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Preface
Mastering R for Quantitative Finance is a sequel of our previous volume titled 
Introduction to R for Quantitative Finance, and it is intended for those willing to  
learn to use R's capabilities for building models in Quantitative Finance at a  
more advanced level. In this book, we will cover new topics in empirical finance 
(chapters 1-4), financial engineering (chapters 5-7), optimization of trading strategies 
(chapters 8-10), and bank management (chapters 11-13).

What this book covers
Chapter 1, Time Series Analysis (Tamás Vadász) discusses some important concepts 
such as cointegration (structural), vector autoregressive models, impulse-response 
functions, volatility modeling with asymmetric GARCH models, and news  
impact curves.

Chapter 2, Factor Models (Barbara Dömötör, Kata Váradi, Ferenc Illés) presents how 
a multifactor model can be built and implemented. With the help of a principal 
component analysis, five independent factors that explain asset returns are 
identified. For illustration, the Fama and French model is also reproduced on a real 
market dataset.

Chapter 3, Forecasting Volume (Balázs Árpád Szűcs, Ferenc Illés) covers an intraday 
volume forecasting model and its implementation in R using data from the DJIA 
index. The model uses turnover instead of volume, separates seasonal components 
(U shape) from dynamic components, and forecasts these two individually.

Chapter 4, Big Data – Advanced Analytics (Júlia Molnár, Ferenc Illés) applies R to 
access data from open sources, and performs various analyses on a large dataset. For 
illustration, K-means clustering and linear regression models are applied to big data.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 2 ]

Chapter 5, FX Derivatives (Péter Medvegyev, Ágnes Vidovics-Dancs, Ferenc Illés) 
generalizes the Black-Scholes model for derivative pricing. The Margrabe formula, 
which is an extension of the Black-Scholes model, is programmed to price stock 
options, currency options, exchange options, and quanto options.

Chapter 6, Interest Rate Derivatives and Models (Péter Medvegyev, Ágnes  
Vidovics-Dancs, Ferenc Illés) provides an overview of interest rate models and 
interest rate derivatives. The Black model is used to price caps and caplets; besides 
this, interest rate models such as the Vasicek and CIR model are also presented.

Chapter 7, Exotic Options (Balázs Márkus, Ferenc Illés) introduces exotic options, 
explains their linkage to plain vanilla options, and presents the estimation of  
their Greeks for any derivative pricing function. A particular exotic option, the 
Double-No-Touch (DNT) binary option, is examined in more details.

Chapter 8, Optimal Hedging (Barbara Dömötör, Kata Váradi, Ferenc Illés) analyzes 
some practical problems in hedging of derivatives that arise from discrete time 
rearranging of the portfolio and from transaction costs. In order to find the optimal 
hedging strategy, different numerical-optimization algorithms are used.

Chapter 9, Fundamental Analysis (Péter Juhász, Ferenc Illés) investigates how to build 
an investment strategy on fundamental bases. To pick the best yielding shares, on 
one hand, clusters of firms are created according to their past performance, and on 
the other hand, over-performers are separated with the help of decision trees. Based 
on these, stock-selection rules are defined and backtested.

Chapter 10, Technical Analysis, Neural networks, and Logoptimal Portfolios (Ágnes Tuza, 
Milán Badics, Edina Berlinger, Ferenc Illés) overviews technical analysis and some 
corresponding strategies, like neural networks and logoptimal portfolios. Problems 
of forecasting the price of a single asset (bitcoin), optimizing the timing of our 
trading, and the allocation of the portfolio (NYSE stocks) are also investigated in a 
dynamic setting.

Chapter 11, Asset and Liability Management (Dániel Havran, István Margitai) 
demonstrates how R can support the process of asset and liability management  
in a bank. The focus is on data generation, measuring and reporting on interest  
rate risks, liquidity risk management, and the modeling of the behavior of  
non-maturing deposits.

Chapter 12, Capital Adequacy (Gergely Gabler, Ferenc Illés) summarizes the principles 
of the Basel Accords, and in order to determinate the capital adequacy of a bank, 
calculates value-at-risk with the help of the historical, delta-normal, and Monte-Carlo 
simulation methods. Specific issues of credit and operational risk are also covered.
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Chapter 13, Systemic Risk (Ádám Banai, Ferenc Illés) shows two methods that can help 
in identifying systemically important financial institutions based on network theory: 
a core-periphery model and a contagion model.

Gergely Daróczi has also contributed to most chapters by reviewing the  
program codes.

What you need for this book
All the codes examples provided in this book should be run in the R console that is to 
be installed first on your computer. You can download the software for free and find 
the installation instructions for all major operating systems at http://r-project.
org. Although we will not cover advanced topics such as how to use R in Integrated 
Development Environment, there are awesome plugins for Emacs, Eclipse, vi, or 
Notepad++ besides other editors, and we also highly recommend that you try 
RStudio, which is a free and open source IDE dedicated to R.

Apart from a working R installation, we will also use some user-contributed R 
packages that can be easily installed from the Comprehensive A Archive Network. 
To install a package, use the install.packages command in the R console, shown 
as follows:

> install.packages('Quantmod')

After installation, the package should also be loaded first to the current R session 
before usage:

> library (Quantmod)

You can find free introductory articles and manuals on the R home page.

Who this book is for
This book is targeted to readers who are familiar with the basic financial concepts 
and who have some programming skills. However, even if you know the basics of 
Quantitative Finance, or you already have some programming experience in R, this 
book provides you with new revelations. In case you are already an expert in one 
of the topics, this book will get you up and running quickly in the other. However, 
if you wish to take up the rhythm of the chapters perfectly, you need to be on an 
intermediate level in Quantitative Finance, and you also need to have a reasonable 
knowledge in R. Both of these skills can be attained from the first volume of the 
sequel: Introduction to R for Quantitative Finance.

http://r-project.org
http://r-project.org
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Any command-line input or output is written as follows:

#generate the two time series of length 1000

set.seed(20140623)         #fix the random seed

N <- 1000                  #define length of simulation

x <- cumsum(rnorm(N))      #simulate a normal random walk

gamma <- 0.7               #set an initial parameter value

y <- gamma * x + rnorm(N)  #simulate the cointegrating series

plot(x, type='l')          #plot the two series

lines(y,col="red")

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this: 
"Another useful visualization exercise is to look at the Density on log-scale."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.



Time Series Analysis
In this chapter, we consider some advanced time series methods and their 
implementation using R. Time series analysis, as a discipline, is broad enough 
to fill hundreds of books (the most important references, both in theory and R 
programming, will be listed at the end of this chapter's reading list); hence, the 
scope of this chapter is necessarily highly selective, and we focus on topics that 
are inevitably important in empirical finance and quantitative trading. It should 
be emphasized at the beginning, however, that this chapter only sets the stage for 
further studies in time series analysis.

Our previous book Introduction to R for Quantitative Finance, Packt Publishing, 
discusses some fundamental topics of time series analysis such as linear, univariate 
time series modeling, Autoregressive integrated moving average (ARIMA), and 
volatility modeling Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH). If you have never worked with R for time series analysis, you might want 
to consider going through Chapter 1, Time Series Analysis of that book as well.

The current edition goes further in all of these topics and you will become familiar 
with some important concepts such as cointegration, vector autoregressive models, 
impulse-response functions, volatility modeling with asymmetric GARCH models 
including exponential GARCH and Threshold GARCH models, and news impact 
curves. We first introduce the relevant theories, then provide some practical insights 
to multivariate time series modeling, and describe several useful R packages  
and functionalities. In addition, using simple and illustrative examples, we  
give a step-by-step introduction to the usage of R programming language  
for empirical analysis.
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Multivariate time series analysis
The basic issues regarding the movements of financial asset prices, technical analysis, 
and quantitative trading are usually formulated in a univariate context. Can we predict 
whether the price of a security will move up or down? Is this particular security in 
an upward or a downward trend? Should we buy or sell it? These are all important 
considerations; however, investors usually face a more complex situation and rarely 
see the market as just a pool of independent instruments and decision problems.

By looking at the instruments individually, they might seem non-autocorrelated and 
unpredictable in mean, as indicated by the Efficient Market Hypothesis, however, 
correlation among them is certainly present. This might be exploited by trading 
activity, either for speculation or for hedging purposes. These considerations justify 
the use of multivariate time series techniques in quantitative finance. In this chapter, 
we will discuss two prominent econometric concepts with numerous applications in 
finance. They are cointegration and vector autoregression models.

Cointegration
From now on, we will consider a vector of time series ty , which consists of the 
elements ( ) ( ) ( )1 2, n

t t t�y y y  each of them individually representing a time series, for 
instance, the price evolution of different financial products. Let's begin with the 
formal definition of cointegrating data series.

The 1n×  vector ty  of time series is said to be cointegrated if each of the series are 
individually integrated in the order d  (in particular, in most of the applications the 
series are integrated of order 1, which means nonstationary unit-root processes, or 
random walks), while there exists a linear combination of the series '

tyβ , which is 
integrated in the order 1d −  (typically, it is of order 0, which is a stationary process).

Intuitively, this definition implies the existence of some underlying forces in the 
economy that are keeping together the n time series in the long run, even if they all 
seem to be individually random walks. A simple example for cointegrating time 
series is the following pair of vectors, taken from Hamilton (1994), which we will use 
to study cointegration, and at the same time, familiarize ourselves with some basic 
simulation techniques in R:

( )1 , 0,1t t t tx x u u N−= + ∼

( ), 0,1t t t ty x v v Nγ= + ∼
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The unit root in ty  will be shown formally by standard statistical tests. Unit root 
tests in R can be performed using either the tseries package or the urca package; 
here, we use the second one. The following R code simulates the two series of  
length 1000:

#generate the two time series of length 1000

set.seed(20140623) #fix the random seed

N <- 1000 #define length of simulation

x <- cumsum(rnorm(N)) #simulate a normal random walk

gamma <- 0.7 #set an initial parameter value

y <- gamma * x + rnorm(N)  #simulate the cointegrating series

plot(x, type='l')          #plot the two series

lines(y,col="red")

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

The output of the preceding code is as follows:

http://www.packtpub.com
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By visual inspection, both series seem to be individually random walks. Stationarity 
can be tested by the Augmented Dickey Fuller test, using the urca package; 
however, many other tests are also available in R. The null hypothesis states that 
there is a unit root in the process (outputs omitted); we reject the null if the test 
statistic is smaller than the critical value:

#statistical tests

install.packages('urca');library('urca')

#ADF test for the simulated individual time series

summary(ur.df(x,type="none"))

summary(ur.df(y,type="none"))

For both of the simulated series, the test statistic is larger than the critical value at the 
usual significance levels (1 percent, 5 percent, and 10 percent); therefore, we cannot 
reject the null hypothesis, and we conclude that both the series are individually unit 
root processes.

Now, take the following linear combination of the two series and plot the  
resulted series:

t t tz y xγ= −

z = y - gamma*x #take a linear combination of the series

plot(z,type='l')

The output for the preceding code is as follows:
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tz  clearly seems to be a white noise process; the rejection of the unit root is 
confirmed by the results of ADF tests:

summary(ur.df(z,type="none"))

In a real-world application, obviously we don't know the value of γ ; this has to be 
estimated based on the raw data, by running a linear regression of one series on 
the other. This is known as the Engle-Granger method of testing cointegration. The 
following two steps are known as the Engle-Granger method of testing cointegration:

1. Run a linear regression ty  on tx  (a simple OLS estimation).
2. Test the residuals for the presence of a unit root.

We should note here that in the case of the n series, the number of 
possible independent cointegrating vectors is 0 r n< < ; therefore, for 

2n > , the cointegrating relationship might not be unique. We will briefly 
discuss 1r >  later in the chapter.

Simple linear regressions can be fitted by using the lm function. The residuals can 
be obtained from the resulting object as shown in the following example. The ADF 
test is run in the usual way and confirms the rejection of the null hypothesis at all 
significant levels. Some caveats, however, will be discussed later in the chapter:

#Estimate the cointegrating relationship

coin <- lm(y ~ x -1)           #regression without intercept

coin$resid                     #obtain the residuals

summary(ur.df(coin$resid))     #ADF test of residuals

Now, consider how we could turn this theory into a successful trading strategy. 
At this point, we should invoke the concept of statistical arbitrage or pair trading, 
which, in its simplest and early form, exploits exactly this cointegrating relationship. 
These approaches primarily aim to set up a trading strategy based on the spread 
between two time series; if the series are cointegrated, we expect their stationary 
linear combination to revert to 0. We can make profit simply by selling the relatively 
expensive one and buying the cheaper one, and just sit and wait for the reversion.

The term statistical arbitrage, in general, is used for many sophisticated 
statistical and econometrical techniques, and this aims to exploit 
relative mispricing of assets in statistical terms, that is, not in 
comparison to a theoretical equilibrium model.

www.allitebooks.com

http://www.allitebooks.org
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What is the economic intuition behind this idea? The linear combination of time series 
that forms the cointegrating relationship is determined by underlying economic 
forces, which are not explicitly identified in our statistical model, and are sometimes 
referred to as long-term relationships between the variables in question. For example, 
similar companies in the same industry are expected to grow similarly, the spot and 
forward price of a financial product are bound together by the no-arbitrage principle, 
FX rates of countries that are somehow interlinked are expected to move together, 
or short-term and long-term interest rates tend to be close to each other. Deviances 
from this statistically or theoretically expected comovements open the door to various 
quantitative trading strategies where traders speculate on future corrections.

The concept of cointegration is further discussed in a later chapter, but for that,  
we need to introduce vector autoregressive models.

Vector autoregressive models
Vector autoregressive models (VAR) can be considered as obvious multivariate 
extensions of the univariate autoregressive (AR) models. Their popularity in applied 
econometrics goes back to the seminal paper of Sims (1980). VAR models are the 
most important multivariate time series models with numerous applications in 
econometrics and finance. The R package vars provide an excellent framework for R 
users. For a detailed review of this package, we refer to Pfaff (2013). For econometric 
theory, consult Hamilton (1994), Lütkepohl (2007), Tsay (2010), or Martin et al. (2013).  
In this book, we only provide a concise, intuitive summary of the topic.

In a VAR model, our point of departure is a vector of time series ty  of length n . The 
VAR model specifies the evolution of each variable as a linear function of the lagged 
values of all other variables; that is, a VAR model of the order p is the following:

1 1A At t p t py − −= + + +� ty y u

Here, Ai  are n n×  the coefficient matrices for all 1i p= � , and tu  is a vector white 
noise process with a positive definite covariance matrix. The terminology of vector 
white noise assumes lack of autocorrelation, but allows contemporaneous correlation 
between the components; that is, tu  has a non-diagonal covariance matrix.
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The matrix notation makes clear one particular feature of VAR models: all variables 
depend only on past values of themselves and other variables, meaning that 
contemporaneous dependencies are not explicitly modeled. This feature allows us 
to estimate the model by ordinary least squares, applied equation-by-equation. Such 
models are called reduced form VAR models, as opposed to structural form models, 
discussed in the next section.

Obviously, assuming that there are no contemporaneous effects would be an 
oversimplification, and the resulting impulse-response relationships, that is, changes 
in the processes followed by a shock hitting a particular variable, would be misleading 
and not particularly useful. This motivates the introduction of structured VAR (SVAR) 
models, which explicitly models the contemporaneous effects among variables:

* *
1 1A A At t p t p B− −= + + +� ty y y ∈

Here, *Ai iAA=  and t tB A= u∈ ; thus, the structural form can be obtained from the 
reduced form by multiplying it with an appropriate parameter matrix A , which 
reflects the contemporaneous, structural relations among the variables.

In the notation, as usual, we follow the technical documentation of the 
vars package, which is very similar to that of Lütkepohl (2007).

In the reduced form model, contemporaneous dependencies are not modeled; 
therefore, such dependencies appear in the correlation structure of the error term, 
that is, the covariance matrix of tu , denoted by ( )'

t
t tu

E=∑ u u . In the SVAR model, 
contemporaneous dependencies are explicitly modelled (by the A matrix on the  
left-hand side), and the disturbance terms are defined to be uncorrelated, so the 
( )'E t t = ∑∈∈∈  covariance matrix is diagonal. Here, the disturbances are usually  

referred to as structural shocks.

What makes the SVAR modeling interesting and difficult at the same time is  
the so-called identification problem; the SVAR model is not identified, that is, 
parameters in matrix A cannot be estimated without additional restrictions.

How should we understand that a model is not identified? This 
basically means that there exist different (infinitely many) parameter 
matrices, leading to the same sample distribution; therefore, it is not 
possible to identify a unique value of parameters based on the sample.
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Given a reduced form model, it is always possible to derive an appropriate 

parameter matrix, which makes the residuals orthogonal; the covariance matrix 

( )'E t t u= ∑u u  is positive semidefinitive, which allows us to apply the LDL 

decomposition (or alternatively, the Cholesky decomposition). This states that 

there always exists an L  lower triangle matrix and a D  diagonal matrix such that 
T

u
LDL=∑ . By choosing 1A L−= , the covariance matrix of the structural model 

becomes ( )( ) ( )1 11 ' ' 1 'E t t u
L L L L

− −− −
∈
= =∑ ∑u u , which gives T

u
L L∈Σ∑ . Now, we conclude 

that ∈∑  is a diagonal, as we intended. Note that by this approach, we essentially 

imposed an arbitrary recursive structure on our equations. This is the method 

followed by the irf() function by default.

There are multiple ways in the literature to identify SVAR model parameters,  
which include short-run or long-run parameter restrictions, or sign restrictions on 
impulse responses (see, for example, Fry-Pagan (2011)). Many of them have no native 
support in R yet. Here, we only introduce a standard set of techniques to impose 
short-run parameter restrictions, which are respectively called A-model, B-model, 
and AB-model, each of which are supported natively by package vars:

• In the case of an A-model, nB I= , and restrictions on matrix A are imposed 
such that ( )' ' 'E t t uA A A A∈∑ = = ∑u u  is a diagonal covariance matrix. To 
make the model "just identified", we need ( )1 / 2n n +  additional restrictions. 
This is reminiscent of imposing a triangle matrix (but that particular structure 
is not required).

• Alternatively, it is possible to identify the structural innovations based on the 
restricted model residuals by imposing a structure on the matrix B (B-model), 
that is, directly on the correlation structure, in this case, nA I=  and t tB=u ∈ .

• The AB-model places restrictions on both A and B, and the connection 
between the restricted and structural model is determined by t tA B=u ∈ .

Impulse-response analysis is usually one of the main goals of building a VAR model. 
Essentially, an impulse-response function shows how a variable reacts (response) to a 
shock (impulse) hitting any other variable in the system. If the system consists of K  
variables, 2K  impulse response functions can be determined. Impulse responses can 
be derived mathematically from the Vector Moving Average representation (VMA) of 
the VAR process, similar to the univariate case (see the details in Lütkepohl (2007)).
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VAR implementation example
As an illustrative example, we build a three-component VAR model from the 
following components:

• Equity return: This specifies the Microsoft price index from January 01, 2004 
to March 03, 2014

• Stock index: This specifies the S&P500 index from January 01, 2004 to  
March 03, 2014

• US Treasury bond interest rates from January 01, 2004 to March 03, 2014

Our primary purpose is to make a forecast for the stock market index by using the 
additional variables and to identify impulse responses. Here, we suppose that there 
exists a hidden long term relationship between a given stock, the stock market as 
a whole, and the bond market. The example was chosen primarily to demonstrate 
several of the data manipulation possibilities of the R programming environment 
and to illustrate an elaborate concept using a very simple example, and not because 
of its economic meaning.

We use the vars and quantmod packages. Do not forget to install and load those 
packages if you haven't done this yet:

install.packages('vars');library('vars')

install.packages('quantmod');library('quantmod')

The Quantmod package offers a great variety of tools to obtain financial data directly 
from online sources, which we will frequently rely on throughout the book. We use 
the getSymbols()function:

getSymbols('MSFT', from='2004-01-02', to='2014-03-31')

getSymbols('SNP', from='2004-01-02', to='2014-03-31')

getSymbols('DTB3', src='FRED')

By default, yahoofinance is used as a data source for equity and index price series 
(src='yahoo' parameter settings, which are omitted in the example). The routine 
downloads open, high, low, close prices, trading volume, and adjusted prices. The 
downloaded data is stored in an xts data class, which is automatically named 
by default after the ticker (MSFT and SNP). It's possible to plot the closing prices 
by calling the generic plot function, but the chartSeries function of quantmod 
provides a much better graphical illustration.
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The components of the downloaded data can be reached by using the following 
shortcuts:

Cl(MSFT)     #closing prices

Op(MSFT)     #open prices

Hi(MSFT)     #daily highest price

Lo(MSFT)     #daily lowest price

ClCl(MSFT)   #close-to-close daily return

Ad(MSFT)     #daily adjusted closing price

Thus, for example, by using these shortcuts, the daily close-to-close returns can be 
plotted as follows:

chartSeries(ClCl(MSFT))  #a plotting example with shortcuts

The screenshot for the preceding command is as follows:

Interest rates are downloaded from the FRED (Federal Reserve Economic Data) 
data source. The current version of the interface does not allow subsetting of dates; 
however, downloaded data is stored in an xts data class, which is straightforward  
to subset to obtain our period of interest:

DTB3.sub <- DTB3['2004-01-02/2014-03-31']
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The downloaded prices (which are supposed to be nonstationary series) should 
be transformed into a stationary series for analysis; that is, we will work with log 
returns, calculated from the adjusted series:

MSFT.ret <- diff(log(Ad(MSFT)))

SNP.ret  <- diff(log(Ad(SNP)))

To proceed, we need a last data-cleansing step before turning to VAR model fitting.  
By eyeballing the data, we can see that missing data exists in T-Bill return series, 
and the lengths of our databases are not the same (on some dates, there are interest 
rate quotes, but equity prices are missing). To solve these data-quality problems, we 
choose, for now, the easiest possible solution: merge the databases (by omitting all data 
points for which we do not have all three data), and omit all NA data. The former is 
performed by the inner join parameter (see help of the merge function for details):

dataDaily <- na.omit(merge(SNP.ret,MSFT.ret,DTB3.sub), join='inner')

Here, we note that VAR modeling is usually done on lower frequency data.  
There is a simple way of transforming your data to monthly or quarterly frequencies, 
by using the following functions, which return with the opening, highest, lowest, 
and closing value within the given period:

SNP.M  <- to.monthly(SNP.ret)$SNP.ret.Close

MSFT.M <- to.monthly(MSFT.ret)$MSFT.ret.Close

DTB3.M <- to.monthly(DTB3.sub)$DTB3.sub.Close

A simple reduced VAR model may be fitted to the data by using the VAR() function 
of the vars package. The parameterization shown in the following code allows a 
maximum of 4 lags in the equations, and choose the model with the best (lowest) 
Akaike Information Criterion value:

var1 <- VAR(dataDaily, lag.max=4, ic="AIC")

For a more established model selection, you can consider using VARselect(),  
which provides multiple information criteria (output omitted):

>VARselect(dataDaily,lag.max=4)

The resulting object is an object of the varest class. Estimated parameters and 
multiple other statistical results can be obtained by the summary() method or the 
show() method (that is, by just typing the variable):

summary(var1)

var1
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There are other methods worth mentioning. The custom plotting method for the 
varest class generates a diagram for all variables separately, including its fitted 
values, residuals, and autocorrelation and partial autocorrelation functions of the 
residuals. You need to hit Enter to get the new variable. Plenty of custom settings  
are available; please consult the vars package documentation:

plot(var1)       #Diagram of fit and residuals for each variables

coef(var1)       #concise summary of the estimated variables

residuals(var1)  #list of residuals (of the corresponding ~lm)

fitted(var1)     #list of fitted values

Phi(var1)        #coefficient matrices of VMA representation

Predictions using our estimated VAR model can be made by simply calling the 
predict function and by adding a desired confidence interval:

var.pred <- predict(var1, n.ahead=10, ci=0.95)

Impulse responses should be first generated numerically by irf(), and then they can 
be plotted by the plot() method. Again, we get different diagrams for each variable, 
including the respective impulse response functions with bootstrapped confidence 
intervals as shown in the following command:

var.irf <- irf(var1)

plot(var.irf)

Now, consider fitting a structural VAR model using parameter restrictions described 
earlier as an A-model. The number of required restrictions for the SVAR model that 
is identified is ( )1

2
K K − ; in our case, this is 3.

See Lütkepohl (2007) for more details. The number of additional 

restrictions required is ( )1
2

K K + , but the diagonal elements are 

normalized to unity, which leaves us with the preceding number.

The point of departure for an SVAR model is the already estimated reduced form 
of the VAR model (var1). This has to be amended with an appropriately structured 
restriction matrix.

For the sake of simplicity, we will use the following restrictions:

• S&P index shocks do not have a contemporaneous effect on Microsoft
• S&P index shocks do not have a contemporaneous effect on interest rates
• T-Bonds interest rate shocks have no contemporaneous effect on Microsoft
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These restrictions enter into the SVAR model as 0s in the A matrix, which is  
as follows:

12 13

32

1
0 1 0
0 1

a a

a

When setting up the A matrix as a parameter for SVAR estimation in R, the positions 
of the to-be estimated parameters should take the NA value. This can be done with 
the following assignments:

amat <- diag(3)

amat[2, 1] <- NA

amat[2, 3] <- NA

amat[3, 1] <- NA

Finally, we can fit the SVAR model and plot the impulse response functions  
(the output is omitted):

svar1 <- SVAR(var1, estmethod='direct', Amat = amat)

irf.svar1 <- irf(svar1)

plot(irf.svar1)

Cointegrated VAR and VECM
Finally, we put together what we have learned so far, and discuss the concepts of 
Cointegrated VAR and Vector Error Correction Models (VECM).

Our starting point is a system of cointegrated variables (for example, in a trading 
context, this indicates a set of similar stocks that are likely to be driven by the same 
fundamentals). The standard VAR models discussed earlier can only be estimated 
when the variables are stationary. As we know, the conventional way to remove 
unit root model is to first differentiate the series; however, in the case of cointegrated 
series, this would lead to overdifferencing and losing information conveyed by the 
long-term comovement of variable levels. Ultimately, our goal is to build up a model 
of stationary variables, which also incorporates the long-term relationship between 
the original cointegrating nonstationary variables, that is, to build a cointegrated 
VAR model. This idea is captured by the Vector Error Correction Model (VECM), 
which consists of a VAR model of the order p - 1 on the differences of the variables, 
and an error-correction term derived from the known (estimated) cointegrating 
relationship. Intuitively, and using the stock market example, a VECM model 
establishes a short-term relationship between the stock returns, while correcting  
with the deviation from the long-term comovement of prices.
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Formally, a two-variable VECM, which we will discuss as a numerical example, can 
be written as follows. Let ty  be a vector of two nonstationary unit root series ( ) ( )1 2,t ty y  
where the two series are cointegrated with a cointegrating vector ( )1,β=β . Then, an 
appropriate VECM model can be formulated as follows:

1 1 1 1 1't t t t p ty y y y− − − +∆ = + ∆ + + ∆ +∈�αβ ψ ψ

Here, 1t t ty y y −∆ = −  and the first term are usually called the error correction terms.

In practice, there are two approaches to test cointegration and build the error 
correction model. For the two-variable case, the Engle-Granger method is quite 
instructive; our numerical example basically follows that idea. For the multivariate 
case, where the maximum number of possible cointegrating relationships is ( )1n − , 
you have to follow the Johansen procedure. Although the theoretical framework for 
the latter goes far beyond the scope of this book, we briefly demonstrate the tools for 
practical implementation and give references for further studies.

To demonstrate some basic R capabilities regarding VECM models, we will use a 
standard example of three months and six months T-Bill secondary market rates, 
which can be downloaded from the FRED database, just as we discussed earlier.  
We will restrict our attention to an arbitrarily chosen period, that is, from 1984 to 
2014. Augmented Dickey Fuller tests indicate that the null hypothesis of the unit  
root cannot be rejected.

library('quantmod')

getSymbols('DTB3', src='FRED')

getSymbols('DTB6', src='FRED')

DTB3.sub = DTB3['1984-01-02/2014-03-31']

DTB6.sub = DTB6['1984-01-02/2014-03-31']

plot(DTB3.sub)

lines(DTB6.sub, col='red')

We can consistently estimate the cointegrating relationship between the two series 
by running a simple linear regression. To simplify coding, we define the variables  
x1 and x2 for the two series, and y for the respective vector series. The other 
variable-naming conventions in the code snippets will be self-explanatory:

x1=as.numeric(na.omit(DTB3.sub))

x2=as.numeric(na.omit(DTB6.sub))

y = cbind(x1,x2)

cregr <- lm(x1 ~ x2)

r = cregr$residuals
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The two series are indeed cointegrated if the residuals of the regression (variable r), 
that is, the appropriate linear combination of the variables, constitute a stationary 
series. You could test this with the usual ADF test, but in these settings, the 
conventional critical values are not appropriate, and corrected values should be used 
(see, for example Phillips and Ouliaris (1990)).

It is therefore much more appropriate to use a designated test for the existence of 
cointegration, for example, the Phillips and Ouliaris test, which is implemented in 
the tseries and in the urca packages as well. The most basic tseries version is 
demonstrated as follows:

install.packages('tseries');library('tseries');

po.coint <- po.test(y, demean = TRUE, lshort = TRUE)

The null hypothesis states that the two series are not cointegrated, so the low p value 
indicates rejection of null and presence of cointegration.

The Johansen procedure is applicable for more than one possible cointegrating 
relationship; an implementation can be found in the urca package:

yJoTest = ca.jo(y, type = c("trace"), ecdet = c("none"), K = 2)

###################### 

# Johansen-Procedure # 

###################### 

Test type: trace statistic , with linear trend 

Eigenvalues (lambda):

[1] 0.0160370678 0.0002322808

Values of teststatistic and critical values of test:

           test 10pct  5pct  1pct

r <= 1 |   1.76  6.50  8.18 11.65

r = 0  | 124.00 15.66 17.95 23.52

Eigenvectors, normalised to first column:

(These are the cointegration relations)

www.allitebooks.com
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          DTB3.l2   DTB6.l2

DTB3.l2  1.000000  1.000000

DTB6.l2 -0.994407 -7.867356

Weights W:

(This is the loading matrix)

            DTB3.l2      DTB6.l2

DTB3.d -0.037015853 3.079745e-05

DTB6.d -0.007297126 4.138248e-05

The test statistic for r = 0 (no cointegrating relationship) is larger than the critical 
values, which indicates the rejection of the null. For 1r ≤ , however, the null cannot 
be rejected; therefore, we conclude that one cointegrating relationship exists. The 
cointegrating vector is given by the first column of the normalized eigenvectors 
below the test results.

The final step is to obtain the VECM representation of this system, that is, to run an 
OLS regression on the lagged differenced variables and the error correction term 
derived from the previously calculated cointegrating relationship. The appropriate 
function utilizes the ca.jo object class, which we created earlier. The r = 1 parameter 
signifies the cointegration rank which is as follows:

>yJoRegr = cajorls(dyTest, r=1)

>yJoRegr

$rlm

Call:

lm(formula = substitute(form1), data = data.mat)

Coefficients:

          x1.d        x2.d      

ect1      -0.0370159  -0.0072971

constant  -0.0041984  -0.0016892

x1.dl1     0.1277872   0.1538121

x2.dl1     0.0006551  -0.0390444
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$beta

           ect1

x1.l1  1.000000

x2.l1 -0.994407

The coefficient of the error-correction term is negative, as we expected; a short-term 
deviation from the long-term equilibrium level would push our variables back to the 
zero equilibrium deviation.

You can easily check this in the bivariate case; the result of the Johansen procedure 
method leads to approximately the same result as the step-by-step implementation 
of the ECM following the Engle-Granger procedure. This is shown in the uploaded R 
code files.

Volatility modeling
It is a well-known and commonly accepted stylized fact in empirical finance that 
the volatility of financial time series varies over time. However, the non-observable 
nature of volatility makes the measurement and forecasting a challenging exercise. 
Usually, varying volatility models are motivated by three empirical observations:

• Volatility clustering: This refers to the empirical observation that calm 
periods are usually followed by calm periods while turbulent periods by 
turbulent periods in the financial markets.

• Non-normality of asset returns: Empirical analysis has shown that asset 
returns tend to have fat tails relative to the normal distribution.

• Leverage effect: This leads to an observation that volatility tends to react 
differently to positive or negative price movements; a drop in prices 
increases the volatility to a larger extent than an increase of similar size.

In the following code, we demonstrate these stylized facts based on S&P asset prices. 
Data is downloaded from yahoofinance, by using the already known method:

getSymbols("SNP", from="2004-01-01", to=Sys.Date())

chartSeries(Cl(SNP))

Our purpose of interest is the daily return series, so we calculate log returns from the 
closing prices. Although it is a straightforward calculation, the Quantmod package 
offers an even simpler way:

ret <- dailyReturn(Cl(SNP), type='log')
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Volatility analysis departs from eyeballing the autocorrelation and partial 
autocorrelation functions. We expect the log returns to be serially uncorrelated, but 
the squared or absolute log returns to show significant autocorrelations. This means 
that Log returns are not correlated, but not independent. 

Notice the par(mfrow=c(2,2)) function in the following code; by this, we overwrite 
the default plotting parameters of R to organize the four diagrams of interest in a 
convenient table format:

par(mfrow=c(2,2))

acf(ret, main="Return ACF");

pacf(ret, main="Return PACF");

acf(ret^2, main="Squared return ACF");

pacf(ret^2, main="Squared return PACF")

par(mfrow=c(1,1))

The screenshot for preceding command is as follows:
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Next, we look at the histogram and/or the empirical distribution of daily log returns 
of S&P and compare it with the normal distribution of the same mean and standard 
deviation. For the latter, we use the function density(ret), which computes the 
nonparametric empirical distribution function. We use the function curve()with an 
additional parameter add=TRUE to plot a second line to an already existing diagram:

m=mean(ret);s=sd(ret);

par(mfrow=c(1,2))

hist(ret, nclass=40, freq=FALSE, main='Return histogram');curve(dnorm(x, 
mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red")

plot(density(ret), main='Return empirical distribution');curve(dnorm(x, 
mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red")

par(mfrow=c(1,1))

The excess kurtosis and fat tails are obvious, but we can confirm numerically  
(using the moments package) that the kurtosis of the empirical distribution of our 
sample exceeds that of a normal distribution (which is equal to 3). Unlike some other 
software packages, R reports the nominal value of kurtosis, and not excess kurtosis 
which is as follows:

> kurtosis(ret)

daily.returns 

     12.64959



Time Series Analysis

[ 26 ]

It might be also useful to zoom in to the upper or the lower tail of the diagram.  
This is achieved by simply rescaling our diagrams:

# tail zoom

plot(density(ret), main='Return EDF - upper tail', xlim = c(0.1, 0.2), 
ylim=c(0,2));

curve(dnorm(x, mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red")

Another useful visualization exercise is to look at the Density on log-scale  
(see the following figure, left), or a QQ-plot (right), which are common tools 
to comparing densities. QQ-plot depicts the empirical quantiles against that of 
a theoretical (normal) distribution. In case our sample is taken from a normal 
distribution, this should form a straight line. Deviations from this straight line  
may indicate the presence of fat tails:

# density plots on log-scale

plot(density(ret), xlim=c(-5*s,5*s),log='y', main='Density on log-scale')

curve(dnorm(x, mean=m,sd=s), from=-5*s, to=5*s, log="y", add=TRUE, 
col="red")

# QQ-plot

qqnorm(ret);qqline(ret);
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The screenshot for preceding command is as follows:

Now, we can turn our attention to modeling volatility.

Broadly speaking, there are two types of modeling techniques in the financial 
econometrics literature to capture the varying nature of volatility: the GARCH-family 
approach (Engle, 1982 and Bollerslev, 1986) and the stochastic volatility (SV) models. 
As for the distinction between them, the main difference between the GARCH-type 
modeling and (genuine) SV-type modeling techniques is that in the former, the 
conditional variance given in the past observations is available, while in SV-models, 
volatility is not measurable with respect to the available information set; therefore, it 
is hidden by nature, and must be filtered out from the measurement equation (see, for 
example, Andersen – Benzoni (2011)). In other words, GARCH-type models involve the 
estimation of volatility based on past observations, while in SV-models, the volatility 
has its own stochastic process, which is hidden, and return realizations should 
be used as a measurement equation to make inferences regarding the underlying 
volatility process.

In this chapter, we introduce the basic modeling techniques for the GARCH 
approach for two reasons; first of all, it is much more proliferated in applied works. 
Secondly, because of its diverse methodological background, SV models are not yet 
supported by R packages natively, and a significant amount of custom development 
is required for an empirical implementation.
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GARCH modeling with the rugarch package
There are several packages available in R for GARCH modeling. The most prominent 
ones are rugarch, rmgarch (for multivariate models), and fGarch; however, the 
basic tseries package also includes some GARCH functionalities. In this chapter, 
we will demonstrate the modeling facilities of the rugarch package. Our notations 
in this chapter follow the respective ones of the rugarch package's output and 
documentation.

The standard GARCH model
A GARCH (p,q) process may be written as follows:

t t tσ η∈ =

2 2 2

1 1

q q

t i t i j t j
i j

σ ω α β σ− −
= =

= + ∈ +∑ ∑

Here, t∈  is usually the disturbance term of a conditional mean equation (in practice, 

usually an ARMA process) and ( )~ i.i.d. 0,1tη . That is, the conditional volatility process 

is determined linearly by its own lagged values 2
t jσ −  and the lagged squared 

observations (the values of t∈ ). In empirical studies, GARCH (1,1) usually provides 

an appropriate fit to the data. It may be useful to think about the simple GARCH 

(1,1) specification as a model in which the conditional variance is specified as a 

weighted average of the long-run variance 1
ω
α β− − , the last predicted variance 2

1tσ − ,  

and the new information 2
1t−∈  (see Andersen et al. (2009)). It is easy to see how the 

GARCH (1,1) model captures autoregression in volatility (volatility clustering) and 

leptokurtic asset return distributions, but as its main drawback, it is symmetric, and 

cannot capture asymmetries in distributions and leverage effects.

The emergence of volatility clustering in a GARCH-model is highly intuitive; a large 
positive (negative) shock in tη  increases (decreases) the value of t∈ , which in turn 
increases (decreases) the value of 1tσ + , resulting in a larger (smaller) value for 1t+∈ . 
The shock is persistent; this is volatility clustering. Leptokurtic nature requires some 
derivation; see for example Tsay (2010).
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Our empirical example will be the analysis of the return series calculated from  
the daily closing prices of Apple Inc. based on the period from Jan 01, 2006 to  
March 31, 2014. As a useful exercise, before starting this analysis, we recommend 
that you repeat the exploratory data analysis in this chapter to identify stylized  
facts on Apple data.

Obviously, our first step is to install a package, if not installed yet:

install.packages('rugarch');library('rugarch')

To get the data, as usual, we use the quantmod package and the getSymbols() 
function, and calculate return series based on the closing prices.

#Load Apple data and calculate log-returns

getSymbols("AAPL", from="2006-01-01", to="2014-03-31")

ret.aapl <- dailyReturn(Cl(AAPL), type='log')

chartSeries(ret.aapl)

The programming logic of rugarch can be thought of as follows: irrespective of 
whatever your aim is (fitting, filtering, forecasting, and simulating), first, you have to 
specify a model as a system object (variable), which in turn will be inserted into the 
respective function. Models can be specified by calling ugarchspec(). The following 
code specifies a simple GARCH (1,1) model, (sGARCH), with only a constant µ  in 
the mean equation:

garch11.spec = ugarchspec(variance.model = list(model="sGARCH", 
garchOrder=c(1,1)), mean.model = list(armaOrder=c(0,0)))

An obvious way to proceed is to fit this model to our data, that is, to estimate  
the unknown parameters by maximum likelihood, based on our time series of  
daily returns:

aapl.garch11.fit = ugarchfit(spec=garch11.spec, data=ret.aapl)

The function provides, among a number of other outputs, the parameter estimations 
1 1, , ,µ ω α β :

> coef(aapl.garch11.fit)

          mu        omega       alpha1        beta1 

1.923328e-03 1.027753e-05 8.191681e-02 8.987108e-01
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Estimates and various diagnostic tests can be obtained by the show() method of the 
generated object (that is, by just typing the name of the variable). A bunch of other 
statistics, parameter estimates, standard error, and covariance matrix estimates 
can be reached by typing the appropriate command. For the full list, consult the 
ugarchfit object class; the most important ones are shown in the following code:

coef(msft.garch11.fit)          #estimated coefficients

vcov(msft.garch11.fit)          #covariance matrix of param estimates

infocriteria(msft.garch11.fit)  #common information criteria list

newsimpact(msft.garch11.fit)    #calculate news impact curve

signbias(msft.garch11.fit)      #Engle - Ng sign bias test

fitted(msft.garch11.fit)        #obtain the fitted data series

residuals(msft.garch11.fit)     #obtain the residuals

uncvariance(msft.garch11.fit)   #unconditional (long-run) variance

uncmean(msft.garch11.fit)       #unconditional (long-run) mean

Standard GARCH models are able to capture fat tails and volatility clustering, but to 
explain asymmetries caused by the leverage effect, we need more advanced models. 
To approach the asymmetry problem visually, we will now describe the concept of 
news impact curves.

News impact curves, introduced by Pagan and Schwert (1990) and Engle and Ng 
(1991), are useful tools to visualize the magnitude of volatility changes in response to 
shocks. The name comes from the usual interpretation of shocks as news influencing 
the market movements. They plot the change in conditional volatility against shocks 
in different sizes, and can concisely express the asymmetric effects in volatility. In 
the following code, the first line calculates the news impacts numerically for the 
previously defined GARCH(1,1) model, and the second line creates the visual plot:

ni.garch11 <- newsimpact(aapl.garch11.fit)

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2, col="blue", 
main="GARCH(1,1) - News Impact", ylab=ni.garch11$yexpr, xlab=ni.
garch11$xexpr)
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The screenshot for the preceding command is as follows:

As we expected, no asymmetries are present in response to positive and negative 
shocks. Now, we turn to models to be able to incorporate asymmetric effects as well.

The Exponential GARCH model (EGARCH)
Exponential GARCH models were introduced by Nelson (1991). This approach 
directly models the logarithm of the conditional volatility:

t t tσ η∈ =

( )( ) ( )2 2

1 1
log log

q q

t i t i t i t i j t j
i j

Eσ ω αη γ η η β σ− − − −
= =

= + + − +∑ ∑

where, E is the expectation operator. This model formulation allows multiplicative 
dynamics in evolving the volatility process. Asymmetry is captured by the iα  
parameter; a negative value indicates that the process reacts more to negative shocks, 
as observable in real data sets.

www.allitebooks.com
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To fit an EGARCH model, the only parameter to be changed in a model specification 
is to set the EGARCH model type. By running the fitting function, the additional 
parameter will be estimated (see coef()):

# specify EGARCH(1,1) model with only constant in mean equation

egarch11.spec = ugarchspec(variance.model = list(model="eGARCH", 
garchOrder=c(1,1)), mean.model = list(armaOrder=c(0,0)))

aapl.egarch11.fit = ugarchfit(spec=egarch11.spec, data=ret.aapl)

> coef(aapl.egarch11.fit)

          mu        omega       alpha1        beta1       gamma1 

 0.001446685 -0.291271433 -0.092855672  0.961968640  0.176796061

News impact curve reflects the strong asymmetry in response of conditional 
volatility to shocks and confirms the necessity of asymmetric models:

ni.egarch11 <- newsimpact(aapl.egarch11.fit)

plot(ni.egarch11$zx, ni.egarch11$zy, type="l", lwd=2, col="blue", 
main="EGARCH(1,1) - News Impact",

ylab=ni.egarch11$yexpr, xlab=ni.egarch11$xexpr)
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The Threshold GARCH model (TGARCH)
Another prominent example is the TGARCH model, which is even easier to interpret. 
The TGARCH specification involves an explicit distinction of model parameters 
above and below a certain threshold. TGARCH is also a submodel of a more general 
class, the asymmetric power ARCH class, but we will discuss it separately because of 
its wide penetration in applied financial econometrics literature.

The TGARCH model may be formulated as follows:

t t tσ η∈ =

( )2 2 2

1 1

q q

t i i t i t i j t j
i j

Iσ ω α γ β σ− − −
= =

= + + ∈ +∑ ∑

where 1

1

1 0
0 0

t
t i

t

if
I

if
−

−
−

∈ <
=  ∈ ≥

The interpretation is straightforward; the ARCH coefficient depends on the sign of 
the previous error term; if 1γ  is positive, a negative error term will have a higher 
impact on the conditional volatility, just as we have seen in the leverage effect before.

In the R package, rugarch, the threshold GARCH model is implemented in a 
framework of an even more general class of GARCH models, called the Family 
GARCH model Ghalanos (2014).

# specify TGARCH(1,1) model with only constant in mean equation

tgarch11.spec = ugarchspec(variance.model = list(model="fGARCH", 
submodel="TGARCH", garchOrder=c(1,1)), 

          mean.model = list(armaOrder=c(0,0)))

aapl.tgarch11.fit = ugarchfit(spec=tgarch11.spec, data=ret.aapl)

> coef(aapl.egarch11.fit)

          mu        omega       alpha1        beta1       gamma1 

 0.001446685 -0.291271433 -0.092855672  0.961968640  0.176796061
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Thanks to the specific functional form, the news impact curve for a  
Threshold-GARCH is less flexible in representing different responses, there is  
a kink at the zero point which can be seen when we run the following command:

ni.tgarch11 <- newsimpact(aapl.tgarch11.fit)

plot(ni.tgarch11$zx, ni.tgarch11$zy, type="l", lwd=2, col="blue", 
main="TGARCH(1,1) - News Impact",

ylab=ni.tgarch11$yexpr, xlab=ni.tgarch11$xexpr)

Simulation and forecasting
The Rugarch package allows an easy way to simulate from a specified model. Of 
course, for simulation purposes, we should also specify the parameters of the model 
within ugarchspec(); this could be done by the fixed.pars argument. After 
specifying the model, we can simulate a time series with a given conditional mean 
and GARCH specification by using simply the ugarchpath() function:

garch11.spec = ugarchspec(variance.model = list(garchOrder=c(1,1)), 

  mean.model = list(armaOrder=c(0,0)),

    fixed.pars=list(mu = 0, omega=0.1, alpha1=0.1,

      beta1 = 0.7))

garch11.sim = ugarchpath(garch11.spec, n.sim=1000)
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Once we have an estimated model and technically a fitted object, forecasting the 
conditional volatility based on that is just one step:

aapl.garch11.fit = ugarchfit(spec=garch11.spec, data=ret.aapl, out.
sample=20)

aapl.garch11.fcst = ugarchforecast(aapl.garch11.fit, n.ahead=10, 
n.roll=10)

The plotting method of the forecasted series provides the user with a selection menu; 
we can plot either the predicted time series or the predicted conditional volatility.

plot(aapl.garch11.fcst, which='all')
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Summary
In this chapter, we reviewed some important concepts of time series analysis, such as 
cointegration, vector-autoregression, and GARCH-type conditional volatility models. 
Meanwhile, we have provided a useful introduction to some tips and tricks to start 
modeling with R for quantitative and empirical finance. We hope that you find these 
exercises useful, but again, it should be noted that this chapter is far from being 
complete both from time series and econometric theory, and from R programming's 
point of view. The R programming language is very well documented on the 
Internet, and the R user's community consists of thousands of advanced and 
professional users. We encourage you to go beyond books, be a self-learner, and do 
not stop if you are stuck with a problem; almost certainly, you will find an answer 
on the Internet to proceed. Use the documentation of R packages and the help files 
heavily, and study the official R-site, http://cran.r-project.org/, frequently.  
The remaining chapters will provide you with numerous additional examples to  
find your way in the plethora of R facilities, packages, and functions.
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Factor Models
In most of the cases in finance, valuation of financial assets is based on the 
discounted cash flow method; hence, the present value is calculated as the 
discounted value of the expected future cash flows. Therefore, in order to be able to 
value assets, we need to know the appropriate rate of return that reflects the time 
value of money and also the risk of the given asset. There are two main approaches 
to determine expected returns: the capital asset pricing model (CAPM) and the 
arbitrage pricing theory (APT). CAPM is an equilibrium model, while APT builds 
on the no-arbitrage principle; thus, these approaches have quite different starting 
points and inner logic. However, the final pricing formula we get can be quite 
similar, depending on the market factors we use. For the comparison of CAPM and 
APT, see Bodie-Kane-Marcus (2008). When we test any of these theoretical models on 
real-world data, we perform linear regressions. This chapter focuses on APT, since 
we have discussed CAPM in more detail in Daróczi et al. (2013).

This chapter is divided into two parts. In the first part, we introduce the theory of 
APT in general, and then we present a special three-factor model published in a 
seminal paper of Fama and French. In the second part, we show how to use R for data 
selection and how to estimate the pricing coefficients from real market data, and 
finally we re-examine the famous Fama-French model on a more recent sample.

Arbitrage pricing theory
APT relies on the assumption that asset returns in the market are determined by 
macroeconomic and firm-specific factors, and asset returns are generated by the 
following linear factor model:

( ) 1

n
i i ij j ij
r E r F eβ

=
= + +∑

Equation 1
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Here, E(ri) is the expected return of asset i, Fj stands for the unexpected change of 

the jth factor, and bij shows the ith security's sensitivity for that factor, while ei is the 

return caused by unexpected firm-specific events. So 1

n
ij jj
Fβ

=∑  represents the random 

systemic effect, and ei represents the non-systemic (that is idiosyncratic) effect, which is 

not captured by the market factors. Being unexpected, both 1

n
ij jj
Fβ

=∑  and ei have a zero 

mean. In this model, factors are independent of each other and the firm-specific risk. 

Thus, asset returns are derived from two sources: the systemic risk of the factors that 

affect all assets in the market and the non-systematic risk that impacts only that special 

firm. A non-systemic risk can be diversified by holding more assets in the portfolio. In 

contrast, a systemic risk cannot be diversified, as it is caused by economy-wide sources 

of risks that affect the overall stock market (Brealey-Myers, 2005).

As a consequence of the model, the realized return of an asset is the linear 
combination of multiple random factors (Wilmott, 2007).

Other important assumptions of APT are as follows:

• There are a finite number of investors on the market who optimize their 
portfolio for the next period. They are equally informed and have no  
market power.

• There is a riskless asset and an infinite number of risky assets traded 
continuously; thus, firm-specific risks can be totally eliminated by 
diversification. A portfolio that has zero firm-specific risks is called  
a well-diversified portfolio.

• Investors are rational in the sense that if an arbitrage opportunity  
occurs (financial assets are mispriced relative to each other), then investors 
immediately buy the underpriced security/securities and sell the overpriced 
one(s), and they will take an infinitely large position in order to earn as much 
riskless profit as possible. Consequently, any mispricing will disappear  
on the spot.

• Factor portfolios exist, and they are continuously tradable. A factor 
portfolio is a well-diversified portfolio that reacts only to one of the factors; 
specifically, it has a beta of 1 for that specified factor and a beta of 0 for all 
other factors.



Chapter 2

[ 41 ]

From the preceding assumptions, it can be shown that any portfolio's risk  
premium equals the weighted sum of the factor portfolios' risk premium  
(Medvegyev-Száz, 2010). The following pricing formula can be derived in the  
case of a two-factor model:

( ) ( ) ( )1 1 2 2i f i f i fE r r r r r rβ β− = − + −

Equation 2

Here, ri is the return of the ith asset, rf is the risk-free return, bi1 is the sensitivity of 
the ith stock's risk premium to the first systemic factor, and (r1-rf) is the risk premium 
of this factor. Similarly, bi2 is the sensitivity of the ith stock's risk premium to the 
second factor's excess return (r2-rf).

When we implement APT, we perform a linear regression in the following form:

( ) ( ) ( )1 1 2 2i f i i f i f ir r r r r rα β β ε− = + − + − +

Equation 3

Here, ai stands for a constant and εi is the asset's non-systemic, firm-specific risk.  
All other variables are the same as mentioned previously.

If there is only one factor in the model, and it is the return of the market portfolio,  
the pricing equation of the CAPM model and APT model will coincide:

( ) ( )i f i m fE r r r rβ− = −

Equation 4

In this case, the formula to be tested on real market data is as follows:

( ) ( )i f i i m f ir r r rα β ε− = + − +

Equation 5

Here, mr  is the return of a market portfolio represented by a market index (like the 
S&P 500). This is why we call Equation (5) the index model.
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http://www.allitebooks.org


Factor Models

[ 42 ]

Implementation of APT
The implementation of APT can be split into four steps: identifying the factors, 
estimating the factor coefficient, estimating the factor premiums, and pricing with  
APT (Bodie et al. 2008):

1. Identifying the factors: As APT mentions nothing about the factors, they 
have to be identified empirically. These factors are usually macroeconomic 
factors, like stock market return, inflation, business cycle, and so on. The 
main problem in using macroeconomic factors is that factors are usually not 
independent of each other. The identification of the factors is often carried 
out by factor analysis. However, factors identified by factor analysis cannot 
necessarily be interpreted in an economically meaningful way.

2. Estimating factor coefficients: In order to estimate the coefficients in a 
multivariate linear regression model, a general version of Equation (3)  
is used.

3. Estimating the factor premiums: The estimation of the factor premiums  
is based on historical data, taking the average of the historical time-series 
data of the premiums of the factor portfolios.

4. Pricing with APT: Equation (2) is used for calculating  the expected return of 
any asset by substituting the appropriate variables into the equation.

Fama-French three-factor model
Fama and French proposed a multifactor model in 1996, in which they used 
corporate indicators as factors instead of macroeconomic factors, since they found 
that these factors better describe the systemic risk of assets. Fama and French (1996) 
extended the index model by adding the firm size and the book-to-market ratio as 
return-generating factors to the market portfolio returns (Fama and French, 1996).

The firm size factor was constructed by taking the difference between the returns of 
small and large firms (rSMB). The name of the variable was SMB, which is derived from 
"small minus big". The book-to-market factor was calculated by taking the difference 
between firms' returns that have a high and low book-to-market ratio (rHML). The name 
of the variable was HML, which is derived from "high minus low".
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Their model was the following:

( )i f i iM M f iHML HML iSMB SMB ir r r r r r eα β β β− = + − + + +

Equation 6

Here, ai is a constant, which shows the abnormal rate of return, rf is the risk-free 
return, and biHML is the ith asset's sensitivity to the book-to-market factor, while biSMB 
is the ith asset's sensitivity to the factor of size, biM is the sensitivity of the ith stock's 
risk premium to the market index factor, (rM-rf) is the risk premium of this factor, and 
ei is the asset's non-systemic, firm-specific risk with zero mean.

Modeling in R
In the following section, we will learn the implementation of the previously 
described models with the help of R.

Data selection
In Chapter 4, Big Data – Advanced Analytics, we will discuss in detail the aspects and 
methods of getting data from open sources and working with them efficiently. Here, 
we only present how the time series of stock prices and other relevant information 
can be acquired and used for the factor model's estimations.

We used the quantmod package to collect the database.

Here is how it works in R:

library(quantmod)

stocks <- stockSymbols()

As a result, we need to wait for a few seconds while data is fetched, and then we can 
see the output:

Fetching AMEX symbols...

Fetching NASDAQ symbols...

Fetching NYSE symbols...
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Now, we have a data frame R object that contains about 6,500 stocks that are traded 
on different exchanges such as AMEX, NASDAQ, or NYSE. In order to see the 
variables that the dataset contains, we can use the str command:

str(stocks)

'data.frame':   6551 obs. of  8 variables:

 $ Symbol   : chr  "AA-P" "AAMC" "AAU" "ACU" ...

 $ Name     : chr  "Alcoa Inc." "Altisource Asset Management Corp"...

 $ LastSale : num  87 1089.9 1.45 16.58 16.26 ...

 $ MarketCap: num  0.00 2.44e+09 9.35e+07 5.33e+07 2.51e+07 ...

 $ IPOyear  : int  NA NA NA 1988 NA NA NA NA NA NA ...

 $ Sector   : chr  "Capital Goods" "Finance" "Basic Industries"...

 $ Industry : chr  "Metal Fabrications" "Real Estate"...

 $ Exchange : chr  "AMEX" "AMEX" "AMEX" "AMEX" ...

We can drop the variables that we don't really need and include the information 
about market capitalization and the book value of the company coming from  
a different database as new variables since we will need them to estimate the  
Fama-French model:

stocks[1:5, c(1, 3:4, ncol(stocks))]

      Symbol LastSale  MarketCap BookValuePerShare

1   AA-P    87.30          0              0.03

2   AAMC   985.00 2207480545            -11.41

3    AAU     1.29   83209284              0.68

4    ACU    16.50   53003808             10.95

5    ACY    16.40   25309415             30.13

We will also need the time series of the risk-free return, which will be quantified in 
this calculation by the one-month USD LIBOR rate:

library(Quandl)

Warning message:

package 'Quandl' was built under R version 3.1.0 

LIBOR <- Quandl('FED/RILSPDEPM01_N_B',

start_date = '2010-06-01', end_date = '2014-06-01')

Warning message:
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In Quandl("FED/RILSPDEPM01_N_B", start_date = "2010-06-01", end_date  
= "2014-06-01") : It would appear you aren't using an authentication  
token. Please visit http://www.quandl.com/help/r or your usage may be  
limited.

We can ignore the warning messages as data is still assigned to the LIBOR variable.

The Quandl package, the tseries package, and other packages that collect data are 
discussed in Chapter 4, Big Data – Advanced Analytics, in more detail.

This can also be used to get the prices of stocks, and the S&P 500 index can be used 
as the market portfolio.

We have a table with stock prices (a time series of approximately 5,000 stock prices 
between June 1, 2010 to June 1, 2014). The first and last few columns look like this:

d <- read.table("data.csv", header = TRUE, sep = ";")

d[1:7, c(1:5, (ncol(d) - 6):ncol(d))]

         Date       SP500  AAU   ACU   ACY   ZMH   ZNH ZOES  ZQK ZTS  
ZX

1  2010.06.01 1070.71 0.96 11.30 20.64 54.17 21.55  NA  4.45 NA NA

2  2010.06.02 1098.38 0.95 11.70 20.85 55.10 21.79  NA  4.65 NA NA

3  2010.06.03 1102.83 0.97 11.86 20.90 55.23 21.63  NA  4.63 NA NA

4  2010.06.04 1064.88 0.93 11.65 18.95 53.18 20.88  NA  4.73 NA NA

5  2010.06.07 1050.47 0.97 11.45 19.03 52.66 20.24  NA  4.18 NA NA

6  2010.06.08 1062.00 0.98 11.35 18.25 52.99 20.96  NA  3.96 NA NA

7  2010.06.09 1055.69 0.98 11.90 18.35 53.22 20.45  NA  4.02 NA NA

If we have the data saved on our hard drive, we can simply read it with the  
read.table function. In Chapter 4, Big Data – Advanced Analytics, we will discuss 
how to collect data directly from the Internet.

Now, we have all the data we need: the market portfolio (S&P 500), the price of 
stocks, and the risk-free rates (one-month LIBOR).

We have chosen to delete the variables with missing values and 0 or negative prices, 
in order to clean the database. The easiest way to do this is the following:

d <- d[, colSums(is.na(d)) == 0]

d <- d[, c(T, colMins(d[, 2:ncol(d)]) > 0)]

To use the colMins function, we apply the matrixStats package. Now, we can start 
working with the data.
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Estimation of APT with principal component 
analysis
In practice, it is not easy to carry out a factor analysis, because identifying the macro 
variables that have an effect on the securities' return is difficult (Medvegyev – Száz, 
2010, pp. 42). In many cases, the latent factors that drive the returns are searched by 
principal component analysis.

From the originally downloaded 6,500 stocks, we can use the data of 4,015 stocks; 
the rest were excluded because of missing values or 0 prices. Now, we omit the first 
two columns because we do not need the dates in this section, and the S&P 500 is 
considered as a separate factor in itself; hence, we do not include it in the principal 
component analysis (PCA). After this, the log returns are computed.

p <- d[, 3:ncol(d)]

r <- log(p[2:nrow(p), ] / p[1:(nrow(p) - 1), ])

There exists another way to calculate the log returns of a given asset, that is, by using 
return.calculate(data, method="log") with the PerformanceAnalytics library.

As we have too many stocks, in order to carry out PCA, either we have to have data 
of at least 25 years, or we need to reduce the number of stocks. It's hopeless for factor 
models to remain stable for decades; hence, for illustration purposes, we choose to 
select 10 percent of the stocks randomly and compute the model for this sample:

r <- r[, runif(nrow(r)) < 0.1]

runif(nrow(r)) < 0.1 is a 4,013 dimension 0-1 vector, which chooses 
approximately 10 percent of the columns (in our case, 393) from the table. We can 
also use the following sample function for this, on which you can find further details 
at http://stat.ethz.ch/R-manual/R-devel/library/base/html/sample.html:

pca <- princomp(r)

As a result, we receive a princomp class object, which has eight attributes, of which 
the most important ones are the loading matrix and the sdev attributes, which 
contain the standard deviations of the components. The first principal component is 
the vector on which the data set has the maximum variance.

Let's check the standard deviations of the principal component:

plot(pca$sdev)

http://stat.ethz.ch/R-manual/R-devel/library/base/html/sample.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/sample.html
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The result is as follows:

We can see that the first five components are separated; consequently, five factors 
should be chosen, but other factors also have significant standard deviations, so the 
market cannot be explained by a few factors.

We can confirm this result by calling the factanal function, which estimates the 
factor model with five factors:

factanal(r, 5)

We notice that it takes much more time to perform this computation. Factor analysis 
is related to PCA, but is a little more complicated from a mathematical aspect. As a 
result, we get an object of class factanal, which has many attributes, but now, we 
are only interested in the following part of the output:

               Factor1 Factor2 Factor3 Factor4 Factor5

SS loadings     56.474  23.631  15.440  12.092   6.257

Proportion Var   0.144   0.060   0.039   0.031   0.016

Cumulative Var   0.144   0.204   0.243   0.274   0.290

Test of the hypothesis that 5 factors are sufficient.

The chi square statistic is 91756.72 on 75073 degrees of freedom.The  
p-value is 0
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This output shows that the factor model with five factors fits, but the explained 
variance is only approximately 30 percent, which means that the model should be 
extended with other factors as well.

Estimation of the Fama-French model
We have a data frame with prices of the 4,015 stocks for five years, and the LIBOR 
data frame with the LIBOR time series. First, we need to compute the returns and 
combine them with the LIBOR rate.

As a first step, we omit the dates that are not for mathematical computations, and 
then we compute the log returns for each of the remaining columns:

d2 <- d[, 2:ncol(d)]   

d2 <- log(tail(d1, -1)/head(d1, -1))  

After calculating the log returns, we put back the dates to the returns, and then, as a 
last step, we combine the two data sets:

d <- cbind(d[2:nrow(d), 1], d2)   

d <- merge(LIBOR, d, by = 1) 

It is worth mentioning that the merge function operates on data frames equivalent to 
the (inner) join SQL statement.

The result is as follows:

print(d[1:5, 1:5])]

     Date   LIBOR      SP500                AAU             ACU

2010.06.02   0.4        0.025514387    -0.01047130     0.034786116

2010.06.03   0.4        0.004043236     0.02083409      0.013582552

2010.06.04   0.4       -0.035017487    -0.04211149    -0.017865214

2010.06.07   0.4       -0.013624434     0.04211149    -0.017316450

2010.06.08   0.4        0.010916240     0.01025650     -0.008771986

We adjust the LIBOR rate to the daily returns:

d$LIBOR <- d$LIBOR / 36000
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As the LIBOR rates are quoted on a money-market basis - (actual/360) day-count 
convention - and the time series contain the rates in percentage, we divided the 
LIBOR by 36,000. Now, we need to compute the three variables of the Fama-French 
model. As described in the Data selection section, we have the stocks' data frame:

d[1:5, c(1,(ncol(d) - 3):ncol(d))]

  Symbol LastSale  MarketCap BookValuePerShare

1   AA-P    87.30          0              0.03

2   AAMC   985.00 2207480545            -11.41

3    AAU     1.29   83209284              0.68

4    ACU    16.50   53003808             10.95

5    ACY    16.40   25309415             30.13

We have to drop the stocks for which we do not have price data:

> stocks = stocks[stocks$Symbol %in% colnames(d),]

We have the market cap as a variable; we still need to compute the book-to-market 
ratio for each:

stocks$BookToMarketRatio <-

  stocks$BookValuePerShare / stocks$LastSale

str(stocks)

'data.frame':   3982 obs. of  5 variables:

 $ Symbol           : Factor w/ 6551 levels "A","AA","AA-P",..: 14  
72...

 $ LastSale         : num  1.29 16.5 16.4 2.32 4.05 ...

 $ MarketCap        : num  8.32e+07 5.30e+07 2.53e+07 1.16e+08...

 $ BookValuePerShare: num  0.68 10.95 30.13 0.19 0.7 ...

 $ BookToMarketRatio: num  0.5271 0.6636 1.8372 0.0819 0.1728 ...

Now, we need to compute the SMB and HML factors. For simplification, we will 
define companies as BIG if they are bigger than the average. The same principle is 
applied for the book-to-market ratio:

avg_size <- mean(stocks$MarketCap)

BIG   <- as.character(stocks$Symbol[stocks$MarketCap > avg_size])

SMALL <- as.character(stocks[stocks$MarketCap < avg_size,1])
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These arrays contain the symbols of the BIG and SMALL companies. Now, we can 
define the SMB factor:

d$SMB <- rowMeans(d[,colnames(d) %in% SMALL]) –

  rowMeans(d[,colnames(d) %in% BIG])

We define the HML factor as follows:

avg_btm <- mean(stocks$BookToMarketRatio)

HIGH <- as.character(

  stocks[stocks$BookToMarketRatio > avg_btm, 1])

LOW <- as.character(

  stocks[stocks$BookToMarketRatio < avg_btm, 1])

d$HML <- rowMeans(d[, colnames(d) %in% HIGH]) –   

  rowMeans(d[, colnames(d) %in% LOW])

The third factor is calculated:

d$Market <- d$SP500 - d$LIBOR

After defining the three factors, we test it on the stock of Citigroup Inc. (Citi) and on 
Exelixis, Inc. (EXEL):

d$C   <- d$C - d$LIBOR

model <- glm( formula = "C ~ Market + SMB + HML" , data = d)

The GLM (general linear model) function works as follows: it takes the data and 
formula as arguments. The formula is a string in the form of response ~ terms, where 
the response is a variable name in the data frame and terms specify the predictors in  
the model, so it consists of variable names in the data set separated by + operators. 
This function can also be used for logistic regression, but the default is linear.

The output of the model is as follows:

Call:  glm(formula = "C~Market+SMB+HML", data = d)

Coefficients:

(Intercept)       Market          SMB          HML  

   0.001476     1.879100     0.401547    -0.263599  

Degrees of Freedom: 1001 Total (i.e. Null);  998 Residual

Null Deviance:      5.74 

Residual Deviance: 5.364        AIC: -2387
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The output of the model summary is as follows:

summary(model)

Call:

glm(formula = "C~Market+SMB+HML", data = d)

Deviance Residuals: 

     Min        1Q    Median        3Q       Max  

-0.09344  -0.01104  -0.00289   0.00604   2.26882  

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.001476   0.002321   0.636    0.525    

Market       1.879100   0.231595   8.114 1.43e-15 ***

SMB          0.401547   0.670443   0.599    0.549    

HML         -0.263599   0.480205  -0.549    0.583    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.005374535)

    Null deviance: 5.7397  on 1001  degrees of freedom

Residual deviance: 5.3638  on  998  degrees of freedom

AIC: -2387

Number of Fisher Scoring iterations: 2

The results show that the only significant factor is the market premium, which  
means that the stock return of Citigroup seems to moves together with the whole 
market itself.

To plot the results, this command should be used:

estimation <- model$coefficients[1]+

  model$coefficients[2] * d$Market +

  model$coefficients[3]*d$SMB +

  model$coefficients[4]*d$HML

plot(estimation, d$C, xlab = "estimated risk-premium",

  ylab = "observed riks premium",

  main = "Fama-French model for Citigroup")

lines(c(-1, 1), c(-1, 1), col = "red")

www.allitebooks.com

http://www.allitebooks.org
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The following screenshot shows an estimated risk premium of the Fama-French 
model for Citigroup:

If we have a look at the graph we can see that we have an outlier in the returns.  
Let’s see what happens if we get rid of it, by replacing it with 0.

outlier <- which.max(d$C)

d$C[outlier] <- 0

If we run the same code again to create the model, and calculate the estimated and 
observed returns again we get the following results:

model_new <- glm( formula = "C ~ Market + SMB + HML" , data = d)

summary(model_new)

Call:

glm(formula = "C ~ Market + SMB + HML", data = d)
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Deviance Residuals: 

      Min         1Q     Median         3Q        Max  

-0.091733  -0.007827  -0.000633   0.007972   0.075853  

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.0000864  0.0004498  -0.192 0.847703    

Market       2.0726607  0.0526659  39.355  < 2e-16 ***

SMB          0.4275055  0.1252917   3.412 0.000671 ***

HML          1.7601956  0.2031631   8.664  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.0001955113)

    Null deviance: 0.55073  on 1001  degrees of freedom

Residual deviance: 0.19512  on  998  degrees of freedom

AIC: -5707.4

Number of Fisher Scoring iterations: 2

According to the results, the all the three factors are significant.

The GLM function does not return R2. For linear regression, the lm function can be 
used exactly the same way, and we can get from model summary r.squared = 0.6446.

This result indicates that the variables explain more than 64 percent of the variance 
of the risk-premium of Citi. Let’s plot the new results:

estimation_new <- model_new$coefficients[1]+

  model_new$coefficients[2] * d$Market +

  model_new$coefficients[3]*d$SMB +

  model_new$coefficients[4]*d$HML

dev.new()

plot(estimation_new, d$C, xlab = "estimated risk-premium",ylab = 
"observed riks premium",main = "Fama-French model for Citigroup")

lines(c(-1, 1), c(-1, 1), col = "red")
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The output in this case is the following:

We test the model on another stock, EXEL, as well: 

d$EXEL <- d$EXEL – d$LIBOR

model2 <- glm( formula = "EXEL~Market+SMB+HML" , data = d)

Call:  glm(formula = "EXEL~Market+SMB+HML", data = d)

Coefficients:

(Intercept)       Market          SMB          HML  

  -0.001048     2.038001     2.807804    -0.354592  

Degrees of Freedom: 1001 Total (i.e. Null);  998 Residual

Null Deviance:      1.868 

Residual Deviance: 1.364        AIC: -3759
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The output for the model summary is as follows:

summary(model2)

Call:

glm(formula = "EXEL~Market+SMB+HML", data = d)

Deviance Residuals: 

     Min        1Q    Median        3Q       Max  

-0.47367  -0.01480  -0.00088   0.01500   0.25348  

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.001773   0.001185  -1.495  0.13515    

Market       1.843306   0.138801  13.280  < 2e-16 ***

SMB          2.939550   0.330207   8.902  < 2e-16 ***

HML         -1.603046   0.535437  -2.994  0.00282 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.001357998)

    Null deviance: 1.8681  on 1001  degrees of freedom

Residual deviance: 1.3553  on  998  degrees of freedom

AIC: -3765.4

Number of Fisher Scoring iterations: 2

According to the results, all of the three factors are significant. 

The GLM function does not contain R2. For linear regression, the lm function can be 
used exactly the same way, and we get r.squared = 0.2723 from model summary. 
Based on the results, the variables explain more than 27 percent of the variance of the 
risk premium of EXEL.

To plot the results, the following command can be used:

estimation2 <- model2$coefficients[1] +

  model2$coefficients[2] * d$Market +

  model2$coefficients[3] * d$SMB + model2$coefficients[4] * d$HML

plot(estimation2, d$EXEL, xlab = "estimated risk-premium",

  ylab = "observed riks premium",
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  main = "Fama-French model for EXEL")

lines(c(-1, 1), c(-1, 1), col = "red")

Summary
In this chapter, we saw how a multifactor model can be built and implemented. As a 
result of a principal component analysis, we identified five independent factors that 
explained asset returns, but they seemed to be insufficient, given that they explained 
only 30 percent of the variance. For illustration, we also reproduced the famous 
Fama-French model on real market data, where, apart from the market factor, two 
additional firm-specific factors (SMB and HML) were also used. We used built-in 
functions for principal component analysis and factor analysis, and we have shown 
how to use a general linear model for regression analysis.

We found that the three factors were significant. Hence, we can conclude that on a 
more recent sample, the Fama-French factors have explanatory power. We encourage 
you to develop and test new multifactor pricing formulas that work as the classical 
ones, or even better.
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Forecasting Volume
Price formation on stock exchanges has been the center of attention of many 
researchers for several decades now. As a result, there is an abundance of theories, 
models, and empirical evidence on the price, and although there are always new 
aspects to discover, we believe that the financial knowledge is fairly comprehensive 
on the subject. We understand the dynamics of the price reasonably well, and most 
of us agree that it is rather difficult to forecast.

In contrast, the trading volume, which is another fundamental measure of the 
trading process on stock exchanges, has been much less researched. The most 
common equilibrium models on price do not even include volume in their 
framework of explaining trading activities. It is only recently that researchers appear 
to be paying increasing attention to volume, and they have already found that its 
stylized facts allow for much better forecasts compared to price.

This chapter aims to introduce an intra-day forecasting model selected from the 
available literature, and to provide its implementation in R.

Motivation
The motivation behind gaining a better understanding of volume is not merely 
theoretical, but it equally has a great practical relevance. On order-driven markets, 
if a submitted buy (sell) market order is relatively large compared to the market, it 
will possibly swipe out several price levels; thus, the achieved average price on the 
entire trade will be higher (lower) than the best price level at the moment of order 
submission, and the submitter loses money. This phenomenon is often referred to as 
price impact, and it is well worth making an effort to avoid or at least minimize it.
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One way to do this is to perform order splitting, that is, splitting a market order into 
smaller chunks and submitting them gradually. Among the numerous logics behind 
splitting, a popular one is the volume weighted average price (VWAP) strategy that 
aims to obtain the daily weighted average price where weights are determined by 
the volume transacted relative to the total daily volume. Long-term investors would 
happily settle for an average execution price equal to the daily VWAP, which is 
considered to be a neutral trading result. However, some investors find it tricky to 
split their trades throughout the day in a fashion that results in reaching the VWAP, 
which can only be calculated at the end of the day, so they delegate the problem to 
brokers. Brokers guarantee to trade on the VWAP, and are paid a fee for this service. 
This fee also serves as a buffer for tracking errors, which means that the broker that 
has the most precise forecast of the daily volumes will be the one who can charge the 
clients the least, because all they have to do is split their trades in similar proportions 
to their forecasts, and then (assuming the forecasts are perfect) the VWAP will be 
reached regardless of the price evolution. For brokers, therefore, accurate volume 
forecasts are considered a valuable business asset that directly affects their profits.

The intensity of trading
The intensity of trading activities can be measured in a number of ways. The most 
common measure in use is volume, which is simply the number of shares traded 
during a certain time interval. Given that the liquidity (which shows how easy it is to 
trade an asset) and therefore the absolute trading activity in each stock is different, 
the volume expressed in percentage form is a more convenient choice for modeling 
purposes. This measure is called turnover, which is formally computed from volume, 
as follows:

( ),
,

,

1i t
i t

i t

V
x

TSO
=

Here, x stands for turnover, V for volume, and TSO for the total shares outstanding; 
the latter indicates the total number of shares available for public trading. The index i 
indicates the actual stock, and index t indicates the time interval.

As mentioned earlier, there are several stylized facts documented in volume. An 
obvious one is that volume is non-negative, given that it measures the number 
of traded shares. This number is zero, if there are no trades at all, and positive 
otherwise. Another important stylized fact is the intra-daily U shape registered on 
several different markets (see Hmaied, D. M., Sioud, O. B., and Grar, A. (2006) and 
Hussain, S. M. (2011) for a good overview). 
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This means that the trading activity tends to be more intense after opening and 
before closure of the market, than during the rest of the day. There are several 
possible explanations for this phenomenon, but its existence is very clear.

The enthusiastic reader might be interested in Kaastra, I. and Boyd,  
M. S. (1995) and Lux, T. and Kaizoji, T. (2004), which propose  
volume-forecasting models using monthly and daily data respectively. 
Brownlees, C. T., Cipollini, F., and Gallo, G. M. (2011) builds a volume 
forecasting model for intra-day data, which is of direct relevance 
to this chapter. Our empirical investigations found that the model 
detailed in the following section (proposed by Bialkowski, J., Darolles, 
S., and Le Fol, G. (2008)) provides a more precise forecast, so merely 
due to length limitations, this chapter only elaborates on the latter.

This chapter addresses the intra-day forecasting of stock volumes. There are a few 
models that can be found in the literature, among which we found that the one 
presented in Bialkowski, J., Darolles, S., and Le Fol, G. (2008) is the most accurate. 
The following section briefly summarizes the model, providing enough detail to 
understand the implementation later on.

The volume forecasting model
This section explains the intra-day volume forecasting model proposed by  
Bialkowski, J., Darolles, S., and Le Fol, G. (2008).

They use CAC40 data to test their model, including the turnover of every stock in 
the index as of September 2004. Trades are aggregated into 20-minute time slots, 
resulting in 25 observations each day.

Turnover is decomposed into two additive components. The first one is the seasonal 
component (the U shape) that represents the expected level of turnover on an 
average day for each stock. Given that every day is a little different from the average, 
there is a second one, the dynamic component, which shows the expected deviation 
from the average on a specific day.

The decomposition is carried out using the factor model of Bai, J. (2003). The initial 
problem is as follows:

( )2′= + = +X F e K eΛ
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Here, the X (TxN)-sized matrix contains the initial data, F (Txr) is the factor matrix,  
Λ' (Nxr) is the matrix of factor loadings, and e (TxN) is the error term. K stands for  
the common term, T stands for the number of observations, N stands for the number 
of stocks, and r stands for the number of factors.

The dimension of the XX' matrix is (TxT). After determining its eigenvalues 
and eigenvectors, Eig contains the eigenvectors that are related to the r largest 
eigenvalues. The estimated factor matrix is then determined as:

( )3T=�F Eig

The transpose of the estimated loadings matrix is calculated as:

( )4
T

′ =
�� FX

Λ

Finally, the estimated common component will be: 

( )5′=� � �K FΛ

Given that the model is additive, the estimated dynamic component simply becomes:

( )6= − ��e X K

Now that the estimated common and dynamic components are both obtained,  
the next step is to generate their forecasts. The authors assume that the seasonal  
(U shape) component is constant throughout the 20-day estimation period  
(but differs among stocks), so they forecast it according to:

( )1, 1 25 ,
1
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Knowing that 25 is the number of time slots (data points) each day, this means  
that for stock i, the forecast for the first time slot tomorrow will be the average of  
the first time slots during the last L days.
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The forecast of the dynamic component is obtained in two different ways. One way 
is by fitting an AR(1) model, specified as follows:

( ), 1 1, , 8t i t i t ie c eφ ε−= + +� �

Another way is by fitting a SETAR model, specified as:
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Here, the indicator function is the following:
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This means that if the previous observation does not exceed the τ  threshold 
specified within the model, then the forecast is carried out by using one AR(1)  
model, and if it does, then the other AR(1) model is used.

After having forecasted both the seasonal and the dynamic components, the 
forecasted turnover will be the sum of the two:

( )1, 1, 1, 11t i t i t i+ + += +� � �X K e

Note that we have forecasted the dynamic component in two different ways; 
therefore, we will have two different forecast results depending on which one  
we add to the forecast of the seasonal component.

Implementation in R
In this section, we show how to implement the model of Bialkowski, J., Darolles, S.,  
and Le Fol, G. (2008) in R. We cover every detail, from loading the data to estimating 
the model parameters and producing the actual forecasts.
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The data
The data we use consists of 10 different stocks from the Dow Jones Industrial 
Average index (see the next table for an overview). We use the 21 trading days 
between 06/01/2011 and 06/29/2011. Trading on NYSE and NASDAQ is continuous 
between 09:30 and 16:00. After aggregating the data into 15-minute time slots, we 
receive 26 observations every day, and a total of 26 * 21 = 546 observations overall.

We divided the trading day into 26 time slots, whereas the original 
article defined 25. This is due to the difference in the opening hours 
of the different markets from where data was drawn. This only 
changes one single parameter in the model, but some attention must 
be paid to this detail.

All the used stocks are liquid enough to have positive turnover in each time slot 
throughout the observed period. However, it should be noted that since the model 
has an additive structure, zero turnover in some of the slots would not cause  
any difficulties.

The following table is taken from the source http://kibot.com/:

Ticker Company Industry Sector Exchange
1 AA Alcoa, Inc. Aluminum Basic 

Materials
NYSE

2 AIG American International 
Group, Inc. 

Property and Casualty 
Insurance

Financial NYSE

3 AXP American Express 
Company

Credit Services Financial NYSE

4 BA Boeing Co. Aerospace/Defense 
Products and Services

Industrial 
Goods

NYSE

5 BAC Bank of America Regional - Mid-
Atlantic Banks

Financial NYSE

6 C Citigroup, Inc. Money Center Banks Financial NYSE
7 CAT Caterpillar, Inc. Farm and 

Construction 
Machinery

Industrial 
Goods

NYSE

8 CSCO Cisco Systems, Inc. Networking and 
Communication 
Devices

Technology NASDAQ

http://kibot.com/
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Ticker Company Industry Sector Exchange
9 CVX Chevron Corporation Major Integrated Oil 

and Gas
Basic 
Materials

NYSE

10 DD E.I. Du Pont De 
Nemours and 
Company

Chemicals - Major 
Diversified

Basic 
Materials

NYSE

Stocks included in the data set

Out of the 546 observations, we will use the first 520 (20 days) as the estimation 
period, and the last 26 (one day) as the forecast period. It is important to keep the 
actual data for the forecast period so that we can assess the precision of our forecast 
and compare it to the actual realizations.

As an illustration of the data, see Figure 3.1 that depicts the first five days  
(130 observations) of Alcoa.

Figure 3.1: First five days of Alcoa turnover

Although every day is a little different, we can clearly see the five separate days 
indicated by the five U shapes in the turnover graph.
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Loading the data
We organized the data in a .csv file with the tickers in the header field.  
The dimension of the data matrix is 546 x 10. The following code loads the data  
and prints the first five rows and six columns:

turnover_data <- read.table("turnover_data.csv", header = T, sep = ";") 

format(turnover_data[1:5, 1:6],digits = 3)

The output for the top-left segment of the data matrix is shown below. Given that 
our data shows turnover values (in a percentage form), and not volume, each value is 
below unity. We can see, for example, that within the first 15 minutes of the sample, 
0.11 percent of the total shares outstanding of Alcoa were traded (see Equation (1)).

     AA    AIG    AXP     BA    BAC      C

1 0.1101 0.0328 0.0340 0.0310 0.0984 0.0826

2 0.0502 0.0289 0.0205 0.0157 0.0635 0.0493

3 0.1157 0.0715 0.0461 0.0344 0.1027 0.1095

4 0.0440 0.1116 0.0229 0.0228 0.0613 0.0530

5 0.0514 0.0511 0.0202 0.0263 0.0720 0.0836

The following code plots the first day of Alcoa turnover. The graph is shown  
in Figure 3.2.

plot(turnover_data$AA[1:26], type = "l", main = "AA", xlab = "time", 
ylab="turnover")

We can recognize the U shape of the first day, but we need to rely a little on our 
imagination at this point. This is because the U shape is a stylized fact that is only 
observed on a statistical basis.

Figure 3.2: First day of Alcoa turnover
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We therefore expect the U shape to be more definite on average. The following code 
plots the average Alcoa turnover throughout the 21 days of the sample. To this end, 
we transform the first column of the data matrix into a 26*21 matrix, and plot the  
row averages.

AA_average <- matrix(turnover_data$AA, 26, 546/26)

plot(rowMeans(AA_average), type = "l", main = "AA" , xlab = "time", ylab 
= "turnover")

The result is shown in Figure 3.3, where the U shape is very clearly drawn.

Figure 3.3: 21-day average of Alcoa turnover

Now that the data is loaded, we are ready to implement the model.

The seasonal component
The first step is to determine the seasonal component. As mentioned earlier,  
we will use the first 520 observations for estimation. The following code creates  
the appropriate sample matrix from the data frame:

n <- 520

m <- ncol(turnover_data)

sample <- as.matrix(turnover_data[1:n, ])
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Now, we can start the factor decomposition (see Equations (2) to (6)) of Bai, J. (2003). 
After creating the ′=S XX  matrix (of dimension 520 x 520), we find its eigenvalues  
and eigenvectors.

S <- sample %*% t(sample)

D <- eigen(S)$values

V <- eigen(S)$vectors

Next, we have to determine the number of factors to use (r). The following code plots 
the eigenvalues in diminishing order:

plot(D, main = "Eigenvalues", xlab = "", ylab = "")

The result is shown in Figure 3.4, where the first eigenvalue clearly dominates all the 
others. This means that the variance explained by the first eigenvector explains the 
majority of the variance, so we choose to use a single factor in our model ( 1r = ).  
As a rule of thumb, we can use as many factors as the number of eigenvalues that  
are greater than one, but it always remains a subjective decision.

Figure 3.4: Eigenvalues of XX'
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Using the eigenvector that corresponds to this largest eigenvalue, we can now 
compute the estimated factor matrix (see Equation (3)).

Eig <- V[, 1]

F <- sqrt(n) * Eig

Then, we calculate the transpose of the estimated loadings matrix according to 
Equation (4), and the estimated common (seasonal) component according to 
Equation (5). Finally, the dynamic (idiosyncratic) component is also calculated  
(see Equation (6)).

Lambda <- F %*% sample / n

K <- F %*% Lambda

IC <- sample - K

The dynamic component will be forecasted in the following two subsections,  
but we still need to forecast the seasonal component here. This will be done 
according to Equation (7).

K26 <- matrix(0, 26, m)

for (i in 1:m) {

    tmp <- matrix(K[,i], 26, n/26)

    K26[,i] <- rowMeans(tmp)

}

The previous code calculates 20-day averages for all 26 slots, dealing with one 
stock at a time, resulting in a 26 x 10 matrix, including one-day seasonal component 
forecasts for all 10 stocks.

Now, we have the forecasts of the dynamic component left, which will be done in 
two different ways: by fitting an AR(1) and a SETAR model.

AR(1) estimation and forecasting
In this subsection, we fit AR(1) models to the dynamic component. We will  
need to specify 10 models, one for each stock. The following code performs the  
parameter estimations:

library(forecast)

models <- lapply(1:m, function(i)

    Arima(IC[, i], order = c(1, 0, 0), method = "CSS"))

coefs <- sapply(models, function(x) x$coef)

round(coefs, 4)
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Coefficients are collected in the coefs variable and printed in the following output, 
rounded to 4 digits. Coefficients need not necessarily be saved (saving the model 
would be sufficient) because the forecast package has a built-in forecast function, 
and we will make use of this in the following example:

      [,1]   [,2]    [,3]   [,4]   [,5]    [,6]    [,7]   [,8]    [,9]   [,10]

[1,] 0.4745 0.4002  0.3171 0.4613 0.4139  0.5091  0.4072 0.4149  0.2643  0.3940

[2,] 0.0000 0.0004 -0.0007 0.0000 -0.0005 -0.0005 0.0002 0.0017 -0.0004 -0.0007

AR coefficients for each stock

There are several ways to estimate an AR(1) model in R. Apart from 
the method mentioned earlier, which is suitable for any ARIMA model, 
the code below (using the example of Alcoa only) reproduces the same 
results, but with the use of a different package, which can only handle 
ARMA (and not ARIMA) models.
library("tseries") 
arma_mod <- arma(IC[, 1], order = c(1, 0))

So the next step is to produce the forecasts for the next day, that is, for the next  
26 time slots using the AR(1) models estimated previously. The following code 
performs this for us:

ARf <- sapply(1:m, function(i) forecast(models[[i]], h = 26)$mean)

In order to receive the complete forecasts (including both the seasonal and the 
dynamic components), we simply refer to Equation (11).

AR_result <- K26+ARf

The full forecasts are now stored in the AR_result variable.

SETAR estimation and forecasting
The second method for obtaining forecasts of the dynamic component is through 
a SETAR model. Again, we need 10 different models for each stock. There is also a 
package in R for SETAR estimation, so the code becomes as simple as this:

library(tsDyn)

setar_mod <- apply(IC,2,setar, 1);

setar_coefs <-  sapply(setar_mod, FUN = coefficients)

round(setar_coefs, 4)
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Unlike the AR model, we do have to save the coefficients explicitly for the forecast, 
which is also done by the previous code. The 4-digit rounded values are printed  
in the following output:

[,1]    [,2]    [,3]   [,4]    [,5]    [,6]    [,7]    [,8]    [,9]   [,10]

[1,]  0.0018 -0.0003 -0.0004 0.0001 -0.0163 -0.0062 -0.0067  0.0016 -0.0003 -0.0001

[2,]  0.5914  0.5843  0.4594 0.6160 -0.1371  0.3108  0.1946  0.4541  0.3801  0.5930

[3,] -0.0016  0.0180  0.0046 0.0061  0.0001  0.0033  0.0011 -0.0040  0.0021  0.0086

[4,]  0.4827 -0.0720 -0.0003 0.1509  0.4315  0.3953  0.3635  0.5241  0.0441 -0.0854

[5,]  0.0063  0.0092  0.0026 0.0036 -0.0141 -0.0054 -0.0103  0.0130  0.0018  0.0057

SETAR coefficients for each stock

The five parameters from top to bottom are the following (see Equation (9) 
for details):

1. Intercept (lower regime).
2. AR coefficient (lower regime).
3. Intercept (upper regime).
4. AR coefficient (upper regime).
5. Threshold.

Now, all we have left to do is to forecast the dynamic component for the next 26 
time slots using the SETAR model we just described. This is done using the  
following code:

SETARf <- matrix(0, 27, m)

SETARf[1,] <- sample[520,]

for (i in 2:27){

SETARf[i,] <- 

(setar_coefs[1,]+SETARf[i-1,]*setar_coefs[2,])*

(SETARf[i-1,] <= setar_coefs[5,]) + 

(setar_coefs[3,]+SETARf[i-1,]*setar_coefs[4,])*

(SETARf[i-1,] >  setar_coefs[5,])

}

Although we are looking to have forecasts for 26 time slots (that is, for one entire 
day) for each stock, the SETARf variable has 27 rows because we have to store the last 
known observation in the first one in order to be able to calculate recursively. Also, 
note that we calculate row-by-row here, that is, we calculate the next forecast for 
every stock at the same time, and only then do we move on to the next time slot.
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Finally, referring to Equation (11) again, the full forecast for the turnover is  
as follows:

SETAR_result = K26 + SETARf[2:27,]

The full forecasts are now stored in the SETAR_result variable.

Interpreting the results
We have obtained the turnover forecasts of all 10 stocks for the next day based on the 
last 20 days. Depending on how we forecast the dynamic component, we have two 
different results for each stock.

We excluded the last day of our data set from the estimation in order to be able 
to compare the actual values to the forecasts. The following code helps us do this 
by generating 10 different plots, one for every stock, using AR(1) for the dynamic 
component forecasts. The output is shown in Figure 3.5.

par(mfrow = c(2, 5))

for (i in 1:10) {matplot(cbind(AR_result[, i], turnover_data[521:546, 
i]), type = "l", main = colnames(turnover_data)[i], xlab = "", ylab = "", 
col = c("red", "black"))}

On each plot, the black dotted line depicts the realized turnover of that specific stock, 
while the red solid line shows the forecasted turnover. As mentioned before, the 
actual realizations can notably deviate from the stylized fact of the U shape.

Figure 3.5: Turnover forecasts and realizations for the next day  
AR(1) is used on the dynamic component
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We can conclude that the forecasts appear fairly precise visually. When the 
realization resembles a more regular U shape, the forecasts can better approximate it 
(Alcoa, Caterpillar, Chevron, and Du Pont De Nemours), but the one-off large values 
will always be unpredictable (like the fifth observation in Chevron). The forecasts 
perform poorly when the realization becomes unusually asymmetric; that is, either 
the first few or the last few trades are much larger than the rest (American Express, 
Bank of America, and Citigroup), but even in those cases, the rest of the day is 
reasonably well approximated.

This time, we refrain from numerically evaluating the errors of the 
estimation because we will first need a benchmark to do it, and 
more importantly, because we only forecasted for one single day; 
therefore, the results will not be robust anyway.

We can use some code similar to what we used earlier in order to plot the results of 
the SETAR-based estimation. The output is shown in Figure 3.6.

Figure 3.6: Turnover forecasts and realizations for the next day  
SETAR is used on the dynamic component

At first glance, the results appear very similar to the previous case, which is 
understandable, because the forecast of the seasonal component is the same in 
both of them, and apparently, this dominates the forecast; the rest is merely due 
to individual deviations. The difference between the AR-based and SETAR-based 
forecasts is more pronounced towards the beginning of the day. 
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If we observe the first and the last data points of the day in Figures 3.5 and Figure 
3.6, we can find a number of stocks (Alcoa, Bank of America, Citigroup, Caterpillar, 
Cisco, and Du Pont De Nemours) where the forecast for the last point (and mostly 
throughout the day) is similar, while the forecast for the first point is significantly 
larger in the case of SETAR. The most noticeable difference between the two 
forecasts is in the American International and Boeing stocks, where SETAR produces 
higher values throughout the day.

Summary
In this chapter, we presented an intra-day volume forecasting model and its 
implementation in R using data from the DJIA index. Due to length limitations, 
we selected the one model from the literature that we believe is the most accurate 
when used to predict stock volumes. The model uses turnover instead of volume 
for convenience, and separates a seasonal component (U shape) and a dynamic 
component, and forecasts these two separately. The dynamic component is 
forecasted in two different ways, fitting an AR(1) and a SETAR model. Similarly 
to the original article, we do not declare one to be better than the other, but we 
visually show the results and find them to be acceptably accurate. The original article 
convincingly proves the model to be better than a carefully selected benchmark, but 
we leave it to the reader to examine that, because we only used a short data set for 
illustration, which is not suitable to obtain robust results.
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Big Data – Advanced 
Analytics

In this chapter, we will deal with one of the biggest challenges of high-performance 
financial analytics and data management; that is, how to handle large datasets 
efficiently and flawlessly in R.

Our main objective is to give a practical introduction on how to access and manage 
large datasets in R. This chapter does not focus on any particular financial theorem, 
but it aims to give practical, hands-on examples to researchers and professionals on 
how to implement computationally - intensive analyses and models that leverage 
large datasets in the R environment.

In the first part of this chapter, we explained how to access data directly for multiple 
open sources. R offers various tools and options to load data into the R environment 
without any prior data-management requirements. This part of the chapter will 
guide you through practical examples on how to access data using the Quandl and 
qualtmod packages. The examples presented here will be a useful reference for the 
other chapters of this book. In the second part of this chapter, we will highlight the 
limitation of R to handle big data and show practical examples on how to load a 
large amount of data in R with the help of big memory and ff packages. We will also 
show how to perform essential statistical analyses, such as K-mean clustering and 
linear regression, using large datasets.
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Getting data from open sources
Extraction of financial time series or cross-sectional data from open sources is one of 
the challenges of any academic analysis. While several years ago, the accessibility of 
public data for financial analysis was very limited, in recent years, more and more 
open access databases are available, providing huge opportunities for quantitative 
analysts in any field.

In this section, we will present the Quandl and quantmod packages, two specific tools 
that can be used to seamlessly access and load financial data in the R environment. We 
will lead you through two examples to showcase how these tools can help financial 
analysts to integrate data directly from sources without any prior data management.

Quandl is an open source website for financial time series, indexing over millions 
of financial, economic, and social datasets from 500 sources. The Quandl package 
interacts directly with the Quandl API to offer data in a number of formats usable in 
R. Besides downloading data, users can also upload and edit their own data, as well 
as search in any of the data sources directly from R.upload and search for any data.

In the first simple example, we will show you how to retrieve and plot exchange rate 
time series with Quandl in an easy way. Before we can access any data from Quandl, 
we need to install and load the Quandl package using the following commands:

install.packages("Quandl")

library(Quandl)

library(xts)

We will download the currency exchange rates in EUR for USD, CHF, GBP, JPY, 
RUB, CAD, and AUD between January 01, 2005 and May 30, 2014. The following 
command specifies how to select a particular time series and period for the analysis:

currencies <- c( "USD", "CHF", "GBP", "JPY", "RUB", "CAD", "AUD")

currencies <- paste("CURRFX/EUR", currencies, sep = "")

currency_ts <- lapply(as.list(currencies), Quandl, start_date="2005-01-
01",end_date="2013-06-07", type="xts")

As the next step, we will visualize the exchange rate evolution of four selected 
exchange rates, USD, GBP, CAD, and AUD, using the matplot() function:

Q <- cbind(

currency_ts[[1]]$Rate,currency_ts[[3]]$Rate,currency_
ts[[6]]$Rate,currency_ts[[7]]$Rate)
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matplot(Q, type = "l", xlab = "", ylab = "", main = "USD, GBP, CAD, AUD", 
xaxt = 'n', yaxt = 'n')

ticks = axTicksByTime(currency_ts[[1]])

abline(v = ticks,h = seq(min(Q), max(Q), length = 5), col = "grey", lty = 
4)

axis(1, at = ticks, labels = names(ticks))

axis(2, at = seq(min(Q), max(Q), length = 5), labels = round(seq(min(Q), 
max(Q), length = 5), 1))

legend("topright", legend = c("USD/EUR", "GBP/EUR", "CAD/EUR", "AUD/
EUR"), col = 1:4, pch = 19)

The following screenshot displays the output of the preceding code:

Figure 4.1: Exchange rate plot of USD, GBP, CAD, and AUD
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In the second example, we will demonstrate the usage of the quantmod package to 
access, load, and investigate data from open sources. One of the huge advantages 
of the quantmod package is that it works with a variety of sources and accesses 
data directly for Yahoo! Finance, Google Finance, Federal Reserve Economic Data 
(FRED), or the Oanda website.

In this example, we will access the stock price information of BMW and analyze the 
performance of the car-manufacturing company since 2010:

library(quantmod)

From the Web, we will obtain the price data of BMW stock from Yahoo! Finance 
for the given time period. The quantmod package provides an easy-to-use function, 
getSymbols(), to download data from local or remote sources. As the first argument 
of the function, we need to define the character vector by specifying the name of the 
symbol loaded. The second one specifies the environment where the object is created:

bmw_stock<- new.env()

getSymbols("BMW.DE", env = bmw_stock, src = "yahoo", from = 
as.Date("2010-01-01"), to = as.Date("2013-12-31"))

As the next step, we need to load the BMW.DE variable from the bmw_stock 
environment to a vector. With the help of the head() function, we can also show the 
first six rows of the data:

BMW<-bmw_stock$BMW.DE

head(BMW)

           BMW.DE.Open BMW.DE.High BMW.DE.Low BMW.DE.Close BMW.DE.Volume

2010-01-04       31.82       32.46      31.82        32.05       1808100

2010-01-05       31.96       32.41      31.78        32.31       1564100

2010-01-06       32.45       33.04      32.36        32.81       2218600

2010-01-07       32.65       33.20      32.38        33.10       2026100

2010-01-08       33.33       33.43      32.51        32.65       1925800

2010-01-11       32.99       33.05      32.11        32.17       2157800

           BMW.DE.Adjusted

2010-01-04           29.91

2010-01-05           30.16

2010-01-06           30.62

2010-01-07           30.89

2010-01-08           30.48

2010-01-11           30.02
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The quantmod package is also equipped with a finance charting ability.  
The chartSeries() function allows us to not only visualize but also interact  
with the charts. With its expanded functionality, we can also add a wide range of 
technical and trading indicators to a basic chart; this is a very useful functionality  
for technical analysis.

In our example, we will add the Bollinger Bands using the addBBands() command 
and the MACD trend-following momentum indicator using the addMACD() 
command to get more insights on the stock price evolution:

chartSeries(BMW,multi.col=TRUE,theme="white")

addMACD()

addBBands()

The following screenshot displays the output of the preceding code:

Figure 4.2: BMW stock price evolution with technical indicators
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Finally, we will calculate the daily log return of the BMW stock for the given period. 
We would also like to investigate whether the returns have normal distribution. 
The following figure shows the daily log returns of the BMW stock in the form of a 
normal Q-Q plot:

BMW_return <- 

log(BMW$BMW.DE.Close/BMW$BMW.DE.Open)

qqnorm(BMW_return, main = "Normal Q-Q Plot of BMW daily log return",

 xlab = "Theoretical Quantiles",

        ylab = "Sample Quantiles", plot.it = TRUE, datax = FALSE

 )

qqline(BMW_return, col="red")

The following screenshot displays the output of the preceding code. It shows the 
daily log returns of the BMW stock in the form of a normal Q-Q plot:

Figure 4.3: Q-Q Plot of the daily return of BMW
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Introduction to big data analysis in R
Big data refers to the situations when volume, velocity, or a variety of data exceeds 
the abilities of our computation capacity to process, store, and analyze them. Big 
data analysis has to deal not only with large datasets but also with computationally 
intensive analyses, simulations, and models with many parameters.

Leveraging large data samples can provide significant advantages in the field 
of quantitative finance; we can relax the assumption of linearity and normality, 
generate better perdition models, or identify low-frequency events.

However, the analysis of large datasets raises two challenges. First, most of the tools 
of quantitative analysis have limited capacity to handle massive data, and even 
simple calculations and data-management tasks can be challenging to perform. 
Second, even without the capacity limit, computation on large datasets may be 
extremely time consuming.

Although R is a powerful and robust program with a rich set of statistical algorithms 
and capabilities, one of the biggest shortcomings is its limited potential to scale to 
large data sizes. The reason for this is that R requires the data that it operates on to 
be first loaded into memory. However, the operating system and system architecture 
can only access approximately 4 GB of memory. If the dataset reaches the RAM 
threshold of the computer, it can literally become impossible to work with on a 
standard computer with a standard algorithm. Sometimes, even small datasets can 
cause serious computation problems in R, as R has to store the biggest object created 
during the analysis process.

R, however, has a few packages to bridge the gap to provide efficient support for big 
data analysis. In this section, we will introduce two particular packages that can be 
useful tools to create, store, access, and manipulate massive data.

First, we will introduce the bigmemory package that is a widely used option for 
large-scale statistical computing. The package and its sister packages (biganalytics, 
bigtabulate, and bigalgebra) address two challenges in handling and analyzing 
massive datasets: data management and statistical analysis. The tools are able to 
implement massive matrices that do not fit in the R runtime environment and 
support their manipulation and exploration.
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An alternative for the bigmemory package is the ff package. This package allows 
R users to handle large vectors and matrices and work with several large data files 
simultaneously. The big advantage of ff objects is that they behave as ordinary R 
vectors. However, the data is not stored in the memory; it is a resident on the disk.

In this section, we will showcase how these packages can help R users overcome the 
limitations of R to cope with very large datasets. Although the datasets we use here 
are simple in size, they effectively shows the power of big data packages.

K-means clustering on big data
Data frames and matrices are easy-to-use objects in R, with typical manipulations 
that execute quickly on datasets with a reasonable size. However, problems can 
arise when the user needs to handle larger data sets. In this section, we will illustrate 
how the bigmemory and biganalytics packages can solve the problem of too large 
datasets, which is impossible to handle by data frames or data tables.

The latest updates of bigmemory, biganalytics, and biglm 
packages are not available on Windows at time of writing this 
chapter. The examples shown here assume that R Version 2.15.3 
is the current state-of-the-art version of R for Windows.

In the following example, we will perform K-means clustering on large datasets.  
For illustrative purposes, we will use the Airline Origin and Destination Survey  
data of the U.S. Bureau of Transportation Statistics. The datasets contain the 
summary characteristics of more than 3 million domestic flights, including the 
itinerary fare, number of passengers, originating airport, roundtrip indicator,  
and miles flown, in a csv format.

Loading big matrices
Reading dataset from csv files can be easily executed by the read.csv() file. 
However, when we have to handle larger datasets, the reading time of any file can 
become quite substantial. With some careful options, however, the data-loading 
functionality of R can be significantly improved.

One option is to specify correct types in colClasses = argument when loading 
data to R; this will result in a faster conversion of external data. Also, the NULL 
specification of columns that are not needed for the analysis can significantly 
decrease the time and memory consumed to load the data.



Chapter 4

[ 85 ]

However, if the dataset reaches the RAM threshold of the computer, we need to 
adopt more memory-efficient data-leading options. In the following example,  
we will show how the bigmemory package can handle this task.

First of all, we will install and load the required bigmemory and biganalytics 
packages to perform the K-means cluster analysis on big data:

install.packages("bigmemory")

install.packages("biganalytics")

library(bigmemory)

library(biganalytics)

We used the read.big.matrix function to import the downloaded dataset in R from 
the local system. The function handles data not as a data frame but as matrix-like 
objects, which we need to turn into a matrix with the as.matrix function:

x<-read.big.matrix( "FlightTicketData.csv", type='integer', header=TRUE, 
backingfile="data.bin",descriptorfile="data.desc")

xm<-as.matrix(x)

nrow(x)

[1] 3156925

Big data K-means clustering analysis
The format of the big data K-means function in R is bigkmeans (x, centers), where x 
is a numeric dataset (big data matrix object), and centers is the number of clusters to 
extract. The function returns the cluster memberships, centroids, within cluster sum 
of squares (WCSS), and cluster sizes. The bigkmeans() function works either on 
regular R matrix objects or on big.matrix objects.

We will determine the number of clusters based on the percentage of variance 
explained by each cluster; therefore, we will plot the percentage of variance 
explained by the clusters versus the number of clusters:

res_bigkmeans <- lapply(1:10, function(i) {

 bigkmeans(x, centers=i,iter.max=50,nstart=1)

 })
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lapply(res_bigkmeans, function(x) x$withinss)

var <- sapply(res_bigkmeans, function(x) sum(x$withinss))

plot(1:10, var, type = "b", xlab = "Number of clusters", ylab = 
"Percentage of variance explained")

The following screenshot displays the output of the preceding code:

Figure 4.4: Plot the within cluser sums of squares versus the number of clusters extracted

The sharp decrease from 1 to 3 clusters (with little decrease thereafter) suggests 
a three-cluster solution. Therefore, we will perform the big data K-means cluster 
analysis with three clusters:

res_big<-bigkmeans(x, centers=3,iter.max=50,nstart=1)

res_big

K-means clustering with 3 clusters of sizes 919959, 1116275, 1120691
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Cluster means:

         [,1]     [,2]    [,3]     [,4]      [,5]       [,6]     [,7]     
[,8]

[1,] 2.663235 12850.78 1285081 32097.61 0.6323662 0.03459393 2.084982 
2305.836

[2,] 2.744241 14513.19 1451322 32768.11 0.6545699 0.02660276 1.974971 
2390.292

[3,] 2.757645 11040.08 1104010 30910.66 0.6813850 0.03740460 1.989817 
2211.801

         [,9]

[1,] 1.929160

[2,] 1.930394

[3,] 1.949151

Clustering vector:

[1] 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 
3

[37] 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 1 1 1 1 1 1 1 1 1 
1 1

[73] 1 2 2 2 2 2 2 3 3 3 1 2 2 3 3 3 1 1 1 1 1 1 2 2

Within cluster sum of squares by cluster:

[1] 2.010160e+15 2.466224e+15 2.183142e+15

Available components:

[1] "cluster"  "centers"  "withinss" "size"    

The bigkmeans() function also works with ordinary matrix objects, offering a faster 
calculation than the kmeans() function.

To test this hypothesis, we will measure the average execution time of the 
bigkmeans() and kmeans() functions with different dataset sizes:

size<-round(seq(10,2500000,length=20))

nsize<-length(size)

calc.time <- matrix(NA, nrow=nsize, ncol=2)

for (i in 1:nsize) {

 size.i<-size[i]



Big Data – Advanced Analytics

[ 88 ]

 xm.i<-xm[1:size.i,]

vec1=rep(0,10)

vec2=rep(0,10)

for (j in 1:10) {

vec1[j]<-system.time(kmeans(xm.i,centers=3,iter.max=50,nstart=1))[3]

vec2[j]<-system.time(bigkmeans(xm.i,centers=3,iter.max=50,nstart=1))[3]

}

calc.time[i,1]<-mean(vec1)

calc.time[i,2]<-mean(vec2)

}

The following screenshot displays the output of the preceding code:

Figure 4.5: Execution time of the kmeans() and bigkmeans() function according to the size of the dataset

Calculating the average execution time of the two functions takes substantial time. 
The preceding figure, however, reveals that bigkmeans() works more efficiently 
with larger datasets than the kmeans() function, thus reducing the calculation time 
of R in the analysis.
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Big data linear regression analysis
In this section, we will illustrate how to load large datasets directly from a URL  
with the help of the ff package and how to interact with a biglm package to fit a 
general linear regression model to the datasets that are larger than the memory.  
The biglm package can effectively handle datasets even if they overload the RAM of 
the computer, as it loads data into memory in chunks. It processes the last chunk and 
updates the sufficient statistics required for the model. It then disposes the chunk and 
loads the next one. This process is repeated until all the data is processed in  
the calculation.

The following example examines the unemployment compensation amount as  
a linear function of a few social-economic data.

Loading big data
To perform a big data linear regression analysis, we first need to install and load 
the ff packages, which we will use to open large files in R, and the biglm package, 
which we will use to fit the linear regression model on our data:

install.packages("ff")

install.packages("biglm")

library(ff)

library(biglm)

For the big data linear regression analysis, we used the Individual Income Tax ZIP 
Code Data provided by the U.S government agency, Internal Revenue Service 
(IRS). ZIP code-level data shows selected income and tax items classified by the 
state, ZIP code, and income classes. We used the 2012 data of the database; this 
database is reasonable in size but allows us to highlight the functionality of the big 
data packages.

We will directly load the required dataset into R from the URL with the following 
command:

download.file("http://www.irs.gov/file_source/pub/irs-soi/12zpallagi.
csv","soi.csv")

Once we have downloaded the data, we will use the read.table.ffdf function 
that reads the files into an ffdf object that is supported by the ff package. The 
read.table.ffdf function works very much like the read.table function. It also 
provides convenient options to read other file formats, such as csv:

x <- read.csv.ffdf(file="soi.csv",header=TRUE)
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After we have converted the dataset into an ff object, we will load the biglm 
package to perform the linear regression analysis.

Leveraging the dataset of almost 1,67,000 observations along 77 different 
variables, we will investigate whether the location-level amount of unemployment 
compensation (defined as variable A02300) can be explained by the total salary and 
wages amount (A00200), the number of residents by income category (AGI_STUB), 
the number of dependents (the NUMDEP variable), and the number of married 
people (MARS2) in the given location.

Fitting a linear regression model on large 
datasets
For the linear regression analysis, we will use the biglm function; therefore, before 
we specify our model, we need to load the package:

require(biglm)

As the next step, we will define the formula and fit the model on our data. With 
the summary function, we can obtain the coefficients and the significance level of 
the variable of the fitted model. As the model output does not include the R-square 
value, we need to load the R-square value of the model with a separate command:

mymodel<-biglm(A02300 ~  A00200+AGI_STUB+NUMDEP+MARS2,data=x)

summary(mymodel)

Large data regression model: biglm(A02300 ~ A00200 + AGI_STUB + NUMDEP + 
MARS2, data = x)

Sample size =  166904 

                Coef     (95%      CI)      SE      p

(Intercept) 131.9412  44.3847 219.4977 43.7782 0.0026

A00200       -0.0019  -0.0019  -0.0018  0.0000 0.0000

AGI_STUB    -40.1597 -62.6401 -17.6794 11.2402 0.0004

NUMDEP        0.9270   0.9235   0.9306  0.0018 0.0000

MARS2        -0.1451  -0.1574  -0.1327  0.0062 0.0000

A00200       -0.0019  -0.0019  -0.0018  0.0000 0.0000

summary(mymodel)$rsq

[1] 0.8609021

We can conclude from the regression model coefficient output that all the variables 
contribute significantly to the model. The independent variables explain 86.09 
percent of the total variance of the unemployment compensation amount, indicating 
a good fit of the model.
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Summary
In this chapter, we applied R to access data from open sources and perform various 
analyses on large datasets. The examples presented here aimed to be a practical 
guide to empirical researchers who handle a large amount of data.

First, we introduced useful methods for open source data integration. R has  
powerful options to directly access data for financial analysis without any prior  
data-management requirement. Second, we discussed how to handle big data in  
an R environment. Although R has fundamental limitations in handling large 
datasets and performing computationally intensive analyses and simulations, we 
introduced specific tools and packages that can bridge this gap. We presented two 
examples on how to perform K-means clustering and how to fit linear regression 
models on big data. This is the last chapter of the first part in this book. Next we  
will look at FX derivatives.
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FX Derivatives
FX derivatives (or foreign exchange derivatives) are financial derivative products 
whose payoff is a function of the exchange rate of two (or more) currencies. Like 
derivatives in general, FX derivatives can be grouped in three main categories: futures, 
swaps, and options. In this chapter, we will only deal with option-type derivatives.  
We will start with a straightforward generalization of the basic Black-Scholes model, 
and will show how to price a simple European call or put currency option. Afterwards, 
we will discuss the pricing of exchange options and quanto options.

Throughout this chapter, we will assume that you have some basic knowledge 
about derivative pricing, especially the Black-Scholes model and risk-neutral 
valuation. Occasionally, we will refer to some mathematic relationships often 
used in quantitative finance (such as Itô's lemma or Girsanov theorem), but a 
deep understanding of these theorems is not essential for this chapter. However, 
those interested in the pure mathematical background of this topic can check out 
Medvegyev (2007).

Terminology and notations
As we will work with FX rates, it is important to clarify some related terms. 
Generally, we will denote spot FX rates by S, which measures the price of one 
currency (called base currency) in terms of another currency (called variable or 
quote currency). In other words, one unit of the base currency is equivalent to S unit 
of the variable currency. It is also important to understand how to read FX market 
quotes. An FX quote on a currency pair is denoted by the abbreviations of the two 
currencies: a three-letter code for the base currency, followed by another three-letter 
code for the variable currency. For example, EURUSD=1.25 means that 1 euro is 
worth 1.25 dollars. This is equivalent to the quote USDEUR=0.8, which means that  
1 dollar is worth 0.8 euros. Usually, it depends on historical market conventions that 
decide which currency is treated as the base currency in a given FX-pair.
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In Chapter 4, Big Data – Advanced Analytics, we have already seen how to download 
currency rates from the Internet, so we can use what we have learned to check this 
on real data.

This short code plots the EURUSD and USDEUR rates to the same plot window:

library(Quandl)

library(xts)

EURUSD <- Quandl("QUANDL/EURUSD",

     start_date="2014-01-01",end_date="2014-07-01", type="xts")

USDEUR <- Quandl("QUANDL/USDEUR", 

     start_date="2014-01-01",end_date="2014-07-01", type="xts")

dev.new(width = 15, height = 8)

par(mfrow = c(1, 2))

plot(USDEUR)

plot(EURUSD)

Here, we can see the result in the following image:
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We can also check out the first few lines of the data:

USDEUR[1:5,]

             Rate    High (est) Low (est)

2014-01-01 0.725711    0.73392   0.71760

2014-01-02 0.725238    0.73332   0.71725

2014-01-03 0.727714    0.73661   0.71892

2014-01-06 0.733192    0.00000   0.00000

2014-01-07 0.735418    0.00000   0.00000

EURUSD[1:5,]

            Rate     High (est) Low (est)

2014-01-01 1.37791     0.0000    0.0000

2014-01-02 1.37876     1.3949    1.3628

2014-01-03 1.37434     0.0000    0.0000

2014-01-06 1.36346     1.3799    1.3473

2014-01-07 1.35990     1.3753    1.3447

Here, we have to say something about notations. So far, we have denoted FX rates 
by S. However, the price of the underlying asset in derivatives pricing is generally 
denoted by S, regardless of whether it is a stock or a currency. On the other hand, 
FX rates are usually denoted by X or sometimes by E (both come from the word 
"exchange"). Furthermore, the strike or exercise price of an option is also abbreviated 
by X or E. Now, as the reader, you may have some idea about how challenging it is 
to use a consistent notation system in this chapter, where the underlying might be a 
stock or a currency as well, and where stock prices, FX rates, and strike prices might 
appear at the same time. We decided to adopt the notations of R-functions as much 
as possible, so in this chapter, the notations we will follow are as follows:

• The price of the underlying will always be S, but if it is not necessarily a 
currency, we will use numeric or alphabetic indices such as S1 or SA

• The strike price will always be X
• The expected value operator will be denoted by E

We strongly recommend that you be careful when reading other literature on this 
topic, because their notation might differ from ours.
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Currency options
European currency options grant the holder the right to buy (call option) or sell  
(put option) currency at a predetermined exchange rate (strike price or exercise price, 
X), on a specified date (maturity, T). These financial assets are also called foreign 
exchange options (or FX options), but to avoid confusion with the term "exchange 
option", we prefer the "currency option" terminology.

A basic assumption of the original Black-Scholes model (Black and Sholes, 1973,  
see also Merton, 1973) is that the underlying is a stock that pays no dividend. More 
generally, the results of the model are held only if the underlying does not grant 
any kind of yield and does not generate any kind of cost either. However, this 
assumption might be relaxed easily, and an extended version of the Black-Scholes 
formula is valid for currency options as well, while all the logic and argumentation 
of the model is unchanged.

The closed form formula for the price of a European currency call option (c0) is  
the following:
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In the preceding formulas, S0 is the spot FX rate (the price of one unit of the base 
currency, expressed in the variable currency), X is the strike price, T is the time to 
maturity of the option (in years), σ is the volatility of the FX-rate, r and q are the  
risk-free log returns of the variable and the base currency respectively, and N 
denotes the cumulative distribution function of the standard normal distribution.  
It is easy to see from put-call parity that the price of a European currency put  
option (p0) with the same parameters is as follows:
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The Black-Scholes formula and other option pricing models are available in  
the fOptions package. We can use the BlackScholesOption or the GBSOption 
function, both of which are practically the same, and the latter is a shorthand alias  
for the prior function.

BlackScholesOption(TypeFlag, S, X, Time, r, b, sigma,...)

Here, TypeFlag is either the character c, which stands for call or p (put). S is the 
current price and sigma is the volatility of the underlying. X is the strike price and 
Time is the time to maturity.

The other two parameters are a bit tricky because r and b are the risk-free rates, 
but the second one is meaningless when pricing options for stocks with the original 
BS model. This indicates that we must set b = r to get the BS stock option model, 
and set b = r-q to get the currency option model or the stock option model with 
continuous dividend yield. The other parameters of the function are optional and  
we do not need them.

To see how it works, let's say we have an option for EUR with five years' maturity, 
and the strike price is 0.7. The USD risk-free rate is r = 3% and the EUR risk-free rate 
is q = 2%. 1 USD is currently 0.7450 EUR, so this is the spot price of the underlying. 
Let the EUR volatility be 20 percent. If we call the BlackSholesOption function with 
the given parameters, we will get the following result:

BlackScholesOption ("c", 0.7450, 0.7, 5, 0.03, 0.01, 0.2)

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "c", S = 0.745, X = 0.7, Time = 5, r = 0.03, 

     b = 0.01, sigma = 0.2)

Parameters:

          Value:

 TypeFlag c     

 S        0.745 

 X        0.7   

 Time     5     

 r        0.03  

 b        0.01  

 sigma    0.2   

Option Price:

 0.152222 
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Description:

 Thu Aug 07 20:13:28 2014

We can also check out the price of the put option:

BlackScholesOption("p", 0.7450, 0.7, 5, 0.03, 0.01, 0.2)

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "p", S = 0.745, X = 0.7, Time = 5, r = 0.03, 

     b = 0.01, sigma = 0.2)

Parameters:

          Value:

 TypeFlag p     

 S        0.745 

 X        0.7   

 Time     5     

 r        0.03  

 b        0.01  

 sigma    0.2   

Option Price:

 0.08061367 

Description:

 Thu Aug 07 20:15:11 2014

Then, we can also check the consistency with the put-call parity, which takes the 
following form for the currency options:

c - p = S*exp(-r*T)–X*exp(-q*T)

Substituting the data, on the left hand-side we have:

c - p = 0.152222 - 0.08061367 = 0.07160833,

On the right-hand side, we have:

0.745*exp(-0.02*5)-0.7*exp(-0.03*5) = 0.07160829.



Chapter 5

[ 99 ]

Prices of options are rounded to eight digits, so there is a 
slight difference.

It is important to mention that pricing a currency option is equivalent to pricing an 
option with any kind of underlying asset that grants continuous yield. For example, 
if the underlying is a stock or stock index with dividend yield q per annum, then the 
pricing formulas are the same as mentioned earlier.

Exchange options
Exchange options grant the holder the right to exchange one risky asset to another 
risky asset at maturity. It is easy to see that simple options are special forms of 
exchange options where one of the risky assets is a constant amount of money  
(the strike price).

The pricing formula of an exchange option was first derived by Margrabe, 1978. The 
model assumptions, the pricing principles, and the resultant formula of Margrabe 
are very similar to (more precisely, the generalization of) those of Black, Scholes, and 
Merton. Now we will show how to determine the value of an exchange option.

Let's denote the spot prices of the two risky assets at time t by S1t and S2t.  

We assume that these prices under the risk neutral probability measure (Q) follow 

geometric Brownian motion with drifts equal to the risk-free rate (r), shown as 

1 1 1 1 1
dS rS dt S dWσ= +  and 2 2 2 2 2

dS rS dt S dWσ= + .

Here, W1 and W2 are standard Wiener processes under Q, with correlation ρ. 

You may observe that here, the assets have no yield (for example, stocks that 

pay no dividend). It is well known (and easy to see with Itô's lemma) that 

the solutions of the earlier mentioned stochastic differential equations are 

( )2
1 10 1 1 1

exp / 2
t t
S S r t Wσ σ = − + 

 and ( )2
2 20 2 2 2

exp / 2
t t
S S r t Wσ σ = − +    (1)

We assume that you are familiar with the basics of stochastic processes in one 

dimension. However, in the case of exchange options, we have a two-dimensional 

Wiener process, so it is useful to illustrate how this looks.
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Two-dimensional Wiener processes
The 2D Wiener process is like a random walk in two dimensions and continuous 
time. We can easily generate such a process with a few lines of code when the 
coordinates are independent Wiener processes (not bothering ourselves with  
scaling the process because it looks the same).

D2_Wiener <- function() {

    dev.new(width = 10, height = 4)

    par(mfrow = c(1, 3), oma = c(0, 0, 2, 0))

    for(i in 1:3) {

        W1 <- cumsum(rnorm(100000))

        W2 <- cumsum(rnorm(100000))

        plot(W1,W2, type= "l", ylab = "", xlab = "")

    }

    mtext("2-dimensional Wiener-processes with no correlation",

        outer = TRUE, cex = 1.5, line = -1)

}

If we call this function, the output is something like this:

 D2_Wiener()

Here, we can see the result in the following image:

Correlation between the Wiener processes changes the picture dramatically. In the 
case of positive correlation, the two Wiener processes look like they are moving in 
the same direction; in the case of negative correlation, they look like they are moving 
in the opposite direction.
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We can modify our function to get correlated Wiener processes. It is easy to see that 
the following code does the job:

Correlated_Wiener <- function(cor) {

    dev.new(width = 10, height = 4)

    par(mfrow = c(1, 3), oma = c(0, 0, 2, 0))

    for(i in 1:3) {

        W1 <- cumsum(rnorm(100000))

        W2 <- cumsum(rnorm(100000))

        W3 <- cor * W1 + sqrt(1 - cor^2) * W2

        plot(W1, W3, type= "l", ylab = "", xlab = "")

    }

    mtext(paste("2-dimensional Wiener-processes (",cor," correlation)",

          sep = ""), outer = TRUE, cex = 1.5, line = -1)

}

The result depends on the generated random numbers, but it is pretty much like this:

Correlated_Wiener(0.6)

Here, we can see the result in the following image:

In the previous example, we set the correlation coefficient to 0.6. Now, let's see what 
happens when it is -0.7:

Correlated_Wiener(-0.7)
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Here, we can see the result in the following image:

We can clearly see the difference between the processes with different correlations. 
Now, let's turn our attention back to exchange options.

The Margrabe formula
The payoff HT of the exchange option at maturity is defined by ( )T 1T 2T

H max S -S ;0= . 
According to the basic risk-neutral pricing principle, the value of this payoff  
(or equivalently, the price of the exchange option, denoted by π(HT)) is as follows:

( ) ( ) ( )π  = −  1 2
- ;0

T T T
H exp rT max S SQE

( )
   

= =         

1
2

2

- - 1 ;0T
T

T

S
exp rT max S

S
QE

( ) ( )( ) ( ) =  2
- - 1 ;0 2

T T
exp rT max S SQE
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In Equation (2), St (without number 1 or 2 in the index) is defined as the S1t /S2t 
quotient. In other words, S is the price of S1 in terms of S2. If the two risky assets  
are two currencies, then S is an FX rate, and that is why we use this notation.

To calculate the earlier mentioned expected value, we need to introduce a new 
measure (R), defined by the following Radon-Nikodym derivative:

( )2 2
2 2 2

20

1exp exp
2

T
T

SdR W T rT
dQ S

σ σ = − = − 
 

Here, the right-hand side of the earlier equation comes from Equation (1) for S2.

Then, the price of the exchange option will take the following form:

( ) ( ) ( )( )π
 

= − − = 
 

2
1 ;0

T T T

d
H exp rT max S S

d
R Q
E

R

( ) ( )20 1;0 3TS max S= −  
RE

Now, we have to determine what kind of process S follows under R. From Girsanov's 

theorem, we know that 1 1 2
ˆ
t t

W W tσ ρ= −  and 2 2 2
ˆ
t t

W W tσ= −  are Wiener processes 

under R, and their correlation is still ρ. Let's introduce the following two notations:

2 2
1 2 1 2

2σ σ σ σ σ ρ= + −

( )1 1 2 2

1 ˆ ˆ
t t t
W W Wσ σ

σ
= −
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From Lévy's characterisation, we know that W is a Wiener process under R. Now we 
can determine the equation of S:

( )
( )

2
10 1 1 11

2
2 20 2 2 2

/ 2

/ 2

tt
t

t t

S exp r t WS
S

S S exp r t W

σ σ

σ σ

 − + = = =
 − + 

( )2 210
1 2 1 1 2 2

20

1
2 t t

S
exp t W W

S
σ σ σ σ

 
= − − + − = 

 

( )2 2 2 210
1 2 1 1 2 2

20

1
2 t t

S
exp t W W

S
σ σ σ σ σ σ

 
= − − − + + − = 

 

2 210
1 1 2 1 1 2 2

20

1
2 t t

S
exp t W W

S
σ σ σ ρ σ σ σ

  
= − − + − =  

  

210
1 1 2 2

20

1 ˆ ˆ
2 t t

S
exp t W W

S
σ σ σ

 
= − + − = 

 

σ σ
 

= − + 
 

210

20

1
2 t

S
exp t W

S

This means that S under R is a geometric Brownian motion with zero drift, that is 
dS SdWσ= .

Now, if you remember, in Equation (3), we had the following equation for the price 
of the exchange option:

( ) ( )π  = − 20
1;0

T T
H S max SRE
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Using this relationship for S, the expected value at the right-hand side is the value 

of a simple call option with an underlying asset S, r is equal to 0, and X is equal to 1. 

Let's denote the price of this call option simply with c0. Then ( ) 20 0T
H S cπ = .

Here, c0 might be determined with the help of the basic Black-Scholes formula, 
substituting the parameters we just discussed:

( ) ( )−= − =0
0 0 1 2

1 Tc S N d e N d

( ) ( )10
1 2

20

S
N d N d

S
= −

Hence ( ) ( ) ( )10 1 20 2T
H S N d S N dπ = −

where 

2
10

20
1

ln
2

S
T

S
d

T

σ

σ

 
+  

 =  and 

2
10

20
2

ln
2

S
T

S
d

T

σ

σ

 
−  

 =

The previously mentioned formula for π(HT), which is the pricing formula for  
the exchange option, is called the Margrabe formula. Continuous dividend yields,  
if applicable, might be inserted into the formula as simply as in the case of the  
Black-Scholes formula. Without repeating the calculations, we give only the  
results for this case.

So, let's assume that the risky assets to be exchanged have positive continuous 
dividend yields denoted by δ1 and δ2 respectively. In this case, the processes of  
their prices under measure Q are as follows:

( )δ σ= − +
1 1 1 1 1 1

dS r S dt S dW  and ( )2 2 2 2 2 2
dS r S dt S dWδ σ= − +

In this case, the Margrabe formula will take the following form:

( ) ( ) ( ) ( )δ δπ − −= −1 2

10 1 20 2
4T T

T
H S e N d S e N d

Here, 

2
10

2 1
20

1

ln
2

S
T

S
d

T

σδ δ

σ

   
+ − +       =  and 

2
10

2 1
20

2

ln
2

S
T

S
d

T

σδ δ

σ

   
+ − −       = .
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Application in R
R has no built-in function for the Margrabe formula. However, it is much more 
difficult to understand the complex theory behind it than implement the result.  
Here, we present the Margrabe function only in a few lines, which calculates the 
price of the exchange option based on the parameters shown in the following code:

Margrabe <- function(S1, S2, sigma1, sigma2, Time, rho, delta1 = 0,

    delta2 = 0) {

    sigma <- sqrt(sigma1^2 + sigma2^2 - 2 * sigma1 * sigma2 * rho)

    d1 <- ( log(S1/S2) + ( delta2-delta1 + sigma^2/2 ) * Time ) / 

        (sigma*sqrt(Time))

    d2 <- ( log(S1/S2) + ( delta2-delta1 - sigma^2/2 ) * Time ) / 

        (sigma*sqrt(Time))

    M <- S1*exp(-delta1*Time)*pnorm(d1) - S2*exp(-delta2*Time)*pnorm(d2)

    return(M)

}

This is the core body of the function. If we are more demanding or want to develop 
a user-friendly application, we need to catch possible errors and exceptions. For 
example, we should include something like this:

if min(S1, S2) <= 0) stop("prices must be positive")

The execution should also be stopped when volatility is negative, but user-experience 
and related software design are beyond the scope of this book. We can use this 
function with valid parameters to see an example of how it works. Let's say we have 
two risky assets that pay no dividend, one with a price of 100 USD and 20 percent 
volatility, and the other with a price of 120 USD and 30 percent volatility, and the 
maturity is two years. At first, let the correlation be 15 percent.

We simply call the Margrabe function with the given parameters:

Margrabe(100, 120, .2, .3, 2, .15)

[1] 12.05247

The result is 12 USD. Now, let's see what happens if one of the assets is riskless,  
that is, its volatility is 0. Let's call the function with the following parameters:

Margrabe(100, 120, .2, 0, 2, 0, 0, 0.03)

[1] 6.566047
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What does this mean? This product grants us the right to change the first risky asset, 
which is a stock that costs 100 USD with 20 percent volatility, to the second "risky" 
asset, which has a price of 120 USD, pays a 3 percent dividend, and has 0 volatility, 
(so it is a fixed cash amount) with 3 percent interest. Practically, in two years, it 
would be the right to buy the stock for 120 USD when the risk-free rate is 3 percent. 
Let's compare the price to the BS price of this call option:

BlackScholesOption("c", 100, 120, 2, 0.03, 0.03, .2)

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "c", S = 100, X = 120, Time = 2, r = 0.03, 

     b = 0.03, sigma = 0.2)

Parameters:

          Value:

 TypeFlag c     

 S        100   

 X        120   

 Time     2     

 r        0.03  

 b        0.03  

 sigma    0.2   

Option Price:

 6.566058 

Description:

 Tue Aug 05 11:29:57 2014

Yes, they are indeed the same. If we set the volatility of the first asset to 0,  
this practically means that we have a put option for the second asset.

Margrabe(100, 120, 0, 0.2, 2, 0, 0.03, 0)

[1] 3.247161

The result of the BS formula is as follows:

BlackScholesOption("p", 120, 100, 2, 0.03, 0.03, .2)



FX Derivatives

[ 108 ]

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "p", S = 120, X = 100, Time = 2, r = 0.03, 

     b = 0.03, sigma = 0.2)

Parameters:

          Value:

 TypeFlag p     

 S        120   

 X        100   

 Time     2     

 r        0.03  

 b        0.03  

 sigma    0.2   

Option Price:

 3.247153 

Description:

 Fri Aug 08 17:38:04 2014  

In both cases, there is only a numeric error from the fifth digit.

We can also use the Margrabe formula to get the price of the currency option we 
discussed in the section Currency Options. We can check whether the BS formula 
provided the same price:

Margrabe(0.745, 0.7, 0.2, 0, 5, 0.15, 0.02, 0.03)

[1] 0.152222

The last thing we need to discuss is how correlation affects the price of the option. 
To illustrate this, we calculate the Margrabe price of the option for different values of 
correlation. This can be done with a few lines of code:

x <- seq(-1, 1, length = 1000)

y <- rep(0, 1000)
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for (i in 1:1000)

    y[i] <- Margrabe(100, 120, .2, 0.3, 2, x[i])

plot(x, y, xlab = "correlation", ylab = "price",

    main = "Price of exchange option", type = "l", lwd = 3)

Here, we can see the result in the following image:

The result is not surprising. When correlation is high, we have the right to switch 
between identical stocks, which, clearly, is worth nothing. When the correlation 
is high on the negative side, we have better chances to make a good deal with the 
option if things go wrong (which means that if our asset decreases, the higher the 
negative correlation, the higher the chance that the price of the other asset increases 
and saves us from loss). In other words, in this case, the option is for insurance rather 
than speculation; we do not have to bear the risk from the price change of the other 
asset. This is why the option is more valuable when correlation is negative.

Quanto options
The term "quanto" is the abbreviation of quantity adjusting option. The payoff of 
quanto derivatives is determined by an asset denominated in one currency, but is 
paid in another currency.
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The best way to understand a quanto product (or any kind of derivative) is to 
examine its payoff function. It is well known that assuming the underlying asset is a 
stock that pays no dividend, the payoff of a European call option is as follows:

( )max ;0
T AT
c S X= −

Here, SA is the price of the stock and X is the strike price. Here, c, SAT, and X are 
denominated in the same currency; let's call it domestic currency.

The payoff of a European call quanto is as follows:

( )max ;0
T T AT
H S S X = − 

Here, S is a foreign exchange rate. Thus, a call quanto pays the same "quantity" of 
money as a simple call option, but in another currency—let's call it foreign currency. 
So, this quantity paid has to be multiplied by an FX rate so that we get the payoff's 
value in domestic currency. Of course, S has to be the price of the foreign currency in 
terms of domestic currency. In other words, in the quotation of S, the base currency 
is the foreign one.

Pricing formula for a call quanto
Pricing a call quanto means determining the value of the earlier payoff. As usual, we 
will assume that the price of the underlying asset under the risk neutral measure (Q) 
follows geometric Brownian motion with drift equal to the risk-free domestic rate (r), 
that is:

1 1A A A
dS rS dt S dWσ= +

Furthermore, we assume that the FX rate follows a similar process:

2 2
dS Sdt SdWµ σ= +
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In these equations, W1 and W2 are standard Wiener processes under Q, with 
correlation ρ. Let q denote the risk-free foreign rate. This means that the value of one 
unit of foreign bank deposit at time t is exp(qt). In terms of the domestic currency, 
this value is as follows:

( ) 2
t 0 2 2 2t

1
S exp qt =S exp q t W

2
µ σ σ

  
+ − +  

  

Supposing that this is a traded product in the domestic market, its discounted value 
has to be a martingale under Q. Let's calculate this discounted value:

( ) ( ) 2
t 0 2 2 2t

1
exp S exp qt =S exp q-r- t W

2
rt µ σ σ

  
− + +  

  

This process is martingale only if r qµ = − , which is under Q.

( ) 2 2
dS r q Sdt SdWσ= − +

Now, we will calculate the SSA product, which we will denote by Y.

( )SS
t A t
Y = =

2 2
2 1

0 A0 2 2t 1 1t
S S exp r q t W r t W

2 2

σ σ
σ σ

    
= − − + + − + =            

σ
σ σ ρ σ

  
= − − +      

2
3

0 A0 1 2 3 3t
S S exp 2r q+ t W

2

Here, 
2 2

3 1 2 1 2
2σ σ σ σ σ ρ= + +  and 

1 1 2 2
3

3

t t
t

W WW σ σ
σ
+

= .



FX Derivatives

[ 112 ]

The correlation ρ̂  between W2 and W3 is 1 2

3

σ ρ σ
ρ

σ
+

=ˆ .

Consequently, ( )σ σ ρ σ= − + +
1 2 3 3

2dY r q Ydt YdW .

Now, it is important to notice that the call quanto is a special exchange option, and 
hence, might be priced with Margrabe's formula. We only have to identify the two 
risky assets to be exchanged upon exercising the option, and the related parameters. 
From the payoff function of the quanto, it is easy to see that the first risky asset is SSA 
= Y, while the second one is XS (both expressed in domestic currency). Since the drift 
components of these processes under Q are not simply the risk-free domestic rate, we 
have to use the Margrabe formula with dividend yields. From the earlier calculations, 
we can see that the Y process should be handled as if the dividend yield was 

ρσ σ− −
1 2

q r , while in case of XS, it is simply q. The only remaining parameter to be 
determined is σ. With straightforward substitutions, we have the following calculation:

2 2
3 2 3 2

ˆ2σ σ σ σ σ ρ= + − =

( )2 2 2
1 2 1 2 2 2 1 2

2 2σ σ ρσ σ σ σ σ ρ σ= + + + − + =

2
1 1

σ σ= =

Summarizing all these results, we have to use the Margrabe formula (given in 
Equation (4)) with the substitutions 1 A

S Y SS= = , 2
S XS= , 1 1 2

q rδ ρσ σ= − − , 2
qδ = , 

and 
1

σ σ= .

Hence, the price of the call quanto is as follows:

( ) ( ) ( ) ( )1 2

0 0 1 0 2

q r T qT
T A
H S S e N d XS e N d

ρσ σπ − − − −= −
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In the earlier equation, d1 and d2 were as follows:  

2
0 1

1 2

1

1

ln
2

A
S

r T
X

d
T

σ
ρσ σ

σ

  
+ + +        =  and 

2
0 1

1 2

2

1

ln
2

A
S

r T
X

d
T

σ
ρσ σ

σ

  
+ + −        = .

Pricing a call quanto in R
Let's see an example to price a call quanto in R. Our favorite stock is priced at 100 
USD and 20 percent volatility. We need a call option with 90 USD, which is paid in 
EURs in three years. The USD risk-free rate is r = 2% and the EUR risk-free rate is 
q = 3%. Currently, 1 USD is equal to 0.7467 EUR. The EUR volatility is 15%, and the 
correlation between the stock price and the USDEUR exchange rate is 10%.

If in three years the price of the stock is higher than 90 USD, the difference is paid 
in EUR. If, for instance, the price is 110 USD in 3 years, we will get 20 EURs. On the 
current FX rate, it is 20*0.7467 = 26.78093 USD, but if the EURUSD exchange rate 
is different in three years, for example, USDEUR is equal to 0.7, this equals 28.57143 
USD. So the payoff can be different in USD, but we eliminated the FX rate risk if we 
want to be paid in EUR.

This seems complicated, but fortunately, we can use the Margrabe formula and our 
Margrabe function to calculate the price of the option.

Margrabe = function(S1, S2, sigma1, sigma2, Time, rho, delta1 = 0, delta2 
= 0)

We need these substitutions 1 A
S Y SS= = , 2

S XS= , 1 1 2
q rδ ρσ σ= − − , 2

qδ = , 
and 1

σ σ= .

S1 is the stock price in EUR, and S2 is the strike price in EUR. delta1 and delta2 
can be calculated easily: delta1 = 0.03-0.02-0.2*0.15*0.1 and delta2 = 
0.03. The only problem is that we need to set sigma = sigma1, but sigma is not 
a parameter of the Margrabe function; it is calculated inside the function body. 
Consider the following command: 

sigma = sqrt(sigma1^2 + sigma2^2 - 2 * sigma1 * sigma2 * rho)

To get the sigma = sigma1 result, we need to set sigma2 = rho = 0.
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Now, we can call the Margrabe function with the given parameters.

Margrabe(74.67, 90*0.7467, 0.2, 0,3, 0, 0.007 , 0.03)

[1] 16.23238

The result is 16.23. This is the price of the quanto.

Summary
In this chapter, we met the challenge of discussing one of the most beautiful and 
most difficult parts of financial math: derivative pricing. We learned in theory and in 
practice about generalizations of the Black-Scholes model for related problems.  
We learned how to use R and the Black-Scholes formula for currency options. We 
saw how easy it is to implement our own code for the Margrabe formula, which is  
an extension of the Black-Scholes model. We used this formula to price stock options, 
currency options, and exchange options. Finally, we discussed quanto options and 
realized that quantos can also be priced with the Margrabe formula.

If you found this chapter exciting, you will be enthusiastic about the next one,  
which is about a related topic, that is, interest rate derivatives.
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Interest Rate Derivatives  
and Models

Interest rate derivatives are financial derivative products whose payoff is dependent 
on the interest rates.

There is a wide range of such products; the basic types include interest rate swaps, 
forward rate agreements, callable and puttable bonds, bond options, caps and floors, 
and so on.

In this chapter, we will start with the Black model (also referred to as the Black-76 
model), which is a generalized version of the Black-Scholes model, and is often used 
to price interest rate derivatives. Then, we will show how to apply the Black model 
to price an interest rate cap.

A shortcoming of the Black model is that it assumes lognormal distribution for 
some underlying asset (for example, bond price or interest rate), and it neglects how 
interest rate changes across time. Consequently, Black's formula cannot be used for 
all kinds of interest rate derivatives. Sometimes, it is necessary to model the term 
structure of interest rate models. There are plenty of interest rate models that try to 
capture the main features of this term structure. In the second part of this chapter, we 
discuss two basic and frequently used interest rate models, namely the Vasicek and 
the Cox-Ingersoll-Ross models. As in the previous chapter, we will assume that you 
are familiar with the Black-Scholes model and the basics of risk-neutral valuation.
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The Black model
We started this chapter by defining interest rate derivatives as assets with  
interest-rate-dependent cash flows. It is worth noting that the value of financial 
products is almost always dependent on some interest rates because of the need to 
discount the future cash flows. However, in the case of interest rate derivatives, not 
only the discounted value but the payoff itself depends on the interest rates. This 
is the main reason why interest rate derivatives are more complicated to price than 
stock or FX derivatives (Hull, 2009 discusses these difficulties in detail).

The Black model (Black, 1976) was developed to price options on futures contracts. 
Futures options grant the holder the right to enter into a futures contract at a 
predetermined futures price (strike price or exercise price, X) on a specified date 
(maturity, T). In this model, we keep the assumptions of the Black-Scholes model, 
except that the underlying is the futures price instead of the spot price. Hence, we 
assume that the futures price (F) follows a geometric Brownian motion:

dF Fdt FdWµ σ= +

It is easy to see that futures contracts might be handled as products with a 
continuous growth rate that is equal to the risk-free interest rate (r). Thus, it is  
not surprising that Black's formula for futures options is exactly the same as the 
Black-Scholes formula for currency options (discussed in the previous chapter),  
with q equal to r (as if the domestic and foreign interest rates were the same).  
So, Black's formula for a European futures call option is as follows:

( ) ( )1 2
rTc e FN d XN d−= −  

Here, 

2

1
2

Fln T
Xd
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σ

σ
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 =  and 
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2

Fln T
Xd

T

σ

σ

  − 
 = .

The price of a similar put option is as follows:

( ) ( )2 1
rTp e XN d FN d−= − − −  

It is not a surprise that the GBSOption function (or the BlackScholesOption 
function) is useful for the Black model too. It is time to have a closer look at  
how it actually works.
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When a function's name is typed in the R console without parenthesis, the function 
will not be called, but the source code is returned (except for byte-compiled 
code). This is not recommended for beginners, but it can be extremely useful for 
programmers with some experience because these details are usually not included in 
package documentation. Let's try it:

require(fOptions)

GBSOption

function (TypeFlag = c("c", "p"), S, X, Time, r, b, sigma, title = NULL, 

    description = NULL)

{

    TypeFlag = TypeFlag[1]

    d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))

    d2 = d1 - sigma * sqrt(Time)

    if (TypeFlag == "c") 

        result = S * exp((b - r) * Time) * CND(d1) - X * exp(-r * 

            Time) * CND(d2)

    if (TypeFlag == "p") 

        result = X * exp(-r * Time) * CND(-d2) - S * exp((b - 

            r) * Time) * CND(-d1)

    param = list()

    param$TypeFlag = TypeFlag

    param$S = S

    param$X = X

    param$Time = Time

    param$r = r

    param$b = b

    param$sigma = sigma

    if (is.null(title)) 

        title = "Black Scholes Option Valuation"

    if (is.null(description)) 

        description = as.character(date())

    new("fOPTION", call = match.call(), parameters = param, price = 
result, 

        title = title, description = description)

}

<environment: namespace:fOptions>
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Do not worry if this is not totally clear; we are only interested in the computation  
of the price of the call option. First, d

1
 is calculated (we will check the formula in  

a minute). The BS formula has different forms (for stock options, currency options, 
and stock options with dividend), but the following equation always holds:

1 2d d Tσ− =

In the function, d
2
 is calculated based on this equation. The final result has the form 

( ) ( )1 2aN d bN d−  , where a and b are dependent on the model but are always the 
discounted value of the price of the underlying and the strike price.

Now, we can see the role of the b parameter in the calculation. As we mentioned  
in the previous chapter, this is how we can decide which model we want to use.  
If we carefully check the formulas, we can conclude that by setting b = r, we get  
the Black-Scholes stock option model; with b = r-q, we get Merton's stock option 
model with continuous dividend yield q (which is the same as the currency option 
model, as we saw in the previous chapter); and with b = 0, we get Black's futures 
option model.

Now, let's see an example of the Black model.

We need an option for an asset with 100 strike price in 5 years. The futures price  
is 120. Volatility of the asset is assumed to be 20%, and the risk-free rate is 5%.  
Now, simply call the BS option pricing formula with S = F and b = 0:

GBSOption("c", 120, 100, 5, 0.05, 0, 0.2)

We get the results in the usual form:

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "c", S = 120, X = 100, Time = 5, r = 0.05, 

     b = 0, sigma = 0.2)

Parameters:

          Value:

 TypeFlag c     

 S        120   

 X        100   

 Time     5     

 r        0.05  
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 b        0     

 sigma    0.2   

Option Price:

[1] 24.16356

The price of the option is about 24 USD, and we can also check from the output that 
b = 0, from which we must know that the Black model for futures options was used 
(or we made a serious mistake).

Although it was originally developed for commodity products, the Black model 
turned out to be a useful tool for pricing interest rate derivatives such as options on 
bonds or caps and floors. In the next section, we show how to use this model to price 
an interest rate cap.

Pricing a cap with Black's model
Interest rate caps are interest rate derivatives where the holder receives positive 
payments throughout a number of time periods if the interest rate exceeds a certain 
level (the strike price, X). Analogously, the holder of an interest rate floor receives 
positive payments in each period if the interest rate is below the strike price. It is 
obvious that caps and floors are efficient products to hedge against interest rate 
volatility. In this section, we will discuss the pricing of a cap. Let's assume that the 
underlying rate is the LIBOR, L.

As we discussed in the previous chapter, the best way to understand derivatives is 
to determine their payoff structure. The payoff of a cap (with one unit of notional 
amount) at the end of the nth period is as follows:

( )1max ;0nL Xτ − −

Here, τ is the time interval between two payments. This single payment is called 
a caplet, and the cap is, of course, a portfolio of sequential caplets. When pricing 
a cap, all the caplets must be valued and then their prices have to be summed. 
Furthermore, the earlier mentioned payoff shows us that pricing the nth caplet is 
nothing but pricing a call option with the underlying asset of the Libor, strike price 
X, and maturity τn.
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If we assume that the Libor rate at time n-1 (Ln-1) is a random variable that has 

lognormal distribution and the volatility is 1nσ − , then we can use Black's formula  

to price the caplet:

( ) ( )1 1 2
r n

n nc e F N d XN dττ −
−= −  

Here, 
( )

( )

2
1 1

1
1

1
2
1

n n

n

Fln n
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n

σ τ

σ τ

− −

−

  + − 
 =

−
 and 
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( )

2
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2
1

1
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−
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 =

−
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Here, Fn-1 is the forward Libor rate between τ(n-1) and τn, and r is the risk-free spot 
log return with maturity τn. Once we have the value of one single caplet, we can 
price all of them to get the price of the cap.

Let's see an example to understand this in depth. We have to pay USD LIBOR for 6 
months to a business partner between May 2014 and November 2014. A caplet is an 
easy way to avoid the interest rate risk. Assume that we have a caplet on the LIBOR 
rate with 2.5% strike price (using the usual terminology).

This means that if the LIBOR rate is higher then 2.5%, we will receive the difference 
in cash. If, for example, the LIBOR rate turns out to be 3% in May, our payoff on one 
unit of notional amount is 0.5*max(3% -2.5%, 0).

Now, let's see how to price the caplet. There is nothing new in it; we can simply use 
the Black-Scholes formula. It is clear that we need to set S = F

n-1
, Time = 0.5, and b 

= 0. Assuming that the LIBOR rate follows the geometric Brownian motion with 20% 
volatility, the forward rate between May 1st and November 1st is 2.2%, and the spot 
rate is 2%. In this case, the price of the caplet is as follows:

GBSOption("c", 0.022, 0.025, 0.5, 0.02, 0, 0.2)

Title:

 Black Scholes Option Valuation 

Call:

 GBSOption(TypeFlag = "c", S = 0.022, X = 0.025, Time = 0.5, r = 0.02, 

     b = 0, sigma = 0.2)

Parameters:

          Value:

 TypeFlag c     

 S        0.022 

 X        0.025 

 Time     0.5   
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 r        0.02  

 b        0     

 sigma    0.2   

Option Price:

 0.0003269133

The price of the option is 0.0003269133. We still need to multiply it with τ = 0.5, 
which makes it 0.0001634567. If we measure everything in million USD, this means 
that the price of the caplet is about 163 USD.

A cap is simply a sum of caplets, but we can combine them with different parameters 
if needed. Let's say we need a cap that pays if the LIBOR rate goes above 2.5% in 
the first 3 months, or if it is higher than 2% in the following 3 months. The forward 
LIBOR rate can also be different in the May and August period (let's say it is 2.1%), 
and in the August and November period (let's say it is 2.2%). We simply price both 
caplets one by one and add their prices:

GBSOption("c", 0.021, 0.025, 0.25, 0.02, 0, 0.2)

GBSOption("c", 0.022, 0.02, 0.25, 0.02, 0, 0.2)

We do not include all the outputs here, only the prices:

Option Price:

 3.743394e-05

Option Price:

 0.002179862

Now, we need to multiply both with τ = 0.25 and take the sum of their prices:

(3.743394e-05 + 0.002179862 ) * 0.25

0.000554324

The price of this cap with a notional amount of 1 million is about 554 USD.

Pricing a floor is very similar. First, we divide the asset's cash flows into single 
payments, called floorlets. Then, we determine the value of each floorlet with the 
help of the Black model; the only difference is that floorlets are not call but put 
options. Finally, we add up the prices of the floorlets to get the value of the floor.

Black's model is applicable when we can assume that the future value of the 
underlying asset has lognormal distribution. Another approach to value interest rate 
derivatives is by modeling the term structure of interest rates. Here, we continue by 
presenting two basic interest rate models and their main characteristics.



Interest Rate Derivatives and Models

[ 122 ]

The Vasicek model
The Vasicek model (Vasicek, 1977) is a continuous, affine, one-factor stochastic 
interest rate model. In this model, the instantaneous interest rate dynamics are  
given by the following stochastic differential equation:

( )t t tdr r dt dWα β σ= − +

Here, a, β, and σ are positive constants, rt is the interest rate, t is time, and Wt  
denotes the standard Wiener process. In mathematics, this process is called the 
Ornstein-Uhlenbeck process.

As you may observe, the interest rate in the Vasicek model follows a mean-reverting 
process with a long-term average β; when rt < β, the drift term becomes positive, so 
the interest rate is expected to increase and vice versa. The speed of adjustment to the 
long-run mean is measured by a. The volatility term is constant in this model.

Interest rate models are implemented in R, but to understand more deeply what is 
behind the formulas, let's write a function that directly implements the stochastic 
differential equation of the Vasicek model:

vasicek <- function(alpha, beta, sigma, n = 1000, r0 = 0.05){

  v <- rep(0, n)

  v[1] <- r0

  for (i in 2:n){

    v[i] <- v[i - 1] + alpha * (beta - v[i - 1]) + sigma * rnorm(1)

         }

     return(v)

}

That's it. Now, let's plot some trajectories to see how it looks:

set.seed(123)

r <- replicate(4, vasicek(0.02, 0.065, 0.0003))

matplot(r, type = "l", ylab = "", xlab = "Time", xaxt = "no",  main = 
"Vasicek modell trajectories")

lines(c(-1,1001), c(0.065, 0.065), col = "grey", lwd = 2, lty = 1)
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The following screenshot gives the output of the preceding command:

To understand the role of parameters, we plot the same trajectory (that is, the 
trajectory generated by the same random numbers) with different values of sigma 
and alpha:

r <- sapply(c(0, 0.0002, 0.0006), 

function(sigma){set.seed(102323); vasicek(0.02, 0.065, sigma)})

matplot(r, type = "l", ylab = "", xlab = "Time" ,xaxt = "no",  main = 
"Vasicek trajectories with volatility 0, 0.02% and 0.06%")

lines(c(-1,1001), c(0.065, 0.065), col = "grey", lwd = 2, lty = 3)
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The following is the output of the preceding code:

r <- sapply(c(0.002, 0.02, 0.2),

function(alpha){set.seed(2014); vasicek(alpha, 0.065, 0.0002)})

Trajectories have the same shape but different volatility:

matplot(r, type = "l", ylab = "", xaxt = "no",  main = "Vasicek 
trajectories with alpha = 0.2%, 2% and 20%")

lines(c(-1,1001), c(0.065, 0.065), col = "grey", lwd = 2, lty = 3)
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The following is the output of the preceding command:

We can see that the higher the value of a, the earlier the trajectory reaches the  
long-term average.

It can be shown (see, for example, the original paper of Vasicek already cited) that 
the short rate in the Vasicek model is normally distributed with the following 
conditional expected value and variance:

[ ] ( ) ( )( )| 1T t T t
T t tE r r re eα αβ− − − −= + −

[ ] ( )( )
2

2| 1
2

T t
T tVar r r e ασ

α
− −= −
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It is worth observing that the expected value converges to β when T or a goes to 
infinity. Furthermore, the variance converges to 0 when a goes to infinity. These 
observations are in line with the parameters' interpretations.

To demonstrate how the coefficients of the equation determine the parameters of the 
distribution, let's plot the conditional probability density function for different values 
of a, β, and σ, and see how it changes over time:

vasicek_pdf = function(x, alpha, beta, sigma, delta_T, r0 = 0.05){

  e <- r0*exp(-alpha*delta_T)+beta*(1-exp(-alpha*delta_T))

  s <- sigma^2/(2*alpha)*(1-exp(-2*alpha*delta_T))

  dnorm(x, mean = e, sd = s)

}

x <- seq(-0.1, 0.2, length = 1000)

par(xpd = T ,mar = c(2,2,2,2), mfrow = c(2,2))

y <- sapply(c(10, 5, 3, 2), function(delta_T)

       vasicek_pdf(x, .2, 0.1, 0.15, delta_T))

par(xpd = T ,mar = c(2,2,2,2), mfrow = c(2,2))  

matplot(x, y, type = "l",ylab ="",xlab = "")

legend("topleft", c("T-t = 2", "T-t = 3", "T-t = 5", "T-t = 10"), lty = 
1:4, col=1:4, cex = 0.7)

y <- sapply(c(0.1, 0.12, 0.14, 0.16), function(beta)

       vasicek_pdf(x, .2, beta, 0.15, 5))

matplot(x, y, type = "l", ylab ="",xlab = "")

legend("topleft", c("beta = 0.1", "beta = 0.12", "beta = 0.14", "beta = 
0.16"), lty = 1:4, col=1:4,cex = 0.7)

y <- sapply(c(.1, .2, .3, .4), function(alpha)

       vasicek_pdf(x, alpha, 0.1, 0.15, 5))

matplot(x, y, type = "l", ylab ="",xlab = "")

legend("topleft", c("alpha = 0.1", "alpha = 0.2", "alpha = 0.3", "alpha = 
0.4"), lty = 1:4, col=1:4, cex = 0.7)

y <- sapply(c(.1, .12, .14, .15), function(sigma)

       vasicek_pdf(x, .1, 0.1, sigma, 5))
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matplot(x, y, type = "l", ylab ="",xlab = "")

legend("topleft", c("sigma = 0.1", "sigma = 0.12", "sigma = 0.14", "sigma 
= 0.15"), lty = 1:4, col=1:4, cex = 0.7)

The following screenshot is the result of the of preceding code:

We can see that the variance of the distribution increases over time. β affects only 
the mean of the probability distribution. It is clear that with a higher value of a, the 
process reaches its long-term mean sooner and has less variance, and with greater 
volatility, we get a flatter density function, that is, greater variance.
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Pricing a zero-coupon bond when the interest rate follows a Vasicek model  
results in the following formula (for a derivation of this formula, see, for example, 
Cairns [2004]):

( ) ( ) ( ), , tA T t B T t r
tP t r T e − − −=

Here, ( ) 1 eB
ατ

τ
α

−−
=  and ( ) ( )( ) ( )2 22

22 4
B

A B
σ τστ τ τ β

α α
 

= − − − 
 

.

In the preceding formula, P denotes the price of the zero-coupon bond, t is the time 
when we price the bond, and T is the maturity (hence, T-t is the time to maturity).  
If we have the zero-coupon bond prices, we can determine the spot yield curve  
with the following simple relationship:

( ) ( ) ( ) ( )1, , t

A T t B T t
R t T lnP t T r

T t T t T t
− −

= − = − +
− − −

The Cox-Ingersoll-Ross model
Like the Vasicek model, the Cox-Ingersoll-Ross model (Cox at al., 1985), which is 
often cited as the CIR model, is a continuous, affine, one-factor stochastic interest 
rate model. In this model, the instantaneous interest rate dynamics are given by the 
following stochastic differential equation:

( )t t t tdr r dt r dWα β σ= − +

Here, a, β, and σ are positive constants, rt is the interest rate, t is the time, and Wt 
denotes the standard Wiener process. It is easy to see that the drift component is the 
same as in the Vasicek model; hence, the interest rate follows a mean-reverting process 
again, β is the long-run average, and a is the rate of adjustment. The difference is that 
the volatility term is not constant but is proportional to the square root of the interest 
rate level. This 'small' difference has dramatic consequences regarding the probability 
distribution of the future short rates. In the CIR model, the interest rate has non-central 
chi-squared distribution, with the following density function (f):

[ ] [ ]2
2 2,2| 2 2T t q u tf r r c crχ += ∗
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Here, 2

2 1q αβ
σ

= − , ( )T t
tu cre α− −= , and ( )( )2

2
1 T t

c
e α

α
σ − −

=
− .

Here, 
2
,n mχ  denotes the probability density function of the chi-squared distribution 

with n degrees of freedom and m denoting the non-centrality parameter. As the 
expected value and the variance of such a random variable is n+m and 2(n+2m) 
respectively, we have the following moments for the interest rate:

[ ] ( ) ( )( )| 1T t T t
T t tE r r re eα αβ− − − −= + −

[ ] ( ) ( )( ) ( )( )
2 2 22| 1

2
T t T t T tt

T t
rVar r r e e eα α ασ σ β

α α
− − − − − −= − + −

We might observe that the conditional expected value is exactly the same as in the 
Vasicek model. It is important to notice that the short rate, as a normally distributed 
variable, might become negative in the Vasicek model, but this cannot happen in the 
CIR model.

Like in the case of the Vasicek model, we can see how the coefficients determine the 
shape of the probability density function if we plot it with different parameter sets. 
The following code does this job by comparing the probability density functions 
under various parameter specifications:

CIR_pdf = function(x, alpha, beta, sigma, delta_T, r0 = 0.1){

  q = (2*alpha*beta)/(sigma^2) - 1

  c = (2*alpha)/(sigma^2*(1-exp(-alpha*delta_T)))

  u = c*r0*exp(-alpha*delta_T)

  2*c*dchisq(2*c*x, 2*q+2, ncp = 2*u)

              }

x <- seq(0, 0.15, length = 1000)

y <- sapply(c(1, 2, 5, 50), function(delta_T)

       CIR_pdf(x, .3, 0.05,0.1,delta_T))
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par(mar = c(2,2,2,2), mfrow = c(2,2))  

matplot(x, y, type = "l",ylab ="",xlab = "")

legend("topright", c("T-t = 1", "T-t = 2", "T-t = 5", "T-t = 50"), lty = 
1:4, col = 1:4, cex = 0.7)

y <- sapply(c(.2, .4, .6, 1), function(alpha)

       CIR_pdf(x, alpha, 0.05,0.1,1))

  matplot(x, y, type = "l",ylab ="",xlab = "")

legend("topright", c("alpha = 0.2", "alpha = 0.4", "alpha = 0.6", "alpha 
= 1"), lty = 1:4, col = 1:4, cex = 0.7)

y <- sapply(c(.1, .12, .14, .16), function(beta)

       CIR_pdf(x, .3, beta,0.1,1))

  

matplot(x, y, type = "l",ylab ="",xlab = "")

legend("topleft", c("beta = 0.1", "beta = 0.12", "beta = 0.14", "beta = 
0.16"), lty = 1:4, col = 1:4, cex = 0.7)

x <- seq(0, 0.25, length = 1000)

y <- sapply(c(.03, .05, .1, .15), function(sigma)

       CIR_pdf(x, .3, 0.05,sigma,1))

  

matplot(x, y, type = "l",ylab ="",xlab = "")

legend("topright", c("sigma = 1", "sigma = 5", "sigma = 10", "sigma = 
15"), lty = 1:4, col = 1:4, cex = 0.7)

Here, we can see the result. We come to the same conclusion as we did in the case of 
the Vasicek model, except that here, β changes the shape of the density function and 
not just shifts it.
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Pricing a zero-coupon bond in the CIR model yields the following formula  
(see, for example, Cairns [2004]):

( ) ( ) ( ), , tA T t B T t r
tP t r T e − − −=
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Determining the yield curve from the bond prices is exactly the same as in the 
Vasicek model.
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Parameter estimation of interest rate 
models
When using the interest rate models for pricing or simulation purposes, it is 
important to calibrate their parameters to real data properly. Here, we present a 
possible method to estimate the parameters. This method was developed by Chan et 
al, 1992, and is often referred to as the CKLS method. The procedure was elaborated 
to estimate the parameters of the following interest rate model with the help of the 
econometric procedure called Generalized Method of Moments (GMM; see Hansen, 
1982, for more details):

( )t t t tdr r dt r dWγα β σ= − +

It is easy to see that this process gives the Vasicek model when γ=0, and the CIR 
model when γ =0.5. As the first step of the parameter estimation, we discretize this 
equation with the Euler approximation (see Atkinson, 1989):

( ) 1 11t t t t t t tr r r eγαβδ αδ σ δ− −= + − +

Here, δt is the time interval between two observations of the interest rate and et is 
independent, standard normal random variables. The parameters are estimated with 
the following null hypothesis:

1 1t t t t t tr r rαβδ αδ ε− −− = − +

( ) 0tE ε =

( )2 2 2
1t t tE r γε σ δ −=

Let Θ be the vector of the parameters to be estimated, that is, ( ), , ,α β σ γΘ = .
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We consider the following function of the parameter vector:
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It is easy to see that under the null hypothesis, ( )( )tE M Θ =0.

The first step of GMM is that we consider the sample corresponding to ( )( )tE M Θ , 

which is ( )tm Θ :
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=
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Here, n is the number of observations.

Finally, GMM determines the parameters by minimizing the following  
quadratic form:

( ) ( ) ( ),
t tm mΘ Ω Θ Θ

Here, Ω  is a symmetric, positive definite weight matrix.

There is a quadprog package in R for these kinds of problems, or we can use general 
methods for optimization with the optim function.
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Using the SMFI5 package
After discussing the math behind interest rate models and after hard programming, 
let's recommend the SMFI5 package, which provides user-friendly solutions to 
model and simulate interest rate models (if it is modeled by an Ornstein-Uhlenbeck 
process), price bonds, and many other applications.

We cannot discuss it in detail, but as a short demonstration, let's call a function that 
simulates bond prices for different maturities:

bond.vasicek(0.5,2.55,0.365,0.3,0,3.55,1080,c(1/12, 3/12, 6/12, 1),365) 

This returns a spectacular result:
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Summary
This chapter was about interest rate models and interest rate derivatives.  
After introducing the Black model, we used it to price caps and caplets.  
We also examined the R code for the Black-Scholes model.

Then, we turned our attention to interest rate models such as the Vasicek and CIR 
models. We discussed the theory of parameter estimation as well. At the end, we 
briefly demonstrated how the SMFI5 package works. Interest rate models were 
important for us in this chapter because the pricing of interest rate derivatives 
starts with assuming something about interest rates and yield curves in the future. 
With the help of a properly chosen and calibrated model, we have the opportunity 
to analyze possible future scenarios of the interest rates. Interest rate models are, 
of course, a much wider topic, which is worth studying in more detail. However, 
learning the most popular and well-known models is a good start, and we encourage 
you to study them further or check out the next chapter because some options still 
have some surprises for us.
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Exotic Options
All derivatives are financial contracts, and in these contracts, there are far more 
features that can be agreed on than a simple right to buy or to sell. Complex payout 
structures can be engineered based on what-if scenarios; thus, the final payout of an 
exotic contract can be dependent on a whole set of circumstances. Often, even the 
path of the underlying has a serious influence on the final payout. Compared to these 
derivatives, the good old call and put options were soon seen simple, earning them a 
not too impressive nickname: plain vanilla.

Vanilla call and put options are like plain vanilla ice-creams, the simplest possible 
ice-cream without any fancy optional toppings. The expression "plain vanilla" is so 
strongly embedded in finance that it is even used in the bond market, where a vanilla 
bond is the simplest possible coupon-paying bond.

Any option that has some extras over the basic plain vanilla options belong to  
a very numerous group called exotic options. Exotic options are popular because  
sell-side bankers are in fierce competition to offer tailor-made products for the 
clients. Another reason behind the fact that exotics are widely spread is that, 
interestingly enough, most of the time, quoting a price on an exotic structure is  
not a much more difficult task for market makers than quoting vanilla prices.

A general pricing approach
Exotic or not, there is one intrinsic feature that is always the same in every derivative 
product, that is, it is a function of other instruments, hence the name derivative. 
Thus, the price of a derivative is not independently developed as the outcome of a 
direct supply and demand; rather, it is given as an estimated construction cost. For 
example, the one month forward dollar price of a euro is highly dependent on the 
spot dollar price of the euro; the forward price is just the function of the spot price 
(and the interest rates). 
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If exactly the same benefits that are granted by holding a derivative can be 
constructed by a trading strategy that involves less complex instruments, then the 
derivative can be replicated. Derivatives are not like unique paintings; the forgery of 
a derivative has the very same value, while replicas are as good as the original. By 
using the no-arbitrage argument, Black and Scholes (1973) and Merton (1973) showed 
that the price of a derivative should be equal to the expected sum of expenses that 
arise during the proper implementation of the dynamic replication strategy. Taleb 
(1997) extensively describes that implementing a proper replication strategy under 
real market circumstances could often be really tricky.

The role of dynamic hedging
Most of the time, replication is a dynamic strategy. You should do more or less 
trading almost continuously during the lifetime of the derivatives. Haug (2007b) 
shows that the hedging error of non-continuous hedging could be significant even 
for plain vanilla options. Anyway, continuous hedging is a huge effort, which is 
often not seen explicitly in the pricing formulas; however, most pricing functions are 
based on the assumption that dynamic hedging should be done in the background 
properly all the time. This is also the case whenever we talk about risk-neutral world 
or the risk-neutral pricing. For further references, see Wilmott (2006).

Luckily, no matter how hard dynamic hedging could be, running an option book is 
at least a scalable business; hedging thousands of options is not much more difficult 
than hedging just a couple of them. All options can be decomposed into certain 
sensitivities, the so-called Greek letters (or simply Greeks). This nickname came 
from the fact that some crucial sensitivity was named with a letter from the Greek 
alphabet (delta, gamma, rho, and theta). They are partial derivatives and thus they 
are additive. Summing up the deltas of the individual options gives the delta of the 
portfolio and so on. This works not only for the plain vanillas but for the exotics too, 
thus creating a very strong link between the vanillas and the exotics.

How R can help a lot
We start this chapter by showing some examples for exotic options, giving one 
possible classification. We will show examples from the fExoticOptions package 
and how the so-called Black-Scholes surface can be created for any derivative-pricing 
function. Afterwards, we will focus on the numerical estimation of the Greeks of any 
exotic derivative. Next, we will show the pricing of an exotic option that is not yet 
included in the fExoticOptions package. 
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We have chosen the Double-no-touch (DNT) binary option mainly because of its 
popularity on the foreign exchange (FX) markets and the many conclusions that are 
relevant even for other exotics. We will use AUDUSD as underlying because at the 
time of writing this chapter, there is a significant interest differential between the 
AUD and the USD interest rates, and we can show how to put these rates into the 
pricing functions. We will show a second way of calculating the price of a DNT by 
using static option replication arguments. We will show a real-life example of a DNT, 
and in a simulation, we will show a way to estimate the survivorship probability 
of a DNT. Using this, we can discuss the relationship of real-world and risk-neutral 
probabilities and the role of risk premium. Finally, we will show some practical  
fine-tuning tricks to embed exotic options into structured products.

Besides seeing examples to implement complex exotic option-pricing functions and 
simulations in R, as a side effect, understanding the Greeks as links between exotics 
and vanillas will be the learning outcome of this chapter. We will use the same 
terminology that was introduced in Chapter 5, FX Derivatives, which also includes 
much more about currencies and plain vanilla options.

A glance beyond vanillas
Haug (2007a) comprehensively covers the collection of pricing formulas for around 
100 exotic derivatives. The fOptions and fExoticOptions packages are based on 
this book. Wilmott (2006), Taleb (1997), and DeRosa (2011) describe a lot of practical 
issues about them.

The first impression could be that there are way too many exotic options. There 
are many ways of classification. Market makers talk about different generations of 
exotics, such as first generation, second generation, and so on. Their approach is 
from a hedging point of view. We will use a slightly different angle, the end-user 
approach, and classify the options based on their main exotic feature.

Asian type exotics are about the average. It could be an average rate or an average 
strike, and it could also be an arithmetic or geometric average. These options are path 
dependent; that is, their value at expiry is not purely a function of the underlying 
price at expiry but the total path. Asian options are cheaper than the vanillas since 
the volatility of the average price is lower than the volatility of the price itself:

library(fOptions)

library(fExoticOptions)

a <- GBSOption("c", 100, 100, 1, 0.02, -0.02, 0.3, title = NULL,

    description = NULL) 
(z <- a@price)
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[1] 10.62678

a <- GeometricAverageRateOption("c", 100, 100, 1, 0.02, -0.02, 0.3,

    title = NULL, description = NULL) 
(z <- a@price) 
[1] 5.889822

Barrier type exotics are also path-dependent options. There could be one or two 
barriers. Each barrier could be either knock-in (KI) or knock-out (KO). During the 
lifetime of the option, the price of the underlying is monitored, and if it is traded 
at or over the barrier, there will be a knock event. Options with KI barriers become 
exercisable if the knock event occurs. Options with KO barriers start their life as 
exercisable options, however, they become non-exercisable if the knock event occurs. If 
there are two barriers, both of them could be the same type: double-knock-out (DKO) 
and double-knock-in (DKI), or it could be a knock-in-knock-out (KIKO) type.

If all other parameters are set to be the same, then the following equation holds:

KI + KO = vanilla.

This is because in this case, KI and KO options are mutually exclusive, but one of 
them will be exercisable for sure. The first parameters cuo and cui are flags for  
call-up-and-out and call-up-and-in. Next, we check for the following condition:

vanilla - KO - KI = 0.

The following code illustrates the preceding condition:

library(fExoticOptions)

a <- StandardBarrierOption("cuo", 100, 90, 130, 0, 1, 0.02, -0.02, 0.30,

    title = NULL, description = NULL)

x <- a@price 
b <- StandardBarrierOption("cui", 100, 90, 130, 0, 1, 0.02, -0.02, 0.30, 

    title = NULL, description = NULL)

y <- b@price

c <- GBSOption("c", 100, 90, 1, 0.02, -0.02, 0.3, title = NULL, 

    description = NULL)

z <- c@price

v <- z - x - y

v

[1] 0
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Based on the same logic of DKO + DKI = vanilla, we can even state that KO - DKO = 
KIKO. So, the KIKO options start as non-exercisable, and as long as both the short 
DKO and the long KO are alive, they neutralize each other. Should the short DKO 
die and the long KO survive, then it is a KI event for the KIKO option. However, the 
KIKO can still die even after being knocked-in. Naturally, the KIKO + DKO = KO 
approach leads to the same conclusion.

Also, there are some important convergence features among barrier options. Based 
on the KO + KI= vanilla equation, the KO converges into vanilla as we push the 
barrier further from the spot, since KI converges into zero if we push the barrier 
further from the spot. The next chart will to demonstrate this feature.

vanilla <- GBSOption(TypeFlag = "c", S = 100, X = 90, Time = 1,

    r = 0.02, b = -0.02, sigma = 0.3)

KO <- sapply(100:300, FUN = StandardBarrierOption, TypeFlag = "cuo",

    S = 100, X = 90, K = 0, Time = 1, r = 0.02, b = -0.02, sigma = 0.30)

plot(KO[[1]]@price, type = "l",

    xlab = "barrier distance from spot",

    ylab = "price of option",

    main = "Price of KO converges to plain vanilla")

abline(h = vanilla@price, col = "red")

The following output is the result of the preceding code:
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Similarly, double barrier options converge into single barrier ones if one of the 
barriers starts to get unimportant and converges towards plain vanillas if both the 
barriers are getting unimportant.

Thanks to the preceding mentioned parities, most of the time, finding pricing formulas 
for KO options is enough. Although this is of huge help, often, pricing a KO could be 
still very tricky. Replicating the KO event is based on a technique that tries to build a 
portfolio made of vanillas that have exactly zero worth when the knock event occurs, 
so at that point, they can be closed for free. There are two famous methods for this, 
explained by Derman-Ergener-Kani (1995) and Carr-Ellis-Gupta (1998).

The so-called Black-Scholes surface is a 3D chart where the option price can be shown 
as a function of time to maturity and the underlying price. Since some of the exotic 
pricing functions can go crazy under extreme input circumstances, it is advisable to 
use our financial knowledge that an option price can never go below zero.

The following is the code for the Black-Scholes surface:

install.packages('plot3D')

BS_surface <- function(S, Time, FUN, ...) {

    require(plot3D)

    n <- length(S)

    k <- length(Time)

    m <- matrix(0, n, k)

    for (i in 1:n){

        for (j in 1:k){

            l <- list(S = S[i], Time = Time[j], ...)

             m[i,j] <- max(do.call(FUN, l)@price, 0)

        }

    }

    persp3D(z = m, xlab = "underlying", ylab = "Remaining time",

        zlab = "option price", phi = 30, theta = 20, bty = "b2")

}

BS_surface(seq(1, 200,length = 200), seq(0, 2, length = 200),

    GBSOption, TypeFlag = "c", X = 90, r = 0.02, b = 0, sigma = 0.3)
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The preceding code yields the following output:

First, we prepared the Black-Scholes surface of a plain vanilla call option.  
However, the BS_surface code can be used for many more purposes. Just like  
the fact that the concept of the Black-Scholes surface can be used for any kind of 
single underlying dependent derivative, if we have a pricing function, it can be  
used as the FUN argument:

BS_surface(seq(1,200,length = 200), seq(0, 2, length = 200),

    StandardBarrierOption, TypeFlag = "cuo", H = 130, X = 90, K = 0,

    r = 0.02, b = -0.02, sigma = 0.30)
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The following screenshot is the result of the preceding code:

It is easy to see that compared to the plain vanilla call, the up-and-out call option  
has a limited value.

On [page 156], we use this same function to chart the BS Surface for a  
Double-no-touch option.

Binary options are exotics that have a fixed contingent payout. The name comes  
from the feature that they have only two possible outcomes: either pay a fixed 
amount or don't pay at all. They have the 0-1 relationship in the options world. 
Binary features could be mixed with the barrier feature; thus, they become path 
dependent. A One-Touch (OT) option pays only if a knock event occurred during  
its lifetime, while a No-Touch pays only if no knock event occurred. 
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There could be two barriers associated with the binaries, thus getting the  
Double-One-Touch and Double-No-Touch options. Based on no arbitrage  
arguments, the following equations must hold:

NT + OT = T-Bill 

DNT + DOT = T-Bill

Convergence can be seen here too, similar to the cases we have shown for the 
barriers. A DNT converges to an NT if one of the barriers is far enough, and 
converges to a T-Bill if both the barriers are far enough. A pricing function for a DNT 
is the Jack-of-all-trades of the binaries, similar to the DKO option for the barrier type.

Lookback options are also path dependent. The lookback feature is very convenient. 
At expiry, the holder of the position can look back and choose the best price from 
the path of the underlying. For a floating rate lookback, the option holder can look 
back for the strike price. For a fixed rate lookback, the holder can exercise the option 
against any price on which the underlying was traded during the lifetime of the 
option. Taleb (1997) shows how lookbacks can be replicated by an infinite chain of 
KIKO options. In this sense, this is at least second generation exotic, since we need 
exotics as building blocks to be able to replicate a lookback.

More than one underlying is also a common exotic feature. Two examples  
have already been discussed in the exchange options and quanto options sections of 
Chapter 5, FX Derivatives. However, there are plenty more. Best-of and worst-of  
(also called rainbow) options are give the best or the worst performing underlying 
from a basket. The spread option is very similar to a vanilla option with the twist 
that the underlying of this option is the difference of two assets. These are just a 
few examples, which are enough to show that not surprisingly, in all of these cases, 
correlation plays an important role. Also, these features can be mixed with barrier or 
lookback or Asian features that result in an almost endless number of combinations. 
In this chapter, we will not be discussing these types any further.

Greeks – the link back to the vanilla 
world
As we explained in the introductory part of this chapter, Greeks are partial 
derivatives. Some important Greeks are as follows:

• delta: This denotes the DvalueDspot, which is the change of the option price 
with respect to the change of the underlying spot price

• gamma: This denotes the DdeltaDspot
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• vega: This denotes the DvalueDvolatility
• theta: This denotes the DvalueDtime
• rho: This denotes the DvalueDinterest rate

In some simple cases, these partial derivatives can be found analytically.  
For example, the fOptions package includes the GBSGreeks function that gives  
the Greeks for vanillas.

Analytical Greeks are convenient; however, there are two problems with them.  
The first problem is that market-traded parameters are not changing in infinitesimal 
small increments. For example, on the New York Stock Exchange, the smallest 
possible change in the stock price is one cent. The stock price either changes at least 
one cent or there is no change at all. On the OTC (over-the-counter), FX market 
traders are quoting volatility as an integer multiple of 0.0005. The second problem 
with analytical Greeks comes from the fact that for many exotics, we have no closed 
formula. We still need to know the Greeks anyway, because we would like to 
sum them up to get the Greeks for the portfolio. Adding up analytical Greeks and 
numerical ones can lead to errors, so using numerical Greeks is a much safer way.

The GetGreeks function calculates any Greeks for any pricing function:

GetGreeks <- function(FUN, arg, epsilon,...) {

    all_args1 <- all_args2 <- list(...)

    all_args1[[arg]] <- as.numeric(all_args1[[arg]] + epsilon)

    all_args2[[arg]] <- as.numeric(all_args2[[arg]] - epsilon)

    (do.call(FUN, all_args1)@price -

        do.call(FUN, all_args2)@price) / (2 * epsilon)

}

OTC market makers do not quote FX volatility in any quantities, but normally,  
as an integer multiple of 0.0005, a typical quote for AUDUSD at-the-money volatility 
is 5.95 percent/6.05 percent. Of course, for exchange-traded derivatives that are 
quoted in price instead of volatility, the price-change-implied volatility change could 
be smaller than 0.0005.
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So when we calculate vega numerically, we should set epsilon to 0.0005 as a market 
consistent smallest possible change; for example, to calculate a delta of an AUDUSD 
option, we can set epsilon as 0.0001 (one pip), or for a stock, we can set epsilon as 
0.01 (one cent). It is also useful to adjust epsilon to 1/365 (one day) for theta, and to 
0.0001 (one basis point) for rho.

The following code plots the delta, vega theta, and rho for a 
FloatingStrikeLookbackOption:

x <- seq(10, 200, length = 200)

delta <- vega <- theta <- rho <- rep(0, 200)

for(i in 1:200){

    delta[i] <- GetGreeks(FUN = FloatingStrikeLookbackOption,  
        arg = 2, epsilon = 0.01, "p", x[i], 100, 1, 0.02, -0.02, 0.2)

    vega[i]  <- GetGreeks(FUN = FloatingStrikeLookbackOption,  
        arg = 7, epsilon = 0.0005, "p", x[i], 100, 1, 0.02, -0.02,  
            0.2)

    theta[i] <- GetGreeks(FUN = FloatingStrikeLookbackOption,  
        arg = 4, epsilon = 1/365, "p", x[i], 100, 1, 0.02, -0.02,  
            0.2)

    rho[i]   <- GetGreeks(FUN = FloatingStrikeLookbackOption,  
arg = 5, epsilon = 0.0001, "p", x[i], 100, 1, 0.02, -0.02, 0.2)

}

par(mfrow = c(2, 2))

plot(x, delta, type = "l", xlab = "S", ylab = "", main = "Delta")

plot(x, vega,  type = "l", xlab = "S", ylab = "", main = "Vega")

plot(x, theta, type = "l", xlab = "S", ylab = "", main = "Theta")

plot(x, rho,   type = "l", xlab = "S", ylab = "", main = "Rho")
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The preceding code gives the following output:

Pricing the Double-no-touch option
A Double-no-touch (DNT) option is a binary option that pays a fixed amount of cash 
at expiry. Unfortunately, the fExoticOptions package does not contain a formula 
for this option at present. We will show two different ways to price DNTs that 
incorporate two different pricing approaches. In this section, we will call the function 
dnt1, and for the second approach, we will use dnt2 as the name for the function.
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Hui (1996) showed how a one-touch double barrier binary option can be priced. 
In his terminology, "one-touch" means that a single trade is enough to trigger the 
knock-out event, and "double barrier" binary means that there are two barriers and 
this is a binary option. We call this DNT as it is commonly used on the FX markets. 
This is a good example for the fact that many popular exotic options are running 
under more than one name. In Haug (2007a), the Hui-formula is already translated 
into the generalized framework. S, r, b, σ, and T have the same meaning as in  
Chapter 5, FX Derivatives. K means the payout (dollar amount) while L and U  
are the lower and upper barriers.
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Implementing the Hui (1996) function to R starts with a big question mark: what 
should we do with an infinite sum? How high a number should we substitute as 
infinity? Interestingly, for practical purposes, small number like 5 or 10 could often 
play the role of infinity rather well. Hui (1996) states that convergence is fast most of 
the time. We are a bit skeptical about this since α will be used as an exponent. If b is 
negative and sigma is small enough, the (S/L)α part in the formula could turn out to 
be a problem.

First, we will try with normal parameters and see how quick the convergence is:

dnt1 <- function(S, K, U, L, sigma, T, r, b, N = 20, ploterror = FALSE){

    if ( L > S | S > U) return(0)

    Z <- log(U/L)

    alpha <- -1/2*(2*b/sigma^2 - 1)

    beta <- -1/4*(2*b/sigma^2 - 1)^2 - 2*r/sigma^2

    v <- rep(0, N)

    for (i in 1:N)

        v[i] <- 2*pi*i*K/(Z^2) * (((S/L)^alpha - (-1)^i*(S/U)^alpha ) /
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            (alpha^2+(i*pi/Z)^2)) * sin(i*pi/Z*log(S/L)) *

             exp(-1/2 * ((i*pi/Z)^2-beta) * sigma^2*T)

    if (ploterror) barplot(v, main = "Formula Error");

    sum(v)

}

print(dnt1(100, 10, 120, 80, 0.1, 0.25, 0.05, 0.03, 20, TRUE))

The following screenshot shows the result of the preceding code:

The Formula Error chart shows that after the seventh step, additional steps were not 
influencing the result. This means that for practical purposes, the infinite sum can 
be quickly estimated by calculating only the first seven steps. This looks like a very 
quick convergence indeed. However, this could be pure luck or coincidence.

What about decreasing the volatility down to 3 percent? We have to set N as 50 to  
see the convergence:

print(dnt1(100, 10, 120, 80, 0.03, 0.25, 0.05, 0.03, 50, TRUE))
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The preceding command gives the following output:

Not so impressive? 50 steps are still not that bad. What about decreasing the volatility 
even lower? At 1 percent, the formula with these parameters simply blows up. First, 
this looks catastrophic; however, the price of a DNT was already 98.75 percent of the 
payout when we used 3 percent volatility. Logic says that the DNT price should be a 
monotone-decreasing function of volatility, so we already know that the price of the 
DNT should be worth at least 98.75 percent if volatility is below 3 percent.

Another issue is that if we choose an extreme high U or extreme low L, calculation 
errors emerge. However, similar to the problem with volatility, common sense helps 
here too; the price of a DNT should increase if we make U higher or L lower.

There is still another trick. Since all the problem comes from the α parameter, we can 
try setting b as 0, which will make α equal to 0.5. If we also set r to 0, the price of a 
DNT converges into 100 percent as the volatility drops.
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Anyway, whenever we substitute an infinite sum by a finite sum, it is always good 
to know when it will work and when it will not. We made a new code that takes into 
consideration that convergence is not always quick. The trick is that the function 
calculates the next step as long as the last step made any significant change. This is still 
not good for all the parameters as there is no cure for very low volatility, except that 
we accept the fact that if implied volatilities are below 1 percent, than this is an extreme 
market situation in which case DNT options should not be priced by this formula:

dnt1 <- function(S, K, U, L, sigma, Time, r, b) {

  if ( L > S | S > U) return(0)

  Z <- log(U/L)

  alpha <- -1/2*(2*b/sigma^2 - 1)

  beta <- -1/4*(2*b/sigma^2 - 1)^2 - 2*r/sigma^2

  p <- 0

  i <- a <- 1

  while (abs(a) > 0.0001){

    a <- 2*pi*i*K/(Z^2) * (((S/L)^alpha - (-1)^i*(S/U)^alpha ) /  
      (alpha^2 + (i *pi / Z)^2) ) * sin(i * pi / Z * log(S/L)) *  
        exp(-1/2*((i*pi/Z)^2-beta) * sigma^2 * Time)

    p <- p + a

    i <- i + 1

  }

  p

}

Now that we have a nice formula, it is possible to draw some DNT-related charts 
to get more familiar with this option. Later, we will use a particular AUDUSD 
DNT option with the following parameters: L equal to 0.9200, U equal to 0.9600, K 
(payout) equal to USD 1 million, T equal to 0.25 years, volatility equal to 6 percent,  
r_AUD equal to 2.75 percent, r_USD equal to 0.25 percent, and b equal to -2.5 
percent. We will calculate and plot all the possible values of this DNT from 0.9200  
to 0.9600; each step will be one pip (0.0001), so we will use 2,000 steps.

The following code plots a graph of price of underlying:

x <- seq(0.92, 0.96, length = 2000)

y <- z <- rep(0, 2000)
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for (i in 1:2000){

    y[i] <- dnt1(x[i], 1e6, 0.96, 0.92, 0.06, 0.25, 0.0025, -0.0250)

    z[i] <- dnt1(x[i], 1e6, 0.96, 0.92, 0.065, 0.25, 0.0025, -0.0250)

}

matplot(x, cbind(y,z), type = "l", lwd = 2, lty = 1,

    main = "Price of a DNT with volatility 6% and 6.5%

", cex.main = 0.8, xlab = "Price of underlying" )

The following output is the result of the preceding code:
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It can be clearly seen that even a small change in volatility can have a huge impact 
on the price of a DNT. Looking at this chart is an intuitive way to find that vega 
must be negative. Interestingly enough even just taking a quick look at this chart can 
convince us that the absolute value of vega is decreasing if we are getting closer to 
the barriers.

Most end users think that the biggest risk is when the spot is getting close to the 
trigger. This is because end users really think about binary options in a binary way. 
As long as the DNT is alive, they focus on the positive outcome. However, for a 
dynamic hedger, the risk of a DNT is not that interesting when the value of the DNT 
is already small.

It is also very interesting that since the T-Bill price is independent of the volatility 
and since the DNT + DOT = T-Bill equation holds, an increasing volatility will 
decrease the price of the DNT by the exact same amount just like it will increase the 
price of the DOT. It is not surprising that the vega of the DOT should be the exact 
mirror of the DNT.

We can use the GetGreeks function to estimate vega, gamma, delta, and theta.  
For gamma we can use the GetGreeks function in the following way:

GetGreeks <- function(FUN, arg, epsilon,...) {

    all_args1 <- all_args2 <- list(...)

    all_args1[[arg]] <- as.numeric(all_args1[[arg]] + epsilon)

    all_args2[[arg]] <- as.numeric(all_args2[[arg]] - epsilon)

    (do.call(FUN, all_args1) -

        do.call(FUN, all_args2)) / (2 * epsilon)

}

Gamma <- function(FUN, epsilon, S, ...) {

    arg1 <- list(S, ...)

    arg2 <- list(S + 2 * epsilon, ...)

    arg3 <- list(S - 2 * epsilon, ...)

    y1 <- (do.call(FUN, arg2) - do.call(FUN, arg1)) / (2 * epsilon)

    y2 <- (do.call(FUN, arg1) - do.call(FUN, arg3)) / (2 * epsilon)

    (y1 - y2) / (2 * epsilon)

}

x = seq(0.9202, 0.9598, length = 200)

delta <- vega <- theta <- gamma <- rep(0, 200)
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for(i in 1:200){

  delta[i] <- GetGreeks(FUN = dnt1, arg = 1, epsilon = 0.0001, 

    x[i], 1000000, 0.96, 0.92, 0.06, 0.5, 0.02, -0.02)

  vega[i]  <-   GetGreeks(FUN = dnt1, arg = 5, epsilon = 0.0005, 

    x[i], 1000000, 0.96, 0.92, 0.06, 0.5, 0.0025, -0.025)

  theta[i] <- - GetGreeks(FUN = dnt1, arg = 6, epsilon = 1/365, 

    x[i], 1000000, 0.96, 0.92, 0.06, 0.5, 0.0025, -0.025)

  gamma[i] <- Gamma(FUN = dnt1, epsilon = 0.0001, S = x[i], K = 

    1e6, U = 0.96, L = 0.92, sigma = 0.06, Time = 0.5, r = 0.02, b = 
-0.02)

}

windows()

plot(x, vega, type = "l", xlab = "S",ylab = "", main = "Vega")

The following chart is the result of the preceding code:



Exotic Options

[ 156 ]

After having a look at the value chart, the delta of a DNT is also very close to 
intuitions; if we are coming close to the higher barrier, our delta gets negative,  
and if we are coming closer to the lower barrier, the delta gets positive as follows:

windows()

plot(x, delta, type = "l", xlab = "S",ylab = "", main = "Delta")

This is really a non-convex situation; if we would like to do a dynamic delta hedge, 
we will lose money for sure. If the spot price goes up, the delta of the DNT decreases, 
so we should buy some AUDUSD as a hedge. However, if the spot price goes down, 
we should sell some AUDUSD. Imagine a scenario where AUDUSD goes up 20 pips 
in the morning and then goes down 20 pips in the afternoon. For a dynamic hedger, 
this means buying some AUDUSD after the price moved up and selling this very 
same amount after the price comes down. 



Chapter 7

[ 157 ]

The changing of the delta can be described by the gamma as follows:

windows()

plot(x, gamma, type = "l", xlab = "S",ylab = "", main = "Gamma")

Negative gamma means that if the spot goes up, our delta is decreasing, but if 
the spot goes down, our delta is increasing. This doesn't sound great. For this 
inconvenient non-convex situation, there is some compensation, that is, the value  
of theta is positive. If nothing happens, but one day passes, the DNT will 
automatically worth more. 
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Here, we use theta as minus 1 times the partial derivative, since if (T-t) is the time 
left, we check how the value changes as t increases by one day:

windows()

plot(x, theta, type = "l", xlab = "S",ylab = "", main = "Theta")

 

The more negative the gamma, the more positive our theta. This is how time 
compensates for the potential losses generated by the negative gamma.

Risk-neutral pricing also implicates that negative gamma should be compensated by 
a positive theta. This is the main message of the Black-Scholes framework for vanilla 
options, but this is also true for exotics. See Taleb (1997) and Wilmott (2006).

We already introduced the Black-Scholes surface before; now, we can go into more 
detail. This surface is also a nice interpretation of how theta and delta work. It shows 
the price of an option for different spot prices and times to maturity, so the slope of 
this surface is the theta for one direction and delta for the other. The code for this is 
as follows:

BS_surf <- function(S, Time, FUN, ...) {

  n <- length(S)
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  k <- length(Time) 

  m <- matrix(0, n, k)

  for (i in 1:n) {

    for (j in 1:k) {

      l <- list(S = S[i], Time = Time[j], ...)

      m[i,j] <- do.call(FUN, l)

      }

  }

  persp3D(z = m, xlab = "underlying", ylab = "Time", 
    zlab = "option price", phi = 30, theta = 30, bty = "b2")

}

BS_surf(seq(0.92,0.96,length = 200), seq(1/365, 1/48, length = 200), 
  dnt1, K = 1000000, U = 0.96, L = 0.92, r = 0.0025, b = -0.0250, 
    sigma = 0.2)

The preceding code gives the following output:

We can see what was already suspected; DNT likes when time is passing and the 
spot is moving to the middle of the (L,U) interval.
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Another way to price the  
Double-no-touch option
Static replication is always the most elegant way of pricing. The no-arbitrage 
argument will let us say that if, at some time in the future, two portfolios have the 
same value for sure, then their price should be equal any time before this. We will 
show how double-knock-out (DKO) options could be used to build a DNT. We will 
need to use a trick; the strike price could be the same as one of the barriers. For a 
DKO call, the strike price should be lower than the upper barrier because if the strike 
price is not lower than the upper barrier, the DKO call would be knocked out before 
it could become in-the-money, so in this case, the option would be worthless as 
nobody can ever exercise it in-the-money. However, we can choose the strike price 
to be equal to the lower barrier. For a put, the strike price should be higher than the 
lower barrier, so why not make it equal to the upper barrier. This way, the DKO call 
and DKO put option will have a very convenient feature; if they are still alive, they 
will both expiry in-the-money.

Now, we are almost done. We just have to add the DKO prices, and we will get a 
DNT that has a payout of (U-L) dollars. Since DNT prices are linear in the payout,  
we only have to multiply the result by K*(U-L):

dnt2 <- function(S, K, U, L, sigma, T, r, b) {

    a <- DoubleBarrierOption("co", S, L, L, U, T, r, b, sigma, 0,

        0,title = NULL, description = NULL)

    z <- a@price

 

    b <- DoubleBarrierOption("po", S, U, L, U, T, r, b, sigma, 0,

        0,title = NULL, description = NULL)

    y <- b@price

 

   (z + y) / (U - L) * K

}

Now, we have two functions for which we can compare the results:

dnt1(0.9266, 1000000, 0.9600, 0.9200, 0.06, 0.25, 0.0025, -0.025)

[1] 48564.59

dnt2(0.9266, 1000000, 0.9600, 0.9200, 0.06, 0.25, 0.0025, -0.025)

[1] 48564.45
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For a DNT with a USD 1 million contingent payout and an initial market value of 
over 48,000 dollars, it is very nice to see that the difference in the prices is only 14 
cents. Technically, however, having a second pricing function is not a big help since 
low volatility is also an issue for dnt2.

We will use dnt1 for the rest of the chapter.

The life of a Double-no-touch option – a 
simulation
How has the DNT price been evolving during the second quarter of 2014?  
We have the open-high-low-close type time series with five minute frequency for 
AUDUSD, so we know all the extreme prices:

d <- read.table("audusd.csv", colClasses = c("character", 
rep("numeric",5)), sep = ";", header = TRUE)

underlying <- as.vector(t(d[, 2:5]))

t <- rep( d[,6], each = 4)

n <- length(t)

option_price <- rep(0, n)

for (i in 1:n) {

  option_price[i] <- dnt1(S = underlying[i], K = 1000000,  
    U = 0.9600, L = 0.9200, sigma = 0.06, T = t[i]/(60*24*365),  
      r = 0.0025, b = -0.0250)

}

a <- min(option_price)

b <- max(option_price)

option_price_transformed = (option_price - a) * 0.03 / (b - a) + 0.92

par(mar = c(6, 3, 3, 5))

matplot(cbind(underlying,option_price_transformed), type = "l",

    lty = 1, col = c("grey", "red"),

    main = "Price of underlying and DNT",

    xaxt = "n", yaxt = "n",  ylim = c(0.91,0.97),

    ylab = "", xlab = "Remaining time")

abline(h = c(0.92, 0.96), col = "green")
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axis(side = 2, at = pretty(option_price_transformed),

    col.axis = "grey", col = "grey")

axis(side = 4, at = pretty(option_price_transformed),

    labels = round(seq(a/1000,1000,length = 7)), las = 2,

    col = "red", col.axis = "red")

axis(side = 1, at = seq(1,n, length=6),

    labels = round(t[round(seq(1,n, length=6))]/60/24))

The following is the output for the preceding code:
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The price of a DNT is shown in red on the right axis (divided by 1000), and the actual 
AUDUSD price is shown in grey on the left axis. The green lines are the barriers of 
0.9200 and 0.9600. The chart shows that in 2014 Q2, the AUDUSD currency pair was 
traded inside the (0.9200; 0.9600) interval; thus, the payout of the DNT would have 
been USD 1 million. This DNT looks like a very good investment; however, reality 
is just one trajectory out of an a priori almost infinite set. It could have happened 
differently. For example, on May 02, 2014, there were still 59 days left until expiry, 
and AUDUSD was traded at 0.9203, just three pips away from the lower barrier. At 
this point, the price of this DNT was only USD 5,302 dollars which is shown in the 
following code:

dnt1(0.9203, 1000000, 0.9600, 0.9200, 0.06, 59/365, 0.0025, -0.025)

[1] 5302.213

Compare this USD 5,302 to the initial USD 48,564 option price!

In the following simulation, we will show some different trajectories. All of them 
start from the same 0.9266 AUDUSD spot price as it was on the dawn of April 01, 
and we will see how many of them stayed inside the (0.9200; 0.9600) interval. To 
make it simple, we will simulate geometric Brown motions by using the same 6 
percent volatility as we used to price the DNT:

library(matrixStats)

DNT_sim <- function(S0 = 0.9266, mu = 0, sigma = 0.06, U = 0.96,

  L = 0.92, N = 5) {

    dt <- 5 / (365 * 24 * 60)

    t <- seq(0, 0.25, by = dt)

    Time <- length(t)

    W <- matrix(rnorm((Time - 1) * N), Time - 1, N)

    W <- apply(W, 2, cumsum)

    W <- sqrt(dt) * rbind(rep(0, N), W)

    S <- S0 * exp((mu - sigma^2 / 2) * t + sigma * W )

    option_price <- matrix(0, Time, N)

    for (i in 1:N)

       for (j in 1:Time)
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          option_price[j,i] <- dnt1(S[j,i], K = 1000000, U, L, sigma,

               0.25-t[j], r = 0.0025,

               b = -0.0250)*(min(S[1:j,i]) > L & max(S[1:j,i]) < U)

    survivals <- sum(option_price[Time,] > 0)

    dev.new(width = 19, height = 10)

    par(mfrow = c(1,2))

    matplot(t,S, type = "l", main = "Underlying price",

        xlab = paste("Survived", survivals, "from", N), ylab = "")

    abline( h = c(U,L), col = "blue")

    matplot(t, option_price, type = "l", main = "DNT price",

        xlab = "", ylab = "")}

 

set.seed(214)

system.time(DNT_sim())

The following is the output for the preceding code:
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Here, the only surviving trajectory is the red one; in all other cases, the DNT hits 
either the higher or the lower barrier. The line set.seed(214) grants that this 
simulation will look the same anytime we run this. One out of five is still not that 
bad; it would suggest that for an end user or gambler who does no dynamic hedging, 
this option has an approximate value of 20 percent of the payout (especially since the 
interest rates are low, the time value of money is not important).

However, five trajectories are still too few to jump to such conclusions. We should 
check the DNT survivorship ratio for a much higher number of trajectories.

The ratio of the surviving trajectories could be a good estimator of the a priori  
real-world survivorship probability of this DNT; thus, the end user value of it. Before 
increasing N rapidly, we should keep in mind how much time this simulation took. 
For my computer, it took 50.75 seconds for N = 5, and 153.11 seconds for N = 15.

The following is the output for N = 15:

Now, 3 out of 15 survived, so the estimated survivorship ratio is still 3/15, which 
is equal to 20 percent. Looks like this is a very nice product; the price is around 5 
percent of the payout, while 20 percent is the estimated survivorship ratio. Just out of 
curiosity, run the simulation for N equal to 200. This should take about 30 minutes.
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The following is the output for N = 200:

The results are shocking; now, only 12 out of 200 survive, and the ratio is only 6 
percent! So to get a better picture, we should run the simulation for a larger N.

The movie Whatever Works by Woody Allen (starring Larry David) is 92 minutes long; 
in simulation time, that is N = 541. For this N = 541, there are only 38 surviving 
trajectories, resulting in a survivorship ratio of 7 percent.



Chapter 7

[ 167 ]

What is the real expected survivorship ratio? Is it 20 percent, 6 percent, or 7 percent? 
We simply don't know at this point. Mathematicians warn us that the law of large 
numbers requires large numbers, where large is much more than 541, so it would  
be advisable to run this simulation for as large an N as time allows. Of course, 
getting a better computer also helps to do more N during the same time. Anyway, 
from this point of view, Hui's (1996) relatively fast converging DNT pricing formula 
gets some respect.

So far, we have used the very same stochastic process for pricing that we used for the 
simulation. Common sense says that in some cases, market-implied volatility could 
be biased as either higher or lower than the expected volatility. Not surprisingly, 
running the simulation for these two conditions, N = 200 and sigma = 5.5 percent, 
results in more surviving trajectories, 15 for this seed. Running the simulation for 
N = 200 and sigma = 6.5 percent results in fewer surviving trajectories: nine for this 
seed. This again shows the high impact of vega in a very intuitive way. The number 
of surviving trajectories, which can be 9, 12, or 15, mostly depends on the volatility 
of the process. Survivorship rates are 4.5 percent, 6 percent, or 7.5 percent. This also 
raises a more philosophical question: what about risk premium? If the market needs 
vega, it could happen that we can purchase a DNT based on 6 percent volatility even 
if we expect 5.5 percent volatility. In some tense circumstances, the market could be 
really vega-thirsty. In these cases, risk premium is included.

Derivative pricing always assumes dynamic hedging because we are looking for 
the marginal cost of producing such an instrument then we use the no-arbitrage 
argument. Some market players are actually trying to play this strategy and become 
providers for the derivatives, like a factory. They are willing to take any side of a 
deal, since they will eliminate almost all of their risks by almost continuous dynamic 
hedging. They are the market makers. However, not all market players are derivative 
factories; there are many of them who deliberately seek sensitivities; thus, they are 
not hedging their derivative position. This second group is called the market takers 
or end users. Some of them are looking for sensitivities because they already have 
some and they want to decrease those (natural hedgers). Some others don't have any 
sensitivities at the beginning, but would like to make a financial bet (speculators).

Interestingly, there could be a significant difference between the price of the 
derivative and its value for the end user. By purchasing a DNT, an end-user can 
make a bet and eventually either get nothing, or win much more than the initial 
price. Is there any risk premium for this bet, or is it similar to a casino? Is the real-life 
expected value of a DNT higher than the risk-neutral expected value (which equals 
the price)? The value in use or the "user experience" could be different because the 
market maker will quote a price based on the implied volatilities. In the case of a 
tense market situation, the demand for vega could push its price (that is, the implied 
volatility) higher than the expected volatility. 
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In this case, anyone who can still sell volatility will get a premium. In the case of 
DNT, getting a premium means that its price will be lower than the real life expected 
value of its payout.

What about a Double-one-touch (DOT)? Since the Treasury Bill can be seen as 
the sum of a DNT and a DOT, if the DNT is too cheap, then the DOT must be too 
expensive. Thus, these exotic options are easy bets on volatilities; if a speculator 
thinks volatility will be significantly lower than the implied, purchasing a DNT is  
a straightforward bet. If the speculator expects higher volatility than the implied,  
a DOT is the proper bet.

In this sense, DNT is similar to a short straddle and DOT is to a long straddle; 
however, binary options are much easier to calibrate to the desired size. A long 
straddle is a long call and long put in the same size, strike price, and expiry. A short 
straddle is the mirror picture: short call and short put. A strangle is very similar to 
a straddle; the only difference is that the strike price of a call is not equal but higher 
than the strike price of the put. Compared to a short straddle or a short strangle, 
betting on volatility is much more convenient by purchasing a DNT, because holding 
a long DNT option position requires no further collateral adjustment. DNT is a 
highly-leveraged product; however, the total amount that can be lost is already paid 
upfront, so it fits to the menu of online trading platforms where the typical client is a 
small retail speculator.

Based on this logic, the risk premium goes only to players who are willing to take a 
position that is less favorable by other market players. If there is an extra demand for 
volatility, then DNTS will include risk premium, but if there is an extra supply for 
volatility then DOTs will include risk premium. It could also happen that the market 
is in a stable equilibrium and neither DNTs nor DOTs include any risk premium.

Exotic options embedded in structured 
products
Most of the time, exotic options are traded in camouflage; they are embedded  
in structured bonds or certificates. The exotic behavior is translated into a much  
more user-friendly language that is easier to understand by an everyday investor. 
For example, a binary payout can be calculated into a coupon yield; the investor  
gets a higher coupon if the circumstances let the binary option give its payout.  
A structure that includes a knock-out option could be called an airbag certificate, 
since as far as a long KO option is not knocked-out, it gives some protection  
against market losses, similar to an airbag that protects the driver in case of a  
less serious accident. 
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Another example is a turbo certificate, which, most of the time, is just a securitized 
form of a knock-out option with a deep in-the-money strike and a KO close to the 
strike. Lookback options can be found in capital guarantee products with coupons 
linked to the extreme values of stock indices.

As a numerical example, let's take a look at a three-month maturity certificate of 
deposit (CD) that either pays a 3 percent coupon or 0 percent, conditionally on the 
FX market behavior. This capital-guaranteed product can be seen as a portfolio of a 
T-Bill and a binary option. If the 3-month T-bill can be purchased at 99.75 percent, 
then there is 0.25 cent on each dollar that can be spent on a binary option. The 
capital at maturity will be granted by the T-Bill part, while the binary option will be 
responsible for the contingent 3 percent coupon.

At this point, any binary option would do the trick; purchasing a DNT would work 
too, but there are way too many parameters. Banks must fine-tune all the parameters 
to make the whole construction attractive. In the risk-neutral world from the market 
makers' point of view, a lower trigger of L=0.9200 with a 3-month maturity is almost 
the same as L=0.9195, with a bit more than a 3-month maturity:

dnt1(0.9266, 1000000, 0.9600, 0.9200, 0.06, 90/365, 0.0025, -0.025)

[1] 50241.58

dnt1(0.9266, 1000000, 0.9600, 0.9195, 0.06, 94/365, 0.0025, -0.025)

[1] 50811.61

This is a very common feature among options, including knock-out events; some 
extra time can most of the time compensate for pushing the barrier a bit further from 
the spot. In the risk-neutral world, the S/L distance is always divided by a factor 
of ( )T tσ − , so there is a trade-off; we can make L lower, but in return, we should 
increase the maturity. In the real world, the expectations of end users are driven  
by their subjective or perceived probabilities. Provided that we are not planning  
to dynamically hedge our DNT, we would prefer L = 0.9195 and T = 94 days over  
L = 0.9200 and T = 90 days.

That is why L, U, and T should be set in a way that helps the product look attractive 
to end users. Also, if the exotic option is embedded into a structure, the structure 
itself should be easy to sell. At the end, most of the structures will be cut into smaller, 
retail-sized pieces, like 1000 USD notional. Of course, each slice of the cake will be 
the same, so for the bank, it can be seen as one huge product.

Coming back to setting L, U, and T, it is easy to see that the price of a DNT is strictly 
a monotone function of L, U, and T (and also a monotone for volatility). Under 
certain market conditions (S, r, b, and volatility), we set, say, L = 0.9195 and T = 94 
days. Now, we can ask the following inverse pricing question: for what U will the 
price of the DNT be 33 percent of the payout?
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This will be the implied upper barrier, implied in a sense that the price is already 
given. Here comes a strange answer: it is not certain that such an implied U exists! 
This is because if we start increasing the upper barrier, the DNT price will converge 
to the price of a No-Touch (NT) option. If this NT is worth less than 33 percent, no 
U will make our DNT worth 33 percent. We use the BinaryBarrierOption function 
from the fExoticOptions package to price the No-Touch option which is depicted 
in the following code:

dnt1(0.9266, 1000000, 1.0600, 0.9200, 0.06, 94/365, 0.0025, -0.025)

[1] 144702

a <- BinaryBarrierOption(9, 0.9266, 0, 0.9200, 1000000, 94/365,  
  0.0025, -0.025, 0.06, 1, 1, title = NULL, description = NULL)

(z <- a@price)

[1] 144705.3

In the risk-neutral world, if we push U 1000 pips higher, it will become almost 
completely irrelevant, so DNT behaves like an NT.

So, in this case, if we want the DNT to cost 33 percent, we should choose an L that is 
lower than 0.9195. Next, we set L = 0.9095 and find a U that makes the DNT worth 
33 percent. At the end of this part, we will show a way to find an implied U by using 
the implied_U_DNT function which is shown in the following code. Now, suppose 
we use U = 0.9745 for other reasons.

dnt1(0.9266, 100, 0.9705, 0.9095, 0.06, 90/365, 0.0025, -0.025)

[1] 31.44338

This DNT costs only 31.44 percent of the payout, so there will still be some room for 
the bank to have some profit for all the hard work of structuring. Suppose the bank 
can sell a total of USD 100 million of this CD, then 3 months later, the bank has to pay 
to the clients either USD 100 million (0 percent per annum) or USD 100.75 million 
(approximately 3 percent per annum). This contingent promise can be hedged by 
purchasing T-Bills in 100 million USD notional and DNT options with 0.75 million 
USD payout. At the beginning, these instruments cost the bank 99.75%*100.000.000+31.
44338%*750.000 = USD 99.985.825,35; thus, the bank makes a profit of 14,174.65 USD.

In other cases, the implied time to maturity could be an interesting question. Under 
certain market conditions (where S, r, b, and volatility are given) for a given (L,U) 
pair, what is the T that makes the DNT cost, say, 50 percent? Even for a very tight  
(L-U) interval, we can find a T small enough to make the DNT price go up to 50 
percent; this is also true the other way round; even a very wide (L,U) pair will  
make a DNT worth only 50 percent if there is enough time. See implied_T_DNT  
at the end of this section.
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Unlike L, U, or T, we cannot choose the volatility parameter deliberately; however, 
calculating the implied volatility could be useful to price other derivatives. This is 
a key pricing concept; risk-neutral pricing is based on comparison. If we know the 
price (and all other parameters) of a DNT, we can find out what volatility was used 
for pricing. See implied_vol_DNT at the end of this section.

Next, we will show a lot of implied functions and finally draw the implied charts:

implied_DNT_image <- function(S = 0.9266, K = 1000000, U = 0.96,

  L = 0.92, sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250) {

    S_ <- seq(L,U,length = 300)

    K_ <- seq(800000, 1200000, length = 300)

    U_ <- seq(L+0.01, L + .15, length = 300)

    L_ <- seq(0.8, U - 0.001, length = 300)

    sigma_ <- seq(0.005, 0.1, length = 300)

    T_ <- seq(1/365, 1, length = 300)

    r_ <- seq(-10, 10, length = 300)

    b_ <- seq(-0.5, 0.5, length = 300)

    p1 <- lapply(S_, dnt1, K = 1000000, U = 0.96, L = 0.92,

      sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250)

    p2 <- lapply(K_, dnt1, S = 0.9266, U = 0.96, L = 0.92,

      sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250)

    p3 <- lapply(U_, dnt1, S = 0.9266, K = 1000000, L = 0.92,

      sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250)

    p4 <- lapply(L_, dnt1, S = 0.9266, K = 1000000, U = 0.96,

      sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250)

    p5 <- lapply(sigma_, dnt1, S = 0.9266, K = 1000000, U = 0.96,

      L = 0.92, Time = 0.25, r = 0.0025, b = -0.0250)

    p6 <- lapply(T_, dnt1, S = 0.9266, K = 1000000, U = 0.96, L =  
      0.92, sigma = 0.06, r = 0.0025, b = -0.0250)

    p7 <- lapply(r_, dnt1, S = 0.9266, K = 1000000, U = 0.96, L =  
      0.92, sigma = 0.06, Time = 0.25,  b = -0.0250)
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    p8 <- lapply(b_, dnt1, S = 0.9266, K = 1000000, U = 0.96, L =  
      0.92, sigma = 0.06, Time = 0.25, r = 0.0025)

    dev.new(width = 20, height = 10)

    par(mfrow = c(2, 4), mar = c(2, 2, 2, 2))

    plot(S_, p1, type = "l", xlab = "", ylab = "", main = "S")

    plot(K_, p2, type = "l", xlab = "", ylab = "", main = "K")

    plot(U_, p3, type = "l", xlab = "", ylab = "", main = "U")

    plot(L_, p4, type = "l", xlab = "", ylab = "", main = "L")

    plot(sigma_, p5, type = "l", xlab = "", ylab = "", main =  
      "sigma")

    plot(T_, p6, type = "l", xlab = "", ylab = "", main = "Time")

    plot(r_, p7, type = "l", xlab = "", ylab = "", main = "r")

    plot(b_, p8, type = "l", xlab = "", ylab = "", main = "b")

}

implied_vol_DNT <- function(S = 0.9266, K = 1000000, U = 0.96, L =  
  0.92, Time = 0.25, r = 0.0025, b = -0.0250, price) {

    f <- function(sigma)

      dnt1(S, K, U, L, sigma, Time, r, b) - price

    uniroot(f, interval = c(0.001, 100))$root

}

implied_U_DNT <- function(S = 0.9266, K = 1000000, L = 0.92, 
  sigma = 0.06, Time = 0.25, r = 0.0025, b = -0.0250, price = 4) {

    f <- function(U)

      dnt1(S, K, U, L, sigma, Time, r, b) - price

    uniroot(f, interval = c(L+0.01, L + 100))$root

}
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implied_T_DNT <- function(S = 0.9266, K = 1000000, U = 0.96, L =  
  0.92, sigma = 0.06, r = 0.0025, b = -0.0250, price = 4){

    f <- function(Time)

        dnt1(S, K, U, L, sigma, Time, r, b) - price

    uniroot(f, interval = c(1/365, 100))$root

}

library(rootSolve)

implied_DNT_image()

print(implied_vol_DNT(price = 6))

print(implied_U_DNT(price = 4))

print(implied_T_DNT(price = 30))

The following is the output for the preceding code:
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Summary
We started this chapter by introducing exotic options. In a brief theoretical summary, 
we explained how exotics and plain vanillas are linked together. There are many 
types of exotics. We showed one possible way of classification that is consistent with 
the fExoticOptions package. We showed how the Black-Scholes surface (a 3D chart 
that contains the price of a derivative dependent on time and the underlying price) 
can be constructed for any pricing function.

Pricing of exotic options is just the first step. Market makers keep thousands  
of different options in their trading books. This is possible only because each  
option can be decomposed into certain sensitivities, the so-called Greeks. Being 
partial derivatives, Greeks are additive; thus, the portfolio of derivatives has the  
sum of the Greeks of its elements. The next step was estimating Greeks for any 
derivative-pricing functions. Our numerical method can be calibrated to the real 
market conditions; for many parameters, we already know what the smallest 
possible change is. For example, the smallest change for an interbank AUDUSD 
fx rate is 0.0001. Even multiple partial derivatives such as gamma or vanna can be 
calculated with this numerical method.

In the second half of this chapter, we focused on one particular exotic option: the 
Double-No-Touch (DNT) binary option. The reason behind this focus is based on 
the popularity of DNT options and also because there are many tricks that can be 
shown on DNTs with conclusions relevant to many other exotic options. We showed 
two different ways to price DNT options. First, we implemented the Hui (1996) 
closed form solution, where the price is a result of an infinite sum. The speed of 
convergence is often very quick; however, this is not always the case. We showed 
a practical way of how convergence issues can be handled without wasting too 
much computing time. Another way to price a DNT is a static replication from 
one DKO call and one DKO put option. To price these DKO options, we used the 
fExoticOptions package. We found very little difference between the results of the 
two DNT pricing methods.

We showed how the DNT option behaves on real-life data by using 5 minutes 
frequency open-low-high-close type time series of AUDUSD fx rates from the  
second quarter of 2014. We estimated the survivorship probability of a DNT by 
simulation to show how risk premium can be included in DNTs or DOTs based  
on the supply-demand tensions for volatility. Finally, we showed some practical  
fine-tuning methods to find missing parameters for DNT with a certain price  
in the case of building a structured product by introducing functions to find  
implied parameters.
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Optimal Hedging
After discussing the theoretical background in the previous chapters, we will now 
focus on some practical problems of derivatives trading.

Derivatives pricing, as detailed in Daróczi et al. (2013), Chapter 6, Derivatives Pricing, 
is based on the availability of a replicating portfolio that consists of traded securities 
that offer the same cash flow as the derivative asset. In other words, the risk of a 
derivative can be perfectly hedged by holding a certain number of underlying assets 
and riskless bonds. Forward and futures contracts can be hedged statically, while the 
hedging of options needs a rebalancing of the portfolio from time to time. The perfect 
dynamic hedge presented by the Black-Scholes-Merton (BSM) model (Black and 
Scholes, 1973, Merton, 1973) has several limitations in reality.

In this chapter, we are going to go into the details of the hedging of derivatives in 
a static as well as a dynamic setting. The effects of discrete time trading and the 
presence of transaction costs are presented. As in the case of discrete time hedging, 
the cost of the synthetic reproduction of an option becomes stochastic; hence, there is 
a sharp trade-off between risk and transaction costs. The optimal hedging period is 
derived according to the different goals of the optimization and is affected not only 
by market factors, but investor-specific parameters such as risk aversion as well.

Hedging of derivatives
Hedging means to create a portfolio that offsets the risk of the original exposure. 
As risk is measured by the fluctuation of the future cash flow, the goal of hedging is 
usually the reduction of the variance of the total portfolio's value. The first chapter 
of Daróczi et al. (2013) presents the optimal hedging decision in the presence of the 
basis risk, when the hedging instrument and the position to be hedged are different. 
This often happens at the hedging of commodity exposure, because commodities 
are traded on exchanges, where only standardized (maturity, quantity, and quality) 
contracts are available. 
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The optimal hedge ratio is the proportion of the hedging instrument as a percentage 
of the exposure that minimizes the volatility of the whole position. In this chapter, 
we will deal with the hedging of derivative positions, assuming that the underlying 
is also traded in the OTC market; therefore, there will be no mismatch between the 
exposure and the hedging derivative, so no basis risk arises.

Market risk of derivatives
The value of a forward or futures contract depends on the spot price of the  
underlying asset, the time to maturity, the risk-free rate, and the strike price; in the 
case of plain vanilla options, the volatility of the underlying asset also has an effect on 
the option price. This statement holds only if the underlying asset provides no cash 
flow (no income and no cost) till the maturity of the derivative transaction; otherwise, 
this (both incoming and outgoing) cash flow also has an effect on the price. For the 
purpose of simplicity, here we will discuss derivatives pricing under the assumption 
of no cash flow (non-dividend-paying stocks), although an extension of the model to 
other underlying assets (like currencies and commodities) needs some modifications in 
the formulas, but it has no impact on the basic logic. As the strike price is stable during 
maturity, only changes to the other four factors can cause a change in the value of the 
derivative. The sensitivity of the derivative towards the mentioned variables is shown 
by the Greeks, the first partial derivatives according to the given variable, as presented 
in detail in Daróczi et al. (2013) Chapter 6, Derivatives Pricing.

The Black-Scholes-Merton model assumes that both the risk-free interest rate and the 
volatility of the underlying are constant, so as the change of time is deterministic, 
the only stochastic variable that affects the value of the derivative is the spot price of 
the underlying asset. The risk that is derived from the fluctuation of the spot price 
can be eliminated by holding the exact delta amount, which is the sensitivity of the 
derivative's price to the spot price (see Equation 1) of the underlying asset:

∂
∆ =

∂
c
S

Equation 1

Whether delta is stable or changes over time depends on the derivative, and leads 
to different (static or dynamic) hedging strategies (Hull, 2009) presented in the 
following section.
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Static delta hedge
Hedging of a forward agreement is straightforward as it is a binding obligation 
for both parties. Being in a long-forward position, we are sure that we will buy at 
maturity, while a short position means a sale of the underlying asset with certainty. 
So we can perfectly hedge our forward position by selling (long forward) or buying 
(short forward) the underlying at the amount of the derivative. We can check the 
delta of the forward by differentiating the value of the long-forward position:

( )LF S PV K= −

Equation 2

Here, LF stands for the long forward, S denotes the spot price, and K is the strike 
price, which is the agreed forward price. The present value is denoted by PV.

So delta equals one, and it is independent of the actual market circumstances.

However, the value of a futures contract is the difference between the actual futures 
price (F) and the strike (S), because of the daily settlement of the position; hence, 
its delta is F/S and it changes with time. Consequently, a slight rebalancing of the 
position is needed, but in the absence of stochastic interest rates, the process of delta 
can be foreseen (Hull, 2009).

Dynamic delta hedge
In the case of options, the delivery of the underlying is uncertain. It depends on  
the decision of the party in a long position; this is the party that bought the option. 
Not surprisingly, the hedging of a contingent claim cannot be achieved by a static 
buy-and-hold strategy presented in the previous point. In the framework of the 
binomial model, an option position is always hedged for the next Δt period, while 
in the Black-Scholes-Merton model, Δt converges to zero; thus, the hedging position 
is to be rebalanced in every instant. However, in the real world, practice assets can 
only be traded at discrete points of time, so the hedging portfolio is adjusted also at 
discrete time points. Let's look at the consequences of this in the example of a plain 
vanilla ATM (at-the-money) call option written on a non-dividend paying stock.

R contains a package, OptHedge, for the estimation of the value of an option and 
hedging strategy of call and put options on a grid at discrete time intervals; however, 
our aim is to illustrate the effect of the length of the trading periods. Therefore, we 
will use our own functions for the calculations.
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First, we install the package to be used:

install.packages("fOptions")

library(fOptions)

Then, we can check the BS price of the call by using the already known code on a 
chosen parameter set:

GBSOption(TypeFlag = "c", S = 100, X = 100, Time = 1/2, r = 0.05, b =  
  0.05, sigma = 0.3)

We receive the given parameters and the price of the call option according to the 
Black-Scholes formula:

Parameters:

          Value:

 TypeFlag c     

 S        100   

 X        100   

 Time     0.5   

 r        0.05  

 b        0.05  

 sigma    0.3   

Option Price:

 9.63487 

Based on the BS model, the price of the call is 9.63487.

In practice, usually, the prices of the options are quoted in the standardized markets, 
and the implied volatility can be inferred from the Black-Scholes formula. A trader 
who expects lower volatility in the future than the implied volatility can make a profit 
by selling the option and simultaneously delta hedging it. In the following scenario, we 
present delta hedging of the short position in the preceding option on a stock following 
a geometric Brownian motion (GBM). We assume that all assumptions of the BSM 
model, except for the continuous-time trading, hold. In order to hedge the short option, 
we have to have delta amount of the stock, and as delta changes, we have to rebalance 
our portfolio regularly, in the following case, weekly, which makes it 26 times during 
the lifetime of the option. The frequency of the rebalancing should adjust to the 
liquidity and volatility of the underlying asset. 
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Let's look at a possible future path of the stock price and the development of  
the delta. The price_simulation function generates the price process with the 
given parameters: initial stock price (S0), drift (mu), and volatility (sigma) of the 
GBM process and the remaining parameters of the call option (K, Time) and the 
chosen rebalancing period (Δt). After simulating the spot price process, the function 
calculates the delta and the price of the option for every interim date, and also plots 
them. By using the set.seed function, we can create reproducible simulations:

set.seed(2014)

library(fOptions)

Price_simulation <- function(S0, mu, sigma, rf, K, Time,  dt, plots =  
  FALSE) {

  t <- seq(0, Time, by = dt)

  N <- length(t)

  W <- c(0,cumsum(rnorm(N-1)))

  S <- S0*exp((mu-sigma^2/2)*t + sigma*sqrt(dt)*W)

  delta <- rep(0, N-1)

  call_ <- rep(0, N-1)

  for(i in 1:(N-1) ){

    delta[i] <- GBSGreeks("Delta", "c", S[i], K, Time-t[i], rf, rf,  
      sigma)

    call_[i] <- GBSOption("c", S[i], K, Time-t[i], rf, rf,  
      sigma)@price}

  if(plots){

    dev.new(width=30, height=10)

    par(mfrow = c(1,3))

    plot(t, S, type = "l", main = "Price of underlying")

    plot(t[-length(t)], delta, type = "l", main = "Delta", xlab =  
      "t")

    plot(t[-length(t)], call_ , type = "l", main = "Price of option",  
      xlab = "t")

  }

}

We then set the parameters of our function:

Price_simulation(100, 0.2, 0.3, 0.05, 100, 0.5, 1/250, plots = TRUE)
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We will get a potential path of the stock price, the actual delta, and the 
corresponding option price:

We can see a possible future scenario, according to which the spot price rises and 
quickly arrives at an in-the-money level, so the option is exercised at maturity. The 
delta of the call follows the stock price's fluctuations and converges to one. The 
probability of exercising the call option increases if the spot price moves up, and 
in order to replicate the call, we have to buy some more stock, while the falling 
stock price leads to a lower delta, indicating a sale. All in all, we buy if the stock is 
expensive, and sell if the price is low. The price of the option derives from this cost of 
the hedging. The shorter the rebalancing period, the less the price movement that we 
have to follow.

The cost of hedging is defined as the present value of the cumulative net costs of 
buying and selling the stock (see Hull, 2009) needed to hedge the position. The 
total cost will have two parts, the amount paid to buy shares and the interest of 
financing the position. Following the BSM model, we use the risk-free interest rate 
for compounding. We will see that the cost of hedging depends on the future price 
movements, and by simulating several stock price paths, we can draw the cost 
distribution. Higher stock price volatility causes higher volatility of the cost of hedging.

The Cost_simulation function calculates the cost of hedging for the written call:

cost_simulation = function(S0, mu, sigma, rf, K, Time,  dt){

t <- seq(0, Time, by = dt)

N <- length(t)

W <- c(0,cumsum(rnorm(N-1)))

S <- S0*exp((mu-sigma^2/2)*t + sigma*sqrt(dt)*W)

delta <- rep(0, N-1)

call_ <- rep(0, N-1)
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for(i in 1:(N-1) ){

delta[i] <- GBSGreeks("Delta", "c", S[i], K, Time-t[i], rf, rf, sigma)

call_[i] <- GBSOption("c", S[i], K, Time-t[i], rf, rf, sigma)@price

}

In the following command, share_cost represents the cost of buying the underlying 
asset to maintain the hedge position, and interest_cost is the cost of financing  
the position:

share_cost <- rep(0,N-1)

interest_cost <- rep(0,N-1)

total_cost <- rep(0, N-1)

share_cost[1] <- S[1]*delta[1]

interest_cost[1] <- (exp(rf*dt)-1) * share_cost[1]

total_cost[1] <- share_cost[1] + interest_cost[1]

for(i in 2:(N-1)){

    share_cost[i] <- ( delta[i] - delta[i-1] ) * S[i]

    interest_cost[i] <- ( total_cost[i-1] + share_cost[i] ) * 
(exp(rf*dt)-1)

    total_cost[i] <- total_cost[i-1] + interest_cost[i] + share_cost[i]

             }

c = max( S[N] - K , 0)

cost = c - delta[N-1]*S[N] + total_cost[N-1]

return(cost*exp(-Time*rf))

}

We can use the preceding defined function to generate different future price processes, 
based on which the cost of hedging can be calculated. Vector A collects several possible 
hedging costs and draws their histogram as a probability distribution. Next, we 
present hedging strategies, which rebalance weekly (A) and daily (B):

call_price = GBSOption("c", 100, 100, 0.5, 0.05, 0.05, 0.3)@price

A = rep(0, 1000)

for (i in 1:1000){A[i] = cost_simulation(100, .20, .30,.05, 100, 0.5, 
1/52)}

B = rep(0, 1000)

for (i in 1:1000){B[i] = cost_simulation(100, .20, .30,.05, 100, 0.5, 
1/250)}
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dev.new(width=20, height=10)

par(mfrow=c(1,2))

hist(A, freq = F, main = paste("E = ",round(mean(A), 4) ,"  sd = 
",round(sd(A), 4)), xlim = c(6,14), ylim = c(0,0.7))

curve(dnorm(x, mean=mean(A), sd=sd(A)), col="darkblue", lwd=2, add=TRUE, 
yaxt="n")

hist(B, freq = F, main = paste("E = ",round(mean(B), 4) ,"  sd = 
",round(sd(B), 4)), xlim = c(6,14), ylim = c(0,0.7))

curve(dnorm(x, mean=mean(B), sd=sd(B)), col="darkblue", lwd=2, add=TRUE, 
yaxt="n")

The output is the histogram of the generated cost outcomes:

The histogram on the left side shows the cost distribution of the weekly strategy, 
while the histogram on the right side belongs to the daily rebalancing strategy.

As we can see, the standard deviation of the cost of hedging can be reduced by 
shortening Δt, which indicates more frequent rebalancing of the portfolio. It is worth 
noticing that it is not only the volatility of the hedging cost that decreases with the 
shorter period, but the expected value is also lower, approaching the BS price.
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Comparing the performance of delta hedging
We can further investigate the effect of the rebalancing period by making a slight 
modification to the cost simulation function by which the same future paths will be 
selected. In this way, we can compare strategies with a different rebalancing period.

The performance measure of delta hedging is defined by Hull (2009) as the ratio 
of the standard deviation of the cost of writing the option and hedging it to the 
theoretical price of the option.

The Cost_simulation function needs to be modified so that we can calculate several 
rebalancing periods together:

library(fOptions)

cost_simulation = function(S0, mu, sigma, rf, K, Time, dt, periods){

t <- seq(0, Time, by = dt)

N <- length(t)

W = c(0,cumsum(rnorm(N-1)))

S <- S0*exp((mu-sigma^2/2)*t + sigma*sqrt(dt)*W)

SN = S[N]

delta <- rep(0, N-1)

call_ <- rep(0, N-1)

for(i in 1:(N-1) ){

delta[i] <- GBSGreeks("Delta", "c", S[i], K, Time-t[i], rf, rf, sigma)

call_[i] <- GBSOption("c", S[i], K, Time-t[i], rf, rf, sigma)@price

}

S = S[seq(1, N-1, by = periods)]

delta = delta[seq(1, N-1, by = periods)]

m = length(S)

share_cost <- rep(0,m)

interest_cost <- rep(0,m)

total_cost <- rep(0, m)
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share_cost[1] <- S[1]*delta[1]

interest_cost[1] <- (exp(rf*dt*periods)-1) * share_cost[1]

total_cost[1] <- share_cost[1] + interest_cost[1]

for(i in 2:(m)){

    share_cost[i] <- ( delta[i] - delta[i-1] ) * S[i]

    interest_cost[i] <- ( total_cost[i-1] + share_cost[i] ) * 
(exp(rf*dt*periods)-1)

    total_cost[i] <- total_cost[i-1] + interest_cost[i] + share_cost[i]

             }

c = max( SN - K , 0)

cost = c - delta[m]*SN + total_cost[m]                         

return(cost*exp(-Time*rf))

}

In the following command, the modified cost_simulation function is used for 
different rebalancing periods, and a table is generated that contains the expected 
value (E) with the lower and upper bound of the confidence level, the volatility 
of the cost of hedging (v), and the performance measure (ratio) ordered to the six 
rebalancing periods (0.5, 1, and 2 days, and 1, 2, and 4 weeks). We also receive two 
plots, the histograms of each strategy, and a chart that contains the normal curves 
fitted to the distributions:

dev.new(width=30,height=20)

par(mfrow = c(2,3))

i = 0

per = c(2,4,8,20,40,80)

call_price = GBSOption("c", 100, 100, 0.5, 0.05, 0.05, 0.3)@price

results = matrix(0, 6, 5)

rownames(results) = c("1/2 days", "1 day", "2 days", "1 week", "2  
  weeks", "4 weeks")

colnames(results) = c("E", "lower", "upper", "v", "ratio")

for (j in per){

  i = i+1

  A = rep(0, 1000)

  set.seed(10125987)
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  for (h in 1:1000){A[h] = cost_simulation(100, .20, .30,.05, 100,  
    0.5, 1/1000,j)}

  E = mean(A)

  v = sd(A)

  results[i, 1] = E

  results[i, 2] = E-1.96*v/sqrt(1000)

  results[i, 3] = E+1.96*v/sqrt(1000)

  results[i, 4] = v

  results[i, 5] = v/call_price

  hist(A, freq = F, main = "", xlab = "", xlim = c(4,16), ylim =  
    c(0,0.8))

  title(main = rownames(results)[i], sub = paste("E = ",round(E, 4)  
    ,"  sd = ",round(v, 4)))

  curve(dnorm(x, mean=mean(A), sd=sd(A)), col="darkblue", lwd=2,  
    add=TRUE, yaxt="n")

}

print(results)

dev.new()

curve(dnorm(x,results[1,1], results[1,4]), 6,14, ylab = "", xlab =  
  "cost")

for (l in 2:6) curve(dnorm(x, results[l,1], results[l,4]), add =  
  TRUE, xlim = c(4,16), ylim = c(0,0.8), lty=l)

legend(legend=rownames(results), "topright", lty = 1:6)

In our simulation model, the output is as follows:

                E    lower     upper         v    ratio

1/2 days 9.645018 9.616637  9.673399 0.4579025 0.047526

1 day    9.638224 9.600381  9.676068 0.6105640 0,06337

2 days   9.610501 9.558314  9.662687 0.8419825 0,087389

1 week   9.647767 9.563375  9.732160 1.3616010 0,14132

2 weeks  9.764237 9.647037  9.881436 1.8909048 0,196256

4 weeks  9.919697 9.748393 10.091001 2.7638287 0,286857
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The standard deviation of the cost of hedging becomes smaller as we rebalance  
the hedge position more often. The difference in the expected value is also  
significant at 95 percent significance level between the weekly and the monthly the 
rebalancing. Among the shorter periods, we did not find significant differences in  
the expected value:
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The charts shown in the preceding image are similar to the previous analysis  
(with weekly and daily rebalancing), but here, we have more rebalancing periods. 
The effect of rebalancing frequency is presented by the distribution of the cost  
of hedging.

We can compare the cost distributions of the given rebalancing periods on a single 
chart, as illustrated in the preceding section.

The time consumption can be reduced by decreasing the number of simulations.
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Hedging in the presence of transaction 
costs
As we shown earlier, increasing the number of portfolio adjustments leads to 
a decrease in the volatility of the hedging cost. As Δt approaches 0, the cost of 
hedging approximates the option price derived from the BS formula. Until now, we 
have disregarded the transaction costs, but here, we remove this assumption and 
analyze the effects of transaction costs on option hedging. As rebalancing becomes 
more frequent, transaction costs increase the cost of hedging, but at the same time, 
shorter rebalancing periods reduce the volatility of the hedging cost. Hence, it 
is worth examining this trade-off in more detail, and based on this, defining the 
optimal rebalancing strategy. An absolute (fixed for each transaction) or a relative 
(proportional to the transaction size) transaction cost can be added to the code by 
modifying the parameters when we define the function:

cost_simulation = function(S0, mu, sigma, rf, K, Time, dt, periods,  
cost_per_trade)

Then, the cost calculation method for the absolute transaction cost can be 
programmed as follows:

share_cost[1] <- S[1]*delta[1] + cost_per_trade

interest_cost[1] <- (exp(rf*dt*periods)-1) * share_cost[1]

total_cost[1] <- share_cost[1] + interest_cost[1]

for(i in 2:m){

    share_cost[i] <- ( delta[i] - delta[i-1] ) * S[i] + cost_per_trade

    interest_cost[i] <- ( total_cost[i-1] + share_cost[i] ) * 
(exp(rf*dt*periods)-1)

    total_cost[i] <- total_cost[i-1] + interest_cost[i] + share_cost[i]

             }

In the case of relative costs, the program code is as follows:

share_cost[1] <- S[1]*delta[1]*(1+trading_cost)

interest_cost[1] <- (exp(rf*dt*periods)-1) * share_cost[1]

total_cost[1] <- share_cost[1] + interest_cost[1]

for(i in 2:m){

    share_cost[i] <- (( delta[i] - delta[i-1] ) * S[i]) + abs(( delta[i] 
- delta[i-1] ) * S[i]) * trading_cost

    interest_cost[i] <- ( total_cost[i-1] + share_cost[i] ) * 
(exp(rf*dt*periods)-1)

    total_cost[i] <- total_cost[i-1] + interest_cost[i] + share_cost[i]

}
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When referring to the cost_simulation function, the absolute or relative cost has to 
be given. Let's check the effect of an absolute cost of 0.02 per transaction (we suppose 
that the unit of the cost and the extent of the trade are the same). In order to shorten 
the time consumption, we used only 100 simulated paths here.

We have to change the parameters of the cost_simulation function in the cycle:

for (i in 1:100)

  A[i] = cost_simulation(100, .20, .30,.05, 100, 0.5, 1/1000,j,.02)

Then, we get the table shown as follows:

                 E     lower   upper          v      ratio

1/2 days 12.083775 11.966137 12.20141 0.6001933 0.06229386

1 day    10.817594 10.643468 10.99172 0.8883994 0.09220668

2 days   10.244342  9.999395 10.48929 1.2497261 0.12970866

1 week    9.993442  9.612777 10.37411 1.9421682 0.20157700

2 weeks  10.305498  9.737017 10.87398 2.9004106 0.30103266

4 weeks  10.321880  9.603827 11.03993 3.6635388 0.38023748

Calculating with a fixed transaction cost of 0.02, the expected value of the hedging 
cost increases considerably. The shorter rebalancing periods are most affected as 
more trading enhances the costs. The standard deviation is also higher, mainly in 
cases of periods shorter than one week.

We can see the effect of the relative transaction cost of 1 percent by applying the 
following change in the code:

for (i in 1:100)

  A[i] = cost_simulation(100, .20, .30,.05, 100, 0.5, 1/1000,j, 0.01)

The expected hedging cost has increased further in the case of the shortest (daily or 
even more frequent) rebalancing periods, but we also found a more significant rise of 
the volatility (as shown in the following output table):

                E    lower    upper         v     ratio

1/2 days 13.56272  13.26897  13.85646 1.498715 0.1555512

1 day    12.53723  12.28596  12.78850 1.282005 0.1330589

2 days   11.89854  11.59787  12.19921 1.534010 0.1592144

1 week   11.37828  10.96775  11.78880 2.094506 0.2173881

2 weeks  11.55362  10.95111  12.15612 3.073993 0.3190487

4 weeks  11.43771  10.69504  12.18038 3.789128 0.3932724
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The presence of transaction costs offsets the volatility reduction effect of the more 
frequent rebalancing, so the optimal rebalancing period is to be determined by 
weighting these effects relative to each other.

Optimization of the hedge
In order to find the optimal length of the rebalancing period, we have to define the 
optimization criterion and the measure that is to be maximized or minimized. The 
usual aim of hedging is the reduction of the risk, measured by the variance of the 
cost of the hedge. According to this, the optimal hedge minimizes the volatility of 
the cost of hedging. Another aim of the optimization can be the minimization of 
the expected value of the cost. As we have seen, in the absence of transaction costs, 
these goals can be achieved simultaneously by rebalancing the hedging portfolio 
more and more frequently. On the other hand, transaction costs boost not only the 
expected value of the cost but also the volatility, which can rise drastically when the 
readjustment is too frequent.

It is a widespread method in finance when trade-off between the expected value and 
volatility has to be considered in order to define a utility function and an optimum 
as the maximum utility. For example, in the portfolio theory, an individual utility 
function is assumed, which is positively affected by the expected value of the return 
and negatively affected by its variance. We can use the same technique by defining 
a utility function that contains the expected value of the cost of hedging and its 
variance. However, in our case, both factors have a negative impact on the utility of 
the trader; therefore, both parameters must have a positive sign, and the function is 
to be minimized. Accordingly, the objective function will be a utility function defined 
as follows:

( ) ( ) ( )U x E x Var xα= +

Equation 3

Here, x is the cost of the hedge as a random variable, E denotes its expected value, 
Var stands for its variance, and α is the risk aversion parameter. A higher α indicates 
a more risk averse investor/trader.

An alternative solution to the mean-variance optimization can be setting the expected 
(cost) value minimization as the main goal with the boundary condition that keeps a 
chosen risk measure under a predefined value. Here, we chose Value-at-Risk as the 
control variable, which is a type of downside risk measure, defined as the maximal loss 
or worst outcome at a predefined probability and over a selected time horizon.
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The following code calculates the cost distribution based on 1,000 simulations for 
different rebalancing periods from 1-80 Δt. The unit of Δt is a quarter of a day, so 
Δt of 1 means four readjustments a day; the longest Δt of 80 refers to a 20-day long 
period. The function collects the expected value, the standard deviation, and the 95 
percentile of the distribution, and gives the result of the four different optimization 
scenarios in text format and also plots the results:

n_sim <- 1000

threshold <- 12

cost_Sim <- function(cost = 0.01, n = n_sim, per = 1){a <- replicate(n, 
cost_simulation(100, .20, .30,.05, 100, 0.5, 1/1000,per,cost)); 

l <- list(mean(a), sd(a), quantile(a,0.95))}

A <- sapply(seq(1,80) ,function(per) {print(per); set.seed(2019759); 
cost_Sim(per = per)})

e <- unlist(A[1,])

s <- unlist(A[2,])

q <- unlist(A[3,])

u <- e + s^2

A <- cbind(t(A), u)

z1 <- which.min(e)

z2 <- which.min(s)

z3 <- which.min(u)

    (paste("E min =", z1, "cost of hedge = ",e[z1]," sd = ", s[z1]))

    (paste("s min =", z2, "cost of hedge = ",e[z2]," sd = ", s[z2]))

    (paste("U min =", z3, "u = ",u[z3],"cost of hedge = ",e[z3]," sd = ", 
s[z3]))

matplot(A, type = "l", lty = 1:4, xlab = "Δt", col = 1)

lab_for_leg = c("E", "Sd", "95% quantile","E + variance")

legend(legend = lab_for_leg, "bottomright", cex = 0.6, lty = 1:4)

abline( v = c(z1,z2,z3), lty = 6, col = "grey")

abline( h = threshold, lty = 1, col = "grey")

text(c(z1,z1,z2,z2,z3,z3,z3),c(e[z1],s[z1],s[z2],e[z2],e[z3],s[z3],u[z3]
),round(c(e[z1],s[z1],s[z2],e[z2],e[z3],s[z3],u[z3]),3), pos = 3, cex = 
0.7)

e2 <- e

e2[q > threshold] <- max(e)

z4 <- which.min(e2)
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z5 <- which.min(q)

if( q[z5] < threshold ){

print(paste(" min VaR = ", q[z4], "at", z4 ,"E(cost | VaR < threshold = " 
,e[z4], " s = ", s[z4]))

 } else {

    print(paste("optimization failed, min VaR = ", q[z5], "at", z5 , 
"where cost = ", e[z5], " s = ", s[z5])) 

             }

The last optimization searches for the minimal cost that can be achieved with the 
condition that Value-at-Risk at the q significance level (the q percentile) does not 
exceed the predetermined threshold. As it is not necessary that this minimum exists, 
if the optimization fails, the minimum of q-VaR is given as the result.

Optimal hedging in the case of absolute 
transaction costs
The task is to find the optimal length of the rebalancing period in the case of 
transaction costs and for a vanilla call option with the already investigated 
parameters. Let's suppose that the transaction cost is 0.01 per trade.

The output of the earlier function is a matrix A that contains the parameters of the 
distribution that belong to different rebalancing periods, and the optimum according 
to different criteria.

The first and last rows of the matrix A are shown next:

     [,1]     [,2]      [,3]     [,4]    

 [1,] 14.568   0.3022379 15.05147 14.65935

 [2,] 12.10577 0.4471673 12.79622 12.30573

...

 [79,] 10.00434 2.678289  14.51381 17.17757

 [80,] 10.03162 2.674291  14.41796 17.18345

The number in the square brackets stands for the rebalancing period expressed in Δt. 
The next columns contain the expected value, the standard deviation, the 95 percent 
quantile, and the sum of the expected value and standard deviation. The results of 
the four optimization processes are summarized in the next output:

"E min = 50 cost of hedge =  9.79184040508574  sd =  2.21227796458088"

"s min = 1 cost of hedge =  14.5680033393436  sd =  0.302237879069942"
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"U min = 8 u =  11.0296321604941 cost of hedge =  10.2898541853535  sd =  
0.860103467694771"

" min VaR =  11.8082026178249 at 14 E(cost | VaR < threshold =  
10.0172915117802  s =  1.12757856083913"

The following figure depicts the results in the function of the rebalancing periods  
(in Δt). The dashed line shows the standard deviation and the solid line is the 
expected cost, while the dot dash and dotted lines stand for the value of the utility 
function (Equation 3) with an alpha parameter of 1 and 95 percentile respectively.

Although the optimization depends on the parameters, the chart illustrates  
the trade-off between the expected cost and the volatility in the presence of 
transaction costs:
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The minimum of the expected cost (9.79) is not far away from the BS price of 9.63. 
The optimal rebalancing period is then 50 Δt, that is, 12.5 days long. At the lowest 
expected cost, the standard deviation is 2.21.

The volatility minimization results in the most frequent rebalancing, which means 
rebalancing 4 times a day; then, the minimum of the standard deviation is 0.30, but 
the frequent trading increases the costs drastically. The expected cost is 14.57, which 
is about 50 percent higher than in the previous case.

The optimization model based on the utility function defined in Equation 3 considers 
both aspects of the hedge, and the earlier output shows 8 Δt long rebalancing periods 
as optimal, that is, exactly 2 days. We can achieve an expected value of 10.29, which 
only somewhat exceeds the minimum, and the standard deviation is 0.86.

The last row of the preceding output presents the results of the optimization 
using Value-at-Risk limits. We applied a 95% VaR and searched for the minimal 
expected cost at which, in 95% of the cases, the cost remains under a threshold of 12. 
According to this, the optimal length of the readjustment is 14 Δt, that is, 3.5 days. 
The expected value of the cost is slightly lower (10.02) than in the previous case, 
where the result is offset by a slightly higher standard deviation (1.13).

Optimal hedging in the case of relative 
transaction costs
In this section, the same optimization problem is solved as in the previous section, 
with the exception that now the transaction cost is 1 percent of the deal. All other 
parameters are the same.

The output contains the matrix A with the same data:

      [,1]     [,2]     [,3]     [,4]    

 [1,] 16.80509 2.746488 21.37177 24.34829

 [2,] 14.87962 1.974883 18.20097 18.77978

...

 [79,] 11.2743  2.770777 15.89386 18.9515 

 [80,] 11.31251 2.758069 16.0346  18.91945

Given that costs depend on the transaction size, we got a U-shape not only in the 
expected value, but also in the standard deviation. This indicates that too frequent 
trading is suboptimal also in regards to volatility minimization.
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The other main difference compared to the previous optimization is that the 
threshold of VaR cannot be held (as shown in the following code):

"E min = 56 cost of hedge =  11.1495374978655  sd =  2.40795704676431"

"s min = 9 cost of hedge =  12.4747301348104  sd =  1.28919873150291"

"U min = 14 u =  13.9033123535802 cost of hedge =  12.0090095949856  sd =  
1.37633671701175"

"optimization failed, min VaR =  14.2623891995575 at 21 where cost =  
11.7028044352096  s =  1.518297863428"

The following screenshot gives the output of the preceding command:

The lowest expected cost is 11.15 with a standard deviation of 2.41 at 56 Δt, 
indicating an optimal rebalancing period of 14 days.

The lowest volatility is 1.23 at Δt of 9, and the expected value is 12.47. The  
mean-variance optimization results in a rebalancing period of 14 Δt (3.5 days),  
the standard deviation is 1.38, and the expected value is 12.01.
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As mentioned, the fourth optimization fails; the minimum of the 95% VaR is 14.26, 
which can be achieved at 21 Δt (5.25 days); the expected cost is 11.7, and the standard 
deviation is 1.52.

The optimization shows that in the presence of the transaction cost, the simple aim 
of volatility reduction causes a huge rise in the costs; therefore, an optimal hedging 
strategy has to take into consideration this effect as well.

Further extensions
The model can be further generalized by investigating other price processes.  
The returns of financial assets are usually not normally distributed as assumed in 
the BSM model, but their tails are fatter than predicted by the Gauss curve. This 
phenomenon can be described by the GARCH model (General Autoregressive 
Conditional Heteroscedasticity), where the variance is autocorrelated, which causes 
a clustering of volatility. Another way of catching the higher probability of extreme 
returns can be building random jumps into the process. Applying these processes 
in the model will make the hedging of the derivative even more expensive, thereby 
increasing the expected value and also the variance of the cost distribution.

We can see that changing the spot price causes the change of the delta that can 
be measured by the gamma, which is the second derivative of the option price 
with respect to the spot price. A gamma-neutral portfolio cannot be achieved by 
exclusively holding the option and the underlying asset, as the gamma of the latest is 
zero, but we have to buy options for the same underlying asset with any maturity or 
strike price.

Furthermore, if we disregard the assumption of constant volatility, the value of the 
derivative will be affected not only by the change of the underlying asset's spot 
price and the change of the remaining time to maturity, but also the change of the 
underlying asset's volatility. The effect of the changing volatility can be measured 
by the vega, the first derivative of the option price according to the volatility. A high 
value of vega causes a notable effect of the volatility on the option price (Hull, 2009). 
This can cause a situation where the price of the underlying asset is increasing, so 
the value of a call option should increase while the implied volatility has decreased, 
and the price of the option may decrease as well. In order to offset the effect of vega, 
either other options for the same underlying asset are to be bought, or we can hedge 
volatility with an index called the VIX index, which is a traded index that contains 
the implied volatilities of options.

This chapter was dedicated to analyzing delta hedging; detailing gamma and vega 
neutralization is beyond our focus.
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Summary
In this chapter, we have shown some practical problems that arise in the hedging 
of derivatives. Although the Black-Scholes-Merton model assumes continuous 
time trading, resulting in continuous rebalancing of the hedging portfolio without 
transaction costs, in reality, trading occurs in discrete time, and it does have costs. 
Consequently, the cost of hedging depends on the future path of the spot price of 
the underlying asset; thus, it is not a single value presented by the analytical formula 
any more, but it is a stochastic variable that can be described by its probability 
distribution. In this chapter, we simulated different paths, calculated the cost of 
hedging, and presented the probability distribution assuming different rebalancing 
frequencies. We received that in the absence of transaction costs the volatility reduces 
with the shortening of the rebalancing period. On the other hand, transaction costs 
can boost not only the expected value of the cost of the hedge but also its variance. 
We presented several optimization algorithms to find the optimal hedging strategy.

We created several user-defined functions in R to simulate price movements and to 
generate the cost distribution. Finally, we applied numerical optimization according 
to the given optimization model.
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Fundamental Analysis
Now that the global financial crisis seems to come to an end, most of the investors 
are moving back to equity markets. By doing so, you face the problem of choosing 
the stocks that will outperform the other shares during the upcoming time period. 
To find the right investment asset to purchase, you have two basic options. On one 
hand, you may rely on any trends and patterns in the development of the historical 
prices. When developing an investment recommendation based on trends and 
patterns, you do a technical analysis. On the other hand, you may try to figure 
out which firms will exceed the market by analyzing their financial performance, 
strategic position, or future plans. This is called fundamental analysis.

This chapter provides you an aid on how to use R to identify successful fundamental 
trading strategies for equity investments. We will start by applying basic statistical 
methods and move on to advanced and more complex ones while we cover how to 
translate your fundamental investment ideas into statistically testable hypotheses.

The basics of fundamental analysis
When looking for possible investment assets, a wide range of choices is offered 
to you by the market. You may pick bonds, pieces of art, real estate, currencies, 
commodities, derivatives, or probably, the most well-known asset class, equity. 
Equities represent ownership right over a certain part of the given firm (issuer).

However, which shares shall we buy? When should we purchase and sell them? 
These decisions are of key importance as they will determine the return on your 
portfolio. There are two different views out there on these problems.
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Technical analysis is built on historical price developments and believes that certain 
patterns may be identified that help predict the future movements of the quotes. 
Fundamental analysis, on the contrary, focuses on the firm and the value of the 
ownership right itself rather than on the market price of it. Here, we believe that 
sooner or later, market price has to reflect the fair value of the share that can be 
calculated from the future cash flows we collect when owning it, just like in the case 
of any other kind of investments.

While technical analysis focuses on how investors' behavior might push prices in 
the future based on historical patterns, fundamental analysis identifies the trends 
that prices should follow due to the predicted future performance of the firm. So, 
when performing fundamental analysis, we have to recall our corporate finance and 
accounting knowledge.

Even when checking for the fair price of just one given share, we may spend several 
days on modeling future performance and estimating sales growth, expenses, 
investments, changes in financing strategy, and cost of capital to get a valid discount 
rate for our cash-flow prediction. When developing a trading strategy, we need 
to review several thousands of potential investments, so there is no chance we 
could do such an in-depth analysis. Even trying it may be tricky. If you create large 
spreadsheet models for all equities, by the time you finish, your assumptions for 
the first firm could be outdated, and you have to restart the process without even 
considering your results from the first version of the model. So, instead of really 
predicting future financial statements, we have to build on historical experience to 
identify good investment patterns. We will try to connect previous fundamental 
ratios to historical price developments and expect that these connections will also 
hold in the future.

This is the key to understand that we do not want to find good companies to invest 
in; we rather have to find shares that are very likely to be mispriced. So, we want to 
find undervalued stocks to buy, or if shorting is allowed on the market, we want to 
find overvalued ones to sell. For the rest of this chapter, we will focus only on the 
upward potential, but you may use exactly the same techniques to identify shares  
to sell that have a huge downward potential. Finding the fundamental characteristics 
of firms for which we have seen the share price increase during the last 12 months 
may help us identify good investments for the next year based on the current 
financial statements.
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So, when building a fundamental equity strategy, we need to follow these steps:

1. Collect financial statement data for possible equity investments.
2. Calculate fundamental ratios to standardize data.
3. Identify connections between ratios and future price development.
4. Follow the testing strategy that is, calculate results on another set of  

possible equities for the same period and/or same set of shares for a  
different period of time.

It is not enough to perform these steps once in a lifetime. Applying a strategy that 
would have performed well during the last year(s) assumes that there were no 
radical changes, neither within the firm nor in the economy that the company is 
active in. As markets tend to change, firm have to do so too. This means that what 
was the best practice last year may be just fine or average now. As a result of this, 
even if our investment strategy worked well for several years, we may see a gradual 
or even radical change in its effectiveness. So, a regular recheck and update is vital.

Collecting data
Building the required database could be one of the biggest challenges. Here, we do 
not only need dividend-adjusted price quotes but also financial statements data. 
Chapter 4, Big Data – Advanced Analytics described how to access some of the open 
data sources, but those rarely offer you all the required information in a package.

Another option might be to use professional financial data providers as a source. 
These platforms allow you to create tailor-made tables that can be exported to 
Microsoft Excel. For the sake of this chapter, we used a Bloomberg terminal. As a 
first step, we exported the data to Microsoft Excel.

Spreadsheets may be an excellent tool to build a database of data collected from 
different sources. No matter how you got your data ready on a spreadsheet, you 
need to notice that due to the changing output formats (xls, xlsx, xlsm, xlsb) and 
the advanced formatting features (for example, merging cells), this is not the best 
form to feed R with your data. Instead, you may be far better off with saving your 
data in a file in the comma-separated format or as CSVs. This can be easily read 
using the following commands:

d <- read.table("file_name", header = T, sep = ",")
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Here, the = T header indicates that your database has a header row, and sep = "," 
indicates that your data is separated by commas. Note that some localized versions 
of Excel may use different separators, such as semicolons. In this case, use sep = ";". 
If your file is not located in your R working directory, you have to specify the whole 
path as part of file_name.

If you want to stick to your Excel file, the next method might work in most of the 
cases. Install the gdata package that extends the capabilities of R so that the software 
can read information form the xls or xlsx file:

install.packages("gdata")

library(gdata)

After that, you may read the Excel file as follows:

d <- read.xls("file_name", n)

Here, the second argument marked as n indicates the worksheet in the workbook 
from which you want to read.

To illustrate the process of building a fundamental trading strategy, we will use the 
NASDAQ Composite Index member firms. At the time of writing this chapter, 21,931 
firms are included.

To create a solid base for our strategy, we should first clean our database. Extreme 
values may create a serious bias otherwise. For example, no one would be surprised 
if a firm with a P/E (Price/Earning per share) ratio of 150 a year ago showed a 
quick price increase during the last 12 months, but finding such a share now may 
be impossible, so our strategy might be worthless. The strategy should help us find 
what shares to invest in once the choice is not trivial (of course, you may also lose 
with high P/E shares), so we will only keep shares without extreme values. The 
following limitations were applied:

• P/E (Price/Earning per share) lower than 100
• The yearly Total Return to Shareholders (TRS), which is equal to price gain 

plus dividend yield, less than 100 percent
• Long Term Debt / Total Capital less than 100 percent (no negative 

shareholder capital)
• P/BV (Price per Book value) of equity for one piece of share bigger than 

1, so the market value of equity is higher than the book value (no point in 
liquidating the firm)

• Operating income/sales less than 100 percent but bigger than 0 (historical 
performance can be held in the long run)
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This way, only those firms remained that are not likely to be liquidated or go 
bankrupt, and they have shown performance that is clearly sustainable in the long 
run. After applying these filters, 7198 firms remained from all over the world.

The next step involves selecting the ratios we will potentially use when defining 
the strategy. Based on historical experience, we picked 15 ratios from the financial 
statements a year earlier, plus the name of the sectors the firms operate in and the 
total shareholder return for the last 12 months.

It may prove wise to check whether the remaining data is appropriate for our aims. 
A boxplot diagram would reveal whether, for example, most of our stocks show 
huge positive or negative return or whether there are heavy differences across 
industries due to which we would end up describing one given booming industry as 
not a good investment strategy. Luckily, here, we have no such issues: (Figure 1)

d <- read.csv2("data.csv", stringsAsFactors = F)

for (i in c(3:17,19)){d[,i] = as.numeric(d[,i])}

boxplot_data <- split( d$Total.Return.YTD..I., d$BICS.L1.Sect.Nm )

windows()

par(mar = c(10,4,4,4))

boxplot(boxplot_data, las = 2, col = "grey")

The following figure is the result of the preceding code:

Figure 1
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It could be also a good idea to check whether we should introduce new variables. 
One possible yet missing categorization could control for firm size, as many models 
assume higher required return for low capitalization stocks due to them being less 
liquid. To control this, we may apply a scatter diagram, the code and output for this 
is as follows:

model <- lm(" Total.Return.YTD..I. ~ Market.Cap.Y.1", data = d)

a <- model$coefficients[1]

b <- model$coefficients[2]

windows()

plot(d$Market.Cap.Y.1,d$Total.Return.YTD..I., xlim = c(0, 400000000000), 
xlab = "Market Cap Y-1", ylab = "Total Return YTD (I).")

abline(a,b, col = "red")

We cannot see a clear trend for capitalization and TRS. We may also try to fit a 
curve on the data and calculate R2 for the goodness of the fit, but the figure does 
not support any strong connection. R square indicates the percentage of variance 
explained by your estimation, so any value above 0.8 is great, while values bellow  
0.2 mean weak performance.
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Revealing connections
To start our investigation for shares with huge upside potential, we have to check 
the connections between individual ratios quantified a year ago and the total return 
of the next year. For the sake of this chapter, we picked the following ratios. We took 
the values from 1 year earlier so that we can contrast these with last year's TRS:

• Cash/assets 1 year ago
• Net fixed assets/total number of assets 1 year ago
• Assets/1000 employees 1 year ago
• Price/cash flow average of last 5 years 1 year ago
• Price/cash flow 1 year ago
• Operating income/net sales 1 year ago
• Dividend payout ratio 1 year ago
• Asset turnover 1 year ago
• P/BV 1 year ago
• Operating income/net sales 1 year ago
• Revenue growth in the last 1 year 1 year ago
• Long-term debt/capital 1 year ago
• Debt/EBITDA 1 year ago
• Market capitalization 1 year ago
• P/E 1 year ago

Calculating Pearson's correlation coefficients may be a good start:

d_filt <- na.omit(d)[,setdiff(1:19, c(1,2,18))]

cor_mtx <- cor(d_filt)

round(cor_mtx, 3)

When looking at the correlation table, there are two important conclusions to draw. 
They are as follows:

• There are only four financial ratios that show a significant correlation with 
TRS, but even there, the connections are very weak; that is, they remain in the 
range between -0.08 and +0.08. This means there is no clear linear connection 
between any of our ratios and the TRS.



Fundamental Analysis

[ 208 ]

• The financial ratios chosen are quite independent. Out of the 105 (15*14/2) 
potential connections, only 15 are significant. Even all those fit into the 
interval of -0.439 and +0.425, and only eight of them have a bigger absolute 
value than 0.2.

So, we see that it is not easy to set up a good strategy. Just relying on one single ratio 
would lead us nowhere. We shall go for more complex methods.

Including multiple variables
One method to build a performance-prediction model could be using multiple 
variable regression models. A linear estimation should only include variables with 
minimal linear connection among them. As we have just seen, our explanatory 
variables are more or less independent of each other, which is great. It is bad 
news, though, that these variables individually also have low correlation with the 
dependent variable, TRS.

To get the best linear estimation, we may choose from several methods. One option 
is to first include all variables and ask R to drop step by step the one with the lowest 
significance (step-wise method). Under another widely used method, R could start 
with one variable only and enter stepwise the next one with the highest explanatory 
power (the backward method). Here, we picked the latter, as the first method could 
not end with a significant model:

library(MASS)

vars <- colnames(d_filt)

m <- length(vars)

lin_formula <- paste(vars[m], paste(vars[-m], collapse = " + "), sep = " 
~ ")

fit <- lm(formula = lin_formula, data = d_filt)

fit <- stepAIC(object = fit, direction = "backward", k = 4)

summary(fit)

Coefficients:

                                   Estimate Std. Error t value Pr(>|t|)    

(Intercept)                         6.77884    1.11533   6.078  1.4e-09 
***

Cash.Assets.Y.1                    -0.08757    0.03186  -2.749 0.006022 
** 
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Net.Fixed.Assets.to.Tot.Assets.Y.1  0.07153    0.01997   3.583 0.000346 
***

R.D.Net.Sales.Y.1                   0.30689    0.07888   3.891 0.000102 
***

P.E.Y.1                            -0.09746    0.02944  -3.311 0.000943 
***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.63 on 2591 degrees of freedom

Multiple R-squared:  0.01598,   Adjusted R-squared:  0.01446 

F-statistic: 10.52 on 4 and 2591 DF,  p-value: 1.879e-08

The backward method ended up with an R squared of 1.6 percent, only meaning 
that the regression cannot explain more than 1.6 percent of the total variance of the 
TRS. In other words, the model's performance is extremely bad. Notice that the poor 
performance is due to the weak (linear) connection between explanatory variables 
and TRS. Should you have some variables with stronger connection, your linear 
regressions will show better results. With an R squared above 50 percent, you are 
very likely to build a great stock-selection strategy by buying shares that have high 
values for significant explanatory variables with a positive sign in the model, while 
they have low values for variables with a negative sign in the model. As we cannot 
use this method here, we have to follow a different logic.

Separating investment targets
An alternative method to build an investment strategy could be to separate good 
investment targets and check what is common between them. A good way to find 
similarities among stocks that performed well could be to create groups based on 
the TRS values and compare low- and high-performer clusters. The first step to this 
should be to analyze the following code:

library(stats)

library(matrixStats)

h_clust <- hclust(dist(d[,19]))

plot(h_clust, labels = F, xlab = "")
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The following dendogram is the output for the preceding code:

Based on the dendrogram, three clusters separate very well, but to cut the biggest of 
them into two subgroups, we may need to increase the number of clusters up until 
seven. To keep the overview, we should try to keep the number of cluster to the lowest 
possible, so first, we will try to create three clusters only using the k-means method:

k_clust <- kmeans(d[,19], 3)

K_means_results <- cbind(k_clust$centers, k_clust$size)

colnames(K_means_results) = c("Cluster center", "Cluster size")

K_means_results

Our results are pretty encouraging. Our three clusters have 1000 to 4000 elements, 
and we can very clearly identify the overperformers, underperformers, and,  
mid-range performers:

  Cluster center Cluster size

1       9.405869         3972

2      48.067540          962

3     -16.627188         2264
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Next, we have to check whether there are significant differences regarding the 
average ratio values among these three groups. For this, we will use the Anova 
table. This statistical tool would compare the deviation across group averages and 
the standard deviation within the individual groups. Once the classification is valid, 
you would find huge differences among group averages but lesser differences when 
comparing firms within the same clusters:

for(i in c(3,4,6,10,12,14,16,17)) { print(colnames(d)[i]); print(summary(

aov(d[,i]~k_clust$cluster  , d))) }

Output:

[1] "Cash.Assets.Y.1"

                  Df  Sum Sq Mean Sq F value Pr(>F)    

k_clust$cluster    1    7491    7491   41.94  1e-10 ***

Residuals       7195 1285207     179                   

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1 observation deleted due to missingness

[1] "Net.Fixed.Assets.to.Tot.Assets.Y.1"

                  Df  Sum Sq Mean Sq F value   Pr(>F)    

k_clust$cluster    1   19994   19994   40.26 2.36e-10 ***

Residuals       7106 3529208     497                     

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

90 observations deleted due to missingness

[1] "P.CF.5Yr.Avg.Y.1"

                  Df   Sum Sq Mean Sq F value Pr(>F)

k_clust$cluster    1    24236   24236     1.2  0.273

Residuals       4741 95772378   20201               

2455 observations deleted due to missingness

[1] "Asset.Turnover.Y.1"

                  Df Sum Sq Mean Sq F value  Pr(>F)    

k_clust$cluster    1      7   6.759   11.64 0.00065 ***

Residuals       7115   4133   0.581                    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Fundamental Analysis

[ 212 ]

81 observations deleted due to missingness

[1] "OI...Net.Sales.Y.1"

                  Df  Sum Sq Mean Sq F value  Pr(>F)   

k_clust$cluster    1    1461  1461.4   10.12 0.00147 **

Residuals       7196 1038800   144.4                   

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

[1] "LTD.Capital.Y.1"

                  Df  Sum Sq Mean Sq F value Pr(>F)  

k_clust$cluster    1    1575  1574.6   4.134 0.0421 *

Residuals       7196 2740845   380.9                 

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

[1] "Market.Cap.Y.1"

                  Df    Sum Sq   Mean Sq F value Pr(>F)

k_clust$cluster    1 1.386e+08 138616578   2.543  0.111

Residuals       7196 3.922e+11  54501888               

[1] "P.E.Y.1"

                  Df  Sum Sq Mean Sq F value  Pr(>F)   

k_clust$cluster    1    1735  1735.3   8.665 0.00325 **

Residuals       7196 1441046   200.3                   

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the output, R marks significance with an asterisk (*) after the F test probabilities 
(Pr). So, you learned from the previous table that six of the variables show significant 
differences across clusters. To see the average values per cluster, you need to type 
the following code:

f <- function(x) c(mean = mean(x, na.rm = T), N =  
  length(x[!is.na(x)]), sd = sd(x, na.rm = T))

output <- aggregate(d[c(19,3,4,6,10,12,14,16,17)],  
  list(k_clust$cluster), f)

rownames(output) = output[,1]; output[,1] <- NULL

output <- t(output)

output <- output[,order(output[1,])]

output <- cbind(output, as.vector(apply(d[c(19,3,4,6,10,12,14,16,17)], 2, 
f)))
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colnames(output) <- c("Underperformers", "Midrange",  
  "Overperformers", "Total")

options(scipen=999)

print(round(output,3))

Our output was as follows. As you see, each variable has three rows (mean, number 
of elements, and standard deviation). That is why, the table is so long.

Underperformers Midrange Overperformers Total
Total.Return.
YTD..I..mean

-16.627 9.406 48.068 6.385

Total.Return.
YTD..I..N

2264.000 3972.000 962.000 7198.000

Total.Return.
YTD..I..sd

12.588 8.499 17.154 23.083

Cash.Assets.
Y.1.mean

15.580 13.112 12.978 13.870

Cash.Assets.
Y.1.N

2263.000 3972.000 962.000 7197.000

Cash.Assets.
Y.1.sd

14.092 12.874 13.522 13.403

Net.Fixed.
Assets

.to.Tot.Assets.
Y.1.mean

26.932 29.756 31.971 29.160

Net.Fixed.
Assets.to.

Tot.Assets.
Y.1.N

2252.000 3899.000 957.000 7108.000

Net.Fixed.
Assets.to.

Tot.Assets.
Y.1.sd

21.561 22.469 23.204 22.347

P.CF.5Yr.Avg.
Y.1.mean

18.754 19.460 28.723 20.274
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Underperformers Midrange Overperformers Total
P.CF.5Yr.Avg.

Y.1.N
1366.000 2856.000 521.000 4743.000

P.CF.5Yr.Avg.
Y.1.sd

57.309 132.399 281.563 142.133

Asset.Turnover.
Y.1.mean

1.132 1.063 1.052 1.083

Asset.Turnover.
Y.1.N

2237.000 3941.000 939.000 7117.000

Asset.Turnover.
Y.1.sd

0.758 0.783 0.679 0.763

OI...Net.Sales.
Y.1.mean

13.774 14.704 15.018 14.453

OI...Net.Sales.
Y.1.N

2264.000 3972.000 962.000 7198.000

OI...Net.Sales.
Y.1.sd

11.385 12.211 12.626 12.023

LTD.Capital.
Y.1.mean

17.287 20.399 17.209 18.994

LTD.Capital.
Y.1.N

2264.000 3972.000 962.000 7198.000

LTD.Capital.
Y.1.sd

18.860 19.785 19.504 19.521

P.E.
Y.1.mean

20.806 19.793 19.455 20.067

P.E.
Y.1.N

2264.000 3972.000 962.000 7198.000

P.E.
Y.1.sd

14.646 13.702 14.782 14.159
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As we have seen in our preceding Anova table, in the case of six out of eight financial 
ratios, we find significant differences among the three groups. This method helps to 
find even nonlinear connections (in contrast to correlation ratios). A good example 
of this is Cash.Assets; Overperformers and mid-range shows very similar values, but 
underperformers have a significantly higher amount of (probably unused) cash. This 
means that being below a certain level, cash/asset gives us the hint that the given share 
is not a good investment. We will find the same pattern with the asset turnover.

The 5-year average of Price/Cash flow (P/CF) is another good example of how we 
may discover connections that remain hidden when only checking correlations.  
This ratio shows the J form, that is, the lowest value is with the mid-range group, 
and the highest with the overperformers.

Based on these results, the best investment targets may have, at the same time, lower 
cash ratio and financial leverage (LT debt / capital) but higher fixed asset rate and  
P/CF ratio, while P/E and asset turnover are just average. In short, the best firms use 
their current capital efficiently; they average the asset turnover with not too much free 
cash. They have further room to increase their leverage and have a good cash flow 
growth outlook reflected by the higher P/CF rate. Before testing this selection method, 
we shall check whether we may refine this by either adding more exact rules to 
separate potential investment or by simplifying it by removing some of these criteria.

Setting classification rules
Let's follow a different logic to develop decision rules so that we can contrast 
the two results later. Let's select which shares offered the best returns. Decision 
or classification trees are great for this purpose. Here, R will pick from the given 
list of variables those that can create the most effective decision rules. Instead of 
building joint rules, like we did previously, first, it selects the variable using which 
we may create subgroups of the shares regarding their TRS. Then, for each of these 
subgroups, it will choose the second most effective variable and so on. The output is 
a kind of decision tree:

d_tree <- d[,c(3:17,19)]

vars <- colnames(d_tree)

m <- length(vars)

tree_formula <- paste(vars[m], paste(vars[-m], collapse = " + "), sep = " 
~ ")

library(rpart)

tree <- rpart(formula = tree_formula, data = d_tree, maxdepth = 5 ,cp = 
0.001)
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tree <- prune(tree, cp = 0.003)

par(xpd = T)

plot(tree)

text(tree, cex = .5, use.n = T, all = T)

In our case, the resulting tree has five levels, as you can see in the next figure. In 
each node, we get the indication of the average TRS for the created subgroups. The 
decision rule is also indicated: if the logical statement is true, go down on the branch 
to the left; if it is false, you will follow the right branch. As seen here, we will focus 
only on high return possibilities. We have to check the bottom of the tree to see what 
subgroups were created and which of them would show a particularly high TRS:

Our database ended up with three subgroups with particularly high-average TRS. 
Based on the tree, we have to check the Cash/Assets ratio first.

Firms with a ratio higher than (or equal to) 1.6 percent should be divided further 
based on the net fixed assets / total assets. If the ratio is above 12.3 percent and the 
asset/employee rate is below 398, plus the asset turnover is lower than 1.66, we only 
need to be sure that the 1 year growth of the revenue for the previous year was above 
43.5 percent to get a subgroup of 63 firms with an average TRS of 19 percent.
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If the Cash/Assets is above (or equal to) 1.6 percent and the net fixed assets / total 
assets ratio is below 12.3 percent, we need to look for the yearly growth of the 
revenue for the previous year. For the 11 companies where that ratio is above 3.77 
percent and the market capitalization exceeds 2874 billion dollars, we will find an 
average TRS of 34.6 percent.

There is also a third group of overperformers. The 348 firms with a cash ratio lower 
than 1.6 and the companies with an asset/employee rate higher than 2156 generated 
an average TRS of 19 percent.

Considering the number of elements in these three groups compared to the total 
number of firms being analyzed, the first and the last one may offer us a realistic 
investment strategy. The group with 11 companies only represents 0.15 percent of 
the total, and so, it may be the result of random or unexpected events.

So, to sum this up, a high cash ratio (over 1.6) should go hand in hand with higher 
than 12.3 percent fixed asset ratio, an asset/employee value below 398, an asset 
turnover below 1.66, and a yearly revenue growth for the previous year exceeding 
43.5 percent. If your cash ratio is lower than 1.6, asset/employee should be higher 
than 2156 to pick shares from our portfolio.

Notice that here, only five variables are included in our investment decision 
program, while previously, a constellation of eight variables was set up. Also, note 
that there are only three ratios (Cash/Assets, fixed assets ratio, and asset turnover), 
which are used in both of these decision processes. Our next step may be comparing 
the efficiency of the two methods.

Backtesting
The word "backtesting" refers to calculating the results of a trading strategy on a 
historical dataset. In our case, we will use the same dataset because of which we will 
overestimate the effectiveness, as our statistical models were optimized on exactly 
the same data. In the real life, we might go for a different time period or a different 
group of equities (or both) to measure efficiency more objectively.

No matter how we got the best performers separated, testing the investment idea 
follows the same logic. You translate the result into rules, pick the firms (normally 
from a different sample) that fulfill the requirements and place them into one cluster, 
and then create another cluster to contain all the other companies. Finally, compare 
the mean and/or median performance of the two groups.
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To test the selection rules of the decision tree, we have to create a subset of firms that 
fulfil the requirements of having a cash ratio above 1.6, fixed asset ratio exceeding 
12.3 percent, an asset/employee rate below 398, and 1 year growth of the revenue for 
the previous year at least 43.5 percent. Then, we have to add the firms with a cash 
ratio below 1.6 and an asset/employee above 2156:

d$condition1 <- (d[,3]  >   1.6) 

d$condition2 <- (d[,4]  >  12.3) 

d$condition3 <- (d[,5]  <   398) 

d$condition4 <- (d[,10] <  1.66) 

d$condition5 <- (d[,13] >  43.5)

d$selected1 <- d$condition1 & d$condition2 & d$condition3 & d$condition4 
& d$condition5

d$condition6 <- (d[,3]  <   1.6)

d$condition7 <- (d[,5]  >  2156) 

d$selected2  <- d$condition6 & d$condition7

d$tree <- d$selected1 | d$selected2

To do this, we will create two new variables (one for both subsets) that are equal 
to 1 if requirements are fulfilled; otherwise, they will be equal to 0. Next, we will 
calculate a third variable that is the sum of the previous two. This way, we will end 
up with two clusters: 1 for firms qualifying for investment and 0 for all others:

f <- function(x) c(mean(x), length(x), sd(x), median(x))

report <- aggregate( x = d[,19], by = list(d$tree), FUN = f )$x

colnames(report) = c("mean","N","standard deviation","median")

report <- rbind(report, f(d[,19]))

rownames(report) <- c("Not selected","Selected","Total")

print(report)

Once we are ready with the reclustering, an ANOVA table will help us compare the 
performance of the firms selected and not selected. To assure that it is not due to 
outliers that we have significantly different averages, it is always wise to compare 
medians too. In our case, the categorization seems to work just fine, as even among 
the medians, we have a huge difference:

                  mean    N standard deviation    median

Not selected  5.490854 6588           22.21786  3.601526

Selected     19.620651  260           24.98839 15.412807

Total         6.384709 7198           23.08327  4.245684
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Testing the cluster-based investment idea is slightly more complicated. Here, we only 
see that the cluster of the better firms is different in average in some respect from the 
other two groups. It is important to notice that these were not the differences that we 
used to create the clusters; it is simply us turning the logic over and saying that criteria 
on the financial ratios may result is separating the better performers.

We need to go through all the eight variables that showed significant differences 
and create a range of acceptance. Using very narrow ranges may lead to a very small 
number of shares to pick; applying a range far too wide will make the difference 
between groups in TRS disappear. Once again, checking medians may help.

To get the means and medians for the three clusters that we identified previously,  
we will use the following code. To save space when printing the table instead of 
using the original names, we numbered the three groups as follows:

1. Underperformers
2. Mid-range performers
3. Overperformers.

Here is the code:

d$cluster = k_clust$cluster

z <- round(cbind(t(aggregate(d[,c(19,3,4,6,10,12,14,16,17)], 
list(d$selected) ,function(x) mean(x, na.rm = T))),

t(aggregate(d[,c(19,3,4,6,10,12,14,16,17)], list(d$selected) ,function(x) 
median(x, na.rm = T))))[-1,], 2)

> colnames(z) = c("1-mean","2-mean","3-mean","1-median", "2-median", 
"3-median")

> z

                                   1-mean 2-mean 3-mean 1-median 2-median 
3-median

Total.Return.YTD..I.               -16.62   9.41  48.07   -13.45     8.25    
42.28

Cash.Assets.Y.1                     15.58  13.11  12.98    11.49     9.07     
8.95

Net.Fixed.Assets.to.Tot.Assets.Y.1  26.93  29.76  31.97    21.87    24.73    
26.78

P.CF.5Yr.Avg.Y.1                    18.75  19.46  28.72    11.19    10.09    
10.08

Asset.Turnover.Y.1                   1.13   1.06   1.05     0.96     0.89     
0.91
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OI...Net.Sales.Y.1                  13.77  14.71  15.02    10.59    11.23    
11.49

LTD.Capital.Y.1                     17.28  20.41  17.21    11.95    16.55    
10.59

Market.Cap.Y.1                     278.06 659.94 603.10     3.27     4.97     
4.43

P.E.Y.1                             20.81  19.79  19.46    16.87    15.93    
14.80

The following table shows our rules developed based on the Anova table for the 
clusters. Due to the small differences or overlapping ranges, we dropped three 
variables from the criteria rules. Remember that your main task is to separate 
overperformers from underperformers, so an overlap with the mid-range is more 
acceptable (set wider ranges of acceptance where mid-range is really in the middle) 
than any with the underperformers.

Cash/
Assets

Net 
Fixed 
Assets 
to Total 
Assets

P/CF 5Yr 
Average

Asset 
Turnover

OI / 
Net 
Sales

LTD/
Capital

Market 
Cap (M) P/E

Min none 23 dropped none 11 dropped dropped none

Max 14 none dropped 1,7 none dropped dropped 20

Table 1

With the following code, we will first arrange all the requirements into one variable. 
Then, a final comparison table is created:

d$selected <- (d[,3] <= 14) & (d[,4] >= 23) & (d[,10] <= 1.7) & (d[,12] 
>= 11) & (d[17] <= 20)

d$selected[is.na(d$selected)] <- FALSE

h <- function(x) c(mean(x, na.rm = T), length(x[!is.na(x)]), sd(x, na.rm 
= T), median(x, na.rm = T))

backtest <- aggregate(d[,19], list(d$selected), h)

backtest <- backtest$x

backtest <- rbind(backtest, h(d[,19]))

colnames(backtest) = c("mean", "N", "Stdev", "Median")

rownames(backtest) = c("Not selected", "Selected", "Total")

print(backtest)

                 mean    N    Stdev   Median

Not selected 5.887845 6255 23.08020 3.710650

Selected     9.680451  943 22.84361 7.644033

Total        6.384709 7198 23.08327 4.245684
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As you can see, our selected firms have an average return of 9.68 percent, while  
the median amounted to 7.6 percent. Here, we may draw the conclusion that the 
strategy developed based on the decision tree performed better with respect to  
both the mean (19.05 percent) and median (14.98 percent). To check the overlap,  
we will calculate a crosstab:

d$tree <- tree$where %in% c(13,17)

crosstable <- table(d$selected, d$tree)

rownames(crosstable) = c("cluster-0","cluser-1")

colnames(crosstable) = c("tree-0","tree-1")

crosstable <- addmargins(crosstable)

crosstable

           tree-0 tree-1  Sum

  cluster-0   5970    285 6255

  cluser-1     817    126  943

  Sum         6787    411 7198

Here, we see that the two strategies are pretty different: only 126 firms got selected 
under both strategies. But are they something extraordinary? Indeed. These shares 
achieved an average TRS of 19.9 percent with a median of 14.4, which is calculated  
as follows:

mean(d[d$selected & d$tree,19])

[1] 19.90455

median(d[d$selected & d$tree,19])

[1] 14.43585

Industry-specific investment
Until this point, we considered the entire sample as one. It could be a logical 
decision to focus only on some industries. Note that choosing the right industry to 
invest should not be based on past performance pattern; we rather have to analyze 
comovements with global economic trends over a number of years, and then, based 
on our prediction for the coming periods, we should pick the one with the best 
outlook. This method helps you to determine the right weights of the industries 
in your portfolio, but then, you still need to select individual shares that may 
overperform the others.
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Of course, once one given industry is selected, we may end up with different 
investment rules than those on the whole sample. So, we may further improve  
our investment performance by performing the previously shown steps for  
each industry separately.

At the same time, recall that the more specific you are in data selection (time 
period, industry, and firm size), the less likely will the strategy created show good 
performance on other samples or in the future. By increasing the degree of freedom 
of your strategy building (rerunning all statistical tests for subsamples), you make 
recommendations fit nearly perfectly to the given sample that may reflect the effects 
of a number of random events. As these random effects never occur again, adding 
more and more flexibility after a certain limit will actually worsen the end result.

For the sake of the example, we picked Communications. If we apply the decision-
tree technique here, we would end up with the following figure. After that, we have 
to invest into firms that have seen their revenue growing by less than 21 percent but 
more than 1.31 percent during the last year, while the net fixed assets ratio was at 
least 8.06 percent:

d_comm <- d[d[,18] == "Communications",c(3:17,19)]

vars <- colnames(d_comm)

m <- length(vars)

tree_formula <- paste(vars[m], paste(vars[-m], collapse = " + "), sep = " 
~ ")

library(rpart)

tree <- rpart(formula = tree_formula, data = d_comm, maxdepth = 5 ,cp = 
0.01, control = rpart.control(minsplit = 100))

tree <- prune(tree, cp = 0.006)

par(xpd = T)

plot(tree)

text(tree, cex = .5, use.n = T, all = T)

print(tree)
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At the same time, building a strategy based on a general sample of a given period 
may end up overweighting certain industries that show great performance during 
the given year(s), while, of course, there is no guarantee that the coming years will 
also prefer the same sectors. So, after building our strategy, we should crosscheck 
whether there is a serious industry dependency behind that strategy.

A cross-table controlling for the connection of the industry and decision-tree-based 
investment strategy reveals that we heavily overweighted the Energy and Utilities 
sectors. The cluster-based strategy, at the same time, gives an extra weight to 
materials. The code for the latter is shown here:

cross <- table(d[,18], d$selected)

colnames(cross) <- c("not selected", "selected")

cross

                         not selected selected

  Communications                  488       11

  Consumer Discretionary         1476       44

  Consumer Staples                675       36

  Energy                          449       32
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  Financials                      116        1

  Health Care                     535       37

  Industrials                    1179       53

  Materials                       762       99

  Technology                      894        7

  Utilities                       287       17

prop.table(cross)

                         not selected     selected

  Communications         0.0677966102 0.0015282023

  Consumer Discretionary 0.2050569603 0.0061128091

  Consumer Staples       0.0937760489 0.0050013893

  Energy                 0.0623784385 0.0044456794

  Financials             0.0161155877 0.0001389275

  Health Care            0.0743262017 0.0051403168

  Industrials            0.1637954987 0.0073631564

  Materials              0.1058627396 0.0137538205

  Technology             0.1242011670 0.0009724924

  Utilities              0.0398721867 0.0023617672

We may also be interested in how good our strategy performs across industries.  
For this, we should see the average TRS of firms chosen and not chosen for all  
the individual sectors. To create a table like this, we need to use the following 
command. The output illustrates how the decision-tree-based strategy performs  
(0 not selected, 1 selected):

t1 <- aggregate(d[ d$tree,19], list(d[ d$tree,18]), function(x) 
c(mean(x), median(x))) 

t2 <- aggregate(d[!d$tree,19], list(d[!d$tree,18]), function(x) 
c(mean(x), median(x)))

industry_crosstab <- round(cbind(t1$x, t2$x),4)

colnames(industry_crosstab) <- c("mean-1","median-1","mean-0","median-0")

rownames(industry_crosstab) <- t1[,1]

industry_crosstab
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                        mean-1 median-1 mean-0 median-0

Communications         10.4402  11.5531 1.8810   2.8154

Consumer Discretionary 15.9422  10.7034 2.7963   1.3154

Consumer Staples       14.2748   6.5512 4.5523   3.1839

Energy                 17.8265  16.7273 5.6107   5.0800

Financials             33.3632  33.9155 5.4558   3.5193

Health Care            26.6268  21.8815 7.5387   4.6022

Industrials            29.2173  17.6756 6.5487   3.7119

Materials              22.9989  21.3155 8.4270   5.6327

Technology             43.9722  46.8772 7.4596   5.3433

Utilities              11.6620  11.1069 8.6993   7.7672

As shown in the preceding output, our strategy performs pretty well in all sectors; 
though in Consumer Staples, the median of the selected firms is somewhat near to 
that of not selected. In other cases, we may end up seeing that in some sectors, we do 
not get very good results, and the TRS of the chosen firms may even be lower than 
that of the other group. In this case, we would build a separate stock-selection model 
for those sectors where our model performed weaker.

Summary
In this chapter, we investigated how to use R to build an investment strategy on 
fundamental bases. After building and loading our database to R, we first checked 
whether some of our variables show a strong connection with TRS. Then, we checked 
whether some linear combinations of them would perform well and controlled them.

As neither method led to an acceptable result, we turned the logic upside down. We 
created clusters of firms based on TRS performance; then, we checked what is typical 
for overperformers. We also used decision trees to look for the best way to separate 
the firms with the highest TRS. Then, based on the results, we described stock-
selection rules and performed backtesting.

Our example showed that even if individual explanatory variables show no strong 
linear connection to performance, it is possible to build an effective fundamental 
stock-selection strategy. When applying these techniques, recall the limitations: too 
much flexibility may hurt. A model with a nearly perfect fit for a historical dataset 
may perform very badly in the future if you achieved the good fit by providing too 
much freedom to your model.
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Technical Analysis, Neural 
Networks, and Logoptimal 

Portfolios
In this chapter we give a brief introduction to different methods that may help to 
improve the performance of your portfolio: technical analysis, neural networks and 
log-optimal portfolios. The common idea behind these methods is that past price 
movements may help in forecasting future trends. In other words, we implicitly 
assume that prices do not follow a Markov process (for example random walk),  
but they have some kind of long lasting memory, hence patterns from the past  
may reoccur also in the future, all in all markets are not efficient.

In the first part we introduce the most common tools of technical analysis and 
present some indicative examples of how to program them in the R environment. 
In the second part we outline the concept of neural networks and their design by 
R's built-in function. Technical analysis and neural network are applied on the 
bitcoin database, thus we focus on a single asset and investigate for reliable signals 
of buying and selling. Finally, in the third part we discuss the so called log-optimal 
portfolio strategies that enable us to optimize our portfolio of several assets  
(in our example some NYSE stocks) for the long run.

The main goal of this chapter is just to give a helicopter view on the concepts, 
the most common tools that are used and to provide some examples of their 
programming. Therefore we would like to underline here that, by need of being 
concise, we only intend to give you some insight into the field and to entice you  
to check the references, learn more and try further tools yourself.
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Market efficiency
Markets are efficient to the extent that all information is built into the current prices. 
The weak form of market efficiency requires that the latest price already incorporates 
all the information which can be obtained from the chart of past prices and trading 
volumes. Clearly, if markets were efficient at least in this weak sense, returns would 
be totally independent over time and strategies based on technical analysis, neural 
networks and the logoptimal portfolio theory would be completely worthless, see 
Hull (2009), Model of the behavior of stock prices.

However, the efficiency of a given market is purely an empirical question. You can 
never be sure that asset returns in the real world are really completely independent in 
time. Therefore, you should not take market efficiency as a fact but you are encouraged 
to test it on your own by inventing and implementing new technically inspired 
strategies. If your strategy calibrated on past trading data proves to be robust enough 
and works well in the future, then the market will generously honor your efforts by 
enhancing the risk/return profile of your portfolio, and, as a result, you will earn an 
extra profit. Studies have shown that emerging currency markets, for instance, are less 
efficient due to illiquidity and to central bank interventions, see Tajaddini-Crack (2012); 
whereas most technicist strategies do not hold on the more developed American 
stock market Bajgrowicz-Scaillet (2012), Zapranis-Prodromos (2012). Furthermore, the 
same studies indicate that when technical trading is successful, its combination with 
fundamental analysis is even more so. Zwart et al. (2009).

Despite being sort of an apocrypha still today, technical analysis is widely used 
even among fundamental investors. This is mainly due to its self-fulfilling nature: as 
market players know that more and more of their peers are using the TA tools they 
keep an eye on them, too. If, for instance, a 200-day moving average is breached on a 
main index chart, it is likely to make the headlines and cause a selling wave.

Technical analysis
Technical analysis (TA) can help you achieve better results if you do not 
overestimate its predictive power. Technical analysis is especially good at predicting 
short-term trends and at indicating market sentiment. Fundamental investors (and 
one of the writers of this chapter) use them to choose their buy-in and sell-out point: 
given their fundamentally backed view on the direction of the market technical 
analysis is a valuable help in choosing the short-term optimum. It can also eliminate 
such common trading flaws as badly chosen position size (indication on the strength 
of the trend), shaky hands (only sell when there is a sign) and inability to press the 
button (but when there is a sign, do sell).



Chapter 10

[ 229 ]

Three golden rules to remember before we jump to technicalities:

1. Each market has its own mix of tools that work: For example head-and-
shoulders mostly appear on stock charts whereas support-resistance levels 
temper the trading on forex markets, and within the markets each asset can 
be specific. Therefore, as a rule of thumb, use tailor-made sets of indicators 
and neural networks specific to the actual asset you are looking at.

2. No pain, no gain: Keep in mind that there is no holy grail, if one achieves  
to sustain winning on 60% of the trades then she has found a viable and  
well-rewarding trading strategy.

3. Avoid impulsive trading: Maybe this is the most important above all. It might 
hurt that you lost on your last trade but do not let it influence your future 
decisions. Trade only when there is a sign. If you consider opening a live trade 
account read extensively on money management (handling risk and position 
size, leverage) and on psychology of trading (greed, fear, hope, regret).

The TA toolkit
Technical analysis abounds of tools but most of them can be categorized into  
four main groups. We advise you to use the old ones as these are more followed  
by professionals and are more likely to trigger price movements themselves  
(being self-fulfilling) besides being usually more user-friendly.

1. Support-resistance and price channels: Price levels often influence trading: 
strategic levels may act either as support, keeping price levels from falling 
below, or as resistance, an obstacle to further rises. Parallel lines applied to 
the primary conditions of a trend (bottoms for an increasing trend, tops for 
a decreasing trend) define price channels - they are tools of the top-bottom 
analysis, just like the next category, the chart patterns. As these are usually 
harder to program we do not deal with them in detail.

2. Chart patterns – Head-and-shoulders, saucers: sound familiar? Perhaps, due 
to their easily recognizable nature, chart patterns are the most widely known 
tools of technical analysis. They have three categories: trend makers (mast, 
flag), trend breakers (double tops) and decision point signals (triangles). 
These, too, are rather intuitive, hardly programmable, and thus fall out of the 
scope of this chapter.

3. Candle patterns: As candlestick charts are the most widespread technicists 
started to spot signals on these and have given those names like morning 
star, three white soldiers or the famous key reversal. More than any other TA 
tool, they are significant only if combined with other signals, in most cases 
strategic price levels. They can be a combination of two-five candles.
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4. Indicators: This is the type we will deal with the most in the following 
pages. Easy to program, technical indicators serve as basis of high frequency 
trading (HFT), a strategy based on algorithmic decisions and rapid market 
orders. These indicators have four categories: momentum-based, trend 
follower, money flow (based on volume) and volatility-based.

In this chapter we are going to present a strategy that combines elements from types 
(3) and (4), we will be looking for potential trend changes by the help of indicators 
and signal key reversals there.

Markets
Although everyone should explore by her own the TA tools that best work on the 
respective markets some general observations can be formulated.

1. Stocks usually form nice chart patterns and are sensitive to candle patterns 
and to strategic moving average crossings, too. Asymmetric information is an 
important issue, although less than in the case of commodities, for instance, 
and unpredictable spikes can alter the course of the prices at news releases.

2. FX is traded continuously around the globe and is strongly decentralized 
which implies two things. First, no overall volume data is available, so one 
should have a general idea about the liquidity of the markets to weigh the 
importance of price changes – for example in summer liquidity is lower, 
therefore even a smaller buy-in can generate volatility. Second, different 
people trade at different times and each of them has different habits. In 
EURJPY, for instance, during the US and European trading hours the tens 
and round numbers tend to be psychological supports, whereas there is a 
switch to the 8s during the Asian trading (8 being a lucky number). From a 
TA toolkit perspective: no characteristic chart patterns besides triangles and 
masts, important support-resistance levels and price channels, zone-thinking, 
stuck-launch dynamics and Fibonacci proportions are mostly used.

Plotting charts - bitcoin
Charting programs, if not provided by brokerages in the trading program, can 
get expensive and not always provide sophisticated TA tools. To circumvent this 
problem you can use R to trace your charts and can program all the indicators you 
like – if they are not yet built in.
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Let's look at an example now: plotting charts for bitcoin. Bitcoin is a crypto currency 
that got popular in the summer of 2014 where its price was up to $1162 from below 
$1 and is traded on many freshly founded and therefore rudimentary exchanges. 
This posed a problem to many small investors: how to trace the chart? And, even if 
they were okay with BitStamp's uneasy platform, granular data was only available in 
spreadsheet format and is still today.

You can source data from http://bitcoincharts.com/. Herein we included a code 
that draws in live data and thus acts as if it was a live charting tool. With this useful 
trick you can avoid paying hundreds of dollars for a professional software. We plot 
candlestick charts (also called OHLC), the commonly used type. Before we start here 
is a graphic that explains how they work.

Here we provide the program code of the live data fetcher that draws OHLC chart.

We will use the RCurl package to get data from the Internet. First let's have a look at 
the following function:

library(RCurl)

get_price <- function(){

First we use the getURL function from the RCurl package to read the whole website 
as a string:

a <- getURL("https://www.bitcoinwisdom.com/markets/bitstamp/btcusd",  
  ssl.verifypeer=0L, followlocation=1L)

http://bitcoincharts.com/
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If we have a look at the HTML code we can easily find the bitcoin price we are 
looking for. The function returns it as a numeric value.

  n <- as.numeric(regexpr("id=market_bitstampbtcusd>", a))

  a <- substr(a, n, n + 100)

  n <- as.numeric(regexpr(">", a))

  m <- as.numeric(regexpr("</span>", a))

  a <- substr(a, n + 1, m - 1)

  as.numeric(a)

}

Or we can grab the exact same information with the help of the XML package,  
which was created to parse HTML and XML files and to extract information:

library(XML)

as.numeric(xpathApply(htmlTreeParse(a, useInternalNodes = TRUE),  
  '//span[@id="market_bitstampbtcusd"]', xmlValue)[[1]])

This practice of getting price data is of course only for demonstration purposes.  
Live price data should be provided by our broker (for which we can still use R).  
Now let's see, how to draw a live candle chart:

DrawChart <- function(time_frame_in_minutes,

  number_of_candles = 25, l = 315.5, u = 316.5) {

  OHLC <- matrix(NA, 4, number_of_candles)

  OHLC[, number_of_candles] <- get_price()

  dev.new(width = 30, height = 15)

  par(bg = rgb(.9, .9, .9))

  plot(x = NULL, y = NULL, xlim = c(1, number_of_candles + 1),

    ylim = c(l, u), xlab = "", ylab = "", xaxt = "n", yaxt = "n")

  abline(h = axTicks(2), v = axTicks(1), col = rgb(.5, .5, .5), lty = 3)

  axis(1, at = axTicks(1), las = 1, cex.axis = 0.6,

    labels = Sys.time() - (5:0) * time_frame_in_minutes)

  axis(2, at = axTicks(2), las = 1, cex.axis = 0.6)

  box()

  allpars = par(no.readonly = TRUE)

  while(TRUE) {

    start_ <- Sys.time()

    while(as.numeric(difftime(Sys.time(), start_, units = "mins")) <  

      time_frame_in_minutes) {

      OHLC[4,number_of_candles] <- get_price()
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      OHLC[2,number_of_candles] <- max(OHLC[2,number_of_candles],  
        OHLC[4,number_of_candles])

OHLC[3,number_of_candles] <- min(OHLC[3,number_of_candles],  
    OHLC[4,number_of_candles])

      frame()

      par(allpars) 

      abline(h = axTicks(2), v=axTicks(1), col = rgb(.5,.5,.5),  
        lty = 3)

      axis(1, at = axTicks(1), las = 1, cex.axis = 0.6,  
        labels = Sys.time()-(5:0)*time_frame_in_minutes)

      axis(2, at = axTicks(2), las = 1, cex.axis = 0.6)

      box()

      for(i in 1:number_of_candles) { 

        polygon(c(i, i + 1, i + 1, i),

          c(OHLC[1, i], OHLC[1, i], OHLC[4, i], OHLC[4, i]),  
             col = ifelse(OHLC[1,i] <= OHLC[4,i], 
                rgb(0,0.8,0), rgb(0.8,0,0)))

        lines(c(i+1/2, i+1/2), c(OHLC[2,i], max(OHLC[1,i],  
          OHLC[4,i])))

        lines(c(i+1/2, i+1/2), c(OHLC[3,i], min(OHLC[1,i],  
          OHLC[4,i])))

       }

       abline(h = OHLC[4, number_of_candles], col = "green",  
          lty = "dashed")

     }

     OHLC <- OHLC[, 2:number_of_candles]

     OHLC <- cbind(OHLC, NA)

     OHLC[1,number_of_candles] <- OHLC[4,number_of_candles-1]

  }

}

To fully understand this code some time and some programming experience is 
probably needed. To summarize the algorithm does the following: in an infinite  
loop, reads price data and stores it in a matrix with four rows as OHLC. Every time 
the last column of this matrix is recalculated to assure that H is the highest and L 
is the lowest price observed in that time interval. When the time determined by 
the time_frame_in_minutes variable is reached matrix columns roll, the oldest 
observations (first column) are dropped, and each column is replaced by the next 
one. The first column is then filled with NAs except the O (open) price, which is 
considered as the close price of the previous column, so the chart is continuous.
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The remaining code is only for drawing the candles with the "polygon" method.  
(We can do it with built-in functions as well, as we will see later.)

Let's call this function and see what happens:

DrawChart(30,50)

See more on data manipulation in Chapter 4, Big Data – Advanced Analytics.

Built-in indicators
R has many built-in indicators, such as the simple moving average (SMA), the 
exponential moving average (EMA), the relative strength indicator (RSI), and the 
famous MACD. These constitute an integral part of technical analysis, their main 
goal is to visualize a relative benchmark so that you could get an idea whether your 
asset is overbought, relatively well-performing or at a strategic level compared to 
some reference period. Here you find a brief explanation to what each of them does, 
and how you can put them on your chart.

SMA and EMA
Moving averages are the simplest among all indicators: they show the average price 
level for you on a rolling basis. For example, if you trace the 15-candle SMA, it will 
give you the average price level of the 15 preceding candles. Obviously, if your 
current candle's time is up and a new candle starts, the SMA will calculate a new 
average leaving out the previously first candle and taking in the newest one instead. 
The difference between SMA and EMA is that SMA weighs all candles equally 
whereas EMA gives exponential weights – hence the name: it overweighs current 
candles to previous ones. This is a good approach if you want a benchmark that is 
more tied to current price levels and that reacts more quickly where there are shifts 
in price levels. These are overlay indicators that are directly plotted on the chart.

RSI
The relative strength index is a band-indicator: its value can vary between 0 and 100 
with three bands within this range. With an RSI between 0 to 30 the asset is oversold, 
between 70 to 100 it is overbought. RSI endeavors to judge upon price variations' 
intensity by using the relative strength ratio: average price of up closes divided by 
the average price of down closes (aka green candles' average close per red candles' 
average close). The average's summing period may vary, 70 is the most used.
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As the formula suggests this indicator often gives signals, mostly in strong trends. 
As prices might remain at overbought or oversold levels use this indicator carefully, 
always in combination with some other type of indicator, or chart pattern like a trend 
breaker, also called failure swing. You might also consider diminishing your position 
size or looking for warning signs if, for instance, it shows that the asset you are long 
on is overbought.

Here you can see how to trace this indicator and a moving average:

library(quantmod)

bitcoin <- read.table("Bitcoin.csv", header = T, sep = ";", row.names = 
1)

bitcoin <- tail(bitcoin, 150)

bitcoin <- as.xts(bitcoin)

dev.new(width = 20, height = 10)

chartSeries(bitcoin, dn.col = "red", TA="addRSI(10);addEMA(10)")

By looking at the above chart we can conclude that during this period the market 
became rather oversold as the RSI tended to remain at low territories and it has hit 
the extreme levels several times.
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MACD
MACD (Mac Dee) stands for Moving Average Convergence-Divergence. It is a 
combination of a slow (26-candles) and a quick (12 candles) exponential moving 
average, a trend follower indicator: it gives signals rarely, but these tend to be more 
accurate. MACD gives signals when the quick EMA crosses the slow one. This is a 
buy if the quick crosses from below and a sell if it crosses from above (the 12-canlde 
average price being lower than the 26-candle, long-term average). The position of 
the EMA(12) marks the general direction of the trend – for example if it is above 
the EMA(26) the market is bullish. Important restriction: MACD gives false alarms 
in ranges, use only in strong trends. Some use the direction of the changes of the 
distance between the two lines, too, plotted in red or green histograms: once there 
are four bars in the same color, the strength of the trend is confirmed.

For technical analysis, you can use different R-packages: quantmod, ftrading, TTR, 
and so on. We mostly rely on quantmod. Here you can see how to trace the MACD 
on a previously saved dataset, named Bitcoin.csv:

library(quantmod)

bitcoin <- read.table("Bitcoin.csv", header = T, sep = ";", row.names = 
1)

bitcoin <- tail(bitcoin, 150)

bitcoin <- as.xts(bitcoin)

dev.new(width = 20, height = 10)

chartSeries(bitcoin, dn.col = "red", TA="addMACD();addSMA(10)")

You can see the MACD under the chart, in the strong downwards trend it gives  
valid signals.
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Candle patterns: key reversal
Now that you got a general grasp of R's TA features let us program a rather easy 
strategy. The following script recognizes key reversals, a candlestick pattern,  
at strategic price levels.

To do this, we applied the following dual rationale: first, we gave a discretional 
definition to what a strategic price level is. For instance, we recognized as mature 
increasing trend the price movement whose bottoms are monotonously increasing 
(bottom being the candle body's lowest point) and whose current MA(25) level is 
higher than the MA(25) measured 25 candles before. We underline here that this 
does not constitute part of the standard TA tools and that its parameters have been 
chosen to best fit the actual chart we deal with, that of bitcoin. If you would like to 
apply it to other assets we advise you to adjust it to provide the best fit. This is not a 
trend recognition algorithm on itself: it only serves as part of our signal system.

If this algorithm recognized a strategic price level in a mature trend that would be 
likely to break down if a candle pattern appeared, we started to look for key reversals. 
The key reversal is a trend breaker candlestick pattern, it occurs when the previous 
trend's last candle that points to the same direction as the trend itself (it is green for a 
rising trend, red for a falling one), but suddenly prices turn and the next candle points 
in the opposite direction of the trend with a bigger candle body than the previous one. 
The trend breaker candle should start at least as high as the previous one, or, if the 
quotes are not continuous, a bit above the close for a rising trend, and a bit below for a 
falling one. See our graphic below for a key reversal in a rising trend:
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Here you find the code of the function that recognizes this pattern. 

Earlier in the bitcoin section we used the polygon method to create candle charts 
manually. Here we are using the quantmod package and the chartSeries function 
to do the same more easily wrapped in the OHLC function to make it more flexible.

library(quantmod)

OHLC <- function(d) {

  windows(20,10)

  chartSeries(d, dn.col = "red")

}

The following function takes the time series and two indices (i and j) as arguments, 
and decides, weather it is an increasing trend from i to j or not:

is.trend <- function(ohlc,i,j){

First: if the MA(25) is not increasing then it is not an increasing trend so we  
return FALSE.

avg1 = mean(ohlc[(i-25):i,4])

avg2 = mean(ohlc[(j-25):j,4])

if(avg1 >= avg2) return(FALSE)

In this simple algorithm a candle is called a valley, if the bottom of the candle body 
is lower than the previous one and the next one. If the valleys make a monotonous 
non-decreasing series we have an increasing trend.

ohlc <- ohlc[i:j, ]

  n <- nrow(ohlc)

  candle_l <- pmin(ohlc[, 1], ohlc[, 4])

  valley <- rep(FALSE, n)

  for (k in 2:(n - 1))

    valley[k] <- ((candle_l[k-1] >= candle_l[k]) &  
      (candle_l[k+1] >= candle_l[k]))

  z <- candle_l[valley]

  if (all(z == cummax(z))) return(TRUE)

  FALSE

}
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This was the trend recognition. Let's see the trend reversal. First we use the previous 
function to check the conditions of the increasing trend. Then we check the last two 
candles for the reversal pattern. That's it.

is.trend.rev <- function(ohlc, i, j) {

  if (is.trend(ohlc, i, j) == FALSE) return(FALSE)

  last_candle <- ohlc[j + 1, ]

  reverse_candle <- ohlc[j + 2, ]

  ohlc <- ohlc[i:j, ]

  if (last_candle[4] < last_candle[1]) return(FALSE)

  if (last_candle[4] < max(ohlc[,c(1,4)])) return(FALSE)

  if (reverse_candle[1] < last_candle[4] |

      reverse_candle[4] >= last_candle[1]) return(FALSE)

  TRUE

}

We are out of the woods. Now we can use this in real data. We simply read the 
bitcoin data and run the trend reversal recognition on it. If there is a reversed trend 
with at least 10 candles we plot it.

bitcoin <- read.table("Bitcoin.csv", header = T, sep = ";", row.names = 
1)

n <- nrow(bitcoin)

result <- c(0,0)

for (a in 26:726) {

  for (b in (a + 3):min(n - 3, a + 100)) {

    if (is.trend.rev(bitcoin, a,b) & b - a > 10 )

      result <- rbind(result, c(a,b))

    if (b == n)

      break

  }

}

z <- aggregate(result, by = list(result[, 2]), FUN = min)[-1, 2:3]

for (h in 1:nrow(z)) {

  OHLC(bitcoin[z[h, 1]:z[h, 2] + 2,])

  title(main = z[h, ])

}
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Evaluating the signals and managing the 
position
Our code successfully recognizes four key reversals, including the historical turning 
point in the bitcoin price giving us a nice short selling signal. We can conclude that 
the signaling was successful, the only thing left to do is to use them wisely.

Aware of the fundamentals of bitcoin (its acceptance as money undermined, ousting 
from such previously core markets as China), one could have made a nice profit 
whilst following the signal (the last candle on the chart) which is as follows:

TA is useful while setting take profits and stop losses, in other words managing your 
position. If you chose to sell at the signal, you could have set these as follows.

The system signals that you might want to sell at $1023,9 on December 5, 2013, in 
the last candle of the above chart, highlighted with an arrow on the next chart. You 
decide to proceed and open a position. Since bitcoin prices fluctuate quite much, 
especially after an exponentially increasing previous trend, you decide to put your 
stop loss to the historical high, to 1163, because you don't want false spikes to close 
you out of the position.
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On the next chart, here below, you can see that this approach is justified, after the fall 
in prices volatility increases significantly and shadows grow.

By the end of 2013 a supposed trend line can be traced if you connect the tops of the 
candles bodies (in white, drawn manually). This seems to hold and a lower trendline 
forms on the bottoms, with a lower slope, giving a triangle. We say that a triangle is 
valid on a chart if the price leaves it before it reaches 3/4 of its length.

This is what happens: on December 26, 2013 the daily chart breaks the line upwards 
with a big green candle (pointed at by an arrow). The MACD crosses, giving a strong 
bullish signal, and we close the position on the top of the body, at 747.0 – if not 
before. So, we earned $276.9, or a 27% return on the trade.

A word on money management
Let's look at the risk profile of this trade to show how technical analysis can be used 
to manage your exposure. The best way to do so is to calculate your risk-reward 
ratio, given by the below formula:

Expected gainRisk reward ratio
Units at risk

− =
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The denominator is easy to define, this is the possible loss on the position,  
(1163.0-1023.9) = $139.1 in the case of the activation of the stop loss. The numerator, 
the possible gain can be approximated by a Fibonacci retracement, a tool that uses 
the golden section to predict possible price reversions, particularly useful in this 
exponential trend. You can see it below on a graph from https://bitcoinwisdom.
com/:

If you take the height of the trend as 100%, you can expect prices to touch Fibonacci 
levels when the trend breaks. Since a key reversal is a strong sign, let's take the 
38.2%, which equals $747.13, so we expect prices to go down there. So the numerator 
of the risk-reward ratio is (1023.9-747.1) = $276.8, giving a final result of 276.8 /139.1 
= 1.99, meaning that there is an ex-ante profit potential of $1.99 per one dollar at risk. 
This is a just fine potential, the trade should be approved.

https://bitcoinwisdom.com/
https://bitcoinwisdom.com/
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Whenever you consider entering into a position, calculate how much you risk 
compared to how much you expect to gain. If it is below 3/2, the position is not the 
best, if below 1, you should forget the trade altogether. The possible ways to improve 
your risk/reward ratio are a tighter stop loss or the choice of a stronger sign. 
Technical analysis provides you with useful risk management tactics if you wish to 
be successful at trading, do not forget about them.

Wraping up
Technical analysis, and particularly the presented chartist approach, is a highly 
intuitive, graphical way of analyzing financial assets. It uses support-resistance 
levels, chart- and candle patterns and indicators to predict future price movements. 
R enabled us to fetch live data for free and plot it as an OHLC chart, plot indicators 
on it and receive automated signs for key reversals, a candlestick pattern. We used 
one of these to show how a real position could have been managed manually and 
have shown that the appeal of TA is that it not only tells you when to open a position 
but also when to close it and calculate the strength of the signal by using risk 
management practices.

Neural networks
After remaining a long time in academic circles due to their advanced mathematical 
background, neural networks (NN) rapidly grew in popularity as more practically 
usable formats are available – like the built-in function of R. NNs are artificial 
intelligence adaptive software that can detect complex patterns in data: it is just  
like an old trader who has a good market intuition but cannot always explain  
to you why he is convinced you should go short on the Dow Jones Industrial 
Average index (DIJA).

The network architecture consists of a number of nodes connected by links. 
Networks usually have 3 or 4 layers: input, hidden and output layers, and in each 
layer several neurons can be found. The number of first layer's nodes corresponds 
to the number of the model's explanatory variables, while the last layer's equals 
to the number of the response variables (usually 2 neurons in case of binary target 
variable or 1 neuron in case of continuous target variable). The model's complexity 
and forecast ability is determined by the number of nodes in the hidden layer(s). 
Normally, each node of one layer has connections to all the other nodes of the next 
layer, and these edges (see the figure) represent weights. Every neuron receives 
inputs from the previous layer and, by the use of a non-linear function, it transforms 
to the next layer's input. 
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A feed-forward NN with one hidden layer can be useful almost in case of any 
kind of complex problems (Chauvin-Rumelhart, 1995), that is why it often used by 
researchers. (Sermpinis et al., 2012; Dai et al, 2012) Atsalakis-Valavanis (2009) pointed 
out, that the multi-layer precepton (MLP) model that belongs to the family of  
feed-forward neural networks (FFNN) can be the most effective to forecast financial 
time series. The next graph depicts the structure of a 3 layer MLP neural network, 
according to (Dai et al, 2012).

The connection weights (the values of the edges) are assigned initial values first. 
The error between the predicted and actual output values is back-propagated via 
the network for updating the weights. The supervised learning procedure then 
attempts to minimize the error (usually MSE, RMSE or MAPE) between the desired 
and forecasted outputs. Since the network with certain number of neurons in the 
hidden layer can learn any relationship on the learning data (even the outliers and 
noise), by halting the learning algorithm early the prevention of the over-learning 
is possible. The learning process of the network stops when the test segment has 
reached its minimum. Then, with the given parameter the network has to be run on 
the validation segment, see (Wang et al., 2012).



Chapter 10

[ 245 ]

There are many practical problems to solve when you create and perform your own 
neural network, for example, the selection of appropriate network topology, the 
selection and the transformation of input variables, the reduction of output variance 
and most importantly the mitigation of over fitting which refers to the situation 
when the error on the training set is very small, but when we fit the network on  
new data the error is large. It means that the network has just memorized the 
training examples but was not successful in understanding the general structure  
of the relationships. In order to avoid overfitting, we need to split the data into  
three subsets: train, validation, test. The training set usually accounting for the  
60-70% of the total data is used for learning and fitting the network parameters. The 
validation data set (10-20%) is used for minimizing the overfitting effect and tuning 
the parameters, for example to choose the number of hidden nodes in a NN. The test 
data (10-20%) set is used only for testing the final solution in order to confirm the 
predictive power of the network.

Forecasting bitcoin prices
Let us see how it works in practice. This example applies trading strategies based on 
the forecasting of the closing prices of Bitcoin. The period between 3 August 2013 
and 8 May 2014 were selected for analysis. There were totally 270 data points in 
the dataset and the first 240 data points was used as the training sample while the 
remaining 30 points was used as the testing sample (the forecasting models were 
tested on the last one months of this time series of 9 months).

First we load the dataset from Bitcoin.csv which can be found on the website of 
the book.

data <- read.csv("Bitcoin.csv", header = TRUE, sep = ",")

data2 <- data[order(as.Date(data$Date, format = "%Y-%m-%d")), ]

price <- data2$Close

HLC <- matrix(c(data2$High, data2$Low, data2$Close),  
  nrow = length(data2$High))

In the second step we calculate the log returns and install the TTR library in order to 
generate technical indicators.

bitcoin.lr <- diff(log(price))

install.packages("TTR")

library(TTR)
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The six technical indicators selected for modeling have been widely and successfully 
used by researchers and professional traders as well.

rsi    <- RSI(price)

MACD   <- MACD(price)

macd   <- MACD[, 1]

will   <- williamsAD(HLC)

cci    <- CCI(HLC)

STOCH  <- stoch(HLC)

stochK <- STOCH[, 1]

stochD <- STOCH[, 1]

We create the Input and Target matrix for training and validation dataset.  
The training and validation dataset include the closing prices and technical 
indicators between August 3, 2013 (700) and April 8, 2014 (940).

Input <- matrix(c(rsi[700:939], cci[700:939], macd[700:939], 
  will[700:939], stochK[700:939], stochD[700:939]), nrow = 240)

Target <- matrix(c(bitcoin.lr[701:940]), nrow = 240)

trainingdata <- cbind(Input, Target)

colnames(trainingdata) <- c("RSI", "CCI", "MACD", "WILL",  
  "STOCHK", "STOCHD", "Return")

Now, we install and load the caret package order to split our learning dataset.

install.packages("caret")

library(caret)

We split the learning dataset in 90-10% (train-validation) ratio.

trainIndex <- createDataPartition(bitcoin.lr[701:940],  
  p = .9, list = FALSE)

bitcoin.train <- trainingdata[trainIndex, ]

bitcoin.test <- trainingdata[-trainIndex, ]

We install and load the nnet package.

install.packages("nnet")

library(nnet)
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The appropriate parameters (number of neurons in hidden layer, learning rate) are 
selected by means of the grid search process. The network's input layer comprise 
six neurons (in accordance with the number of explanatory variables), whereas 
networks of 5, 12, …, 15 neurons were tested in the hidden layer. The network has 
one output: the daily yield of the bitcoin. The models were tested at low learning rates 
(0.01, 0.02, 0.03) in the learning process. The convergence criterion used was a rule  
that the learning process would be halted if the 1000th iteration has been reached.  
The network topology with the lowest RMSE in the test set was chosen as optimal.

best.network <- matrix(c(5, 0.5))

best.rmse <- 1

for (i in 5:15)

  for (j in 1:3) {

    bitcoin.fit <- nnet(Return ~ RSI + CCI + MACD + WILL + STOCHK +  
      STOCHD, data = bitcoin.train, maxit = 1000, size = i,  
        decay = 0.01 * j, linout = 1)

    bitcoin.predict <- predict(bitcoin.fit, newdata = bitcoin.test)

    bitcoin.rmse <- sqrt(mean 
      ((bitcoin.predict – bitcoin.lr[917:940])^2))

    if (bitcoin.rmse<best.rmse) {

      best.network[1, 1] <- i

      best.network[2, 1] <- j

      best.rmse <- bitcoin.rmse

    }

  }

In this step, we create the Input and Target matrix for the test dataset. The test 
dataset include the closing prices and technical indicators between April 8, 2013  
(940) and May 8, 2014 (969).

InputTest <- matrix(c(rsi[940:969], cci[940:969],  
  macd[940:969], will[940:969], stochK[940:969],  
    stochD[940:969]), nrow = 30)

TargetTest <- matrix(c(bitcoin.lr[941:970]), nrow = 30)  
  Testdata <- cbind(InputTest,TargetTest)

colnames(Testdata) <- c("RSI", "CCI", "MACD", "WILL",  
  "STOCHK", "STOCHD", "Return")
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Finally, we fit the best neural network model on test data.

bitcoin.fit <- nnet(Return ~ RSI + CCI + MACD + WILL +  
  STOCHK + STOCHD, data = trainingdata, maxit = 1000,  
    size = best.network[1, 1], decay = 0.1 * best.network[2, 1],  
      linout = 1)

bitcoin.predict1 <- predict(bitcoin.fit, newdata = Testdata)

We repeat and average the model 20 times in order to eliminate the outlier networks.

for (i in 1:20) {

  bitcoin.fit <- nnet(Return ~ RSI + CCI + MACD + WILL + STOCHK +  
  STOCHD, data = trainingdata, maxit = 1000,  
    size = best.network[1, 1], decay = 0.1 * best.network[2, 1],  
      linout = 1) 

  bitcoin.predict <- predict(bitcoin.fit, newdata = Testdata)

  bitcoin.predict1 <- (bitcoin.predict1 + bitcoin.predict) / 2

}

We calculate the result of the buy-and-hold benchmark strategy and neural network 
on the test dataset.

money <- money2 <- matrix(0,31)

money[1,1] <- money2[1,1] <- 100

for (i in 2:31) {

  direction1 <- ifelse(bitcoin.predict1[i - 1] < 0, -1, 1)

  direction2 <- ifelse(TargetTest[i - 1] < 0, -1, 1)

  money[i, 1] <- ifelse((direction1 - direction2) == 0,  
    money[i-1,1]*(1+abs(TargetTest[i - 1])),

      money[i-1,1]*(1-abs(TargetTest[i - 1])))

  money2[i, 1] <- 100 * (price[940 + I - 1] / price[940])

}

We plot the investment value according to the benchmark and the neural network 
strategy on the test dataset (1 month).

x <- 1:31

matplot(cbind(money, money2), type = "l", xaxt = "n",

  ylab = "", col = c("black", "grey"), lty = 1)

legend("topleft", legend = c("Neural network", "Benchmark"),

  pch = 19, col = c("black", "grey"))

axis(1, at = c(1, 10, 20, 30),
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  lab = c("2014-04-08", "2014-04-17", "2014-04-27", "2014-05-07"))

box()

mtext(side = 1, "Test dataset", line = 2)

mtext(side = 2, "Investment value", line = 2)

Evaluation of the strategy
We note that in this illustrative example NN strategy has outperformed the  
"buy-and-hold" strategy in terms of the realized return. With neural network  
we achieved a return of 20% in a month, while with the passive buy and hold 
strategy it was only 3%. However, we didn't take into account the transaction  
costs, the bid-ask spreads and the price impacts and these factors may reduce  
the neural network's profit significantly.

Logoptimal portfolios
Contrary to the previous points, let us suppose that there are a finite number of risky 
assets available on the market. These assets are traded continuously without any 
transaction costs. The investor analyses historical market data and based on this, can 
reset her portfolio at the end of each day. How can she maximize her wealth in the 
long run? If returns are independent in time, then markets are efficient in the weak 
sense and the time series of returns have no memory. If returns are also identically 
distributed (i.i.d), the optimal strategy is to set portfolio weights for example, 
according to the Markowitz model (see Daróczi et al. 2013) and to keep portfolio 
weights fixed over the whole time horizon. In this setting, any rearrangements 
would have negative effects on the portfolio value in the long run.
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Now, let us suspend the assumption of longitudinal independency, hence let us 
allow for hidden patterns in the asset returns, therefore markets are not efficient and 
it is worth analyzing historical price movements. The only assumption we keep is 
that asset returns are generated by a stationary and ergodic process. It can be shown 
that the best choice is the so called logoptimal portfolio, see Algoet-Cover (1988). 
More precisely, there are no other investment strategies which have asymptotically 
higher expected return than the logoptimal portfolio. The problem is that in order to 
determine logoptimal portfolios one should know the generating process.

But, what can we do in a more realistic setting when we know nothing about the 
nature of the underlying stochastic process? A strategy is called universally consistent 
if it ensures that asymptotically the average growth rate approximates that of the 
logoptimal strategy for any (!) generating process being stationary and ergodic. 
It is surprising, but universally consistent strategies exist, see Algoet-Cover (1988). 
Thus, the basic idea is to search for patterns in the past that are similar to the most 
recently observed pattern, and building on this, to forecast the future returns and 
to optimize the portfolio relative to this forecast. The concept of similarity can be 
defined in different ways, therefore we can use different approaches, for example 
partitioning estimator, core function based estimator and nearest neighbor estimator. 
For illustration purposes, in the next point we present a simple universally consistent 
strategy which is based on the core function approach according to Györfi et al. (2006).

A universally consistent, non-parametric 
investment strategy
Let us suppose that there are d different stocks traded on the market. Vector b 

containing portfolio weights can be rearranged every day. We suppose that portfolio 

weights are nonnegative (short selling is not allowed) and the sum of the weights is 

always 1 (the portfolio must be self-financing). Vector x contains price relatives 1+ 
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where P stands for the closing price on the ith day. The investor's initial wealth is S0, 

hence her wealth at the end of the nth period is as follows:
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where 〈 〉,b x  is the scalar product of the two vectors, n is the number of the days 
we followed the investment strategy, Wn is the average log return over the n days 
and B represents all the b vectors applied. Therefore, the task is to determine a 
reallocation rule in a way that Wn be maximal in the long run. Here we present a 
simple universally consistent strategy which disposes this attractive property. Let Jn 
denote the set of days which are similar to the most recently observed day in terms 
of the Euclidean distance. It is determined by the formula

{ }1 1|n i n lJ i n r− −= ≤ − ≤x x

where rl is the maximum allowed distance (radium) selected by the lth expert.  
The logoptimal portfolio according to the lth expert on day n can be expressed  
in the following way:

( )1 argmax
ni J
ln

∈

= 〈 〉∑ ,
b

h b x

In order to get a well-balanced and robust strategy we define different experts 
(portfolio managers) with different radium, and we allocate our wealth to different 
experts according to a weight vector q. Weights can be equal; or can depend on 
the previous performance of the experts or on other characteristics. This way we 
combine the opinion of several experts and our wealth on the nth day is 

( ) ( )( )1n l n
l

S S∑=B q h

Let us suppose that we are an expert and we follow the above strategy between 1997 
and 2006 on the market of four NYSE stocks (aph, alcoa, amerb, and coke) plus a U.S. 
treasury bond and we use a moving time-window of one year. Data can be collected 
for example from here: http://www.cs.bme.hu/~oti/portfolio/data.html.  
Let us first read the data in.

all_files <- list.files("data")

d <- read.table(file.path("data", all_files[[1]]),

       sep = ",", header = FALSE)

colnames(d) = c("date", substr(all_files[[1]], 1,  
  nchar(all_files[[1]]) - 4))

for (i in 2:length(all_files)) {

http://www.cs.bme.hu/~oti/portfolio/data.html
http://www.cs.bme.hu/~oti/portfolio/data.html
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  d2 <- read.table(file.path("data", all_files[[i]]), 
    sep = ",", header = FALSE)

  colnames(d2) = c("date", substr(all_files[[i]], 1, 
    nchar(all_files[[i]])-4))

  d <- merge(d, d2, sort = FALSE)

}

This function calculates the expected value of the portfolio in line with the portfolio 
weights depending on the radium (r) we set in advance.

log_opt <- function(x, d, r = NA) {

  x <- c(x, 1 - sum(x))

  n <- ncol(d) - 1

  d["distance"] <- c(1, dist(d[2:ncol(d)])[1:(nrow(d) - 1)])

  if (is.na(r)) r <- quantile(d$distance, 0.05)

  d["similarity"] <- d$distance <= r

  d["similarity"] <- c(d[2:nrow(d), "similarity"], 0)

  d <- d[d["similarity"] == 1, ]

  log_return <- log(as.matrix(d[, 2:(n + 1)]) %*% x)

  sum(log_return)

}

This function calculates the optimal portfolio weights for a particular day.

log_optimization <- function(d, r = NA) {

  today <- d[1, 1]

  m <- ncol(d)

  constr_mtx <- rbind(diag(m - 2), rep(-1, m - 2))

  b <- c(rep(0, m - 2), -1)

  opt <- constrOptim(rep(1 / (m - 1), m - 2),  
    function(x) -1 * log_opt(x, d), NULL, constr_mtx, b)

  result <- rbind(opt$par)

  rownames(result) <- today

  result

}
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Now we optimize the portfolio weight for all the days we found similar. At the same 
time we also calculate the actual value of our investment portfolio for each day.

simulation <- function(d) {

  a <- Position( function(x) substr(x, 1, 2) == "96", d[, 1])

  b <- Position( function(x) substr(x, 1, 2) == "97", d[, 1])

  result <- log_optimization(d[b:a,])

  result <- cbind(result, 1 - sum(result))

  result <- cbind(result, sum(result * d[b + 1, 2:6]),  
    sum(rep(1 / 5, 5) * d[b + 1, 2:6]))

  colnames(result) = c("w1", "w2", "w3", "w4", "w5",  
    "Total return", "Benchmark")

  for (i in 1:2490) {

    print(i)

    h <- log_optimization(d[b:a + i, ])

    h <- cbind(h, 1 - sum(h))

    h <- cbind(h, sum(h * d[b + 1 + i, 2:6]), 
      sum(rep(1/5,5) * d[b + 1 + i, 2:6]))

    result <- rbind(result,h)

  }

  result

}

A <- simulation(d)

Finally, let us plot the investment value in time.

matplot(cbind(cumprod(A[, 6]), cumprod(A[, 7])), type = "l",

  xaxt = "n", ylab = "", col = c("black","grey"), lty = 1)

legend("topright", pch = 19, col = c("black", "grey"),

  legend = c("Logoptimal portfolio", "Benchmark"))

axis(1, at = c(0, 800, 1600, 2400),  
  lab = c("1997-01-02", "2001-03-03", "2003-05-13", "2006-07-17"))
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We got the following graph:

Evaluation of the strategy
We can see on the above graph that our log-optimal strategy outperformed the 
passive benchmark of keeping portfolio weights equal and fixed over time. However, 
it is notable that not only the average return, but also the volatility of the investment 
value is much higher in the former case.

It is mathematically proven that there exist non-parametric investment strategies 
which are able to effectively reveal hidden patterns in the realized returns and to 
exploit them in order to achieve an "almost" optimal growth rate in the investor's 
wealth. For this, we do not have to know the underlying process; the only 
assumption is that the process is stationary and ergodic. However, we cannot be 
sure that this assumption holds in reality. It is also important to emphasize that these 
strategies are optimal only in the asymptotic sense, but we know little about the 
short run characteristics of the potential paths.
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Summary
In this chapter we overviewed not only technical analysis but also some 
corresponding strategies, like neural networks and log-optimal portfolios. These 
methods are similar in the sense that when applying them, we implicitly suppose 
that past situations may reappear in the future; therefore we took the courage to 
challenge the concept of market efficiency and to build up an active trading strategy. 
In this setting, we discussed the problems of forecasting the price of a single asset 
(bitcoin), optimizing the timing of our trading, and also optimizing our portfolio of 
several risky assets (NYSE stocks) in a dynamic manner. We demonstrated that some 
simple algorithms based on the toolkit available in R can produce significant extra 
profit relative to the passive strategy of buying-and-holding. We also note however, 
that a comprehensive performance analysis focuses not only on the average returns, 
but also on the corresponding risks. Therefore, we suggest that when optimizing 
your strategy take care of the downturns, the volatility and other risk measures as 
well. And, of course, you must be aware of the limitations of the presented methods: 
you cannot be sure to know the return generating process; if you trade frequently, 
you have to pay a lot of transaction costs; and the more you get rich, the more you 
suffer from the adverse price impact and so on. However, we do hope you got new 
inspirations and useful hints to develop your own sophisticated trading strategy.

References
• Algoet, P.; Cover, T. (1988) Asymptotic optimality, asymptotic equipartition 

properties of logoptimal investments, Annals of Probability, 16, pp. 876-898
• Atsalakis, G. S. Valavanis, K. P. (2009) Surveying stock market forecasting 

techniques-Part II. Soft computing methods. Expert Systems with 
Applications, 36(3), pp. 5932-5941

• Bajgrowicz, P; Scaillet, O. (2012) Technical trading revisited: False 
discoveries, persistence tests, and transaction costs, Journal of Financial 
Economics, Vol. 106, pp. 473-491

• Chauvin, Y.; Rumelhart, D. E. (1995) Back propagation: Theory, architectures, 
and applications. New Jersey: Lawrence Erlbaum associates.

• Dai, W.; Wu, J-Y.; Lu, C-J. (2012) Combining nonlinear independent 
component analysis and neural network for the prediction of Asian stock 
market indexes. Expert Systems with Application, 39(4), pp. 4444-4452



Technical Analysis, Neural Networks, and Logoptimal Portfolios

[ 256 ]

• Daróczi, G. et al. (2013) Introduction to R for Quantitative Finance, Packt
• Györfi, L.; Lugosy, G.; Udina, F. (2006) Non-parametric Kernel-based 

sequential investment strategies, International Journal of Theoretical and 
Applied Finance, 10, pp. 505-516

• Sermpinis, G.; Dunis, C.; Laws, J.; Stasinakis, C. (2012) Forecasting and 
trading the EUR/USD exchange rate with stochastic Neural Network 
combination and time-varying leverage. Decision Support Systems, 54(1),  
pp. 316-329

• Tajaddini, R.; Falcon Crack, T. (2012) Do momentum-based trading strategies 
work in emerging currency markets?, Journal of International Financial 
Markets, Institutions & Money, Vol. 22, pp. 521-537

• Wang, J. J.; Wang, J. Z.; Zhang, Z. G.; Guo, S. P. (2012) Stock index forecasting 
based on a hybrid model. Omega, 40(6), pp. 758-766

• Zapranis, A.; T. E. Prodromos (2012) A novel, rule-based technical pattern 
identification mechanism: Identifying and evaluating saucers and resistant 
levels in the US stock market, Expert Systems with Applications, Vol. 39,  
pp. 6301-6308

• Zwart, G.; Markwat, T.; Swinkels, L.; van Dijk, D. (2009) The economic value 
of fundamental and technical information in emerging currency markets, 
Journal of International Money and Finance, Vol. 28. pp. 581-604



Asset and Liability 
Management

This chapter introduces the usage of R for commercial bank asset and liability 
management (ALM) purposes. The ALM function in a bank is traditionally 
associated with interest rate risk and liquidity risk management of banking book 
positions. Both of the interest rate positioning and liquidity risk management require 
the modeling of banking products. Nowadays, professional ALM units use complex 
Enterprise Risk Management (ERM) frameworks, which are able to incorporate 
the management of all risk types and provide an adequate tool for ALM to steer the 
balance sheet. Our general objective is to set up a simplified framework of ALM to 
illustrate the use of R for certain ALM tasks. These tasks are based on the interest 
rate and liquidity risk management and the modeling of non-maturing accounts.

This chapter is structured as follows. We start with the data-preparation process of 
ALM analysis. The process of planning and measurement needs special information 
about the banking book, market conditions, and the business strategy. This part 
establishes a data-management tool that consists of the major input datasets, and 
extracts data into the form that we use in the rest of this chapter.

Next, we will be dealing with the measurement of the interest rate risk. There are 
two common approaches in the banking industry to quantify interest rate risk in 
the banking book. Simpler techniques use repricing gap table analysis to manage 
the interest rate risk exposure and calculate parallel yield curve shocks to forecast 
the net interest income (NII) and calculate the market value of equity (MVoE). 
More advanced methods use dynamic simulation of balance sheets and stochastic 
simulation of interest rate development. Choosing which tool to use depends on the 
targets and the balance sheet structure. 



Asset and Liability Management

[ 258 ]

For example, a savings bank (with client term deposits on the liability side and fix 
bond investments on the asset side) focuses on its market value of equity risk, while 
a corporate bank (with floating interest position) concentrates on the net interest 
income risk. We illustrate how to efficiently provide a repricing gap table and net 
interest income forecasts with R.

Our third topic is related to the liquidity risk. We define three types of liquidity  
risks: structural, funding, and contingency risks. Structural liquidity risks arise from  
the different contractual maturities on the asset and liability side. Commercial  
banks usually collect short-term client deposits and place the acquired funding into 
long-term client loans. As a result, the bank is exposed to a roll-over risk on the liability 
side as it is uncertain how much of the maturing short term client funding will be 
rolled over, which endangers the solvency of the bank. Funding liquidity risks occur 
during the roll-overs; it refers to the uncertainty of the cost of renewed funding. In 
ordinary course of business, even though a bank can roll over its maturing interbank 
deposits, the cost of the deals highly depends on the available liquidity on the market. 
Contingency risk refers to the behavior of the clients in unforeseen scenarios. For 
example, a contingency risk appears as sudden withdrawals of term deposits or 
premature repayments among the client loans. While ALM appropriately handles 
the structural and funding liquidity risks by regulating bank positions, contingency 
liquidity risks can only be hedged by buffering liquid assets. We show how to build up 
liquidity gap tables and forecast net financing needs.

In the last section of this chapter, we will concentrate on the modeling of non-maturing 
products. Client products can be classified by their maturity structure and interest 
rate behavior. Examples of typical non-maturing liability products are on-demand 
deposits and savings accounts without any notice period of withdrawal. The clients 
can withdraw their money at any time, while the bank has the right to modify the 
offered interest rate. On the asset side, overdrafts and credit cards show quite similar 
characteristics. The complex models of non-maturing products make the work of ALM 
quite challenging. Practically, the modeling of non-maturing products means  
the mapping of the cash-flow profiles, estimating the interest rate elasticity of the 
demand, and analyzing the liquidity-related costs in the internal funds transfer 
pricing (FTP) system. Here, we demonstrate how to measure the interest sensitivity  
of the non-maturing deposits.

Data preparation
Complex ERM software are essential tools in the banking industry to quantify the 
net interest income and the market value of equity risks, and to prepare reports 
particularly on the asset and liability portfolio, the re-pricing gaps, and the liquidity 
positions. We set up a simplified simulation and reporting environment using R, 
which reproduces the key features of the commercially used ALM software solutions.
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Typical ALM data processes follow the so-called extract, transform, and load  
(ETL) logic.
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Extraction, which is the first phase, means that the bank has already collected the 
deal-level and account-based source data from the local data warehouse (DWH), 
the mid-office, the controlling or the accounting systems. The source data of the total 
balance sheet (here called a portfolio) is also extracted in order to save calculation 
time, memory and storage space. Moreover, single deal-level data is aggregated by 
the given dimensions (for example, by currency denomination, interest behavior, 
amortization structure, and so on). Market data (such as yield curves, market prices, 
and volatility surfaces) is also prepared in a raw dataset. The next step is to set the 
simulation parameters (for example, yield curve shocks and volume increments of 
the renewed business), in which we call strategy. For the sake of simplicity, here we 
reduce this strategy to keep the existing portfolio therefore the balance sheet remains 
the same forecasted period.

At the stage of transformation, the portfolio, market, and strategy datasets are 
combined and used for further analysis, and are transformed into new structures.  
In our terms, this means that the cash-flow table is generated by using the portfolio  
and market descriptors, and it is converted into a narrow data form.

At the time of loading, the results are written into a reporting table. Usually, users 
can define what dimensions of the portfolio and values of risk measures should be 
loaded into the result database. We will show how liquidity risk and interest rate risk 
can be measured and documented in the following sections.
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Data source at first glance
We call the data source that lists the balance sheet items "portfolios". Market data 
(such as yield curves, market prices, and volatility surfaces) is also prepared in a 
raw dataset. Let's import our initial datasets into R. First of all, we need to download 
the datasets and the functions to be used in this chapter from the link of Packt 
Publishing. Now, let's import the sample portfolio and market datasets that are 
stored in standard csv format in a local folder that is used in the code as follows:

portfolio <- read.csv("portfolio.csv")

market <- read.csv("market.csv")

The selected datasets contain dates that have to be converted into the appropriate 
format. We transform the date formats with the as.Date function:

portfolio$issue <- as.Date(portfolio$issue, format = "%m/%d/%Y")

portfolio$maturity <- as.Date(portfolio$maturity, format =  
  "%m/%d/%Y")

market$date <- as.Date(market$date, format = "%m/%d/%Y")

Print the first few rows of the imported portfolio dataset with the 
head(portfolio) command. It results the following output:

head(portfolio)

  id account                        account_name volume

1  1    cb_1 Cash and balances with central bank    930

2  2   mmp_1             Money market placements   1404

3  3   mmp_1             Money market placements    996

4  4    cl_1                     Corporate loans    515

5  5    cl_1                     Corporate loans    655

6  6    cl_1                     Corporate loans    560

  ir_binding reprice_freq spread      issue   maturity

1        FIX           NA      5 2014-09-30 2014-10-01

2        FIX           NA      7 2014-08-30 2014-11-30

3        FIX           NA     10 2014-06-15 2014-12-15

4      LIBOR            3    301 2014-05-15 2016-04-15

5      LIBOR            6    414 2014-04-15 2016-04-15

6      LIBOR            3    345 2014-03-15 2018-02-15

  repayment payment_freq yieldcurve

1    BULLET            1      EUR01
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2    BULLET            1      EUR01

3    BULLET            1      EUR01

4    LINEAR            3      EUR01

5    LINEAR            6      EUR01

6    LINEAR            3      EUR01

The columns of this data frame refer to the identification number (the number of 
the row), the account type, and the product characteristics. The first three columns 
represent the product identifier, the account identifier (or the short name), and the long 
name of the account. Using the levels function, we can easily list the type of accounts 
that are related to the typical commercial bank products or balance sheet items:

levels(portfolio$account_name)

 [1] "Available for sale portfolio"          

 [2] "Cash and balances with central bank"   

 [3] "Corporate loans"                       

 [4] "Corporate sight deposit"               

 [5] "Corporate term deposit"                

 [6] "Money market placements"               

 [7] "Other non-interest bearing assets"     

 [8] "Other non-interest bearing liabilities"

 [9] "Own issues"                            

[10] "Repurchase agreements"                 

[11] "Retail overdrafts"                     

[12] "Retail residential mortgage"           

[13] "Retail sight deposit"                  

[14] "Retail term deposit"                   

[15] "Unsecured money market funding"        

The portfolio dataset also contains the notional volume in EUR, the type of the 
interest binding (FIX or LIBOR), the repricing frequency of the account in the 
number of months (if the interest binding is LIBOR), and the spread component of 
the interest rate in basis points. Furthermore, other columns describe the cash-flow 
structure of the products. The columns are issue date (this is the first repricing day), 
maturity date, the type of principal repayment structure (bullet, linear, or annuity), 
and the repayment frequency in number of months. The last column stores the 
identifier of the interest rate curve, what we use for the calculation of future floating 
rate payments.
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Actual interest rates are stored in the market dataset. Let's list some of the first few 
rows to check the content:

head(market)

   type       date       rate comment

1 EUR01 2014-09-01  0.3000000      1M

2 EUR01 2014-12-01  0.3362558      3M

3 EUR01 2015-03-01 -2.3536463      6M

4 EUR01 2015-09-01 -5.6918763      1Y

5 EUR01 2016-09-01 -5.6541774      2Y

6 EUR01 2017-09-01  1.0159576      3Y

The first column indicates the yield curve type (for example, yields are from the 
bond market or the interbank market). The type column has to be the same as in 
portfolio to connect the two datasets. The date column shows the maturity of the 
current rate, and rate indicates the value of the rate in basis points. As you can see, 
the yield curve is very unusual at this time as there are negative yield curve points 
for certain tenors. The last column stores the label of the yield curve tenor.

The datasets reflect the current state of the bank portfolio and the current market 
environment. The actual date is September 30, 2014 in our analysis. Let's declare  
it as a date variable called NOW:

NOW <- as.Date("09/30/2014", format = "%m/%d/%Y")

Now, we finished the preparation of our source data. This is a sample dataset created 
by the authors for illustrative purposes, and demonstrates the simplified version of a 
hypothetical commercial bank balance sheet structure.

Cash-flow generator functions
After we import the static data of our balance sheet and the current yield curve, we 
use this information to generate the total cash-flow of the bank. First, we calculate 
the floating interest rates using the forward yield curve; after that, we can generate 
separately the principal and interest cash-flows. For this purpose, we predefine the 
basic functions to calculate principal cash-flows based on payment frequencies and 
to extract floating interest rates for variable interest rate products. This script is also 
available on the link provided by Packt Publishing. 
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Copy it into the local folder and run the script of the predefined functions from the 
working directory.

source("bankALM.R")

This source file loads the xts, zoo, YieldCurve, reshape, and car packages,  
and if necessary, it installs these required packages. Let's take a look at the most 
important functions we use from this script file. The cf function generates a 
predefined cash-flow structure. For example, generating a bullet payment structure 
loan with the nominal value of EUR 100, a maturity of three years, and a fixed 
interest rate of 10 percent looks like this:

cf(rate = 0.10, maturity = 3, volume = 100, type = "BULLET")

$cashflow

[1]  10  10 110

$interest

[1] 10 10 10

$capital

[1]   0   0 100

$remaining

[1] 100 100   0

The function provides the entire cash-flow, the interest and capital  
repayment structure, and the value of the remaining capital in each period.  
The get.yieldcurve.spot function provides a fitted spot yield curve on a certain 
sequence of dates. This function uses the YieldCurve package, what we have 
already loaded before. Let's define a test variable of dates, as follows:

test.date <- seq(from = as.Date("09/30/2015", format = "%m/%d/%Y"),  
  to = as.Date("09/30/2035", format = "%m/%d/%Y") , by = "1 year")

Get and plot the fitted spot yields on the specified dates using the market data:

get.yieldcurve.spot(market, test.date, type = "EUR01", now = NOW,  
  showplot = TRUE)
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The following screenshot is the result of the preceding command:

The preceding graph draws the observed yield curve (points) and the fitted yield curve 
(line). Looking at the get.yieldcurve.forward and get.floating functions, we see 
that both of them use the repricing date of the balance sheet product. The following 
example generates a sequence of repricing dates for a period of 20 timepoints.

test.reprice.date <- test.date[seq(from = 1,to = 20, by = 2)]

Extract the forward yield curve using the market data:

test.forward <- get.yieldcurve.forward(market, test.reprice.date, 
  type = "EUR01", now = NOW)

Now, let's generate the floating rates and illustrate the difference between the 
forward curve and the test.floating variable by setting the showplot option to 
TRUE.

test.floating<-get.floating(test.date, test.reprice.date, market,  
   type = "EUR01", now = NOW, shoplot = TRUE)
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The following screenshot gives the output for the preceding command:

As you can see, the floating rate forecast consists of a step-wise function. For pricing 
purposes, the floating rate is substituted by the actual forward rate; however, the 
floating rate is only updated at the time of repricing.

Preparing the cash-flow
In the next steps, we will demonstrate the cash-flow table that we produce from our 
portfolio and market datasets. The cf.table function calls the functions detailed 
earlier and provides a cash-flow of the exact product, which has the id identification 
number. In the portfolio dataset, identification numbers have to be integers, and 
they have to be in an increasing order. Practically, each of them should be the line 
number of the given row. Let's generate the cash-flow of all products:

cashflow.table <- do.call(rbind, lapply(1:NROW(portfolio),  
  function(i) cf.table(portfolio, market, now = NOW, id = i)))
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As the portfolio dataset contains 147 products, the running of this code might take 
a few (10-60) seconds. When we are ready, let's check the result that shows the first 
few lines:

head(cashflow.table)

  id account       date        cf interest capital remaining

1  1    cb_1 2014-10-01  930.0388  0.03875     930         0

2  2   mmp_1 2014-10-30    0.0819  0.08190       0      1404

3  2   mmp_1 2014-11-30 1404.0819  0.08190    1404         0

4  3   mmp_1 2014-10-15    0.0830  0.08300       0       996

5  3   mmp_1 2014-11-15    0.0830  0.08300       0       996

6  3   mmp_1 2014-12-15  996.0830  0.08300     996         0

Now we are done with the creation of the cash-flow table. We can also calculate  
the present value of the products and, the market value of the equity of the bank. 
Let's run the pv.table function in the following loop:

presentvalue.table <- do.call(rbind, lapply(1:NROW(portfolio),  
  function (i) pv.table(cashflow.table[cashflow.table$id ==  
    portfolio$id[i],], market, now = NOW)))

Print the initial rows of the table to check the results:

head(presentvalue.table)

  id account       date presentvalue

1  1    cb_1 2014-09-30     930.0384

2  2   mmp_1 2014-09-30    1404.1830

3  3   mmp_1 2014-09-30     996.2754

4  4    cl_1 2014-09-30     530.7143

5  5    cl_1 2014-09-30     689.1311

6  6    cl_1 2014-09-30     596.3629

The results might differ slightly because the Svensson method may produce different 
outputs. To get the market value of equity, we need to add the present values.

sum(presentvalue.table$presentvalue)

[1] 14021.19

The cash-flow table handles liabilities as negative assets; hence, adding up all the 
items provides us with the appropriate results.
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Interest rate risk measurement
Managing interest rate risk is one of the most important components of asset and 
liability management. Variation of the interest rate could affect both the interest 
earnings and the market value of equity. Interest rate management focuses on the 
sensitivity of net interest income. Net interest income (NII) equals the difference 
between interest revenues and interest expenses:

( ) ( )A LNII SA NSA i SL NSL i= + − +

Here, SA and SL denote the interest sensitive assets and liabilities, and NSA and  
NSL refer to the non-sensitive ones. Interest rate of assets and liabilities are noted 
with Ai  and Li . The traditional approach of interest rate risk positioning of the 
balance sheet is based on gap models. Interest rate gap refers to the net asset position 
for a certain time period between interest-bearing assets and liabilities, which are 
repriced at the same time. The interest rate gap (G) equals:

G SA SL= −

The re-pricing gap table shows these interest-bearing items in the balance sheet 
grouped by the time of repricing and the basis of repricing (that is, 3 months EURIBOR 
or 6 months EURIBOR). Interest earnings variation can be characterized as the  
risk-bearing items multiplied by the change of interest rate (Δi), shown as follows:

( )NII SA SL i G i∆ = − ∆ = ∆

The sign of the gap is crucial from an interest rate risk point of view. A positive 
gap indicates increasing earnings when interest rates rise, and indicates decreasing 
earnings when interest rates decline. The repricing gap table can also capture the 
basis risk by aggregating the interest-bearing assets and liabilities based on their 
reference interest rate (that is 3 months or 6 months EURIBOR). Interest rate gap 
tables can be sufficient tools to determine the risk exposure from the earnings 
perspective. However, gap models cannot be used as a single risk measure to 
quantify rather the net interest income risk of the total balance sheet. Interest rate 
gaps are management tools, which provide guidance on interest rate risk positioning.
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Here, we show how to build up net interest income and repricing gap tables and 
how to create figures about the net interest income term structure. Let's construct the 
interest rate gap table from the cashflow.table data. Continuing from the previous 
section, we use the predefined nii.table function to produce the desired data form:

nii <- nii.table(cashflow.table, now = NOW)

Considering the net interest income table for the next 7 years, we get the  
following table:

round(nii[,1:7], 2)

           2014    2015    2016    2017    2018   2019   2020

afs_1      6.99    3.42    0.00    0.00    0.00   0.00   0.00

cb_1       0.04    0.00    0.00    0.00    0.00   0.00   0.00

cl_1     134.50  210.04   88.14   29.38    0.89   0.00   0.00

cor_sd_1  -3.20  -11.16   -8.56   -5.96   -3.36  -0.81   0.00

cor_td_1  -5.60   -1.99    0.00    0.00    0.00   0.00   0.00

is_1     -26.17  -80.54  -65.76  -48.61  -22.05  -1.98   0.00

mmp_1      0.41    0.00    0.00    0.00    0.00   0.00   0.00

mmt_1     -0.80   -1.60    0.00    0.00    0.00   0.00   0.00

oth_a_1    0.00    0.00    0.00    0.00    0.00   0.00   0.00

oth_l_1    0.00    0.00    0.00    0.00    0.00   0.00   0.00

rep_1     -0.05    0.00    0.00    0.00    0.00   0.00   0.00

ret_sd_1  -8.18  -30.66  -27.36  -24.06  -20.76 -17.46 -14.16

ret_td_1 -10.07  -13.27    0.00    0.00    0.00   0.00   0.00

rm_1     407.66 1532.32 1364.32 1213.17 1062.75 908.25 751.16

ro_1     137.50  187.50    0.00    0.00    0.00   0.00   0.00

total    633.04 1794.05 1350.78 1163.92 1017.46 888.00 736.99 

It is easy to read what account brings interest revenues or costs for the bank.  
The net interest rate table can be plotted as follows:

barplot(nii, density = 5*(1:(NROW(nii)-1)), xlab = "Maturity",  
  cex.names = 0.8, Ylab = "EUR", cex.axis = 0.8,  
    args.legend = list(x = "right"))

title(main = "Net interest income table", cex = 0.8,  
  sub = paste("Actual date: ",as.character(as.Date(NOW))) ) 
    par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0),mar = c(0, 0, 0, 0), 
      new = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right", legend = row.names(nii[1:(NROW(nii)-1),]),  
  density = 5*(1:(NROW(nii)-1)), bty = "n", cex = 1)
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The result is shown in the following graph:

Now, we can explore the re-pricing gaps by composing the re-pricing gap table.  
Let's use the predefined repricing.gap.table function and get the monthly gaps, 
and then plot the results with barplot.

(repgap <- repricing.gap.table(portfolio, now = NOW))

         1M   2M  3M   4M   5M   6M   7M   8M   9M  10M  11M  12M

volume 6100 9283 725 1787 7115 6031 2450 5919 2009 8649 6855 2730

barplot(repgap, col = "gray", xlab = "Months", ylab = "EUR")

title(main = "Repricing gap table", cex = 0.8,  
  sub = paste("Actual date: ",as.character(as.Date(NOW))))
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With the preceding code, we can illustrate the marginal gaps for the next 12 months:

We have to mention that there are more sophisticated tools for interest rate risk 
management. In practice, simulation models are applied for risk management 
purposes. However, the banking book risks are not explicitly subjected to capital 
charge under Pillar 1 of the Basel II regulations; Pillar 2 covers the interest rate 
risk in the banking book. Regulators lay particular emphasis also on the risk 
assessment regarding the market value of equity. Risk limits are based on specific 
stress scenarios, which could be either deterministic interest rate shocks or historical 
volatility-based earnings at risk concepts. Therefore, risk measurement techniques 
stand for scenario-based or stochastic simulation approaches, focusing on the interest 
earnings or the market value of equity. Net interest income simulation is rather a 
dynamic, forward-looking approach, while calculation of the market value of equity 
provides a static result. Equity duration is also a widely used measure for interest 
rate risk of the banking book. Duration of the assets and liabilities are calculated 
to quantify the duration of equity. ALM professionals often use effective duration, 
which incorporates embedded options (caps, floors, and so on) in the interest rate 
sensitivity calculation.
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Liquidity risk measurement
Traditional liquidity risk measurement tools are the so-called static and dynamic 
liquidity gap tables. A liquidity gap table gives a cash-flow view of the balance  
sheet, and organizes the balance sheet items according to their contractual  
cash-inflows and cash-outflows into maturity buckets. The net cash-flow gap in 
each bucket shows the bank structural liquidity position. The static view assumes 
a rundown balance sheet while the dynamic liquidity table also takes into account 
the cash-flows from rollovers and new businesses. For the sake of simplicity, we 
demonstrate here only the static view of the liquidity positions.

Starting with the preparation of daily cash-flow positions. Sometimes, we need to 
know what the forecasted liquidity position is on a given date. It is easy to aggregate 
the cashflow.table by date.

head(aggregate(. ~ date, FUN = sum,  
  data = subset(cashflow.table,select = -c(id, account))))

        date            cf    interest    capital remaining

1 2014-10-01   930.0387500   0.0387500   930.0000      0.00

2 2014-10-14     0.6246667   0.6246667     0.0000   3748.00

3 2014-10-15  2604.2058990 127.5986646  2476.6072  13411.39

4 2014-10-28   390.7256834 124.6891519   266.0365  23444.96

5 2014-10-30 -3954.2638670  52.6149502 -4006.8788 -33058.12

6 2014-10-31    -0.1470690  -0.1470690     0.0000  -2322.00

Secondly, let's prepare a liquidity gap table and create a chart. We can also use a 
predefined function (lq.table) and check the resulting table.

lq <- lq.table(cashflow.table, now = NOW)

round(lq[,1:5],2)

               1M    2-3M     3-6M    6-12M     1-2Y

afs_1        2.48 3068.51 14939.42     0.00     0.00

cb_1       930.04    0.00     0.00     0.00     0.00

cl_1      3111.11    0.00   649.51  2219.41  2828.59

cor_sd_1  -217.75 -217.73  -653.09 -1305.69 -2609.42

cor_td_1    -1.90 -439.66 -6566.03     0.00     0.00

is_1        -8.69  -17.48 -2405.31  -319.80  -589.04

mmp_1        0.16 2400.25     0.00     0.00     0.00

mmt_1       -0.12   -0.54    -0.80 -1201.94     0.00

oth_a_1      0.00    0.00     0.00     0.00     0.00

oth_l_1      0.00    0.00     0.00     0.00     0.00

rep_1     -500.05    0.00     0.00     0.00     0.00
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ret_sd_1  -186.08 -186.06  -558.04 -1115.47 -2228.46

ret_td_1 -4038.96   -5.34 -5358.13 -3382.91     0.00

rm_1       414.40  808.27  1243.86  2093.42  4970.14

ro_1       466.67  462.50  1362.50  2612.50   420.83

total      -28.69 5872.72  2653.89  -400.48  2792.63

To plot the liquidity gap figure, we can use the barplot function, which is as follows:

plot.new()

par.backup <- par()

par(oma = c(1, 1, 1, 6), new = TRUE)

barplot(nii, density=5*(1:(NROW(nii)-1)), xlab="Maturity",  
  cex.names=0.8, ylab = "EUR", cex.axis = 0.8, 
    args.legend = list(x = "right"))

title(main = "Net interest income table", cex = 0.8,  
  sub = paste("Actual date: ",as.character(as.Date(NOW))) )

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0),mar = c(0, 0, 0, 0),  
  new = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right", legend = row.names(nii[1:(NROW(nii)-1),]),  
  density = 5*(1:(NROW(nii)-1)), bty = "n", cex = 1)

par(par.backup)

The output of the barplot function is as follows:
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The bars on the plot show the liquidity gap in each time bucket. The dashed line with 
squares represents the net liquidity position (financial need), while the solid black 
line shows the cumulative liquidity gap.

Modeling non-maturity deposits
The importance of non-maturity deposits (NMD) in banking is substantially high 
as the large part of commercial banks' balance sheets consist of client products with 
non-contractual cash-flow features. Non-maturity deposits are special financial 
instruments as the bank has an option to change the paid interest on the deposit 
account at any time, and the client has the option to withdraw any amount from  
the account without a period of notice. The liquidity and interest rate risk 
management of these products are a crucial part of ALM analysis; therefore, 
modeling of non-maturity deposits needs special attention. The uncertain maturity 
and interest rate profile generates a high level of complexity in their hedging, 
internal transfer pricing, and risk modeling.

A Model of deposit interest rate development
In the following code, we use Austrian non-maturity deposit time series data that 
we queried from the ECB Statistical Database, which is publicly available. We have 
monthly deposit interest rates (cpn), end-of-month balances (bal), and the 1 month 
EURIBOR fixing (eur1m) in our dataset. The time series are stored in a csv file in the 
local folder. The command for that is ads follows:

nmd <- read.csv("ecb_nmd_data.csv")

nmd$date <- as.Date(nmd$date, format = "%m/%d/%Y")

First, we plot the 1 month EURIBOR rate and the deposit interest rate development 
by using the following command:

library(car)

plot(nmd$eur1m ~ nmd$date, type = "l", xlab="Time", ylab="Interest rate")

lines(nmd$cpn~ nmd$date, type = "l", lty = 2)

title(main = "Deposit coupon vs 1-month Euribor", cex = 0.8 )

legend("topright", legend = c("Coupon","EUR 1M"),  
   bty = "n", cex = 1, lty = c(2, 1))
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The following screenshot displays the graph of Deposit Coupon vs 1-month 
EURIBOR:

Our first goal is to estimate an error correction model (ECM) to describe the  
long-term explanatory power of 1 month EURIBOR rate on the non-maturity deposit 
interest rate. Measuring the pass-through effect of market rates into deposit interest 
rates has gained high importance in recent years from the regulatory point of view 
as well. ECB required euro-zone banks to estimate the pass-through effect in certain 
stress-test scenarios. We use the Engle-Granger two-step method to estimate the 
ECM model. In the first step, we estimate the cointegrating vector with a regression 
model. We take the residuals, and in the second step, we estimate the long-term 
and short-term effects of EURIBOR on deposit rates using the error-correction 
mechanism. Before the first step, we have to test whether both time series are 
integrated in the same order. Therefore, we run Augmented Dickey-Fuller (ADF) 
and the KPSS tests from the urca package on the original and the differentiated time 
series. The script is as follows:

library(urca)

attach(nmd)

#Unit root test (ADF)

cpn.ur <- ur.df(cpn, type = "none", lags = 2)

dcpn.ur <- ur.df(diff(cpn), type = "none", lags = 1)
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eur1m.ur <- ur.df(eur1m, type = "none", lags = 2)

deur1m.ur <- ur.df(diff(eur1m), type = "none", lags = 1)

sumtbl <- matrix(cbind(cpn.ur@teststat, cpn.ur@cval,

                       dcpn.ur@teststat, dcpn.ur@cval,

                       eur1m.ur@teststat, eur1m.ur@cval,

                       deur1m.ur@teststat, deur1m.ur@cval), nrow=4)

colnames(sumtbl) <- c("cpn", "diff(cpn)", "eur1m", "diff(eur1m)")

rownames(sumtbl) <- c("Test stat", "1pct CV", "5pct CV", "10pct CV")

#Stationarty test (KPSS)

cpn.kpss <- ur.kpss(cpn, type = "mu")

eur1m.kpss <- ur.kpss(eur1m, type = "mu")

sumtbl <- matrix(cbind( cpn.kpss@teststat, cpn.kpss@cval, 
   eur1m.kpss@teststat, eur1m.kpss@cval), nrow = 5)

colnames(sumtbl) <- c("cpn", "eur1m")

rownames(sumtbl) <- c("Test stat", "10pct CV", "5pct CV", "2.5pct  
  CV", 1pct CV")

print(cpn.ur@test.name)

print(sumtbl)

print(cpn.kpss@test.name)

print(sumtbl)

As a result, we get the following summary tables:

Augmented Dickey-Fuller Test

                 cpn diff(cpn)     eur1m diff(eur1m)

Test stat -0.9001186 -5.304858 -1.045604    -5.08421

1pct CV   -2.5800000 -2.580000 -2.580000    -2.58000

5pct CV   -1.9500000 -1.950000 -1.950000    -1.95000

10pct CV  -1.6200000 -1.620000 -1.620000    -1.62000

KPSS

                cpn    eur1m

Test stat 0.8982425 1.197022

10pct CV  0.3470000 0.347000

5pct CV   0.4630000 0.463000

2.5pct CV 0.5740000 0.574000

1pct CV   0.7390000 0.739000
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The null-hypothesis of the ADF test cannot be refused for the original time series, 
but the test results show that the first difference of the deposit rate and 1 month 
EURIBOR time series does not contain the unit root. This means that both series are 
integrated at the first order, and they are I(1) processes. The KPSS test has a similar 
result. The next step is to test the cointegration of the two I(1) series by testing the 
residuals of the simple regression equation, where we regress the deposit interest 
rates on the 1 month EURIBOR rate. Estimate the cointegrating equation:

lr <- lm(cpn ~ eur1m)

res <- resid(lr)

lr$coefficients

(Intercept)       eur1m 

  0.3016268   0.3346139

Do the unit root test of residuals as follows:

res.ur <- ur.df(res, type = "none", lags = 1)

summary(res.ur)

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Test regression none 

Call:

lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.286780 -0.017483 -0.002932  0.019516  0.305720 

Coefficients:

           Estimate Std. Error t value Pr(>|t|)   

z.lag.1    -0.14598    0.04662  -3.131  0.00215 **

z.diff.lag -0.06351    0.08637  -0.735  0.46344   

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.05952 on 131 degrees of freedom

Multiple R-squared:  0.08618,   Adjusted R-squared:  0.07223 

F-statistic: 6.177 on 2 and 131 DF,  p-value: 0.002731

Value of test-statistic is: -3.1312 

Critical values for test statistics:

      1pct  5pct 10pct

tau1 -2.58 -1.95 -1.62

The test statistic of the ADF test is lower than the 1 percent critical value, so we 
can conclude that the residuals are stationary. This means that the deposit coupon 
and 1 month EURIBOR are cointegrated, as the linear combination of the two I(1) 
time series gives us a stationary process. The existence of cointegration is important 
because it is a prerequisite for the error-correction model estimation. The basic 
structure of an ECM equation is as follows:

1 1 2 1t t t tY X ECα β β ε− −∆ = + ∆ + +

We estimate the long-term and short-term effect of X on Y; the lagged residuals 
from the cointegration equation represent the error-correction mechanism. The 1β  
coefficient measures the short-term correction part, while 2β  is the coefficient of the 
long-term equilibrium relationship, which captures the correction of deviations from 
the equilibrium of X. Now, we estimate the ECM model using the dynlm package, 
which is suitable to estimate dynamic linear models with lags:

install.packages('dynlm')

library(dynlm)

res <- resid(lr)[2:length(cpn)]

dy <- diff(cpn)

dx <- diff(eur1m)

detach(nmd)

ecmdata <- c(dy, dx, res)

ecm <- dynlm(dy ~ L(dx, 1) + L(res, 1), data = ecmdata)

summary(ecm)
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Time series regression with "numeric" data:

Start = 1, End = 134

Call:

dynlm(formula = dy ~ L(dx, 1) + L(res, 1), data = ecmdata)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.36721 -0.01546  0.00227  0.02196  0.16999 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.0005722  0.0051367  -0.111    0.911    

L(dx, 1)     0.2570385  0.0337574   7.614 4.66e-12 ***

L(res, 1)    0.0715194  0.0534729   1.337    0.183    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05903 on 131 degrees of freedom

Multiple R-squared:  0.347, Adjusted R-squared:  0.337 

F-statistic:  34.8 on 2 and 131 DF,  p-value: 7.564e-13

The lagged changes in 1 month EURIBOR are corrected in the deposit interest rates 
by 25.7 percent ( 1 0.2570385β = ) on the short run. We cannot conclude that deviations 
from the long-term equilibrium are not corrected as beta2 is not significant and has 
a positive sign, meaning that the errors are not corrected but boosted by 7 percent. 
The economic interpretation of the results is that we cannot identify a long-term 
relationship between NMD coupons and 1 month EURIBOR rate, but deviations in 
the EURIBOR are reflected in the coupons by 25.7 percent in the short term.

Static replication of non-maturity deposits
A possible method to hedge interest-rate-related risks of non-maturity deposits is 
to construct a replicating portfolio of zero-coupon instruments to mimic the interest 
payment of non-maturity deposits, and earn a margin on the higher-yielding 
replicating instruments over the low interest on deposit accounts. 



Chapter 11

[ 279 ]

Let's assume that we include 1-month and 3-month EUR money market placements 
and 1Y, 5Y, and 10Y government benchmark bonds in our replicating portfolio. We 
queried the historical time series of the yields from ECB Statistical Data Warehouse 
and stored the data in a csv file in the local folder. We will call the csv file using the 
following command:

ecb.yc <- read.csv("ecb_yc_data.csv")

ecb.yc$date <- as.Date(ecb.yc$date, format = "%d/%m/%Y")

Plot the results:

matplot(ecb.yc$date, ecb.yc[,2:6], type = "l", lty = (1:5), lwd = 2,  
   col = 1, xlab = "Time", ylab = "Yield", ylim = c(0,6), xaxt = "n")

legend("topright", cex = 0.8, bty = "n", lty = c(1:5), lwd = 2, 
   legend = colnames(ecb.yc[,2:6])) 

title(main = "ECB yield curve", cex = 0.8)

axis.Date(1,ecb.yc$date)

The following screenshot shows the ECB yield curve:
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Our goal is to calculate those portfolio weights of the five hedging instruments in 
the replicating portfolio, which ensures that the minimum volatility of the margin 
compared to the deposit coupon (cpn) in the given time horizon. In other words,  
we would like to minimize the tracking error of the interest earning of our 
replicating portfolio. The problem can be formulated in the following least  
squares minimization formula:

2min Ax b−

This is subject to:

1x =∑

0x ≥

'x m l=

Here, A is the ( )5t×  matrix's historical rates, b is the vector of the deposit coupons, 
and x is the vector of portfolio weights. The function to be minimized is the squared 
difference between the vector b and the linear combination of x with the columns of 
matrix A. The first condition is that the portfolio weights have to be non-negative and 
summed up to 1. We introduce an additional condition on the average maturity of the 
portfolio, which should be equal to the l constant. The vector m contains the maturity 
in months of the five hedging instruments. The rationale behind this constraint is 
that banks usually assume that the core base of non-maturity deposit volume stays 
in the bank for a longer term. The tenor of this long-term part is usually derived 
from a volume model, which could be the ARIMA model or a dynamic model with 
dependency on market rates and the deposit coupon.

To solve the optimization problem, we use the solve.QP function from the quadprog 
package. This function is suitable to solve quadratic optimization problems with 
equality and inequality constraints. We reformulate the least squares minimization 
problem in order to derive the proper parameter matrix (A'A) and parameter vector 
(b'A) of the solve.QP function. 
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We also set 60l = , assuming 5 year final maturity for the replicating portfolio, which 
mimics the liquidity characteristics of the core part of the NMD portfolio through the 
following command:

library(quadprog)

b <- nmd$cpn[21:135]

A <- cbind(ecb.yc$EUR1M, ecb.yc$EUR3M, 
   ecb.yc$EUR1Y, ecb.yc$EUR5Y, ecb.yc$EUR10Y)

m <- c(1, 3, 12, 60, 120)

l <- 60

stat.opt <- solve.QP( t(A) %*% A, t(b) %*% A,  
              cbind( matrix(1, nr = 5, nc = 1), 
                     matrix(m, nr = 5, nc = 1), 
                     diag(5)), 
              c(1, l, 0,0,0,0,0), 
              meq=2 )

sumtbl <- matrix(round(stat.opt$solution*100, digits = 1), nr = 1)

colnames(sumtbl) <- c("1M", "3M", "1Y", "5Y", "10Y")

cat("Portfolio weights in %")

Portfolio weights in % > print(sumtbl)

     1M   3M 1Y 5Y  10Y

[1,]  0 51.3  0  0 48.7

Our result suggests that based on historical calibration, we should keep 51 percent 
in 3 month money market placement and 49 percent in a 10 year government bond 
instrument in our replicating portfolio to replicate the coupon development of 
NMDs with the smallest tracking error. With these portfolio weights, the income on 
our replicating portfolio and the expense on deposit accounts are calculated by the 
following code:

mrg <- nmd$cpn[21:135] - stat.opt$solution[2]*ecb.yc$EUR3M + 
   stat.opt$solution[5]*ecb.yc$EUR10Y

plot(mrg ~ ecb.yc$date, type = "l", col = "black", xlab="Time", ylab="%")

title(main = "Margin of static replication", cex = 0.8 )
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The following graph displays Margin of static replication:

As you can see, due to the replication with this static strategy, a bank was able  
to earn more profit around 2010, when the term spread between the short- and  
long-term interest rates was unusually high.



Chapter 11

[ 283 ]

Summary
In this chapter, we demonstrated how R can support the process of asset and  
liability management in a commercial bank. There is a wide range of tasks from  
data preparation to reporting, where the R programming language can help or  
solve repeating problems. However, we only gave a brief introduction about how  
to solve problems of interest rate and liquidity measurement. We also provided  
some examples about the statistical estimation of the interest rate sensitivity of  
non-maturity deposits. You can find practical knowledge about the following:

• Generating cash-flow from bank portfolios and market data
• Measuring and reporting tools for basic interest rate risk management
• Measuring and reporting tools for basic liquidity risk management
• Modeling the behavior of non-maturity deposits

We think that this chapter is an organic part of the bank management topics in this 
book. Asset and liability management brings a particular problem set of the bank 
management, and R, as an open-source language with a versatile package library, 
can effectively add valuable tools for practitioners.
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Capital Adequacy
As we learned in the previous chapter, banking is a specifically risky industry and 
the safety of the clients' money is a top priority. In order to ensure that banks meet 
this primary objective, the industry is under strict regulation. It has always been a 
very important task for supervisors to build rules to avoid the collapsing of banks 
and to protect clients' wealth. Capital adequacy or capital requirement is one of, if 
not, the most, important regulatory tool to serve this goal. Given the high leverage 
in the financial sector, banks and other financial institutions are not allowed to freely 
use all their assets. These firms need to hold enough capital to ensure safe operation 
and solvency even if things turn bad.

Different countries have different banking supervisory bodies (financial watchdog, 
central bank, and so on) and regulation standards. However, as the banking 
system became more and more globalized, a common worldwide standard became 
necessary. In 1974, the Basel Committee on Banking Supervision (BCBS) was set 
up by the G-10 central banks to provide banking regulatory standards that can be 
applied to different countries around the globe.

This area of economics has developed quite fast since then, and more and more 
complex mathematical methods are used in risk management and capital adequacy 
calculation. R is such a powerful tool that it is perfectly capable of solving these 
complex mathematical and analytical problems. Therefore, it is not surprising that 
many banks use this as an important tool for risk management.
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Principles of the Basel Accords
In 1988, the BCBS published a regulatory framework in Basel, Switzerland, to set the 
minimum capital that a bank needs to hold to minimize the risk of insolvency. The 
so-called First Basel Accord, which is now referred to as Basel I, was enforced by the 
law in all of the G-10 countries by 1992. By 2009, 27 jurisdictions were involved in  
the Basel Regulatory Framework (the history of the Basel Committee can be read  
at http://www.bis.org/bcbs/history.htm).

Basel I
The first Basel Accord mainly focuses on credit risk, and formalizes the appropriate 
risk weighting considering different asset classes. Based on the Accord, the assets of 
banks should be classified into categories regarding credit risk, and the exposure of 
each category should be weighted with the defined measures (0 percent, 20 percent, 
50 percent, and 100 percent). The resulted value of risk-weighted assets (RWA) is 
used for the determination of capital adequacy. According to the Basel I legislation, 
banks that are present on international markets are required to hold capital of at least 8 
percent of their RWA. This is called the minimum capital ratio (refer to Basel Committee 
on Banking Supervision (Charter) http://www.bis.org/bcbs/charter.htm).

The so-called off-balance sheet items such as derivatives, unused commitments,  
and credit letters are included in RWA, and should be reported as well.

The Accord was intended to amend and refine over time in order to address risks 
other than credit risk as well. Furthermore, it was revised to give more appropriate 
definitions to certain asset classes included in the capital adequacy calculation and to 
recognize subsequently identified effects.

Basel I defines other capital ratios as well, in order to quantify the banks' capital 
adequacy. The capital ratios are considered as certain so-called tier-capital elements 
relative to all RWA. Tier-capital elements include types of capital grouped based on 
the definition of Basel I. However, each country's banking regulator might revise the 
classification of the financial instruments considered in capital calculation due to the 
different legal frameworks of the countries.

The tier 1 capital includes core capital, which is composed of common stock, retained 
earnings, and certain preferred stocks, which meet the defined requirements. Tier 2 is 
considered supplementary capital, which involves supplementary debts, undisclosed 
reserves, revaluation reserves, general loan-loss reserves, and hybrid capital 
instruments, while tier 3 is deemed as the short-term additional capital. (Committee on 
Banking Regulations and Supervisory Practices (1987): Proposals for international convergence 
of capital measurement and capital standards, Consultative paper, December 1987,  
http://www.bis.org/publ/bcbs03a.pdf.)

http://www.bis.org/bcbs/history.htm
http://www.bis.org/bcbs/charter.htm
http://www.bis.org/publ/bcbs03a.pdf
http://www.bis.org/publ/bcbs03a.pdf
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Basel II
Basel II was issued in 1999 as a new capital adequacy framework proposed to 
succeed Basel I, and was published in 2004 in order to ensure resolutions to certain 
issues, which was slightly regulated by the former Basel Accord.

The main objectives of Basel II were to:

• Provide more risk-sensitive capital allocation
• Implement appropriate calculation methods for not only credit risk but 

market risk and operational risk as well
• Improve the disclosure requirement in order to make capital adequacy more 

perceptible for market participants
• Avoid regulatory arbitrage

The framework of Basel II is based on the three following pillars: 

• The minimum capital requirements by which the Committee intended to 
develop and expand the standardized capital adequacy calculations

• A supervisory review of a financial institute's capital adequacy and internal 
assessment process

• Effective disclosure to enhance market discipline

Minimum capital requirements
The required capital on credit risk can be calculated according to the standardized 
approach. Based on this method, credit exposures should be weighted by measures 
considering primarily the related ratings by External Credit Assessment Institutions 
(ECAI). Claims on sovereigns, corporates, and banks or securities companies can be 
weighted by 0 percent, 20 percent, 50 percent, 100 percent, or 150 percent according 
to their ratings; however, based on the claims by international associations such as 
IMF, BIS, or EC, the risk weight should consistently be 0 percent.

Regarding secured claims, cash, and other assets, there are constant weights defined 
by the Committee and implemented by local regulators who are considering risk 
mitigation techniques. Eligibility can be considered on different levels regarding 
the different asset classes, and is regulated in local acts and decrees of the countries. 
Furthermore, real estate is not deemed as cover but as exposure according to the 
standard approach; therefore, it is included in the regulation on asset classes as well.
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Minimum capital requirement is defined as 8 percent of the RWA, considering 
conversion factors in case of off-balance sheet items. Capital requirement determined 
by this method should be appropriate to cover credit risk, market risk, and 
operational risk as well.

Other methods for the calculation of credit risk are the so-called Internal  
Ratings-Based (IRB) approaches, including Foundation IRB and Advanced IRB.  
IRB approaches are allowed to use only the approved banks by their local regulator.

IRB approaches apply a capital function to determine the required capital. There are 
key parameters that influence the capital function, such as probability of default 
(PD), loss given default (LGD), exposure at default (EAD), and maturity (M).

Probability of default is considered the likelihood that the client will not (entirely) 
meet its debt obligation over a particular time horizon. By IRB methods, the bank is 
allowed to estimate the PD of its clients based on either own developed models or by 
applying the ratings of ECAI.

Loss given default is the percentage of a relating asset when the client defaults. LGD 
is related tightly to EAD. Exposure at default is the value of the outstanding liability 
towards the client at the time of the event of its default. Applying Foundation IRB, 
the calculation method of EAD is determined by the local regulator; however, by 
Advanced IRB, the banks are allowed to develop their own methodology.

Maturity is a duration type parameter, which indicates the average remaining part of 
the credit period.

Advanced IRB enables another classification of exposures and assets, which may 
reflect more on the characteristics of the bank's portfolio. Furthermore, the range of 
the possibly applied credit risk mitigation actions expands as well.

Although RWA can be determined by various methods by applying either 
Foundation IRB or Advanced IRB, according to Basel II, the minimum capital 
requirement is the 8 percent of RWA in both cases.

Determination of the operational risk can be executed by different methods. The 
simplest way of the calculation is the so-called Basic Indicator Approach (BIA). 
Based on this approach, the capital requirement is defined as the average of gross 
incomes (GI) of the previous 3 years of the bank multiplied by a given measure, 
Alpha, which is determined as 15 percent by the legislation.
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The Standardized Approach (STA) is a little bit more complex. This approach 
adopts certain methods of BIA; however, using STA, it is required to determine the 
gross income regarding the lines of business (LoB). The GI of each LoB should be 
multiplied by a fixed measure, Beta (12 percent, 15 percent, or 18 percent, depending 
on the LoB). The capital requirement is the sum of the products of GIs and betas that 
refer to the LoBs.

The aim of the Alternative Standard Approach (ASTA) is to avoid double 
imposition due to credit risk. ASTA adopts the methodology of STA; however, in the 
case of two LoBs (Retail and Commercial banking), the calculation differs from the 
standardized approach. Regarding these LoBs, GI is replaced by the product of the 
value of loans and advances (LA) and a fixed factor (m is equal to 0,035).

The most complex methodology of the determination of operational risk is the 
Advanced Measurement Approach (AMA). This approach has both quantitative 
and qualitative requirements, which should be met. The internal model developed 
for the estimation of the operational risk has to correspond to the standards of safe 
operation, such as risk measurement on 99.9 percent possibility regarding the period 
of 1 year. Furthermore, banks that apply the AMA have to provide data of the past 5 
years in relation to their losses.

Risk-mitigation techniques can be applied for up to 20 percent of the capital 
requirement only by banks that use the advanced measurement approach. The  
banks also have to meet certain strict requirements to be allowed to adopt the  
risk-mitigation effects.

Regarding the calculation of capital requirement for market risk, the standardized 
approach is based on the measures and techniques defined by regulators. For more 
advanced approaches, determination of Value at Risk (VaR) is considered the 
preferred methodology.

Supervisory review
Basel II defines the supervisory and interventional responsibilities of local regulators. 
It enables them to prescribe a higher capital requirement than what is determined in 
Pillar I. Furthermore, it allows regulating and managing the remaining risks that are 
not described in Pillar I, such as liquidity, concentration, strategic, and systemic risks.

The International Capital Adequacy Assessment Process (ICAAP) is meant to 
ensure that the bank operates an appropriately sophisticated risk management 
system, which measures, quantifies, summarizes, and monitors all the potentially 
occurring risks. Furthermore, it should oversee whether the banks have enough 
capital determined, based on internal methods, to cover all the mentioned risks.
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The Supervisory Review Evaluation Process (SREP) is defined as the procedure for 
the examination of risk and capital adequacy of the institutes executed by the local 
regulator. Moreover, considering Pillar II, the regulator has to regularly monitor 
the capital adequacy according to Pillar I, and intervene in order to ensure the 
sustainable level of capital.

Transparency
Pillar III of Basel II focuses on the disclosure requirements of banks. It refers mainly 
to the listed institutes, which are required to share information regarding the scope 
of application of Pillar I-II, risk assessment processes, risk exposure, and capital 
adequacy. (Basel Committee on Banking Supervisions (1999): A New Capital Adequacy 
Framework; Consultative paper; June 1999; http://www.bis.org/publ/bcbs50.pdf.)

Basel III
Even before the financial crisis, the need for review and the fundamental 
strengthening of Basel II framework became evident. During the crisis, it was 
apparent that the banks had inadequate liquidity position and too much leverage. 
Risk management should have been more significant, while credit and liquidity risks 
have usually been mispriced.

The third installment of Basel Accords was developed in 2010 with the aim of 
providing a more stable and safe operation framework for the financial sector.  
Basel III and the relating Capital Requirements Directive (CRD IV) are supposed  
to be implemented into the local legislation by 2019.

Although the implementation will be executed in several steps, the financial 
institutions are required to commence the preparation for the application of new 
capital standards even years before the deadline.

The areas concerned in the regulation of Basel III are the following:

• The elements of the required capital—implementing a capital conservation 
buffer and a counter-cyclical buffer

• Introduction of leverage ratio
• Implementation of liquidity indicators
• Measurement of the counterparty risk
• Capital requirement of credit institutions and investment companies
• Implementation of global prudential standards

http://www.bis.org/publ/bcbs50.pdf
http://www.bis.org/publ/bcbs50.pdf
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In order to improve the quality of capital, Basel III regulates the composite of 
required capital. Core Tier 1 is defined within Tier 1 capital, and a so-called capital 
conservation buffer is implemented with the constant measure of 2.5 percent.  
A discretionary counter-cyclical buffer is introduced as well, which is considered  
an additional 2.5 percent of capital during periods of high-credit growth.

A leverage ratio was also defined by Basel III, as a minimum amount of  
loss-absorbing capital compared to all assets and off-balance sheet items  
regardless of risk weighting.

The most significant provision of Basel III is the introduction of two liquidity 
indicators. The first one, considered on a short-term horizon, is the liquidity 
coverage ratio (LCR), which should be implemented in 2015. LCR is the value of 
liquid assets relative to the cumulated net cash flow within a 30-day period. At the 
beginning, the minimum value of LCR should be 60 percent; however, it is intended 
to be raised to 100 percent by 2019. The formula for the LCR is as follows:

LiquidassetsLCR
Totalnetcash - flowwithin30days

=

The Net stable funding ratio (NSFR) is going to be implemented in 2018. The aim of 
this indicator is to avoid maturity gaps between the assets and liabilities of financial 
institutions. The objective is to provide financing of long-term assets that concern the 
stability of liabilities. Consequently, NSFR is defined as the stable liabilities on stable 
assets to be financed. The measure of NSFR should be a minimum 100 percent in 
2019 as well.

StablefundingNSFR
Long - termassets

=

To avoid systemic risks, capital requirement is implemented also with regard to 
counterparty risk. Expectations regarding the capital adequacy and liquidity position 
of counterparties are framed according to the Basel III regulation. Regarding the 
capital adequacy, institutes that mainly apply internal calculation methods are 
involved in the new regulation, since the regulation takes into consideration the 
more detailed examination of potential risks that occur and the exposures towards 
Systematically Important Financial Institutions (SIFI). Based on the third installment 
of Basel Accords, the institutions should identify the SIFI based on an indicator than 
apply the requirements determined by the regulator regarding them (refer to History 
of the Basel Committee).
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The main measures and phase-in arrangements of Basel III are included in the 
following table:

Risk measures
Financial risk is a tangible and quantifiable concept, a value that you can lose on 
a certain financial investment. Note that here, we strictly differentiate between 
uncertainty and risk, where the latter is measurable with mathematical-statistical 
methods with exact probabilities of the different outcomes. However, there are 
various kinds of measures for financial risks. The most common risk measure is the 
standard deviation of the returns of a certain financial instrument. Although it is 
very widespread and easy to use, it has some major disadvantages. One of the most 
important problems of the standard deviation as a risk measurement is that it treats 
upside potential the same way as downside risk. In other words, it also punishes a 
financial instrument that might bring huge positive returns and little negative ones 
than a less volatile asset.
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Consider the following extreme example. Let's assume that we have two stocks on 
the stock market and we can exactly measure the stocks' yields in three different 
macroeconomic events. Next year for stock A, a share of a mature corporation 
brings 5 percent yield if the economy grows, 0 percent if there is stagnation, and 
loses 5 percent if there's a recession. Stock B is a share of a promising start-up firm; 
it skyrockets (+ 50 percent) when there's a good economic environment, brings 30 
percent if there's stagnation, and has a 20 percent annual yield even if the economy 
contracts. The statistical standard deviations of stock A and B's returns are 4.1 
percent and 12.5 percent respectively. Therefore, it is riskier to pick stock A than 
stock B if we make our choice based on the standard deviation. However, using our 
common sense, it is obvious that stock B is better in every case than stock A as it 
gives a better yield in all different macroeconomic situations.

Our short example perfectly showed the biggest problem with standard deviation as 
a risk measure. The standard deviation does not meet the most simple condition of 
a coherent risk measure, the monotonicity. We call the σ risk measure coherent if it 
is normalized and meets the following criteria. See the work of Artzner and Delbaen 
for further information on coherent risk measures:

• Monotonicity: If portfolio X1 has no lower values than portfolio X2 under  
all scenarios, then the risk of X1 should be lower than X2. In other words,  
if an instrument pays more than another one in every case, it should have  
a lower risk.

( ) ( )1 2 1 2 1 2, , nIf X X then X X X X Rσ≥ ≤ ∈

• Sub-additivity: The risk of two portfolios together should be less than the 
sum of the risks of the two portfolios separately. This criterion represents  
the principle of diversification.

( ) ( ) ( )1 2 1 2 1 2, , nX X X X X X Rσ σ σ+ ≤ + ∈

• Positive homogeneity: Multiplying the portfolio values by a constant 
multiplies the risk by the same extent.

( ) ( ) , ,nX X X R Rσ λ λσ λ= ∈ ∈
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• Translation invariance: Adding a constant value to the portfolio decreases 
the risk by the same amount. See the following formula:

( ) ( ) , ,nX X X R Rσ ε σ ε ε+ = − ∈ ∈

If the standard deviation is not a reliable risk measure, then what can we use? 
This question popped up at J.P. Morgan by CEO Dennis Weatherstone in the early 
1990s. He called the firm's departments for the famous 4:15 report, in which they 
aggregated the so-called values at risk 15 minutes before the market closed. The CEO 
wanted an aggregated measure that showed what amount the firm might lose in the 
next trading day. As this cannot be calculated with full certainty, especially in the 
light of the 1987 Black Monday, the analysts added a probability of 95 percent.

The figure that shows what a position might lose in a specified time period with a 
specified probability (significance level) is called the Value at Risk (VaR). Although 
it is quite new, it is widely used both by risk departments and financial regulators. 
There are several ways to calculate value at risk, which can be categorized into 
three different methods. Under the analytical VaR calculation, we assume that we 
know the probability distribution of the underlying asset or return. If we do not 
want to make such assumptions, we can use the historical VaR calculation using the 
returns or asset values realized in the past. In this case, the implicit assumption is 
that the past development of the given instrument is a good estimator for the future 
distribution. If we would like to use a more complex distribution function that is 
hard to tackle by analytics, a Monte-Carlo simulation could be the best choice to 
calculate VaR. This can be used by either assuming an analytical distribution of the 
instrument or by using past values. The latter is called historic simulation.

Analytical VaR
When calculating Value at Risk (VaR) in an analytical approach, we need to  
assume that the return of a financial instrument follows a certain mathematical 
probability distribution. The normal distribution is used most commonly; that is  
why we usually call it the delta-normal method for VaR calculation. Mathematically,  
X ~ N (μ,σ), where μ and σ are the mean and the standard deviation parameters of 
the distribution. To calculate the value at risk, we need to find a threshold (T) that 
has the ability that the probability of all data bigger than this is a (a is the level of 
significance that can be 95 percent, 99 percent, 99.9 percent, and so on). Using the 
standard normal cumulative distribution for function F:

( ) 1TP X F Tµ α
σ
− ≤ = = − 
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This indicates that we need to apply the inverse cumulative distribution function  
to 1- a:

( ) ( )1 11 1T F T Fµ α µ σ α
σ

− −−
= − → = + ⋅ −

Although we do not know the closed mathematical formula of neither the 
cumulative function of normal distribution nor its inverse, we can solve this  
by using a computer.

We use R to calculate the 95 percent, 1 day VaR of the Apple stocks using the delta 
normal method, based on a two-year dataset. The estimated mean and standard 
deviation of Apple returns are 0.13 percent and 1.36 percent.

The following code calculates that VaR for Apple stocks:

Apple <- read.table("Apple.csv", header = T, sep = ";")

r <- log(head(Apple$Price,-1)/tail(Apple$Price,-1))

m <- mean(r)

s <- sd(r)

VaR1 <- -qnorm(0.05, m, s)

print(VaR1)

[1] 0.02110003

The threshold, which is equal to the VaR if we apply it to the returns, can be seen  
in the following formula. Note that we always take the absolute value of the result, 
as VaR is interpreted as a positive number:

( )0.14 1.36 1.645 2.11VaR T= = + ⋅ − =

The VaR (95 percent, 1 day) is 2.11 percent. This means that it has 95 percent 
probability that Apple shares will not lose more than 2.11 percent in one day.  
We can also interpret this with an opposite approach. An Apple share will only  
lose more than 2.11 percent in one day with 5 percent probability. 
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The chart shown in the following figure depicts the actual distribution of Apple 
returns with the historic value at risk on it:

Historical VaR
The simplest way of calculating the value at risk is by using the historical approach. 
Here, we assume that the past distribution of the financial instrument's return 
represents the future too. Therefore, we need to find the threshold above which the 
α portion of the values can be found. In statistics, this is called the percentile. If we 
use a VaR with a 95- percent level of significance, for instance, then it will imply the 
lower fifth percentile of the dataset. The following code shows how to calculate the 
percentile in R:

VaR2 <- -quantile(r, 0.05) 
print(VaR2)

        5% 

0.01574694

Applying this to the Apple shares, we get a lower fifth percentile of 1.57 percent.  
The value at risk is the absolute value of this percentile. Therefore, we can either say 
that it has only 5 percent probability that Apple shares lose more than 1.57 percent in 
a day, or the stock will lose less than 1.57 percent with 95 percent likelihood.
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Monte-Carlo simulation
The most sophisticated approach to calculate the value at risk is the Monte-Carlo 
simulation. However, it is only worth using if other methods cannot be used. 
These reasons can be the complexity of the problem or the assumption of a difficult 
probability distribution. Nevertheless, this is the best method to show the powerful 
capabilities of R that can support risk management.

A Monte-Carlo simulation can be used in many different fields of finance and other 
sciences as well. The basic approach is to set up a model and to assume an analytic 
distribution of the exogenous variable The next step is to randomly generate the 
input data to the model in accordance with the assumed distribution. Then, the 
outcomes are collected and used to gather the result and draw the conclusion. When 
the simulated output data is ready, we can follow the same procedure as we would 
do if we used the historical approach.

Using a 10,000 step Monte-Carlo simulation to calculate the value at risk of Apple 
shares may seem to be an overkill, but it serves for the demonstration. The related R 
code is shown here:

sim_norm_return <- rnorm(10000, m, s)

VaR3 <- -quantile(sim_norm_return, 0.05)

print(VaR3)

        5% 

0.02128257

We get a result of 2.06 percent for the value at risk as a lower fifth percentile of  
the simulated returns. This is very close to the 2.11 percent estimated with the  
delta-normal method, which is not a coincidence. The basic assumption that the  
yield follows a normal distribution is the same; thus, the minor difference is only  
a result of the randomness of the simulation. The more steps the simulation takes, 
the closer the result is to the delta-normal estimation.

A modification of the Monte-Carlo method is the historical simulation when  
the assumed distribution is based on the past data of the financial instrument.  
The generation of the data here is not based on an analytical mathematical function 
but the historical values are selected randomly, preferably via an independent 
identical distribution method.
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We also use a 10,000 element simulation for the Apple stock returns. In order to 
select the values from the past randomly, we assign numbers to them. The next step 
is to simulate a random integer between 1 and 251 (the number of historic data) and 
then use a function to find the associated yield. The R code can be seen here:

sim_return <- r[ceiling(runif(10000)*251)]

VaR4 <- -quantile(sim_return, 0.05)

print(VaR4)

        5% 

0.01578806

The result for the VaR is 1.58 percent, which is not surprisingly close to the value 
derived from the original historic method.

Nowadays, value at risk is a common measure for risk in many fields of finance. 
However, in general, it still does not fulfill the criteria of a coherent risk measure 
as it fails to meet sub-additivity. In other words, it might discourage diversification 
in certain cases. However, if we assume an elliptically distributed function for the 
returns, the VaR proves to be a coherent risk measure. This essentially means that  
the normal distribution suits the estimation of VaR perfectly. The only problem is 
that the stock returns in real life are rather leptokurtic (heavy-tailed) compared to  
the Gaussian curve as it is experienced as a stylized fact of finance.
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In other words, the stocks in real life tend to show more extreme losses and profits 
than it would be explained by the normal distribution. Therefore, a developed 
analysis of risk assumes more complex distributions to cope with the heavy-tailed 
stock returns, the heteroskedasticity, and other imperfections of the real-life yields.

The use of Expected Shortfall (ES) is also included in the developed analysis of risk, 

which is, in fact, a coherent risk measure, no matter what distribution we assume. 

The expected shortfall concentrates on the tail of the distribution. It measures the 

expected value of the distribution beyond the value at risk. In other words, the 

expected shortfall at a significance level is the expected value of the worst α percent 

of the cases. Mathematically, ( )
0

1 ,ES VaR X d
α

α γ γ
α

= ∫ .

Here, VaRγ is the value at risk of the distribution of returns.

Sometimes, an expected shortfall is called conditional value at risk (CVaR). 
However, the two terminologies do not exactly mean the same thing; they can be 
used as synonyms if continuous distribution functions are used for the risk analysis. 
Although R is capable of dealing with such complex issues as the expected shortfall, 
it goes beyond the goals of this book. For further information on this topic, see the 
work of Acerbi, C.; Tasche, D. (2002).

Risk categories
Banks face various kinds of risks, for example, client default, changes in the market 
environment, troubles in refinancing, and fraud. These risks are categorized into 
credit risk, market risk, and operational risk.

Market risk
Losses realized from the movements of the market prices are covered by the market 
risk. It may include the losses on the trading book positions of a bank or financial 
institution, but the losses realized on interest rate or currency that may be in 
connection with the core business of a bank also belong to market risk. Market risk 
can include several subcategories such as equity risk, interest rate risk, currency 
risk, and commodity risk. Liquidity risk is also covered in this topic. Based on the 
advanced approach of the Basel II directive, the capital needed to cover these risks is 
mostly based on value at risk calculations.



Capital Adequacy

[ 300 ]

Currency risk refers to the possible loss on the movements of the foreign exchange 
rates (for example, EUR/USD) or on its derivative products, while commodity risk 
covers the losses on the movements of commodity prices (for example, gold, crude 
oil, wheat, copper, and so on). Currency risk can also affect the core business of a 
bank if there is a mismatch between the FX exposure in funding and lending. FX 
mismatch can lead to a serious risk in a bank; thus, regulators usually have strict 
limitations on the maximum amount of the so-called open FX positions. This results 
in a mismatch of the FX exposure between the liability and the asset side of the bank. 
This can be tackled by certain hedging deals (such as cross-currency swaps, currency 
futures, forwards, FX options, and so on).

Equity risk is the possible loss on stocks, stock indices, or derivative products with 
equity underlying. We saw examples on how to measure the equity risk using either 
the standard deviation or the value at risk. Now, we will show examples on how the 
risk of the equity derivative portfolio can be measured using the already mentioned 
techniques. First, we look at a single call option's value at risk, and we then analyze 
how a portfolio of a call and a put option can be dealt by this method.

First, let's assume that all the conditions of the Black-Scholes model consist of the 
market. For more information on the Black-Scholes model and its condition, refer to 
the book of John. C. Hull [9]. A stock is currently traded at S = USD 100, which pays 
no dividend and follows a geometric Brownian motion with μ equal to 20 percent 
(drift) and σ equal to 30 percent (volatility) parameters.

An ATM (at-the-money) call option on this stock matures in two years from now, 
and we would like to determine the 95 percent one year value at risk of this option. 
We know that the stock price follows a lognormal distribution, while the logarithmic 
rate of return follows a normal distribution with the following m and s parameters:

( )If dS Sdt SdW tµ σ= +

( ) ( )~ N ,then ln S m s

2

15.5 30.
2

where m and sσµ σ= − = = =
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Now, let's calculate the current price of the derivative given that the Black-Scholes 
conditions exist. Using the Black-Scholes formula, the two-year option is trading at 
USD 25.98:

( ) ( ) ( )0 1 2 25.98c S N d PV X N d= ⋅ − ⋅ =

Note that the price of the call option is a monotone-growing function of the spot 
price of the underlying.

This characteristic helps us a lot in solving this problem. What we need is a threshold 
of the option price below which it goes with only a 5-percent probability. However, 
because it is a monotone growing function of S, we only need to know where this 
threshold is for the stock price. Given the m and s parameters, we can easily find this 
value using the following formula:

( ) ( )1 1 0.155 0.3 1.645
0 100 71.29FT S e eµ σ α−+ ⋅ − + ⋅ −= ⋅ = ⋅ =

Therefore, we now know that there is only a 5 percent chance that the stock price 
goes below USD 71.29 in one year (the time period for m and s parameters is one 
year). If we apply the Black-Scholes formula on this price and with a one year less 
maturity of the option, we get the threshold for the call option price.

( ) ( ) ( )1 2 2.90Tc S N d PV X N d= ⋅ − ⋅ =

Now, we know that there is a 95 percent likelihood that the option price goes above 
USD 2.90 in one year. So the value that we lose at most with 95 percent probability is 
the difference between the actual option price and the threshold. So the call option's 
95 percent VaR for one year is as follows:

25.98 2.90 23.08VaR = − =

25.98 2.90 88.82%
25.98

VaR −
= =
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Therefore, the call option on the given stock may only lose more than USD 23.08 or 
88.82 percent with 5 percent probability in one year.

The calculations can be seen below in the following R codes. Note that before 
running the code, we need to install the fOptions library using this command:

install.packages("fOptions")

library(fOptions)

X <- 100

Time <- 2

r <- 0.1

sigma <- 0.3

mu <- 0.2

S <- seq(1,200, length = 1000)

call_price <- sapply(S, function(S) GBSOption("c", S, X, Time, r, r,  
  sigma)@price)

plot(S, call_price, type = "l", ylab = "", main = "Call option price  
  in function of stock prompt price")

The following screenshot is the result of the preceding command:
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The situation is not that simple if we would like to find the value at risk of a certain 
portfolio of call and put options. Let's use the previous example with the stock 
trading at USD 100. Now, we add an ATM put option to the portfolio besides the 
ATM call option to form a complex position known as straddle in finance. From our 
point of view, the problem with this portfolio is the non-monotonicity of the function 
of the stock price. As seen in the chart shown in the next image, the value of this 
portfolio as a function of the stock price is a parabola or is similar to a V if the option 
is just before its maturity.

Therefore, the previous logic of finding the appropriate stock price threshold to 
calculate the option price threshold does not work here. However, we can call the 
Monte-Carlo simulation method to derive the desired value.

First, let's use the so-called put-call parity to gather the put option's value using  
the call price that has been calculated previously. The put-call parity is calculated  
as follows:

( )c p S PV X− = − →

( ) 7.85p c S PV X→ = − + =

Here, c and p is the call and put option prices, both with a strike price of X, and S  
is the actual stock price Hull (2002). The value of the full portfolio is USD 33.82  
as a consequence.

Now, we use the simulation to gather 10,000 realizations of a possible portfolio 
value derived from a randomly generated set of input data. We ensure that the 
stock follows a geometric Brownian motion and that the logarithmic rate of return 
follows a normal distribution with the m and s parameters (15.5 percent and 30 
percent). Applying the generated logarithmic return on the original stock price 
(USD 100), we will reach a simulated stock price for 1 year from now. This can be 
used to recalculate the value of both the call and put options using the Black-Scholes 
formula. Note that here, we replace the original stock price with the simulated one, 
while we also use a one year less maturity for the calculations. As the last step, we 
create 10,000 realizations of the simulated portfolio value (c + p), and then find the 
lower fifth percentile. This will be the threshold below which the option portfolio 
value goes only in 5 percent of the cases. The steps can be seen in the following code:

X <- 100

Time <- 2

r <- 0.1

sigma <- 0.3
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mu <- 0.2

S <- seq(1,200, length = 1000)

call_price <- sapply(S, function(S) GBSOption("c", S, X, Time, r, r,  
  sigma)@price)

put_price <- sapply(S, function(S) GBSOption("p", S, X, Time, r, r,  
  sigma)@price)

portfolio_price <- call_price + put_price

windows()

plot(S, portfolio_price, type = "l", ylab = "", main = "Portfolio  
  price in function of stock prompt price")

# portfolio VaR simulation

p0 <- GBSOption("c", 100, X, Time, r, r, sigma)@price +  
  GBSOption("p", 100, X, Time, r, r, sigma)@price

print(paste("price of portfolio:",p0))

[1] "price of portfolio: 33.8240537586255"

S1 <- 100*exp(rnorm(10000, mu - sigma^2 / 2 , sigma))

P1 <- sapply(S1, function(S) GxBSOption("c", S, X, 1, r, r,  
  sigma)@price + GBSOption("p", S, X, 1, r, r, sigma)@price )

VaR <- quantile(P1, 0.05)

print(paste("95% VaR of portfolio: ", p0 - VaR))

The preceding command yields the following output:
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The desired threshold came out at USD 21.45; thus, the value at risk of the portfolio 
is 33.82 - 21.45 = USD 12.37. Therefore, the probability that the portfolio loses more 
than 12.37 in one year is only 5 percent.

Interest rate risk arises from the core business, that is, the lending and refinancing 
activity of a bank. However, it also includes the possible losses on bonds or fixed 
income derivatives due to unfavorable changes in interest rates. The interest rate risk 
is the most important market risk for a bank, given the fact that it mostly uses short-
term funding (client deposits, interbank loans, and so on) to refinance long-term 
assets (such as mortgage loans, government bonds, and so on).

Calculating the value at risk of a position or the whole portfolio can be a useful 
tool to measure the market risk of a bank or financial institution. However, several 
other tools are also available to measure and to cope with the interest rate risk for 
example. Such a tool can be the analysis of the mismatch of the interest-sensitivity 
gap between assets and liabilities. This method was among the first techniques in 
asset liability management to measure and tackle interest-rate risk, but it is much 
less accurate than the modern risk measurement methods. In the interest-sensitivity 
gap analysis, asset and liability elements are classified by the average maturity or the 
timing of interest-rate reset in case the asset or liability is a floater. Then, the asset 
and liability elements are compared in each time period class to give a detailed view 
on the interest-rate sensitivity mismatch.

The VaR-based approach is a much more developed and accurate measure for the 
interest rate risk of a bank or financial institution. This method is also based on the 
interest rate sensitivity and is represented by the duration (and convexity) of a fixed 
income portfolio rather than the maturity mismatch of asset and liability elements.

Credit risk
The primary risk that a bank faces is the possible default of the borrower, where 
the required payment is failed to be made. Here, the risk is that the lender loses the 
principal, the interest, and all related payments. The loss can be partial or complete 
depending on the collateral and other mitigating factors. The default can be a 
consequence of a number of different circumstances such as payment failure from 
a retail borrower on mortgage, a credit card, or a personal loan; the insolvency of a 
company, bank, or insurance firm; a failed payment on an invoice due; the failure of 
payment by the issuer on debt securities, and so on.
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The expected loss from credit risk can be represented as a multiple of three different 
factors: the PD, LGD, and EAD:

Expectedloss PD LGD EAD= ⋅ ⋅

Probability of default (PD) is the likelihood that the event of failed payment 
happens. This is the key factor of all credit risk models, and there are several types of 
approaches to estimate this value. The loss given default (LGD) is the proportion that 
is lost in percentage of the claimed par value. The recovery rate (RR) is the inverse 
of LGD and shows the amount that can be collected (recovered) even if the borrower 
defaults. This is affected by the collaterals and other mitigating factors used in 
lending. The exposure at the default (EAD) is the claimed value that is exposed to the 
certain credit risk.

Banks and financial institutions use different methods to measure and handle credit 
risk. In order to reduce it, all the three factors of the multiple can be in focus. To keep 
the exposure under control, banks may use limits and restrictions in lending towards 
certain groups of clients (consumers, companies, and sovereigns). Loss given default 
can be lowered by using collaterals such as mortgage rights on properties, securities, 
and guarantees. Collaterals provide security to the lenders and ensure that they get 
back at least some of their money. Other tools are also available to reduce loss given 
default, such as credit derivatives and credit insurance.

A credit default swap (CDS) is a financial swap agreement that works as insurance 
against the default of a third party. The issuer or seller of the CDS agrees to 
compensate the buyer in an event that the debt holder defaults. The buyer pays a 
periodical fee for the seller set in percentage of the par value of the bond or other 
debt security. The seller pays the par value to the buyer and receives the bond in the 
case of a credit event. If there is no default by the debtor, the CDS deal terminates at 
maturity without any payment from the seller.
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The probability of default can be mitigated by due diligence of the business partners 
and the borrowers, using covenants and strict policies. Banks use a broad variety 
of due diligence, ranging from the standardized scoring processes to more complex 
in-depth research on clients. By applying these methods, banks can screen out those 
clients who have too high probability of default and would therefore hit the capital 
position. Credit risk can also be mitigated by risk-based pricing. Higher probability 
of default leads to a higher expected loss on credit risk that has to be covered by the 
interest rate spread applied to the specific client. Banks need to tackle this in their 
normal course of business and only need to form capital to the unexpected loss. 
Therefore, the expected loss on credit risk should be a basic part of product pricing.

Estimating the probability of default is a very important issue for all banks and 
financial institutions. There are several approaches, of which we examine three 
different ones:

• An implicit probability is derived from the market pricing of risky bonds or 
credit default swaps (for example, the Hull-White method)

• Structural models (for example, the KMV model)
• Current and historic movements of credit ratings (for example, 

CreditMetrics)

The first approach assumes that there are traded products on the market related to 
the instruments as an underlying that have credit risk. It is also assumed that the risk 
is perfectly shown in the market pricing of such instruments. For example, if a bond 
of a risky company is traded on the market, the price of the bond will be lower than 
the price of a risk-free security. If a credit default swap is traded on the market on a 
certain bond, then, it also reflects the market's evaluation of the risk on that security. 
If there is enough liquidity on the market, the expected credit risk loss should be 
equal to the observed price of the risk. If we know this price, we can determine the 
implicit probability of the default price.

Let's take a look at a short example. Let's assume that a 1 year maturity zero-coupon 
bond with a par value of USD 1,000 issued by a BBB-rated corporation trades at 
a YTM (yield-to-maturity) of 5 percent. An AAA-rated government T-Bill with 
similar characteristics but without credit risk trades at 3 percent. We know that if the 
corporate bond defaults, 30 percent of the par value will be recovered. What is the 
probability of the bond defaulting if the market prices properly?
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First, we need to calculate the current market price of both the corporate and the 

government bond. The corporate bond should trade at ( ) ( )1
1,000 USD952.4

1 1 0.05c t
CFP
r

= = =
+ +

. 

Similarly, the government bond should trade at 
( )1
1,000 USD970.9
1 0.03gP = =
+

.

The price difference between the two bonds is USD 18.5. The expected credit loss 
is PD∙LGD∙EAD in one year. If we wanted to take a hedge against the credit loss 
through insurance or CDS, the present value of this amount would be the maximum 
that we would pay. As a consequence, the price difference of the two bonds should 
equal to the present value of the expected credit loss. The LGD is 70 percent as 30 
percent of the par value is recovered in the case of a default.

Therefore, ( ) 0.7 1,000 18.5
1.03

PDPV PD LGD EAD ⋅ ⋅
⋅ ⋅ = =  or 1.03 18.5 2.72%

0.7 1,000
PD ⋅

= =
⋅

.

So the implicit probability of default is 2.72 percent during the next year, if the 
market prices are proper. This method can also be used if there is a credit derivative 
traded on the market related to the specific bond.

Structural methods create a mathematical model based on the characteristics of 
the financial instrument that is exposed to the credit risk. A common example is 
the KMV model created by the joint company founded by three mathematicians, 
Stephen Kealhofer, John McQuown, and Oldřich Vašíček. Currently, this company 
runs under the name of Moody's Analytics after having been acquired by Moody's 
rating agency in 2002.

The KMV model is based on Merton's credit model (1974), which regards both the 
debt and equity securities of a corporation with credit risk as derivatives similar 
to options. The basic idea is that if a company is solvent, then the market value of 
its assets (or enterprise value) should exceed the par value of the debts it holds. 
Therefore, just before the maturity of the corporate bonds, they estimate their par 
value and the value of the equity (market capitalization of a public company). 
However, if the value of assets misses the par value of debt at maturity, the owners 
might decide to raise the capital or go bankrupt. If the latter is the case, the market 
value of corporate bonds will equal the asset value, and the equity holders will get 
nothing during liquidation.

The choice between the bankruptcy and capital raising is called the bankruptcy option, 
which has the characteristics of a put option. This exists because the equity holders 
have no more responsibility on the company than the value they invested (the share 
price cannot go to negative). More specifically, the value of the corporate bond is the 
combination of a bond without credit risk and a bankruptcy option, which is a short 
put option from the point of view of the bondholder (long bond + short put). 
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The equity of the company can be treated as a call option (long call). The asset 
value of the company is the sum of all the equations, as shown in this formula: 

( )V PV D p c= − + , where D is the par value of the corporate debt, V is the asset value, c 
is the market value of the equity (the call option in this regard), and p is the value of 
the bankruptcy option.

The KMV model

In practice, the volatility of both the asset value and the equity is necessary  
to calculate the actual value of the risky corporate bond. A public company's  
equity volatility can easily be estimated from stock price movements, but the asset 
volatility is not available as real economy goods are usually not traded publicly. 
The market value of assets is also a tricky one due to the same reason. Therefore, 
the KMV has two equations and two unknown variables. The two equations are 
the conditions of the Black-Scholes theory ( ) ( ) ( )1 2E V N d PV D N d= ⋅ − ⋅ , which is based 
on the Black-Scholes equation, and E V

EE V
V

σ σ∂
⋅ = ⋅ ⋅

∂
, which is based on Itō's lemma, 

where E and V are the market values of equity and assets, D is the par value of 
the bond, σE and σV are the volatilities of the equity and the assets. The E

V
∂
∂

 is the 
derivative of E with respect to V, and it equals to N(d1), based on the Black-Scholes 
theory. The two unknown variables are V and σV.

Now, let's take a look at an example where the market value of a company's equity 
(market capitalization) is USD 3 billion with 80 percent volatility. The company has a 
single series of zero-coupon bonds with a par value of USD 10 billion, which matures 
exactly in one year. The risk-free logarithmic rate of return is 5 percent for one year. 
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The solution of the preceding equation in R can be seen as follows:

install.packages("fOptions")

library(fOptions)

kmv_error <- function(V_and_vol_V, E=3,Time=1,D=10,vol_E=0.8,r=0.05){

  V <- V_and_vol_V[1]

  vol_V <- V_and_vol_V[2]

  E_ <- GBSOption("c", V, D, Time, r, r, vol_V)@price

  tmp <- vol_V*sqrt(Time)

  d1 <- log(V/(D*exp(-r*Time)))/tmp + tmp/2

  Nd1 <- pnorm(d1)

  vol_E_ <- Nd1*V/E*vol_V

  err <- c(E_ - E, vol_E_ - vol_E)

  err[1]^2+err[2]^2

}

a <- optim(c(1,1), fn = kmv_error)

print(a)

The value of the aggregate of the corporate bonds is USD 9.40 billion with a 
logarithmic of yield to maturity at 6.44 percent, and the value of the assets are USD 
12.40 billion with 21.2 percent volatility.

The third way of estimating the probability of default is the rating-based approach. 
This method of estimation starts from the credit rating of different financial 
instruments or economic entities (companies, sovereigns, and institutions). 
CreditMetrics analytics was originally developed by JP Morgan's risk management 
division in 1997. Since then, it has evolved further, and now, it is widely used 
among other risk management tools. The basic idea of CreditMetrics is to estimate 
probabilities on how the credit rating of an entity can change over time and what 
effect it can have on the value of the securities issued by the same entity. It starts 
with the analysis of the rating history and then creates a so-called transition matrix 
that contains the probabilities of how the credit rating might develop. For further 
information on CreditMetrics, see the technical book published by MSCI (Committee 
on Banking Regulations and Supervisory Practices (1987)).
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Operational risk
The third major risk category is the operational risk. This refers to all the possible 
losses that can arise during the operation of a bank, financial institution, or another 
company. It includes losses from natural disasters, internal or external fraud (for 
example, bank robbery), system faults or failures, and inadequate working processes. 
These risks can be categorized into four different groups seen below:

• Low impact with low probability: If the risk as well as its potential impact 
on the operation is low, then it is not worth the effort to handle it.

• Low impact with high probability: If a risk event happens too often, it 
means that some processes of the company should be restructured, or it 
should be included in the pricing of a certain operation.

• High impact with low probability: If the probability of a high-impact event 
is low, the most suitable method to mitigate the risk is to take insurance on 
such events.

• High impact with high probability: If both the impact and the probability 
of such a risk are high, then it's better to shut down that operation. Here, 
neither the restructuring nor the insurance works.

This part of the risk management belongs rather to the actuarial sciences than 

financial analysis. However, the tools provided by R are also capable of handling 

such problems as well. Let's take an example of the possible operational losses on the 

failures of an IT system. The number of failures follow a Poisson distribution with λ 

= 20 parameter, while the magnitude of each loss follows a lognormal distribution 

with m equal to 5 and s equal to 2 parameters. The average number of failures 

in a year is 20 based on the Poisson distribution, while the expected value of the 

magnitude of a loss is: 

2

2 1097
sm

e
 

+  
  = .

However, we need to determine the joint distribution, the expected value, and 
the quantile of 99.9 percent of the aggregate annual loss. The latter will be used to 
determine the necessary capital set by the advanced measurement approach (AMA) of 
Basel II. We use a 10,000 element Monte-Carlo simulation. The first step is to generate 
a discrete random variable that follows a Poisson distribution. Then, we generate 
independent variables with lognormal distribution in the number of the previously 
generated integers, and we aggregate them. We can create the distribution of the 
aggregated losses by repeating this process 10,000 times. The expected value of the 
aggregate losses is USD 21,694, and the quantile of 99.9 percent is USD 382,247. 
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Therefore, we will only lose more than USD 382 thousand in a year by the failure of 
the IT system in 0.1 percent of the cases. The calculations can be seen in R here:

op <- function(){

n <- rpois(1, 20)

z <- rlnorm(n,5,2)

sum(z)

}

Loss <- replicate(10000, op())

hist(Loss[Loss<50000], main = "", breaks = 20, xlab = "", ylab = "")

print(paste("Expected loss = ", mean(Loss)))

print(paste("99.9% quantile of loss = ", quantile(Loss, 0.999)))

The following is the screenshot of the preceding command:

We see the distribution of the aggregated losses in the chart shown in the preceding 
figure, which is similar to a lognormal distribution but is not necessarily lognormal.
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Summary
In this chapter, we learned the basic principles of the Basel Accords, the capital 
adequacy requirements in banking regulation, the risk measures and different risk 
types, and most importantly, the powerful tools of R used in risk management.

We saw that the Basel Accords are a world wide harmonized banking regulatory 
framework, and we learned the ongoing development and more sophisticated 
approaches of the financial regulations. Furthermore, we provided insights on risk 
measures, starting from the most simple standard deviation of returns to the more 
sophisticated ones, most importantly, Value at Risk (VaR). However, we saw that 
VaR is not necessarily a coherent risk measure, but it is still one of the most widely 
used figures in both regulation and risk management.

We went through the main risk types a bank or financial institution faces, that is, the 
credit risk, the market risk, and the operational risk. You can see how the different risk 
management approaches can be used to calculate the possible losses of the different 
risk types and the related capital adequacy. Finally, we presented several examples to 
show how R can be used to easily solve complex problems in risk management.
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Systemic Risks
One of the main lessons of the current crisis is that some institutions bear an 
outstanding risk for the financial system due to their size or special role. During 
a crisis, these institutions usually get state aid to prevent the whole system from 
collapsing, which would mean higher costs for the state and the real economy as 
well. One of the best examples is the AIG. Due to its activity on the CDS market,  
the Federal Reserve helped the insurer company to avoid defaulting since nobody 
knew the possible effects of the collapse of the institution.

These lessons motivated central banks and other regulators to put more emphasis on 
the examination and the regulation of systemically important financial institutions 
(SIFI). To do this, sophisticated identification of SIFIs is getting more and more 
important in financial literature. Expanding the former simple techniques, central 
banks and supervisory authorities tend to use more complicated methodologies 
based on network theory approaches using transaction data of financial markets. 
This information is important for investors as well because it helps to diversify their 
exposure towards the financial sector.

This chapter aims to introduce two techniques based on network theory, which can 
be used in the identification of SIFIs beyond the commonly used centrality measures.

Systemic risk in a nutshell
The global financial crisis highlighted that the size of some financial institutions 
was too big compared to the real economy, or they had too many connections with 
important counterparties. Because of this, any problems that affect these institutions 
can have fatal results on the whole financial system and the real economy. For this 
reason, governments spared no effort in saving these institutions. There are several 
global examples where governments or central banks give guarantees, inject capital, 
lend funding, or support the acquisition of their most important financial institutions 
(for example, Northern Rock, AIG, or Bear Stearns). 
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Without these steps, the chance for a collapse seemed to be too high, which 
would have been accompanied with extreme high costs because of bailouts. All 
in all, identification of systemically important financial institutions again became 
a hot topic. One of the main lessons of the crisis was that the biggest and most 
interconnected institutions have to be handled differently even during normal times. 
According to the new Basel framework, systemically important institutions have to 
be more strictly regulated than their less important partners. Due to their central role 
and their interconnectedness, the failure of these institutions can send shock waves 
through the financial system, which, in turn, can harm the real economy. The rational 
choices of individual institutions, which target the maximum possible profit, may 
be suboptimal on a system-wide level because they do not take into account their 
possible negative effects during stress periods.

Before the crisis, the systemic role of individual financial institutions was mainly 
assessed during the decision about the lender-of-last-resort support. Central banks 
took into account a bank's systemic role in their decision on lending to this bank 
in case of serious problems. A survey about analysis techniques used in different 
countries found that in many cases, authorities applied a similar methodology in the 
assessment of systemic importance. A wide variety of methods exist in practice, from 
traditional techniques (for example, indicator-based approaches that focus on market 
shares) and complex quantitative models to qualitative criteria, which include 
market intelligence (FSB (2009)). Several different types of ratios might be included 
in indicator-based methods (BIS (2011)). Usually, financial markets, financial 
infrastructure, and financial intermediation are in the focus of the examination, 
but the actual set of indicators can vary from country to country, depending on the 
special characteristics of the investigated banking system. 

Indicator-based methods mainly focus on each bank's market share in different parts 
of banking (from assets to liabilities and from notional values of OTC derivatives 
to payments cleared and settled, it may cover several fields, BIS (2011)). These 
indicator-based methodologies sometimes don't contain information about the 
interconnectedness of the institution on financial markets. Daróczi et al. (2013) 
provided some suggestions on how to include this information in the identification 
of systemically important banks. Simple measures of networks applied for each bank 
can expand the traditional indicator-based methods. In the financial literature, many 
different measures are used to evaluate the stability of the network or assess the role of 
individual institutions. Iazetta and Manna (2009) used the so-called geodesic frequency 
(also known as "betweenness") and degree to assess the resilience of the network. 
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They found that the use of these ratios helps in the identification of the big players in 
the system. Berlinger et al. (2011) also used network measures for the examination of 
individual institutions' systemic role.

In this chapter, we won't include these methods since Daróczi et al. (2013) showed 
the theory and its application in R. Our focus will be on two different methodologies 
of network theory, which are relevant in the identification of systemic importance 
and can be easily applied. First, we will show the core-periphery decomposition of 
financial markets. Second, we will show a simulation method that helps us to see the 
contagious effects in case any individual institution defaults.

The dataset used in our examples
In this chapter, we will use a fictional banking system and its interbank deposit 
market. We use this market as it usually has the biggest potential loss because these 
transactions are not collateralized.

For this analysis, we need a connected network, so we constructed one. This network 
should contain information on the exposure of banks against each other. Usually, 
we have data on the transaction, like in Table 13.1. Since the average maturity of 
transactions is very low on the interbank market, it is also possible to use this data. 
For example, we can construct the network by using the average monthly transaction 
size between every pair of banks. For this type of analysis, only the partners of each 
transaction and the contract sizes matter.

Table 13.1: The data set of the transaction
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With all this information, we can put together the matrix of a financial market  
(which can be visualized as a network).

The matrix used

The first step will be the core-periphery decomposition of the matrix. In this case,  

we will only need the so-called adjacency matrix A where ,

1,
0,i j

i bank lends to j
A

otherwise


= 
 .

The simulation method will be a bit more complicated since we will need some 
more information, both about the banks and the transactions. Instead of using the 
adjacency matrix, we will need a weighted matrix W, where the weights are the 
transaction sizes:

,

,
0,i j

w sumi lends to j
W

otherwise


= 


Figure 13.2 shows the weighted network of the examined market in the sample period:

Figure 13.2: The network of the interbank deposit market
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We will also need some bank-specific information. Vector C will contain the 
information about the bank's capital position. Ci shows the capital buffer of bank 
i over the regulatory minimum in the given currency. Of course, it is a matter of 
decision whether the capital buffer or the whole regulatory capital is considered 
during these exercises. In our view, it is better to use capital buffer since if a bank 
loses the entire buffer, the supervisory institution will make some steps. Vector S  
will contain the size of each bank. Si will then be the balance sheet total of bank i.

Figure 13.3: Vectors of capital position and size

Core-periphery decomposition
Interbank markets are tiered and operate in a hierarchical fashion. It is a well-
known characteristic of these markets that many banks are dealing with only a small 
number of big institutions, while these big institutions are acting like intermediaries 
or money-center banks. These big institutions are considered to be the core of the 
network, and the others are the periphery.

Many papers focused on this characteristic of real-world networks. For example, 
Borgatti and Everett (1999) examined this phenomenon on a network made of citation 
data, and found three journals to be the members of the core. Craig and von Peter 
(2010) used this core/periphery structure for the German interbank market. Their 
findings suggest that bank-specific features help to explain how banks position 
themselves in the interbank market. There is a strong correlation between the size 
and position in the network. As tiering is not random but behavioral, there are 
economic reasons (for example, fixed costs) why the banking system organizes itself 
around a core of money-center banks. This finding also implies that coreness can be a 
good measure of systemic importance.



Systemic Risks

[ 320 ]

A perfect core-periphery structure of a network can be presented easily by the matrix 
in Figure 13.3. Core banks are in the upper-left corner of the matrix. All of these 
banks are connected to each other. They can be considered as intermediaries. They 
are responsible for the stability of the market, and other banks are connected to each 
other through these core institutions. In the lower-right corner, there are periphery 
banks. They have no connection with other periphery institutions. They are only 
connected to the core as shown in the following screenshot:

Figure 13.4: The adjacency matrix in a core periphery structure

Craig and von Peter (2010) also suggest that not only the core-core or the  
periphery-periphery part of the matrix is important but the core-periphery part  
is important as well (the upper-right and the lower-left part). They emphasize that 
all of the core banks should have at least one connection with a periphery institution. 
This characteristic means that this periphery bank has no other possibility to be on 
this market but through a core bank. Although it is an important issue, we think  
that due to possible contagious effects, being a core bank in itself can result in 
systemic importance.

In many cases, it is impossible to get pure core/periphery decomposition in the case 
of real-world networks. This is true especially when we also have requirements for 
the core-periphery part of the matrix. For this reason, in the first step, we will try 
to solve the maximum clique problem (for example, by using the Bron-Kerbosch 
algorithm, Bron and Kerbosch 1973), and then, in the second step, we will choose the 
result with the lowest average degree in the periphery-periphery part. There are 
many other different methods to make a core-periphery decomposition. Due to its 
simplicity, we have chosen this one.
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Implementation in R
In this subsection, we show how to program the core-periphery decomposition.  
We will cover all the relevant information, from downloading essential R packages 
to loading the data set, and from the decomposition itself to the visualization of the 
results. We will show the code in small parts, and will give a detailed explanation on 
each of them.

We set the library that we will use during the simulation. The code will look for 
the input data files in this library. We download an R package igraph, which is an 
important tool in the visualization of financial networks. Of course, after the first run 
of this code, this row might be deleted since the installation process should not be 
repeated again. Finally, after the installation, the package should also be loaded first 
to the current R session.

install.packages("igraph")

library(igraph)

As the second step, we load the dataset, which is only the matrix in this case. The 
imported data is a data frame that has to be converted in a matrix form. As we 
have shown before (Figure 13.1), the matrix doesn't contain data when there are no 
transactions between two banks. The third row fills those cells with a 0. Then, since 
we only need the adjacency matrix, we change all the non-zero cells to 1. Finally, we 
create a graph as an object from the adjacency matrix.

adj_mtx <-  read.table("mtx.csv", header = T, sep = ";")

adj_mtx <- as.matrix(adj_mtx)

adj_mtx[is.na(adj_mtx)] <- 0

adj_mtx[adj_mtx != 0] <- 1

G <- graph.adjacency(adj_mtx, mode = "undirected")

The igraph package has a function called largest.clique, which results in a list 
of the solutions of the largest clique problem. CORE will contain all the sets of the 
largest cliques. The command is as follows:

CORE <- largest.cliques(G) 
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The largest clique will be the core of the graph and its complement will be the 
periphery. We create this periphery for every resulted largest clique. Then, we set 
different colors for the core nodes and for the periphery. This helps to distinguish 
them on the chart.

for (i in 1:length(CORE)){ 

core <- CORE[[i]]

periphery <- setdiff(1:33, core)

V(G)$color[periphery] <- rgb(0,1,0)

V(G)$color[core] <- rgb(1,0,0)

print(i)

print(core)

print(periphery)

Then, we count the average degree of the periphery-periphery matrix. For the 
identification of systemically important financial institutions, the best solution is 
when this average degree is the lowest.

H <- induced.subgraph(G, periphery)

d <- mean(degree(H))

Finally, we plot the graph in a new window. The chart will also contain the average 
degree of the periphery matrix.

windows()

plot(G, vertex.color = V(G)$color, main = paste("Avg periphery  
  degree:", round(d,2) ) )}

Results
By running the code, we get the charts of all the solutions for core-periphery 
decomposition. In every case, the average periphery degree will be presented on 
these charts. We have chosen the solution with the smallest average periphery 
degree. This means that in this solution, the periphery banks have very limited 
connection with each other. A problem in the core might make them unable to access 
the market. On the other side, as the core is completely connected, the contagion 
process might be fast and can reach every bank. All in all, the default of any core 
banks jeopardizes the access of periphery banks to the market and may be the source 
of a contagious process. Figure 13.5 presents the best solution of core-periphery 
decomposition with this simple method. 
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According to the results, 12 banks can be considered as systemically important 
institutions, namely 5, 7, 8, 11, 13, 20, 21, 22, 23, 24, 28, and 30.

Figure 13.5: Core-periphery decomposition with the smallest periphery degree

The simulation method
The best way to understand the role of a bank from a systemic point of view is  
to simulate the effects of its default. We can get this way the most precise results  
on a bank's systemic importance. Usually, the main problem with these methods  
is its data need. The main characteristics of individual institutions (for example, 
capital buffers or size) are not enough for this kind of exercise. We also have to 
precisely know its exposures to other banks through financial markets since the  
most important contagious channels are financial markets.
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In this section, we will show a simple method to identify systemic importance  
of a financial institution. To make it as simple as possible, we have to make  
some assumptions:

• We will investigate the effect of idiosyncratic defaults. After the default,  
all the contagious effects go through the network abruptly.

• Since all the effects go through abruptly, there won't be any adjustment 
procedure by banks.

• LGD is constant for all the banks. There are models that take into account  
the fact that the LGD can change from bank to bank (for example, Eisenberg 
and Noe, 2001), but this would make our model too complicated.

• We don't take into account the length of the legal procedure after the default. 
In practice, it should be considered in the LGD.

As we mentioned in the data section, we will need three datasets. First, we need 
the matrix that contains the exposures of the banks to each other on the interbank 
deposit market. Since these transactions are not collateralized, the potential losses are 
the biggest on this market. Second, we need the size of the capital buffers for each 
bank. The possibility of contagious effects can be significantly mitigated by a high 
capital buffer. For this reason, it is always important to check what can be considered 
as a capital buffer. Our opinion is that only the capital that exceeds the regulatory 
minimum should be taken into account in this exercise to be as prudent as possible. 
Third, we need the size of each bank. To evaluate the effect of one bank's default, we 
need the size of infected banks. In our example, we use the balance sheet total, but 
other measures can be used as well. The chosen measure has to proxy the effects on the 
real economy (for example, it can be the size of the corporate loan portfolio or the stock 
of deposits and so on).

The simulation
As a first step, we randomly choose a bank (any of them, since we will do this for 
every bank), and we assume that it is defaulted after an idiosyncratic shock. The 
matrix contains all the information about the banks that were lending to this one. Wij 
is the size of the loan that was borrowed by bank j from bank i. L is the LGD, that is, 
the size of the loss proportional to the exposure. When the following inequality stays, 
that is, the loss of bank i from the default of bank j exceeds the capital buffer of bank 
i, bank i has to be considered as defaulted.

>ij iE L C
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As a result, we get all those partner banks of bank j, which defaulted after the 
collapse of bank j. We make the first step in case of the partner banks of all the newly 
defaulted banks. We continue this simulation until we reach an equilibrium situation 
where there are no new defaults. 

We make this simulation for every bank, that is, we try to find out which banks 
will default after their collapse due to contagious effects. Finally, we aggregate the 
balance sheet total of the defaulted banks in each case. Our final result will then be a 
list that contains the potential effect of the default of each bank based on the market 
share of the affected banks.

Implementation in R
In this section, we will show how to implement this simulation technique in R.  
We will present the whole code as before. Some parts of the code were also used  
in the core-periphery distinction as well, so we won't give a detailed explanation  
for them.

In the first few rows, we set some basic information. There are two rows where 
explanation is needed. First, we set the value of the LGD. As we will see later,  
it is important to make our examinations by using different LGDs since our 
simulation is sensitive on the level of the LGD. The value can be anything from  
0 to 1. Second, those algorithms that plot the network use a random number 
generator. The Set.seed command sets the initial value of the random number 
generator to ensure that we get graphs with the same outlook.

LGD = 0.65

set.seed(3052343)

library(igraph)

In the next part of the code, we load the data, which will be used in the model, 
namely the matrix of the network (mtx.csv), the vector of the capital buffer  
(puf.csv), and the vector of the bank's size (sizes.csv). 

adj_mtx <-  read.table("mtx.csv", header = T, sep = ";")

node_w <-   read.table("puf.csv", header = T, sep = ";")

node_s <- read.table("sizes.csv", header = T, sep = ";")

adj_mtx <- as.matrix(adj_mtx)

adj_mtx[is.na(adj_mtx)] <- 0
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During the simulation, the adjacency matrix is not enough, contrary to the  
core-periphery distinction. We need the weighted matrix G.

G <- graph.adjacency((adj_mtx ), weighted = TRUE)

The next step is technical rather than essential, but it helps to avoid any mistakes 
later. V is the set of the graph's nodes. We put together all the relevant information 
about each node, that is, in which step it has defaulted (non-defaulted banks get 0), 
the capital buffer, and the size.

V(G)$default <- 0

V(G)$capital <- as.numeric(as.character(node_w[,2]))

V(G)$size <- as.numeric(as.character(node_s[,2]))

Then, we can easily plot the network. We have used this command to create Figure 
13.2. Of course, it is not essential for the simulation.

plot(G, layout = layout.kamada.kawai(G), edge.arrow.size=0.3,  
  vertex.size = 10, vertex.label.cex = .75)

As we mentioned, our goal is to get a list of banks and the effect of their collapse on 
the banking system. However, it is also worth seeing the process of the contagion in 
every case. For this reason, we use a function that can generate a chart about it. The 
sim function has four attributes: G is the weighted graph, the starting node that is 
the first defaulted bank, the LGD, and finally a variable to switch the plotting of the 
graph on or off. The last two attributes have a default value, but of course, we can 
give them a different value during each run. We also set different colors for each 
node depending on in which step it has defaulted. 

sim <- function(G, starting_node, l = 0.85, drawimage = TRUE){

node_color <- function(n,m) c(rgb(0,0.7,0),rainbow(m))[n+1]

We create a variable that helps us know whether the contagion has stopped or not. 
We also create a list that contains the defaulted banks. The jth component of the list 
contains all the banks collapsed in the jth step.

stop_ <- FALSE

j <- 1

default <- list(starting_node)

The next part is the essence of the whole code. We start a while loop and check 
whether the contagion goes on or not. Initially, it goes on for sure. We set the default 
attribute to j for those banks that collapse in the jth step. 
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Then, in a for loop, we take all the banks that have connections with bank i, and 
deduct exposure*LGD from their capital. The banks that default after this will be on 
the default list. Then, we start again with the exposure to the newly defaulted banks 
and continue with it until there won't be any new defaults.

while(!stop_){

V(G)$default[default[[j]]] <- j

j <- j + 1; stop_ <- TRUE

for( i in default[[j-1]]){V(G)$capital <- V(G)$capital - l*G[,i]}

default[[j]] = setdiff((1:33)[V(G)$capital < 0], unlist(default));

if( length( default[[j]] ) > 0) stop_ <- FALSE

}

When drawimage is equal to T in the sim function, the code will plot the network. 
The color of each node depends on the time of default, as we mentioned before. 
Banks that defaulted later get a lighter color, and those that have not defaulted  
get a green color.

if(drawimage) plot(G, layout = layout.kamada.kawai(G),  
  edge.arrow.size=0.3, vertex.size = 12.5,  
    vertex.color = node_color(V(G)$default, 4*length(default)),  
      vertex.label.cex = .75)

Then, we count the proportion of the collapsed banks that are contained in the 
default list. 

sum(V(G)$size[unlist(default)])/sum(V(G)$size)}

Using the function sapply, we can run the same function for every component  
of a vector and collect the results in a list.

result <- sapply(1:33, function(j) sim(G,j,LGD, FALSE))

Finally, we make a barplot that contains the result of every bank in the system.  
This chart makes it possible to decide about systemic importance.

dev.new(width=15,height=10)

v <- barplot(result, names.arg = V(G)$name, cex.names = 0.5,  
  ylim = c(0,1.1))

text(v, result, labels = paste(100*round(result, 2), "%", sep = ""),  
  pos = 3, cex = 0.65)
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Results
Our main question during this exercise was: which banks were the systemically 
important financial institutions. After running the code we have shown in the last 
subchapter we get an exact answer on our question. The chart pops up after the run 
summarizes the main results of the simulation. The horizontal axis has the codes of 
the banks, while the vertical axis has the proportion of the banking system affected 
by the idiosyncratic shock. For example, in figure 13.6., 76 percent at X3 means that 
if bank number 3 defaults due to an idiosyncratic shock, 76 percent of the whole 
banking system will default as a result of contagion. It is a matter of decision to 
set a level above which a bank has to be considered as systemically important. In 
this example, it is easy to distinguish between institutions that have to be taken as 
SIFIs and those that have minor relevance for the system. According to Figure 13.6., 
10 banks (with codes 3, 7, 12, 13, 15, 18, 19, 21, 24, and 28) can be considered as 
systemically important. 

Figure 13.6: Proportion of the banking system based on the balance sheet total affected by the  
idiosyncratic shock LGD = 0.65
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It is important to mention that the result is dependent on the LGD parameter, 
which has to be set in the code. In this first run, the LGD was set to 65 percent, but 
it can differ significantly in different cases. For example, if the LGD is 90 percent, 
the result will be much worse. Five more banks (their codes are 2, 8, 11, 16, and 20) 
will also have a significantly negative effect on the banking system in the case of 
an idiosyncratic shock. However, with a much lower LGD, the result will also be 
milder. For example, if the LGD level is set to 30 percent bank number 13 will have 
the biggest effect on the banking system. However, by comparing this to the former 
examples, this effect will be very limited. 36 percent of the banking system will 
default in this case. Using the 30 percent LGD level, only 4 banks will have more 
than 10 percent effect on the system (Figure 13.7).

Figure 13.7.: Proportion of the banking system based on balance sheet total affected by the  
idiosyncratic shock LGD = 0.3
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This R code is also able to show us the process of contagion. By running the sim 
function, it is possible to find out which banks are affected directly by the default 
of an examined bank and which banks are affected in the second or third or later 
step of the simulation. For example, if we want to know what happens when bank 
15 defaults, we write in the R console the following command: sim(G, 13, 0.65), 
where G is the matrix, 13 is the ordinal number of bank number 15, and 65 percent 
is the LGD. As a result, we get figure 13.8. We sign the bank that launches the 
contagion with a red color. Orange is the color of those institutions that are affected 
directly by the idiosyncratic shock of bank number 15. Then, when the color is 
lighter, the bank is affected later. Finally, banks with green nodes are the survivors. 
LGD was set at 65 percent in this example. It can be seen that the collapse of bank 
number 15 will result directly the default of five other banks (with codes 8, 18, 20, 21, 
and 36). Then, with the default of these banks, many more will also lose their capital. 
At the end, more than 80 percent of the banking system will be in default.

Figure 13.8: The contagion process after the default of bank number 15
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It has to be emphasized that with this simulation method, not only were the 
interbank exposures taken into account but also the size of the main partners 
and the capital buffer of them. In this case, systemic importance can be a result of 
undercapitalized partners. Or on the contrary, it is possible that a bank with many 
partners and borrowed money won't have any negative effect on the market since 
its direct partners have a high enough capital buffer. Bank number 20 is a good 
example of this. In the core-periphery decomposition, it is definitely in the core. 
However, when we run the sim function with a 65 percent LGD, the result will be 
very different. Figure 13.9 presents that none of the other banks will default after its 
idiosyncratic shock.

Figure 13.9: Contagion process after the default of bank number 20
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Possible interpretations and suggestions
The main difficulty of the examination of systemic importance is always its huge 
data need. From this point of view, core-periphery decomposition is an easier 
method because we only need the exposure of the banks on the interbank market. 
Although in many cases this may also result in some difficulty since direct linkages 
between banks are often unknown. However, in the literature, we can find some 
good solutions to fill these gaps, for example, the minimum density approach by 
Anand et al. (2014). Alternatively, there are some other suggestions on how to create  
a network from market data (for example, Billio et al., 2013).

Due to the differences between the two methods, the results can be confusing. 
We will give you some ideas on how to interpret the results. The core-periphery 
decomposition focuses only on one market. It implies that being in the core means 
that the bank is important on this market. The importance for the whole banking 
system then depends on the importance of this market. Without this information,  
we might only say that the core banks are important for the operation of the market.

On the contrary, the simulation method strictly focuses on the banking system's 
stability. As a result, we get those banks that may trigger a severe crisis. However, 
it doesn't mean that other banks won't have a crucial effect on the operation of the 
interbank market. A bank that has well-capitalized partners may freeze the market 
without jeopardizing the stability of the whole banking system. On the longer horizon, 
the lack of a well-functioning market will result in ineffective liquidity management.

Summary
Systemic importance of financial institutions is a crucial information for supervisory 
authorities and central banks since maintaining the stability of the financial system 
is their responsibility. However, this information is important for investors as well 
because it helps to diversify their exposure towards the financial sector. 

In this chapter, we have shown two of the several different methods that can help  
in the identification of systemically important financial institutions. These two 
methods are based on the tools of network theory. The first was focusing only on 
the position of each institution in a financial network. So it doesn't take into account 
the structure of the balance sheet at each institutions. The second was a simulation 
method that took into account some important data on the bank's capital position as 
well. The results of these two methods should be taken into account subsequently to 
get a clear picture.
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