite.htm

<h1>Dynamite to Blow Things Up</h1>

<p>Try these great products that go boom!</p>

Running the page at this stage demonstrates the problem: the URL in

the navigation bar never changes even though the user can navigate

to four seemingly distinct web pages. Further, the browser history is

never changed, so the Back and Forward buttons don’t work, and the

only page that can be bookmarked is the Home page. Clearly, these

deficiencies are unacceptable for a commercial web site.

Navigation Single-Page Web Apps with dojo.back

The Dojo module dojo.back includes machinery to fix these problems.

The idea is to manually change the DOM property window.location when

content changes by setting the window.location.hash property. Editing

this property has the effect of changing the URL in the address bar

and adding an item to the browser history but does not reload the page

since only the fragment identifier (that’s the part of the path URL after

the # character) is changed. With the browser history filled with distinct

URLs, the Back and Forward buttons will cause navigation to these

URLs by changing window.location. dojo.back watches window.location

and fires an event when it changes. Your code can connect to this event

to load content as indicated by the changed fragment identifier.

Although dojo.back does all the heavy lifting, your code is responsi-

ble for signaling a navigation by sending a “state” object to dojo.back.

dojo.back will extract the fragment identifier from the state object and

use it to change window.location.hash as well as store the state object

for later use when navigating with the Back/Forward buttons. When

dojo.back detects back/forward navigation, it retrieves the state object

associated with this and fires functions that are included in that object

to signal that a back or forward navigation was demanded. To get all of

this to work, we need to build a state object class, initialize dojo.back,

and pass state objects to dojo.back at each content navigation.

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 222

The state object must include the property changeUrl, which holds the

fragment identifier associated with a particular state. Optionally, the

state object can include the functions back and/or forward. dojo.back

fires these when Back-button or Forward-button navigation occurs.

State object classes can be complex or simple depending upon what

meaning your application attaches to clicking the Back and Forward

buttons. For example, if an application treats the Back/Forward but-

tons as undo/redo buttons, then the state objects will hold undo/redo

data. Our example uses the buttons to signal a URL change, so the state

objects don’t need anything other than the required changeUrl property.

Here is the revised code that implements the state object class and then

uses it to make the Back/Forward buttons work properly:

Download remote-scripting/acme-corp/acme-corp.js

Line 1 dojo.require("dojo.back");
- (function() {
-

- function getFragment(){
5 var parts= window.location.href.split("#");
- if (parts.length==2) {
- return parts[1];
- } else {
- return "home";

10 }
- }
-

- var State = function(fragment){
- this.changeUrl = fragment;

15 }
-

- dojo.extend(State, {
- back: function() {
- loadContent(this.changeUrl);

20 },
- forward: function(){
- loadContent(this.changeUrl);
- }
- });

25

- function loadContent(fragment){
- dojo.xhrGet({
- url: fragment + ".htm",
- handleAs: "text",

30 handle: function(response){
- dojo.byId("content").innerHTML = response;
- }
- });
- }

35

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 223

- function doMainMenu(e){
- dojo.stopEvent(e);
- var fragment= e.target.getAttribute("href").split("#")[1]
- loadContent(fragment);

40 dojo.back.addToHistory(new State(fragment));
- }
-

- dojo.addOnLoad(function(){
- dojo.connect(dojo.byId("menu"), "click", doMainMenu);

45 var initialFragment= getFragment();
- loadContent(initialFragment);
- dojo.back.setInitialState(new State(initialFragment));
- })
-

50 })();

dojo.back is not included in dojo.js, so it must be loaded with dojo.require

(line 1). The rest of the code is wrapped in a function literal that’s imme-

diately executed to avoid polluting the global namespace (lines 2 and

50). Our state object class is defined at lines 13 through 24; dojo.extend

adds functions to the prototype object of a constructor function. The

Back and Forward functions simply load the content indicated by the

given state.

In addition to hooking up the event handler (line 44), the initialization

function calculates the fragment identifier of the page and loads the ini-

tial content implied by this identifier (lines 45 and 46). This technique

allows the page to be bookmarked. For example, if the page is loaded

from <. . . >/acme-corp.htm#dynamite, then the dynamite content will be

loaded. getFragment (line 4) handles calculating the fragment identifier;

it returns "home" if the URL doesn’t include one. dojo.back.setInitialState

must be called with a state object that represents the first page (line 47).

Notice that a call to dojo.back.addToHistory was added to doMainMenu

(line 40) whenever a content navigation occurs; dojo.back.addToHistory

takes a state object that represents the state of that particular history

item. This causes dojo.back to edit window.location.hash as well as push

a new state object on its own history stack. loadContent didn’t change

from its original version.

Finally, to make Internet Explorer work correctly, dojo.back.init must be

called from a script element in the body of the main page.

Download remote-scripting/acme-corp/acme-corp.htm

<script type="text/javascript">

dojo.back.init();

</script>

BOOKMARKING AND THE BACK BUTTON WITHOUT NAVIGATING 224

Loading the page and navigating by clicking the menu items results in

the proper content being loaded without a page reload just like before,

but now the fragment identifier of the URL changes with each click.

After making a few menu selections, you can use the Back and For-

ward buttons to trace backward and forward over the sequence of con-

tent you selected. Each time a Back/Forward button is clicked, the

back/forward function is called in the context of the state object asso-

ciated with that particular history item. This object holds the fragment

identifier that is used to reload the content.

Notice that the pages can also be bookmarked. And, since the initial-

ization code looks for a fragment identifier, the bookmarks will load the

correct content.

Chapter 9

Defining Classes with dojo.declare
JavaScript doesn’t explicitly include the concept of classes, yet the core

language can be used to build object systems that work similarly to

those found in languages that include native support for object-oriented

programming (Java, Ruby, C++, and the rest). Of course, building a

class definition system is a lot of work. Fortunately, Dojo does this for

you. dojo.declare, the subject of this entire chapter, defines class defi-

nition machinery, complete with single-inheritance, mixins, two-phase

construction, and several other features.

Since JavaScript is a dynamic language, it can generate code on the fly

that can be consumed immediately (we first talked about this idea in

Section 5.1, Binding Context, on page 84). Dojo leverages this capabil-

ity with the function dojo.declare, which takes the definition of a class

as input and produces a constructor function that creates instances of

that class. This function is so powerful that it is possible to map its

arguments to most of the class definition syntax found in other lan-

guages, and visa versa.

9.1 Why Use Object-Oriented Programming in JavaScript?

At this point, you might ask the question, why do I care about doing

object-oriented programming in JavaScript? There are a couple of ways

to answer this question. The first reason for learning dojo.declare is that

it is pervasive in Dojo. Every Dijit widget is defined by a dojo.declare

function call. If you ever want to define a new widget or specialize an

existing one, understanding dojo.declare is a prerequisite. dojo.data,

Dojo’s powerful session data framework, uses dojo.declare. As of ver-

sion 1.1, there are nearly 400 classes defined by Dojo, Dijit, and Dojox

in terms of dojo.declare.

DEFINING A SIMPLE CLASS 226

The second reason for learning dojo.declare is that object-oriented pro-

gramming allows you to write programs at a higher level of abstrac-

tion (your code is closer to the problem) in a manner that is more

robust (your code is modular, orthogonal, minimal, reusable, and all

those other good things). Although it’s true you don’t need something

as heavy as object-oriented programming to hang a little function off

a click event, with Dojo you can write browser-based JavaScript pro-

grams that do big things. For example, it is possible to move the entire

view component of a Model-View-Controller to the browser. Real view

components are complex; dojo.declare gives you the power to conquer

this complexity with object-oriented techniques. And this isn’t theoreti-

cal hand waving; in Part IV of the book, we’ll use dojo.declare extensively

to build just such a view component.

dojo.declare is one of the most misunderstood, even mysterious, func-

tions defined by Dojo. It’s the subject of many forum questions, and

its misuse/abuse is the root cause of many failed attempts to mod-

ify some existing class. Because of this, we’re going to use a classic

teaching example to demonstrate dojo.declare exhaustively. This keeps

the “what” we are building out of the way of “how” we are building it.

The example may not be very exciting, but trust us, the investment in

understanding this material will pay huge dividends.

9.2 Defining a Simple Class

A good understanding of core JavaScript language concepts is required

to use Dojo’s class definition machinery effectively. Just to make sure

we are all “singing from the same sheet of music,” let’s review a few

concepts.

Prototypes and Prototypal Inheritance

Every object in JavaScript includes a reference to another object termed

the first object’s prototype. Since the prototype is another object itself, it

also contains a reference to its prototype. This forms a chain of objects.

The chain terminates with the prototype for the built-in Object type.

Although you can’t access an object’s prototype directly as if it were

an ordinary property, we’ll show an object’s prototype as the property

__PROTO__ when we draw diagrams.

When a property of an object is read, JavaScript looks for the prop-

erty in the object. If not found, JavaScript then looks in the object’s

DEFINING A SIMPLE CLASS 227

prototype, the prototype’s prototype, and so on, up the prototype chain

until the property is found or the chain is exhausted. Since a method

is just a property that happens to be a function, this is how method

dispatching occurs, and this system is called prototypal inheritance.

This explanation does not apply when a property is written. When a

property is written to an object, it is automatically created if it does not

already exist. Notice that looking up a method is a read-only operation

even if executing the method found results in changing the contents of

the object.

An object’s prototype reference is set when it is created, and there is no

way to change this reference for the lifetime of the object. Since there

are two ways to create objects in JavaScript, there are two ways to set

an object’s prototype reference. First, every object created by an object

literal has its prototype reference set to the prototype of the built-in

type Object:1

Line 1 var o1= {};
- var o2= {};
- var o3= new Object();
- //o1, o2, and o3 all have the same prototype object

Second, every object created by the keyword new combined with a con-

structor function has its prototype reference set to the prototype prop-

erty of the constructor function:

Line 1 var p1= {};
- function SomeConstructor(){}
- SomeConstructor.prototype= p1;
- SomeConstructor.prototype.constructor= SomeConstructor;
5

- var o1= new SomeConstructor();
- var o2= new SomeConstructor();
- //o1, and o2 have the same prototype object, p1

Here’s the punch line:

• Class hierarchies are simulated in JavaScript by building proto-

type chains.

• Class instances are created by constructor functions that hold

references to these prototype chains in their prototype properties.

1. An object literal is an object defined inline by enclosing zero or more properties with

curly braces. For example, in the statement var x= {name: "dojo", version: 1.1}, the curly braces

and everything in between are the object literal.

DEFINING A SIMPLE CLASS 228

And dojo.declare builds these prototype chains and constructor func-

tions for us. Finally, here are a few key terms:

object

An instance of the JavaScript type Object (note the capital O),

which is an area of memory that holds values for a set of

properties.

instance

Synonym for an object.

property

A named storage location contained by an object.

method

A property that references a function.

class

An abstract notion of a set of objects that contain the same prop-

erties and define the same semantics for each contained property.

type

Synonym for a class.

object space

A set of objects that was created as a result of executing some

code.

The Shape Class Hierarchy

The shape hierarchy is used so often when teaching object-oriented

programming techniques that you’re probably already familiar with it.

It may be a little artificial, but it eliminates many distracting debates

about “is a” versus “has a” relationships, behaviors versus data, and

other issues. The shape hierarchy we’ll use is given in Figure 9.1, on

the next page. It has the following characteristics:

• A shape has a color; that’s all we can say about a shape.

• A circle is a shape that has a radius and can calculate its area.

• A rectangle is a shape that has a length and a width and can

calculate its area.

• A position is a point on an x-y plane and can be moved.

• A positioned shape is a shape and is a position. This class is not

drawn in the diagram because dojo.declare does implement multi-

ple inheritance. We’ll see how to solve the problem of a positioned

shape in Section 9.4, Mixins and Multiple Inheritance, on page 239.

DEFINING A SIMPLE CLASS 229

�����

���	
� ��	��
�
�

�������
�����	
� �������
����	��
�
�

�������

Figure 9.1: The shape classes

With the preliminaries out of the way, let’s build the class hierarchy

with Dojo.

Defining a Simple Class with dojo.declare

In JavaScript-speak, “defining a class” means defining a constructor

function that will create objects with the properties (data and methods)

that the class contains. This is exactly what dojo.declare does. It takes

three arguments:

className (a string)

The name of the constructor function that is created; in idiomatic

JavaScript, the name of a constructor function also serves as a

class name.

This name is created in the global object space. Since creating

variables in the global object space is usually a bad thing, you

can use a dot-separated name to store the new constructor in

another object space. For example, if "myNamespace.Shape" was

given, then the constructor function will be created as the property

Shape in the object myNamespace, and the object myNamespace

will be created as a property of the global object if it didn’t already

exist.

superclass (null, a function, or array of functions)

Describes the superclass (optional) and additional classes that are

mixed in (also optional). We’ll describe this fully in the next two

sections.

DEFINING A SIMPLE CLASS 230

props (a hash)

Specifies (name, value) pairs to add to the prototype object for the

class being defined.

If a function is provided with the name constructor, then this func-

tion, termed the initializer, is used to initialize new objects.

We’ll start by defining the class Shape since it’s at the base of the hier-

archy, doesn’t use inheritance, and is very simple:

• It has the per-instance property color (a number), which is initial-

ized to black (zero).

• It has the prototype property, setColor (a method), which takes a

single argument color. This method updates the color property with

the value given by its argument.2

Here’s how to use dojo.declare to create the class Shape with these prop-

erties:

Line 1 dojo.declare(
- //the name of the constructor function (class) created...
- "Shape",
-

5 //this is where the superclass (if any) goes...
- null,
-

- //this object contains everything to add to the new class's prototype...
- {

10 //default property values can go in prototype...
- color: 0,
-

- //here is the single prototype method...
- setColor: function(color){

15 this.color= color;
- }
- }
-);

The three arguments are given at lines 3, 6, and 9. The props argument

(line 9) is usually provided as an object literal as shown in the example.

props also includes the default value for the color property (line 11) and

the single method setColor (line 14).

2. For now, the method setColor doesn’t do anything that couldn’t be done by just access-

ing the property color directly. But it’s easy to imagine that setColor may include side

effects (like setting an HTML element’s style) in a real application.

DEFINING A SIMPLE CLASS 231

Figure 9.2: The Shape object space

Now that Shape is defined, we can use it:

Line 1 //create a new Shape instance...
- var s= new Shape();
-

- //exercise it...
5 var check1= s.color; //check1 is 0
- s.setColor(0x0000FF); //shape.color is now red
- var check2= s.color; //check2 is red

In particular, notice that the keyword new is required to create new

instances just like any other constructor function (dojo.declare does not

create an object factory).

The Objects Created by dojo.declare

In Figure 9.2, you can see what dojo.declare creates for our Shape exam-

ple. The diagram also includes the single instance of Shape we created

with the statement var s= new Shape(). The object space constructed has

many capabilities.

DEFINING A SIMPLE CLASS 232

The Shape constructor function created by dojo.declare is the func-

tion object (2) in the diagram; in addition to the prototype property,

it includes the following properties:

• superclass: References the prototype object of the superclass, if any.

Since Shape has no superclass, superclass is set to undefined. We’ll

talk about superclasses in the next section.

• mixin: References the prototype object of the mixin class, if any.

Since Shape has no mixins, mixin is set to undefined. We’ll talk

about mixins in Section 9.4, Mixins and Multiple Inheritance, on

page 239.

• extend: Advanced functionality; we’ll discuss this later.

The unnamed object (3) is referenced by the prototype property of the

Shape constructor function. This is the object that will serve as the

prototype for every Shape object created by the Shape constructor. It

contains the following properties:

• _constructor: References the initializer function (if any); recall that

the initializer is passed in props.constructor. The initializer should

accomplish any per-instance initialization required for the class.

You should never call this function directly (notice that it’s marked

private by the leading underscore); the constructor function man-

ufactured by dojo.declare will automatically call it when a new

object is created.

• declaredClass: The value of the first argument given to dojo.declare.

This can be useful for debugging.

• constructor: References the Shape constructor function. This imple-

ments the standard JavaScript idiom where, given a constructor

function ctor, ctor.prototype.constructor references ctor.

• inherited: References a function used to call superclass methods;

we’ll discuss this in a later section.

• Each of the properties contained in the props hash is assigned by

the JavaScript assignment operator (=) to an identically named

property in the prototype. In the example, there were two prop-

erties, color and setColor (a function). Owing to the definition of

the assignment operator, some properties may be copied by value,

while others are copied by reference.

• Since Shape did not designate a superclass, the prototype of the

prototype references the one and only root prototype for every

object created (1).

DEFINING A SIMPLE CLASS 233

The Elegance of JavaScript

Take another look at Figure 9.2, on page 231. We put a vertical
line on the diagram to separate the objects that are instances
of the class from objects that define the class. Do you see the
elegance of the system as a whole? Everything is an object.
The constructor function is an object. The prototype inheritance
chain is made of objects. This is the reason JavaScript doesn’t
need the extensive “class-definition” syntax that is present in
so many “object-oriented” languages. Yet, JavaScript can be
used to describe class systems with all of the power of these
other languages. In a way, JavaScript gives you a free lunch—
the ability to define class systems without the need for a special
syntax to do it. Now that’s elegant!

Finally, we created one Shape instance referenced by the variable s (5).

Standard Use Patterns

dojo.declare follows standard JavaScript idioms when it creates con-

structor functions. One implication is that the JavaScript instanceof

operator works as expected. For example:

var s= new Shape();

var check1= s instanceof Shape; //check1 is true

var check2= s instanceof Object; //check2 is true

Sometimes you need to know the exact type of an object. In this case,

you can’t use the JavaScript instanceof operator because it will tell

you only whether the target type is somewhere in the prototype chain.

Instead, you need to know the constructor function that created the

object—this reveals the exact type of the object. As mentioned earlier,

dojo.declare includes a reference to the constructor function in the con-

structor property of the prototype object. For example, you can get to the

constructor of s by writing this:

s.constructor

According to the semantics of JavaScript, access to the constructor

function for an object implies access to the prototype of that object.

The prototype of s is given by the following:

s.constructor.prototype

DEFINING A SUBCLASS WITH SINGLE INHERITANCE 234

9.3 Defining a Subclass with Single Inheritance

In the shape hierarchy, circles and rectangles are also shapes. This is

to say that circles and rectangles have all the properties that shapes

have, plus a few others to make them behave as circles and rectangles.

If we were to define circles and rectangles in isolation, we would lose

an important piece of information: any operation valid on shapes is

also valid on circles and rectangles. To capture this information, we

don’t define circles and rectangles in isolation but rather define them as

refinements of shape. In object-oriented parlance, we say that Circle and

Rectangle are derived from Shape and inherit from Shape, that Shape is

the superclass to Circle and Rectangle, and that Circle and Rectangle are

subclasses of Shape.

In the previous section we created a class that had no user-defined

ancestors. (We say “user-defined” because all objects in JavaScript ulti-

mately inherit from Object; this is built in to the language and can’t be

changed.) Now let’s turn our attention to defining the subclasses Cir-

cle and Rectangle. Recall from Section 9.2, The Shape Class Hierarchy,

on page 228 that Circle has the per-instance property radius, Rectangle

has the per-instance properties length and width, and both Circle and

Rectangle have the prototype property area (a method).

To derive from a superclass, you need to specify the superclass as an

argument to dojo.declare. Prototype properties and the optional initial-

izer for the new subclass are specified in the props hash as usual.

dojo.declare sets up the object space for you and creates a construc-

tor that ensures the superclass constructor chain is called properly

when creating new objects. Assuming Shape is already defined, here’s

the code to define the Circle and Rectangle classes:

Line 1 dojo.declare(
- "Circle", //classname...
-

- Shape, //superclass: Circle inherits from Shape...
5

- //props hash...
- {
- //default value for radius...
- radius: 0,

10

- //the property named "constructor" is used to initialize new instances...
- constructor: function(radius) {
- this.radius= radius || this.radius;
- },

15

DEFINING A SUBCLASS WITH SINGLE INHERITANCE 235

- //these go in the prototype for Circle...
- setRadius: function(radius) {
- this.radius= radius;
- },

20

- area: function() {
- return Math.PI * this.radius * this.radius;
- }
- }

25);
-

- dojo.declare(
- "Rectangle", //classname...
- Shape, //superclass: Rectangle inherits from Shape...

30

- //props hash...
- {
- //default values for l, w...
- length: 0,

35 width: 0,
-

- constructor: function(l, w) {
- this.length= l || this.length;
- this.width= w || this.width;

40 },
-

- //these go in the prototype for Rectangle...
- setLength: function(l) {
- this.length= l;

45 },
-

- setWidth: function(w) {
- this.width= w;
- },

50

- area: function() {
- return this.length * this.width;
- }
- }

55);
-

- //create a Circle and exercise it...
- var c= new Circle(5);
- var test= c.area();

60

- //Circles are also shapes...
- c.setColor(0x0000FF);

From the previous code, we can see that in order to inherit a superclass,

we simply state the superclass’s constructor as the second argument

to dojo.declare.

DEFINING A SUBCLASS WITH SINGLE INHERITANCE 236

This has two effects:

• dojo.declare will set up the new class’s prototype object to refer-

ence the superclass’s prototype object.

• The constructor function that dojo.declare manufactures will call

the superclass’s constructor before calling the subclass’s initial-

izer function.

This last point is worth repeating in code. The following gets executed

when a new Circle object is created:

Line 1 //creating a new circle...
- var c= new Circle(5);
-

- //...results in the Circle constructor executing the following...
5 Shape.apply(this, arguments);
- Circle._constructor.apply(this, arguments);

This ensures proper per-instance initialization all the way up the inher-

itance hierarchy. The previous example also demonstrates that initial-

izer functions can take arguments. We’ll have an extended discussion

about initializer function arguments in Section 9.5, Preprocessing Con-

structor Arguments, on page 248.

The Circle Object Space

In Figure 9.3, on the following page, you can see the object space for

Circle. If we had drawn it, Rectangle would be similar. Although not

drawn, Circle and Rectangle constructors reference the same Shape con-

structor; similarly, the Circle and Rectangle prototype objects reference

the same Shape prototype object. This works since there are no ref-

erences pointing down and out of the Shape part of the object space

into classes derived from Shape. Otherwise, Circle, and its associated

prototype property, looks and works just like Shape and its associated

prototype property.

Calling Superclass Methods

Frequently a subclass will override a function defined by a superclass,

and further, the overridden function will call the superclass’s version of

that function. dojo.declare automatically includes the function inherited

in every prototype object. When this.inherited is called from any subclass

method, it invokes the same method in the superclass.

To make this idea crystal clear, let’s have Circle override Shape’s set-

Color method as follows: if the sum of the red-green-blue components

DEFINING A SUBCLASS WITH SINGLE INHERITANCE 237

Figure 9.3: The Circle object space

DEFINING A SUBCLASS WITH SINGLE INHERITANCE 238

is greater than 350, accept the change; otherwise, ignore the change.

Here is how such an override could be done:

Line 1 dojo.declare(
- "Circle",
- Shape,
- {
5 //default value for radius...
- radius: 0,
-

- //the property named "constructor" is used to initialize new instances...
- constructor: function(radius) {

10 this.radius= radius || this.radius;
- },
-

- setRadius: function(radius) {
- this.radius= radius;

15 },
-

- area: function() {
- return Math.PI * this.radius * this.radius;
- },

20

- setColor: function (color) {
- var total=
- ((color & 0xFF0000) >> 16) +
- ((color & 0x00FF00) >> 8) +

25 (color & 0x00FF);
- if (total>350) {
- this.inherited(arguments);
- }
- }

30 }
-);
-

- //exercise the new functionality...
- var c= new Circle();

35 c.setColor(0x010203); //should result in no-op
- var test1= c.color; //yup, test1 is 0
- c.setColor(0x808080); //should set the color
- var test2= c.color; //test2 is 0x808080

This example is admittedly artificial, but it does illustrate the ability to

get to a specific function in the inheritance hierarchy. Eventually, you’ll

probably have to reach into the hierarchy. Now you know how to do it.

Manually Adding Superclass Methods

In rare circumstances, you come across the need to add or change

a method in a class defined by dojo.declare, but you don’t want to

MIXINS AND MULTIPLE INHERITANCE 239

derive a subclass or change the current class definition (maybe such an

action would break other code somehow). This is easily accomplished

by adding/changing a property in the class prototype. For example, we

could add the property setBorderStyle to Shape by writing the following:

Shape.prototype.setBorderStyle= function(style) {

this.borderStyle= style;

};

Dojo even includes the helper function dojo.extend that takes a con-

structor function and a hash of properties and copies the contents of

the hash into the constructor’s prototype property. setBorderStyle could

be added to Shape with dojo.extend like this:

Line 1 dojo.extend(Shape, {
- setBorderStyle: function(style) {
- this.borderStyle= style;
- }
5 });

There is one gotcha here: adding methods to prototypes of classes

defined with dojo.declare breaks the inherited method we just discussed.

To fix this problem, each constructor function returned by dojo.declare

includes the method extend that takes a hash of properties to copy

to the class’s prototype. Here’s the correct way to add setBorderStyle to

Shape:

Line 1 Shape.extend({
- setBorderStyle: function(style) {
- this.borderStyle= style;
- }
5 });

To add properties to the prototype property of any constructor function

defined with dojo.declare, always use the dojo.declare-provided extend.

For constructor functions not defined by dojo.declare, you should use

dojo.extend to add properties to the prototype.

9.4 Mixins and Multiple Inheritance

So far, we’ve explored deriving one class from another single class.

Naturally, this technique is called single inheritance. Single inheritance

says “subclass is a superclass” but with some more specialized func-

tionality added. For example, Circle “is a” Shape, but with a radius and

the ability to calculate its area. But how do you model a situation where

a new subclass is more than one thing?

MIXINS AND MULTIPLE INHERITANCE 240

Figure 9.4: The PositionedCircle prototype chain

In our little Shape hierarchy depicted Figure 9.1, how should we model

the notion of a Shape positioned in an HTML document? Surely it’s

reasonable that a positioned object “is-a” position.3

Since the abstract idea of a shape is independent of a position, it would

be wrong to derive Shape from Position, or visa versa. What we’d like to do

is include both Shape and Position as superclasses of Circle and Rectan-

gle. This is to say that Circle would inherit both Shape and Position. Nat-

urally, this technique is called multiple inheritance. Unfortunately, it’s

not supported by the prototypal inheritance model that JavaScript pro-

vides. Although there is nothing that Dojo can do to fix this, dojo.declare

does include the ability to define classes with most of the effects of mul-

tiple inheritance.

3. For some of the object-oriented lawyers out there, we hear you objecting that a posi-

tioned object “has-a” position; it “is-NOT-a” position. We’ll take your objection under

consideration, but note that we might like to move shapes, which implies that modeling

them as positions is reasonable. In any event, this argument is not germane to teaching

how Dojo implements mixins.

MIXINS AND MULTIPLE INHERITANCE 241

The idea is simple. If you have a class (the mixin class) with function-

ality that you’d like to include in a new class but have already spent

your one inheritance ticket, then just push another empty object onto

the prototype chain and “mix in” (copy) all of the properties from the

mixin class. In Figure 9.4, on the previous page, you can see how

this idea works when creating a PositionedCircle—a Circle that has all

the functionality of a Position. An extra prototype object is pushed on

top of PositionedCircle’s prototype chain, and this object holds references

to all the properties in Position. It’s important to notice that this extra

object fully enumerates Position’s prototype object, which means it will

hold all properties that exist anywhere in Position’s prototype chain. The

rest of PositionedCircle’s prototype chain looks just like Circle’s prototype

chain: Circle’s prototype references Shape’s prototype, which references

Object’s prototype. You can view this as a sort of deep aggregation.

Rather than aggregating an instance of another class as a property, you

aggregate the definition (that is, the contents of the prototype chain) of

another class.

Deriving Classes with Mixins

With the theory out of the way, let’s use dojo.declare to define the class

PositionedCircle. First we need to define the class Position, which models

a point on an x-y plane that can be moved:

Line 1 dojo.declare(
- "Position",
- null,
- {
5 x: 0,
- y: 0,
-

- constructor: function(x, y){
- this.x= x || this.x;

10 this.y= y || this.y;
- },
-

- setPosition: function (x, y) {
- this.x= x;

15 this.y= y;
- },
-

- move: function (deltaX, deltaY) {
- this.x+= deltaX;

20 this.y+= deltaY;
- }
- }
-);

MIXINS AND MULTIPLE INHERITANCE 242

Alex Says. . .

Class Design in JavaScript

If you’re coming from a community with lots of rules imposed
either by the language or by convention, you may be surprised
by some of the idioms you’ll see in JavaScript. For example,
in JavaScript, it’s convenient to include default values for vari-
ous properties in the prototype object. This technique has three
nice side effects. First, it eliminates a set of assignment state-
ments in the initializer that would be executed each time a
new object is created. This is incredibly important in keeping
code terse, which is a primary goal of JavaScript development
because of the nature of how scripts are sent to browsers. Sec-
ond, it allows a default value to be easily changed at runtime;
you would have to create a subclass to change default values
set in the initializer. Third, it encapsulates the properties a par-
ticular class defines in an object (the prototype) rather than in
lines of code (the initializer), which would need to be executed
for every object initialization.

You’ll also notice that positional constructor arguments were
used in the examples presented in this chapter; this was inten-
tional to highlight various initialization issues that come with sub-
classing. However, it’s often better to define initializers that take
a single hash argument that’s used to initialize new objects.
Dojo uses this convention heavily and extends it with a second
optional positional argument, which may be a reference to a
DOM node that the constructed instance should act on. Using
a terse convention like this makes it easy to understand how
to construct a broad variety of object types without having to
know the specifics of each class’s constructor. Remembering
the order of many positional arguments can also be painful
(although code-completing editors help a lot). Also, if vari-
ous combinations of arguments are optional, then you’ll either
have to specify null for the optional arguments or build some
really tricky logic in the initializer to figure out what the client
intended (and “really tricky” usually translates to buggy fol-
lowed by impossible). Finally, there’s the problem of argument
juggling when subclassing, as discussed in this chapter. Having
your classes follow the “property object plus optional node”
convention makes it simple to integrate with others, makes it
easy to subclass, and leans on a convention that all Dojo devel-
opers already know.

MIXINS AND MULTIPLE INHERITANCE 243

There is nothing new here. Position is a simple base class that doesn’t

inherit from any other user-defined class.

Now, we’ll use dojo.declare, Position, and Circle to create the new con-

structor function PositionedCircle that creates objects that have all of the

power of both Circles and Positions. Here is the code:

Line 1 dojo.declare(
- "PositionedCircle",
-

- //inherits from Circle and mixes in Position
5 [Circle, Position],
-

- {
- constructor: function(radius, x, y){
- this.setPosition(x, y);

10 }
- }
-);

Notice that the superclass argument to dojo.declare is an array. When an

array is given, the first element in the array is interpreted as the super-

class, and any subsequent elements are interpreted as mixin classes.

In Figure 9.5, on the following page, you can see the object space that

is built (it includes the Position constructor and prototype but does not

include the Circle and Shape constructors and prototypes).

As a consequence of copying properties from the mixin Position, the pro-

totype chain of PositionedCircle contains the properties setPosition and

move (9). These properties reference the same function objects as the

setPosition and move properties in Position’s prototype object.

Note that when dojo.declare copies a property from the mixin class,

a regular JavaScript assignment expression is used, which results in

copying references unless the property held is a boolean, integer, string,

or null value, in which case the property is copied by value. This isn’t a

problem since the prototype chain should contain read-only properties;

it’s probably a design mistake to include updateable data in prototype

objects.4

Per-instance Initialization

The constructor functions manufactured by dojo.declare call all the

mixin constructors just like they call the superclass constructor chain,

4. Per-class updateable data should be made a property of the constructor function.

MIXINS AND MULTIPLE INHERITANCE 244

Figure 9.5: The PositionedCircle object space

MIXINS AND MULTIPLE INHERITANCE 245

as we discussed earlier. In code, the following gets executed when a new

PositionedCircle object is created:

Line 1 //creating a new PositionedCircle...
- var pc = new PositionedCircle(5, 1, 2);
-

- //...results in the function PositionedCircle executing the following...
5 Circle.apply(this, arguments);
- //...which results in...
- Shape.apply(this, arguments);
-

- //...then the mixin constructor is executed...
10 Position.apply(this, arguments);

-

- //...finally the init function is executed...
- PositionedCircle._constructor.apply(this, arguments);

This code reveals the algorithm used for the constructors that dojo.

declare makes:

1. Call the superclass constructor function (line 5). This step is exe-

cuted (line 7) all the way up the inheritance chain to the root class.

2. Call all mixin constructor functions (line 10), in the order they are

given in the superclass array.

3. Call the initializer function (line 13).

Let’s step back for a minute and see whether we’ve accomplished our

mission of making a class that behaves as both a Circle and a Position.

If we exercise an instance of PositionedCircle, all of the Position methods

work just as if the object were a Position and all of the Circle methods as

if the object were a Circle:

Line 1 var pc= new PositionedCircle(5, 1, 2);
-

- //try the Shape functionality...
- var color1= pc.color; //color1 is black
5 pc.setColor(0x0000FF);
- var color2= pc.color; //color2 is now red
-

- //try the Circle functionality...
- var radius1= pc.radius; //radius1 is 5

10 var area1= pc.area(); //area1 is 78.54
- pc.setRadius(10);
- var radius2= pc.radius; //radius2 is 10
- var area2= pc.area(); //area2 is 314.16
-

15 //try the Position functionality...
- var position1= [pc.x, pc.y]; //position1 is [1, 2];
- pc.move(3, 5);
- var position2= [pc.x, pc.y]; //position2 is [4, 7];

MIXINS AND MULTIPLE INHERITANCE 246

Alex Says. . .

Caveats for Object-Oriented Experts

Notice that the prototype chain (depicted in Figure 9.4, on
page 240) puts the mixin under the new subclass being
defined. So, for example, if one of Position’s methods calls
this.inherited(arguments), properties defined in PositionedCircle’s
prototype are never considered. This is contrary to one view of
the role of a mixin that says a mixin is an incomplete class that is
put on top of some other class that contains methods required
to complete the mixin class. A classic example is the idea of an
enumerator with methods such as find, map, and sort that are
plopped on top of various container classes like vector, list, and
tree. The enumerator implements certain algorithms (for exam-
ple, map), assuming certain other functions are provided by
the hosting class (for example, first, next, end). Depending on
the algorithm, the mixin class may call this.inherited(arguments),
and the design given would fail. [BC90] provides a detailed dis-
cussion on the theory of mixins.

Also notice that the mixin properties hide any properties of the
same name lower in the prototype chain. We’ll discuss this in
detail in a later section. But, clearly, dojo.declare does not imple-
ment a model that is equivalent to multiple inheritance, and we
are not making this claim.

The reason Dojo is not working too hard to expose a more clas-
sical OO model inside JavaScript is that it would be both brit-
tle and slow. dojo.declare is designed so that you can com-
pose classes not defined by dojo.declare with those that are,
and systems that try to do more rigorous, class-based OO often
find that it’s harder to mix and match code developed inside
the assumptions their system with code developed elsewhere.
dojo.declare isn’t perfect, but it helps you “play well with oth-
ers” and is a prime example of where Dojo’s strong emphasis
on going as far as the language will let you—and no further—
pays off in both speed and stability. By respecting the principle
of least astonishment, we give good JavaScript hackers a nat-
ural path to writing classes more tersely and give novice users
an abstraction that’s good-enough to let them be productive
quickly and discover the power of the language progressively.

MIXINS AND MULTIPLE INHERITANCE 247

So, on this level, we can say that we’ve succeeded. Still, there is one

material difference.

Type Testing with Mixins

To see one difference between the mixin pattern and true multiple

inheritance, notice that a class that is defined by mixing in another

class has all the capabilities of the mixed-in class but is not an instance

of the mixed-in class. Contrast this to deriving a subclass from a super-

class: the subclass is an instance of the superclass. Most of the time

this distinction doesn’t matter. As long as an object provides the behav-

ior of some class, then we can use it as if it were an instance of that

class. Of course, this is the concept of “duck typing” (that is, if it walks

like a duck and quacks like a duck, then it’s a duck). Still, this is a key

difference between using mixins and multiple inheritance.

And, this difference has a practical implication. Looking at Figure 9.5,

on page 244, notice that our new class, PositionedCircle, has the pro-

totype object chain given by the objects (6)–>(4)–>(7)–>Shape.prototype–

>Object.prototype. Position is not in the chain. Consequently, an instance

of PositionedCircle is an instance of PositionedCircle, Circle, Shape, and

Object but is not as instance of Position. Here are the consequences in

code; notice that line 8 shows pc is not a position:

Line 1 var pc= new PositionedCircle(5, 1, 2);
-

- var test;
- test= pc instanceof PositionedCircle; //test is true
5 test= pc instanceof Circle; //test is true
- test= pc instanceof Shape; //test is true
- test= pc instanceof Object; //test is true
- test= pc instanceof Position; //test is false!

When testing whether an object is a class that may be included as a

mixin, you can’t use the JavaScript instanceof operator. Instead, you

must test the object for the existence of a set of properties that indicate

the type you are looking for (that is, a property signature).5

That’s it for mixins basics.

5. You may have noticed that dojo.declare fills the declaredClass property of the synthetic

prototype objects used to hold mixin properties with a synthetic name. Although you

could inspect this name to determine what’s been mixed in, the algorithm used to create

the synthetic name may change. Indeed, it is possible that the synthetic name may be

removed from future versions of dojo.declare.

PREPROCESSING CONSTRUCTOR ARGUMENTS 248

This leaves us with three details to discuss regarding inheritance and

mixins:

• How to handle constructor argument signatures that are different

between the subclass, the superclass, and any mixins

• How to handle property name clashes when deriving and mixing

• How to implement two-phase construction

Let’s turn our attention to the first issue, sorting out constructor argu-

ment signatures when we use derivation and/or mixins.

9.5 Preprocessing Constructor Arguments

Consider the problem of creating and initializing a new PositionedCir-

cle object. Shapes don’t take any constructor arguments, Circles take a

radius argument, and Positions take x and y arguments. Clearly, we have

three constructor signatures: (), (radius), and (x, y). On the other hand,

the constructor of PositionedCircle should define the signature (radius, x,

y). Then, we can create and initialize a new PositionedCircle object by

writing the following:

//radius=5, x=1, y=2

var pc= new PositionedCircle(5, 1, 2);

The constructor function that dojo.declare creates must somehow deal

out any arguments to the superclass and the mixins. By default, argu-

ments passed to the constructor are just blindly passed first to the

superclass’s constructor, then to each mixin’s constructor, and finally

to the subclass’s initializer. In code, this looks like this following:

Line 1 //writing...
- var pc = new PositionedCircle(5, 1, 2);
-

- //results in the following being executed...
5 Circle.apply(this, [5, 1, 2]);
- //call Circle's superclass...
- Shape.apply(this, [5, 1, 2]);
- //call PositionedCircle's mixin...
- Position.apply(this, [5, 1, 2]);

10

- //call PositionedCircle's initializer--if there is one...
- if (PositionedCircle.prototype._constructor) {
- PositionedCircle.prototype._constructor.apply(this, [5, 1, 2]);
- }

PREPROCESSING CONSTRUCTOR ARGUMENTS 249

Circle will be initialized correctly because it expects a single argument—

the radius. Since the radius is the first argument in the PositionedCircle

constructor signature, Circle will use the argument correctly and ignore

the last two arguments.

Similarly, Shape will just ignore all of the arguments. Unfortunately,

Position fails to initialize properly. It expects two arguments, (x, y), but

gets three arguments, (radius, x, y). So, it will interpret radius as x and x

as y and will ignore the last argument.

If you look at our definition of PositionedCircle, you’ll see that we pro-

vided an initializer that explicitly initializes the Position mixin. Here is

the initializer again:

function(radius, x, y){

setPosition(x, y);

}

The initializer we provided correctly accepts three arguments: radius,

x, and y. Consequently, it reinitializes the Position instance variables

with the correct values of x and y. But, before setPosition is called in

this initializer, the Position instance properties x and y will be initialized

with the values intended for radius and x (recall the constructors of the

superclass and all mixins are called before the initializer).

Using this technique to fix up all the initialization mistakes, although

a bit sloppy, will work in many cases. But sometimes this is not good

enough since some initializers will cause bad side effects (for exam-

ple, throw an exception) if they are passed improper arguments. We

will use PositionedCircle to illustrate how we can massage constructor

arguments.

Having Your Way with Constructor Arguments

dojo.declare accepts a preprocessor that reformats constructor argu-

ments before passing them on to the superclass and mixin(s) class

constructors. The preprocessor is specified by providing a function for

the property preamble in the props hash argument of dojo.declare. If

specified, the function is passed the set of arguments provided to the

subclass constructor (that is, the constructor created by dojo.declare)

and returns an array of arguments that are passed to the superclass

and mixin(s) constructors.

PREPROCESSING CONSTRUCTOR ARGUMENTS 250

So, let’s assume that a preamble was provided to PositionedCircle; then,

when a new PositionedCircle is created, the PositionedCircle constructor

calls the superclass and mixin constructors by executing the following:

Line 1 //writing...
- var o = new PositionedCircle(radius, x, y);
-

- //results in calling the superclass and mixin constructors like this...
5 var superArgs = PositionedCircle.prototype.preamble.apply(this, [radius, x, y]);
- PositionedCircle.prototype.superclass.apply(this, superArgs);
- PositionedCircle.prototype.mixin.apply(this, superArgs);

Notice that the preamble takes a set of arguments and returns an array.

Although there is no restriction on what processing is accomplished by

a preamble, typically a preamble is used to reformat arguments from a

format expected by the subclass to a format expected by the superclass

and any mixins. And this algorithm works all the way up the single-

inheritance chain. For example, another preamble could be specified

for Circle, which would fix up arguments for the Shape constructor.

Preambles solve argument-reformatting problems when there is no mix-

in or when both the superclass and all mixins expect the same argu-

ments. Unfortunately, the design fails when there is both a superclass

and one or more mixins that expect different argument signatures. The

PositionedCircle class is an example of such a failure since Circle (the

superclass) and Position (a mixin) take different argument signatures.

To solve the problem, you need to create a class, sometimes termed a

shim class, that derives from the mixin class and provides a preamble

that picks and orders constructor arguments. Here is the shim class

we need with Position:

Line 1 dojo.declare("PositionedCircleShim", Position,
- {
- preamble: function(radius, x, y){
- return [x || null, y || null];
5 }
- }
-);

Note carefully that preamble is provided with the arguments that were

passed to the owning constructor and returns an array; this is a little

obtuse the first time you write a preamble.

PositionedCircleShim works just like Position except that it initializes its

superclass Position correctly when it is provided the signature (radius, x,

PREPROCESSING CONSTRUCTOR ARGUMENTS 251

y)—which is precisely the signature that PositionedCircle is going to give

it. With this in place, we can define PositionedCircle to mix in Positioned-

CircleShim (no preamble is given for PositionedCircle):

Line 1 dojo.declare(
- "PositionedCircle",
- [Circle, PositionedCircleShim],
- {}
5);

Notice that the new PositionedCircle does not need an initializer func-

tion since Position will be initialized correctly now. Here is what actually

happens when a new PositionedCircle object is created:

Line 1 //creating a new PositionedCircle...
- var pc = new PositionedCircle(5, 1, 2);
- //...results in the function PositionedCircle executing the following...
-

5 //call the single inheritance chain...
- //the superclass of PositionedCircle...
- Circle.apply(this, [5, 1, 2]);
- //which calls Shape, the superclass of Circle...
- Shape.apply(this, [5, 1, 2]);

10

- //call the mixin class...
- PositionedCircleShim.apply(this, [5, 1, 2]);
- //...which results in executing...
- Position.apply(this,

15 PositionedCircleShim.prototype.preamble.apply(this, [5, 1, 2]));
- //...which reduces to Position.apply(this, [1, 2]);
-

- //lastly, call PositionedCircle's initializer--if there is one...
- if (PositionedCircle.prototype._constructor) {

20 PositionedCircle.prototype._constructor.apply(this, [5, 1, 2]);
- }

Circle is still passed three arguments even though it uses only one.

However, since the first argument passed is correct, there is no need to

shim Circle.

Using Hashes to Specify Arguments

Often the problem of constructor argument signature incompatibilities

can be eliminated by using a single hash as a constructor argument to

pass initialization values.6

6. Of course, hashes can have name clashes just as positional arguments have position

clashes, but these are less likely.

RESOLVING PROPERTY NAME CLASHES 252

For example:

Line 1 var shape = new PositionedCircle({
- x: 1,
- y: 2,
- radius: 5
5 });

This is a popular JavaScript idiom. If each class uses this idiom, then

initializers can simply pick out the properties they need.

Often initialization does not require any specific processing other than

copying the values out of the hash into the new instance object. In

these cases, dojo.mixin can be used to quickly accomplish this task. For

example, Shape’s initializer could be written as follows:

Line 1 constructor: function(args){
- //args is a hash of initial property values
- dojo.mixin(this, args);
- }

Notice how this initializer correctly initializes Circle and Position when a

new PositionedCircle is given the hash {x: 1, y: 2, radius: 5} as previously! In

case there are some classes (either superclasses or mixins) lower in the

hierarchy that rely on positional arguments, preambles can be used, as

we discussed earlier, to pick the appropriate argument signature out of

the hash.

Generally speaking, if a constructor takes more than three or four argu-

ments, then it’s probably a good candidate to use the single-argument

hash technique. This technique is also less susceptible to typing the

parameters in the wrong order when expressing code.7

9.6 Resolving Property Name Clashes

There’s another potential problem when we use dojo.declare to create a

new class that’s derived from a superclass and mixes in a mixin class.

Since the mixin’s prototype properties are mixed into a new class’s pro-

totype chain above the superclass, a mixin’s property will be found

before a superclass’s property if the properties have the same name.

This is almost certainly what you don’t want. The new class is derived

from the superclass, so instances of the new class are also instances of

the superclass; they are not instances of the mixin.

7. Of course, you can still express hashes that include properties with misspelled names

quite easily.

RESOLVING PROPERTY NAME CLASHES 253

Alex Says. . .

Make the 80% Case Easy

The main argument against defining initializers that take single-
argument hashes is parsimony. If you have a class that has a
very common construction pattern that requires only a few val-
ues, then specifying this...

var x= new MyClass({
thisProperty: 1,
thatProperty:2,
theOtherProperty:3

});

is a royal pain. But there’s an easy solution—define a quick
helper:

function makeMyClass(thisProperty, thatProperty, theOtherProperty){
return new MyClass({

thisProperty: thisProperty,
thatProperty: thatProperty,
theOtherProperty: theOtherProperty

});
}

Now you can write var x= makeMyClass(1, 2, 3). Ahhh, that’s bet-
ter. And, you’ll never forget to type new! By the way, this is
exactly what Dojo does all the time. For an example, compare
dojo.animateProperty to dojo.anim.

Now you can write var x = makeMyClass(1, 2, 3). With the wrapper
function, you can also avoid typing new. Inside of Dojo, we use
this wrapper style all the time to first expose powerful APIs and
then provide easy-to-use versions for the 80% case.

RESOLVING PROPERTY NAME CLASHES 254

Yet accessing the property resolves to the mixin property. The object

behaves like something it’s not. Let’s drive this point home with our

PositionedCircle example.

If you examine the set method names of the Shape, Circle, and Posi-

tion classes, you see setColor, setRadius, and setPosition, respectively. But,

in Shapes, the only thing to set is a color; likewise, Circles set only

radii, and Positions set only—you guessed it—positions. So, why the long

method names? Let’s rename all these methods to set. With this mod-

ification, which is very possible if you didn’t have control of the whole

hierarchy, the set method for PositionedCircles calls Position.set, and it’s

difficult to get to the other set methods. Here’s code that illustrates the

problem:

Line 1 //assume that Shape, Circle, and Position all define
- //"set" rather than "set(Color|Radius|Position)"...
- var pc = new PositionedCircle(); //radius=0, x=0, y=0
- pc.set(5); //oops! calls Position.Set instead of Circle.Set...
5 var test;
- test = pc.radius; //radius is still 0, but...
- test = pc.x; //x was set to 5
- //it can be done...painfully...
- Circle.prototype.set.apply(pc, [5]);

10 //but at least it worked; test is 5
- test = pc.radius;

First we need to stop the mixin from stepping on our superclass’s

method. The idea here is to rename the mixin’s property to something

that doesn’t clash. How about setPosition? This can be done immediately

after the class definition like this:

Line 1 dojo.declare(
- "PositionedCircle",
- [Circle, PositionedCircleShim],
- {}
5);
- PositionedCircle.extend({
- setPosition: Position.prototype.set
- });
- delete PositionedCircle.superclass.set;

Since we deleted set from PositionedCircle’s superclass prototype (the

synthetic prototype object that holds all of Position’s prototype proper-

ties), a call to set on a PositionedCircle object will find Circle.set. So, let’s

try it:

var pc= new PositionedCircle(5, 1, 2); //radius=5, x=1, y=2

pc.setPosition(3, 4); //call Position.Set...

pc.set(6); //call Circle.Set...

TWO-PHASE CONSTRUCTION 255

This is looking a lot better. There is a gotcha here: renaming has the

undesirable side effect of breaking the built-in inherited function: call-

ing this.inherited(arguments) will not work from a function that has been

renamed. In practice, this problem rarely occurs. Nevertheless, it is a

limitation of the current dojo.declare implementation.

Next let’s turn our attention to disambiguating Shape.set and Circle.set.

This is simply a design error. When Circle was defined, it defined the

method set that was also defined in the superclass Shape, but Circle.

prototype.set was not an override to Shape.prototype.set. Indeed, Circle.

prototype.set has completely different semantics to Shape.prototype.set;

therefore, it should be a different name. The original design was more

correct; we made the original change only as a teaching example.

So far, the discussion has been limited to properties that end up in the

prototype object. It is also possible for per-instance property names to

clash. Resolving this problem requires a great deal of care since renam-

ing these properties has broad implications: prototype methods that

manipulate per-instance properties do not know about name changes

that the subclass may make. Frankly, these types of clashes need to be

avoided to begin with by employing good coding techniques that have

nothing to do with dojo.declare.

9.7 Two-Phase Construction

Occasionally, you’ll want to define a superclass that accomplishes some

processing in its initializer that requires the instance to be fully ini-

tialized. This causes a problem when a subclass is derived from the

superclass because the superclass’s initializer is executed before the

subclass’s; therefore, the processing that required the object to be fully

initialized is executed before the subclasses initializer runs. Since this

is a bit obtuse in words, let’s look at an example.

Say the class Base includes the statement doSomething(this) in its initial-

izer, and further assume that doSomething requires that the instance

referenced by this must be fully initialized. The Base initializer might

look something like this:

Line 1 dojo.declare("Base", null, {
- constructor: function() {
- //initialize the instance as required...
-

5 //now that the instance is initialized, call
- doSomething(this);
- }
- });

TWO-PHASE CONSTRUCTION 256

This works fine. But next, the class Subclass is derived from Base. Since

Subclass’s constructor calls Base’s initializer before Subclass’s initializer,

the Subclass instance passed to doSomething will not be fully initialized.

This design requires a constructor algorithm that first initializes the

object all the way up the inheritance chain and then does one more

thing (so-called two-phase construction).

Two-phase construction is specified by providing a function for the

property postscript in the props hash argument of dojo.declare. After a

new object has been fully initialized (the superclass and mixin con-

structors and the subclass initializer have been called), the method

postscript is called in the context of the new instance and is passed the

arguments provided at construction. Unlike preambles that are called

all the way up the inheritance chain, postscript, if provided, is called only

from the most-derived class’s constructor. Of course, if a postscript is

provided in a superclass and not overridden in a subclass, the super-

class postscript will be called. Similarly, a superclass’s postscript method

can be called from a subclass’s overridden postscript method by writing

this.inherited(arguments) as inside the overridden method.

Let’s work through a quick example. We’ll build a toy hierarchy that

requires two-phase construction, demonstrate the problem, and then

fix it by defining a postscript. Every initializer in the hierarchy pushes

the arguments it receives into the instance variable args. The second

phase of construction formats args into a JSON string and dumps the

string to the console. Here is a base class that fits the bill and works as

far as it goes:

Line 1 dojo.declare("Base", null, {
- constructor: function() {
- this.args = {base_args: dojo._toArray(arguments)};
- console.log(dojo.toJson(this.args, true));
5 }
- });
- var x= new Base(1, 2, 3);

Next, we’ll derive a subclass from Base. We’ll include a preamble to pass

only the first three arguments to Base:

Line 1 dojo.declare("Subclass", Base, {
- constructor: function() {
- this.args.subclass_args= dojo._toArray(arguments);
- },
5 preamble: function(args) {
- //the superclass (Base) only gets the first three arguments...
- return dojo._toArray(arguments).slice(0, 3);
- }
- });

CREATING CUSTOM OBJECTS WITHOUT CONSTRUCTORS 257

10 var x= new Subclass(1, 2, 3, 4, 5, 6);

This causes the second phase to stop working. When Base’s initializer

dumps the contents of args, it misses Subclass’s arguments.

The problem can be fixed by adding a postscript to Base and moving the

dump to the postscipt:

Line 1 dojo.declare("Base", null, {
- constructor: function() {
- this.args = {base_args: dojo._toArray(arguments)};
- },
5 postscript: function(){
- console.log(dojo.toJson(this.args, true));
- }
- });

When the Subclass instance is created, both Base’s and Subclass’s ini-

tializers are called before postscipt is called. Subclass can override Base’s

postscript by defining its own. Overridden postscripts almost always call

the superclass method, as demonstrated here:

Line 1 dojo.declare("Subclass", Base, {
- constructor: function() {
- this.args.subclass_args= dojo._toArray(arguments);
- },
5 preamble: function(args) {
- //the superclass (Base) only gets the first three arguments...
- return dojo._toArray(arguments).slice(0, 3);
- },
- postscript: function(){

10 console.log("In Subclass's postscript.");
- this.inherited(arguments);
- }
- })

9.8 Creating Custom Objects Without Constructors

Usually, the prototype object is connected to an object implicitly via

the constructor function that created the object. But, sometimes it is

useful to create a single new object and exercise direct control over

the prototype object—without going to the bother of creating a new

constructor function. dojo.delegate(obj, props) creates and returns a new

object with the prototype reference pointing to obj. The optional props

argument is mixed into the new object by dojo.mixin.

CREATING CUSTOM OBJECTS WITHOUT CONSTRUCTORS 258

�����

�����	��
	���	�
�

�����������
�������

����
�������������

���
����

����	�	
��

	���������

���������	
���������
������

���������	
����������������
�����

���������	
���������������
 �!	����
����

��������	���������

��"���	�� ���������	
��������

##�$���##

##�$���##

��	����	�������

�
���

Figure 9.6: Delegate in action

To see dojo.delegate in action, we’ll exercise it and then draw out the

resulting object space:

Line 1 //create an object with some properties
- var base= {
- greet: function(){
- return "hello, my name is " + this.name;}
5 }
- var newObject= dojo.delegate(base, {name: "John"});

In Figure 9.6, you can see the objects that are created by the code.

Notice how the prototype of newObject was set to base. This is the whole

point. By the way, newObject.greet() returns “hello, my name is John.”

Given the power of dojo.declare, dojo.delegate is rarely needed. However,

if you are building some kind of specialized class definitional machinery

(akin to dojo.declare) or if you need to create a single object with a

specific superclass, dojo.delegate will come in handy.

If nothing else, this chapter has shown off some really powerful Java-

Script.8 The function dojo.declare is very capable and can be used to

build class hierarchies that model complex real-world things. Certainly,

the Dojo toolkit employs dojo.declare extensively.

8. In fact, all the capabilities of dojo.declare are expressed in about sixty-five lines of

code, lending even more evidence that JavaScript is quite a powerful language.

CREATING CUSTOM OBJECTS WITHOUT CONSTRUCTORS 259

We’ve also pointed out some edge cases that you may run against

if you are doing something outside of dojo.declare’s design bounds.

Look for some of these cases to be fixed with minor enhancements to

dojo.declare. However, one of the key requirements of dojo.declare is to

keep it light. And, since so much of Dojo uses dojo.declare, an incom-

patible signature change just isn’t going to happen (nor should it)! So,

there are some things that dojo.declare might never do (for example,

more complete multiple inheritance renaming support). Look for more-

advanced object systems in Dojox to solve these kinds of problems.

But, even when available, such a system should probably be used only

if required. In almost all cases, dojo.declare will solve your object mod-

eling problems.

Chapter 10

dojo.data
Some web pages crave data. Data providers send it in all different for-

mats: JSON, XML, comma-separated, and so on. Data consumers refor-

mat the data in all kinds of ways: in tabular or hierarchical display, in

drop-down boxes, and so on. The result is a veritable Tower of Babel.

A drop-down widget must learn how to speak JSON and XML. So must

a Grid widget. So must a tree widget. On the other end, data providers

may need to speak different dialects of JSON: one for drop-downs, one

for grids, and one for trees.

To straighten up this mess, the Dojo programmers invented a single API

specification called dojo.data. The spec maps out four standard sets

of methods called features: one each for reading, writing, identifying,

and notifying. A driver class implements some or all of the dojo.data

features. Bundled with Dojo are drivers for JSON, XML, CSV, and other

data formats but also drivers for web services such as Flickr and Picasa.

In other words, dojo.data abstracts not just the data format but the

source as well.

The data might be an in-memory data structure, a stream of JSON

or XML, a distributed database on another machine, or a web service

from across the Internet. Now a widget need speak only one language—

dojo.data—to get data from a provider, no matter what the source.

The main JavaScript object you’ll use is a data store, which is an

instance of the driver. Each data store connects to one and only one

set of data. In your application, one driver class may have many data

store objects spawned from it.

THE BIG PICTURE 261

Working with dojo.data involves the following steps:

1. Choose the widget, or determine what you’ll need to do with the

data store in JavaScript.

2. Choose a dojo.data driver that fits your needed data format, data

source, and features. Often the widget will determine which fea-

tures you need. If the bundled drivers don’t fit your needs, you

may subclass a bundled driver or write your own.

3. Create your data store object declaratively or programmatically.

4. Hook the data store to your widget, or interact with the data store

in your own JavaScript code.

In this chapter, we’ll hit each of these steps. In the process you’ll learn

about Dijit’s data-enabled incremental search widgets FilteringSelect and

ComboBox.

10.1 The Big Picture

In Figure 10.1, on the following page, you can see the relationships

among the driver, the dojo.data specs, the data, and your code. dojo.data

is actually four specifications called features, each of which packages a

set of related methods. A driver may choose to implement some or all of

these features. The driver ItemFileReadStore implements the methods in

features dojo.data.Read and dojo.data.Identity. dojo.data.Read specifies,

among other methods, a fetch method. The widget calls fetch, which

gets JSON data from the server or its cache, massages it, and makes it

available through getValue and other Read methods.

Bundled Drivers

Dojo comes complete with the following dojo.data drivers:

• dojo.data.ItemFileReadStore, dojo.data.ItemFileWriteStore, and dojox.

data.QueryReadStore for JSON

• dojox.data.XmlStore for XML

• dojox.data.CsvStore for comma-separated variables

• Drivers for various photo-sharing web services: dojox.data.

PicasaStore, dojox.data.FlickrStore, and dojox.data.SnapLogicStore

• Interesting experimental drivers like dojox.data.KeyValueStore for

Java-style property files

Of these, ItemFileReadStore, ItemFileWriteStore, and QueryReadStore are the

ones we’ll use in this book.

THE BIG PICTURE 262

+fetch()

+getValue()

+getValues()

+getIdentity()

+getIdentityAttributes()

+fetchItemByIdentity()

dojo.data.ItemFileReadStore

Enter Text

dijit.form.FilteringSelect

+fetch()

+getValue()

+getValues()

«interface»

dojo.data.Read

+getIdentity()

+getIdentityAttributes()

+fetchItemByIdentity()

«interface»

dojo.data.Identity

Database

Web Servicedojo.xhrGet, ...

getValuefetch

dojo.io.script

Figure 10.1: dojo.data architecture

Data Stores Are Not Databases

Choosing a driver also involves knowing what features you need. But

before doing that, it’s essential to get a proper fundamental grounding.

Relational database technology is pervasive in web applications, so

you probably already know its terminology: databases, tables, rows,

and columns, and so on. But dojo.data drivers talk to more than just

databases, so the dojo.data documentation uses different, wider, and

more inclusive terms. For example, what you would traditionally call a

“column” in a database, a “property” in JSON, or a “tag name” in XML

becomes a property in dojo.data land.

It’s important to know these terms since they’re used in many dojo.data

method names. You won’t find a getRows method in the documentation,

for example, but you will find getItems. That trips up many folks using

dojo.data for the first time.

THE BIG PICTURE 263

Alex Says. . .

Session Data != Model Data

Most major web app frameworks include an interface to a rela-

tional database. I’m not a fan of relational databases for many web-

development tasks. Although the relational model is clearly a good

method for storing large volumes of inter-related persistent data (OK,

that’s Rawld talking, but he’s not wrong), it’s just as clearly not the pre-

ferred method to manipulate session data (that is, data the UI is using).

The reason for this is pretty simple. One of the relational model’s pri-

mary strengths is that it can return the answers to interesting questions—

questions that weren’t considered when the database was con-

structed. It does this by storing all data in a set of predicates and pro-

viding a language (unfortunately, SQL) to reason with those predicates.

But, we don’t need any of this complexity when we’re displaying a data

set in a form. When we’re wiring up a UI, we’re nearly always talking to a

service that can answer a particular question. The return data is often a

simple document, either a flat list of answers or possibly a nested group

of properties and their values! Further, since we’re concerned with other

things in the UI—such as changing an item in one place results in chang-

ing it every place—the data model used to back a UI needs features

the relational model may not handle well, particularly when it comes to

enforcing security constraints or other business logic. Additional code is

needed, and it’s best not to replicate that on both sides of the wire.

That’s one of the key ideas behind dojo.data: constructing a sim-

ple session and service-oriented data model that includes functional-

ity needed to develop robust UIs. The abstractions in dojo.data are

designed to allow widgets to interface with disparate data sources

though a unified API without taking on responsibilities that the browser

can’t handle well anyway. For instance, it’s the UI’s job to provide user

feedback when an operation might take a little while, so many of the

dojo.data abstractions are explicitly asynchronous to make sure that

the UI code has a chance to communicate effectively about the state

of the app. Conversely, dojo.data makes no explicit gaurantees about

data’s relationships to other bits of data, allowing data stores to be

implemented on top of existing services and without forcing data store

authors to think about tasks that the browser can’t do efficiently any-

way. By making things that should be the browser’s job easy and things

that should usually happen on the server harder, dojo.data helps keep

applications out of the gutter in terms of performance.

dojo.data is there to make building UIs easy. Nothing more, nothing less.

THE BIG PICTURE 264

data store

A JavaScript object that makes available the data from a data

source. A data store is always an instance of a dojo.data driver

class. The terminology is a bit jarring at first, but you can think of

a data store as a “mini-driver”: one that handles the operations of

one particular data source.

A data store connects to exactly one data source, which is in turn

backed by a URL or a JavaScript string. You can have more than

one data store defined for a particular data source—for example,

you can provide read-only access through one data store and read-

write access through another.

data source

The URL or JavaScript string variable where the raw data comes

from. If you use the URL method, which is more common, the

data may be fed from a static file, a server program hooked to a

database, or some other form of web service. The dojo.data driver

doesn’t care where the data comes from or how it’s generated. It

cares only what format the data is in. The data may be nested,

which separates it from a pure relational table. This is analogous

to table or nested tables.

attribute

A field name, for example “Street Address.” This is sometimes

called a property. This is analogous to column.

value

The contents of an attribute, for example, “1127 North Spring Ave.”

multivalue

One to many values belonging to the same attribute. This is anal-

ogous to storing an array in a database column (which some data-

bases let you do; others don’t).

item

An object in the data store containing attributes and values. Items

in the same data store aren’t required to have the same attributes;

for example, one item may have an addressLineFive attribute, and

another may not. But they usually have some attributes in com-

mon, or else items would be impossible to display and compare.

This is analogous to row.

THE BIG PICTURE 265

To make things interestingly recursive, an attribute’s value may

itself be an item. You can have nested items, items with more than

one parent, and even circularly related items.

identity

A value used to uniquely identify an item within a single data

store. When a data store has an identity, each item in that store

must provide an identity value. Some drivers force you to provide

the identity in an attribute, but some drivers generate it for you. If

you’re providing the identity, it is very important to ensure identity

values are unique—most dojo.data drivers will alert you if they find

a violation. This is analogous to primary key.

label

An attribute functioning as the human-readable equivalent of an

identity. For example, an item may have the identity customerNum-

ber:999135 and the label customerName:"Jane Public". Data-enabled

widgets such as Tree use the label as an item’s visible symbol.

Unlike identity values, label values do not need to be unique.

query

A request for some subset of data store items. A query is a hash

whose property name-value pairs are matched against items. This

is analogous to the WHERE clause of a SQL select.

internal data representation

The private data structures that a data store uses to cache data in

local memory (for example XML DOM nodes, JavaScript hashes,

or arrays of arrays).

request

The parameters that are used to limit and sort a set of items. This

includes the query, sorting attributes, upper and lower limits, and

handlers.

fetch

The operation that takes a request and returns items matching

that request. This may trigger a server request via XHR, or it may

not (for example, if the data is cached).

Features

Now that we’re working with a standard terminology, we can talk about

driver features. Here, we’re using the word feature in the precise way

dojo.data defines it, that is, as a group of related methods. dojo.data

THE BIG PICTURE 266

methods are grouped into features named Read, Write, Identity, and Noti-

fication. A driver may implement some or all of these features. So, for

example, ItemFileReadStore and ItemFileWriteStore use the same JSON-

based data format, but only the latter has the Write and Notification fea-

tures. Still, the Read methods are the same no matter what driver you

use, and that’s the beauty of the dojo.data specification.

A driver’s features are usually listed in its documentation, but you may

also call the method data store.getFeatures(), which returns a hash with

properties named after the dojo.data features. For example, if ifrs is of

type dojo.data.ItemFileReadStore, then ifrs.getFeatures() returns { dojo.data.

Read: true, dojo.data.Identity: true }. The latter technique is useful for writ-

ing generalized data-enabled widgets, where you have no idea which

driver is on the other side.

Here are the features and their methods’ general responsibilities:

dojo.data.Read

A driver is fairly useless without this feature, because its methods

enable fetching items and reading the attributes inside. Not sur-

prisingly, all bundled dojo.data drivers implement this. The Read

feature contains methods to load items, view their attributes, com-

pare an item value, handle multivalued attributes, paginate, sort,

and filter the items.

dojo.data.Write

This feature enables writing to the items as well. These methods

change the in-memory copy of the data, but they can also save

data back to a server. Some drivers like ItemFileWriteStore allow a

custom save handler to precisely control client-to-server writing.

We will look at an example in Chapter 13, Tree, on page 341.

dojo.data.Identity

Closely aligned with Read, Identity methods perform quick unam-

biguous random-access lookups. To use these methods, each data

store item must have a unique identity value. The Dijit compo-

nents ComboBox, FilteringSelect, and Tree require the Identity feature.

dojo.data.Notification

This feature allows you to hook into data store events. You provide

an appropriately named handler to the driver, and the driver then

calls it whenever that event occurs. For example, if you provide an

onDelete handler to a Notification-enabled data store, that handler

THE BIG PICTURE 267

is called whenever an item is deleted. This is particularly useful

for posting new, updated, or deleted records back to the server.

The bundled drivers implement these features:

• The dojo.data.ItemFileReadStore, dojox.data.QueryReadStore, and

dojox.data.CsvStore drivers implement the dojo.data.Read and dojo.

data.Identity features.

• The dojo.data.ItemFileWriteStore driver implements dojo.data.Read,

dojo.data.Identity, dojo.data.Write, and dojo.data.Notification.

• The dojox.data.XmlStore driver implements the dojo.data.Read and

dojo.data.Write features.

• The dojox.data.PicasaStore, dojox.data.FlickrStore, and dojox.data.

SnapLogicStore drivers implement the dojo.data.Read feature.

An Example Using dojo.data.ItemFileReadStore

Let’s look at a concrete example of a data store using ItemFileReadStore to

see where all these terms apply. We have some JSON-formatted experi-

mental data in code/data/datasources/genetox.json.1 Each item describes

a genetic experiment: apply a foreign agent to a live subject, and see

whether it causes genetic damage. So, for example, the first experi-

ment describes subjecting vivo mammalian somatic cells to irradiated

potato extract. The results, under the result attribute, are “no conclu-

sion.” (Moral: Stay away from the irradiated potato extract aisle of your

supermarket, just in case.)

JSON data handled by the ItemFileReadStore must follow this structure:

{

identifier: «identifierAttribute»,

[label: «labelAttribute»,]

items: [

{

«identifierAttribute»: «idValue»,

[«labelAttribute»: «labelValue»,]

«attribute1»: «value1»,

«attribute2»: «value2»,

...

},

...

]

}

1. The sample data comes from GENETOX, a U.S. government database of toxic

genetic effects on organisms. This is just one of the free, fun databases available at

http://www.nlm.nih.gov.

DOJO.DATA AND INCREMENTAL SEARCH 268

attribute value

{ identifier: “docno”
 label: “substance”
 items: [
 { docno: 39,
 substance: “ALLOXAN”,
 taxonomy: “Chromosomal effects”,
 date: “19910822”,
 specimen: “Neurospora”,
 result: “positive”
 }
]

} item

identity
label

Figure 10.2: A dojo.data.ItemFileReadStore data source

The identifier property points to the identifier attribute in items. The

optional label property points to the label attribute. Finally, the data

itself comes in items, always an array of JSON hashes even if there are

0 or 1 of them.

Our test data, whose first few lines are shown in Figure 10.2, fits that

structure. Each item has the identifier attribute, in this case docno, and

the label attribute, in this case substance.

So, that’s an ItemFileReadStore-based data store in a nutshell. For this

chapter, we’ll concentrate on this driver and its cousin QueryReadStore.

Another popular driver, ItemFileWriteStore, will show up in Chapter 13,

Tree, on page 341. The important thing here is that an item is an item

is an item, no matter what dojo.data driver you use.

With a sure grounding in the fundamentals, we can start shoveling data

into widgets.

10.2 dojo.data and Incremental Search

A popular Ajax user interface pattern is the incremental search box,

sometimes known as a suggestion widget. Dijit implements incremental

search in two widgets: dojo.form.FilteringSelect and dojo.form.ComboBox.

DOJO.DATA AND INCREMENTAL SEARCH 269

Each gets its suggestion data from a dojo.data data source, and each

resembles a <select> tag. But FilteringSelect limits your choices to the

provided suggestions, while ComboBox does not.

These widgets outperform a <select> when the number of options is

high. Here’s how: suppose you have 1,000 options. A regular <select>

would create all 1,000 <option> tags. Dijit’s incremental search wid-

gets instead display a small number of matching options after each

keystroke. Each of these option sets is called a page, and the page size

is the number of items displayed at one time. If the page size is 30, the

first keystroke will generate one page of 30 items, the second will gen-

erate another page of 30 items, and so forth. This technique is called

lazy rendering, because the widget creates option markup only when

absolutely necessary.

In the next few sections, we’ll set up a FilteringSelect with suggestions

from the experiment data store. The customization options are similar

in ComboBox, and we’ll show a few unique features of each.

Creating a Data Store Object

To begin the widget, you must first instantiate the data store object. As

with most things in Dojo, you can create the data store object declara-

tively or programmatically. Here’s the declarative style:

Download data/genetox_def.html

<div dojoType="dojo.data.ItemFileReadStore"

url="datasources/genetox.json"

jsId="genetoxStoreDeclarative" />

The declaration requires a driver class name, specified in dojoType=.

jsId= declares a JavaScript variable holding the data store handle. You’ll

use that variable to connect the data store to the widget.

Different drivers require different sets of attributes. With ItemFileRead-

Store, you may specify either the url= attribute or the data= attribute,

but not both. URL-backed data stores get data from a server. The data=

property, on the other hand, specifies a JavaScript string holding the

data. This method is rarer but occasionally useful for small, client-

generated data stores. The programmatic version is similar:

Download data/genetox_def.html

genetoxStoreProgrammatic =

new dojo.data.ItemFileReadStore({

url: "datasources/genetox.json"

});

DOJO.DATA AND INCREMENTAL SEARCH 270

Once you have the data store handle in a JavaScript variable, you can

pass it to the incremental search widget like this:

Download data/genetox_def.html

<div dojoType="dijit.form.FilteringSelect"

store="genetoxStoreProgrammatic"

labelAttr="substance"

searchAttr="docno"

name="substance"/>

So, you have a pipe carrying data from the data store to the widget.

Now you just need to control the flow a bit.

Pulling Suggestion Values

In our example, throwing the entire data store of experiments at the

widget is way too much. So, you must tell the widget the suggestions

are values in the substance attribute like this:

Download data/genetox_def.html

<div dojoType="dijit.form.FilteringSelect"

store="genetoxStoreProgrammatic"

labelAttr="substance"

searchAttr="docno"

name="substance"/>

Here, the labelAttr= property points to the human-readable label attri-

bute, and searchAttr= points to the server-consumable value. You can

think of it like an <option> tag with labelAttr= containing the option

body and searchAttr= containing the option’s value attribute.

When you type some letters in the FilteringSelect, the attribute speci-

fied in labelAttr= is matched against it. FilteringSelect, in the background,

copies the corresponding value in searchAttr= into a hidden field. When

the form is submitted, this is the value sent. (We’ll see how this mech-

anism works in Chapter 15, Form Controls, on page 394.) It’s just like

a <select> in that respect.

AutoComplete

FilteringSelect takes a lot of the guesswork out of typing a value, but not

all of it. Suppose the user types PZ, which matches no values, and tries

to press Tab . In that case, the value is considered illegal, and the Tab

is ignored. And what about the opposite problem? Perhaps they type

PH, which matches many documents. What happens if the user tries to

tab out then?

DOJO.DATA AND INCREMENTAL SEARCH 271

Figure 10.3: Autocomplete helps a user select the appropriate value.

Here, FilteringSelect’s autoComplete= attribute can help. Set to true, the

first document matching PH will automatically display in the field, and

the user can simply tab out to set it. This is illustrated in Figure 10.3.

Set to false, the user must either type the entire document name or

select it by arrowing down the drop-down list and pressing Enter .

ComboBox, which accepts values not in the data store, does not have to

deal with this stuff. Like a regular textbox, it passes the displayed text

to the server as name. So, ComboBox has only a searchAttr= attribute.

Queries

Sometimes you may not want all the values available for suggestions,

just a subset of them. For instance, you may want to display sub-

stances with experiments performed in 2001. Queries can help you

here.

Many of Dojo’s bundled drivers like ItemFileReadStore and XmlStore sup-

port a “semistandard” query language that you can tap into. It’s not a

full regular expression or SQL-like query language: there are no ORs,

NOTs, set operations, numerical comparison operators, or joins. The

standard format is as follows:

{ «attribute1»: "«expression1»"

[, «attribute2»: "«expression2»"]

, ...

}

PARTITIONING WITH QUERYREADSTORE 272

The commas are implied ANDs, so query="{ date:’2001*’, result:’positive’}"

matches 2,001 documents with a positive result. In the expressions,

the wildcard * matches any sequence of characters (including the empty

string), and ? matches one character. You use the * operator like this:

Download data/genetox_init_query.html

<div dojoType="dijit.form.FilteringSelect"

store="genetoxStoreDeclarative"

searchAttr="docno"

labelAttr="substance"

name="subname"

query="{ date: '1995*' }"

/>

This query language also supports two query modifiers, which you pass

as a hash literal to queryOptions=:

ignoreCase

Setting ignoreCase to true initiates a case-insensitive search.

deep

When the driver supports nested items, setting deep="true" will

cause these nested items to be searched as well. Nesting is a sub-

ject we’ll cover in Chapter 13, Tree, on page 341.

dojo.data does not require all drivers to support this query language.

The example that ends this chapter—Section 10.5, A Yahoo Search

Driver, on page 280—does not support wildcards, mainly because the

backing Yahoo Search web service doesn’t allow them. But since all

bundled dojo.data-enabled widgets assume the same query language,

it’s a good idea to support it as far as possible.

10.3 Partitioning with QueryReadStore

FilteringSelect lazy renders data by constructing one page of items at a

time from browser memory. That speeds up a drop-down list of 1,000

items. Now suppose you have 100,000 options. Many Dojo users try

to feed a FilteringSelect a data store of this magnitude, only to find the

performance drop substantially. How could that be? After all, you are

still rendering a page of items at a time, right?

Why You May Need Partitioning

The bottleneck is in ItemFileReadStore. The driver creates an XHR request

from the URL you provide. When the first fetch occurs from FilteringSelect

PARTITIONING WITH QUERYREADSTORE 273

(that is, the first keystroke), ItemFileReadStore dutifully loads everything

that /path/to/myjson.json returns—all 100,000 items. XHR requests can-

not say, “Give me the data from /path/to/mydata.json, but only items

300–330.” It’s all or nothing.

To its credit, ItemFileReadStore makes the XHR request only once and

caches all the items in browser memory. So when the second keystroke

into a FilteringSelect generates the second fetch to ItemFileReadStore, it

simply hands over the page of items from the cache.

Still, at 100,000 items, it’s the initial load that kills performance. The

driver must take all the data and pull out a page worth of items to

match the query FilteringSelect constructs from the keystrokes. When

faced with a job this big, you really need a different design. Hmmmmm.

The server is not doing much work. If it could do the sorting and select-

ing job and then send down just the page of data needed, the browser

could be free to do the rendering. You’d use less network bandwidth and

less client processing. This technique is called partitioning: you split a

large job between a client partition and a server partition.

Fortunately, Dojo comes bundled with a partitioning JSON driver called

dojox.data.QueryReadStore. It implements the same dojo.data APIs that

dojo.data.ItemFileReadStore does and reads the same data format. But it

delegates the sorting and selection to the server. The server portion is

not magic—you must program it in your server-side language. That part

is beyond the scope of this book. Still, programmers find this natural

when they already have a server-side program converting data (say,

from a database) to JSON for Dojo’s use.

Translating dojo.data Queries to Server URLs

It’d be nice to simply replace dojoType="dojo.data.ItemFileReadStore" with

dojoType="dojox.data.QueryReadStore" and leave it at that. In fact, you can

try it, but the search box will perform even worse than ItemFileReadStore.

It all stems from fetching philosophies. ItemFileReadStore is absolutely

conservative—it will issue only one XHR request no matter how many

times one calls fetch. QueryReadStore is absolutely liberal—it will issue

an XHR request for every fetch. If your URL passes back 100,000 items

and you use it unchanged in QueryReadStore, it will keep fetching the

same 100,000 items over and over again. Uggggh. That’s not the direc-

tion we want to go!

PARTITIONING WITH QUERYREADSTORE 274

The server needs more information. It needs to know what records to

look for, how many to return, and how to sort them. That sounds a lot

like a dojo.data request. And in fact, if your server program could parse

and understand a request like this. . .

Download data/datasources/simple_request.js

{

query: {name: "A*"},

queryOptions: {ignoreCase: true},

sort: [{attribute:"name", descending:false}],

start: 100,

count: 10

}

then everything would be hunky-dory. But different server-side pro-

grams require different forms of URLs. For example:

mystore.php?query=A%&page=1&itemsperpage=10&sort=name

Rather than be dictatorial, QueryReadStore allows you to plug in code to

rewrite the dojo.data request as a URL. You do this by writing a subclass

of QueryReadStore and using that for your driver instead.

Fortunately, the subclass you must write will be quite simple. You only

need to override the fetch method, which will rewrite the request hash

into server parameters. You’ll place the parameters in a hash literal and

assign it to the QueryReadStore property serverQuery, which resembles

the content hash of dojo.xhr*.

In our example, there are a couple of transformations. First, QueryRead-

Store’s wildcard character * must be replaced with the server program’s

wildcard character %. Second, the count parameter is copied to the

server parameter itemsperpage= and the query parameter to q=. Finally,

a starting row, 100, must be transformed into a page number, 10.

Here’s the complete driver you need:

Download data/datasources/sample_rewriter.js

dojo.provide("dojobook.data.datasources.sample_rewriter");

dojo.require("dojox.data.QueryReadStore");

dojo.declare(

"dojobook.data.datasources.sample_rewriter",

dojox.data.QueryReadStore, {

fetch:function(request) {

request.serverQuery = {

q: request.query.substance.replace("*", "%"),

CALLING READ METHODS FROM JAVASCRIPT 275

itemsperpage: request.count,

page: Math.floor(request.start / 10)

};

// Call superclasses' fetch

return this.inherited(arguments);

}

});

QueryReadStore sends both the request.query and the request.serverQuery

properties combined. In the previous example, mystore.php?q=A&page=10&

itemsperpage=10&query=A*&start=1&count=10 gets sent. As long as the extra

parameters do not interfere with the server program, you needn’t worry

about it. If they do, you can simply null out request.query.field in the

QueryReadStore subclass.

10.4 Calling Read Methods from JavaScript

Up until now, we’ve let the widgets call the various driver methods.

Now we’ll call them ourselves from JavaScript. This extends the range

of what you can do with data stores. For example, you can loop through

a data store’s values to find the maximum. You can rig a Button widget

to add an item to the data store. Or you can duplicate-check a newly

entered value against existing data store values. Of course, you can

use JavaScript to write your own data-enabled widget as well. Ah, the

possibilities!

You’ll use Read more than any other feature in your own code. In Chap-

ter 13, Tree, on page 341, we’ll cover the important methods of Write,

Notification, and Identity.

As with widgets, to use a data store you must first create a data store

object as we detailed in Section 10.2, Creating a Data Store Object, on

page 269. That gives you a JavaScript variable with the data store object

in it. Then you call methods on it.

fetch and Pagination

Let’s start with fetch. Functioning much like SQL’s SELECT verb, fetch

takes a query, a sorting hash, and parameters for the page location

(start, count), then grabs the appropriate items from the data source.

It’s a fairly complex function call, but it’s usually the first method you

call on a data store. Once you learn it, the rest of the dojo.data methods

make sense.

CALLING READ METHODS FROM JAVASCRIPT 276

fetch takes only one parameter: the request hash whose properties are

as follows:

{

query: /* String or hash */

queryOptions: /* hash */

sort: /* Array of hashes */

start: /* Number */

count: /* Number */

// Handlers

scope: /* Object */

onBegin: /* function */

onItem: /* function */

onComplete: /* function */

onError: /* function */

} → dojo.data.Request

Most requests need only a subset of these properties. You’ve seen some

of them before: in particular, query and queryOptions for selecting. Some

of the properties are ignored in some drivers; for example, a driver that

does not support sorting will not recognize the sort parameter.

Some drivers support pagination, and like querying, it can be done

on the client or server. ItemFileReadStore paginates solely on the client,

meaning it gets all the data from the server at once but can hand over

a page of results at a time. QueryReadStore can paginate on the client or

the server; with server pagination, the server program must recognize

parameters identifying the page. For example, in the previous section,

our PHP program needed the parameters page and itemsperpage.

The properties start, which is the item number you want fetched first,

and count, which is the number of items you want returned, define

the scope. You usually initialize these to 0 and your desired page size,

respectively. fetch adds the count to the start property and hands the

request object back on return. To get the next page, you just re-pass

this request object to fetch.

Sorting

Many bundled dojo.data drivers (ItemFileReadStore and XmlStore among

them) support client-side sorting as well. You simply pass the sort prop-

erty an array of hash literals. Each hash corresponds to one attribute

of a compound key. The classic example is “last name, first name” in

which there are two attributes—last name and first name—scrunched

into one compound key.

CALLING READ METHODS FROM JAVASCRIPT 277

Each sort array hash has the following attributes:

attribute

This is the data store attribute whose values you want to sort.

descending

By default, values sort in ascending order. Set this attribute to

true to sort descending instead. null is considered higher than any

other value, so they sort to the bottom for ascending order and the

top for descending.

The order of the attributes goes from most significant to least. So, the

compound key [{attribute: "date"}, {attribute:"substance"}] sorts first by date

and then, for two documents with the same date, by substance.

fetch Handlers

The scope property value becomes this in the handlers onBegin, onItem,

onComplete, and onError. It is similar to the context parameter in dojo.

hitch.

These handlers are similar to those used in remote scripting methods

like dojo.xhr*. fetch itself does not return items. Instead, it kicks off an

asynchronous request and returns control to your program immedi-

ately. The fetch continues in the background, first waiting for the data

from the XHR request and then assembling the data into items. The

handlers you provide in the onBegin, onItem, onComplete, and onError

properties execute at key points during the process. These handlers,

listed here in the order they’re called, are as follows:

onBegin(Number itemCount)

The onBegin handler is called before the first item returns. If the dojo.

data driver can determine the number of items beforehand, it is passed

in itemCount; otherwise, it’s set to -1. A popular use of this handler is

to initialize a dijit.ProgressBar widget with the total number of items and

then use the onItem handler to update the progress.

onItem(dojo.data.Item item)

onItem is called when an item is available for processing. You can use

the item to, for example, keep a running sum of values. When the onItem

handler returns, the fetching continues.

onError(Error errorData)

If a transmission error occurs, the driver calls your onError handler. Like

the error handler in dojo.xhr*, this reports only errors getting the data,

not errors reported from the server, such as “no data found.”

CALLING READ METHODS FROM JAVASCRIPT 278

Also like dojo.xhr*, the error data is passed back in the first parameter.

onComplete(dojo.data.Item[] items)

Finally, the onComplete handler is called after all the items are fetched.

If there’s no onItem handler, the first argument will be an array of all

the items. If there is an onItem handler, this parameter will be null.

Essentially, this means you can process the items one-by-one through

onItem or all at once with onComplete, but not both.

More Read Methods

Once you’ve fetched items, you can read them:

datastore.hasAttribute(dojo.data.Item item, String attr) → Boolean

datastore.getLabel(dojo.data.Item item) → Object

datastore.getValue(dojo.data.Item item, string attr) → Object

One common mistake is trying to call methods on an item. You always

call dojo.data methods on a data store object. If you’re calling per-item

methods, item is always the first parameter, not the object.

hasAttribute returns true if an item has a particular attribute. This may

look strange if you’re used to relational tables, where all rows have the

same set of columns. Data store items, on the other hand, may or may

not have a particular specified attribute, which is the reason for the

test. getLabel and getValue return the value for the label attribute or an

arbitrary attribute, respectively.

The following example shows a fetch in action and illustrates some of

the other Read methods. This code will list all the specimen values in a

bulleted list with duplicates removed.

Download data/genetox_api_demo.html

Line 1 var genetox =
- new dojo.data.ItemFileReadStore({
- url: "http://localhost/dojobook/data/datasources/genetox.json"
- });
5

- // Organisms will be placed in a dictionary
- var organismList = new dojox.collections.SortedList();
-

- // Fetch all the values once the page has loaded
10 dojo.addOnLoad(function() {

- genetox.fetch({
-

- onBegin: function() {
- console.debug("Begun");

15 },
-

CALLING READ METHODS FROM JAVASCRIPT 279

- onError: function(errData, request) {
- console.debug("Error Occurred");
- console.dir(errData);

20 },
-

- onItem: function(item) {
- if (! genetox.hasAttribute(item, "endOfFile")) {
- console.debug("Loaded "+genetox.getLabel(item));

25 var spec = genetox.getValue(item, "specimen");
- organismList.add(spec, spec);
- }
- },
-

30 // When everything's done, list them in the page
- onComplete: function(items, request) {
- listNode = dojo.byId("resultUl");
- organismList.forEach(function (org) {
- var listItem = document.createElement("li");

35 listItem.innerHTML = org;
- listNode.appendChild(listItem);
- });
- }
- });

40 });

The onItem handler at lines 22 to 28 executes once for each item fetched.

The last item in the data store is a sentinel record { endOfFile: true } for

which the hasAttribute call at line 23 tests.

The getLabel call gets the label of an item, where the label attribute

is in the data store (in our data store, that’s substance). Finally, the

getValuecall at line 25 simply gets the value for the named attribute in

the given item.

The code saves all specimens in a dojox.collections.SortedList collection,

which simultaneously sorts the values and ignores all duplicates. The

onComplete handler from lines 31 to 38 simply reads the set back out,

writing it to a bulleted list. onComplete doesn’t touch the data store

at all. That makes sense because when an onItem handler is provided,

onComplete gets nothing passed to it.

The fetch operation does a lot of work. But the Read feature has many

more useful methods as well, and rather than list them all, we’ll actually

build a driver implementing Read and Identity. It’s not as difficult as

you’d think!

A YAHOO SEARCH DRIVER 280

+fetch()

+getValue()

+getValues()

+isItem()

+getFeatures()

+getAttributes()

+isItemLoaded()

+loadItem()

+hasAttribute()

+containsValue()

YahooSearchStore

Internet

Yahoo

getValuefetch

<script src=”http://
search.yahooapis.com/

..

myHandler(
“ resultSet: [
 Result: {
 Url: ‘http://
 Description:
 }, …
“
);

Grid

Figure 10.4: Plan for Yahoo Search driver

10.5 A Yahoo Search Driver

dojo.data drivers traditionally connect to web services that you control.

But there’s nothing limiting you to your own network or data formats.

With a little work, you can build a dojo.data driver connecting to web

services beyond your network. Really! The driver we’ll build will call

Yahoo Search with terms like “ben and jerrys” and feed the results into

a grid, much like the cigar example in Chapter 3, Connecting to Outside

Services, on page 37. But the resulting code is easier and reusable.

In Figure 10.4, you can see the strategy. You send the Yahoo Search

service some terms, and Yahoo sends back a page of results in JSON

format. It’s not appropriate for ItemFileReadStore for two reasons. First

the web service is out of the browser’s domain, and ItemFileReadStore,

being based on dojo.xhrGet, must follow the same-domain rule. Second,

the web service results are not in ItemFileReadStore format.

A YAHOO SEARCH DRIVER 281

But our driver won’t care. It’ll use JSONP to get around the same-

domain rule and use it right from the fetch method. And it’ll use Yahoo’s

own search results structure as its internal structure. For example,

Yahoo sends back its results array in the property Results.Result. Remem-

ber that a dojo.data driver is a black box. It doesn’t matter how the

driver stores the data internally, as long as the dojo.data methods re-

spond properly.

It is customary and helpful to link each item to its store through an

added property _S. We need this to properly enforce methods like isItem.

If someone were to hand off an item to isItem, it could be from a different

data store even if the attributes and values are identical to a given item.

To prevent such mixups, you simply compare the _S property with the

data store (in the this variable).

So, first you define the class itself. A data store needn’t be a subclass

of any dojo.data class; it needs to implement only the dojo.data APIs.

Each search request requires only one dynamic parameter, the search

terms, so those are defined first in the constructor call.

Download data/datasources/YahooSearchStore.js

dojo.declare("dojobook.data.datasources.YahooSearchStore", null, {

searchTerms: "",

constructor: function(args){

if (args && args.searchTerms) {

this.searchTerms = args.searchTerms;

}

},

Now we’ll implement the Read API methods, one by one. First, get-

Features returns the APIs the driver implements. getAttributes defines

attributes so that driver users can iterate through them with getValue.

Fortunately, you don’t need attributes for every data element Yahoo

returns—just ones the driver users will find interesting.

Download data/datasources/YahooSearchStore.js

_searchUrl: "http://search.yahooapis.com/WebSearchService/V1/webSearch",

// A reference to the store is kept in every item in the _S attribute. That

// way, we catch errors with items being passed to us from different stores.

_storeRef: "_S",

getFeatures: function(){

return {

'dojo.data.api.Read': true

};

},

A YAHOO SEARCH DRIVER 282

getAttributes: function(item){

// These are all the interesting properties coming back

// from Yahoo

return ["Url", "Title", "Summary"];

},

fetch is the heart of the driver and often is the most difficult to write.

But if you can get all the data store elements in one remote scripting

call and store them in a JavaScript array, dojo.data provides a shortcut.

The dojo.data.util.simpleFetch class implements a fetch that handles pag-

ination, sorting, and simple events for you. You mix its methods into

your own drivers like this:

Download data/datasources/YahooSearchStore.js

// End of the dojo.declare for YahooSearchStore

});

dojo.extend(

dojobook.data.datasources.YahooSearchStore,

dojo.data.util.simpleFetch

);

Note the dojo.extend statement comes after the entire dojo.declare state-

ment. Then all you must do is implement a handler for simpleFetch’s

_fetchItems extension point, which looks like this:

_fetchItems(

/* dojo.data.request */ request,

/* function */ fetchHandler,

/* function */ errorHandler

)

_fetchItems takes in a dojo.data request and assembles an array of items.

But since most drivers act asynchronously and ours is no exception,

you can’t just say return items;. Instead, simpleFetch passes in a handler

through the fetchHandler parameter. Your code then calls fetchHandler

when it’s done retrieving items. If you’ve used dojo.xhr* at all, this tech-

nique should look familiar.

YahooSearchStore’s _fetchItems bears a striking resemblance to the Yahoo

Search example earlier in Chapter 3, Connecting to Outside Services, on

page 37. The actual processing of the list gets delegated to the private

method _processSearchData.

A YAHOO SEARCH DRIVER 283

Download data/datasources/YahooSearchStore.js

_fetchItems: function(request, fetchHandler, errorHandler){

if(!request.query){

request.query={};

}

//Build up the content to send the request for.

var content = {

appid: "DEMO",

query: this.searchTerms,

output: "json"

};

// self is pulled into handler by closures.

var self = this;

var deferred = dojo.io.script.get({

url: this._searchUrl,

content: content,

callbackParamName: 'callback',

handle: function(data){

// Process the items. fetchHandler is a reference to

// a function that simpleFetch passes here

fetchHandler(self._processSearchData(data), request);

}

});

deferred.addErrback(function(error){

errorHandler(error, request);

});

},

// HTTP requests don't need closing

close: function(request){ },

_processSearchData takes the array of items and adds an _S property to

point to the outlying store:

Download data/datasources/YahooSearchStore.js

_processSearchData: function(data){

// Default to empty store

var items = [];

if(data.ResultSet){

// The ResultSet field comes back as an array of Result objects

items = data.ResultSet.Result;

//Add on the store ref so that isItem can work.

var storeObject = this;

dojo.forEach(items, function(item) {

item[storeObject._storeRef] = storeObject;

});

}

return items;

},

A YAHOO SEARCH DRIVER 284

Checking an item for containment in our data store is fairly easy. A few

auxiliary procedures, mandatory in dojo.data.Read, do the job:

Download data/datasources/YahooSearchStore.js

isItem: function(item){

return item && item[this._storeRef] === this;

},

// The following two functions are used for lazy-loading

// data stores who fetch only the identifiers up front, then

// fill in the rest as they're accessed. YahooSearchStore does not

// lazy-load, so these are trivial.

isItemLoaded: function(item){

return this.isItem(item);

},

// loadItem

loadItem: function(keywordArgs){ },

The getValues may look strange—why pass back an array when clearly

each property has one value? Hierarchical data stores, which we’ll meet

in Chapter 13, Tree, on page 341, can have more than one value per

property. We include it here for completeness:

Download data/datasources/YahooSearchStore.js

getValues: function(item, attribute){

// summary:

// See dojo.data.api.Read.getValue()

if(!this.isItem(item)){

throw new Error("YahooSearchStore: invalid item");

}

if(typeof attribute !== "string"){

throw new Error("YahooSearchStore: invalid attribute");

}

try {

return [item[attribute]];

} catch (e) {

return [];

}

},

getValue: function(item, attribute){

// Basic read out of the items array

var values = this.getValues(item, attribute);

return values.length == 0 ? undefined : values[0];

},

A YAHOO SEARCH DRIVER 285

hasAttribute: function(item, attribute){

// We simply look up the attribute

return this.getValues(item,attribute) > 0;

},

containsValue: function(item, attribute, value){

var values = this.getValues(item,attribute);

return dojo.some(values, function(thisValue) {

return thisValue == value;

});

}

With that, our driver is complete. Using it with widgets is no more dif-

ficult than using a bundled driver, as you can see in this demo:

Download data/yahoo_search_store.html

<div dojoType="dojobook.data.datasources.YahooSearchStore"

jsId="searchStore" searchTerms="ben and jerry ice cream">

</div>

<table id="grid" dojoType="dojox.grid.Grid" store="searchStore"

clientSort="true"

style="width: 35em; height: 15em;">

<thead>

<tr>

<th field="Title">Title</th>

<th field="Url" >Url</th>

</tr>

<tr>

<th field="Summary" colSpan="2" >Summary</th>

</tr>

</thead>

</div>

The driver could stand some extensions. It gets only the first page

of data. Since Yahoo Search itself contains start and count parame-

ters, you can extend the YahooSearchStore to pass these parameters

on. SimpleFetch, however, will not work in this case since you obtain

results incrementally. You would need to write your own fetch method.

But overall, this class is useful and provides a blueprint for other web

service calls.

dojo.data drivers are to data processing what widgets are to UI pro-

cessing: they package the details in neat, reusable boxes. You can plop

these store definitions into any page with a couple of lines of markup

and use it to feed dojo.data-enabled widgets.

Here we covered dojo.data and the data-enabled widgets FilteringSelect

and ComboBox. In Part III, we’ll look at two very sophisticated and useful

widgets: Tree and Grid, which do more sophisticated kinds of display.

Chapter 11

The Dojo Loader
and Build System

One of the best ways to simplify a big, complex project is to divide it

up into a bunch of small, simple projects. So when you’re implement-

ing the next killer app, you’ll want to build a well-organized collection

of smallish JavaScript source files rather than a few huge monoliths.

Unfortunately, many small source files have a cost: if each of these

resources required an independent, sequential round-trip to the server,

the load times could be sluggish.

Together, the Dojo loader and build system let you modularize a large

project into any number of independent source files (which controls

complexity) yet package that same project into only a few, highly com-

pressed files (which optimizes download times). Currently, Dojo is the

only pure-JavaScript toolkit that has this capability.1 This chapter de-

scribes how to use these systems.

Before we dive in, a caveat is in order: you are not required to use these

systems for your own code. If your web app is small, then just throw

your code in a JavaScript source file, reference it from a script element,

and you’re done.

1. Some toolkits include processes that package the toolkit but not generic machinery

that you can use to package your own code. There are also server-side tools and/or client-

side tools that require plug-ins that implement various kinds of packaging; naturally the

footprint of these tools is much larger.

THE BIG PICTURE 287

11.1 The Big Picture

The Dojo loader and build system are both powerful and flexible. Be-

cause of this, covering every possible use case isn’t practical. However,

the background provided in this section together with the examples in

the remainder of the chapter will arm you with the knowledge and tools

required to organize and deploy your own projects optimally.

How the Loader and Build System Play Together

In Chapter 4, we described how Dojo was divided into three source

trees: dojo/, dijit/, and dojox/. Each of these trees defines a hierarchy

of modules. The function dojo.require maps a module name to a URL,

downloads, and then evals that resource. The Dojo machinery that col-

lectively implements dojo.require is termed the loader.

The idea of mapping a hierarchy of modules into URLs is termed the

Dojo module system. The Dojo module system allows a large code base

to be progressively divided into branches of independent functionality

with manageable size. When you are building applications large enough

to warrant this kind of organization, you can use the Dojo module sys-

tem for your own code.

Once the application is ready to deploy, the Dojo build system fixes

latency problems that result from downloading many small files.2 The

idea is to concatenate several source files together into one file. For

example, if module x dojo.requires modules y and z, then a single file

could be constructed by replacing the dojo.require statements in x.js (the

source file that implements module x) with the contents of y.js and z.js

(the source files that implement modules y and z). This single file is then

mapped to a module name (either x or some new module name). When

the new module is dojo.required, retrieving the single resource results

in all three modules being loaded. The concept of combining several

resources into a single resource is termed packaging.

Once the number of resources is controlled, the size of the resources

becomes important to minimizing download times. Since typical Java-

Script source files include lots of extra junk—comments, whitespace,

descriptive variable names—that doesn’t affect how the interpreter exe-

cutes the code, deleting and compacting this junk can result in dra-

matic space savings; compression rates of 75% are common.

2. Latency is the overhead cost to make a round-trip to the server. Latency is often much

more expensive than bandwidth for small resources.

THE BIG PICTURE 288

The Dojo build system packages and compresses sets of modules. Note

that the build system must understand how the loader works so it

can scan source files looking for dojo.require function calls and con-

struct packages of code that behave as if those function calls already

occurred—in the proper order.

The Cross-Domain Loader

Dojo includes two loaders:

• The standard loader: Able to load resources from the same origin

as the main document—only3

• The cross-domain loader: Able to load resources from any origin

The cross-domain loader can affect the way your code executes. Cod-

ing and deployment mistakes can cause failures that are frustrating

to diagnose. This need not be so. The cross-domain loader is easy to

understand and, once understood, is powerful and easy to use. We’ll

sketch out its operation so you can develop some intuition.

The standard loader retrieves resources by executing a synchronous

XHR call. However, if any URL resolved by dojo.require references a dif-

ferent origin other than the main document, then the cross-domain

loader must be employed. The cross-domain loader also retrieves any

resources with the same origin as the main document with a syn-

chronous XHR. However, since XHR does not work when addressing

a different origin than the main document, the cross-domain loader

employs a dynamic script technique similar to JSONP (as we discussed

in Section 8.3, Remote Scripting with script, on page 199) to solve this

problem.

Using a dynamic script element to load a script has an important con-

sequence: once dojo.require sets up the new script element, it returns—

before the resource is loaded. Similarly, if the resource itself contains

dojo.require function calls that load other JavaScript resources located

at a different origin than the main document, these function calls will

also return immediately. This breaks the promise that any dojo.required

resource will be evaluated before dojo.require returns.

3. Two URLs reference the same origin when their scheme, host, and port are iden-

tical. In http://www.acmecorp.com/index.htm, http is the scheme, www.acmecorp.com is

the host, and since the port is not provided explicitly, port 80 is implied by the

scheme http. Therefore, http://www.acmecorp.com/contact.htm references the same origin,

but https://www.acmecorp.com/account does not.

THE BIG PICTURE 289

To address this problem, the build system and loader work together

to guarantee that nested dojo.require calls are executed in order. When

the build system is used to create a cross-domain build, it determines

the dependencies for each JavaScript resource referenced in the build.

Then it constructs a function call back into the cross-domain loader,

passing dependency information together with the source code con-

tained by the resource. This function call is written to the original

resource name plus the suffix .xd.js. For example, given a.js...

Line 1 dojo.provide("acmecorp.a");
- dojo.require("acmecorp.b");
-

- acmecorp.a.f= function() {
5 //do something interesting...
- }

the build system would write something like the following to a.js.xd.js:4

Line 1 dojo._xdResourceLoaded({
- depends: [
- ["require", "acmecorp.b"]
- ["provide", "acmecorp.a"]
5],
- defineResource: function(){
- acmecorp.a.f= function() {
- //do something interesting...
- }

10 }
- });

The code calls back into the cross-domain loader (line 1), passing an

object that contains two properties. The first property, depends (line

2), is an array of pairs listing any module dependencies (in this case,

acmecorp.b) and the module this resource implements (acmecorp.a).

The second property, defineResource (line 6), defines a function that con-

tains the source for the module. Executing the function yields the same

result as evaluating the original source.

When the cross-domain loader loads a different-origin JavaScript re-

source through a dynamic script element, it appends .xd.js to the src URL

(for example, /acmeCorp/lib/a.js becomes /acmeCorp/lib/a.xd.js). Upon

downloading the resource, the script will execute, causing the function

written by the build system (line 1) to call the cross-domain loader with

the dependency information and the resource source code. The cross-

4. This is not exactly what the build system would produce, but it’s similar enough to

sketch out how the system works.

THE DOJO LOADER 290

domain loader loads any dependencies if they’re not already loaded

before executing the source code, thereby guaranteeing any nested dojo.

required resources are present before the script is executed.

Notice that there is nothing the cross-domain loader can do to ensure

non-nested dojo.require calls that load different-origin resources com-

plete before returning. Indeed, such calls will never complete before

returning. This has some coding implications we will discuss in Sec-

tion 11.2, Coding for the Cross-Domain Loader, on page 296.

You can employ the cross-domain loader by loading dojo.xd.js in place

of dojo.js.5 This might seem a bit odd since the system could have been

built to automatically switch from the standard loader to the cross-

domain loader when/if required. The design choice was made to min-

imize the dojo.js download size. Since you will know whether a partic-

ular web app references cross-domain resources, explicitly making the

choice of which loader to employ is not a big burden.

The bottom line is this: if you are going to dojo.require scripts from a

different origin than the main document, then

• You must use the cross-domain loader.

• You must prepare those scripts with the build system.

• However, you don’t need to prepare scripts that reside at the same

origin as the main document, no matter which loader you use.

If you are serving Dojo and all dojo.required resources from the same

origin as the main document, then you can ignore the cross-domain

loader. We’ll work through complete examples in Section 11.3, Optimiz-

ing Deployment with the Dojo Build System, on page 299.

That’s it for the big picture. The rest of the chapter explores the loader

and the build system in detail; we’ll start with the loader.

11.2 The Dojo Loader

So far, we’ve used only dojo.require to load modules defined by Dojo or

Dijit. This section describes how to construct your own modules.

5. This is a slight exaggeration. Technically, you could switch from the standard loader

to the cross-domain loader after dojo.js is loaded or, with more effort, back the other way.

But the current implementation wasn’t designed to make this on-the-fly loader switch,

and any attempt to execute such a switch would depend upon loader internals that may

change in future releases. Therefore, don’t do it!

THE DOJO LOADER 291

dojo.require

Although we’ve always used dojo.require with only one argument, it actu-

ally accepts two:

moduleName (a string)

Designates the module to be loaded. Module names map to URLs.

For example, "dojo.a.b.c" maps to dojo-module-path/a/b/c.js, where

dojo-module-path gives the URL path that was used to load dojo.js.

We’ll use the term implied resource to designate the URL implied

by a module name. We’ll have more to say about this in a moment.

omitModuleCheck (optional, a boolean)

If false or missing, dojo.require checks that the JavaScript object

given by moduleName has been defined after the implied resource

has been loaded and throws an exception if not; if true, then this

check is not executed.

dojo.require keeps track of the resources already loaded and ensures

they aren’t loaded more than once—it simply returns immediately if

the module already exists or if the implied resource has already been

loaded. Typically, the second argument is omitted.

Sometimes it’s convenient to divide a particular module into several

files where some of the files do not define a child module. For example,

a largish module might rely on a couple of independent sets of utility

functions. In this case, it is reasonable to divide these two sets into

separate “utility” scripts, resulting in a structure like this:

myApp/

myModule/

utilsA.js //does NOT define a module

utilsB.js //does NOT define a module

myModule.js

//other stuff...

Assuming myApp.myModule depends upon the functions defined in

myApp.myModule.utilsA and myApp.myModule.utilsB, it will dojo.require

these modules. However, since the utility modules do not define mod-

ule objects, the second argument to dojo.require must be provided with

a value of true to avoid the normal module check like this:

//inside myApp.myModule.js...

dojo.require("myApp.myModule.utilsA", true);

dojo.require("myApp.myModule.utilsB", true);

THE DOJO LOADER 292

These two lines load the utility modules as usual but won’t insist that

the variables myApp.myModule.utilsA and myApp.myModule.utilsB are de-

fined. Notice that most of the functionality of dojo.require is still there:

the module name is converted to a URL, and a check is made before

loading the URL to prevent loading the same URL more than once.

Module Paths

A module path is nothing more than a runtime configurable map from

a module name to a relative or absolute URL.6 Module paths let you

root different module “family trees” at different URLs. For example, you

could place different versions of a module hierarchy at different URLs

and then choose which version to load at runtime.

dojo.require maps a module name to a URL as follows:

1. The most specific parent module with a module path is replaced

with that path (for example, myApp.myModule is more specific than

myApp). If no module path is found, then the relative path ../ is

prepended to the module name; this will have the net effect (after

step 3) of causing the parent module to look like a sibling to the

module dojo.

2. Any remaining dots are replaced by slashes.

3. .js is appended as a suffix. If the URL is still relative, then the

path given by dojo.baseUrl is prepended. If the URL (now guaran-

teed to be absolute) references a different domain than the main

document, then .xd.js is appended as a suffix.

dojo.baseUrl is the URL path to the dojo module. It can be set by the

configuration option baseUrl (a string). As with all configuration options,

baseUrl can be specified with the djConfig attribute or the djConfig object.

If baseUrl is not explicitly set, then it is automatically set to the absolute

URL path from which dojo.js was loaded. Since every web page that uses

Dojo includes a script element that looks something like this...

<script

type="text/javascript"

src="/dojoroot/dojo/dojo.js"></script>

6. Warning: Currently, the cross-domain loader has a slightly odd behavior in that it

won’t handle an absolute path for a same-origin resource correctly. In practice, this

should never be an issue since a same-origin script should always have a relative path.

THE DOJO LOADER 293

dojo-module-path can be calculated when the script is loaded by search-

ing the DOM tree for a script element with an href that ends in dojo.js.

For example, assume that the previous script element is contained in a

web page that resides here:

http://www.acmecorp.com/public/apps/email/index.htm

Then, dojo-root would be as follows:

http://www.acmecorp.com/dojoroot/dojo/dojo.js

Unless you’ve renamed dojo.js, you should let Dojo autodetect baseUrl.

Setting Module Paths

The function dojo.registerModulePath adds module paths. It takes two

arguments, moduleName and path (both strings), that give the map from

a module name to an absolute or relative URL. As mentioned earlier, if

a relative URL is provided, then the path is relative to dojo.baseUrl; if

an absolute URL is given, then the path is relative to the root of the

server that served the document; finally, a complete URL can be given

by including the scheme and server. Here’s an example.

Assume you’ve created the following directory structure accessible from

the root of the server http://www.acmecorp.com:

public-libs/

dojo/

dojo/

dojo.js

...

dijit/

dijit.js

...

myApp/

a.js

b.js

mySubsystem.js

mySubsystem/

c.js

lib/

version-1/

x.js

version-2/

x.js

The only module path that is automatically registered by Dojo is dojo

=> /public-libs/dojo/dojo. So, in order to load the resources a.js and b.js

with dojo.require, the module path for myApp must be registered:

dojo.registerModulePath("myApp", "../../../myApp");

THE DOJO LOADER 294

Now you can load the scripts as usual with dojo.require:

dojo.require("myApp.a");

//loads /public-libs/dojo/dojo/../../../myApp/a.js

dojo.require("myApp.b");

//loads /public-libs/dojo/dojo/../../../myApp/b.js

You could accomplish the same thing by giving an absolute path:

dojo.registerModulePath("myApp", "/myApp");

The require statements look the same and end up loading the same

resources, but the actual resolved URLs are slightly different:

dojo.require("myApp.a"); //loads /myApp/a.js

dojo.require("myApp.b"); //loads /myApp/b.js

Using Module Paths to Control Version Publication

dojo.registerModulePath can be used to break the “direct” mapping from

module name to filename for good purpose. For example, you can map

the module name lib to the path /lib/version-1:

dojo.registerModulePath("lib", "../../../myApp/lib/version-1");

Now, in order to load /lib/version-1/x.js, write the following:

dojo.require("lib.x"); //loads lib/version-1/x.js

When a new release of the library is ready for publication, the location

of the library module—and all scripts that are children of this module—

can be set to /lib/version-2 by simply changing the dojo.registerModulePath

call. Even better, the argument to dojo.registerModulePath could be set

by some runtime function.

dojo.registerModulePath("lib", getLibVersion());

Module paths can also be set by the configuration option modulePaths

(a hash). For example, you could set the myApp module path through

the djConfig attribute like this:

<script

type="text/javascript"

src="../../dojo/dojo.js"

djConfig="modulePaths: {myApp: '../../../myApp'}">

</script>

dojo.provide

All objects defined by a module are created as properties of the mod-

ule object. The function dojo.provide takes a single argument, a module

name (a string), and creates the module object given by that name.

THE DOJO LOADER 295

When dojo.provide creates a module object, any undefined parent mod-

ule objects are simply created as empty objects. For example, if the

script /myApp/mySubsystem/c.js from the previous directory tree defines

the module myApp.mySubsystem.c, then c.js should include a call to dojo.

provide like this:

dojo.provide("myApp.mySubsystem.c");

And this causes the following to be evaluated:

Line 1 //note: dojo.global references the global object space
- if (typeof dojo.global.myApp=="undefined") {
- dojo.global.myApp= {};
- }
5 if (typeof dojo.global.myApp.mySubsystem=="undefined") {
- dojo.global.myApp.mySubsystem= {};
- }
- if (typeof dojo.global.myApp.mySubsystem.c=="undefined") {
- dojo.global.myApp.mySubsystem.c= {};

10 }
-

- //other stuff...
-

- return dojo.global.myApp.mySubsystem.c;

Notice that dojo.provide simply guarantees that the required hierarchy

of objects exists. It is up to the script that defines the module to popu-

late the module object with interesting properties. In particular, notice

that although dojo.provide("myApp.myModule.c") may cause the objects

myApp and myApp.myModule to be created, it does not load the modules

myApp and myApp.myModule.

On the surface, it doesn’t look like dojo.provide does much, but it’s

required to make the build system work correctly. So unless you’re

doing something special, you should always dojo.provide a module name

inside the script that defines the given module. Typically, this is done

in the first statement of a module.

The Module Pattern

dojo.require, dojo.provide, and the so-called module pattern are often

used together when authoring modules. We will demonstrate this by

showing the skeleton for the script c.js with the following attributes:

• It depends on the myApp.a, myApp.b, and myApp.mySubsystem mod-

ules (lines 8, 9, and 10).

• It defines the module myApp.mySubsystem.c (line 5).

THE DOJO LOADER 296

• It defines the functions awesome and reallyAwesome, which are

members of the module myApp.mySubsystem.c (lines 22 and 26).

• It defines the helper functions helper and anotherHelper (lines 13

and 17), which are used internally by the module but are not

accessible outside the module (they are private to the module).

Here’s c.js:

Line 1 //enclose all source in a function literal
- //to avoid polluting the global namespace...
- (function(){
- //define myApp.mySubsystem.c and take a reference...
5 var thisModule= dojo.provide("myApp.mySubsystem.c");
-

- //all modules used by myApp.mySubsystem.c go here...
- dojo.require("myApp.a");
- dojo.require("myApp.b");

10 dojo.require("myApp.mySubsystem");
-

- //private functions go here...
- function helper(){
- //...

15 }
-

- function anotherHelper(){
- //...
- }

20

- //public functions go here...
- thisModule.awesome= function() {
- //...
- }

25

- thisModule.reallyAwesome= function() {
- //...
- }
-

30 //execute the function literal...
- })();

By enclosing the entire contents of c.js in a function literal (line 3) that

is immediately executed (line 31), c.js can define local objects without

polluting the global namespace.

Coding for the Cross-Domain Loader

The differences between the standard loader and the cross-domain

loader arise from the fact that dojo.require returns immediately if the

requested module exists at a different origin than the main document

THE DOJO LOADER 297

(termed a cross-domain resource). We already discussed how the cross-

domain loader fixes this problem for nested dojo.require calls. However,

when you dojo.require a cross-domain resource in code contained by a

script element, it’s not nested, and there’s nothing dojo.require can do

to help the situation—it returns immediately before the script has been

downloaded and evaluated! If you invoke a function that is defined in

the dojo.required script before that script has been loaded, JavaScript

will throw an exception. This point is bit subtle but critical, so let’s look

at an example.

Suppose you have the module myApp.a that defines the single function

sayHello:

dojo.provide("myApp.a");

myApp.a.sayHello= function() {

alert("hello, world");

}

Then you write some JavaScript within a script element that uses myApp.

a.sayHello twice: first in another function definition (line 5) and second

by invoking it directly within the script (line 9):

Line 1 <script type="text/javascript">
- dojo.require("myApp.a");
-

- sayHelloAndGoodbye= function() {
5 myApp.a.sayHello();
- alert("goodbye");
- }
-

- myApp.a.sayHello();
10 </script>

If myApp.a references a cross-domain resource, then line 2 will return

before myApp.a has been loaded. Since JavaScript does not require that

all symbols be defined when translating a definition, line 5 doesn’t

cause a problem; however, myApp.a.sayHello must be defined prior to

its use in line 9. Since it’s not, line 9 will result in an error.

There are a couple of ways to solve this problem. First, you could wire

the myApp.a.sayHello call to the onLoad event as follows:

Line 1 <script type="text/javascript">
- dojo.require("myApp.a");
-

- sayHelloAndGoodbye= function() {
5 myApp.a.sayHello();
- alert("goodbye");
- }
-

THE DOJO LOADER 298

- dojo.addOnLoad(function(){
10 myApp.a.sayHello();

- });
- </script>

Dojo fires all functions registered with dojo.addOnLoad when all scripts

that are “in flight” have landed and been evaluated. So, the little func-

tion literal passed to dojo.addOnLoad won’t be executed until myApp.a

has been loaded.

The second way to solve the problem leverages the fact that the cross-

domain loader guarantees that nested dojo.require function calls will be

executed completely before they return. With this in mind, you can

avoid the problem of attempting to reference an object before it has

been defined by following these two coding rules:

1. After loading dojo.js, load JavaScript source files exclusively via

dojo.require; never use the src attribute of a script element to explic-

itly load a module.7 Instead, divide all code out into separate mod-

ules and load them with dojo.require.

2. Do not assume that anything other than dojo.js has been fully

loaded when writing code directly in a script element.

None of this is a burden since it’s a good practice anyway. So, we could

fix the example by copying all the code that’s contained in the script

element into another module, say myApp.b:

Line 1 dojo.provide("myApp.b");
- dojo.require("myApp.a");
-

- sayHelloAndGoodbye= function() {
5 myApp.a.sayHello();
- alert("goodbye");
- }
-

- myApp.a.sayHello();

Then, replace the contents of the script element with a single statement

that dojo.requires "myApp.b":

<script type="text/javascript">

dojo.require("myApp.b");

</script>

7. “Never” is a pretty obnoxious word. If you can’t live with it, then use the

dojo.addOnLoad technique discussed earlier.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 299

Alex Says. . .

More Dojo Debugging Options

When you load Dojo, there are a couple of djConfig properties
that can help. First, setting the property isDebug (a boolean)
to true causes Dojo to write more verbose warning and error
messages to the debug console. On browsers that don’t have
Firebug installed, turning isDebug on also causes Dojo to pull in
Firebug Lite, which will give you a lightweight console in your
page. It’s a good idea to develop with isDebug set to true; you’ll
see this in many of the examples in the book.

Second, some debuggers have trouble working with JavaScript
code that’s loaded by the eval function. Setting the property
debugAtAllCosts (a boolean) to true forces Dojo to load all code
by appending a script element to the head element. It’s impor-
tant to realize that enabling debugAtAllCosts causes the loader
to behave differently, more like the cross-domain loader than
the regular synchronous system. As a result, any code using
Dojo modules must be run from a function registered with
dojo.addOnLoad. You should avoid using debugAtAllCosts unless
your debugger is choking on an evaled script. Another option to
debugAtAllCosts is to make a cross-domain build of your project
and use the cross-domain loader, which can efficiently use
script tag injection because the build step preprocesses the
dependency graph.

If myApp.a is a cross-domain resource, then the cross-domain loader

will guarantee that it has been loaded before line 9 is executed. This

fixes the problem.

11.3 Optimizing Deployment with the Dojo Build System

The Dojo build system includes two basic functions. First, it can pack-

age several JavaScript resources into a single resource; this eliminates

any penalty for modularizing an application! Second, the build system

can compress JavaScript resources; this minimizes download times—

even when developing advanced JavaScript applications that contain

lots of code.

The build system includes a customized version of Rhino, Mozilla’s

Java-based JavaScript interpreter. We’ll call the customized interpreter

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 300

Dojo-Rhino; it is a full version of Rhino with a bit of extra functionality

that compresses JavaScript code. Since Dojo-Rhino is a Java program,

you will also need a Java runtime environment, version 1.4.2 or greater

(available at http://www.java.com). The build system also includes build,

a JavaScript program that packages sets of JavaScript resources. build

must be run inside Dojo-Rhino. Both of these tools are located in the

util/ tree of the source distribution of Dojo: Dojo-Rhino is located

at util/shrinksafe/custom_rhino.jar, and build is located at util/buildscripts/

build.js.8

You have several options when preparing a web app for deployment.

You can package and/or compress the JavaScript resources. You can

deploy using either the standard loader or the cross-domain loader.

And, of course, you can do nothing at all.

Obviously, doing nothing is easiest. And, this may be perfectly reason-

able. If a web app includes a small amount of JavaScript compared to

other resources (for example, images), then squeezing every last ounce

of download performance out of the JavaScript resources may result in

no detectable difference in application performance. If this is the case,

your time is better spent doing other things. The remainder of this sec-

tion describes how to use the build system to prepare an application

for deployment.

Packaging a Release with build

build includes several functions that automate publishing a release of a

Dojo-based application:9

• It creates a release directory where all output is written.

• It copies a specified set of source trees to the release directory.

• It combines sets of source files into single source files (recall that

this is termed packaging).

• It prepares JavaScript source files for use with the cross-domain

loader.

• It compresses JavaScript source files.

All but the first two functions are optional, and each option has several

tuning features. Since we’ve already covered the design of the system,

8. Some Dojo documentation refers to the usage of Dojo-Rhino for compression as

shrinksafe.
9. Another name for a release is a build.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 301

let’s dive in and demonstrate how everything works by progressively

optimizing an example.

Acmecorp’s Magi-Browse

We’ll demonstrate build by releasing Magi-Browse, Acmecorp’s revolu-

tionary web-based data browser. The development directory for Magi-

Browse is shown below. The basic structure should look familiar. It has

a document root, public/, which contains directories that hold CSS style

sheets (css/), HTML documents (doc/), images (images/), and JavaScript

scripts (js/). The js/ directory contains subdirectories that hold code used

by multiple Acmecorp applications (acmecorp/), code specific to Magi-

Browse (magiBrowse/), and the Dojo source distribution (dojo/).10 Notice

all directories under magi-browse/public/js/ are valid JavaScript identi-

fiers. This makes it easy to map from filename to module name. If this

were not the case, then a module path would have to be set to map the

directory name to a module name. Here’s the directory tree:

magi-browse/ ---------------->magi-browse is a web app

dev-tools/

build-scripts/ ---------->we'll put dojo build scripts here

public/ ------------------->document root for the web server

index.htm --------------->the entry page for magi-browse

css/

docs/

image/

js/ --------------------->all JavaScript goes here

acmecorp/ ------------->classes/modules used by multiple apps

acmeDigit/ ---------->acmecorp dijit-based widgets

Navitgator.js ----->the "acmeDigit.Navigator" widget

acmeLib/ ------------>the acmecorp library

nav.js ------------>the "acmeDigit.nav" module

dojo/ ----------------->the dojo source release

dojo/

dijit/

dojox/

util/

magiBrowse/ ----------->classes and modules specific to magiBrowse

main.js ------------->the module magiBrowse.main

MainController.js --->the class magiBrowse.MainController

sessionData.js ------>the module magiBrowse.sessionData

sessionView.js ------>the module magiBrowse.sessionView

sessionView/ -------->children of magiBrowse.sessionView go here

DijitContainer.js ->the class magiBrowse.sessionView.DijitContainer

util.js ----------->the module magiBrowse.sessionView.util

10. Since acmecorp/ and dojo/ are used by several projects, these are likely symbolic links

to a single directory tree that’s used by many projects.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 302

Figure 11.1: Magi-Browse module dependency tree

Magi-Browse defines the class magiBrowse.MainController as well as the

modules magiBrowse.main, magiBrowse.sessionData, and magiBrowse.

sessionView; magiBrowse.sessionView defines the class magiBrowse.

sessionView.DijitContainer and the module magiBrowse.sessionView.util. Also,

Acmecorp has built the Dijit-based widget acmeDijit.Navigator and the

utility library acmeLib.nav; both of these components are used in sev-

eral of the company’s products (that’s why these components are under

the /acmecorp tree). The dependency tree for all of these components is

shown in Figure 11.1. Of course, a real application would likely contain

tens of files. But this is enough to demonstrate how build works.

Step 1: Defaults for Everything

For the first step, we will rely on defaults as much as possible. The

build program is controlled by command-line arguments and a control

file termed a profile that specifies the set of JavaScript source files to

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 303

include in the release and how to package them. The command line

looks like this:

java -jar ../shrinksafe/custom_rhino.jar build.js command-line-options

Currently, this must be run from util/buildscripts/. build.bat (Windows)

and build.sh (*nix), also located in util/buildscripts/, type everything before

the command-line options for you.

To get build to do anything other than print a help message, an action

command-line option must be specified. The possible values are release

(build a release), clean (delete the contents of the release directory),

clean,release (clean then release), and help (print the help message).

There are two ways to specify the profile:

• The command-line option profile gives a profile name that must

exist in util/buildscripts/profiles/. Profiles specified like this must in-

clude the suffix .profile.js. For example, profile=myApp implies the

profile is located at util/buildscripts/profiles/myApp.profile.js. Since it

isn’t a good idea to edit the Dojo trees, we recommend against

using this option.

• The command-line option profileFile gives the filename of the profile.

If a relative name is given, it must be relative to util/buildscripts/.

Looking back at the Magi-Browse directory tree, profiles are stored at

magi-browse/dev-tools/build-scripts/. The first profile we’ll use is profile-1.js.

So, the command-line argument for the profile should be profileFile=../../

../../../dev-tools/build-scripts/profile1.js. We’ll describe what’s in this file in a

moment.

When build writes a release, it creates a directory tree rooted at release-

directory concatenated with project-name. By default, release-directory

is set to dojo/../release/, and project-name is set to dojo. This is almost

certainly not what you want. The command-line options releaseDir and

releaseName can be used to set release-directory and project-name. build

just blindly concatenates these two options, so if you want project-name

to be a subdirectory of release-directory (or not), make sure the release-

directory ends with / (or not). We will use the values releaseDir=../../../

release/ and releaseName=magi-browse to put the release at /magi-browse/

public/js/release/magiBrowse.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 304

That’s all we need for the command line; here it is:

java -jar ../shrinksafe/custom_rhino.jar build.js action=release profileFile=../../../

../../dev-tools/build-scripts/profile1.js releaseDir = ../../../release/ releaseName =

"magiBrowse"

Next we need to construct a profile. A profile is simply a JavaScript

script that defines the variable dependencies (an object) that describes

how to package the release.11 dependencies.layers specifies how to com-

bine modules into packages; we’ll delay talking about layers until step

2. dependencies.prefixes is an array of pairs (given by a two-element

array), with each pair giving a map from module name to module path—

just like dojo.setModulePath. Path names are relative to dojo/. Any direc-

tory specified in the prefix array is assumed to be part of the release

and is copied to the release directory; the build system automatically

includes the pair ["dojo", "."]. So, for our first attempt at a release, we’ll

just get the development tree into a release directory. Here’s what that

profile looks like:

Download build_system/magi-browse/dev-tools/build-scripts/profile1.js

Line 1 dependencies = {
- prefixes: [
- ["acmeDijit", "../../acmecorp/acmeDijit"],
- ["acmeLib", "../../acmecorp/acmeLib"],
5 ["magiBrowse", "../../magiBrowse"]
-]
- }

Before we execute the command line, there are four painful gotchas

that are important to keep in mind. First, mistyping a command-line

option (particularly character cases—command-line options are case-

sensitive) will result in the option being silently ignored! Similarly, typos

or outright mistakes in the profile file are also often silently ignored.

Incorrect paths are particularly common. build writes several progress

messages to the console that can help track down mistakes. Third, build

expects dojo/ and util/ to be siblings and have contents as released.

Finally, relative paths for items on the command line are relative to

util/buildscripts/, while relative paths for items in the profile file are rela-

tive to dojo/.

11. build simply evaluates the profile file with eval. So, you can define any number of

variables and even write executable code in the file. Such advanced usages are beyond

the scope of this book.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 305

So, after carefully typing the command line, you hit Return, and lots

of messages go whizzing by. Hopefully, you’ll see something like “Build

time: 12.203 seconds” for the last message. Success!

build published a release to magi-browse/public/js/release/magi-browse/.

Here’s what that directory tree looks like:

magi-browse/public/js/release/magiBrowse/

acmeDijit/ -->from magi-browse/public/js/acmecorp/acmeDijit

acmeLib/ -->from magi-browse/public/js/acmecorp/acmeLib

dojo/ -->from magi-browse/public/js/dojo/dojo

magiBrowse/ -->from magi-browse/public/js/magiBrowse

util/ -->create and filled by build

It includes directories acmeDigit/, acmeLib/, and magiBrowse/, sourced

from magi-browse/public/js/acmecorp/acmeDijit/, magi-browse/public/js/

acmecorp/acmeLib/, and magi-browse/public/js/magiBrowse/ as specified

in the prefixes array of the profile. build automatically copied the entire

dojo tree to the dojo/ directory and constructed both a compressed and

an uncompressed packaged dojo.js just like the binary release of Dojo.

Finally, build copied the Dojo Object Handler (doh) unit test framework

to util/doh/ (doh is beyond the scope of this book).

Notice that the directory trees were “flattened”—the release directories

are all at the same level, while the source directories are not. This

causes several module paths to change. The development version has

these module paths:

acmeDijit --> "js/acmecorp/acmeDijit",

acmeLib --> "js/acmecorp/acmeLib",

magiBrowse --> "js/magiBrowse"

dojo --> "js/dojo/dojo"

And the release version has these module paths:

acmeDijit --> "js/acmeDijit",

acmeLib --> "js/acmeLib",

magiBrowse --> "js/magiBrowse"

dojo --> "js/dojo"

As you probably recall from Section 11.2, Module Paths, on page 292,

the algorithm used by dojo.require to resolve a module name into a URL

assumes root modules without specific module paths are siblings of the

module dojo. So, this flattened structure has the side effect of eliminat-

ing the need for module paths (all root modules are siblings of dojo).

In any event, unless a web app is developed with all root modules as

siblings of dojo (not the case in our example), the module paths for the

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 306

development directory tree and the release tree will be different. There

are several ways to handle this problem:

• Construct different versions of any static HTML files that load dojo

and/or set module paths. This works fine for single-page web apps

but quickly becomes unworkable when many pages are affected.

• Add server-side functionality to generate the correct paths for dojo

and other modules for any dynamic HTML files.

• Configure the web server to alias the paths differently depending

upon the directory tree the server is publishing. This is likely the

best option.

This completes step 1. You can copy the contents of magi-browse/public/

js/release/magi-browse/ to magi-browse/public/js on the production server

(or alias magi-browse/public/js on your development server), and you’ve

just deployed your first web app.

Step 2: Packaging

So far, we haven’t done any packaging—JavaScript resources are just

as fragmented in the release as they are in the development environ-

ment. To prove this, we can hijack dojo.require after loading dojo.js to log

entering and exiting dojo.require to the Firebug console. Here’s what the

hijack looks like:

Download build_system/build-system.js

Line 1 <script
- type="text/javascript"
- djConfig="isDebug: true"
- src="js/release/magiBrowse/dojo/dojo.js" ></script>
5

- <script type="text/javascript" >
- console.log("Finished script-include dojo.js");
-

- //hijack dojo.require to log message before and after it's called...
10 var realDojoRequire= dojo.require;

- var id= 0;
- dojo.require= function(moduleName) {
- var thisId= ++id;
- console.log('Start(' + thisId + ') dojo.require("' + moduleName + '")');

15 realDojoRequire.apply(dojo, arguments);
- console.log('Finished(' + thisId + ') dojo.require("' + moduleName + '")');
- }
-

- dojo.require("magiBrowse.main");
20 </script>

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 307

The code takes a reference to dojo.require (line 10) and then replaces

dojo.require (line 12) with a function that calls console.log before and

after (lines 14 and 16) calling the original dojo.require (line 15). After nav-

igating to Magi-Browse’s top page (index.htm), the Firebug console shows

that all the dojo.require calls contained in the various modules essen-

tially trace the dependency tree shown in Figure 11.1, on page 302:

Line 1 Finished script-include dojo.js
- Start(1) dojo.require("magiBrowse.main")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/main.js
- evaluating magiBrowse.main
5 Start(2) dojo.require("magiBrowse.MainController")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/MainController.js
- evaluating magiBrowse.MainController
- Start(3) dojo.require("acmeLib.nav")
- GET http://localhost:8002/js/release/magiBrowse/acmeLib/nav.js

10 evaluating acmelib.nav
- Finished(3) dojo.require("acmeLib.nav")
- Finished(2) dojo.require("magiBrowse.MainController")
- Start(4) dojo.require("magiBrowse.sessionData")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/sessionData.js

15 evaluating magiBrowse.sessionData
- Finished(4) dojo.require("magiBrowse.sessionData")
- Start(5) dojo.require("magiBrowse.sessionView")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/sessionView.js
- evaluating magiBrowse.sessionView

20 Start(6) dojo.require("magiBrowse.sessionView.DynaDijitContainer")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/sessionView...
- evaluating magiBrowse.sessionView.DynaDijitContainer
- Finished(6) dojo.require("magiBrowse.sessionView.DynaDijitContainer")
- Start(7) dojo.require("magiBrowse.sessionView.utils")

25 GET http://localhost:8002/js/release/magiBrowse/magiBrowse/sessionView...
- evaluating magiBrowse.sessionView.utils
- Finished(7) dojo.require("magiBrowse.sessionView.utils")
- Start(8) dojo.require("acmeDijit.Navigator")
- GET http://localhost:8002/js/release/magiBrowse/acmeDijit/navigator.js

30 evaluating acmeDijit.Navigator
- Finished(8) dojo.require("acmeDijit.Navigator")
- Finished(5) dojo.require("magiBrowse.sessionView")
- Finished(1) dojo.require("magiBrowse.main")

The call to dojo.require("magiBrowse.main") (line 2) doesn’t return until line

33; all the other calls are nested inside this call since magiBrowse.main

is the root of the dependency tree. Notice that each call to dojo.require

results in a separate transaction with the server. That’s bad because

each round-trip incurs a latency cost, no matter how big or small the

resource. Let’s fix it.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 308

The dependencies variable in the profile defines the property layers (an

array of objects), with each object specifying how to combine several

JavaScript resources into one resource. Each element in the layers array

defines three properties:

• name (a string) gives the filename of the packaged resource, rela-

tive to the dojo/ directory.

• dependencies (an array of strings) gives the module names to in-

clude in the packaged resource.

• layerDependencies (an array of strings) gives the packages upon

which this layer depends.

The build system constructs a JavaScript resource for each layer object.

The resource is written to name and includes all modules specified in

the dependencies array, plus any modules that these modules directly

or indirectly dojo.require, minus any modules contained in any other

layers mentioned in the layerDependencies array.

The main page of the Magi-Browse web app dojo.requires the module

magiBrowse.main. It turns out that the dependency tree of this module

includes all other modules in the magiBrowse/, acmeDijit/, and acmeLib/

trees. So, by building a layer that includes magiBrowse.main, the build

system creates a package (a single JavaScript resource) that includes

all these modules. Then, when magiBrowse.main is dojo.required, all of

these modules will be loaded in a single server transaction. Here’s what

the new profile looks like:

Download build_system/magi-browse/dev-tools/build-scripts/profile2.js

Line 1 dependencies = {
- layers: [
- {
- name: "../magiBrowse/main.js",
5 layerDependencies: [],
- dependencies: ["magiBrowse.main"]
- }
-],
- prefixes: [

10 ["acmeDijit", "../../acmecorp/acmeDijit"],
- ["acmeLib", "../../acmecorp/acmeLib"],
- ["magiBrowse", "../../magiBrowse"]
-]
- }

After running build with this profile, the release looks the same, except

that /public/js/release/magiBrowse/magiBrowse/main.js now includes all the

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 309

modules as given by the dependency tree of /public/js/magiBrowse/main.js.

If this dependency tree were, say, fifty scripts, then the unpackaged

version would require fifty server round-trips, but the packaged version

requires only one round-trip! That’s the whole point.

This brings the design full circle—the build system automatically re-

assembles many small scripts (that were great for development) into

a single script (that is great for deployment). After reloading Magi-

Browse’s top page with the new release, the Firebug console looks like

this:

Line 1 Finished script-include dojo.js
- Start(1) dojo.require("magiBrowse.main")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/main.js
- evaluating acmelib.nav
5 evaluating magiBrowse.MainController
- evaluating magiBrowse.sessionData
- evaluating magiBrowse.sessionView.DynaDijitContainer
- evaluating magiBrowse.sessionView.utils
- evaluating acmeDijit.Navigator

10 evaluating magiBrowse.sessionView
- evaluating magiBrowse.main
- Finished(1) dojo.require("magiBrowse.main")

Since magiBrowse.main includes all the modules in its dependency tree,

only one round-trip to the service is required.

By default, packages are written as compressed and uncompressed

resources. The uncompressed resource has the suffix .uncompressed.js.

So, in the previous example, build wrote main.js (compressed) and main.js.

uncompressed.js (uncompressed). As usual, the uncompressed version is

useful for debugging packages.

Step 3: Layering Packages

It may be suboptimal to put all resources into a single package when

releasing a large, real-world web app. For example, several pages may

use the same subset of resources, or a single-page application may load

resources as they are needed.

In these cases, it’s better to create several different packages. When

you do this, one package will often depend upon another, and the web

app will load one package “on top” of another (this is the origin of the

property name layer). The layerDependencies property in a layer object is

used to specify these dependencies.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 310

For example, Acmecorp may decide to package all its company-wide

Dijit-based widgets and utility libraries into one package. Then every

individual web app developed by Acmecorp could reference these re-

sources identically. First, a new module must be created that holds the

resources that are going to be packaged. That looks like this:

Download build_system/magi-browse/public/js/magiBrowse/acmeBase.js

Line 1 //for demonstration purposes...
- console.log("evaluating magiBrowse.acmeBase");
-

- dojo.provide("magiBrowse.acmeBase");
5 dojo.require("acmeDijit.Navigator");
- dojo.require("acmeLib.nav");

Next, create a profile that defines the new package (line 3) and the

dependency between magiBrowse.main and magiBrowse.acmeBase (line 9):

Download build_system/magi-browse/dev-tools/build-scripts/profile3.js

Line 1 dependencies = {
- layers: [
- {
- name: "../magiBrowse/acmeBase.js",
5 layerDependencies: [],
- dependencies: ["magiBrowse.acmeBase"]
- },{
- name: "../magiBrowse/main.js",
- layerDependencies: ["../magiBrowse/acmeBase.js"],

10 dependencies: ["magiBrowse.main"]
- }
-],
- prefixes: [
- ["acmeDijit", "../../acmecorp/acmeDijit"],

15 ["acmeLib", "../../acmecorp/acmeLib"],
- ["magiBrowse", "../../magiBrowse"]
-]
- }

Since this profile says that the package magiBrowse.main depends on

the package magiBrowse.acmeBase, magiBrowse.acmeBase must be dojo.

required before and independently of magiBrowse.main (that is, you can-

not dojo.require magiBrowse.acmeBase from within magiBrowse.main). This

is a subtle point; let’s restate it: you cannot dojo.require a layer inside

another layer that depends on the first layer.

We’ll solve the problem by creating a new index2.htm that dojo.requires

magiBrowse.acmeBase before magiBrowse.main.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 311

After running build with the new profile and loading index2.htm, the Fire-

bug console looks like this:

Line 1 Finished script-include dojo.js
- Start(1) dojo.require("magiBrowse.acmeBase")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/acmeBase.js
- evaluating acmeDijit.Navigator
5 evaluating acmelib.nav
- evaluating magiBrowse.acmeBase
- Finished(1) dojo.require("magiBrowse.acmeBase")
- Start(2) dojo.require("magiBrowse.main")
- GET http://localhost:8002/js/release/magiBrowse/magiBrowse/main.js

10 evaluating magiBrowse.MainController
- evaluating magiBrowse.sessionData
- evaluating magiBrowse.sessionView.DynaDijitContainer
- evaluating magiBrowse.sessionView.utils
- evaluating magiBrowse.sessionView

15 evaluating magiBrowse.main
- Start(3) dojo.require("magiBrowse.acmeBase")
- Finished(3) dojo.require("magiBrowse.acmeBase")
- Finished(2) dojo.require("magiBrowse.main")

Two packages are loaded as expected (lines 3 and 9).

Step 4: Using the Cross-Domain Loader

By default, build packages all resources for use with the standard loader

and includes the standard loader in dojo.js. Preparing a release for use

with the cross-domain loader is as simple as specifying the command-

line option loader=xdomain. When this option is given, build compiles

a release that includes both standard and cross-domain versions of

all resources. For example, the standard version of the module mag-

iBrowse.MainController is written to magiBrowse/MainController.js, and the

cross-domain version is written to magiBrowse/MainController.xd.js. You

can choose which loader to use by selecting either dojo.js (the standard

loader) or dojo.xd.js (the cross-domain loader).

So if we reference dojo.xd.js inside a script element, we should see the

cross-domain loader in action. After making that change to index2.htm

and reloading, you’ll see the same Firebug output as before. Why didn’t

it work?

Recall that the cross-domain loader will use XHR if the resource resides

at the same origin as the main document. So, in order to see the cross-

domain loader in action, the resources must be loaded from a different

origin.

OPTIMIZING DEPLOYMENT WITH THE DOJO BUILD SYSTEM 312

We can trick the loader into thinking the resources are at a different

origin by specifying module paths with schemes like this:

Line 1 djConfig= {};
- djConfig.modulePaths = {
- acmeDijit: "http://localhost:8002/js/release/magiBrowse/acmecorp/acmeDijit",
- acmeLib: "http://localhost:8002/js/release/magiBrowse/acmecorp/acmeLib",
5 magiBrowse: "http://localhost:8002/js/release/magiBrowse/magiBrowse"
- };

Loading index-xd.htm (a version of index2.htm script-including dojo.xd.js

and includes these module paths) results in Firebug output that looks

like this:

Line 1 Finished script-include dojo.js
- Start(1) dojo.require("magiBrowse.acmeBase")
- Finished(1) dojo.require("magiBrowse.acmeBase")
- Start(2) dojo.require("magiBrowse.main")
5 Finished(2) dojo.require("magiBrowse.main")
- evaluating acmeDijit.Navigator
- evaluating acmelib.nav
- evaluating magiBrowse.acmeBase
- evaluating magiBrowse.MainController

10 evaluating magiBrowse.sessionData
- evaluating magiBrowse.sessionView.DynaDijitContainer
- evaluating magiBrowse.sessionView.utils
- evaluating magiBrowse.sessionView
- evaluating magiBrowse.main

Notice that there is not one single XHR transaction! If you inspect the

document tree through the Firebug HTML tab, you will see that two

scripts have been added:

Line 1 <script
- type="text/javascript"
- src="http://localhost:8002/js/release/magiBrowse/magiBrowse/acmeBase.xd.js">
- </script>
5 <script
- type="text/javascript"
- src="http://localhost:8002/js/release/magiBrowse/magiBrowse/main.xd.js">
- </script>

These are the packaged modules magiBrowse.acmeBase and magiBrowse.

main. They were inserted by the cross-domain loader and caused the

cross-domain loader to effectively download and evaluate the modules,

as we described earlier in Section 11.1, The Cross-Domain Loader, on

page 288.

Notice also that the cross-domain loader loads a cross-domain module

asynchronously. You can see this back in lines 2–5 in the earlier console

output—dojo.require returns immediately, before the resource is actually

COMPRESSING JAVASCRIPT RESOURCES WITH DOJO-RHINO 313

loaded. On the other hand, when either loader loads a module that

resides at the same origin as the main document, a synchronous XHR

is employed. This means that the browser will “lock” for whatever period

it takes to complete the XHR. Usually, this isn’t a problem. However, so

long as you follow the advice about coding for the cross-domain loader,

using the cross-domain loader can result in a better user experience.

Step 5: Compression

By default, build compresses any packaged resources and does not com-

press any other resources. Both of these behaviors can be controlled by

the command-line options layerOptimize (for packaged resources) and

optimize (for all other resources). The possible values for these options

are as follows:

• "": Don’t compress.

• shrinksafe: Use Dojo-Rhino to delete whitespace and comments and

shorten variable names.

• shrinksafe.keeplines: Same as shrinksafe, but keep newlines.

• packer: Use the Dean Edwards packer; see (http://dean.edwards.

name/packer/).

Whenever build compresses a resource, it writes both an uncompressed

version to module-name.js.uncompressed.js and a compressed version to

module-name.js.

Dojo-Rhino can also compress JavaScript resources independent of

build. We’ll discuss compression in more detail in the next section.

11.4 Compressing JavaScript Resources with Dojo-Rhino

Dojo-Rhino walks a Rhino-generated parse tree and dumps compressed

JavaScript code. The compression function can be called from the com-

mand line to compress an individual file. This technique for compress-

ing JavaScript is both powerful and safe. Since the routines that exe-

cute the compression are working off the parse tree, the compression

is based on semantic algorithms rather than pattern matching. Conse-

quently, obscure transformation errors are unlikely; this is not always

the case when the script is compressed by applying pattern matching

algorithms.

The compression algorithms remove whitespace and comments and

shorten variables names. This means that the output is still valid Java-

COMPRESSING JAVASCRIPT RESOURCES WITH DOJO-RHINO 314

Script source code; specifically, there is no decompressor required to

unpack the source. The compression rate will vary greatly depending

upon the input. If the input source is well-commented, well-formatted

JavaScript with good, human-readable variable names, then compres-

sion rates of 50% to 75% are common. On the other hand, if the code

is already compressed by bad coding practices, then the compression

rate may be less than 10%. Manually compressed code (so-called write-

only code, because once it’s written, nobody can read it) is almost never

smaller than well-written code submitted to the Dojo compressor. So,

write good code and let the tool take care of compression.

Let’s run a file through the compressor. Here’s a JavaScript file with

comments and nice formatting and variable names:

Download build_system/uncompressed.js

Line 1 /**
- * Mastering Dojo - JavaScript and Ajax Tools for Great Web Experiences
- *
- * This is a sample module that shows off Dojo JavaScript compression.
5 *
- */
- (function(){
- dojo.provide("myApp.uncompressed");
-

10 //
- // someFunction: a private function to this module
- //
- function someFunction(
- parameter1, //(type) this is the documentation for parameter1

15 parameter2, //(type) this is the documentation for parameter2
- parameter3 //(type) this is the documentation for parameter3
-){
- var aWellNamedVariable= parameter1 + parameter2;
- return aWellNamedVariable*parameter3;

20 }
-

- //
- // publicFunction: a function published by this module
- //

25 myApp.uncompressed.publicFunction= function(
- parameter1, //(type) this is the documentation for parameter1
- parameter2, //(type) this is the documentation for parameter2
- parameter3 //(type) this is the documentation for parameter3
-){

30 return someFunction(parameter1, parameter2, parameter3);
- }
-

- })();

COMPRESSING JAVASCRIPT RESOURCES WITH DOJO-RHINO 315

Dojo-Rhino will compress a single JavaScript source file by issuing the

command line:

java -jar custom_rhino.jar -c source-to-compress>destination-of-output 2>&1

custom_rhino.jar is Dojo-Rhino located at util/shrinksafe/; if you’re running

the command from another directory, you’ll need to include the com-

plete path. source-to-compress and destination-of-output are the file-

names of the uncompressed and compressed files. The cryptic 2>&1

redirects the error output stream to the standard output stream. This

command line is fairly painful to use when you want to compress many

files spread throughout a directory tree; it’s best to write a little shell

script or Window’s batch file to make such tasks more palatable.

uncompressed.js is 1,014 bytes long; after compressing, the file is a mere

209 bytes long—a compression rate of 79%. Here is what the com-

pressed file looks like:

Download build_system/compressed.js

Line 1 (function(){
- dojo.provide("myApp.uncompressed");
- function someFunction(_1,_2,_3){
- var _4=_1+_2;
5 return _4*_3;
- };
- myApp.uncompressed.publicFunction=function(_5,_6,_7){
- return someFunction(_5,_6,_7);
- };

10 })();

There are a few coding techniques that can squeeze a few more bytes

out of the compression process without sacrificing readability.

First, rather than define functions with the syntax function some-

Function(/* ... */), use the syntax var someFunction= function(/* ... */) (call this

rule 1). This lets the compressor compress the function name. The same

economy can be realized by defining a locale variable to hold the module

name. For example, rather than writing myApp.mySubsystem.f= for each

property defined by myApp.mySubsystem, instead write this-

Module= dojo.provide("myApp.mySubsystem); followed by thisModule.f= for

each property (call this rule 2). The compressor cannot compress the

variable myApp.mySubsystem but can compress thisModule. Lastly, rather

than writing this...

Line 1 var myVariable1= expression;
- var myVariable2= expression;
-

COMPRESSING JAVASCRIPT RESOURCES WITH DOJO-RHINO 316

- var myFunction1= function(/*...*/){
5 /*...*/
- }
-

- var myFunction2= function(/*...*/){
- /*...*/

10 }

write this:

Line 1 var
- myVariable1= expression, //note comma
- myVariable2= expression, //note comma
-

5 myFunction1= function(/*...*/){
- /*...*/
- }, //note comma
-

- myFunction2= function(/*...*/){
10 /*...*/

- }; //note semicolon

These are equivalent, yet with many definitions, the second form is

more economical. Call this rule 3. Here is uncompress.js after applying

the three rules; we’ve marked the edits with the rules used:

Download build_system/uncompressed2.js

Line 1 /**
- * Mastering Dojo - JavaScript and Ajax Tools for Great Web Experiences
- *
- * This is a sample module that shows off Dojo JavaScript compression.
5 *
- */
- (function(){
- var //Rule 3; begin a list of definition
-

10 thisModule= dojo.provide("myApp.uncompressed"), //Rule2, Rule3
-

- //
- // someFunction: a private function to this module
- //

15 someFunction= function(//Rule1, Rule3
- parameter1, //(type) this is the documentation for parameter1
- parameter2, //(type) this is the documentation for parameter2
- parameter3 //(type) this is the documentation for parameter3
-){

20 var aWellNamedVariable= parameter1 + parameter2;
- return aWellNamedVariable*parameter3;
- }
-

- ;//Rule 3; end a list of definitions
25

COMPRESSING JAVASCRIPT RESOURCES WITH DOJO-RHINO 317

- //
- // publicFunction: a function published by this module
- //
- thisModule.publicFunction= function(//Rule 2

30 parameter1, //(type) this is the documentation for parameter1
- parameter2, //(type) this is the documentation for parameter2
- parameter3 //(type) this is the documentation for parameter3
-){
- return someFunction(parameter1, parameter2, parameter3);

35 }
-

- })();

After compression, compressed2.js looks like this:

Download build_system/compressed2.js

Line 1 (function(){
- var _1=dojo.provide("myApp.uncompressed"),_2=function(_3,_4,_5){
- var _6=_3+_4;
- return _6*_5;
5 };
- _1.publicFunction=function(_7,_8,_9){
- return _2(_7,_8,_9);
- };
- })();

The new version of uncompressed.js takes a mere 179 bytes after com-

pression—an additional 10% better than the first compressed file. Al-

though these rules may look like squeezing blood from a turnip, they

don’t cost anything, and the savings really do become noticeable in

large applications.

Compression can save substantially on bandwidth (the number of bytes

pushed down the pipe). If you have a few large JavaScript files that

are slowing the load time of your application, then compression will

likely improve performance significantly. Also, don’t forget to set up

your HTTP server to gzip resources. However, if you have many files,

then latency (the overhead for each round-trip) is usually a much bigger

factor; use build as previously discussed to solve that problem.

Part III

Advanced Dijit

Chapter 12

Scripting Widgets
In the past few chapters, we’ve seen how Dojo streamlines browser

applications—from the click to the event to the server request and

response to the DOM node restructuring. Now let’s relate this back

to Dijit.

In Part I, we used Dijit components to build better forms. The Dijit com-

ponents were very useful, but they just. . . well. . . sat there. Now we’re

going to push them further. Using JavaScript, we will create Dijit wid-

gets, move them, repopulate them, recolor them, and destroy them.

From the code point of view, this involves locating widget objects, ini-

tializing their properties, calling their methods, and adding little bits of

custom behavior. We’ll tour all of these and pull them together into Ajax

user interface patterns in the last section of this chapter.

12.1 What Exactly Is a Widget?

Dijit components are handy encapsulations of user interface function-

ality. That’s what made Visual Basic’s component-based technology so

appealing twenty years ago. You started with components on a palette,

dragged them onto a canvas, and then wrote some code to manipulate

them. We’ve lost this power in the Internet age. If you’ve been yearning

for that easy, componentized development, you’ll find this method of

programming familiar and appealing.

Widgets are components in the abstract sense, but what are they from

a coding standpoint?

WHAT EXACTLY IS A WIDGET? 320

So far we have a vague idea, at least for the declarative case, that a

widget is a snippet of HTML with a dojoType, like this:

Download widgets/declarative_vs_programmatic.html

<div dojoType="dijit.layout.ContentPane"

href="http://localhost/too/many/slashes.html" ></div>

The story goes deeper than that. dijit.layout.ContentPane is really a Dojo

class. Its methods dispatch Dojo API calls to handle communication

with the browser, the DOM tree, and the server. And you can write

JavaScript to call these methods.

For a solid foundation, let’s clarify the terms:

widget class

A widget class is any class descended from dijit._Widget. It may be

a direct subclass of dijit._Widget or a subclass of another widget.

widget

A widget is a JavaScript object, an instance of a widget class. So

if your page has twelve validation textboxes, it has twelve widgets,

all of them instances of the widget class dijit.form.ValidationTextBox.

attribute

In Chapter 9, Defining Classes with dojo.declare, on page 225,

you saw how to create properties of classes using dojo.declare.

An attribute is a just a property in the widget class. We call it an

attribute in deference to HTML lingo.

An attribute is initialized at widget creation time but cannot be

manipulated directly afterward. In other words, you cannot say

myWidget.disabled = true; to disable a widget. Instead, you’d use a

method call like myWidget.disable().

extension point

An extension point is a method meant to be overridden by the

programmer. For example, you can override the isValid extension

point of dijit.form.ValidationTextBox with a function of your own. That

function can apply to one widget, using techniques we’ll see in

this chapter, or an entire widget class, as we’ll see in Chapter 17,

Creating and Extending Widget Classes, on page 455.

As far as JavaScript is concerned, both methods and extension

points are just widget class methods. The difference is seman-

tic. Generally, methods have a full implementation, and extension

point methods have a very skimpy or empty implementation.

WHAT EXACTLY IS A WIDGET? 321

Figure 12.1: Relationships between widget elements

Some extension points are named after events like onClick or

onChange. These extension points pass more specific parameters

than just a big DOM Level 2 event object, as a corresponding event

would.

In Figure 12.1, you can see the widget region and its associated widget

class in UML notation.

Declarative Widgets

So far in the book, all we have seen are declarative widgets—widgets

created with HTML markup and a dojoType= attribute. We’ll go over

programmatic widgets in a minute. But note that declarative and pro-

grammatic widgets differ only in the way they are created. Once the

setup is done, there’s no difference between the two. Every widget class

can create widgets either declaratively or programmatically.

The Dojo parser turns declarative widgets into JavaScript objects. It

does this by scanning the entire HTML source, picking up any tags

with a dojoType= attribute, and creating a widget object with that type.

It’s tempting to call the HTML tag with a dojoType= attribute a widget.

That’s not technically correct. Though there is a one-to-one correspon-

dence between the tags and declarative widgets, the tag is a JavaScript

DOM object. The DOM node has a style property, but the widget does

not. Widgets have widget class methods like setLabel, but DOM nodes

FINDING AND MANIPULATING DECLARATIVE WIDGETS 322

do not. Fortunately, it’s easy to convert between the two, which we’ll

see in a minute.

Programmatic Widgets

Fundamentally, programmatic widgets omit the parsing step used for

declarative widgets. You create a widget programmatically by calling the

new operator on a widget class and assigning the result to a variable.

There’s no difference between doing this yourself or letting the Dojo

parser do it, as it does for declarative widgets.

Programmatic widgets are best when you need an indeterminate num-

ber of widgets or you don’t know their placement ahead of time. Also,

programmatic widgets can use JavaScript expressions to initialize the

attributes, where declarative widgets cannot. We’ll see how this works

in Section 12.3, Creating Instances Programmatically, on page 327

12.2 Finding and Manipulating Declarative Widgets

Normally when you use JavaScript objects, it’s in the context of a pro-

gram: you create an object with a constructor, put it in a variable, and

then call methods on that variable. Simple enough. But in the case of

declarative widgets, you didn’t create the widget objects—dojo.parser did

that. (See the sidebar on page 24 for details.) So, on which variable do

you invoke the method? Where do you find the object?

There are a few ways to do so. To illustrate, we’ll write an application

called Unusual Pet Store, or UPS. UPS’s job is to aggregate content

from the Internet into an Accordion layout widget like Figure 12.2, on

the following page. The web pages are loaded in the background, and

you can slide the pane into view by clicking its title bar.

Because these portal pages are loaded by XHR, they are subject to the

same-origin rule. Therefore, as we saw in Chapter 3, Connecting to Out-

side Services, on page 37, we need to use a proxy server component.

Here’s a PHP proxy script that does the job very minimally, not even

parsing HTTP parameters. We do just a bit of parsing on the URL before

allowing the request to go through. (A wide open proxy is a security haz-

ard, since anyone can pass an arbitrary URL to it and wreak all kinds

of havoc.)

FINDING AND MANIPULATING DECLARATIVE WIDGETS 323

Figure 12.2: UPS (no relation)

Download widgets/services/pure_proxy.php

<?php

// To prevent this from being a security hazard (and because this is

// just a demo), limit the URLs that can be served

$urlToServe = $_GET["url"];

if (preg_match('/^entomology.unl.edu/',$urlToServe) ||

preg_match('/^animals.nationalgeographic.com/',$urlToServe) ||

preg_match('/^www.hermitcrabassociation.com/',$urlToServe)) {

// This proxy service doesn't do query strings, but it works

// for static stuff

readfile("http://" . $_GET["url"]);

} else {

?>

Access denied

<? } ?>

FINDING AND MANIPULATING DECLARATIVE WIDGETS 324

The HTML file declarative_portal.html uses dijit.layout.AccordionPane to call

this proxy service and grab content:

Download widgets/declarative_portal.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Unusual Pet Store Application</title>

<style type="text/css">

@import "/dojoroot/dijit/themes/tundra/tundra.css";

@import "/dojoroot/dojo/resources/dojo.css"

</style>

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

<script type="text/javascript">

dojo.require("dojo.parser");

dojo.require("dijit.layout.AccordionContainer");

</script>

</head>

<body class="tundra">

<div dojoType="dijit.layout.AccordionContainer" id="ups"

style="width:500px;height:500px">

<div dojoType="dijit.layout.AccordionPane"

title="Madagascar Hissing Cockroach"

href=

"services/pure_proxy.php?url=\

entomology.unl.edu/k12/Croach/roachinfo/roachpage.html"

></div>

<div dojoType="dijit.layout.AccordionPane" title="Wallaby"

href=

"services/pure_proxy.php?url=\

animals.nationalgeographic.com/animals/mammals/wallaby.html"

></div>

<div dojoType="dijit.layout.AccordionPane" title="Hermit Crab"

href=

"services/pure_proxy.php?url=www.hermitcrabassociation.com/phpBB/index.php"

></div>

</div>

</body></html>

In our first crack at this program, we’re giving the user some default

pets to review. On the slight chance that the user is not enamored

with our defaults, we’ll give them the option to change the URL of the

currently selected pane.

FINDING AND MANIPULATING DECLARATIVE WIDGETS 325

dojo.byId vs. dijit.byId

You might ask, “Why do I need to call dijit.byId(id)? Can’t I
just call dojo.byId(id)?” It depends on what you want. dojo.byId

returns a plain-vanilla DOM node, while dijit.byId returns a wid-
get object. Since there’s exactly one DOM node with a dojo-

Type, it’s easy to get them confused. The main difference is this:
you can call standard JavaScript methods on DOM nodes, but
to call widget methods you must use the widget object.

You can actually convert between the two easily. dijit.

byId("id") == dijit.byNode(dojo.byId("id")), and dojo.byId("id") ==

dijit.byId("id").domNode. We will see more of the domNode=

attribute in Chapter 17, Creating and Extending Widget
Classes, on page 455.

There are five main ways to get a widget reference:

• You can set the jsId= attribute in the tag, which creates a global

JavaScript variable with that name.

• You can use dijit.byId(id). This is useful if you had set the id= attri-

bute on your widget.

• You can use dijit.byNode(nodeVariable) when you don’t have the id

attribute but you have the DOM node itself.

What? You don’t even have the DOM node? You can usually get it

with dojo.query, detailed in Chapter 7, DOM Utilities, on page 140.

• Similarly, dijit.getEnclosingWidget(nodeVariable) will get the “nearest”

widget surrounding it, if you have a DOM node inside the widget.

• You can read an attribute or call a method on another object that

returns a widget. For example, the attribute adjacent of dojo.layout.

StackContainer gives you back a widget.

Now, back to the task of setting the AccordionPane URL. When turning

your ideas into widget code, the Book of Dojo at http://www.dojotoolkit.

org is your road map. This book contains an entire reference catalog of

all the Dijit widgets.

Using the catalog, we find that dijit.layout.AccordionContainer’s read-only

property selectedChildWidget gets the pane, a dijit.layout.AccordionPane

FINDING AND MANIPULATING DECLARATIVE WIDGETS 326

object. From the AccordionPane, the method setHref method changes the

URL and reloads the content.

We’ll use those elements in the following code:

Download widgets/DeclarativePortal.js

dojo.provide("dojobook.widgets.DeclarativePortal");

dojobook.widgets.DeclarativePortal.setUrl = function() {

// returns back the div tag of the selected AccordionPane

var paneList = dijit.byId("ups");

// Get the selected dijit.layout.AccordionPane. This is

// kept in selectedChildWidget

var chosenPane = paneList.selectedChildWidget;

// Now, get the value from the textbox. Note we can use

// dojo.byId() here because the .value property is a property of Node

var newUrl = dojo.byId("newUrl").value;

// Change the URL from which the content comes. Using setHref

// changes the content right away.

chosenPane.setHref("services/pure_proxy.php?url=" + newUrl);

}

Now wire it into the button:

Download widgets/declarative_portal_settable.html

<label for="newUrl">New URL:</label>

<input type="text" length="50" id="newUrl">

<button dojoType="dijit.form.Button" />

Set

<script type="dojo/method" event="onClick" args="evt">

dojobook.widgets.DeclarativePortal.setUrl();

</script>

</button>

</body></html>

You’ll recognize the type=dojo/method from Chapter 3, Connecting to

Outside Services, on page 37. We’ll explain the details in Section 12.4,

Extension Points, on page 331.

Now the user can dynamically change UPS content without a page

reload. And from the programmer’s side, it’s a mere ten lines of Java-

Script, neatly tucked away in a module, ready to use for other projects.

CREATING INSTANCES PROGRAMMATICALLY 327

Soon, your UPS users want to go beyond three panes to four or five. Or

they want to make like Thoreau and go down to one or two. Fortunately,

by creating widgets with JavaScript, you can keep ahead of them.

12.3 Creating Instances Programmatically

When you need a small number of widgets created on page startup,

declarative is the way to go. But if you need to create large numbers

of widgets or you need to create them dynamically, programmatic wid-

gets are better suited to the task. Now that you know how to create an

AccordionPane declaratively, it’s a fairly short step to create this Accor-

dionPane, or any other widget, programmatically with JavaScript. So,

suppose you have this declarative widget:

Download widgets/declarative_portal_settable.html

<div id="ups" dojoType="dijit.layout.AccordionContainer"

style="width:500px;height:500px">

<div dojoType="dijit.layout.AccordionPane"

title="Madagascar Hissing Cockroach"

href=

"services/pure_proxy.php?url=\

entomology.unl.edu/k12/Croach/roachinfo/roachpage.html"

></div>

To create it programmatically, you do two things:

1. Use new to create an object with the same dojoType. Send the

attributes as properties of a hash. If you already have a DOM

node that will house the widget, you can pass it as the second

parameter and skip the next step.

2. Insert the widget into the DOM tree with your favorite DOM func-

tion, dojo.place, or a Dijit container method.

So, to rewrite the previous declarative AccordionPane as a programmatic

one, first rip out the declaratives from the AccordionContainer:

Download widgets/programmatic_portal.html

<div id="ups" dojoType="dijit.layout.AccordionContainer"

style="width:500px;height:500px">

<!-- Initially Empty -->

</div>

</body></html>

CREATING INSTANCES PROGRAMMATICALLY 328

And insert the following code into the dojobook.widgets.ProgrammaticPor-

talStatic module:

Download widgets/ProgrammaticPortalStatic.js

// This code is run when all the widgets have loaded.

dojo.addOnLoad(function() {

var accContainer = dijit.byId("ups");

var pane1 = new dijit.layout.AccordionPane({

title: "Madagascar Hissing Cockroach",

href: "services/pure_proxy.php?url=entomology.unl.edu"

+"/k12/Croach/roachinfo/roachpage.html"

});

// AccordionContainer has removeChild method for easy

// manipulation of subwidgets.

accContainer.addChild(pane1);

Note how the properties in the hash match the attributes in our declar-

ative version.

Now let’s put the pedal to the metal. Because we can now declare Accor-

dionPanes programmatically, there’s no reason to store the pane data

in the page. To separate the data from the code, we’ll put it in its own

JSON data file:

Download widgets/portal_data.json

{ tiles: [

{ "title": "Madagascar Hissing Cockroach",

"url": "entomology.unl.edu/k12/Croach/roachinfo/roachpage.html"},

{ "title": "Wallaby",

"url": "animals.nationalgeographic.com/animals/mammals/wallaby.html" },

{ "title": "Hermit Crab",

"url": "www.hermitcrabassociation.com/phpBB/index.php"}

]

}

This acts as a nice stub data source while we’re designing the rest of

the app. Later, you can pass this data from a server-side program.

Given this data source, it’s easy to write a client-side component, which

we’ll rename ProgrammaticPortalDynamic:

Download widgets/ProgrammaticPortalDynamic.js

dojo.provide("dojobook.widgets.ProgrammaticPortalDynamic");

dojo.require("dijit.layout.AccordionContainer");

dojobook.widgets.ProgrammaticPortalDynamic.drawPortal = function() {

// Save the node to attach to. We can use it inside of the load()

// function via lexical scoping.

var accContainer = dijit.byId("ups");

CREATING INSTANCES PROGRAMMATICALLY 329

// Read the data from our JSON portal data file

dojo.xhrGet({

url: "portal_data.json",

timeout: 1000,

handleAs: "json",

// This is the callback used when data arrives

load: function(objResponse) {

// Loop once for each array element in tiles, putting the object

// in portalUrl

dojo.forEach(objResponse.tiles, function(portalUrl) {

// Construct the AccordionPane for that tile

var ap = new dijit.layout.AccordionPane({

title: portalUrl.title,

href: "services/pure_proxy.php?url="+portalUrl.url

});

// And put it in the AccordionContainer

accContainer.addChild(ap);

});

},

error: function(text) {

// A Toaster will catch this error and display it

dojo.publish("xhrError",

{ message: text, type: "error", duration: 0 }

);

return text;

}

});

}

dojobook.widgets.ProgrammaticPortalDynamic.newPane = function() {

// Get the value from the form

var newUrl = dojo.byId("newUrl").value;

var newTitle = dojo.byId("newTitle").value;

// Set up the new AccordionPane and insert it at the end

var ap = new dijit.layout.AccordionPane(

{

title: newTitle,

href: "services/pure_proxy.php?url="+newUrl

}

);

dijit.byId("ups").addChild(ap);

}

dojobook.widgets.ProgrammaticPortalDynamic.deletePane = function() {

// First get the selected pane, just like we did in declarative example

var accContainer = dijit.byId("ups");

var chosenPane = accContainer.selectedChildWidget;

// And remove it

accContainer.removeChild(chosenPane);

}

CREATING INSTANCES PROGRAMMATICALLY 330

Most of the action happens in drawPortal, where an XHR request gets the

portal data and the load method turns each row into an AccordionPane

widget. Finally, the newPane and deletePane methods call the addChild

and removeChild methods of AccordionContainer.

These functions are called from the HTML, now slimmed down to a

svelte thirty-five lines:

Download widgets/programmatic_portal.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Portal Application</title>

<style type="text/css">

@import "/dojoroot/dijit/themes/tundra/tundra.css";

@import "/dojoroot/dojo/resources/dojo.css"

</style>

<script type="text/javascript" src="/dojoroot/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

<script type="text/javascript">

dojo.registerModulePath("dojobook","../../dojobook");

dojo.require("dojo.parser");

dojo.require("dijit.layout.AccordionContainer");

dojo.require("dijit.layout.ContentPane");

dojo.require("dojox.widget.Toaster");

dojo.require("dojobook.widgets.ProgrammaticPortalDynamic");

dojo.addOnLoad(dojobook.widgets.ProgrammaticPortalDynamic.drawPortal);

</script>

</head>

<body class="tundra">

<div id="ups" dojoType="dijit.layout.AccordionContainer"

style="width:500px;height:500px">

<!-- Initially Empty -->

</div>

<label for="newUrl">New URL:</label>

<input type="text" length="50" id="newUrl">

<label for="newUrl">Title:</label>

<input type="text" length="50" id="newTitle">

<button dojoType="dijit.form.Button"

onclick="dojobook.widgets.ProgrammaticPortalDynamic.newPane();">

Add</button>

<button dojoType="dijit.form.Button"

onclick="dojobook.widgets.ProgrammaticPortalDynamic.deletePane();">

Remove Selected</button>

<div dojoType="dojox.widget.Toaster" duration="0"

messageTopic="xhrError" positionDirection="tr-left" />

</body></html>

EXTENSION POINTS 331

This illustrates yet again how Dojo and Dijit help partition your appli-

cation cleanly. The HTML, the JavaScript, and the data are separated

instead of being lumped together in a big multilanguage glob. When

your programs get large, this becomes even more important.

One more thing. Just as any widget can be created programmatically,

it can also be destroyed programmatically like so:

ap.destroy()

destroy removes the DOM node, erases it from the screen, and then frees

the underlying object. In UPS, removeChild calls destroy so we didn’t have

to worry about it.

If you’re building a one-page app with lots of widgets, it’s a good habit

to destroy widgets when you’re finished. When Dijit creates a widget,

it places a reference to it in a global registry. Even if the DOM node is

removed and the visual portion of the widget disappears, the global reg-

istry entry remains. As long as it does, JavaScript can’t garbage collect

the widget. Calling destroy takes care of the erasure and removing the

object from the registry.

So, we’ve been through the entire widget cycle from creation to method

calling to destruction. By calling methods, you can change widget attri-

butes. Similarly, extension points allow you to attach widget code, as

we’ll see next.

12.4 Extension Points

In good object-oriented frameworks, some built-in methods are meant

for the programmer to call, and some are meant for the programmer to

override. A good example of the latter is compare in Java. This method

is defined at the root of the class tree (Object) and overridden in most of

the built-in classes. After all, comparing two strings, two numbers, two

points on a plane, and so on, are all computationally different. Rather

than trying to write Object.compare to handle all the types, this method

is coded in each subclass. Then you can have one Array.sort method

calling the appropriate compare for each pair of values.

Widget classes are like that. Dijit classes have extension points, which

you can override in JavaScript. The function you write is called the

handler. If you don’t provide a handler for the extension point, the Dijit

class uses its own default.

EXTENSION POINTS 332

Client-Side vs. Server-Side Widget Creation

If you come from a server-side web programming en-
vironment—JSP, ASP, PHP, or what have you—you might be
tempted to script widget creation through it. If we were stor-
ing the UPS page URLs in a database, you could loop through
the values and create widgets like this:

<?php foreach ($urlArray as $url) { ?>
<div dojoType="dijit.layout.AccordionPane"

url='<?= $url ?>'></div>
<?php } ?>

Now say the user wants to add new panes, like with Ajax. So,
you write some JavaScript to draw and add new Accordion-

Panes.

There are two problems here. The first is redundancy—you end
up writing essentially the same code in the PHP and JavaScript.
After all, both take as input a list of URLs, and both output an
AccordionContainer of pages.

The second is performance. The more you rely on server code
to output the widgets, the more HTML you send through the
wire, which in turn makes the browser parser work harder.

You would be better off using the server to query the database
and send the UPS data in JSON. This is a much smaller and easily
parsed set of packets. Then your JavaScript code can transform
the data into panes, and you can reuse this code to create
new panes on the fly. So, it’s more compact code-wise and
data-wise. It’s hard to beat that!

That’s a bit abstract, so let’s add a handler to dijit.form.Button’s onClick

extension point. To use an extension point, you first need to know the

signature—which is the name of the handler and its parameters. These

are all listed in the Dijit catalog at http://www.dojotoolkit.org.

We find the signature for onClick in dijit.form.Button is as follows:

onClick(/* dojo.Event */ evt)

EXTENSION POINTS 333

When the user clicks the button, Dijit catches the event object and

passes it to our handler. As we learned in Section 6.1, Programming

DOM Events with Dojo, on page 101, dojo.Event events are standard

DOM Level 2 events. We will make use of that fact in a second.

We stub out the click handler like so:

<div dojoType="dijit.form.Button">

<script type="dojo/method" event="onClick" args="clickEvent">

// Code which can use clickEvent

</script>

</div>

event= denotes the name of the extension point, and here it’s onClick.

But this extension point is not an event in the same way mouseover

is. Rather, it’s a user event that we first saw in Section 6.2, Hook-

ing JavaScript Functions, on page 117. In particular, it’s the name of

a widget class method, in this case dijit.form.Button.onClick. With exten-

sion points, usually the method is empty—it’s present but doesn’t do

anything.

There are two type= attributes you can use here:

• dojo/method replaces the widget class method with your own code.

So in the previous case, our onClick handler runs, but dijit.form.

Button.onClick does not.

• dojo/connect connects the widget class method with your own

code. If we had changed the previous type to dojo/connect, our

onClick handler would run before or after the dijit.form.Button.onClick

method. Recall that in user-defined event connections, we don’t

control the order of execution.

If the class method does nothing, dojo/method and dojo/connect act

identically. So, which do you use? We tend to use dojo/method unless

we know the class method does something.

The args= attribute takes a list of JavaScript variable names and con-

nects these with the signature parameters. You can consider them the

formal parameters of our method. So when Dijit calls the handler code,

it will put the event into the variable clickEvent, which you can then use

in the body of the handler.

EXTENSION POINTS 334

Now let’s fill in the stub:

Download widgets/dojo_method.html

<div dojoType="dijit.Toolbar">

<div dojoType="dijit.form.Button" id="deleteButton" label="Delete">

<script type="dojo/method" event="onClick" args="evt">

if (evt.shiftKey) {

console.debug("SHIFT-CLICK = Delete Permanently");

} else {

console.debug("CLICK = Send to Trash");

}

</script>

<script type="dojo/method" >

console.debug(dijit.byId("deleteButton").label + " button loaded");

</script>

</div>

</div>

Because Dijit passes the handler a full-fledged Dojo event, you can use

properties like shiftKey. That alone puts this handler miles ahead of the

DOM 0 onclick= attribute.

What about that second dojo/method without an event? Scripts defined

this way are executed when the widget is drawn. So, it’s a good place to

tuck some initialization code.

Let’s leave the portal example and look at a pantry shelf display using

Dijit.Tree. getIconClass is a handy extension point for the dijit.Tree com-

ponent. We’ll cover trees in detail in Chapter 13, Tree, on page 341,

but here’s a brief introduction. Trees often contain different kinds of

items, and many GUI applications indicate this with different icons to

the left. For example, Windows Explorer uses a tree to model folders and

files, and it displays different icons for different file types. Our pantry

application will arrange food by shelves, but each shelf can contain dif-

ferent kinds of food items. Trees are built with data from a dojo.data

data store, so we meet our old friend from Chapter 10, dojo.data, on

page 260: the JSON-backed dojo.data.ItemFileReadStore. Here’s one with

the pantry data:

Download widgets/services/pantry.json

{

identifier: 'id',

label: 'name',

items: [

{ type: 'shelf', name: 'Top Right', id: "tr",

children: [

{ type:'fooditem', id:'pnkbns', name:'Pink Beans',

foodType: 'Canned' },

EXTENSION POINTS 335

{ type:'fooditem', id:'olvs', name:'Olives',

foodType: 'Canned' },

{ type:'fooditem', id:'rstt', name:'Risotto',

foodType: 'Grain' }

]

},

{ type: 'shelf', name: 'Bottom Right', id:"br",

children: [

{ type:'fooditem', id:'ktchp', name:'Ketchup',

foodType: 'Condiment' },

{ type:'fooditem', id:'sysac', name:'Soy Sauce',

foodType: 'Condiment' }

]

},

{ type: 'shelf', name: 'Top Left', id:"tl",

children: [

{ type:'fooditem', id:'mthrnlwstng',

name:'Mother in Laws Tongue', foodType: 'Grain'

},

{ type:'fooditem', id:'xxxhthrsrdsh',

name:'XXX-Hot Horseradish',

foodType: 'Condiment'

},

{ type:'fooditem', id:'pckldoctps',

name:'Pickled Octopus',

foodType: 'Canned'

}

]

}

]

}

In the left side of Figure 12.3, on the following page, you can see our

first cut at the tree. It’s OK, but the different food items are hard to dis-

tinguish. We’d like to put a food type icon next to each: Grain, Condi-

ment, or Canned Good.

Our goal is to provide a getIconClass handler. This code will be invoked

on each item of the tree. If you provide no handler, Dijit does the default

thing and displays no icon at all. The getIconClass extension point’s

signature is String getIconClass(/*dojo.data.Item i */). So, already it’s a bit

different from onClick—you must return a value as well. In this case, we

return a CSS class containing the icon as a background image.

Inspired by Ruby on Rails, “convention over configuration” will be our

motto. Since each icon corresponds one-to-one to a food type, we’ll

name our CSS classes the same as the foodType properties, suffixing

each with Icon.

EXTENSION POINTS 336

Figure 12.3: A sparse tree and a spruced-up tree using getIconClass

It looks like this:

Download widgets/dojo_method_iconClass.html

<style>

.GrainIcon {

background-image: url(grain.gif);

width: 45px;

height: 45px;

}

.CannedIcon {

background-image: url(canned.jpg);

width: 45px;

height: 45px;

}

.CondimentIcon {

background-image: url(condiment.jpeg);

width: 45px;

height: 45px;

}

</style>

Then the getIconClass handler is straightforward. Using the techniques

in Chapter 10, dojo.data, on page 260, we extract the foodType property

from each item as it passes by, turning it into a CSS class name and

passing it back.

EXTENSION POINTS 337

Download widgets/dojo_method_iconClass.html

<div dojoType="dojo.data.ItemFileReadStore" jsId="pantryData"

url="services/pantry.json" />

<div dojoType="dijit.Tree" id="panTree" store="pantryData"

query="{type:'shelf'}" >

<script type="dojo/method" event="getIconClass" args="foodItem">

// Returns Canned, Grain or Condiment, each of which

// corresponds to a CSS class suffixed by "Icon". Note

// that the root node is not an item, so we must test

// for a valid item each time

if (pantryData.isItem(foodItem)) {

return pantryData.getValue(foodItem, "foodType") + 'Icon';

}

</script>

</div>

The result is the right side of Figure 12.3, on the preceding page. The

icons definitely make it easier to find things.

Our extension handler is easy, but you can make some pretty inter-

esting and complex ones too. Say, for example, you have a tree of

news feed items. You can display the tree and use getIconClass to fill

in read/unread, new/out-of-date, or category icons next to each item,

loaded asynchronously so the user can browse the items before the

icons load.

As you get more sophisticated with handlers, you’ll want to separate

them more from your HTML. Dijit can handle that. You simply define

your handlers in JavaScript and then link them into your widget. So,

for our getIconClass example, you can write the handler like this:

Download widgets/programmatic_iconClass.html

function getFoodIcon(foodItem) {

if (pantryData.isItem(foodItem)) {

return pantryData.getValue(foodItem, "foodType") + 'Icon';

}

}

Of course, you may place this code in a module to keep it away from

the HTML. Then you connect it into the widget declaratively like this:

Download widgets/programmatic_iconClass.html

<div dojoType="dijit.Tree" id="panTree" store="pantryData"

query="{type:'shelf'}" >

<script type="dojo/method">

// This method runs after the widget is created

this.getIconClass = getFoodIcon;

</script>

</div>

EXAMPLE: LIVE FORMS 338

Figure 12.4: Live form for code generation

Again, placing the code in a dojo/method script without an event= makes

the code run at initialization. We can also use dojo.connect here, which

works the same as a dojo/connect script. But it won’t work in this par-

ticular case because getIconClass must return a value. Connected meth-

ods can’t send a return value back through the call chain.

As you start extending the widgets, you will eventually find a need to

make the same extension over and over again. In that case, you will

want to build or extend a widget class. You do this by combining some

techniques here with dojo.declare, and that’s something we pick up with

in Chapter 17, Creating and Extending Widget Classes, on page 455.

But first, given what we know now about widget creation, methods, and

extension points, we can create some really useful Ajax-style behavior.

Let’s take a moment to see how.

12.5 Example: Live Forms

Michael Mahemoff’s book Ajax Design Patterns [Mah06] describes cod-

ing and functionality patterns for modern web applications. One pat-

tern is called Live Form. A live form’s controls adjust to the choices

made so far.

In Figure 12.4, you see an example live form for a code generation

program. Each control potentially affects the other controls:

• The choice of language determines whether the Include Debug

Symbols checkbox is disabled—specifically, C is the only language

with debug symbols.

• The choice of file name can affect the programming language. If the

file extension is .vb, .c, or .java, we can change the programming

EXAMPLE: LIVE FORMS 339

language based on that. This should, in turn, enable or disable

the Include Debug Symbols box.

If you’ve built a live form using straight JavaScript, you’ve seen how it

gets complex very quickly. Soon the controls start reading and writing

the form’s other controls, and you have to control the order of execution

and updates.

This is a perfect application for publish-subscribe events, which we

saw in Chapter 6, Asynchronous Programming, on page 101. Instead

of connecting code by hardwiring object calls, we use Dojo’s central

dispatcher. Widgets whose values change announce to the dispatcher

“My value has changed” with an event topic. Widgets that are interested

in this topic subscribe to it. This creates a sort of enlightened self-

interest: widgets need to specify only what they’re interested in. They

do not need to change, or even know about, other controls that depend

on them. They only need to keep the dispatcher informed.

Now for the design. First we create a topic roster:

• The /formchange/gencode/language topic will be published when

the language box changes. Naming the topic after the form and

control name ensures uniqueness.

• Likewise, the /formchange/gencode/filename topic will fire on file-

name changes.

First, we’ll build the filename box:

Download widgets/connected_buttons.html

<label for="filename">File Name:</label>

<div dojoType="dijit.form.ValidationTextBox" length="50" name="filename">

<script type="dojo/method" event="onChange" args="newFile">

dojo.publish("/formchange/gencode/filename",[newFile]);

</script>

</div>

When the filename field changes, the change is communicated through

the appropriate topic. We also communicate the filename so that inter-

ested widgets don’t need to query the box directly—an extra nicety. Note

the array notation in dojo.publish’s second parameter. That’s necessary,

even when passing one variable over the topic.

EXAMPLE: LIVE FORMS 340

Next, we build the debug symbols box:

Download widgets/connected_buttons.html

<div dojoType="dijit.form.CheckBox" name="debugSymbols"

id="debugSymbols" value="Y">

<script type="dojo/method">

dojo.subscribe("/formchange/gencode/language",this,function(language) {

var debugSymAvailable = language=='c' || language=='java';

this.setDisabled(!debugSymAvailable);

});

</script>

</div><label for="debugSymbols">Debug Symbols On?</label>

Remember the dojo/method handler with no event executes right after

the widget is created. Here, it simply hooks in to the filename change

topic and starts listening.

Finally, the language box uses both publishes and subscribes:

Download widgets/connected_buttons.html

<select dojoType="dijit.form.FilteringSelect" name="language" id="language">

<option value="c">C</option>

<option value="java">Java</option>

<option value="vb">Visual Basic</option>

<script type="dojo/method" event="onChange" args="newLang">

dojo.publish("/formchange/gencode/language", [newLang]);

</script>

<script type="dojo/method">

// Danger: heavy use of regular expressions! Consult your

// favorite JavaScript reference for details

dojo.subscribe("/formchange/gencode/filename",this,function(filename) {

// Change language based on extension, if c, vb, or java

if ((extension = /\.(java|c|vb)$/.exec(filename)) != null) {

this.setValue(extension[1]);

}

});

</script>

</select>

And now we have three independent, yet connected, widgets. Using

publish-subscribe effectively encapsulates the widgets, turning them

into black boxes. That makes debugging much easier.

Connecting JavaScript to widgets makes them richer, fuller, and more

dynamic. This is going to be essential in using the Tree widget, which

we met briefly here and discuss fully in the next chapter.

Chapter 13

Tree
In Chapter 10, dojo.data, on page 260, we looked at flat data stores

where the items have only primitive attributes. But dojo.data can work

with complex data too. For example, XML data sources may have nested

elements, and JSON data stores may have nested arrays and hashes.

Humans seem to prefer the tree for visualizing hierarchical data. User

interfaces in email programs and the file manipulation portion of an

operating system use trees to show items within folders, in turn within

other folders, and so forth. Dijit’s tree widget, dijit.Tree, makes this visual

display simple. Its tight integration with dojo.data nested data sources

ensures an accurate onscreen depiction at all times. By tapping into

dijit.Tree’s many extension points and drag-and-drop functionality, you

can create a powerful user experience.

13.1 A Simple Tree

We are going to build a web application for Return Material Autho-

rizations (RMAs) to demonstrate the flexibility of Trees. The contractee,

Gag-ool, specializes in gag gifts and rarely gets returns, but it wants

to make the return process speedy and painless. Gag-ool pays all ship-

ping costs of the return using its preferred shipping supplier. This ship-

per has a web service to arrange pickup and generate shipping labels.

The shipper has certain restrictions, most notably a 15-pound limit on

packages.

Gag-ool will handle the shipper integration; our job is to create the UI.

A customer will log on to the site, see a list of their orders and serial

numbers, and choose items to RMA.

A SIMPLE TREE 342

Figure 13.1: Cocktail napkin drawing of the return application

We’ll design this with two trees. The right tree, called the order tree,

will contain recent orders, their items, and the serial numbers. The

left tree, called the box tree, will contain boxes of serial numbers to

return. The user drags items they want to return from the order tree

to the box tree. The application should prevent the user from creating

boxes heavier than 15 pounds. The user can create, update, and delete

boxes as they move the product around to fit their own packing list. In

Figure 13.1, you can the cocktail napkin view.

It’s best to start simple, so first we’ll model the main nodes of the order

tree. The tree itself is a dijit.Tree widget requiring a dojo.data store to feed

it.1 Each item in the data store becomes a node of the tree. The top-

most node is called the root and has no corresponding item in the data

store—instead, you provide the root label in the dijit.tree.ForestStoreModel

tag. (You can also have a rootless tree by setting showRoot="false" in the

dijit.Tree widget.)

1. That’s not entirely true. You can embed static Tree nodes into a Tree with the

dijit._TreeItem widget. But static Trees are comparatively rare, and you can create one with

dojo.data and a static file anyway.

A SIMPLE TREE 343

Figure 13.2: A dijit.Tree widget

You can use any dojo.data driver to feed the Tree, but we’ll use the

familiar ItemFileReadStore. As with other examples, a static file will pro-

vide the sample data, later to be replaced by a dynamic service. Here is

datasource/order.json:

Download tree/datasources/order_header.json

{

identifier: 'id',

label: 'description',

items: [

{ id: 987987, description:"Order 987987",

priority:"Next Day Air"

},

{ id: 988855, description:"Order 988855",

priority:"2nd Day Air"

},

{ id: 988900, description:"Order 988900",

priority:"2nd Day Air"

}

]

}

With this data source, these five lines of code produce Figure 13.2:

Download tree/simple_tree.html

<div dojoType="dojo.data.ItemFileReadStore" url="datasources/order_header.json"

jsId="ordJson"></div>

<div dojoType="dijit.tree.ForestStoreModel" rootLabel="Order" store="ordJson"

jsId="ordModel"></div>

<div dojoType="dijit.Tree" id="ordTree" model="ordModel"></div>

HIERARCHICAL DATA STORES 344

The data flows from the data source to the Tree in three steps:

1. The dojo.data.ItemFileReadStore tag defines the data source, just

like we used in Chapter 10, dojo.data, on page 260.

2. A model acts like a pipe adapter between the data source and

the tree. Its input comes from the jsId= of the data store and out-

puts through its own jsId=. Here you can filter data through the

familiar dojo.data query. Tree comes bundled with two adapters.

dijit.tree.ForestStoreModel, the more popular of the two, takes a mul-

tiitem store, makes the items children and adds an artificial root

node. You specify the label of this root node in the attribute root-

Label=. dijit.tree.TreeStoreModel takes the root from the store, and it

expects the query dojo.data store to return one item, presumably

with plenty of child items.

3. The dijit.Tree tag connects to the model’s jsId= through its model=

attribute.

13.2 Hierarchical Data Stores

Our first example was a one-level tree. If the backing data store sup-

ports hierarchical data, as ItemFileReadStore and XmlStore do, a Tree can

go down any number of levels. This nesting lessens the number of trips

to the server. An order, for example, has header information (containing

orderNumber, customer) and zero to many lines (containing sku, quantity).

Rather than fetching a header and the associated lines in two separate

requests, you can include the lines within the header.

ItemFileReadStore and Trees

An ItemFileReadStore can nest JSON hashes within JSON hashes, a tech-

nique we saw in Section 3.2, Literals and Hashes, on page 39.2 That

structure translates directly to a tree—a nested hash will display as a

“folder” node that you can expand.

2. This kind of nesting is called native nesting. ItemFileReadStore also supports reference

nesting, allowing more complex relationships such as assigning multiple parents to a

child. These relationships cannot be modeled with a Tree anyway, but if you’re interested,

the Book of Dojo at http://dojotoolkit.org has details.

HIERARCHICAL DATA STORES 345

For example, here is an ItemFileReadStore showing line nesting within an

order:

Download tree/datasources/order_combined.json

{

identifier: 'id',

label: 'description',

items: [

{ id: 987987, description:"Order 987987",

priority:"Next Day Air",

line: [

{ id: '987987-1', qty:1,

sku:11761, description: 'Yodeling Pickle'},

{ id: '987987-2', qty:3,

sku:11798, description: 'Gummy Tapeworm'}

]

},

{ id: 988855, description:"Order 988855",

priority:"2nd Day Air" ,

line: [

{ id: '988855-1', qty:4,

sku:11753, description: 'Gummy Haggis'}

]

},

{ id: 988900, description:"Order 988900",

priority:"2nd Day Air",

line: [

{ id: '988900-1', qty:15,

sku:11824, description: 'Worlds Largest Inflatable Heart'},

{ id: '988900-2', qty:1,

sku:11548, description: 'Deluxe Librarian Action Figure'}

]

}

]

}

When fed into a Tree with this code...

Download tree/tree.html

<div dojoType="dojo.data.ItemFileReadStore"

url="datasources/order_combined.json"

jsId="ordJson"></div>

<div dojoType="dijit.tree.ForestStoreModel"

rootLabel="Order" store="ordJson"

childrenAttrs="line"

jsId="ordModel"></div>

<div dojoType="dijit.Tree" id="ordTree"

model="ordModel"></div>

the data store looks like Figure 13.3, on the next page.

HIERARCHICAL DATA STORES 346

Figure 13.3: A hierarchical Tree

Note the childrenAttr= property, a comma-separated list of data store

properties. The previous code says all properties named line will hold

nested elements. If you don’t specify childrenAttr=, Tree assumes the

property children specifies which properties hold nested elements. But

for data store readability, it’s a good idea to explicitly state childrenAttr=.

children is simply not descriptive enough—a property name like line tells

what the nested items are. It’s also a good idea to name them differently

at different levels, for example, line at the first level and lineDetail at the

second with childrenAttr="line,lineDetail".

ItemFileReadStore has a few caveats when used with Trees. Each item,

whether parent or child or grandchild, must have a single identifier

attribute. In our example, id is the identifier. Furthermore, identifier

values must be unique within the JSON document.

Accessing Complex Data from JavaScript

Tree’s extension points require access to your hierarchical data. But

how does that work? Earlier, in Section 10.4, Calling Read Methods

from JavaScript, on page 275, you saw how to get an item with fetch

and extract values from it with getValue. The JSON data stores hand

you back JavaScript primitives as values. dojox.data.XmlStore hands you

back an XmlItem, which you can pass to toString to convert.

getValue can also return a nested item. In this case, you treat the return

value as you would any other item—you use getValue to retrieve its

values and so forth.

Data stores can also have multivalues. A multivalued property has zero-

to-many values assigned to it. Most often these values are themselves

HIERARCHICAL DATA STORES 347

nested items, but they could be any kind of value. If you try to retrieve

a multivalue with getValue, the data driver may throw an exception or

may simply hand you the first value (as ItemFileReadStore does). Neither

option is very good. You really want all the values here, and to get them,

you must use getValues.

getValues returns a JavaScript array of values for that property. These

values may themselves by primitives, like a JavaScript primitive or

an XmlItem, or nested items. Conveniently, getValues will work for any

attribute. It may return a zero-element array if the attribute doesn’t

exist or an array of one element or many elements.

How you write an multivalue in the data source depends on the data

driver. In ItemFileReadStore, a JavaScript-like array bracketed with [. . .]

indicates a multivalue. In XMLStore, any two or more sibling elements

with the same tag name become a multivalue. So in our previous exam-

ples, the <order> tags and the <line> tags become multivalues.

All this machinery makes accessing complex data uniform across data

drivers. An example shows how this all works together. Here’s our sam-

ple order data again, but this time formatted in XML:

Download tree/datasources/order_combined.xml

<orders>

<order>

<orderNumber>987987</orderNumber>

<description>Order 987987</description>

<priority>Next Day Air</priority>

<line>

<lineId>987987-1</lineId>

<qty>1</qty>

<sku>11761</sku>

<description>Yodeling Pickle</description>

</line>

<line>

<lineId>987987-2</lineId>

<qty>3</qty>

<sku>11798</sku>

<description>Gummy Tapeworm</description>

</line>

</order>

<!-- More Orders Here -->

</orders>

The following code extracts the description attribute from the first line

of the first order in both JSON and XML data stores.

HIERARCHICAL DATA STORES 348

Here are the data store definitions, written the programmatic way:

Download tree/using_heirarchies.html

dojo.require("dojo.data.ItemFileReadStore");

var ordJson = new dojo.data.ItemFileReadStore({

url: "datasources/order_combined.json",

childrenAttr: "line"

});

dojo.require("dojox.data.XmlStore");

var ordXml = new dojox.data.XmlStore({

url: "datasources/order_combined.xml",

rootItem: "order",

keyAttribute:"orderNumber",

label:"description"

});

This is the first XmlStore definition we’ve seen, but it’s pretty much

like the ItemFileReadStore. The two properties keyAttribute and label are

the analogues of ItemFileReadStore’s identifier and label properties. The

rootItem property gives the tag name of the main elements.

And here’s the extraction code:

Download tree/using_heirarchies.html

function commonComplete(storeDescription, dataStore, items, request) {

// Get the first order

var firstOrder = items[0];

// Get array of each line from the lines list

var lineList = dataStore.getValues(firstOrder,"line");

// Get description of the first item. The +"" applies toString()

// to the value, necessary for XmlStore

console.debug(

storeDescription,

dataStore.getValue(lineList[0],"description")+

""

);

}

// Example 1: ItemFileReadStore and JSON

ordJson.fetch({

query: { id: '*' },

onComplete: function(items, request) {

commonComplete("JSON Native Nesting: ", ordJson, items,request);

}

});

// Example 2: XmlStore

ordXml.fetch({

query: { orderNumber: '*' },

EXTENSION POINTS 349

onComplete: function(items, request) {

commonComplete("XML: ", ordXml, items, request);

}

});

Note that in both cases the extraction code is commonComplete, and

the extracted values are identical. That’s dojo.data making things easy

for you.

13.3 Extension Points

Like most widgets, Trees have extension points in which to hook your

own code. Back in Chapter 12, Scripting Widgets, on page 319, we

saw the getIconClass extension point in action. Another extension point,

onClick, will be useful in the RMA app, as we’ll see in a second.

The Box Tree

The tree needs one box to start, and the user will add, remove, and

rename boxes as needed. Trees are backed by data stores, but now Item-

FileReadStore isn’t enough. We need a store implementing dojo.data.Write,

and ItemFileWriteStore is the natural choice here, using the same format

as ItemFileReadStore.

The initial data store, kept in datasources/rma_boxes.json, defines one

initial box with no items in it. It looks like this:

Download tree/datasources/rma_boxes.json

{

identifier: 'id',

label: 'name',

items: [

{ id: 1, name: "Box 1", type:"box", weight:0 }

]

}

This looks pretty trivial; does it need to be in a file? Not really. We

could as easily put this initial store in a string and pass it to the data=

property of the store tag. But by using a URL, we can easily convert the

static file to a server-based process later.

Our app will look like a split screen, a simple thing to achieve with

a dijit.layout.BorderContainer and two dijit.layout.ContentPanes. Later, in

Chapter 16, Dijit Themes, Design, and Layout, on page 428, you’ll learn

all the details of both, but for now here’s a brief explanation. The screen

is split into two halves, each delineated by a ContentPane. The entire

EXTENSION POINTS 350

Figure 13.4: Laying out the box tree and the order tree

BorderContainer box is 400 by 600 pixels, and initially each tree takes

up half as shown in Figure 13.4.

Laying out the page takes a few ContentPanes pushed into a BorderCon-

tainer. Here’s the skeleton:

Download tree/on_click.html

<div dojoType="dijit.layout.BorderContainer" style="width:600px; height:400px"

>

<div dojoType="dijit.layout.ContentPane" region="leading">

Box Tree

</div>

<div dojoType="dijit.layout.ContentPane" region="trailing">

Order Tree

</div>

</div>

The onClick Extension Point

The box tree’s Remove and Rename buttons will require the user to

select a box first. So, somehow the program needs to keep track of the

last-selected box. dijit.Tree provides the extension point onClick that’ll

work well in this case. Though onClick is also an event, Tree’s onClick

MANIPULATING THE TREE 351

extension point works a little differently. Tree passes the underlying data

item to the handler rather than the DOM event object.

The onClick handler itself simply remembers the last item clicked. The

extension point receives the entire item, not just the label, the identifier,

or the DOM node, making it easier to retrieve properties later.

Download tree/on_click.html

<div dojoType="dijit.layout.ContentPane" region="leading"

splitter="true" style="width:200px"

>

<div dojoType="dojo.data.ItemFileWriteStore"

url="datasources/rma_boxes.json"

jsId="boxJson"></div>

<div dojoType="dijit.tree.ForestStoreModel" store="boxJson"

jsId="boxModel" rootLabel="Boxes"></div>

<div dojoType="dijit.Tree" id="boxes" model="boxModel">

<script type="dojo/method" event="onClick" args="item">

// Given item, the backing dojo.data.Item backing this node,

// save it for later deleting and/or renaming

lastBoxSelected = item;

</script>

</div>

</div>

With boxes now selectable, we’re ready to manipulate them.

13.4 Manipulating the Tree

The Dijit Tree design is a slice of Model-View-Controller heaven, with

dojo.data providing the model and Tree providing the view and con-

troller. To manipulate the tree, you don’t call methods on the Tree object.

Instead, you simply change the model, and the onscreen Tree changes

accordingly. The in-memory data store representation and the Tree dis-

play are always in sync.

Adding, Removing, and Modifying Tree Nodes

So to change the Tree, you change the data store, and that means using

the dojo.data.Write API. Write contains methods for creating, modifying,

removing, and saving items. But instead of calling the Write methods

directly, you call them on the Tree model. The Tree model then passes

them back to the data store.

MANIPULATING THE TREE 352

You create items with newItem:

newItem(Hash obj, [, Hash parentInfo]) → dojo.data.Item

newItem creates an item in the data store. The properties of obj will

become properties in the new item. newItem is data-store-agnostic—obj

is a plain ol’ JavaScript hash whether the store type is ItemFileWriteStore

or XmlStore.

parentInfo is used to inject nested items into existing items. It’s a hash

of the following form...

{ parent: anItem, attribute: "attributeName" }

where anItem is the data store item that will become the parent and

where attributeName is the attribute to place it. attributeName will be

one of the childrenAttr attributes you’ve listed for the store.

The Add button calls newItem to add a box—very straightforward. A

newItem call without parent information creates the new item under-

neath the root, which is what we want:

Download tree/writing_model.html

<div dojoType="dijit.form.Button">

Add Box

<script type="dojo/method" event="onClick" args="evt">

highestBoxId++;

boxJson.newItem({

id: highestBoxId,

name: "Box "+highestBoxId,

type: "box",

weight:0

});

</script>

</div>

Remember, for Trees, you call the Write methods on the model, not the

store itself. deleteItem does what you think:

deleteItem(dojo.data.Item i)

i must be an actual dojo.data.Item object, not just a plain ol’ JavaScript

hash as in newItem. The same is true for setValue and setValues.

setValue(dojo.data.Item i, String attributeName, Object value)

setValues(dojo.data.Item i, String attributeName, Object[] value[])

setValue(s) is the flip side of Read’s getValue(s), writing an attribute to an

item. It has an interesting side effect: using setValue on the designated

store label changes the label on the Tree node. That’s exactly how to do

the Rename button.

MANIPULATING THE TREE 353

So, onto the buttons. . . First set up the dojo.require statements and

housekeeping variables. highestBoxId will keep track of the last-assigned

box ID. Allocation is sparse; that is, if a box is deleted, there will be a

“hole” in the IDs. That’s fine.

Download tree/writing_model.html

dojo.require("dijit.form.Button");

// This is a dummy counter until the real one is in place.

var highestBoxId = 1;

The Remove button passes lastSelectedItem to deleteItem, and the box

disappears:

Download tree/writing_model.html

<div dojoType="dijit.form.Button">

Remove Box

<script type="dojo/method" event="onClick" args="evt">

if (!lastBoxSelected || !boxJson.isItem(lastBoxSelected)) {

alert('You must select a box first');

return;

}

boxJson.deleteItem(lastBoxSelected);

</script>

</div>

Rename uses lastSelectedBox and the Write method setValue to set a label

on the box:

Download tree/writing_model.html

<div dojoType="dijit.form.Button">

Rename Box

<script type="dojo/method" event="onClick" args="evt">

if (!lastBoxSelected || !boxJson.isItem(lastBoxSelected)) {

alert('You must select a box first');

return;

}

// Low-tech solution. Would be better as a Dijit Dialog

if (newName = prompt("What would you like to call it?")) {

boxJson.setValue(lastBoxSelected,"name",newName);

}

</script>

</div>

Note in all three buttons, the code touches only the data store. The

internal representation of the store is always up-to-date with the visual

Tree. That’s nice, but it gets the data only halfway to its destination.

How do you get it the rest of the way—to the server?

MANIPULATING THE TREE 354

Saving the Tree Back to the Server

In the traditional web world, you could save data only upon form sub-

mission. In the Ajax world, you have more options. You can save one

field at a time as the user enters it. You can save a record as the user

moves from one record to another. You can save at certain time inter-

vals, like a word processor’s autosave feature, or you can save upon

form submission. There are advantages to each strategy. For example,

saving data more frequently avoids the “all-or-nothing” pitfall, while

saving data less frequently is easier to script.

dojo.data allows these options and those in between—a continuum be-

tween coarse granularity (saving more data less frequently) and fine

granularity (saving less data more frequently). And because changing

Tree involves changing only the model, this goes on without the knowl-

edge of Tree.

For fine granularity, you plug your save routine (usually using XHR or

JSONP) into the dojo.data.Notification API. Notification is like the mirror

image of Write. When each Write method completes, it fires the corre-

sponding Notification event: Write’s setValue fires Notificaton’s onSet event,

delete fires onDelete, and newItem fires onNew. Tree itself works by plug-

ging handlers into these events. For instance, its onNew handler adds

the new item as a Tree node. If you wanted to perform a save at that

point, you plug your handler into onNewItem as well. Both handlers—

from Tree and your own code—execute.

Dojo.data drivers implementing Notification, such as ItemFileWriteStore,

define the following extension points:

onNew(dojo.data.Item i)

onDelete(dojo.data.Item i)

onSet(dojo.data.Item i, String attributeName, Object value, Object newValue)

The signatures match their counterparts in dojo.data.Write with one

exception: onSet adds the oldValue parameter. This is useful because if

oldValue==newValue, it probably doesn’t need saving back to the server.

Your handler must check for this condition.

Using this in our example, the onNew event runs our handler, sending

the new box data back to the server through dojo.xhrPost:

Download tree/writing_model_fine_granularity.html

<div dojoType="dojo.data.ItemFileWriteStore"

url="datasources/rma_boxes.json"

jsId="boxJson">

MANIPULATING THE TREE 355

<script type="dojo/connect" event="onNew" args="newItem">

dojo.xhrPost({

url: "datasources/rma_boxes.json",

content: {

id: this.getValue(newItem,"id"),

description: this.getValue(newItem,"name"),

operation: "insert"

},

timeout: 1000,

error: function() {

alert('Uh oh. The box wasn\'t saved.');

},

load: function() {

console.debug("new box saved");

}

});

</script>

</div>

Since we’re not dealing with server programs in this book, this example

posts to a static URL. But you can watch the action in Firebug, as

shown in Figure 13.5, on the following page. The server program can

translate these packets into database operations.

Coarse-grained saving is similar. The dojo.data.Write API’s save routine

serializes the store and posts it back to the URL, which is essentially

fetch in reverse. The following code places a Save button next to the

other buttons:

Download tree/writing_model_coarse_granularity.html

<div dojoType="dijit.form.Button">

Save

<script type="dojo/method" event="onClick" args="evt">

// Turns JavaScript object into JSON. Like dojo.objectToJSON, but

// respects dojo.data Type Maps

var newFileContentString = boxJson._getNewFileContentString();

dojo.xhrPost({

url: "datasources/rma_boxes.json",

// The boxes parameter name is arbitrary

content: {

boxes: newFileContentString

},

timeout: 1000,

load: function() {

console.debug("all boxes saved");

},

error: function() {

alert('Uh oh. The boxes weren\'t saved.');

}

});

</script>

</div>

DRAG AND DROP 356

Figure 13.5: Clicking Add sends XHR packet

Again, the routine posts to a static URL, but you can watch the activity

in Firebug.

You may be asking, “Why use the extension points? You could just

as easily attach the code right to the button.” By using the extension

points, you ensure the routines run no matter how the data gets in. For

example, in the next section, the drag-and-drop controller will manip-

ulate the data store.

When it does, it’ll use our onNew, onSet, and onDelete handlers. So,

there’s no new code to write!

13.5 Drag and Drop

The last ingredient we need for the RMA app is drag-and-drop function-

ality. Users will drag items from the order tree to the box tree, and the

code must change the display and the data stores appropriately.

We will cover low-level drag and drop in Chapter 19, Adding Dynamic

Content to an RIA, on page 505. dijit.Tree builds drag and drop right into

its core, covering the low-level details and initialization so you don’t

have to.

A Little Refactoring

Before continuing, notice how our app is getting a bit chunky. Some

refactoring is in order. The box tree, which contains the bulk of the

code, would fit nicely in an object.

DRAG AND DROP 357

Since the box tree represents an RMA, we’ll name the object class dojo-

book.tree.objects.rma. RMA methods would include adding, removing,

and renaming a box; checking that an item can fit in a box; and adding

an item to a box.

Some skeleton code starts the object:

Download tree/objects/rma.js

dojo.provide("dojobook.tree.objects.rma");

dojo.require("dijit._tree.dndSelector");

dojo.require("dojo.dnd.Manager");

dojo.declare("dojobook.tree.objects.rma", null, {

// Data store associated with the return, will contain boxes

// and serial numbers

store: null,

// Keep the dndSource controller for this tree.

dndController: null,

// Generator for unique box id's

highestBoxId: 1,

// For use in Delete and Rename

lastBoxSelected: null,

// Serial numbers already in the return

allRMASerials: [],

// Box weight limit, imposed by our shipper

MAX_WEIGHT: 15,

// Constructor

constructor: function(dataStore, inDndController) {

this.store = dataStore;

this.dndController = inDndController;

},

Back in the HTML page, we declare an instance of this object:

Download tree/rma.html

// Object tree uses

dojo.require("dojobook.tree.objects.rma");

var rma = null;

We also create the actual object inside the tree widget.

DRAG AND DROP 358

It’s necessary to do it here because the constructor needs parameters

that were created along with the tree:

Download tree/rma.html

<div dojoType="dijit.Tree" id="boxes"

model="boxModel"

dndController="dijit._tree.dndSource"

onDndDrop="dndDrop"

checkItemAcceptance="itemAccept"

>

<script type="dojo/method">

// Executed when the widget is created

rma = new dojobook.tree.objects.rma(boxJson, this.dndController);

</script>

<script type="dojo/event" event="onClick" args="item">

rma.lastBoxSelected = item;

</script>

</div>

Then the button-backing code moves over to the object class:

Download tree/objects/rma.js

addBox: function() {

this.highestBoxId++;

this.store.newItem({

id: this.highestBoxId,

name: "Box "+this.highestBoxId,

type: "box",

weight:0

});

},

removeBox: function() {

if (!this.lastBoxSelected || !this.store.isItem(this.lastBoxSelected)) {

alert('You must select a box first');

return;

}

this.store.deleteItem(this.lastBoxSelected);

},

renameBox: function() {

if (!this.lastBoxSelected || !this.store.isItem(this.lastBoxSelected)) {

alert('You must select a box first');

return;

}

if (newName = prompt("What would you like to call it?")) {

this.store.setValue(this.lastBoxSelected,"name",newName);

}

}

DRAG AND DROP 359

And method calls are left in its place:

Download tree/rma.html

<div dojoType="dijit.form.Button">

Add Box

<script type="dojo/event" event="onClick">

rma.addBox();

</script>

</div>

<div dojoType="dijit.form.Button">

Remove Box

<script type="dojo/event" event="onClick" args="evt">

rma.removeBox();

</script>

</div>

<div dojoType="dijit.form.Button">

Rename Box

<script type="dojo/event" event="onClick" args="evt">

rma.renameBox();

</script>

</div>

That’s much better. The more JavaScript code we can remove from the

HTML, the clearer the user interface design will be.

_TreeNodes and Associated Objects

To operate on the tree, we need a little background on its contents.

From the discussions on widgets, you’ll recall that each widget is really

two objects: the widget object and the DOM node for the onscreen rep-

resentation. The former responds to Dijit method calls, and the latter

responds to DOM operations such as setting the style.

A Tree is a container widget, which means it’s meant to contain other

widgets. In this case, the contained widgets are always of type dijit.

_TreeNode. You don’t create these widgets—Tree does that for you—but

you do need to access them. Because _TreeNodes are widgets, they have

a backing widget instance and DOM node. But they also have a third

representation: a dojo.data.Item. In MVC parlance, the dojo.data.Item is

the model object, the DOM node is the view, and the _TreeNode is the

controller.

The good news is there’s a one-to-one-to-one correspondence here. One

_TreeNode always has exactly one associated DOM node and one asso-

ciated Item. That never varies. The trouble is you may have only one of

DRAG AND DROP 360

these objects, and you need information from another object. For exam-

ple, the getIconClass extension point gets the item, but not the widget

or DOM node. So, conversion between these three objects is essential.

Here’s a handy list of conversions:

• Use treeObject._itemNodeMap[itemId] to convert from the item to the

widget. _itemNodeMap maps identity values to _TreeNode objects.3

• Use dijit.getEnclosingWidget to convert from the DOM node to the

widget. We saw this in Chapter 12, Scripting Widgets, on page 319.

• To convert from the widget to an item, use widget.item.

Combinations of these three conversions cover the other cases. For

example, this method converts a DOM node to an item:

Download tree/objects/rma.js

// Handy method for computing dojo.data item connected to a DOM node

domToItem: function(domNode) {

return dijit.getEnclosingWidget(domNode).item;

},

Checking Drop Operations

Enabling a Tree with drag and drop requires just one property: dndcon-

troller=. All of the tree items then become drag sources and drop targets.

So first, hook up the order tree:

Download tree/rma.html

<div dojoType="dijit.Tree" id="ordTree"

model="ordModel"

dndController="dijit._tree.dndSource"

checkAcceptance="never">

</div>

In most drag-and-drop Tree cases, the bundled controller dijit._tree.

dndSource works fine. If you need extra functionality, you can always

subclass dndSource or write your own controller.

Among other things, dndSource checks the legality of a drop. Or, more

accurately, it calls our code that checks the legality of a drop. This

code plugs into Tree’s checkAcceptance or checkItemAcceptance exten-

sion point. The difference between the two is scope.

3. This is why identity values need to be unique in the data store, even at differing

nesting levels—if they weren’t, you’d have collisions in the _itemNodeMap array.

DRAG AND DROP 361

checkAcceptance answers “Can you drop this item anywhere in this

tree?” checkItemAcceptance answers “Can you drop this item on this

particular tree node?” If you don’t provide a handler, the answer is

assumed “yes.”

An example will clarify. The order tree should not accept any dragged

objects, no matter which node the user attempts to drop it on. There-

fore, we plug a function into checkAcceptance:

Download tree/rma.html

<div dojoType="dijit.Tree" id="ordTree"

model="ordModel"

dndController="dijit._tree.dndSource"

checkAcceptance="never">

</div>

And in this case the function is trivial:

Download tree/rma.html

function never() { return false; }

Nodes of the box tree, on the other hand, do accept dropped items,

but not in all cases. The checkItemAcceptance extension point is more

appropriate here. We need to check three rules. First, you can drop a

serial number only on a box, not a root node or another serial number.

Second, you cannot drop a serial number onto the box tree more than

once. Third, each box must observe the 15-pound box limit.

The checkItemAcceptance extension point has the signature checkItem-

Acceptance(dojo.dnd.Target target, dojo.data.source[] sources). Tree passes

over the drop target, and an array of drag sources—though our tree

allows dragging only one source at a time, so we’ll need only the first

element. The Tree tag points to our checkItemAcceptance function (and

the onDndDrop function, which we’ll cover in the next section):

Download tree/rma.html

<div dojoType="dijit.Tree" id="boxes"

model="boxModel"

dndController="dijit._tree.dndSource"

onDndDrop="dndDrop"

checkItemAcceptance="itemAccept"

>

It would be nice if checkItemAcceptance could directly call a dojobook.

tree.objects.rma method declaratively, but it’s not possible with Dojo 1.1.

DRAG AND DROP 362

So, instead, it calls a utility function in the HTML file:

Download tree/rma.html

// functions that actually call methods

function itemAccept(target, source) {

return rma.itemAccept(target, source);

}

function dndDrop(source, nodes, copy) {

rma.boxDrop(source, nodes, copy);

};

And the utility function in turn calls the item acceptance method in the

rma. class. This is where the rubber meets the road.

Download tree/objects/rma.js

itemAccept: function(target, source) {

// First make sure we're dropping on a box, not another serial #

targetBoxItem = this.domToItem(target);

// There is no item connected with the root

if (! targetBoxItem) {

return false;

}

// Only boxes have a type attribute

if (! boxJson.hasAttribute(targetBoxItem, "type")) {

return false;

}

// Loop through all the dragged nodes. See the DnD chapter

// for details on the .selection property

var draggedSerials = source.selection;

var draggedWeight = 0;

for (thisSerial in draggedSerials) {

// If any serial number has already been moved, don't let it

// be moved again.

if (dojo.indexOf(this.allRMASerials, thisSerial) > -1)

return false;

// Get the item weight, and add it to the dragged item weight

var serialItem = this.domToItem(draggedSerials[thisSerial]);

var thisSerialWeight = parseInt(ordJson.getValue(serialItem,"weight"));

draggedWeight += thisSerialWeight;

}

// Finally, add up all the weights and make sure they're OK

if (parseInt(this.store.getValue(targetBoxItem,"weight"))

+ draggedWeight > this.MAX_WEIGHT) {

return false;

}

DRAG AND DROP 363

// Everything is fine

return true;

},

Checking the first rule (drop only on a box) is straightforward. Even

though the extension point passes a DOM node, the handy domToItem

translator retrieves the data behind it. Only boxes have the type= prop-

erty of that data item, so that check is quick. The second rule checks

for “double dragging,” and to make this easy, a flat list of all serials in

the box tree resides in allRMASerials, which the drop operation manipu-

lates as items are dropped. If the item has already been dropped, it’ll

appear in here.

Weight checking needs to consult the order data source. The code loops

through all dragged nodes, converting them to their dojo.data.Item coun-

terparts. The item contains the weight, and we add that to a running

total. Add this to the box weight, which is kept in the boxes’ weight

property (also updated when items are dropped), and make sure it’s

less than 15 pounds. If it is, the drop can proceed.

Dropping and Adding Items

The checkItemAcceptance method relies on some housekeeping oper-

ations performed as items are dropped: it expects the box weight to

be correct and the allRMASerials list to be up-to-date. These go into Tree’s

onDndDrop extension point. The chain of events on a drop goes like this:

1. The user lets go of the mouse.

2. checkAcceptance and checkItemAcceptance are called. If they both

return true, the drop proceeds.

3. Tree updates the display and the data store.

4. Lastly, Tree calls the onDndDrop extension point. If no method is

connected there, the drop operation ends.

The signature for onDnDDrop is onDndDrop(dojo.dnd.source source, dojo.

dnd.source[] nodes, boolean copy). It’s like most other drag-and-drop ex-

tension points, but it adds the copy parameter, which is set to true if

the user holds down Shift while dragging.

DRAG AND DROP 364

This doesn’t matter in our app.

Download tree/objects/rma.js

boxDrop: function(source, nodes, copy) {

// The DnD controller contains the drop target (the box).

// For convenience, convert this to an item

var targetBoxItem = this.domToItem(this.dndController.current);

// The weight is init'ed to zero and we add weight as items

// are dropped into it.

var currentBoxWeight = this.store.getValue(targetBoxItem, "weight");

// Handle more than 1 serial number, if needed

for (var i=0;i<nodes.length;i++) {

// Convert to an item

var draggedItem = this.domToItem(nodes[i]);

// Remember the serial number

this.allRMASerials.push(ordJson.getValue(draggedItem,"id"));

// Add the weight of this serial, obtaining the weight from

// the order item

var thisSerialWeight =

parseInt(ordJson.getValue(draggedItem,"weight"));

currentBoxWeight += thisSerialWeight;

}

this.store.setValue(targetBoxItem, "weight", currentBoxWeight);

// Store it back in the item store.

if(this.dndController.containerState == "Over"){

// Stop dragging

this.dndController.isDragging = false;

// Create a new dropped item in the target

var items = this.dndController.itemCreator(

nodes,

this.dndController.current

);

// Create a data store item for each dragged serial number

// The tree then changes to match it.

for(var i = 0; i < items.length; i++){

pInfo = {parent: targetBoxItem, attribute: "children"};

var newItem = this.store.newItem(items[i], pInfo);

}

}

// Cancel all other event handlers

this.dndController.onDndCancel();

},

DRAG AND DROP 365

Figure 13.6: The tragic return of gummy haggis

Similar to checkItemAcceptance, the drop operation loops through all

dropped items, adds the weights to the current box total, and stores the

serial numbers in allRMASerials. At this point, the drop operation ends,

and the user can drag another item. All of these operations happen in

a controlled, intuitive fashion, and to the user, it’s one fluid motion. In

Figure 13.6, you can see the action in progress.

Between the two source files, there are about 250 lines of source code

including comments. That’s not too bad for an application with drag

and drop, access to outside services, validation, and tree control!

Other JavaScript toolkits have tree widgets, but none has the clean

MVC architecture of Dijit. Because dojo.data is flexible and standard,

reading/writing hierarchical values is a breeze, no matter what the

server data format is. And the tree display update is automatic. If you’ve

ever tried writing data to the browser and then “screen-scraping” it back

off to do calculations, you realize how important that integration is. It’s

a real time-saver. In the next chapter, we’ll see another widget that inte-

grates tightly with dojo.data: Grid.

Chapter 14

Grid
As we saw in Chapter 3, Connecting to Outside Services, on page 37, the

Grid widget is a spreadsheet-like “supertable.” Grids are de rigueur in

client-server application land, but web application land hasn’t adopted

them very quickly. The technology to build them just wasn’t there: in

a regular fill-and-submit form, it’s impossible to make a grid that feels

interactive.

But the big bang of JavaScript, Dynamic HTML, and XHR makes

browser-based grids possible, and the Grid widget is the state-of-the-

art. It gives client-server grids a run for their money in features, per-

formance, and stability. Dojo’s Grid widget began life as TurboGrid,

built independently on top of early Dojo releases by Scott Miles and

Steve Orvell. In late 2007, their company, TurboAjax, was purchased

by ActiveGrid, which in turn contributed TurboGrid technology to the

Dojo Foundation.

Despite its inclusion in Dojox, Grid is more than just a Dojo extension.

It’s a powerful display environment on its own, popular among Dojo

users, and very feature-rich:

• A Grid’s data elements can span multiple columns or multiple

rows, just like an HTML table. And you can freeze particular col-

umns while the rest of the Grid scrolls.

• Rows can contain multiple subrows working together as a unit.

Subrows can be selectively hidden on certain rows, making it use-

ful for grouping and aggregation.

• Even with thousands of rows, Grid performs well. Rows are lazy-

rendered as the user moves down the Grid.

GRID DISPLAY AND DESIGN 367

• Grid has a large assortment of extension points to hook in your

own code. Many extension points act on standard DOM Level

2 events, adding Grid-specific properties to the standard event

object. This makes for easier coding.

• Grid supports rich data editors, some custom-made for Grid and

some based on existing Dijit form controls.

• Grid works with all bundled dojo.data drivers. Data synchroniza-

tion is built in: changing the data changes the display, and vice

versa.

That’s a lot of functionality, and it’s accessible through the Dojo idioms

you’ve come to know and love.

14.1 Grid Display and Design

Let’s briefly review what we learned in Chapter 3. A Grid is fed data

through a model, which in all our examples will be a dojo.data data

source.1 The Grid widget looks like a table with one row, and you use

<th> tags to define columns, their widths, and the attributes that pro-

vide them with data.

Data-wise, Grid is similar to its data-enabled brethren widgets Tree, Fil-

teringSelect, and ComboBox. The store= attribute connects the Grid to its

store. The query= and queryOptions= attributes define which items ini-

tially feed the Grid. You can also specify an initial sort order, but unlike

the other data-enabled widgets that use the sort= property, in Grid the

property is sortFields=. The sort criteria format is the same.

Now, onward to bigger and better Grids. In this chapter, we’ll follow the

evolution of a Grid-based ice cream rating system. (Life is too short to

waste on mediocre ice cream!) The user will get a prepopulated Grid

of ice cream flavors, calorie and fat information, and ingredient sum-

maries. They can then add their own ratings.

Every Grid begins with data. Our data store is in the familiar JSON

format using the ItemFileReadStore data driver.

1. You can also use straight two-dimensional arrays as models. This was the only way

to feed data to the Grid in the days before dojo.data. Its use has been deprecated, so these

days data store and model are fairly synonymous. But a thin model class remains tied to

Grid, and the term model lives on in Grid’s properties, attributes, and method names.

GRID DISPLAY AND DESIGN 368

The items, one per ice cream flavor, look like this:

Download grid/datastores/ice_cream.json

{ identifier: "name",

label: "name",

items: [

{ name: "banana split",baseFlavor:"banana",

mixins:"fudge, strawberries, cherries",

calories:280,fat:16 ,source:1,rating:3 },

{ name: "black raspberry chip",

baseFlavor:"black raspberry and vanilla",

mixins:"chocolate chips",

calories:280,fat:18 ,source:1,rating:3 },

// Lots more...

It looks simple enough to put into a Grid:

Download grid/grid_1_subrow.html

<span dojoType="dojo.data.ItemFileReadStore"

jsId="icStore" url="datastores/ice_cream.json">

<table id="grid" dojoType="dojox.grid.Grid"

store="icStore"

clientSort="true"

style="width: 35em; height: 15em;">

<thead>

<tr>

<th field="name">Flavor</th>

<th field="baseFlavor" >Base Flavor</th>

<th field="calories" >Calories</th>

<th field="fat" >Fat</th>

<th field="mixins">Mixins</th>

</tr>

</thead>

</table>

Note: One nice shortcut comes courtesy of Grid. Every data-enabled

widget uses a dojo.data query to do the first fetch. With FilteringSelect

and Tree, you placed that query in the tag. You can with Grid too, but

if you don’t specify the query, it uses the default: { name: ’*’ }. Since

the identifier in our data store is called name and we want Grid to list

all items, the default is perfect, and we don’t need to specify our own

query. Many Dojo programmers use this convention when designing

data stores for Grid.

But the results are not quite what we wanted, as shown in Figure 14.1,

on the next page. The word wrapping in the larger columns mixins and

flavor cause a lot of whitespace in the others. And when you try to fix

GRID DISPLAY AND DESIGN 369

Figure 14.1: Columns are unbalanced

the column sizes, the results don’t look right. You’re trying to fit too

much text in one line.

Besides adding width to a Grid, you can give the data some breathing

room using either subrows or views. Let’s take up subrows first.

Subrows

A subrow is simply a horizontal subdivision of a row onto different

physical lines. Each row is like a <tr> tag. In fact, the declarative ver-

sion of Grid uses <tr> tags to group <th> tags into subrows. We’ve been

using subrows all along, but only one of them per row.

Since the mixins column is the largest, we’ll put it on its own subrow like

this:

Download grid/grid_2_subrows.html

<tr>

<th field="name" width="10em">Flavor</th>

<th field="baseFlavor" >Base Flavor</th>

<th field="calories" >Calories</th>

<th field="fat" >Fat</th>

</tr>

<tr>

<th field="mixins" width="15em" colspan="4" >Mixins</th>

</tr>

Notice the <th> tags need no changes except the mixins field’s colspan=

attribute. Just like in HTML, colspan="4" means the field will span the

four columns defined above it.

GRID DISPLAY AND DESIGN 370

Figure 14.2: Grid with rows split into two subrows

As you can see in Figure 14.2, the subrows stay together as a group.

All of a row’s subrows share the same odd or even coloring. And when

you click one data element, all the subrows are selected as a group.

Subrows are not only good for design but also for grouping and aggre-

gating, which come up later in this chapter. But first, an alternative to

subrows called views can also give your data more breathing room.

Views

Looking vertically, subrows make up rows, and rows make up a Grid.

Horizontally, columns make up views, and views make up a Grid. A

view is a set of contiguous columns. One view can scroll independently

of other views horizontally but will always scroll vertically in lockstep

with other views. In other words, a row spans all the Grid views, and its

subrows always stay together.

In Figure 14.3, on the next page, you can see our data with one subrow

per row and two views. The left view holds just the ice cream flavor

name, while the right view holds the remaining fields. The scroll bar

on the right view’s bottom border moves the columns left and right,

while the other view stays fixed. (You could have the left view scroll

left and right too, but it’s not very interesting with one column.) This

conveniently leaves the ice cream name in place while you browse the

other view’s fields. The right scroll bar moves both views up and down

in lockstep so that “banana split” is always on the same line as its

mixins “fudge, strawberries, cherries.”

To split columns into views, you use the HTML-standard (though not

very popular) <colgroup> tag. Its HTML use is to apply attributes to

several contiguous columns. In Grid, each <colgroup> defines one view.

GRID DISPLAY AND DESIGN 371

Figure 14.3: Multiple views

Through its span= attribute, <colgroup> gets the number of columns to

put in the view. Additionally, the Grid-specific noscroll= attribute removes

the scroll bars on the bottom and right sides of the view. This code

implements the Grid in Figure 14.3:

Download grid/grid_2_views.html

<span dojoType="dojo.data.ItemFileReadStore"

jsId="icStore" url="datastores/ice_cream.json">

<table id="grid" dojoType="dojox.grid.Grid"

store="icStore"

clientSort="true"

style="width: 35em; height: 15em;">

<colgroup span="1" noscroll="true"></colgroup>

<colgroup span="4"></colgroup>

<thead>

<tr>

<th field="name" width="15em">Flavor</th>

<th field="baseFlavor" width="10em">Base Flavor</th>

<th field="calories" width="5em">Calories</th>

<th field="fat" width="5em">Fat</th>

<th field="mixins" width="7em">Mixins</th>

</tr>

</thead>

</table>

If a <colgroup> tag leaves out the span= attribute, it’s assumed span="1".

PROGRAMMATIC STRUCTURES 372

So in the example, the first view gets the first row and removes the scroll

bar. The second view picks up the remaining four columns.

Remember, rows span views. And views do not change that each row

is fed by one dojo.data item. In other words, you cannot feed one view

from a data source and another view from a different one.

14.2 Programmatic Structures

Like all widgets, you can create a Grid programmatically. But you can

also create just the structure of the Grid programmatically. A structure

is the set of cell and view definitions making up a Grid. In other words,

it’s the Grid minus the model. Although we don’t use the term struc-

ture with declarative Grids, you can think of a structure as the set of

<colgroup>, <tr>, and <th> inside the <table> tag.

Grid Structure Definitions in JavaScript

As a structure gets more complex, it makes more sense to move it to

JavaScript. For one thing, it keeps the HTML smaller and more manage-

able. It allows you to reuse the Grid structure in many different pages.

Most important, a programmatic structure has extension points where

declarative tags don’t. Keeping the Grid tag declarative and moving the

structure to JavaScript is a nice compromise between ease and flexibil-

ity. The general form of a Grid structure looks like this:

var s = [// A structure is an array of views

{ // A view is an array of cells

cells: [

{

name: '«Column Display Name»',

field: '«Field in Datastore»',

«other properties»

},

«more cells»

]

},

«more views»

];

You then pass it to the Grid’s structure= property. The Grid no longer

needs <thead>, <tr>, or <th> tags, and the dojoType="dojox.grid.Grid"

attribute can go in a <div> instead of a <table>.

To see this in action, we’ll go back to our basic ice cream–fueled Grid.

We’ve seen how to use both subrows and views to get more space, but

subrows seem to look better, so we’ll go that route.

PROGRAMMATIC STRUCTURES 373

So, here’s the result:

Download grid/grid_definitions/programmatic.js

Line 1 dojo.provide("dojobook.grid.grid_definitions.programmatic");
-

- (function() {
- dojobook.grid.grid_definitions.programmatic.structure = [
5 {
- cells: [
- [
- {name: 'Flavor', field:"name", width:'10em'},
- {name: 'Base Flavor', field:"baseFlavor"},

10 {name: 'Calories', field:"calories"},
- {name: 'Fat', field:'fat'}
-],
- [
- {name: 'Add-Ins', field:"mixins",

15 width:'15em', colSpan:4}
-]
-]
- }
-]

20 })();

The indentation clarifies the element nesting. Reading from the inner-

most to the outermost, the hash in line 8 defines a cell. Probably a

more apt name for a cell is a column definition, since it defines one col-

umn’s properties: the column heading, the associated field, and so on.

Spreadsheets use cell to mean an actual data element—the intersection

of a row and a column. But here, we’ll follow Dojo Grid terminology.

The cell property names match the attribute names you use in <th>.

The column name you’d normally put in <th>’s body goes in the prop-

erty name. Subrows in lines 7 and 13 are arrays of cells, just like a

<tr>. Subrows are kept in the cells array, which functions like <thead>.

View definitions normally kept in <colgroup> are now hashes with the

cells property, as in line 6. A structure, the outermost array, functions

like a <table> tag. For the most part, a programmatic structure is the

declarative structure with { ... } and [...] substituted for tags.

Finally, you pass the structure into the Grid tag’s structure= attribute.

Download grid/grid_programmatic_structure.html

<div id="grid" dojoType="dojox.grid.Grid"

jsId="icGrid"

store="icStore"

clientSort="true"

style="width: 35em; height: 15em;"

structure="dojobook.grid.grid_definitions.programmatic.structure">

</div>

PROGRAMMATIC STRUCTURES 374

The result is a modularized Grid, with more maintainable code. And now

more options are open to us, like extension points and row bars.

Row Bars

Programmatic structures allow a special view called a row bar, used for

row selection. You may already have noticed that clicking a data ele-

ment highlights its entire row. This works in read-only data elements,

as ours have been. But once you enable editing, as we will in Sec-

tion 14.4, Cell Editing, on page 385, clicking will start up the cell editor.

How does a user select rows under these conditions?

A row bar contains no data but lives only for users to click and select

rows. You can see it on the left in Figure 14.4, on the following page.2

Clicking the row bar selects an entire row, and you can select multi-

ple noncontiguous rows with Ctrl +click and multiple contiguous rows

with Shift +click.

This definition adds the row bar, which is always of type dojox.grid.

GridView. Note this view has no subrows and no cells. Its noscroll prop-

erty prevents an unnecessary scroll bar on the right (row bars never

have a bottom scroll bar).

Download grid/grid_definitions/rowbar.js

dojo.provide("dojobook.grid.grid_definitions.rowbar");

(function() {

dojobook.grid.grid_definitions.rowbar.structure = [

{ // View #1: rowbar

type: dojox.grid.GridView, width:"20px", noscroll:true

},

{ // View #2: data

cells: [

[

{name: 'Flavor', width:'10em', field:"name"},

{name: 'Base Flavor', width:'7em',

field:"baseFlavor"},

{name: 'Calories', width:'5em',

field:"calories"},

{name: 'Fat', width:'5em', field:'fat'}

]

// Other subrow removed for this example only

]

}

];

})();

2. For some reason, the row bar appears on the right in Internet Explorer 6. This bug

EXTENSION POINTS 375

Figure 14.4: A row bar allows easier row selection.

14.3 Extension Points

As has been a constant theme throughout the book, extension points

allow JavaScript-based handlers to add or change widget behavior. In

a Grid, extension points exist at the cell, view, and Grid levels.

Cell-Level Extension Points: Derived Values with get

The cell provides a very useful extension point: get. You are already

familiar with one way a cell gets data: from a dojo.data data store field,

specified in the field property. There are two other ways:

• The value= property, which populates a constant value to each cell

in a column

• The get= extension point, where you may plug a handler to calcu-

late the data element

get= makes derived cells possible. Derived cells are so named because

they derive their values from other data. You can add, subtract, and

concatenate fields together to create a new value this way. And although

it’s true you can do this on the server and send the results down, using

get saves the bandwidth of doing so.

As an example, the handler on the next page calculates the total calo-

ries per fat gram of a particular ice cream flavor.

should be cleared up in a later release.

EXTENSION POINTS 376

Download grid/grid_definitions/derived.js

Line 1 dojo.provide("dojobook.grid.grid_definitions.derived");
-

- (function() {
- var gd=dojobook.grid.grid_definitions.derived;
5

- gd.getCaloriesPerFatGram = function(inRowIndex) {
- // This is standard for many grid handlers
- if (!icGrid) { return; }
-

10 var currentRow = icGrid.model.getRow(inRowIndex);
- if (! currentRow) // Skip header rows
- return;
-

- return currentRow.calories / currentRow.fat;
15 };

- })();

The code in line 8 will appear often in our examples, so it’s worth pick-

ing it apart. In our main HTML, we will include the class like this:

Download grid/grid_derived.html

dojo.registerModulePath("dojobook","../../dojobook");

dojo.require("dojox.grid.Grid");

dojo.require("dojo.data.ItemFileReadStore");

dojo.require("dojobook.grid.grid_definitions.derived");

icGrid = null;

Eventually the Grid widget will be placed in the icGrid, but we initialize

it to null to prevent reference errors. The parser creates the Grid widget

before it can be assigned to variable named in jsId. In our case, jsId is

icGrid. But get is called while the widget is being created and icGrid

has not been filled yet. Although there are clever tricks to get a Grid

reference in its half-finished state, luckily you don’t have to resort to

them. Grid makes a preliminary pass over the rows, then instantiates

the object icGrid, and then makes another pass. With icGrid properly

initialized, the second pass’s calls to get work fine.

Line 10 is another common idiom. The goal is to get the data in the cur-

rent row. You start from icGrid, the Grid widget. icGrid.model designates

the entire Grid model, in other words, all the data. A model’s getRow

function returns a hash whose properties match the data store item.

Since getCaloriesPerFatGram is also called on the column header where

there is no associated item, getRow returns null in this case, and the

function returns without a value. Otherwise, it returns the calculation,

which is then displayed.

EXTENSION POINTS 377

With the function written, you plug it into the get property:

Download grid/grid_definitions/derived.js

[

{name: 'Mixins', field:"mixins",colSpan:3},

{name: 'Cal / Fat g',

get: gd.getCaloriesPerFatGram

}

Everything is hunky-dory. With this technique, you can derive all kinds

of formulas on the fly. And as we see in the next section, that includes

formulas running across multiple rows.

Aggregate Functions and the onBeforeRow Extension Point

An aggregate function is a derived value function calculated over a set of

rows. Summing, averaging, or finding the maximum value are popular

examples. The challenge with aggregates isn’t computing them prop-

erly. The function itself is easy. Displaying the aggregates in the right

places requires a few tricks.

Suppose you want to average the calorie count over base flavors. Are

chocolate-based ice creams more fattening than vanilla-based? Here’s

your chance to find out. Your first thought might be, “Just sort the

data by base flavor, define another row type for subtotals, and stick

those in between the regular rows.” The trouble is you can’t just invent

row types and stick them in willy-nilly.

So, how do you pull it off? It turns out you can easily hide subrows at

will. So if you define a subrow holding the cumulative totals for each

row and then hide the subrows that are not on group boundaries, you

end up with the grid you want.

Let’s take those tasks one at a time. First, you’ll insert the subrows with

cumulative averages. A cumulative average means “What is the average

calories for base flavor X that we have seen so far?”

Grouping by base flavor makes sense only when the rows are sorted by

base flavor. That’s easy in the Grid tag:

Download grid/grid_subtotals.html

<div id="grid" dojoType="dojox.grid.Grid" jsId="icGrid"

store="icStore"

sortFields='[{attribute: "baseFlavor"}]'

clientSort="false"

style="width: 35em; height: 15em;"

structure="dojobook.grid.grid_definitions.subtotals.structure"

>

</div>

EXTENSION POINTS 378

Averages require a cumulative sum and an item count, and that’s where

the view’s onBeforeRow extension point comes in. The handler you pro-

vide is called once for each row before anything is drawn. The signature

is as follows:

onBeforeRow(Integer inRowIndex, Hash[] inSubrows)

inRowIndex is the current row number, just like in get. The inSubrows

array will be important in a bit. For now, we provide our own handler

to do the averages. Note that the subtotaling row is the first subrow.

That’s necessary because you don’t know that whether you’ve hit a

group boundary until the group changes. So if rows 6 and 7 contain

cotton candy and row 8 contains custard, then:

• Row 6’s first subrow will average the group before cotton candy.

• Row 7’s first subrow will average the cotton candy group so far,

which is just one element in row 6.

• Row 8’s first subrow will again average the cotton candy group so

far: rows 6 and 7.

• Row 9’s first subrow will begin averaging the custard group so far:

row 8.

Having the plan spelled out, here’s the code:

Download grid/grid_definitions/subtotals.js

dojo.provide("dojobook.grid.grid_definitions.subtotals");

(function() {

var gs=dojobook.grid.grid_definitions.subtotals;

// Here are our running totals

gs.baseFlavorAveraged = null;

gs.currentBaseFlavor = null;

gs.flavorTotalCal = 0;

gs.flavorGroupCount = 1;

gs.runningAverage = function(inDataIndex, inSubrows) {

if (!icGrid) { return; }

var currentRow = icGrid.model.getRow(inDataIndex);

if (! currentRow) { // Return on header row

return;

}

// Calculate stats for the group to this point

gs.flavorAvg = gs.flavorTotalCal / gs.flavorGroupCount;

gs.baseFlavorAveraged = gs.currentBaseFlavor;

EXTENSION POINTS 379

// If we're not on a new base flavor, increment the counts

if (gs.flavorGroupCount==0 //

|| gs.currentBaseFlavor == currentRow.baseFlavor) {

gs.flavorGroupCount++;

gs.flavorTotalCal += currentRow.calories;

} else {

// Reset stats

gs.flavorTotalCal = currentRow.calories;

gs.flavorGroupCount = 1;

gs.currentBaseFlavor = currentRow.baseFlavor;

}

};

The first few lines of runningAverage look just like a get handler. The last

few do the actual averaging and resetting the totals.

onBeforeRow is a view extension point, so it belongs in the view defini-

tion. The cells define two get handlers that merely return the current

running average and group name computed by runningAverage:

Download grid/grid_definitions/subtotals.js

// View #2: The data

{

onBeforeRow: gs.runningAverage,

cells: [

[

{ name: 'N/A', width:'10em', value:'Avg for '},

{ name: 'N/A', width:'7em',

get: function() { return gs.baseFlavorAveraged; } },

{ name: 'N/A', width:'5em',

get: function() { return gs.flavorAvg; } },

{ name: 'N/A', width:'5em', value:'' }

],

[

{name: 'Flavor', width:'10em', field:"name" },

Note that when doing subtotals like this, it’s best to specify all the col-

umn widths outright. In Figure 14.5, on the next page, you can see the

results so far, with averages printing on each subrow.

That’s looking good so far. Now we just need to hide the averages in

between group boundaries. You can do this through the inSubRows array

passed to the onBeforeRow handler. inSubRows closely mirrors the cell

definitions for this view. So, inSubRows[0] will contain the averages sub-

row, and inSubRows[1] contains the data subrow. Then you just set the

subrow’s hidden to true to hide the subrow.

EXTENSION POINTS 380

Figure 14.5: Averaging calories per base flavor, printed every row

So as we loop through rows, it’s a matter of setting inSubRows[0].hidden

to false. Here’s the doctored-up runningAverage with the code inserted

in lines 4 and 23:

Download grid/grid_definitions/subtotals.js

Line 1 gs.runningAverage = function(inDataIndex, inSubrows) {
- if (!icGrid) { return; }
- // Turn off the subrow initially, making rendering a bit faster.
- inSubrows[0].hidden = true;
5

- var currentRow = icGrid.model.getRow(inDataIndex);
- if (! currentRow) { // Return on header row
- return;
- }

10

- // Calculate stats for the group to this point
- gs.flavorAvg = gs.flavorTotalCal / gs.flavorGroupCount;
- gs.baseFlavorAveraged = gs.currentBaseFlavor;
-

15 // If we're not on a new base flavor, increment the counts
- if (gs.flavorGroupCount==0 //
- || gs.currentBaseFlavor == currentRow.baseFlavor) {
- gs.flavorGroupCount++;
- gs.flavorTotalCal += currentRow.calories;

20 } else {
- // Unhide the row, except for the very first one
- // (which totals nothing)
- if (gs.currentBaseFlavor)
- inSubrows[0].hidden = false;

25

- // Reset stats
- gs.flavorTotalCal = currentRow.calories;
- gs.flavorGroupCount = 1;
- gs.currentBaseFlavor = currentRow.baseFlavor;

30 }
- };

EXTENSION POINTS 381

Now the Grid, shown in Figure 14.6, on the following page, looks just

right.

Grouping and aggregate computation is tremendously useful. Besides

doing averages and such, onBeforeRow can selectively expand and col-

lapse groups by setting the hidden property on or off accordingly. You

can tie these expando buttons at each group boundary. This helps

users scan a smaller list and then drill down into the groups they want.

Row Selection

Working our way up from cell-level extension points like get to view-

level extension points like onBeforeRow, we arrive at Grid-level exten-

sion points. Two of these, onSelect and onDeselect, act at the Grid level

because a row may span multiple views. Recall that users can select

rows one of two ways: by clicking a read-only cell or by clicking a row

bar (provided you added one). onSelect helps implement the popular

spreadsheet edit cycle: select your rows and then do something to them.

You will put onSelect to use in an ice cream calorie counter. The user

selects their favorite flavors, and a combined calorie count appears at

the bottom of the screen.

The approach is to start the counter at zero, then add calories when a

user selects a row, and subtract calories when a user deselects a row.

Like our other extension points, onSelect and onDeselect get passed a

rowIndex for the row selected or deselected. But unlike our other exten-

sion points, the handlers will be placed on the HTML side where the Grid

widget lives. In our case, we put as little code in the HTML as possible,

delegating the addition task to a JavaScript method:

Download grid/grid_actions.html

<div id="grid" dojoType="dojox.grid.Grid"

jsId="icGrid"

store="icStore"

clientSort="false"

style="width: 35em; height: 15em;"

structure="dojobook.grid.grid_definitions.actions.structure">

<script type="dojo/method" event="onSelected" args="inRowIndex">

dojobook.grid.grid_definitions.actions.updateCalories(inRowIndex, +1);

</script>

<script type="dojo/method" event="onDeselected" args="inRowIndex">

dojobook.grid.grid_definitions.actions.updateCalories(inRowIndex, -1);

</script>

</div>

<h3>You have selected no calories so far.</h3>

EXTENSION POINTS 382

Figure 14.6: With subrow hiding, averages appear only where they

should.

The addition function, then, is fairly straightforward:

Download grid/grid_definitions/actions.js

dojo.provide("dojobook.grid.grid_definitions.actions");

(function() {

var ga=dojobook.grid.grid_definitions.actions;

ga.numberCalories = 0;

ga.updateCalories = function(rowIndex, direction) {

var gridRow = icGrid.model.getRow(rowIndex);

ga.numberCalories += direction * gridRow.calories;

dojo.byId("numberCalories").innerHTML = ga.numberCalories;

};

})();

The result is shown in Figure 14.7, on the next page. Note that unlike

our other handlers, we don’t have to check for icGrid’s definition. Since

these extension points are always called on user input, which can’t

happen until everything has been initialized, icGrid is always populated.

Mouse and Keyboard Events

For finer control, Grid defines extension points for many of the com-

mon DOM mouse and keyboard events (Chapter 6, Asynchronous Pro-

gramming, on page 101, gives the full scoop on Dojo events). They pass

an event object to the handler, just like the general DOM extension

points do.

So, why would you want to use them? First, they’re more granular. You

can catch a MouseOver event at the cell level using the onCellMouseOver

extension point, at the Row level with the onRowMouseOver extension

point, or at the Grid level with the onMouseOver extension point. The

EXTENSION POINTS 383

Figure 14.7: Row selection and dynamic update

MouseOver event bubbles to the top, executing onCellMouseOver first,

then onRowMouseOver, and then onMouseOver. You can place your code

at the level that makes most sense.

Second, Grid decorates the event object with Grid-specific information.

So if you write the handler for onMouseOver(evt), evt will have the fol-

lowing properties besides the normal target, and so forth:

• evt.grid is the underlying Grid.

• evt.rowIndex is the row number in the Grid.

• evt.cell is the cell information with field name and styles.

That saves you from having to translate target’s coordinates into a

usable location. evt.grid.model.getRow(evt.rowIndex) gives you all the data

used in that row, from which you can derive information to display or

use.

Here are all the extension points available. There are five variations of

each handler: plain (which applies to the entire Grid), Row, Header, Cell,

or HeaderCell:

on [Header | HeaderCell | Cell | Row]MouseOver(Event evt)

on [Header | HeaderCell | Cell | Row]MouseDown(Event evt)

on [Header | HeaderCell | Cell | Row]MouseOut(Event evt)

on [Header | HeaderCell | Cell | Row]Click(Event evt)

on [Header | HeaderCell | Cell | Row]DoubleClick(Event evt)

on [Header | HeaderCell | Cell | Row]ContextMenu(Event evt)

on [Header | HeaderCell | Cell | Row]Focus(Event evt)

As a small example, here’s another space-saving alternative for the Grid.

Instead of placing the Mixins field on the Grid, have the user click the

flavor name. The mixins will pop up in a Toaster off to the left.

EXTENSION POINTS 384

First, place the Toaster widget and onCellClick extension point handler in

the Grid:

Download grid/grid_mouse_events.html

<div id="grid" dojoType="dojox.grid.Grid"

jsId="icGrid"

store="icStore"

clientSort="false"

style="width: 35em; height: 15em;"

structure="dojobook.grid.grid_definitions.mouse_events.structure">

<script type="dojo/method" event="onCellClick" args="evt">

dojobook.grid.grid_definitions.mouse_events.showMixins(evt);

</script>

</div>

<div dojoType="dojox.widget.Toaster" duration="1000"

messageTopic="toasterInfo" positionDirection="tr-left" />

Then, the handler can interpret the location of the click, relative to the

Grid. In order to make sure the user is in the right column, it checks

evt.cell.name to make sure we’re in the correct column. Finally, you can

use the Grid and rowIndex to look up the actual data in the customary

fashion:

Download grid/grid_definitions/mouse_events.js

dojo.provide("dojobook.grid.grid_definitions.mouse_events");

(function() {

var gme=dojobook.grid.grid_definitions.mouse_events;

gme.showMixins = function(evt) {

// Only display when clicking a flavor

if (evt.cell.name != 'Flavor')

return;

var gridRow = icGrid.model.getRow(evt.rowIndex);

dojo.publish("toasterInfo",["Contains "+gridRow.mixins]);

};

In this section, we sampled the most popular extension points at all lev-

els of the Grid. There are more listed in the API guide at http://dojotoolkit.

org. They permit almost limitless freedom in bending the Grid to match

your needs.

CELL EDITING 385

14.4 Cell Editing

Just as trees allow you to add, edit, or remove nodes, Grid allows on-

the-fly data changes. Cell editing requires the data driver to imple-

ment dojo.data.Write and dojo.data.Notification. The edits come from two

sources:

User-initiated edits By attaching an editor property to a cell, you make

it user-editable. Users can double-click the cell;3 change its data;

and then Tab , Enter , or click out of the cell to save changes.

Pressing Esc cancels the edit. Grid writes the new value back to

the data store and fires a dojo.data.Notification event.

JavaScript-initiated edits You can call the dojo.data.Write methods to

add, remove, or edit data store rows. Grid picks up these changes

via dojo.data.Notification and writes them to the browser.

We won’t have much to say here about JavaScript-initiated edits since

the dojo.data.Write was covered in Chapter 13, Tree, on page 341. But

there’s much to say about user-initiated edits.

Using Cell Editors

Making a cell user-editable requires filling in its editor property with a

Dojo class. You choose an editor based on the type of data and its ease

of use for the data set. Some are simply Grid-compatible versions of Dijit

form controls. The others were built especially for Grid and are called

native cell editors. Grid bundles the following:

• dojox.grid.editors.Input (Native): A garden-variety textbox. Its prop-

erty keyFilter is a regular expression you can fill in to disallow cer-

tain key presses in the box.

• dojox.grid.editors.Bool (Native): A garden-variety checkbox. Unlike

all other cell editors, this one does not require double-clicking to

invoke. You can click the checkbox on or off at any time.

• dojox.grid.editors.Select (Native): A garden-variety <select>. This ac-

cepts the properties options and values, two identically sized arrays

holding the visible and passed-back values.

• dojox.grid.editors.ComboBox (Dijit): Like Select, but ignores the values

array and can accept entries not in the options array.

3. Or you can single-click if the singleClickEdit= is set to true in the Grid tag.

CELL EDITING 386

• dojox.grid.editors.DateTextBox (Dijit): Accepts dates with a drop-down

calendar.

• dojox.grid.editors.Editor (Dijit): Rich text editor.

• dojox.grid.editors.Dijit (Dijit): Uses the property editorClass to specify

an arbitrary Dijit form control as an editor. If a constraint property

is used (as in validation boxes), this is passed to the form control

as a constraint.

Onscreen, you cannot tell the Dijit and native cell editors apart. But

programmatically it’s important to know the difference.

Dijit cell editors accept any properties that the corresponding Dijit con-

trol accepts. You place these properties in a hash and then place the

hash in the editorProps cell property. We’ll cover the details more fully

in Chapter 15, Form Controls, on page 394. On the other hand, native

cell editors have their own properties, which you use directly by name

in the cell properties.

First we’ll look at a Dijit cell editor. Ratings will be a number from 1 to

5, and we want to make sure only those legal values are used. Here’s

the cell definition:

Download grid/grid_definitions/editors.js

{ name: 'Rating', field:"rating",

editor: dojox.grid.editors.Dijit,

editorClass: "dijit.form.NumberTextBox",

constraint: {min:1, max:5},

editorProps: {required:true}

},

The editor property signals that the cell is editable. editorClass is set to

the class of the form widget, in this case dijit.form.NumberTextBox, which

ensures only numbers go in the box. We’ll learn about the details in

Section 15.4, Numbers, on page 412, but for now the constraint prop-

erty sets the upper and lower bounds. The required property is familiar.

We saw it back in Section 2.5, Improved Form Controls, on page 31 to

require an entry in a field. By placing it in editorProps, it gets passed to

the NumberTextBox as well.

Next, we’ll look at a native cell editor. dojox.grid.editors.Select requires

options to be passed in one or two arrays: a required options array and

an optional value array.

CELL EDITING 387

Download grid/grid_definitions/editors.js

{ name: 'Source', field:'source',

editor: dojox.grid.editors.Select,

options: ['Restaurant', 'Qwik-E Mart', 'Wegmans'],

values: [1, 2, 3],

formatter: function(inDatum) {

return this.options[inDatum - 1];

}

}

This code sets up the element <select>. The result looks like Fig-

ure 14.8, on the next page.

Cell editing is an addictive feature. Once users get used to it, they don’t

want to go back to the view-page/edit-page/view-page cycle of page

refreshes. A spot change is quick and easy.

Cell Formatters: The format Extension Point

Hmmmmmm. What is that formatter property? It turns out Select needs

a little help in displaying its data value. For example, if the source is

1, we want the value Restaurant displayed onscreen. Without some help,

Grid will display 1. It will edit and save OK, though—the Select still

shows the Restaurant choice, and if the user picks Wegmans, 3 is sent

back to the data store. But now the display will say 3.

To fix this, you provide a handler for formatter that translates the num-

ber to a displayed value. This handler, unlike most other Grid extension

points, receives only the raw data. No rowIndex- or Grid-specific context

is sent.

In our case, we simply take the data value and use it as an index back

into the options array (less 1, since the array is 0 based). For more

sophisticated Selects, you may need to loop through all the value ele-

ments and then pick the corresponding entry from options.

The formatter extension point isn’t just for Select. It’s also handy for

formatting currency, displaying tooltips, or truncating long values to fit

in a column.

Data Synchronization

Cell editors all write changed values back to the data store. To prove

this to yourself, you can hook into the onSet extension point provided

by your driver’s dojo.data.Notification feature.

CELL EDITING 388

Figure 14.8: Entering ratings outside the range yields an error.

Here’s a handler for our example:

Download grid/grid_editors.html

<span dojoType="dojo.data.ItemFileWriteStore"

jsId="icStore" url="datastores/ice_cream.json">

<script type="dojo/connect" event="onSet"

args="item,attribute,oldValue,newValue">

console.debug(attribute+" changed from "+oldValue+" to "+newValue);

</script>

Now when you make an editing change, the console will display the

corresponding item and the details.

Although editing changes are written to the in-memory copy of the data

store, they are not automatically written back to the server. To do that,

you need to write your own code for the onSet, onDelete, and onNew

extension points. We covered this in Section 13.4, Saving the Tree Back

to the Server, on page 354.

For convenience, Grid also defines the extension points. . .

onStartEdit(Hash inCell, Integer inRowIndex)

onApplyCellEdit(Object inValue, Hash inCell, Integer inRowIndex)

onCancelEdit(Integer inRowIndex)

which allow you to weave in custom code before the editing begins and

after it ends. All of these are more Grid-centric than dojo.data-centric,

passing the row index rather than an item. These are still good for doing

display updates or UI work before the Notification extension points fire.

GRID MANIPULATION 389

14.5 Grid Manipulation

As grids get larger, they become harder to scan for information. Two

ways for dealing with that are sorting and filtering. Sorting comes built-

in to Grid, but you can add some hints to make it more useful. Filtering

needs to be built from scratch, but we’ll show you how to do it.

Sorting

Sorting happens automagically in Grid. The user clicks a Grid column,

and the rows sort accordingly. If the field contents are numbers, the

sort is numerical, and if they are strings, it is alphabetical. Pretty

straightforward.

There are two instances where you might need to change this behav-

ior. The first is multikey sorts. In our example, clicking the Base Fla-

vor column sorts fine, but the names within each group appear in no

particular order. It’d be nice to sort each group by name as well. The

second instance is where your sort criteria don’t appear in the selected

column. For example, suppose you display employees in a company by

ranking so that the CEO appears at the top. But the rankings are kept

in another data store field that is not displayed on the Grid. Since the

default sort lists all employees in alpha order, you need some way to

substitute the ranking as the sort column.

You can do either by replacing the Grid model’s sort method. It’s not

as difficult as it sounds. sort is passed a column index—that is, the

index of the clicked cell within the model (fields are assigned numbers

in the same order they appear in the first record of your data source).

Your sort routine will transform this into dojo.data sort criteria, as in

[{attribute:’baseFlavor’}]; place it in the sortFields property; and redisplay

the Grid. The dojo.data driver does the heavy lifting.

To change the baseFlavor column sorting behavior, you replace the sort

routine like this:

Download grid/grid_sorting.html

Line 1 <div id="grid" dojoType="dojox.grid.Grid"
- jsId="icGrid"
- store="icStore"
- clientSort="true"
5 style="width: 35em; height: 15em;"
- structure="dojobook.grid.grid_definitions.sorting.structure">
- <script type="dojo/method">
- this.model.sort = function(colIndex) {
- var col = Math.abs(colIndex) - 1;

GRID MANIPULATION 390

10 var colNameToSort = this.fields.values[col].name;
- var sortDescending = (colIndex > 0);
- if (colNameToSort == 'baseFlavor') {
- this.sortFields = [
- {attribute: 'baseFlavor', descending: sortDescending},

15 {attribute: 'name', descending: sortDescending}
-];
- } else {
- this.sortFields = [
- {'attribute': colNameToSort, 'descending': sortDescending}

20];
- }
-

- this.refresh();
- }

25 </script>
- </div>

Normally you replace methods by subclassing. In our case, it’s eas-

ier just to replace the method for one JavaScript instance. In line 8,

we replace the model’s sort routine wholesale. When you click a col-

umn name, this sort routine will be called in lieu of the prototype.

This method is sent a column index as a positive number if the sort

is ascending and as a negative number if the sort is descending. Line

10 converts this to an attribute name. Then you simply replace the sort-

Fields property with the right criteria. For base flavor sorts, our routine

substitutes the multikey criteria at line 13. All other sorts go through

unchanged. Finally, line 23 refreshes the model data, causing a refetch

with the new sort criteria.

Filtering

Like sorting, filtering makes it easier to find interesting data in a large

Grid. Popular in spreadsheet programs, a filter is a drop-down with a

particular column’s values in sorted order. Choosing an option filters

the Grid down to just the rows whose value fits the filter. Usually you

have one filter for each “interesting” column—that is, every column that

has more than a few values, but not too many. (The identifier is not a

good candidate for filtering.)

Grid does not have a native filtering mechanism, but you can bolt one

on. Our job here will be adding a base flavor filter to our own grid. It’ll

look something like Figure 14.9, on the next page when finished.

GRID MANIPULATION 391

Figure 14.9: Filtering a Grid by base flavor

The Grid itself remains unchanged, but we add a placeholder for the

<select> above the grid:

Download grid/grid_filters.html

Show Only:

<select id="filterContainer"><option value="">[No Filter]</option></select>

<div id="grid" dojoType="dojox.grid.Grid"

store="icStore"

clientSort="true"

jsId="icGrid"

structure="dojobook.grid.grid_definitions.filters.structure"></div>

The most challenging part is filling the box with filter values. Here, you

can take advantage of the data store that the Grid uses, since you are

dipping from the same data pool.

loadFilter fetches all the items from the Grid’s data store. (For a refresher

course on fetch, see Section 10.4, fetch and Pagination, on page 275.)

This routine and the actual Grid may be fetching at the same time.

dojo.data drivers are usually smart enough to consolidate these re-

quests, thus eliminating an unnecessary trip to the server. As you read

in values, you store them in a hash. This gets rid of duplicates. At the

end, you simply read and sort the values, constructing an <option> tag

for each.

GRID MANIPULATION 392

Download grid/grid_definitions/filters.js

dojobook.grid.grid_definitions.filters.loadFilter = function() {

// Store our filter values in a sorted set to automatically take

// care of duplicates

var filterHash = {};

// The store is already set, so do a fetch on it

icStore.fetch({

query: { name: "*" },

onItem: function(theItem) {

// Fires on each item. Set filterHash["vanilla"]

// to true on seeing a vanilla baseFlavor

filterHash[theItem.baseFlavor[0]] = true;

},

onComplete: function() {

// Fires at the end of all loading. First push the

// baseFlavors into an array

var sortedFilters = [];

for (baseFlavorName in filterHash) {

sortedFilters.push(baseFlavorName);

}

// Sort them

sortedFilters.sort();

// And create an option for each one

var filterBox = dojo.byId("filterContainer").options;

dojo.forEach(sortedFilters, function(bf) {

filterBox[filterBox.length]= new Option(bf);

});

// And finally, connect it to a filtering event

dojo.connect(dojo.byId("filterContainer"), 'change',

dojobook.grid.grid_definitions.filters.applyFilter);

}

});

};

dojo.addOnLoad(dojobook.grid.grid_definitions.filters.loadFilter);

At the end of the load process, you connect the onChange event to your

filter handler. Doing the filtering is the easy part. You simply tell the

Grid model the new query and to refetch its contents. It’s very similar to

our sort example.

A Grid is tremendously useful, and in most cases it’s no more difficult

than building a table. Yet it’s flexible and handles large amounts of data

with ease.

GRID MANIPULATION 393

Download grid/grid_definitions/filters.js

dojobook.grid.grid_definitions.filters.applyFilter = function () {

var currentValueBox = dojo.byId("filterContainer");

var currentValue =

currentValueBox.options[currentValueBox.selectedIndex].text;

icGrid.model.query = { baseFlavor: currentValue || '*' };

icGrid.model.refresh();

}

Sometimes, however, you need a traditional form and lots of editing

power. As you will see in the next chapter, Dijit has got you covered

there too.

Chapter 15

Form Controls
We started our Dijit journey back in Chapter 2 with form controls.

They were easy to pop in, and they did amazing things: enforcing field

requirements, trimming and capitalizing strings, and popping up a cal-

endar for easy date entry. Now that we’ve added Ajax magic, event-

driven scripting, and other Dojo tools to our toolbelt, it’s time to revisit

form controls. When your application is a one-page Ajax-enabled form,

the considerations are much different: you need to save space, make

things more intuitive, and mirror the controls people use in word pro-

cessors and spreadsheets. And since the world you can reach is much

larger, you want controls that’ll reach people in different countries and

different physical circumstances.

Dijit has you covered. In this chapter, we’ll fill in some details, introduce

new widgets, and show you some things to watch out for.

15.1 Form Control Features

Dijit contains form controls for numbers, dates, and various forms of

text. But no matter what they look like, they are all designed to make

data input easy and then validate it, provide feedback, and ship it back

to the server. So first we’ll look at their commonalities.

Dijit Form Controls and Their HTML Counterparts

Every HTML form control has a Dijit counterpart. A form can mix and

match Dijit form controls and plain HTML form controls, but the plain

HTML controls won’t follow the design theme and will look out of place.

Also, using all-Dijit controls and boxing up your form in a dijit.form.Form

tag, you can take advantage of form-wide validation.

FORM CONTROL FEATURES 395

Here are drop-in replacements for all the HTML controls:

HTML Control Dijit Form Control

<input type="checkbox"/> <div dojoType="dijit.form.Checkbox">

<input type="radio"/> <div dojoType="dijit.form.RadioButton">

<select>...</select> <div dojoType="dijit.form.FilteringSelect">

<input type="text"/> <div dojoType="dijit.form.TextBox">

<textarea>...</textarea> <div dojoType="dijit.form.SimpleTextArea">

<button/> <div dojoType="dijit.form.Button">

You can use the same HTML attributes in the Dijit replacement with no

problems. Generally, the widget version is used in a <div> or

tag. They can be used in their native tag as well—so you can put

a dojoType="dijit.form.ValidationTextBox" attribute in an <input> tag. This

allows degradation, meaning a browser can still render the form if

JavaScript is unavailable. The minus is you can’t define extension point

handlers inside an <input> tag, since most browsers don’t accept a

<input></input> pair.

Common Methods

Form controls in Dijit are descendents of the class dijit.form._FormWidget

(itself a subclass of dijit._Widget). This bestows the following properties:

• Given that formWidget is a form widget, formWidget.value is the cur-

rent value. Even though form controls are often written in <div>

tags, they act mostly like an <input> box in that respect. How-

ever, you cannot set this property. Instead, you must use formWid-

get.setValue to set it.

• Every form widget responds to the following...
formWidget.setAttribute("disabled", «Boolean»)

formWidget.setAttribute("readOnly", «Boolean»)

to disable the widget or set it to read-only mode. To the user they

act the same, but disabled controls are not submitted with the

form and read-only ones are.

• Every form widget can include the attributes name=, alt=, value=,

type=, and tabindex=, which act exactly like their HTML counter-

parts.

• formWidget.focus() sets the focus on that widget.

• The extension point formWidget.onChange exists universally.

Unlike the DOM Level 0 onchange event, the onChange handler

receives the new value as a parameter.

FORM CONTROL FEATURES 396

• formWidget.undo restores the original value upon entering the field

(for example, the value at the last onChange event).

Form Submission

You can submit a Dijit form one of two ways: by a normal HTML form

submit or by XHR. The former method is fairly straightforward. You

simply add dojoType="dijit.form.Form" to the <form> tag, and all valida-

tions will be checked when the user clicks the submit button. If you try

to submit an invalid form, as in Figure 15.1, on the next page, the Form

widget will highlight all the invalid fields and set the focus on the first

invalid control.

Using XHR requires a manual step. Before calling the dojo.xhr* method

in an extension point like onChange or onClick, you need to make sure

the form elements meet their validation criteria. To do this, simply call

the form widget’s validate method like this:

Download form_controls/isvalid.html

<form dojoType="dijit.form.Form" name="mojoform" id="mojoform">

<p style="margin-top:200px;width:300px;">

Got my Mojo workin' but it just don't work on

<span dojoType="dijit.form.ValidationTextBox"

required="true" name="who">

</p>

<button dojoType="dijit.form.Button">

Submit

<script type="dojo/method" event="onClick">

if (dijit.byId("mojoform").validate()) {

dojo.xhrPost({

url: "controller.html",

form: "mojoform",

load: function() {

console.log("Form successfully submitted");

},

error: function() {

console.error("Error on submission");

}

});

}

</script>

</button>

</form>

A false return value means some fields are invalid. Like using a submit

button, validate highlights all the invalid fields for you.

STREAMLINED EDITING 397

Figure 15.1: Calling isValid before submitting form

15.2 Streamlined Editing

In a traditional web application, the view and add/edit modes usually

have distinct pages. A view page can cram more information than an

add/edit form. Form controls take up more room than text.

In the Ajax world, where you typically stay on one page, you’ve got a

space problem. If you turn all the changeable elements into HTML form

elements, you crowd out all the useful view page information.

Dijit has two space-saving methods to help: dialog boxes and inline

editing. The former overlays a form on top of the existing page, while

the latter switches parts of the page from view mode to edit mode with

a simple click.

Dialog and TooltipDialog

A dialog box acts like a web form on a sticky note. By overlaying the

view page underneath it, the dialog box can use room for more form

controls. Dijit has two kinds of dialog boxes:

• dijit.Dialog is a modal, user-closable dialog box. It must be opened

through a JavaScript method call.

• dijit.TooltipDialog connects to a DropDownButton (which we’ll look at

in detail in Section 15.5, Action Buttons, Toolbars, and Menus, on

page 418). When the user clicks the button, the dialog box appears

underneath. Unlike the modal dijit.Dialog, this dialog box cannot

be opened or closed programmatically. The user may close it by

clicking anywhere outside the dialog box.

STREAMLINED EDITING 398

Because dialog boxes often submit their own form data, most of them

have <form> tags on the inside (hopefully using dojoType="dijit.form.Form"

to take advantage of validation). It’s tempting to place the dialog box

close to the control invoking it. But if the dialog box’s form is itself in a

main page form, you’ll have problems submitting the main form. HTML

form tags, as you probably know already, cannot be nested. For this

reason, it’s best to place all dialog boxes toward the bottom of your

HTML page.

In Figure 15.2, on the next page, you can see a modal dialog box, drawn

from the following code:

Download form_controls/dialog_box.html

<div dojoType="dijit.form.Button">

Guess the Singer

<script type="dojo/method" event="onClick">

dlg.show();

</script>

</div>

<div dojoType="dijit.Dialog" jsId="dlg">

<div>

<label for="singer">Singer:</label>

</div>

<div>

<label for="singer">Date of Guess:</label>

</div>

<div dojoType="dijit.form.Button">

Go

<script type="dojo/method" event="onClick">

// Do a submit here

dlg.hide();

</script>

</div>

</div>

Note that this dialog box can be moved by the title bar, as is common

with dialog boxes in windowed operating systems. The background is

shaded with an opaque gray—you can see the underlying data, but you

cannot move the focus to it without dismissing the dialog box first.

A dijit.TooltipDialog is a little less obtrusive. As soon as you click outside

of it, the dialog box will disappear without action.

STREAMLINED EDITING 399

Figure 15.2: A dijit.DialogBox control

In Figure 15.3, on the following page, you can see a TooltipDialogin

action. The code that draws it is a lot like a Dialog:

Download form_controls/tooltip_dialog_box.html

<div dojoType="dijit.form.DropDownButton">

Print

<div dojoType="dijit.TooltipDialog" jsId="dlg">

<div>

<label for="copies">Copies:</label>

<span dojoType="dijit.form.NumberSpinner"

id="copies" value="1">

</div>

<div dojoType="dijit.form.Button" type="submit">

Go

</script>

</div>

</div>

</div>

The dijit.form.NumberSpinner is a simple integer textbox. It’s frequently a

good alternative to full-blown validating controls when the numbers are

likely to be small.

There are two things to remember with TooltipDialog:

• You must always use it inside a dijit.DropDownButton. It looks like

a dijit.Button widget, but it requires the button text to be inside

an HTML tag—usually a tag. (We’ll cover this in detail in

Section 15.5, Action Buttons, Toolbars, and Menus, on page 418.)

• You must use the line dojo.require("dijit.Dialog"); to include it. This is

one of those rare times that the control name does not match the

module name.

STREAMLINED EDITING 400

Figure 15.3: A dijit.TooltipDialog control

Inline Editing

As we saw in Chapter 14, Grid, on page 366, dijit.Grid has a nice inline

cell-editing system. You tell Grid which editor control to use in a par-

ticular column, and Grid then allows the user to double-click the cell,

edit it, and then save it back. The Grid-editing paradigm was so useful,

it inspired a more general inline editing widget that works in any kind

of form.

dijit.InlineEditBox is more of a container widget than a stand-alone widget.

InlineEditBox hands most of the work off to a Dijit form control. You wrap

a piece of text, a date, a number, or whatever with an InlineEditBox widget

like this:

Download form_controls/inline_number_edit.html

<div style="width:350px">

I've got

<span dojoType="dijit.InlineEditBox"

editor="dijit.form.NumberSpinner"

width="100px">

99

<span dojoType="dijit.InlineEditBox"

editor="dijit.form.FilteringSelect"

editorParams="{store: genderStore, autocomplete: true}"

width="150px"

>women.

All I need is one more

When I get that one, pallie

Gonna let the other ones go

</div>

STREAMLINED EDITING 401

Figure 15.4: Using InlineEditBox to update an old blues tune

The two inline boxes are independently editable, as you can see in Fig-

ure 15.4. A couple of things are worth nothing:

• To change the width of the inline editor, you must use the width=

attribute. Width specified in a CSS style is ignored.

• The editor= attribute specifies the Dijit control class. You must

remember to dojo.require that control class in the page.

• editorParams= specifies attributes to send to the editor control. It

is a hash, just like you would use in a programmatic widget con-

structor call.

Text Editing

While we’re on the topic of inline editing, it’s also a good time to talk

about multiline text editing. Dijit provides two widgets for this: dijit.form.

SimpleTextarea, which emulates a fixed-height fixed-width textbox, and

dijit.form.Textarea, which is a box that expands at the bottom as you fill it

with text. The latter widget is useful for saving screen real estate, since

you use only the editing area you need to fit the text.

dijit.form.SimpleTextarea and dijit.form.Textarea

SimpleTextarea takes the same standard HTML attributes as <textarea>.

TextArea does too except for rows= and cols=. Since Textarea= expands at

the bottom, the rows= attribute doesn’t make sense.

And because Dijit uses proportional fonts, the cols= attribute is mean-

ingless as well. Instead, you should specify the width in the style or CSS

class of the widget.

STREAMLINED EDITING 402

Figure 15.5: Turning displayed text to editable text

Finally, TextArea works very well in conjunction with an InlineEditBox, as

you can see in Figure 15.5. You can rope off a section of text with an

inline edit using dijit.form.Textarea as the editor and turn a paragraph of

displayed text into an editable field, as shown in this example:

Download form_controls/textarea.html

<div style="width:350px">

<div dojoType="dijit.InlineEditBox"

editor="dijit.form.Textarea">

The woman I love took from my best friend

Some joker got lucky stole her back again

You better come on in my kitchen

</div>

</div>

Like all inline edits, you can read the TextArea’s getValue property to

send the contents back to the server when editing ends.

Rich Text Editor

For more industrial-strength text editing, Dijit includes the rich text

editor dijit.Editor. This widget offers HTML-backed editing with a handy

toolbar and keyboard shortcuts. It’s like embedding a little word pro-

cessor in a form field, as you can see in Figure 15.6, on the next page.

STREAMLINED EDITING 403

Figure 15.6: Dijit’s rich text editor

There are two ways to embed the editor. The first is with a fixed width

and height box:

Download form_controls/fixed_editor.html

<div style="width:350px;height:500px">

<div dojoType="dijit.Editor"

>

<h2>Love in Vain</h2>

When the train left the station

There were two lights on behind

Well the blue light was my baby

And the red light was my mind

All my love's in vain.

</div>

</div>

The second is a slight variant that marries the download-expanding

dijit.form.Textarea widget with a rich text palette. This is achieved by

adding the height="" attribute and then loading the dijit._editor.plugins.

AlwaysShowToolbar plug-in (we’ll discuss plug-ins in a bit).

STREAMLINED EDITING 404

Download form_controls/fixed_editor.html

<div dojoType="dijit.Editor"

height=""

extraPlugins="['dijit._editor.plugins.AlwaysShowToolbar']"

></div>

Note the toolbar on top of Figure 15.6, on the preceding page. This has

standard icons for (in order) undo and redo, cut, copy and paste, bold,

italic, underline and strikethrough, numbering and bullets, left and

right indentation, and left/right/center justification. Since these are

pretty familiar in modern GUI applications, users will recognize them

right away.

Occasionally, though, you may want to customize the editing toolbar.

For instance, you might want to limit the toolbar choices to Bold and

Italic. You can use the attribute to specify exactly which plug-ins to

load:

<div dojoType="dijit.Editor" plugins="['bold','|','italic']" />

Here the pipe symbol (|) creates a separator bar between buttons. The

complete set of toolbar buttons, as they need to appear in the plugins=

attribute, are as follows:

• undo and redo

• cut, copy, and paste

• bold, italic, underline, and strikethrough

• insertOrderedList and insertUnorderedList

• indent and outdent

• justifyLeft, justifyRight, justifyCenter, and justifyFull

In addition, you can add the following optional plug-ins. Unlike the

standard buttons mentioned earlier, these plug-ins need a dojo.require

to make them work. Each plug-in has optional properties, so include

them as hashes within your plugins= attribute like this:

plugins="['bold','italic','|', {

name:'dijit._editor.plugins.FontChoice',

command:'fontName', generic:true

}]"

dijit._editor.plugins.FontChoice

fontName: A drop-down box for choosing a font. If you set the

generic property to true, the generic HTML font families (mono-

space, serif, and so on) are listed. Otherwise, the common web

font families (Arial, Times New Roman, and so on) are listed.

FEEDBACK 405

fontSize: A drop-down box for standard relative font sizes 1–7.

formatBlock: A drop-down box for standard paragraph-level styles

(p, h1, h2, and so on).

dijit._editor.plugins.AlwaysShowToolbar

Use this plug-in when planning for potentially large textboxes. It

keeps the toolbar at the top of the window no matter where the

editor is. Without it, if the edit box expands to a height larger

than the browser window, the toolbar will scroll offscreen, and

you won’t be able to use it for sentences at the bottom of the box.

dijit._editor.plugins.EnterKeyHandling

Used primarily for Internet Explorer so each new line does not be-

come a new paragraph. Its property blockNodeForEnter defines the

HTML tag used when the user presses Enter . This defaults to br

but can also be div or p.

dijit._editor.plugins.LinkDialog

createLink: Inserts a hypertext link

insertImage: Adds an image tag

dijit._editor.plugins.TextColor

foreColor: Sets the foreground color

hiliteColor: Sets the background color

One last note: To enable cut, copy, and paste from other windows to

Firefox, see http://www.mozilla.org/editor/midasdemo/securityprefs.html.

15.3 Feedback

Besides streamlining, one-page applications have another challenge. If

the browser is doing something in the background, how do you signal

this? And if something changes on the page, how do you indicate that it

happened? In traditional apps, these are both communicated through

a page change.

One technique for indicating change is the Yellow Fade Technique,

which you saw on Section 7.5, Animating with dojo.animateProperty,

on page 170. This technique indicates something has changed by turn-

ing the changed element to a background yellow (like a highlighter) and

fading the yellow down to white over a matter of seconds.

FEEDBACK 406

Sometimes for the user’s sake, you must be more specific about what’s

happening. In those cases, you can use Dijit tooltips, progress bars,

and toasters.

Tooltips

Tooltips and balloon help have become pervasive user interface ele-

ments in web and client-server applications.

Dijit tooltips are like the title= attribute, but unlike title=, you can display

large amounts of text with HTML inside. To make them more visible,

you can place them in other places relative to the mouse pointer.

There are two kinds of tooltips. An anchored tooltip uses the widget

class dijit.Tooltip. The anchor means you’re tying it to a particular ele-

ment, and the tooltip is visible only when hovering over that element.

The following code. . .

Download form_controls/anchored_tooltip.html

<p style="margin-top:200px;width:300px;">

What's that making your tongue flippy-flop?

When you drink a NuGrape

you don't know when to stop.

I got your ice cold

NuGrape.</p>

<span dojoType="dijit.Tooltip" connectId="def,def2"

style="display:none;">NuGrape is a

grape soda.

<p style="width:150px">First bottled in 1921, its

strange, barrelhouse- inspired jingle I Got Your

Ice Cold NuGrape is

a favorite among roots music snobs.</p>

produces the tooltip shown in Figure 15.7, on the following page. Note

that dijit.Tooltip widgets can appear anywhere in the page, but like dijit.

Dialog tags, they are best placed at the bottom so as not to disrupt the

document flow. Setting the style to display:none keeps them invisible

when drawing the page.

What anchors them to elements is the id= attribute of the anchors and

the connectId= attribute of the Tooltip tag. In our case, connectId= con-

nects to two anchors: the two instances of “NuGrape.”

Anchored tooltips cannot be turned on and off from JavaScript. A mas-

ter tooltip solves this problem. As the name implies, there is one master

FEEDBACK 407

Figure 15.7: An anchored tooltip stays by its anchor.

tooltip per page, but the good news is you can move it anywhere at will.

You create and hide the master tooltip through the JavaScript methods:

dijit.showTooltip(String htmlContents, DOMNode aroundNode, [, String[] position])

dijit.hideTooltip(DOMNode aroundNode)

Here, the DOM node aroundNode functions as the anchor. The position

parameter is interesting—it holds an array of positions to try for the

tooltip. The possible values are above, below, after, and before.1 The

positions are tried in order until the tooltip fits within the page bound-

aries. That ensures tooltips are never cut off. The default position is

[’after’,’before’], meaning it will try after first and then before.

There is one caveat: master tooltips are not a11y-compatible like Dijit

widgets are. So, they should be used sparingly and always be accom-

panied by some other accessible mechanism.

Progress

When long operations happen, the user needs to be informed at the

beginning and at regular intervals. At the very least, they need to know

there’s time for a cup of coffee. But they also need to be reassured

the process is continuing and that the browser, server, and network

are still working. In the traditional web model, long operations always

happen between pages, so the browser’s spinning logo tells you things

are happening.

1. After and before are more accurate terms since right-to-left languages like Arabic will

put an after tooltip to the left.

FEEDBACK 408

Figure 15.8: A progress meter in flight

In the Ajax world, operations happen without a page request, so you

must provide your own feedback. Fortunately, Dijit has a widget for

you! It’s called dijit.ProgressBar, and it looks like Figure 15.8.

You set up the bar like this:

Download form_controls/progress_bar.html

<div dojoType="dijit.ProgressBar" style="width:300px"

jsId="jsProgress" id="downloadProgress"></div>

<input type="button" value="Go!"

onclick="dojobook.form_controls.objects.progress_bar.download();" />

<input type="button" value="Stop!"

onclick="clearInterval(_timer);_timer=null;" />

Without any pushing, the progress bar will sit at 0% forever. You must

communicate progress through a JavaScript method call, update({ max-

imum: numParts, progress:0 });. Since we’re being server agnostic, we will

simulate a long operation through the standard JavaScript setInterval

method and a random time interval between progress reports:

Download form_controls/objects/progress_bar.js

dojo.provide("dojobook.form_controls.objects.progress_bar");

(function() {

dojobook.form_controls.objects.progress_bar.download = function(){

// Split up bar into 7% segments

numParts = Math.floor(100/7);

jsProgress.update({ maximum: numParts, progress:0 });

for (var i=0; i<=numParts; i++){

// This plays update({progress:0}) at 3nn milliseconds,

// update({progress:1}) at 6nn milliseconds, etc.

_timer = setTimeout(

"jsProgress.update({ progress: " + i + " })",

(i+1)*300 + Math.floor(Math.random()*300)

);

}

}

})();

DATES, NUMBERS, AND I18N 409

Often the biggest problem in Dojo progress metering is getting progress

reports. Despite all the work we have done with Deferreds and asyn-

chronous callbacks earlier in Chapter 6, Asynchronous Programming,

on page 101, JavaScript is still single threaded. And often the things

you want to monitor work in one statement. Say you need to pull down

100,000 records to the browser through an XHR request. If you issue

dojo.xhr* for the entire set, the method seems to work asynchronously

in the sense that you can scroll up and down the page, enter form

elements, and so on. But you can’t ask “How many records have you

downloaded so far?”

The most common way around this is to get data in chunks, updating

the progress meter in the onLoad callback of dojo.xhr*. For dojo.data

loads, using QueryReadStore helps partition the work so you can call

the progress meter in stages.

Notifications with Toaster

Sometimes you don’t need all the detail of a progress meter. For exam-

ple, suppose you just want to tell a user you’re saving a document in

the back group. The widget dojox.widget.Toaster is good for that. You can

set up a Toaster like this:

Download form_controls/save_toaster.html

<div dojoType="dojox.widget.Toaster" duration="0" jsId="saveToaster"

messageTopic="/saving" positionDirection="tr-left"></div>

Then invoke it in some background, possibly long-running process.

We’ll simulate that here with some buttons:

Download form_controls/save_toaster.html

<div dojoType="dojox.widget.Toaster" duration="0" jsId="saveToaster"

messageTopic="/saving" positionDirection="tr-left"></div>

Setting the timer to 0 in the widget means “keep onscreen until it’s

clicked.” You publish the topic at the beginning of your operation to

set the Toaster in motion. Then at the end, you call _setTimer(1), meaning

keep the Toaster onscreen for 1ms longer and disappear. The user can

also dismiss the Toaster manually by clicking it.

15.4 Dates, Numbers, and i18n

In Section 2.5, Improved Form Controls, on page 31, we learned about

regular expression validation, which can handle your text validation

DATES, NUMBERS, AND I18N 410

needs. But numbers, currency, dates, and times need extra care. Valid

examples are different depending on the country you’re in. In other

words, you need to pay attention to internationalization, or i18n (which

means “i and n with 18 letters in between”).

For example, if you’re asked for a date in the DateTextBox, you would

be correct typing 1/31/2008 in the United States, but not in England.

(England puts the month after the day, and there is no 31st month!)

So, validating input depends on a locale, that is, the customs of a par-

ticular country or language, and you must validate within that context.

Locales greatly affect the formatting of four things in particular: num-

bers, currency, date, and time.

The good news is Dijit takes care of many of the details invisibly, for

the most part. Dojo reads the browser’s installed locale (the only i18n-

specific information available to JavaScript) as part of its startup pro-

cess and makes it available to all JavaScript code. Dijit in turn reads

the locale and retrieves information about its formatting patterns and

uses them to display and interpret things in the widgets. The Dojo

source version bundles the entire Unicode CLDR localization database,

and you can pick which locales to support as part of a custom build.

The Dojo binary version contains a subset of the most common locales.

The following controls are i18n-enabled:

• dijit.form.NumberTextBox

• dijit.form.CurrencyTextBox

• dijit.form.NumberSpinner

• dijit.form.DateTextBox

• dijit.form.TimeTextBox

Standard Form

Although Dojo knows your locale and can format dates based on it, if

you get the following item in ItemFileReadStore...

["5/10/2003", "Frank", "Stokes", ...]

how does Dojo know whether the 5/10/2003 is May 10 or November 5?

Dojo could force you to send the server locale information with each

response, but it seems bandwidth-wasteful to do so. So, Dojo requires

specifying dates and numbers in a clear, well-defined standard form.

For numbers, standard form is the same as JavaScript number literals.

So, the number 92367.45 is in standard form because you can say var

DATES, NUMBERS, AND I18N 411

Figure 15.9: The standard form values 1983-05-18 and 10000.001 ren-

dered in different locales

x=92367.45;. And 92.367,45 is not in standard form, even though it’s a

legal number in locales where . is the digit group separator and , is the

decimal point.

Dates are trickier. You can unambiguously create a Date object in

JavaScript, and that’s good for programmatic widgets. But program-

matic widgets need a text-based standard form. Dojo uses ISO 8601,

whose form is as follows:

yyyy-mm-dd«Thh:mi:ss»

The string 2003-10-05T06:30:00 is November 5, 2003, at 6:30 a.m. The

“T” and time can be left off if it’s not applicable. Dates sent in this

format will always be translatable by the DateTextBox and TimeTextBox

implementations.

In Figure 15.9, you see how the standard form date 1983-05-18 and the

number 10000.001 are rendered using different locales and currency

formats.

Constraints and Formatting

Although you could validate numbers, times, and dates with a Vali-

dationTextBox and regular expressions, Dijit provides specialized sub-

classes of ValidationTextBox that are much easier. Rather than specifying

a regular expression, these controls use constraints that are specialized

and easier to read. The constraint is used both to format a standard

form number or date into a readable, localized form and to parse it

from a localized form back to standard form.

DATES, NUMBERS, AND I18N 412

There are two forms of constraints: property-based and pattern-based.

A property-based constraint specifies the characteristics (number of

places after the decimal point, and so on) in a JavaScript hash, while

a pattern-based constraint encodes them in a string like #.##. Pattern-

based constraints are sort of the printf in Dojo. You can write all con-

straints in either form, so it’s your choice.

Numbers

Let’s examine constraints in number validation—property-based first.

The widget dijit.form.NumberTextBox deals with numeric input.

You place all constraints, whether property or pattern-based, in the

constraint= attribute. For instance, this property-based constraint prints

a number as a percent (that is, multiplied by 100) with two decimal

digits, rounding all values with a third decimal digit from 0–5 downward

and from 6–9 upward.

{type: 'percent', places: 2 }

The properties min, max, type (which is one of percent, currency, or dec-

imal), and places (the number of digits after the decimal point) are all

legal for number constraints.

The equivalent pattern-based constraint says it more succinctly:

{pattern: '#.##%' }

Pattern-based constraints for numbers are based on the standard Uni-

code TR35 language. It is the same pattern language that Java uses

for numbers. . . a nice benefit. Rather than go through it in full here,

we refer you to the specification itself at http://www.unicode.org/reports/

tr35/#Number_Format_Patterns.

Here are a few common use cases with pattern-based and property-

based constraints:

Download form_controls/constraints.html

<!-- Displays 1.01 -->

<div dojoType="dijit.form.NumberTextBox" name="n1"

value='1.007' constraints="{ places: 2 }"

></div>

<!-- Displays 1.00 -->

<div dojoType="dijit.form.NumberTextBox" name="n2"

value='1.004' constraints="{ pattern: '#.##' }"

></div>

DATES, NUMBERS, AND I18N 413

<!-- Displays 110%, but reverts to 1 when the box gets focus,

and expects you to input the % sign -->

<div dojoType="dijit.form.NumberTextBox" name="n3"

value='1.1' constraints="{ type: 'percent', places: 0 }"

></div>

<!-- Displays 1,005.0 -->

<div dojoType="dijit.form.NumberTextBox" name="n4"

value='1005' constraints="{ pattern: '#,##0.0' }"

></div>

So, constraints help you on the output side; now let’s look at the input

side. If someone enters 1.116 in a box with two decimal places, Number-

TextBox will reformat it as 1.12 when the box loses focus. Occasionally

constraints can cause user confusion. A percent type box will always

expect a % in the input. If you don’t provide the user a good prompt

message, they won’t know they must enter the % sign, leading to frus-

tration. That’s never a good thing.

Mapped Textboxes

The percentage constraint brings up a good question. Server programs

don’t like input with commas and percent signs—they prefer numbers

with only digits and a decimal point, in other words: standard form.

But if the NumberTextBox forces the user to enter a percent sign, how do

we make the server swallow it?

Dijit uses a neat trick called mapped textboxes to take care of this. Each

NumberTextBox actually gets expanded into two <input> tags: one that’s

displayed and one that isn’t. The displayed one contains the “user-

friendly” version with the percent sign, and the hidden one contains the

standard form. Only the standard form is submitted. So after entering

50% and leaving the field, the hidden field contains 0.5, and that’s what

is submitted.

In Figure 15.10, on the next page, you can see what goes on. In Firebug,

you can see how the widget becomes two input boxes. When the form

submits, as shown at the bottom, only the n3 parameter is submitted.

Dijit’s four special validation widgets—NumberTextBox, CurrencyTextBox,

DateTextBox, and TimeTextBox—are all mapped textboxes. Later we’ll see

how to exploit mapped textboxes to submit other forms of numbers or

dates besides standard form.

DATES, NUMBERS, AND I18N 414

Figure 15.10: A mapped textbox is really two textboxes.

Currency

Currency carries a bit more complexity than numbers. With numbers,

you have only one locale to deal with—that of the browser—and a num-

ber can be translated to any other locale by using standard form.

The dijit.form.CurrencyTextBox is like a NumberTextBox, but it throws in the

local currency symbol for free. If you’re in the United States, for exam-

ple, it pops in a dollar sign when the box loses focus. But if someone in

Papua New Guinea uses that same page, they will enter a number and

the kina symbol will appear. Because of the mapped tax boxes, only the

number will be passed, so how does the server know the currency is in

kinas?

One way is to decode the locale in your server program and format the

currency accordingly. Another, which is much clearer and easier to pro-

gram, is to embed the currency symbol in a constraint. The constraint

looks like this:

Download form_controls/constraints.html

<!-- Displays 1.01 -->

Amt to Charge (in Japanese Yen)

<div dojoType="dijit.form.CurrencyTextBox" name="c1"

value='1.007' constraints="{ currency:'JPY' }"

></div>

DATES, NUMBERS, AND I18N 415

Here, currency is the standard ISO 4217:2001 three-character code.

Then you set up one box for each currency you’ll accept. This makes

things quite unambiguous.

The currency also carries some standards for fractions. For example,

U.S. dollars (USD) go to two decimal places, while Japanese yen (JPY)

use none. You can override this for a particular currency by specifying

fractional as true or false. This is necessary for micropayments or per-

unit costs for very small items.

Dates and Times

We’ve already used DateTextBox with its handy drop-down calendar. By

default, this control always displays the date in the locale-specific for-

mat. But because it’s a mapped textbox, only the standard form date is

sent back to the server.

If the default onscreen format is not to your liking, you can use one of

the following constraints:

• formatLength can be set to short, medium, long, or full, which displays

the date in various degrees of terseness.

• pattern specifies a full date pattern string, conforming to the Uni-

code TR-35 Date Pattern format specification (http://www.unicode.

org/reports/tr35/#Date_Format_Patterns). As with number patterns,

this standard is the same standard Java uses for dates.

dijit.form.TimeTextBox does for times what DateTextBox does for dates. This

control uses formatLength or pattern just like a DateTextBox. In addition,

it adds the following constraints:

• clickableIncrement specifies the granularity of time that a user can

select. This is specified in Dojo common format, as in "T00:10:00",

which means a user can choose 1:10, 1:20, 1:30, and so on.

• visibleIncrement specifies when printed labels occur on the time

chart. For example, "T01:00:00" means list 1:00, 2:00, and so on.

• visibleRange tells how much time is visible on the scale at any time.

The control, as shown in Figure 15.11, on the following page, uses

the constraint {formatLength:’short’,clickableIncrement:’T00:15:00’, visibleIn-

crement:

’T01:00:00’, visibleRange:’T02:00:00’}.

DATES, NUMBERS, AND I18N 416

Figure 15.11: A dijit.form.TimeTextBox

Bypassing Standard Form

Servers can be very stubborn about date formats. A DateTextBox accepts

ISO 8601 dates, but it may be difficult for the server to send them in

that format. Making it worse, the server may have a hard time accepting

ISO 8601 dates. Fortunately, you can get around this restriction by

making your own DateTextBox, and you don’t have to do it from scratch.

By default, the Oracle database accepts and returns dates of the form

dd-MMM-yyyy, as in 15-MAY-2008. Here we’ll write a subclass of Date-

TextBox that will short-circuit the parsing and formatting process:

Download form_controls/widgets/OracleDateTextBox.js

dojo.provide("dojobook.form_controls.widgets.OracleDateTextBox");

dojo.require("dijit.form.DateTextBox");

dojo.declare("dojobook.form_controls.widgets.OracleDateTextBox",

[dijit.form.DateTextBox], {

postMixInProperties: function() {

this.inherited(arguments);

if(this.srcNodeRef) { // If the widget was created declaratively

// The postMixInProperties in superclasses have ISO parsing built

// in. So here we overwrite the parsed value.

var unparsedValue = this.srcNodeRef.getAttribute('value');

if(unparsedValue) {

var dateFromOracle = dojo.date.locale.parse(

unparsedValue,

{selector:'date', datePattern: 'dd-MMM-yyyy'}

);

DATES, NUMBERS, AND I18N 417

this.value = dateFromOracle;

}

}

},

// Returns date in dd-MMM-yyyy to the server

serialize: function(d, options) {

return dojo.date.locale.format(

d, {selector:'date', datePattern:'dd-MMM-yyyy'}

);

}

});

In a nutshell, postMixInProperties is the first extension point run during

widget construction. We delegate the duties to the superclass DateTime-

TextBox first. It parses the value from ISO 8601 format to a date. When

control passes back to our own handler, we parse the original value

according to Oracle specs, overwrite the value, and return.

The serialize extension point runs when the value changes. Here, we

do the reverse step and format the date in Oracle format, which gets

placed in the hidden text field of a mapped textbox. When the form is

submitted, the Oracle format gets sent. Meanwhile, onscreen, all you

see is the date in locale-specific format. It’s like magic!

Then you can use the widget as a drop-in replacement for DateTextBox,

like so:

Download form_controls/form_OracleDateTextBox.html

<input dojoType="dojobook.form_controls.widgets.OracleDateTextBox"

name="mydate" value="04-MAR-2008"/>

Subclassing widgets is such a useful technique that we’ll see much

more of it later in Chapter 17, Creating and Extending Widget Classes,

on page 455.

Feedback

When constraining the input, sometimes it’s not clear what you expect

from the user. And sometimes, despite warnings, users make a mis-

take and enter bad input. Dijit’s design philosophy is to give the user

feedback early yet inobtrusively.

You give Dijit a boost by providing the text. The promptMessage= attri-

bute text displays in a tooltip when the control gets focus, as in the

following:

<div dojoType="dijit.form.ValidationTextBox"

promptMessage="Enter a date before 8/20/1974"

ACTION BUTTONS, TOOLBARS, AND MENUS 418

>

As you’ve seen in the examples in Chapter 3, the prompt appears as a

tooltip after the control. You can change the position of this tooltip by

using the position= attribute, with the same values as dijit.MasterTooltip.

The prompt appears when the focus arrives on that control and the

control has no value. As soon as the user enters something, that some-

thing is validated against the constraints. If the value is invalid, the

attribute invalidMessage= is displayed:

<div dojoType="dijit.form.ValidationTextBox"

invalidMessage="The date must be before 8/20/1974"

>

This too is displayed as a tooltip and can be positioned with the position=

attribute.

15.5 Action Buttons, Toolbars, and Menus

Over the past few chapters, dijit.Button has come in handy for all kinds

of action initiation. It requires only a label, an iconClass= that points to

a style with a icon, or both, and an onClick handler.

In a Rich Internet Application, you could presumably make one button

for each command. But that would be a dreadful waste of real estate

and would be confusing besides. So, Dijit provides two containers for

compacting a set of buttons. dijit.Menu stacks its contents vertically. A

menu doesn’t use buttons per se, but it uses dijit.MenuItems, which are

essentially borderless buttons with menu-closing authority. The other

container, dijit.Toolbar, displays its contents, which are always buttons,

horizontally.

dijit.Menus and dijit.Toolbars can live in the following habitats:

• dijit.form.DropDownButton is a button that, when clicked, displays

the menu or toolbar inside. This button always has two children:

a label, usually in a tag, and a menu or toolbar.

• dijit.form.ComboButton is like a combination Button and DropDown-

Button. It has an arrow to the side, which when clicked displays

the submenu. Clicking the ComboButton itself performs its own

button-like action.

ACTION BUTTONS, TOOLBARS, AND MENUS 419

• With no parent menus, the menu or toolbar displays onscreen all

the time. In a Menu, you can also set the contextMenuForWindow=

to true and make it a context (right-click) menu.

Note that dijit.form.Button includes both dijit.form.DropDownButton and dijit.

form.ComboButton types, so you need to dojo.require that module only.

A menu can contain the following items:

• dijit.MenuItem is a menu’s leaf node. All of your onClick handlers go

here.

• dijit.PopupMenu is like a MenuItem, but it always has two children:

a label, usually in a tag, and another menu. It does not

have an onClick extension point because clicking always displays

its subordinate menu.

• dijit.MenuSeparator is not selectable but draws a line between

elements.

The module dijit.Menu includes all these widgets.

A toolbar is like a menu but contains Buttons that make it function like

the traditional software toolbar. You can also add DropDownButtons and

ComboButtons to make a menu bar. Lastly, there is a button separator,

dijit.ToolbarSeparator.

To see how this all works, let’s start with a basic menu:

Download form_controls/buttons.html

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">Disaster Menu</div>

<div dojoType="dijit.MenuSeparator"></div>

<div dojoType="dijit.PopupMenuItem">

Natural

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">Boll Weevils</div>

<div dojoType="dijit.MenuItem">Flood</div>

</div>

</div>

<div dojoType="dijit.PopupMenuItem">

Emotional

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">Spouse Left You</div>

<div dojoType="dijit.MenuItem">Spouse Caught You Cheating</div>

<div dojoType="dijit.MenuItem">

Spouse Caught You Cheating and Left

</div>

<div dojoType="dijit.MenuItem">Spouse With Best Friend

<script type="dojo/method" event="onClick">

ACTION BUTTONS, TOOLBARS, AND MENUS 420

Figure 15.12: A menu and a toolbar masquerading as a menu

console.log("Now that is REALLY bad!");

</script>

</div>

</div>

</div>

<div dojoType="dijit.PopupMenuItem">

Medical

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">TB</div>

<div dojoType="dijit.MenuItem">Rheum-y-tism</div>

</div>

</div>

</div>

Normally, you’d have onClick handlers for each menu item, but this

example includes just one for brevity. Placing this on its own in a page,

this menu will display a vertical list of the items, as shown in Fig-

ure 15.12

To make this a context menu, you simply add the attributes contextMen-

uForWindow="true" and style="display:none" to the tag. You can also then

hide the menu in a DropDownButton:

<div dojoType="dijit.DropDownButton">

Disasters

<div dojoType="dijit.Menu">

...

</div>

</div>

ACTION BUTTONS, TOOLBARS, AND MENUS 421

Or you can make it into the traditional menu bar by changing the Pop-

upMenu elements to DropDownButtons and changing the outer widget to

a toolbar.

A11Y 422

The result is as follows:

Download form_controls/buttons.html

<div dojoType="dijit.Toolbar">

Natural

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">Boll Weevils</div>

<div dojoType="dijit.MenuItem">Flood</div>

</div>

Emotional

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">Spouse Left You</div>

<div dojoType="dijit.MenuItem">Spouse Caught You Cheating</div>

<div dojoType="dijit.MenuItem">

Spouse Caught You Cheating and Left

</div>

<div dojoType="dijit.MenuItem">Spouse With Best Friend

<script type="dojo/method" event="onClick">

console.log("Now that is REALLY bad!");

</script>

</div>

</div>

Medical

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem">TB</div>

<div dojoType="dijit.MenuItem">Rheum-y-tism</div>

</div>

</div>

The result looks like the bottom half of Figure 15.12, on page 420.

15.6 A11y

Accessibility, often abbreviated a11y to mean “a plus 11 letters plus y,”

refers to making pages accessible to everyone. From its beginning, Dijit

has made accessibility a priority, and all bundled Dijit components are

a11y compliant.

If you are unfamiliar with a11y and its relation to web browsing, http://

www.w3.org/WAI/ provides a good primer. But here is the 50,000-foot

view. People with impaired vision or motor disabilities might have prob-

lems using your web app. Those with impaired vision such as color

A11Y 423

blindness or fuzzy or cloudy vision may have trouble picking up cues

communicated through color and shape. Those with no vision may rely

on screen readers to communicate text and feedback. Finally, motor

disabilities may prevent someone from using the mouse, instead rely-

ing on keyboards, switches, or voice recognition to generate input.

With JavaScriptless fill-and-submit web pages, you could rely on the

browser and the OS to handle many of the a11y concerns. As long

as you used <label> tags and alt= attributes on controls, the a11y

APIs could pick them up. Screen readers could read the text and con-

trol state information—for example, a checkbox could read “Vegetarian

Meal checkbox checked.”

Ajax throws a wrench into things. All of sudden controls may be imple-

mented with <div> tags, and their state may live in JavaScript vari-

ables. How can the browser tell which <div> tags mark text and which

mark controls? From Dojo’s point of view, there are three main acces-

sibility issues to solve:

Images and color Dijit relies heavily on background images because

they are portable, they are easily blendable into a theme, and they

live in the style sheet where they’re easy to maintain. But if a

person with low or no vision has images turned off, this is no

longer a reliable way to communicate state or progress. We’ll talk

about this along with general design in Chapter 16, Dijit Themes,

Design, and Layout, on page 428.

Keyboard usage HTML controls automatically handle Tab navigation

and selection. If Dijit controls do not at least emulate this, they

risk making the page unable to be navigated. Furthermore, Dijit

controls have many options that HTML controls don’t have, and

the challenge is to make these work seamlessly for a keyboard

user. Part of this can be solved with Dojo’s rich keyboard event

system, described earlier in Section 6.1, Keyboard Event Objects,

on page 105. We’ll see how to assign tab order to individual con-

trols in the next section.

Conveying role and state While checkboxes are easy to present,

sophisticated Dijit controls require some thought. Let’s say you’ve

focused onto a tree node with label “Gummy Haggis, Order 23199”

as its parent and with five serial numbers listed beneath. Pre-

tend you are talking to someone at that same page in their own

browser and where they need to be to match yours. You could

A11Y 424

communicate the role “Tree Node” and the state as “Parent label

Order 23199, label Gummy Haggis, open, number of children: 5,”

for example. Obviously, Dijit needs some help in this area, which

we’ll talk about in the next section.

Tab Order

Intuitively, the Tab key should move to the next control on the form

in some natural order. With Dijit form controls, you set tab order in

the same manner as HTML—with the tabindex= attribute. The possible

values are as follows:

tabindex= Meaning

-1 The user cannot tab into this control. It can be focused only

through a JavaScript widgetObject.focus() call.

0 Visit this control in the order the controls appear in the

markup. This is the default, and generally you make either

all controls 0 or none of them 0.

1–32767 Order in which this control should be visited. To make

form rearrangement easy, using increments of 10 is a good

strategy.

Conveying Roles and States in Extension Points

So, now a widget has focus. How does the screen reader convey the

information there? For regular old HTML controls, the problem is pretty

straightforward. Each control has a role and a state for which to convey

information. For example, in a checkbox like this...

<label to="gone">My baby's gone</label>

<input id="gone" type="checkbox" value="y" />

the screen reader would say: “My baby’s gone; pressed is true” or “My

baby’s gone; pressed is untrue.” (And if your baby is gone, that mechan-

ical voice won’t reassure you much.) That functionality is built into the

accessibility feature of browsers. But what about this widget?

<label to="gone">My baby's gone</label>

<div dojoType="dijit.form.Checkbox"

id="gone" value="y" />

First, browsers don’t know about dijit.form.Checkbox, so how do they

know the state will be checked or unchecked? Second, as you know

about declarative widgets, they almost never stay intact. The source

<div> tag is replaced with a bunch of other tags by the Dojo parser. So,

how will the browser and the screen reader know what type of control

this is?

A11Y 425

This is where the Web Accessibility Initiative comes in. A standards

body that looks at accessibility in web applications, WAI is developing

the Accessible Rich Internet Application (ARIA) standard. ARIA defines

information dimensions, which describe things happening on the page.

These dimensions answer certain questions like “What is this object?”

(the ARIA dimension called the role) and “What meaningful properties

does this object have it this time?” (the state) and “What object am I

working on?” (the focus). The focus is covered by the taborder= attribute,

but the role and state need some explanation.

Let’s take the role first. The role essentially answers the question “What

does this control act like?” Typical values include row, gridcell, button,

tooltip, directory, img, and so forth. The role usually affects what actions

the user may take and what states are kept with the control. role= is

an attribute of the XHTML 1.1 standard, and Firefox 1.5 (and newer)

recognizes it. So, you could identify the previous checkbox with the

following:

<label to="gone">My baby's gone</label>

<div dojoType="dijit.form.Checkbox"

role="checkbox"

id="gone" value="y" />

At least you could do this if widgets carried over the role= attribute. But

as we’ll see in Chapter 17, Creating and Extending Widget Classes, on

page 455, attributes that the widget doesn’t explicitly use or pass on

are quietly dropped. Instead, the widget class sets the role attribute.

A widget may actually have several controls with distinct roles. For

example, a ComboButton combines an action button with a drop-down

menu button. Each of these has the ARIA role button. In the drop-down

menu itself, each menu item has an ARIA role option.

And that brings us to the state, which is settable through Dojo. State

is important to get right when you’re adding extension point handlers,

since your handler may actually be changing the state of the control.

Or you may want to add extra state information to make navigation a

little easier. To do this with a Dijit control, you follow these steps:

1. Locate the template for that Dijit control. These are usually in

/dojoroot/dijit/templates or a templates directory underneath and are

named after the Dijit class with the extension .html.

2. Find existing WAI roles, WAI states, and dojoAttachPoint attributes.

3. Construct a call to dijit.setWaiState.

A11Y 426

So, suppose you want to set a state called importance in ComboBox.

You first find the template /dojoroot/dijit/form/templates/ComboBox.html.

Here’s what it looks like:

Download form_controls/ComboBox.html

Line 1 <div class="dijit dijitReset dijitInlineTable dijitLeft"
- id="widget_${id}"
- dojoAttachEvent="onmouseenter:_onMouse,onmouseleave:_onMouse,\
- onmousedown:_onMouse"
5 dojoAttachPoint="comboNode" waiRole="combobox" tabIndex="-1"
- ><div style="overflow:hidden;"
- ><div
- class='dijitReset dijitRight dijitButtonNode dijitArrowButton\
- dijitDownArrowButton'

10 dojoAttachPoint="downArrowNode" waiRole="presentation"
- ><div class="dijitArrowButtonInner"> </div
- ><div class="dijitArrowButtonChar">▼</div
- ></div
- ><div class="dijitReset dijitValidationIcon">
</div

15 ><div class="dijitReset dijitValidationIconText">Χ</div
- ><div class="dijitReset dijitInputField"
- ><input type="text" autocomplete="off" name="${name}" class='dijitReset'
- dojoAttachEvent="onkeypress:_onKeyPress, onfocus:_update, compositionend"
- dojoAttachPoint="textbox,focusNode"

20 waiRole="textbox" waiState="haspopup-true,autocomplete-list"
- /></div
- ></div
- ></div>

Don’t worry about understanding all this—we’ll cover the Dijit template

language in Section 17.1, Widget Classes Using dijit.Declaration, on

page 456. The important thing is finding the WAI attributes and the

dojoAttachPoint= attributes.

You notice there are three waiRole= attributes in the tags here: com-

bobox, presentation, and textbox. presentation is a special role that says

“This node does not hold any state information.” These nodes are for

design purposes only. The one we really want is textbox. For sighted

users, this box will be colored green, orange, or red depending on the

importance level, but we’ll set a WAI state for screen readers to pick up.

The textbox node has a dojoAttachPoint="textbox,focusNode" attribute. You

need this as a location to set the state—in this case you can use either

textbox or focusNode in your method call:

dijit.setWaiState: function(widget.textbox, 'importance', 'very important');

Now when the browser focuses on that element, the screen reader will

speak the importance information we also have encoded as a textbox

A11Y 427

color.

Once you have the process down, it’s fairly straightforward to take

the few extra steps to make your controls a11y compliant. Dijit is far

beyond other JavaScript toolkits in this area, and as browser manu-

facturers add more ARIA-compliant features, you can be sure Dijit will

evolve accordingly.

Chapter 16

Dijit Themes, Design, and Layout
A cramped, poorly colored, or inconsistent page can kill user enthu-

siasm as much as poor functionality. So like it or not, you must pay

attention to the visual details. That takes a good eye (which you may

not have) and lots of time (which you definitely don’t have).

Dijit provides themes and layout widgets to help you. Themes apply

color, icons, and font choices to your page’s widgets. Out of the box the

themes bundled with Dijit provide balanced color, readability, and ele-

gance. But if you need to add or change the design, Dijit’s well-thought-

out structure makes it easy to change everything from individual ele-

ments to whole widget classes. A good understanding of theme struc-

ture, which we’ll cover in the first part of the chapter, will make the

change process straightforward.

Layout widgets separate, group, and align elements. If themes are Dijit’s

paint box, layout widgets are its X-acto knife and rubber cement. Lay-

outs are made of panes, which function like pastable elements. Their

content can come from the same page or different pages. You lay panes

beside each other in a dijit.layout.BorderContainer, which acts like a paste

board. Or you can lay panes on top of one another with stack contain-

ers, which act like flip charts pasted on the top with one pane showing

at a time. The second part of the chapter will cover all of these elements.

16.1 Theme Structure

OK, suppose you’ve placed a nice green widget on your page, only to find

it displays as blue. Where did the widget gets its blue color? And how

do you change it? To answer those questions, you must know where to

THEME STRUCTURE 429

Figure 16.1: Bundled Themes: Nihilo, Soria, Tundra, and Tundra in

A11y Mode

look in the Dijit theme style sheets. So, let’s talk about what makes a

theme and how it’s organized.

Up until now we’ve been using the bundled Tundra theme, and that’s a

good choice for applications you build from scratch. In all, Dijit comes

with three prepackaged themes:

• Nihilo (/dojoroot/dijit/themes/nihilo/nihilo.css): Greenish tint with very

bright buttons

• Soria (/dojoroot/dijit/themes/soria/soria.css): Dark blue tabs with

lighter buttons

• Tundra (/dojoroot/dijit/themes/tundra/tundra.css): Very inobtrusive

light gray and blue

In Figure 16.1, you can see these together for comparison. (If this is the

printed book, the differences are less noticeable.)

They not only look good, but Dijit themes are also easy to apply. You

just include the appropriate style sheet and add a class to the <body>

tag, as we saw in Section 2.3, Adding Dojo and Dijit to a Page, on

page 22. This comes courtesy of a Dijit theme’s meticulous structure,

which uses Cascading Style Sheets (CSS) principles to the hilt.

Each theme can also display in a11y mode. When people with low vision

or no vision use the application, particular design element choices may

mean a lot. By detecting whether the computer’s high-contrast setting

is on (wherever that is in the operating system), Dijit in effect adjusts

the theme for the high-contrast colors.

THEME STRUCTURE 430

Most look-and-feel decisions are coded in the theme. You may want to

review or override those decisions in these cases:

• A Dijit element doesn’t look quite right, and you want to see the

styles used in creating it. For example, you may need to change a

widget’s z-order to properly position your nonwidget elements.

• You want to change the look of an individual widget or an entire

Dijit class. For example, you may be placing your logo next to an

element whose colors clash.

• You are creating your own Dijit class, and you need to add styles

for it.

• An element looks correct in one browser, say Internet Explorer,

and not in another, such as Firefox, and you need to analyze why.

As we’ll see, Dijit has facilities for applying different styles to dif-

ferent browser types.

So first, we’ll go over the styles and CSS elements that make up a Dijit

theme. Then we’ll see how to change theme styles at the HTML element

or style sheet level. Finally, we’ll look at the a11y theme, how it helps

users with low vision, and how you can tap into its functionality. An

understanding of the rules and extensions will make you an uber widget

developer, loved and respected by one and all!

Files That Make Up a Theme

A theme, code-wise, is simply CSS and some matching background

images. Like good object-oriented design, good CSS design uses pat-

terns to prevent redundancy and improve readability.1 Fortunately,

learning to navigate those patterns will go a long way toward making

themes work the way you want.

All themes load the “super style sheet” dojoroot/dijit/themes/dijit.css. This

file defines very few visual elements but instead factors out common

elements among all style sheets. In addition, the a11y theme is defined

here so developers don’t need to include it on every page (the a11y

theme is autoselected, as we’ll see in Section 16.3, A11y and Themes,

on page 440).

The tundra directory includes tundra.css and a directory of images used

for rendering the components. You may wonder why Dijit components

1. For some background on good CSS design, I recommend Eric Meyer’s CSS: The Defini-

tive Guide [Mey06] and Jeffrey Zeldman’s Designing with Web Standards [Zel06].

THEME STRUCTURE 431

use images for arrows, colored backgrounds, and other things. Why not

use plain HTML styles or wingdings? First, it allows you to better match

the graphic with the theme. Second, images look consistent across plat-

forms. With regular controls, the width of a <select> box, for example,

could cause wrapping on a Mac but not on Windows. Third, you can

include images as part of the background elements. That way you can

keep your design variations segregated to the style sheet.

Style Namespaces

Tundra.css has more than 300 styles. That requires some enterprise-

level organization. At the very least, you want to prevent CSS name

collisions since these cause hard-to-find style problems with no error

messages. For example, you may want a tag with class="SaveButtonSmall"

to look different in a big dialog box than in a small one. Many JavaScript

toolkits try to distinguish the two by cramming on prefixes. So, in a

toolkit called EnRoute with a dialog box component BigDialogBox, you

might see a class name EnRouteBigDialogBoxSaveButtonSmall. Now that’s a

typing accident waiting to happen. What’s worse is that in a BigDialogBox

you end up typing the prefix EnRouteBigDialogBox in all your classes—a

lot of useless repetition.

Other languages solve this problem with namespaces. For example,

Java classes form a namespace where com.pragprog.foo.Bar is a dif-

ferent class than com.pragprog.open.Bar. Through Java’s import state-

ment, you can say “whenever you see Bar in this class, assume it’s

com.pragprog.open.Bar.” That’s much easier on your typing hand. And

because Java namespaces are guaranteed unique by the file system,

you can mix classes from different vendors freely, even if they use the

same class names.

Although CSS does not have a native namespace feature, Dijit simu-

lates one with compound selectors. A compound selector is just a string

of selectors that match a hierarchy of tags. For example, here’s a selec-

tor used for the dijit.TitlePane widget:

.tundra .dijitTitlePaneTitle .dijitOpenCloseArrowOuter {

margin-right:5px;

}

This says “match any tag with class dijitOpenCloseArrowOuter that sits

inside a tag with class dijitTitlePaneTitle, which in turns sits inside a tag

with class tundra.” So in Figure 16.2, on the next page, you can see how

CSS matches each part of the selector. That selector does look longish.

THEME STRUCTURE 432

Figure 16.2: Matching compound selectors to HTML classes

But now the widget needs to place only class="dijitOpenCloseArrowOuter"

in the tag and rely on parent nodes to match the rest. Hence, the class

names are shorter, and you save bytes in your HTML. Furthermore,

other widgets can reuse class="dijitOpenCloseArrowOuter" without acciden-

tally applying TitlePane’s margin-right:5px;.

What does that mean for you? Suppose you want to know “why is this

arrow green and not blue?” Firebug’s inspect mode tells you the arrow

has class="dijitOpenCloseArrowOuter". If tundra.css has two selectors that

end with .dijitOpenCloseArrowOuter, you just follow the parent tags up.

If you find a class="dijitTitlePaneTitle", then you match our earlier selector.

Note also that the selector does not use .titlePane. If it did, an open/close

arrow inside a TitlePane’s button would also match that selector, which

we don’t want to happen.

“Hey!” you might say, “My code uses dijit.TitlePane, but I never used a dijit-

TitlePaneTitle class in it.” Good point. It’s not there in original HTML or in

the View Source window. Instead, a <div> with that class was created

after the page was loaded by dojo.parser. (See the sidebar on page 24

for details.) This is yet another case where Firebug is indispensable. As

you can see in Figure 16.3, on the next page, Firebug shows the HTML

as it exists on the screen now, that is, after dojo.parser had finished with

it. View Source shows only the untouched, pristine downloaded copy of

the HTML.

THEME STRUCTURE 433

Figure 16.3: Firebug DOM window shows element inserted by Dijit

The descendents need not be direct descendents to match, which is

a good thing. Often you find yourself wrapping your widgets in <div>

tags or HTML tables or in other structures. For example, you might

introduce a tag between the tables or in other structures; specifically,

you might introduce a tag between the tag with class="tundra" and the

tag with class="dijitTitlePaneTitle". But the selector .tundra .dijitTitlePaneTitle

will still match. This bit of magic allows you to have one class="tundra"

in your entire document.

Style Inheritance

That covers matching rules to nodes. A totally separate issue, style

inheritance, also benefits from this namespace-like structure. Because

.one is contained in .tundra, then .one inherits the styles of .tundra and

may override them for themselves and their children.

Word processors often do this in their own style sheets. You may have

a Normal style that defines text as Times 11 pt, 7" lines, and so on.

A quote style, then, may be defined as Normal + 5" lines indented 1"

on the left. If you want to change the entire paper to Helvetica, you

need to change only the Normal style. This is a simple object-oriented

inheritance applied to a nonprogramming language.

Let’s take an example from Dijit. The following rule...

.tundra .dijitTitlePaneTitle .dijitOpenCloseArrowOuter {

margin-right:5px;

}

has a parent rule:

.tundra .dijitTitlePaneTitle {

background: #cccccc; background:#fafafa

url("titleBarBg.gif") repeat-x bottom left;

border:1px solid #bfbfbf;

padding:4px 4px 2px 4px;

cursor: pointer;

}

THEME STRUCTURE 434

Figure 16.4: Firebug CSS window

Because .tundra .dijitTitlePaneTitle .dijitOpenCloseArrowOuter has no cursor

attribute, it inherits the one in .tundra .dijitTitlePaneTitle, in this case, a

pointer.

Firebug also shows you the inheritance rules at work, as you can see

in Figure 16.4. In this right window, the most specific rules appear

on top and go down to least specific at the bottom. If a more specific

rule overrides a style of a less specific one, Firebug crosses out the

overridden style. That’s very helpful in debugging.

Browser-Specific Styles

Styles do not always render the same in Internet Explorer, Firefox, and

Safari. This is an annoying problem, but Dijit themes make life easier.

Certain styles are applied only in a specific browser, and finding these

styles can help you debug design inconsistencies. They can also help

you with your own theme extensions. In most cases, design incompat-

ibilities can be solved by a small change to the style. For example, a

style that renders fine in Mozilla may require a position:absolute to work

in Internet Explorer.

In tundra.css, a few styles break the “all selectors begin with the theme

name” rule. Here are some examples:

.dj_ie6 .tundra .dijitInputField,

The module dijit._base.Sniff is part of Dijit Base (meaning it’s automati-

cally included anytime you load a widget; you don’t need to dojo.require

CHANGING LOOK AND FEEL 435

it). Sniff detects the user’s browser and adds one or more of the following

classes to the outermost <html> element:

• dj_ie: Any version of Internet Explorer (note: only 6 and 7 are sup-

ported by Dojo)

• dj_ie6: Internet Explorer 6.x

• dj_ie7: Internet Explorer 7.x

• dj_iequirks: Internet Explorer in quirks mode

• dj_safari: Safari

• dj_gecko: Mozilla, Firefox, Netscape

For example, an Internet Explorer 6 browser running in quirks mode

will have its <html> element changed to the following:

<html class="dj_ie dj_ie6 dj_iequirks">

Now any selectors in tundra.css beginning with .dj_ie6 will apply. The Dijit

designers use these selectors to fix any browser “mistakes” with styles.

For example, if Internet Explorer 6 needs a style foo: bar but this style

makes Firefox render incorrectly, then they write the rule .dj_ie6 { foo:

bar }. This guarantees the rule will be applied only in Internet Explorer

6. It’s seamless and much cleaner than using CSS hacks—styles that

deliberately break CSS processing in certain browsers.

But what about the .tundra .dijitInputField selectors? Will they fire too?

Fortunately, no. Under the rules of CSS, if there is more than one

matching selector, the most specific will apply. Since .dj_ie6 .tundra .dijitIn-

putField is more specific than .tundra .dijitInputField, it alone will be applied

in Internet Explorer 6.

Dijit uses compound selectors and inheritance to improve the service-

ability of a style. Now that you understand the structure, you can debug

a style with ease.

16.2 Changing Look and Feel

Now that you’ve found the offending style, what does it take to change

it? By “change it,” you can either do it statically, meaning that when

the page renders the look and feel is fixed, or do it dynamically through

JavaScript events or user actions. Well, if you’re like us, you will be

tempted to do the following:

• Hack the theme style sheet (static changes).

CHANGING LOOK AND FEEL 436

• Change the style properties directly through JavaScript like this:

document.getElementById("errorMsg").style.backgroundColor = ’red’;

(dynamic changes).

Don’t do it! Hacking theme style sheets is bad because the next Dojo

upgrade will overwrite your changes. And don’t delude yourself into

thinking “I’ll remember to keep my copy of that file.” You won’t. Trust

me. And changing the styles directly from JavaScript violates the sep-

aration of concerns: keep the content in the HTML, the code in Java-

Script modules, and the design in CSS. After all, CSS was invented to

convey style and design decisions. JavaScript was not.

But no worries here. There are nice, safe ways to change the look and

feel of elements. We’ll see how to make static changes to individual

elements and whole classes of elements. We’ll cover a little about how

to design your own theme. Lastly, we’ll see how to change elements

dynamically by manipulating classes.

Individual Elements

You can override the design settings of a theme by filling in the style=

attribute of a tag. For example, you could change a button tag directly

like this:

<body class="soria">

...

<input type="button" dojoType="dijit.Button"

style="background-color:red" />

But then it will always be red, no matter what the Soria theme states.

In keeping with our theme of putting elements in their proper files, it’s

preferable to write this in the button:

<body class="soria">

...

<input type="button" dojoType="dijit.Button" id="soreThumb" />

and in your application style sheet:

#soreThumb { background-color: red; }

Element Classes

If you wanted to make all the Soria theme buttons red, you wouldn’t

want to change each and every button. To change a theme style over all

pages, there are two methods.

CHANGING LOOK AND FEEL 437

You could simply add a style with the same selector as the theme style.

So if soria.css has this...

.soria .dijitButton {

height:30px;

padding:0px;

border-width:0px;

background-color:transparent;

background-repeat:no-repeat;

margin:5px;

}

then you would place this in your application style sheet:

.soria .dijitButton {

height:30px;

padding:0px;

border-width:0px;

background-color:red;

background-repeat:no-repeat;

margin:5px;

}

There are two issues here:

• You must make very sure to load your style sheet after soria.css,

since the last style with the same selector wins.

• If soria.css changes, you may have to make corresponding changes

to your application style sheet.

If you can guarantee the browser is Firefox, Safari, or Internet Explorer

7 and newer, there’s a more “dijit-friendly” method: introduce your own

outer class. For example, you can make a mySoria selector and place it

in the <body> element:

<body class="mySoria soria">

Then your application style sheet elements will be as follows:

.mySoria.soria .dijitButton {

height:30px;

padding:0px;

border-width:0px;

background-color:red;

background-repeat:no-repeat;

margin:5px;

}

Notice how .mySoria and .soria are smooshed together, meaning these two

classes must be applied to the same tag. This technique doesn’t suffer

from the earlier first problem and requires only a little extra HTML. The

CHANGING LOOK AND FEEL 438

downside is versions of Internet Explorer 6 and older do not handle

these multiple-class selectors properly.

Sections

Perhaps you need even more radical surgery. Say you need Soria’s form

elements but Tundra’s text style. No problem!

Simply surround any section with <div> tags, and give them the theme

you want as a class. For example:

<div class="tundra">

Lorum ipsum dolor...

</div>

<div class="soria">

<input type="button" dojoType="dijit.Button" />

</div>

The bottom line is that as long as the theme class is outside the dijit

components, they can go in any HTML tag. They don’t need to go into

body. But if you use this method, make sure your theme sections don’t

overlap; a section with two overlapping themes will pick the last-loaded

theme. Such effects can be difficult to diagnose.

Themes from Scratch

For the mother of all modifications, you can write your own theme.

Although we don’t normally recommend copy and paste, in this case

it makes good sense to copy an established Dijit theme to one of your

own and then modify it. After all, there are 300 styles to change.

Here are a few tips to make this process easier:

• Place design decisions as far up the tree as you can. If you find

yourself repeating the same style decision in peer classes with the

same ancestor, push the style up to the ancestor.

• If you have an existing style sheet, use it as a rough guide for

coding styles in your theme. You may want to place your theme

styles directly in the existing style sheet and use inheritance there.

Dynamic Changes

After the previous three sections, the following rule shouldn’t be sur-

prising: you change an element’s look by changing its class. This is the

way that Dijit changes the look of its own elements. Replacing a class in

JavaScript is straightforward: domElememnt.className = ’newStyle”. And

don’t forget about the Dojo functions addClass, removeClass, hasClass,

CHANGING LOOK AND FEEL 439

and toggleClass discussed in Section 7.1, Core Dojo DOM Utility Func-

tions, on page 140. For example, /dojroot/dijit/Menu.js has this...

dojo.addClass(this.arrow, "dijitMenuRightArrowEnabled");

which, when combined with the style (this one from tundra.css), effec-

tively makes arrowRight.png magically appear:

.tundra .dijitMenuRightArrowEnabled {

margin-top:4px;

background:url('images/arrowRight.png') no-repeat bottom center;

display:inline;

}

CSS classes work really well for recording state. Say you have an elec-

trical switch whose icons are switchon.png and switchoff.png. Rather than

using a Boolean variable to keep track of the on/off state, we can use

classes dijitOn and dijitOff to keep track. First place these icons in the

styles:

.tundra .dijitLightSwitch {

// The light switch cover is brown, no matter what the state

background-color: brown;

}

.tundra .dijitLightSwitch.dijitOn {

url("images/switchon.png");

}

.tundra .dijitLightSwitch.dijitOff {

url("images/switchoff.png");

}

Notice how .dijitOn is crammed up next to .dijitLightSwitch in the selector.

That means both classes must appear in the same element, though

they could be listed in either order.

You could then change the className attribute to either dijitOn or dijitOff.

Note also that the .tundra .dijitLightSwitch selector matches in either case,

so the background of the image (which will show through any trans-

parent colors) will always be brown. Dojo helper functions help change

the state of these icons without disturbing other classes:

dojo.toggleClass("livingRoomSwitch", "dijitOff");

dojo.toggleClass("livingRoomSwitch", "dijitOn");

Using a class name for the control state ensures that the data and the

visual state are always in sync. Yet again, we have followed the DRY

(Don’t Repeat Yourself) rule, and our agility is assured.

To sum up, changing the look and feel of elements can be accomplished

cleanly and without redundancy. You can change the look of individual

A11Y AND THEMES 440

elements with an overriding <style>. You can change the look of an

entire element by overriding the theme style in your own CSS. You can

start with a new theme altogether. And you can change the look of

elements programmatically by adding, subtracting, and querying the

classes attached to an element.

16.3 A11y and Themes

In Chapter 15, Form Controls, on page 394, we introduced a11y as an

integral part of Dijit. Its keyboard alternatives make navigating wid-

gets possible for users with low mobility or users with screen-reading

programs. Now we’ll look at using Dijit a11y for users with impaired

vision. At first you might think, “Why would someone with low vision

care about colors and fonts?” At the level of choosing between Lucida

Sans and Verdana, they probably wouldn’t. But the difference between

orange and black could be the difference between reading everything

and nothing.

Low-vision users correct for this by using high-contrast color schemes

bundled with Windows, Gnome, KDE, or Mac OS. These schemes map

foreground colors to white and background colors to black, or vice

versa. Modern browsers detect this and adjust their default style sheets

to match this setup. However, most web sites don’t use the default—

they use their own style sheets. If that style sheet is not a11y-friendly,

the user can turn it off altogether in the browser and substitute their

own. The trouble here, especially for Dijit users, is the styles contain

layout and size information critical to proper display.

Background images are also ineffective for low-vision users, so many

opt to turn images off altogether. For a11y design, this rule is key: never

convey information in background images and colors only. For exam-

ple, simply turning a textbox red is not a11y-friendly. Adding a tooltip

to display the error message, as Dijit’s ValidatingTextBoxes do, makes it

acceptable to both audiences.

The trouble is while a11y discourages the use of background images,

Dijit’s CSS-based design philosophy encourages the use of background

images. That’s because you specify background images as part of a CSS

style. A11y design traditionally uses HTML foreground images with a

title= attribute like this:

A11Y AND THEMES 441

Figure 16.5: Progress bar in Tundra

The title “Go up” is read out loud by a screen reader. Unfortunately,

CSS has no provision for a title attached to a background image. We

can partially get around this with keyboard handling and Web Accessi-

bility Initiative (WAI) rules. This, however, limits low-vision users to the

keyboard.

Dijit solves this knotty problem in a clever way. Whenever you load the

base Dijit classes, which happens anytime you use dojo.require to load

a Dijit component, Dijit performs a small test:

1. It constructs a small red and green bordered box outside of the

browser limits. Because of its coordinates, the user will never

actually see it.

2. Dijit then tests to see whether the actual colors of the box borders

are green and red. If they’re not, Dijit takes that to mean its own

style sheet is off.

3. Then, exactly like setting the dj_ie and dj_gecko styles, it tags the

document with a dijit_a11y class.

4. Whenever a component needs an a11y alternate, the Dijit style

sheet, dijit.css, has overriding rules with selectors beginning with

dijit_a11y.

One widget that capitalizes on this is ProgressBar, which we’ll learn about

in Chapter 15, Form Controls, on page 394. Tundra shades the com-

pleted portion differently than the uncompleted portion, as shown in

Figure 16.5. The dijit_a11y class shifts the style rules to make it look like

Figure 16.6, on the next page. Now the bar border conveys the progress

information clearly.

So, what does this mean to you as a theme designer? Actually, not a

lot. The whole point of a11y mode is to prevent you from having to

code style sheets in two versions. However, just as you test your design

changes in various browsers, so you should test them in a11y mode. It’s

PANES: CONTENTPANE AND TITLEPANE 442

Figure 16.6: Progress bar in a11y mode

easy to do this without changing your color scheme to high contrast.

Simply add this...

dojo.addClass(dojo.body(), "dijit_a11y");

to your header code. This activates the dijit_a11y mode artificially.

In summary, the Dijit theme system brings order to the chaos of look

and feel. By grouping rules into a CSS style sheet with hierarchical

structure, you apply the DRY rule to color, shape, and layout. Making

sweeping changes is as easy as changing a style close to the hierar-

chical top. Yet it’s flexible enough to allow overriding at any level for

exceptional cases.

Dijit themes also help you make sense of different browser needs, by

allowing browser-specific styles to accommodate different interpreta-

tions of the CSS standards. And a11y styles accommodate the needs of

those with low vision or no vision.

Though design decisions in these instances may require thought, hav-

ing the places to plug in those changes gives you a sizable head start.

The Dijit themes provided are well commented and structured, so you

can use them as guidelines for your own work. This is a far cry from

the days of black backgrounds with purple, blinking text!

16.4 Panes: ContentPane and TitlePane

For the next three sections, we’ll take a look at the layout widgets.

If themes manage the color in your application, you could say layout

widgets manage the whitespace. They align elements, stack elements

on each other, or pull content from other sources, among other tasks.

PANES: CONTENTPANE AND TITLEPANE 443

You can group layout elements into three classes:

• Panes, which define blocks of content

• Alignment containers, which place panes beside one another

• Stack containers, which stack panes and alignment containers on

each other, revealing one pane at a time

So first we’ll look at the pane widgets dijit.layout.ContentPane and dijit.

TitlePane,2 which are like Dijit layout “atoms.” ContentPane is a general-

purpose blank pane, while TitlePane adds an expando button to show or

hide the content.

The easiest form of ContentPane simply renders the content between the

tags. This code displays a slot machine:

Download themes_and_design/content_panes.html

<div dojoType="dijit.layout.ContentPane"

style="width:100px;height:200px;float:left"

id="slot1">

<div dojoType="dijit.form.Button">

cherry

</div>

</div>

<div dojoType="dijit.layout.ContentPane"

style="width:100px;height:200px;float:left"

id="slot2">

<div dojoType="dijit.form.Button">

cherry

</div>

</div>

<div dojoType="dijit.layout.ContentPane"

style="width:100px;height:200px;float:left"

id="slot3">

<div dojoType="dijit.form.Button">

bar

</div>

</div>

It’s not very exciting so far. . . this does little more than a plain <div>

tag. It gets more interesting, though, when you programmatically mod-

ify content.

2. Note this is the only layout widget not in dijit.layout.

PANES: CONTENTPANE AND TITLEPANE 444

The click of a button pulls the slot machine arm to get a new triple:

Download themes_and_design/content_panes.html

<div dojoType="dijit.form.Button">

Pull Arm

<script type="dojo/method" event="onClick">

var slotValues=["cherry", "lemon", "orange", "bar", "seven"];

function randomSlotButton() {

var thisSlot = slotValues[Math.floor(Math.random()*5)];

return "<div dojoType='dijit.form.Button'>" + thisSlot + "</div>";

}

dijit.byId("slot1").setContent(randomSlotButton());

dijit.byId("slot2").setContent(randomSlotButton());

dijit.byId("slot3").setContent(randomSlotButton());

</script>

</div>

ContentPane’s setContent method takes care of the widget parsing auto-

matically. Remember that Dojo’s parser turns tags with dojoType into

real HTML tags. Just setting an innerHTML property on a DOM node is

not enough.

setContent has one caveat, however—code in <script> tags will not run.

In particular, that means you can’t use dojo.require in the content tag;

you must make sure to do it in the main HTML file. If you absolutely

need to run script tags, we do have a solution for that in a little bit.

Where ContentPane gets really interesting is in loading external content.

You can simply call setHref, give it a URL, and you’re done. So, put the

following code in spinner_try1.html:

Download themes_and_design/spinner-try1.html

<div dojoType='dijit.form.Button'>

<script>document.write(slotValues[Math.floor(Math.random()*5)]);</script>

</div>

Then you can load it in with setHref:

Download themes_and_design/content_panes.html

<div dojoType="dijit.form.Button">

Pull Arm Remotely

<script type="dojo/method" event="onClick">

//var includeUrl="spinner-try1.html";

// This one works:

var includeUrl="spinner-try2.html";

dijit.byId("slot1").setHref(includeUrl);

dijit.byId("slot2").setHref(includeUrl);

dijit.byId("slot3").setHref(includeUrl);

</script>

</div>

PANES: CONTENTPANE AND TITLEPANE 445

Uh-oh. If you actually ran this content, you’d see three blank buttons.

That’s because as with setContent, setHref does not run the <script>

tags. Fortunately, there’s an easy workaround—simply use dojo/method

scripts, as we did in Section 12.4, Extension Points, on page 331. Recall

that code in a dojo/method script nested in a widget and having no event

property executes when the widget is created. So, this simple rewrite

does the job:3

Download themes_and_design/spinner-try2.html

<div dojoType='dijit.form.Button'>

<script type="dojo/method">

alert("hello!");

var slotValues=["cherry", "lemon", "orange", "bar", "seven"];

this.setLabel(slotValues[Math.floor(Math.random()*5)]);

</script>

</div>

This trick works well if you control the code. But if you must use plain

<script> tags, dojox.layout.ContentPane (note the dojox) overcomes those

limitation, if somewhat imperfectly. Dojox’s ContentPane applies liberal

rewriting to the incoming content, so the URLs are executed relative to

the including HTML. That rewriting can cause hard-to-diagnose prob-

lems. Nevertheless, the option is available if you need it.

A couple more tips are in order. First, the included content must form

legal HTML when plopped into the page. This point also holds true for

setContent, but you must especially watch out for it in external content

because it’s easy to include peripheral tags like <html> if you’re not

careful.

Finally, because setHref uses XHR to load content, it’s subject to the

same-domain rule. If you want to aggregate off-site content, you can

always use the proxy technique shown in Section 12.2, Finding and

Manipulating Declarative Widgets, on page 322.

If you’re used to server-side programming in ASP, JSP, PHP, and so

on, you probably recognize ContentPane as a modularization technique.

Absolutely! If your HTML documents share a common snippet of code,

you can factor that out into its own file and use ContentPane to include

it in multiple pages. It’s good for cutting long HTML pages into manage-

able pieces, even if the pieces are not reused.

3. This trick, unfortunately, does not seem to work in Internet Explorer 6 as of Dojo 1.1.

PANES: CONTENTPANE AND TITLEPANE 446

Increasing Perceived Performance

In addition to separating content and making replacement easy, Con-

tentPanes can also “look” fast. Imagine a content-laden page. It sounds

like rendering everything instantly would be a big advantage, but it’s

not. Humans can take in only so much information, and it’s just as

good to render the parts they want first and fill in the other details

later. ContentPane can help you increase this perceived performance in

three ways:

• Simultaneous loading maximizes throughput by loading separate

pieces with separate, simultaneous server requests.

• Lazy loading defers loading long-running web requests until the

user asks for it.

• Pane reloading refreshes only the parts of the screen that need

refreshing, rather than refreshing the entire page.

To use simultaneous loading, you place the major web page pieces into

ContentPanes, each loaded from a different URL. Modern browsers make

many HTTP connections at once, each of which communicates with the

web server. Usually there’s one grabbing the HTML itself, while others

grab images, causing the page to shift and rerender as images fill in.

ContentPane allows this with any content. Of course, there is a risk that

certain pieces don’t render, and you are left with an 80% complete page.

But this risk usually is small.

Lazy loading involves tying a setHref to a user event like onClick. For

example, if one of your page sections takes a long time to run, you can

simply leave that as a blank ContentPane and use setHref when the user

requests the information.

A common mistake developers make in lazy loading is to set the href

property of ContentPane in the tag and then set the style to display:none:

Download themes_and_design/title_panes.html

<div dojoType="dijit.layout.ContentPane" style="width:200px;height:200px"

style="display:none"

id="contentPane" href="spinner-try2.html">

</div>

This still executes the content load, and in fact ContentPane ignores the

display:none altogether. So unless you need the content right away, you

should leave the href property blank.

THE ALIGNMENT CONTAINER: BORDERCONTAINER 447

Lazy loading is such a popular paradigm that Dijit offers a variant

of ContentPane named TitlePane. TitlePane adds a border, a title bar on

the top, and an expando button on the top-right corner. Clicking the

expando toggles between hiding and showing the content.

TitlePane uses the same options as ContentPane and adds two more: title,

which specifies the title on the top bar, and open, which you can set to

false to initially hide the content, leaving only the title bar and expando

button visible. In a TitlePane, you can set the href in the properties to

some content. It will not be loaded until the user clicks the expando

button. To illustrate this, the following example uses TitlePane to show

a bar:

Download themes_and_design/title_panes.html

<div dojoType="dijit.TitlePane" style="width:200px;height:200px"

title="Open to see the spinner"

id="titlePane" href="spinner-try2.html" open="false">

</div>

Even with href=, the open="false" tells Dijit not to load the URL contents

until the user opens the pane. This works great for portals, where each

portlet can use its own TitlePane and slow ones can be initially closed.

Finally, you can refresh a section of the page with pane reloading. Here

you set a ContentPane to a URL and then reload content as it changes.

The URL must be a server-side program whose contents could change

with the data environment. There’s one caveat. Let’s say you ask for

personlist.php and then issue a setHref to load it again. Dojo caches pages

and will hand back the same content without calling the server. You

disable this with preventCache="true" in the ContentPane. preventCache=

also adds a random hash mark to the URL, which effectively disables

server-side caching.

16.5 The Alignment Container: BorderContainer

If panes are the one-dimensional points of layout, then an alignment

container is a two-dimensional plane of layout. Dijit has one align-

ment container named dijit.layout.BorderContainer whose sole purpose is

to keep panes next to each other.4 It’s a more readable alternative to

CSS’s positioning and floating attributes.

4. In releases 0.9 and 1.0, Dijit provided two alignment containers: dijit.layout.

LayoutContainer with fixed boundaries and dijit.layout.SplitContainer with user-movable

boundaries. In 1.1, their functionality has been merged into dijit.layout.BorderContainer.

THE ALIGNMENT CONTAINER: BORDERCONTAINER 448

center

top

leading

bottom

trailing

headline

center

top

leading

bottom

trailing

sidebar

Figure 16.7: BorderContainer designs: headline and sidebar

A BorderContainer looks like this:

<div dojoType="dijit.layout.BorderContainer"

style="width:«width»; height:«height»">

<div dojoType="dijit.layout.ContentPane" region="center"

style="height:«region height»">

Center content Pane content

</div>

<div dojoType="dijit.layout.ContentPane" region="top"

style="height:«region height»">

Top content Pane content

</div>

... panes for leading, trailing and bottom regions

</div>

A BorderContainer consists of five regions: top, bottom, leading, trailing,

and center, as shown in Figure 16.7. leading and trailing are synonyms

for left and right in left-to-right languages like English, and vice versa

for right-to-left languages.

Each region’s content is in a ContentPane with a region= attribute on

each. BorderContainer requires only one region—the center one—and all

others are optional and may be specified in any order.

Width and height are very important in a BorderContainer and its Con-

tentPanes. The BorderContainer itself requires a fixed width and height.

The regions top and bottom must have a height, which may be either

a fixed size or a percentage. Similarly, the leading and trailing regions

must have a width, either a fixed size or a percentage. The center region

must not have dimensions, however. The center region area is what’s

leftover from the other regions.

THE ALIGNMENT CONTAINER: BORDERCONTAINER 449

minSize

maxSize

Figure 16.8: A splitter allows user-resizable regions.

BorderContainers come in two designs—headline and sidebar—specified

in the design= attribute. The difference between them is which regions

get priority. In the headline design, shown on the left of Figure 16.7, on

the previous page, the top and bottom regions have top priority and get

all the space between the left and right borders. It looks like a news-

paper with a headline in the top region. The sidebar design gives more

weight to the leading and trailing regions, and they grab all the space

from top to bottom.

What if the user disagrees with your region sizing choices? You can put

the sizing power in their hands with splitters. A splitter is a draggable

border between two panes, and you add one to a ContentPane with the

splitter="true" attribute. This makes the center-facing border draggable.

If you want to keep the user in reasonable bounds, you can specify

minSize= and/or maxSize= attributes on the ContentPane, as shown in

Figure 16.8. These sizes constrain the area of that particular region

and default to 0px and Infinity, respectively, to mean “no constraints.”

The following example places the programmer questionnaire of Chap-

ter 7 in a tidy layout with a headline and help on the side (although

the Help will probably not help anybody here). The result is shown in

Figure 16.9, on the next page.

THE ALIGNMENT CONTAINER: BORDERCONTAINER 450

Figure 16.9: A BorderContainer in action

Download themes_and_design/border_container.html

<div dojoType="dijit.layout.BorderContainer" design="headline"

style="width:600px; height:400px" liveSizing="true">

<div dojoType="dijit.layout.ContentPane" region="top"

style="height:75px">

<h1>Programmer Survey</h1>

</div>

<div dojoType="dijit.layout.ContentPane" region="leading"

splitter="true" style="width:200px">

<div dojoType="dojobook.creating_widgets.widgets.GreekingWidget"

paragraphs="1" tag="blockquote">

</div>

</div>

<div dojoType="dijit.layout.ContentPane" region="center"

href="../dom/questions4.htm">

</div>

</div>

The liveSizing= attribute of BorderContainer controls whether panes are

redrawn during dragging. Setting it to true helps the user by giving

visual feedback on how the resizing will look. But it can be slow if your

ContentPanes have a great deal of HTML in them.

Finally, like dijit.Tree, BorderContainer can save the state of the sliders

in a browser cookie. Just set persist= to true, and everything is done

automagically. Users will love not having to tinker with the borders

every time they use your app.

Now we’ve covered the first and second dimensions of layout, so natu-

rally stack containers are next.

STACK CONTAINERS 451

Figure 16.10: Stack containers (top to bottom): TabContainer, Accordion-

Container, StackContainer

16.6 Stack Containers

Stack containers extend layouts into the third dimension. They contain

an ordered series of panes stacked on top of one another like equally

sized pieces of paper. Only one pane is visible at a time. Stack contain-

ers are useful when you need to fit a lot of information into a little space

and you can naturally divide that information into groups. It’s also nice

for presenting ordered series of questions, as in a wizard.

Dijit has three stack containers. dijit.layout.StackContainer is the most

generic and requires you to provide navigation and control code. The

other two, dijit.layout.AccordionContainer and dijit.layout.TabContainer, pro-

vide their own navigation controls. AccordionContainer buttons appear

inline with the panes, while TabContainer buttons fit along the top, as

shown in Figure 16.10.

Because pane widgets are nested right inside the stack container, they

are called children or child panes. StackContainer and TabContainer allow

STACK CONTAINERS 452

s: StackContainer

pane1 pane2

pane4

s.addChild(pane4,1);

pane3

s.removeChild(pane3);

s: StackContainer

pane1 pane2 pane3

s.selectChild(pane2);

s.forward();s.back();

Figure 16.11: Stack container modification and navigation APIs

ContentPanes as their child pages, while AccordionContainers allow only

AccordionPanes. Attributes are the same in both ContentPane and Accor-

dionPane, but in an AccordionPane, the title= attribute accepts widgets,

while ContentPanes do not.

We already saw an example of TabContainer in Chapter 2, Powerful

Web Forms Made Easy, on page 20 and an example of AccordionCon-

tainer in Section 12.2, Finding and Manipulating Declarative Widgets,

on page 322. The StackContainer is especially useful in wizards, where

there’s a well-defined sequence of viewing the pages.

Dijit has a common stack container API. All StackContainer objects re-

spond to these calls, and you use them to add or remove panes from

the stack or navigate in between stack pages. On the left side of Fig-

ure 16.11, you can see the stack modification methods addChild and

removeChild. All panes in a stack are numbered from 0 to numberOfPanes

- 1, and you can use addChild’s second parameter to insert a pane in a

particular spot. All panes from that point move up one in the sequence.

Consequently, removeChild removes a particular pane from the list and

pushes elements down one to fill the gap.

When the user views a stackContainer, there is always one pane on top

and fully viewable. You can move to a particular pane with selectChild,

as shown on the right side of Figure 16.11. Or you can move forward or

backward one pane with forward and back. These methods are essential

for building wizards and other StackContainer widgets, and you usually

wire them to the onClick extension point of a button.

STACK CONTAINERS 453

Here’s a wizard with multiple navigation paths based on user input:

Download themes_and_design/wizard.html

Line 1 <div dojoType="dijit.layout.StackContainer" jsId="sc"
- style="width:300px;height:300px">
-

- <div dojoType="dijit.layout.ContentPane" jsId="start">
5 <p>Did you eat your meat?</p>
- <input type="radio" name="ateIt" id="ateItY" value="Y" checked>
- <label for="ateIt">Yes</label>
-

- <input type="radio" name="ateIt" id="ateItN" value="N">

10 <label for="ateIt">No</label>
-

- <div dojoType="dijit.form.Button">
- Next >>
- <script type="dojo/method" event="onClick">

15 // If they chose Y goto pane "pudding", otherwise "noPudding"
- sc.selectChild(
- dojo.byId("ateItY").checked ? pudding : noPudding
-);
- </script>

20 </div>
- </div>
-

- <div dojoType="dijit.layout.ContentPane" jsId="pudding">
- <p>Choose Your Pudding</p>

25 <select name="puddingType">
- <option>Chocolate</option>
- <option>Vanilla</option>
- <option>Blood (in England only)</option>
- </select>

30

- <div dojoType="dijit.form.Button">
- << Previous
- <script type="dojo/method" event="onClick">
- sc.back();

35 </script>
- </div>
- <div dojoType="dijit.form.Button">
- Finish >>
- <script type="dojo/method" event="onClick">

40 sc.selectChild(done);
- </script>
- </div>
- </div>
-

45 <div dojoType="dijit.layout.ContentPane" jsId="noPudding">
- <p>
- You can't have any pudding.
- How can you have any pudding if you don't eat your meat?
- </p>

STACK CONTAINERS 454

50

- <div dojoType="dijit.form.Button">
- << Previous
- <script type="dojo/method" event="onClick">
- sc.selectChild(start);

55 </script>
- </div>
- <div dojoType="dijit.form.Button">
- Finish >>
- <script type="dojo/method" event="onClick">

60 sc.forward();
- </script>
- </div>
- </div>
-

65 <div dojoType="dijit.layout.ContentPane" jsId="done">
- All in all, we're all just bricks in the wall, y'all!
- </div>
- </div>

This Pink Floyd–inspired wizard has four panes in its StackContainer.

Each has a jsId= attribute to create a JavaScript variable pointing to

the widget. That makes them easily accessible by selectChild, which is

helpful for leaping around to various panes according to the input.

The first pane starts at line 4 and displays a radio button. When the

user clicks the Next button, the code at line 14 fires, branching to either

the pudding or noPudding pane according to the radio button. The other

three panes follow the same pattern, using selectChild for most pane

switching except for a back in line 34 and a forward in line 60.

Note that the entire wizard acts as a form, not just the visible pane. That

makes it very nice for gathering a large amount of input and submitting

it in one shot.

You’re probably thinking, “That’s a lot of code. I think I’ll build a wiz-

ard widget to handle all that button stuff automagically.” You’re such

an overachiever! An easier way is to use the dojox.widget.Wizard widget,

which wires up Next, Previous, Done, and Cancel buttons for you and

is more style-aware than our example.

Using Dijit is like getting your own open source art studio. From adding

dots of color to creating page-sized layouts, Dijit provides scalable and

easy-to-use tools for your creative side.

Chapter 17

Creating and Extending
Widget Classes

Up until now, we’ve been pretty content using the bundled Dijit com-

ponents. They’re pretty flexible in themselves: you can change the look

and behavior of individual widgets easily. But what about changing an

entire class of widgets? On the look-and-feel side, you can override a

widget-level style with style= or a widget class-level style through CSS,

as we saw in Chapter 16, Dijit Themes, Design, and Layout, on page 428.

It’d be nice to have the same flexibility on the code side.

Recall (from Section 12.1, What Exactly Is a Widget?, on page 319) that

a Dijit class is an object class whose methods call Dojo and native

JavaScript libraries. You already know how to create a Dojo-based

object class—you use dojo.Declare, as we saw in Chapter 9, Defining

Classes with dojo.declare, on page 225. Dijit classes are no different.

You can use dojo.declare to define new widget classes, or you can sub-

class existing widget classes to create new ones with different behavior.

The whole power of object orientation is there to use.

You have more options in defining widget classes than regular classes.

In addition to using dojo.declare, you can define them declaratively

through dijit.Declaration. The way you declare widget classes and the

way you use them do not have to match: you can declare a widget class

programmatically and create instances of it declaratively, or vice versa.

Which method should you use? The trade-off is pretty much the same

as for widgets themselves: the declarative way is easier, and the pro-

grammatic way is more flexible.

WIDGET CLASSES USING DIJIT.DECLARATION 456

Naturally, we’ll survey the easy way first: dijit.Decaration. At the same

time, we’ll cover the Dijit template language, used in both methods.

Templates are the basis for most of the bundled Dijit components. Then

we’ll contrast the programmatic method. Next we’ll cover the life cycle

of a Dijit component, in which you can hook your own behavior. We’ll

finish with the notes on extending classes and building a fairly sophis-

ticated widget class.

17.1 Widget Classes Using dijit.Declaration

So, here’s the widget story so far. A programmer adds a dojoType=

attribute to a tag. Upon starting the page, the Dojo parser picks up

this tag and calls the widget constructor on it. That’s the declara-

tive method. Alternatively, the programmer calls the widget construc-

tor directly from JavaScript—the programmatic method. Either way the

widget begins life as a single DOM node. Then the constructor expands

this DOM node into a larger snippet of HTML. Most of the time this

snippet comes from a template, and that’s where our journey begins.

Templates are nothing new. The venerable C language has macros, and

even Microsoft Word’s mail merge facilities are just a template mecha-

nism. Whatever the case, the idea is to provide some constant text and

some placeholders so the template interpreter can fill in the dynamic

things later.

We’ve already used a “lite” version of templates, dojo.string.substitute, in

Section 3.2, Function Literals, on page 43. Dijit uses the same ${} syntax

and extends it. Dijit classes are not required to use templates—they

may generate HTML from string or DOM functions. But templates are

so useful that most widgets use them.

Dijit provides placeholders for straight text or for whole snippets of

HTML:

${arbitraryName}

Is replaced with a property from the widget class. Note this can

be any property in the widget class or any superclass. A special

case of this, ${id} is a property assigned to every widget—you can

specify it yourself or let Dijit generate a unique one for you.

<div dojoAttachPoint="containerNode" />

Is replaced with the body of the widget. Nested widgets are allowed.

WIDGET CLASSES USING DIJIT.DECLARATION 457

<div dojoAttachPoint=”arbitraryName” />

Is replaced with nothing. Instead, arbitraryName becomes a prop-

erty of your widget class, holding the DOM node for the div tag.

That way you can write things like this.arbitraryName.addChild(

aContainedNode) and this.arbitraryName.className = ’enabledClass’.

Note there is an implied attach point called domNode that holds

the root DOM node—for example, the node with the dojoType in it.

<div dojoAttachEvent=”evt1:handler1,evt2:handler2,...” />

Is also replaced with nothing but does a dojo.connect from this

node, event evt1, to handler name handler1, which is expected to

exist as a widget method. Connecting events this way saves you

from having to retrieve the node later for a manual dojo.connect.

A special event called ondijitclick is a nice shortcut. It is fired on a

click, the downstroke of Enter , or the upstroke of the spacebar.

By combining all the standard browser control activation events

into one, you write just one handler and one event connection.

That’s it!

Say, for example, you’re typing up your Christmas card list:

Download creating_widgets/pre_dijit_declaration.html

<style>

td {

border: 1pt solid black

}

</style>

<table>

<tr>

<td>

Donald Trump

590 Trump Tower

New York, NY 55555

Open immediately!

</td>

</tr>

<tr>

<td>

Martha Stewart

Club Fed

Attica, NY 11111

</td>

</tr>

</table>

WIDGET CLASSES USING DIJIT.DECLARATION 458

It seems wasteful to repeat the <td> and
 tags in each label. So,

we’ll build a simple widget that encapsulates it. To do this declaratively,

you use a dojoType="dijit.Declaration" attribute. Our label will look like

this:

Download creating_widgets/dijit_declaration.html

Line 1 <style>
- td {
- border: 1pt solid black
- }
5 </style>
- <div dojoType="dijit.Declaration" widgetClass="CardLabel"
- defaults="{name: 'Nobody', address: 'Nowhere', csz: 'Nowhere'}">
- <tr>
- <td>

10 ${name}

- ${address}

- ${csz}

-

- <div dojoAttachPoint="containerNode"></div>

15 </tr>
- </div>
-

- <table>
- <div dojoType="CardLabel" name="Donald Trump" address="590 Trump Tower"

20 csz="New York, NY 55555">
- Open immediately!
- </div>
- <div dojoType="CardLabel" name="Martha Stewart" address="Club Fed"
- csz="Attica, NY 11111"></div>

25 </table>

In line 6, we open the declaration and name the new widget class Card-

Label. You must define the widget before any uses of it—think of it as a

variable declaration of sorts.

Line 7 defines the attributes of the new class. Note the JavaScript hash

literal here—each property of this hash essentially becomes an attribute

of each widget. Because the object is called defaults, you might think

you can omit properties that don’t have a default. Not true. You must

specify every property here; otherwise, it will not be replaced properly

in the template.

Now for the template elements. In line 10, ${name} is substituted with

the name=property. In line 14, the body of the tag will be substituted

verbatim.

WIDGET CLASSES USING DIJIT.DECLARATION 459

Figure 17.1: The Yellow Fade Technique in action

The Donald Trump label at line 20 will have “Open Immediately” here,

while the Martha Stewart one, which has no body, will quietly ignore it.

The space savings are not obvious in our two-address example, but the

more addresses you add, the more bandwidth you save. More impor-

tant, the widget makes a clearer separation between data and design.

CardLabel is an application-specific widget class, one that’s not very

useful beyond its page. Now we’ll use templates to create a more general

widget class.

Example: The Yellow Fade Technique

People are not accustomed to dynamically changing web pages. There-

fore, if small bits change on the screen, the user may easily overlook

them. The book Ajax Design Patterns describes a pattern named One-

Second Spotlight, where the changing portion of the screen is high-

lighted for a second or two. Figure 17.1 illustrates the method. This

visual indicator is intuitive and helpful yet unintrusive since the high-

light disappears after a bit. (An alert box saying “Look! You have new

info!”—that’s intrusive.)

We’re going to implement a kind of one-second spotlight called the Yel-

low Fade Technique. Pioneered by 37signals, the YFT has become a

widespread Ajax user interface idiom. The idea is to color the back-

ground pane yellow and fade it gently back to the original color over a

few seconds. This gives the effect of running a highlighter pen over

that pane. Our YFT widget, Changebox, will be a container widget.

That means it’s there only to hold other widgets in a group, much

like dijit.layout.ContentPane. Changebox will use dijit.Declaration and tem-

plates, and in particular, the template’s containerNode attach point to

render all the widgets inside.

WIDGET CLASSES USING DIJIT.DECLARATION 460

Download creating_widgets/yft.html

<div dojoType="Changebox" boxId="supply">

<h2>Supply Chain</h2>

Tomato Price: $0.735 per pound

Onions: $0.466 per pound

</div>

<div dojoType="Changebox" boxId="majoracct">

<h2>Major Accounts</h2>

McDonald's: +3.11%

Burger King: -1.29%

Wendy's: unchanged

</div>

<div dojoType="Changebox" boxId="stock">

<h2>Competitor Stock</h2>

Heinz: $5.99 per share

Hunt Wesson: $8.12 per share

Wal Mart: $10.51 per share

</div>

<div id="toolbar1" dojoType="dijit.Toolbar">

<div dojoType="dijit.form.Button" id="toolbar1.supply"

onClick="dojo.publish('/changebox/supply');">Supply Change</div>

<div dojoType="dijit.form.Button" id="toolbar1.majoracct"

onClick="dojo.publish('/changebox/majoracct');">Major Acct Change</div>

<div dojoType="dijit.form.Button" id="toolbar1.stock"

onClick="dojo.publish('/changebox/stock');">Stock Change</div>

</div>

Like the widgets in Section 12.5, Example: Live Forms, on page 338,

the publish-subscribe event system comes in handy here. Generally,

you will publish events from an asynchronous process like the load

callback of dojo.getXhr. But here, a toolbar button click will fire the

topic—that’s a good technique for unit testing the widget.

dijit.Declaration defines a template, writes a heading, and places the

inner HTML in the containerNode attach point:

Download creating_widgets/yft.html

<div dojoType="dijit.Declaration" widgetClass="Changebox"

defaults="{boxId: 'None'}">

Changebox for ${boxId}

WIDGET CLASSES USING DOJO.DECLARE 461

<div dojoAttachPoint="containerNode"></div>

<script type="dojo/method">

// Define YFT animation. The domNode is different for

// each widget, so we define a different animation fn for each.

this.animationFn = dojo.animateProperty({

node: this.domNode,

duration: 2000,

properties: {

backgroundColor: { start: "#FFFF00", end: "#FFFFFF" }

}

});

// Fire it whenever the event /changebox/boxId is published

dojo.subscribe("/changebox/"+this.boxId, this, function() {

this.animationFn.play();

});

</script>

</div>

The interesting thing here is the load extension point. You will recall

from Section 12.4, Extension Points, on page 331 that an extension

point is a method the widget allows you to override. Like extension

points filled in for a particular widget (cf. Section 12.4, Extension Points,

on page 331), extension points here are filled in with <script> tags of

type dojo/method. And they apply to each widget created by this class.

Although the code is shared among instances, the properties are not.

Each instance of YFT needs a different animation function since the

root nodes are different. That is perfectly fine, and assigning this.

animationFn separately for each instance ensures this is true.

Now you can use this widget anywhere, right?

Well, er. . . as long as you stay in the same HTML page, you’re fine.

But copying the dijit.Declaration from file to file isn’t such a good idea.

And even if you do it smartly, such as through server-side includes,

it’s simpler and cleaner just to use a programmatically defined widget

class. That’s what we’ll cover next.

17.2 Widget Classes Using dojo.declare

So, the Yellow Fade Technique was easy to define with dijit.Declaration.

Declaring it programmatically is quite similar. Because every widget

class is a Dojo object class, we use dojo.declare to define it. The result

will be functionally equivalent to the dijit.Declaration version.

WIDGET CLASSES USING DOJO.DECLARE 462

Download creating_widgets/yft_prog.html

Line 1 dojo.declare("Changebox",
- [dijit._Widget, dijit._Templated],
- {
- // Holds the id attribute of the box on which to use YFT
5 boxId: 'None',
-

- // Template
- templateString: "<div>Changebox for ${boxId}"+
- "<div dojoAttachPoint='containerNode'></div></div>",

10

- // Holds subscription handle
- changeboxSub: null,
-

- // postCreate is called after the widget has been constructed.
15 postCreate: function() {

- this.animationFn = dojo.animateProperty({
- node: this.domNode,
- duration: 2000,
- properties: { backgroundColor: {

20 start: "#FFFF00",
- end: "#FFFFFF"
- } }
- });
-

25 changeboxSub = dojo.subscribe(
- "/changebox/"+this.boxId,
- this,
- function() {
- this.animationFn.play();

30 }
-);
- },
-

- destroy: function() {
35 // Unsubscribe from the event

- dojo.unsubscribe(changeboxSub);
- this.inherited(arguments);
- }
- });

Every programmatically defined widget class uses dojo.declare, as in

line 1. By the very definition of a Dijit class, we must subclass from

dijit._Widget, as in line 2. Either dijit._Widget or a subclass of dijit._Widget

must always be listed first. Templated widgets must also mix in the

class dijit._Templated.

Unlike declaratively defined widget classes, you don’t need to specify

a defaults attribute. Instead, you just define the properties right in the

class. So, line 5 defines the boxId= attribute.

WIDGET CLASSES USING DOJO.DECLARE 463

The template can be embedded in the templateString property, as we’ve

done here in line 9. There are actually three ways to define a template:

templateString

The template is specified directly in the string. This requires you

to escape certain characters, as you must do with all JavaScript

string literals. This can make the code a little awkward.

templatePath

The template is read from templatePath. Since the template needs

to be legal HTML only, not a JavaScript string, escaped characters

are unnecessary. During execution, it requires an extra XHR fetch

to get the template. If this is too much of a performance drag, the

build system described in Chapter 11, The Dojo Loader and Build

System, on page 286 can turn these into embedded templateStrings

for you.

templateNode

The template is in a DOM node and its descendents. Note tem-

plateNode must be a DOM node, not an ID—in other words, you

should pass dojo.byId("n") and not "n". This creates a “template

island” in your document, similar to data islands in Internet Ex-

plorer. Remember to hide it with a display:none style.

Our initialization code goes into the postCreate property at line 15.

postCreate= is one of the essential extension points of all widgets, which

we’ll cover later in this chapter. To be nice, we unsubscribe to the topic

in the destroy= extension point handler at line 34. Don’t wanna leave

anyone hanging on the line, right?

So, the template language is essentially the same as dijit.Declaration, but

there are two subtle differences:

• The template must have only one outer node; for example, a tem-

plate like The end is not legal, but <div>The end

</div> is fine.

• The template itself may have widgets, but only if you set the prop-

erty widgetsInTemplate to true. This property is always true for dijit.

Declaration-defined widget classes.

Example: Greeking Widget

Another example will illustrate creating widget classes without a tem-

plate. We’ll call this widget class GreekingWidget, and its purpose in life

will be to generate meaningless sentences. That in itself may sound

WIDGET CLASSES USING DOJO.DECLARE 464

meaningless, but “Greek” text is good for the design stage of appli-

cation building. It’ll generate arbitrary amounts of sentences for you,

rather than trying to think of some yourself. And since the text will be

different each time, you can rerun the app a few times to make sure

arbitrary text flows properly.

Download creating_widgets/widgets/GreekingWidget.js

// dojo programmatic Greeking Widget

// Thank you, Agent Zlerich for 0.4 code! Adapted for Dojo 1.0 by authors.

// See http://agentzlerich.blogspot.com

// /2007/06/programmatic-greekingwidget-for-dojo.html

// for original post and usage examples

dojo.provide("dojobook.creating_widgets.widgets.GreekingWidget");

dojo.require("dijit._Widget");

dojo.declare(

'dojobook.creating_widgets.widgets.GreekingWidget',

[dijit._Widget],

{

// Number of paragraphs to generate

paragraphs: 3,

// Length of each paragraph in sentences

sentencesPer: 7,

// If true, always start with "Lorem Ipsum..."

loremIpsum: false,

// CSS class to apply to each paragraph

addClass: "",

// Tag to use for surrounding each paragraph

tag: "p",

// The heart is in the postCreate extension pt.

postCreate: function () {

// Rudimentary error checking

if (this.paragraphs < 1) {

throw new Error("paragraphs < 1");

} else if (this.sentencesPer < 1) {

throw new Error("sentencesPer < 1");

}

// The sentences[] array has Greek sentences. Pick

// a random starting place, or start at 0 for

// the classic "Lorem Ipsum..."

var sentenceOffset;

WIDGET CLASSES USING DOJO.DECLARE 465

if (this.loremIpsum) {

sentenceOffset = 0;

} else {

sentenceOffset = Math.floor(Math.random() * this.sentences.length);

}

// Create each "paragraph" as a DOM node

for (var p = 0; p < this.paragraphs; p++) {

var paraNode = dojo.doc.createElement(this.tag);

// Print sentencesPer sentences sequentially, wrapping

// to the first of the array if necessary

for (var s = 0; s < this.sentencesPer; s++) {

paraNode.appendChild(document.createTextNode(

this.sentences[sentenceOffset] + " "

));

sentenceOffset = (sentenceOffset + 1) % this.sentences.length;

}

// Attach a CSS style, if needed, then add to the page

if (this.addClass.length > 0) {

dojo.addClass(paraNode, this.addClass);

}

this.domNode.appendChild(paraNode);

}

},

sentences: [

"Lorem ipsum dolor sit amet, consectetuer adipiscing elit.",

"Donec eleifend.",

"Morbi tincidunt, neque ac consequat condimentum, nibh purus bibendum.",

// Download code sample to get the entire set of sentences!

We’ll look at the properties and the purpose of postCreate in a moment,

but for now just concentrate on postCreate’s body. Because we allow

the user so many customizations, including the surrounding tag name,

it makes little sense to use a template. Instead, the standard DOM

creation functions build the pieces for us. So now when you need some

random paragraphs, you just drop in this widget like so:

Download creating_widgets/GreekingWidgetDemo.html

<div dojoType="dojobook.creating_widgets.widgets.GreekingWidget"

paragraphs="1"

sentencesPer="1"

loremIpsum="true"

style="width:200px"

></div>

THE WIDGET LIFE CYCLE 466

Figure 17.2: We can’t resist saying. . . it’s all Greek to us

You can see a sample run of the demo in Figure 17.2. It shows the

beautifully random text. (Your mileage may vary—after all, it’s random.)

Now that we have a widget with lots of properties, it’s a good time to

revisit dojo.parser. We’ve used it for declarative widgets throughout the

book, but how does it actually work?

17.3 The Widget Life Cycle

In the Greeking widget class, the action happens in postCreate. But how

does Dijit know which method to call, and when? This is part of the

widget life cycle—all widgets have specifically named methods called in

a specific order by their base class dijit._Widget. So, a good understand-

ing of that cycle will tell you where to place your code and how to debug

it later.

Dojo.parser and Widgets

When programmatically creating widgets, as we saw in Section 12.3,

Creating Instances Programmatically, on page 327, the birth process is

pretty straightforward. You call the new keyword, and the parameters

are assigned to attributes of the widget. But in declaratively created

widgets, the birth is handled by dojo.parser.

One of the main jobs of dojo.parser is to set properties in a widget

instance. Let’s see how this works in GreekingWidget. dojo.parser acti-

vates when the entire page is finished downloading. It searches the

entire DOM tree for dojoType= attributes. When it finds one, it instan-

tiates an object with that type and then maps the other attributes on

whatever properties it finds in the class.

THE WIDGET LIFE CYCLE 467

-paragraphs

-sentencesPer

-loremIpsum

-addClass : String = ""

-tag : String = "p"

GreekingWidget

<div dojotype=”dojobook.
 creating_widgets.widgets.
 GreekingWidget”
 paragraphs=”1"
 sentencesPer=”1"
 loremIpsum=”true”
 onclick=”alert(‘HELP’);”
 style=”width:200px”
 ></div>

<div style=”width:200px”>

</div>

postCreate

writes

content

AttributeMap: {style, id...

Figure 17.3: dojo.Parser copies attributes to properties.

So, for our GreekingWidget:

1. A new dojobook.creating_widgets.widgets.GreekingWidget object is

created.

2. dojo.parser places the attribute paragraphs into the widget property

paragraphs. It does the same for sentencesPer and loremIpsum.

3. The widget properties addClass and tag are left with their default

values since there are no matching attributes.

This copying process is shown in Figure 17.3. It doesn’t seem so magi-

cal anymore, does it?

The Attribute Map

What happens to attributes in the tag without analogous properties in

the class? We need to consider this for our declarative widget attributes

style= and onclick= earlier. But it also could happen with programmati-

cally created instances, for example:

Download creating_widgets/GreekingWidgetDemo.html

var greek = new dojobook.creating_widgets.widgets.GreekingWidget({

paragraphs: 1,

sentencesPer: 1,

loremIpsum: true,

style: 'width:200px'

}, dijit.byId("whereGreekShouldGo")

);

THE WIDGET LIFE CYCLE 468

Well, some attributes are dropped, and some are not. Recall from Sec-

tion 12.2, Finding and Manipulating Declarative Widgets, on page 322

that all widgets have a root node property called domNode. All the

markup the widget creates, whether from a template or not, lives inside

this node. And that’s where these extra attributes will be copied.

The attributes id=, dir=, lang=, class=, style=, and title= are copied in all

widget instances. You can define more attributes in the attributeMap

property of your own widget class. In short, all the widget attributes

and attributeMap attributes are kept, and all other attributes are quietly

dropped. So in our previous example, the onclick= attribute is not copied

over. That’s not so bad, really. Adding a handler to the widget’s onClick

extension point does the same thing, and it’s much more flexible.

Rendering the Widget

The widget rendering job is handled through extension points, which

we learned about in Section 12.4, Extension Points, on page 331. You

provide the handlers, and dijit._Widget calls them in order.

1. postMixInProperties is called after the properties have been initial-

ized. You can override default values here, as we’ll see in Sec-

tion 17.4, Extending Widgets, on the next page.

2. buildRendering gets the template (if present) and fills in the details.

Generally, you will not override this unless you know what you’re

doing—like you’ve built a new templating system.

3. postCreate usually contains the interesting work. At this point your

widget has been turned into HTML and inserted into the page, and

you can access properties like this.domNode. However, none of the

child widgets has been taken care of yet.

4. startup is the last extension point called, after all of the child wid-

gets have been drawn.

The widget rendering process is illustrated in Figure 17.4, on the fol-

lowing page. Here, notice that YourWidget has a nested widget inside the

template. That means the YourWidget class should set the widgetsInTem-

plate property to true.

Knowing this process helps you plug your code into the right places. For

example, suppose you’re building a container widget and need to know

the combined size of its contained widgets. Since the widgets aren’t

built until startup, you’ll put your code in the startup handler.

EXTENDING WIDGETS 469

<div dojoType=”yourWidget”
 style=”width:200px”>
 <div dojoType=”anotherWidget”>
 </div>
</div>

<div id=”yourWidget-1">
 <div dojoType=”anotherWidget”>…
 <!-- Expanded yourWidget -->
</div>

yourWidget constructor

mixin parameters

postMixinProperties()

assign id, if not provided

buildRendering()

copy attribute map

postCreate()

Expand child widgets

startup()

<div id=”yourWidget-1" style=”width:200px”>
 <div dojoType=”anotherWidget”>…
 <!-- Expanded yourWidget -->
</div>

<div id=”yourWidget-1" style=”width:200px”>
 <div id=”anotherWidget-1">
 <!-- Expanded anotherWidget -->
 </div>
 <!-- Expanded yourWidget -->
</div>

id : String = yourWidget-1

anonymous : yourWidget

Dijit._Templated

Figure 17.4: Birth of a widget: a soul-stirring sight indeed

That covers the beginning of the widget life. You then manipulate and

destroy widgets using techniques in Chapter 12, Scripting Widgets, on

page 319.

17.4 Extending Widgets

As we’ve said, widgets are objects. We know how to override the behav-

ior of a widget instance through extension points. But what if you want

to override the behavior of an entire widget class? It should be obvious

that you don’t change widget behavior by changing the source code,

although it’s tempting. So, how do you make changes safely?

You do it by using the object-oriented tricks you saw in Section 9.6,

Resolving Property Name Clashes, on page 252. Here’s a trivial example

involving properties. Dijit.TitlePane components open and close by push-

ing an arrow button at the top-left corner. They are open by default.

Suppose your application uses many dijit.TitlePane components, but in

this case each must start in a closed state to save screen space. After

adding the attribute open=”false” over and over, you realize it’d be much

easier if open= defaulted to false.

EXAMPLE: A YAHOO ANSWERS WIDGET 470

You can create a subclass of dijit.TitlePane to do just that. We’ll call the

component dojobook.creating_widgets.widgets.ClosedTitlePane. The corre-

sponding file dojoroot/dojobook/widgets/ClosedTitlePane.js looks like this:

Download creating_widgets/widgets/ClosedTitlePane.js

dojo.provide("dojobook.creating_widgets.widgets.ClosedTitlePane");

dojo.require("dijit.TitlePane");

dojo.declare(

"dojobook.creating_widgets.widgets.ClosedTitlePane",

[dijit.TitlePane],

{

open: false

}

);

Here’s the trick. If you define a subclass property with the same name

as a superclass property, the subclass property takes precedence. That

is good for us. We merely define open= with a different default. Even

though we don’t use that property in the class, every time dijit.TitlePane

reads or writes open=, it uses the ClosedTitlePane copy.

As you might expect, the same thing goes for methods. After all, this

is JavaScript, and all methods are just data of type Function. You can

define a subclass and then specify the extension points and methods

to override.

Having learned how to create and extend a widget and all the things

that happen afterward, we’ll end with a useful example.

17.5 Example: A Yahoo Answers Widget

The pleasantly addictive Yahoo Answers site is Web 2.0 at its finest:

someone asks a question about any subject, and others contribute

answers. The answers themselves are rated by others. After a fixed

amount of time, the question closes, and the question asker selects the

“best” answer, which may or may not reflect the given ratings. And that

question and answer are kept for posterity. Being a question answerer

is like trolling around a cocktail party, eavesdropping on conversations,

and leaping into ones that interest you. And everything is recorded!

This collaborative filtering aspect makes it a nifty search engine. If the

term relativity appears in your text, hopping on Yahoo Answers and

typing “relativity” will yield the most popular questions about relativity.

EXAMPLE: A YAHOO ANSWERS WIDGET 471

Figure 17.5: Click a word to look at some Yahoo questions.

That’s a good place to start your research. Fortunately, Yahoo Answers

is also available through a web service. It would be nice to do a quick

lookup on Yahoo Answers for certain terms that we think may cause the

user to stumble. By calling the web service, we can actually get some

Yahoo Questions without leaving the page. Figure 17.5 shows what we

want the user to see.

The “bubble” is easily done with a Dijit master tooltip. Recall from Sec-

tion 15.3, Tooltips, on page 406 that only one master tooltip can be

displayed at a time, and it does not go away when you leave the under-

lying area. That makes it easy to create the Yahoo Answers as links. If

one of the questions looks relevant, the user just clicks it.

We want this widget class to be easy to use. The widget “consumer”

need only wrap a possibly difficult term with the Ask widget definition.

EXAMPLE: A YAHOO ANSWERS WIDGET 472

It’s done like this.

Download creating_widgets/yahoo-answer-demo.html

<h2>Gilligan's Planet:</h2>

<p class="questionableParagraph">

The first mate and his

woeful

gang finally get off the island---

but wind up on a distant planet after boarding the Professor's

rocket

in this animated spin-off of

Gilligans Island

.

Almost all of the cast members from the live-action

series reprised their roles, with the exception of

Tina Louise

(Dawn Wells voiced

Ginger

along with her original role of

Mary Ann).

</p>

Where do you start? The user interface is pretty straightforward, so let’s

get an early win. A little CSS takes care of the formatting for the terms:

Download creating_widgets/css/ask.css

.ask {

text-decoration: underline;

cursor: pointer;

}

.questionableParagraph {

width: 200px;

/* Next two effectively center the paragraph in the browser */

margin-left: auto;

margin-right: auto;

}

The template, kept in templates/Ask.html, references this style and adds

some wiring:

Download creating_widgets/templates/Ask.html

<span class="ask"

dojoAttachEvent="ondijitclick:_getQuestions">

Recall that Dijit fills containerNode with the tag contents. In this case,

we want to repeat the term the user wrapped. Also, the ondijitclick event

EXAMPLE: A YAHOO ANSWERS WIDGET 473

will fire whenever the user clicks, presses Enter , or presses the space-

bar on that term. The _getQuestions method will fire in this case, and

we provide its implementation in the widget. The prefix _ implies a pri-

vate method, which is nice for our case because we make assumptions

about the input the ordinary users might not.

Now for the widget class itself. Because we’ll be using this on many

pages, it’s best to create it programmatically. The interesting thing here

is we don’t need any extension points like postCreate. We give an empty

postCreate body here just so future viewers of our code don’t say “Where

is postCreate?”

Download creating_widgets/widgets/Ask.js

dojo.provide("dojobook.creating_widgets.widgets.Ask");

dojo.require("dijit._Widget");

dojo.require("dijit._Templated");

dojo.require("dojo.io.script");

dojo.require("dijit.Tooltip");

dojo.declare(

"dojobook.creating_widgets.widgets.Ask",

[dijit._Widget, dijit._Templated],

{

templatePath: dojo.moduleUrl("dojobook",

"creating_widgets/templates/Ask.html"),

postCreate: function(){

// Don't do anything because all the magic happens in _getQuestions

},

The bulk of the good stuff is in _getQuestions. Here you’ll notice the

variable hookedTo carries the widget object into the body of _getQuestions

through a closure. You can also use dojo.hitch to do this—it’s largely a

matter of taste.

Download creating_widgets/widgets/Ask.js

_getQuestions: function() {

// Through JavaScript closures, this variable allows us to reference the

// surrounding object from within the get(...) methods.

var hookedTo = this;

// Go to Yahoo Answers for relevant questions

dojo.io.script.get({

// URL for Yahoo Relevant Questions

url: "http://answers.yahooapis.com/AnswersService/V1/questionSearch",

EXAMPLE: A YAHOO ANSWERS WIDGET 474

// Send search term parameters. The appid is the one you obtained for

// chapter 3's example.

content: {

appid: "DEMO",

/* The search term we're sending is the body of the tag */

query: hookedTo.containerNode.innerHTML,

output: "json",

results: 3,

/* Look only in the questions for the term, not the answers */

search_in: "question"

},

// If the response takes longer than 10000ms (= 10 seconds), error out

timeout: 10000,

// Yahoo API requires you to send the callback function name in the

// parameter "callback"

callbackParamName: "callback",

// Function run when Yahoo returns with the answer

load: function(results) {

// Build the tooltip text

var questionTooltipHtml = "";

dojo.forEach(results.all.questions, function(question) {

questionTooltipHtml +=

dojo.string.substitute(

"${Subject}"+

"
${Content}",

question

);

});

// Create a tooltip

questionTooltipHtml += "";

dijit.showTooltip(

questionTooltipHtml,

hookedTo.domNode

);

},

// And this is the callback used when a web service communication

// error or timeout occurs. Note that errors returned from Yahoo

// in the response are still handled with load()

error: function(text) {

alert("An error has occurred.");

return text;

}

});

} // End of _getQuestions

EXAMPLE: A YAHOO ANSWERS WIDGET 475

The Yahoo Answers service, like the Yahoo Search service we saw in

Section 3.4, Researching Cigars Using JSONP, on page 56, uses JSONP.

We attach to it through dojo.io.script. From there, we retrieve the input

and format it into a list. dojo.showTooltip displays this in a tooltip bubble.

And that’s pretty much it.

Through our four examples, you can see how Dijit provides a solid

structure for reusing visual components. You can both use and define

the classes through HTML markup or through JavaScript. Templates

and CSS provide an easy way to change the visual layout without touch-

ing the code and are reusable across many different pages. Finally,

you can extend components through the same ways you extend regular

classes. There are many JavaScript toolkits out there, but none of them

has this amount of flexibility and power.

Part IV

Rich Internet Applications

Chapter 18

Building a
Rich Internet Application

In Figure 18.1, on the following page, you can see a Rich Internet Appli-

cation (RIA) being hosted in Firefox. The application includes a menu, a

resizable multiple-pane workspace, and a status bar—just like so many

native applications. Unlike typical web pages, the menu is anchored at

the top, and the status bar is at the bottom. Also, there is no URL nav-

igation; it is a “single-page” application. If you hate markup, you’ll love

this app since it includes a grand total of fifty lines of HTML.

Instead of crafting many pages of massive markup, we’re going to lever-

age Dojo to build a browser-based application framework and then use

that framework to sketch the application shown. Along the way, we’ll

touch on just about every aspect of Dojo we’ve discussed elsewhere.

Even if you’re never going to build an RIA, you’ll use most of the Dojo

described in this chapter during the normal course of building modern

web pages. And, if you fancy yourself a “real” programmer who doesn’t

“do” JavaScript or HTML, then this chapter is for you. You’re going to

see just how powerful Dojo and JavaScript really are.

18.1 The Big Picture

Before we start, let’s discuss why building an RIA is a good idea. We’ll

also look at the high-level design of the framework and application we’re

going to build.

THE BIG PICTURE 478

Figure 18.1: The browse single-page application

The Browser Is the UI Platform

Broadly speaking, there are two classes of browser-based applications.

First, traditional web pages follow the browser application paradigm

that’s been dominant since the beginning of the Web. These pages

are constructed in HTML (statically or dynamically) and are served to

the user’s browser from an off-host HTTP server. They include hyper-

links to other pages and may collect information through HTML form

controls. All of the cool Ajax stuff that has been discussed here and

elsewhere makes these pages more dynamic and functional, but the

basic use paradigm is unchanged: get a page, do a little something, get

another page.

The second class of browser-based application takes form as the so-

called single-page application: the user navigates to a URL that then

presents a complete application—akin to a native desktop application—

without ever leaving the page. The document managed by the browser

is really a complete GUI program. At a minimum, such a program will

display the GUI through HTML and CSS and implement logic through

JavaScript. The program may also communicate with some off-host

HTTP server, but this is not a requirement.

THE BIG PICTURE 479

Indeed, such a program could just as easily communicate with the local

host through Java applets, Google Gears, or any number of other tech-

nologies. The browser becomes the UI platform.1

The idea of the browser as a UI platform is quite powerful. First, the

browser is ubiquitous. All desktop environments include a browser.

Increasingly, other devices such as phones also include browsers. In

cases where the RIA is backed by off-host HTTP servers, the applica-

tion will have zero installation footprint. This is truly a case of “write

once, run anywhere.”

The second reason the idea has power is that it can be used to enforce a

clear separation of concerns. The browser-side application is concerned

only with implementing the GUI—the machinery required to present

information to the user and gather input from the user. All other com-

putational activity (that is, the machinery that actually makes the pro-

gram do something useful) takes place somewhere else. Contrast this

architecture to most web app frameworks that dynamically generate

presentation and handle several other UI tasks at the server. No mat-

ter how careful you are, computational logic and presentational logic

inevitably leak into each other. And these dependencies increase com-

plexity, which makes the whole thing harder to get right.

In the design presented here, all presentation logic is handled in the

browser. This logic is delivered to the browser in a set of static scripts

and static presentation data. The server returns raw data (often JSON,

but sometimes scripts with executable code) and is strictly forbidden

from executing any presentation logic. Of course, the data presented

by the UI may be dynamic.

The Browser Application Framework

We’re going to build two things:

• A browser application framework

• A sample application that uses the framework

1. Rich browser application describes the architecture more accurately, but we’ll stick

with RIA because this moniker is so pervasive.

THE BIG PICTURE 480

An Important Caveat

The RIA design and framework sketched in this and the next
chapter is opinionated. It assumes a certain view of the world in
which it lives. For example, it assumes the user is going to spend
a lot of time within the application without navigating away to
another web page—much like a native application such as a
word processor or spreadsheet. Also, it makes the value judg-
ment that all of the UI should be implemented in the browser.
These and other assumptions and judgments may not be opti-
mal for some kinds of applications. This is but one way to solve
one class of problems. We are not claiming it’s the only way;
and we’re certainly not claiming that there is only one class of
RIA problem. While Dojo works beautifully in this example, it’s
just as powerful in any other design that leverages client-side
JavaScript.

The framework is named Browser Application (BAF).2 Since this is a

book about Dojo and not about designing frameworks, we’re not going

to spend time discussing the design trade-offs encountered when build-

ing an application framework. Suffice it to say that there are alterna-

tives to the design presented, each with different strengths and weak-

nesses. And we’re not going to describe every last gory detail of a par-

ticular framework. We’ll show enough to get the idea across but leave

some details incomplete. But, before we can start building, we need

some design. So, without further ado...

The Workspace Object Abstraction

The core abstraction used by the application is a container for widgets

termed a workspace object (WSO). A WSO is the thing that the user

interacts with to get information and provide input. Often it will look

like a form, as shown in Figure 18.1, on page 478, but WSOs come in

all shapes and sizes. Here are some examples:

• A word processor (a WSO that contains a single rich text editor

widget)

2. This example is loosely based on the framework being developed at Vista Informa-

tion Technologies (see http://www.vistainfotech.com). Wavemaker, built by Dojo core con-

tributors Scott Miles and Steve Orvell, is another popular Dojo-based framework (see

http://www.wavemaker.com/).

THE BIG PICTURE 481

• A control panel that requests a report

• A static or dynamic report or dashboard

• A form that presents and collects data for a standard create-read-

update-delete (CRUD) database application

The point of these is examples is that the WSO abstraction is not just

another form-based framework, but rather a general abstraction for

just about anything you can build in a GUI. The widgets may be ini-

tialized with data from the server and/or collect input to send to the

server. But the key idea is this: the definition of a particular WSO type

is given by a set of widget types together with their layout and behav-

ior properties, and this definition is static (the definition is completely

independent of the data ultimately presented by the WSO).

For example, let’s say a particular WSO displays a list of contacts in

a grid. The WSO definition would include the name of the particular

JavaScript class that implements the grid widget together with layout

and behavior properties that describe how an instance of the grid wid-

get should work in the WSO. When the user demands an instance of

the WSO, the application requests the WSO definition and queries the

server for the list of contacts. Then the application instantiates a grid

instance as directed by the WSO definition, fills it with the data, and

displays the WSO instance to the user. Contrast this to the way a more-

traditional web app works where the server takes the contact list data

and dynamically constructs HTML that presents the list and then sends

the whole monolithic mess to the browser.

Implementing the WSO concept is the job of the framework. It’s a class

that takes a WSO definition and some data and returns an object that’s

convenient to display inside the rest of the UI framework.

A WSO definition is provided by a JSON object that lists all the widgets

and their properties. Since this definition is static, there is no need to

keep asking the server for the same definition. Instead, the framework

provides a manager that caches WSO definitions.

The data interface can range from simple to complex. At the simple end,

the server could return a set of (name, value) pairs as JSON, and the

WSO definition could include properties that describe how to map these

pairs to widgets; writing new/changed data back to the server could

be implemented by returning the JSON object, updated with changed

values. This design falls down when the application includes the ability

to have several WSO instances open at the same time. For example, if

THE BIG PICTURE 482

the user had the contact list open as well as a particular contact on

that list and then edited and saved the contact name, care should be

taken to ensure the contact list is refreshed with the changed name.

This can be implemented by binding widgets to dojo.data data stores

and then implementing a data store manager in the framework. The

manager ensures that data requests that reference the same data are

connected to the same data store.

So, at this point, our framework should be capable of something like

this:

Line 1 function getWsoInstance(
- wsoDefId, //identifier for the type of WSO to return
- dataQuery //the data to fill the WSO
-){
5 var wsoDef= WsoDefinitionManager.get(wsoDefId);
- var data= DataManager.get(dataQuery);
- return new WSO(wsoDef, data);
- }

The Command System

Most applications have a system where a user can issue a command (for

example, “open a file” or “save the current object”). The UI for issuing

the command almost always comes in the form of a menu or context

menu, a toolbar, or an accelerator key.

Although the idea of a menu is often considered independent of a tool-

bar, they are really the same concept. A set of items is presented to the

user that he can select. When an item is selected, a command is issued.

In the case of a menu item that displays a submenu, the command can

be thought of as “display submenu.” With this in mind, the framework

implements the menu in terms of a dijit.Toolbar instance and submenus

in terms of dijit.Menu. Although the example doesn’t implement context

menus, they could be implemented using the same techniques we’ll use

when implementing the menu.

As you saw in Chapter 15, Form Controls, on page 394, toolbars/menus

and submenus can be implemented in markup. BAF takes a different

approach by providing machinery to dynamically build toolbar/menus

and submenus from data. This has a couple of benefits:

• The content of the toolbar/menus and submenus can be easily

changed based on current user and/or current context.

• The presentation (language, icons, layout, and the rest) of individ-

ual items can be easily changed, independent of content.

THE BIG PICTURE 483

The framework defines two abstractions:

Command items

The text, accelerator, icon, tooltip, and other attributes of a par-

ticular command. Here’s a few examples:

Line 1 var fileCommandItem= {
- id: "file",
- type: baf.commandType.submenu,
- order: 100,
5 group: baf.commandGroup.top,
- text: "File"};
-

- var saveCommandItem= {
- id: "save",

10 type: baf.commandType.command,
- order: 160,
- group: baf.commandGroup.save,
- text: "Save"};
-

15 var saveAsCommandItem= {
- id: "saveAs",
- type: baf.commandType.command,
- order: 170,
- group: baf.commandGroup.save,

20 text: "Save As..."};

Actual command items have a few more properties. Notice the

order and group properties; they can be used to automatically orga-

nize a submenu and insert menu separator bars.

Command menus

A hierarchy of command items that make up a menu. For example:

Line 1 var menu= {
- file: {
- save: 0,
- saveAs: 0,
5 saveAll: 0,
- close: 0,
- closeAll: 0,
- logoff: 0,
- switchUser: 0,

10 },
- edit: 0,
- //etc...
- };

Note how this structure cleanly captures the hierarchy of a menu;

this compares quite favorably to markup. It’s also very easy to edit

THE BIG PICTURE 484

both statically (that is, in a file) and dynamically while the program

is running.

The framework includes the class baf.dijit.Menuband that manages a

dojo.toolbar, a command menu object, and a set of command items.

When a user issues a command through any means (menu, toolbar,

accelerator), the command subsystem simply broadcasts the command

through dojo.publish. Any other subsystem that’s interested in the com-

mand can receive this message by connecting with dojo.subscribe. One of

the cool side effects of this design is that subscribers can easily change

the way menu items and submenus are presented. For example, before

a submenu is presented by the manager, it broadcasts that a submenu

was “commanded.” A client can add or subtract items from the sub-

menu before it’s displayed. And with the simple command menu data

structure shown earlier, this is quite easy to do.

Accelerator keys could be implemented by catching keyboard events,

then dojo.publishing a command when an accelerator key is detected.

The Status Bar

Putting a stylized div at the bottom of a page with a few children that

display status items isn’t rocket science. The key idea is to abstract

the status bar to its true functional purpose: define a set of panes and

allow client components to send content to those panes. The framework

includes the class baf.dijit.Statusbar that implements this functionality.

Data-on-Demand Data Stores

Tree-based navigation is almost as common as the browser. However,

when the number of items in the tree is large—thousands or even

millions—it is clearly not practical to download all this data in one

chunk. Fortunately, dijit.Tree was designed to demand tree items only

when needed; unfortunately, Dojo 1.1 doesn’t include a data store that

provides this functionality. So, BAF includes a data store that requests

items only as demanded. The actual configuration of the tree navigation

widget is left to the application.

Mock Services

Since the server’s only responsibility is to return data (remember, there

is no need to generate dynamic markup), it’s easy to build a mock ser-

vice in JavaScript. The idea is to construct an object that is initialized

with a set of response objects. The mock service provides an interface

THE BIG PICTURE 485

that mimics whatever real interface would be used to communicate with

a real service (for example, like the dojo.xhr* interface). When a request

is given, the mock service sets a timer that fakes the time required to hit

a real server; when the timer expires, the response object is returned.

The framework includes mock services that return navigation items

and WSO definitions. These mocks can be initialized with various sets

of data required to execute different tests. This is fairly powerful in the

real world. The team responsible for the UI component can be provided

with a working (but fake) service on day one—long before the real server

is available. Heck, sales teams could be provided with demo products

that work off the mock servers, greatly increasing the probability they’ll

give a good demo! This is yet another example of the power behind the

RIA architecture.

The Browse Application

So much for the framework. Let’s spec out an application. We’re going

to build an application that retrieves and displays WSOs as provided by

some service. We’ll name the application OBE, which stands for object

browser and editor.

As shown in Figure 18.1, on page 478, OBE contains a main menu bar

at the top, a status bar at the bottom, and a workspace that occupies all

the remaining space available in the browser window. The workspace

is further divided by a splitter bar into two panes—a navigation pane

on the left and an object pane on the right; the splitter bar can be used

to resize the two panes. The navigation pane presents the hierarchy of

objects. The object pane displays the object currently selected in the

navigation pane.

The application is built on top of the BAF framework described earlier.

It includes a top-level object that instantiates the main menu, navi-

gator pane, status bar, WSO definition manager, and workspace man-

ager. The navigator pane includes a dijit.Tree instance that’s backed by

an on-demand navigation data store provided by the framework. The

workspace manager catches a demand for a new workspace object and

coordinates the construction of a new WSO instance and the destruc-

tion of the existing instance (if any). Finally, all the visual components

are arranged in a dijit.layout.BorderContainer that’s created and managed

by the application.

We’ll build this application in steps. Let’s get started.

STEP 1: CREATE THE APPLICATION SKELETON 486

18.2 Step 1: Create the Application Skeleton

The goal of the first step is to get organized and get something minimally

running.

Organization

The work is divided into two projects: BAF (the browser application

framework) and OBE (the object browser and editor application). Each

of these projects defines a top-level module. Since we hate typing capital

letters, these top-level modules are named baf and obe.

The BAF project implements several subsystems that are defined as

child modules of baf:

baf.command

This is the command subsystem. It defines a class that manages

command items, baf.command.ItemManager.

baf.data

This is the data subsystem. It defines customized dojo.data drivers

and other machinery to handle sending/receiving/caching data

with a service including the following:

• baf.data.LazyTreeStore: A dojo.data driver retrieving tree items

on demand from some service

• baf.data.WsoDefinitionsManager: Machinery that retrieves and

caches WSO definitions from some service

baf.dijit

Custom Dijit-based components, including:

• baf.dijit.LazyTreeModel: A subclass of dijit.tree.TreeStoreModel that

interfaces with baf.data.LazyTreeStore

• baf.dijit.MenuBand: Dijit-based component that manages a

menu

• baf.dijit.Statusbar: Dijit-based component that implements a

status bar

• baf.dijit.StaticText: Dijit-based widget that displays a stylized

block of static text

• baf.dijit.Pair: Dijit-based widget that positions and displays a

related pair of widgets; intended to be used to display (label,

value) pairs

• baf.dijit.Wso: Dijit-based widget that contains a hierarchy of

other widgets

STEP 1: CREATE THE APPLICATION SKELETON 487

baf.test

This is the machinery to help test applications; all mock services

are included here:

• test.mocks.services.Base: A base class for mock services that

includes the basic functionality to simulate a dojo.xhr* call

• test.mocks.services.WsoDef: A mock service that delivers a WSO

definition

• test.mocks.services.Navigator: A mock service that delivers navi-

gator tree items

Since most of the implementation details are factored out into the BAF

framework, OBE is quite simple. Test data is located in the obe.test

module tree, but there are no subsystems.

Here’s what the directory tree looks like:

/<document-root>

/baf

/command

/data

/dijit

/test

/mocks

/services

/wso

/obe

/test

This organization factors the project into a set of small, tightly defined,

largely independent classes and modules that helps control complexity.

Different parts of the project can be worked on by different people,

independently. And with the Dojo build system, all of these tiny scripts

can be aggregated and compressed to optimize download performance

when it’s time to release the application to production.

Building the Main Program

The goal of step 1 is to load and execute a function that initializes the

application and draws the UI with menu, navigator, workspace, and

status panes. The navigator and workspace panes should be resizable

along their widths with a draggable resize bar separating the two panes.

The HTML document that hosts OBE is trivial. The head element loads

the style sheets, dojo.js, and the top-level module that starts the appli-

cation. The body element simply displays “loading.”

STEP 1: CREATE THE APPLICATION SKELETON 488

Here’s the complete file:

Download baf/step1/obe/main.htm

Line 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
- <html>
- <head>
5 <title>Mastering Dojo - Object Browser and Editor</title>
-

- <style type="text/css">
- @import "/dojoroot/dojo/resources/dojo.css";
- @import "/dojoroot/dijit/themes/tundra/tundra.css";

10 @import "/obe/obe.css";
- </style>
-

- <script type="text/javascript" src="/dojoroot/dojo/dojo.js">
- </script>

15

- <script type="text/javascript" >
- dojo.require("obe.main");
- dojo.addOnLoad(function(){
- //e.g., given: location.search == ?test=run001

20 // then: dojo.require(obe.test.tests.run001)
- var testId= location.search.match(/(\?test\=)(\w+)/);
- if (testId) {
- dojo.require("obe.test.tests." + testId[2]);
- } else {

25 obe.main.startup();
- }
- });
- </script>
- </head>

30 <body class="tundra">
- <div id="bafLoading">
- <p>Loading</p>
- </div>
- </body>

35 </html>

Notice that dojo.js is loaded from /dojoroot/dojo/dojo.js, which causes

dojo-module-path to be calculated as /dojoroot/dojo. Since no other mod-

ule paths are set, top-level modules will be loaded as siblings to /dojo-

root/dojo. For example, the loader will try to load /dojoroot/obe/main.js

when the module obe.man is dojo.required. We solved the problem on

our development box by aliasing the path /dojo/obe to /obe in the devel-

opment directory tree on the local HTTP server (/dojo/baf must also be

aliased to /baf). This technique eliminates the need for module paths as

well as different development and release versions of main.htm.

STEP 1: CREATE THE APPLICATION SKELETON 489

In the future, the div.bafLoading element (line 31) could be replaced

with a simple logon form that collects a user identifier and password.

Then, if the cross-domain loader was employed, the application could

be downloading scripts while the user is typing his logon information.

This would give an illusion of extra speed.

In a moment we’ll see that the application begins executing by calling

the function obe.main.startup; if the URL contains the query parame-

ter "?test=testModule", then the module obe.test.tests.testModule is loaded

and expected to start the application. This technique provides a conve-

nient way to control how the program is started during development;

we’ll use it later. That’s it for the one-and-only HTML document used

in the application; next let’s look at the JavaScript that makes things

happen.

The module obe.main holds the “main program”; the function obe.main.

startup is the entry point for the program. OBE utilizes dijit.layout.

BorderContainer to handle the top-level layout. At this point, no real

functionality is going into the panes, so each pane is stuffed with a

dijit.layout.ContentPane that holds a single p element that names the

pane. Here’s the code:

Download baf/step1/obe/main.js

Line 1 dojo.provide("obe.main");
- dojo.require("dijit.layout.BorderContainer");
- dojo.require("dijit.layout.ContentPane");
- (function(){
5 //define the main program functions...
- var main= obe.main;
- main.startup= function() {
-

- //create a fake menu...
10 main.menu= new dijit.layout.ContentPane({

- id: "menu",
- region: "top",
- //height must be given for top/bottom panes...
- style: "height: 2em;"

15 });
- main.menu.setContent('menu');
-

- //create a fake navigator...
- main.navigator= new dijit.layout.ContentPane({

20 id: "navigator",
- region: "left",
- //width must be given for left/right panes...
- style: "width: 20%; overflow: auto",
- splitter: true

25 });

STEP 1: CREATE THE APPLICATION SKELETON 490

- main.navigator.setContent('navigator');
-

- //create a fake workspace...
- main.workspace= new dijit.layout.ContentPane({

30 id: "workspace",
- region: "center"
- //note, no sizing!
- });
- main.workspace.setContent('workspace');

35

- //create a fake status bar...
- main.status= new dijit.layout.ContentPane({
- id: "status",
- region: "bottom",

40 //height must be given for top/bottom panes...
- style: "height: 2em;"
- });
- main.status.setContent('status');
-

45 //create the main application container....
- var appContainer= main.appContainer= new dijit.layout.BorderContainer({
- //fill up the viewport...
- style: "width: 100%; height: 100%",
- design: "headline"

50 });
-

- //finally, destroy the loading message and show it all...
- dojo._destroyElement(dojo.byId("bafLoading"));
- dojo.place(appContainer.domNode, dojo.body(), "first");

55 appContainer.addChild(main.menu);
- appContainer.addChild(main.status);
- appContainer.addChild(main.navigator);
- appContainer.addChild(main.workspace);
-

60 //tell the container to recalculate its layout...
- appContainer.layout();
-

- window.onresize= function(){
- appContainer.layout();

65 };
- };
- })();//(function(){

We’ve seen this before in markup in Section 16.5, The Alignment Con-

tainer: BorderContainer, on page 447. Once again, the code is trivial.

Notice the call to lay out the display after it’s first initialized (line 61)

and after each viewport size change (line 63).

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 491

Lastly, we need a little style sheet magic. The html and body elements

should be set to 100% height and width; this forces the top-level dijit.

layout.BorderContainer to use the entire browser viewport. The style sheet

also includes some coloring and borders to help test the panes for cor-

rect sizing and positioning:

Download baf/step1/obe/obe.css

html, body {

height: 100%;

width: 100%;

}

#menu {

border: 1px solid black;

background-color: #D00000;

}

#navigator {

border: 1px solid black;

background-color: #00D000;

}

#workspace {

border: 1px solid black;

background-color: #A0A0D0;

}

#status {

border: 1px solid black;

background-color: yellow;

}

That is it for step 1. Start your localhost HTTP server and navigate to

obe.htm. You should see something like Figure 18.2, on the next page.

When the browser window is resized, the panes should adjust correctly,

and the drag bar between the navigator and workspace panes should

cause these panes to resize correctly.

18.3 Step 2: The Main Menu and Command System

The goal of the this step is to create the main menu and supporting

command item manager. We’ll also demonstrate starting the application

with test data.

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 492

Figure 18.2: Basic application layout

The Command Item Store

Recall from the design discussion that menus, toolbars, and context

menus are filled with command items. Command items hold the display

properties of a command. So before we can implement a menu, we need

a local cache of command items. Hmmm, sounds like a dojo.data data

store might do the trick. If command items are delivered to the program

as JSON data, then dojo.data.ItemFileReadStore will work.

Unfortunately, there are a couple of potential problems. Menus, sub-

menus, and context menus are going to be built dynamically. For exam-

ple, the File submenu is not filled with items until the user clicks

the File submenu button. We’ll see in a moment that this design is

quite powerful. But, it has the drawback that the menu machinery

can’t wait around for an asynchronous fetch of command item data.

Instead, when a menu demands a command item, it needs something—

immediately. Since dojo.data.ItemFileReadStore.fetch operates asynchro-

nously, a little modification is required.

The other problem is the dojo.data getValue interface is fairly verbose.

For example, say item is a command item. To get its order property,

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 493

we have to write something like commandItemStore.getItem(item, "order").

Certainly, item.order would be much more convenient.

Both of these problems can be solved simply by deriving from dojo.data.

ItemFileReadStore and adding a function that guarantees to immediately

return an item (solves the first problem) and further converts the item

to a hash before returning it (solves the second problem). Here’s the

code:

Download baf/step2/baf/command/ItemManager.js

Line 1 dojo.declare("baf.command.ItemManager", dojo.data.ItemFileReadStore, {
-

- getItem: function(id) {
- // summary:
5 // Returns a command item as a hash; guaranteed to return immediately
-

- var theItem;
- function onItem(item) {
- theItem= item;

10 }
-

- this.fetchItemByIdentity({
- identity: id,
- onItem: onItem

15 });
-

- if (theItem) {
- var result= {};
- for (var p in defaultCommandItem) {

20 if (defaultCommandItem.hasOwnProperty(p)) {
- result[p] = this.getValue(theItem, p, defaultCommandItem[p]);
- }
- }
- return result;

25 } else {
- return dojo.mixin({}, defaultCommandItem, {text: id});
- }
- }
-

30 });

If the demanded item is in the store, then theItem will always be filled

with a value (line 9) before fetch returns (line 16); otherwise, the func-

tion just creates a default command item with minimal information.

Before the item is returned, it’s converted to a hash (line 19).

The store can be filled as usual. We’ll provide some test JSON data.

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 494

Here’s a sample:

Download baf/demo.js

Line 1 obe.test.data.command.set001.commandItems= {
- identifier: "id",
- label: "text",
- items: [{
5 id: "file",
- type: baf.commandType.submenu,
- text: "File",
- order: 1000
- },{

10 id: "save",
- type: baf.commandType.command,
- text: "Save",
- order: 1520,
- group: "save"

15 }
- //et cetera....
-]
- };

Since a single command item store is used by all menus (regular and

context) and toolbars in a program, it should be a property of obe.main.

Typically, it would be filled during program startup with all the items

needed for the lifetime of the application. This is accomplished by pass-

ing in some startup data to obe.main.startup and then passing the data

on to the command item store. Here’s how the modified obe.main.startup

looks so far:

Download baf/step2/obe/main.js

Line 1 main.startup= function(args) {
-

- main.commandItemStore= new baf.command.ItemManager({
- data: args.commandItems
5 });

Now we can leverage the machinery we have put in main.htm to call

obe.main.startup with some test data. First, we need a startup script

that calls obe.main.startup with the test data. Here’s an example:

Download baf/step2/obe/test/tests/run001.js

Line 1 dojo.provide("obe.test.tests.run001");
- dojo.require("obe.test.data.command.set001");
- dojo.addOnLoad(function(){
- var startupArgs= {
5 commandItems: obe.test.data.command.set001.commandItems,
- menu: obe.test.data.command.set001.mainMenu
- };
- obe.main.startup(startupArgs);
- });

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 495

The actual data is brought in from another module (line 2); it’s just

plain ol’ JSON objects. We’ll need the menu (line 6) in the next section.

Now, pointing the browser to ./main.htm?test=run001 causes obe.test.tests.

run001 to be dojo.required, which calls obe.main.startup with the appropri-

ate test data. Pretty cool! Next, let’s build the menu.

The Main Menu

Part of the design said that the contents of (sub)menus is specified

by nested hashes of command item identifiers; we’ll call these hashes

menu objects. This makes menus very easy to configure. Here’s an

example menu object:

Download baf/demo.js

Line 1 obe.test.data.command.set001.mainMenu= {
- file: {
- save: 0,
- saveAll: 0,
5 saveAll: 0,
- close:0,
- closeAll: 0,
- send: {
- sendToContact: 0,

10 sendToList: 0
- },
- logoff: 0,
- switchUser: 0
- },

15 edit: {
- //et cetera....
- }
- //et cetera....
- };

The top-level menu is simply a dijit.Toolbar that’s populated by the top-

level command items of a menu object. So, we’ll derive the BAF menu

class baf.dijit.MenuBand from dijit.Toolbar. A menu needs both a menu

object and access to a command item store; these are expected in the

constructor arguments:

Download baf/step2/baf/dijit/MenuBand.js

Line 1 dojo.declare("baf.dijit.MenuBand", dijit.Toolbar, {
- constructor: function(args) {
- this.commandItemStore= args.commandItemStore;
- this.menu= args.menu;
5 this.sort= args.sort || function(lhs, rhs){return lhs.order-rhs.order;};
- },

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 496

The top-level objects are sorted and grouped before they are inserted

into the toolbar; separators are automatically inserted between groups.

Here’s how that looks:

Download baf/step2/baf/dijit/MenuBand.js

Line 1 _prepareList: function(menu){
- var contents= [];
- for (var p in menu) if (menu.hasOwnProperty(p)) {
- contents.push(this.commandItemStore.getItem(p));
5 }
- contents.sort(this.sort);
-

- var result= [];
- if (contents.length) {

10 result= [contents[0]];
- var group= contents[0].group;
- for (var i= 1; i<contents.length; i++) {
- if (contents[i].group!=group) {
- result.push({id:"separator", type: baf.commandType.separator});

15 group= contents[i].group;
- }
- result.push(contents[i]);
- }
- }

20 return result;
- },

Next, we need to insert the objects returned by _prepareList into the tool-

bar. These objects will be commands, separators, or submenus. Sub-

menus require a little more attention since part of the design said that

submenus could be configured dynamically before they are displayed.

The idea is to broadcast (via dojo.publish) that a submenu is being dis-

played and let other program objects add/subtract/manipulate the

submenu as required by program semantics. So, the submenu is pop-

ulated just before it is displayed. This is easy to do by subclassing

dijit.Menu and overriding the onOpen function to call a function that

builds the submenu. Here’s what that looks like:

Download baf/step2/baf/dijit/MenuBand.js

Line 1 dojo.declare("baf.Submenu", dijit.Menu, {
- onOpen: function(){
- this.onOpenSubmenu();
- this.inherited(arguments);
5 },
- onClose: function(){
- this.inherited(arguments);
- dojo.forEach(this.getChildren(), function(child){
- this.removeChild(child);

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 497

10 child.destroy();
- }, this);
- }
- });

As long as any instance of baf.Submenu.onOpenSubmenu is hooked up to

a function that populates the menu, the menu will be populated before

it is opened. dijit.Menu.onClose is also overridden to remove and destroy

all the children; that way when a submenu is repeatedly opened and

closed, duplicates don’t appear. With this in place, we can write the

function baf.dijit.MenuBand._build, which initializes a new instance:

Download baf/step2/baf/dijit/MenuBand.js

Line 1 _build: function() {
- var contents= this._prepareList(this.menu);
- this._publish(["beforeDisplay", this, contents]);
- dojo.forEach(contents, function(commandItem){
5 this._publish(["beforeDisplayItem", this, commandItem]);
- var item= null;
- switch (commandItem.type){
- case baf.commandType.command:
- item= new dijit.form.Button({

10 label: commandItem.text,
- onClick: dojo.hitch(this, "_exec", commandItem)
- });
- break;
-

15 case baf.commandType.separator:
- item= new dijit.ToolbarSeparator();
- break;
-

- case baf.commandType.submenu:
20 case baf.commandType.menu:

- var popup= new baf.Submenu();
- popup.onOpenSubmenu= dojo.hitch(
- this,
- this._onOpenDropDown,

25 this.menu[commandItem.id], popup);
- item= new dijit.form.DropDownButton({
- label: commandItem.text,
- dropDown: popup
- });

30 break;
-

- default: break;
- }
- if (item) {

35 this.addChild(item);
- }
- }, this);
- },

STEP 2: THE MAIN MENU AND COMMAND SYSTEM 498

First, the function constructs the menu items using _prepareList (line

2). Then any interested code can inspect and optionally edit the menu

items (line 3). Next, each item is added to the toolbar. Notice that sub-

menus instances hook their onOpenSubmenu property (a function) to

this._onOpenDropDown (line 22). When a submenu is opened, _onOpen-

DropDown is called upon to populate that submenu. _onOpenDropDown

looks much like _build except that command items are dijit.MenuItems

rather than dijit.form.Buttons:

Download baf/step2/baf/dijit/MenuBand.js

Line 1 _onOpenDropDown: function(menuObject, menu){
- var contents= this._prepareList(menuObject);
- dojo.publish(["beforeDisplaySubmenu", this, contents]);
- dojo.forEach(contents, function(commandItem){
5 dojo.publish(["beforeDisplayItem", this, commandItem]);
- var item= null;
- switch (commandItem.type){
- case baf.commandType.command:
- item= new dijit.MenuItem({

10 label: commandItem.text,
- onClick: dojo.hitch(this, "_exec", commandItem)
- });
- break;
-

15 case baf.commandType.separator:
- item= new dijit.MenuSeparator();
- break;
-

- case baf.commandType.submenu:
20 case baf.commandType.menu:

- var popup= new baf.Submenu();
- popup.onOpenSubmenu= dojo.hitch(
- this,
- this._onOpenDropDown,

25 menuObject[commandItem.id],
- popup);
- item= new dijit.PopupMenuItem({
- label: commandItem.text,
- popup: popup

30 });
- break;
-

- default: break;
- }

35 if (item) {
- menu.addChild(item);
- }
- }, this);
- },

STEP 3: A CUSTOM STATUSBAR WIDGET 499

Figure 18.3: Application with a menu

That completes the BAF menu. Next, obe.main.startup needs to be mod-

ified to use the new menu:

Download baf/step2/obe/main.js

Line 1 main.menu= new baf.dijit.MenuBand(args);

The startup data shown at the end of the previous section already had

a menu item. That’s it for step 2.

Start the HTTP server, navigate over to ./main.htm?test=run001, and you

should see something like Figure 18.3. As the menu is navigated, it

publishes "beforeDisplay", "beforeDisplayItem", and "execute" events to

"baf.dijit.MenuBand". Other program machinery can choose to subscribe

and then react to these events.

18.4 Step 3: A Custom Statusbar Widget

BAF includes the Dijit-based component baf.dijit.Statusbar, which pro-

vides status bar functionality. The idea is to create a widget class that

manages its own layout, can be inserted in other container widgets (for

STEP 3: A CUSTOM STATUSBAR WIDGET 500

example, dijit.layout.BorderContainer), and includes a super-simple inter-

face for adding/deleting/updating status panes:

createTextPane(paneId, args)

Inserts a pane that holds text at the end of the status bar. The

pane is associated with the identifier paneId (a string or a number).

args (a hash) controls the appearance of the pane by providing a

value for the property class (the HTML class attribute of the pane)

and/or a value for the property style (HTML styles to apply to the

pane).

deleteTextPane(paneId)

Deletes the pane identified by paneId and previously created with

createPane.

setTextPane(paneId, text)

Sets the contents of the pane identified by paneId and previously

created with createPane.

baf.dijit.Statusbar can be used inside obe.main.startup like this:

Download baf/step3/obe/main.js

Line 1 main.statusbar= new baf.dijit.Statusbar();
- main.statusbar.createTextPane("message");
- main.statusbar.createTextPane("userName", {style: "width: 20em"});
- main.statusbar.createTextPane(
5 "role",
- {"class": "statusPaneRed", style: "width: 10em"});

After a status bar is created (line 1), panes are added (lines 2–6). Typ-

ically, all panes except the leftmost pane (the first pane added) will

include a width style as in the previous example. When the status bar

layout is calculated, the panes are placed next to each other, right-

to-left, and any leftover space is given to the first pane. The pane’s

rendering is usually controlled by including an HTML class value and

associating that value with a style in the style sheet. Panes automat-

ically include the class bafDijitStatusStaticPane. An example of providing

an additional class is shown on line 6.

Implementing baf.dijit.Statusbar is quite straightforward—particularly be-

cause it’s built on top of Dijit’s layout widget framework. A great exam-

ple of this is dijit.layout.BorderContainer. This widget can contain up to five

other widgets, and its sole purpose is to size and position the contained

widgets. A status bar does exactly the same thing.

STEP 3: A CUSTOM STATUSBAR WIDGET 501

baf.dijit.Statusbar is derived from dijit.layout._LayoutWidget, which is in turn

derived from dijit._Widget with dijit._Container and dijit._Contained mixed

in. dijit._Contained gives children the ability to traverse their siblings and

report their parent; dijit._Container gives containers the ability to insert,

remove, and traverse their children. The widgets that baf.dijit.Statusbar

contains are the status bar panes. Usually a status bar contains just

text panes; the class dijit._widget has all the functionality needed. With

this much information, we can start implementing baf.dijit.Statusbar:

Download baf/step3/baf/dijit/Statusbar.js

Line 1 dojo.declare("baf.dijit.Statusbar", [dijit.layout._LayoutWidget], {
-

- postCreate: function(){
- this.inherited(arguments);
5 dojo.addClass(this.domNode, "bafDijitStatus");
- },
-

- createTextPane: function(paneId, args){
- args= args || {};

10 this[paneId]= new dijit._Widget(args);
- dojo.addClass(this[paneId].domNode, "bafDijitStatusStaticPane");
- this.addChild(this[paneId]);
- },
-

15 deleteTextPane: function(paneId){
- var pane= this[paneId];
- if (pane) {
- removeChild(pane);
- pane.destroy();

20 }
- },
-

- setTextPane: function(paneId, text){
- var pane= this[paneId];

25 if (pane) {
- pane.domNode.innerHTML= text;
- }
- },
-

30 //more to follow...

The only thing baf.dijit.Statusbar does special during the construction

process is add the HTML class bafDijitStatus to the root DOM node (line

5); any processing that needs the DOM node must be done in postCreate

after the base class postCreate has been called (line 4) since the node

won’t exist prior to this point. createTextPane creates a widget and adds

it to the set of children widgets the baf.dijit.Statusbar instance contains

(line 8); deleteTextPane removes a previously added child (line 15). Both

STEP 3: A CUSTOM STATUSBAR WIDGET 502

of these routines leverage the addChild/removeChild methods provided

by the mixin dijit._Container (lines 12 and 18). Finally, setTextPane simply

sets the innerHTML on the div node that _widget created.

Layout is accomplished by ensuring all of the children have the value of

absolute for the style position and then setting the margin boxes of each

child. dijit._Container.addChild is overridden to set the style each time a

child is added:

Download baf/step3/baf/dijit/Statusbar.js

Line 1 addChild: function(/*Widget*/ child){
- this.inherited(arguments);
- this._setupChild(child);
- if(this._started){
5 this._layoutChildren();
- }
- },

Download baf/step3/baf/dijit/Statusbar.js

Line 1 _setupChild: function(/*Widget*/child){
- var node= child.domNode;
- if (node) {
- node.style.position = "absolute";
5 }
- },

The function _layoutChildren sets the margin boxes of the children. It

finds the right content edge of the status bar DOM node and then lays

one child next to the other, right to left:

Download baf/step3/baf/dijit/Statusbar.js

Line 1 _layoutChildren: function(){
- var
- thisDomNode= this.domNode,
- children= this.getChildren(),
5 totalWidth= 0,
- e1= dojo._getPadBorderExtents(thisDomNode),
- e2= dojo._getMarginExtents(thisDomNode),
- rightEdge= dojo.marginBox(thisDomNode).w - (e1.w - e1.l) - (e2.w - e2.l);
-

10 for (var i= children.length-1; i>0; i--){
- var node= children[i].domNode;
- rightEdge-= dojo.marginBox(node).w;
- dojo.marginBox(node, {l:rightEdge});
- }

15 var l= e1.l + e2.l;
- dojo.marginBox(children[0].domNode, {l: l, w: rightEdge - l});
- }

STEP 3: A CUSTOM STATUSBAR WIDGET 503

The private function _layoutChildren is called anytime a child is added or

removed as well as when the public function layout is called.

Lastly, baf.dijit.Statusbar includes a function to set its own height. This

function is typically called before a baf.dijit.Statusbar is laid out as a child

within another container. Here is setHeight:

Download baf/step3/baf/dijit/Statusbar.js

Line 1 setHeight: function(){
- var
- height= 0,
- thisNode= this.domNode;
5

- dojo.forEach(this.getChildren(), function(child){
- height= Math.max(dojo.marginBox(child.domNode).h, height);
- });
-

10 height=
- height +
- dojo._getPadBorderExtents(thisNode).h;
-

- dojo.marginBox(thisNode, {h: height});
15 },

Assuming a baf.dijit.Statusbar was incorporated into obe.main.startup as

shown at the beginning of this section, the bar can be used anywhere

in the program like this:

Download baf/step3/obe/test/tests/run001.js

obe.main.statusbar.setTextPane("message", "Ready...");

obe.main.statusbar.setTextPane("userName", "Rawld C. Gill");

obe.main.statusbar.setTextPane("role", "Administrator");

In Figure 18.4, on the next page, you can see the new status bar in the

application.

At this point, the application is beginning to look like a native appli-

cation. It fills up the viewport. It has a menu and status bar that

stay anchored at the top and bottom of the viewport. And it has two

workspaces that are resizable with a splitter bar. We’ll finish the appli-

cation in the next chapter when we add some content to the workspace.

STEP 3: A CUSTOM STATUSBAR WIDGET 504

Figure 18.4: Application with a menu and status bar

Chapter 19

Adding Dynamic
Content to an RIA

So far the application looks like just about any ordinary native desktop

application—which is exactly the point. We’ll pick up the application

development where we left it and add an object navigator in the left

pane and a workspace object in the right pane.

19.1 Step 4: The Navigator Pane and On-Demand Data Store

This step fills the left workspace with a tree widget that is used to nav-

igate a hierarchy of items. The items are delivered by a mock service

that provides data on-demand as branches are opened.

Retrieving Tree Data On Demand

None of the stock dojo.data drivers is specialized to handle hierarchical

data on demand. This is an important case for a tree-based navigation

paradigm because the contents of the tree may be too large to trans-

mit in one bundle and/or simply be unavailable. Typically, this type

of interface retrieves the children for a node only when that node is

opened. Indeed, dijit.Tree adds a small abstraction layer termed a model

on top of the data store connected to a tree, and the model demands

data from the data store precisely in this mode.

So, the task at hand is to implement a dojo.data driver that returns

the children of an item on demand and use this driver to implement

a dijit.Tree model. With this in place, the obe.main.startup function can

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 506

create an instance of the driver, the model, and a dijit.Tree widget; con-

nect them all together; and place the tree widget in the navigator pane.

When it’s all done, the service behind the tree is hit only when a node

is opened and then only the given node’s children are returned.

Currently, the Dijit tree machinery includes two models: on the one

hand, dijit.tree.TreeStoreModel models a single-root tree, while dijit.tree.

ForestStoreModel models a multiroot tree. BAF includes the class baf.dijit.

LazyTreeModel that’s derived from dijit.tree.TreeStoreModel. The BAF class

overrides the methods mayHaveChildren and getChildren.

mayHaveChildren takes an item from the underlying data store and re-

turns true if the item might possibly have children; it returns false if the

item definitely has no children.

getChildren takes an item from the underlying data store as well as

onComplete and onError functions. It fetches the children of the item and

calls the onComplete function; naturally error conditions call onError. If

the children are already present in the store, then the onComplete func-

tion is called immediately. Otherwise, it sets up a fetch that retrieves

the children and then calls the onComplete/onError functions upon com-

pletion of the fetch.

Assuming the underlying data store includes certain capabilities, im-

plementing dijit.tree.TreeStoreModel is super-easy:

Download baf/step4/baf/dijit/LazyTreeModel.js

Line 1 dojo.provide("baf.dijit.LazyTreeModel");
- dojo.require("dijit.Tree");
- (function(){
-

5 dojo.declare("baf.dijit.LazyTreeModel", dijit.tree.TreeStoreModel, {
- // summary:
- // An optimization of dijit.tree.TreeStoreModel;
- // requires baf.data.LazyTreeStore.
-

10 mayHaveChildren: function(item){
- return this.store.hasChildren(item);
- },
-

- getChildren: function(parentItem, onComplete, onError){
15 // Calls onComplete() with array of child items

- // of given parent item, all loaded.
- var store = this.store;
- if (!this.mayHaveChildren(parentItem)) {
- //no children...

20 onComplete([]);

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 507

- } else if (store.childrenLoaded(parentItem)) {
- //children already loaded...
- onComplete(store.getValues(parentItem, "children"));
- } else {

25 //need to load the children...
- store.fetch({
- id: parentItem.id,
- getChildren: true,
- onComplete: onComplete,

30 onError: onError
- });
- }
- },
-

35 //No write functionality...
- newItem: function(){
- throw new Error('baf.dijit.LazyTreeModel: not implemented.');
- },
-

40 pasteItem: function(){
- throw new Error('baf.dijit.LazyTreeModel: not implemented.');
- }
- });
-

45 })();//(function(){

The model depends on the underlying store including the method has-

Children (line 11), and that fetch retrieves the children of an item when

the fetch parameter getChildren is true (line 28). The BAF class baf.data.

LazyTreeStore includes this functionality.

Implementing a Lazy Tree Data Driver

baf.data.LazyTreeStore is a complete implementation of dojo.data.api.

Identity. It makes a few assumptions about the data that’s delivered

by the service, which simplifies the implementation:

• The service returns items as JSON. Each item has the property

id that uniquely identifies the item within the entire hierarchy of

items. Further, each item returned also includes the property chil-

drenState (an integer) where a childrenState value of childrenNever

(==0) indicates that the item does not and will never have children

and where a value of childrenMaybe (==1) indicates the item may

or may not have children.

• The service returns either a single item (if the query parameter

getChildren is false or missing) or the children of an item (if the

query parameter getChildren is true). Note that if getChildren is true,

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 508

only the children of the item are returned; the item itself is not

returned, because the store already has the item.

• The root item is retrieved by requesting a single item with an

id value of 0. All subsequent requests (for either single items or

children of an item) must specify an id received from a previous

request. id values don’t persist between different instances of a

particular store.

The store keeps a map from item id to item. The map is updated as

items and children are returned by the service. When a set of children

is returned, the map is used to look up the parent, the children are

added to that parent, and the parent’s childrenState value is set to chil-

drenLoaded (==-1), indicating the children have been loaded.

With this design, determining whether an item has children simply

requires inspecting the childrenState property:

Download baf/step4/baf/data/LazyTreeStore.js

Line 1 hasChildren: function(item){
- return (
- item.childrenState==childrenMaybe ||
- (item.childrenState==childrenLoaded && item.children.length));
5 },

fetch makes service requests. The service defaults to dojo.xhrGet; how-

ever, any function that implements the dojo.xhrGet API can be specified

for the service by setting the service property of the store (we’ll use this

feature later and provide a mock service). Here’s fetch:

Download baf/step4/baf/data/LazyTreeStore.js

Line 1 fetch:function(/* Object? */ request){
- var result= dojo.mixin({}, request);
- if (typeof result.id == "undefined") {
- //default to get the root...
5 result.id= 0;
- }
- result.theDeferred= this.service({
- url: this.url,
- handleAs: "json-comment-optional",

10 content: this.requestParams(result),
- load: dojo.hitch(this, this.onLoad, result),
- error: dojo.hitch(this, this.onError, result)
- });
- result.abort= function(){

15 result.theDeferred.abort.apply(result.theDeferred, arguments);
- };
- return result;
- },

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 509

Finally, when the service calls back the load routine specified by fetch,

the new items are processed, and any callbacks specified by the fetch

parameters are executed as required by the dojo.data.api.Read read API:

Download baf/step4/baf/data/LazyTreeStore.js

Line 1 onLoad: function(request, data){
- var abort= false;
- request.abort= function() {
- abort= true;
5 };
-

- //data is either a single item or an array of children
- if (!dojo.isArray(data)) {
- //returned a single item; therefore turn it into an array...

10 data= [data];
- } else if (this.sort) {
- data.sort(this.sort);
- }
-

15 //set the children of the parent
- if (data.length) {
- this._idToItem[data[0].parentId].childrenState= childrenLoaded;
- this._idToItem[data[0].parentId].children= data;
- }

20

- //set the _idToItem for each item
- dojo.forEach(data, function(item){
- this._idToItem[item.id]= item;
- }, this);

25

- var scope= request.scope || dojo.global;
-

- if(request.onBegin){
- request.onBegin.call(scope, data.length, request);

30 }
-

- if (request.onItem && !abort) {
- dojo.forEach(data, function(item){
- if (!abort) {

35 request.onItem.call(scope, item, request);
- }
- });
- }
-

40 if (request.onComplete && !abort) {
- request.onComplete.call(scope, (request.onItem ? null : data), request);
- }
- },

The implementation of the remaining store methods is trivial.

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 510

Implementing a Mock Service

This is the point where you usually stop working on the client and

open a whole new can of worms on the server. We don’t want to do that.

Let’s finish the client! The idea is to create some machinery that reacts

like a real server but isn’t. Ideally, it should be rock-solid and easy to

configure with different response patterns. It must be much easier to

implement than a real server; otherwise, it would be foolish to waste

time with it. With JavaScript and Dojo, all of this is easy to achieve.

The idea is to initialize the mock server machinery with a bunch of

preprogrammed responses. Typically, some kind of JSON map is pro-

vided that maps a set of server requests to a set of responses. But other

designs are possible, including collecting a response directly from the

user. To make the mock server behave like a real server, it should sim-

ulate asynchrony. If the mock server were to immediately return the

response, then the unpredictability of an asynchronous return would

be lost, and the mock server would cause the client program to take

quite different execution paths than a real server. Asynchrony is easily

simulated with a timer. Let’s put this all together an implement a mock

server that returns tree items.

The BAF class baf.test.mocks.services.Base implements the asynchronous

simulation with a timer. It includes the method call that implements

the callback API just like dojo.xhr*:

Download baf/step4/baf/test/mocks/services/Base.js

Line 1 dojo.provide("baf.test.mocks.services.Base");
- (function(){
- dojo.declare("baf.test.mocks.services.Base", null, {
- constructor: function(args){
5 this.delay= args.delay || 100;
- },
-

- getService: function() {
- return dojo.hitch(this, "call");

10 },
-

- call: function(args){
- var result= new dojo.Deferred();
- if (args.load) {

15 result.addCallback(args.load);
- }
- if (args.error) {
- result.addErrback(args.load);
- }

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 511

20 if (args.handle) {
- result.addBoth(args.handle);
- }
- setTimeout(dojo.hitch(this, "handler", result, args), this.delay);
- return result;

25 },
-

- handler: function(theDeferred, args){
- throw new Error('baf.test.mocks.services.Base: handler not specified');
- }

30 });//dojo.declare("baf.test.mocks.services.Base", null, {
- })();//(function(){

call creates a new dojo.Deferred instance just like dojo.xhr*; inserts any

load, error, or handle functions into the callback queue; and then con-

nects a timer to the handle method. The default implementation of han-

dle throws an exception; subclasses implement handle to simulate a

server response, as we’ll see in a moment. The length of the timer is

controlled by the property delay (line 23). It can be initialized in con-

struction (line 5) and changed at any time.

The BAF class baf.test.mocks.services.Navigator simulates a service suit-

able for use with baf.data.LazyTreeStore. The mock server is initialized

with an entire tree hierarchy at construction. Then handler simply re-

turns an item or an item’s children:

Download baf/step4/baf/test/mocks/services/Navigator.js

Line 1 dojo.declare(
- "baf.test.mocks.services.Navigator",
- baf.test.mocks.services.Base, {
- constructor: function(args){
5 this._delay= 200;
- this._data= args.data;
-

- var idToItem= this._idToItem= [];
- function walk(item) {

10 idToItem[item.id]= item;
- dojo.forEach(item.children, walk);
- }
- walk(args.data);
- },

15

- handler: function(theDeferred, args){
-

- function getItemToReturn(item){
- var result= dojo.mixin({}, item);

20 result.childrenState= (item.children) ?
- baf.data.LazyTreeStore.childrenMaybe :
- baf.data.LazyTreeStore.childrenNever;

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 512

- delete result.children;
- return result;

25 }
-

- if (!args.content.getChildren) {
- var item= this._idToItem[args.content.id];
- if (item) {

30 theDeferred.callback(getItemToReturn(item));
- } else {
- theDeferred.callback({});
- }
- } else {

35 var parent= this._idToItem[args.content.id];
- if (parent && parent.children) {
- var result= [];
- dojo.forEach(parent.children, function(child){
- result.push(getItemToReturn(child));

40 });
- theDeferred.callback(result);
- } else {
- theDeferred.callback([]);
- }

45 }
- }

During construction, the tree is walked to build a map from item id to

item. This simplifies the handle implementation. When handle looks up

the item, if the requested item is not found, then an empty object (line

32) or an empty array (line 43) is returned depending upon whether a

single item or an item’s children were requested. If the item is found,

then the function getItemToReturn creates a copy of the item, sets the

childrenState property, and deletes the children. The children are deleted

because the contract with the server says the only way to get children

is to request them directly. Notice that top-level properties are copied

to a new object by the expression dojo.mixin({}. item). It wouldn’t work to

return a reference to the item in the mock service’s data since deleting

the children would result in deleting the mock service’s data.

All that’s left is to construct a JSON object that gives the value of some

hierarchy to be simulated. This code is fairly uninteresting so we don’t

show it.

Connecting All the Parts

Now we have all the parts: a dijit.Tree connects to a baf.dijit.LazyTreeModel,

which connects to a baf.data.LazyTreeStore, which connects to a baf.test.

mocks.services.Navigator. You can see how you might want to mix and

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 513

match different implementations of any of these items. For example,

maybe some trees can connect to a different model that also writes

data. Or, maybe other trees with small amounts of read-only data ignore

the model completely and connect to a dojo.data.ItemFileReadStore. With

these possibilities in mind, the class obe.Navigator accepts a hash that

describes which tree widget, optional model, dojo.data driver, and ser-

vice to connect:

Download baf/step4/obe/Navigator.js

Line 1 dojo.provide("obe.Navigator");
- (function(){
-

- dojo.declare("obe.Navigator", null, {
5 constructor: function(
- args //startup parameters passed to main
-){
- if (args.navigator.store) {
- this.store = new args.navigator.store(args.navigator.storeArgs);

10 args.navigator.modelArgs.store= this.store;
- args.navigator.widgetArgs.store= this.store;
- }
- if (args.navigator.model) {
- this.model= new args.navigator.model(args.navigator.modelArgs);

15 args.navigator.widgetArgs.model= this.model;
- }
-

- this.widget= new args.navigator.widget(args.navigator.widgetArgs);
- }

20 });//;dojo.declare("obe.Navigator", null, {
-

- })();//(function(){

Notice how args not only says how to initialize new class instances via

the args.navigator.storeArgs, args.navigator.modelArgs, and args.navigator.

widgetArgs properties but also which classes to instantiate via the args.

navigator.stores, args.navigator.model, and args.navigator.widget properties.

obe.main sets defaults for these:

Download baf/step4/obe/main.js

Line 1 var defaults= {
- navigator: {
- store: baf.data.LazyTreeStore,
- storeArgs: {
5 service: dojo.xhr},
- model: baf.dijit.LazyTreeModel,
- modelArgs: {},
- widget: dijit.Tree,

STEP 4: THE NAVIGATOR PANE AND ON-DEMAND DATA STORE 514

- widgetArgs: {
10 persist: false,

- region: "left",
- style: "width: 20%; overflow: auto",
- splitter: true,
- id: "navigator",

15 showRoot: false}
- }
- };
-

- obe.main.startup= function(args) {
20 //mixin defaults to args...

- args= baf.util.setDefaults(args, defaults);

baf.util.setDefaults (line 21) takes care of mixing nested objects.

The obe.test.tests.run002 startup module overrides some of these. In par-

ticular, the mock service is given:

Download baf/step4/obe/test/tests/run001.js

Line 1 dojo.provide("obe.test.tests.run001");
- dojo.require("obe.test.data.navigator.set001");
- dojo.require("obe.test.data.command.set001");
- dojo.require("baf.test.mocks.services.Navigator");
5 (function(){
- var navData= obe.test.data.navigator.set001;
- var navigatorService= new baf.test.mocks.services.Navigator({
- data: navData
- });

10

- var startupArgs= {
- commandItems: obe.test.data.command.set001.commandItems,
- menu: obe.test.data.command.set001.mainMenu,
- navigator: {

15 storeArgs: {
- service: navigatorService.getService(),
- root: navData
- },
- modelArgs: {

20 root: navData
- }
- }
- };
- obe.main.startup(startupArgs);

25

- //fake it for now...
- obe.main.statusbar.setTextPane("message", "Ready...");
- obe.main.statusbar.setTextPane("userName", "Rawld C. Gill");
- obe.main.statusbar.setTextPane("role", "Administrator");

30

- })();

STEP 5: WORKSPACE OBJECTS 515

Figure 19.1: Application with a tree-based navigator

With that, we’re done with step 4. Figure 19.1 shows the navigator in

all its glory. We hope you agree that Dojo’s tree machinery gives you

tremendous power while being quite simple to work with.

19.2 Step 5: Workspace Objects

We’re down to the last step—loading and displaying a WSO. Of all the

steps, the machinery that’s shown in this one is the most powerful; it’s

also quite simple.

Recall that a WSO is simply a container of widgets. Such a container

could hold anything representable in a browser, assuming the neces-

sary components existed. Several design possibilities exist here. One

example is a container that prepackages some components and behav-

ior, forming a kind of template in which to put more components.

Another example is a design-time container where a WSO definition

could be constructed in a WYSIWYG environment. Also, there is no

reason the components must be Dijit components. They could be com-

ponents from other widget systems and/or nonvisual computational

components. We mention these possibilities to highlight the extensive

STEP 5: WORKSPACE OBJECTS 516

capabilities of a WSO. A WSO, and by extension a browser-based UI,

can be used to implement nearly anything—a word processor, a CRUD

database form, a spreadsheet—your imagination is the limit.

Implementing a WSO Widget

BAF includes the class baf.dijit.Wso that implements a Dijit-based widget

that holds a hierarchy of Dijit components. Let’s assume that the data

returned by the navigator service includes a type-identifier (TID) and

object-identifier (OID) for each item. Further assume that two other

services are available that return a WSO definition given a TID and

data given a OID. When the user clicks a navigator tree node, the two

services are queried resulting in two dojo.Deferred objects being imme-

diately returned. Then a new instance of baf.dijit.Wso is instantiated

with the Deferred objects passed as constructor arguments. We’ll call an

instance of baf.dijit.Wso simply a WSO for the remainder of this chapter.

When a WSO is first created, the Deferreds that get the WSO definition

and data may or may not have completed. So, the WSO displays a mes-

sage saying that it’s loading and then hooks up continuation functions

to the callback queues that continue processing when both Deferreds

complete. This should sound familiar—it’s the same algorithm we used

in Section 6.4, Managing Callbacks with dojo.Deferred, on page 123.

The continuation functions instantiate the hierarchy of Dijit compo-

nents given by the definition, initialize them with data, and display the

result to the user.

baf.dijit.Wso is derived from dijit.form.Form; this provides a few conve-

nience features such as form validation. Since the key abstraction of

baf.dijit.Wso is a container of widgets, dijit._Container is mixed in. This

also helps with duties such as calling the startup method on contained

widgets. Here are baf.dijit.Wso’s declaration and construction routines:

Download baf/step5/baf/dijit/Wso.js

Line 1 dojo.provide("baf.dijit.Wso");
- dojo.require("dijit.form.Form");
- dojo.require("dijit._Container");
- (function(){
5 dojo.declare("baf.dijit.Wso", [dijit.form.Form, dijit._Container], {
- dataResult: null,
- wsoDefResult: null,
-

- postscript: function(){
10 this.inherited(arguments);

-

STEP 5: WORKSPACE OBJECTS 517

- //connect the callbacks...
- this.data.addCallback(this, "_continueWithData");
- this.data.addErrback(this, "_abortLoad");

15 this.wsoDef.addCallback(this, "_continueWithWsoDef");
- this.wsoDef.addErrback(this, "_abortLoad");
- },
-

- buildRendering: function(){
20 this.inherited(arguments);

- //TODO: make this better...
- this._loading= document.createElement("p");
- var node= this._loading;
- dojo.addClass(node, "bafDijitwsoLoading");

25 node.innerHTML= "Loading...";
- dojo.place(node, this.domNode, "last");
- //END-TODO
- },

All arguments passed to the constructor get mixed into the new WSO

instance by the superclass’s postscript method called at line 10. As men-

tioned earlier, the two Deferreds that return the WSO definition and

data are passed to the constructor, so, for example, this.wsoDef holds the

Deferred object that’s retrieving the WSO definition. postCreate hooks up

the Deferreds’ callbacks starting at line 13. buildRendering adds a single

p element that displays the message “loading”; a real application would

probably put a little animation up to entertain the user. _continueWith-

Data, __continueWithWsoDef, and _abortLoad are unsurprising:

Download baf/step5/baf/dijit/Wso.js

Line 1 _continueWithData: function(data) {
- this.dataResult= data;
- if (this.wsoDefResult) {
- this._finishLoad();
5 }
- },
-

- _continueWithWsoDef: function(wsoDef) {
- this.wsoDefResult= wsoDef;

10 if (this.dataResult) {
- this._finishLoad();
- }
- },
-

15 _abortLoad: function() {
- if (!this.data) {
- return;
- }
-

STEP 5: WORKSPACE OBJECTS 518

20 var
- data= this.data,
- wsoDef= this.wsoDef;
-

- this.data= null;
25 this.wsoDef= null;

-

- data.cancel();
- wsoDef.cancel();
-

30 this._loading.innerHTML= "FAILED!!";
- },

_continueWithData and _continueWithWsoDef both store their results (lines

2 and 9); when both routines have completed (line 3 or 10), _finishLoad

is called to load the WSO with widgets and data. _abortLoad marks that

an error has occurred by nulling both Deferreds and then notifies the

user; nulling the Deferreds gives a way to prevent _abortLoad from being

executed more than once.

Before we can discuss _finishLoad, we need to understand what a WSO

definition looks like. Broadly speaking, there are two possibilities. First,

it could just be a chunk—probably a rather large chunk—of HTML. In

this case, the innerHTML property of the root DOM node of the form could

be set to the chunk and then the dojo.parser.parse called to parse the

subtree. You’ve seen this time and again in all the declarative widget

examples throughout the book.1 The second possibility is for a WSO

definition to be delivered as data, typically a JavaScript object. Then a

processor traverses the data and constructs the widgets explicitly.

There are advantages and disadvantages to each method; neither is

right or wrong. The second method is convenient for constructing

higher levels of abstraction, less verbose definitions, and very fast pro-

cessors, particularly when matched with a tool (for example, a WYSI-

WYG editor) for contructing the WSO definition.

baf.dijit.Wso includes a processor that constructs the WSO from data.

The processor expects a JSON object that gives a few top-level proper-

ties followed by a hierarchy of children objects.

1. dojo.parser.parse has been called automatically when the document was loaded by Dojo

as a result of setting the djConfig option parseOnLoad to true.

STEP 5: WORKSPACE OBJECTS 519

Here’s an example:

Line 1 { //begin a singe WSO definition
- tid: 1, //the type identifier
- size: ["51em", "25em"], //the w x h of this WSO
- "class": "crf", //the HTML class of this WSO
5 requires: [//the classes this WSO uses
- "baf.dijit.StaticText"],
- children: { //the contained widgets
- title: [//each child is an object in the hash
- "baf.dijit.StaticText", //[0] => the class

10 { //[1] => ctor args
- "class": "crfTitle",
- posit: {
- t: "1em",
- h: "5em",

15 l: "1em",
- w: "10em"
- },
- q: "tl",
- text: "Demographics"

20 }, { //[2] => children of this child
- //et cetera... //therefore, forming a hierarchy!
- }
-], //end the child named 'title'
- someOtherChild: [

25 //et cetera...
-] //end the child named 'someOtherChild'
- }
- }

The top-level properties include the TID (property tid, line 2), the layout

size of the WSO (property size, line 3), HTML attributes to add to the root

DOM node for the WSO (line 4 shows the property class, but others such

as style could also be included), and an array of modules that the WSO

definition needs (property requires, line 5). Lastly, the contained widgets

are given in the property children, an object, where each property of

the children object names a widget. Widgets are specified by giving an

array of two or three elements. The first element gives the widget class,

the second gives the constructor arguments to use when creating the

particular widget instance, and the optional third element gives the list

of children (if any) contained by the widget. Since widgets can contain

other widgets, the structure forms a hierarchy.

Given this structure, two steps are required to populate the container

with the children. First, the require array must be traversed to ensure

that all required modules are loaded.

STEP 5: WORKSPACE OBJECTS 520

Download baf/step5/baf/dijit/Wso.js

Line 1 _finishLoad: function() {
- dojo.forEach(this.wsoDefResult.require, function(module){
- dojo["require"](module);
- });
5 dojo.addOnLoad(dojo.hitch(this, "_buildForm"));
- },

Notice here how we wrote dojo["require"](module) instead of the usual

dojo.require(module). This causes the build system to ignore this dojo.

require statement, which is what we want ("module" is not a module;

the value of module is a module, and this value isn’t knowable at build

time). Since the code may be deployed with the cross-domain loader,

the require statements will return immediately—before the module is

loaded. The dojo.addOnLoad call causes the process to wait until all the

requested modules have loaded before continuing with _buildForm. This

is a useful pattern for advanced designs.

_buildForm implements the processor that reads the WSO definition and

builds the WSO; it’s exceedingly simple. After setting the size of the

top-level DOM node, it walks the tree, instantiating widgets along the

way:

Download baf/step5/baf/dijit/Wso.js

Line 1 _buildForm: function(){
- dojo._destroyElement(this._loading);
- delete this._loading;
-

5 var wsoDef= this.wsoDefResult;
- dojo.style(this.domNode, {
- position: "absolute",
- width: wsoDef.size[0],
- height: wsoDef.size[1]

10 });
-

- function walkChildren(children, parentWidget){
- for (var p in children) {
- var child= children[p];

15 var ctor= dojo.getObject(child[0]);
- var widget= new ctor(child[1]);
- parentWidget.addChild(widget);
- if (child[2]) {
- walkChildren(child[2], widget);

20 }
- }
- }
-

STEP 5: WORKSPACE OBJECTS 521

- if (wsoDef.children) {
25 walkChildren(wsoDef.children, this);

- }
- this.startup();
- }

As it stands, the processor is quite powerful: it can generate any hierar-

chy of classes. The only requirement is that a component that contains

children must define the method addChild. Although the design shown

(WSO definition + processor) doesn’t include the ability to define and

hook up event handlers, this could be easily added.

Looking back at Figure 18.1, on page 478, notice that the header is

comprised of several blocks of static text. The Dijit-based class baf.dijit.

StaticText controls a block of static text. Similarly, the Dijit-based class

baf.dijit.Pair implements a pair of children widgets arranged side by side

or stacked. These two widget classes make defining form decorations a

snap. Let’s implement baf.dijit.StaticText.

Implementing a Static Text Widget

baf.dijit.StaticText has three key capabilities:

1. It displays a block of text at an absolute position within its con-

tainer. The block and text can be styled directly through the HTML

style attribute or indirectly through the class attribute associated

with a style sheet style.

2. The text can be put in any of the nine locations within the box by

specifying the property q (quadrant). q is given by vertical-location

x horizontal-location, where vertical-location is one of {’t’, ’c’, ’b’}

and horizontal-location is one of {’l’, ’c’, ’r’}. For example, "bc" means

put the text at the bottom-center of the box.

3. It can contain other children widgets and be contained by other

widget containers.

4. It’s a full Dijit-based widget component.

Does this sound complicated? It actually takes fewer than 100 lines to

implement!

Requirements [3] and [4] come nearly free by deriving from dijit._Widget

and mixing in dijit._Container and dijit._Contained.

STEP 5: WORKSPACE OBJECTS 522

Here’s the dojo.declare statement:

Download baf/step5/baf/dijit/StaticText.js

Line 1 dojo.declare("baf.dijit.StaticText",
- [dijit._Widget, dijit._Container, dijit._Contained],

Next we need to build the DOM tree for the element. It’s just a div

element that contains a p element. The bafDijitStaticText class is added

to the element to help with building style sheets. Since this component

isn’t intended to be used with markup and is very simple, the DOM tree

is built directly in buildRendering:

Download baf/step5/baf/dijit/StaticText.js

Line 1 buildRendering: function(){
- var node;
- node= this.domNode= document.createElement("div");
- dojo.addClass(node, "bafDijitStaticText");
5 node= this._textNode= document.createElement("p");
- dojo.style(node, {top:0, left:0, position:"absolute"});
- node.innerHTML= this.text;
- dojo.place(node, this.domNode, "last");
- },

baf.dijit.StaticText understands the property posit, which defines the prop-

erties l, r, t, b, h, and w for left, right, top, bottom, height, and width.

The posit property is converted to a style object like this:

Download baf/step5/baf/dijit/StaticText.js

Line 1 function positToStyle(posit){
- var result= {position: "absolute"};
- if (posit.l) {
- result.left= posit.l;
5 }
- if (posit.r) {
- result.right= posit.r;
- }
- if (posit.w) {

10 result.width= posit.w;
- }
- if (posit.t) {
- result.top= posit.t;
- }

15 if (posit.b) {
- result.bottom= posit.b;
- }
- if (posit.h) {
- result.height= posit.h;

20 }
- return result;
- }

STEP 5: WORKSPACE OBJECTS 523

The style object is then used to set the style of the div in postCreate:

Download baf/step5/baf/dijit/StaticText.js

Line 1 postCreate: function() {
- dojo.style(this.domNode, positToStyle(this.posit));
- },

Lastly, the p element needs to be wrestled into the correct position.

If any of the corners are specified, then the left/right and top/bottom

styles can be set to zero, and you’re done. But to center the text, the

div’s content box and p’s margin box must be calculated. These metrics

are not reliable until the elements reside in the displayable document—

something that doesn’t happen until after construction is complete. This

is precisely the point where the startup method comes in handy; it is

called after the widget has been displayed. The function getContentPosit

calculates the proper position given a q property value and the div and

p elements:

Download baf/step5/baf/dijit/StaticText.js

Line 1 function getContentPosit(quadrant, parent, contentNode){
- var q= quadrant.toLowerCase();
- return dojo.mixin(
- getContentPosit.calculators[0][q.charAt(0)](parent, contentNode),
5 getContentPosit.calculators[1][q.charAt(1)](parent, contentNode)
-);
- }
- getContentPosit.calculators= [{
- t: function(){

10 return {top: 0};
- },
-

- c: function(parent, contentNode){
- return {top:

15 ((dojo.contentBox(parent).h - dojo.marginBox(contentNode).h) / 2)+"px"};
- },
-

- b: function(){
- return {bottom: 0};

20 }
- },{
- l: function(){
- return {left: 0};
- },

25

- c: function(parent, contentNode){
- return {left:
- ((dojo.contentBox(parent).w - dojo.marginBox(contentNode).w) / 2)+"px"};
- },

30

STEP 5: WORKSPACE OBJECTS 524

- r: function(parent, contentNode){
- return {right: 0};
- }
- }];

Note that the function includes the property calculators that dispatches

the required calculation based on the value of q. No if statements, no

case statement—this is a nice example of how expressive, parsimo-

nious, and powerful JavaScript can be.

baf.dijit.StaticText.startup clears any positions already placed on the p ele-

ment and then forces it to the correct position:

Download baf/step5/baf/dijit/StaticText.js

Line 1 startup: function(){
- if(!this._started) {
- this._started= true;
-

5 var style= dojo.mixin(
- {top: "", left: "", bottom: "", right: ""},
- getContentPosit(this.q, this.domNode, this._textNode)
-);
- dojo.style(this._textNode, style);

10

- dojo.forEach(this.getChildren(), function(child){
- if (child.startup) {
- child.startup();
- }

15 });
- }
- },

That’s it for baf.dijit.StaticText. baf.dijit.Pair is very similar; it’s included with

the code bundled with the book. Let’s get back and finish up displaying

a WSO.

Wiring the WSO to the Framework

OBE can be used to test the baf.dijit.StaticText class. We’ll create a few

WSO definitions that exercise baf.dijit.StaticText, and then we’ll put items

in the tree that reference these definitions. When the user clicks a tree

item, a WSO should be created that shows the instantiated baf.dijit.

StaticText widgets. Since there is no data involved, we create a mock

data service that returns an empty object.

The first definition includes nine baf.dijit.StaticText widgets that show

each of the nine text positions inside a container with a border, the sec-

STEP 5: WORKSPACE OBJECTS 525

ond definition eliminates the border but gives a colorized background,

and the third and fourth definitions do the same thing except with an

HTML class associated with a style sheet style. Here’s part of the first

definition:

Line 1 obe.test.data.metadata.set002.metadata= [
- {
- tid: 1,
- size: ["51em", "25em"],
5 "class": "crf",
- requires: [baf.dijit.StaticText],
- children: {
- tl: [
- "baf.dijit.StaticText",

10 { //ctor args for baf.dijit.StaticText
- style: "background-color: #D0D0D0;",
- posit: {t:"1em", h:"5em", l:"1em", w:"10em"},
- q: "tl",
- text: "top-left"

15 }
-],
- tc: [
- "baf.dijit.StaticText",
- { //ctor args for baf.dijit.StaticText

20 style: "background-color: #D0D0D0;",
- posit: {
- t: "1em",
- h: "5em",
- l: "12em",

25 w: "10em"
- },
- q: "tc",
- text: "top-center"
- }

30],

Next, we need a service to deliver WSO definitions. Step 5 includes

baf.test.mocks.services.WsoDefinitions, a mock server that works just like

baf.test.mocks.services.Navigator. The service is created during startup

exactly as we did with the navigator mock service. Step 5 also includes

a WSO definition manager (baf.data.WsoDefinitionsManager) that retrieves

and caches definitions from a service. obe.main.startup instantiates one

of these objects, connecting it to the service provided in the startup

arguments.

Similarly, a data manager is provided (baf.data.DataManager). This is

truly trivial; it just immediately returns an empty object.

STEP 5: WORKSPACE OBJECTS 526

Download baf/step5/baf/data/DataManager.js

Line 1 dojo.provide("baf.data.DataManager");
- (function(){
- dojo.declare("baf.data.DataManager", null, {
- get: function(oid){
5 var result= new dojo.Deferred();
- result.callback({});
- return result;
- }
- });//dojo.declare("baf.data.DataManager", null, {

10

- })();//(function(){

obe.main.startup instantiates a baf.data.DataManager and stores a ref-

erence to the new object in obe.main.dataManager. At this point, OBE

has everything in place necessary to start creating WSOs: a global WSO

definitions manager and data manager available through obe.main.

wsoDefinitionsManager and obe.main.dataManager.

WSO creation is handled by a little manager class that removes any

existing WSO that’s displayed, issues the WSO definition and data

requests, creates a new WSO instance, and places the instance in the

workspace pane. It subscribes to the focusNavNode event that the nav-

igator tree publishes. When it receives a notification that a new tree

item has the focus, it loads the WSO given by the tree item:

Download baf/step5/obe/WorkspaceManager.js

Line 1 dojo.provide("obe.WorkspaceManager");
- dojo.require("obe.main");
- dojo.require("baf.dijit.Wso");
- (function(){
5 var nullObjectValue= {type: 0, oid: 0, form: null};
-

- dojo.declare("obe.WorkspaceManager", null, {
- constructor: function() {
- this.currentObject= nullObjectValue;

10 dojo.subscribe("focusNavNode", this, "_showObject");
- },
-

- _showObject: function(store, item) {
- var

15 type= store.getValue(item, "type"), //the wsoDefinition type
- oid= store.getValue(item, "oid"), //the object id
- nid= store.getValue(item, "id"), //the navigator id
- currentObject= this.currentObject;
-

20 if (currentObject.type==type && currentObject.oid==oid) {
- //already the current object
- return;
- }
-

STEP 5: WORKSPACE OBJECTS 527

25 //TODO: search for non-current, but loaded object
-

- //load the new current object
- var
- data= obe.main.dataManager.get(oid),

30 wsoDef= obe.main.wsoDefinitionsManager.get(type),
- theNewObject= new baf.dijit.Wso({data: data, wsoDef: wsoDef});
-

- //destroy the old current object...
- this.destroy();

35

- //display the new current object...
- obe.main.appContainer.addChild(dojo.mixin(theNewObject, {
- region: "center",
- id: nid+"_wso" //"wso" => "workspace object"

40 }));
- obe.main.appContainer.layout();
-

- //record the current state...
- currentObject.type= type;

45 currentObject.oid= oid;
- currentObject.nid= nid;
- currentObject.form= theNewObject;
- },
-

50 destroy: function() {
- var currentObject= this.currentObject;
- if (currentObject.form) {
- obe.main.appContainer.removeChild(currentObject.form);
- currentObject.form.destroyRecursive();

55 }
- currentObject= nullObjectValue;
- }
-

- });
60

- })();//(function(){

The event is subscribed at line 10. The new WSO is created at line 31,

any existing WSO is destroyed at line 34, and the new WSO is placed

in the application’s workspace pane at line 37.

In Figure 19.2, on the next page, you can see the application running

with the test module obe.test.tests.run002 included in step 5.

We’re not going to hook up data because there’s not much more browser

UI insight to be gained by that exercise. Typically, you’ll use one or more

dojo.data data stores to manage the data. Widgets that can connect

directly to the stores may do so; baf.dijit.WSO could also be extended

to pull data from stores and push it into controls, and visa versa, for

widgets that don’t have this capability.

STEP 5: WORKSPACE OBJECTS 528

Figure 19.2: OBE testing baf.dijit.StaticText

As you can see, the possibilities are limitless. The WSO abstraction

could be extended to build nearly any kind of UI. The OBE frame-

work (menu, navigator, workspace, status bar) could be rearranged in

countless ways. And of course there’s nothing about the BAF frame-

work that’s required to build Dojo-based RIAs. Although it’s a proven

design for certain classes of applications, it is but one example of many

design options.

If nothing else, we hope this chapter and the previous one have stimu-

lated your imagination for what can be done in the browser today with

Dojo. Although we’ve covered the most important parts of Dojo exten-

sively, there’s a lot more out there, particularly in Dojox. In particular,

the graphics framework shows great promise. And Dojo doesn’t stop

with Dojo. It has been carefully built to play well with others, opening

up possible implementation options even further. We look forward to

using the great applications you will no doubt create!

Chapter 20

Going Forward
The health of an open source project can be measured by how many

contributions its fosters. By this measure, Dojo is very healthy indeed.

There are constant additions of new components, widgets, and pro-

gramming aids to Dojo, especially in the Dojox area.

Unfortunately, all these features won’t fit in a reasonably sized book.

So for this last chapter, we’ll give you an overview of the ones we find

interesting and useful and leave the research to you. Think of it as a

rough map to new worlds in Dojo. You have your compass handy, so

happy trails!

20.1 Foundations

First, we’ll cover some modules to make the programming life easier.

They extend DOM utility, widget class creation, and agile design tools

already in Dojo.

dojo.behavior: Assigning code to queries

Behaviors have been part of Internet Explorer since version 4,

and now Dojo provides a cross-browser version. Behaviors are an

extension of the CSS model, where nodes that fit a certain crite-

ria (the selector) are automatically assigned colors, size, and so

on. Behaviors automatically assign code to nodes that fit a cer-

tain CSS selector. They can dojo.connect a node event with an

event handler, for example. Or they can run an arbitrary bit of

JavaScript code on the newly created node. It’s a little like doing a

dojo.query with a forEach.

FOUNDATIONS 530

All this is done by adding rules to the dojo.behavior rule book.

It’s like a CSS file, except you add rules through JavaScript. One

catch is you must call dojo.behavior.apply to apply the rules, where

in regular CSS the rules are applied automatically. But even that’s

not a big problem. For one thing, it allows you to batch node

updates and execute them in one shot. For another, apply is smart

enough to make only incremental changes to the nodes. It doesn’t

go through the whole DOM tree to match rules but instead applies

only rules to nodes added since the last apply.

dojox.analytics: Client logging and analysis

One advantage of the fill-and-submit web model is you can easily

track client progress throughout the site. If a particular feature

is being used heavily, or not at all, you can detect it. Ajax appli-

cations are much tougher to track. Although you can watch data

requests on your web server log, they are often short and uninfor-

mative. So, dojox.analytics offers a library to hook JavaScript events

to data gathering. Its plug-ins work to track specific events in the

system: mouse clicks, log messages, and so forth. You can then

have the client send these logs back to your web server at regular

intervals.

dojox.dtl: Django template language for Dojo

The Dijit templating language, described in Section 17.1, Widget

Classes Using dijit.Declaration, on page 456, provides the mini-

mum language needed for building widgets. Templates, however,

are very monolithic. Making a small change to a widget’s template

requires subclassing the widget and replacing the entire template.

Templates have many other uses too, as in dojo.string.substitute. A

template language with branching, loops, and more sophisticated

expressions would be widely useful.

Django (http://www.djangoproject.com/), a Python framework, has

a template language that is so useful that it has been ported to

Dojox and called DTL. Django templates have very nice reusability

features, so templates feel more object-oriented. Over the next few

releases, DTL will gradually replace the older template system in

the bundled Dijit components.

dojox.wire: Wire protocol

So, Dojo has a flexible data gatherer in dojo.data and fantastic

form controls in Dijit. But how do you ship data from one to the

GRAPHICS 531

other? With what you know now, it’s a fairly manual process. But

with dojox.wire, you can bind data to controls declaratively. When

a change occurs in the form control data, it can be wired to write

back to the data store, and vice versa.

This sounds vaguely familiar. Both Grid and Tree have data bind-

ing built-in, and in fact, Grid’s binding is fairly sophsticated. You

can think of dojox.wire as an abstraction to this, providing linkage

between any Dijit form controls and data.

DOH: JavaScript unit tester

Earlier Dojo releases used various JavaScript unit testing pack-

ages. But for the pivotal 0.9 release, the committers decided to

build the unit testing system they really wanted. DOH (think what

Homer Simpson would say upon finding a bug) is that package.

Like most unit testing frameworks, DOH includes assertions, set-

up and teardown facilities, and convenient test grouping. And

since all Dojo, Dijit, and Dojox unit tests are written with DOH,

you have lots of examples to consult!

20.2 Graphics

Dojo has always had an active graphic design subcommunity, mak-

ing early use of Scalable Vector Graphics (SVG) and other new stan-

dards. These modules are fairly well established, and additions have

been made through Google’s Summer of Code programs in the past few

years.

dojox.fx: Animations

The dojox.fx packages adds more animations such as cross-fading,

highlighting, and drop shadowing to the standard Dojo Core set. It

also adds the popular easing functions, which add pizzazz to the

standard transitions.

dojox.gfx and dojox.gfx3d: Low-level graphics

If you’re obsessed with graphics—arcs, curves, gradient fills, poly-

gons, and all those other good things—then these packages are

for you. The output can be rendered in several formats including

SVG and Microsoft Silverlight, depending on what the client has

installed. The 3D graph package, in the experimental stage right

now, adds the third dimension and lighting.

DOJO DATA AND STORAGE 532

dojox.charting: Graphs and charts

A clear application of the drawing tools, dojox.charting provides

tools for drawing 2D and 3D charts. You can plug either dojo.data

or simple JavaScript data into one end. Then you can get line

graphs, bar graphs, pie charts, and many others with customiz-

able scales and axes.

dojox.image: Image widgets

The dojox.image module houses widgets for image collections: a

thumbnail picker, some assorted slide show and gallery compo-

nents, and an image magnifier.

20.3 Dojo Data and Storage

It seems like we never run out of new sources for data. Dojo has been

keeping up with this area, keeping it in the forefront of enterprise

JavaScript applications.

dojox.off: Dojo Offline

With increased client functionality, you can have less dependence

on an always-on Internet connection. Dojo Offline is a project

that takes advantage of this, providing synchronization services

between client and server data stores. A demo application, Moxie,

lets you edit web pages offline and then synchronize them with a

Java server-side component when you reconnect.

dojox.storage: Link to Google Gears client-side storage

Dojo Offline uses Google Gears, a client-side mini-relational data-

base that understands SQL. This storage module serves as the

intermediary between the two, but you can use it on its own.

It’s perfect for storing user preferences and caching oft-used data,

saving bandwidth, and increasing performance.

New dojo.data drivers

Dojo 1.0 introduced dojo.data drivers for the web services Flickr,

Picasa, and SnapLogic. (Yes, there are photography buffs in the

Dojo community!) It also included a specialized XML format called

OPML, which has a fixed set of tags and the Identity feature, so

it’s good for using in Dijit components. Dojo 1.1 added an Atom

XML format driver, a key-value pair driver (like an INI or Java-style

property files), and a driver based on JSONPath.

Part V

Appendixes

Appendix A

Bibliography

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and

Interpretation of Computer Programs. The MIT Press, Cam-

bridge, Massachusetts, second edition, 1996.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance.

In OOPSLA/ECOOP ’90: Proceedings of the European confer-

ence on object-oriented programming on Object-oriented pro-

gramming systems, languages, and applications, pages 303–

311, New York, NY, USA, 1990. ACM.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man Month: Essays

on Software Engineering. Addison-Wesley, Reading, MA,

anniversary edition, 1995.

[Fla06] David Flanagan. JavaScript: The Definitive Guide. O’Reilly

Media, Inc., Sebastopol, CA, fifth edition, 2006.

[GÇH+05] Daniel Glazman, Tantek Çelik, Ian Hickson, Peter Linss,

and John Williams. Selectors, W3C Working Draft, 15

December 2005. Technical report, W3C, 2005.

[Mac90] Bruce J. MacLennan. Functional Programming, Practice and

Theory. Addison-Wesley, Reading, MA, 1990.

[Mah06] Michael Mahemoff. Ajax Design Patterns. O’Reilly & Asso-

ciates, Inc, Sebastopol, CA, 2006.

[Mey06] Eric Meyer. CSS: The Definitive Guide. O’Reilly Media, Inc.,

Sebastopol, CA, third edition, 2006.

APPENDIX A. BIBLIOGRAPHY 535

[MK08] Chuck Musciano and Bill Kennedy. HTML & XHTML: The

Definitive Guide. O’Reilly Media, Inc., Sebastopol, CA, sixth

edition, 2008.

[Zel06] Jeffrey Zeldman. Designing Web Standards. Peachpit Press,

New York, second edition, 2006.

Index
Symbols
| symbol, 404

A
Accessibility (a11y), 422–427, 440–442

Accumulator object, 92, 121

Acmecorp example, 219f

Aggregate functions, 380f, 377–381

Ajax Design Patterns (Mahemoff), 338

Alignment container, 447–450

Anchored tooltip, 406

Animation, 168–177

Arrays

array-like objects, copying, 100

built-in methods, 90

looping through, 45

methods, 90–94

Asynchronous programming, 101–139

callbacks and, 124f, 125f, 123–139

DOM events, 101–117

publish-subscribe, 121–123

user-defined events, 117–120

Attribute map, 467

Attributes, nonstandard HTML, 81

Autocomplete, 270, 271f

B
Back button, 219f, 219–224

Bed lump functions, 100, 164

Binary build, 78

Binding

arguments, 88–89

context, 84–87

dojo.hitch, 83–84

Bookmarking, 219f, 219–224

Bottlenecks, 272

Bouncing-div animation, 168–169

Box tree, 342, 349

Brooks, Fred, 15

Browsers

accessibility and, 422–427

application framework, 479–485,

506

capturing and, 106

CSS access, 146

event processing, 102f

leaks, with Internet Explorer, 112

navigation history, 210

styles of, 434–435

as user interfaces, 9, 478–479

XML vs. JSON, 48

see also Asynchronous programming

Bubble feature, 471

Bubbling, 106, 110

Build system, 286–317

compression, 313

cross-domain loader, 311–313

defaults, 302–306

deployment preparation, 300

functions, 299

Magi-Browse, 302f, 301–302

nested calls, protection for, 289

overview, 287–290

packages, layering, 310–311

packaging, 306–309

packaging a release with, 300

profile, 304

release-directory, 303

Bundled drivers, 261, 267

Buttons, 420f, 418–422

C
Calendars, 33, 34f

Callback functions, 46

Callbacks, 58, 91, 124f, 125f, 123–139

canceling, 134–139

Deferred queue, 199

CANCELER FUNCTION 537 DATA STORES

dojo.io.script.get, 206f

error handling, 131–132

important, 62

registering, 128–131

specifying, 132–134

XHR and, 62f, 60–63

Canceler function, 135

Capturing, 106

Cascading Style Sheets: The Definitive

Guide (Meyer), 16, 162

Cell editors, 385

Cell formatters, 387

Classes

defining, 225–259

constructor arguments,

preprocessing, 248–252

mixins and multiple inheritance,

240f, 244f, 240–248

object space, 231f

objects, custom, 258f, 257–259

property names, 254–255

prototypes, 229f, 226–233

subclasses, single inheritance,

237f, 234–239

terms for, 228

two-phase construction, 255–257

element, 436, 438

shim, 250

widgets, 455

Color, accessibility and, 423

Cometd, 10, 10n

Compression, 313

Compression, Dojo-Rhino, 313–317

Conceptual integrity, 15

Constructor functions, 233

arguments, preprocessing, 248–252

mixins and, 245

Containers

alignment, 448f, 449f, 450f, 447–450

stack, 451f, 452f, 451–454

Content handlers, 191f, 192f, 193f,

189–193, 194f

Controls, web forms, 31–34, 394–427

accessibility, 422–427

buttons and toolbars, 420f, 418–422

dates and numbers, 411f, 416f,

410–418

editing, 397–405

dialog boxes, 399f, 397–399, 400f

inline editing, 401f, 400–401

text, 402f, 403f, 401–405

features, 394–396

feedback, 405–409

progress, 408f, 407–409

Toaster widget, 409

tooltips, 407f, 406–407

plug-ins, 404, 405

submission, 396, 397f

Conventions

dojo/ tree, 74

JSON, hash literals and, 49

modules, 74

property names, 254–255

property-value pairs, 41

variables, 100

Crockford, Douglas, 16

Cross-domain loader, 288, 290,

311–313

coding for, 297–299

CSS 3 selectors, 152f, 149–153

CSS, positioning metrics, 162, 163f

Currency standards, 414

D
Data, 260–285

architecture, 261, 262f

data stores, 262

driver features, 265–267

Genetox example, 268f, 267–268

grids and, 52–55

JavaScript, accessing from, 346–349

JavaScript Read methods, 275–279

overview, 260–261

partitioning, 272–275

saving, 354–356

searches, incremental, 269

sending, JSON and, 48–49

sorting, 276

stub, 50–52

synchronization of, 388

terms, 262–265

Yahoo Search, 280f, 280–285

see also Function literals

Data source, 50

Data stores, 50, 262

data-on-demand, 484

defined, 264

hierarchical, 346f, 344–349

JavaScript and, 260

methods calling, 278

objects, 269

on-demand, 505–515

DATA VALIDATION 538 DOJO.DATA

tree nodes and, 342

widgets and, 270

Data validation, forms, 31

Databases vs. data stores, 262

Date entry, 33, 34f

Dates and numbers, 411f, 416f,

410–418

Debugging, 16

event handlers and, 110

Firebug and, 434

Firefox and, 62, 63f

styles, 435

Toaster widget and, 67–69

uncompressed package versions,

309

XHR and, 37

Declarative widgets, 20, 24, 323f,

321–327

Deferred objects, 133

Delegates, 258f

Dependencies, 76

Design, see Layout

Dialog boxes, Dijit, 399f, 397–399, 400f

Dijit, 428–454

accessibility, 441f, 442f, 440–442

adding to a page, 22–25

browser-specific styles, 434–435

containers, alignment, 448f, 449f,

450f, 447–450

containers, stack, 451f, 452f,

451–454

dates in, 33, 34f

defined, 15

design and layout editing, 435–440

modules, 77

panes, 443–447

placeholders, 456

style inheritance, 433–434

style namespaces, 432f, 433f,

431–433

theme files, 430–431

theme structure, 429f, 428–430

themes, 23

see also Controls; Grid widget; Tree

widget; Widgets

Dijit component, 20

dijit.byID, 325

dijit.Declaration, 456–461

Directory trees, 76, 77

Display engine example, 124f, 125f,

123–126

callbacks and errbacks, 132–134

callbacks, canceling, 134–139

callbacks, registering, 128–131

controlling processes for, 126–127

error handling, 131–132

Document Object Model, see DOM

programming

Dojo

adding to a page, 22–25

advantages of, 10–11, 13–15

array methods, built in, 90

audience of, 13

body class, 24

debugging, 16

defined, 9, 14

example code, 16

headers, adding, 23

installation, 21–22

JavaScript

modularizing, 71–75

libraries of, 12

loading, 78–82

nonstandard HTML attributes, 81

open source and, 14

polymorphism, 95

primary sources for, 77

projects of, 14–15

reference manual for, 74

server-side options, 48

source code, organization of, 75–78

support, 16

as a toolkit, 12–13

unit tests for, 22

use of, 11

dojo (module)

catalog of, 76–77

Dojo Core, 75

Dojo-Rhino, 313–317

dojo.addOnLoad, 113–114, 148

dojo.anim, 174

dojo.animateProperty, 170–174

dojo.back, 221–224

dojo.byID, 325

dojo.data, 260–285

architecture, 261

data stores, 262–264

driver features, 265–267

Genetox example, 267–268

JavaScript methods, 275–279

overview, 260–261

partitioning, 272–275

DOJO.DECLARE 539 EXTENSION POINTS

searches, incremental, 269

terms, 262–265

Yahoo Search, 280–285

dojo.declare, 225–259, 461–466

arguments for, 229

classes, defining, 226–233

constructor arguments,

preprocessing, 248

constructor functions, 233

mixins and multiple inheritance, 248

objects, custom, 257–259

overview, 225–226

properties, name clashes, 254–255

subclasses, single inheritance,

234–239

terms for, 228

two-phase construction, 255–257

dojo.declare

constructor arguments,

preprocessing, 252

mixins and multiple inheritance, 240

dojo.Deferred, 128–131

dojo.io.script.get, 203–207

dojo.js, 78–82

dojo.NodeList, 154–158

dojo.parser, 466

dojo.provide, 295

dojo.query, 146–153

dojo.require (), 25, 80

arguments for, 291

loaders and, 290

dojo.xhr*, 181–182

dojo.xhr.Get, 63–67

dojo.hitch, 83–84

Dojox

defined, 15

vs. dojox, 75

dojox.Data, 55

dojox.Data, 46

dojox.grid.Grid, 55, 58–60

dojox.grid.Grid, 46

DOM programming, 140–177

animation, 168–177

nodes, finding and editing, 146f,

150f, 152f, 153f, 145–158

nodes, inserting, moving and

deleting, 158f, 159f, 158–161

nodes, positioning, 162f, 163f,

161–168

question form, complete, 167f

utility functions, 140–145

W3C specs for, 140

DOM tree, 113

Drag-and-drop feature, 365f, 356–365

Drivers

bundled, 261, 267

features, 265–267

JSON and, 273

pagination, 276

partitioning and, 272

tree data, 507–509

Yahoo Search, 280f, 280

Dynamic Content, see Rich Internet

applications (RIA)

E
Errbacks, 132–134

Errors

asynchronous calls, 131–132

callbacks and, 61

data store objects, calling methods

on, 278

errback method and, 215

Firebug and, 29–31

initialization, 249

servers and, 216

Toaster widget and, 67–69

Event handlers

browsers and, 112

connecting, 108–111

default processing and, 108

page loading and navigation, 223

propagation and, 106

signatures, 103

this references, 111

writing, 102–108

Events, 59

asynchronous programming and,

101–117

DOM catalog, 116f, 116

interfaces, 104f

processing, in browser, 102f

propagation of, 106

user-defined, 117–120

Example code, 16

Extension points, 320, 336f, 331–338,

350f, 349–351

<script> tags, 461

accessibility and, 424

for grids, 380f, 382f, 383f, 375–384

widget rendering, 468

FEEDBACK 540 ICE CREAM RATING EXAMPLE

F
Feedback, form controls, 405–409

fetch(), 275, 277

Field property, 54

Filtering grids, 390–393

Firebug, 29–31

CSS selectors and, 153

CSS window, 434f

debug log structure, 62, 63f

debugging and, 434

DOM window, 433f

HTTP transactions in, 196

logging, 41

request tab, 69f

response tab, 69f

trees, manipulating, 355

XHR and, 56f

Forms, see Web forms

Function literals, 43–46, 91

Functions

aggregate, 377–381

array methods, 90

callback, 46

callbacks, canceling, 135

classification of, 74

dojo.require, 80

DOM utilities, 140–145

function literals and, 45

polymorphism and, 95

publish-subscribe, 121–123

see also Bed lump functions; Event

handlers; Nodes; Utility functions

G
Gag-ool returns example

data stores, 346f, 344–349

drag and drop, 365f, 356–365

extension points, 350f, 349–351

overview of, 342f, 341–344

tree manipulation, 356f, 351–356

get(), 375–377

getElementById, 141–145

Greeking widget, 466f, 463–466

Grid widget, 366–393

get() extension points, 375–377

aggregate functions, 377–381

cell editing, 385–387

display and design, 367–372

features of, 366

filtering, 390–393

history of, 366

mouse and keyboard events,

382–384

row bars, 374

row selection, 381–382

sorting, 389–390

structure, JavaScript, 372–374

H
Handler functions, 183

content handlers, 191f, 192f, 193f,

189–193, 194f

extension points and, 332

hello, world example, 185

objects in, 186

Handlers, see Event handlers

Hash literals, 39, 42, 49, 68

Hashes, 39–43

arguments and, 252

constructor functions and, 239

defined, 39

dojo.xhr*, 180

JSON, nested, 345

menu objects, 495

printed, 41f

programmatic widgets and, 328

High-performance display engine, see

Display engine example

HTML

form controls, 394, 395

placeholders, 456

HTML and XHTML: The Definitive Guide

(Musciano & Kennedy), 16

HTML character entities, 209

HTTP transactions, controlling,

194–197

I
Ice cream rating example, 369f, 370f,

371f, 367–372

aggregate functions, 377–381

average calories, 380f

cell editing, 385–387

cell-level extension points, 375–377

filtering, 391f, 390–393

flavor ratings, 388f

mouse and keyboard events,

382–384

row bars, 374, 375f

row selection, 381–382, 383f

sorting, 389–390

IFRAME 541 LAYOUT

structure of grid, JavaScript,

372–374

subrow hiding, 382f

iframe, 207–211

Dojo support for, 208–210

utility functions, 210

Images and color, 423

Incremental search, 269

Inline editing, Dijit, 401f, 400–401

Installation, 21–22

Internationalization (i18n), 411f, 416f,

410–418

Internet Explorer

event handlers, 112

getElementById and, 141

parsing, failures, 193

Interview questions, see Programmer

interview questions example

ioArgs, 182–187

Irradiated potato extract, 267

ISO 8601, 416

J
JavaScript

arguments, number of, 129

classes and, 225

classes, defining, 229

constructor functions and, 233

CSS access and, 146

data store, 260

data, accessing, 346–349

data, functions as, 43

Dojo-Rhino, 313–317

elegance of, 233

events, hooking, 117

extension points and widgets, 336f,

331–338

grid structure in, 372–374

language extensions, 83–100

array methods, 90–94

binding arguments, 88–89

binding context, 84–87

dojo.hitch, 83–84

objects and, 97–100

polymorphism support, 94–96

modularizing with Dojo, 71–75

object-oriented programming and,

225–226

objects in, 226, 229, 233

Read methods, 275–279

retrieving, content handlers, 193f

same-origin policy, 63, 64, 179

script, 200–207

symbols and, 297

XHR, idioms for, 39–46

see also Widgets

JavaScript: The Definitive Guide

(Flanagan), 16

JSON

data, sending, 48–49

drivers, 273

retrieving, content handlers, 191,

192f

RPC and, 212

RPC dispatcher methods and, 215

tree data driver, 507

WSO definition, 481

JSONP

researching cigars, 56–63

Yahoo Answers example, 471f,

470–475

Justa Cigar Corporation example,

46–69

cigar review service, 67f, 63–67

click and search, 57f

Firebug and, 56f

JSON and, 48–49

research with JSONP, 56–63

UI design, 47f, 52f

K
Keyboard accessibility, 423

Keyboard event objects, 105

L
Language extensions, 83–100

array methods, 90–94

binding arguments, 88–89

binding context, 84–87

dojo.hitch, 83–84

objects, 97–100

polymorphisms, 94–96

Latency, 287, 307, 317

Layout, 428–454

accessibility and, 441f, 442f,

440–442

browser-specific styles , 434–435

containers, alignment, 448f, 449f,

450f, 447–450

containers, stack, 451f, 452f,

451–454

editing, 435–440

LAZY LOADING 542 OBJECTS

form, 26f, 30f, 31f, 26–31, 166

panes, 443–447

rich Internet application, 502

style inheritance, 433–434

style namespaces, 432f, 433f,

431–433

theme files, 430–431

theme structure, 429f, 428–430

Lazy loading, 446, 447

Lazy rendering, 269, 272, 366

Libraries, 12

Literals, 39–43

defined, 39

function, 43–46

hash, 39, 42, 49

Live forms, 338f, 338–340

Loader, 286–317

coding rules for, 298

cross-domain loader, coding for,

297–299

dojo.provide, 295

module paths, 292–294

module pattern, 295

modules, 290–292

overview, 287–290

types of, 288

Loading, Dojo, 78–82

M
Machi, Dustin, 213

Magi-Browse, 302f, 301–302

Mahemoff, Michael, 338

Mapped textboxes, 413, 414f

Master tooltips, 407

Menu objects, 495

Menus, 420f, 418–422, 495, 499f

Methods

animation and, 172–173

dojo.NodeList, 155–158

driver features, 266

form controls and, 395

Read, 275–279

remote scripting and, 178

RPC dispatchers, 214

superclass, 236, 239

Miles, Scott, 366, 480n

Mixins, 240f, 244f, 240–248

classes, defining, 241

constructor functions and, 245

object-oriented programming and,

246

properties, 252

type testing, 247

Mock service, 485, 510–512

Module pattern, 295

Module primary script, 72

Modules

automatically loaded, 76

coding rules for, 298

Dijit, 77

loader and, 290–292

manually loaded, 77

paths, 292–294

Multiple inheritance, 240f, 244f,

240–248

Multivalues, 346, 347

The Mythical Man-Month (Brooks), 15

N
Naming, see Conventions

Native remote scripting, see Remote

scripting

Navigation, 221–224

Nodes

adding and modifying, 351–353

animation and, 168–177

data stores and, 342

DOM functions, 141–145

finding and editing, 146f, 150f, 152f,

153f, 145–158

inserting, 158–160

moving, 160–161

positioning, 162f, 163f, 167f,

161–168

positioning, dynamic, 165–168

tree data and, 506

trees and, 359–360

Numbers, see Dates and numbers

O
OBE application, 485, 525, 528f

Object spaces, 236, 237f

Object-identifier (OID), 516

Object-oriented programming,

225–226, 246

Objects

copying, 99f, 99

custom, 258f, 257–259

data store, 269

defined, 228

dojo.declare, 231

dojo.xhr*, 186f

ONCLICK EXTENSION POINT 543 SCRIPT

handler functions, accessing, 186

mixing, 97–98

prototypes and, 98

tree nodes and, 359–360

onClick extension point, 350

Order tree, 342

Orvell, Steve, 366, 480n

P
Pane reloading, 446

Panes, 428, 443–447

Pantry application, 336f, 331–338

Parameters, 198

Partitioning data, 272–275

Paths, see Modules

Performance, 446

Placeholders, 456

Polymorphism, support for, 94–96

Programmatic widgets, 20, 24, 322,

327–332

Programmer interview questions

example, 145–158

animation, 174–177

completed form, 167f

CSS 3 selectors support, 152f

improvements to, 150f

nodes, inserting, moving, deleting,

158–161

nodes, positioning, 162f, 163f,

161–168

original format, 146f

query demonstrator, 153f

question structure, 158, 159f

Progress meters, 408f, 407–409

Properties, name clashes, 254–255

Prototypal inheritance, 226–233

Prototypes, 98

Publish-subscribe pattern, 121–123

Q
Queries, 271, 273

Questions, see Programmer interview

questions example

R
Reference manual, 74

Remote procedure calls (RPCs)

defined, 211–213

dispatcher methods, 214

executing with Dojo, 213–216

Remote scripting, 37–39, 178–224

bookmarking, 219f, 219–224

defined, 178

iframe, 207–211

overview, 178–180

script, 200–207

web services access, 211

remote procedure calls, 211–216

XHR framework, 180–199

content handlers, 191f, 192f,

193f, 189–193, 194f

dojo.xhr*, 181–182

forms in, 197–198

HTTP transactions, controlling,

194–197

ioArgs, 182–187

posting and HTTP, 198

REST, Yahoo Search and, 56

Return material authorization (RMA)

example

data stores, 346f, 344–349

drag and drop, 365f, 356–365

extension points, 350f, 349–351

overview of, 342f, 341–344

tree manipulation, 356f, 351–356

Rich Internet Applications (RIAs),

477–503, 505–528

application layout, 487–491, 492f

browser application framework,

479–485

browser as UI platform, 478–479

command item store, 491–495

main menu, 499f, 495–499

on-demand data store, 515f,

505–515

organization, 486–487

overview, 477, 478f

status bar widget, 500–503, 504f

workspace objects (WSO), 528f,

515–528

Row bars, 374, 375f

Row selection, 381, 383f

S
Same-domain rule, 280

Same-origin policy, 63, 64, 179

dynamic scripts, 200n

iframe, 207

script, 199

script, remote scripting, 200–207

Dojo support for, 203–207

SCRIPTS 544 WAI ATTRIBUTES

dynamically loaded, detection of,

200–203

Scripts, Dojo, 71–75

Searches

incremental, 269

Yahoo, 280f, 280–285

Server-side options, 48

Service connections, 38

Shape Hierarchy example, 228

Shape hierarchy example, 229f

Shim class, 250

Simultaneous loading, 446

Single inheritance, 237f, 234–239

SMD descriptions, 213

Sorting grids, 389–390

Sorting, data, 276

Source code

organization of, 75–78

web forms and, 34

Stack container, 451f, 452f, 451–454

Standard loader, 288

Static text widget, 521–524

Status bar, 484, 500–503, 504f

Stub data, 50–52

Style inheritance, 433–434

Style namespaces, 432f, 433f, 431–433

Subclasses

multiple-inheritance, 240f, 244f,

240–248

single-inheritance, 237f, 234–239

Subrows, 369, 370f, 377, 382f

Superclass methods, 236, 239

Superclasses, two-phase construction,

255–257

Symbols, 297

T
Tab order, 424

Tabs, 28, 30f

Target node, 106

Templates

defining, 463

snippets and, 456

Testing

Dijit style sheets, 441

drag and drop, 360–363

OBE application module, 528f

type, 247

unit tests, Dojo installation, 22

Text editing, Dijit, 402f, 403f, 401–405

Themes, 23

accessibility and, 442f, 440–442

creating, 438

files of, 430–431

overriding, 436

structure, 429f, 428–430

Toaster widget, 67–69, 409

Toolbars, 420f, 418–422

Tooltips, 407f, 406–407

Tree widget, 341–365

code refactoring, 357

data stores, hierarchical, 344–349

data, saving, 354–356

drag and drop, 356–365

extension points, 349–351

nodes, adding and modifying,

351–353

Tree data

driver, 507–509

retrieving, 505–507

Trees, directory, 76, 77

Two-phase construction, 255–257

Type calculations, 96

Type testing, 247

Type-identifier (TID, 516

U
Unusual pet store (UPS) example, 323f,

322–327

URL

data queries, 273

forms and, 197

HTTP transactions, 196

User interfaces

browser as platform, 478–479

Dojo and, 9

User-defined events, 117–120

Utility functions, 140–145

iframe, 210

V
Variables

dynamic scripts and, 203

naming, 100

Version publication, module paths and,

294

Views, 370

multiple, 371f

W
WAI attributes, 426

WAVEMAKER 545 ZYP

Wavemaker, 480n

Web forms, 20–36

autocomplete, 270, 271f

controls, 31–34

customers and, 21

data, saving, 354–356

dojo and dijit, adding to a page,

22–25

layout, 26f, 30f, 31f, 26–31

overview of, 20–21

queries, 271

source code for, 34–36

tabs, 28, 30f

XHR remote scripting and, 197–198

see also Controls, web forms; Rich

Internet applications (RIA)

Web services

defined, 211

remote scripting and, 211

remote procedure calls, 211–216

Yahoo Search, 280

Widgets, 20, 36, 319–340

classes, 455–475

dijit.Declaration, 456–461

dojo.declare, 461–466

Greeking, 466f, 463–466

client-side vs. server-side, 332

data stores and, 270

data-enabled, 52–55

declarative vs. programmatic, 20, 24

declarative, defined, 321

declarative, finding and

manipulating, 323f, 322–327

defined, 319

dijit, 75

dijit.form.DateTextBox, 36

dijit.form.ValidationTextBox, 36

dijit.layout.ContentPane, 36

dijit.layout.TabContainer, 36

element relationships, 321f

extending, 469–470

extension points, 336f, 331–338

handlers for, 337

life cycle, 467f, 469f, 466–469

live forms, 338f, 338–340

programmatic, creating, 327–332

programmatic, defined, 322

programmatic, destroying, 331

reference, 325

rendering, 468

searches and, 269

static text, 521–524

status bar, 500–503, 504f

terms, 320

toaster, 68f, 67–69

workspace object, 516–521

Yahoo Answers example, 471f,

470–475

see also Grid widget; Tree widget

Workspace object (WSO), 528f, 515–528

abstraction of, 480–482

framework, wiring to, 525–528

widget for, 516–521

X
XHR, 37–69

beginnings of, 179

callbacks, 62f, 60–63

Firebug, request tab, 69f

Firebug, response tab, 69f

vs. iframes, 207

JavaScript idioms for, 39–46

remote scripting, 37–39, 180–199

content handlers, 191f, 192f,

193f, 189–193, 194f

dojo.xhr*, 181–182

forms, 197–198

HTTP transactions, controlling,

194–197

ioArgs, 182–187

posting and HTTP, 198

XML

retrieving, content handlers, 194f

RPC and, 212

XmlHttpRequest, see XHR

Y
Yahoo Answers example, 471f, 470–475

Yahoo Search, 56–58, 280f, 280–285

Yellow Fade Technique (YFT), 459f,

459–461

Z
Zyp, Kris, 213

	Contents
	Introduction
	Key Aspects of Dojo
	Using the Book
	Acknowledgments

	Ajax the Dojo Way
	Powerful Web Forms Made Easy
	What Customers Are Saying About Your Form
	Installing Dojo on Your Own Server
	Adding Dojo and Dijit to a Page
	Laying Out the Form
	Improved Form Controls
	Wrapping It Up

	Connecting to Outside Services
	Dojo Remote Scripting
	JavaScript Idioms for Calling XHR
	A Wish List with 4-1dojo.data and 4-1dojox.grid.Grid
	Researching Cigars Using JSONP
	Reviews with dojo.xhrGet
	Errors and Debugging

	The Dojo APIs
	Dojo In Depth
	Modularizing JavaScript
	Dojo Source Code Organization
	Loading Dojo

	JavaScript Language Extensions
	Binding with dojo.hitch
	JavaScript 1.6 Array Methods
	Support for Polymorphism
	Combining, Structuring, and Copying Objects

	Asynchronous Programming
	Programming DOM Events with Dojo
	Connecting to User-Defined Events with Dojo
	Publish-Subscribe
	Managing Callbacks with dojo.Deferred

	DOM Utilities
	Core Dojo DOM Utility Functions
	Finding and Editing Nodes
	Inserting, Moving, and Deleting DOM Nodes
	Positioning DOM Nodes
	Animation

	Remote Scripting with XHR, script, and iframe
	Native Remote Scripting
	Using the Dojo XHR Framework
	Remote Scripting with script
	Remote Scripting with iframe
	Leveraging Remote Scripting to Access Web Services
	Bookmarking and the Back Button Without Navigating

	Defining Classes with dojo.declare
	Why Use Object-Oriented Programming in JavaScript?
	Defining a Simple Class
	Defining a Subclass with Single Inheritance
	Mixins and Multiple Inheritance
	Preprocessing Constructor Arguments
	Resolving Property Name Clashes
	Two-Phase Construction
	Creating Custom Objects Without Constructors

	dojo.data
	The Big Picture
	dojo.data and Incremental Search
	Partitioning with QueryReadStore
	Calling Read Methods from JavaScript
	A Yahoo Search Driver

	The Dojo Loader and Build System
	The Big Picture
	The Dojo Loader
	Optimizing Deployment with the Dojo Build System
	Compressing JavaScript Resources with Dojo-Rhino

	Advanced Dijit
	Scripting Widgets
	What Exactly Is a Widget?
	Finding and Manipulating Declarative Widgets
	Creating Instances Programmatically
	Extension Points
	Example: Live Forms

	Tree
	A Simple 4-1Tree
	Hierarchical Data Stores
	Extension Points
	Manipulating the 4-1Tree
	Drag and Drop

	Grid
	4-1Grid Display and Design
	Programmatic Structures
	Extension Points
	Cell Editing
	4-1Grid Manipulation

	Form Controls
	Form Control Features
	Streamlined Editing
	Feedback
	Dates, Numbers, and i18n
	Action Buttons, Toolbars, and Menus
	A11y

	Dijit Themes, Design, and Layout
	Theme Structure
	Changing Look and Feel
	A11y and Themes
	Panes: ContentPane and TitlePane
	The Alignment Container: BorderContainer
	Stack Containers

	Creating and Extending Widget Classes
	Widget Classes Using dijit.Declaration
	Widget Classes Using dojo.declare
	The Widget Life Cycle
	Extending Widgets
	Example: A Yahoo Answers Widget

	Rich Internet Applications
	 Building a Rich Internet Application
	The Big Picture
	Step 1: Create the Application Skeleton
	Step 2: The Main Menu and Command System
	Step 3: A Custom Statusbar Widget

	 Adding Dynamic Content to an RIA
	Step 4: The Navigator Pane and On-Demand Data Store
	Step 5: Workspace Objects

	Going Forward
	Foundations
	Graphics
	Dojo Data and Storage

	Appendixes
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

