
www.allitebooks.com

http://www.allitebooks.org


Mastering Ninject for 
Dependency Injection

Learn how Ninject facilitates the implementation 
of Dependency Injection to solve common design 
problems of real-life applications

Daniel Baharestani

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Mastering Ninject for Dependency Injection

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-620-7

www.packtpub.com

Cover Image by Daniel Baharestani (baharestani@gmail.com) and  
Sheetal Aute (sheetala@packtpub.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Daniel Baharestani

Reviewers
Remo Gloor

Daniel Allen

Matt Duffield

Ted Winslow

Acquisition Editor
Pramila Balan

Commissioning Editor
Nikhil Chinnari

Technical Editors
Iram Malik

Krishnaveni Haridas

Veena Pagare

Project Coordinator
Romal Karani

Proofreader
Clyde Jenkins

Indexer
Monica Ajmera

Graphics
Ronak Dhruv

Production Coordinator 
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org


About the Author

Daniel Baharestani is an experienced IT professional living in Australia. He has 
a BSc in software engineering and has over 10 years of professional experience in 
design and development of enterprise applications, mostly focused on Microsoft 
technologies. Daniel is currently working at 3P Learning, which is a global leader in 
online learning for school-aged students with its flagship platform, Mathletics—used 
by more than 3.5 million students in over 10,000 schools worldwide.

A book is like a song, which may usually be referred to by its singer's 
name, whereas many people are involved in the background to make 
it happen. 
 
First, I am deeply indebted to my wife, Mona, who has taken all my 
responsibilities during this period. I understand how hard it was for 
her to do everything alone that we used to do together. 
 
My special thanks goes to Remo Gloor, the main developers of 
Ninject, who kindly accepted the final technical review of this book, 
and other technical reviewers, including Daniel Allen, Matt Duffield, 
and Ted Winslow for providing valuable feedback. 
 
I would also like to thank my manager, Houman, for being helpful 
and encouraging, and for understanding how important this book 
was to me. It would be much difficult to have it done without his 
support. 
 
Finally, I should acknowledge the whole Packt team, who gave me 
this opportunity and guided me through this process, including 
but definitely not limited to, Nikhil Chinnari and Yogesh Dalvi, my 
commissioning editors, Sneha Modi and Romal Karani, my project 
coordinators, and Shrutika Kalbag, the author relationship executive 
for opening a door.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Remo Gloor has worked as a Software Architect at bbv Software Services AG 
in Switzerland for many years. During this time, he was using Ninject in several 
projects. At the beginning, he was a user of Ninject. Later, he contributed with 
several extensions. In 2010, he became manager and the main contributor to Ninject, 
which was developed originally by Nate Kohari and Ian Davis.

Besides his interest in dependency injection and IoC containers, he has also a strong 
interest in service-oriented and message-driven architectures, as well as event 
sourcing. Because of this, he contributed to the ActiveMq support to NServiceBus.

He blogs on http://www.planetgeek.ch/author/remo-gloor/ mainly about 
Ninject. He also answers many Ninject-related questions on stackoverflow:  
http://stackoverflow.com/users/448580/remo-gloor.

www.allitebooks.com

http://www.allitebooks.org


Daniel Allen is a Chicago-based developer who specializes in ASP.NET MVC 
4 development and enterprise architecture design. He develops primarily in C#, 
JavaScript, and Objective-C. Because of his heavy focus on enterprise architecture 
design, Dan has experience in an array of patterns and tools that he has effectively 
and logically combined together to meet a project's unique needs. Dan holds a B.S.  
in Management Information Systems and an MBA with a concentration in 
Information Systems.

Dan spends much of his free time working on development-related side contracts 
and searching for the next great startup idea. He aspires to start a consulting firm 
that will provide capital for the various startup ideas one day. For recreation, he 
enjoys training and competing in various marathons, and aspires to complete a  
full iron man competition one day.

He has formerly worked with Millennium Information Services, Inc. as an ASP.
NET MVC Web Developer. His primary tasks in this role were MVC 4 Razor 
development, HTML 5 frontend GUI design, enterprise architecture design, 
and WCF, Oracle database, and agile development. He has also worked for Arc 
Worldwide / Leo Burnett as an Associate Software Engineer. His primary tasks 
in this role were ASP.NET Web Forms development, frontend GUI design, and he 
also worked on SQL Server database. Dan has also worked with American Concrete 
Pavement Association as a Software Engineer. His primary tasks in this role were 
ASP.NET Web Forms and MVC 4 development, iOS mobile development, and SQL 
Server database, graphics and media development.

For Dan's complete professional history and his online interactive portfolio,  
please visit http://www.apexwebz.com.

I would like to thank my family for their ongoing support. My father 
inspired me to start working in this field, and now I can't picture 
myself doing anything else. I would also like to thank my close 
friend, past boss, and ongoing mentor, Robert Rodden, for helping 
me at every step of the way in my professional career.

www.allitebooks.com

http://www.allitebooks.org


Matt Duffield is a software architect, and has over 17 years of experience working 
in IT. He enjoys building a rich line of business applications that focus on great user 
experiences while providing excellent business intelligence, such as dashboards and 
expert systems. His current focus is on client-side MVC architecture and building 
cross-platform solutions. Matt is very active in the community, speaking at user 
groups and code camps. He is an INETA speaker and a Microsoft MVP in client 
development. He is the co-author of Microsoft Silverlight 5: Building Rich Enterprise 
Dashboards, Packt Publishing. His blog can be found at http://mattduffield.
wordpress.com. You can follow him on Twitter at @mattduffield. Matt is also 
the leader of the Charlotte ALT.NET user group (http://www.meetup.com/
charlottealtnet/) and Charlotte Game Dev user group (http://www.meetup.
com/Charlotte-Game-Dev/). He is also the Vice President of the Charlotte 
Enterprise Developers Guild (http://www.developersguild.org/) and also  
board member of the Carolina Code Camp.

Ted Winslow has been one of those programmers who impressed the likes of 
NASA and Boeing with his skills behind a keyboard ever since his sixth grade. Even 
when he isn't working for one of the big names, he's freelancing for multimillion-
dollar shops, and considers writing code a way to relax in his downtime. He started 
writing code while young and did it with little more than a basic starter book and a 
half-broken computer. Against all odds, he has now a lengthy and respected work 
history with code chops for which large and small companies hunger. Nowadays, 
he's spotted helping people in his free time to make sure the young programmers 
understand and have a chance to live their dream, even when the odds are stacked 
against them.

I'd like to thank my friends for both the encouragement they've 
provided during my career and for putting up with me every day. 
You all mean a lot to me.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers 
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. 
Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Understanding Dependency Injection	 7

What is Dependency Injection?	 8
DI or Inversion of Control (IoC)	 9

How can DI help?	 10
My First DI Application	 12
DI Containers	 16
Why use Ninject?	 17
Summary	 17

Chapter 2: Getting Started with Ninject	 19
Hello Ninject!	 19
It's all about Binding	 22
Object Lifetime	 25

Transient scope	 25
Singleton scope	 26
Thread scope	 27
Request scope	 28
Custom scope	 28

Ninject modules	 30
XML configuration	 31

How to use XML configuration	 31
Convention over configuration	 34

Selecting the assemblies	 35
Selecting the components	 36

Filtering the selected components	 37
Explicit inclusion and exclusion	 37

Selecting service types	 37
Configuring the Bindings	 38

Summary	 39

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Chapter 3: Meeting Real-world Requirements	 41
DI patterns and antipatterns	 41

Constructor Injection	 42
Initializer methods and properties	 43
Service Locator	 45

Multi binding and contextual binding	 46
Implementing the plugin model	 46
Contextual binding	 49

Named binding	 51
Resolving metadata	 52
Attribute-based binding	 55
Target-based conditions	 56
Generic helper	 57

Custom providers	 57
Activation context	 61
The Factory Method	 61

Dynamic factories	 62
The Shape Factory example	 62
Using convention	 65

Selecting service types	 65
Defining Binding Generator	 65

Telecom Switch example	 66
Custom Instance Providers	 68
Func	 70
Lazy	 71

Summary	 71
Chapter 4: Ninject in Action	 73

Windows Forms applications	 77
WPF and Silverlight applications	 81
ASP.NET MVC applications	 89

Validator injection	 92
Filter injection	 94

Conditional filtering (When)	 97
Contextual arguments (With)	 98

WCF applications	 98
ASP.NET Web Forms applications	 102
Summary	 103



Table of Contents

[ iii ]

Chapter 5: Doing More with Extensions	 105
Interception	 105

Setup Interception	 106
Member Interception	 106
Type Interception	 108
Multiple Interceptors	 110
InterceptAttribute	 113

Mocking Kernel	 114
Extending Ninject	 118
Summary	 119

Index	 121





Preface
Mastering Ninject for Dependency Injection demonstrates how Ninject facilitates  
the implementation of Dependency Injection to solve common design problems  
of real-life applications in a simple and easy-to-understand format. This book will  
teach you everything you need in order to implement Dependency Injection using 
Ninject in a real-life project. Not only does it teach the Ninject core framework 
features which are essential for implementing DI, but it also explores the power  
of Ninject's most useful extensions, and demonstrates how to apply them in a  
real-life application.

What this book covers
Chapter 1, Understanding Dependency Injection, introduces Dependency Injection 
concepts and describes the advantages of using this technique. We will also go 
through a simple example and implement the principles and patterns related to  
DI techniques. After understanding what a DI container is, we will discuss why 
Ninject is a suitable choice.

Chapter 2, Getting Started with Ninject, teaches the user how to add Ninject to a 
practical project and how to use the basic features of this framework. The chapter 
starts with an example demonstrating how to set up and use Ninject in a Hello 
World project. Then, we will talk about how Ninject resolves dependencies and how 
it manages object lifetime. We will also cover the code-based configuration using 
Ninject modules and XML-based configuration. The final section of this chapter 
describes how to configure a large application which includes hundreds of services 
using Ninject conventions. By the end of this chapter, the user will be able to set  
up and use the basic features of Ninject.



Preface

[ 2 ]

Chapter 3, Meeting Real-world Requirements, introduces more advanced features of 
Ninject which are necessary in order to implement DI in real-world situations. The 
chapter starts with an introduction to some patterns and antipatterns related to 
Ninject. We will then go through real examples and see how Ninject can solve such 
kind of problems. By the end of this chapter, the user is expected to know almost  
all of the significant features of Ninject.

Chapter 4, Ninject in Action, shows how to set up different types of applications using 
Ninject. We will implement a concrete scenario using a variety of application types, 
including but not limited to, WPF, ASP .NET MVC, and WCF, to see how to set up 
and use Ninject for injecting the dependencies. By the end of this chapter, the user 
should be able to set up and use Ninject for all kinds of described applications.

Chapter 5, Doing More with Extensions, will show how Interception is a solution for 
cross-cutting concerns, and how to use Mocking Kernel as a test asset. While the core 
library of Ninject is kept clean and simple, Ninject is a highly extensible DI container, 
and it is possible to extend its power by using extension plugins. We will also see 
how Ninject can be extended.

What you need for this book
The examples of the book are written in Microsoft Visual Studio 2012; however,  
the target framework is set to .NET 4.0 so that they can be easily built using  
MSBuild and .NET Framework 4.0, even if you do not have Visual Studio 2012.

In the ASP.NET MVC application, we used MVC 3, and Microsoft SQL Server 
Compact 4.0 is used for SQL Data Layer.

You need an Internet connection to download required references and online 
packages, such as Ninject and its extensions. Having NuGet package manager  
on your system facilitates installing of referenced packages, but it is not required, 
as wherever we need to install such packages, the instruction for manually 
downloading and referencing the binaries is also provided.

We have also used NUnit for our Unit Tests, which is freely available for download 
via NuGet or NUnit website.



Preface

[ 3 ]

Who this book is for
This book is for all software developers and architects who are willing to create 
maintainable, loosely coupled, extensible, and testable applications. Because Ninject 
targets the .NET platform, this book is not suitable for software developers of other 
platforms. You should be comfortable with object oriented principals, and have 
a fair understanding of inheritance and abstraction. Being familiar with design 
patterns and general concept of unit testing is also a great help, but no knowledge 
of Dependency Injection is assumed. Although Ninject can be used in any .NET 
programming languages, the examples of this book are all in C#, so the reader is 
assumed to be familiar with this language.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "The following example shows how  
to use the ILogger interface."

A block of code is set as follows:

[Inject]
public ILogger Logger {get; set;}

public void DoSomething()
{
    Logger.Debug("Doing something...");
}

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

 kernel.Bind(x => x
    .FromThisAssembly()
    .SelectAllClasses()
    .InNamespaces("Northwind.Controllers")
    .BindBase());

Any command-line input or output is written as follows:

2013-05-23 05:04:40 INFO  LogSamples.Consumer - Doing something...



Preface

[ 4 ]

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The first 
one is called when the hyperlink Create New is clicked using HTTP GET method ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.



Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.





Understanding  
Dependency Injection

"It's more about a way of thinking and designing code than it is about tools  
and techniques"

– Mark Seemann

This chapter introduces the Dependency Injection (DI) concepts and describes 
the advantages of using this pattern. We will also go through a simple example 
and implement the principles and patterns related to the DI technique to it. After 
understanding what a DI container is, we will discuss why Ninject is a suitable one.

By the end of this chapter, the reader is expected to have a good understanding of  
DI and how Ninject can help them as a DI container.

The topics covered in this chapter are:

•	 What is Dependency Injection?
•	 How can DI help?
•	 My first DI application
•	 DI Containers
•	 Why use Ninject?

www.allitebooks.com

http://www.allitebooks.org


Understanding Dependency Injection

[ 8 ]

What is Dependency Injection?
Dependency Injection is one of the techniques in software engineering which 
improves the maintainability of a software application by managing the dependent 
components. In order to have a better understanding of this pattern, let's start this 
section with an example to clarify what is meant by a dependency, and what other 
elements are involved in this process.

Cameron is a skilled carpenter who spends most of his time creating wooden stuffs. 
Today, he is going to make a chair. He needs a saw, a hammer, and other tools. 
During the process of creating the chair, he needs to figure out what tool he needs 
and find it in his toolbox. Although what he needs to focus on is how to make 
a chair, without thinking of what tools he needs and how to find them, it is not 
possible to finish the construction of the chair.

The following code is the C# representation of Cameron, as a carpenter:

class Carpenter
{
  Saw saw = new Saw();
  void MakeChair()
  {
    saw.Cut();
    // ...
  }
}

Sarah is a heart surgeon. She works for a hospital and spends her days in the 
operation room, and today she is going to perform an open-heart surgery. It is a 
sophisticated procedure, and she needs to focus on the operation itself, rather than 
finding the tools during the operation. That is why she has an assistant to provide 
her with the tools she requires. This way, she ensures that the exact tool that she 
needs will be in her hand by her assistant. She doesn't need to know where the  
tool is and how to find it. These are her assistant's responsibilities.

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files 
e-mailed directly to you.



Chapter 1

[ 9 ]

This is the C# implementation of Sarah, the surgeon:

class Surgeon
{
  private Forceps forceps;

  // The forceps object will be injected into the constructor 
  // method by a third party while the class is being created.
  public Surgeon(Forceps forceps)
  {
    this.forceps = forceps;
  }

  public void Operate()
  {
    forceps.Grab();
    //...
  }
} 

As we can see, she doesn't need to worry about how to get the forceps; they are 
provided to her by someone else.

In the previous examples, Cameron and Sarah are samples of dependent components 
that have a responsibility, and tools that they need are their dependencies. 
Dependency Injection is all about how they get to the tools they need. In the first 
example, the dependent component (Cameron) itself had to locate the dependency, 
while in the second one, a third party (the assistant) locates and provides it. This 
third party is called an Injector, which injects the dependencies.

DI or Inversion of Control (IoC)
Martin Fowler defines Inversion of Control (IoC) as a style of programming in 
which the framework takes the control of the flow instead of your code. Comparing 
handling an event to calling a function is a good example to understand IoC. When 
you call the functions of a framework, you are controlling the flow, because you 
decide in what sequence to call the functions. But in case of handling events, you 
are defining the functions and the framework is calling them, so the control is 
inverted to the framework instead of you. This example showed you how control 
can be inverted. DI is a specific type of IoC, because instead of your components 
concern about their dependencies, they are provided with the dependencies by the 
framework. Indeed, as Mark Seemann states in his book, Dependency Injection in 
.NET, IoC is a broader term which includes, but is not limited to, DI, even though 
they are often being used interchangeably. IoC is also known as the Hollywood 
Principle: "Don't call us, we'll call you".



Understanding Dependency Injection

[ 10 ]

How can DI help?
Every software application is inevitable of change. As your code grows and 
new requirements arrive, the importance of maintaining your codes becomes 
more tangible, and it is not possible for a software application to go on if it is not 
maintainable. One of the design principles that lead to producing a maintainable 
code is known as Separation of Concerns (SoC). The SoC is a broad concept and is 
not limited to software design; but in the case of composing software components, 
we can think of SoC as implementing distinct classes, each of which deals with 
a single responsibility. In the first example, finding a tool is a different concern 
from doing the operation itself and separating these two concerns is one of the 
prerequisites for creating a maintainable code.

Separation of concerns, however, doesn't lead to a maintainable code if the sections 
that deal with concerns are tightly coupled to each other.

Although there are different types of forceps that Sarah may need during the 
operation, she doesn't need to mention the exact type of forceps which she requires. 
She just states that she needs forceps, and it is on her assistant to determine which 
forceps satisfies her need the best. If the exact type that Sarah needs is temporarily 
not available, the assistant has the freedom to provide her with another suitable 
type. If the hospital has bought a new type of forceps that the assistant thinks is more 
suitable, he or she can easily switch to the new one because he or she knows that 
Sarah doesn't care about the type of forceps as long as it is suitable. In other words, 
Sarah is not tightly coupled to a specific type of forceps.

The key principle leading to loose coupling is the following, from the Gang of Four 
(Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software):

"Program to an "interface", not an "implementation"."

When we address our dependencies as abstract elements (an interface or abstract 
class), rather than concrete classes, we will be able to easily replace the concrete 
classes without affecting the consumer component:

class Surgeon
{
  private IForceps forceps;

  public Surgeon(IForceps forceps)
  {
    this.forceps = forceps;
  }



Chapter 1

[ 11 ]

  public void Operate()
  {
    forceps.Grab();
    //...
  }
}

The Surgeon class is addressing the interface IForceps and does not care about the 
exact type of the object injected into its constructer. The C# compiler ensures that 
the argument passed to the forceps parameter always implements the IForceps 
interface and therefore, existence of the Grab() method is guaranteed. The following 
code shows how an instance of Surgeon can be created providing with a suitable 
forceps:

var forceps = assistant.Get<IForceps>();
var surgeon = new Surgeon (forceps);

Because the Surgeon class is programmed to the IForceps interface rather than a 
certain type of forceps implementation, we can freely instantiate it with any type of 
forceps that the assistant object decides to provide.

As the previous example shows, loose coupling (surgeon is not dependent on a 
certain type of forceps) is a result of programming to interface (surgeon depends on 
IForceps) and separation of concerns, (choosing forceps is the assistant's concern, 
while the surgeon has other concerns) which increases the code maintainability.

Now that we know loose coupling increases the flexibility and gives freedom of 
replacing the dependencies easily; let's see what else we get out of this freedom 
other than maintainability. One of the advantages of being able to replace the 
concrete classes is testability. As long as the components are loosely coupled to their 
dependencies, we can replace the actual dependencies with Test Doubles such as 
mock objects. Test Doubles are simplified version of the real objects that look and 
behave like them and facilitate testing. The following example shows how to unit test 
the Surgeon class using a mock forceps as a Test Double:

[Test]
public void CallingOperateCallsGrabOnForceps()
{
  var forcepsMock = new Mock<IForceps>();

  var surgeon = new Surgeon(forcepsMock.Object);
  surgeon.Operate();

  forcepsMock.Verify(f => f.Grab());
}



Understanding Dependency Injection

[ 12 ]

In this unit test, an instance of the Surgeon class is being created as a System Under 
Test (SUT), and the mock object is injected into its constructor. After calling the 
Operate method on the surgeon object, we ask our mock framework to verify 
whether the Grab operation is called on the mock forceps object as expected.

Maintainability and testability are two advantages of loose coupling, which is in turn 
a product of Dependency Injection. On the other hand, the way an Injector creates 
the instances of concrete types, can introduce the third benefit of DI, which is the late 
binding. An Injector is given a type and is expected to return an object instance of 
that type. It often uses reflection in order to activate objects. So, the decision of which 
type to activate can be delayed to the runtime. Late binding gives us the flexibility of 
replacing the dependencies without recompiling the application. Another benefit of 
DI is extensibility. Because classes depend on abstractions, we can easily extend their 
functionality by substituting the concrete dependencies.

My First DI Application
We start our example with a service class in which the concerns are not separated. 
Then we will improve maintainability step-by-step, by first separating concerns and 
then programming to interface in order to make our modules loosely coupled. At the 
final point, we will have our first DI application. The source code  
for all the examples of this book is available for download on the publisher's website.

The main responsibility of this service is to send an e-mail using the information 
provided. In order to make the example simple and clear, client initialization  
is omitted.

class MailService
{
  public void SendEmail(string address, string subject, string  
    body)
  {
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    client.Send(mail);
  }
} 

Then, we add some logging to it, so that we know what is going on in our service:



Chapter 1

[ 13 ]

class MailService
{
  public void SendMail(string address, string subject, string  
    body)
  {
    Console.WriteLine("Creating mail message...");
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    Console.WriteLine("Sending message...");
    client.Send(mail);
    Console.WriteLine("Message sent successfully.");
  }
}

After a little while, we find it useful to add time to our logs. In this example, sending 
the mail message and logging functionality are two different concerns which are 
addressed in a single class, and it is not possible to change the logging mechanism 
without touching the MailService class. Therefore, in order to add time to our logs, 
we have to change the MailService class. So, let's re-factor this class and separate 
the concern of logging from sending a mail prior to adding the time functionality:

class MailService
{
  private ConsoleLogger logger;
  public MailService()
  {
    logger = new ConsoleLogger();
  }

  public void SendMail(string address, string subject, string  
    body)
  {
    logger.Log("Creating mail message...");
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    logger.Log("Sending message...");
    client.Send(mail);
    logger.Log("Message sent successfully.");
  }
}



Understanding Dependency Injection

[ 14 ]

The ConsoleLogger class is only responsible for the logging mechanism, and this 
concern is removed from MailService. Now, it is possible to modify the logging 
mechanism without affecting MailService:

class ConsoleLogger
{
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}

Now, we need to write our logs in Windows Event Log rather than showing them  
in console. Looks like we need an EventLogger class as well:

class EventLogger
{
  public void Log(string message)
  {
    EventLog.WriteEntry("MailService", message);
  }
}

Although the concern of sending mail and logging are now separated in two different 
classes, MailService is still tightly coupled to the ConsoleLogger class, and it is not 
possible to replace its logger without modifying it. We are just one step away from 
breaking the tight coupling between the MailService and Logger classes. We should 
now introduce the dependencies as interfaces rather than concrete classes:

interface ILogger
{
  void Log(string message);
}

Both the ConsoleLogger and EventLogger classes should implement this interface:

class ConsoleLogger:ILogger
{
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}
class EventLogger:ILogger
{



Chapter 1

[ 15 ]

  public void Log(string message)
  {
    EventLog.WriteEntry("MailService", message);
  }
}

Now, it is time to remove the references to the concrete ConsoleLogger class and 
address ILogger instead:

private ILogger logger;
public MailService()
{
  logger = new ILogger();
}

But the previous code won't compile because it doesn't make sense to instantiate an 
interface. We should introduce this dependency as a constructor parameter and have 
the concrete object injected into it by a third party:

public MailService(ILogger logger)
{
  this.logger = logger;
}

At this point, our classes are loosely coupled and we can change the loggers freely 
without affecting the MailService class. Using DI, we have also separated the 
concern of creating a new instance of the logger class, which includes the concern of 
deciding what concrete logger to use from the main responsibility of MailService, 
which is sending an e-mail:

internal class Program
{
  private static void Main(string[] args)
  {
    var mailService = new MailService(new EventLogger());
    mailService.SendMail("someone@somewhere.com", "My first DI  
      App", "Hello World!");
  }
}

The main method of this application is where we decide what concrete objects to 
inject in our dependent classes. This (preferably) unique location in the application 
where modules are composed together is named Composition Root by Mark 
Seemann. For more information on DI, Dependency Injection in .NET, by Mark Seemann 
is recommended.



Understanding Dependency Injection

[ 16 ]

DI Containers
A DI container is an injector object that injects the dependencies into a dependent 
object. As we have seen in the previous example, we don't necessarily need a DI 
container in order to implement Dependency Injection. However, in more complex 
scenarios, a DI container can save a lot of time and effort by automating most of the 
tasks that we had to do manually. In real world applications, a single dependant 
class can have many dependencies, each of which have their own dependencies 
that forms a large graph of dependencies. A DI container should resolve the 
dependencies, and this is where the decision of selecting a concrete class for the 
given abstraction should be made. This decision is made by a mapping table, 
which is either based on a configuration file or is programmatically defined by the 
developer. We can see an example for both here:

<bind service="ILogger" to="ConsoleLogger" /> 

This one is an example of code-based configuration:

Bind<ILogger>().To<ConsoleLogger>();

We can also define conditional rules instead of just mapping a service to a concrete 
type. We will discuss this feature in detail in Chapter 2, Getting Started with Ninject.

A container has the responsibility of dealing with the lifetime of the created objects.  
It should know how long an object should be kept alive, when to dispose of it,  
in what condition to return the existing instance, and in what condition to create  
a new one.

DI Containers are also known as IoC Containers.

There are other DI Container besides Ninject. You can find a list of 
them in Scott Hanselman's blog (http://www.hanselman.com/blog/
ListOfNETDependencyInjectionContainersIOC.aspx). Unity, Castle Windsor, 
StructureMap, Spring.NET, and Autofac are a few of them:



Chapter 1

[ 17 ]

Unity Castle 
Windsor

StructureMap Spring.NET Autofac

License MS-PL Apache 2 Apache 2 Apache 2 MIT

Description Build on the 
"kernel" of 
ObjectBuilder.

Well 
documented 
and used by 
many.

Written by 
Jeremy D. 
Miller.

Written 
by Mark 
Pollack.

Written by 
Nicholas 
Blumhardt 
and Rinat 
Abdullin.

Why use Ninject?
Ninject is a lightweight Dependency Injection framework for .NET applications. 
It helps you split your application into a collection of loosely-coupled, highly-
cohesive pieces, and then glues them back together in a flexible manner. By using 
Ninject to support your software's architecture, your code will become easier to 
write, reuse, test, and modify. Instead of relying on reflection for invocation, Ninject 
takes advantage of lightweight code generation in the CLR (Common Language 
Runtime). This can result in a dramatic (8-50x) improvement in performance in 
many situations. Ninject includes many advanced features. For example, Ninject 
was the first dependency injector to support contextual binding, in which a different 
concrete implementation of a service may be injected, depending on the context in 
which it is requested. Ninject supports most major facilities offered by the competing 
frameworks (although, many such elements live in extensions: plugin modules that 
layer on facilities on top of the core). You can have a look at the Ninject official wiki 
at https://github.com/ninject/ninject/wiki for a more detailed list of Ninject 
features which makes it one of the top DI containers.

Summary
Dependency Injection is a technique to help us produce loosely coupled code by 
moving the concern of creating the dependencies to another object known as a DI 
container. In other words, instead of a dependent object to decide what concrete class 
it needs, it just states the needs as an abstraction, and the injector provides it with the 
most suitable concrete class that satisfies the needs. Loose coupling is one of the main 
advantages of DI that leads to extensibility, maintainability, and testability. Late 
binding is another benefit of DI and dynamic loading of plugins is an example of 
this feature. There are DI containers other than Ninject, each of which has their own 
advantages and disadvantages.

www.allitebooks.com

http://www.allitebooks.org




Getting Started with Ninject
This chapter teaches the user how to add Ninject to a practical project and use the 
basic features of this framework. The chapter starts with an example demonstrating 
how to setup and use Ninject in a Hello World project. Then, we will talk about how 
Ninject resolves dependencies and how it manages object lifetime. Final sections  
of this chapter will cover code-based configuration using Ninject modules and  
XML-based configuration using an XML file. By the end of this chapter, the user  
will be able to setup and use basic features of Ninject.

The topics covered in this chapter are:

•	 Hello Ninject!
•	 It's all about Binding
•	 Object Lifetime
•	 Ninject modules
•	 XML configuration
•	 Convention over configuration

Hello Ninject!
Although DI is for complex projects, and applying it to a simple project looks like 
over-engineering, a Hello World project should usually be as simple as possible to 
show only how a framework works. This project helps us understand how to setup 
Ninject and run it in the simplest way. So, if you have already used Ninject and are 
familiar with this process, you can skip this section and continue reading the next one.



Getting Started with Ninject

[ 20 ]

1.	 The first step to setup Ninject is to download Ninject library. You can do it 
either using NuGet or by downloading the binary file. If you have NuGet 
package manager, create a new Console Application project in Visual Studio, 
and then simply search for Ninject in NuGet UI to install the package, as the 
following figure illustrates. Alternatively, you can type install-package 
Ninject, and then press enter in the Packet Manager Console located at 
View | Other Windows menu. Once the installation of Ninject package is 
finished, jump to step 5. If you don't have NuGet package manager, go to 
the download page of Ninject official website (http://www.ninject.org/
download.html) and download the most recent version for your desired 
framework. Considering Ninject is an open source project, you can even 
download the source codes from GitHub via the link provided on the 
download page.

2.	 In Windows Vista and other newer versions of Windows, you need to 
unblock the downloaded archive prior to uncompressing it, in order 
to prevent further security issues at runtime. Simply right-click on the 
downloaded file, open Properties, and from the General tab, click on the 
Unblock button. Then, unzip the archive to your libraries directory (for 
example, D:\Libraries\Ninject).

3.	 Open Visual Studio and create a new Console Application project.
4.	 Add a reference to Ninject.dll in your library directory.
5.	 Add a new class to your project and call it SalutationService:

class SalutationService
{
  public void SayHello()
  {
    Console.WriteLine("Hello Ninject!");
  }
}

6.	 Add using Ninject to the using section of Program.cs.
7.	 Add the following lines to your Main method:

using (var kernel = new Ninject.StandardKernel())
{
  var service = kernel.Get<SalutationService>();
  service.SayHello();
}



Chapter 2

[ 21 ]

8.	 Run the application.

That is how Ninject works in the simplest way. We didn't even need to add 
any configuration or annotation. Although we didn't have anything to inject 
in the previous example, Ninject did its main job, which was resolving a type 
(SalutationService).

Let's have a look at the Main method to see what was happening there. In the first 
line, we created a kernel object by instantiating StandardKernel. Kernel is always 
the start point of creating our dependency graph. In this simple example, the graph 
only consists of one type, which is SalutationService. As we see, we didn't call 
the constructor of SalutationService in neither of the Main method lines. Instead, 
we asked our container (kernel) to do it for us. We gave our required type to the 
Get method, and it returned an instance of the given type. In other words, the Get 
method was provided with the root type (SalutationService) of our dependency 
graph and returned the graph object.

Now that we know how to setup Ninject, let's move ahead to a more complex 
example to see how Ninject helps us to implement DI better.



Getting Started with Ninject

[ 22 ]

It's all about Binding
In Chapter 1, Understanding Dependency Injection, we implemented DI manually in the 
MailService class. You remember that we ignored the configuration of SmtpClient 
to simplify the project. Now, we are going to add the configuration of SmtpClient 
and implement DI using Ninject.

Let's start by creating the MailConfig class:

class MailServerConfig
{
  public string SmtpServer
  {
    get
    {
      return ConfigurationManager.AppSettings["SmtpServer"];
    }
  }

  public int SmtpPort
  {
    get
    {
      var port = ConfigurationManager
      .AppSettings["SmtpPort"];
      return Convert.ToInt32(port);
    }
  }

public string SenderEmail
{
    get
    {
      return ConfigurationManager 
      .AppSettings["SenderEmail"];
    }
  }

public string SenderPassword
  {
    get
    {
    return ConfigurationManager
    .AppSettings["SenderPassword"];
    }
  }
}



Chapter 2

[ 23 ]

Now, we can update the MailService class and incorporate MailServiceConfig:

class MailService
{
  private ILogger logger;
  private SmtpClient client;
  private string sender;
  
  public MailService(MailServerConfig config, ILogger logger)
  {
    this.logger = logger;
    InitializeClient(config);
    sender = config.SenderEmail;
  }
  
  public void SendMail(string address, string subject, string  
    body)
  {
    logger.Log("Initializing...");
    var mail = new MailMessage(sender, address);
    mail.Subject = subject;
    mail.Body = body;
    logger.Log("Sending message...");
    client.Send(mail);
    logger.Log("Message sent successfully.");
  }
  
  private void InitializeClient(MailServerConfig config)
  {
    client = new SmtpClient();
    client.Host = config.SmtpServer;
    client.Port = config.SmtpPort;
    client.EnableSsl = true;
    var credentials = new NetworkCredential();
    credentials.UserName = config.SenderEmail;
    credentials.Password = config.SenderPassword;
    client.Credentials = credentials;
  }
}

The class consists of two methods and one constructor. The SendMail method is not 
changed so much, except that it is no more instantiating SmtpClient and is using the 
new introduced client field.



Getting Started with Ninject

[ 24 ]

We have added a new method called InitializeClient, which instantiates and 
initializes the client field using the given MailServerConfig object.

The constructor has been added another parameter, which accepts an object of 
MailServerConfig, which contains some settings obtained from the application 
configuration file.

The following figure shows the dependency graph of this application:

Now, let's see how Ninject is going to resolve the dependencies and create the graph 
object. Considering the last example, we need a kernel object and give it the starting 
node of our graph, so that it returns the entire graph as the following code shows:

var kernel = new StandardKernel();
var mailService = kernel.Get<MailService>();

Ninject starts by resolving the MailService type. It finds the type and realizes that 
in order to instantiate it, first it should create an instance of MailServerConfig and 
ILogger. That is because Ninject automatically creates arguments that should be 
passed to the constructor of the type being instantiated. It injects these arguments 
to the constructor parameters without us having to instruct it to do so. Creating an 
instance of MailServerConfig is as easy as calling its only constructor, but what 
about ILogger? ILogger is an interface, and it is not possible to create an instance 
of an interface itself. Also, it may have multiple implementations. So, how is Ninject 
supposed to know which implementation of ILogger to use?

Ninject uses its Binding system to decide what implementation to use for a given 
type. A binding is an instruction which maps one type (usually an abstract type or 
an interface) to a concrete type that matches such a given type. This process is also 
called Service Registration.



Chapter 2

[ 25 ]

The following code instructs Ninject how to resolve ILogger:

kernel.Bind<ILogger>().To<ConsoleLogger>();

It means that Ninject should always use the ConsoleLogger type as an 
implementation type for the ILogger type.

The final Main method's body looks like this:

using (var kernel = new StandardKernel())
{
  kernel.Bind<ILogger>().To<ConsoleLogger>();
  var mailService = kernel.Get<MailService>();
  mailService.SendMail("someone@domain.com", "Hi", null);
}

If multiple services should be bound to a single component, use this 
syntax:

kernel.Bind<IService1,IService2>().To<MyService>();

Object Lifetime
One of the responsibilities of a DI container is to manage the lifetime of objects that 
it creates. It should decide when to create a new instance of the given type and when 
to use an existing instance. It should also take care of disposing of objects when they 
are not used anymore. Ninject has a strong support for managing Object Lifetime in 
different situations. Whenever we define a binding, we can declare the scope of the 
object instance being created. Within that scope, the object instance will be reused 
and exist exactly once for each binding. Note that an object is not allowed to have a 
dependency on an object with shorter lifetime.

Transient scope
In Transient scope, the object lifetime is not managed by Ninject. Whenever we 
request an instance of a type, a new one will be created. Ninject doesn't take care of 
keeping the created instance or disposing of it in this scope. This is the default object 
scope in Ninject. If no scope is explicitly specified, they are transient-scoped. In the 
previous code, both ConsoleLogger and MailService were treated in the Transient 
scope because the object scope was not specified.



Getting Started with Ninject

[ 26 ]

Singleton scope
In the previous example, the ILogger interface is bound to the ConsoleLogger class, 
which means whenever Ninject encounters ILogger, it should create a new instance 
of ConsoleLogger. But we don't really need multiple instances of ConsoleLogger 
in all of the classes that need to log to console. Looks like it is a good idea to make 
ConsoleLogger singleton. There are two approaches to achieve this. The first one  
is using one of the Singleton patterns:

class ConsoleLogger:ILogger
{
  public static readonly ConsoleLogger Instance = new ConsoleLogger();
  
  private static ConsoleLogger()
  {
    // Hiding constructor
  }
  
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}

And instructing the binding to always use the provided instance rather than every 
time creating a new instance of ConsoleLogger. We can achieve this by using the 
ToConstant method:

kernel.Bind<ILogger>().ToConstant(ConsoleLogger.Instance);

However, if we make a singleton type like this, we will draw some limitations to our 
class. For example, we won't be able to unit test, it because it doesn't have a default 
constructor.

Using lifetime management of Ninject, we will be able to have singleton objects 
without having to make their type singleton. All we need to do is to instruct Ninject 
to treat the given type as singleton:

kernel.Bind<ILogger>().To<ConsoleLogger>().InSingletonScope();

Now, what if we decide to change the scope of MailServerConfig to singleton as 
well? There is no binding definition for this type because Ninject already knows how 
to resolve it. Such classes are actually bound to themselves. Although Ninject doesn't 
require us to register such types, if we need to change their scope, we can explicitly 
define their binding in order to set their lifetime scope:

kernel.Bind<MailServerConfig>().ToSelf().InSingletonScope();



Chapter 2

[ 27 ]

Thread scope
If we define a binding in Thread scope, only one instance of the given type will  
be created per thread. The object lifetime is as long as the lifetime of the underlying 
Thread object.

The following test asserts equality of instances created by Ninject in the same thread:

[Test]
public void ReturnsTheSameInstancesInOneThread()
{
  using (var kernel = new StandardKernel())
  {
    kernel.Bind<object>().ToSelf().InThreadScope();
    var instance1 = kernel.Get<object>();
    var instance2 = kernel.Get<object>();
    Assert.AreEqual(instance1, instance2);
  }
}

In the previous example, we instructed Ninject to bind the type object to itself  
and create new instances of object per thread. Then, we asked Ninject to return  
two instances of type object in the same thread and tested their equality.  
The test succeeded.

The following test demonstrates inequality of the instances created from the  
same type but in different threads:

[Test]
public void ReturnsDifferentInstancesInDifferentThreads()
{
  var kernel = new StandardKernel();
  kernel.Bind<object>().ToSelf().InThreadScope();
  var instance1 = kernel.Get<object>();
  new Thread(() =>
  {
    var instance2 = kernel.Get<object>();
    Assert.AreNotEqual(instance1, instance2);
    kernel.Dispose();
  }).Start();
}

This time we got the second instance in another thread. Ninject detects that the 
calling thread is changed, and this is the first time that an instance of object is being 
requested in this new thread. So, it creates a new instance rather than returning  
the existing one. Finally, we asserted inequality of the created instances.

www.allitebooks.com

http://www.allitebooks.org


Getting Started with Ninject

[ 28 ]

Request scope
Request scope is useful in web applications when we need to get a single instance  
of a type from Ninject as long as we are handling the same request. Once the request 
is processed and a new request arrives, Ninject creates a new instance of the type  
and keeps it until the end of the request processing. Note that Request scope behaves 
like Transient scope outside of a web request (for example, during startup) or in  
non-web applications.

The following code shows how to change the scope of the MailService type, so that 
we get a new instance only for new web requests, and keep the existing instance 
during the current request:

kernel.Bind<MailServerConfig>().ToSelf().InRequestScope();

The InRequestScope method is not available unless we add a reference to the 
Ninject.Web.Common library, which makes sense only in web applications.  
Chapter 4, Ninject in Action, will discuss web applications in detail.

Custom scope
Custom scope lets us define our own scopes in which to keep an instance of a type 
unique. As long as reference of the object returned by the provided call-back is the 
same, Ninject returns the same instance of the type which is created in this scope. 
Once reference of the returned object is changed, a new instance of the given type 
will be created. The created instance is kept in the cache until the returned scope 
object is garbage collected. As soon as the scope object is garbage collected, all the 
object instances created by Ninject will be released from the cache and disposed.

The following test shows how to define a custom scope which monitors the  
current user:

[Test]
public void ReturnsTheSameInstancesForAUser()
{
using (var kernel = new StandardKernel())
    {
        kernel.Bind<object>().ToSelf().InScope(ctx =>User.Current);
        User.Current = new User();
        var instance1 = kernel.Get<object>();
        User.Current.Name = "Foo";
        var instance2 = kernel.Get<object>();
        Assert.AreEqual(instance1, instance2);
    }
}



Chapter 2

[ 29 ]

The User class has the following structure, and the Current static property is 
supposed to be populated with the current User:

class User
{
  public string Name { get; set; }
  public static User Current { get; set; }
}

Although User.Current is modified in the previous example, the reference is still 
the same (User.Current is still referring to the same object), so the scope is not 
changed. As the test shows, we are getting the same instance of object every time  
we call kernel.Get<object>().

[Test]
public void ReturnsDifferentInstancesForDifferentUsers()
{
  using (var kernel = new StandardKernel())
  {
    kernel.Bind<object>().ToSelf().InScope(ctx =>User.Current);
    
    User.Current = new User();
    var instance1 = kernel.Get<object>();
    User.Current = new User();
    var instance2 = kernel.Get<object>();
    Assert.AreNotEqual(instance1, instance2);
  }
}

Since we have changed the user, the scope is changed, and kernel is returning a 
different instance in the new scope.

You may have noticed that the call-back function provides an argument of type 
IContext which is named ctx. This object provides information about the binding 
context which can be used in order to create the scope object. The Context object  
will be discussed in Chapter 3, Meeting Real-world Requirements, and we are not going 
to use it at the moment. Just keep in mind that returning anything from the provided 
context as scope should be handled with extra care. For example, returning the 
context itself as scope would result in a memory leak. Although a new instance is 
returned, it will be kept in the cache forever.

Custom scope is the most flexible and powerful scope, and it is also possible  
to implement other scopes using Custom scope.



Getting Started with Ninject

[ 30 ]

The following example shows how to implement Thread scope using Custom scope:

kernel.Bind<object>().ToSelf().InScope(ctx=>Thread.CurrentThread);

The following snippet implements Request scope using Custom scope:

kernel.Bind<object>().ToSelf().InScope(ctx=>HttpContext.Current);

We can always ask kernel to dispose of an object whose lifetime is being managed  
by Ninject:

var myObject = kernel.Get<MyService>();
..
kernel.Release(myObject);

Ninject also has an extension called Named Scope, which adds some 
additional scopes other than the common ones we addressed here.  
For more information, see Named Scope on Ninject official wiki: 
github.com/ninject/ninject.extensions.namedscope/wiki

Ninject modules
As our application grows, the list of service registrations gets longer, and it would 
be difficult to manage this list. Ninject modules are a good way to segregate our 
type bindings into distinct groups of bindings, which can be easily organized into 
separate files. Minimum requirement for a class to be accepted as a Ninject module 
is to implement the INinjectModule interface. Implementing this interface requires 
us to implement three methods and two properties each time we need to create a 
module. It is a good idea to implement this interface as an abstract class once,  
and extend it whenever we need to create a Ninject module. The good news is that 
Ninject has already implemented this abstract class, which is named NinjectModule.

Here is how to register our MailService classes in a module:

class MailServiceModule: NinjectModule
{
public override void Load()
  {
    Bind<ILogger>().To<ConsoleLogger>().InSingletonScope();
    Bind<MailServerConfig>().ToSelf().InRequestScope();
  }
}



Chapter 2

[ 31 ]

After declaring our modules, we need to load them into kernel so that Ninject  
can use them to resolve the registered types. Put this code into the Main method:

using (var kernel = new StandardKernel(new MailServiceModule()))
{
  var mailService = kernel.Get<MailService>();
  mailService.SendMail("someone@somewhere.com", "Hello", null);
}

The following code shows how to load multiple modules in a single Ninject kernel:

var kernel = newStandardKernel(newModule1(), newModule2(), … );

We can also load all of the Ninject modules defined in an application at the same 
time using the following code:

kernel.Load(AppDomain.CurrentDomain.GetAssemblies());

In this case, Ninject looks in all assemblies for the public classes which have 
implemented the INinjectModule interface to load type registrations. The  
next example will show how to load modules dynamically.

XML configuration
Ninject supports both code-based and XML configuration. An XML module is  
like a code module that consists of a list of type registrations via Ninject binding. 
All bindings can be defined in a single XML document or segregated into multiple 
documents. The only advantage of using XML modules over code modules is that 
once we have composed such a document, we can still change our type registrations 
without having to recompile any part of the application. However, XML modules are 
not as powerful as code modules; so it is recommended to use code modules unless 
we need this feature. Even in this case, we can only include those bindings for which 
we need to change the configuration at runtime in our XML module and keep other 
bindings in code modules.

How to use XML configuration
In order to use XML configuration, we need to add a reference to the Ninject XML 
extension. It can be added either by installing Ninject.Extensions.Xml via NuGet 
package manager or by downloading the binary files from GitHub.

The next step is to add one or more XML documents to our project to contain our 
type registrations. Keep in mind that these files should be published along with your 
application. So don't forget to set their Copy to Output Directory property to 
Copy if newer.



Getting Started with Ninject

[ 32 ]

An XML document should look like the following configuration:

<module name="moduleName">
    <bind service="Namespace.IService1, AssemblyName"
        to="Namespace.ConcreteService1, AssemblyName" />
    <bind service="Namespace.IService2, AssemblyName"
        to="Namespace.ConcreteService2, AssemblyName"
         Scope="singleton"/>
</module>

Each binding element contains at least two attributes:

•	 Service: It represents the service type, which is usually an interface or  
an abstract type

•	 To: It represents the concrete type, which is an implementation of the  
service type

The types should be defined as assembly qualified names which should contain 
namespace, type name, and assembly name. For more information about assembly 
qualified names, check the following MSDN page:

http://msdn.microsoft.com/en-us/library/system.type.
assemblyqualifiedname.aspx

The next example will show how to use the XML configuration in a DI project.

In this example we are going to create a project which contains two encryptor  
classes, each of which implements a particular encryption algorithm. Both classes  
implement a common interface named IEncryptor which is referenced in 
the consumer. We will configure the application to use one of the encryptors 
dynamically. This configuration can be changed later and we will see how to  
instruct the application to swap the encryptors without being recompiled.

Open Visual Studio and add references to Ninject and the Ninject.Extensions.Xml 
libraries. Then, add the IEncryptor interface as follows:

public interface IEncryptor
{
  string Encrypt(string str);
}

The next step is to implement this interface and create our concrete services. Let's start 
with ReverseEncryptor. The encryption algorithm is to reverse the given string:



Chapter 2

[ 33 ]

public class ReverseEncryptor : IEncryptor
{
  public string Encrypt(string str)
  {
    var charArray = str.Reverse().ToArray();
    return new string(charArray);
  }
}

Now we are going to implement the ShiftEncryptor class, which implements 
another algorithm. This class shifts up each character code to encrypt the  
given string:

public class ShiftEncryptor : IEncryptor
{
  public string Encrypt(string str)
  {
    var charArray = str.Select(c => (char)(c + 1)).ToArray();
    return new string(charArray);
  }
}

Now, let's add a new XML document to our project and register one of our concrete 
encryptors like this:

<module name="encryptorModule">
<bind service="Samples.Encryption.IEncryptor, Encryptors"
to="Samples.Encryption.ShiftEncryptor, Encryptors" />
</module>

Note that the name of our assembly is Encryptors, and our classes are declared 
in Samples.Encryption namespace. Don't forget to set the Copy to Output 
Directory property of this file to Copy if newer, so that it can be copied to the 
output directory automatically.

The next step is to load the XML module in the kernel. We can put this code in the 
Main method of our application:

var kernel = new StandardKernel();
kernel.Load("typeRegistrations.xml");

The final step is to consume the service using the following code:

var encryptor = kernel.Get<IEncryptor>();
Console.WriteLine(encryptor.Encrypt("Hello"));
Console.ReadKey();



Getting Started with Ninject

[ 34 ]

Running the application leads to the following output:

Ifmmp

At this step, we don't need Visual Studio anymore; we can navigate to the output 
directory of our application and just change the service type in the configuration file 
to "Samples.Encryption.IEncryptor, Encryptors". Note that we don't need to 
recompile the application.

Running the application should result in the following output:

olleH

We have dynamically replaced the Encryptor service in our application using XML 
configuration.

The following code snippet shows how to load multiple XML modules into kernel. 
The first overload accepts individual paths to the XML configuration files. The paths 
can either be relative to the output directory or start from the file system root:

kernel.Load("module1.xml","module2.xml","module3.xml");

We can also use "*" as a wildcard character to address any path that matches the 
declared pattern. In the following example, the kernel loads all of the XML files from 
the same directory of the executing assembly:

kernel.Load("*.xml");

In the next example, the kernel loads the XML files which are located in a directory 
named Modules, located in the application directory:

kernel.Load("Modules/*.xml");

Convention over configuration
It is not difficult to register a few service types, one by one in a small application.  
But what about a production application with hundreds of services which should  
be wired to their implementations?

Convention-based configuration allows us to bind a group of services using a 
convention rather than defining individual bindings for each of them. For example, 
you can simply ask Ninject to bind all components to their base interfaces like this:

kernel.Bind(r => r
  .FromThisAssembly()
  .SelectAllClasses()
  .BindAllInterfaces());



Chapter 2

[ 35 ]

In order to take advantage of the Convention based configuration, we should 
add refererence to the Ninject's Conventions extension. We can either use NuGet 
to install Ninject.Extensions.Conventions or download the binary file from 
GitHub. We also need to add Ninject.Extensions.Conventions to the using 
section of our code to make the previous syntax available.

As the syntax indicates, registering a convention-based binding at least consists  
of the following steps:

1.	 Selecting the assembly or assemblies which contain the concrete components.
2.	 Selecting the concrete components within the selected assemblies.
3.	 Selecting the service types relative to the selected components.

One thing that may look weird in this syntax is that we are selecting the concrete 
components prior to the service types, which is in reverse order compared to the 
ordinary binding registration.

The first reason is that each implementation can be bound to many service types, 
whereas each service type cannot be bound to more than one implementation. The 
syntax is actually telling Ninject to bind each selected implementation to its relevant 
service types, which can address many services. But if we asked Ninject to bind each 
selected service type to its relevant implementation, no more than one binding per 
service type would be valid and hence, created.

The second reason is that this syntax forces to select the components first and then 
only select those services which can be bound to the selected components. This way, 
it is not possible to select the service types for which there is no implementation. 
Note that the service selection clause doesn't allow us to select every desired service 
types. We can only select services relative to the selected components (for example, 
their base classes).

The third reason is that it is possible to locate the service types based on a given 
implementation, because each component has a reference to its base service types. 
That is why we select assemblies only for components and not for the service types. 
But a given service type doesn't have any idea about its implementations.

Selecting the assemblies
The first step to register a convention is to project the assemblies which contain  
the component types. It can either be the current assembly or an external one.



Getting Started with Ninject

[ 36 ]

Here are some of the methods which can be used to identify an assembly:

•	 FromThisAssembly(): It selects the assembly that contains the current line  
of code.

•	 From(params Assembly[] assemblies): It selects the specified assemblies.
•	 FromAssemblyContaining<SomeType>(): It selects the assembly that 

contains the specified type.

In case not all of the components are in a single assembly, the Join syntax can be 
used to select multiple assemblies:

kernel.Bind(x => x
  .FromAssemblyContaining<CustomersService>()
  .SelectAllClasses()
  .Join
  .FromAssemblyContaining<MessageProvider>()
  .SelectAllClasses()
  .BindAllInterfaces());

Generally, only public types are exposed in the projected assemblies. In order to 
also include the non-public types, we should explicitly declare this by using the 
IncludingNonePublicTypes() method after the assembly selection clause:

    .FromAssemblyContaining<CustomersService>()
    .IncludingNonePublicTypes()
    .SelectAllClasses()
    .BindAllInterfaces());

Selecting the components
The second step is to select the components to which the bindings are going to  
be registered. We can use either the SelectAllClasses() method to select all  
non-abstract classes or the Select(Func<Type, bool> filter) method to select  
any desired types. The following example shows how to select all classes whose 
names start with word "customer":

kernel.Bind(r => r
  .FromThisAssembly()
  .Select(t =>t.Name.StartsWith("Customer"))
  .BindBase());



Chapter 2

[ 37 ]

Filtering the selected components
We don't have to select all types within the selected assembly. It is possible to apply 
conditions to filter the results. The following code binds only those classes which  
are in the "Northwind.Controllers" namespace to their base type:

kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .InNamespaces("Northwind.Controllers")
  .BindBase());

Explicit inclusion and exclusion
We can also exclude or include some types explicitly to make the final component list 
exactly match our requirements using the Exclude or Include methods.

Selecting service types
Now that we have projected the concrete components, we should select their 
corresponding service types to participate in the binding. We can use one of the 
following methods to indicate the service types relative to each projected component:

•	 BindAllInterfaces(): It binds all the interfaces of the selected component 
to the selected component.

•	 BindBase(): It binds the base type of the selected components to the current 
component.

•	 BindDefaultInterface(): Binds the default interface of the given types 
to the type. The default interface is the interface with the same name 
as the type. For example, ICustomerSerive is the default interface for 
CustomerService.

•	 BindDefaultInterfaces(): It binds the default interfaces of the 
given types to the type. Default interfaces for a type are all of the 
interfaces that the type's name ends with their names. For example, 
IRepository and ICustomerRepository are both default interfaces for 
SqlCustomerRepository.

•	 BindSingleInterface(): It requires that the given type has exactly one 
interface. In this case, this interface is bound to the type. If the type has no or 
several interfaces then no binding is added.

www.allitebooks.com

http://www.allitebooks.org


Getting Started with Ninject

[ 38 ]

•	 BindToSelf(): It binds the type to itself.
•	 BindSelection(ServiceSelector selector): It binds the selected 

interfaces to the type.
•	 BindUsingRegex(string pattern): It binds the interfaces of the  

current type matching the given regular expression to the type.

Configuring the Bindings
Once a binding is created, we can configure it in the same way we configure  
ordinary bindings:

kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .BindAllInterfaces()
  .Configure(b=>b.InSingletonScope()));

Additionally, we have access to each component type in the corresponding binding 
configuration. The following method shows how to define Named bindings using 
the component's type name:

kernel.Bind(x => x
  .FromAssemblyContaining<MessageProvider>()
  .SelectAllClasses()
  .BindAllInterfaces()
  .Configure((b, c) =>b.Named(c.Name)));

We can also configure certain types individually using the ConfigureFor<T> 
method. In the following example, all the repository classes are given a connection 
string and configured to live in a Singleton scope. SqlCustomerRepository is also 
getting the same connection string, but its scope configuration is overridden to be 
InThreadScope:

kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .InheritedFrom<IRepository>()
  .BindAllInterfaces()
  .Configure(b =>b.InSingletonScope ()
.WithConstructorArgument("connectionString", ApplicationSettings.
ConnectionString))
    .ConfigureFor<SqlCustomerRepository>(b =>b.InThreadScope()));



Chapter 2

[ 39 ]

Summary
Ninject uses its binding system to map abstract services to concrete types. The core 
object of Ninject to which we give a service type and get the concrete service is 
Ninject kernel. Ninject uses the object scopes to deal with Lifetime of the created 
objects. We can use the predefined scopes or create our custom scopes to define 
the lifetime of objects created by Ninject. Ninject supports both code-based and 
XML-based configurations for registering service types. Although XML modules 
can be modified without having to compile the application, code modules are more 
powerful and recommended. Instead of registering each service individually,  
we usually use conventions to register a group of services at a time.





Meeting Real-world 
Requirements

This chapter starts with some patterns and antipatterns which should be considered 
while using Ninject. We will go through the advanced features of Ninject, and also 
some examples to see how Ninject can meet real-world requirements. By the end  
of this chapter, the user is expected to know almost all the significant features  
of Ninject.

The topics covered in this chapter are as follows:

•	 DI patterns and antipatterns
•	 Multi binding and contextual binding
•	 Custom providers 
•	 Dynamic factories

DI patterns and antipatterns
Dependencies can be injected in a consumer class using different patterns and 
injecting them into a constructor is just one of them. While there are some patterns 
that can be followed for injecting dependencies, there are also some patterns that 
are recommended to be avoided, as they usually lead to undesirable results. In this 
section, we will examine only those patterns and antipatterns that are somehow 
relevant to Ninject features. However, a comprehensive study of them can be found 
in Mark Seemann's book, Dependency Injection in .NET.



Meeting Real-world Requirements

[ 42 ]

Constructor Injection
Constructor Injection is the most common and recommended pattern for injecting 
dependencies in a class. Generally this pattern should always be used as the primary 
injection pattern unless we have to use other ones. In this pattern, a list of all class 
dependencies should be introduced in the constructor.

The question is what if the class has more than one constructor. Although Ninject's 
strategy for selecting constructor is customizable, its default behavior is selecting the 
constructor with more parameters, provided all of them are resolvable by Ninject. So, 
although in the following code the second constructor introduces more parameters, 
Ninject will select the first one if it cannot resolve IService2 and it will even use the 
default constructor if IService1 is not registered either. But if both dependencies are 
registered and resolvable, Ninject will select the second constructor because it has 
more parameters:

public class Consumer
{
    private readonly IService1 dependency1;
    private readonly IService2 dependency2;
    public Consumer(IService1 dependency1)
    {
         this.dependency1 = dependency1;
    }

    public Consumer(IService1 dependency1, IService2 dependency2)
    {
         this.dependency1 = dependency1;
         this.dependency2 = dependency2;
    }
}

If the preceding class had another constructor with two resolvable parameters, 
Ninject would throw an ActivationException exception notifying that several 
constructors had the same priority.

There are two approaches to override this default behavior and explicitly select a 
constructor. The first approach is to indicate the desired constructor in a binding  
as follows:

Bind<Consumer>().ToConstructor(arg => 
      new Consumer(arg.Inject<IService1>()));

In the preceding example, we explicitly selected the first constructor. Using the 
Inject<T> method that the arg argument provides, we requested Ninject to  
resolve IService1 in order to be injected into the specified constructor.



Chapter 3

[ 43 ]

The second method is to indicate the desired constructor using the [Inject] attribute:

[Inject]
public Consumer(IService1 dependency1)
{
    this.dependency1 = dependency1;
}

In the preceding example, we applied the Ninject's [Inject] attribute on the first 
constructor to explicitly specify that we need to initialize the class by injecting 
dependencies into this constructor; even though the second constructor has more 
parameters and the default strategy of Ninject would be to select the second one. 
Note that applying this attribute on more than one constructor will result in the 
ActivationException.

Ninject is highly customizable and it is even possible to substitute the default 
[Inject] attribute with another one, so that we don't need to add reference to the 
Ninject library from our consumer classes just because of an attribute:

kernel.Settings.Set("InjectAttribute",typeof(MyAttribute));

Initializer methods and properties
Apart from constructor injection, Ninject supports the injection of dependencies  
using initializer methods and property setters. We can specify as many methods  
and properties as required using the [Inject] attribute to inject dependencies. 
Although the dependencies will be injected to them as soon as the class is 
constructed, it is not possible to predict in which order they will receive their 
dependencies. The following code shows how to specify a property for injection:

[Inject]
public IService Service
{
   get { return dependency;  }      
   set { dependency = value; }
}

Here is an example of injecting dependencies using an injector method:

[Inject]
public void Setup(IService dependency)
{
     this.dependency = dependency;
}



Meeting Real-world Requirements

[ 44 ]

Note that only public members and constructors will be injected and even the 
internals will be ignored unless Ninject is configured to inject nonpublic members.

In Constructor Injection, the constructor is a single point where we can consume 
all of the dependencies as soon as the class is activated. But when we use initializer 
methods the dependencies will be injected via multiple points in an unpredictable 
order, so we cannot decide in which method all of the dependencies will be ready 
to consume. In order to solve this problem, Ninject offers the IInitializable 
interface. This interface has an Initialize method which will be called once all of 
the dependencies have been injected:

public class Consumer:IInitializable
{
    private IService1 dependency1;
    private IService2 dependency2;

    [Inject]
    public IService Service1
    {
       get { return dependency1;  }      
       set { dependency1 = value; }
    }

    [Inject]
    public IService Service2
    {
       get { return dependency2;  }      
       set { dependency2 = value; }
    }

    public void Initialize()
    {
        // Consume all dependencies here
    }
}

Although Ninject supports injection using properties and methods, Constructor 
Injection should be the superior approach. First of all, Constructor Injection makes the 
class more reusable, because a list of all class dependencies are visible, while in the 
initializer property or method the user of the class should investigate all of the class 
members or go through the class documentations (if any), to discover its dependencies. 



Chapter 3

[ 45 ]

Initialization of the class is easier while using Constructor Injection because all the 
dependencies get injected at the same time and we can easily consume them at 
the same place where the constructor initializes the class. As we have seen in the 
preceding examples the only case where the backing fields could be readonly was in 
the Constructor Injection scenario. As the readonly fields are initializable only in the 
constructor, we need to make them writable to be able to use initializer methods and 
properties. This can lead to potential mutation of backing fields.

Service Locator
Service Locator is a design pattern introduced by Martin Fowler regarding which 
there have been some controversies. Although it can be useful in particular 
circumstances, it is generally considered as an antipattern and preferably should be 
avoided. Ninject can easily be misused as a Service Locator if we are not familiar to 
this pattern. The following example demonstrates misusing the Ninject kernel as a 
Service Locator rather than a DI container:

public class Consumer
{
    public void Consume()
    {
        var kernel = new StandardKernel();
        var depenency1 = kernel.Get<IService1>();
        var depenency2 = kernel.Get<IService2>();
        ...
    }
}

There are two significant downsides with the preceding code. The first one is that 
although we are using a DI container, we are not at all implementing DI. The class is 
tied to the Ninject kernel while it is not really a dependency of this class. This class 
and all of its prospective consumers will always have to drag their unnecessary 
dependency on the kernel object and Ninject library. On the other hand, the real 
dependencies of class (IService1 and IService2) are invisible from the consumers, 
and this reduces its reusability. Even if we change the design of this class to the 
following one, the problems still exist:

public class Consumer
{
    private readonly IKernel kernel;
    public Consumer(IKernel kernel)
    {



Meeting Real-world Requirements

[ 46 ]

        this.kernel = kernel;
    }

    public void Consume()
    {
        var depenency1 = kernel.Get<IService1>();
        var depenency2 = kernel.Get<IService2>();
        ...
    }
}

The preceding class still depends on the Ninject library while it doesn't have to and 
its actual dependencies are still invisible to its consumers. It can easily be refactored 
using the Constructor Injection pattern:

public Consumer(IService1 dependency1, IService2 dependency2)
{
     this.dependency1 = dependency1;
     this.dependency2 = dependency2;
}

Multi binding and contextual binding
In the previous chapter, we saw how Ninject can resolve dependency types in single 
binding situations, that is, each service type is bound only to a single implementation 
type. However, there are situations where we need to bind an abstract service type  
to multiple implementations, which is called as multi binding. Multi binding has  
two scenarios. The first one is the plugin model implementation and the other one  
is contextual binding, which we will discuss in this section.

Implementing the plugin model
The plugin model allows an application to be extremely extensible without 
modifying its source code. In the following example, we will implement a Music 
Player application, which uses codec plugins in order to support different music 
formats. The application comes out with two built-in codecs, and it is possible to  
add more plugin codecs and extend the formats that our player application supports. 
Please note that as we try to keep the application as simple as possible, many 
complexities and details will not be implemented.



Chapter 3

[ 47 ]

Let's start by defining the interface of our codec plugin as follows:

public interface ICodec
{
    string Name { get; }
    bool CanDecode(string extension);
    Stream Decode(Stream inStream);
}

The next step is to implement our pluggable player. What makes the player 
extensible is that it depends on a sequence of the ICodec objects, rather than  
a certain number of concrete codecs:

public class Player
{
    private readonly ICodec[] codecs;

    // Note that the constructor parameter is not a single ICodec.
    public Player(IEnumerable<ICodec> codecs)
    {
        this.codecs = codecs.ToArray();
    }
}

Then we will add a Play method to our Player class as follows:

public void Play(FileInfo fileInfo)
{
    ICodec supportingCodec = FindCodec(fileInfo.Extension);
    using (var rawStream = fileInfo.OpenRead())
    {
        var decodedStream = supportingCodec.Decode(rawStream);
        PlayStream(decodedStream);
    }
}

This method accepts a FileInfo object and after finding a suitable codec, it decodes 
and plays the given file. We can assume that our player has a PlayStream method 
which can play decoded streams.

www.allitebooks.com

http://www.allitebooks.org


Meeting Real-world Requirements

[ 48 ]

Now, let's implement the FindCodec method as follows:

private ICodec FindCodec(string extension)
{
    foreach (ICodec codec in codecs)
        if (codec.CanDecode(extension))
            return codec;

    throw new Exception("File type not supported.");
}

FindCodec calls the CanDecode method of each codec object to find a codec which 
supports the given file extension. If it cannot find any codecs suitable for the given 
file type, it throws an error. One of the things that we need to keep in mind is that 
none of our concrete codecs have been resolved before this foreach loop.

Ninject doesn't resolve the types within a sequence unless the 
sequence is enumerated.

The final step is to add a convention to the entry point of our UI layer, which is a 
console application in this case. Open the Main method and add the following lines:

using (var kernel = new StandardKernel())
{
    kernel.Bind(b => b.FromAssembliesMatching("*")
                      .SelectAllClasses()
                      .InheritedFrom<ICodec>()
                      .BindAllInterfaces());
}

The preceding convention instructs Ninject to register all implementations of the 
ICodec interface automatically without having to declare individual bindings  
for them.

Since the ICodec type is bound to multiple implementations, it can only be resolved 
to a sequence of objects rather than a single object. So, resolving ICodec with the 
following constructor will result in a runtime exception:

public Consumer(ICodec codec){}

The result is the same if we execute the following code:

ICodec codec = Kernel.Get<ICodec>();



Chapter 3

[ 49 ]

In both cases, Ninject will try to resolve ICodec, but it will find more than one 
concrete type for it. Instead of Get<T>, we can call the GetAll<T> method to get 
all the implementations of ICodec. The following code shows the names of all 
supported codecs:

IEnumerable<ICodec> codecs = kernel.GetAll<ICodec>();
foreach (ICodec codec in codecs)
    System.Console.WriteLine(codec.Name);

Now, any assemblies that have an implementation of ICodec and are located in  
the root directory of our application will be recognized as a codec plugin by our 
Player application. Our application does not even need to have a reference to the 
codec project.

The code sample and built-in codec plugins can be downloaded 
from the publisher's website.

Contextual binding
Since in the plugin model each service type can be mapped to multiple 
implementations, the binding engine doesn't need to make any decision about  
which implementation to return; because the kernel is supposed to return all of  
them. Contextual binding, however, is a multi-binding scenario in which the  
kernel has to choose one implementation among multiple provided types based  
on a given condition.

In the following example, we will implement a data migration application which 
can migrate data from a SQL database to an XML datafile. It is going to have a 
presentation layer, a business layer, and a data access layer.

Our SQL database is Northwind which exists as a sample database with the SQL 
server installation package. In order to keep this sample clean and simple, we use  
the Shippers table, which contains only two fields: Shipper ID and Company Name.

We add a class library project to our solution to implement the business layer. The 
only business model will be the Shipper class. It has only the following members:

public int ShipperID { get; set; }
public string CompanyName { get; set; }



Meeting Real-world Requirements

[ 50 ]

The next step is to implement our ShippersService class. It should contain a 
method for migrating data from our source repository, which is a SQL database  
to the target repository, which is an XML datafile:

public void MigrateShippers()
{
    foreach (Shipper shipper in sourceRepository.GetShippers())
        targetRepository.AddShipper(shipper);
}

What should the type of these repositories be and where should they come from? 
The answer to these questions can turn this application into a loosely coupled 
maintainable application or a tightly coupled hard to maintain one. The easiest way 
may be to create an XmlRepository and SQLRepository and then instantiate them 
in the ShippersService class as follows:

// The following code leads to a tightly coupled code
var sourceRepository = new ShippersSqlRepository();
var targetRepository = new ShippersXmlRepository();

This way, we will make our service dependent of these two concrete repositories and 
tighten our business layer to our data access layer. It would not be possible to modify 
or replace the data access without modifying the business layer and recompiling the 
application. Although our application layers may look like being separated, they are 
actually so tightly coupled that it is not easily maintainable.

The solution is to create our ShippersService class based on an abstraction of the 
repositories which can be defined in the business layer, rather than the concrete 
repositories which will be implemented in the data access layer. Let's define this 
abstraction using the following interface in our business layer:

public interface IShippersRepository
{
    IEnumerable<Shipper> GetShippers();
    void AddShipper(Shipper shipper);
}

Now we can use this interface rather than the concrete repositories the 
ShippersService class as follows:

public class ShippersService
{
    ...



Chapter 3

[ 51 ]

    public ShippersService(IShippersRepository sourceRepository, 
IShippersRepository targetRepository)
    {
        this.sourceRepository = sourceRepository;
        this.targetRepository = targetRepository;
    }

    public void MigrateShippers()
    {           
        foreach (var shipper in sourceRepository.GetShippers())
            targetRepository.AddShipper(shipper);
    }
}

The ShippersService class is now highly reusable. It can migrate Shipper instances 
not only from SQL to XML, but also between any types of data sources as long as 
they implement IShippersRepository. The interesting thing is that we can easily 
migrate data in reverse direction without modifying our ShippersService class or 
data access layer.

We know that Ninject will inject concrete repositories into the constructor of the 
ShippersService class. But wait for a second. The type of both parameters is 
IShippersRepository. How will Ninject understand which concrete type should 
be injected into which parameter? Contextual binding is the answer to this question. 
Let's go through different resolution approaches one by one.

Named binding
This is the simplest approach in which we can assign names to both our binding 
and our target parameters so that Ninject can decide which binding should be used 
for which target. We need to insert names on targets as well as their corresponding 
bindings:

public ShippersService(
    [Named("Source")]IShippersRepository sourceRepository,
    [Named("Target")]IShippersRepository targetRepository)

The following code shows the type registration section in our presentation layer, 
which is a console application:

Bind<IShippersRepository>()
.To<ShippersSqlRepository>().Named("Source");
Bind<IShippersRepository>()
.To<ShippersXmlRepository>().Named("Target");



Meeting Real-world Requirements

[ 52 ]

Now that we have distinguished the different implementations of 
IShippersRepository with names, it is also possible to get them from the kernel 
object using the following syntax:

kernel.Get<IShippersRepository>("Source");

However, resolving instances in this way is not recommended because in this way, 
Ninject will be misused as a means for implementing the Service Locator antipattern.

Once a binding is named, this name can also be used to address 
any subsequent dependencies of the registered types.

Resolving metadata
In this approach, each bindings is provided with some metadata which can  
be evaluated while resolving the types. The following code shows how to  
set metadata:

Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WithMetadata("IsSource", true);
Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WithMetadata("IsSource", false);

One way of associating targets with their corresponding bindings is by defining 
a custom ConstraintAttribute class. This is an abstract class which provides a 
method for matching the attributed target with its desired binding. The following 
code shows how to define such an attribute:

public class IsSourceAttribute : ConstraintAttribute
{
    private readonly bool isSource;
    public IsSourceAttribute(bool isSource)
    {
        this.isSource = isSource;
    }

    public override bool Matches (Ninject.Planning.Bindings.
IBindingMetadata metadata)
    {
        return metadata.Has("IsSource") 
            && metadata.Get<bool>("IsSource") == isSource
    }
} 



Chapter 3

[ 53 ]

Now, we can apply this attribute to the targets to associate them with their 
corresponding bindings:

public ShippersService([IsSource(true)]IShippersRepository 
sourceRepository, [IsSource(false)]IShippersRepository 
targetRepository)
{
    this.sourceRepository = sourceRepository;
    this.targetRepository = targetRepository;
}

We can provide as many metadata as required to our binding for being used  
while resolving the associated services:

Bind<IService>().To<Component>()
.WithMetadata("Key1", value1)
.WithMetadata("Key2", value2)
.WithMetadata("Key3", value3);

We can also provide as many Constraint attributes as needed on a binding target,  
as shown in the following code:

public Consumer(
[Constraint1(value1, value2), Constraint2(value), Constraint3]
IService dependency) 
{
}

Please keep in mind that named binding scenario is also implemented using 
metadata. The following code shows how to implement a custom constraint  
attribute which can resolve named bindings based on a matching pattern rather  
than the exact name:

public class NamedLikeAttribute : ConstraintAttribute
{
    private readonly string pattern;
    public NamedLike(string namePattern)
    {
        this.pattern = namePattern;
    }

    public override bool Matches(IBindingMetadata metadata)
    {
        return Regex.IsMatch(metadata.Name, pattern);
    }
}



Meeting Real-world Requirements

[ 54 ]

Given a pattern, the preceding attribute can be applied to the target. The binding 
name then will be evaluated using a Regular Expression to determine whether or  
not the name matches the given pattern. The following code shows how to use  
this attribute:

public Consumer([NamedLike(@"source\w+") dependency)
{
   ...
}

In order to understand how metadata can help Ninject resolve types, we need to 
know how binding targets are associated with bindings. The following diagram 
shows a simplified demonstration of this relationship:

Ninject Kernel uses different components to resolve types, and one of them 
is Binding Resolver. Although Binding Resolver refers to a group of Ninject 
components rather than a single one, we can think of it as a single component for 
now to keep things simple. When Ninject is asked for resolving a service type, 
Binding Resolver will be provided with all of the registered bindings as well as a 
Request object which contains information about the target for which a resolution is 
requested. Binding information includes binding metadata and target information 
contains attributes set on the target. Binding Resolver examines all of the targets 
using this information in order to find their matching bindings. Whenever it detects 
a constraint attribute on a target, it executes the Matches method of that attribute 
across all of the bindings to find the matching binding. Once the matching binding  
is found, it is easy to get the concrete type from that binding.



Chapter 3

[ 55 ]

Attribute-based binding
Although Named binding is simple to use and metadata is flexible and powerful, 
both the approaches require library of the dependent classes to have a reference to 
the Ninject library. Another downside of these two solutions is that they both rely on 
strings, which are error prone. One can easily mistype the names or metadata keys 
without being warned by the compiler.

The following code shows how to use this technique without referencing the  
Ninject library:

public class SourceAttribute : Attribute{}
public class TargetAttribute : Attribute{}

These attributes then can be applied to the target parameters as follows:

public ShippersService([Source]IShippersRepository sourceRepository, 
[Target]IShippersRepository targetRepository)

Now, we need to register our bindings using the following code:

Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenTargetHas<SourceAttribute>()

Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WhenTargetHas<TargetAttribute>()

Not only can we apply these attributes to parameters, but we can also apply them to 
the class itself or to the other injected members, for example, the constructor itself.

The following binding shows how to make a binding conditional based on an 
attribute on the consuming class:

Bind<IService>().To<MyService>().WhenClassHas<MyAttribute>();

Here is the consuming class:

[MyAttribute]
Public class Consumer {...}

The following code shows how to make a binding conditional based on an attribute 
on an injected class member:

Bind<IService>().To<MyService>().WhenClassHas<MyAttribute>();



Meeting Real-world Requirements

[ 56 ]

This is how we can apply such an attribute to the constructor:

[MyAttribute]
public Consumer(IServive service) { ... }

A class member can be the constructor itself, or it can even be another method, or an 
injected property. We will talk about these kinds of binding later in this chapter.

Target-based conditions
Another way of deciding which binding to use is target-based conditions. Ninject 
offers several helpers which can restrict the number of matching bindings for a target 
based on the type of its container. The following example shows a scenario to which 
this approach applies.

In this example, we have two service classes named SourceShipperService and 
TargetShipperService, both of which depend on IShippersRepository.

Here is the structure of our service classes:

public class SourceShipperService
{
    public SourceShipperService(IShippersRepository repository)
	  {  ...  }
}

public class TargetShipperService
{
    public TargetShipperService(IShippersRepository repository)
   {  ...  }
}

In order to tell Ninject which concrete repository should be injected into which 
service, we can base our condition on the service type itself rather than any attribute  
or metadata.

The following code shows how to register our types in such a way that instances of 
ShippersXmlRepository and ShippersSqlRepository respectively get injected 
into SourceShipperService and TargetShipperService:

Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WhenInjectedInto<SourceShipperService>();
Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenInjectedInto<TargetShipperService>();    



Chapter 3

[ 57 ]

Note that the WhenInjectedInto<T> method will match even if the target class 
is a subtype of T. If we mean exactly the given type, we should use the following 
alternative method:

Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenInjectedExactlyInto<TargetShipperService>();

Generic helper
As we have seen, most of the preceding approaches take advantage of the helper 
methods whose names follow the Whenxxx pattern. All of these methods are specific 
versions of a more generalized When. This versatile helper offers an argument to its 
call back that contains all information about current binding request including the 
target information. Here is how to register types for a Data Migration application 
using this helper method:

Bind<IShippersRepository>().To<ShippersSqlRepository>()
.When(r => r.Target.Name.StartsWith("source"));
Bind<IShippersRepository>().To<ShippersXmlRepository>()
.When(r => r.Target.Name.StartsWith("target"));

The preceding code binds IShippersRepository to ShippersSqlRepository 
provided that the target parameter name starts with source. Similar rule is applied 
to the second binding as well.

Custom providers
Providers are specialized factory classes that Ninject uses in order to instantiate 
resolved types. Whenever we bind a service type to a component, we are implicitly 
associating that service type to a provider that can generate instances of that 
component. This hidden provider is a generic factory, which can create instances of 
every given type, and is called StandardProvider. Although we can often rely on 
StandardProvider without having to bother about what it does behind the scenes, 
Ninject also allows us to create and register our custom providers just in case we 
need to customize the activation process as follows:

Bind<IService>().ToProvider<MyService>();
public class MyServiceProvider : Provider<MyService>
{
    protected override MyService CreateInstance(IContext context)
    {
        return new MyService();
    }
}

www.allitebooks.com

http://www.allitebooks.org


Meeting Real-world Requirements

[ 58 ]

Although extending the Provider<T> class is the recommended way to create a 
custom provider, implementing the IProvider interface is enough for a class to be 
accepted by Ninject as a provider:

public interface IProvider
{
    Type Type { get; }
    object Create(IContext context);
}

Implementing the data access layer of the data migration application demonstrates 
how to implement and use a custom provider. We need to add a new class library 
projects to our solution for each of our data access libraries (SQL data access and 
XML data access).

Let's start with implementing the ShippersSqlRepository class:

public class ShippersSqlRepository : IShippersRepository
{
    private readonly NorthwindContext objectContext;
    public ShippersSqlRepository(string northwindConnectionString)
    {
       objectContext = 
           new NorthwindContext(northwindConnectionString);
    }

    public IEnumerable<Business.Model.Shipper> GetShippers()
    {  ...  }
    public void AddShipper(Business.Model.Shipper shipper)
    {  ...  }
}

Our ShippersSqlRepository class needs to be passed a connection string 
which we will deal with later in this section. We have a similar scenario in the 
ShippersXmlRepository class:

public class ShippersXmlRepository : IShippersRepository
{
    private readonly string documentPath;
    public ShippersXmlRepository(string xmlRepositoryPath)
    {
        this.documentPath = xmlRepositoryPath;
    }



Chapter 3

[ 59 ]

    public IEnumerable<Shipper> GetShippers()
    {  ...  }

    public void AddShipper(Shipper shipper)
    {  ...  }
}

In this case, we need to pass a file path for the XML data file. These parameters 
prevent Ninject from instantiating our repositories, because the kernel doesn't have 
any idea how to resolve the string parameters. So, the following lines are not enough 
for registering our repositories:

Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .When(r => r.Target.Name.StartsWith("source"));
Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .When(r => r.Target.Name.StartsWith("target"));

One way of providing the required arguments is using the 
WithConstructorArgument method:

connection = ConfigurationManager.AppSettings["northwindConnectionStr
ing"];

Bind<IShippersRepository>()
.To<ShippersSqlRepository>()
.When(r => r.Target.Name.StartsWith("source"))
.WithConstructorArgument("NorthwindConnectionString", connection);

path = ConfigurationManager.ConnectionStrings["xmlRepositoryPath"];

Bind<IShippersRepository>()
.To<ShippersXmlRepository>()
.When(r => r.Target.Name.StartsWith("target"))
.WithConstructorArgument("XmlRepositoryPath",path);

It looks good when we don't have to register many repositories which need such 
configuration. However, in more complicated cases, we need to automate injection 
of these arguments somehow. This is where a Provider class can offer a better 
solution. All of the settings here are instances of string. So, we can create a provider 
for the string type to generate our configuration strings based on the name of the 
parameter. The provider will look up the parameter name as a configuration key in 
the application configuration file (either web.config or app.config), and if such a 
configuration is defined (as in the following code), it returns its value:



Meeting Real-world Requirements

[ 60 ]

public class ConfigurationProvider : Provider<string>
{
    protected override string CreateInstance(IContext context)
    {
        if (context.Request.Target == null)
            throw new Exception("Target required.");
        var paramName = context.Request.Target.Name;
        string value = ConfigurationManager.AppSettings[paramName];
        if (string.IsNullOrEmpty(value))
            value = ConfigurationManager
                   .ConnectionStrings[paramName].ConnectionString;
        return value;
    }
}

ConfigurationProvider is given a context object which contains all of the 
information about the current activation process, including the request object that 
we mentioned earlier in this chapter. The Request object has information about the 
target, which in this case is the constructor parameter into which a string instance 
should be injected. The Target object will be null if this string type is being 
requested directly from the kernel by using the Get<string>() method. Because we 
need name of the parameter as the configuration key, we check the target first. Using 
the target's name, we can look up AppSettings, and in case of we do not find such 
a setting, we will search in the ConnectionStrings section. Finally, the retrieved 
value will be returned.

The only problem is that this provider will be registered for the string type and it 
will affect any string which is going to be resolved by Ninject. In order to specify the 
strings which are going to be considered as application configurations, we will define 
a custom attribute and apply it to those parameters as follows:

[AttributeUsage(AttributeTargets.Property | AttributeTargets.
Parameter)]
public class ConfigurationAttribute : Attribute { }

We have declared that the attribute should only be applied to properties and 
parameters. Here is how this attribute is applied to the constructor parameter of our 
repository classes:

public ShippersXmlRepository([Configuration]string xmlRepositoryPath)
{
    this.documentPath = xmlRepositoryPath;
}
public ShippersSqlRepository([Configuration]string 
northwindConnectionString)
{



Chapter 3

[ 61 ]

    objectContext = new NorthwindContext(northwindConnectionString);
}

And finally, the binding code is as follows:

Bind<string>().ToProvider<ConfigurationProvider>()
    .WhenTargetHas<ConfigurationAttribute>();

Activation context
While overriding the CreateInstance method in our provider, we used the context 
object, which was passed through method parameter. This object, which is represented 
by the IContext interface, contains pretty much of all the information related to the 
current activation process. Using this object, we can have access to the current binding 
object, the type being resolved, the type being injected, where in the dependency graph 
we are, who has requested this resolution, and so on. While resolving a dependency 
graph, a context object is created for each type being resolved, and this leads to an 
activation context graph. Starting from each context object, we can also navigate 
through its parent context nodes until reaching the root of the graph where the initial 
request is made. When using Ninject, this context object is available wherever we need 
to make a decision about how to resolve dependencies. 

Factory Methods
Factory Methods are another way of informing Ninject how to resolve a dependency. 
Like creating a provider, we have access to the activation context object to help 
us make decisions on how to resolve the requested type. However, we don't need 
to create a new class, and we can just write our resolution logic inline. A Factory 
Method is a good substitute for a Provider class, where the resolution logic is simple 
and short. A good example of using a Factory Method is to initialize a logger object  
in a class. The following is the code to initialize a logger without DI:

class ConsumerClass
{
   private ILog log = LogManager.GetLogger(typeof(ConsumerClass));
}

We can implement DI in the preceding class using the following code:

class ConsumerClass
{
    private ILog log;
    public ConsumerClass(ILog log)
    {



Meeting Real-world Requirements

[ 62 ]

        this.log = log;
    }
}

It is not possible to register a type binding for ILogger using the To<T> method, 
because the concrete logger has to be created by calling the LogManager.GetLogger 
method rather than the constructor of a concrete logger. In this case, we can use a 
Factory Method in order to inform Ninject about creating a new instance of the logger:

Bind<ILog>().ToMethod(ctx => LogManager.GetLogger(ctx.Request.
ParentRequest.Service));));

The type of ctx is IContext and we are getting type of the Consumer class from the 
Service property of the parent request of Ninject Activation Context.

This example was just to demonstrate how to employ a Factory Method, and is not a 
best practice for logging, because it is requiring the application to have a reference to 
the logger library. One of the best practices for logging will be discussed in Chapter 5, 
Doing More with Extensions.

Dynamic factories
As long as we know all the dependencies of a class and in scenarios where we 
only need one instance of them, it is easy to introduce a list of the dependencies in 
the constructor of the class. But there are cases where we may need to create more 
instances of a dependency in a class as a single instance that Ninject injects is not 
enough. There are also cases where we don't know which services a consumer 
may require, because it may require different services in different circumstances, 
and it doesn't make sense to instantiate all of them while creating the class. In such 
scenarios, factories can help. We can design our class so that it depends on a factory, 
rather than the objects that the factory can create. Then, we can command that 
factory to create the required services on demand and in any required number.

We will see two examples each of which addresses one of the preceding cases and 
demonstrates the solution that Ninject offers.

The Shape Factory example
In the first example we will create a Graphic library. It contains a ShapeService 
class, which offers an AddShapes method to add a given number of specific IShape 
objects to a given ICanvas object:

public void AddShapes(int circles, int squares, ICanvas canvas)
{
    for (int i = 0; i < circles; i++)
    {



Chapter 3

[ 63 ]

   // The following line should change
        ICircle circle = new Circle();
        canvas.AddShape(circle);
    }
    for (int i = 0; i < squares; i++)
    {
   // The following line should change
        ISquare square = new Square();
        canvas.AddShape(square);
    }
}

The traditional way was to create new instances of the Circle and Square classes 
directly in the AddShapes method. However, this way we will tightly couple the 
ShapeService class to the concrete Circle and Square types that is in contrast with 
DI principles. On the other hand, introducing these dependencies as parameters 
doesn't meet our requirement, because only one instance per shape will be injected, 
which will not be enough. In order to solve this problem, we should first create a 
simple factory interface as follows:

public interface IShapeFactory
{
    ICircle CreateCircle();
    ISquare CreateSquare();
}

Then, we can introduce this factory interface as the dependency of our  
ShapeService class:

public ShapeService(IShapeFactory factory)
{
    this.factory = factory;
}

public void AddShapes(int circles, int squares, ICanvas canvas)
{
    for (int i = 0; i < circles; i++)
    {
        ICircle circle = factory.CreateCircle();
        canvas.AddShape(circle);
    }
    for (int i = 0; i < squares; i++)
    {
        ISquare square = factory.CreateSquare();
        canvas.AddShape(square);
    }
}



Meeting Real-world Requirements

[ 64 ]

The good news is that we don't need to worry about how to implement 
IShapeFactory. Ninject can implement it dynamically and inject the implemented 
factory into the ShapeService class. We just need to add the following code to our 
type registration segment:

Bind<IShapeFactory>().ToFactory();
Bind<ISquare>().To<>(Square);
Bind<ICircle>().To<>(Circle);

In order to make use of Ninject factory, we need to add a reference to the Ninject.
Extensions.Factory library. This either can be added via NuGet or download it 
from the Ninject official website.

Keep in mind that a factory can have as many methods as required and each method 
can return any desired type. The methods can have any arbitrary name and have any 
number of parameters. The only constraint is that the name and type of parameters 
must conform to the name and type of the constructor parameters of the concrete 
class, but their order does not matter. Even the number of parameters doesn't need 
to match and Ninject will try to resolve those parameters which are not provided via 
the factory interface.

So, if the concrete Square class is as follows:

public class Square
{
    public Square(Point startPoint, Point endPoint)
    {        ...    }
}

The IShapeFactory factory interface should look as follows:

public interface IShapeFactory
{
    ICircle CreateCircle();
    ISquare CreateSquare(Point startPoint, Point endPoint);
}

Alternatively, the CreateSquare method could look as follows:

ISquare CreateSquare(Point endPoint, Point startPoint);

This is the default behaviour of Ninject dynamic factories. However, this default 
behavior can be overridden by creating customized Instance Providers, which we 
will learn later in this chapter.



Chapter 3

[ 65 ]

Using convention
Registering convention-based binding for dynamic factories or other on-the-fly 
implementation generators is slightly different from the regular convention. The 
difference is that once we have selected assemblies, we should select service types 
instead of components and then bind them to factory or a custom generator. The 
following sections describe how to implement these two steps.

Selecting service types
Select an abstraction using any of the following methods:

•	 SelectAllIncludingAbstractClasses(): This method selects all classes 
including the abstract ones.

•	 SelectAllAbstractClasses(): This method selects just abstract classes.
•	 SelectAllInterfaces(): This method selects all interfaces.
•	 SelectAllTypes(): This method selects all types (classes, interfaces, 

structs, enums, and primitive types).

The following code binds all interfaces within the selected assembly to dynamic 
factories:

kernel.Bind(x => x
    .FromAssembliesMatching("factories")
    .SelectAllInterfaces()
    .BindToFactory());

Defining Binding Generator
Use one of the following methods to define appropriate binding generator:

•	 BindToFactory: This method registers the projected types as dynamic 
factories.

•	 BindWith: This method creates a binding using a binding generator 
argument. Creating a binding generator is just a matter of implementing  
the IBindingGenerator interface.



Meeting Real-world Requirements

[ 66 ]

The following example binds all of those interfaces of the current assembly whose 
names end with Factory to dynamic factories.

kernel.Bind(x => x
    .FromThisAssembly()
    .SelectAllInterfaces()
    .EndingWith("Factory")
    .BindToFactory());

Telecom Switch example
In the following example, we will write a service for a Telecom center that 
returns the current status of a given telecom switch. Telecom switches which are 
manufactured by different vendors may offer different ways to be queried. Some  
of them support communication via TCP/IP protocol and some of them simply  
write their status in a file.

Let's start by creating the Switch class as follows:

public class Switch
{
    public string Name { get; set; }
    public string Vendor { get; set; }
    public bool SupportsTcpIp { get; set; }
}

To collect the status of a switch we create an interface as follows:

public interface IStatusCollector
{
    string GetStatus(Switch @switch);
}

In C#, the @ symbol allows us to use a reserved word as a 
variable name.

We need two different implementations of this interface for two different switch 
types; the switches which support TCP/IP communication and those that don't. 
Let's name them as TcpStatusCollector and FileStatusCollector respectively. 
We also need to declare a factory interface which can create instances of these two 
concrete StatusCollectors:



Chapter 3

[ 67 ]

public interface IStatusCollectorFactory
{
    IStatusCollector GetTcpStatusCollector();
    IStatusCollector GetFileStatusCollector();
}

And finally it comes to the SwitchService class:

public class SwitchService
{
    private readonly IStatusCollectorFactory factory;
    public SwitchService(IStatusCollectorFactory factory)
    {
        this.factory = factory;
    }

    public string GetStatus(Switch @switch)
    {
        IStatusCollector collector;
        if (@switch.SupportsTcpIp)
            collector = factory.GetTcpStatusCollector();
        else
            collector = factory.GetFileStatusCollector();
        return collector.GetStatus(@switch);
    }
}

The SwitchService class will never create an instance of FileStatusCollector if 
all of the given switches support TCP/IP. This way, the SwitchService class is only 
injected with the dependencies that it really needs rather than all of the types for 
which there is a possibility of need.

IStatusCollectorFactory has two factory methods both of which are of the same 
type. Now, how does Ninject's implementation of this factory understand how to 
resolve IStatusCollector? The magic lies in the name of the factory methods. 
Whenever the name of a factory method starts with Get, it indicates that the type will 
be resolved using named binding, where the name is the rest of the method name. 
For example if the name of the factory's method is GetXXX, the factory will  
try to find a binding named XXX. So, the type registration section for this example 
should be as follows:

Kernel.Bind(x => x.FromThisAssembly()
                    .SelectAllInterfaces()
                    .EndingWith("Factory")
                    .BindToFactory()); 



Meeting Real-world Requirements

[ 68 ]

Kernel.Bind(x => x.FromThisAssembly()
              .SelectAllClasses()
              .InheritedFrom<IStatusCollector>()
              .BindAllInterfaces()
              .Configure((b, comp) => b.Named(comp.Name))); 

The first convention binds all of the interfaces whose names end with Factory to 
Factory and the second one registers named binding for all implementations of 
IStatusCollector in such a way that each binding is named after its component's 
name. It is equivalent to the following single bindings:

Bind<IStatusCollector>().To<TcpStatusCollector>()
    .Named("TcpStatusCollector");
Bind<IStatusCollector>().To<FileStatusCollector>()
    .Named("FileStatusCollector");

However, using single binding in this relies on string names, which is error 
prone and the relation can easily break by a typo. There is another way of 
naming for single bindings which is only available while referencing Ninject.
Extensions.Factory and is especially designed for such scenarios. We can use the 
NamedLikeFactoryMethod helper method instead of the Named helper to name a 
binding for a factory:

Bind<IStatusCollector>().To<FileStatusCollector>()
.NamedLikeFactoryMethod(
    (IStatusCollectorFactory f) => f.GetFileStatusCollector());

It means that we are defining a named binding with the name that the indicated 
factory method suggests.

Please note that using conventions is always the preferred approach.

Custom Instance Providers
A dynamic factory doesn't instantiate requested types directly. Instead, it uses 
another object named Instance Provider (don't get confused with Provider) to 
create an instance of a type. The Instance Provider is given some information about 
the factory's method including the name of the method, its return type, and its 
parameters based on which the Instance Provider should resolve the requested 
object. As long as a factory is not assigned a custom Instance Provider, it uses its 
default Instance Provider, which is named StandardInstanceProvider. We can 
assign a custom Instance Provider to a factory while registering it as follows:



Chapter 3

[ 69 ]

Kernel.Bind(x => x.FromThisAssembly()
                  .SelectAllInterfaces()
                  .EndingWith("Factory")
                  .BindToFactory(() => new MyInstanceProvider()));

In order for Ninject to accept a class as an Instance Provider, it is enough for the  
class to implement the IInstanceProvider interface. However, the easier way is  
to inherit from StandardInstanceProvider and override the desired members.

The following code shows how to define an Instance Provider which gets the name 
of the binding from NamedAttribute rather than the method name:

class NameAttributeInstanceProvider : StandardInstanceProvider
{
    protected override string GetName(System.Reflection.MethodInfo 
methodInfo, object[] arguments)
    {
        var nameAttribute = methodInfo
            .GetCustomAttributes(typeof(NamedAttribute), true)
            .FirstOrDefault() as NamedAttribute;
        if (nameAttribute != null)
            return nameAttribute.Name;
        return base.GetName(methodInfo, arguments);
    }
}

Using this custom Instance Provider, we can choose any desired name for our factory 
methods and then use an attribute to specify the required binding name. Since the 
Ninject NamedAttribute attribute doesn't apply to methods, we will create our own 
attribute as follows:

public class BindingNameAttribute:Attribute
{
    public BindingNameAttribute(string name)
    {
        this.Name = name;
    }
    public string Name { get; set; }
}



Meeting Real-world Requirements

[ 70 ]

The factory interface can now be defined as follows:

public interface IStatusCollectorFactory
{
    [BindingName("TcpStatusCollector"")]"
    IStatusCollector GreateTcpStatusCollector();

    [BindingName("FileStatusCollector"")]"
    IStatusCollector GreateFileStatusCollector();
}

And the factory type registration should be as follows:

Bind<IStatusCollectorFactory>()
   .ToFactory(() = > new NameAttributeInstanceProvider());

Func
Another way of creating multiple instances of a dependency in a consumer class is 
by using the Func delegate. Whenever Ninject detects Func<IService> rather than 
IService itself, it injects a factory method which can create an implementation 
of IService. It is not as powerful as the factory interface, but it is easier to use 
because there is no need to define an interface:

public class Consumer
{
    private readonly Func<IService> factory;
    public Consumer(Func<IService> factory)
    {
        this.factory = factory;
    } 
    public void Consume()
    {
        // A new instance of service will be created each time
        // the following factory method is called
        var service = this.factory();
        ...
    }
}

Func also supports passing parameters, but since it doesn't provide any information 
about the arguments, using Func in such scenarios is not recommended.



Chapter 3

[ 71 ]

Lazy
As soon as a consumer class is being created, all of its dependencies are instantiated 
and injected, even though they are not being used at that very moment. This can 
slow down the instantiation of the consumer class especially when the dependencies 
are expensive. For instance, a dependency which needs network communication 
while being created can also slow down the activation of its consumer class. Using 
Lazy<IService> instead of IService, defers the instantiation of the dependency to 
the time when it is requested:

public class Consumer
{
    private readonly Lazy<IService> lazyService;
    public Cunsumer(Lazy<IService> service)
    {
        this.lazyService = service;
    }
 
    public void Consume()
    {
     // service will be created once the Value requested.
        var service = lazyService.Value;
        ...
    }
}

Ninject automatically creates and injects a Lazy object, and there is no need to 
register a separate binding for it.

Summary
We studied the most common DI patterns and antipatterns related to Ninject. 
Multibinding means binding a single service type to multiple concrete types and 
has two scenarios of the Plugin model and contextual binding. Providers are a kind 
of factories that are specialized for Ninject to be used for creating new instances of 
resolved types. We can create our own providers by deriving from the Provider<T> 
class. A Factory method is a substitute for Provider, where the activation logic is 
short and simple and instantiation of the service type is not as simple as calling the 
constructor of the implementation. Introducing a dependency as Lazy<dependency> 
informs Ninject to defer instantiation of that dependency whenever that dependency 
is requested.





Ninject in Action
This chapter shows how to set up different types of applications using Ninject. We 
will implement a concrete scenario using a variety of application types to see how to 
set up and use Ninject for injecting the dependencies. By the end of this chapter, the 
user will be able to set up and use Ninject for all kinds of described applications.

Topics covered:

•	 Windows Forms applications
•	 WPF and Silverlight applications
•	 ASP.NET MVC applications
•	 WCF applications
•	 ASP.NET Web Forms applications

Although how Ninject helps us inject dependencies into our application components 
is the same across different types of applications, setting these applications up varies 
according to their architectures. Some new frameworks such as ASP .NET MVC are 
intentionally designed to support DI, while some older frameworks such as ASP 
.NET are not even capable of supporting all DI patterns.

We have already learned most of the features that Ninject offers and this chapter 
helps us to put them together in a project. We will implement several applications, 
each of which includes a data access layer, a domain layer, and a presentation 
layer. The first two layers will be shared among all of them and also will be used in 
combination with a service layer to implement a WCF service application.



Ninject in Action

[ 74 ]

Our objective is to perform Create and Read operations out of CRUD (Create, 
Read, Update, and Delete) operations across the Customers table of the Northwind 
database, which is the sample database for all editions of Microsoft SQL Server, and 
should already exist on your machine if you have any version of SQL Server installed. 
Although we will implement a SQL data access as our data access layer, the entire 
application is independent from a concrete data access, and uses an abstraction as its 
repository; but our Model conforms to the Customers table with selective fields.

The source code of this sample is available for 
download on the publisher's website.

Let's start with the domain layer, which will be shared among all of the applications 
that we will create. Create a new class library in Visual Studio and name it 
Northwind.Core. It will contain our domain models and logic. Add a new class 
and name it Customer. To keep things simple, we select only a few fields of the 
Northwind Customer entity. So, create a class that has string properties for ID, 
CompanyName, City, PostalCode, and Phone.

Then, we will define the abstraction of our Customer repository. For this sample 
project, we only define those operations that we need (create and read), but we can 
add other operations to it later. Create the following interface in Northwind.Core:

public interface ICustomerRepository
{
    IEnumerable<Customer> GetAll();
    Customer Get(string customerID);
    void Add(Customer customer);
}

The rest of the application will use this interface as the repository abstraction for the 
Customer entity.

Now, add another class library project and name it Northwind.SqlDataAccess. 
As far as we implement ICustomerRepository, it doesn't matter to the rest of 
the application how the data access is implemented. We use Entity Framework as 
our data access solution. So, let's add a new ADO.NET Entity Data Model to the 
project, and name it NorthwindModel. For this sample, we only need the Customers 
table. We can also remove the fields of this table that we don't need. Customer_ID, 
Company_Name, City, Postal_Code, and Phone are all of the fields that we need.



Chapter 4

[ 75 ]

Then add a class named SqlCustomerRepository which should implement 
ICustomerRepository:

public class SqlCustomerRepository : ICustomerRepository
{
   // The Mapper will be discussed in a moment
   private readonly Mapper mapper;
   private readonly NorthwindEntities context;

    public void Add(Core.Customer domainCustomer)
    {    }

    IEnumerable<Core.Customer> ICustomerRepository.GetAll()
    {    }

    public Core.Customer Get(string customerID)
    {    }
}

The following is the implementation of the Add method:

public void Add(Core.Customer domainCustomer)
{
   // Converts domainCustomer to customer
    var customer = mapper.Map(domainCustomer);
    context.Customers.AddObject(customer);
    context.SaveChanges();
}

Please note that the type of the Customer entity generated by Entity Framework is 
different from our domain model Customer. Thus, we need a mapper to convert 
these two types to each other. We have had two dependencies for this class so far: 
a mapper and the entity container context. Let's see how we should declare the 
constructor of the SqlCustomerRepository class:

public SqlCustomerRepository(Mapper mapper, NorthwindEntities context)
{ 
    this.mapper = mapper;
    this.context = context;
}



Ninject in Action

[ 76 ]

The next step is to add the Read methods:

IEnumerable<Core.Customer> ICustomerRepository.GetAll()
{
    return mapper.Map(context.Customers);
}

public Core.Customer Get(string customerID)
{
    var customer = context.Customers
        .SingleOrDefault(c => c.Customer_ID == customerID);

    return mapper.Map(customer);
}

Again, we use the mapper to convert the auto generated Customer entity to our 
domain Customer mode.

There are third-party libraries that automate the mapping logic. 
AutoMapper and ValueInjecter are two examples.

The following is our implementation of the Mapper class:

public class Mapper
{
    public Core.Customer Map(Customer customer)
    {
        if (customer == null)
        {
            return null;
        }
        return new Core.Customer
                    {
                        ID = customer.Customer_ID,
                        City = customer.City,
                        CompanyName = customer.Company_Name,
                        Phone = customer.Phone,
                        PostalCode = customer.Postal_Code
                    };
    }

    public Customer Map(Core.Customer customer)
    {
        if (customer==null)



Chapter 4

[ 77 ]

        {
            return null;
        }
        return new Customer
        {
            Customer_ID = customer.ID,
            City = customer.City,
            Company_Name = customer.CompanyName,
            Phone = customer.Phone,
            Postal_Code = customer.PostalCode
        };
    }

    public IEnumerable<Core.Customer> Map(IEnumerable<Customer> 
customers)
    {
        return customers.Select(Map);
    }
}

The logic of the Mapper class is pretty simple. It maps null objects to null and non-
null objects to their corresponding entity. Note that in the last Map method, the LINQ 
Select method is using the first Map method as a method group, and we don't need to 
use a lambda expression to call it. It is equivalent to the following expression:

return customers.Select(c => Map(c));

Having prepared our domain and data access layers, we are now ready to move ahead 
to implement our first presentation scenario, which is a Windows Forms application.

Windows Forms applications
Windows Forms is one of the most straightforward application types to implement 
DI. Just like Console application, it does not need special Ninject configuration. The 
Main method in the Program class is where we can use as a Composition Root (refer 
to Dependency Injection In .NET by Mark Seemann, published by Manning Publication 
Co.), and the framework components such as Form classes do not require to have 
a parameterless constructor, which makes implementation of constructor injection 
easily possible.

Add a new Windows Forms application to the Northwind solution, and name it 
Northwind.Winforms.



Ninject in Action

[ 78 ]

Add references to the Northwind.Core project, Ninject.Extensions.Conventions 
and Ninject.Extensions.Factory. Note that the extensions implicitly add a 
reference to Ninject if you are using NuGet. Otherwise, you need to add it manually.

We continue with the MainForm, which is going to have a DataGrid to show the list 
of customers.

Add a DataGrid and bind it to a BindingSource control. You can also add the 
Customer class as a data source to the project. In the source code of the MainForm, 
either override the OnLoad method or add a handler for Load event:

protected override void OnLoad(EventArgs e)
{
    base.OnLoad(e);
    LoadCustomers();
}

private void LoadCustomers()
{
    customerBindingSource.DataSource = repository.GetAll();
}

We introduced the LoadCustomers method to populate customers, because we will 
need to call it again later in this form. In this method, we need an instance of our 
Customer repository. This introduces the first dependency of the MainForm:

private readonly ICustomerRepository repository;
public MainForm(ICustomerRepository repository)
{   
    this.repository = repository;
    InitializeComponent();
}

Then, we need to add another Form for creating a new customer. Let's call it 
CustomerForm.

We need to have a BindingSource bound to the Customer project data source. The 
Text property of all TextBox controls should be bound to their corresponding fields 
of the Customer model. The easiest way is to drag the data source and drop it into 
the form in details mode.



Chapter 4

[ 79 ]

The following code shows the code behind of CustomerForm:

public partial class CustomerForm : Form
{
    private readonly ICustomerRepository repository;
    public CustomerForm(ICustomerRepository repository)
    {   
        this.repository = repository;
        InitializeComponent();
        customerBindingSource.Add(new Customer());
    }

    private void saveButton_Click(object sender, EventArgs e)
    {
        customerBindingSource.EndEdit();
        var customer = customerBindingSource.Current as Customer;
        repository.Add(customer);
    }
}

ICustomerRepository is the only dependency of this class, which is introduced in 
the constructor and will be injected later. Note that the Customer object is created 
using its constructor rather than injected. The reason is that Customer is an entity, 
and entities should not be created by an IoC container. It is also the same for a Data 
Transfer Object (DTO).

Now that we are done with CustomerForm, we need to show it from MainForm in 
the Click event handler of saveButton. An instance of CustomerForm should not be 
achieved in any of the following ways:

•	 Calling new CustomerForm() because this way we will have to resolve its 
dependencies ourselves rather than Ninject

•	 Calling kernel.Get<CustomerForm>() because we will need to make our 
class dependent on Kernel

•	 Introducing a new dependency to CustomerForm in constructor, because  
this way we will receive only one instance of CustomerForm, while after 
closing that instance, we will need another one for subsequent clicks on the 
Save button



Ninject in Action

[ 80 ]

So what are we going to do? Here is where the factories come into play. Thanks to a 
Ninject built-in Factory feature, we simply need to declare the following interface:

public interface IFormFactory
{
    T Create<T>() where T : Form;
}

If we need to provide more arguments than those Ninject can resolve to the 
requested form, we can add more overloads for the previous generic Create  
method to our factory providing those parameters:

private void saveButton_Click(object sender, EventArgs e)
{
    var customerForm = formFactory.Create<CustomerForm>();
    if (customerForm.ShowDialog(this) == DialogResult.OK)
    {
        LoadCustomers();
    }
}

This introduces the second dependency of MainForm:

private readonly ICustomerRepository repository;
private readonly IFormFactory formFactory;

public MainForm(ICustomerRepository repository, IFormFactory 
formFactory)
{   
    this.repository = repository;
    this.formFactory = formFactory;
    InitializeComponent();
}

The next step is to define our service registrations. The Composition Root for a 
Windows Forms application is the Main method in the Program class. So, add the 
following lines to the Main method:

using (var kernel = new StandardKernel())
{
    kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces());

    kernel.Bind(x => x.FromThisAssembly()
                        .SelectAllInterfaces()



Chapter 4

[ 81 ]

                        .EndingWith("Factory")
                        .BindToFactory()
                        .Configure(c => c.InSingletonScope()));

    var mainForm = kernel.Get<MainForm>();
    Application.Run(mainForm);
}

The first convention rule selects all of the assemblies starting with "Northwind" and 
binds their types to their base interfaces. This way, we are avoiding unwanted or 
possibly duplicated bindings for other assemblies, for example, Ninject assemblies.

The second rule registers the interfaces whose names end with "Factory" as 
Singleton factories.

WPF and Silverlight applications
Although Silverlight is a lighter version of Windows Presentation Foundation 
(WPF), these two frameworks are so similar that they can be treated the same way 
in terms of DI. Both frameworks offer a single startup location for the application in 
their App.xaml file, which can be used as the Composition Root. The view engine for 
both frameworks is based on Extensible Application Markup Language (XAML) 
and they both support Model-View-ViewModel (MVVM) architecture.

In this section we will implement the Northwind scenario using MVVM pattern 
which can be applied to either WPF or a Silverlight application. In MVVM, the 
application consists of the following key parts:

•	 Model: The domain Models that represent business entities, and we have 
already created them in our domain layer.

•	 View: A XAML UI file which is usually a Window or a User Control with 
minimal or no code behind.

•	 ViewModel: As the name suggests, it is a Model for the View. It contains the 
presentation logic and exposes the application outputs from Models to the 
View or gets inputs from the View via property binding.



Ninject in Action

[ 82 ]

In this application, we are going to have a MainView to populate the list of customers 
and a CustomerView which will be shown when the Save button on MainView is 
clicked. The Views look like those we created for our Windows Forms application 
in the previous section. Each View is going to have a View Model, which will be 
assigned to its DataContext property. Figure 4.1 shows the relation between our 
Views and their corresponding ViewModels:

Figure 4.1: The relation between our Views and their corresponding ViewModels

Let's start by implementing MainViewModel. In MVVM, the ViewModels are  
totally independent from their Views. Any data which is going to be presented in  
the View should be exposed as a property. The following property exposes the list  
of customers:

public IEnumerable<Customer> Customers
{
    get { return repository.GetAll(); }
}

This property suggests that the first dependency of the MainViewModel class should 
be our repository. As soon as we get to know our dependencies, we should declare 
them, as shown in the following code:

private readonly ICustomerRepository repository;



Chapter 4

[ 83 ]

public MainViewModel(ICustomerRepository repository)
{   
    this.repository = repository;
}

The MainWindow will then have a DataGrid control or any other proper control to 
present the data exposed by this property:

<DataGrid IsReadOnly="True" ItemsSource="{Binding Customers}" />

Now we create the CustomerViewModel class which is responsible for adding new 
customers to the repository, as shown in the following snippet. It exposes a single 
Customer Model via a property which can later be modified using a View.

public Customer Customer
{
    get
    {
        return customer;
    }
}

The customer field is instantiated with a Customer object in constructor.  
The following XAML code shows how the CustomerWindow controls are bound to 
the properties of the Customer object, which is exposed by the Customer property:

<StackPanel DataContext="{Binding Customer}">
  <Label >Customer ID</Label>
  <TextBox Text="{Binding ID}"/>
  <Label>Company Name</Label>
  <TextBox Text="{Binding CompanyName}"/>
  <Label >City</Label>
  <TextBox Text="{Binding City}"/>
  <Label>Postal Code</Label>
  <TextBox Text="{Binding PostalCode}"/>
  <Label>Phone</Label>
  <TextBox Text="{Binding Phone}"/>
</StackPanel>

The next step is to add the modified customer to the repository and close the 
CustomerWindow as soon as the user clicks on the Save button. A ViewModel is  
not supposed to see its View and instead, the View observes its ViewModel to  
change any UI state. Hence, in order to close the CustomerWindow, we cannot call  
its Close method, because we have no reference to the View. 



Ninject in Action

[ 84 ]

Instead, we can have a DialogResult property in the ViewModel which can be set to 
notify the View to be closed:

public void Save(object paramer)
{
    repository.Add(Customer);
    DialogResult = true;
}

public bool? DialogResult
{
    get
    {
        return dialogResult;
    }
    set
    {
        dialogResult = value;
        OnPropertyChanged("DialogResult");
    }
}

The OnPropertyChanged method is implemented in the abstract ViewModel class 
which is inherited by CustomerViewModel. It is used to notify the View about the 
changes of a property, so that View reacts to those changes.

The DialogResult property of a Window is not a Dependency Property and 
hence, cannot accept a binding. To work around this problem, we can create a 
WindowHelper class which offers a DialogResult Attached Property, and can be 
attached to a Window like the following:

<Window x:Class="Northwind.Wpf.Views.CustomerWindow"        
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:Infrastructure="clr-namespace:Northwind.Wpf.Infrastructure" 
Infrastructure:WindowHelper.DialogResult=»{Binding DialogResult}»>

Note that a Window's DialogResult property is assignable only when the Window  
is shown as a dialog using its ShowDialog method. In normal circumstances, you  
can set the IsClosed attached property of WindowHelper which calls the Close 
method of Window rather than setting its DialogResult property, as shown in the 
following code. 



Chapter 4

[ 85 ]

Dependency properties, Attached properties, and how to implement a 
WindowHelper is beyond the scope of this book; however, you can view the details in 
the downloaded samples of this book.

public static readonly DependencyProperty DialogResultProperty =
    DependencyProperty.RegisterAttached(
    "DialogResult", typeof(bool?), typeof(WindowHelper),
    new UIPropertyMetadata(null, OnPropertyChanged));

private static void OnPropertyChanged(DependencyObject d, 
DependencyPropertyChangedEventArgs e)
{
    var view = d as IView;
    if (view == null)
    {
        throw new NotSupportedException("Only IView type is 
supported.");
    }
    view.DialogResult = (bool?)e.NewValue;
}

Now we need to call the Save method when the user clicks the Save button.  
In MVVM, we use commands to let a View call ViewModel's methods.  
The following is the SaveCommand property in CustomerViewModel to be  
exposed to the CustomerWindow:

public ICommand SaveCommand
{
    get
    {
        return saveCommand;
    }
}

The following XAML code shows the Save button, which is bound to the 
SaveCommand:

<Button Command="{Binding SaveCommand}" >Save</Button>



Ninject in Action

[ 86 ]

We have used ICommand which is an interface of the .NET Framework, and is 
recognized by WPF components. Now we should implement ICommand. In order 
to make our concrete command independent from our domain logic, we use an 
ActionCommand, which is a simple version of the RelayCommand pattern:

public class ActionCommand : ICommand
{
    private readonly Action<object> action;
    private readonly Func<object, bool> canExecute = p => true;

    public ActionCommand(Action<object> action, 
                       Func<object, bool> canExecute = null)
    {
        if (action == null)
        {
            throw new ArgumentNullException("action");
        }
        this.action = action;

        if (canExecute != null)
        {
            this.canExecute = canExecute;
        }
    }

    public void Execute(object parameter)
    {
        action(parameter);
    }

    public bool CanExecute(object parameter)
    {
        return canExecute(parameter);
    }

    public event EventHandler CanExecuteChanged;
}

In order to create an instance of ActionCommand and assign it to the SaveCommand, 
we need an abstract factory. Ninject can create this factory on the fly if we define  
its interface:

public interface ICommandFactory
{
    ICommand CreateCommand(Action<object> action, 



Chapter 4

[ 87 ]

                           Func<object, bool> canExecute = null);
}

Using this factory in a ViewModel class, we can create as many Command objects as 
we need. Now that we have identified the dependencies of CustomerViewModel, let's 
have a look at its constructor:

public CustomerViewModel(ICustomerRepository repository, 
                         ICommandFactory commandFactory)
{   
    this.repository = repository;
    this.saveCommand = commandFactory.CreateCommand(Save);
    this.customer = new Customer();
}

Now that we have created CustomerViewModel, we can go back to the MainViewModel 
class and implement the logic of showing the CustomerWindow method:

private void CreateCustomer(object param)
{
    var customerView = viewFactory.CreateView<ICustomerView>();
    if (customerView.ShowDialog() == true)
    {
        // Refresh the list
        OnPropertyChanged("Customers");
    }
}

The MainViewModel doesn't have any idea about CustomerWindow and it doesn't 
need to. It just interacts with ICustomerView which provides an interface containing 
only those methods that a ViewModel may need to call. This interface can then be 
implemented with any View class. The View does not even have to be an XAML 
window. The following code shows the IView interface which is inherited by 
ICustomerView:

public interface IView
{
    bool? ShowDialog();
    void Show();
    void Close();
    bool? DialogResult { get; set; }
}



Ninject in Action

[ 88 ]

The MainViewModel doesn't even care how the concrete Customer View will 
implement Show or Close. It may be a TabPage in a TabControl, a simulated popup, 
or a Mock object.

In order to create an instance of the concrete View, we need a view factory:

public interface IViewFactory
{
    T CreateView<T>() where T : IView;
    T CreateView<T>(ViewModel viewModel) where T : IView;
}

The constructor of MainViewModel introduces all of its three dependencies as the 
following code shows:

public MainViewModel(ICustomerRepository repository, 
                     IViewFactory viewFactory, 
                     ICommandFactory commandFactory)
{   
    this.repository = repository;
    this.viewFactory = viewFactory;
    createCustomerCommand =   commandFactory.
CreateCommand(CreateCustomer);

}

Now that we have introduced all of our dependencies, we need to compose the 
application. The starting point of a WPF and Silverlight application is the App class 
which is defined within the App.xaml file. We need to remove the MainWindow 
from StartupUri of App.xaml and either handle the Startup event or override the 
OnStartup method of the App class to define the application's composition. It should 
include the following code block:

using (var kernel = new StandardKernel())
{
    kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());

    kernel.Bind(x => x.FromThisAssembly()
                    .SelectAllInterfaces()
                    .EndingWith("Factory")
                    .BindToFactory()
                    .Configure(c=>c.InSingletonScope()));

    var mainWindow = kernel.Get<IMainView>();
    mainWindow.Show();
}



Chapter 4

[ 89 ]

The convention rules are the same as our WinForms application and finally the  
pre-existing code, which shows that the MainWindow is replaced with our code which  
calls the Show method of the concrete implementation of IMainView.

ASP.NET MVC applications
Using Ninject in Windows client applications (WPF and Windows Forms) was not 
much different from using it in a Console application. We didn't need any certain 
configuration to set up Ninject in such applications, because in Windows client 
applications the developer has the control of instantiating UI components (Forms 
or Windows), and can easily delegate this control to Ninject. In Web applications, 
however, it is not the same, because the framework is responsible of instantiating 
the UI. So, we need to somehow tell the framework to delegate that responsibility 
to Ninject. Fortunately, asking the ASP.NET .MVC framework to do so is easily 
possible, but it is not the same for Web Forms applications.

Thanks to Ninject's MVC extension, we don't even need to bother setting up MVC 
framework to support DI. Instead, Ninject's MVC extension will do it for us. In this 
section, we will implement the Northwind customers scenario using Ninject in an 
ASP.NET MVC 3 application. Ninject MVC extension also supports other versions  
of the MVC framework.

Add a new ASP .NET MVC3 Web application to the Northwind solution with 
references to the Northwind.Core project and Ninject Conventions extension.

We should also reference Ninject MVC extension. The easiest way is to install the 
Ninject.Mvc3 package using NuGet. Keep in mind that although the name of the 
package is Ninject.Mvc3, it is upward compatible with newer versions of the MVC 
framework. Alternatively, we could download the Ninject.Web.Mvc binary from 
GitHub and reference it from our project. In this case, we also needed to reference 
the Ninject and Ninject.Web.Common libraries. These libraries are referenced 
automatically if we install the Ninject.Mvc3 package using NuGet. NuGet also adds 
the App_Start folder containing a file named NinjectWebCommon.cs to the project. 
The NinjectWebCommon class contains a Start() method that will be the starting 
point of the application. It sets up everything to hook Ninject to MVC framework. 
So, once we have installed Ninject MVC extension using NuGet, we do not need 
to do anything else to set up our application, and everything will be already there 
for us. This is because NuGet allows packages to add files to the project as a part 
of their installation process. The NinjectWebCommon class has a method named 
CreateKernel which can be used as the Composition Root to register our services. 
We will talk more about this class in the next section.



Ninject in Action

[ 90 ]

If we reference Ninject libraries manually using separately downloaded binary files, 
we should make the following changes to the MvcApplication class located under 
the Global.asax file:

1.	 The MvcApplication class should derive from the 
NinjectHttpApplication class, rather than System.Web.HttpApplication.

2.	 Instead of having the Application_Start method as the starting point, we 
should override the OnApplicationStarted method, and anything within 
Application_Start should go to OnApplicationStarted.

3.	 We should override CreateKernel and use it for service registration.

The following code shows the CreateKernel method:

protected override IKernel CreateKernel()
{
    var kernel = new StandardKernel();
    kernel.Load(new ServiceRegistration());
    return kernel;
}

Even if we use NuGet to set up our project, we can delete the App_Start folder,  
and use Global.asax as described previously. In this case, we can remove references 
to the WebActivator and Microsoft.Web.Infrastructure libraries that NuGet  
has created. It is up to you which approach to use, as they do exactly the same thing 
in two different ways. The first one is easier to use and does not need any extra 
efforts to set up the application; while the second one uses the existing Global.asax 
file as the application startup point and doesn't require additional files or libraries  
to be referenced. In this example, we use the Global.asax file as starting point.  
In the next section, we will use the App_Start and NinjectWebCommon classes  
which NuGet creates.

Let's start implementing the presentation of customers list in our application. 
Open the HomeController class and add a constructor which introduces our 
ICustomerRepository interface as its parameter:

private readonly ICustomerRepository repository;

public HomeController(ICustomerRepository repository)
{   
    this.repository = repository;
}



Chapter 4

[ 91 ]

The next step is to modify the Index action method as follows:

public ActionResult Index()
{
    var customers = repository.GetAll();
    return View(customers);
}

It uses the ICustomerRepository interface to populate customers. Please note that 
we don't need to create a new Model for customer, and the one that we have already 
created in our domain layer is being used here. Then, delete the existing Index.
cshtml View and add a new one with List scaffold template and our Customer 
domain model as the Model class.

Now, add the Create action methods as follows:

public ActionResult Create()
{
    return View();
}

[HttpPost]
public ActionResult Create(Customer customer)
{
    if (ModelState.IsValid)
    {
        repository.Add(customer);
        return RedirectToAction("Index");
    }
    return View();
}

The first one is called when the hyperlink Create New is clicked using HTTP GET 
method, and the second one is called when the Create View is submitted using 
HTTP POST method. The created customer Model is passed to the Create method 
and can be added to the repository. Checking the ModelState.IsValid property is 
for server-side validation. We can now add a Create View for this action with Core.
Customer as Model class and the Create scaffold template.



Ninject in Action

[ 92 ]

Validator injection
Now, we need to add some validation rules to our Customer Model class. MVC 
framework supports different kinds of validation including annotation-based 
validation in which we use validation attributes on the properties of the Model to 
define the validation rules:

public class Customer
{
    [Required]
    public string ID { get; set; }
    [Required]
    public string CompanyName { get; set; }
    public string City { get; set; }
    public string PostalCode { get; set; }
    [StringLength(10)]
    public string Phone { get; set; }
}

The validation attributes are not part of MVC library, and this makes it possible to 
apply them to our Customer Model within our domain layer. This way, we can share 
these validation rules among other UI frameworks as well. We just need to reference 
the System.ComponentModel.DataAnnotations library in our domain project. MVC 
framework automatically validates the Model based on the provided attributes. 
But these attributes are limited to basic validation rules. What if we need to check 
whether the provided ID for our customer is not duplicated? In such scenarios, we 
need to create our custom validation attributes:

public class UniqueCustomerIdAttribute : ValidationAttribute
{
    [Inject]
    public ICustomerValidator Validator { get; set; }

    public override bool IsValid(object value)
    {
        if (Validator == null)
        {
            throw new Exception("Validator is not specified.");
        }
        if (string.IsNullOrEmpty(value as string))
        {
            return false;
        }
        return Validator.ValidateUniqueness(value as string);
    }
}



Chapter 4

[ 93 ]

By deriving from ValidationAttribute and overriding its IsValid method, we 
can define a custom validation attribute. This validator uses an object of the type 
ICustomerValidator to validate the given value, which is a customer ID across 
the repository to check whether it is unique or duplicated. The following is the 
implementation of ICustomerValidator:

public class CustomerValidator : ICustomerValidator
{
    private readonly ICustomerRepository repository;

    public CustomerValidator(ICustomerRepository repository)
    {   
        this.repository = repository;
    }

    public bool ValidateUniqueness(string customerID)
    {
        return repository.Get(customerID) == null;
    }
}

Validation is successful, provided the repository cannot find any existing customer 
with the given customer ID.

You may have noticed that in the UniqueCustomerIdAttribute class, we didn't 
introduce the ICustomerValidator interface as a dependency in the constructor. 
The reason is that it is not possible to apply an attribute which requires constructor 
parameters without providing its arguments. That's why we used the Property 
Injection pattern, rather than Constructor Injection. Although this attribute should 
be instantiated by MVC framework, Ninject can inject the dependency before the 
IsValid method is called. Now, you may be wondering that applying the [Inject] 
attribute in our domain layer will make it dependent on Ninject. Well, it didn't, 
because we didn't use the Ninject version of the [Inject] attribute. Instead, we 
created another InjectAttribute class in our Core library. We discussed about how 
to set up Ninject to use another attribute instead of its internal [Inject] attribute 
in Chapter 3, Meeting real-world Requirements. This way, we don't have to have a 
reference to the Ninject library, and can even replace Ninject with other DI containers 
without needing to touch the domain layer.

We can now add the UniqueCustomerIdAttribute attribute to the validation rules 
of our Customer Model:

[Required, UniqueCustomerId]
public string ID { get; set; }



Ninject in Action

[ 94 ]

Filter injection
Filters are implementations of the IActionFilter, IResultFilter, 
IExceptionFilter, or IAuthorizationFilter interfaces that make it possible to 
perform special operations while invoking an action method. ASP.NET MVC allows 
us to apply filters in two ways, both of which are supported by Ninject:

•	 Applying a filter attribute to the Controller or an Action method.  
This approach has been supported by MVC framework since its first  
version and doesn't fully support DI.

•	 Applying filters without attributes using filter providers which is introduced 
in MVC 3 and supports all DI patterns.

In the first method, the filter class derives from ActionFilterAttribute and the 
created filter attribute will be applied to a Controller or one of its action methods. 
Like other attributes, a filter attribute cannot be applied if it does not have a default 
constructor, so we cannot use Constructor Injection in filter attributes. However, 
if we use Property Injection using the [Inject] attribute, the dependencies get 
injected by Ninject without any special configuration. The following example shows 
how to define an action filter attribute which can pass action information to a 
performance monitoring service:

public class PerformanceFilterAttribute : ActionFilterAttribute
{
    [Inject]
    public IPerformanceMonitoringService PerformanceMonitor 
    { get; set; }

    public void OnActionExecuting(ActionExecutingContext 
filterContext)
    {
        PerformanceMonitor.BeginMonitor(filterContext);
    }

    public void OnActionExecuted(ActionExecutedContext filterContext)
    {
        PerformanceMonitor.EndMonitor(filterContext);
    }
} 

The implementation of IPerformanceMonitoringService will be injected by 
Ninject into the property PerformanceMonitor.



Chapter 4

[ 95 ]

MVC3 or later versions of MVC, however, support a new way of applying filters 
which is DI compatible and allows all DI patterns including Construction Injection. 
Thus, the previous approach is not recommended in MVC3+.

The following example demonstrates how to define and apply LogFilter to  
our actions, which can log some tracking information about the called or being  
called action methods. The filter uses the ILog interface of the Log4Net library  
as a dependency:

public class LogFilter : IActionFilter
{
    private readonly ILog log;
    private readonly Level logLevel;

    public LogFilter(ILog log, string logLevel)
    {
        this.log = log;
        this.logLevel = log.Logger.Repository.LevelMap[logLevel];
    }

    public void OnActionExecuting(ActionExecutingContext 
filterContext)
    {
        var message = string.Format(
CultureInfo.InvariantCulture,"Executing action {0}.{1}",            
filterContext.ActionDescriptor.ControllerDescriptor.ControllerName, 
filterContext.ActionDescriptor.ActionName);
       this.log.Logger.Log(typeof(LogFilter), this.logLevel, message, 
null);    }

    public void OnActionExecuted(ActionExecutedContext filterContext)
    {
        var message = string.Format(
  CultureInfo.InvariantCulture, "Executed action {0}.{1}",
filterContext.ActionDescriptor.ControllerDescriptor.ControllerName, 
filterContext.ActionDescriptor.ActionName);
 this.log.Logger.Log(typeof(LogFilter), 
 this.logLevel, message, null);
    }
} 



Ninject in Action

[ 96 ]

The LogFilter class uses the provided filterContext argument to determine the 
name of the Action method and its enclosing Controller. It then uses the injected 
implementation of ILog to log the tracking information. This class introduces two 
dependencies, one of which is the ILog interface and the other one is the log level 
under which the messages should be logged.

In order to tell MVC to use Ninject to resolve a filter, we need to register the filter 
using the BindFilter<TFilter> method of Kernel:

Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
     .WithConstructorArgument("logLevel", ("Info");

The first parameter defines the filter scope whose type is System.Web.Mvc.
FilterScope and the second one is a number defining the order of the filter. This 
information is required by MVC to instantiate and apply filters. Ninject collects this 
information and asks MVC on our behalf to create an instance of the given filter type 
and apply it to the given scope. In the previous example, LogFilter will be resolved 
using Ninject with "Info" as an argument for the logLevel parameter, and will be 
applied to all of the Action methods.

The ILog log parameter will be resolved based on how we register ILog. If you have 
used Log4Net before, you will remember that it can associate each logger to the type 
of class for which the logger is used:

public class MyClass
{
    private static readonly ILog log = 
                       LogManager.GetLogger(typeof(MyApp));
}

This way, the logs can later be filtered based on their associated types.

In order to provide the required type for our logger, we bind it to a method rather 
than a concrete service. This way, we can use the context object to determine the 
type of object requiring the log:

Bind<ILog>().ToMethod(GetLogger);

The following is the code for the GetLogger method:

private static ILog GetLogger(IContext ctx)
{
    var filterContext = ctx.Request.ParentRequest.Parameters
                    .OfType<FilterContextParameter>() 
                    .SingleOrDefault();
    return LogManager.GetLogger(filterContext == null ?
        ctx.Request.Target.Member.DeclaringType :



Chapter 4

[ 97 ]

        filterContext.ActionDescriptor.ControllerDescriptor.
ControllerType);
}

In the previous code, the context.Request is the request for resolving ILog 
and ParentRequest is the request for resolving LogFilter. When a filter class is 
registered using BindFilter, Ninject provides the request with a parameter of type 
FilterContextParameter, which contains information about the context of the 
object to which the filter is being applied, and we can then obtain the type of the 
Controller class from it. Otherwise, this parameter is not provided, which means the 
logger is not requested by a filter class, in which case we just use the type of the class 
requiring the logger.

Conditional filtering (When)
Now what if we are not going to apply the filter to all of the Controllers or the action 
methods? Ninject provides three groups of the WhenXXX methods to determine in 
which conditions to apply the filter:

•	 WhenControllerType: This method applies the filter to the specified 
Controller types only.

•	 WhenControllerHas: This method applies the filter to those Controllers with 
the specified attribute type

•	 WhenActionMethodHas: This method applies the filter to those Action 
methods with the specified attribute type

Apart from the mentioned three groups, Ninject offers a generic When method, which 
can be used to define any custom conditions which cannot be applied using the 
previous methods.

The following code shows how to apply LogFilter to those action methods which 
have LogAttribute, given that the LogAttribute class is a simple class deriving 
from the Attribute class:

Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
 .WhenActionMethodHas<LogAttribute>()
 .WithConstructorArgument("logLevel", ("Info");

This is another example that shows how to apply this filter to all of the actions of the 
HomeController class:

Kernel.BindFilter<LogFilter>(FilterScope.Controller, 0)
 .WhenControllerType <HomeController>()
 .WithConstructorArgument("logLevel", ("Info");



Ninject in Action

[ 98 ]

Contextual arguments (With)
In the previous examples, we have always used a constant "Info" argument to be 
passed to the logLevel parameter. Apart from the standard WithXXX helpers, which 
can be used on normal bindings, Ninject provides the following WithXXX methods 
especially for filter binding:

•	 WithConstructorArgumentFromActionAttribute: It allows to get  
the constructor argument from the attribute which is applied to the  
action method

•	 WithConstructorArgumentFromControllerAttribute: It allows to get  
the constructor argument from the attribute which is applied to the 
Controller class

•	 WithPropertyValueFromActionAttribute: In case of Property Injection, it 
allows to set the property using a value from the attribute which is applied to 
the action method

•	 WithPropertyValueFromControllerAttribute: In case of Property 
Injection, it allows to set the property using a value from the attribute which 
is applied to the Controller class

In the following code, we get the log level from the LogAttribute class rather than 
always passing a constant string to the logLevel parameter:

Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
    .WhenActionMethodHas<LogAttribute>()
    .WithConstructorArgumentFromActionAttribute<LogAttribute>(
        "logLevel",
        attribute => attribute.LogLevel);

The previous code requires the LogAttribute class to have the LogLevel property:

public class LogAttribute : Attribute
{
    public string LogLevel { get; set; }
}

WCF applications
In this section, we will implement the Northwind customers scenario using 
Windows Communication Foundation (WCF). WCF is a highly customizable and 
extensible framework, and it is possible to configure it to use Ninject service host 
factories to enable hosting of injectable services. Ninject WCF extensions include all 
the necessary components.



Chapter 4

[ 99 ]

Now, add a new WCF service application to the Northwind solution, and 
reference Northwind.Core project. We also need to add reference to the Ninject.
Extensions.WCF, Ninject.Web.Common, and Ninject libraries. We can do it 
either via NuGet, or we can download the binaries from the Ninject page on 
GitHub. Adding binary references manually requires some manipulations of the 
Global.asax file in our application. We talked about this approach in the last 
section. However, adding a reference to Ninject.Extensions.WCF via NuGet 
will also add other references to the required Ninject packages, and will create the 
NinjectWebCommon class in the App_Start directory of the project. Although we can 
use either approach, since we have used the first method in previous section, we are 
going to demonstrate the latter in this section. The following is the content of the 
NinjectWebCommon class:

public static class NinjectWebCommon
{
    private static readonly Bootstrapper bootstrapper = new 
Bootstrapper();
    public static void Start()
    {
        DynamicModuleUtility
            .RegisterModule(typeof(OnePerRequestHttpModule));
        DynamicModuleUtility.RegisterModule(typeof(NinjectHttpModu
le));
        bootstrapper.Initialize(CreateKernel);
    }

    public static void Stop()
    {
        bootstrapper.ShutDown();
    }

    private static IKernel CreateKernel()
    {
        var kernel = new StandardKernel();
        kernel.Bind<Func<IKernel>>().ToMethod(ctx => 
               () => new Bootstrapper().Kernel);
        kernel.Bind<IHttpModule>()
            .To<HttpApplicationInitializationHttpModule>();

        RegisterServices(kernel); 
        return kernel;
    }

    private static void RegisterServices(IKernel kernel)
    {        
    // Here is our Composition Root
    }
}



Ninject in Action

[ 100 ]

Having the NinjectWebCommon class in the App_Start directory of our application 
causes the application to be started from the Start method of this class. The Start 
method registers the OnePerRequestHttpModule and NinjectHttpModule modules 
which are needed for Ninject to take care of web applications, and it initializes the 
Ninject bootstrapper using the kernel created in the CreateKernel method, which 
in turn calls the RegisterServices method. This is where we can either register our 
service types or load our service registration module.

Let's start by creating our CustomerService contract. Add a new WCF Service 
class and name it CustomerService. Then open the ICustomerService interface 
and add the following operations:

[ServiceContract]
public interface ICustomerService
{
    [OperationContract]
    IEnumerable<CustomerContract> GetAllCustomers();

    [OperationContract]
    void AddCustomer(CustomerContract customer);
}

We need a method for getting the list of customers, and another one to add a new 
customer to the repository. Since the return type of GetAllCustomers is not primitive, 
we need to define a data contract as well:

[DataContract]
public class CustomerContract
{
    [DataMember]
    public string ID { get; set; }
    [DataMember]
    public string CompanyName { get; set; }
    [DataMember]
    public string City { get; set; }
    [DataMember]
    public string PostalCode { get; set; }
    [DataMember]
    public string Phone { get; set; }
}

Now, we implement the CustomerService class:

public class CustomerService : ICustomerService
{
    private readonly ICustomerRepository repository;



Chapter 4

[ 101 ]

    private readonly IMapper mapper;

    public CustomerService(ICustomerRepository repository, IMapper 
mapper)
    {           
        this.repository = repository;
        this.mapper = mapper;
    }

    public IEnumerable<CustomerContract> GetAllCustomers()
    {
        var customers = repository.GetAll();
        return mapper.Map(customers);
    }

    public void AddCustomer(CustomerContract customer)
    {
        repository.Add(mapper.Map(customer));
    }
}

Apart from ICustomerRepository, which is the first dependency, it needs a mapper 
class to map the domain Customer to the contract Customer:

public interface IMapper
{
    Core.Customer Map(CustomerContract customer);
    CustomerContract Map(Core.Customer customer);
    IEnumerable<CustomerContract> Map(IEnumerable<Core.Customer> 
customers);
}

The CustomerService class has two dependencies, which are introduced in its 
constructor. But in order for WCF to instantiate such services which lack the default 
constructor, we should tell it to use Ninject's service host factories rather than 
the standard ones. To do so, right-click the CustomerService.svc file, and from 
the pop-up menu, select View Markup. In the markup editor of the service, add 
Ninject.Extensions.Wcf.NinjectServiceHostFactory as the factory of the 
corresponding ServiceHost:

<%@ ServiceHost Language="C#" Debug="true"  
    CodeBehind="CustomerService.svc.cs" 
    Service="Northwind.Wcf.CustomerService"
    Factory="Ninject.Extensions.Wcf.NinjectServiceHostFactory"%>



Ninject in Action

[ 102 ]

The Factory attribute can have the following values:

•	 Ninject.Extensions.Wcf.NinjectServiceHostFactory for  
ordinary services

•	 Ninject.Extensions.Wcf.NinjectDataServiceHostFactory for  
data services

Now reference the Ninject Conventions extension, and enter the following binding 
convention in the RegisterServices method of the NinjectWebCommon class:

kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());

ASP.NET Web Forms applications
ASP.NET Web Forms is not as extensible as MVC or WCF, and it is not possible to 
tweak its UI engine to support activation of pages without a default constructor. 
This limitation of Web Forms applications prevents making use of the Constructor 
Injection pattern. However, it is still possible to use other DI patterns such as an 
initializer method. 

In order to set up Ninject for a Web Forms application, we need to add a reference 
to the Ninject.Web extension. This extension requires to have referenced Ninject.
Web.Common and Ninject as well. If we use NuGet package manager, these libraries 
will be referenced automatically as soon as we make a reference to Ninject.Web. 
It will also create two classes in the App_Start directory of the application. The 
NinjectWebCommon class, which we have already discussed, and NinjectWeb. These 
classes are required by the Ninject.Web extension to work properly. We can add our 
service registrations to the RegisterServices method of the NinjectWebCommon class.

In this example, we will create a Web Form which presents a list of Northwind 
customers using an initializer method. Add a new ASP.NET Web Forms application 
to the Northwind solution, and after referencing the Northwind.Core project, set up 
Ninject as described previously.

Add a GridView control to the Default.aspx page and modify the source code of 
the page, as shown in the following code:

public partial class Default : System.Web.UI.Page
{
    private ICustomerRepository repository;

    [Inject]



Chapter 4

[ 103 ]

    public void Setup(ICustomerRepository customerRepository)
    {   
        this.repository = customerRepository;
    }

    protected void Page_Load(object sender, EventArgs e)
    {
        customersGridView.DataSource = repository.GetAll();
        customersGridView.DataBind();
    }
}

The ICustomerRepository interface is introduced as a parameter in the Setup 
method rather than a constructor parameter. That is because ASP.NET Web Forms 
UI engine is not configurable in such a way to instantiate UI components which don't 
have a default constructor. The Setup method will be called as soon as the Page 
object is created, having its parameter resolved and injected.

Now, reference Ninject conventions extension and put the following binding 
convention in the RegisterServices method of the NinjectWebCommon class:

kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());

Summary
Windows Forms application supports all DI patterns, because it offers a single 
startup location in the Main method and gives us the freedom of instantiating all 
classes ourselves. WPF and Silverlight applications are friendly to MVVM pattern, 
and they support all DI patterns as well. ASP.NET MVC is a DI-friendly framework, 
and although the creation of framework components (for example, Controllers) are 
up to the framework factories, it allows to replace them with Ninject factories which 
support injectable components. Ninject.Web.MVC extension contains ASP.NET 
MVC injection facilities of Ninject. WCF is the other web platform which supports all 
DI patterns because of its high extensibility and configurability. It can be configured 
to use Ninject service host factories which are implemented in the Ninject.
Extensions.WCF library.

ASP.NET Web Forms does not fully support DI; however, it is possible to configure 
it in such a way to use some DI patterns. The Ninject.Web extension contains the 
necessary components to make use of the partial DI support to ASP.NET.





Doing More with Extensions
While the core library of Ninject is kept clean and simple, Ninject is a highly 
extensible DI container and it is possible to extend its power using extension plugins. 
We have already used some of them in the previous chapter. In this chapter, we will 
see how interception is a solution for cross-cutting concerns and how to use Mocking 
Kernel as a test asset. We will also look at how Ninject can be extended:

•	 Interception
•	 Mocking Kernel
•	 Extending Ninject

By the end of this chapter, the user will be able to make use of Interception and 
Mocking Kernel extensions.

Interception
There are cases where we need to do some operations before or after calling a single 
method or a number of methods. For example, we may need to log something before 
and after invoking all the methods in a component. Interception allows us to wrap 
the injecting dependency in a proxy object which can perform such operations 
before, after, around or instead of each method invocation. This proxy object can 
then be injected instead of the wrapped service. Ninject Interception extension 
creates such proxy wrappers on the fly, and allows us to intercept invocations of 
the wrapped service members. The following diagram shows how a service will be 
replaced with an intercepted one during the interception process.



Doing More with Extensions

[ 106 ]

Interception is one of the best practices for implementing Cross Cutting Concerns  
such as logging, caching, exception handling, or transaction processing.

Setup Interception
Ninject Interception extension generates proxy instances based on the DynamicProxy 
implemented by LinFu or Castle. We can choose which implementation to use when 
referencing interception extension. Using NuGet either install Ninject.Extensions.
Interception.DynamicProxy or Ninject.Extensions.Interception.Linfu. 
NuGet will also automatically install Ninject, Ninject.Extensions.Interception 
and Castle.Core or LinFu.DynamicProxy depending on the selected DynamicProxy 
implementation. In this section, we will use Castle DynamicProxy. We can also 
download and reference the binary files of these libraries manually. Finally,  
we need to add the following using statements to the code:

using Ninject.Extensions.Interception;
using Ninject.Extensions.Interception.Infrastructure.Language;

Member Interception
Once we have setup our project for Interception extension, some extension methods 
will be available via the kernel which can be used for interception. We can use these 
methods to intercept a method or property. Here are a few of them:

InterceptReplace<T> (Expression<Action<T>>, Action<IInvocation>)
InterceptAround<T> (Expression<Action<T>>, 
                       Action<IInvocation>, Action<IInvocation>)
InterceptBefore<T> (Expression<Action<T>>, Action<IInvocation>)
InterceptAfter<T> (Expression<Action<T>>, Action<IInvocation>)

The following example shows us how to use a method interception to log around  
the GetAllCustomers() method of the CustomerService class:

Kernel.InterceptAround<CustomerService>(
    s=>s.GetAllCustomers(),
    invocation =>logger.Info("Retrieving all customers..."),
    invocation =>logger.Debug("Customers retrieved"));

In the preceding example, the type parameter indicates the service we are going to 
intercept (that is, CustomerService). The first parameter is a delegate which indicates 
the method to intercept (for example, GetAllCustomers). For the InterceptAround 
method, the second and third parameters are two delegates which will be executed 
before and after invoking the intercepted method respectively.



Chapter 5

[ 107 ]

The invocation parameter whose type is IInvocation, provides useful information 
about the method invocation context. For example, we can get or change the 
returned value. In the following example, we will log the number of retrieved 
customers using the InterceptAfter method:

Kernel.InterceptAfter<CustomerService>(s=>s.GetAllCustomers(),
    invocation =>logger.DebugFormat("{0} customers retrieved",
            (IEnumerable<Customer>) invocation.ReturnValue).Count()));

Since the type of ReturnedValue is object, we need to cast it to reach the Count() 
method. In the following example, we will implement caching for the GetAll() 
method of the customers repository:

Kernel.InterceptReplace<SqlCustomerRepository>(
r => r.GetAll(),
invocation =>
{
    const string cacheKey = "customers";
    if (HttpRuntime.Cache[cacheKey] == null)
    {
        invocation.Proceed();
        if (invocation.ReturnValue != null)
            HttpRuntime.Cache[cacheKey] = invocation.ReturnValue;
    }
    else
        invocation.ReturnValue = HttpRuntime.Cache[cacheKey];
});

In this example, we used the InterceptReplace method, which can totally replace 
the functionality of the intercepted method. We used HttpRuntime.Cache for 
caching the list of Customer objects, which the GetAll() method returns. If the 
Cache object is empty, we need to call GetAll(), which is the intercepted method 
and then put the returned value in the cache. In order to call the intercepted method 
via the interception method (InterceptReplace), we should call the Proceed() 
method of the invocation object. Then, we can get its returned value, which is the list 
of Customer objects from the ReturnValue property of the invocation. If the Cache 
object is not empty, we just need to set the ReturnValue property to the cached 
Customer list. In this way, the GetAll() method will not be called.

The important thing to keep in mind is that the type argument provided 
for interception methods cannot be the type of the abstracted service. It 
should be the concrete implementation type. That is why we have provided 
SqlCustomerRepository rather than ICustomerRepository as the type argument 
for the InterceptReplace method, so the following code wouldn't work:



Doing More with Extensions

[ 108 ]

Kernel.InterceptReplace<ICustomerRepository>(
r => r.GetAll(), invocation =>{  ...  });

That is because interception creates a proxy wrapper around the resolved object 
rather than creating a new implementation of the abstracted service.

You may have noticed that all of the InterceptXxx<T> methods require a type 
argument. This obliges the application to have a reference to the dependency library, 
which is usually not desirable. We should be able to refer to types using their names 
so that we can dynamically load dependency assemblies at runtime. In order to do 
so, we can use the AddMethodInterceptor method. Here is the implementation of 
the preceding example using the AddMethodInterceptor method:

var repositoryType = Type.GetType(
"Northwind.SqlDataAccess.SqlCustomerRepository, Northwind.
SqlDataAccess");
Kernel.AddMethodInterceptor(repositoryType.GetMethod("GetAll"),
invocation => {    ...   });

Type Interception
Although method Interception targets a particular method or property of a given 
type, type Interception is more generalized and applies to a type or a group of types, 
and intercepts all of the methods and properties in a single point. In order to create 
an interceptor, we need to implement the IInterceptor interface. This interface has 
only one method, which is as follows:

void Intercept( IInvocation invocation );

In the following example, we will implement an exception handling interceptor 
which can catch the exceptions and hand them over to an exception handler service. 
It is the same as putting try-catch in all of the methods of the intercepted type:

public class ExceptionInterceptor : IInterceptor
{
    private IExceptionHandlerService exceptionHandlerService;
    public ExceptionInterceptor(IExceptionHandlerService 
handlerService)
    {
        this.exceptionHandlerService = handlerService;
    }

    public void Intercept(IInvocation invocation)
    {
        try
        {



Chapter 5

[ 109 ]

            invocation.Proceed();
        }
        catch (Exception exception)
        {
            exceptionHandlerService.HandleException(exception);
        }
    }
}

The following code shows how to add the ExceptionInterceptor to our convention 
so that it applies to all the classes of our application:

Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .Configure(b =>
                            b.Intercept()
                               .With<ExceptionInterceptor>()
                        ));

The Intercept() method is added to the configuration section of our convention 
and accepts the type of the desired interceptor as its type parameter. It can then 
activate the provided type to create and apply the interceptor object.

If we need to intercept only a certain type in a convention rule, we can use the 
ConfigureFor<T> method:

Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .ConfigureFor<CustomerRepository>
         (b => b.Intercept()
                            	 .With<ExceptionInterceptor>()
                        ));

If we already have an instance of our interceptor, we can use the following syntax:

var exceptionInterceptor = Kernel.Get<ExceptionInterceptor>();
Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .Configure(b =>
                            b.Intercept()
                            	  .With(exceptionInterceptor)
                        ));



Doing More with Extensions

[ 110 ]

The preceding example showed how to intercept types projected by a convention. 
It is also possible to intercept the kernel itself. The following example applies 
ExceptionInterceptor to all of the services resolved by the kernel, no matter  
how they are registered:

kernel.Intercept(context => true)
  .With<ExceptionInterceptor>();

The Intercept method accepts a predicate, which is given an instance of the current 
activation context (IContext). This predicate indicates what services to choose for 
interception. In this example, we always return true, which means we intend to 
intercept all services. We can define any contextual condition by this predicate based 
on the activation context. Refer to the Contextual binding section in Chapter3, Meeting 
Real-world Requirements for refreshing how to define contextual conditions.

There is also a built-in interceptor class named ActionInterceptor, which can  
be used as a generic interceptor in case our interception logic is as simple as a  
single method:

Kernel
.Intercept()
.With(new ActionInterceptor(invocation =>
         log.Debug(invocation.Request.Method.Name)));

The Interception extension also contains an abstract SimpleInterceptor class, 
which can be extended to create interceptors with a pre/post interception  
logic, and an AutoNotifyPropertyChangedInterceptor class, which is  
designed specifically for WPF ViewModels and automates notification  
of property changes.

Multiple Interceptors
We already studied how to implement exception handling concern using 
interception. But what if we need to add more interceptors to a type? In reallife 
scenarios we usually have to implement a variety of cross-cutting concerns on 
each type. Multiple interception allows us to meet this requirement. The following 
example shows how to address both logging and exception-handling concerns using 
two interceptors:

kernel.Intercept(context => true).With<ExceptionInterceptor>();
kernel.Intercept(context => true).With<LoggerInterceptor>();



Chapter 5

[ 111 ]

Alternatively, we can apply them to a convention similar to this:

Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
            .SelectAllClasses()
            .BindAllInterfaces()
            .Configure(b =>
                            {
                                b.Intercept()
                                 .With<ExceptionInterceptor>();

                                b.Intercept()
                                 .With<LoggerInterceptor>();
                            }
                        ));

We can also register multiple interceptors on a single Binding in the same way  
as follows:

var binding = Bind<IService>().To<MyService>();    
binding.Intercept().With<ExceptionInterceptor>();
binding.Intercept().With<LoggerInterceptor>();

When we register an interceptor for a service type, Ninject no longer resolves the 
service by activating the service itself. Instead, Ninject returns a proxy object which 
wraps an instance of the service. When we call a method on the resolved object, we 
are actually calling the proxy implementation of that method, rather than the actual 
service method. The following diagram demonstrates that the proxy method invokes 
the Intercept method on the first registered interceptor:



Doing More with Extensions

[ 112 ]

If the Proceed method is called within the Intercept method, the proxy class 
advances to the next interceptor and executes its Intercept method. Calling the 
Proceed method in the last interceptor leads to calling the actual service method. 
Once the actual service method is called, the control returns to the last Intercept 
method along with the value returned by the service method. Here is where the 
interceptor can perform post-invocation operations (for example, modifying the 
returned value). The control then returns to the previous interceptors one by one, 
until it reaches the proxy method which was initially called. The following diagram 
shows this sequence:

When we register multiple interceptors, the order in which they intercept can  
be indicated using the InOrder method as follows:

Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
            .SelectAllClasses()
            .BindAllInterfaces()
            .Configure(b =>
                            {
                                b.Intercept()
                                .With<ExceptionInterceptor>()
                                .InOrder(1);

                                b.Intercept()
                                .With<LoggerInterceptor>()
                                .InOrder(2);
                            }
                        ));



Chapter 5

[ 113 ]

The lower the value of the order, the earlier the interceptor executes. So, in the 
preceding example, ExceptionInterceptor executes before LoggerInterceptor.

Intercept Attribute
Another way of registering an interceptor for a type or method is by using 
attributes. In order to create an attribute interceptor, we just need to derive from the 
InterceptAttribute class and override its CreateInterceptor method. In the 
following example, we create an attribute named InterceptExceptionsAttribute 
for intercepting exceptions:

public class InterceptExceptionsAttribute : InterceptAttribute
{
    public override IInterceptor CreateInterceptor(IProxyRequest 
request)
    {
        return request.Kernel.Get<ExceptionInterceptor>();
    }
}

We can then apply this attribute to a method or a type as follows:

[InterceptExceptions]
public class Sample
{    ...    }

We can also apply both attributes to the same type as shown in the following code:

[InterceptExceptions, Log]
public class Sample
{    ...   }

We can apply the interceptor attributes also to methods (remember that in either 
way, the method should be virtual or it will not be intercepted) as follows:

[InterceptExceptions]
public class Sample
{
    [Log]
    public virtual void DoSomething()
    {    ...    }
    ...
}



Doing More with Extensions

[ 114 ]

In the preceding example, all of the virtual methods within the Sample class 
will be intercepted by ExceptionInterceptor. The DoSomething method is also 
intercepted by LoggerInterceptor.

We can also specify the order of interceptors, by setting the Order property of the 
applied attribute as follows:

[InterceptExceptions(Order = 2)]
public class Sample
{
    [Log(Order = 1)]
    public virtual void DoSomething()
    {    ...   }
}

In the preceding example, the DoSomething method will be intercepted first by 
LoggerInterceptor and then by ExceptionInterceptor.

In case if we have methods which we don't want to be intercepted, we can exclude 
them using the [DoNotIntercept] attribute as follows:

[InterceptExceptions]
public class Sample
{
    [Log]
    public virtual void DoSomething()
    {     ...    }

    [DoNotIntercept]
    public virtual void DoSomethingElse()
    {     ...    }
}

In the preceding example, although the [InterceptExceptions] attribute is applied 
to the type, it doesn't intercept the DoSomethingElse method.

Mocking Kernel
One of the advantages of Dependency Injection is that it improves the testability of 
code units and makes it even easier. Ninject has introduced Mocking Kernel, which 
facilitates the injection of mock objects. In this section, we will add a Test project to 
the Northwind solution and see how to use Mocking Kernel in order to write our 
unit tests. It is possible to extend Mocking Kernels for different isolation frameworks, 
and for some of them including RhinoMocks, Moq and NSubstitute, mocking kernel 
extensions already exist. In this example, we will use the Moq Mocking Kernel in 
combination with the NUnit framework to write some unit tests for the Northwind.
Wpf project.



Chapter 5

[ 115 ]

Add a new class library project named Northwind.Wpf.Test to the Northwind 
solution and reference the Northwind.Wpf and Northwind.Model projects. Since 
we are going to use some WPF components in our tests, we also need a reference 
to PresentationCore. Now using NuGet install Ninject.MockingKernel.Moq. 
It will automatically reference Ninject, Ninject.MockingKernel, and Moq as 
its prerequisites. It is also possible to download and reference binaries manually. 
You can use other test frameworks or Mocking Kernels according to your needs. 
Although there might be some slight changes, the overall process would be the same.

Now we add a new class for testing MainViewModel and create it as follows:

[TestFixture]
class MainViewModelTests
{
    private readonly MoqMockingKernel kernel;
    public MainViewModelTests()
    {
        this.kernel = new MoqMockingKernel();
    }

    [TearDown]
    public void TearDown()
    {
        kernel.Reset();
    }      
}

The Reset() method clears Ninject cache of all created instances. By calling this 
method as part of NUnit teardown process which happens after each test, we 
don't need to dispose and reinitialize kernel for each test. Note that instead of 
StandardKernel we are using MoqMockingKernel. If there are no matching bindings 
for a service type, and if the type is not self-bindable, MockingKernel will create 
mock for the type and inject the associated mocked object wherever the type is 
requested. Thus, calling the Get<T>() method on MockingKernel will return the 
associated mocked object. In order to get the mock itself, the MockingKernel has 
another method named GetMock<T>(). We can also use the following syntax in 
order to explicitly define a mock binding:

Bind<IService>().ToMock();

It is useful when further setup on a binding is required:

Bind<IService>().ToMock()
    .WithConstructorArgument("paramName",argument)
    .InSingletonScope().Named("BindingName");



Doing More with Extensions

[ 116 ]

Let's write our first test which verifies whether getting the Customers property calls 
the GetAll() method of ICustomerRepository (you can review Chapter 4, Ninject in 
Action to refresh your memory if you don't remember CustomerViewModel clearly) 
as follows:

[Test]
public void GettingCustomersCallsRepositoryGetAll()
{
    var repositoryMock = kernel.GetMock<ICustomerRepository>();
    repositoryMock.Setup(r => r.GetAll());
    var sut = kernel.Get<MainViewModel>();
    var customers = sut.Customers;
    repositoryMock.VerifyAll();
}

In this test, calling GetMock<ICustomerRepository> returns the mock which Moq 
created for ICustomerRepository. We expect the GetAll() method to be called 
on the mocked object associated with this mock. MainViewModel is our System 
under Test (SUT) which is acquired from the kernel using the Get method. Because 
MainViewModel is self bindable, the kernel doesn't return a mocked object for this 
type and returns an instance of our own implementation of MainViewModel. Then 
we call the get accessor of the Customers property and verify the mock to see if the 
GetAll method is called on the mocked implementation of ICustomerRepository. 
The preceding test was a simple one and implementing it without MockingKernel 
wouldn't be much harder. We just needed to create mocks for other dependencies of 
MainViewModel and pass the associated objects to MainViewModel. In the following 
test we will study a more complicated case. We are going to verify whether  
executing CreateCustomerCommand  will call the ShowDialog method of the 
CustomerView class:

[Test]
public void ExecutingCreateCustomerCommandShowsCustomerView()
{
    var customerViewMock = kernel.GetMock<ICustomerView>();
    customerViewMock.Setup(v => v.ShowDialog());
    var sut = kernel.Get<MainViewModel>();
    sut.CreateCustomerCommand.Execute(null);
    customerViewMock.VerifyAll();
}



Chapter 5

[ 117 ]

Again our SUT is MainViewModel, but the type of mocked object is ICustomerView. 
The dependency graph of MainViewModel which is shown in the following diagram, 
shows that we need to involve other objects in this scenario in order to make the test 
work properly:

We need actual implementations of IViewFactory, ICommandFactory, and 
ICommand rather than their mocked objects. Therefore, we need the following  
binding rules:

kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                .SelectAllClasses()
                .BindDefaultInterfaces());

kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                .SelectAllInterfaces()
                .EndingWith("Factory")
                .BindToFactory());

We need to have a reference to the Ninject Factory extension (Ninject.Extensions.
Factory) in order to create the required dynamic factories. Dynamic factory was 
discussed in Chapter 3, Meeting Real-World Requirements. 



Doing More with Extensions

[ 118 ]

Extending Ninject
Ninject is actually a collection of single responsible components that are wired 
together using DI. This makes it extremely extensible, and thus new functionalities 
are created by adding new components and the existing behaviors can easily be 
customized by swapping standard components with our customized ones. All of 
the Ninject components are available via the kernel.Components property. We can 
also create a customized Kernel object by extending the KernelBase class or even 
implementing the IKernel interface. In order to extend Ninject behaviors, we need 
to know Ninject components and their roles. Going through all of those components 
is out of the scope of this book. However, we will have an example to see how to 
extend Ninject by adding a new component.

In the following example we will create a new IMissingBindingResolver 
component and add it to Ninject components. IMissingBindingResolver, as the 
name suggests, is responsible for resolving types for which there are no registered 
bindings. SelfBindingResolver is a preexisting example of this component 
which returns the type itself if it is not registered. That is why we don't need 
to registers types to themselves explicitly. In this example, we will create an 
IMissingBindingResolver object which can resolve any interface named IXXX  
to a type named XXX as follows:

public class DefaultImplementationBindingResolver : 
       NinjectComponent, IMissingBindingResolver
{
    public IEnumerable<IBinding> Resolve ( 
Multimap<Type, IBinding> bindings, IRequest request)
    {
        var service = request.Service;
        if (!service.IsInterface || !service.Name.StartsWith("I"))
            return Enumerable.Empty<IBinding>();
        return new[] {
new Binding(service) { ProviderCallback = StandardProvider
.GetCreationCallback(GetDefaultImplementationType(service)) }};
    }

    private Type GetDefaultImplementationType(Type service)
    {
        var typeName = string.Format("{0}.{1}",  
             service.Namespace, service.Name.TrimStart('I'));
        return Type.GetType(typeName);
    }
}



Chapter 5

[ 119 ]

The Resolve method gets a list of bindings and the request object. It tries to restrict 
the list of bindings as much as it can and then returns the restricted list. Ideally this 
list should contain only one binding. We expect the service type to be an interface 
whose name starts with I. Otherwise, we return an empty list which means we 
cannot resolve it here. In the GetDefaultImplementationType method we remove I 
from the service name to achieve the name of its implementation and return its type. 
The type will be passed to StandardProvider to create a CreationCallback object. 
This callback will later be used for creating the instance. We create a new Binding 
object for this service type, having set the CreationCallback, and return it as a 
single member sequence.

The following code shows how to add this component to the kernel:

var kernel = new StandardKernel();
kernel.Components
.Add<IMissingBindingResolver, DefaultImplementationBindingResolver>();

Summary
Interception extension creates on the fly proxy wrappers around injected objects  
and allows us to intercept invocation of the wrapped service members and is one  
of the best practices to address cross-cutting concerns.

Mocking is another Ninject's handy extension which automates injection of  
mock objects. It has a built-in support for popular mocking frameworks such  
as RhinoMocks, Moq, and NSubstitute.

Ninject is a collection of independent components that are wired together and  
we can extend Ninject's functionality by adding new components or substituting  
the existing ones.





Index
A
ActionCommand  86
ActionFilterAttribute  94
Action method  96
ActivationException exception  42, 43
AddShapes method  63
antipatterns  41
ASP.NET MVC applications

about  89-91
filter injection  94
validator injection  92

ASP.NET Web Forms applications  102, 103
assemblies, convention over configuration

selecting  36
attribute-based binding  55
Attribute class  97
AutoNotifyPropertyChangedInterceptor 

class  110

B
BindAllInterfaces()  37
BindBase()  37
BindDefaultInterface()  37
BindDefaultInterfaces()  37
binding  22-24
binding, convention over configuration

configuring  38
Binding Generator

defining  65
Binding Resolver  54
BindingSource control  78
BindSelection(ServiceSelector selector)  38
BindSingleInterface()  37

BindToFactory method  65
BindToSelf()  38
BindUsingRegex(string pattern)  38
BindWith method  65

C
CanDecode method  48
Close method  83
CLR  17
Common Service Locator. See  CLR
components, convention over configuration

inclusion and exclusion, explicit  37
selected components, filtering  37
selecting  36

conditional filtering (When)
about  97
WhenActionMethodHas method  97
WhenControllerHas method  97
WhenControllerType method  97

ConfigurationProvider  60
ConsoleLogger class  14, 26
ConsoleLogger singleton  26
ConstraintAttribute class  52
constructor injection  42, 43
contextual arguments (With)

about  98
WithConstructorArgumentFromAction 

Attribute method  98
WithConstructorArgumentFrom 

ControllerAttribute method  98
WithPropertyValueFromActionAttribute 

method  98
WithPropertyValueFromController 

Attribute method  98



[ 122 ]

contextual binding
about  49-51
attribute-based binding  55, 56
generic helper  57
metadata resolution  52-54
named binding  51
target-based conditions  56, 57

convention over configuration
about  34, 35
assemblies, selecting  35
binding, configuring  38
components, selecting  36
service types, selecting  37, 38

Copy to Output Directory property  31
Count() method  107
CreateCustomerCommand command  116
CreateInstance method  61
CreateInterceptor method  113
CreateKernel method  89, 100
Create method

code  80
CreateSquare method  64
CreationCallback object  119
Customer entity  75
CustomerForm

code  79
CustomerService class

about  101, 106
implementing  100

CustomerViewModel class  83
CustomerWindow method  87
custom scope, object lifetime  28, 29

D
DataContext property  82
Data Transfer Object (DTO)  79
Dependency Injection. See  DI
DI

about  8
containers  16
first application  12-15
or Inversion of Control (IoC)  9

DialogResult property  84
DI patterns  41
DoSomething method  114

dynamic factories
about  62
convention, using  65
custom instance providers  68-70
func  70
lazy  71
Shape Factory example  62-64
Telecom Switch, example  66-68

E
ExceptionInterceptor interface  109
Extensible Application Markup Language 

(XAML)  81

F
Factory attribute  102
factory interface  70
factory method  61, 68
FileInfo object  47
filtering

conditional filtering (When)  97
contextual arguments (With)  98

filter injection  94
filters

about  94
applying  94
IActionFilter  94
IAuthorizationFilter  94
IExceptionFilter  94
IResultFilter  94

FromAssemblyContaining 
<SomeType>()  36

From(params Assembly[] assemblies)  36
FromThisAssembly()  36
Func  70

G
GetAllCustomers() method  106
GetAll() method  107
GetDefaultImplementationType  

method  119
GetLogger method  96
Global.asax file  90
Grab() method  11



[ 123 ]

H
HomeController class  90, 97

I
ICommand  86
IContext interface  61
ICustomerRepository  79
ICustomerRepository interface  91
ICustomerService interface  100
ICustomerValidator  93
ICustomerView  87
IInitializable interface  44
IInterceptor interface  108
IKernel interface  118
ILogger  24
ILog log parameter  96
IMissingBindingResolver component  118
IncludingNonePublicTypes() method  36
InitializeClient method  24
Initialize method  44
InjectAttribute class  93
injecting dependencies

example  43
install-package Ninject  20
InterceptAttribute class  113
interception

about  105, 106
InterceptAttribute  113, 114
member  106-108
multiple interception  110-113
setup  106
types  108-110

Intercept() method  109-111
InterceptReplace method  107
InterceptXxx<T> method  108
Inversion of Control (IoC)  9
invocation parameter  107
IPerformanceMonitoringService  94
IShippersRepository  51
IsValid method  93
IView interface  87

K
KernelBase class  118
kernel.Components property  118

L
lazy object  71
LoadCustomers method  78
Load event  78
LogAttribute class  97
LogFilter class  96
logLevel parameter  96

M
MailConfig class  22
MailServerConfig object  24
MailService class  13, 15, 23
MailService type  24
Main method

code  80
MainViewModel class  82
Mapper class

implementing  76, 77
metadata resolution  52-54
mocking kernel  114-117
multi binding

contextual binding  49-51
plugin model, implementing  46-49

MvcApplication class  90
MVVM architecture

about  81
Model  81
View  81
ViewModel  81

N
named binding  51, 52
NamedLikeFactoryMethod helper  

method  68
Ninject

about  17, 19-21
extending  118, 119
interception  105



[ 124 ]

official website, URL  20
official wiki, URL  17

Ninject.Extensions.Factory library  64
Ninject.Extensions.WCF library  99
NinjectHttpModule  100
Ninject library  99
Ninject modules

about  30
MailService classes, registering  30

NinjectWebCommon class  89, 99, 102
Ninject.Web.Common library  99

O
object lifetime

about  25
custom scope  28, 29
request scope  28
singleton scope  26
thread scope  27
transient scope  25

OnePerRequestHttpModule  100
OnLoad method  78
OnPropertyChanged method  84
OnStartup method  88

P
PerformanceMonitor property  94
plugin model

implementing  46-49
Proceed method  112
Proceed() method  107
providers

about  57-61
activation context  61
factory method  61, 62

Provider<T> class  58

R
RegisterServices method  100, 102
request object  119
request scope, object lifetime  28
Reset() method  115
ReturnValue property  107

S
SalutationService  21
SaveCommand property  85
Save method  85
SelectAllAbstractClasses() method  65
SelectAllIncludingAbstractClasses()  

method  65
SelectAllInterfaces() method  65
SelectAllTypes() method  65
SelfBindingResolver  118
Separation of Concerns. See  SoC
service locator  45
Service Registration  24
service types

selecting  65
service types, convention over configuration

selecting  37
ShapeService class  63
ShippersService class  50, 51
ShippersSqlRepository class  58
ShowDialog method  84
Silverlight applications

about  81
using  81-88

SimpleInterceptor class  110
singleton scope, object lifetime  26
SoC  10
SqlCustomerRepository  38
StandardInstanceProvider  68
StandardProvider  57
Start() method  89
SwitchService class  67
System Under Test (SUT)  12, 116

T
target-based conditions  56
Target object  60
TextBox controls  78
thread scope, object lifetime  27
transient scope, object lifetime  25



[ 125 ]

U
Unblock button  20
UniqueCustomerIdAttribute class  93
User.Current  29

V
validator injection  92, 93

W
WCF  98
WCF applications  98
WhenInjectedInto<T> method  57
Windows Forms  77
Windows Presentation Foundation.  

See  WPF applications
WPF applications

about  81
using  81-88

X
XML configuration

about  31
using  31-34





Thank you for buying  
Mastering Ninject for Dependency 

Injection 

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Refactoring with Microsoft Visual 
Studio 2010 
ISBN: 978-1-849680-10-3             Paperback: 372 pages

Evolve your software system to support new and 
ever-changing requirements by uploading your C# 
code base with patterns and principles

1.	 Make your code base maintainable with 
refactoring

2.	 Support new features more easily by making 
your system adaptable

3.	 Enhance your system with an improved  
object-oriented design and increased 
encapsulation and componentization

JBoss Weld CDI for Java Platform
ISBN: 978-1782160-18-2            Paperback: 122 pages

Learn CDI concepts and develop modern web 
applications using JBoss Weld

1.	 Learn about dependency injection with CDI

2.	 Install JBoss Weld in your favorite container

3.	 Develop your own extension to CDI

4.	 Decouple code with CDI events

5.	 Communicate between CDI beans and 
AngularJS

Please check www.PacktPub.com for information on our titles



Java EE 6 with GlassFish 3 
Application ServerInstant 
ISBN: 978-1-849510-36-3            Paperback: 488 pages

A practical guide to install and configure the 
GlassFish 3 Application Server and develop Java EE 6 
applications to be deployed to this server

1.	 Install and configure the GlassFish 3 
Application Server and develop Java EE 6 
applications to be deployed to this server

2.	 Specialize in all major Java EE 6 APIs, including 
new additions to the specification such as CDI 
and JAX-RS

3.	 Use GlassFish v3 application server and gain 
enterprise reliability and performance with  
less complexity

Instant Dependency Management 
with RequireJS How-to
ISBN: 978-1-782169-06-2            Paperback: 42 pages

Optimize the performance and maintainability of 
your web applications with RequireJS

1.	 Learn something new in an Instant! A short, 
fast, focused guide delivering immediate 
results

2.	 Filled with useful tips to improve the 
performance and maintainability of web 
applications

4.	 Contains valuable guidance to integrate 
popular third-party libraries, such as jQuery, 
the jQueryUI Widget Factory, and Backbone.js, 
with RequireJS

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding 
Dependency Injection
	What is Dependency Injection?
	DI or Inversion of Control (IoC)

	How can DI help?
	My First DI Application
	DI Containers
	Why use Ninject?
	Summary

	Chapter 2: Getting Started with Ninject
	Hello Ninject!
	It's all about Binding
	Object Lifetime
	Transient scope
	Singleton scope
	Thread scope
	Request scope
	Custom scope

	Ninject modules
	XML configuration
	How to use XML configuration

	Convention over configuration
	Selecting the assemblies
	Selecting the components
	Filtering the selected components
	Explicit inclusion and exclusion

	Selecting service types
	Configuring the Bindings

	Summary

	Chapter 3: Meeting Real-world Requirements
	DI patterns and antipatterns
	Constructor Injection
	Initializer methods and properties
	Service Locator

	Multi binding and contextual binding
	Implementing the plugin model
	Contextual binding
	Named binding
	Resolving metadata
	Attribute-based binding
	Target-based conditions
	Generic helper


	Custom providers
	Activation context
	The Factory Method

	Dynamic factories
	The Shape Factory example
	Using convention
	Selecting service types
	Defining Binding Generator

	Telecom Switch example
	Custom Instance Providers
	Func
	Lazy

	Summary

	Chapter 4: Ninject in Action
	Windows Forms applications
	WPF and Silverlight applications
	ASP.NET MVC applications
	Validator injection
	Filter injection
	Conditional filtering (When)
	Contextual arguments (With)


	WCF applications
	ASP.NET Web Forms applications
	Summary

	Chapter 5: Doing More with Extensions
	Interception
	Setup Interception
	Member Interception
	Type Interception
	Multiple Interceptors
	InterceptAttribute

	Mocking Kernel
	Extending Ninject
	Summary

	Index








Mastering Ninject for 
Dependency Injection


Learn how Ninject facilitates the implementation 
of Dependency Injection to solve common design 
problems of real-life applications


Daniel Baharestani


   BIRMINGHAM - MUMBAI







Mastering Ninject for Dependency Injection


Copyright © 2013 Packt Publishing


All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.


Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.


First published: September 2013


Production Reference: 1190913


Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..


ISBN 978-1-78216-620-7


www.packtpub.com


Cover Image by Daniel Baharestani (baharestani@gmail.com) and  
Sheetal Aute (sheetala@packtpub.com)







Credits


Author
Daniel Baharestani


Reviewers
Remo Gloor


Daniel Allen


Matt Duffield


Ted Winslow


Acquisition Editor
Pramila Balan


Commissioning Editor
Nikhil Chinnari


Technical Editors
Iram Malik


Krishnaveni Haridas


Veena Pagare


Project Coordinator
Romal Karani


Proofreader
Clyde Jenkins


Indexer
Monica Ajmera


Graphics
Ronak Dhruv


Production Coordinator 
Conidon Miranda


Cover Work
Conidon Miranda







About the Author


Daniel Baharestani is an experienced IT professional living in Australia. He has 
a BSc in software engineering and has over 10 years of professional experience in 
design and development of enterprise applications, mostly focused on Microsoft 
technologies. Daniel is currently working at 3P Learning, which is a global leader in 
online learning for school-aged students with its flagship platform, Mathletics—used 
by more than 3.5 million students in over 10,000 schools worldwide.


A book is like a song, which may usually be referred to by its singer's 
name, whereas many people are involved in the background to make 
it happen. 
 
First, I am deeply indebted to my wife, Mona, who has taken all my 
responsibilities during this period. I understand how hard it was for 
her to do everything alone that we used to do together. 
 
My special thanks goes to Remo Gloor, the main developers of 
Ninject, who kindly accepted the final technical review of this book, 
and other technical reviewers, including Daniel Allen, Matt Duffield, 
and Ted Winslow for providing valuable feedback. 
 
I would also like to thank my manager, Houman, for being helpful 
and encouraging, and for understanding how important this book 
was to me. It would be much difficult to have it done without his 
support. 
 
Finally, I should acknowledge the whole Packt team, who gave me 
this opportunity and guided me through this process, including 
but definitely not limited to, Nikhil Chinnari and Yogesh Dalvi, my 
commissioning editors, Sneha Modi and Romal Karani, my project 
coordinators, and Shrutika Kalbag, the author relationship executive 
for opening a door.







About the Reviewers


Remo Gloor has worked as a Software Architect at bbv Software Services AG 
in Switzerland for many years. During this time, he was using Ninject in several 
projects. At the beginning, he was a user of Ninject. Later, he contributed with 
several extensions. In 2010, he became manager and the main contributor to Ninject, 
which was developed originally by Nate Kohari and Ian Davis.


Besides his interest in dependency injection and IoC containers, he has also a strong 
interest in service-oriented and message-driven architectures, as well as event 
sourcing. Because of this, he contributed to the ActiveMq support to NServiceBus.


He blogs on http://www.planetgeek.ch/author/remo-gloor/ mainly about 
Ninject. He also answers many Ninject-related questions on stackoverflow:  
http://stackoverflow.com/users/448580/remo-gloor.







Daniel Allen is a Chicago-based developer who specializes in ASP.NET MVC 
4 development and enterprise architecture design. He develops primarily in C#, 
JavaScript, and Objective-C. Because of his heavy focus on enterprise architecture 
design, Dan has experience in an array of patterns and tools that he has effectively 
and logically combined together to meet a project's unique needs. Dan holds a B.S.  
in Management Information Systems and an MBA with a concentration in 
Information Systems.


Dan spends much of his free time working on development-related side contracts 
and searching for the next great startup idea. He aspires to start a consulting firm 
that will provide capital for the various startup ideas one day. For recreation, he 
enjoys training and competing in various marathons, and aspires to complete a  
full iron man competition one day.


He has formerly worked with Millennium Information Services, Inc. as an ASP.
NET MVC Web Developer. His primary tasks in this role were MVC 4 Razor 
development, HTML 5 frontend GUI design, enterprise architecture design, 
and WCF, Oracle database, and agile development. He has also worked for Arc 
Worldwide / Leo Burnett as an Associate Software Engineer. His primary tasks 
in this role were ASP.NET Web Forms development, frontend GUI design, and he 
also worked on SQL Server database. Dan has also worked with American Concrete 
Pavement Association as a Software Engineer. His primary tasks in this role were 
ASP.NET Web Forms and MVC 4 development, iOS mobile development, and SQL 
Server database, graphics and media development.


For Dan's complete professional history and his online interactive portfolio,  
please visit http://www.apexwebz.com.


I would like to thank my family for their ongoing support. My father 
inspired me to start working in this field, and now I can't picture 
myself doing anything else. I would also like to thank my close 
friend, past boss, and ongoing mentor, Robert Rodden, for helping 
me at every step of the way in my professional career.







Matt Duffield is a software architect, and has over 17 years of experience working 
in IT. He enjoys building a rich line of business applications that focus on great user 
experiences while providing excellent business intelligence, such as dashboards and 
expert systems. His current focus is on client-side MVC architecture and building 
cross-platform solutions. Matt is very active in the community, speaking at user 
groups and code camps. He is an INETA speaker and a Microsoft MVP in client 
development. He is the co-author of Microsoft Silverlight 5: Building Rich Enterprise 
Dashboards, Packt Publishing. His blog can be found at http://mattduffield.
wordpress.com. You can follow him on Twitter at @mattduffield. Matt is also 
the leader of the Charlotte ALT.NET user group (http://www.meetup.com/
charlottealtnet/) and Charlotte Game Dev user group (http://www.meetup.
com/Charlotte-Game-Dev/). He is also the Vice President of the Charlotte 
Enterprise Developers Guild (http://www.developersguild.org/) and also  
board member of the Carolina Code Camp.


Ted Winslow has been one of those programmers who impressed the likes of 
NASA and Boeing with his skills behind a keyboard ever since his sixth grade. Even 
when he isn't working for one of the big names, he's freelancing for multimillion-
dollar shops, and considers writing code a way to relax in his downtime. He started 
writing code while young and did it with little more than a basic starter book and a 
half-broken computer. Against all odds, he has now a lengthy and respected work 
history with code chops for which large and small companies hunger. Nowadays, 
he's spotted helping people in his free time to make sure the young programmers 
understand and have a chance to live their dream, even when the odds are stacked 
against them.


I'd like to thank my friends for both the encouragement they've 
provided during my career and for putting up with me every day. 
You all mean a lot to me.







www.PacktPub.com


Support files, eBooks, discount offers 
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book. 


Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.


At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.


TM


http://PacktLib.PacktPub.com 


Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. 
Here, you can access, read and search across Packt's entire library of books. 


Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser


Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view nine entirely free books. Simply use your login credentials for immediate access.







Table of Contents
Preface	 1
Chapter 1: Understanding Dependency Injection	 7


What is Dependency Injection?	 8
DI or Inversion of Control (IoC)	 9


How can DI help?	 10
My First DI Application	 12
DI Containers	 16
Why use Ninject?	 17
Summary	 17


Chapter 2: Getting Started with Ninject	 19
Hello Ninject!	 19
It's all about Binding	 22
Object Lifetime	 25


Transient scope	 25
Singleton scope	 26
Thread scope	 27
Request scope	 28
Custom scope	 28


Ninject modules	 30
XML configuration	 31


How to use XML configuration	 31
Convention over configuration	 34


Selecting the assemblies	 35
Selecting the components	 36


Filtering the selected components	 37
Explicit inclusion and exclusion	 37


Selecting service types	 37
Configuring the Bindings	 38


Summary	 39







Table of Contents


[ ii ]


Chapter 3: Meeting Real-world Requirements	 41
DI patterns and antipatterns	 41


Constructor Injection	 42
Initializer methods and properties	 43
Service Locator	 45


Multi binding and contextual binding	 46
Implementing the plugin model	 46
Contextual binding	 49


Named binding	 51
Resolving metadata	 52
Attribute-based binding	 55
Target-based conditions	 56
Generic helper	 57


Custom providers	 57
Activation context	 61
The Factory Method	 61


Dynamic factories	 62
The Shape Factory example	 62
Using convention	 65


Selecting service types	 65
Defining Binding Generator	 65


Telecom Switch example	 66
Custom Instance Providers	 68
Func	 70
Lazy	 71


Summary	 71
Chapter 4: Ninject in Action	 73


Windows Forms applications	 77
WPF and Silverlight applications	 81
ASP.NET MVC applications	 89


Validator injection	 92
Filter injection	 94


Conditional filtering (When)	 97
Contextual arguments (With)	 98


WCF applications	 98
ASP.NET Web Forms applications	 102
Summary	 103







Table of Contents


[ iii ]


Chapter 5: Doing More with Extensions	 105
Interception	 105


Setup Interception	 106
Member Interception	 106
Type Interception	 108
Multiple Interceptors	 110
InterceptAttribute	 113


Mocking Kernel	 114
Extending Ninject	 118
Summary	 119


Index	 121











Preface
Mastering Ninject for Dependency Injection demonstrates how Ninject facilitates  
the implementation of Dependency Injection to solve common design problems  
of real-life applications in a simple and easy-to-understand format. This book will  
teach you everything you need in order to implement Dependency Injection using 
Ninject in a real-life project. Not only does it teach the Ninject core framework 
features which are essential for implementing DI, but it also explores the power  
of Ninject's most useful extensions, and demonstrates how to apply them in a  
real-life application.


What this book covers
Chapter 1, Understanding Dependency Injection, introduces Dependency Injection 
concepts and describes the advantages of using this technique. We will also go 
through a simple example and implement the principles and patterns related to  
DI techniques. After understanding what a DI container is, we will discuss why 
Ninject is a suitable choice.


Chapter 2, Getting Started with Ninject, teaches the user how to add Ninject to a 
practical project and how to use the basic features of this framework. The chapter 
starts with an example demonstrating how to set up and use Ninject in a Hello 
World project. Then, we will talk about how Ninject resolves dependencies and how 
it manages object lifetime. We will also cover the code-based configuration using 
Ninject modules and XML-based configuration. The final section of this chapter 
describes how to configure a large application which includes hundreds of services 
using Ninject conventions. By the end of this chapter, the user will be able to set  
up and use the basic features of Ninject.







Preface


[ 2 ]


Chapter 3, Meeting Real-world Requirements, introduces more advanced features of 
Ninject which are necessary in order to implement DI in real-world situations. The 
chapter starts with an introduction to some patterns and antipatterns related to 
Ninject. We will then go through real examples and see how Ninject can solve such 
kind of problems. By the end of this chapter, the user is expected to know almost  
all of the significant features of Ninject.


Chapter 4, Ninject in Action, shows how to set up different types of applications using 
Ninject. We will implement a concrete scenario using a variety of application types, 
including but not limited to, WPF, ASP .NET MVC, and WCF, to see how to set up 
and use Ninject for injecting the dependencies. By the end of this chapter, the user 
should be able to set up and use Ninject for all kinds of described applications.


Chapter 5, Doing More with Extensions, will show how Interception is a solution for 
cross-cutting concerns, and how to use Mocking Kernel as a test asset. While the core 
library of Ninject is kept clean and simple, Ninject is a highly extensible DI container, 
and it is possible to extend its power by using extension plugins. We will also see 
how Ninject can be extended.


What you need for this book
The examples of the book are written in Microsoft Visual Studio 2012; however,  
the target framework is set to .NET 4.0 so that they can be easily built using  
MSBuild and .NET Framework 4.0, even if you do not have Visual Studio 2012.


In the ASP.NET MVC application, we used MVC 3, and Microsoft SQL Server 
Compact 4.0 is used for SQL Data Layer.


You need an Internet connection to download required references and online 
packages, such as Ninject and its extensions. Having NuGet package manager  
on your system facilitates installing of referenced packages, but it is not required, 
as wherever we need to install such packages, the instruction for manually 
downloading and referencing the binaries is also provided.


We have also used NUnit for our Unit Tests, which is freely available for download 
via NuGet or NUnit website.







Preface


[ 3 ]


Who this book is for
This book is for all software developers and architects who are willing to create 
maintainable, loosely coupled, extensible, and testable applications. Because Ninject 
targets the .NET platform, this book is not suitable for software developers of other 
platforms. You should be comfortable with object oriented principals, and have 
a fair understanding of inheritance and abstraction. Being familiar with design 
patterns and general concept of unit testing is also a great help, but no knowledge 
of Dependency Injection is assumed. Although Ninject can be used in any .NET 
programming languages, the examples of this book are all in C#, so the reader is 
assumed to be familiar with this language.


Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.


Code words in text are shown as follows: "The following example shows how  
to use the ILogger interface."


A block of code is set as follows:


[Inject]
public ILogger Logger {get; set;}


public void DoSomething()
{
    Logger.Debug("Doing something...");
}


When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:


 kernel.Bind(x => x
    .FromThisAssembly()
    .SelectAllClasses()
    .InNamespaces("Northwind.Controllers")
    .BindBase());


Any command-line input or output is written as follows:


2013-05-23 05:04:40 INFO  LogSamples.Consumer - Doing something...







Preface


[ 4 ]


New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The first 
one is called when the hyperlink Create New is clicked using HTTP GET method ".


Warnings or important notes appear in a box like this.


Tips and tricks appear like this.


Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.


To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.


If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.


Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.


Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.







Preface


[ 5 ]


Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.


Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.


Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.


We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.


Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.











Understanding  
Dependency Injection


"It's more about a way of thinking and designing code than it is about tools  
and techniques"


– Mark Seemann


This chapter introduces the Dependency Injection (DI) concepts and describes 
the advantages of using this pattern. We will also go through a simple example 
and implement the principles and patterns related to the DI technique to it. After 
understanding what a DI container is, we will discuss why Ninject is a suitable one.


By the end of this chapter, the reader is expected to have a good understanding of  
DI and how Ninject can help them as a DI container.


The topics covered in this chapter are:


•	 What is Dependency Injection?
•	 How can DI help?
•	 My first DI application
•	 DI Containers
•	 Why use Ninject?







Understanding Dependency Injection


[ 8 ]


What is Dependency Injection?
Dependency Injection is one of the techniques in software engineering which 
improves the maintainability of a software application by managing the dependent 
components. In order to have a better understanding of this pattern, let's start this 
section with an example to clarify what is meant by a dependency, and what other 
elements are involved in this process.


Cameron is a skilled carpenter who spends most of his time creating wooden stuffs. 
Today, he is going to make a chair. He needs a saw, a hammer, and other tools. 
During the process of creating the chair, he needs to figure out what tool he needs 
and find it in his toolbox. Although what he needs to focus on is how to make 
a chair, without thinking of what tools he needs and how to find them, it is not 
possible to finish the construction of the chair.


The following code is the C# representation of Cameron, as a carpenter:


class Carpenter
{
  Saw saw = new Saw();
  void MakeChair()
  {
    saw.Cut();
    // ...
  }
}


Sarah is a heart surgeon. She works for a hospital and spends her days in the 
operation room, and today she is going to perform an open-heart surgery. It is a 
sophisticated procedure, and she needs to focus on the operation itself, rather than 
finding the tools during the operation. That is why she has an assistant to provide 
her with the tools she requires. This way, she ensures that the exact tool that she 
needs will be in her hand by her assistant. She doesn't need to know where the  
tool is and how to find it. These are her assistant's responsibilities.


Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files 
e-mailed directly to you.







Chapter 1


[ 9 ]


This is the C# implementation of Sarah, the surgeon:


class Surgeon
{
  private Forceps forceps;


  // The forceps object will be injected into the constructor 
  // method by a third party while the class is being created.
  public Surgeon(Forceps forceps)
  {
    this.forceps = forceps;
  }


  public void Operate()
  {
    forceps.Grab();
    //...
  }
} 


As we can see, she doesn't need to worry about how to get the forceps; they are 
provided to her by someone else.


In the previous examples, Cameron and Sarah are samples of dependent components 
that have a responsibility, and tools that they need are their dependencies. 
Dependency Injection is all about how they get to the tools they need. In the first 
example, the dependent component (Cameron) itself had to locate the dependency, 
while in the second one, a third party (the assistant) locates and provides it. This 
third party is called an Injector, which injects the dependencies.


DI or Inversion of Control (IoC)
Martin Fowler defines Inversion of Control (IoC) as a style of programming in 
which the framework takes the control of the flow instead of your code. Comparing 
handling an event to calling a function is a good example to understand IoC. When 
you call the functions of a framework, you are controlling the flow, because you 
decide in what sequence to call the functions. But in case of handling events, you 
are defining the functions and the framework is calling them, so the control is 
inverted to the framework instead of you. This example showed you how control 
can be inverted. DI is a specific type of IoC, because instead of your components 
concern about their dependencies, they are provided with the dependencies by the 
framework. Indeed, as Mark Seemann states in his book, Dependency Injection in 
.NET, IoC is a broader term which includes, but is not limited to, DI, even though 
they are often being used interchangeably. IoC is also known as the Hollywood 
Principle: "Don't call us, we'll call you".







Understanding Dependency Injection


[ 10 ]


How can DI help?
Every software application is inevitable of change. As your code grows and 
new requirements arrive, the importance of maintaining your codes becomes 
more tangible, and it is not possible for a software application to go on if it is not 
maintainable. One of the design principles that lead to producing a maintainable 
code is known as Separation of Concerns (SoC). The SoC is a broad concept and is 
not limited to software design; but in the case of composing software components, 
we can think of SoC as implementing distinct classes, each of which deals with 
a single responsibility. In the first example, finding a tool is a different concern 
from doing the operation itself and separating these two concerns is one of the 
prerequisites for creating a maintainable code.


Separation of concerns, however, doesn't lead to a maintainable code if the sections 
that deal with concerns are tightly coupled to each other.


Although there are different types of forceps that Sarah may need during the 
operation, she doesn't need to mention the exact type of forceps which she requires. 
She just states that she needs forceps, and it is on her assistant to determine which 
forceps satisfies her need the best. If the exact type that Sarah needs is temporarily 
not available, the assistant has the freedom to provide her with another suitable 
type. If the hospital has bought a new type of forceps that the assistant thinks is more 
suitable, he or she can easily switch to the new one because he or she knows that 
Sarah doesn't care about the type of forceps as long as it is suitable. In other words, 
Sarah is not tightly coupled to a specific type of forceps.


The key principle leading to loose coupling is the following, from the Gang of Four 
(Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software):


"Program to an "interface", not an "implementation"."


When we address our dependencies as abstract elements (an interface or abstract 
class), rather than concrete classes, we will be able to easily replace the concrete 
classes without affecting the consumer component:


class Surgeon
{
  private IForceps forceps;


  public Surgeon(IForceps forceps)
  {
    this.forceps = forceps;
  }







Chapter 1


[ 11 ]


  public void Operate()
  {
    forceps.Grab();
    //...
  }
}


The Surgeon class is addressing the interface IForceps and does not care about the 
exact type of the object injected into its constructer. The C# compiler ensures that 
the argument passed to the forceps parameter always implements the IForceps 
interface and therefore, existence of the Grab() method is guaranteed. The following 
code shows how an instance of Surgeon can be created providing with a suitable 
forceps:


var forceps = assistant.Get<IForceps>();
var surgeon = new Surgeon (forceps);


Because the Surgeon class is programmed to the IForceps interface rather than a 
certain type of forceps implementation, we can freely instantiate it with any type of 
forceps that the assistant object decides to provide.


As the previous example shows, loose coupling (surgeon is not dependent on a 
certain type of forceps) is a result of programming to interface (surgeon depends on 
IForceps) and separation of concerns, (choosing forceps is the assistant's concern, 
while the surgeon has other concerns) which increases the code maintainability.


Now that we know loose coupling increases the flexibility and gives freedom of 
replacing the dependencies easily; let's see what else we get out of this freedom 
other than maintainability. One of the advantages of being able to replace the 
concrete classes is testability. As long as the components are loosely coupled to their 
dependencies, we can replace the actual dependencies with Test Doubles such as 
mock objects. Test Doubles are simplified version of the real objects that look and 
behave like them and facilitate testing. The following example shows how to unit test 
the Surgeon class using a mock forceps as a Test Double:


[Test]
public void CallingOperateCallsGrabOnForceps()
{
  var forcepsMock = new Mock<IForceps>();


  var surgeon = new Surgeon(forcepsMock.Object);
  surgeon.Operate();


  forcepsMock.Verify(f => f.Grab());
}







Understanding Dependency Injection


[ 12 ]


In this unit test, an instance of the Surgeon class is being created as a System Under 
Test (SUT), and the mock object is injected into its constructor. After calling the 
Operate method on the surgeon object, we ask our mock framework to verify 
whether the Grab operation is called on the mock forceps object as expected.


Maintainability and testability are two advantages of loose coupling, which is in turn 
a product of Dependency Injection. On the other hand, the way an Injector creates 
the instances of concrete types, can introduce the third benefit of DI, which is the late 
binding. An Injector is given a type and is expected to return an object instance of 
that type. It often uses reflection in order to activate objects. So, the decision of which 
type to activate can be delayed to the runtime. Late binding gives us the flexibility of 
replacing the dependencies without recompiling the application. Another benefit of 
DI is extensibility. Because classes depend on abstractions, we can easily extend their 
functionality by substituting the concrete dependencies.


My First DI Application
We start our example with a service class in which the concerns are not separated. 
Then we will improve maintainability step-by-step, by first separating concerns and 
then programming to interface in order to make our modules loosely coupled. At the 
final point, we will have our first DI application. The source code  
for all the examples of this book is available for download on the publisher's website.


The main responsibility of this service is to send an e-mail using the information 
provided. In order to make the example simple and clear, client initialization  
is omitted.


class MailService
{
  public void SendEmail(string address, string subject, string  
    body)
  {
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    client.Send(mail);
  }
} 


Then, we add some logging to it, so that we know what is going on in our service:







Chapter 1


[ 13 ]


class MailService
{
  public void SendMail(string address, string subject, string  
    body)
  {
    Console.WriteLine("Creating mail message...");
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    Console.WriteLine("Sending message...");
    client.Send(mail);
    Console.WriteLine("Message sent successfully.");
  }
}


After a little while, we find it useful to add time to our logs. In this example, sending 
the mail message and logging functionality are two different concerns which are 
addressed in a single class, and it is not possible to change the logging mechanism 
without touching the MailService class. Therefore, in order to add time to our logs, 
we have to change the MailService class. So, let's re-factor this class and separate 
the concern of logging from sending a mail prior to adding the time functionality:


class MailService
{
  private ConsoleLogger logger;
  public MailService()
  {
    logger = new ConsoleLogger();
  }


  public void SendMail(string address, string subject, string  
    body)
  {
    logger.Log("Creating mail message...");
    var mail = new MailMessage();
    mail.To.Add(address);
    mail.Subject = subject;
    mail.Body = body;
    var client = new SmtpClient();
    // Setup client with smtp server address and port here
    logger.Log("Sending message...");
    client.Send(mail);
    logger.Log("Message sent successfully.");
  }
}







Understanding Dependency Injection


[ 14 ]


The ConsoleLogger class is only responsible for the logging mechanism, and this 
concern is removed from MailService. Now, it is possible to modify the logging 
mechanism without affecting MailService:


class ConsoleLogger
{
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}


Now, we need to write our logs in Windows Event Log rather than showing them  
in console. Looks like we need an EventLogger class as well:


class EventLogger
{
  public void Log(string message)
  {
    EventLog.WriteEntry("MailService", message);
  }
}


Although the concern of sending mail and logging are now separated in two different 
classes, MailService is still tightly coupled to the ConsoleLogger class, and it is not 
possible to replace its logger without modifying it. We are just one step away from 
breaking the tight coupling between the MailService and Logger classes. We should 
now introduce the dependencies as interfaces rather than concrete classes:


interface ILogger
{
  void Log(string message);
}


Both the ConsoleLogger and EventLogger classes should implement this interface:


class ConsoleLogger:ILogger
{
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}
class EventLogger:ILogger
{







Chapter 1


[ 15 ]


  public void Log(string message)
  {
    EventLog.WriteEntry("MailService", message);
  }
}


Now, it is time to remove the references to the concrete ConsoleLogger class and 
address ILogger instead:


private ILogger logger;
public MailService()
{
  logger = new ILogger();
}


But the previous code won't compile because it doesn't make sense to instantiate an 
interface. We should introduce this dependency as a constructor parameter and have 
the concrete object injected into it by a third party:


public MailService(ILogger logger)
{
  this.logger = logger;
}


At this point, our classes are loosely coupled and we can change the loggers freely 
without affecting the MailService class. Using DI, we have also separated the 
concern of creating a new instance of the logger class, which includes the concern of 
deciding what concrete logger to use from the main responsibility of MailService, 
which is sending an e-mail:


internal class Program
{
  private static void Main(string[] args)
  {
    var mailService = new MailService(new EventLogger());
    mailService.SendMail("someone@somewhere.com", "My first DI  
      App", "Hello World!");
  }
}


The main method of this application is where we decide what concrete objects to 
inject in our dependent classes. This (preferably) unique location in the application 
where modules are composed together is named Composition Root by Mark 
Seemann. For more information on DI, Dependency Injection in .NET, by Mark Seemann 
is recommended.







Understanding Dependency Injection


[ 16 ]


DI Containers
A DI container is an injector object that injects the dependencies into a dependent 
object. As we have seen in the previous example, we don't necessarily need a DI 
container in order to implement Dependency Injection. However, in more complex 
scenarios, a DI container can save a lot of time and effort by automating most of the 
tasks that we had to do manually. In real world applications, a single dependant 
class can have many dependencies, each of which have their own dependencies 
that forms a large graph of dependencies. A DI container should resolve the 
dependencies, and this is where the decision of selecting a concrete class for the 
given abstraction should be made. This decision is made by a mapping table, 
which is either based on a configuration file or is programmatically defined by the 
developer. We can see an example for both here:


<bind service="ILogger" to="ConsoleLogger" /> 


This one is an example of code-based configuration:


Bind<ILogger>().To<ConsoleLogger>();


We can also define conditional rules instead of just mapping a service to a concrete 
type. We will discuss this feature in detail in Chapter 2, Getting Started with Ninject.


A container has the responsibility of dealing with the lifetime of the created objects.  
It should know how long an object should be kept alive, when to dispose of it,  
in what condition to return the existing instance, and in what condition to create  
a new one.


DI Containers are also known as IoC Containers.


There are other DI Container besides Ninject. You can find a list of 
them in Scott Hanselman's blog (http://www.hanselman.com/blog/
ListOfNETDependencyInjectionContainersIOC.aspx). Unity, Castle Windsor, 
StructureMap, Spring.NET, and Autofac are a few of them:







Chapter 1


[ 17 ]


Unity Castle 
Windsor


StructureMap Spring.NET Autofac


License MS-PL Apache 2 Apache 2 Apache 2 MIT


Description Build on the 
"kernel" of 
ObjectBuilder.


Well 
documented 
and used by 
many.


Written by 
Jeremy D. 
Miller.


Written 
by Mark 
Pollack.


Written by 
Nicholas 
Blumhardt 
and Rinat 
Abdullin.


Why use Ninject?
Ninject is a lightweight Dependency Injection framework for .NET applications. 
It helps you split your application into a collection of loosely-coupled, highly-
cohesive pieces, and then glues them back together in a flexible manner. By using 
Ninject to support your software's architecture, your code will become easier to 
write, reuse, test, and modify. Instead of relying on reflection for invocation, Ninject 
takes advantage of lightweight code generation in the CLR (Common Language 
Runtime). This can result in a dramatic (8-50x) improvement in performance in 
many situations. Ninject includes many advanced features. For example, Ninject 
was the first dependency injector to support contextual binding, in which a different 
concrete implementation of a service may be injected, depending on the context in 
which it is requested. Ninject supports most major facilities offered by the competing 
frameworks (although, many such elements live in extensions: plugin modules that 
layer on facilities on top of the core). You can have a look at the Ninject official wiki 
at https://github.com/ninject/ninject/wiki for a more detailed list of Ninject 
features which makes it one of the top DI containers.


Summary
Dependency Injection is a technique to help us produce loosely coupled code by 
moving the concern of creating the dependencies to another object known as a DI 
container. In other words, instead of a dependent object to decide what concrete class 
it needs, it just states the needs as an abstraction, and the injector provides it with the 
most suitable concrete class that satisfies the needs. Loose coupling is one of the main 
advantages of DI that leads to extensibility, maintainability, and testability. Late 
binding is another benefit of DI and dynamic loading of plugins is an example of 
this feature. There are DI containers other than Ninject, each of which has their own 
advantages and disadvantages.











Getting Started with Ninject
This chapter teaches the user how to add Ninject to a practical project and use the 
basic features of this framework. The chapter starts with an example demonstrating 
how to setup and use Ninject in a Hello World project. Then, we will talk about how 
Ninject resolves dependencies and how it manages object lifetime. Final sections  
of this chapter will cover code-based configuration using Ninject modules and  
XML-based configuration using an XML file. By the end of this chapter, the user  
will be able to setup and use basic features of Ninject.


The topics covered in this chapter are:


•	 Hello Ninject!
•	 It's all about Binding
•	 Object Lifetime
•	 Ninject modules
•	 XML configuration
•	 Convention over configuration


Hello Ninject!
Although DI is for complex projects, and applying it to a simple project looks like 
over-engineering, a Hello World project should usually be as simple as possible to 
show only how a framework works. This project helps us understand how to setup 
Ninject and run it in the simplest way. So, if you have already used Ninject and are 
familiar with this process, you can skip this section and continue reading the next one.







Getting Started with Ninject


[ 20 ]


1.	 The first step to setup Ninject is to download Ninject library. You can do it 
either using NuGet or by downloading the binary file. If you have NuGet 
package manager, create a new Console Application project in Visual Studio, 
and then simply search for Ninject in NuGet UI to install the package, as the 
following figure illustrates. Alternatively, you can type install-package 
Ninject, and then press enter in the Packet Manager Console located at 
View | Other Windows menu. Once the installation of Ninject package is 
finished, jump to step 5. If you don't have NuGet package manager, go to 
the download page of Ninject official website (http://www.ninject.org/
download.html) and download the most recent version for your desired 
framework. Considering Ninject is an open source project, you can even 
download the source codes from GitHub via the link provided on the 
download page.


2.	 In Windows Vista and other newer versions of Windows, you need to 
unblock the downloaded archive prior to uncompressing it, in order 
to prevent further security issues at runtime. Simply right-click on the 
downloaded file, open Properties, and from the General tab, click on the 
Unblock button. Then, unzip the archive to your libraries directory (for 
example, D:\Libraries\Ninject).


3.	 Open Visual Studio and create a new Console Application project.
4.	 Add a reference to Ninject.dll in your library directory.
5.	 Add a new class to your project and call it SalutationService:


class SalutationService
{
  public void SayHello()
  {
    Console.WriteLine("Hello Ninject!");
  }
}


6.	 Add using Ninject to the using section of Program.cs.
7.	 Add the following lines to your Main method:


using (var kernel = new Ninject.StandardKernel())
{
  var service = kernel.Get<SalutationService>();
  service.SayHello();
}







Chapter 2


[ 21 ]


8.	 Run the application.


That is how Ninject works in the simplest way. We didn't even need to add 
any configuration or annotation. Although we didn't have anything to inject 
in the previous example, Ninject did its main job, which was resolving a type 
(SalutationService).


Let's have a look at the Main method to see what was happening there. In the first 
line, we created a kernel object by instantiating StandardKernel. Kernel is always 
the start point of creating our dependency graph. In this simple example, the graph 
only consists of one type, which is SalutationService. As we see, we didn't call 
the constructor of SalutationService in neither of the Main method lines. Instead, 
we asked our container (kernel) to do it for us. We gave our required type to the 
Get method, and it returned an instance of the given type. In other words, the Get 
method was provided with the root type (SalutationService) of our dependency 
graph and returned the graph object.


Now that we know how to setup Ninject, let's move ahead to a more complex 
example to see how Ninject helps us to implement DI better.







Getting Started with Ninject


[ 22 ]


It's all about Binding
In Chapter 1, Understanding Dependency Injection, we implemented DI manually in the 
MailService class. You remember that we ignored the configuration of SmtpClient 
to simplify the project. Now, we are going to add the configuration of SmtpClient 
and implement DI using Ninject.


Let's start by creating the MailConfig class:


class MailServerConfig
{
  public string SmtpServer
  {
    get
    {
      return ConfigurationManager.AppSettings["SmtpServer"];
    }
  }


  public int SmtpPort
  {
    get
    {
      var port = ConfigurationManager
      .AppSettings["SmtpPort"];
      return Convert.ToInt32(port);
    }
  }


public string SenderEmail
{
    get
    {
      return ConfigurationManager 
      .AppSettings["SenderEmail"];
    }
  }


public string SenderPassword
  {
    get
    {
    return ConfigurationManager
    .AppSettings["SenderPassword"];
    }
  }
}







Chapter 2


[ 23 ]


Now, we can update the MailService class and incorporate MailServiceConfig:


class MailService
{
  private ILogger logger;
  private SmtpClient client;
  private string sender;
  
  public MailService(MailServerConfig config, ILogger logger)
  {
    this.logger = logger;
    InitializeClient(config);
    sender = config.SenderEmail;
  }
  
  public void SendMail(string address, string subject, string  
    body)
  {
    logger.Log("Initializing...");
    var mail = new MailMessage(sender, address);
    mail.Subject = subject;
    mail.Body = body;
    logger.Log("Sending message...");
    client.Send(mail);
    logger.Log("Message sent successfully.");
  }
  
  private void InitializeClient(MailServerConfig config)
  {
    client = new SmtpClient();
    client.Host = config.SmtpServer;
    client.Port = config.SmtpPort;
    client.EnableSsl = true;
    var credentials = new NetworkCredential();
    credentials.UserName = config.SenderEmail;
    credentials.Password = config.SenderPassword;
    client.Credentials = credentials;
  }
}


The class consists of two methods and one constructor. The SendMail method is not 
changed so much, except that it is no more instantiating SmtpClient and is using the 
new introduced client field.







Getting Started with Ninject


[ 24 ]


We have added a new method called InitializeClient, which instantiates and 
initializes the client field using the given MailServerConfig object.


The constructor has been added another parameter, which accepts an object of 
MailServerConfig, which contains some settings obtained from the application 
configuration file.


The following figure shows the dependency graph of this application:


Now, let's see how Ninject is going to resolve the dependencies and create the graph 
object. Considering the last example, we need a kernel object and give it the starting 
node of our graph, so that it returns the entire graph as the following code shows:


var kernel = new StandardKernel();
var mailService = kernel.Get<MailService>();


Ninject starts by resolving the MailService type. It finds the type and realizes that 
in order to instantiate it, first it should create an instance of MailServerConfig and 
ILogger. That is because Ninject automatically creates arguments that should be 
passed to the constructor of the type being instantiated. It injects these arguments 
to the constructor parameters without us having to instruct it to do so. Creating an 
instance of MailServerConfig is as easy as calling its only constructor, but what 
about ILogger? ILogger is an interface, and it is not possible to create an instance 
of an interface itself. Also, it may have multiple implementations. So, how is Ninject 
supposed to know which implementation of ILogger to use?


Ninject uses its Binding system to decide what implementation to use for a given 
type. A binding is an instruction which maps one type (usually an abstract type or 
an interface) to a concrete type that matches such a given type. This process is also 
called Service Registration.







Chapter 2


[ 25 ]


The following code instructs Ninject how to resolve ILogger:


kernel.Bind<ILogger>().To<ConsoleLogger>();


It means that Ninject should always use the ConsoleLogger type as an 
implementation type for the ILogger type.


The final Main method's body looks like this:


using (var kernel = new StandardKernel())
{
  kernel.Bind<ILogger>().To<ConsoleLogger>();
  var mailService = kernel.Get<MailService>();
  mailService.SendMail("someone@domain.com", "Hi", null);
}


If multiple services should be bound to a single component, use this 
syntax:


kernel.Bind<IService1,IService2>().To<MyService>();


Object Lifetime
One of the responsibilities of a DI container is to manage the lifetime of objects that 
it creates. It should decide when to create a new instance of the given type and when 
to use an existing instance. It should also take care of disposing of objects when they 
are not used anymore. Ninject has a strong support for managing Object Lifetime in 
different situations. Whenever we define a binding, we can declare the scope of the 
object instance being created. Within that scope, the object instance will be reused 
and exist exactly once for each binding. Note that an object is not allowed to have a 
dependency on an object with shorter lifetime.


Transient scope
In Transient scope, the object lifetime is not managed by Ninject. Whenever we 
request an instance of a type, a new one will be created. Ninject doesn't take care of 
keeping the created instance or disposing of it in this scope. This is the default object 
scope in Ninject. If no scope is explicitly specified, they are transient-scoped. In the 
previous code, both ConsoleLogger and MailService were treated in the Transient 
scope because the object scope was not specified.







Getting Started with Ninject


[ 26 ]


Singleton scope
In the previous example, the ILogger interface is bound to the ConsoleLogger class, 
which means whenever Ninject encounters ILogger, it should create a new instance 
of ConsoleLogger. But we don't really need multiple instances of ConsoleLogger 
in all of the classes that need to log to console. Looks like it is a good idea to make 
ConsoleLogger singleton. There are two approaches to achieve this. The first one  
is using one of the Singleton patterns:


class ConsoleLogger:ILogger
{
  public static readonly ConsoleLogger Instance = new ConsoleLogger();
  
  private static ConsoleLogger()
  {
    // Hiding constructor
  }
  
  public void Log(string message)
  {
    Console.WriteLine("{0}: {1}", DateTime.Now, message);
  }
}


And instructing the binding to always use the provided instance rather than every 
time creating a new instance of ConsoleLogger. We can achieve this by using the 
ToConstant method:


kernel.Bind<ILogger>().ToConstant(ConsoleLogger.Instance);


However, if we make a singleton type like this, we will draw some limitations to our 
class. For example, we won't be able to unit test, it because it doesn't have a default 
constructor.


Using lifetime management of Ninject, we will be able to have singleton objects 
without having to make their type singleton. All we need to do is to instruct Ninject 
to treat the given type as singleton:


kernel.Bind<ILogger>().To<ConsoleLogger>().InSingletonScope();


Now, what if we decide to change the scope of MailServerConfig to singleton as 
well? There is no binding definition for this type because Ninject already knows how 
to resolve it. Such classes are actually bound to themselves. Although Ninject doesn't 
require us to register such types, if we need to change their scope, we can explicitly 
define their binding in order to set their lifetime scope:


kernel.Bind<MailServerConfig>().ToSelf().InSingletonScope();







Chapter 2


[ 27 ]


Thread scope
If we define a binding in Thread scope, only one instance of the given type will  
be created per thread. The object lifetime is as long as the lifetime of the underlying 
Thread object.


The following test asserts equality of instances created by Ninject in the same thread:


[Test]
public void ReturnsTheSameInstancesInOneThread()
{
  using (var kernel = new StandardKernel())
  {
    kernel.Bind<object>().ToSelf().InThreadScope();
    var instance1 = kernel.Get<object>();
    var instance2 = kernel.Get<object>();
    Assert.AreEqual(instance1, instance2);
  }
}


In the previous example, we instructed Ninject to bind the type object to itself  
and create new instances of object per thread. Then, we asked Ninject to return  
two instances of type object in the same thread and tested their equality.  
The test succeeded.


The following test demonstrates inequality of the instances created from the  
same type but in different threads:


[Test]
public void ReturnsDifferentInstancesInDifferentThreads()
{
  var kernel = new StandardKernel();
  kernel.Bind<object>().ToSelf().InThreadScope();
  var instance1 = kernel.Get<object>();
  new Thread(() =>
  {
    var instance2 = kernel.Get<object>();
    Assert.AreNotEqual(instance1, instance2);
    kernel.Dispose();
  }).Start();
}


This time we got the second instance in another thread. Ninject detects that the 
calling thread is changed, and this is the first time that an instance of object is being 
requested in this new thread. So, it creates a new instance rather than returning  
the existing one. Finally, we asserted inequality of the created instances.







Getting Started with Ninject


[ 28 ]


Request scope
Request scope is useful in web applications when we need to get a single instance  
of a type from Ninject as long as we are handling the same request. Once the request 
is processed and a new request arrives, Ninject creates a new instance of the type  
and keeps it until the end of the request processing. Note that Request scope behaves 
like Transient scope outside of a web request (for example, during startup) or in  
non-web applications.


The following code shows how to change the scope of the MailService type, so that 
we get a new instance only for new web requests, and keep the existing instance 
during the current request:


kernel.Bind<MailServerConfig>().ToSelf().InRequestScope();


The InRequestScope method is not available unless we add a reference to the 
Ninject.Web.Common library, which makes sense only in web applications.  
Chapter 4, Ninject in Action, will discuss web applications in detail.


Custom scope
Custom scope lets us define our own scopes in which to keep an instance of a type 
unique. As long as reference of the object returned by the provided call-back is the 
same, Ninject returns the same instance of the type which is created in this scope. 
Once reference of the returned object is changed, a new instance of the given type 
will be created. The created instance is kept in the cache until the returned scope 
object is garbage collected. As soon as the scope object is garbage collected, all the 
object instances created by Ninject will be released from the cache and disposed.


The following test shows how to define a custom scope which monitors the  
current user:


[Test]
public void ReturnsTheSameInstancesForAUser()
{
using (var kernel = new StandardKernel())
    {
        kernel.Bind<object>().ToSelf().InScope(ctx =>User.Current);
        User.Current = new User();
        var instance1 = kernel.Get<object>();
        User.Current.Name = "Foo";
        var instance2 = kernel.Get<object>();
        Assert.AreEqual(instance1, instance2);
    }
}







Chapter 2


[ 29 ]


The User class has the following structure, and the Current static property is 
supposed to be populated with the current User:


class User
{
  public string Name { get; set; }
  public static User Current { get; set; }
}


Although User.Current is modified in the previous example, the reference is still 
the same (User.Current is still referring to the same object), so the scope is not 
changed. As the test shows, we are getting the same instance of object every time  
we call kernel.Get<object>().


[Test]
public void ReturnsDifferentInstancesForDifferentUsers()
{
  using (var kernel = new StandardKernel())
  {
    kernel.Bind<object>().ToSelf().InScope(ctx =>User.Current);
    
    User.Current = new User();
    var instance1 = kernel.Get<object>();
    User.Current = new User();
    var instance2 = kernel.Get<object>();
    Assert.AreNotEqual(instance1, instance2);
  }
}


Since we have changed the user, the scope is changed, and kernel is returning a 
different instance in the new scope.


You may have noticed that the call-back function provides an argument of type 
IContext which is named ctx. This object provides information about the binding 
context which can be used in order to create the scope object. The Context object  
will be discussed in Chapter 3, Meeting Real-world Requirements, and we are not going 
to use it at the moment. Just keep in mind that returning anything from the provided 
context as scope should be handled with extra care. For example, returning the 
context itself as scope would result in a memory leak. Although a new instance is 
returned, it will be kept in the cache forever.


Custom scope is the most flexible and powerful scope, and it is also possible  
to implement other scopes using Custom scope.







Getting Started with Ninject


[ 30 ]


The following example shows how to implement Thread scope using Custom scope:


kernel.Bind<object>().ToSelf().InScope(ctx=>Thread.CurrentThread);


The following snippet implements Request scope using Custom scope:


kernel.Bind<object>().ToSelf().InScope(ctx=>HttpContext.Current);


We can always ask kernel to dispose of an object whose lifetime is being managed  
by Ninject:


var myObject = kernel.Get<MyService>();
..
kernel.Release(myObject);


Ninject also has an extension called Named Scope, which adds some 
additional scopes other than the common ones we addressed here.  
For more information, see Named Scope on Ninject official wiki: 
github.com/ninject/ninject.extensions.namedscope/wiki


Ninject modules
As our application grows, the list of service registrations gets longer, and it would 
be difficult to manage this list. Ninject modules are a good way to segregate our 
type bindings into distinct groups of bindings, which can be easily organized into 
separate files. Minimum requirement for a class to be accepted as a Ninject module 
is to implement the INinjectModule interface. Implementing this interface requires 
us to implement three methods and two properties each time we need to create a 
module. It is a good idea to implement this interface as an abstract class once,  
and extend it whenever we need to create a Ninject module. The good news is that 
Ninject has already implemented this abstract class, which is named NinjectModule.


Here is how to register our MailService classes in a module:


class MailServiceModule: NinjectModule
{
public override void Load()
  {
    Bind<ILogger>().To<ConsoleLogger>().InSingletonScope();
    Bind<MailServerConfig>().ToSelf().InRequestScope();
  }
}







Chapter 2


[ 31 ]


After declaring our modules, we need to load them into kernel so that Ninject  
can use them to resolve the registered types. Put this code into the Main method:


using (var kernel = new StandardKernel(new MailServiceModule()))
{
  var mailService = kernel.Get<MailService>();
  mailService.SendMail("someone@somewhere.com", "Hello", null);
}


The following code shows how to load multiple modules in a single Ninject kernel:


var kernel = newStandardKernel(newModule1(), newModule2(), … );


We can also load all of the Ninject modules defined in an application at the same 
time using the following code:


kernel.Load(AppDomain.CurrentDomain.GetAssemblies());


In this case, Ninject looks in all assemblies for the public classes which have 
implemented the INinjectModule interface to load type registrations. The  
next example will show how to load modules dynamically.


XML configuration
Ninject supports both code-based and XML configuration. An XML module is  
like a code module that consists of a list of type registrations via Ninject binding. 
All bindings can be defined in a single XML document or segregated into multiple 
documents. The only advantage of using XML modules over code modules is that 
once we have composed such a document, we can still change our type registrations 
without having to recompile any part of the application. However, XML modules are 
not as powerful as code modules; so it is recommended to use code modules unless 
we need this feature. Even in this case, we can only include those bindings for which 
we need to change the configuration at runtime in our XML module and keep other 
bindings in code modules.


How to use XML configuration
In order to use XML configuration, we need to add a reference to the Ninject XML 
extension. It can be added either by installing Ninject.Extensions.Xml via NuGet 
package manager or by downloading the binary files from GitHub.


The next step is to add one or more XML documents to our project to contain our 
type registrations. Keep in mind that these files should be published along with your 
application. So don't forget to set their Copy to Output Directory property to 
Copy if newer.







Getting Started with Ninject


[ 32 ]


An XML document should look like the following configuration:


<module name="moduleName">
    <bind service="Namespace.IService1, AssemblyName"
        to="Namespace.ConcreteService1, AssemblyName" />
    <bind service="Namespace.IService2, AssemblyName"
        to="Namespace.ConcreteService2, AssemblyName"
         Scope="singleton"/>
</module>


Each binding element contains at least two attributes:


•	 Service: It represents the service type, which is usually an interface or  
an abstract type


•	 To: It represents the concrete type, which is an implementation of the  
service type


The types should be defined as assembly qualified names which should contain 
namespace, type name, and assembly name. For more information about assembly 
qualified names, check the following MSDN page:


http://msdn.microsoft.com/en-us/library/system.type.
assemblyqualifiedname.aspx


The next example will show how to use the XML configuration in a DI project.


In this example we are going to create a project which contains two encryptor  
classes, each of which implements a particular encryption algorithm. Both classes  
implement a common interface named IEncryptor which is referenced in 
the consumer. We will configure the application to use one of the encryptors 
dynamically. This configuration can be changed later and we will see how to  
instruct the application to swap the encryptors without being recompiled.


Open Visual Studio and add references to Ninject and the Ninject.Extensions.Xml 
libraries. Then, add the IEncryptor interface as follows:


public interface IEncryptor
{
  string Encrypt(string str);
}


The next step is to implement this interface and create our concrete services. Let's start 
with ReverseEncryptor. The encryption algorithm is to reverse the given string:







Chapter 2


[ 33 ]


public class ReverseEncryptor : IEncryptor
{
  public string Encrypt(string str)
  {
    var charArray = str.Reverse().ToArray();
    return new string(charArray);
  }
}


Now we are going to implement the ShiftEncryptor class, which implements 
another algorithm. This class shifts up each character code to encrypt the  
given string:


public class ShiftEncryptor : IEncryptor
{
  public string Encrypt(string str)
  {
    var charArray = str.Select(c => (char)(c + 1)).ToArray();
    return new string(charArray);
  }
}


Now, let's add a new XML document to our project and register one of our concrete 
encryptors like this:


<module name="encryptorModule">
<bind service="Samples.Encryption.IEncryptor, Encryptors"
to="Samples.Encryption.ShiftEncryptor, Encryptors" />
</module>


Note that the name of our assembly is Encryptors, and our classes are declared 
in Samples.Encryption namespace. Don't forget to set the Copy to Output 
Directory property of this file to Copy if newer, so that it can be copied to the 
output directory automatically.


The next step is to load the XML module in the kernel. We can put this code in the 
Main method of our application:


var kernel = new StandardKernel();
kernel.Load("typeRegistrations.xml");


The final step is to consume the service using the following code:


var encryptor = kernel.Get<IEncryptor>();
Console.WriteLine(encryptor.Encrypt("Hello"));
Console.ReadKey();







Getting Started with Ninject


[ 34 ]


Running the application leads to the following output:


Ifmmp


At this step, we don't need Visual Studio anymore; we can navigate to the output 
directory of our application and just change the service type in the configuration file 
to "Samples.Encryption.IEncryptor, Encryptors". Note that we don't need to 
recompile the application.


Running the application should result in the following output:


olleH


We have dynamically replaced the Encryptor service in our application using XML 
configuration.


The following code snippet shows how to load multiple XML modules into kernel. 
The first overload accepts individual paths to the XML configuration files. The paths 
can either be relative to the output directory or start from the file system root:


kernel.Load("module1.xml","module2.xml","module3.xml");


We can also use "*" as a wildcard character to address any path that matches the 
declared pattern. In the following example, the kernel loads all of the XML files from 
the same directory of the executing assembly:


kernel.Load("*.xml");


In the next example, the kernel loads the XML files which are located in a directory 
named Modules, located in the application directory:


kernel.Load("Modules/*.xml");


Convention over configuration
It is not difficult to register a few service types, one by one in a small application.  
But what about a production application with hundreds of services which should  
be wired to their implementations?


Convention-based configuration allows us to bind a group of services using a 
convention rather than defining individual bindings for each of them. For example, 
you can simply ask Ninject to bind all components to their base interfaces like this:


kernel.Bind(r => r
  .FromThisAssembly()
  .SelectAllClasses()
  .BindAllInterfaces());







Chapter 2


[ 35 ]


In order to take advantage of the Convention based configuration, we should 
add refererence to the Ninject's Conventions extension. We can either use NuGet 
to install Ninject.Extensions.Conventions or download the binary file from 
GitHub. We also need to add Ninject.Extensions.Conventions to the using 
section of our code to make the previous syntax available.


As the syntax indicates, registering a convention-based binding at least consists  
of the following steps:


1.	 Selecting the assembly or assemblies which contain the concrete components.
2.	 Selecting the concrete components within the selected assemblies.
3.	 Selecting the service types relative to the selected components.


One thing that may look weird in this syntax is that we are selecting the concrete 
components prior to the service types, which is in reverse order compared to the 
ordinary binding registration.


The first reason is that each implementation can be bound to many service types, 
whereas each service type cannot be bound to more than one implementation. The 
syntax is actually telling Ninject to bind each selected implementation to its relevant 
service types, which can address many services. But if we asked Ninject to bind each 
selected service type to its relevant implementation, no more than one binding per 
service type would be valid and hence, created.


The second reason is that this syntax forces to select the components first and then 
only select those services which can be bound to the selected components. This way, 
it is not possible to select the service types for which there is no implementation. 
Note that the service selection clause doesn't allow us to select every desired service 
types. We can only select services relative to the selected components (for example, 
their base classes).


The third reason is that it is possible to locate the service types based on a given 
implementation, because each component has a reference to its base service types. 
That is why we select assemblies only for components and not for the service types. 
But a given service type doesn't have any idea about its implementations.


Selecting the assemblies
The first step to register a convention is to project the assemblies which contain  
the component types. It can either be the current assembly or an external one.







Getting Started with Ninject


[ 36 ]


Here are some of the methods which can be used to identify an assembly:


•	 FromThisAssembly(): It selects the assembly that contains the current line  
of code.


•	 From(params Assembly[] assemblies): It selects the specified assemblies.
•	 FromAssemblyContaining<SomeType>(): It selects the assembly that 


contains the specified type.


In case not all of the components are in a single assembly, the Join syntax can be 
used to select multiple assemblies:


kernel.Bind(x => x
  .FromAssemblyContaining<CustomersService>()
  .SelectAllClasses()
  .Join
  .FromAssemblyContaining<MessageProvider>()
  .SelectAllClasses()
  .BindAllInterfaces());


Generally, only public types are exposed in the projected assemblies. In order to 
also include the non-public types, we should explicitly declare this by using the 
IncludingNonePublicTypes() method after the assembly selection clause:


    .FromAssemblyContaining<CustomersService>()
    .IncludingNonePublicTypes()
    .SelectAllClasses()
    .BindAllInterfaces());


Selecting the components
The second step is to select the components to which the bindings are going to  
be registered. We can use either the SelectAllClasses() method to select all  
non-abstract classes or the Select(Func<Type, bool> filter) method to select  
any desired types. The following example shows how to select all classes whose 
names start with word "customer":


kernel.Bind(r => r
  .FromThisAssembly()
  .Select(t =>t.Name.StartsWith("Customer"))
  .BindBase());







Chapter 2


[ 37 ]


Filtering the selected components
We don't have to select all types within the selected assembly. It is possible to apply 
conditions to filter the results. The following code binds only those classes which  
are in the "Northwind.Controllers" namespace to their base type:


kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .InNamespaces("Northwind.Controllers")
  .BindBase());


Explicit inclusion and exclusion
We can also exclude or include some types explicitly to make the final component list 
exactly match our requirements using the Exclude or Include methods.


Selecting service types
Now that we have projected the concrete components, we should select their 
corresponding service types to participate in the binding. We can use one of the 
following methods to indicate the service types relative to each projected component:


•	 BindAllInterfaces(): It binds all the interfaces of the selected component 
to the selected component.


•	 BindBase(): It binds the base type of the selected components to the current 
component.


•	 BindDefaultInterface(): Binds the default interface of the given types 
to the type. The default interface is the interface with the same name 
as the type. For example, ICustomerSerive is the default interface for 
CustomerService.


•	 BindDefaultInterfaces(): It binds the default interfaces of the 
given types to the type. Default interfaces for a type are all of the 
interfaces that the type's name ends with their names. For example, 
IRepository and ICustomerRepository are both default interfaces for 
SqlCustomerRepository.


•	 BindSingleInterface(): It requires that the given type has exactly one 
interface. In this case, this interface is bound to the type. If the type has no or 
several interfaces then no binding is added.







Getting Started with Ninject


[ 38 ]


•	 BindToSelf(): It binds the type to itself.
•	 BindSelection(ServiceSelector selector): It binds the selected 


interfaces to the type.
•	 BindUsingRegex(string pattern): It binds the interfaces of the  


current type matching the given regular expression to the type.


Configuring the Bindings
Once a binding is created, we can configure it in the same way we configure  
ordinary bindings:


kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .BindAllInterfaces()
  .Configure(b=>b.InSingletonScope()));


Additionally, we have access to each component type in the corresponding binding 
configuration. The following method shows how to define Named bindings using 
the component's type name:


kernel.Bind(x => x
  .FromAssemblyContaining<MessageProvider>()
  .SelectAllClasses()
  .BindAllInterfaces()
  .Configure((b, c) =>b.Named(c.Name)));


We can also configure certain types individually using the ConfigureFor<T> 
method. In the following example, all the repository classes are given a connection 
string and configured to live in a Singleton scope. SqlCustomerRepository is also 
getting the same connection string, but its scope configuration is overridden to be 
InThreadScope:


kernel.Bind(x => x
  .FromThisAssembly()
  .SelectAllClasses()
  .InheritedFrom<IRepository>()
  .BindAllInterfaces()
  .Configure(b =>b.InSingletonScope ()
.WithConstructorArgument("connectionString", ApplicationSettings.
ConnectionString))
    .ConfigureFor<SqlCustomerRepository>(b =>b.InThreadScope()));







Chapter 2


[ 39 ]


Summary
Ninject uses its binding system to map abstract services to concrete types. The core 
object of Ninject to which we give a service type and get the concrete service is 
Ninject kernel. Ninject uses the object scopes to deal with Lifetime of the created 
objects. We can use the predefined scopes or create our custom scopes to define 
the lifetime of objects created by Ninject. Ninject supports both code-based and 
XML-based configurations for registering service types. Although XML modules 
can be modified without having to compile the application, code modules are more 
powerful and recommended. Instead of registering each service individually,  
we usually use conventions to register a group of services at a time.











Meeting Real-world 
Requirements


This chapter starts with some patterns and antipatterns which should be considered 
while using Ninject. We will go through the advanced features of Ninject, and also 
some examples to see how Ninject can meet real-world requirements. By the end  
of this chapter, the user is expected to know almost all the significant features  
of Ninject.


The topics covered in this chapter are as follows:


•	 DI patterns and antipatterns
•	 Multi binding and contextual binding
•	 Custom providers 
•	 Dynamic factories


DI patterns and antipatterns
Dependencies can be injected in a consumer class using different patterns and 
injecting them into a constructor is just one of them. While there are some patterns 
that can be followed for injecting dependencies, there are also some patterns that 
are recommended to be avoided, as they usually lead to undesirable results. In this 
section, we will examine only those patterns and antipatterns that are somehow 
relevant to Ninject features. However, a comprehensive study of them can be found 
in Mark Seemann's book, Dependency Injection in .NET.







Meeting Real-world Requirements


[ 42 ]


Constructor Injection
Constructor Injection is the most common and recommended pattern for injecting 
dependencies in a class. Generally this pattern should always be used as the primary 
injection pattern unless we have to use other ones. In this pattern, a list of all class 
dependencies should be introduced in the constructor.


The question is what if the class has more than one constructor. Although Ninject's 
strategy for selecting constructor is customizable, its default behavior is selecting the 
constructor with more parameters, provided all of them are resolvable by Ninject. So, 
although in the following code the second constructor introduces more parameters, 
Ninject will select the first one if it cannot resolve IService2 and it will even use the 
default constructor if IService1 is not registered either. But if both dependencies are 
registered and resolvable, Ninject will select the second constructor because it has 
more parameters:


public class Consumer
{
    private readonly IService1 dependency1;
    private readonly IService2 dependency2;
    public Consumer(IService1 dependency1)
    {
         this.dependency1 = dependency1;
    }


    public Consumer(IService1 dependency1, IService2 dependency2)
    {
         this.dependency1 = dependency1;
         this.dependency2 = dependency2;
    }
}


If the preceding class had another constructor with two resolvable parameters, 
Ninject would throw an ActivationException exception notifying that several 
constructors had the same priority.


There are two approaches to override this default behavior and explicitly select a 
constructor. The first approach is to indicate the desired constructor in a binding  
as follows:


Bind<Consumer>().ToConstructor(arg => 
      new Consumer(arg.Inject<IService1>()));


In the preceding example, we explicitly selected the first constructor. Using the 
Inject<T> method that the arg argument provides, we requested Ninject to  
resolve IService1 in order to be injected into the specified constructor.







Chapter 3


[ 43 ]


The second method is to indicate the desired constructor using the [Inject] attribute:


[Inject]
public Consumer(IService1 dependency1)
{
    this.dependency1 = dependency1;
}


In the preceding example, we applied the Ninject's [Inject] attribute on the first 
constructor to explicitly specify that we need to initialize the class by injecting 
dependencies into this constructor; even though the second constructor has more 
parameters and the default strategy of Ninject would be to select the second one. 
Note that applying this attribute on more than one constructor will result in the 
ActivationException.


Ninject is highly customizable and it is even possible to substitute the default 
[Inject] attribute with another one, so that we don't need to add reference to the 
Ninject library from our consumer classes just because of an attribute:


kernel.Settings.Set("InjectAttribute",typeof(MyAttribute));


Initializer methods and properties
Apart from constructor injection, Ninject supports the injection of dependencies  
using initializer methods and property setters. We can specify as many methods  
and properties as required using the [Inject] attribute to inject dependencies. 
Although the dependencies will be injected to them as soon as the class is 
constructed, it is not possible to predict in which order they will receive their 
dependencies. The following code shows how to specify a property for injection:


[Inject]
public IService Service
{
   get { return dependency;  }      
   set { dependency = value; }
}


Here is an example of injecting dependencies using an injector method:


[Inject]
public void Setup(IService dependency)
{
     this.dependency = dependency;
}







Meeting Real-world Requirements


[ 44 ]


Note that only public members and constructors will be injected and even the 
internals will be ignored unless Ninject is configured to inject nonpublic members.


In Constructor Injection, the constructor is a single point where we can consume 
all of the dependencies as soon as the class is activated. But when we use initializer 
methods the dependencies will be injected via multiple points in an unpredictable 
order, so we cannot decide in which method all of the dependencies will be ready 
to consume. In order to solve this problem, Ninject offers the IInitializable 
interface. This interface has an Initialize method which will be called once all of 
the dependencies have been injected:


public class Consumer:IInitializable
{
    private IService1 dependency1;
    private IService2 dependency2;


    [Inject]
    public IService Service1
    {
       get { return dependency1;  }      
       set { dependency1 = value; }
    }


    [Inject]
    public IService Service2
    {
       get { return dependency2;  }      
       set { dependency2 = value; }
    }


    public void Initialize()
    {
        // Consume all dependencies here
    }
}


Although Ninject supports injection using properties and methods, Constructor 
Injection should be the superior approach. First of all, Constructor Injection makes the 
class more reusable, because a list of all class dependencies are visible, while in the 
initializer property or method the user of the class should investigate all of the class 
members or go through the class documentations (if any), to discover its dependencies. 







Chapter 3


[ 45 ]


Initialization of the class is easier while using Constructor Injection because all the 
dependencies get injected at the same time and we can easily consume them at 
the same place where the constructor initializes the class. As we have seen in the 
preceding examples the only case where the backing fields could be readonly was in 
the Constructor Injection scenario. As the readonly fields are initializable only in the 
constructor, we need to make them writable to be able to use initializer methods and 
properties. This can lead to potential mutation of backing fields.


Service Locator
Service Locator is a design pattern introduced by Martin Fowler regarding which 
there have been some controversies. Although it can be useful in particular 
circumstances, it is generally considered as an antipattern and preferably should be 
avoided. Ninject can easily be misused as a Service Locator if we are not familiar to 
this pattern. The following example demonstrates misusing the Ninject kernel as a 
Service Locator rather than a DI container:


public class Consumer
{
    public void Consume()
    {
        var kernel = new StandardKernel();
        var depenency1 = kernel.Get<IService1>();
        var depenency2 = kernel.Get<IService2>();
        ...
    }
}


There are two significant downsides with the preceding code. The first one is that 
although we are using a DI container, we are not at all implementing DI. The class is 
tied to the Ninject kernel while it is not really a dependency of this class. This class 
and all of its prospective consumers will always have to drag their unnecessary 
dependency on the kernel object and Ninject library. On the other hand, the real 
dependencies of class (IService1 and IService2) are invisible from the consumers, 
and this reduces its reusability. Even if we change the design of this class to the 
following one, the problems still exist:


public class Consumer
{
    private readonly IKernel kernel;
    public Consumer(IKernel kernel)
    {







Meeting Real-world Requirements


[ 46 ]


        this.kernel = kernel;
    }


    public void Consume()
    {
        var depenency1 = kernel.Get<IService1>();
        var depenency2 = kernel.Get<IService2>();
        ...
    }
}


The preceding class still depends on the Ninject library while it doesn't have to and 
its actual dependencies are still invisible to its consumers. It can easily be refactored 
using the Constructor Injection pattern:


public Consumer(IService1 dependency1, IService2 dependency2)
{
     this.dependency1 = dependency1;
     this.dependency2 = dependency2;
}


Multi binding and contextual binding
In the previous chapter, we saw how Ninject can resolve dependency types in single 
binding situations, that is, each service type is bound only to a single implementation 
type. However, there are situations where we need to bind an abstract service type  
to multiple implementations, which is called as multi binding. Multi binding has  
two scenarios. The first one is the plugin model implementation and the other one  
is contextual binding, which we will discuss in this section.


Implementing the plugin model
The plugin model allows an application to be extremely extensible without 
modifying its source code. In the following example, we will implement a Music 
Player application, which uses codec plugins in order to support different music 
formats. The application comes out with two built-in codecs, and it is possible to  
add more plugin codecs and extend the formats that our player application supports. 
Please note that as we try to keep the application as simple as possible, many 
complexities and details will not be implemented.







Chapter 3


[ 47 ]


Let's start by defining the interface of our codec plugin as follows:


public interface ICodec
{
    string Name { get; }
    bool CanDecode(string extension);
    Stream Decode(Stream inStream);
}


The next step is to implement our pluggable player. What makes the player 
extensible is that it depends on a sequence of the ICodec objects, rather than  
a certain number of concrete codecs:


public class Player
{
    private readonly ICodec[] codecs;


    // Note that the constructor parameter is not a single ICodec.
    public Player(IEnumerable<ICodec> codecs)
    {
        this.codecs = codecs.ToArray();
    }
}


Then we will add a Play method to our Player class as follows:


public void Play(FileInfo fileInfo)
{
    ICodec supportingCodec = FindCodec(fileInfo.Extension);
    using (var rawStream = fileInfo.OpenRead())
    {
        var decodedStream = supportingCodec.Decode(rawStream);
        PlayStream(decodedStream);
    }
}


This method accepts a FileInfo object and after finding a suitable codec, it decodes 
and plays the given file. We can assume that our player has a PlayStream method 
which can play decoded streams.







Meeting Real-world Requirements


[ 48 ]


Now, let's implement the FindCodec method as follows:


private ICodec FindCodec(string extension)
{
    foreach (ICodec codec in codecs)
        if (codec.CanDecode(extension))
            return codec;


    throw new Exception("File type not supported.");
}


FindCodec calls the CanDecode method of each codec object to find a codec which 
supports the given file extension. If it cannot find any codecs suitable for the given 
file type, it throws an error. One of the things that we need to keep in mind is that 
none of our concrete codecs have been resolved before this foreach loop.


Ninject doesn't resolve the types within a sequence unless the 
sequence is enumerated.


The final step is to add a convention to the entry point of our UI layer, which is a 
console application in this case. Open the Main method and add the following lines:


using (var kernel = new StandardKernel())
{
    kernel.Bind(b => b.FromAssembliesMatching("*")
                      .SelectAllClasses()
                      .InheritedFrom<ICodec>()
                      .BindAllInterfaces());
}


The preceding convention instructs Ninject to register all implementations of the 
ICodec interface automatically without having to declare individual bindings  
for them.


Since the ICodec type is bound to multiple implementations, it can only be resolved 
to a sequence of objects rather than a single object. So, resolving ICodec with the 
following constructor will result in a runtime exception:


public Consumer(ICodec codec){}


The result is the same if we execute the following code:


ICodec codec = Kernel.Get<ICodec>();







Chapter 3


[ 49 ]


In both cases, Ninject will try to resolve ICodec, but it will find more than one 
concrete type for it. Instead of Get<T>, we can call the GetAll<T> method to get 
all the implementations of ICodec. The following code shows the names of all 
supported codecs:


IEnumerable<ICodec> codecs = kernel.GetAll<ICodec>();
foreach (ICodec codec in codecs)
    System.Console.WriteLine(codec.Name);


Now, any assemblies that have an implementation of ICodec and are located in  
the root directory of our application will be recognized as a codec plugin by our 
Player application. Our application does not even need to have a reference to the 
codec project.


The code sample and built-in codec plugins can be downloaded 
from the publisher's website.


Contextual binding
Since in the plugin model each service type can be mapped to multiple 
implementations, the binding engine doesn't need to make any decision about  
which implementation to return; because the kernel is supposed to return all of  
them. Contextual binding, however, is a multi-binding scenario in which the  
kernel has to choose one implementation among multiple provided types based  
on a given condition.


In the following example, we will implement a data migration application which 
can migrate data from a SQL database to an XML datafile. It is going to have a 
presentation layer, a business layer, and a data access layer.


Our SQL database is Northwind which exists as a sample database with the SQL 
server installation package. In order to keep this sample clean and simple, we use  
the Shippers table, which contains only two fields: Shipper ID and Company Name.


We add a class library project to our solution to implement the business layer. The 
only business model will be the Shipper class. It has only the following members:


public int ShipperID { get; set; }
public string CompanyName { get; set; }







Meeting Real-world Requirements


[ 50 ]


The next step is to implement our ShippersService class. It should contain a 
method for migrating data from our source repository, which is a SQL database  
to the target repository, which is an XML datafile:


public void MigrateShippers()
{
    foreach (Shipper shipper in sourceRepository.GetShippers())
        targetRepository.AddShipper(shipper);
}


What should the type of these repositories be and where should they come from? 
The answer to these questions can turn this application into a loosely coupled 
maintainable application or a tightly coupled hard to maintain one. The easiest way 
may be to create an XmlRepository and SQLRepository and then instantiate them 
in the ShippersService class as follows:


// The following code leads to a tightly coupled code
var sourceRepository = new ShippersSqlRepository();
var targetRepository = new ShippersXmlRepository();


This way, we will make our service dependent of these two concrete repositories and 
tighten our business layer to our data access layer. It would not be possible to modify 
or replace the data access without modifying the business layer and recompiling the 
application. Although our application layers may look like being separated, they are 
actually so tightly coupled that it is not easily maintainable.


The solution is to create our ShippersService class based on an abstraction of the 
repositories which can be defined in the business layer, rather than the concrete 
repositories which will be implemented in the data access layer. Let's define this 
abstraction using the following interface in our business layer:


public interface IShippersRepository
{
    IEnumerable<Shipper> GetShippers();
    void AddShipper(Shipper shipper);
}


Now we can use this interface rather than the concrete repositories the 
ShippersService class as follows:


public class ShippersService
{
    ...







Chapter 3


[ 51 ]


    public ShippersService(IShippersRepository sourceRepository, 
IShippersRepository targetRepository)
    {
        this.sourceRepository = sourceRepository;
        this.targetRepository = targetRepository;
    }


    public void MigrateShippers()
    {           
        foreach (var shipper in sourceRepository.GetShippers())
            targetRepository.AddShipper(shipper);
    }
}


The ShippersService class is now highly reusable. It can migrate Shipper instances 
not only from SQL to XML, but also between any types of data sources as long as 
they implement IShippersRepository. The interesting thing is that we can easily 
migrate data in reverse direction without modifying our ShippersService class or 
data access layer.


We know that Ninject will inject concrete repositories into the constructor of the 
ShippersService class. But wait for a second. The type of both parameters is 
IShippersRepository. How will Ninject understand which concrete type should 
be injected into which parameter? Contextual binding is the answer to this question. 
Let's go through different resolution approaches one by one.


Named binding
This is the simplest approach in which we can assign names to both our binding 
and our target parameters so that Ninject can decide which binding should be used 
for which target. We need to insert names on targets as well as their corresponding 
bindings:


public ShippersService(
    [Named("Source")]IShippersRepository sourceRepository,
    [Named("Target")]IShippersRepository targetRepository)


The following code shows the type registration section in our presentation layer, 
which is a console application:


Bind<IShippersRepository>()
.To<ShippersSqlRepository>().Named("Source");
Bind<IShippersRepository>()
.To<ShippersXmlRepository>().Named("Target");







Meeting Real-world Requirements


[ 52 ]


Now that we have distinguished the different implementations of 
IShippersRepository with names, it is also possible to get them from the kernel 
object using the following syntax:


kernel.Get<IShippersRepository>("Source");


However, resolving instances in this way is not recommended because in this way, 
Ninject will be misused as a means for implementing the Service Locator antipattern.


Once a binding is named, this name can also be used to address 
any subsequent dependencies of the registered types.


Resolving metadata
In this approach, each bindings is provided with some metadata which can  
be evaluated while resolving the types. The following code shows how to  
set metadata:


Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WithMetadata("IsSource", true);
Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WithMetadata("IsSource", false);


One way of associating targets with their corresponding bindings is by defining 
a custom ConstraintAttribute class. This is an abstract class which provides a 
method for matching the attributed target with its desired binding. The following 
code shows how to define such an attribute:


public class IsSourceAttribute : ConstraintAttribute
{
    private readonly bool isSource;
    public IsSourceAttribute(bool isSource)
    {
        this.isSource = isSource;
    }


    public override bool Matches (Ninject.Planning.Bindings.
IBindingMetadata metadata)
    {
        return metadata.Has("IsSource") 
            && metadata.Get<bool>("IsSource") == isSource
    }
} 







Chapter 3


[ 53 ]


Now, we can apply this attribute to the targets to associate them with their 
corresponding bindings:


public ShippersService([IsSource(true)]IShippersRepository 
sourceRepository, [IsSource(false)]IShippersRepository 
targetRepository)
{
    this.sourceRepository = sourceRepository;
    this.targetRepository = targetRepository;
}


We can provide as many metadata as required to our binding for being used  
while resolving the associated services:


Bind<IService>().To<Component>()
.WithMetadata("Key1", value1)
.WithMetadata("Key2", value2)
.WithMetadata("Key3", value3);


We can also provide as many Constraint attributes as needed on a binding target,  
as shown in the following code:


public Consumer(
[Constraint1(value1, value2), Constraint2(value), Constraint3]
IService dependency) 
{
}


Please keep in mind that named binding scenario is also implemented using 
metadata. The following code shows how to implement a custom constraint  
attribute which can resolve named bindings based on a matching pattern rather  
than the exact name:


public class NamedLikeAttribute : ConstraintAttribute
{
    private readonly string pattern;
    public NamedLike(string namePattern)
    {
        this.pattern = namePattern;
    }


    public override bool Matches(IBindingMetadata metadata)
    {
        return Regex.IsMatch(metadata.Name, pattern);
    }
}







Meeting Real-world Requirements


[ 54 ]


Given a pattern, the preceding attribute can be applied to the target. The binding 
name then will be evaluated using a Regular Expression to determine whether or  
not the name matches the given pattern. The following code shows how to use  
this attribute:


public Consumer([NamedLike(@"source\w+") dependency)
{
   ...
}


In order to understand how metadata can help Ninject resolve types, we need to 
know how binding targets are associated with bindings. The following diagram 
shows a simplified demonstration of this relationship:


Ninject Kernel uses different components to resolve types, and one of them 
is Binding Resolver. Although Binding Resolver refers to a group of Ninject 
components rather than a single one, we can think of it as a single component for 
now to keep things simple. When Ninject is asked for resolving a service type, 
Binding Resolver will be provided with all of the registered bindings as well as a 
Request object which contains information about the target for which a resolution is 
requested. Binding information includes binding metadata and target information 
contains attributes set on the target. Binding Resolver examines all of the targets 
using this information in order to find their matching bindings. Whenever it detects 
a constraint attribute on a target, it executes the Matches method of that attribute 
across all of the bindings to find the matching binding. Once the matching binding  
is found, it is easy to get the concrete type from that binding.







Chapter 3


[ 55 ]


Attribute-based binding
Although Named binding is simple to use and metadata is flexible and powerful, 
both the approaches require library of the dependent classes to have a reference to 
the Ninject library. Another downside of these two solutions is that they both rely on 
strings, which are error prone. One can easily mistype the names or metadata keys 
without being warned by the compiler.


The following code shows how to use this technique without referencing the  
Ninject library:


public class SourceAttribute : Attribute{}
public class TargetAttribute : Attribute{}


These attributes then can be applied to the target parameters as follows:


public ShippersService([Source]IShippersRepository sourceRepository, 
[Target]IShippersRepository targetRepository)


Now, we need to register our bindings using the following code:


Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenTargetHas<SourceAttribute>()


Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WhenTargetHas<TargetAttribute>()


Not only can we apply these attributes to parameters, but we can also apply them to 
the class itself or to the other injected members, for example, the constructor itself.


The following binding shows how to make a binding conditional based on an 
attribute on the consuming class:


Bind<IService>().To<MyService>().WhenClassHas<MyAttribute>();


Here is the consuming class:


[MyAttribute]
Public class Consumer {...}


The following code shows how to make a binding conditional based on an attribute 
on an injected class member:


Bind<IService>().To<MyService>().WhenClassHas<MyAttribute>();







Meeting Real-world Requirements


[ 56 ]


This is how we can apply such an attribute to the constructor:


[MyAttribute]
public Consumer(IServive service) { ... }


A class member can be the constructor itself, or it can even be another method, or an 
injected property. We will talk about these kinds of binding later in this chapter.


Target-based conditions
Another way of deciding which binding to use is target-based conditions. Ninject 
offers several helpers which can restrict the number of matching bindings for a target 
based on the type of its container. The following example shows a scenario to which 
this approach applies.


In this example, we have two service classes named SourceShipperService and 
TargetShipperService, both of which depend on IShippersRepository.


Here is the structure of our service classes:


public class SourceShipperService
{
    public SourceShipperService(IShippersRepository repository)
	  {  ...  }
}


public class TargetShipperService
{
    public TargetShipperService(IShippersRepository repository)
   {  ...  }
}


In order to tell Ninject which concrete repository should be injected into which 
service, we can base our condition on the service type itself rather than any attribute  
or metadata.


The following code shows how to register our types in such a way that instances of 
ShippersXmlRepository and ShippersSqlRepository respectively get injected 
into SourceShipperService and TargetShipperService:


Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .WhenInjectedInto<SourceShipperService>();
Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenInjectedInto<TargetShipperService>();    







Chapter 3


[ 57 ]


Note that the WhenInjectedInto<T> method will match even if the target class 
is a subtype of T. If we mean exactly the given type, we should use the following 
alternative method:


Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .WhenInjectedExactlyInto<TargetShipperService>();


Generic helper
As we have seen, most of the preceding approaches take advantage of the helper 
methods whose names follow the Whenxxx pattern. All of these methods are specific 
versions of a more generalized When. This versatile helper offers an argument to its 
call back that contains all information about current binding request including the 
target information. Here is how to register types for a Data Migration application 
using this helper method:


Bind<IShippersRepository>().To<ShippersSqlRepository>()
.When(r => r.Target.Name.StartsWith("source"));
Bind<IShippersRepository>().To<ShippersXmlRepository>()
.When(r => r.Target.Name.StartsWith("target"));


The preceding code binds IShippersRepository to ShippersSqlRepository 
provided that the target parameter name starts with source. Similar rule is applied 
to the second binding as well.


Custom providers
Providers are specialized factory classes that Ninject uses in order to instantiate 
resolved types. Whenever we bind a service type to a component, we are implicitly 
associating that service type to a provider that can generate instances of that 
component. This hidden provider is a generic factory, which can create instances of 
every given type, and is called StandardProvider. Although we can often rely on 
StandardProvider without having to bother about what it does behind the scenes, 
Ninject also allows us to create and register our custom providers just in case we 
need to customize the activation process as follows:


Bind<IService>().ToProvider<MyService>();
public class MyServiceProvider : Provider<MyService>
{
    protected override MyService CreateInstance(IContext context)
    {
        return new MyService();
    }
}







Meeting Real-world Requirements


[ 58 ]


Although extending the Provider<T> class is the recommended way to create a 
custom provider, implementing the IProvider interface is enough for a class to be 
accepted by Ninject as a provider:


public interface IProvider
{
    Type Type { get; }
    object Create(IContext context);
}


Implementing the data access layer of the data migration application demonstrates 
how to implement and use a custom provider. We need to add a new class library 
projects to our solution for each of our data access libraries (SQL data access and 
XML data access).


Let's start with implementing the ShippersSqlRepository class:


public class ShippersSqlRepository : IShippersRepository
{
    private readonly NorthwindContext objectContext;
    public ShippersSqlRepository(string northwindConnectionString)
    {
       objectContext = 
           new NorthwindContext(northwindConnectionString);
    }


    public IEnumerable<Business.Model.Shipper> GetShippers()
    {  ...  }
    public void AddShipper(Business.Model.Shipper shipper)
    {  ...  }
}


Our ShippersSqlRepository class needs to be passed a connection string 
which we will deal with later in this section. We have a similar scenario in the 
ShippersXmlRepository class:


public class ShippersXmlRepository : IShippersRepository
{
    private readonly string documentPath;
    public ShippersXmlRepository(string xmlRepositoryPath)
    {
        this.documentPath = xmlRepositoryPath;
    }







Chapter 3


[ 59 ]


    public IEnumerable<Shipper> GetShippers()
    {  ...  }


    public void AddShipper(Shipper shipper)
    {  ...  }
}


In this case, we need to pass a file path for the XML data file. These parameters 
prevent Ninject from instantiating our repositories, because the kernel doesn't have 
any idea how to resolve the string parameters. So, the following lines are not enough 
for registering our repositories:


Bind<IShippersRepository>().To<ShippersSqlRepository>()
    .When(r => r.Target.Name.StartsWith("source"));
Bind<IShippersRepository>().To<ShippersXmlRepository>()
    .When(r => r.Target.Name.StartsWith("target"));


One way of providing the required arguments is using the 
WithConstructorArgument method:


connection = ConfigurationManager.AppSettings["northwindConnectionStr
ing"];


Bind<IShippersRepository>()
.To<ShippersSqlRepository>()
.When(r => r.Target.Name.StartsWith("source"))
.WithConstructorArgument("NorthwindConnectionString", connection);


path = ConfigurationManager.ConnectionStrings["xmlRepositoryPath"];


Bind<IShippersRepository>()
.To<ShippersXmlRepository>()
.When(r => r.Target.Name.StartsWith("target"))
.WithConstructorArgument("XmlRepositoryPath",path);


It looks good when we don't have to register many repositories which need such 
configuration. However, in more complicated cases, we need to automate injection 
of these arguments somehow. This is where a Provider class can offer a better 
solution. All of the settings here are instances of string. So, we can create a provider 
for the string type to generate our configuration strings based on the name of the 
parameter. The provider will look up the parameter name as a configuration key in 
the application configuration file (either web.config or app.config), and if such a 
configuration is defined (as in the following code), it returns its value:







Meeting Real-world Requirements


[ 60 ]


public class ConfigurationProvider : Provider<string>
{
    protected override string CreateInstance(IContext context)
    {
        if (context.Request.Target == null)
            throw new Exception("Target required.");
        var paramName = context.Request.Target.Name;
        string value = ConfigurationManager.AppSettings[paramName];
        if (string.IsNullOrEmpty(value))
            value = ConfigurationManager
                   .ConnectionStrings[paramName].ConnectionString;
        return value;
    }
}


ConfigurationProvider is given a context object which contains all of the 
information about the current activation process, including the request object that 
we mentioned earlier in this chapter. The Request object has information about the 
target, which in this case is the constructor parameter into which a string instance 
should be injected. The Target object will be null if this string type is being 
requested directly from the kernel by using the Get<string>() method. Because we 
need name of the parameter as the configuration key, we check the target first. Using 
the target's name, we can look up AppSettings, and in case of we do not find such 
a setting, we will search in the ConnectionStrings section. Finally, the retrieved 
value will be returned.


The only problem is that this provider will be registered for the string type and it 
will affect any string which is going to be resolved by Ninject. In order to specify the 
strings which are going to be considered as application configurations, we will define 
a custom attribute and apply it to those parameters as follows:


[AttributeUsage(AttributeTargets.Property | AttributeTargets.
Parameter)]
public class ConfigurationAttribute : Attribute { }


We have declared that the attribute should only be applied to properties and 
parameters. Here is how this attribute is applied to the constructor parameter of our 
repository classes:


public ShippersXmlRepository([Configuration]string xmlRepositoryPath)
{
    this.documentPath = xmlRepositoryPath;
}
public ShippersSqlRepository([Configuration]string 
northwindConnectionString)
{







Chapter 3


[ 61 ]


    objectContext = new NorthwindContext(northwindConnectionString);
}


And finally, the binding code is as follows:


Bind<string>().ToProvider<ConfigurationProvider>()
    .WhenTargetHas<ConfigurationAttribute>();


Activation context
While overriding the CreateInstance method in our provider, we used the context 
object, which was passed through method parameter. This object, which is represented 
by the IContext interface, contains pretty much of all the information related to the 
current activation process. Using this object, we can have access to the current binding 
object, the type being resolved, the type being injected, where in the dependency graph 
we are, who has requested this resolution, and so on. While resolving a dependency 
graph, a context object is created for each type being resolved, and this leads to an 
activation context graph. Starting from each context object, we can also navigate 
through its parent context nodes until reaching the root of the graph where the initial 
request is made. When using Ninject, this context object is available wherever we need 
to make a decision about how to resolve dependencies. 


Factory Methods
Factory Methods are another way of informing Ninject how to resolve a dependency. 
Like creating a provider, we have access to the activation context object to help 
us make decisions on how to resolve the requested type. However, we don't need 
to create a new class, and we can just write our resolution logic inline. A Factory 
Method is a good substitute for a Provider class, where the resolution logic is simple 
and short. A good example of using a Factory Method is to initialize a logger object  
in a class. The following is the code to initialize a logger without DI:


class ConsumerClass
{
   private ILog log = LogManager.GetLogger(typeof(ConsumerClass));
}


We can implement DI in the preceding class using the following code:


class ConsumerClass
{
    private ILog log;
    public ConsumerClass(ILog log)
    {







Meeting Real-world Requirements


[ 62 ]


        this.log = log;
    }
}


It is not possible to register a type binding for ILogger using the To<T> method, 
because the concrete logger has to be created by calling the LogManager.GetLogger 
method rather than the constructor of a concrete logger. In this case, we can use a 
Factory Method in order to inform Ninject about creating a new instance of the logger:


Bind<ILog>().ToMethod(ctx => LogManager.GetLogger(ctx.Request.
ParentRequest.Service));));


The type of ctx is IContext and we are getting type of the Consumer class from the 
Service property of the parent request of Ninject Activation Context.


This example was just to demonstrate how to employ a Factory Method, and is not a 
best practice for logging, because it is requiring the application to have a reference to 
the logger library. One of the best practices for logging will be discussed in Chapter 5, 
Doing More with Extensions.


Dynamic factories
As long as we know all the dependencies of a class and in scenarios where we 
only need one instance of them, it is easy to introduce a list of the dependencies in 
the constructor of the class. But there are cases where we may need to create more 
instances of a dependency in a class as a single instance that Ninject injects is not 
enough. There are also cases where we don't know which services a consumer 
may require, because it may require different services in different circumstances, 
and it doesn't make sense to instantiate all of them while creating the class. In such 
scenarios, factories can help. We can design our class so that it depends on a factory, 
rather than the objects that the factory can create. Then, we can command that 
factory to create the required services on demand and in any required number.


We will see two examples each of which addresses one of the preceding cases and 
demonstrates the solution that Ninject offers.


The Shape Factory example
In the first example we will create a Graphic library. It contains a ShapeService 
class, which offers an AddShapes method to add a given number of specific IShape 
objects to a given ICanvas object:


public void AddShapes(int circles, int squares, ICanvas canvas)
{
    for (int i = 0; i < circles; i++)
    {







Chapter 3


[ 63 ]


   // The following line should change
        ICircle circle = new Circle();
        canvas.AddShape(circle);
    }
    for (int i = 0; i < squares; i++)
    {
   // The following line should change
        ISquare square = new Square();
        canvas.AddShape(square);
    }
}


The traditional way was to create new instances of the Circle and Square classes 
directly in the AddShapes method. However, this way we will tightly couple the 
ShapeService class to the concrete Circle and Square types that is in contrast with 
DI principles. On the other hand, introducing these dependencies as parameters 
doesn't meet our requirement, because only one instance per shape will be injected, 
which will not be enough. In order to solve this problem, we should first create a 
simple factory interface as follows:


public interface IShapeFactory
{
    ICircle CreateCircle();
    ISquare CreateSquare();
}


Then, we can introduce this factory interface as the dependency of our  
ShapeService class:


public ShapeService(IShapeFactory factory)
{
    this.factory = factory;
}


public void AddShapes(int circles, int squares, ICanvas canvas)
{
    for (int i = 0; i < circles; i++)
    {
        ICircle circle = factory.CreateCircle();
        canvas.AddShape(circle);
    }
    for (int i = 0; i < squares; i++)
    {
        ISquare square = factory.CreateSquare();
        canvas.AddShape(square);
    }
}







Meeting Real-world Requirements


[ 64 ]


The good news is that we don't need to worry about how to implement 
IShapeFactory. Ninject can implement it dynamically and inject the implemented 
factory into the ShapeService class. We just need to add the following code to our 
type registration segment:


Bind<IShapeFactory>().ToFactory();
Bind<ISquare>().To<>(Square);
Bind<ICircle>().To<>(Circle);


In order to make use of Ninject factory, we need to add a reference to the Ninject.
Extensions.Factory library. This either can be added via NuGet or download it 
from the Ninject official website.


Keep in mind that a factory can have as many methods as required and each method 
can return any desired type. The methods can have any arbitrary name and have any 
number of parameters. The only constraint is that the name and type of parameters 
must conform to the name and type of the constructor parameters of the concrete 
class, but their order does not matter. Even the number of parameters doesn't need 
to match and Ninject will try to resolve those parameters which are not provided via 
the factory interface.


So, if the concrete Square class is as follows:


public class Square
{
    public Square(Point startPoint, Point endPoint)
    {        ...    }
}


The IShapeFactory factory interface should look as follows:


public interface IShapeFactory
{
    ICircle CreateCircle();
    ISquare CreateSquare(Point startPoint, Point endPoint);
}


Alternatively, the CreateSquare method could look as follows:


ISquare CreateSquare(Point endPoint, Point startPoint);


This is the default behaviour of Ninject dynamic factories. However, this default 
behavior can be overridden by creating customized Instance Providers, which we 
will learn later in this chapter.







Chapter 3


[ 65 ]


Using convention
Registering convention-based binding for dynamic factories or other on-the-fly 
implementation generators is slightly different from the regular convention. The 
difference is that once we have selected assemblies, we should select service types 
instead of components and then bind them to factory or a custom generator. The 
following sections describe how to implement these two steps.


Selecting service types
Select an abstraction using any of the following methods:


•	 SelectAllIncludingAbstractClasses(): This method selects all classes 
including the abstract ones.


•	 SelectAllAbstractClasses(): This method selects just abstract classes.
•	 SelectAllInterfaces(): This method selects all interfaces.
•	 SelectAllTypes(): This method selects all types (classes, interfaces, 


structs, enums, and primitive types).


The following code binds all interfaces within the selected assembly to dynamic 
factories:


kernel.Bind(x => x
    .FromAssembliesMatching("factories")
    .SelectAllInterfaces()
    .BindToFactory());


Defining Binding Generator
Use one of the following methods to define appropriate binding generator:


•	 BindToFactory: This method registers the projected types as dynamic 
factories.


•	 BindWith: This method creates a binding using a binding generator 
argument. Creating a binding generator is just a matter of implementing  
the IBindingGenerator interface.







Meeting Real-world Requirements


[ 66 ]


The following example binds all of those interfaces of the current assembly whose 
names end with Factory to dynamic factories.


kernel.Bind(x => x
    .FromThisAssembly()
    .SelectAllInterfaces()
    .EndingWith("Factory")
    .BindToFactory());


Telecom Switch example
In the following example, we will write a service for a Telecom center that 
returns the current status of a given telecom switch. Telecom switches which are 
manufactured by different vendors may offer different ways to be queried. Some  
of them support communication via TCP/IP protocol and some of them simply  
write their status in a file.


Let's start by creating the Switch class as follows:


public class Switch
{
    public string Name { get; set; }
    public string Vendor { get; set; }
    public bool SupportsTcpIp { get; set; }
}


To collect the status of a switch we create an interface as follows:


public interface IStatusCollector
{
    string GetStatus(Switch @switch);
}


In C#, the @ symbol allows us to use a reserved word as a 
variable name.


We need two different implementations of this interface for two different switch 
types; the switches which support TCP/IP communication and those that don't. 
Let's name them as TcpStatusCollector and FileStatusCollector respectively. 
We also need to declare a factory interface which can create instances of these two 
concrete StatusCollectors:







Chapter 3


[ 67 ]


public interface IStatusCollectorFactory
{
    IStatusCollector GetTcpStatusCollector();
    IStatusCollector GetFileStatusCollector();
}


And finally it comes to the SwitchService class:


public class SwitchService
{
    private readonly IStatusCollectorFactory factory;
    public SwitchService(IStatusCollectorFactory factory)
    {
        this.factory = factory;
    }


    public string GetStatus(Switch @switch)
    {
        IStatusCollector collector;
        if (@switch.SupportsTcpIp)
            collector = factory.GetTcpStatusCollector();
        else
            collector = factory.GetFileStatusCollector();
        return collector.GetStatus(@switch);
    }
}


The SwitchService class will never create an instance of FileStatusCollector if 
all of the given switches support TCP/IP. This way, the SwitchService class is only 
injected with the dependencies that it really needs rather than all of the types for 
which there is a possibility of need.


IStatusCollectorFactory has two factory methods both of which are of the same 
type. Now, how does Ninject's implementation of this factory understand how to 
resolve IStatusCollector? The magic lies in the name of the factory methods. 
Whenever the name of a factory method starts with Get, it indicates that the type will 
be resolved using named binding, where the name is the rest of the method name. 
For example if the name of the factory's method is GetXXX, the factory will  
try to find a binding named XXX. So, the type registration section for this example 
should be as follows:


Kernel.Bind(x => x.FromThisAssembly()
                    .SelectAllInterfaces()
                    .EndingWith("Factory")
                    .BindToFactory()); 







Meeting Real-world Requirements


[ 68 ]


Kernel.Bind(x => x.FromThisAssembly()
              .SelectAllClasses()
              .InheritedFrom<IStatusCollector>()
              .BindAllInterfaces()
              .Configure((b, comp) => b.Named(comp.Name))); 


The first convention binds all of the interfaces whose names end with Factory to 
Factory and the second one registers named binding for all implementations of 
IStatusCollector in such a way that each binding is named after its component's 
name. It is equivalent to the following single bindings:


Bind<IStatusCollector>().To<TcpStatusCollector>()
    .Named("TcpStatusCollector");
Bind<IStatusCollector>().To<FileStatusCollector>()
    .Named("FileStatusCollector");


However, using single binding in this relies on string names, which is error 
prone and the relation can easily break by a typo. There is another way of 
naming for single bindings which is only available while referencing Ninject.
Extensions.Factory and is especially designed for such scenarios. We can use the 
NamedLikeFactoryMethod helper method instead of the Named helper to name a 
binding for a factory:


Bind<IStatusCollector>().To<FileStatusCollector>()
.NamedLikeFactoryMethod(
    (IStatusCollectorFactory f) => f.GetFileStatusCollector());


It means that we are defining a named binding with the name that the indicated 
factory method suggests.


Please note that using conventions is always the preferred approach.


Custom Instance Providers
A dynamic factory doesn't instantiate requested types directly. Instead, it uses 
another object named Instance Provider (don't get confused with Provider) to 
create an instance of a type. The Instance Provider is given some information about 
the factory's method including the name of the method, its return type, and its 
parameters based on which the Instance Provider should resolve the requested 
object. As long as a factory is not assigned a custom Instance Provider, it uses its 
default Instance Provider, which is named StandardInstanceProvider. We can 
assign a custom Instance Provider to a factory while registering it as follows:







Chapter 3


[ 69 ]


Kernel.Bind(x => x.FromThisAssembly()
                  .SelectAllInterfaces()
                  .EndingWith("Factory")
                  .BindToFactory(() => new MyInstanceProvider()));


In order for Ninject to accept a class as an Instance Provider, it is enough for the  
class to implement the IInstanceProvider interface. However, the easier way is  
to inherit from StandardInstanceProvider and override the desired members.


The following code shows how to define an Instance Provider which gets the name 
of the binding from NamedAttribute rather than the method name:


class NameAttributeInstanceProvider : StandardInstanceProvider
{
    protected override string GetName(System.Reflection.MethodInfo 
methodInfo, object[] arguments)
    {
        var nameAttribute = methodInfo
            .GetCustomAttributes(typeof(NamedAttribute), true)
            .FirstOrDefault() as NamedAttribute;
        if (nameAttribute != null)
            return nameAttribute.Name;
        return base.GetName(methodInfo, arguments);
    }
}


Using this custom Instance Provider, we can choose any desired name for our factory 
methods and then use an attribute to specify the required binding name. Since the 
Ninject NamedAttribute attribute doesn't apply to methods, we will create our own 
attribute as follows:


public class BindingNameAttribute:Attribute
{
    public BindingNameAttribute(string name)
    {
        this.Name = name;
    }
    public string Name { get; set; }
}







Meeting Real-world Requirements


[ 70 ]


The factory interface can now be defined as follows:


public interface IStatusCollectorFactory
{
    [BindingName("TcpStatusCollector"")]"
    IStatusCollector GreateTcpStatusCollector();


    [BindingName("FileStatusCollector"")]"
    IStatusCollector GreateFileStatusCollector();
}


And the factory type registration should be as follows:


Bind<IStatusCollectorFactory>()
   .ToFactory(() = > new NameAttributeInstanceProvider());


Func
Another way of creating multiple instances of a dependency in a consumer class is 
by using the Func delegate. Whenever Ninject detects Func<IService> rather than 
IService itself, it injects a factory method which can create an implementation 
of IService. It is not as powerful as the factory interface, but it is easier to use 
because there is no need to define an interface:


public class Consumer
{
    private readonly Func<IService> factory;
    public Consumer(Func<IService> factory)
    {
        this.factory = factory;
    } 
    public void Consume()
    {
        // A new instance of service will be created each time
        // the following factory method is called
        var service = this.factory();
        ...
    }
}


Func also supports passing parameters, but since it doesn't provide any information 
about the arguments, using Func in such scenarios is not recommended.







Chapter 3


[ 71 ]


Lazy
As soon as a consumer class is being created, all of its dependencies are instantiated 
and injected, even though they are not being used at that very moment. This can 
slow down the instantiation of the consumer class especially when the dependencies 
are expensive. For instance, a dependency which needs network communication 
while being created can also slow down the activation of its consumer class. Using 
Lazy<IService> instead of IService, defers the instantiation of the dependency to 
the time when it is requested:


public class Consumer
{
    private readonly Lazy<IService> lazyService;
    public Cunsumer(Lazy<IService> service)
    {
        this.lazyService = service;
    }
 
    public void Consume()
    {
     // service will be created once the Value requested.
        var service = lazyService.Value;
        ...
    }
}


Ninject automatically creates and injects a Lazy object, and there is no need to 
register a separate binding for it.


Summary
We studied the most common DI patterns and antipatterns related to Ninject. 
Multibinding means binding a single service type to multiple concrete types and 
has two scenarios of the Plugin model and contextual binding. Providers are a kind 
of factories that are specialized for Ninject to be used for creating new instances of 
resolved types. We can create our own providers by deriving from the Provider<T> 
class. A Factory method is a substitute for Provider, where the activation logic is 
short and simple and instantiation of the service type is not as simple as calling the 
constructor of the implementation. Introducing a dependency as Lazy<dependency> 
informs Ninject to defer instantiation of that dependency whenever that dependency 
is requested.











Ninject in Action
This chapter shows how to set up different types of applications using Ninject. We 
will implement a concrete scenario using a variety of application types to see how to 
set up and use Ninject for injecting the dependencies. By the end of this chapter, the 
user will be able to set up and use Ninject for all kinds of described applications.


Topics covered:


•	 Windows Forms applications
•	 WPF and Silverlight applications
•	 ASP.NET MVC applications
•	 WCF applications
•	 ASP.NET Web Forms applications


Although how Ninject helps us inject dependencies into our application components 
is the same across different types of applications, setting these applications up varies 
according to their architectures. Some new frameworks such as ASP .NET MVC are 
intentionally designed to support DI, while some older frameworks such as ASP 
.NET are not even capable of supporting all DI patterns.


We have already learned most of the features that Ninject offers and this chapter 
helps us to put them together in a project. We will implement several applications, 
each of which includes a data access layer, a domain layer, and a presentation 
layer. The first two layers will be shared among all of them and also will be used in 
combination with a service layer to implement a WCF service application.







Ninject in Action


[ 74 ]


Our objective is to perform Create and Read operations out of CRUD (Create, 
Read, Update, and Delete) operations across the Customers table of the Northwind 
database, which is the sample database for all editions of Microsoft SQL Server, and 
should already exist on your machine if you have any version of SQL Server installed. 
Although we will implement a SQL data access as our data access layer, the entire 
application is independent from a concrete data access, and uses an abstraction as its 
repository; but our Model conforms to the Customers table with selective fields.


The source code of this sample is available for 
download on the publisher's website.


Let's start with the domain layer, which will be shared among all of the applications 
that we will create. Create a new class library in Visual Studio and name it 
Northwind.Core. It will contain our domain models and logic. Add a new class 
and name it Customer. To keep things simple, we select only a few fields of the 
Northwind Customer entity. So, create a class that has string properties for ID, 
CompanyName, City, PostalCode, and Phone.


Then, we will define the abstraction of our Customer repository. For this sample 
project, we only define those operations that we need (create and read), but we can 
add other operations to it later. Create the following interface in Northwind.Core:


public interface ICustomerRepository
{
    IEnumerable<Customer> GetAll();
    Customer Get(string customerID);
    void Add(Customer customer);
}


The rest of the application will use this interface as the repository abstraction for the 
Customer entity.


Now, add another class library project and name it Northwind.SqlDataAccess. 
As far as we implement ICustomerRepository, it doesn't matter to the rest of 
the application how the data access is implemented. We use Entity Framework as 
our data access solution. So, let's add a new ADO.NET Entity Data Model to the 
project, and name it NorthwindModel. For this sample, we only need the Customers 
table. We can also remove the fields of this table that we don't need. Customer_ID, 
Company_Name, City, Postal_Code, and Phone are all of the fields that we need.







Chapter 4


[ 75 ]


Then add a class named SqlCustomerRepository which should implement 
ICustomerRepository:


public class SqlCustomerRepository : ICustomerRepository
{
   // The Mapper will be discussed in a moment
   private readonly Mapper mapper;
   private readonly NorthwindEntities context;


    public void Add(Core.Customer domainCustomer)
    {    }


    IEnumerable<Core.Customer> ICustomerRepository.GetAll()
    {    }


    public Core.Customer Get(string customerID)
    {    }
}


The following is the implementation of the Add method:


public void Add(Core.Customer domainCustomer)
{
   // Converts domainCustomer to customer
    var customer = mapper.Map(domainCustomer);
    context.Customers.AddObject(customer);
    context.SaveChanges();
}


Please note that the type of the Customer entity generated by Entity Framework is 
different from our domain model Customer. Thus, we need a mapper to convert 
these two types to each other. We have had two dependencies for this class so far: 
a mapper and the entity container context. Let's see how we should declare the 
constructor of the SqlCustomerRepository class:


public SqlCustomerRepository(Mapper mapper, NorthwindEntities context)
{ 
    this.mapper = mapper;
    this.context = context;
}







Ninject in Action


[ 76 ]


The next step is to add the Read methods:


IEnumerable<Core.Customer> ICustomerRepository.GetAll()
{
    return mapper.Map(context.Customers);
}


public Core.Customer Get(string customerID)
{
    var customer = context.Customers
        .SingleOrDefault(c => c.Customer_ID == customerID);


    return mapper.Map(customer);
}


Again, we use the mapper to convert the auto generated Customer entity to our 
domain Customer mode.


There are third-party libraries that automate the mapping logic. 
AutoMapper and ValueInjecter are two examples.


The following is our implementation of the Mapper class:


public class Mapper
{
    public Core.Customer Map(Customer customer)
    {
        if (customer == null)
        {
            return null;
        }
        return new Core.Customer
                    {
                        ID = customer.Customer_ID,
                        City = customer.City,
                        CompanyName = customer.Company_Name,
                        Phone = customer.Phone,
                        PostalCode = customer.Postal_Code
                    };
    }


    public Customer Map(Core.Customer customer)
    {
        if (customer==null)







Chapter 4


[ 77 ]


        {
            return null;
        }
        return new Customer
        {
            Customer_ID = customer.ID,
            City = customer.City,
            Company_Name = customer.CompanyName,
            Phone = customer.Phone,
            Postal_Code = customer.PostalCode
        };
    }


    public IEnumerable<Core.Customer> Map(IEnumerable<Customer> 
customers)
    {
        return customers.Select(Map);
    }
}


The logic of the Mapper class is pretty simple. It maps null objects to null and non-
null objects to their corresponding entity. Note that in the last Map method, the LINQ 
Select method is using the first Map method as a method group, and we don't need to 
use a lambda expression to call it. It is equivalent to the following expression:


return customers.Select(c => Map(c));


Having prepared our domain and data access layers, we are now ready to move ahead 
to implement our first presentation scenario, which is a Windows Forms application.


Windows Forms applications
Windows Forms is one of the most straightforward application types to implement 
DI. Just like Console application, it does not need special Ninject configuration. The 
Main method in the Program class is where we can use as a Composition Root (refer 
to Dependency Injection In .NET by Mark Seemann, published by Manning Publication 
Co.), and the framework components such as Form classes do not require to have 
a parameterless constructor, which makes implementation of constructor injection 
easily possible.


Add a new Windows Forms application to the Northwind solution, and name it 
Northwind.Winforms.







Ninject in Action


[ 78 ]


Add references to the Northwind.Core project, Ninject.Extensions.Conventions 
and Ninject.Extensions.Factory. Note that the extensions implicitly add a 
reference to Ninject if you are using NuGet. Otherwise, you need to add it manually.


We continue with the MainForm, which is going to have a DataGrid to show the list 
of customers.


Add a DataGrid and bind it to a BindingSource control. You can also add the 
Customer class as a data source to the project. In the source code of the MainForm, 
either override the OnLoad method or add a handler for Load event:


protected override void OnLoad(EventArgs e)
{
    base.OnLoad(e);
    LoadCustomers();
}


private void LoadCustomers()
{
    customerBindingSource.DataSource = repository.GetAll();
}


We introduced the LoadCustomers method to populate customers, because we will 
need to call it again later in this form. In this method, we need an instance of our 
Customer repository. This introduces the first dependency of the MainForm:


private readonly ICustomerRepository repository;
public MainForm(ICustomerRepository repository)
{   
    this.repository = repository;
    InitializeComponent();
}


Then, we need to add another Form for creating a new customer. Let's call it 
CustomerForm.


We need to have a BindingSource bound to the Customer project data source. The 
Text property of all TextBox controls should be bound to their corresponding fields 
of the Customer model. The easiest way is to drag the data source and drop it into 
the form in details mode.







Chapter 4


[ 79 ]


The following code shows the code behind of CustomerForm:


public partial class CustomerForm : Form
{
    private readonly ICustomerRepository repository;
    public CustomerForm(ICustomerRepository repository)
    {   
        this.repository = repository;
        InitializeComponent();
        customerBindingSource.Add(new Customer());
    }


    private void saveButton_Click(object sender, EventArgs e)
    {
        customerBindingSource.EndEdit();
        var customer = customerBindingSource.Current as Customer;
        repository.Add(customer);
    }
}


ICustomerRepository is the only dependency of this class, which is introduced in 
the constructor and will be injected later. Note that the Customer object is created 
using its constructor rather than injected. The reason is that Customer is an entity, 
and entities should not be created by an IoC container. It is also the same for a Data 
Transfer Object (DTO).


Now that we are done with CustomerForm, we need to show it from MainForm in 
the Click event handler of saveButton. An instance of CustomerForm should not be 
achieved in any of the following ways:


•	 Calling new CustomerForm() because this way we will have to resolve its 
dependencies ourselves rather than Ninject


•	 Calling kernel.Get<CustomerForm>() because we will need to make our 
class dependent on Kernel


•	 Introducing a new dependency to CustomerForm in constructor, because  
this way we will receive only one instance of CustomerForm, while after 
closing that instance, we will need another one for subsequent clicks on the 
Save button







Ninject in Action


[ 80 ]


So what are we going to do? Here is where the factories come into play. Thanks to a 
Ninject built-in Factory feature, we simply need to declare the following interface:


public interface IFormFactory
{
    T Create<T>() where T : Form;
}


If we need to provide more arguments than those Ninject can resolve to the 
requested form, we can add more overloads for the previous generic Create  
method to our factory providing those parameters:


private void saveButton_Click(object sender, EventArgs e)
{
    var customerForm = formFactory.Create<CustomerForm>();
    if (customerForm.ShowDialog(this) == DialogResult.OK)
    {
        LoadCustomers();
    }
}


This introduces the second dependency of MainForm:


private readonly ICustomerRepository repository;
private readonly IFormFactory formFactory;


public MainForm(ICustomerRepository repository, IFormFactory 
formFactory)
{   
    this.repository = repository;
    this.formFactory = formFactory;
    InitializeComponent();
}


The next step is to define our service registrations. The Composition Root for a 
Windows Forms application is the Main method in the Program class. So, add the 
following lines to the Main method:


using (var kernel = new StandardKernel())
{
    kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces());


    kernel.Bind(x => x.FromThisAssembly()
                        .SelectAllInterfaces()







Chapter 4


[ 81 ]


                        .EndingWith("Factory")
                        .BindToFactory()
                        .Configure(c => c.InSingletonScope()));


    var mainForm = kernel.Get<MainForm>();
    Application.Run(mainForm);
}


The first convention rule selects all of the assemblies starting with "Northwind" and 
binds their types to their base interfaces. This way, we are avoiding unwanted or 
possibly duplicated bindings for other assemblies, for example, Ninject assemblies.


The second rule registers the interfaces whose names end with "Factory" as 
Singleton factories.


WPF and Silverlight applications
Although Silverlight is a lighter version of Windows Presentation Foundation 
(WPF), these two frameworks are so similar that they can be treated the same way 
in terms of DI. Both frameworks offer a single startup location for the application in 
their App.xaml file, which can be used as the Composition Root. The view engine for 
both frameworks is based on Extensible Application Markup Language (XAML) 
and they both support Model-View-ViewModel (MVVM) architecture.


In this section we will implement the Northwind scenario using MVVM pattern 
which can be applied to either WPF or a Silverlight application. In MVVM, the 
application consists of the following key parts:


•	 Model: The domain Models that represent business entities, and we have 
already created them in our domain layer.


•	 View: A XAML UI file which is usually a Window or a User Control with 
minimal or no code behind.


•	 ViewModel: As the name suggests, it is a Model for the View. It contains the 
presentation logic and exposes the application outputs from Models to the 
View or gets inputs from the View via property binding.







Ninject in Action


[ 82 ]


In this application, we are going to have a MainView to populate the list of customers 
and a CustomerView which will be shown when the Save button on MainView is 
clicked. The Views look like those we created for our Windows Forms application 
in the previous section. Each View is going to have a View Model, which will be 
assigned to its DataContext property. Figure 4.1 shows the relation between our 
Views and their corresponding ViewModels:


Figure 4.1: The relation between our Views and their corresponding ViewModels


Let's start by implementing MainViewModel. In MVVM, the ViewModels are  
totally independent from their Views. Any data which is going to be presented in  
the View should be exposed as a property. The following property exposes the list  
of customers:


public IEnumerable<Customer> Customers
{
    get { return repository.GetAll(); }
}


This property suggests that the first dependency of the MainViewModel class should 
be our repository. As soon as we get to know our dependencies, we should declare 
them, as shown in the following code:


private readonly ICustomerRepository repository;







Chapter 4


[ 83 ]


public MainViewModel(ICustomerRepository repository)
{   
    this.repository = repository;
}


The MainWindow will then have a DataGrid control or any other proper control to 
present the data exposed by this property:


<DataGrid IsReadOnly="True" ItemsSource="{Binding Customers}" />


Now we create the CustomerViewModel class which is responsible for adding new 
customers to the repository, as shown in the following snippet. It exposes a single 
Customer Model via a property which can later be modified using a View.


public Customer Customer
{
    get
    {
        return customer;
    }
}


The customer field is instantiated with a Customer object in constructor.  
The following XAML code shows how the CustomerWindow controls are bound to 
the properties of the Customer object, which is exposed by the Customer property:


<StackPanel DataContext="{Binding Customer}">
  <Label >Customer ID</Label>
  <TextBox Text="{Binding ID}"/>
  <Label>Company Name</Label>
  <TextBox Text="{Binding CompanyName}"/>
  <Label >City</Label>
  <TextBox Text="{Binding City}"/>
  <Label>Postal Code</Label>
  <TextBox Text="{Binding PostalCode}"/>
  <Label>Phone</Label>
  <TextBox Text="{Binding Phone}"/>
</StackPanel>


The next step is to add the modified customer to the repository and close the 
CustomerWindow as soon as the user clicks on the Save button. A ViewModel is  
not supposed to see its View and instead, the View observes its ViewModel to  
change any UI state. Hence, in order to close the CustomerWindow, we cannot call  
its Close method, because we have no reference to the View. 







Ninject in Action


[ 84 ]


Instead, we can have a DialogResult property in the ViewModel which can be set to 
notify the View to be closed:


public void Save(object paramer)
{
    repository.Add(Customer);
    DialogResult = true;
}


public bool? DialogResult
{
    get
    {
        return dialogResult;
    }
    set
    {
        dialogResult = value;
        OnPropertyChanged("DialogResult");
    }
}


The OnPropertyChanged method is implemented in the abstract ViewModel class 
which is inherited by CustomerViewModel. It is used to notify the View about the 
changes of a property, so that View reacts to those changes.


The DialogResult property of a Window is not a Dependency Property and 
hence, cannot accept a binding. To work around this problem, we can create a 
WindowHelper class which offers a DialogResult Attached Property, and can be 
attached to a Window like the following:


<Window x:Class="Northwind.Wpf.Views.CustomerWindow"        
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:Infrastructure="clr-namespace:Northwind.Wpf.Infrastructure" 
Infrastructure:WindowHelper.DialogResult=»{Binding DialogResult}»>


Note that a Window's DialogResult property is assignable only when the Window  
is shown as a dialog using its ShowDialog method. In normal circumstances, you  
can set the IsClosed attached property of WindowHelper which calls the Close 
method of Window rather than setting its DialogResult property, as shown in the 
following code. 







Chapter 4


[ 85 ]


Dependency properties, Attached properties, and how to implement a 
WindowHelper is beyond the scope of this book; however, you can view the details in 
the downloaded samples of this book.


public static readonly DependencyProperty DialogResultProperty =
    DependencyProperty.RegisterAttached(
    "DialogResult", typeof(bool?), typeof(WindowHelper),
    new UIPropertyMetadata(null, OnPropertyChanged));


private static void OnPropertyChanged(DependencyObject d, 
DependencyPropertyChangedEventArgs e)
{
    var view = d as IView;
    if (view == null)
    {
        throw new NotSupportedException("Only IView type is 
supported.");
    }
    view.DialogResult = (bool?)e.NewValue;
}


Now we need to call the Save method when the user clicks the Save button.  
In MVVM, we use commands to let a View call ViewModel's methods.  
The following is the SaveCommand property in CustomerViewModel to be  
exposed to the CustomerWindow:


public ICommand SaveCommand
{
    get
    {
        return saveCommand;
    }
}


The following XAML code shows the Save button, which is bound to the 
SaveCommand:


<Button Command="{Binding SaveCommand}" >Save</Button>







Ninject in Action


[ 86 ]


We have used ICommand which is an interface of the .NET Framework, and is 
recognized by WPF components. Now we should implement ICommand. In order 
to make our concrete command independent from our domain logic, we use an 
ActionCommand, which is a simple version of the RelayCommand pattern:


public class ActionCommand : ICommand
{
    private readonly Action<object> action;
    private readonly Func<object, bool> canExecute = p => true;


    public ActionCommand(Action<object> action, 
                       Func<object, bool> canExecute = null)
    {
        if (action == null)
        {
            throw new ArgumentNullException("action");
        }
        this.action = action;


        if (canExecute != null)
        {
            this.canExecute = canExecute;
        }
    }


    public void Execute(object parameter)
    {
        action(parameter);
    }


    public bool CanExecute(object parameter)
    {
        return canExecute(parameter);
    }


    public event EventHandler CanExecuteChanged;
}


In order to create an instance of ActionCommand and assign it to the SaveCommand, 
we need an abstract factory. Ninject can create this factory on the fly if we define  
its interface:


public interface ICommandFactory
{
    ICommand CreateCommand(Action<object> action, 







Chapter 4


[ 87 ]


                           Func<object, bool> canExecute = null);
}


Using this factory in a ViewModel class, we can create as many Command objects as 
we need. Now that we have identified the dependencies of CustomerViewModel, let's 
have a look at its constructor:


public CustomerViewModel(ICustomerRepository repository, 
                         ICommandFactory commandFactory)
{   
    this.repository = repository;
    this.saveCommand = commandFactory.CreateCommand(Save);
    this.customer = new Customer();
}


Now that we have created CustomerViewModel, we can go back to the MainViewModel 
class and implement the logic of showing the CustomerWindow method:


private void CreateCustomer(object param)
{
    var customerView = viewFactory.CreateView<ICustomerView>();
    if (customerView.ShowDialog() == true)
    {
        // Refresh the list
        OnPropertyChanged("Customers");
    }
}


The MainViewModel doesn't have any idea about CustomerWindow and it doesn't 
need to. It just interacts with ICustomerView which provides an interface containing 
only those methods that a ViewModel may need to call. This interface can then be 
implemented with any View class. The View does not even have to be an XAML 
window. The following code shows the IView interface which is inherited by 
ICustomerView:


public interface IView
{
    bool? ShowDialog();
    void Show();
    void Close();
    bool? DialogResult { get; set; }
}







Ninject in Action


[ 88 ]


The MainViewModel doesn't even care how the concrete Customer View will 
implement Show or Close. It may be a TabPage in a TabControl, a simulated popup, 
or a Mock object.


In order to create an instance of the concrete View, we need a view factory:


public interface IViewFactory
{
    T CreateView<T>() where T : IView;
    T CreateView<T>(ViewModel viewModel) where T : IView;
}


The constructor of MainViewModel introduces all of its three dependencies as the 
following code shows:


public MainViewModel(ICustomerRepository repository, 
                     IViewFactory viewFactory, 
                     ICommandFactory commandFactory)
{   
    this.repository = repository;
    this.viewFactory = viewFactory;
    createCustomerCommand =   commandFactory.
CreateCommand(CreateCustomer);


}


Now that we have introduced all of our dependencies, we need to compose the 
application. The starting point of a WPF and Silverlight application is the App class 
which is defined within the App.xaml file. We need to remove the MainWindow 
from StartupUri of App.xaml and either handle the Startup event or override the 
OnStartup method of the App class to define the application's composition. It should 
include the following code block:


using (var kernel = new StandardKernel())
{
    kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());


    kernel.Bind(x => x.FromThisAssembly()
                    .SelectAllInterfaces()
                    .EndingWith("Factory")
                    .BindToFactory()
                    .Configure(c=>c.InSingletonScope()));


    var mainWindow = kernel.Get<IMainView>();
    mainWindow.Show();
}







Chapter 4


[ 89 ]


The convention rules are the same as our WinForms application and finally the  
pre-existing code, which shows that the MainWindow is replaced with our code which  
calls the Show method of the concrete implementation of IMainView.


ASP.NET MVC applications
Using Ninject in Windows client applications (WPF and Windows Forms) was not 
much different from using it in a Console application. We didn't need any certain 
configuration to set up Ninject in such applications, because in Windows client 
applications the developer has the control of instantiating UI components (Forms 
or Windows), and can easily delegate this control to Ninject. In Web applications, 
however, it is not the same, because the framework is responsible of instantiating 
the UI. So, we need to somehow tell the framework to delegate that responsibility 
to Ninject. Fortunately, asking the ASP.NET .MVC framework to do so is easily 
possible, but it is not the same for Web Forms applications.


Thanks to Ninject's MVC extension, we don't even need to bother setting up MVC 
framework to support DI. Instead, Ninject's MVC extension will do it for us. In this 
section, we will implement the Northwind customers scenario using Ninject in an 
ASP.NET MVC 3 application. Ninject MVC extension also supports other versions  
of the MVC framework.


Add a new ASP .NET MVC3 Web application to the Northwind solution with 
references to the Northwind.Core project and Ninject Conventions extension.


We should also reference Ninject MVC extension. The easiest way is to install the 
Ninject.Mvc3 package using NuGet. Keep in mind that although the name of the 
package is Ninject.Mvc3, it is upward compatible with newer versions of the MVC 
framework. Alternatively, we could download the Ninject.Web.Mvc binary from 
GitHub and reference it from our project. In this case, we also needed to reference 
the Ninject and Ninject.Web.Common libraries. These libraries are referenced 
automatically if we install the Ninject.Mvc3 package using NuGet. NuGet also adds 
the App_Start folder containing a file named NinjectWebCommon.cs to the project. 
The NinjectWebCommon class contains a Start() method that will be the starting 
point of the application. It sets up everything to hook Ninject to MVC framework. 
So, once we have installed Ninject MVC extension using NuGet, we do not need 
to do anything else to set up our application, and everything will be already there 
for us. This is because NuGet allows packages to add files to the project as a part 
of their installation process. The NinjectWebCommon class has a method named 
CreateKernel which can be used as the Composition Root to register our services. 
We will talk more about this class in the next section.







Ninject in Action


[ 90 ]


If we reference Ninject libraries manually using separately downloaded binary files, 
we should make the following changes to the MvcApplication class located under 
the Global.asax file:


1.	 The MvcApplication class should derive from the 
NinjectHttpApplication class, rather than System.Web.HttpApplication.


2.	 Instead of having the Application_Start method as the starting point, we 
should override the OnApplicationStarted method, and anything within 
Application_Start should go to OnApplicationStarted.


3.	 We should override CreateKernel and use it for service registration.


The following code shows the CreateKernel method:


protected override IKernel CreateKernel()
{
    var kernel = new StandardKernel();
    kernel.Load(new ServiceRegistration());
    return kernel;
}


Even if we use NuGet to set up our project, we can delete the App_Start folder,  
and use Global.asax as described previously. In this case, we can remove references 
to the WebActivator and Microsoft.Web.Infrastructure libraries that NuGet  
has created. It is up to you which approach to use, as they do exactly the same thing 
in two different ways. The first one is easier to use and does not need any extra 
efforts to set up the application; while the second one uses the existing Global.asax 
file as the application startup point and doesn't require additional files or libraries  
to be referenced. In this example, we use the Global.asax file as starting point.  
In the next section, we will use the App_Start and NinjectWebCommon classes  
which NuGet creates.


Let's start implementing the presentation of customers list in our application. 
Open the HomeController class and add a constructor which introduces our 
ICustomerRepository interface as its parameter:


private readonly ICustomerRepository repository;


public HomeController(ICustomerRepository repository)
{   
    this.repository = repository;
}







Chapter 4


[ 91 ]


The next step is to modify the Index action method as follows:


public ActionResult Index()
{
    var customers = repository.GetAll();
    return View(customers);
}


It uses the ICustomerRepository interface to populate customers. Please note that 
we don't need to create a new Model for customer, and the one that we have already 
created in our domain layer is being used here. Then, delete the existing Index.
cshtml View and add a new one with List scaffold template and our Customer 
domain model as the Model class.


Now, add the Create action methods as follows:


public ActionResult Create()
{
    return View();
}


[HttpPost]
public ActionResult Create(Customer customer)
{
    if (ModelState.IsValid)
    {
        repository.Add(customer);
        return RedirectToAction("Index");
    }
    return View();
}


The first one is called when the hyperlink Create New is clicked using HTTP GET 
method, and the second one is called when the Create View is submitted using 
HTTP POST method. The created customer Model is passed to the Create method 
and can be added to the repository. Checking the ModelState.IsValid property is 
for server-side validation. We can now add a Create View for this action with Core.
Customer as Model class and the Create scaffold template.







Ninject in Action


[ 92 ]


Validator injection
Now, we need to add some validation rules to our Customer Model class. MVC 
framework supports different kinds of validation including annotation-based 
validation in which we use validation attributes on the properties of the Model to 
define the validation rules:


public class Customer
{
    [Required]
    public string ID { get; set; }
    [Required]
    public string CompanyName { get; set; }
    public string City { get; set; }
    public string PostalCode { get; set; }
    [StringLength(10)]
    public string Phone { get; set; }
}


The validation attributes are not part of MVC library, and this makes it possible to 
apply them to our Customer Model within our domain layer. This way, we can share 
these validation rules among other UI frameworks as well. We just need to reference 
the System.ComponentModel.DataAnnotations library in our domain project. MVC 
framework automatically validates the Model based on the provided attributes. 
But these attributes are limited to basic validation rules. What if we need to check 
whether the provided ID for our customer is not duplicated? In such scenarios, we 
need to create our custom validation attributes:


public class UniqueCustomerIdAttribute : ValidationAttribute
{
    [Inject]
    public ICustomerValidator Validator { get; set; }


    public override bool IsValid(object value)
    {
        if (Validator == null)
        {
            throw new Exception("Validator is not specified.");
        }
        if (string.IsNullOrEmpty(value as string))
        {
            return false;
        }
        return Validator.ValidateUniqueness(value as string);
    }
}







Chapter 4


[ 93 ]


By deriving from ValidationAttribute and overriding its IsValid method, we 
can define a custom validation attribute. This validator uses an object of the type 
ICustomerValidator to validate the given value, which is a customer ID across 
the repository to check whether it is unique or duplicated. The following is the 
implementation of ICustomerValidator:


public class CustomerValidator : ICustomerValidator
{
    private readonly ICustomerRepository repository;


    public CustomerValidator(ICustomerRepository repository)
    {   
        this.repository = repository;
    }


    public bool ValidateUniqueness(string customerID)
    {
        return repository.Get(customerID) == null;
    }
}


Validation is successful, provided the repository cannot find any existing customer 
with the given customer ID.


You may have noticed that in the UniqueCustomerIdAttribute class, we didn't 
introduce the ICustomerValidator interface as a dependency in the constructor. 
The reason is that it is not possible to apply an attribute which requires constructor 
parameters without providing its arguments. That's why we used the Property 
Injection pattern, rather than Constructor Injection. Although this attribute should 
be instantiated by MVC framework, Ninject can inject the dependency before the 
IsValid method is called. Now, you may be wondering that applying the [Inject] 
attribute in our domain layer will make it dependent on Ninject. Well, it didn't, 
because we didn't use the Ninject version of the [Inject] attribute. Instead, we 
created another InjectAttribute class in our Core library. We discussed about how 
to set up Ninject to use another attribute instead of its internal [Inject] attribute 
in Chapter 3, Meeting real-world Requirements. This way, we don't have to have a 
reference to the Ninject library, and can even replace Ninject with other DI containers 
without needing to touch the domain layer.


We can now add the UniqueCustomerIdAttribute attribute to the validation rules 
of our Customer Model:


[Required, UniqueCustomerId]
public string ID { get; set; }







Ninject in Action


[ 94 ]


Filter injection
Filters are implementations of the IActionFilter, IResultFilter, 
IExceptionFilter, or IAuthorizationFilter interfaces that make it possible to 
perform special operations while invoking an action method. ASP.NET MVC allows 
us to apply filters in two ways, both of which are supported by Ninject:


•	 Applying a filter attribute to the Controller or an Action method.  
This approach has been supported by MVC framework since its first  
version and doesn't fully support DI.


•	 Applying filters without attributes using filter providers which is introduced 
in MVC 3 and supports all DI patterns.


In the first method, the filter class derives from ActionFilterAttribute and the 
created filter attribute will be applied to a Controller or one of its action methods. 
Like other attributes, a filter attribute cannot be applied if it does not have a default 
constructor, so we cannot use Constructor Injection in filter attributes. However, 
if we use Property Injection using the [Inject] attribute, the dependencies get 
injected by Ninject without any special configuration. The following example shows 
how to define an action filter attribute which can pass action information to a 
performance monitoring service:


public class PerformanceFilterAttribute : ActionFilterAttribute
{
    [Inject]
    public IPerformanceMonitoringService PerformanceMonitor 
    { get; set; }


    public void OnActionExecuting(ActionExecutingContext 
filterContext)
    {
        PerformanceMonitor.BeginMonitor(filterContext);
    }


    public void OnActionExecuted(ActionExecutedContext filterContext)
    {
        PerformanceMonitor.EndMonitor(filterContext);
    }
} 


The implementation of IPerformanceMonitoringService will be injected by 
Ninject into the property PerformanceMonitor.







Chapter 4


[ 95 ]


MVC3 or later versions of MVC, however, support a new way of applying filters 
which is DI compatible and allows all DI patterns including Construction Injection. 
Thus, the previous approach is not recommended in MVC3+.


The following example demonstrates how to define and apply LogFilter to  
our actions, which can log some tracking information about the called or being  
called action methods. The filter uses the ILog interface of the Log4Net library  
as a dependency:


public class LogFilter : IActionFilter
{
    private readonly ILog log;
    private readonly Level logLevel;


    public LogFilter(ILog log, string logLevel)
    {
        this.log = log;
        this.logLevel = log.Logger.Repository.LevelMap[logLevel];
    }


    public void OnActionExecuting(ActionExecutingContext 
filterContext)
    {
        var message = string.Format(
CultureInfo.InvariantCulture,"Executing action {0}.{1}",            
filterContext.ActionDescriptor.ControllerDescriptor.ControllerName, 
filterContext.ActionDescriptor.ActionName);
       this.log.Logger.Log(typeof(LogFilter), this.logLevel, message, 
null);    }


    public void OnActionExecuted(ActionExecutedContext filterContext)
    {
        var message = string.Format(
  CultureInfo.InvariantCulture, "Executed action {0}.{1}",
filterContext.ActionDescriptor.ControllerDescriptor.ControllerName, 
filterContext.ActionDescriptor.ActionName);
 this.log.Logger.Log(typeof(LogFilter), 
 this.logLevel, message, null);
    }
} 







Ninject in Action


[ 96 ]


The LogFilter class uses the provided filterContext argument to determine the 
name of the Action method and its enclosing Controller. It then uses the injected 
implementation of ILog to log the tracking information. This class introduces two 
dependencies, one of which is the ILog interface and the other one is the log level 
under which the messages should be logged.


In order to tell MVC to use Ninject to resolve a filter, we need to register the filter 
using the BindFilter<TFilter> method of Kernel:


Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
     .WithConstructorArgument("logLevel", ("Info");


The first parameter defines the filter scope whose type is System.Web.Mvc.
FilterScope and the second one is a number defining the order of the filter. This 
information is required by MVC to instantiate and apply filters. Ninject collects this 
information and asks MVC on our behalf to create an instance of the given filter type 
and apply it to the given scope. In the previous example, LogFilter will be resolved 
using Ninject with "Info" as an argument for the logLevel parameter, and will be 
applied to all of the Action methods.


The ILog log parameter will be resolved based on how we register ILog. If you have 
used Log4Net before, you will remember that it can associate each logger to the type 
of class for which the logger is used:


public class MyClass
{
    private static readonly ILog log = 
                       LogManager.GetLogger(typeof(MyApp));
}


This way, the logs can later be filtered based on their associated types.


In order to provide the required type for our logger, we bind it to a method rather 
than a concrete service. This way, we can use the context object to determine the 
type of object requiring the log:


Bind<ILog>().ToMethod(GetLogger);


The following is the code for the GetLogger method:


private static ILog GetLogger(IContext ctx)
{
    var filterContext = ctx.Request.ParentRequest.Parameters
                    .OfType<FilterContextParameter>() 
                    .SingleOrDefault();
    return LogManager.GetLogger(filterContext == null ?
        ctx.Request.Target.Member.DeclaringType :







Chapter 4


[ 97 ]


        filterContext.ActionDescriptor.ControllerDescriptor.
ControllerType);
}


In the previous code, the context.Request is the request for resolving ILog 
and ParentRequest is the request for resolving LogFilter. When a filter class is 
registered using BindFilter, Ninject provides the request with a parameter of type 
FilterContextParameter, which contains information about the context of the 
object to which the filter is being applied, and we can then obtain the type of the 
Controller class from it. Otherwise, this parameter is not provided, which means the 
logger is not requested by a filter class, in which case we just use the type of the class 
requiring the logger.


Conditional filtering (When)
Now what if we are not going to apply the filter to all of the Controllers or the action 
methods? Ninject provides three groups of the WhenXXX methods to determine in 
which conditions to apply the filter:


•	 WhenControllerType: This method applies the filter to the specified 
Controller types only.


•	 WhenControllerHas: This method applies the filter to those Controllers with 
the specified attribute type


•	 WhenActionMethodHas: This method applies the filter to those Action 
methods with the specified attribute type


Apart from the mentioned three groups, Ninject offers a generic When method, which 
can be used to define any custom conditions which cannot be applied using the 
previous methods.


The following code shows how to apply LogFilter to those action methods which 
have LogAttribute, given that the LogAttribute class is a simple class deriving 
from the Attribute class:


Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
 .WhenActionMethodHas<LogAttribute>()
 .WithConstructorArgument("logLevel", ("Info");


This is another example that shows how to apply this filter to all of the actions of the 
HomeController class:


Kernel.BindFilter<LogFilter>(FilterScope.Controller, 0)
 .WhenControllerType <HomeController>()
 .WithConstructorArgument("logLevel", ("Info");







Ninject in Action


[ 98 ]


Contextual arguments (With)
In the previous examples, we have always used a constant "Info" argument to be 
passed to the logLevel parameter. Apart from the standard WithXXX helpers, which 
can be used on normal bindings, Ninject provides the following WithXXX methods 
especially for filter binding:


•	 WithConstructorArgumentFromActionAttribute: It allows to get  
the constructor argument from the attribute which is applied to the  
action method


•	 WithConstructorArgumentFromControllerAttribute: It allows to get  
the constructor argument from the attribute which is applied to the 
Controller class


•	 WithPropertyValueFromActionAttribute: In case of Property Injection, it 
allows to set the property using a value from the attribute which is applied to 
the action method


•	 WithPropertyValueFromControllerAttribute: In case of Property 
Injection, it allows to set the property using a value from the attribute which 
is applied to the Controller class


In the following code, we get the log level from the LogAttribute class rather than 
always passing a constant string to the logLevel parameter:


Kernel.BindFilter<LogFilter>(FilterScope.Action, 0)
    .WhenActionMethodHas<LogAttribute>()
    .WithConstructorArgumentFromActionAttribute<LogAttribute>(
        "logLevel",
        attribute => attribute.LogLevel);


The previous code requires the LogAttribute class to have the LogLevel property:


public class LogAttribute : Attribute
{
    public string LogLevel { get; set; }
}


WCF applications
In this section, we will implement the Northwind customers scenario using 
Windows Communication Foundation (WCF). WCF is a highly customizable and 
extensible framework, and it is possible to configure it to use Ninject service host 
factories to enable hosting of injectable services. Ninject WCF extensions include all 
the necessary components.







Chapter 4


[ 99 ]


Now, add a new WCF service application to the Northwind solution, and 
reference Northwind.Core project. We also need to add reference to the Ninject.
Extensions.WCF, Ninject.Web.Common, and Ninject libraries. We can do it 
either via NuGet, or we can download the binaries from the Ninject page on 
GitHub. Adding binary references manually requires some manipulations of the 
Global.asax file in our application. We talked about this approach in the last 
section. However, adding a reference to Ninject.Extensions.WCF via NuGet 
will also add other references to the required Ninject packages, and will create the 
NinjectWebCommon class in the App_Start directory of the project. Although we can 
use either approach, since we have used the first method in previous section, we are 
going to demonstrate the latter in this section. The following is the content of the 
NinjectWebCommon class:


public static class NinjectWebCommon
{
    private static readonly Bootstrapper bootstrapper = new 
Bootstrapper();
    public static void Start()
    {
        DynamicModuleUtility
            .RegisterModule(typeof(OnePerRequestHttpModule));
        DynamicModuleUtility.RegisterModule(typeof(NinjectHttpModu
le));
        bootstrapper.Initialize(CreateKernel);
    }


    public static void Stop()
    {
        bootstrapper.ShutDown();
    }


    private static IKernel CreateKernel()
    {
        var kernel = new StandardKernel();
        kernel.Bind<Func<IKernel>>().ToMethod(ctx => 
               () => new Bootstrapper().Kernel);
        kernel.Bind<IHttpModule>()
            .To<HttpApplicationInitializationHttpModule>();


        RegisterServices(kernel); 
        return kernel;
    }


    private static void RegisterServices(IKernel kernel)
    {        
    // Here is our Composition Root
    }
}







Ninject in Action


[ 100 ]


Having the NinjectWebCommon class in the App_Start directory of our application 
causes the application to be started from the Start method of this class. The Start 
method registers the OnePerRequestHttpModule and NinjectHttpModule modules 
which are needed for Ninject to take care of web applications, and it initializes the 
Ninject bootstrapper using the kernel created in the CreateKernel method, which 
in turn calls the RegisterServices method. This is where we can either register our 
service types or load our service registration module.


Let's start by creating our CustomerService contract. Add a new WCF Service 
class and name it CustomerService. Then open the ICustomerService interface 
and add the following operations:


[ServiceContract]
public interface ICustomerService
{
    [OperationContract]
    IEnumerable<CustomerContract> GetAllCustomers();


    [OperationContract]
    void AddCustomer(CustomerContract customer);
}


We need a method for getting the list of customers, and another one to add a new 
customer to the repository. Since the return type of GetAllCustomers is not primitive, 
we need to define a data contract as well:


[DataContract]
public class CustomerContract
{
    [DataMember]
    public string ID { get; set; }
    [DataMember]
    public string CompanyName { get; set; }
    [DataMember]
    public string City { get; set; }
    [DataMember]
    public string PostalCode { get; set; }
    [DataMember]
    public string Phone { get; set; }
}


Now, we implement the CustomerService class:


public class CustomerService : ICustomerService
{
    private readonly ICustomerRepository repository;







Chapter 4


[ 101 ]


    private readonly IMapper mapper;


    public CustomerService(ICustomerRepository repository, IMapper 
mapper)
    {           
        this.repository = repository;
        this.mapper = mapper;
    }


    public IEnumerable<CustomerContract> GetAllCustomers()
    {
        var customers = repository.GetAll();
        return mapper.Map(customers);
    }


    public void AddCustomer(CustomerContract customer)
    {
        repository.Add(mapper.Map(customer));
    }
}


Apart from ICustomerRepository, which is the first dependency, it needs a mapper 
class to map the domain Customer to the contract Customer:


public interface IMapper
{
    Core.Customer Map(CustomerContract customer);
    CustomerContract Map(Core.Customer customer);
    IEnumerable<CustomerContract> Map(IEnumerable<Core.Customer> 
customers);
}


The CustomerService class has two dependencies, which are introduced in its 
constructor. But in order for WCF to instantiate such services which lack the default 
constructor, we should tell it to use Ninject's service host factories rather than 
the standard ones. To do so, right-click the CustomerService.svc file, and from 
the pop-up menu, select View Markup. In the markup editor of the service, add 
Ninject.Extensions.Wcf.NinjectServiceHostFactory as the factory of the 
corresponding ServiceHost:


<%@ ServiceHost Language="C#" Debug="true"  
    CodeBehind="CustomerService.svc.cs" 
    Service="Northwind.Wcf.CustomerService"
    Factory="Ninject.Extensions.Wcf.NinjectServiceHostFactory"%>







Ninject in Action


[ 102 ]


The Factory attribute can have the following values:


•	 Ninject.Extensions.Wcf.NinjectServiceHostFactory for  
ordinary services


•	 Ninject.Extensions.Wcf.NinjectDataServiceHostFactory for  
data services


Now reference the Ninject Conventions extension, and enter the following binding 
convention in the RegisterServices method of the NinjectWebCommon class:


kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());


ASP.NET Web Forms applications
ASP.NET Web Forms is not as extensible as MVC or WCF, and it is not possible to 
tweak its UI engine to support activation of pages without a default constructor. 
This limitation of Web Forms applications prevents making use of the Constructor 
Injection pattern. However, it is still possible to use other DI patterns such as an 
initializer method. 


In order to set up Ninject for a Web Forms application, we need to add a reference 
to the Ninject.Web extension. This extension requires to have referenced Ninject.
Web.Common and Ninject as well. If we use NuGet package manager, these libraries 
will be referenced automatically as soon as we make a reference to Ninject.Web. 
It will also create two classes in the App_Start directory of the application. The 
NinjectWebCommon class, which we have already discussed, and NinjectWeb. These 
classes are required by the Ninject.Web extension to work properly. We can add our 
service registrations to the RegisterServices method of the NinjectWebCommon class.


In this example, we will create a Web Form which presents a list of Northwind 
customers using an initializer method. Add a new ASP.NET Web Forms application 
to the Northwind solution, and after referencing the Northwind.Core project, set up 
Ninject as described previously.


Add a GridView control to the Default.aspx page and modify the source code of 
the page, as shown in the following code:


public partial class Default : System.Web.UI.Page
{
    private ICustomerRepository repository;


    [Inject]







Chapter 4


[ 103 ]


    public void Setup(ICustomerRepository customerRepository)
    {   
        this.repository = customerRepository;
    }


    protected void Page_Load(object sender, EventArgs e)
    {
        customersGridView.DataSource = repository.GetAll();
        customersGridView.DataBind();
    }
}


The ICustomerRepository interface is introduced as a parameter in the Setup 
method rather than a constructor parameter. That is because ASP.NET Web Forms 
UI engine is not configurable in such a way to instantiate UI components which don't 
have a default constructor. The Setup method will be called as soon as the Page 
object is created, having its parameter resolved and injected.


Now, reference Ninject conventions extension and put the following binding 
convention in the RegisterServices method of the NinjectWebCommon class:


kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                    .SelectAllClasses()
                    .BindAllInterfaces());


Summary
Windows Forms application supports all DI patterns, because it offers a single 
startup location in the Main method and gives us the freedom of instantiating all 
classes ourselves. WPF and Silverlight applications are friendly to MVVM pattern, 
and they support all DI patterns as well. ASP.NET MVC is a DI-friendly framework, 
and although the creation of framework components (for example, Controllers) are 
up to the framework factories, it allows to replace them with Ninject factories which 
support injectable components. Ninject.Web.MVC extension contains ASP.NET 
MVC injection facilities of Ninject. WCF is the other web platform which supports all 
DI patterns because of its high extensibility and configurability. It can be configured 
to use Ninject service host factories which are implemented in the Ninject.
Extensions.WCF library.


ASP.NET Web Forms does not fully support DI; however, it is possible to configure 
it in such a way to use some DI patterns. The Ninject.Web extension contains the 
necessary components to make use of the partial DI support to ASP.NET.











Doing More with Extensions
While the core library of Ninject is kept clean and simple, Ninject is a highly 
extensible DI container and it is possible to extend its power using extension plugins. 
We have already used some of them in the previous chapter. In this chapter, we will 
see how interception is a solution for cross-cutting concerns and how to use Mocking 
Kernel as a test asset. We will also look at how Ninject can be extended:


•	 Interception
•	 Mocking Kernel
•	 Extending Ninject


By the end of this chapter, the user will be able to make use of Interception and 
Mocking Kernel extensions.


Interception
There are cases where we need to do some operations before or after calling a single 
method or a number of methods. For example, we may need to log something before 
and after invoking all the methods in a component. Interception allows us to wrap 
the injecting dependency in a proxy object which can perform such operations 
before, after, around or instead of each method invocation. This proxy object can 
then be injected instead of the wrapped service. Ninject Interception extension 
creates such proxy wrappers on the fly, and allows us to intercept invocations of 
the wrapped service members. The following diagram shows how a service will be 
replaced with an intercepted one during the interception process.







Doing More with Extensions


[ 106 ]


Interception is one of the best practices for implementing Cross Cutting Concerns  
such as logging, caching, exception handling, or transaction processing.


Setup Interception
Ninject Interception extension generates proxy instances based on the DynamicProxy 
implemented by LinFu or Castle. We can choose which implementation to use when 
referencing interception extension. Using NuGet either install Ninject.Extensions.
Interception.DynamicProxy or Ninject.Extensions.Interception.Linfu. 
NuGet will also automatically install Ninject, Ninject.Extensions.Interception 
and Castle.Core or LinFu.DynamicProxy depending on the selected DynamicProxy 
implementation. In this section, we will use Castle DynamicProxy. We can also 
download and reference the binary files of these libraries manually. Finally,  
we need to add the following using statements to the code:


using Ninject.Extensions.Interception;
using Ninject.Extensions.Interception.Infrastructure.Language;


Member Interception
Once we have setup our project for Interception extension, some extension methods 
will be available via the kernel which can be used for interception. We can use these 
methods to intercept a method or property. Here are a few of them:


InterceptReplace<T> (Expression<Action<T>>, Action<IInvocation>)
InterceptAround<T> (Expression<Action<T>>, 
                       Action<IInvocation>, Action<IInvocation>)
InterceptBefore<T> (Expression<Action<T>>, Action<IInvocation>)
InterceptAfter<T> (Expression<Action<T>>, Action<IInvocation>)


The following example shows us how to use a method interception to log around  
the GetAllCustomers() method of the CustomerService class:


Kernel.InterceptAround<CustomerService>(
    s=>s.GetAllCustomers(),
    invocation =>logger.Info("Retrieving all customers..."),
    invocation =>logger.Debug("Customers retrieved"));


In the preceding example, the type parameter indicates the service we are going to 
intercept (that is, CustomerService). The first parameter is a delegate which indicates 
the method to intercept (for example, GetAllCustomers). For the InterceptAround 
method, the second and third parameters are two delegates which will be executed 
before and after invoking the intercepted method respectively.







Chapter 5


[ 107 ]


The invocation parameter whose type is IInvocation, provides useful information 
about the method invocation context. For example, we can get or change the 
returned value. In the following example, we will log the number of retrieved 
customers using the InterceptAfter method:


Kernel.InterceptAfter<CustomerService>(s=>s.GetAllCustomers(),
    invocation =>logger.DebugFormat("{0} customers retrieved",
            (IEnumerable<Customer>) invocation.ReturnValue).Count()));


Since the type of ReturnedValue is object, we need to cast it to reach the Count() 
method. In the following example, we will implement caching for the GetAll() 
method of the customers repository:


Kernel.InterceptReplace<SqlCustomerRepository>(
r => r.GetAll(),
invocation =>
{
    const string cacheKey = "customers";
    if (HttpRuntime.Cache[cacheKey] == null)
    {
        invocation.Proceed();
        if (invocation.ReturnValue != null)
            HttpRuntime.Cache[cacheKey] = invocation.ReturnValue;
    }
    else
        invocation.ReturnValue = HttpRuntime.Cache[cacheKey];
});


In this example, we used the InterceptReplace method, which can totally replace 
the functionality of the intercepted method. We used HttpRuntime.Cache for 
caching the list of Customer objects, which the GetAll() method returns. If the 
Cache object is empty, we need to call GetAll(), which is the intercepted method 
and then put the returned value in the cache. In order to call the intercepted method 
via the interception method (InterceptReplace), we should call the Proceed() 
method of the invocation object. Then, we can get its returned value, which is the list 
of Customer objects from the ReturnValue property of the invocation. If the Cache 
object is not empty, we just need to set the ReturnValue property to the cached 
Customer list. In this way, the GetAll() method will not be called.


The important thing to keep in mind is that the type argument provided 
for interception methods cannot be the type of the abstracted service. It 
should be the concrete implementation type. That is why we have provided 
SqlCustomerRepository rather than ICustomerRepository as the type argument 
for the InterceptReplace method, so the following code wouldn't work:







Doing More with Extensions


[ 108 ]


Kernel.InterceptReplace<ICustomerRepository>(
r => r.GetAll(), invocation =>{  ...  });


That is because interception creates a proxy wrapper around the resolved object 
rather than creating a new implementation of the abstracted service.


You may have noticed that all of the InterceptXxx<T> methods require a type 
argument. This obliges the application to have a reference to the dependency library, 
which is usually not desirable. We should be able to refer to types using their names 
so that we can dynamically load dependency assemblies at runtime. In order to do 
so, we can use the AddMethodInterceptor method. Here is the implementation of 
the preceding example using the AddMethodInterceptor method:


var repositoryType = Type.GetType(
"Northwind.SqlDataAccess.SqlCustomerRepository, Northwind.
SqlDataAccess");
Kernel.AddMethodInterceptor(repositoryType.GetMethod("GetAll"),
invocation => {    ...   });


Type Interception
Although method Interception targets a particular method or property of a given 
type, type Interception is more generalized and applies to a type or a group of types, 
and intercepts all of the methods and properties in a single point. In order to create 
an interceptor, we need to implement the IInterceptor interface. This interface has 
only one method, which is as follows:


void Intercept( IInvocation invocation );


In the following example, we will implement an exception handling interceptor 
which can catch the exceptions and hand them over to an exception handler service. 
It is the same as putting try-catch in all of the methods of the intercepted type:


public class ExceptionInterceptor : IInterceptor
{
    private IExceptionHandlerService exceptionHandlerService;
    public ExceptionInterceptor(IExceptionHandlerService 
handlerService)
    {
        this.exceptionHandlerService = handlerService;
    }


    public void Intercept(IInvocation invocation)
    {
        try
        {







Chapter 5


[ 109 ]


            invocation.Proceed();
        }
        catch (Exception exception)
        {
            exceptionHandlerService.HandleException(exception);
        }
    }
}


The following code shows how to add the ExceptionInterceptor to our convention 
so that it applies to all the classes of our application:


Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .Configure(b =>
                            b.Intercept()
                               .With<ExceptionInterceptor>()
                        ));


The Intercept() method is added to the configuration section of our convention 
and accepts the type of the desired interceptor as its type parameter. It can then 
activate the provided type to create and apply the interceptor object.


If we need to intercept only a certain type in a convention rule, we can use the 
ConfigureFor<T> method:


Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .ConfigureFor<CustomerRepository>
         (b => b.Intercept()
                            	 .With<ExceptionInterceptor>()
                        ));


If we already have an instance of our interceptor, we can use the following syntax:


var exceptionInterceptor = Kernel.Get<ExceptionInterceptor>();
Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                        .SelectAllClasses()
                        .BindAllInterfaces()
                        .Configure(b =>
                            b.Intercept()
                            	  .With(exceptionInterceptor)
                        ));







Doing More with Extensions


[ 110 ]


The preceding example showed how to intercept types projected by a convention. 
It is also possible to intercept the kernel itself. The following example applies 
ExceptionInterceptor to all of the services resolved by the kernel, no matter  
how they are registered:


kernel.Intercept(context => true)
  .With<ExceptionInterceptor>();


The Intercept method accepts a predicate, which is given an instance of the current 
activation context (IContext). This predicate indicates what services to choose for 
interception. In this example, we always return true, which means we intend to 
intercept all services. We can define any contextual condition by this predicate based 
on the activation context. Refer to the Contextual binding section in Chapter3, Meeting 
Real-world Requirements for refreshing how to define contextual conditions.


There is also a built-in interceptor class named ActionInterceptor, which can  
be used as a generic interceptor in case our interception logic is as simple as a  
single method:


Kernel
.Intercept()
.With(new ActionInterceptor(invocation =>
         log.Debug(invocation.Request.Method.Name)));


The Interception extension also contains an abstract SimpleInterceptor class, 
which can be extended to create interceptors with a pre/post interception  
logic, and an AutoNotifyPropertyChangedInterceptor class, which is  
designed specifically for WPF ViewModels and automates notification  
of property changes.


Multiple Interceptors
We already studied how to implement exception handling concern using 
interception. But what if we need to add more interceptors to a type? In reallife 
scenarios we usually have to implement a variety of cross-cutting concerns on 
each type. Multiple interception allows us to meet this requirement. The following 
example shows how to address both logging and exception-handling concerns using 
two interceptors:


kernel.Intercept(context => true).With<ExceptionInterceptor>();
kernel.Intercept(context => true).With<LoggerInterceptor>();







Chapter 5


[ 111 ]


Alternatively, we can apply them to a convention similar to this:


Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
            .SelectAllClasses()
            .BindAllInterfaces()
            .Configure(b =>
                            {
                                b.Intercept()
                                 .With<ExceptionInterceptor>();


                                b.Intercept()
                                 .With<LoggerInterceptor>();
                            }
                        ));


We can also register multiple interceptors on a single Binding in the same way  
as follows:


var binding = Bind<IService>().To<MyService>();    
binding.Intercept().With<ExceptionInterceptor>();
binding.Intercept().With<LoggerInterceptor>();


When we register an interceptor for a service type, Ninject no longer resolves the 
service by activating the service itself. Instead, Ninject returns a proxy object which 
wraps an instance of the service. When we call a method on the resolved object, we 
are actually calling the proxy implementation of that method, rather than the actual 
service method. The following diagram demonstrates that the proxy method invokes 
the Intercept method on the first registered interceptor:







Doing More with Extensions


[ 112 ]


If the Proceed method is called within the Intercept method, the proxy class 
advances to the next interceptor and executes its Intercept method. Calling the 
Proceed method in the last interceptor leads to calling the actual service method. 
Once the actual service method is called, the control returns to the last Intercept 
method along with the value returned by the service method. Here is where the 
interceptor can perform post-invocation operations (for example, modifying the 
returned value). The control then returns to the previous interceptors one by one, 
until it reaches the proxy method which was initially called. The following diagram 
shows this sequence:


When we register multiple interceptors, the order in which they intercept can  
be indicated using the InOrder method as follows:


Kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
            .SelectAllClasses()
            .BindAllInterfaces()
            .Configure(b =>
                            {
                                b.Intercept()
                                .With<ExceptionInterceptor>()
                                .InOrder(1);


                                b.Intercept()
                                .With<LoggerInterceptor>()
                                .InOrder(2);
                            }
                        ));







Chapter 5


[ 113 ]


The lower the value of the order, the earlier the interceptor executes. So, in the 
preceding example, ExceptionInterceptor executes before LoggerInterceptor.


Intercept Attribute
Another way of registering an interceptor for a type or method is by using 
attributes. In order to create an attribute interceptor, we just need to derive from the 
InterceptAttribute class and override its CreateInterceptor method. In the 
following example, we create an attribute named InterceptExceptionsAttribute 
for intercepting exceptions:


public class InterceptExceptionsAttribute : InterceptAttribute
{
    public override IInterceptor CreateInterceptor(IProxyRequest 
request)
    {
        return request.Kernel.Get<ExceptionInterceptor>();
    }
}


We can then apply this attribute to a method or a type as follows:


[InterceptExceptions]
public class Sample
{    ...    }


We can also apply both attributes to the same type as shown in the following code:


[InterceptExceptions, Log]
public class Sample
{    ...   }


We can apply the interceptor attributes also to methods (remember that in either 
way, the method should be virtual or it will not be intercepted) as follows:


[InterceptExceptions]
public class Sample
{
    [Log]
    public virtual void DoSomething()
    {    ...    }
    ...
}







Doing More with Extensions


[ 114 ]


In the preceding example, all of the virtual methods within the Sample class 
will be intercepted by ExceptionInterceptor. The DoSomething method is also 
intercepted by LoggerInterceptor.


We can also specify the order of interceptors, by setting the Order property of the 
applied attribute as follows:


[InterceptExceptions(Order = 2)]
public class Sample
{
    [Log(Order = 1)]
    public virtual void DoSomething()
    {    ...   }
}


In the preceding example, the DoSomething method will be intercepted first by 
LoggerInterceptor and then by ExceptionInterceptor.


In case if we have methods which we don't want to be intercepted, we can exclude 
them using the [DoNotIntercept] attribute as follows:


[InterceptExceptions]
public class Sample
{
    [Log]
    public virtual void DoSomething()
    {     ...    }


    [DoNotIntercept]
    public virtual void DoSomethingElse()
    {     ...    }
}


In the preceding example, although the [InterceptExceptions] attribute is applied 
to the type, it doesn't intercept the DoSomethingElse method.


Mocking Kernel
One of the advantages of Dependency Injection is that it improves the testability of 
code units and makes it even easier. Ninject has introduced Mocking Kernel, which 
facilitates the injection of mock objects. In this section, we will add a Test project to 
the Northwind solution and see how to use Mocking Kernel in order to write our 
unit tests. It is possible to extend Mocking Kernels for different isolation frameworks, 
and for some of them including RhinoMocks, Moq and NSubstitute, mocking kernel 
extensions already exist. In this example, we will use the Moq Mocking Kernel in 
combination with the NUnit framework to write some unit tests for the Northwind.
Wpf project.







Chapter 5


[ 115 ]


Add a new class library project named Northwind.Wpf.Test to the Northwind 
solution and reference the Northwind.Wpf and Northwind.Model projects. Since 
we are going to use some WPF components in our tests, we also need a reference 
to PresentationCore. Now using NuGet install Ninject.MockingKernel.Moq. 
It will automatically reference Ninject, Ninject.MockingKernel, and Moq as 
its prerequisites. It is also possible to download and reference binaries manually. 
You can use other test frameworks or Mocking Kernels according to your needs. 
Although there might be some slight changes, the overall process would be the same.


Now we add a new class for testing MainViewModel and create it as follows:


[TestFixture]
class MainViewModelTests
{
    private readonly MoqMockingKernel kernel;
    public MainViewModelTests()
    {
        this.kernel = new MoqMockingKernel();
    }


    [TearDown]
    public void TearDown()
    {
        kernel.Reset();
    }      
}


The Reset() method clears Ninject cache of all created instances. By calling this 
method as part of NUnit teardown process which happens after each test, we 
don't need to dispose and reinitialize kernel for each test. Note that instead of 
StandardKernel we are using MoqMockingKernel. If there are no matching bindings 
for a service type, and if the type is not self-bindable, MockingKernel will create 
mock for the type and inject the associated mocked object wherever the type is 
requested. Thus, calling the Get<T>() method on MockingKernel will return the 
associated mocked object. In order to get the mock itself, the MockingKernel has 
another method named GetMock<T>(). We can also use the following syntax in 
order to explicitly define a mock binding:


Bind<IService>().ToMock();


It is useful when further setup on a binding is required:


Bind<IService>().ToMock()
    .WithConstructorArgument("paramName",argument)
    .InSingletonScope().Named("BindingName");







Doing More with Extensions


[ 116 ]


Let's write our first test which verifies whether getting the Customers property calls 
the GetAll() method of ICustomerRepository (you can review Chapter 4, Ninject in 
Action to refresh your memory if you don't remember CustomerViewModel clearly) 
as follows:


[Test]
public void GettingCustomersCallsRepositoryGetAll()
{
    var repositoryMock = kernel.GetMock<ICustomerRepository>();
    repositoryMock.Setup(r => r.GetAll());
    var sut = kernel.Get<MainViewModel>();
    var customers = sut.Customers;
    repositoryMock.VerifyAll();
}


In this test, calling GetMock<ICustomerRepository> returns the mock which Moq 
created for ICustomerRepository. We expect the GetAll() method to be called 
on the mocked object associated with this mock. MainViewModel is our System 
under Test (SUT) which is acquired from the kernel using the Get method. Because 
MainViewModel is self bindable, the kernel doesn't return a mocked object for this 
type and returns an instance of our own implementation of MainViewModel. Then 
we call the get accessor of the Customers property and verify the mock to see if the 
GetAll method is called on the mocked implementation of ICustomerRepository. 
The preceding test was a simple one and implementing it without MockingKernel 
wouldn't be much harder. We just needed to create mocks for other dependencies of 
MainViewModel and pass the associated objects to MainViewModel. In the following 
test we will study a more complicated case. We are going to verify whether  
executing CreateCustomerCommand  will call the ShowDialog method of the 
CustomerView class:


[Test]
public void ExecutingCreateCustomerCommandShowsCustomerView()
{
    var customerViewMock = kernel.GetMock<ICustomerView>();
    customerViewMock.Setup(v => v.ShowDialog());
    var sut = kernel.Get<MainViewModel>();
    sut.CreateCustomerCommand.Execute(null);
    customerViewMock.VerifyAll();
}







Chapter 5


[ 117 ]


Again our SUT is MainViewModel, but the type of mocked object is ICustomerView. 
The dependency graph of MainViewModel which is shown in the following diagram, 
shows that we need to involve other objects in this scenario in order to make the test 
work properly:


We need actual implementations of IViewFactory, ICommandFactory, and 
ICommand rather than their mocked objects. Therefore, we need the following  
binding rules:


kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                .SelectAllClasses()
                .BindDefaultInterfaces());


kernel.Bind(x => x.FromAssembliesMatching("Northwind.*")
                .SelectAllInterfaces()
                .EndingWith("Factory")
                .BindToFactory());


We need to have a reference to the Ninject Factory extension (Ninject.Extensions.
Factory) in order to create the required dynamic factories. Dynamic factory was 
discussed in Chapter 3, Meeting Real-World Requirements. 







Doing More with Extensions


[ 118 ]


Extending Ninject
Ninject is actually a collection of single responsible components that are wired 
together using DI. This makes it extremely extensible, and thus new functionalities 
are created by adding new components and the existing behaviors can easily be 
customized by swapping standard components with our customized ones. All of 
the Ninject components are available via the kernel.Components property. We can 
also create a customized Kernel object by extending the KernelBase class or even 
implementing the IKernel interface. In order to extend Ninject behaviors, we need 
to know Ninject components and their roles. Going through all of those components 
is out of the scope of this book. However, we will have an example to see how to 
extend Ninject by adding a new component.


In the following example we will create a new IMissingBindingResolver 
component and add it to Ninject components. IMissingBindingResolver, as the 
name suggests, is responsible for resolving types for which there are no registered 
bindings. SelfBindingResolver is a preexisting example of this component 
which returns the type itself if it is not registered. That is why we don't need 
to registers types to themselves explicitly. In this example, we will create an 
IMissingBindingResolver object which can resolve any interface named IXXX  
to a type named XXX as follows:


public class DefaultImplementationBindingResolver : 
       NinjectComponent, IMissingBindingResolver
{
    public IEnumerable<IBinding> Resolve ( 
Multimap<Type, IBinding> bindings, IRequest request)
    {
        var service = request.Service;
        if (!service.IsInterface || !service.Name.StartsWith("I"))
            return Enumerable.Empty<IBinding>();
        return new[] {
new Binding(service) { ProviderCallback = StandardProvider
.GetCreationCallback(GetDefaultImplementationType(service)) }};
    }


    private Type GetDefaultImplementationType(Type service)
    {
        var typeName = string.Format("{0}.{1}",  
             service.Namespace, service.Name.TrimStart('I'));
        return Type.GetType(typeName);
    }
}







Chapter 5


[ 119 ]


The Resolve method gets a list of bindings and the request object. It tries to restrict 
the list of bindings as much as it can and then returns the restricted list. Ideally this 
list should contain only one binding. We expect the service type to be an interface 
whose name starts with I. Otherwise, we return an empty list which means we 
cannot resolve it here. In the GetDefaultImplementationType method we remove I 
from the service name to achieve the name of its implementation and return its type. 
The type will be passed to StandardProvider to create a CreationCallback object. 
This callback will later be used for creating the instance. We create a new Binding 
object for this service type, having set the CreationCallback, and return it as a 
single member sequence.


The following code shows how to add this component to the kernel:


var kernel = new StandardKernel();
kernel.Components
.Add<IMissingBindingResolver, DefaultImplementationBindingResolver>();


Summary
Interception extension creates on the fly proxy wrappers around injected objects  
and allows us to intercept invocation of the wrapped service members and is one  
of the best practices to address cross-cutting concerns.


Mocking is another Ninject's handy extension which automates injection of  
mock objects. It has a built-in support for popular mocking frameworks such  
as RhinoMocks, Moq, and NSubstitute.


Ninject is a collection of independent components that are wired together and  
we can extend Ninject's functionality by adding new components or substituting  
the existing ones.











Index
A
ActionCommand  86
ActionFilterAttribute  94
Action method  96
ActivationException exception  42, 43
AddShapes method  63
antipatterns  41
ASP.NET MVC applications


about  89-91
filter injection  94
validator injection  92


ASP.NET Web Forms applications  102, 103
assemblies, convention over configuration


selecting  36
attribute-based binding  55
Attribute class  97
AutoNotifyPropertyChangedInterceptor 


class  110


B
BindAllInterfaces()  37
BindBase()  37
BindDefaultInterface()  37
BindDefaultInterfaces()  37
binding  22-24
binding, convention over configuration


configuring  38
Binding Generator


defining  65
Binding Resolver  54
BindingSource control  78
BindSelection(ServiceSelector selector)  38
BindSingleInterface()  37


BindToFactory method  65
BindToSelf()  38
BindUsingRegex(string pattern)  38
BindWith method  65


C
CanDecode method  48
Close method  83
CLR  17
Common Service Locator. See  CLR
components, convention over configuration


inclusion and exclusion, explicit  37
selected components, filtering  37
selecting  36


conditional filtering (When)
about  97
WhenActionMethodHas method  97
WhenControllerHas method  97
WhenControllerType method  97


ConfigurationProvider  60
ConsoleLogger class  14, 26
ConsoleLogger singleton  26
ConstraintAttribute class  52
constructor injection  42, 43
contextual arguments (With)


about  98
WithConstructorArgumentFromAction 


Attribute method  98
WithConstructorArgumentFrom 


ControllerAttribute method  98
WithPropertyValueFromActionAttribute 


method  98
WithPropertyValueFromController 


Attribute method  98







[ 122 ]


contextual binding
about  49-51
attribute-based binding  55, 56
generic helper  57
metadata resolution  52-54
named binding  51
target-based conditions  56, 57


convention over configuration
about  34, 35
assemblies, selecting  35
binding, configuring  38
components, selecting  36
service types, selecting  37, 38


Copy to Output Directory property  31
Count() method  107
CreateCustomerCommand command  116
CreateInstance method  61
CreateInterceptor method  113
CreateKernel method  89, 100
Create method


code  80
CreateSquare method  64
CreationCallback object  119
Customer entity  75
CustomerForm


code  79
CustomerService class


about  101, 106
implementing  100


CustomerViewModel class  83
CustomerWindow method  87
custom scope, object lifetime  28, 29


D
DataContext property  82
Data Transfer Object (DTO)  79
Dependency Injection. See  DI
DI


about  8
containers  16
first application  12-15
or Inversion of Control (IoC)  9


DialogResult property  84
DI patterns  41
DoSomething method  114


dynamic factories
about  62
convention, using  65
custom instance providers  68-70
func  70
lazy  71
Shape Factory example  62-64
Telecom Switch, example  66-68


E
ExceptionInterceptor interface  109
Extensible Application Markup Language 


(XAML)  81


F
Factory attribute  102
factory interface  70
factory method  61, 68
FileInfo object  47
filtering


conditional filtering (When)  97
contextual arguments (With)  98


filter injection  94
filters


about  94
applying  94
IActionFilter  94
IAuthorizationFilter  94
IExceptionFilter  94
IResultFilter  94


FromAssemblyContaining 
<SomeType>()  36


From(params Assembly[] assemblies)  36
FromThisAssembly()  36
Func  70


G
GetAllCustomers() method  106
GetAll() method  107
GetDefaultImplementationType  


method  119
GetLogger method  96
Global.asax file  90
Grab() method  11







[ 123 ]


H
HomeController class  90, 97


I
ICommand  86
IContext interface  61
ICustomerRepository  79
ICustomerRepository interface  91
ICustomerService interface  100
ICustomerValidator  93
ICustomerView  87
IInitializable interface  44
IInterceptor interface  108
IKernel interface  118
ILogger  24
ILog log parameter  96
IMissingBindingResolver component  118
IncludingNonePublicTypes() method  36
InitializeClient method  24
Initialize method  44
InjectAttribute class  93
injecting dependencies


example  43
install-package Ninject  20
InterceptAttribute class  113
interception


about  105, 106
InterceptAttribute  113, 114
member  106-108
multiple interception  110-113
setup  106
types  108-110


Intercept() method  109-111
InterceptReplace method  107
InterceptXxx<T> method  108
Inversion of Control (IoC)  9
invocation parameter  107
IPerformanceMonitoringService  94
IShippersRepository  51
IsValid method  93
IView interface  87


K
KernelBase class  118
kernel.Components property  118


L
lazy object  71
LoadCustomers method  78
Load event  78
LogAttribute class  97
LogFilter class  96
logLevel parameter  96


M
MailConfig class  22
MailServerConfig object  24
MailService class  13, 15, 23
MailService type  24
Main method


code  80
MainViewModel class  82
Mapper class


implementing  76, 77
metadata resolution  52-54
mocking kernel  114-117
multi binding


contextual binding  49-51
plugin model, implementing  46-49


MvcApplication class  90
MVVM architecture


about  81
Model  81
View  81
ViewModel  81


N
named binding  51, 52
NamedLikeFactoryMethod helper  


method  68
Ninject


about  17, 19-21
extending  118, 119
interception  105







[ 124 ]


official website, URL  20
official wiki, URL  17


Ninject.Extensions.Factory library  64
Ninject.Extensions.WCF library  99
NinjectHttpModule  100
Ninject library  99
Ninject modules


about  30
MailService classes, registering  30


NinjectWebCommon class  89, 99, 102
Ninject.Web.Common library  99


O
object lifetime


about  25
custom scope  28, 29
request scope  28
singleton scope  26
thread scope  27
transient scope  25


OnePerRequestHttpModule  100
OnLoad method  78
OnPropertyChanged method  84
OnStartup method  88


P
PerformanceMonitor property  94
plugin model


implementing  46-49
Proceed method  112
Proceed() method  107
providers


about  57-61
activation context  61
factory method  61, 62


Provider<T> class  58


R
RegisterServices method  100, 102
request object  119
request scope, object lifetime  28
Reset() method  115
ReturnValue property  107


S
SalutationService  21
SaveCommand property  85
Save method  85
SelectAllAbstractClasses() method  65
SelectAllIncludingAbstractClasses()  


method  65
SelectAllInterfaces() method  65
SelectAllTypes() method  65
SelfBindingResolver  118
Separation of Concerns. See  SoC
service locator  45
Service Registration  24
service types


selecting  65
service types, convention over configuration


selecting  37
ShapeService class  63
ShippersService class  50, 51
ShippersSqlRepository class  58
ShowDialog method  84
Silverlight applications


about  81
using  81-88


SimpleInterceptor class  110
singleton scope, object lifetime  26
SoC  10
SqlCustomerRepository  38
StandardInstanceProvider  68
StandardProvider  57
Start() method  89
SwitchService class  67
System Under Test (SUT)  12, 116


T
target-based conditions  56
Target object  60
TextBox controls  78
thread scope, object lifetime  27
transient scope, object lifetime  25







[ 125 ]


U
Unblock button  20
UniqueCustomerIdAttribute class  93
User.Current  29


V
validator injection  92, 93


W
WCF  98
WCF applications  98
WhenInjectedInto<T> method  57
Windows Forms  77
Windows Presentation Foundation.  


See  WPF applications
WPF applications


about  81
using  81-88


X
XML configuration


about  31
using  31-34











Thank you for buying  
Mastering Ninject for Dependency 


Injection 


About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.


Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.


Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.


About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.


Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.







Refactoring with Microsoft Visual 
Studio 2010 
ISBN: 978-1-849680-10-3             Paperback: 372 pages


Evolve your software system to support new and 
ever-changing requirements by uploading your C# 
code base with patterns and principles


1.	 Make your code base maintainable with 
refactoring


2.	 Support new features more easily by making 
your system adaptable


3.	 Enhance your system with an improved  
object-oriented design and increased 
encapsulation and componentization


JBoss Weld CDI for Java Platform
ISBN: 978-1782160-18-2            Paperback: 122 pages


Learn CDI concepts and develop modern web 
applications using JBoss Weld


1.	 Learn about dependency injection with CDI


2.	 Install JBoss Weld in your favorite container


3.	 Develop your own extension to CDI


4.	 Decouple code with CDI events


5.	 Communicate between CDI beans and 
AngularJS


Please check www.PacktPub.com for information on our titles







Java EE 6 with GlassFish 3 
Application ServerInstant 
ISBN: 978-1-849510-36-3            Paperback: 488 pages


A practical guide to install and configure the 
GlassFish 3 Application Server and develop Java EE 6 
applications to be deployed to this server


1.	 Install and configure the GlassFish 3 
Application Server and develop Java EE 6 
applications to be deployed to this server


2.	 Specialize in all major Java EE 6 APIs, including 
new additions to the specification such as CDI 
and JAX-RS


3.	 Use GlassFish v3 application server and gain 
enterprise reliability and performance with  
less complexity


Instant Dependency Management 
with RequireJS How-to
ISBN: 978-1-782169-06-2            Paperback: 42 pages


Optimize the performance and maintainability of 
your web applications with RequireJS


1.	 Learn something new in an Instant! A short, 
fast, focused guide delivering immediate 
results


2.	 Filled with useful tips to improve the 
performance and maintainability of web 
applications


4.	 Contains valuable guidance to integrate 
popular third-party libraries, such as jQuery, 
the jQueryUI Widget Factory, and Backbone.js, 
with RequireJS


Please check www.PacktPub.com for information on our titles





		Cover

		Copyright

		Credits

		About the Author

		About the Reviewers

		www.PacktPub.com

		Table of Contents

		Preface

		Chapter 1: Understanding 
Dependency Injection

		What is Dependency Injection?

		DI or Inversion of Control (IoC)



		How can DI help?

		My First DI Application

		DI Containers

		Why use Ninject?

		Summary



		Chapter 2: Getting Started with Ninject

		Hello Ninject!

		It's all about Binding

		Object Lifetime

		Transient scope

		Singleton scope

		Thread scope

		Request scope

		Custom scope



		Ninject modules

		XML configuration

		How to use XML configuration



		Convention over configuration

		Selecting the assemblies

		Selecting the components

		Filtering the selected components

		Explicit inclusion and exclusion



		Selecting service types

		Configuring the Bindings



		Summary



		Chapter 3: Meeting Real-world Requirements

		DI patterns and antipatterns

		Constructor Injection

		Initializer methods and properties

		Service Locator



		Multi binding and contextual binding

		Implementing the plugin model

		Contextual binding

		Named binding

		Resolving metadata

		Attribute-based binding

		Target-based conditions

		Generic helper





		Custom providers

		Activation context

		The Factory Method



		Dynamic factories

		The Shape Factory example

		Using convention

		Selecting service types

		Defining Binding Generator



		Telecom Switch example

		Custom Instance Providers

		Func

		Lazy



		Summary



		Chapter 4: Ninject in Action

		Windows Forms applications

		WPF and Silverlight applications

		ASP.NET MVC applications

		Validator injection

		Filter injection

		Conditional filtering (When)

		Contextual arguments (With)





		WCF applications

		ASP.NET Web Forms applications

		Summary



		Chapter 5: Doing More with Extensions

		Interception

		Setup Interception

		Member Interception

		Type Interception

		Multiple Interceptors

		InterceptAttribute



		Mocking Kernel

		Extending Ninject

		Summary



		Index





