The %
matic
CTATTIErs

Mastering Dojo
JavaScript and Ajax Tools
for Great Web Experiences

Rawwld Gill,
Craig Riecke,
and Alex Russell

Edited by Jaoguelyn Carter

vww allitebooks.conl

http://www.allitebooks.org

What readers are saying about Mastering Dojo

I'm so glad to see this book released. Dojo has a lot of power, but
there’s also a lot of complexity to knowing which API methods to use
when, and how to use them, and this book goes beyond just explain-
ing the Dojo API to explaining what developers need to know to use it
effectively.

> Bill Keese
Project lead for Dijit
IBM, Emerging Technology Group

Mastering Dojo will teach you how to build an Internet application
that will impress your end users and delight you while you're writing
it. The book also explains Dojo’s JavaScript underpinnings, both for
newcomers and for refugees from other languages.

» Ian Dees
Software engineer

The book really rolls out the red carpet for Dojo to emerge with guns
blazing! The authors show you how easy it is to use impressive
widgets without installing a thing. I was amazed to discover that
JavaScript is not just a toy language, how Dojo is built on top of it,
and how both are invaluable in any web development project. Buy
this book. It’s the next best thing to having the authors working at
your side.

» Brian C. Reeve
Application developer, bluecomIT.com

Mastering Dojo is an understandable, in-depth guide to learning the
Dojo Toolkit. It's a great supplement to the Dojo Toolkit’s online docu-
mentation.

» Steve Orvell
Senior Engineer, WaveMaker Software

[vww allitebooks.cond

http://www.allitebooks.org

JavaScript and Ajax Tools
for Great Web Experiences

Rawld Gill
Craig Riecke
Alex Russell

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

[vww allitebooks.cond

http://www.allitebooks.org

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

The Browser Application Framework code is Copyright © 2000-2008, Vista Information
Technologies, Inc., and released under the BSD license.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Rawld Gill, Craig Riecke and Alex Russell.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-11-5
ISBN-13: 978-1-934356-11-1

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

vww allitebooks.conl

http://www.allitebooks.org

_ Confents

1 Introduction 9
1.1 KeyAspectsofDojo 12
1.2 UsingtheBook 15
1.3 Acknowledgments, 17
I Ajax the Dojo Way 19
2 Powerful Web Forms Made Easy 20
2.1 What Customers Are Saying About Your Form 21
2.2 Installing Dojo on Your Own Server. 21
2.3 Adding Dojo and DijittoaPage 22
2.4 LayingOuttheForm 26
2.5 Improved Form Controls 31
26 WrappingItUp, 34
3 Connecting to Outside Services 37
3.1 Dojo Remote Scripting 37
3.2 JavaScript Idioms for Calling XHR 39
3.3 A Wish List with dojo.data and dojox.grid.Grid 46
3.4 Researching Cigars UsingJSONP 56
3.5 Reviews with dojo.xhrGet 63
3.6 Errors and Debugging 67
II The Dojo APIs 70
4 Dojo In Depth 71
4.1 Modularizing JavaScript 71
4.2 Dojo Source Code Organization 75
4.3 LoadingDojoo 78

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS d 6

5 JavaScript Language Extensions 83
5.1 Binding with dojo.hitch. 83
5.2 JavaScript 1.6 Array Methods 90
5.3 Support for Polymorphism 94
5.4 Combining, Structuring, and Copying Objects 96

6 Asynchronous Programming 101
6.1 Programming DOM Events with Dojo. 101
6.2 Connecting to User-Defined Events with Dojo 117
6.3 Publish-Subscribe0 000 120
6.4 Managing Callbacks with dojo.Deferred 123

7 DOM Utilities 140
7.1 Core Dojo DOM Utility Functions 140
7.2 Finding and EditingNodes 145
7.3 Inserting, Moving, and Deleting DOM Nodes 158
7.4 Positioning DOM Nodes 161
7.5 Animation 000, 168

8 Remote Scripting with XHR, script, and iframe 178
8.1 Native Remote Scripting 178
8.2 Using the Dojo XHR Framework 180
8.3 Remote Scripting with script. 199
8.4 Remote Scripting with iframe 207

8.5 Leveraging Remote Scripting to Access Web Services . 211
8.6 Bookmarking and the Back Button Without Navigating 218

9 Defining Classes with dojo.declare 225
9.1 Why Use Object-Oriented Programming in JavaScript? 225
9.2 Defininga SimpleClass 226
9.3 Defining a Subclass with Single Inheritance 234
9.4 Mixins and Multiple Inheritance 239
9.5 Preprocessing Constructor Arguments 248
9.6 Resolving Property Name Clashes 252
9.7 Two-Phase Construction 255
9.8 Creating Custom Objects Without Constructors 257

10 dojo.data 260
10.1 The Big Picture 261
10.2 dojo.data and Incremental Search 268
10.3 Partitioning with QueryReadStore 272
10.4 Calling Read Methods from JavaScript 275
10.5 AYahoo Search Driver 280

http://www.allitebooks.org

CONTENTS d 7

11 The Dojo Loader and Build System 286
11.1 The Big Picture 287
11.2 TheDojoLoader 290

11.3 Optimizing Deployment with the Dojo Build System . . 299
11.4 Compressing JavaScript Resources with Dojo-Rhino . 313

III Advanced Dijit 318
12 Scripting Widgets 319
12.1 What Exactly Isa Widget? 319
12.2 Finding and Manipulating Declarative Widgets 322
12.3 Creating Instances Programmatically 327
12.4 Extension Points, 331
12.5 Example: Live Forms 338
13 Tree 341
13.1 ASimpleTree s 341
13.2 Hierarchical Data Stores 344
13.3 Extension Points 349
13.4 ManipulatingtheTree 351
135 DragandDrop 356
14 Grid 366
14.1 Grid Display and Design 367
14.2 Programmatic Structures 372
14.3 Extension Points 375
144 CellEditing. 385
14.5 Grid Manipulation 389
15 Form Controls 394
15.1 Form Control Features 394
15.2 Streamlined Editing 397
15.3 Feedback 405
15.4 Dates, Numbers, andil8n 409
15.5 Action Buttons, Toolbars, and Menus 418
15.6 Ally. . . . oo i e e e e 422
16 Dijit Themes, Design, and Layout 428
16.1 Theme Structure 428
16.2 Changing Look and Feel 435
16.3 AllyandThemes 440

16.4 Panes: ContentPane and TitlePane 442

http://www.allitebooks.org

CONTENTS «d 8

16.5 The Alignment Container: BorderContainer 447
16.6 Stack Containers 451
17 Creating and Extending Widget Classes 455
17.1 Widget Classes Using dijit.Declaration 456
17.2 Widget Classes Using dojo.declare 461
17.3 The Widget LifeCycle 466
17.4 Extending Widgets 469
17.5 Example: A Yahoo Answers Widget 470
IV Rich Internet Applications 476
18 Building a Rich Internet Application 477
18.1 The Big Picture 477
18.2 Step 1: Create the Application Skeleton 486
18.3 Step 2: The Main Menu and Command System 491
18.4 Step 3: A Custom Statusbar Widget 499
19 Adding Dynamic Content to an RIA 505
19.1 Step 4: The Navigator Pane and On-Demand Data Store 505
19.2 Step 5: Workspace Objects 515
20 Going Forward 529
20.1 Foundations, 529
20.2 Graphics oo 531
20.3 Dojo Data and Storage 532
Appendixes 533
Bibliography 534

Index 536

http://www.allitebooks.org

Oh Kate, nice customs curtsy to great kings. Dear Kate, you
and I cannot be confined within the weak list of a country’s
fashion. We are the makers of manners.

» William Shakespeare, Henry V

Chapter 1

w
There’s a new king in town.

Over the past couple of years we've seen new technologies redefine the
rules of server-side web app development. It's the client’s turn. Get
ready to throw out your current “customs” of client-side development.
With Dojo, we're entering a new era of browser-based applications.

Dojo is a set of tools that helps you build better browser-based applica-
tions. Dojo is built mostly using client-side JavaScript, and it expands
the capabilities of the modern browser (and even Internet Explorer) far
enough that the line between local, native applications and browser-
based applications has all but disappeared.

This is a pretty significant statement. It means that browser-based
(and, therefore, web-based) user interfaces can be made indistinguish-
able from those included with the best local, native applications. And it
means that the user interface of local applications can be implemented
in the browser rather than through one of the heavy, platform-sensitive,
and complex native GUI frameworks (Windows, Tk, Qt, Fox, AWT, SWT,
Swing, Cocoa, and the rest).

The ubiquitous browser becomes the user interface platform. It no
longer matters where the back end lives: on a network of distant HTTP
servers or in a small local program that implements the HTTP protocol.

Unfortunately, the “modern” browser provides an incomplete, incon-
venient, and incompatible programming environment. You could get
around these problems using a plug-in such as ActionScript, but this
breaks an important rule: locally installed software is strictly forbidden.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1. INTRODUCTION <« 10

Although it may be OK to break this rule for a local application, it is
certainly not OK to break it for a web-based application.! Enter Dojo.

Dojo fixes browser defects such as browser incompatibilities and mem-
ory leaks, and it adds important capabilities such as HTML user inter-
face controls and DOM querying. Although many JavaScript libraries
are available, most focus on one particular idea. Some include effects
libraries, others concentrate on perceived core JavaScript omissions,
and still others implement one or more HTML widgets (user interface
controls). In contrast, Dojo addresses all of these functional areas—and
many others—extensively. In this respect, we say that Dojo has breadth
and depth unlike any other open source solution.

For example, looking at Dojo’s depth, Dojo normalizes the event system
among the popular browsers (Internet Explorer does not implement the
W3C event model, and it leaks memory; most other browsers do the
opposite). If you want to connect to a click event in Dojo, you can write
the following:

dojo.connect(myButton, "click", myFunction);

This code will work perfectly on any supported browser. You can include
a tree control on a web page by writing this:

<div dojoType="dijit.Tree" label="Order" id="ordTree" store="ordJson" ></div>

This is quite a bit easier than what'’s required in many native frame-
works.

Dojo also has incredible breadth. It includes some forty user interface
controls, a graphics framework, cometd support,? a packaging system,
and much more. Today, Dojo stands alone in its vast capabilities.

You may be concerned that all of this capability implies increased com-
plexity. We think the opposite it true—at least if you compare apples to
apples. Dojo is organized into a hierarchy of functionality. This allows
you to focus on just the area you need for the current work at hand.
As your needs change and expand, Dojo will be ready to answer those
needs precisely because of its breath and depth. Contrast this to a
smaller, less-ambitious library. Although such an alternative may be

1. In the corporate world, installing anything on company computers is a big deal. If
you eliminate this road block, you can instantly open markets that were previously
untouchable.

2. Cometd is a low-latency communications technique that allows the server to push
data to the browser. See http://cometd.com/.

http://www.allitebooks.org

CHAPTER 1. INTRODUCTION <« 11

()

Buzzwords

The terms Ajax, Web 2.0, and Rich Infernet Application (RIA) are
so popular these days that sometimes it is not completely clear
what they mean. Given what we can do with modern browser
programming techniques, Ajox has come to mean “the way
we do modern web apps.” That’s the way we use it. Web 2.0 is
as much a business strategy as a technical term. We'll avoid it.
Finally, a local, browser-based application that communicates
with an on-host HTTP server is usually considered an example
of an RIA, yet such a program isn‘t an Internet application. But
the word is pervasive, so we’ll use it. When we do, we mean a
mostly single-page, browser-based application. Ahh, precision.

easier to digest on day one (and we dispute even this), three or six
months later when you need a capability that the library does not pro-
vide, you are left with either learning another library or implementing
something yourself. Both of these choices imply much more complexity
and cost than using Dojo from the beginning.

Further, one of the core values of the Dojo contributor community is
“beat down complexity.” All key attributes of Dojo’s design have been
vigorously debated, implemented and reimplemented, tested, and used
with this value in mind. Rather than ignore defects and build beautiful
new buildings on sinking swamp land, the Dojo community has mixed
the mature, rational, even skeptical engineer’s approach with the fast-
moving forward thinking of the young hacker. There is real substance
behind these words: the community spent most of 2007 refactoring the
core system. This is surely a sign of commitment to excellence and pro-
fessionalism, which can sometimes be missing in open source projects.

Finally, you should know that Dojo is not an academic project. It’s being
used in hundreds of projects at hundreds of companies. Navigate to
http://www.myaol.com, and hit View Source. Dojo is there. IBM is a major
contributor to the Dojo foundation—and is using Dojo in its WebSphere
stack. BEA and Sun ship Dojo with their products. With this kind of
Fortune 100 usage and sponsorship, you can be sure that Dojo is here
for the long haul.

KEY ASPECTS OF DoJo < 12

1.1 Key Aspects of Dojo

Let’s survey the broad landscape that is Dojo.

Not Just a Library—A Toolkit

Dojo is a collection of static, client-side JavaScript scripts. There is no
client-side plug-in or server-side components. It includes the following:

* A design and implementation that normalizes the browser, allow-
ing the same source code to work in several browsers (no more
browser/feature sniffing and resulting browser-dependent code).

* Functions/libraries that abstract the sometimes-obtuse, arcane,
and inconvenient W3C DOM programming model into a conve-
nient, parsimonious, efficient interface.

* Functions/libraries that fix several gross browser errors such as
memory leaks; others that provide functionality likely to be avail-
able natively in the browser in a few years—today!

* A library of arguably the largest single set of HTML widgets avail-
able today.

¢ A module system coupled with a build system that lets you divide
code into small, manageable chunks during development and later
package the release system for optimal download performance—
without any modifications to the source code. The build system
even lets you slice and dice Dojo itself in a way that’s optimal for
your project.

¢ Independent libraries (that is, you can load them on demand) that
implement several other advanced capabilities.

Several of the libraries result in frameworks for the following:
* Building custom HTML widgets
¢ Internationalization (i118n)
* Localization (110n)
* Accessibility (ally)

Dojo also includes a utility application called the build system that
packages large projects that may include hundreds of files into small,
optimal sets of compressed files for deployment on production servers.

KEY ASPECTS OF Dodo < 13

At the time of this writing, Dojo officially supports Internet Explorer
(6+), Firefox (1.5+), Safari (3+), and Opera (9+, Dijit doesn’t support
Opera).

Since Dojo is pure JavaScript, it can be used in nonbrowser, Spider-
Monkey-embedded, and Rhino-embedded environments. Of course,
much of Dojo—anything that leverages HTML, CSS, and/or XHR—is
not applicable in these environments. Still, there is an inner core of
functionality that is useful. The loader, language extensions, asynchro-
nous programming, object-oriented programming, and Common Locale
Data Repository functionality depend upon nothing but JavaScript and
can be used in these nonbrowser environments.3

Dojo Targets a Wide Audience

Dojo aggressively targets a broad range of users, from designers of sim-
ple web sites through enterprise application developers. This is a very
tough requirement to get right since design decisions that are optimal
for one group are often less so for another. Most “web design” tasks can
be accomplished by simply loading the script dojo.js. In this respect,
Dojo is as lightweight and easy to use as the best competing libraries.
On the other hand, larger projects require more. Dojo includes machin-
ery to load different function families upon demand. This design gives
Dojo users the luxury of digesting exactly as much complexity as they
need to solve the problem at hand.

Dojo Targets the Future

The state of the browser-based programming environment is another
major force behind Dojo’s philosophy and content. If the browsers were
standards-compliant (or, at least compatible), if JavaScript and the
DOM API fixed some glaring shortcomings, and if HTML included user
interface controls more modern than 1989, then much of Dojo wouldn’t
be required. The architects of Dojo recognize that, eventually, these
defects will be fixed. And when native functionality becomes available,
you’ll want to use it rather than a scripted alternative. Dojo was created
to solve key defects in the browser-based programming environment so
that modern, highly capable programs (indeed, programs rivaling native
applications) can be targeted to the browser—while preparing for a for-
ward upgrade path as the native browser environment improves.

3. Using Dojo outside the browser is beyond the scope of this book.

KEY ASPECTS OF DoJo <« 14

Since browsers won'’t be fixed in a single flash, Dojo’s modular design
can hook into these facilities directly—on a per-facility/per-browser
level—as they become available. In short, Dojo provides a stable,
browser-based programming environment, even as we enter the next
round of browser wars.

Dojo Is Open Source

The source code is free and available. It is dual-licensed under either
the terms of the modified BSD license or the Academic Free License
version 2.1. The BSD license is very friendly to commercial products;
it allows you to use or modify Dojo in your own commercial products
without any requirement to open source anything that you do. Nat-
urally, you can change whatever you want for such products. (Heck,
under the BSD license, you could sell unmodified copies of Dojo.)

The development process is rigorous and open. Source code is main-
tained in an SVN repository; defects and enhancements are tracked
by Trac. Anonymous access is available to both. Coding style guide-
lines are enforced, and code must be accompanied by unit tests prior
to inclusion in the key release sets.

There are avenues of free support through forums and mailing lists as
well as companies that provide for-fee services.

Unlike many open source projects, Dojo is backed by a foundation. The
Dojo Foundation is a 501(c)(6) nonprofit organized to help promote the
adoption of Dojo and to provide a healthy environment for JavaScript
engineering of every stripe. One of the key benefits that the foundation
affords is the ability to insulate users from hidden liabilities (for exam-
ple, patent or copyright infringement) regarding the use of the code.

All things Dojo discussed here start at http://dojotoolkit.org/.

Dojo Is Divided Into Three Projects

Dojo includes three projects:

® Dojo: The foundation upon which everything else is built. Alto-
gether, it includes about fifty JavaScript scripts and several other
resources that handle browser normalization, JavaScript modu-
larization, extensions to the core JavaScript library, extensions to
the W3C DOM API (including a parsing and querying the DOM),
remote scripting, Firebug Lite, drag and drop, a data store API,

USING THE Book <« 15

localization and internationalization, and a few other miscella-
neous functions.

¢ Djjit: The Dojo widget framework and built-in widgets (about forty
HTML user interface widgets).

* Dojox: Dojo extensions. This includes everything from the grid
widget to graphics libraries. Dojox is the Wild West of Dojo—there
are some very sophisticated and stable libraries that are currently
deployed in real-world, for-profit systems as well as some com-
pletely experimental systems. Each library includes a readme that
describes the project.

Each of these three projects resides in its own source code tree. Typi-
cally Dojo and Dijit coordinate releases; so far, Dojox has released with
Dojo and Dijjit, but this may change in future releases. We’ll cover Dojo
and Dijit exhaustively in this book while only touching on a couple
Dojox projects.

Dojo Has a High Degree of Conceptual Integrity

Despite the size of Dojo, the design and implementation possess a
high degree of conceptual integrity. In Fred Brooks’ classical software
engineering tome The Mythical Man-Month [], Brooks postulates
that conceptual integrity (the ratio of functionality to complexity) is the
most important attribute of any programming project. This is a well-
established and frequently missing attribute of long-lived software. We
already noted that beating down complexity is one of the Dojo project’s
core values. Further, the Dojo and Dijit project trees are each man-
aged by a single individual who guides and coordinates project evolu-
tion. This fulfills another of Brooks’ requirements to achieve conceptual
integrity—designating a single system architect. Finally, as we explore
Dojo, you'll see that it just feels right. It seems to surprise the least...to
be natural.* All of these are attributes of high conceptual integrity.

1.2 Using the Book

Here are a few last preliminary remarks that will help you maximize the
value of the book.

4. Although Dojo is mature, like any significant software system, it isn’t perfect. We’ll
occasionally point out weaknesses.

USING THE Book <« 16

Assumptions

We assume you have at least some minimal web programming experi-
ence. Dojo builds on top of standards-based technologies, most notably,
(X)HTML, CSS, DOM, and JavaScript. Although we’ll often provide a
few orienting remarks on an underlying technology when discussing
a particular Dojo functional area, we will not attempt to teach these
technologies—that’s at least four more books! In case you are fairly
new to all of this, here are some recommendations:

* Yahoo has published an excellent set of lectures about JavaScript
and DOM programming by Douglas Crockford.>

* The canonical JavaScript reference is JavaScript: The Definitive
Guide |]. It also includes a very good DOM tutorial and ref-
erence.

* CSSis often arcane and obtuse. Cascading Style Sheets: The Defin-
itive Guide [] makes a good attempt, but there are several
other references with different strengths and weaknesses.

* On the other hand, HTML is fairly simple to grasp. HTML and
XHTML: The Definitive Guide [| is a nice reference, but any
number of free, online references are also probably sufficient.

JavaScript is a great language. Contrary to popular—and very mis-
informed—belief, it is closer to Lisp than BASIC. It allows you to express
very powerful ideas quickly and with elegance. Dojo pushes JavaScript
hard; so will we.

The Example Code

We've constructed real, working examples throughout the book. We've
tried to find a good balance between including enough code in line with
the narrative so that you can understand the code but not so much that
the flow is interrupted with pages of code. If you find that a particular
code fragment is missing some detail that you find perplexing, you can
find the complete working examples online at hffp://www.pragprog.com/
titles/rgdojo/source_code.

5. http://yuiblog.com/blog/2007/01/24/video-crockford-fjpl, http://yuiblog.com/blog/2006/11/27 /video-crockford-advjs/,
and http://yuiblog.com/blog/2006/10/20/video-crockford-domtheory/

ACKNOWLEDGMENTS <« 17

Debugging

Web programming is a very dynamic activity. Typically, you'll write a few
lines, hit Refresh in your browser, and see what happens. Still, a good
debugging environment is critical to maximize programmer efficiency.
Since Firefox + Firebug are among the best options (and they're free!),
we use them in the narrative. If youre using something other than
Firefox (for example, Internet Explorer), then you probably already have
a good debugging environment scoped out. If not, Dojo includes the
Firebug Lite console that you can use with any browser. See the Alex
Says. . ., on page 79 for more debugging advice from Alex.

The Plan

The book is divided into four parts. Part I demonstrates how Dojo helps
you build powerful apps quickly and easily. These chapters include
complete details on the examples they present, but they intentionally
do not dissect the areas of Dojo they touch. Part II gives an exten-
sive exploration of Dojo Core—the foundation upon which all things
Dojo are built. Part III covers Dijit, the Dojo widget system, and Part IV
demonstrates how to construct a Rich Internet Application.

1.3 Acknowledgments

Above all, the three of us would like to recognize and thank the Dojo
contributors. Without such a dedicated and truly talented community
Dojo simply wouldn’t be. We hope this book reflects well upon their her-
culean efforts. We also owe special thanks to Bill Keese, Adam Peller,
Ian Dees, and Brian Reeve for taking the time to read and critique the
manuscript. Nearly every page includes improvements recommended
by these experts. Finally, a tip of the hat to the folks at Pragmatic
Programmers—clearly a publisher by programmers for programmers.
Thanks for giving us the opportunity and all of the support along the
way. —Rawld, Craig, and Alex

I would like to especially thank my coauthors, Craig and Alex, and the
development editor, Jackie. What a wonderful set of people to work
with, each highly skilled in completely different ways, all helping me
get out a better product. —Rawld

At the risk of sounding like a long Academy Awards speech, I would
like to thank my writing teachers Carolyn Goodwin, James Alsop, Gerry
Shapiro, and Judith Sornberger. They encouraged me to keep writing,

ACKNOWLEDGMENTS <« 18

even though the last thing the world wants is another writer. And to
Kathy, thank you for the Starbucks card, your love, and your limitless
patience that made this book possible. If life were fair, the first pub-
lished book between us would’ve been yours. —Craig

First, I'd like to thank Craig and Rawld, whose book this really is. Their
dedication, talent, and willingness to plumb the deepest depths of Dojo
has produced a book whose quality and clarity will be an asset to Dojo
developers for years to come. I feel lucky to have had the opportunity to
contribute in the small ways that I have to this effort. Rawld, Craig, and
Jackie Carter have made the process easier than I could have possibly
imagined. My humblest thanks to them.

I'd like to thank the contributors and committers who have made Dojo
the outstanding achievement that it is. They have given their time and
astonishing efforts to the project without any expectation of material
reward, and I am lucky to lead and work in such a team. Their bound-
less optimism, perseverance, and dedication have pushed the open Web
forward in ways that many often wrote off as impractical. Their work
has improved the lives of millions of users every day. My particular
thanks go to Dylan Schiemann, Tom Trenka, Bill Keese, David Schont-
zler, Paul Sowden, Eugene Lazutkin, Adam Peller, Becky Gibson, Pete
Higgins, James Burke, Brad Neuberg, and Owen Williams. I owe so
much to so many.

My deepest thanks go to my wife, Jennifer, who has supported me and
inspired me in so many ways. Her help, advice, and patience have been
boundless. She has not only made Dojo possible but has made me a
better person. —Alex

Part 1

Ajax the Dojo Way

Chapter 2

Approximately five minutes after JavaScript was invented, people began
messing around with their web forms. They split long forms into tabbed
pages, wrote validators to check input, and developed easy-to-use con-
trols such as date entry calendars. These features are so prevalent now
that users don’t think twice about them. But you do. They're still not
native features in HTML, so you must either write your own compo-
nents or shoehorn someone else’s into your application.

There’s an easier way. Dijit, the widget system built on Dojo, can do the
heavy lifting for you. A widget, also called a Dijit component, is a user
interface control built from HTML and JavaScript. You create one by
adding a simple dojoType= attribute to an HTML tag. It's a remarkably
simple way to add form functionality.

dojoType= is nonstandard HTML, but Dijit uses the attribute to endow
special features onto the enclosing tag. This is called a declarative wid-
get because you write no actual code for it. But you can create the
same widgets through JavaScript, a subject we’ll touch on in Chap-
ter 12, Scripting Widgets, on page 319. These are called programmatic
widgets. For the next couple chapters, we’ll use only declarative widgets
because of their simple learning curve.

There are widgets to control layout and validate input. There are wid-
gets that emulate native application controls such as sliders, tooltips,
and progress bars. There are widgets to model complex data such as
hierarchical trees and tables. Dijit comes with more than forty pre-
packaged widgets, and many work well without a stitch of extra Java-
Script!

[vww allitebooks.cond

http://www.allitebooks.org

WHAT CUSTOMERS ARE SAYING ABOUT YOUR FORM <« 21

In this chapter, we will take a traditional fill-and-submit form and turn
it into a more functional, intuitive, and feature-rich form. We’ll “super -
size” the regular HTML controls into Dijit components, adding tons of
useful functionality with almost zero programming. When we're done,
you’'ll have a form that’s so neat and functional that you’ll want to tape
a copy of it to your refrigerator.

Dijit components solve common web design issues, and you can drop
them in and make them work in a matter of minutes. And that’s good,
because you have a problem form on your hands. ..

2.1 What Customers Are Saying About Your Form

So, let’s talk about that web page. You know the one. It's where sub-
scribers change their address, look up their order information, manage
their subscription preferences, and so on. It’s called Account Prefer-
ences or My Account or something like that.

You know that page? Well. . . people hate it.

No one told you? Of course not. It’s easier to mutter under your breath
than send a comment to “Contact Us.” Here’s what they’re saying:

® Customer Looking for Their Order History: “OK, phone number,
phone number. Where is it? [scroll, scroll, scroll, scroll] Oh, here
it is. Way down at the bottom. Nice.”

* Customer Service Representative: “Oh, great. Someone typed Rover
as their email address. Stupid web server. Doesn’t it know all email
addresses have an @ sign?”

Hmmm. Your form has an attitude problem. Fortunately, Dijit is here
to help. Its layout, verification, and user interface elements will solve
these problems, and the overall design will be much prettier to boot.
So, what are we waiting for? The sooner we get it installed, the sooner
we can get started!

2.2 Installing Dojo on Your Own Server

Dojo is a client-side JavaScript toolkit, and its heart lies in some well-
tuned JavaScript scripts. In a Dojo-based web application, you create
small bits of HTML and JavaScript that call the Dojo toolkit code.

Technically, Dojo doesn’t need a web server. You can install Dojo into
any directory, build Dojo-based web applications, and load them all

ADDING D0OJO AND DIJIT TO A PAGE - 22

with the file:// protocol. But a web server lets you do more interest-
ing things such as proxying (introduced in the sidebar on page 48)
and partitioning (in Section 10.3, Partitioning with QueryReadStore,
on page 272). For that reason, we recommend installing a web server
first—and here, you can choose any one that fits your needs. Dojo is
stubbornly server-agnostic. There are no special procedures for serving
it from a Windows, Linux, or Mac OS X server.

You can download the latest Dojo package from http://dojotoolkit.org. It
comes bundled with Dojo, all the Dijit components, the extension com-
ponents of Dojox, and utilities such as the DOH unit tester and the
ShrinkSafe source code compressor.! Follow the directions for expand-
ing the .zip or .targz file on your computer. If you know what you're
doing, you can pick any directory you want for installation. This book’s
example code assumes the files are in the /dojoroot directory on your
web server. The Dojo archive file contains four directories: dojo, dijit,
dojox, and util.

Finally, if you're picky about such details like “Did I install it right?”
then simply hit the URL http://yourserver.com/dojoroot/dojo/tests/runTests.
html. This will run Dojo through a battery of unit tests.

We should note here that for serving dynamic content from your own
data sources, you'll need to use a server-based programming language
such as PHP, ASP, or JSP. Since our focus here is Dojo, the examples in
this book are server-agnostic. Instead, we’ll hook either to third-party
data sources, such as Yahoo, or to static files that emulate dynamic
data sources.

2.3 Adding Dojo and Dijit to a Page

Dojo and Dijjit act much like other JavaScript libraries. You add a few
statements to the top of each page, and these statements transfer the
Dojo/Dijit JavaScript code to the browser. Below those statements, you
can call Dojo methods and/or use Dijit components. Dijit components
rely on Dojo methods, but the loading processes handle all the depen-
dencies for you.

You must add a few statements to the <head> and <body> sections
of each page to accomplish that. Fortunately, the statements are fairly

1. This is the “binary distribution” of Dojo. You can also download the entire source
version, which allows you to do custom builds. We explain the other differences in Sec-
tion 4.2, Getting the Source, on page 77.

ADDING D0OJO AND DIJIT TO A PAGE <« 23

boilerplate. You can add these statements to a text editor template file,
a macro, or a snippet within easy reach. Or, if your site uses a standard
include file, you can place the boilerplate in that file. In short, you need
to do the following:

1. Add the standard Dojo headers to the <head> section.
2. Set the class for the <body> tag to a Dijit theme.
3. Add dojo.require statements for the components you need.

If you are using Dojo without Dijit, some of these steps can be elim-
inated or reduced. We'll note where you can do this. But there’s no
harm, except for a small increase in load time, in including all of them.
So, let’s begin.

Step 1: Add the Standard Dojo Headers

The following statements load the Dojo toolkit and style sheets from
your server:

Download advanced_forms_made_easy/hello_dojo_world.html

<style type="text/css">
@import "/dojoroot/dijit/themes/tundra/tundra.css";
@import "/dojoroot/dojo/resources/dojo.css"
</style>
<script type="text/javascript" src="/dojoroot/dojo/dojo.js"
djConfig="parseOnLoad: true"></script>

The @import rule loads the standard Dojo styles and the theme Tun-
dra. In Dijit terminology, a theme is a set of fonts, colors, and siz-
ing settings for components so they look good together. Three themes
come prepackaged with Dijit—Tundra, Soria, and Nihilo—and you can
develop your own themes as well, a process we describe in Chapter 16,
Dijit Themes, Design, and Layout, on page 428. You must always import
dojo.css, but if you're using Dojo without Djjit, you can omit the theme
style sheet import.

The <script> tag pulls the Dojo code from your server. The djCon-
fig="parseOnLoad:true" attribute is required to use Dojo elements declar-
atively. The declarative vs. programmatic distinction in Dojo is one we’ll
cover throughout the book, but for now we’ll be using just declarative
widgets because they’re easier to learn. If you can’t wait for the details,
see the sidebar on the following page.

ADDING D0OJO AND DIJIT TO A PAGE <« 24

r

Declarative vs. Programmatic: A Preview for the Impatient

You can create Dijit widgets declaratively or programmatically.
In a nutshell, declarative widgets are nestled in HTML like this:

Download advanced_forms_made_easy/declarative_vs_programmatic.htmi

<div dojoType="dijit.layout.ContentPane"
href="http://www.yahoo.com" ></div>

Programmatic widgets are built from JavaScript like this:

Download advanced_forms_made_easy/declarative_vs_programmatic.htmi

var programmaticPane =
new dijit.layout.ContentPane(
{ href: 'http://www.yahoo.com' }
DE

Declarative widgets use nonstandard HTML attfributes such as

dojoType=. Although this may bother purists, the utility of declar-
ative widgets makes them an acceptable trade-off.*

So, with that said, declarative is the easiest method for using
Dijit and the one we’ll use for most of the book. In Chap-
ter 12, Scripting Widgets, on page 319, we’ll see program-
matic Dijit components. If you use only programmatic Dijit or
use plain Dojo without Dijit, you don’t need dojo.parser or djCon-
fig="parseOnLoad:true’. Omitting them makes the page load a
smidge faster.

+. Not convinced? See the Alex Says..., on page 81 for an explanation of
nonstandard attributes and their role in Dojo.

~

Step 2: Set the Class of the Body

Next, you set the class of the body to match the theme. In our case,
we're using Tundra, so we add the following:

Download advanced_forms_made_easy/hello_dojo_world.html

</head>
<body class="tundra">

The class name will match the theme name in lowercase: tfundra, soria,
or nihilo. (The ally theme is autoapplied under certain conditions that
you'll learn about in Section 16.3, Ally and Themes, on page 440.)

You might ask, “Why do I need to specify my theme here? I loaded
it in the style sheet.” The biggest reason is that Dojo doesn’t per-

ADDING D0OJO AND DIJIT TO A PAGE <« 25

form “magic.” Simply including something in the page shouldn’t have
huge side effects, and every modification of your page should be at
your control. By scoping theme rules to the tundra (or other theme-
appropriate) prefix, Dijjit puts you in control. Second, placing the theme
in the <body> tag partitions the styles into a neat namespace hierar-
chy. We'll show you how this works in Section 16.1, Theme Structure,
on page 428.

The theme is used for Dijit components only. If you're using Dojo with-
out Dijit, you can omit loading it.

Step 3: Add dojo.require Statements

Dojo and Dijit components, like big treasures, come in small packages;
they're called modules, and you will need to include a dojo.require for
each module referenced in your page. dojo.require acts like require_once
in PHP or require in Ruby.

You add code like this to the <head> section:
Download advanced_forms_made_easy/hello_dojo_world.html

<script type="text/javascript'>
dojo.require("dojo.parser");
dojo.require("dijit.layout.ContentPane");
</script>

The dojo.parser module is required for all pages using declarative Dijit.
(See the sidebar on the previous page for details.) Then you load the
dijit.layout.ContentPane module, required to draw Dijit content panes.
Dojo modules correspond roughly to JavaScript files under /dojoroot.
For example, requiring dijiit.layout.TabContainer loads the JavaScript
script /dojoroot/dijit/layout/TabContainer.js. The story is more complex, as
we'll see in Chapter 4, Dojo In Depth, on page 71, but this is the general
idea.

dojo.require is one of the most important functions in Dojo. But how do
you know which modules to include? In this book, we’ll always intro-
duce a new component or Dojo API, say the Date API, with its module
name, for example, dojo.date. These module names are also shown in
the Dojo online API guide at http://dojotoolkit.org/api.

You will be applying these three steps to every page using Dojo or
Dijit. Once the browser loads the theme style sheet and executes the
Dojo script, processes the dojo.require statements, and sets the <body>
class, you're ready to roll. Meanwhile back on our Account Preferences
form, we have problems to solve.

LAYING OUT THE FORM < 26

First Name:

Last Name:

Middle Initial:

Address Line 1:

Address Line 2:
City:
State:

Pastal Code:

Country:

Date of Mave to this
Address:

Home Phone:

Wark Phone:

TR

Cell Phaone:

Figure 2.1: Our form before adding dijit

2.4 Laying Out the Form

In Figure 2.1, you can see Account Preferences as it exists now. The
form is too long, and users hate scrolling through it. It would be eas-
ier to use if the fields were presented in logical groups. We will do that
by using the Dijit components dijit.layout.ContentPane, a widget that
separates parts of a page, and dijit.layout.TabContainer, which adds tabs
to them.

Tabs along the top will group the form into sections: Personal Data,
Address, and so on. Only one tab shows at a time. Clicking a tab label
on the top brings the corresponding section to the front. It looks like a
file cabinet—intuitive and friendly.

Preparing the Page

To get to the tabbed interface, we must first add Dojo and Dijit to the
page, as outlined in the previous section.

LAYING OUT THE FORM <«

First, add the <style> and <script> tags:
Download advanced_forms_made_easy/form_with_dijit.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0org/TR/htm14/Toose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Account Preferences With Dijit</title>
<style type="text/css'">
@import "/dojoroot/dijit/themes/tundra/tundra.css";
@import "/dojoroot/dojo/resources/dojo.css"
</style>
<script type="text/javascript" src="/dojoroot/dojo/dojo.js"
djConfig="parseOnLoad: true"></script>

YVVYYVYY

(The lines marked with a triangle in the margin are the ones we added.)
Then, add the <body> class for the theme, which is fundra in our case.

Download advanced_forms_made_easy/form_with_dijit.html

<body class="tundra'">

Finally, add the dojo.require statements. In this case, the page needs the
dijit.layout.TabContainer and dijit.layout.ContentPane components:

Download advanced_forms_made_easy/form_with_dijit.html

<script>
dojo.require("dojo.parser");
dojo.require("dijit.layout.ContentPane");
dojo.require("dijit.layout.TabContainer");
</script>
<style>
.formContainer {
width:600px;
height:600px;
}
Tlabel {
width:150px;
float:left;
}
</style>

</head>

The styles will line up the labels and textboxes we will add in a sec-
ond. With the preliminaries out of the way, we can now add our Dijit
components.

LAYING OUT THE FORM < 28

Organizing the Form with Tabs

In Dijit, “adding a component” really means “adding the dojoType= at-
tribute to an HTML tag.” Dijit components nestle right inside your
HTML code. Most components begin life as <div> tags, but others are
built on <input>, , or other tags.

The two components we need, again, are as follows:

* A dijit.layout.ContentPane, which holds one “tabful” of data. Each
ContentPane has a label that appears on the tab.

¢ A dijit.layout.TabContainer