
www.allitebooks.com

http://www.allitebooks.org

Mastering Web Application
Development with Express

A comprehensive guide to developing production-ready
web applications with Express

Alexandru Vlăduțu

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Web Application Development with Express

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-108-3

www.packtpub.com

Cover image by Goldie Jason (goldie.jason@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Alexandru Vlăduțu

Reviewers
Johan Borestad

Mohit Goenka

Arjunkumar Krishnamoorthy

Dave Poon

Commissioning Editor
Ashwin Nair

Acquisition Editor
James Jones

Content Development Editors
Nadeem N. Bagban

Poonam Jain

Technical Editors
Novina Kewalramani

Pratik More

Copy Editors
Mradula Hegde

Dipti Kapadia

Insiya Morbiwala

Alfida Paiva

Stuti Srivastava

Project Coordinator
Swati Kumari

Proofreaders
Ameesha Green

Maria Gould

Paul Hindle

Jonathan Todd

Indexers
Rekha Nair

Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alexandru Vlăduțu is a full-time JavaScript developer based in Bucharest,
Romania. He started creating applications with PHP about 5 years ago, but
after finding out about server-side JavaScript with Node.js, he has never had to
switch technologies again. You may have seen him answering questions on Stack
Overflow under the nickname alessioalex, where he is among the top three
overall answerers for tags such as Node.js, Express, Mongoose, and Socket.IO. By
day, he battles cross-browser compatibility issues, but by night, he brings together
embedded databases, servers, and caching layers in single applications using the
good parts of JavaScript. Apart from the geeky stuff, he enjoys spending time with
his wife.

The first time I saw the video of Ryan Dahl presenting Node
at JS Conf 2009, I was amazed. I have been fanatically working
with Node ever since, and Ryan deserves credit for this.

I would like to thank TJ Holowaychuk for authoring Express,
and the Node community for being friendly, helpful, and
extremely active.

While writing this book, I had invaluable feedback from the
reviewers as well as the Packt Publishing team; so thanks a
lot everybody!

Most importantly, I would like to thank my wife, Diana, for her
support, encouragement, and patience.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Johan Borestad lives and works in Stockholm, Sweden. With 10 years of
experience in several successful start-ups, he has built up a deep knowledge of the
industry. As a very outgoing and pragmatic perfectionist, he is constantly seeking
new ways to improve himself and his team members. While always striving to
deliver world-class products, Johan also enjoys telling bad jokes and drinking way
too much coffee.

He is currently working at Klarna, building the Klarna Checkout. It is a multimarket,
single-page application that is revolutionizing the e-commerce business currently.
Its strong focus on usability and simplifying the buying process has made it a huge
success in the Nordics and Germany. He has previously also reviewed Express Web
Application Development, Packt Publishing.

I'd like to give my warmest thank-you to my lovely family as well as
to Klarna and my teammates who helped me during tough times.

www.allitebooks.com

http://www.allitebooks.org

Mohit Goenka is a Software Developer in the Yahoo! Mail team. He graduated
from the University of Southern California (USC) with a Master of Science degree in
Computer Science. His thesis emphasized game theory and human behavior concepts
as applied in real-world security games. He also received an award for academic
excellence from the Office of International Services at the University of Southern
California. He has showcased his presence in various realms of computers, including
artificial intelligence, machine learning, path planning, multiagent systems, neural
networks, computer vision, computer networks, and operating systems.

During his tenure as a student, Mohit won multiple competitions, cracked codes,
and presented his work on the Detection of Untouched UFOs to a wide range of
audiences. Not only is he a software developer by profession but coding is also
his hobby. He spends most of his spare time learning about emerging trends
and grooming his technical skills.

What adds a feather to his cap are Mohit's poetic skills. Some of his poems are
part of the University of Southern California Libraries archive under the cover
of The Lewis Carroll Collection. In addition to this, he has made significant
contributions by volunteering his time to serve the community.

Arjunkumar Krishnamoorthy is a Principal Engineer with Causeway
Technologies in Bengaluru, India. He is well-versed in Java, JavaScript, Node.js,
and Angular.js, among others. He has contributed to open source projects. He
is passionate about programming, research, and open source technologies.

www.allitebooks.com

http://www.allitebooks.org

Dave Poon is a UX/UI designer, web developer, and entrepreneur based in
Sydney. He started his career as a freelance graphic designer and web designer in
1998 and worked with web development agencies and medium-size enterprises.
After graduating from Central Queensland University with a degree in Multimedia
Studies and a Master's degree in IT, he began his love affair with Drupal and works
for a variety of companies that use Drupal. Now, he is evangelizing good user
experience and interaction design practices to start-ups and enterprises.

Currently, he is a Design Lead at Suncorp, one of the biggest financial institutions
in Australia. He is also the cofounder of Erlango (http://erlango.com), a digital
product development and design start-up, located in Sydney and Hong Kong,
that creates user-centered digital products and tools for designers and users.

He is the author of Drupal 7 Fields/CCK Beginner's Guide, Packt Publishing. He
is also the technical reviewer of Drupal Intranets with Open Atrium, Tracy Smith,
Packt Publishing, and Advanced Express Web Application Development, Andrew Keig,
Packt Publishing.

I would like to thank my wife, Rita, for her endless patience and
support. Without her, whatever I do would be meaningless.

I would also like to thank my father for his continued
encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Diving into Express 7

The best parts of Express 7
Comparing Express with other frameworks 8

Goal 8
Conventions 9
Databases 9
Views 9
Overall 9

Use cases 10
Complex applications with heavy I/O bound operations 10
Single-page applications 10
Reusable applications 11
Code sharing between the server and the client 11
A base to create more complex frameworks 11
Bad use cases 12

Express into the wild 12
The application structure 13

Group files by features 13
Model-View-Controller 14

Developing a real MVC application 15
Summary 32

Chapter 2: Component Modularity Using Middleware 33
Connecting middleware 33
The functionality of middleware 34

Pushing items to an array 36
Looking at the execution flow using logs 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating configurable middleware 38
Closures to the rescue 39
Caching middleware – a practical example 39

A first try at the caching middleware 39
Measuring the performance benefits of the caching middleware 42
Making the caching middleware configurable 44

Environment-based loading of middleware 45
Express routes 47

Specifying the path 47
Reusable route handlers 49
Route wildcards 52

Ordering of middleware 52
Handling errors with middleware 53
Mounting subapplications 59
Replicating the middleware system 61

The main file 61
Handling requests 65
Demonstrating the application 67
Adding the routes handler 69

Summary 73
Chapter 3: Creating RESTful APIs 75

An overview of REST 75
HTTP methods (verbs) 76
HTTP status codes 78

Successful 2xx 79
Redirection 3xx 79
Client error 4xx 80
Server error 5xx 80

SmartNotes application requirements 81
Creating RESTful URLs of the application 82
Implementing the SmartNotes application 83

The bootstrapping phase 84
Dealing with validation 88

Creating a custom validation module 88
Improving performance with memoization 92

Implementing the models 93
Test helpers 93
The Note model 96
The User model 100

Functional tests and route implementation 101
User endpoints 103
Notes endpoints 109

API versioning 113

Table of Contents

[iii]

API rate limiting 114
Throttling 115
Facilitating caching 116
Content negotiation 117
Summary 119

Chapter 4: Leveraging the Power of Template Engines 121
The different types of template engines 121

Logic-less template engines 122
Template engines with logic 124
Programmatic template engines 125

View helpers and application-level data 126
Sharing code between templates with partial views 127
DRY templates with layouts 130
Template engine consolidation with consolidate.js 131
View caching in production 131

The view cache setting and its effect 132
Clearing the cache without a restart 136

Integrating a template engine with Express 139
Choosing a template engine 147
Summary 148

Chapter 5: Reusable Patterns for a DRY Code Base 149
Creating the MovieApp sample application 150

Application structure and required modules 150
Creating the server.js file 152
Creating the route handlers 153
Doing the heavy lifting inside the model 155
Wrapping it up 158

Error checks and callback functions 159
Tiny modules for better control flow 161
Ensuring a single callback execution 165
Extending objects in a reusable way 166
A simple way to create custom errors 167
Summary 168

Chapter 6: Error Handling 169
Runtime (operational) errors and human errors 169
Ways of delivering errors in the Node applications 170

Throwing errors in the synchronous style 170
The error-first callback pattern 171
The EventEmitter errors 172

Strings instead of errors as an antipattern 173

Table of Contents

[iv]

Improving stack traces 174
Handling uncaught exceptions 176
Logging errors 176
Creating a custom Express error handler 177
Richer errors with VError 181
Error handling in a practical application 182

Creating the application entry point 183
Real-time updates with Primus 186
Post and User models 187
About routes 189
Views and static resources 194
Running the application 194

Summary 196
Chapter 7: Improving the Application's Performance 197

Serving static resources with Express 197
Using Node modules 197

The middleware order can impact performance 198
Asset versioning 200
Compress and minify 202
An in-memory static middleware 204
Using a content delivery network 205
Using NGiNX 206

Backend improvements 209
Avoiding synchronous functions 209
Doing things in parallel whenever possible 209
Using streams to process data 211
Streaming templates with trumpet 212
Caching dynamic data 215

ETag for dynamic data 222
Using a cluster to handle more concurrent connections 224
HTTPS with Stud 225

Summary 226
Chapter 8: Monitoring Live Applications 227

Logging 227
Bunyan – a battle-tested logger 228
Redirecting logs to an external service 235
Things to note 237

Simple tips for improving the application monitoring 237
Collecting metrics 239

Getting the slowest endpoints of the application 244
Tracking the network traffic 247
Measuring the average function response time 249

Table of Contents

[v]

Useful existing monitoring tools 251
Ensuring the application uptime 252
Summary 252

Chapter 9: Debugging 253
A better error-handling middleware 253

Application for displaying the time in the current time zone 254
Adding the improved error handler 256

Using a debug flag 261
Debug versus logger 263

Debugging routes and middleware 264
Using the V8 debugger 265

Creating our buggy application 265
Using Node's debugger client in the terminal 267
Using node-inspector 268

Debugging memory leaks 269
Adding a REPL to our Express application 271
Removing debugging commands 273
Summary 274

Chapter 10: Application Security 275
Running Express applications on privileged ports 275

Dropping root privileges 276
Redirecting to another port using iptables 277
Using authbind 277

Cross-site request forgery protection 278
Cross-site scripting 282

Validating input 282
Sanitizing output 283

HTTP security headers with Helmet 287
Handling file uploads 288
Session middleware parameters 291
Reauthenticating the user for sensitive operations 292
Summary 295

Chapter 11: Testing and Improving Code Quality 297
The importance of having automated tests 297
Testing toolbox 298

Mocha 298
should.js 299
Sinon.js 299

Spies 299
Stubs 300
Mocks 300

Table of Contents

[vi]

Supertest 301
Proxyquire 301
Generating phony data using Faker.js 301

Creating and testing an Express file-sharing application 302
Running the application 310
Unit tests 311
Functional tests 316

Running tests before committing in Git 320
Code coverage 320
Complexity analysis of our code 322
Code linting 323
Load testing 325
Client-side testing 326
Continuous Integration 328

CI servers 328
Free CI for open source projects 329

Summary 330
Index 331

Preface
Express is a battle-tested web framework for Node.js, and is used in production
in companies such as Paypal or MySpace. It has come a long way since its initial
release back in 2009, with more than a hundred contributors and an active
community of developers.

The simplicity of Express has even enabled people to build more complex
applications on top of it, such as Kraken.js or Sails.js.

This book is aimed at developers who want to learn more about delivering
real-world applications with Express 4 by taking advantage of the advanced
features it provides and also benefiting from the great ecosystem of existing
modules from NPM.

You will find a lot of practical examples along with different tips and tricks that
will help you develop a better application at a faster pace. Even if you decide to
use another framework in the future or create your own, the things you have
learned here will be useful in the future.

What this book covers
Chapter 1, Diving into Express, covers the fundamentals of the framework, its
use cases, how it compares to other web frameworks, and how to structure
Express applications.

Chapter 2, Component Modularity Using Middleware, explains the concept of
middleware in great detail while using practical examples so you will be able
to create and use middleware based on the application's needs.

Chapter 3, Creating RESTful APIs, is a practical introduction to creating a RESTful
API using Express. You will learn about general REST API design as well as tips
and tricks provided by the framework while creating a practical application.

Preface

[2]

Chapter 4, Leveraging the Power of Template Engines, shows you how to use different
template engines and techniques to organize applications as well as create a custom
engine and integrate it into an existing application.

Chapter 5, Reusable Patterns for a DRY Code Base, covers how to avoid writing
repeatable code in Express applications by using existing Node.js modules.
Throughout this chapter, an app will be enhanced step-by-step to use such modules
until we get a DRY code base, where DRY stands for Don't Repeat Yourself.

Chapter 6, Error Handling, covers the various ways of dealing with error handling
in an Express app, explaining how to react to errors, how to throw custom errors,
and other tips and tricks.

Chapter 7, Improving the Application's Performance, covers different optimization
techniques that can be used to speed up an application, both frontend and backend.
You will learn how to apply these best practices into an application.

Chapter 8, Monitoring Live Applications, explains how to effectively monitor
an application so that it detects anomalies and makes the user aware of them.
You will learn how to integrate metrics from multiple live applications into
a dashboard.

Chapter 9, Debugging, covers how to debug an application in a live production
environment, or locally when things go wrong. We will be using node-inspector
and exploring how to add a REPL to the application, among other things.

Chapter 10, Application Security, covers the common security countermeasures that
you can take to prevent certain incidents, and also covers how to integrate them
into an Express application.

Chapter 11, Testing and Improving Code Quality, covers how to write tests while
creating an application as well as triggering them before committing the code
along with other tools to improve code quality.

What you need for this book
Before diving in, you should be familiar with JavaScript, Node.js, and Express.
To run the examples, you need to have Node.js installed on your system.
Some of the chapters require a database engine, so you should also have
MongoDB installed.

Preface

[3]

Who this book is for
This book is ideal if you are a Node.js developer who wants to take your Express
skills to the next level and develop high-performing, reliable web applications using
best practices. This book assumes that you have experience with Express. It does not
attempt to teach the basics of the framework, but instead focuses on advanced topics
that need to be addressed by real-world applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The layout.jade file will be created inside the views folder."

A block of code is set as follows:

exports.main = require('./main');
exports.users = require('./users');
exports.sessions = require('./sessions');
exports.files = require('./files');

Any command-line input or output is written as follows:

$ cd FileManager

$ mkdir {models,helpers,files,lib}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The CSRF
check was to ensure that the user actually clicked on the Submit button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

You can also download the example code files for the book from GitHub at
https://github.com/alessioalex/mastering_express_code.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Diving into Express
Express is the de facto web application framework for Node.js and one of the most
depended-upon modules, according to the NPM registry.

In this chapter, we will cover the following topics:

• The main features of the framework
• The comparison of Express with other web application frameworks
• Using the right tool for the right job
• The important companies that use Express in production
• How to structure applications with Express

The best parts of Express
When searching the Web for information on Express, we find that it is a minimal
and flexible web framework that adds the essential bits and pieces needed to create
powerful web applications.

It is minimal because it provides the basic features we need to create web
applications, such as routing based on URL paths (it has DSL to describe routes),
support for template engines, cookie and session management, the parsing of
incoming requests, and so on. Without these built-in features, we need to create
our own custom solutions on top of the Node HTTP. The source code for Express
is just a few thousand lines of code, enabling us to easily dig deeper for a better
understanding of how things work internally.

Diving into Express

[8]

The flexibility comes from the fact that this framework does not impose things
such as a certain application structure or database layer. Furthermore, not every
middleware available is included by default when creating an application (unlike
other big, monolithic frameworks); we have to explicitly include what we want.
Even though Express is not a typical Model-View-Controller (MVC) framework,
there's nothing stopping us from customizing it to be one if our requirements
dictate it.

We can build different kinds of applications with Express, such as REST APIs,
single-page and multipage applications, real-time applications, applications that
spawn external processes and output their result, and many others. Due to its
intuitive API and flexibility, Express makes it easy for newcomers to get started
with the framework and use it for rapid prototyping when needed. Although
there are methods to facilitate certain actions (such as redirecting the user to
another page or serving JSON data), the functions built into Node are also
available for this purpose.

The out-of-the-box performance of Express is really good; it can handle thousands
of concurrent connections per second (the results are dependent on the concrete
use case). An application can always be improved through caching, scaling to
multiple processes, or other techniques, but it's good to know that Express
won't be our bottleneck.

Comparing Express with other
frameworks
When comparing a web framework to another, we first need to ask ourselves what
problems each framework is trying to solve. After that, we can move on to compare
their functionality and choose the one that suits our projects best.

Goal
Express was built to help developers with HTTP, not to be a full-stack framework
that's packed with features. The framework gives us all the primitives to create all
kinds of applications, from simple web applications to hybrid and real-time ones.
Unlike big, monolithic frameworks, Express is not packed with things such as ORMs,
view helpers, or other complex features. This means that we have the flexibility to
plug in whatever we want to.

Chapter 1

[9]

Conventions
When starting out with opinionated frameworks such as Rails, we need to learn
about their conventions; a few examples of what we need to know are as follows:

• Where things go inside the application folder
• The naming conventions
• How to define data relationships

These conventions can be an advantage for teams with many developers (to keep
everybody on the same page), but if we need to create smaller applications or want
to avoid the steep learning curve, Express is a better option.

The fact that Express isn't opinionated can be viewed as a good thing or a
disadvantage depending on the use case. It's flexible enough that we can create our
own conventions, but at the same time, we might not want or have time to do that.

Databases
Some frameworks are tied into a particular database or Object Relational Mapper
(ORM), but that isn't the case with Express. It doesn't care about how we manage
our data, so it doesn't tie us to a database, nor does it include drivers for any.

If we decide to add a database or an ORM to our application, we need to manually
include it.

Views
There are a lot of templating engines available for Express, and it's very simple
to integrate new ones. Some of them handle layouts and partials so we can reuse
code and provide other features.

Express has support for view helpers, but the framework doesn't provide any
out-of-the-box support.

Overall
Express is a good choice if we want as much control over our applications as
possible, without having to recreate basic, HTTP-related functionality over and over
again. It adds the bare minimum sugar syntax to create web applications and doesn't
force us into using a certain database, ORM, or templating engine.

Since it's a minimalist framework, we can't expect it to have as many features as the
more complex frameworks such as Rails, Django, or CakePHP.

Diving into Express

[10]

Use cases
Before diving into the code, we need to consider whether Express is a good choice for
the application we need to create. Next, we will check out a couple of good use cases
for the framework.

Complex applications with heavy I/O bound
operations
The Web is constantly evolving, and nowadays, applications do more than talk to a
single database and send HTML over the wire. An application could use an in-memory
database for session storage and caching, a message queue for background processing,
at least one relational/NoSQL database, and external services to store files, stream
logs, and monitor application health. The handling of I/O bound operations is a great
use case for Node because of its nonblocking nature, and this applies to Express as
well. This means that we can easily integrate all these components into our project, and
it will still have a solid performance.

Single-page applications
Single-page applications represent web applications that don't reload the page when
we use them. They update parts of their interface to provide a more native-like
experience to end users.

There are many arguments for writing single-page applications in Express,
which include the following:

• It has the ability to handle a lot of concurrent requests per second
• It's not a bloated framework; it has the bare minimum glue needed

to write web applications
• It has a lovely DSL syntax to describe routes
• It can perform content negotiation, so we can have the same endpoint

for our data but deliver different representations based on the client's
request (JSON, XML, or others)

• It has a lot of small functions that make our lives easier, such as res.
sendfile, which transfers a file to the client and sets the proper headers,
and req.xhr, which checks whether the current request has been
transmitted using Ajax, and many others

Chapter 1

[11]

Reusable applications
Any Express application can be mounted onto another parent one, enabling us
to create modular components that can be included in multiple applications. For
example, we can create a user authentication system and reuse it for all our projects.
Another situation where this can come in handy is when multiple people are
working on the same project but each has different responsibilities; somebody could
work on an API while a different person creates the multipage website, and each of
them could use separate repositories for source control management. When a child
application is finished, the master one can include it by adding a single line of code
(okay, maybe two if we're declaring the first one as a dependency in the package.
json file).

Code sharing between the server and the
client
Writing application code that runs both on the server and on the client is a very
hot topic right now, and has often been referred to as "The Holy Grail of Web
Development". Besides eliminating code duplication, there is one other big advantage
of using this approach with single-page applications: we can render the first page on
the server and all the subsequent ones on the client. This improves the speed of the
initial page load (so users don't have to wait until all the JavaScript code is loaded
and executed) and is also SEO friendly and doesn't require us to resort to tricks such
as proxying to a headless browser for crawlers. There have been several attempts to
create frameworks that use the Backbone.js client-side API on top of Express, one of
the most popular being Rendr (https://github.com/airbnb/rendr).

A base to create more complex frameworks
Since Express is a minimalist framework, we can use it to build more complex and
opinionated solutions. In fact, there are lots of such MVC and real-time frameworks
in the Node ecosystem. They offer advanced features that are packed into a single
application, such as an ORM, middleware that boosts security, internationalization/
localization, application life cycle middleware, a custom routing library, built-in
view helpers, and so on. Another aspect to take into consideration is that these
frameworks also impose certain conventions that we need to adhere to, the most
notable being the application structure.

Diving into Express

[12]

Bad use cases
If there is any CPU-intensive task that is blocking the event-loop, it means that every
single client making a request to the Express application will just hang until that task
has finished. This happens because, unlike the Apache web server that spawns a thread
per connection, Node uses an event loop, so all the requests run in the same thread.

If we want to create a regular CRUD-based application that has complex database
relationships—and scaling thousands of concurrent requests isn't the primary
goal—then using a full-stack framework is a better option (for example, Rails,
Django, and CakePHP). That's not to say that we cannot achieve the same end
result with Express, but we would have to include all the components ourselves.

Express into the wild
Whether we are trying to introduce a new tool into a technology stack at our
company or simply want to experiment with new stuff once in a while, we need to
ask ourselves the following questions before diving straight in:

• Is it still an active project or has it been abandoned?
• Is it mature enough or do I have to battle-test it myself?
• Which companies are using it in production?

Express is the most popular web framework for Node, with more than a hundred
contributors and thousands of commits, the first commit dating back to June 2009.
Its repository is one of the most watched on GitHub. These facts answer the first
two questions, so next, we'll talk about who is using it in production.

Popular companies such as MySpace, eBay, Uber, and Mozilla use Express in
production, and others have made their own framework/project on top of it; here's
a list of them:

• Yahoo! created an MVC framework called Mojito that can run on both the
client side and server side

• PayPal released Kraken.js, an opinionated kind of Express with support for
localization, application security, environment-based configuration, and
other features baked in

• Airbnb's Rendr library allows us to run Backbone.js both on the client and
on the server

• Ghost is a popular open source blogging platform with an elegant UI that
can be used either as a standalone or by being attached to an existing
Express application

Chapter 1

[13]

• Sails.js is a real-time MVC framework based on Express and Socket.IO
that has a lot of advanced features, such as automatic JSON API generation,
role-based access control, and a database agnostic ORM

• Compound.js is an MVC framework that highly resembles Rails: it has
scaffolding, a similar application structure, a lot of custom helpers, an ORM
with relations support, and built-in validation as well as other useful features

The application structure
One of the most frequently asked questions by newcomers to Express is how to
structure an application. There is no definitive answer for this, and we may choose
different solutions based on how big our application is or what problem we are
trying to tackle. Luckily for us, Express is easy to customize, and we can apply
whatever structure we deem necessary.

If the code base is small, we can include everything into a few files or even a single
one. This might be the case when exposing a database over HTTP (such as LevelDB
and PouchDB) and creating mountable applications (these tend to be small and solve
a specific problem) or other small applications.

When dealing with medium and large projects, the best thing to do is to split them
into smaller pieces, making them easier to debug and test. If there are parts of the
application that can be reused for other projects, the best thing to do is to move
them into their separate repository.

Group files by features
An interesting technique to structure an application is to group files by the features
they provide instead of grouping them by their function. In MVC, the controllers,
models, and views live inside their own folder; however, with this approach,
we have folders that group files with the same role. For example, consider the
following folders:

• Signup: This includes the route handler for the signup process and its view
• Login: This is similar to the signup feature
• Users: This contains the model for the users so that it can be shared between

different features
• posts-api: This exposes a RESTful interface for the articles of the site and

contains the routes and model of the posts

One could go even further and choose to include things such as tests and static assets
that belong to a feature inside its folder.

Diving into Express

[14]

If there's something that can be reused for multiple features such as the general
layout or models, we can group them inside their own folder. Each of these folders
can export an Express application with its own view engine, middleware, and other
customizations. These folders can reside in a parent lib folder, for example. We will
then require them in the main app.js file like we would any regular middleware.
It's a good way to separate concerns, although they are not necessarily complete,
independent pieces because they rely on application-specific logic.

An advantage this structure offers is that when we are working on a certain section
of an application, all the files that need to be created/edited are in the same location,
so there's no need to switch between controllers, models, and views like with MVC.

It's worth mentioning that the creator of Express, TJ Holowaychuk, recommends this
approach for larger applications instead of MVC.

Model-View-Controller
The most common technique to structure web applications with Express is MVC.
When generating a project using the Express CLI, it almost provides an MVC
structure, omitting the models folder. The following screenshot lists all the files
and folders generated for a sample application using the CLI tool:

Chapter 1

[15]

The package.json file is automatically populated with the name of the application,
the dependencies, the private attribute, and the starting script. This starting script is
named app.js and loads all the middleware, assigns the route handlers, and starts
the server. There are three folders in the root:

• public: This folder contains the static assets
• views: This folder is populated with Jade templates by default
• routes: This folder includes the routes (these are the equivalent controllers)

Apart from these existing folders and the models folder, which we need to create
ourselves, we might also create folders for tests, logs, or configuration. The best
thing about this structure is that it's easy to get started with and is known to
most developers.

Developing a real MVC application
Let's apply the theory in practice now and create an MVC file manager application
using Express 4.x and Mongoose (an object modeling library for MongoDB). The
application should allow users to register and log in and enable them to view,
upload, and delete their files.

Bootstrapping a folder structure
We will start by creating the folder structure. First, we'll use the Express CLI tool
in the terminal to create the boilerplate. Apart from the public, routes, and views
folders, we also need to add folders for models, helpers (view helpers), files
(the files uploaded by users will be stored in subfolders here), and lib (used for
internal app libraries):

$ express FileManager

$ cd FileManager

$ mkdir {models,helpers,files,lib}

Installing NPM dependencies
By default, the CLI tool will create two dependencies in your package.json
file—express and jade—but it won't install them, so we need to manually
execute the following install command:

$ npm install .

www.allitebooks.com

http://www.allitebooks.org

Diving into Express

[16]

In addition to these two modules, we also need to install mongoose to interact with
MongoDB, async for control flow, pwd to hash and compare passwords, connect-
flash to store messages for the user (which are then cleared after being displayed),
and connect-multiparty to handle file uploads. We can use the following shortcut
to install the packages and have them declared in package.json at the same time if
we call NPM with the –save flag:

$ npm install –save mongoose async pwd connect-flash connect-multiparty

Express 3.x came bundled with the Connect middleware, but that's not the case in
the 4.x version, so we need to install them separately using the following command:

$ npm install –save morgan cookie-parser cookie-session body-parser
method-override errorhandler

The middleware libraries from Connect were extracted into their
separate repos, so starting with Express 4.x, we need to install them
separately. Read more about this topic on the Connect GitHub page
at https://github.com/senchalabs/connect#middleware.

We can always check what modules are installed by entering the following
command in the terminal at the root of our project:

$ npm ls

That command will output a tree with the dependencies.

It's worth noting that the versions for the dependencies listed in the
package.json file will not be exact when we use the –save flag;
instead, they will be using the default npm semver range operator. You
can read more from the official npm documentation (https://www.
npmjs.org/doc/cli/npm-install.html) and the node-semver
page (https://www.npmjs.org/package/semver).

Setting up the configuration file
We can get as inventive as we want with the configuration parameters of a
project, like have multiple subfolders based on the environment or hierarchical
configuration, but for this simple application, it's enough to have a single config.
json file. The configuration variables we need to define in this file are the MongoDB
database URL, the application port, the session secret key, and its maximum age
so that our file will look like the following code:

Chapter 1

[17]

{
 "mongoUrl": "mongodb://localhost/filestore",
 "port": 3000,
 "sessionSecret": "random chars here",
 "sessionMaxAge": 3600000
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
You can also download the example code files for the book from GitHub:
https://github.com/alessioalex/mastering_express_code.

The starting script
In the main file of the application, named app.js, we handle the view setup, load the
middleware required for the project, connect to the database, and bind the Express
application to a port. Later on, we modify this file to set up the route handling as
well, but at the moment, the file contains the following code:

// Module dependencies
var express = require('express');
var app = express();
var morgan = require('morgan');
var flash = require('connect-flash');
var multiparty = require('connect-multiparty');
var cookieParser = require('cookie-parser');
var cookieSession = require('cookie-session');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
var errorHandler = require('errorhandler');
var config = require('./config.json');
var routes = require('./routes');
var db = require('./lib/db');

// View setup
app.set('view engine', 'jade');
app.set('views', __dirname + '/views');
app.locals = require('./helpers/index');

Diving into Express

[18]

// Loading middleware
app.use(morgan('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
app.use(methodOverride(function(req, res){
 if (req.body && typeof req.body === 'object' && '_method' in req.
body) {
 // look in url - encoded POST bodies and delete it
 var method = req.body._method;
 delete req.body._method;
 return method;
 }
}));
app.use(cookieParser());
app.use(cookieSession({
 secret: config.sessionSecret,
 cookie: {
 maxAge: config.sessionMaxAge
 }
}));
app.use(flash());

if (app.get('env') === 'development') {
 app.use(errorHandler());
}

// static middleware after the routes
app.use(express.static(__dirname + '/public'));

// Establishing database connection and binding application to
specified port
db.connect();
app.listen(config.port);
console.log('listening on port %s', config.port);

The database library
Note that the preceding app.js file contains the code for the database connection.
Later on, we will need other database-related functions such as checking for failed
data validation, duplicate keys, or other specific errors. We can group this logic
into a separate file called db.js inside the lib folder and move the connection
functionality there as well, as shown in the following code:

Chapter 1

[19]

var mongoose = require('mongoose');
var config = require('../config.json');

exports.isValidationError = function(err) {
 return ((err.name === 'ValidationError')
 || (err.message.indexOf('ValidationError') !== -1));
};

exports.isDuplicateKeyError = function(err) {
 return (err.message.indexOf('duplicate key') !== -1);
};

exports.connect = /* database connection function extracted from
 app.js should move here */

Routes
The routes folder will have a file for each controller (files.js, users.js, and
sessions.js), another file for the application controller (main.js), and an index.js
file that will export an object with the controllers as properties, so we don't have to
require every single route in app.js.

The users.js file contains two functions: one to display the user registration
page and another to create a user and its subfolder inside /files, as shown in
the following code:

var User = require('../models/user');
var File = require('../models/file');
var db = require('../lib/db');

exports.new = function(req, res, next) {
 res.render('users/new', {
 error: req.flash('error')[0]
 });
};

exports.create = function(req, res, next) {
 var user = new User({ username: req.body.username });

 user.saveWithPassword(req.body.password, function(err) {
 if (err) {
 if (db.isValidationError(err)) {
 req.flash('error', 'Invalid username/password');

Diving into Express

[20]

 return res.redirect('/users/new');
 } else if (db.isDuplicateKeyError(err)) {
 req.flash('error', 'Username already exists');
 return res.redirect('/users/new');
 } else {
 return next(err);
 }
 }

 File.createFolder(user._id, function(err) {
 if (err) { return next(err); }

 req.flash('info', 'Username created, you can now log in!');
 res.redirect('/sessions/new');
 });
 });
};

The sessions.js file handles user authentication and sign out as well as renders
the login page. When the user logs in successfully, the username and userId
properties are populated on the session object and deleted on sign out:

var User = require('../models/user');

exports.new = function(req, res, next) {
 res.render('sessions/new', {
 info: req.flash('info')[0],
 error: req.flash('error')[0]
 });
};

exports.create = function(req, res, next) {
 User.authenticate(req.body.username, req.body.password,
function(err, userData) {
 if (err) { return next(err); }

 if (userData !== false) {
 req.session.username = userData.username;
 req.session.userId = userData._id;
 res.redirect('/');
 } else {
 req.flash('error', 'Bad username/password');
 res.redirect('/sessions/new');
 }

Chapter 1

[21]

 });
};

exports.destroy = function(req, res, next) {
 delete req.session.username;
 delete req.session.userId;
 req.flash('info', 'You have successfully logged out');
 res.redirect('/sessions/new');
};

The files.js controller performs CRUD-type operations; it displays all the files
or a specific file for the logged-in user and saves the files or deletes them. We use
res.sendfile to display individual files because it automatically sets the correct
content type and handles the streaming for us. Since the bodyParser middleware
from Express was deprecated, we replaced it with connect-multiparty (a connect
wrapper around the multiparty module), one of the recommended alternatives.
Luckily, this module has an API similar to bodyParser, so we won't notice any
differences. Check out the complete source code of files.js as follows:

var File = require('../models/file');

exports.index = function(req, res, next) {
 File.getByUserId(req.session.userId, function(err, files) {
 if (err) { return next(err); }

 res.render('files/index', {
 username: req.session.username,
 files: files,
 info: req.flash('info')[0],
 error: req.flash('error')[0]
 });
 });
};

exports.show = function(req, res, next) {
 var file = new File(req.session.userId, req.params.file);

 file.exists(function(exists) {
 if (!exists) { return res.send(404, 'Page Not Found'); }

 res.sendfile(file.path);
 });
};

Diving into Express

[22]

exports.destroy = function(req, res, next) {
 var file = new File(req.session.userId, req.params.file);

 file.delete(function(err) {
 if (err) { return next(err); }

 req.flash('info', 'File successfully deleted!');
 res.redirect('/');
 });
};

exports.create = function(req, res, next) {
 if (!req.files.file || (req.files.file.size === 0)) {
 req.flash('error', 'No file selected!');
 return res.redirect('/');
 }

 var file = new File(req.session.userId, req.files.file.
originalFilename);

 file.save(req.files.file.path, function(err) {
 if (err) { return next(err); }

 req.flash('info', 'File successfully uploaded!');
 res.redirect('/');
 });
};

The general routes used to require user authentication or other middleware that
needs to be reused for different paths can be put inside main.js, as shown in the
following code:

exports.requireUserAuth = function(req, res, next) {
 // redirect user to login page if they're not logged in
 if (!req.session.username) {
 return res.redirect('/sessions/new');
 }
 // needed in the layout for displaying the logout button
 res.locals.isLoggedIn = true;

 next();
};

Chapter 1

[23]

The index.js file is pretty simple; it just exports all the controllers into a single
object so they're easier to require in the start script of our application:

exports.main = require('./main');
exports.users = require('./users');
exports.sessions = require('./sessions');
exports.files = require('./files');

Now that we have seen what the controllers look like, we can add them to our
existing app.js file:

var routes = require('./routes');
// Declaring application routes
app.get('/', routes.main.requireUserAuth, routes.files.index);
app.get('/files/:file', routes.main.requireUserAuth, routes.files.
show);
app.del('/files/:file', routes.main.requireUserAuth, routes.files.
destroy);
app.post('/files', multiparty(), routes.main.requireUserAuth, routes.
files.create);
app.get('/users/new', routes.users.new);
app.post('/users', routes.users.create);
app.get('/sessions/new', routes.sessions.new);
app.post('/sessions', routes.sessions.create);
app.del('/sessions', routes.sessions.destroy);

Note that we included the requireUserAuth route for all the URLs that need
the user to be logged in, and that the multiparty middleware is added just for
the URL assigned to file uploads (which would just slow the rest of the routes
with no reason).

A similarity between all the controllers is that they tend to be slim and delegate
the business logic to the models.

Models
The application manages users and files, so we need to create models for both. Since
the users will be saved to the database, we will work with Mongoose and create a
new schema. The files will be saved to disk, so we will create a file prototype that
we can reuse.

Diving into Express

[24]

The file model
The file model is a class that takes the user ID and the filename as parameters
in the constructor and sets the file path automatically. Some basic validation is
performed before saving the file to ensure that it only contains letters, numbers,
or the underscore character. Each file is persisted to disk in a folder named after
userId (generated by Mongoose). The methods used to interact with the filesystem
use the native Node.js fs module. The first part of the code is as follows:

var fs = require('fs');
var async = require('async');
var ROOT = __dirname + '/../files';
var path = require('path');

function File(userId, name) {
 this.userId = userId;
 this.name = name;
 this.path = this._getPath();
}

File.prototype._getPath = function() {
 return path.resolve(File.getUserPath(this.userId) + '/' + this.
name);
};

File.prototype.isValidFileName = function() {
 return /[a-z0-9_]/i.test(this.name);
};

File.prototype.exists = function(callback) {
 if (!this.isValidFileName()) {
 // keep the function async
 return process.nextTick(function() { callback(null, false) });
 }

 fs.exists(this.path, callback);
};

File.prototype.delete = function(callback) {
 this.exists((function(exists) {
 if (!exists) { return callback(); }
 fs.unlink(this.path, callback);
 }).bind(this));
};

Chapter 1

[25]

File.prototype.getStats = function(callback) {
 fs.stat(this.path, callback);
};

File.getUserPath = function(userId) {
 return ROOT + '/' + userId;
};

// create a folder if it doesn't exist already
File.createFolder = function(userId, callback) {
 var userPath = File.getUserPath(userId);

 fs.exists(userPath, function(exists) {
 if (!exists) {
 fs.mkdir(userPath, callback);
 }
 });
};

The most interesting methods in this model are the ones used to save a file and get
all the files that belong to a user. When uploading a file, the multiparty module
saves it at a temporary location, and we need to move it to the user's folder. We
solve this by piping readStream into writeStream and executing the callback on the
close event of the latter. The method to save a file should look like the following:

File.prototype.save = function(tempPath, callback) {
 if (!this.isValidFileName()) {
 return process.nextTick(function() {
 callback(null, new Error('Invalid filename'))
 });
 }

 var readStream = fs.createReadStream(tempPath);
 var writeStream = fs.createWriteStream(this.path);
 // if an error occurs invoke the callback with an error param
 readStream.on('error', callback);
 writeStream.on('error', callback);
 writeStream.on('close', callback);
 readStream.pipe(writeStream);
};

www.allitebooks.com

http://www.allitebooks.org

Diving into Express

[26]

The function that retrieves all the files of a user reads the directory to get the files,
then it calls the getStats function in parallel for every file to get its stats, and finally,
it executes the callback once everything is done. In case there is an error returned
because the user's folder does not exist, we call the File.createFolder() method
to create it:

File.getByUserId = function(userId, callback) {
 var getFiles = function(files) {
 if (!files) { return callback(null, []); }

 // get the stats for every file
 async.map(files, function(name, done) {
 var file = new File(userId, name);
 file.getStats(function(err, stats) {
 if (err) { return done(err); }

 done(null, {
 name: name,
 stats: stats
 });
 });
 }, callback);
 };

 fs.readdir(File.getUserPath(userId), function(err, files) {
 if (err && err.code === 'ENOENT') {
 File.createFolder(userId, function(err) {
 if (err) { return callback(err); }

 getFiles(files);
 });
 } else if (!err) {
 getFiles(files);
 } else {
 return callback(err);
 }
 });
};

Chapter 1

[27]

The User model
The only things that we need to store in the database are the users, so the user.js
file contains the Mongoose schema for the User model, field validation functions,
and functions related to hashing and comparing passwords (for authentication).
The following code contains the module dependencies along with the validation
functions and schema declaration:

var mongoose = require('mongoose');
var pass = require('pwd');

var validateUser = function(username) {
 return !!(username && /^[a-z][a-z0-9_-]{3,15}$/i.test(username));
};
var validatePassword = function(pass) {
 return !!(pass && pass.length > 5);
};

var User = new mongoose.Schema({
 username: {
 type: String,
 validate: validateUser,
 unique: true
 },
 salt: String,
 hash: String
}, {
 safe: true
});

Since we don't store the password in plain text but use a salt and a hash instead,
we cannot add password as a field on the schema (in order to enforce its validation
rules) nor create a virtual setter for it (because the hashing function is asynchronous).
Due to this, we need to create custom functions such as setPassword,
saveWithPassword, and validateAll as shown in the following code:

User.methods.setPassword = function(password, callback) {
 pass.hash(password, (function(err, salt, hash) {
 if (err) { return callback(err); }

Diving into Express

[28]

 this.hash = hash;
 this.salt = salt;

 callback();
 }).bind(this));
};

// validate schema properties (username) && password
User.methods.validateAll = function(props, callback) {
 this.validate((function(err) {
 if (err) { return callback(err); }

 if (!validatePassword(props.password)) {
 return callback(new Error('ValidationError: invalid password'));
 }

 return callback();
 }).bind(this));
};

User.methods.saveWithPassword = function(password, callback) {
 this.validateAll({ password: password }, (function(err) {
 if (err) { return callback(err); }

 this.setPassword(password, (function(err) {
 if (err) { return callback(err); }

 this.save(callback);
 }).bind(this));
 }).bind(this));
};

The authentication function is pretty straightforward; it gets the username and then
compares the hash stored in the database with the hash generated by the password,
which is sent as a parameter:

User.statics.authenticate = function(username, password, callback) {
 // no call to database for invalid username/password
 if (!validateUser(username) || !validatePassword(password)) {
 // keep this function async in all situations
 return process.nextTick(function() { callback(null, false) });
 }

Chapter 1

[29]

 this.findOne({ username: username }, function(err, user) {
 if (err) { return callback(err); }
 // no such user in the database
 if (!user) { return callback(null, false); }

 pass.hash(password, user.salt, function(err, hash) {
 if (err) { return callback(err); }

 // if the auth was successful return the user details
 return (user.hash === hash) ? callback(null, user) :
callback(null, false);
 });
 });
};

module.exports = mongoose.model('User', User);

Views
The first thing to do here is to create a global layout for our application, since we
want to reuse the header and footer and only customize the unique part of every web
page. We use jade as the templating language, so in order to declare the extendable
part of the layout, we use the block function. The layout.jade file will be created
inside the views folder as follows:

!!! 5
html
 head
 title File Store
 link(rel='stylesheet', href='http://fonts.googleapis.com/css?famil
y=IM+Fell+Great+Primer')
 link(rel='stylesheet', href='/stylesheets/normalize.css',
type='text/css')
 link(rel='stylesheet', href='/stylesheets/style.css', type='text/
css')
 body
 header
 h1 File Store
 if isLoggedIn
 div
 form(action='/sessions', method='POST')
 input(type='hidden', name='_method', value='DELETE')
 input(type='submit', class='sign-out', value='Sign out')

Diving into Express

[30]

 div.container
 block content

 script(src='http://code.jquery.com/jquery-1.10.1.min.js')
 script(src='/javascripts/file-upload.js')

An interesting detail in the preceding code is that we override the
method interpreted on the server side from POST to DELETE by
passing a hidden field called _method. This functionality is provided
by the methodOverride middleware of Express, which we included
in the app.js file.

Sometimes, we need to use functions for date formatting and size formatting or as
a link to use some parameters and other similar tasks. This is where view helpers
come in handy. In our application, we want to display the size of the files in
kilobytes, so we need to create a view helper that will convert the size of a file from
bytes to kilobytes. We can replicate the same structure from the routes folder for
the helpers as well, which means that we will have an index.js file that will export
everything as an object. Besides this, we will only create the helper for the files
at the moment, namely files.js, since that's all we need:

exports.formatSize = function(sizeInBytes) {
 return (sizeInBytes / 1024).toFixed(2) + ' kb';
};

To make the view helpers accessible inside the view, we need to add another piece
of code into our app.js main file after the view setup, as shown in the following
line of code:

app.locals = require('./helpers/index');

This will ensure that whatever is assigned to the locals property is globally
accessible in every view file.

In the views folder, we create subfolders for files, sessions, and users. The sessions
and users folders will contain a new.jade file, each with a form (user login and
signup page). The biggest view file from the files subfolder is index.jade since it's
the most important page of the application. The page will contain dynamic data such
as the logged-in username or the number of files stored and other stuff such as an
upload form and a dashboard with a list of files. The code for the index.jade file
will look like the following:

Chapter 1

[31]

extends ../layout

block content
 h2 Hello #{username}

 if !files.length
 h3 You don't have any files stored!
 else
 h3 You have #{files.length} files stored!

 if info
 p.notification.info= info

 if error
 p.notification.error= error

 div#upload-form
 form(action='/files', method='POST', enctype="multipart/form-
data")
 div.browse-file
 input(type='text', id='fake-upload-box', placeholder='Upload
new file!')
 input(type='file', name='file')
 button(type='submit') Go!

 if files.length
 table.file-list
 thead
 tr
 th Name
 th Size
 th Delete
 tbody
 each file in files
 tr
 td
 a(href="/files/#{encodeURIComponent(file.name)}")
#{file.name}
 td #{helpers.files.formatSize(file.stats.size)}
 td
 form(action="/files/#{encodeURIComponent(file.name)}",
method='POST')
 input(type='hidden', name="_method", value='DELETE')
 input(type='submit', value='delete')

Diving into Express

[32]

Running the full application
We have not covered the JavaScript static files or stylesheets used by the application,
but you can fill in the missing pieces by yourself as an exercise or just copy the
example code provided with the book.

To run the application, you need to have Node and NPM installed and MongoDB
up and running, and then execute the following commands in the terminal from
the project root:

$ npm install .

$ npm start

The first command will install all the dependencies and the second one will start the
application. You can now visit http://localhost:3000/ and see the live demo!

Summary
In this chapter, we learned about the main features of Express. We compared it
to other existing web frameworks and discovered when it is best to use it. We saw
how to structure our applications and build a practical, MVC-structured application
in the process.

Coming up in the next chapter is learning about middleware in Express. We will
create configurable middleware, error-handling middleware, and even our custom
implementation of the middleware system, among others, so stay tuned.

Component Modularity
Using Middleware

In this chapter, we will look at the middleware system used by Express and see
how it enables us to create modular web applications. This chapter will cover the
following topics:

• How the middleware system works
• Creating configurable middleware
• Differences between the router and the middleware system
• Why loading middleware in order matters
• Handling errors using middleware
• Mounting subapplications with Express
• Creating a middleware system similar to the one used in Express

Connecting middleware
Middleware refers to reusable components that can be plugged into an Express
application. Middleware consists of functions that handle HTTP requests, such as the
one we would pass to Node's native http.createServer function. A middleware
component can add features by manipulating the request and response objects and
then send the response to the client or pass control to the following middleware in
the stack. There are a lot of middleware libraries that are compatible with Express,
the most popular ones being those that were bundled with it but now live in separate
modules (https://github.com/senchalabs/connect#middleware).

Web applications have to deal with a lot of things, such as managing cookies and
sessions, handling file uploads, or serving static files. Middleware libraries can
address these problems.

Component Modularity Using Middleware

[34]

The functionality of middleware
The middleware function takes the following arguments:

• The request object: This is a wrapper on top of the request parameter
found in Node's http.createServer function, with added functionalities

• The response object: This is another wrapper that extends the response
parameter found in Node's http.createServer function

• A callback: This is usually named next, which might get executed when
everything in the current middleware is done so that the following
middleware in the stack can be invoked

The following is an example of a middleware that only allows the web application
to be accessed by users that are inside the private network, based on their IP address.
If a user has access, we will call the next function; otherwise, we will display an
error message and send the error status code (403 in this case).

function restrictAccess(req, res, next) {
 var ip = req.ip;

 // check if the ip belongs to the server
 // or to a user in the local network
 // meaning his ip starts with 192.168.*
 if (ip === '127.0.0.1' || /^192\.168\./.test(ip)) {
 next();
 } else {
 res.status(403).send('Forbidden!');
 }
}

To load a middleware into an Express application, we call the app.use() method,
so let's integrate the preceding function into a simple application, as shown in the
following code:

var express = require('express');
var app = express();

app.use(restrictAccess);

app.use(function(req, res, next) {
 res.send('Hello world');
});

app.listen(7777);

Chapter 2

[35]

If we run the application locally and visit http://localhost:7777/, then we will
see the Hello world message, but if we deploy this application elsewhere on a public
server and try to access it with our browser, the Forbidden message will be displayed.

The app.use() method takes an optional path parameter as the first argument,
which is useful if we want to mount certain functionalities to an endpoint. When
using the path parameter, the middleware will be executed only if the URL matches
that path. Practical use cases include serving static assets under the /public path or
loading special middleware for an admin path, as shown in the following example:

var express = require('express');
var app = express();
var logger = require('morgan');

app.use('/public', express.static(__dirname + '/public'));
// each time somebody visits the admin URL
// log the ip address as well as other details
app.use('/admin', logger({ immediate: true }));
app.use('/admin', function auth(req, res, next) {
 // we should authenticate the user somehow but for this demo
 // just set the 'isAdmin' flag directly
 req.isAdmin = true;
});
app.use(function respond(req, res) {
 if (req.isAdmin) {
 res.send('Hello admin!\n');
 } else {
 res.send('Hello user!\n');
 }
});

app.listen(7777);

When using a path parameter as the first parameter for app.use(), the
req.url property will be stripped of that path inside the middleware
function associated with it, meaning that if we make a request to /
admin/user, its value will be /user. However, we can still access the
original URL by using req.originalUrl in that middleware. The
req.url property will remain unaltered for subsequent requests that
don't have the path specified (for example, in the preceding function,
where we send a "hello" message to the user).

www.allitebooks.com

http://www.allitebooks.org

Component Modularity Using Middleware

[36]

In the preceding example, we are using named functions for our middleware (auth
and respond). This is a useful convention for debugging purposes because we will
quickly realize that the error came from a function name that is included in the
error stack.

Pushing items to an array
As seen in the previous examples, we can add as many middleware functions to
an application as needed. Each time middleware is loaded, it's added to a stack
internally in Express. A good way to picture this is to think of an array that gets
populated with a function each time we load middleware. When a request hits
the server, the first function in the array is executed, and then it either sends the
response back to the client or calls the next function in the array and so on until
the response has ended.

Looking at the execution flow using logs
Express has built-in support for debugging, so it can output logs to the terminal for
various actions if the debug flag is enabled. After that, we can see the order in which
middleware libraries are loaded initially and then executed with each request.

Let's prepend the following line to our previous example so that it also outputs
the ID of the process when booting:

console.log('App process id (pid): %s', process.pid);

This will be useful because we want to run the node script in the background
and then make requests to the server using the cURL command-line tool in the
same terminal.

The new router introduced by Express 4.x handles the loading and dispatching
of middleware, so we want to enable the debug logs that it outputs. To do that,
we have to set the DEBUG environment variable to express:router when running
our example:

$ DEBUG=express:router node using-middleware.js &

Once the application has started, it will output its process ID and the dispatcher logs.
The logs will display the middleware loading order and the route parameter used:

App process id (pid): 2290

 express:router use / query +0ms

 express:router use / expressInit +1ms

Chapter 2

[37]

 express:router use /public staticMiddleware +1ms

 express:router use /admin logger +3ms

 express:router use /admin auth +0ms

 express:router use / respond +0ms

The first two functions are loaded by Express automatically (query and
expressInit), while the rest of them are specific to our example.

Now, let's make some requests to different URLs in the application and see
which middleware executes. We will start by making a request to the main path:

$ curl http://localhost:7777/

 express:router dispatching GET / +22s

 express:router trim prefix (/) from url / +3ms

 express:router query / : / +2ms

 express:router trim prefix (/) from url / +1ms

 express:router expressInit / : / +0ms

 express:router trim prefix (/) from url / +1ms

 express:router respond / : / +1ms Hello user!

The only function unique to our application (that matches every path) is the respond
middleware that displays the hello message. That's the normal behavior because the
rest of the middleware was assigned to other paths: /public for staticMiddleware
and /admin for both the logger and auth functions. Similarly, if we make a request
for a static resource, it will invoke the staticMiddleware function, but not the
middleware associated with the /admin path, as shown in the following code:

$ curl http://localhost:7777/public/core.js

 express:router dispatching GET /public/core.js +4m

 express:router query : /public/core.js +3ms

 express:router expressInit : /public/core.js +0ms

 express:router trim prefix (/public) from url /public/core.js +1

 express:router staticMiddleware /public : /public/core.js +0ms
alert('hello world');

The staticMiddleware function is the last function in the stack because it sends the
response. When requesting the /admin URL, both the logger and auth middleware
will be invoked, and since they make a call to next(), the respond middleware is
the function that outputs the response:

$ curl http://localhost:7777/admin

 express:router dispatching GET /admin +2m

Component Modularity Using Middleware

[38]

 express:router query : /admin +2ms

 express:router expressInit : /admin +1ms

 express:router trim prefix (/admin) from url /admin +0ms

 express:router logger /admin : /admin +0ms

127.0.0.1 - - [Thu, 03 Jul 2014 10:46:01 GMT] "GET /admin HTTP/1.1" - -
"-" "curl/7.30.0"

 express:router trim prefix (/admin) from url /admin +2ms

 express:router auth /admin : /admin +0ms

 express:router respond : /admin +0ms Hello admin!

By using & (ampersand) when starting the Node process, we are
putting the Node process in the background. In the preceding
example, doing this allows us to run other commands in the same
terminal. Once we have finished working with the application, we
can either close the terminal or manually kill the process (since we
know its ID).

Creating configurable middleware
Configurable middleware refers to functions that can be customized, meaning
there are variables that are not hardcoded and can be passed as parameters to
those functions.

Some of the most widely used configurable components are the static and the
session middleware. For the first one, we can configure the path for the static
resources along with some more advanced features, while the session middleware
can accept parameters such as secret, key, and other settings, as shown in the
following code:

var session = require('express-session');
app.use(express.static('/public'));
app.use(session({
 secret: 'random chars',
 key: 'session_id',
 cookie: {
 secure: true
 }
}));

Chapter 2

[39]

Closures to the rescue
As mentioned earlier in this chapter, the call to app.use() expects a function as a
parameter in order to work properly. The router (this used to be the dispatcher from
the Connect framework) invokes the middleware directly, because it is the only
component that knows when to call each function from the stack, so this is the
reason we need to return a function for app.use().

When we are passing the result of the static function invoked with our custom
values, it returns a second (inner) function that retains access to those values.
This is an important concept in JavaScript and is known as a closure.

Caching middleware – a practical example
Now that we have learned how things work in theory, it's time to apply that
knowledge by creating a practical middleware that we can use for our Express
applications. First, we will create a regular middleware component and then
we will transform it into a configurable one.

The task is to create a middleware that manipulates the res.render() function in
a way that makes it return the compiled template directly from the cache (an in-
memory object) after the first time it has been executed for a given URL. For instance,
if we open the /hello URL, it will use the render function to compile a template
with some variables and display it, but in subsequent visits, it will be faster as the
content will be served from the cache.

A first try at the caching middleware
Let's create a sample application that uses Embedded JavaScript (EJS) templates
and displays the current time and the visited URL. For the time being, we will
include a single middleware function that renders the template using those two
variables. Since we are displaying the time, this means that with each request, the
content will be different. The code for the cache-render.js file is the following:

var express = require('express');
var app = express();

app.set('view engine', 'ejs');

app.use(function respond(req, res, next) {
 res.render('hello', {

Component Modularity Using Middleware

[40]

 visited: new Date(),
 url: req.url
 });
});

app.listen(7777);
console.log('Server started: http://localhost:7777/');

The application won't work just yet because we don't have the hello.ejs template
file, so we need to create the /views folder (the default location for views) and store
it there:

<p>Time: <%- visited %></p>
<p>URL: <%- url %></p>

At this point, we can start the application and test it out:

$ node cache-render.js &

[1] 3190

Server started: http://localhost:7777/

$ curl http://localhost:7777/hello

<p>Time: Thu Jan 09 2014 00:50:36 GMT+0200 (EET)</p>

<p>URL: /hello</p>

$ curl http://localhost:7777/hello

<p>Time: Thu Jan 09 2014 00:50:37 GMT+0200 (EET)</p>

<p>URL: /hello</p>

After making the second request, we can see that the time has changed, so
everything works fine.

Next, we can start working on the middleware function that manages the cache.
We need to create a cache store object so we can assign the key-value pairs to it. The
value is the content (the compiled template) and the URL path represents the key,
because we want to store the content of specific pages inside the cache. Here's an
example of such an object with some entries:

{
 '/hello/john': "Hello John!",
 '/hello/alex': "Hello Alex!"
}

We will modify the cache-render.js script to include a store object (as shown in
the following line of code) before the middleware is loaded:

var store = {};

Chapter 2

[41]

This object cannot be created inside the new middleware because it would be
redeclared each time the function is invoked (when a request is made). The next step
is to work on the middleware that does the caching and include it before the function
that does the rendering. We have to create a callback function that is executed the
first time a template is compiled. Since we need to reuse that function in multiple
places, we can create a closure that takes two parameters (res and key to be stored
in the cache) and returns the callback:

app.use(function cacheRender(req, res, next) {
 var getCacheFunction = function(res, key) {
 // callback expected by res.render()
 return function(err, content) {
 if (err) { throw err; }

 // store the content in cache and serve it to the client
 store[key] = content;
 res.send(content);
 };
 };

The final piece of the puzzle is to override res.render() with a custom function
that checks whether the compiled template exists in the cache and outputs it directly
to the client. If it doesn't exist, we need to call the original function with the callback
obtained by executing getCacheFunction() with the response and path parameters.
The render function takes three parameters: the name of the template, the variables,
and the callback. The last two are optional, so we also need to check the arguments'
length in our newly created function. The rest of the code is as follows:

 var pathname = req.path;

 var render = res.render;
 // if the compiled template isn't in the cache, then load it
 if (!store[pathname]) {
 res.render = function() {
 var args = Array.prototype.slice.call(arguments);
 var cacheIt = getCacheFunction(res, pathname);

 // add the cache function to the arguments array
 if (args.length < 2) {
 args[1] = cacheIt;
 } else {
 if (typeof args[1] === 'function') {
 args[1] = cacheIt;
 } else {
 args[2] = cacheIt;

Component Modularity Using Middleware

[42]

 }
 }

 render.apply(res, args);
 };

 next();
 } else {
 // serve the content directly from the cache
 res.send(store[pathname]);
 }
});

The application is complete now, so we can go ahead and test it out. For each request
we make to the same page, it should output the same date because of the caching
mechanism:

$ curl http://localhost:7777/sample

<p>Time: Thu Jan 09 2014 18:39:33 GMT+0200 (GTB Standard Time)</p>

<p>URL: /sample</p>

$ curl http://localhost:7777/sample

<p>Time: Thu Jan 09 2014 18:39:33 GMT+0200 (GTB Standard Time)</p>

<p>URL: /sample</p>

The timestamp is the same for the second request, meaning everything works
as planned.

Measuring the performance benefits of the caching
middleware
Now that the middleware function is done, it's time to see how it affects the
performance of the application. We will use the same wrk HTTP benchmarking tool
used by Express (https://github.com/wg/wrk) to measure how many requests per
second the application can handle.

Chapter 2

[43]

First, we will benchmark the regular application without the middleware, as shown
in the following screenshot:

Let's include the caching middleware we have created and see the difference.

As you might have guessed, the caching function significantly improved the number
of requests per second that the application could handle. The big difference between
the two scenarios is that the application doesn't have to recompile the template over
and over again when using the caching layer.

Component Modularity Using Middleware

[44]

Making the caching middleware configurable
We can start converting the caching middleware into a configurable middleware.
There are two features we will implement: passing a custom cache store object that
contains entries (a URL and content pairs), and as the second argument, we will pass
an array with URLs that will be cached (defaults to caching everything). We'll create
a function called cacheRender and insert it before loading the middleware. The
function will check whether it needs to assign the default values to the arguments
and return the middleware function created in the previous step:

var cacheRender = function(store, urlsToCache) {
 var store = store || {};
 var urlsToCache = urlsToCache || [];

 return function(req, res, next) {
 /* middleware code from our previous example */
 };
};

The first goal was achieved; now, the store object is passed as an argument, so we
can configure it as we'd like. The next thing to do is to check whether urlsToCache
contains records of URLs, and if it does, make sure the current request is one of
them. We will insert the following code right after declaring the pathname variable
(in the middleware):

if ((urlsToCache.length !== 0) && (urlsToCache.indexOf(pathname) ===
-1)) {
 return next();
}

In the case the content associated with the URL doesn't need to be cached, we just
call next() and skip to the following middleware in the stack. The final piece of
code loads the new middleware instead of its predecessor:

var store = {
 '/index' : 'Hello from the index page\n'
};
var urlsToCache = ['/index', '/test'];
app.use(cacheRender(store, urlsToCache));

Using these settings, there are three possible scenarios for our application:

• If the /index URL is requested, it will always show the Hello from the index
page message

• If the /test URL is visited, it will render the view and cache it, so all
following calls will display the same content

• If any other URL is requested, it will display a new timestamp each time

Chapter 2

[45]

We will use the cURL tool again to test these scenarios:

$ curl http://localhost:7777/index

Hello from the index page

$ curl http://localhost:7777/test

<p>Time: Thu Jan 09 2014 23:24:43 GMT+0200 (EET)</p>

<p>URL: /test</p>

$ curl http://localhost:7777/test

<p>Time: Thu Jan 09 2014 23:24:43 GMT+0200 (EET)</p>

<p>URL: /test</p>

$ curl http://localhost:7777/other

<p>Time: Thu Jan 09 2014 23:24:52 GMT+0200 (EET)</p>

<p>URL: /other</p>

$ curl http://localhost:7777/other

<p>Time: Thu Jan 09 2014 23:24:52 GMT+0200 (EET)</p>

<p>URL: /other</p>

This isn't fit for a production-ready application that spawns across multiple
processes and servers because the whole cache is loaded into memory. However,
with some adjustments such as adding an in-memory database such as Redis or
Memcached on top of it and providing more configurable options, it could become
fit for real-world applications.

Environment-based loading of
middleware
While developing applications locally, we don't need to use components that enable
gzip compression or database-backed sessions. Luckily, it's really simple to detect the
current application environment.

In Express 3, there was an app.configure() function to detect the environment,
but that was removed for newer versions. Nevertheless, all we have to do is pass
the NODE_ENV environment variable (process.env.NODE_ENV) when starting the
application; for example, see the following line of code:

NODE_ENV=production node env-middleware.js

www.allitebooks.com

http://www.allitebooks.org

Component Modularity Using Middleware

[46]

Then, in our application, we can check for that variable and default to the
development mode if it doesn't exist. Instead of writing the same if logic
everywhere, we can create a tiny function to execute a callback if the environment
matches the first parameter of the function (which is what app.configure() did).
In case we want to set the environment in the code, we can create a closure that
takes a single argument and returns the configuration function:

var configureByEnvironment = function(env) {
 if (!env) { env = process.env.NODE_ENV; }

 // default to development
 env = env || 'development';

 return function(env2, callback) {
 if (env === env2) { callback(); }
 };
};

This function acts as a setter for the environment variable and defaults to process.
env.NODE_ENV if there is no argument sent. The next check detects whether the env
variable is empty and defaults to development. The returned function resembles
the app.configure() functionality and takes two parameters: the environment and
the callback function that gets executed if the first parameter matches the current
application mode.

A sample middleware setup can look like the following code:

var configure = configureByEnvironment();
var logger = require('morgan');
var compress = require('compression');
var responseTime = require('response-time');
var errorHandler = require('errorhandler');

configure('development', function() {
 app.use(logger('dev'));
 app.use(responseTime());
 app.use(express.static(__dirname + '/public'));
});

configure('production', function() {
 app.use(logger());
 // enable gzip compression for static resources in production
 app.use(compress());
 app.use(express.static(__dirname + '/public'));
});

Chapter 2

[47]

As you might have noticed from the code, there are other things that change in
different environments besides the middleware used, such as configuration options.
In the production mode, it's better to use a verbose logger that provides more details
of the request, while in development, it's enough to display the essential bits.

Express routes
Express makes use of HTTP verbs and path patterns to provide a meaningful API
for describing routes:

app.verb(path, [callback...], callback)

The route handlers take the same arguments (request, response, and next), and
the path can be a string (that will be transformed into a regular expression) or a
regular expression.

If we were to define a route handler to update an article, then the request method
(verb) would be PUT, and the URL could look like /articles/211 (where the
number represents the article ID). Here's how to do this with Express:

app.put('/articles/:id', function(req, res, next) {
 var id = req.params.id;

 console.log('Updating article ' + id);
 console.log('Attributes: ', req.body);
 // save to database
 // send message or render template
});

Specifying the path
The path parameter can be either a string (transformed into a regular expression
internally by Express) or a regular expression, in case we need to match very specific
patterns (such as an e-mail address or a number). Needless to say, the route handlers
only get invoked when the path matches the regular expression.

When using the string version, we can specify placeholders using colons, and
they get mapped to the req.params variable. If a question mark is added after
a placeholder, it makes it optional.

Component Modularity Using Middleware

[48]

Let's suppose that we want to create a blog application and we would like to display
a post in different formats (HTML, JSON, RSS, or XML) based on the path ending. If
the format is missing, the post should still be accessible and the default format would
be HTML. The route should catch the following URLs:

• /blog/routing-with-express.html

• /blog/routing-with-express.json

• /blog/command-line-node-apps.json

• /blog/application-security

The path always starts with /blog, followed by a slug (a URL-friendly version of
the post title usually) and an optional format at the end. The slug and format are
dynamic, so we need to specify them using placeholders. Additionally, we'll have
to add the question mark at the end, since the format is optional, resulting in the
following path:

/blog/:slug.:format?

The dynamic variables (the slug and format, in this case) are accessible from within
the route handler, so here's how the route handler should look:

app.get('/blog/:slug.:format?', function(req, res, next) {
 var format = req.params.format || 'html';
 var slug = req.params.slug;

 // query the database to find the blog post based on the slug
 database.findBySlug(slug, function(err, post) {
 if (err) { return next(err); }

 switch (format) {
 case 'html':
 /* render html */
 break;
 case 'json':
 res.json(post);
 break;
 default:
 // bad format
 next();
 break;
 }
 });
});

Chapter 2

[49]

The preceding example does not use the res.format() function
provided by Express since the format is already included in the URL,
and there's no need to perform an extra check for content-negotiation
based on the Accept header.

The regular expressions converted from path strings can be inspected either by
checking the app._router.stack variable (inside our application) or by creating a
small script that uses the NPM module path-to-regexp to output the result.

In the following screenshot, we can see the regexp version of the path variable used
in our previous example (for the sake of simplicity, the route handler only sends a
basic message):

Reusable route handlers
There are a lot of situations where we need to plug in the same middleware for
multiple routes to eliminate code duplication, such as requiring user authentication
or loading database items based on path placeholders.

Component Modularity Using Middleware

[50]

Let's think for a moment what routes we would have to make for a web application
that publishes articles related to software. There will be two types of users that will
interact with the application: guests and admins. The guests will read the articles and
the admins will be able to do CRUD actions.

For both types of users, we will need to query the database for the article that's being
read or updated, so our first middleware component will populate the req.article
property with the result returned from the database. In case there's no such article
found, the response status will be 404:

// simulate a database using an object
// the keys represent the ids of the articles
var articles = {
 'express-tutorial' : {
 title: 'Practical web apps with Express',
 content: 'Lean how to create web apps with Express'
 },
 'node-videos': {
 title: 'Node.js video tutorials',
 content: 'Practical Node tips!'
 }
};

var loadArticle = function(req, res, next) {
 // we assume that the /:article placeholder
 // is present in the path
 if (!articles[req.params.article]) {
 return res.status(404).send('No such article!');
 }

 req.article = articles[req.params.article];

 next();
};

For each route that requires authentication, we need to check whether the user is
an admin, so a second middleware comes to life. A user has admin rights in this
example if the server is hosted on their local workstation, and if not, the server
will respond with a 403 Forbidden status message:

Chapter 2

[51]

var requireAdmin = function(req, res, next) {
 if (req.ip !== '127.0.0.1') {
 return res.status(403).send('Forbidden');
 }

 next();
};

The thing left to do is to create the routes and integrate these two functions in
the picture. The first approach is to load the middleware for each separate route,
so the code would look like the following:

app.get('/articles/:article', loadArticle, function(req, res,
 next) {
 res.send(req.article.content);
});

app.get('/articles/:article/edit', loadArticle, requireAdmin,
 function(req, res, next) {
 res.send('Editing article ' + req.article.title);
});

Since the route ordering matters and we want to avoid including the loadArticle
middleware for each route, a better way to handle the situation would be to create
another route just before the previous two that includes the article-loading component:

// this path will match /articles/title as well as
// /articles/title/edit
app.get('/articles/:article/:action?', loadArticle);

app.get('/articles/:article', function(req, res, next) {
 res.send(req.article.content);
});

app.get('/articles/:article/edit', requireAdmin, function(req,
 res, next) {
 res.send('Editing article ' + req.article.title);
});

This looks better than our previous example, but we can still make a small
adjustment for the future. At the moment, we only have the route for editing articles,
which requires admin access, but we will probably have another one for creating
new articles, which will look similar to /articles/:article/new. We can create a
route that matches them and includes the admin middleware component, and place
it at the top, as shown in the following line of code:

app.get('/articles/:article/:action', requireAdmin);

Component Modularity Using Middleware

[52]

Although this technique works, it has its caveats. If we add another route, and the
article placeholder wouldn't be the second parameter in that path, we would have
to modify our code.

A better solution would be to use the native app.param() function from Express,
which can take two parameters: a placeholder and a route handler. By using it, we
wouldn't care anymore if the paths would change, as long as the placeholder still
exists. There's only a one-line change to the first route of our sample application:

app.param('article', loadArticle);

The app.param() function will match all the verbs and not
only the GET requests. This means that if we add a PUT route
to /articles/:article (for updating an existing item), the
middleware will be executed for that path as well.

Route wildcards
Apart from the regular HTTP verbs, there is a special method in Express named all.
It functions in the same way as the other app.VERB() methods, but it matches the
request no matter what the HTTP verb is.

One of the path characters (the first argument to the app.VERB() method) that
has a special meaning is *, which is replaced with (.*) when creating the regular
expression and will thus match everything.

The combination of the method wildcard and the star wildcard is particularly helpful
when loading the same middleware for sections of our main application, such as an
admin dashboard or an API. Since we would require authentication for every route
prefixed with /api or /admin, we can easily add the following route:

app.all('/admin/*', requireAdmin);

Ordering of middleware
Express doesn't know what middleware components do internally, so it doesn't
reorder them. The framework doesn't try to be overly smart and do complicated
things such as checking whether a function depends on another. This means it's
our responsibility to make sure we load them in the proper order.

Chapter 2

[53]

The most popular example to reflect this is the session and cookie middleware. The
session handler uses a cookie as an ID to retrieve the session data, so the cookie
parsing must take place in advance. The same dependency relation is between the
cross-site request forgery (CSRF) and session middleware, since the first stores its
token on the user's session. An example with the correct inclusion of these three
middleware components is as follows:

var cookieParser = require('cookie-parser');
var session = require('express-session');
var csrf = require('csurf');

app.use(cookieParser());
app.use(session({
 secret: 'random chars here'
}));
app.use(csrf());

There are other reasons for paying attention to the ordering of middleware besides
taking care of dependencies, such as the need for authentication. For example, if
only certain white-listed IP addresses are allowed to view a certain page, and the
component that's doing the authentication is placed after the one that renders that
page, then everyone will be able to bypass the authentication. Actually, a better way
to say this is that nobody (no request) would ever reach the authentication layer in
the first place.

You might be wondering what is the difference between app.VERB() and regular
middleware loaded with app.use(). The fact of the matter is that both methods
delegate to the router introduced in Express 4 and behave similarly, with a few
exceptions, such as the following:

• The path parameter is stripped and not visible to the middleware function
for app.use()

• The app.VERB() function accepts multiple callbacks instead of just one

Handling errors with middleware
Each time we call the next function inside a middleware or a route handler with an
error parameter, it delegates that to the error-handling middleware. Express allows
us to plug in a custom error handler, but by default, it just displays the error stack
while developing and shows an Internal Server Error message in production.

Component Modularity Using Middleware

[54]

In the development mode, the error page isn't greatly formatted by default, but we
can load the errorHandler() middleware that used to be bundled with Express
(https://www.npmjs.org/package/errorhandler) to sweeten the deal. Let's create
a sample application with that handler and include a middleware that calls next with
an error argument:

var express = require('express'); var app = express();
var errorHandler = require('errorhandler');

app.use(function(req, res, next) {
 next(new Error('custom thrown'));
});

app.use(errorHandler());

app.listen(7777);

Now, if we start that application and make any request to the server, the following
error page will be displayed:

This looks good in development and provides useful information for developers, but
showing stack traces in production is not the way to go. For live applications, we can
use the error handler as the unified place to deal with errors and display messages
based on different conditions, such as the following:

• The status code that we want to send back to the user
• The content type
• The type of the request, whether the current request is an Ajax request or not

Chapter 2

[55]

Let's begin with a tiny application and then create the error handler for it:

var express = require('express');
var app = express();
var logger = require('morgan');
var fs = require('fs');

app.use(logger('dev'));

app.get('/', function(req, res, next) {
 res.send('Hello world');
});
app.get('/error', function(req, res, next) {
 next(new Error('manually triggered error'));
});

app.listen(7777);

We have only defined two routes for this application, but what happens if the clients
try to access different URLs? When the router doesn't find any route that matches
the request, the next middleware in the stack is called, and if there's no custom
middleware, it will simply display the message Cannot GET /visited-url.

This isn't extremely helpful, not to mention a bit scary for the end user because the
style of the website is gone, so we need to customize this page by creating our own
404 - Page Not Found handler. Since the middleware is executed in order, all we
have to do is place our function as the last one in the stack, so it will catch everything
that is not picked up by its predecessors. We have mentioned before that we want to
handle all the errors inside the error handler, and we can do that with this one. We
will create a middleware that passes a 404 error to the error handling middleware,
as seen in the following code:

app.use(function(req, res, next) {
 var err = new Error('Page Not Found');
 err.statusCode = 404;

 // pass the error to the error handler
 next(err);
});

In the preceding code, we have created a custom error with the statusCode property
of 404. The reason for doing this is that it will allow us to treat this error differently
because we know its code.

www.allitebooks.com

http://www.allitebooks.org

Component Modularity Using Middleware

[56]

So far, we have two possible error scenarios: an internal error thrown inside the
application and another error thrown if the URL does not exist on the server.
We will create two files named 404.html and 500.html and display them on
the frontend when those errors occur.

Finally, we will work on the custom error handler, which will log the errors, display
the right content, and send the status code based on the type of the error. Instead of
requiring the content of the two files each time the handler is called, we will grab
that content only once when the application has started:

// not to be placed inside the error handler
var notFoundPage = fs.readFileSync(__dirname +
 '/404.html').toString('utf8');
var internalErrorPage = fs.readFileSync(__dirname +
 '/500.html').toString('utf8');

Normally, synchronous calls aren't recommended in Node
applications because they block the event loop, but since we are
doing the initial configuration before booting the server, and it's not
supposed to start without loading these files, it's an acceptable evil.

The error handler will contain a switch statement based on the status code of the
error object, and it will display one of the two newly-created error pages or a simple
error message in case the code differs from 404 and 500. The difference between the
error handler and the rest of the middleware functions is that it takes four arguments
instead of three, and the first one is an error object. The following code must be
placed after the last middleware in the application:

// custom error handler where we handle errors
// passed by other middleware
app.use(function(err, req, res, next) {
 // if not specified, the statusCode defaults to 500
 // meaning it's an internal error
 err.statusCode = err.statusCode || 500;

 switch(err.statusCode) {
 case 500:
 res.status(err.statusCode).send(internalErrorPage);
 // log the error to stderr
 console.error(err.stack);
 break;
 case 404:
 res.status(err.statusCode).send(notFoundPage);

Chapter 2

[57]

 break;
 default:
 console.error('Unhandled code', err.statusCode, err.stack);
 res.status(err.statusCode).send('An error happened');
 }
});

Now, if we visit http://localhost:7777/error, the contents of the file 500.html
will be displayed, and the same goes for unknown pages and the 404.html file.
Additionally, for internal server errors and other codes except 404, the error stack
is logged to the terminal.

We can further improve the handler to have more fine-grained control over the
errors, such as checking for Ajax requests or doing content negotiation. An example
for internal errors (code 500) is as follows:

case 500:
 if (req.xhr) {
 return res.status(err.statusCode).send({
 error: '500 - Internal Server Error'
 });
 }

 res.format({
 text: function() {
 res.status(500).send('500 - Internal Server Error');
 },
 html: function() {
 res.status(err.statusCode).send(internalErrorPage);
 },
 json: function() {
 res.status(err.statusCode).send({
 error: '500 - Internal Server Error'
 });
 }
 });
 // log the error to stderr
 console.error(err.stack);
 break;

When dealing with Ajax requests in this application, we send back a JSON response,
because we operate under the assumption that all Ajax requests will work with JSON
and they won't have the content type header properly set. This might not be the case
for all applications, but it's good to know about this technique.

Component Modularity Using Middleware

[58]

Most client-side JavaScript frameworks send the X-Requested-
With header to identify Ajax requests (such as jQuery), but this is
not mandatory.

We can simulate sending an Ajax request using cURL with a custom X-Requested-
With header set to xmlhttprequest to see if the handler works:

$ curl -H "X-Requested-With:xmlhttprequest" http://localhost:7777/error

{

 "error": "500 - Internal Server Error"

}

The response, if JSON, means that it worked as expected. The content negotiation
part is done using the native res.format() function from Express, which allows us
to send a message that is understandable to the client (based on the content type).
We can use the same cURL tool for testing, but this time, we'll send a custom Accept
header for each of the three content types:

$ curl -H "Accept:application/json" http://localhost:7777/error

{

 "error": "500 - Internal Server Error"

}

$ curl -H "Accept:text/plain" http://localhost:7777/error

500 - Internal Server Error

$ curl -H "Accept:text/html" http://localhost:7777/error

<!DOCTYPE HTML>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>500 - Internal Server Error</title>

</head>

<body>

 500 - Internal Server Error

</body>

</html>

Chapter 2

[59]

Mounting subapplications
Each Express application is a middleware on its own, so it can be mounted into
another application. This feature makes it easy to plug subapplications into a parent
one. Possible use cases include the following points:

• Creating applications in a modular way, where each subapplication is totally
independent of the others and possibly developed by other team members

• Adding a blogging platform or a forum to an endpoint
• Integrating third-party tools such as a monitoring dashboard or an FTP client

along with a text editor

There are two possible approaches we can take when working with mountable
applications: either the main application deals with crosscutting concerns such as
logging and error handling, or the subapplications handle these things on their own.
If we require third-party applications, we might not be able to control some of these
aspects, but if we are creating a modular web application from scratch, then it's our
choice to begin with.

Next, we will create an example application on how to mount a subapplication and
discuss what the advantages are and the problems we might bump into.

We will create three files in the same folder: an index.js file for the main application
and two other files, blog.js and admin.js, for the subapplications (let's assume we
are plugging in an admin dashboard and a blog system). The main application will
be light and it will only load the other two:

var express = require('express');
var app = express();

var blog = require('./blog');
var admin = require('./admin');

app.use('/blog', blog);
app.use('/admin', admin);

app.listen(7777);

Component Modularity Using Middleware

[60]

Generally, when mounting applications, we specify a path for each application, as
is the case in the preceding example. The blog and admin applications are small,
since we are focusing here on the mounting feature instead of creating complex
applications. The following sample code is for the blog subapplication (the admin
one is similar):

var express = require('express');
var app = express();

app.get('/', function(req, res, next) {
 res.send('Blog app says hello');
});

app.get('/error', function(req, res, next) {
 return next(new Error('err'));
});

app.use(function(err, req, res, next) {
 console.error(err.stack);
 res.send('BLOG: an error occured');
});

module.exports = app;

With the new Express 4 router, we can use express.Router()
instead of express() to create a mountable application.

As you might have noticed, these two applications don't bind to a port because that's
the job of the master application. Also, they are decoupled from the main application
and can use their own rendering engine, settings, and other features.

By using a simple comment or an if statement, we can disable or enable their
inclusion, making it easy to use this system for feature flags. Instead of creating these
modular applications, if we would have made a big monolith, it would have been
harder to switch off the /blog or /admin endpoints.

There are some things we need to take into consideration with mountable
applications, which are as follows:

• Avoid code duplication; for example, if we intend to use a logging solution
for all the endpoints, it would be better to include it in the parent application

• If we want to redirect to an absolute path, then the argument must start with
a forward slash (/); otherwise, for a relative path, we should omit it

Chapter 2

[61]

• If the applications need to share sessions, then the master application should
load them

• When creating general-purpose applications, it's a good thing to move them
into their separate repositories and publish them to the NPM registry; other
people and projects may need them

The middleware that used to come bundled with Express are
self-aware, meaning they are not loaded twice. Each of them
makes a check to see whether the function has been called
previously (using some kind of flag), similar to what the session
middleware does:

// self-awareness

if (req.session) return next();

This means that if a middleware function has been loaded
in the master application, it won't do the same work in the
subapplications.

Replicating the middleware system
So far, we have learned a lot of things about the middleware system used in Express.
Now, we will refresh that knowledge and create a practical application. We will
create a middleware framework of our own that partly resembles the one found
in Express.

All the files will be placed inside an app folder, and the main entry point of the
application will be named index.js.

The main file
This file will contain an App class similar to the one found in Express, with its
constructor and the use and handleRequest methods.

JavaScript doesn't have classes in the language yet, but we can
simulate them by using a function as the constructor and adding
other functions (methods) to the prototype.

Component Modularity Using Middleware

[62]

The constructor will initialize the stack variable (that holds the middleware) to
an empty array, and it will bind the handleRequest function to the App scope,
as shown in the following code:

function App() {
 // allows us to call App() without using the `new` keyword
 if (!(this instanceof App)) {
 return new App();
 }

 this.stack = [];
 this.handleRequest = this.handleRequest.bind(this);
}

The original Express constructor does a bit of magic so it can return the app function
that handles the requests and contains the use function. For example, consider the
following code:

var http = require('http');
var express = require('express');
var app = express();

app.use(middlewareFn);

http.createServer(app).listen(7777);

Our application will be simpler (internally), but we will have to use app.
handleRequest instead of passing app to the http connection handler, as shown in
the following example:

var http = require('http');
var express = require('./app');
var app = express();

app.use(middlewareFn);

http.createServer(app.handleRequest).listen(7777);

This is why we need to bind the handleRequest function to the App context;
otherwise, this will refer to the context of the server handler.

Chapter 2

[63]

The use() function will take the same two parameters as in Express: the route and
the middleware handler. The optional route argument defaults to /. Besides the
regular trailing slash check performed on the route, the thing that is pending to be
done is the most important: we have to push the middleware to the stack in case the
handler doesn't take four parameters, and if it does, then we assign the handler to the
customErrorHandler property. The following is the complete code for this method:

App.prototype.use = function(route, fn) {
 if (typeof route !== 'string') {
 fn = route;
 route = '/';
 }

 // strip trailing slash
 if (route !== '/' && route[route.length - 1] === '/') {
 route = route.slice(0, -1);
 }

 if (fn.length !== 4) {
 this.stack.push({
 handle: fn,
 route: route
 });
 } else {
 this.customErrorHandler = fn;
 }
};

We can assume that the handleRequest method takes only two arguments (a request
and a response), since the next callback could be used internally when executing each
middleware in the stack. This assumption is wrong because in the case we mount the
current application into another Express application, there would be another next
parameter coming from the master application, as shown in the following example:

app.use(subApplication.handleRequest);
app.use(notFoundHandler);

In case the handleRequest method uses two parameters and the third one is
ignored, then in the preceding example, the notFoundHandler middleware would
never be called, since the subapplication will end the response itself. Now that we
have concluded that the handleRequest function takes three parameters (like any
Express middleware does), we can go on and think about how to finish it.

Component Modularity Using Middleware

[64]

Every time a request comes in, we must initialize an internal index that points to
the current element in the middleware stack that needs to be executed next. Then,
the first middleware is run, which might end the response or call the next callback
function. When the next function is executed, the index is incremented and a check
is performed to determine whether the first (and single) argument is an error or not;
if it is, then the error handler is called, and if it's not, the process is repeated with the
following middleware in the stack.

Since there is a lot of stuff to do with handling requests and we need an internal
variable (the index) each time a request is made, it's a good idea to separate this logic
into another class. We will create a new instance of that class in the handleRequest
function with the following arguments: the stack, the custom error handler, and a not
found handler:

// we need to create the request handler, but for
// the moment let's include it to finish this file
var RequestHandler = require('./requestHandler');
var util = require('util');

App.prototype.handleRequest = function(req, res, _next) {
 var next;

 if (_next) {
 next = function(err) {
 if (util.isError(err)) {
 _next(err);
 } else {
 _next();
 }
 };
 }

 new RequestHandler(this.stack, this.customErrorHandler,
 next).next(req, res);
};

module.exports = App;

The _next function argument is not empty in case the current application is
mounted into another parent one. This callback is relevant because we pass it onto
the request handler as the custom not found handler (the very last function that ends
the response in case its predecessors didn't do so). In case the _next function exists,
we must override it and make sure it's called with the error argument, or with no
arguments at all, because inside our request handler code, we will invoke the regular
middleware functions with the request and response objects as arguments.

Chapter 2

[65]

As you have seen in the previous code, we not only initialize the request handler
instance, but we also call its next method, so it knows that it must start handling
the request.

Handling requests
We know that the request handler constructor takes three arguments:

• The middleware (array) stack
• The custom error-handling function
• The custom not found function

The last two will default to something simple, like we have seen in Express during
development. The only thing left to do in the constructor is to initialize the index,
because we need that for each instance of the class (the handler will start at 0 and
increment after a middleware function call). The code for the constructor is as follows:

function RequestHandler(stack, errorHandler, notFoundHandler) {
 this.index = 0;
 this.stack = stack;
 this.errorHandler = errorHandler || function(err, req, res) {
 res.writeHead(500, { 'Content-Type': 'text/html' });
 res.end('<h1>Internal Server Error</h1><pre>' + err.stack +
 '</pre>');
 };
 this.notFoundHandler = notFoundHandler || function(req, res) {
 res.writeHead(404, { 'Content-Type': 'text/html' });
 res.end("Cannot " + req.method.toUpperCase() + " " + req.url);
 };
}

The other missing part is the next function, which will execute each middleware
handler until one of the following things happen:

• A function sends the response to the client (and does not call the next
function again)

• The next function is called with an error argument, and in that case, the error
handler is invoked

• There is no middleware handler left in the stack, so the notFoundHandler
function is executed

Component Modularity Using Middleware

[66]

The next function also needs to perform the following actions:

• Check whether the index exceeds the stack length, so it knows whether it has
to call the notFoundHandler function

• Call the errorHandler function in case the first argument is an error
• Wrap the middleware function in a try-catch block like Express does
• Check whether the route was set up for the current middleware (if it is

different than /) and whether the URL matches the route
• Remove the custom route part from the URL in case it's set up (because it

shouldn't be exposed to the middleware)

With the preceding goals in mind, here is the remaining code:

RequestHandler.prototype.next = function(req, res) {
 if (this.index < this.stack.length) {
 var _next = (function(err) {
 if (!err) {
 this.next(req, res);
 } else {
 this.errorHandler(err, req, res);
 }
 }).bind(this);

 try {
 var middleware = this.stack[this.index++];

 if (middleware.route !== '/') {
 var regexp = new RegExp('^\/' + middleware.route.substring(1)
+ '\/?$');
 // custom route, so we need to alter `req.url`
 // and remove the 'root'
 if (regexp.test(getPathname(req.url))) {
 req.originalUrl = req.url;
 req.url = req.url.replace(middleware.route, '/');
 } else {
 // the route isn't matched, so we call `_next()`
 return _next();
 }
 }

 middleware.handle(req, res, _next);
 }

Chapter 2

[67]

 catch(err) {
 this.errorHandler(err, req, res);
 }
 } else {
 this.notFoundHandler(req, res);
 }
};

For the custom route matching, we are using a function called getPathname that
returns the pathname from the URL, so we need to include that too:

var url = require('url');

function getPathname(str) {
 return url.parse(str).pathname;
}

Last but not least, we need to export the RequestHandler function, as shown in the
following line of code:

module.exports = RequestHandler;

Demonstrating the application
We have written around 100 lines of code so far, and we hope to have a working
implementation of a middleware system that's similar to the one used by Express,
so it's time to test all its features.

Let's create an application so that we can test the basic functionality of our
framework: loading middleware and calling next and special pages (the not
found page and internal server error):

var http = require('http');
var express = require('./app');
var app = express();

app.use(function(req, res, next) {
 if (req.url === '/') {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 return res.end('Hello world!');
 }
 next();
});

Component Modularity Using Middleware

[68]

app.use('/404', function(req, res, next) {
 res.writeHead(404, { 'Content-Type': 'text/html' });
 return res.end('No such page');
});

app.use('/500', function(req, res, next) {
 return next(new Error('something bad happened'));
});

http.createServer(app.handleRequest).listen(7777);

Instead of loading the express module, we have required our custom Express-like
solution, and at the very end, we have passed app.handleRequest to the http
server function instead of simply passing app (as we would have done with an
Express application). Also, we are not using functions such as res.send or res.
status to manage the response because they are provided by Express (and do not
exist in our framework).

There are four possible responses shown by the sample application:

• A Hello world message for the main page
• A No such page message if we visit the /404 URL
• Error content for the /500 route
• A Cannot GET message for other (GET) requests

You can now run the example and see how the application behaves in each case.
If everything is set up correctly (the sample application is in the root folder and
the framework in the app folder), it should work each time.

We can add new code to the sample application to test other stuff, such as mounting
subapplications and assigning a custom error handler:

var app2 = express();
app2.use('/app2', function(req, res, next) {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 return res.end('Response from the second app.');
});

app.use(app2.handleRequest);

app.use(function(err, req, res, next) {
 res.writeHead(500, { 'Content-Type': 'text/html' });
 res.end('<h1>500 Internal Server Error</h1>');
});

Chapter 2

[69]

If we rerun the example and make a request to the /app2 URL, we should see the
message Response from the second app. Also, the /500 URL should now display
500 Internal Server Error as the heading, without the error stack this time.

Adding the routes handler
Now that we have the middleware framework done, how hard would it be to add
support for routes just like Express does with app.VERB()?

We have learned the following things about routes in Express:

• The app.use() method is used to define the route handlers
• Multiple handlers can be added to a route
• The path parameter for app.VERB() accepts either a string (that is translated

into a regular expression) or a regular expression
• The named route parameters are automatically mapped to the params

property of the request object
• The app.all() method behaves like every other verb but matches all the

request methods
• The path parameter (*) acts as a wildcard for routes

The conclusion is that we can add the routes functionality on top of the existing
middleware system by extending it. All the added functionality will live in the app.
VERB() methods.

We will create a file called router.js and place it in the app folder (along with the
files index.js and requestHandler.js). Besides the index module dependency,
we will also need to include the native Node util module (used for inheritance)
and the custom path-to-regexp module (to transform path strings to regular
expressions, like Express does), which will need to be installed:

npm install path-to-regexp

Let's create the router constructor and make it inherit from the custom-built
middleware system:

var util = require('util');
var pathToRegexp = require('path-to-regexp');
var App = require('./index');

function Router() {
 if (!(this instanceof Router)) {

Component Modularity Using Middleware

[70]

 return new Router();
 }

 // call the 'super' constructor
 App.call(this);
}

util.inherits(Router, App);

This system is similar to the one used in Express 4, but in our case, the
router only handles the routes and not the other middleware defined
with the app.use() function.

Like in the index.js file, we will have to use the getPathname function later on, so
we should add it to our code:

var url = require('url');

function getPathname(str) {
 return url.parse(str).pathname;
}

Since we are using the same code in two different modules, an optimization would
be to extract this function into its own file, but consider this a home exercise.

We are done with the easy part. Next, we need to concentrate on adding the verb
methods and their features. We will set an array of verbs, then iterate through each,
and attach the same function that does all the checks:

var VERBS = ['all', 'get', 'post', 'put', 'delete', 'head',
 'options'];

VERBS.map(function(verb) {
 Router.prototype[verb] = function(path, fn) {
 var _this = this;
 var keys = [];
 var regex = (path.constructor.name === 'RegExp') ? path :
 pathToRegexp(path, keys);

 var args = Array.prototype.slice.call(arguments);
 // multiple handlers (functions) can be specified
 // for a given path
 var handlers = args.slice(1);

Chapter 2

[71]

In case the path parameter is not a regular expression, we use the path-to-regexp
module to transform it. Then, we extract all the route handlers from the arguments
by slicing every item from the array after the first element, since that one holds the
path parameter.

Next, for each verb, we will attach a function that calls app.use(), check whether the
verb method matches the request method or if it is equal to all, and check whether
the route matches the URL and extracts the parameters into the req.params property:

 handlers.forEach(function(fn) {
 _this.use(function(req, res, next) {
 // app.all behaves like a regular verb
 // but it matches all HTTP verbs
 if ((verb !== 'all') && (req.method !==
 verb.toUpperCase())) { return next(); }
 // '*' matches all routes
 if ((path !== '*') && !regex.test(getPathname(req.url))) {
 return next(); }

 var params = regex.exec(getPathname(req.url)).slice(1);

 if (keys.length) {
 req.params = {};
 keys.forEach(function(key, i) {
 if (params[i]) {
 req.params[key.name] = params[i];
 }
 });
 } else {
 req.params = {};
 }

 fn(req, res, next);
 });
 });
 }
});

Now that we have finished the router, it's time to test it out with another sample
application that covers most of its functionality, using the following code:

var http = require('http');
var express = require('./app/router');
var app = express();

Component Modularity Using Middleware

[72]

app.get('/', function(req, res, next) {
 req.message = 'Hello';
 next();
}, function(req, res, next) {
 req.message += ' World!';
 next();
}, function(req, res, next) {
 res.end(req.message);
});

app.get('/app2', function(req, res, next) {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end('app2');
});

app.get('/users/:user/:name?', function(req, res, next) {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end(JSON.stringify(req.params));
});

app.all('*', function(req, res, next) {
 res.writeHead(404, { 'Content-Type': 'text/html' });
 res.end('404 - Page Not Found');
});

http.createServer(app.handleRequest).listen(7777);

If we make a request to http://localhost:7777/, the Hello World! message will
be displayed, that is, the three route handlers assigned to the home page have been
loaded in order.

To test the req.params functionality, we need to visit the page http://
localhost:7777/users/the_wizzard/alex, which should output the following
JSON response:

{ user: "the_wizzard", name: "alex" }

For every other URL we visit, the 404 - Page Not Found message will be shown,
so we know that the route wildcard did its job.

Chapter 2

[73]

Summary
This chapter has provided us with a great deal of information about middleware.
We can now create middleware components and even our custom framework that
replicates Express up to a certain point. We have discussed the similarities between
the router and the middleware system. We have seen the advantages of error-
handling middleware and also learned how to set up the 404 page. An important
insight we got was the fact that each Express application is a middleware of its own,
so we can mount the subapplication into a master one.

Now that we know how to use middleware to our advantage, it is time to create a
RESTful application with Express.

Creating RESTful APIs
This chapter will guide you through building a RESTful API from scratch using
Express and Mongoose. We will use a test-driven approach in the process, which
means we will first create the tests and then implement the functionality. Not only
will we write functional tests for the API endpoints, but we will also write unit tests
for the models. In this chapter, we will cover the following topics:

• Best practices for designing RESTful APIs
• Writing unit tests for the models
• Writing functional tests with Supertest
• Versioning APIs
• Implementing rate limiting

An overview of REST
Representational State Transfer (REST) is an architecture style for designing
network applications. REST is all about resources, so when creating an API,
we need to separate it into logical resources. Resources represent information,
and they need to be nouns, not verbs.

To manipulate resources, we use HTTP requests where the methods/verbs are
meaningful: GET, POST, PUT, PATCH, and DELETE.

Creating RESTful APIs

[76]

HTTP methods (verbs)
HTTP methods are used to specify the action that should be performed on a
resource. The most popular methods are GET and POST, but there are others that
are defined as well: CONNECT, DELETE, HEAD, OPTIONS, PUT, PATCH, and TRACE.

Some HTTP methods do not generate any side effects, so they are called safe
methods. GET, HEAD, OPTIONS, and TRACE are considered safe, while other methods
such as POST, PUT, PATCH, and DELETE are unsafe because they are normally used to
change the state of a resource on the server.

Another property of methods is idempotence. A method is idempotent if multiple
invocations of it have the same result as a single one. For example, calling DELETE
twice won't remove the same resource two times because after the first call it will
have already been deleted.

It's really important to correctly implement the safeness and idempotence properties
for HTTP clients to do their job. For example, you may have noticed that the browser
asks for confirmation when trying to reperform a POST request. This happens
because it needs to make sure that you understand the implications of that request,
such as creating the same item multiple times.

Now, let's have a quick look at the most common HTTP methods. We are going to
use these methods in RESTful applications:

• GET: This method is used to retrieve information for the requested resource.
• HEAD: This method is similar to GET, but should not contain the message

body in the response. It is useful to check the validity, accessibility, and
modification of resources.

• POST: This method sends a new subordinate of the resource to the server.
If a new resource has been created, the server should respond with the 201
Created status code; however, if the action did not result in an identifiable
resource, it should respond with 200 OK or 204 No Content.

• PUT: This method requests that the entity sent is stored at the requested URI.
It can be used to update a resource or create a new one if the URI does not
point to an existing one.

• DELETE: This method is used to remove the entity stored at the requested
URI; it should respond with 200 OK, 204 No Content, or 202 Accepted
(which means the deletion has not occurred yet, but it will).

Chapter 3

[77]

For a more detailed description of these methods, you can read the Method Definitions
section of Hypertext Transfer Protocol -- HTTP/1.1 at http://www.w3.org/Protocols/
rfc2616/rfc2616-sec9.html.

Aside from the HTTP methods described previously, there is another method called
PATCH that is being adopted more and more. PATCH is similar to PUT since it is used
to modify the resource identified by the requested URI or create a new one in case it
does not exist. However, the big difference between the two is that PATCH performs
a partial update on a resource, so it will not send the whole updated resource, but
instead just send the pieces that have been modified. In addition, as opposed to PUT,
the protocol (https://tools.ietf.org/html/rfc5789) states that the entity sent
by PATCH should contain instructions on how the resource needs to be modified:

"The PATCH method requests that a set of changes described in the request entity
be applied to the resource identified by the Request- URI. The set of changes is
represented in a format called "patch document" identified by a media type."

This means that it is not quite correct to send only a partial JSON representation
of the resource without describing how the changes should be applied, as shown
in the following command:

PATCH /api/users/john HTTP/1.1

 Host: www.example.com

 Content-Type: application/json

 {

 "age": 32,

 "website": "johndoe.domain"

 }

In the preceding example, there is no description of the changes needed to modify
the existing user called John. Fortunately, there is a proposed draft called JSON
Patch that aims to solve the problem. The draft specifies how to use JSON objects
to describe the operations that need to be applied when updating the resource,
http://tools.ietf.org/html/rfc6902. Let's rewrite the example and see how
it should work according to this standard:

PATCH /api/users/john HTTP/1.1

 Host: www.example.com

 Content-Type: application/json-patch+json

Creating RESTful APIs

[78]

 [{

 "op": "replace",

 "path": "/age",

 "value": 32

 }, {

 "op": "replace",

 "path": "/website",

 "value": "johndoe.domain"

 }]

The JSON body has now become more verbose, but it's standards-compliant
according to the JSON Patch draft. This specification allows us to perform more
complex operations, such as adding an element to an array property without
sending the whole value of the array (and the same goes for an object property).

HTTP status codes
Status codes represent three-digit integers sent by the server to the client
that describe the result of the action performed. The first digit of the code is
an indication of the class of the response, which can be one of the following:

• 1xx – informational
• 2xx – success
• 3xx – redirection
• 4xx – client error
• 5xx – server error

You can read more about HTTP status codes from the official RFC page at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

There are some applications that only use the 200 OK and 500 Internal Server
Error status codes, but that is not the way to do it. Since we are creating RESTful
applications, we should embrace the HTTP status codes to make our lives easier
and not duplicate existing functionality.

Chapter 3

[79]

For example, you might have seen the following response when trying to
retrieve information on a resource without being logged in or sending the
proper authentication data:

HTTP/1.1 200 OK

Content-Type: application/json

{"error":"unauthorized"}

Instead of using the correct status code, 401 Unauthorized, the server responded
with 200 OK and an unauthorized error message in the message body.

Next, we are going to have a look at some of the most-used status codes and
their meaning.

Successful 2xx
The following Successful 2xx class of status codes tell us that the request has been
received, understood, and accepted by the server:

• 200 OK: This status code indicates that the request has succeeded
• 201 Created: This status code indicates that the request has succeeded and

a new resource has been created
• 202 Accepted: This status code does not say anything about the actual

result; it only states that the request has been accepted and that it is being
processed asynchronously

• 204 No Content: This status code indicates that the request has succeeded,
but it does not include a message body

Redirection 3xx
The following Redirection 3xx status codes are all about sending the client
somewhere else for the actual resource:

• 301 Moved Permanently: This status code indicates that the resource
has a new permanent URI, provided by the Location response header

• 302 Found: This status code indicates that the resource is temporarily
located at another URI, provided by the Location field

• 304 Not Modified: This status code should be used when the client
makes a conditional GET request but the document has not been modified

Creating RESTful APIs

[80]

Client error 4xx
The following Client error 4xx group of status codes are intended for situations
related to a client error, and the server should indicate whether it is a temporary
or permanent error:

• 400 Bad Request: This indicates that the syntax of the request is malformed
and could not be understood by the server.

• 401 Unauthorized: This indicates that the client is not authenticated and
thus cannot access the resource.

• 403 Forbidden: This indicates that the client does not have access to the
resource, and authorization will not help. The server might not want to let
the user know that the resource exists at this URI and could respond with
404 Not Found (for example, because of privacy or security reasons).

• 404 Not Found: This indicates that the server could not find anything at
the requested URI.

• 409 Conflict: This indicates that the request was not completed because
of a conflict with the current state of the resource.

• 429 Too Many Requests: This status code is defined in the proposed
standard for Additional HTTP Status Codes (http://tools.ietf.org/
search/rfc6585#section-4), and it indicates that the client has exceeded
the imposed rate limit (the client has sent too many requests) and they
should only retry after a certain period (defined by the Retry-After header).

• 422 Unprocessable Entity: This status code has been defined
in the proposed standard for HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV) (https://tools.ietf.org/html/
rfc4918#section-11.2), and it indicates that the content type is understood
and the syntax is not malformed, but it was not able to process the request.

Server error 5xx
The following Server error 5xx group of HTTP status codes indicate a problem on the
server, which can be temporary or permanent:

• 500 Internal Server Error: This indicates that the server could not fulfill
the request due to an unexpected error

• 501 Not Implemented: This is used when the server does not recognize the
request method

• 503 Service Unavailable: This indicates that the server was unable to
handle the request at the time due to a temporary overload or maintenance

Chapter 3

[81]

The status codes presented so far are the ones we will most likely use, but if we want
to check out their detailed definition or read about the other status codes available,
the following links will help:

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html (Status
Code Definitions)

• https://tools.ietf.org/html/rfc4918 (HTTP Extensions for Web
Distributed Authoring and Versioning (WebDAV))

• http://tools.ietf.org/search/rfc6585 (Additional HTTP Status Codes)

SmartNotes application requirements
In the remaining part of this chapter, we will create a RESTful API for a sample
application called SmartNotes. This application will have two types of users: guests
and registered users. Guests represent unauthenticated users that can perform the
following actions:

• Create a new username so they can manage their notes
• Get the public details of a username
• Retrieve a list of public (shared) notes that belong to a username
• Get a specific public note of a username

Registered users will be authorized to use the HTTP basic authentication scheme,
and they will be able to perform the following activities:

• Edit their details
• Perform CRUD operations on notes
• Perform all actions that guests have access to

The model for the registered users will contain the attributes username, name, and
email. Both the username and the email fields are mandatory fields as well as being
unique in the database. Additionally, the username needs to be alphanumeric and
have a maximum length of 255 characters.

Apart from these three attributes, the passport-local-mongoose module takes
care of generating and comparing passwords as well as adding the hash and salt
attributes to the user document. The Note model contains more attributes in order
to allow users to generate more complex queries, as follows:

• title: This is a required field (a string) that represents the title of the note
• description: This is a required field (a string) that keeps the note description

Creating RESTful APIs

[82]

• userId: This is a required field that holds the _id of the user (MongoDB
ObjectId by default) who created the note

• rating: This is an integer between 0 and 10; it defaults to 0 (unrated)
• category: This is an optional string that represents the note category
• public: This is a Boolean to know whether the note is publically shared

or not (only its creator can get its details); it defaults to false
• createdAt and updatedAt: These timestamps are used to determine the

creation time as well as when the last update to the note was made

Both the models contain an _id field and are added by Mongoose automatically.

Creating RESTful URLs of the application
Now that we know what the application requirements are, we can move on to
designing its API.

An important principle when creating RESTful URLs is to avoid using verbs in the
URLs. Instead of having URLs such as /notes/getAll or /notes/deleteNote, we
need to leverage existing HTTP methods such as GET or DELETE.

The thing to remember here is that we need to use nouns for resources and operate
on them using HTTP methods. Let's apply this theory in practice and see how our
endpoints will look; refer to the following table:

URL HTTP Method Action

/users/<username> GET This is used to get the public details of a
specific user

/users POST This is used to create a new user

/users/<username> PATCH This is used to partially update the
authenticated user

/users/<username>/
notes

GET This is used to retrieve the list of public notes
shared by a specific user

Chapter 3

[83]

URL HTTP Method Action
/users/<username>/
notes/<note_id>

GET This is used to get a certain publicly shared
note of a user

/notes GET This is used to retrieve the list of notes for
the authenticated user (which can be filtered
using different options)

/notes POST This is used to add a new note

/notes/<note_id> GET This is used to retrieve a specific note

/notes/<note_id> PATCH This is used to partially update a specific note

/notes/<note_id> DELETE This is used to delete a specific note

Just as we used HTTP methods to avoid repetition and keep our URLs clean, in the
same spirit, we will use existing HTTP status codes to express the results of these
actions when we implement them.

To read more about the things to avoid when creating RESTful
APIs, visit http://www.lornajane.net/posts/2013/five-
clues-that-your-api-isnt-restful.

Implementing the SmartNotes application
Next, we start by bootstrapping the application. We then create a validation library
so we can reuse it in our models. Once this is done, we create the routes and
integrate them into the current application.

For each part that requires writing code, we first create tests, run them to see them
fail, and only then continue with the actual implementation. This has multiple
benefits, one of the most important being that we will have a better understanding
of what we are going to create.

Creating RESTful APIs

[84]

The bootstrapping phase
Let's take a look at how the structure of our application will look after we have
finished it:

In the root folder of the application, we create the following folders:

• lib: This folder is used for custom functionality
• models: This folder contains Mongoose models for users and notes
• routes: Instead of putting all the routes in the server.js file, we put

them in this folder and require them in the main file
• test: This folder contains all the tests for the application

It's worth noting that there are other ways of structuring projects (such
as the feature-based way), but in this project, we use the MVC style.

Chapter 3

[85]

The fastest way to create the package.json file is to use the npm init command
inside the root folder of the application, after which NPM will guide us step-by-step
through creating the properties.

Using the following code, we create a basic config.json file that contains an
environment-based configuration with the database URL and the port required
by the application:

{
 "development": {
 "mongoUrl": "mongodb://localhost/smartnotes-dev",
 "port": 3000
 },
 "test": {
 "mongoUrl": "mongodb://localhost/smartnotes-test",
 "port": 3000
 },
 "production": {
 "mongoUrl": "mongodb://localhost/smartnotes",
 "port": 3000
 }
}

The lib folder will contain the following db.js file with basic functions to connect
to the database and check the error type:

var mongoose = require('mongoose');

exports.isValidationError = function(err) {
 return (err && err.message && /ValidationError/i.test(err.message));
 };

exports.isDuplicateKeyError = function(err) {
 return (err && err.message && /duplicate
 key/i.test(err.message));
};

exports.connect = function(url, cb) {
 cb = cb || function(err) {
 if (err) {
 console.error('database connection failure: \n' +
 err.stack);
 process.exit(1);
 }
 };

 mongoose.connect(url, { safe: true }, cb);
};

Creating RESTful APIs

[86]

The next logical step is to install the dependencies and include them automatically
into the dependencies and devDependencies array properties inside package.
json. Fortunately, we can do this very easily using NPM as well, as we will see
in a moment.

For this project, we use MongoDB as the database as it also speaks JavaScript
like Node and understands JSON documents. We use Mongoose to interact with
the database; mongoose-timestamp to automatically manage the createdAt
and updatedAt fields; passport-local-mongoose for user authentication; the
validator module to perform all sorts of validations on our data; the async
module for control flow; lodash for general utility functions; and Express,
of course. So, let's install them as follows:

npm i express mongoose mongoose-timestamp passport-local-mongoose
validator async lodash –-save

NPM supports shortcuts, so we can just use i instead of writing install. The
–-save flag is used so that the dependencies will automatically be added to the
package.json file.

Now that we have finished with the production dependencies, it's time to think
of the development dependencies used by the project. We will test the application
using the Mocha test framework along with should.js; we will use sinon for spies,
stubs, and mocks; and finally, we will use proxyquire so we can mock the required
dependencies for a file. We will install them in the same way as before; only this
time, we will use the –-save-dev flag instead of –-save (to make sure they will be
added to the devDependencies property in the package.json file):

npm i mocha should.js sinon proxyquire --save-dev

There are two types of tests that we are going to write for this application: unit tests
and functional tests. The convention for running the tests of a Node application is to
include a test property under the scripts property in package.json and call npm
test to execute these tests. Since we are using Mocha for testing, the property will
look like the following code:

 "scripts": {
 "test": "NODE_ENV=test node node_modules/.bin/mocha --reporter
 spec test/unit/ test/functional/",
 "start": "node server.js"
 },

We called the local mocha executable instead of just calling mocha globally because
neither can we be sure that the module is installed globally nor can we control its
version. We could have called the script directly without prepending node, but this
way, we make sure it runs properly on Windows as well.

Chapter 3

[87]

When one-liners tend to be too long, we can put these tasks into separate
files and call them with Node or with a tool such as Grunt/Gulp. This
gives us flexibility when dealing with complex environments.

Another convention seen previously is the start script, which lets us call npm start
to boot the server instead of remembering which file is our main one and manually
starting it with Node.

Last but not least, let's add a basic skeleton for the server.js main file of the
application. If the file is required by another module, we will export the application
and not boot up the server, but if server.js is the master file, we will start the
server. The code for the file is shown as follows:

var express = require('express');
var app = express();
var db = require('./lib/db');
var config = require('./config.json')[app.get('env')];

var methodOverride = require('method-override');
var bodyParser = require('body-parser');

db.connect(config.mongoUrl);

app.use(bodyParser.urlencoded({ extended: true }));
app.use(bodyParser.json());
app.use(methodOverride(function(req, res) {
 if (req.body && typeof req.body === 'object' && '_method' in
 req.body) {
 // look in urlencoded POST bodies and delete it
 var method = req.body._method;
 delete req.body._method;
 return method;
 }
}));

module.exports = app;

if (!module.parent) {
 app.listen(config.port);
 console.log('(%s) app listening on port %s', app.get('env'),
 config.port);
}

Creating RESTful APIs

[88]

The module.parent check, used in the preceding code, is to
determine whether the module was run directly or loaded via
require(). If it's the latter, it means that we are most likely in a test
environment and don't want the server to listen on a port. In this case,
exporting the application would suffice.

Dealing with validation
Mongoose has some built-in validations, but sometimes, we need more complex
validations, such as checking for a valid IP address or a URL.

At the time of writing, there is a module called mongoose-validator that provides
an easy way to specify Mongoose-compatible validation functions using the
validator module. However, the module bundles a really old version of the
validator module, so it's not ideal.

Whenever you want to quickly check out the page of a certain module
on the NPM website, just type http://npm.im/<MODULE_NAME>,
and it will redirect you there.

Creating a custom validation module
Luckily, the validator module has a simple API that allows us to make our own
wrapper on top of it. Once we are finished with this wrapper, we can use it in the
Mongoose models as the validate method of an attribute.

We will extend the validator module with another method (a closure) that proxies
the validation function to the intended validation function (on the same validator
object). We have to do that because we cannot specify the value ahead of time (when
declaring the Mongoose schema). The function signature for it will be the following:

validator.validate(nameOfTheMethod, value, …arguments)

This validate function will actually make a call to the method that was passed as
the first parameter, as shown in the following line of code:

validator[nameOfTheMethod](value, …arguments)

Chapter 3

[89]

Now that we know how the validate function should look, let's go write some tests!
We will create a file called validator.js inside /test/unit/ and start with our first
test. The following code will check whether an error is thrown if the method does not
exist on the validator object:

var should = require('should');
var validator = require('../../lib/validator');

describe('validator', function() {
 describe('validate', function() {
 it("should throw an error if the delegated method doesn't
 exist", function() {
 delete validator.unknownMethod;
 (function() {
 validator.validate('unknownMethod');
 }).should.throw(/validator method does not exist/i);
 });
 });
});

If we run the tests, we will get an error since the validator file we required does not
exist yet:

$ npm test

> SmartNotes@0.0.0 test /Users/alexandruvladutu/www/SmartNotes

> node node_modules/.bin/mocha --reporter spec test/unit/ test/functional

module.js:340

 throw err;

 ^

Error: Cannot find module '../../lib/validator'

Good, now let's create the validator file, assign an empty function to the validate
method, and rerun the test afterwards.

Note that since we want to extend the validator object (returned by the validator
module) and not modify it directly, we will need to copy all its properties to a newly
created object and return that one instead. We could do that ourselves, but luckily,
we can use the extend function from lodash instead:

npm i lodash –-save

Creating RESTful APIs

[90]

The code for the validator file will be the following:

var validator = require('validator');
var extend = require('lodash').extend;

var customValidator = extend({}, validator);

customValidator.validate = function() {};

module.exports = customValidator;

Running the tests will generate the following output:

 validator

 validate

 1) should throw an error if the delegated method doesn't exist

 0 passing (7ms)

 1 failing

 1) validator validate should throw an error if the delegated method
doesn't exist:

 AssertionError: expected [Function] to throw exception

The next step is to add the existence check to the function and throw an error if the
method is not available:

customValidator.validate = function(method) {
 if (!customValidator[method]) {
 throw new Error('validator method does not exist');
 }
};

Now, when we run the tests, everything will work as expected:

 validator

 validate

 ü should throw an error if the delegated method doesn't exist

 1 passing (7ms)

Chapter 3

[91]

Next, we write a test to make sure validate returns a function:

it("should return a function", function() {
 validator.noop = function(){};
 validator.validate('noop').should.be.a.Function;
});

When running the tests again, we see these tests fail, as they should. We include
the bare minimum needed to make these tests pass, which means that we return
function(){}; at the end of the validate function. Now, both tests will pass:

 validator

 validate

 ü should throw an error if the delegated method doesn't exist

 ü should return a function

After that, we add a test that checks whether the inner function returned the
validator function with the correct arguments when using it. We use the sinon.
spy function to check the arguments being called on the delegated method:

 describe("inner function", function() {
 it("should call the delegated method with the arguments in
 order", function() {
 var method = sinon.spy();

 validator.myCustomValidationMethod = method;
 validator.validate('myCustomValidationMethod', 1, 2,
 3)('str');

 method.calledWith('str', 1, 2, 3).should.be.true;
 });
 });

So, let's do a short recap: the validate function returns another function (the inner
function) that, when called, invokes the method named by the first argument on the
validator object.

We need to first run the tests as usual, ensure that the newly created one fails, and
move on to the implementation. We add the following bits to the validate function
(instead of returning an empty function):

 // get an array of the arguments except the first one (the
 method name)
 var args = Array.prototype.slice.call(arguments, 1);

Creating RESTful APIs

[92]

 return function(value) {
 return customValidator[method].apply(customValidator,
 Array.prototype.concat(value, args));
 };

Now, if we run the tests, everything is nice and green, which means that all the tests
are being passed.

Improving performance with memoization
Note that each time we call the validate function with the same parameters, it
returns a new (different) function. We can use the memoizejs module to memoize
the result of the validate function called with some specific arguments so that the
next time the function is called with the exact same arguments, it returns the result
from the cache. Don't forget to install the module:

npm i memoizejs --save

We include the proxyquire module in our test file because we want to use it instead
of the custom require function. We use it to replace the memoizejs dependency
from our validator module in order to test that it's being called, and the result is
assigned to the validate function.

A common mistake people make here is to test whether the
validate function is being memoized. This functionality is not our
responsibility; the third-party module itself tests it. All we need to do
is ensure that the memoizejs function is called once and the result is
stored in the validate function.

We use the proxyquire module instead of the native Node require function when
requesting the validator module (in our test file) because we need to override the
result returned by the memoizejs dependency. The test will look like the following:

it("should be memoized", function() {
 var noop = sinon.stub();
 var memoize = sinon.spy(function(fn) { return noop; });
 var validator = proxyquire('../../lib/validator', {
 'memoizejs': memoize
 });

 memoize.calledOnce.should.be.true;
 validator.validate.should.eql(noop);
});

Chapter 3

[93]

The test will fail since we haven't implemented this feature yet, so after that, we
update our validator module accordingly to include the following lines (before
exporting the module):

var memoize = require('memoizejs');
customValidator.validate = memoize(customValidator.validate);

Now, let's run the tests again and make sure they pass:

 validator

 validate

 ü should throw an error if the delegated method doesn't exist

 ü should return a function

 ü should be memoized

 inner function

 ü should call the delegated method with the arguments in order

 4 passing (10ms)

Implementing the models
There are two Mongoose models we need to create: the User model and the Note
model. For each model, we first write their tests and then create the Mongoose
schema with the appropriate attributes.

Test helpers
Before writing the tests, we implement some handy helpers that will definitely
make our lives easier when we test the models. For Mongoose models, we have
to test reusable features, such as the following:

• Making sure that an attribute has been set to required
• Ensuring that the attribute has the correct type
• Making sure that the proper validation rules have been defined for

an attribute
• Testing whether a plugin has been loaded
• Testing whether the schema has been registered with Mongoose

Creating RESTful APIs

[94]

Instead of using the real mongoose module, we stub it using sinon and then check
whether mongoose.Schema has been called with the right arguments. The same
approach will work to test whether a plugin has been loaded in the schema or
whether the schema has been registered with mongoose.model.

Let's create a file called helpers.js inside test/utils/; this will contain the helpers:

var sinon = require('sinon');
var should = require('should');
var validator = require('../../lib/validator');

exports.getMongooseStub = function() {
 var mongoose = {};

 mongoose.Schema = sinon.stub();
 mongoose.Schema.ObjectId = 'ObjectId';
 mongoose.Schema.prototype.plugin = sinon.stub();
 mongoose.model = sinon.stub();

 return mongoose;
};

An important function is shouldDefineSchemaProperty, which checks whether an
object property (schema attribute) has been called with a certain value. The following
helpers that assert the type of the schema attribute, its default value, or its presence
are actually delegating the work to this function:

exports.shouldDefineSchemaProperty = function(Schema, property) {
 sinon.assert.called(Schema.withArgs(sinon.match(property)));
};

exports.shouldBeRequired = function(Schema, property) {
 var obj = {};
 obj[property] = {
 required: true
 };
 exports.shouldDefineSchemaProperty(Schema, obj);
};

exports.shouldBeUnique = function(Schema, property) {
 var obj = {};
 obj[property] = {
 unique: true
 };

Chapter 3

[95]

 exports.shouldDefineSchemaProperty(Schema, obj);
};

// checks the type of the property
exports.shouldBeA = function(Schema, property, type) {
 var obj = {};
 obj[property] = {
 type: type
 };
 exports.shouldDefineSchemaProperty(Schema, obj);
};

exports.shouldDefaultTo = function(Schema, property, defaultValue) {
 var obj = {};
 obj[property] = {
 default: defaultValue
 };
 exports.shouldDefineSchemaProperty(Schema, obj);
};

exports.shouldBeBetween = function(Schema, property, opts) {
 var obj = {};
 obj[property] = {
 min: opts.min,
 max: opts.max
 };
 exports.shouldDefineSchemaProperty(Schema, obj);
};

We also need to check whether the validation function for an attribute has been
called with the correct parameters. We can do this by checking whether the value of
the validate property on the object is equal to the function returned by validator.
validate, which is called with the exact parameters. Since the function uses
memoizejs to cache the result, it will return the same value when called multiple
times with the same parameters, as shown in the following code:

exports.shouldValidateThat = function(Schema, property) {
 var args = Array.prototype.slice.call(arguments, 2);
 var obj = {};
 obj[property] = {
 validate: validator.validate.apply(validator, args)
 };

Creating RESTful APIs

[96]

 exports.shouldDefineSchemaProperty(Schema, obj);
};

// when using an array of validation functions
exports.shouldValidateMany = function(Schema, property,
 validation1, validation2) {
 var obj = {};
 obj[property] = {
 validate: [{
 validator: validator.validate.apply(validator,
 validation1.args),
 msg: validation1.msg
 }, {
 validator: validator.validate.apply(validator,
 validation2.args),
 msg: validation2.msg
 }]
 };
 exports.shouldDefineSchemaProperty(Schema, obj);
};

The helpers left to be created are the ones that check whether a plugin has been
loaded on the schema and whether the schema itself has been registered. The two
functions will look like the following:

exports.shouldRegisterSchema = function(Model, Schema, name) {
 Model.calledWith(name).should.be.true;
 Model.args[0][1].should.be.an.instanceOf(Schema);
};

exports.shouldLoadPlugin = function(Schema, plugin) {
 sinon.assert.called(Schema.prototype.plugin.withArgs(plugin));
};

The Note model
This model file will define the schema and load the mongoose-timestamp plugin.
Before we start writing tests and implementing code for the model, we need to
think of how to shape our documents by defining a schema with proper attributes.
In order to do this, let's have a short recap of the attributes needed for notes:

• title: This is a (required) string of 3-255 chars
• description: This is a (required) string of 10-255 chars

Chapter 3

[97]

• userId: This is a MongoDB ObjectId that points to the User model; it is a
required field

• rating: This is a number between 0 and 10 that defaults to 0 (unrated)
• category: This is a string that defaults to general
• public: This is a Boolean that defaults to false

Besides setting the attributes, we will load the mongoose-timestamp plugin (which
will automatically take care of the createdAt and updatedAt attributes) and register
the schema. We will use the proxyquire module to stub both the plugin as well as
the mongoose module.

Let's create a file called note.js inside /test/unit and complete the initial
preparation: we define the dependencies and bind mongoose.Schema to the helper
functions (so that we won't have to pass it as an argument each time we use it):

var should = require('should');
var sinon = require('sinon');
var proxyquire = require('proxyquire');
var helpers = require('../utils/helpers');
var mongoose = helpers.getMongooseStub();

var shouldDefineSchemaProperty =
 helpers.shouldDefineSchemaProperty.bind(null, mongoose.Schema);
var shouldRegisterSchema = helpers.shouldRegisterSchema.bind(null,
 mongoose.model, mongoose.Schema);
var shouldBeRequired = helpers.shouldBeRequired.bind(null,
 mongoose.Schema);
var shouldBeA = helpers.shouldBeA.bind(null, mongoose.Schema);
var shouldDefaultTo = helpers.shouldDefaultTo.bind(null,
 mongoose.Schema);
var shouldBeBetween = helpers.shouldBeBetween.bind(null,
 mongoose.Schema);
var shouldValidateThat = helpers.shouldValidateThat.bind(null,
 mongoose.Schema);
var shouldLoadPlugin = helpers.shouldLoadPlugin.bind(null,
 mongoose.Schema);

Now, there is one thing left to do before writing the tests, and that is to use
proxyquire to stub the mongoose-timestamp module when requiring the
Note model:

describe('Note', function() {
 var Note, mongooseTimestamp;

Creating RESTful APIs

[98]

 before(function() {
 mongooseTimestamp = sinon.stub();
 Note = proxyquire('../../models/note', {
 'mongoose-timestamp': mongooseTimestamp,
 'mongoose': mongoose
 });
 });

 // the tests will be included here
});

We need to write a test, see it fail, and then implement the functionality on the
model. For the sake of brevity, this time we will see all the model tests and then
we will check out the model implementation. The following are the global tests
(the plugin check and registration of the model) and the tests for the title attribute;
the rest will be left as an exercise for you since they are similar:

 it('should register the Mongoose model', function() {
 shouldRegisterSchema('Note');
 });

 it('should load the timestamps plugin', function() {
 shouldLoadPlugin(mongooseTimestamp);
 });

 describe('title', function() {
 it('should be required', function() {
 shouldBeRequired('title');
 });

 it('should be a string', function() {
 shouldBeA('title', String);
 });

 it('should have a length of 3-255 chars', function() {
 shouldValidateThat('title', 'isLength', 3, 255);
 });
 });

Chapter 3

[99]

The tests look really clean and expressive, as intended. The Note model is really
light; it only declares the schema (its attributes), loads the mongoose-timestamp
plugin, and registers the model, as shown in the following code:

var validator = require('../lib/validator');
var timestamps = require('mongoose-timestamp');
var mongoose = require('mongoose');

var Schema = mongoose.Schema;
var ObjectId = Schema.ObjectId;

var Note = new Schema({
 title: {
 type: String,
 required: true,
 validate: validator.validate('isLength', 3, 255)
 },
 description: {
 type: String,
 required: true,
 validate: validator.validate('isLength', 10, 255)
 },
 userId: {
 type: ObjectId,
 required: true,
 ref: 'User'
 },
 rating: {
 type: Number,
 default: 0,
 min: 0,
 max: 10
 },
 category: {
 type: String,
 default: 'general'
 },
 public: {
 type: Boolean,
 default: false
 }
});

Note.plugin(timestamps);

module.exports = mongoose.model('Note', Note);

Creating RESTful APIs

[100]

The User model
There are two main things we need to cover in the User model: the schema definition
and managing passwords (by simply loading the passport-local-mongoose
plugin). The user schema will contain the following attributes:

• username: This is a unique, alphanumeric string (required) with 4-255 chars
• email: This is a unique, valid e-mail string (required)
• name: This string is optional

We will not handle the password field by ourselves, but instead, we will use the
passport-local-mongoose module to take care of authentication, hashing, and
storing the proper attributes in the database (salt and hash).

Since the tests are similar to the Note model, they will also be left as a home exercise
(feel free to check out the attached source code of this chapter). The code for the User
model is as follows:

var validator = require('../lib/validator');
var passportLocalMongoose = require('passport-local-mongoose');

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var ObjectId = Schema.ObjectId;

var User = new Schema({
 username: {
 type: String,
 required: true,
 unique: true,
 validate: [{
 validator: validator.validate('isAlphanumeric'),
 msg: 'username must be alphanumeric'
 }, {
 validator: validator.validate('isLength', 4, 255),
 msg: 'username must have 4-255 chars'
 }]
 },
 email: {
 type: String,
 required: true,
 unique: true,
 validate: validator.validate('isEmail')
 },

Chapter 3

[101]

 name: {
 type: String
 }
});

User.plugin(passportLocalMongoose);

module.exports = mongoose.model('User', User);

Functional tests and route implementation
Now that we have finished with the code for the models, we can concentrate on
writing functional tests for the API endpoints and implementing the associated
Express routes.

We will use the supertest module to write functional tests for the application,
so let's install it as follows:

npm i supertest –-save-dev

Before creating the functional tests, we need to take care of one aspect: we have to
empty the database each time we run the tests and populate it again with fixtures
so that we can test certain routes.

For this, we create a file called db.js inside test/utils/. This file will contain
functions that take care of the following: connecting to the database, emptying the
database, and populating it with fixtures. There will also be a master function that
calls the previous three so that we can easily set up the test database. The code is
as follows:

var config = require('../../config.json');
var db = require('../../lib/db');
var async = require('async');
var Note = require('../../models/note');
var User = require('../../models/user');
var userFixtures = require('../fixtures/users.json');
var notesFixtures = require('../fixtures/notes.json');

exports.connect = function(callback) {
 db.connect(config.test.mongoUrl, callback);
};

Creating RESTful APIs

[102]

// empty the database
exports.reset = function(callback) {
 async.parallel([
 function emptyNotesCollection(cb) {
 Note.remove({}, cb);
 },
 function emptyUsersCollection(cb) {
 User.remove({}, cb);
 }
], callback);
};

// populate the database with fixtures
exports.populate = function(callback) {
 async.each(userFixtures, function(data, next) {
 User.register(new User({
 username: data.username,
 email: data.email,
 name: data.name
 }), data.password, next)
 }, function(err) {
 if (err) { return callback(err); }

 User.findOne({ username: 'johndoe' }, function(err, user) {
 if (err) { return callback(err); }

 async.each(notesFixtures, function(data, next) {
 var note = new Note(data);
 note.userId = user._id;
 note.save(next);
 }, callback);
 });
 });
};

// connect to, reset and populate database with fixtures
exports.setupDatabase = function(callback) {
 exports.connect(function(err) {
 if (err) { return callback(err); }

 exports.reset(function(err) {
 if (err) { return callback(err); }

Chapter 3

[103]

 exports.populate(callback);
 });
 });
};

Apart from that, we need to create two JSON files with Note and User fixtures inside
/test/fixtures/. Here is the users.json sample:

[
 {
 "username": "johndoe",
 "password": "johns_password",
 "email": "johndoe@example.com",
 "name": "John Doe"
 }
]

User endpoints
Now, we can start writing the functional tests for the users' API endpoints (/test/
functional/users.js). We will test that we can retrieve a user's public information
as well as the ability to create and edit users. The full code for achieving this should
look like the following:

var request = require('supertest');
var should = require('should');
var app = require('../../server');
var db = require('../utils/db');

var user = require('../fixtures/users.json')[0];

describe('User-Routes', function(done) {
 before(function(done) {
 db.setupDatabase(done);
 });

 after(function(done) {
 db.reset(done);
 });

 it('should return the user details', function(done) {
 request(app)
 .get('/users/' + user.username)
 .expect(200)

Creating RESTful APIs

[104]

 .expect('Content-Type', /json/)
 .end(function(err, res) {
 if (err) { throw err; }

 res.body.should.have.properties('username', 'email',
 'name');

 done();
 });
 });

 it('should create a new user', function(done) {
 request(app)
 .post('/users')
 .send({
 username: 'newuser',
 password: 'newuser_password',
 email: 'newuser@example.com',
 name: 'doe'
 })
 .expect(201)
 .expect('Content-Type', /json/)
 .expect('Location', '/users/newuser')
 .expect({
 username: 'newuser',
 email: 'newuser@example.com',
 name: 'doe'
 }, done);
 });

 it('should update the current user', function(done) {
 request(app)
 .patch('/users/' + user.username)
 .set('Authorization', 'Basic ' + new Buffer(user.username +
 ':' + user.password).toString('base64'))
 .send([{
 op: 'replace',
 path: '/email',
 value: 'johndoe_the_third@example.com'
 }, {
 op: 'replace',
 path: '/name',
 value: 'John Doe The Third'
 }])

Chapter 3

[105]

 .expect(204, done);
 });

});

At the beginning of our tests, we clean the database and populate it with the fixtures,
and at the end, we clean it up again. Another interesting fact is that we are using
HTTP basic authentication to check for access.

We are not testing every possible use case because it's beyond the scope of this
chapter, but for production applications, it's highly recommended that you cover
as much code as possible with tests.

If we run the tests, they should all fail at this point, so next, we will implement the
user routes. We will start by assigning the models on the request object and defining
the routes in the server.js code:

// put these along with the other dependencies
var mongoose = require('mongoose');
var User = require('./models/user');
var Note = require('./models/note');
var routes = require('./routes');

// …

// these go after the middleware is declared
app.use(function(req, res, next) {
 req.User = User;
 req.Note = Note;
 next();
});

app.get('/users/:username', routes.users.show);
app.post('/users', routes.users.create);
app.patch('/users/:username', routes.users.authenticate,
 routes.users.update);

The index.js file inside /routes just exports the users and notes routes. We will
create the users routes next (/routes/users.js), starting with the authentication
route. The authentication function is fairly simple; we use the express.basicAuth()
middleware along with the passport-local-mongoose functionality to populate the
req.user variable if the user successfully authenticates, and if not, basicAuth will
return 401 Unauthorized:

var _ = require('lodash');
var db = require('../lib/db');

Creating RESTful APIs

[106]

var publicAttributes = ['username', 'email', 'name'];
var basicAuth = require('basic-auth-connect');

exports.authenticate = function(req, res, next) {
. basicAuth(function(user, pass, fn) {
 // function from passport-local-mongoose
 req.User.authenticate()(user, pass, function(err, userData) {
 // no need to store salt and hash
 fn(err, _.pick(userData, ['_id', 'username', 'email',
 'name']));
 });
 })(req, res, next);
};

The show function returns the user's public details (excluding hash and salt,
for example), and if there is no such user, it responds with 404 Not Found:

var publicAttributes = ['username', 'email', 'name'];

exports.show = function(req, res, next) {
 req.User.findOne({ username: req.params.username },
 function(err, userData) {
 if (err) { return next(err); }

 if (!userData) {
 return res.status(404).send({ errors: ['user not found'] });
 }

 res.send(_.pick(userData, publicAttributes));
 });
};

The create function does what we would expect; it checks for validation errors
and returns 201 Created with the user details if the operation succeeded,
otherwise it returns 422 Unprocessable Entity along with the error:

exports.create = function(req, res, next) {
 var newUser = new req.User(_.pick(req.body, publicAttributes));

 req.User.register(newUser, req.body.password, function(err,
 userData) {
 if (err) {
 if (db.isValidationError(err)) {
 res.status(422).send({ errors: ['invalid data'] });
 } else if (db.isDuplicateKeyError) {

Chapter 3

[107]

 res.status(422).send({ errors: ['username/email already
 exists'] });
 } else {
 next(err);
 }
 } else {
 res
 .status(201)
 .set('Location', '/users/' + userData.username)
 .send(_.pick(userData, publicAttributes));
 }
 });
};

Next is the most complicated part regarding updating users, where we will have to
verify a lot of conditions, such as making sure that the user is not trying to update
other users and checking for validation or if the user is not found:

// using the JSON Patch protocol http://tools.ietf.org/html/rfc6902
exports.update = function(req, res, next) {
 function saveAndRespond(user) {
 user.save(function(err, userData) {
 if (err) {
 if (db.isValidationError(err)) {
 res.status(422).send({ errors: ['invalid data'] });
 } else if (db.isDuplicateKeyError) {
 res.status(422).send({ errors: ['email already exists']
 });
 } else {
 next(err);
 }
 } else {
 res.status(204).send();
 }
 });
 };

 if (req.params.username !== req.user.username) {
 return res.status(403).send({ errors: ['cannot update other
 users'] });
 } else {
 if (!Array.isArray(req.body)) {
 return res.status(400).send({ errors: ['use JSON Patch'] });
 } else {

Creating RESTful APIs

[108]

 if (req.body.some(function(item) { return item.op !==
 'replace'; })) {
 return res.status(422).send({ errors: ['only replace is
 supported atm'] });
 } else {
 req.User.findOne({ username: req.user.username },
 function(err, user) {
 if (err) { return next(err); }

 if (!user) {
 return res.status(404).send({ errors: ['no such user']
 });
 }

 req.body.forEach(function(item) {
 // shouldn't be able to change username
 if (item.path !== '/username') {
 user[item.path.replace(/^\//, '')] = item.value;
 }
 });

 // handling special password case
 if (user.password) {
 var password = user.password;
 delete user.password;

 // function from passport-local-mongoose
 user.setPassword(password, function(err) {
 if (err) { return next(err); }

 saveAndRespond(user);
 });
 } else {
 saveAndRespond(user);
 }
 });
 }
 }
 }
};

Now, if we run the tests, everything should be green once more.

Chapter 3

[109]

Notes endpoints
The functional tests for notes are similar to the ones for users; we check the content
type header, the status code, and the body:

before(function(done) {
 db.setupDatabase(done);
});

after(function(done) {
 db.reset(done);
});

it("should return the user's notes", function(done) {
 request(app)
 .get('/notes')
 .set('Authorization', 'Basic ' + new Buffer(user.username +
 ':' + user.password).toString('base64'))
 .expect(200)
 .expect('Content-Type', /json/)
 .end(function(err, res) {
 if (err) { throw err; }

 res.body.should.be.an.Array;

 done();
 });
});

it("should retrieve a particular note", function(done) {
 request(app)
 .get('/notes/' + note._id)
 .set('Authorization', 'Basic ' + new Buffer(user.username +
 ':' + user.password).toString('base64'))
 .expect(200)
 .expect('Content-Type', /json/)
 .end(function(err, res) {
 if (err) { throw err; }

 res.body.should.have.properties('createdAt', 'updatedAt',
 '_id', 'userId', 'title', 'description');

Creating RESTful APIs

[110]

 done();
 });
});

it("should create a note", function(done) {
 request(app)
 .post('/notes')
 .set('Authorization', 'Basic ' + new Buffer(user.username +
 ':' + user.password).toString('base64'))
 .send({
 title: 'my random note',
 description: 'random description here'
 })
 .expect(201)
 .expect('Location', /\/notes\/[0-9a-f]{24}/)
 .expect('Content-Type', /json/)
 .end(function(err, res) {
 if (err) { throw err; }

 res.body.should.have.properties('createdAt', 'updatedAt',
 '_id', 'userId', 'title', 'description');

 done();
 });
});

it("should return the user's public notes", function(done) {
 request(app)
 .get('/users/' + user.username + '/notes')
 .expect(200)
 .expect('Content-Type', /json/)
 .end(function(err, res) {
 if (err) { throw err; }

 res.body.should.be.an.Array;
 res.body.forEach(function(note) {
 note.public.should.be.true;
 });

 done();
 });
});

Chapter 3

[111]

As you might have guessed, we will need to update the server.js main file to
include the notes routes before we implement them, so here is the full code for
all the routes:

app.get('/users/:username', routes.users.show);
app.post('/users', routes.users.create);
app.get('/users/:username/notes', routes.notes.showPublic);
app.patch('/users/:username', routes.users.authenticate,
 routes.users.update);
app.get('/notes', routes.users.authenticate, routes.notes.index);
app.post('/notes', routes.users.authenticate,
 routes.notes.create);
app.get('/notes/:id', routes.users.authenticate,
 routes.notes.show);

The notes route functions are straightforward; as in the users.js file, we execute the
queries on the model and perform validation where it's needed (when creating and
updating notes). Not every function related to the notes endpoints is included in the
following code since they are similar to what we have created before, but you can
finish the rest of the API as a home exercise using the following code:

exports.index = function(req, res, next) {
 req.Note.find({ userId: req.user._id }, function(err, notes) {
 if (err) { return next(err); }

 res.send(notes);
 });
};

exports.show = function(req, res, next) {
 req.Note.findOne({ _id: req.params.id, userId: req.user._id },
 function(err, note) {
 if (err) { return next(err); }

 res.send(note);
 });
};

exports.create = function(req, res, next) {
 var note = new req.Note(_.pick(req.body, ['title',
 'description', 'rating', 'category', 'public']));
 note.userId = req.user._id;

Creating RESTful APIs

[112]

 note.save(function(err, noteData) {
 if (err) {
 if (db.isValidationError(err)) {
 res.status(422).send({ errors: ['invalid data'] });
 } else {
 next(err);
 }
 } else {
 res
 .status(201)
 .set('Location', '/notes/' + noteData._id)
 .send(noteData);
 }
 });
};

exports.showPublic = function(req, res, next) {
 req.User.findOne({ username: req.params.username },
 function(err, user) {
 if (err) { return next(err); }

 if (!user) { return res.status(404).send({ errors: ['no such
 user'] })};

 req.Note.find({ userId: user._id, public: true },
 function(err, notes) {
 if (err) { return next(err); }

 res.send(notes);
 });
 });
};

Now, after we run all the tests, everything should work as expected again, as shown
in the following screenshot:

Chapter 3

[113]

API versioning
At this time, the URLs of the SmartNotes application are not prefixed with anything,
so it will be hard to add a new version of our API.

Normally, we should always have in mind that APIs deprecate over time and new
versions are released. Fortunately, since Express applications can be mounted onto
others, we can achieve this by modifying a code segment in server.js. All we have
to do is replace app.listen(config.port) with the following code:

var masterApp = express();
masterApp.use('/api/v1/', app);
masterApp.listen(config.port);

Now, instead of making a GET HTTP request to /users/johndoe, for retrieving user
information (for example), the API clients will make a request to /api/v1/users/
johndoe. This means that when a new version of the API is available, we can make
it available using the /api/v2/ prefix, so it's mission accomplished!

Creating RESTful APIs

[114]

Remember to update the functional tests after doing this; otherwise,
they will fail because they will be sending requests to the old URLs.

API rate limiting
Sometimes, we may want to rate limit our API to prevent abuse or because the
system can handle a limited amount of requests per second. There are several ways
to rate limit our API, such as by limiting the number of requests by IP address or
username. If we choose to implement rate limiting based on the username, we can
create a middleware that can be reused for all the routes that require authentication.

There is an excellent module by TJ Holowaychuk (the creator of Express) called
node-ratelimiter (https://github.com/visionmedia/node-ratelimiter)
that will basically do all the heavy lifting for us.

We create a configurable middleware that takes three arguments: the database
connection to Redis (the in-memory database needed by the rate limiter), the
maximum number of requests allowed in the time frame specified, and the
duration of the limit. Here's how our middleware will look:

var Limiter = require('ratelimiter');
var ms = require('ms');

module.exports = function(db, maxRequests, duration) {
 return function limitNumberOfRequests(req, res, next) {
 var id = req.user._id;
 var limit = new Limiter({
 id: id,
 db: db,
 max: maxRequests,
 duration: duration
 });

 limit.get(function(err, limit){
 if (err) return next(err);

 res.set('X-RateLimit-Limit', limit.total);
 res.set('X-RateLimit-Remaining', limit.remaining);
 res.set('X-RateLimit-Reset', limit.reset);

Chapter 3

[115]

 // all good
 if (limit.remaining) return next();

 // not good
 var delta = (limit.reset * 1000) - Date.now() | 0;
 var after = limit.reset - (Date.now() / 1000) | 0;
 res.set('Retry-After', after);
 res.send(429, 'Rate limit exceeded, retry in ' + ms(delta, {
 long: true }));
 });
 }
};

You can read more about bitwise operators at https://
developer.mozilla.org/en/docs/Web/JavaScript/
Reference/Operators/Bitwise_Operators#Bitwise_OR.

Note that we are using the ms module to convert milliseconds into a human-readable
duration. Now, here's how we can plug this middleware into our existing code from
server.js:

var redis = require('redis')
var db = redis.createClient();
// 5000 requests, duration 1 day
var limiter = require('./lib/rate-limiter')(db, 5000, 60 * 60 *
 24);

// using the limiter for this route
app.get('/notes/:id', limiter, routes.users.authenticate,
 routes.notes.show);

Throttling
Besides setting a maximum request limit, there may be situations where we would
like to slow down response such that it sends a chunk every x milliseconds. This
can be useful when testing slow connections.

Usually, you will want to limit file uploads because it wouldn't be relevant to throttle
a JSON response of 20 KB.

Creating RESTful APIs

[116]

There are several NPM modules that do throttling, such as slow-stream and
throttle. Let's say we have a file attached to a note and want to send a 64-byte
chunk at a time, each 100 milliseconds, using slow-stream, as follows:

streamFromDatabaseOrFileSystem('note-attachment-asdAsd21j3o8uad',
 { bufferSize: 64 })
 .pipe(new SlowStream({ maxWriteInterval: 400 }))
 .pipe(res);

Both the modules mentioned work with streams, as you can see from the preceding
example. The slow-stream module can also handle back pressure, so if we're
dealing with a proper implemented stream, we won't have memory leaks.

Facilitating caching
Caching is frequently used for static resources and taken care of by a file-serving
module or web server. However, there's nothing stopping us from implementing
caching with dynamic resources as well.

The ETag is a cache mechanism for HTTP requests, which allows the client to make
conditional requests.

You can read more about the ETag mechanism and its usefulness
at https://developer.yahoo.com/blogs/ydnfiveblog/
high-performance-sites-rule-13-configure-
etags-7211.html.

There are several NPM modules that handle ETag generation and conditional
requests, but we can implement our own Express middleware to do this in a few
lines of code. We need to set the ETag and check whether the current request
matches that ETag. If it does, we will send 304 Not Modified, and if it doesn't,
we will send the whole body. The specification says that we shouldn't include
content headers when sending 304 Not Modified, so we will remove them if
they exist. The full code for this middleware is as follows:

var crypto = require('crypto');
var cacheAndServe = function(req, res, next) {
 res.cachable = function(content) {
 var stringContent = JSON.stringify(content);

 var hash = crypto.createHash('md5');
 hash.update(stringContent);
 res.set({ 'ETag': hash.digest('hex') });

Chapter 3

[117]

 // 304 Not Modified
 if (req.fresh) {
 // remove content headers
 if (res._headers) {
 Object.keys(res._headers).forEach(function(header) {
 if (header.indexOf('content') === 0) {
 res.removeHeader(header);
 }
 });
 }

 res.statusCode = 304;
 return res.end();
 } else {
 res.setHeader('Content-Type', 'application/json');
 res.end(stringContent);
 }
 };

 next();
};

Note that we only handle JSON objects here since the SmartNotes application only
uses that format.

In our application, we need to include this middleware and change the res.send()
function to res.cachable():

// in server.js
app.get('/notes/:id', routes.users.authenticate, cacheAndServe,
 routes.notes.show);
// in the show function (/routes/notes.js)
res.cachable(note);

Content negotiation
Content negotiation is a mechanism that allows us to serve the best representation
for a given response when several are available.

You can read more about content negotiation on MDN at https://
developer.mozilla.org/en-US/docs/Web/HTTP/Content_
negotiation.

Creating RESTful APIs

[118]

There are two ways in which we can perform content negotiation with Express:
by appending the format to the URL or by checking for the Accept header field.

The first option requires us to change the URL path and add a format placeholder
at the end; for example, consider the following line of code:

app.get('/notes/:id.:format', …)

Then, in the route handlers, we can use a switch statement to serve the different
content types, as follows:

switch (req.params.format) {
 case 'json':
 res.send(note);
 break;
 case 'xml':
 res.set('Content-Type', 'application/xml');
 res.end(convertToXml(note));
 break;
 default:
 res.status(400).send({ 'error': 'unknown format' });
}

The other approach would be to use the res.format() function from Express
that checks the Accept header to get the content type; for example, consider
the following code:

res.format({
 'application/json': {
 res.send(note);
 },
 'application/xml': {
 res.set('Content-Type', 'text/xml');
 res.end(convertToXml(note));
 }
});

Chapter 3

[119]

Summary
In this chapter, we learned how to create a RESTful API from the ground up using
Express. We also studied how to reuse HTTP as much as possible by leveraging
HTTP methods and status codes.

By writing the tests first and the application code afterwards, not only did we
validate the correctness of our code, but we also drove its design from the start.

Last but not least, we tackled different issues when creating APIs, such as
versioning, caching, and rate limiting, and we saw how the framework helps
us solve them easily.

There was no point in using templates while creating this RESTful API since it
always returns JSON, but we will remedy this in the next chapter when we explore
Express templating in depth.

Leveraging the Power of
Template Engines

Node has a rich ecosystem of template engines available, and they can be used with
Express, either out of the box or by writing a custom adapter.

In this chapter, we will cover the following topics:

• The different types of template engines
• View helpers and application-level data
• Reusing code with layouts and partials
• Updating cacheable templates in production
• Integrating a template engine with Express

The different types of template engines
Template engines are tools that help us separate the application logic from the
presentation layer. They usually combine multiple templates with a data model,
thus improving the maintenance and flexibility of our web applications.

Leveraging the Power of Template Engines

[122]

There are a lot of template engines that we can install with NPM and use in Express
and perhaps in the browser too. They can be split into the following categories:

• Logic-less template engines: Their goals are to have no explicit control-flow
statements and to make it impossible to embed application logic

• Template engines with logic: These engines allow us to use JavaScript or
DSL code and evaluate it within the templates

• Programmatic template engines: These are engines that build HTML from
scratch or augment it using data

Next, we are going to talk about each category and see what solutions are available
for them in the NPM registry.

Logic-less template engines
A big advantage of this type of template engine is that it forces you to think in terms
of separation of concerns. The templates will become uncluttered because the logic
will move elsewhere.

Mustache is one of the most popular logic-less web template systems with
implementations in a lot of languages besides JavaScript. It uses section tags instead
of conditionals or loops.

Mustache.js (https://github.com/janl/mustache.js/) is an implementation
of the Mustache template system in JavaScript. We can use it in Express with the
consolidate.js library (https://github.com/visionmedia/consolidate.js),
as shown in the following code:

// server.js
var express = require('express');
var cons = require('consolidate');
var app = express();

// assign the mustache engine to .html files
app.engine('html', cons.mustache);

// set .html as the default extension
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

The view folder defaults to the views folder in the root of the project,
but for the sake of clarity, we have explicitly set it.

Chapter 4

[123]

Now, let's try something simple such as displaying a different salutation based on
the user's gender, along with the full name. The index.html file would look like
the following:

{{#user}}
 {{salutation}} {{name}}
{{/user}}

There are no if-else conditions and no native JavaScript loops, just tags. Next, we
will need to create the functions for getting the salutation and the full name of a user
(inside the server.js file), knowing that the properties available are firstName,
lastName, and gender:

var getSalutation = function() {
 return (this.gender === 'male') ? 'Hello sir' : 'Hello madam';
};
var getFullName = function() {
 return this.firstName + ' ' + this.lastName;
};

The last part of our example consists of setting up a dummy users array, creating
the route handler, assigning a path to the route, as well as binding the application
to a port:

var users = [{
 firstName: 'John',
 lastName: 'Doe',
 gender: 'male'
}, {
 firstName: 'Jane',
 lastName: 'Doe',
 gender: 'female'
}];

app.get('/users/:index', function(req, res){
 res.render('index', {
 user: users[parseInt(req.params.index) || 0],
 salutation: getSalutation,
 name: getFullName
 });
});

app.listen(7777);

Leveraging the Power of Template Engines

[124]

Now, if we visit http://localhost:7777/users/0, the page will display the
message Hello sir John Doe, and for http://localhost:7777/users/1, it will
display Hello madam Jane Doe. Other popular template engines that fall into
this category include Dust.js or Hogan.js.

There is an active fork of Dust.js actively maintained by LinkedIn
at https://github.com/linkedin/dustjs.

Template engines with logic
Embedded JavaScript is simple to understand when you know ERB (Ruby), PHP,
or JSP (Java). It allows us to use JavaScript code inside HTML templates. Such
engines may also include other goodies such as partials or filters.

A popular implementation is EJS (https://github.com/visionmedia/ejs/),
which was implemented by the creator of Express, TJ Holowaychuk. Considering
the previous example of rendering users, our index.html file would be transformed
into the following:

<% if (user) { %>
 <% if (user.gender === 'male') { %>
 Hello sir
 <% } else { %>
 Hello madam
 <% } %>
 <%- (user.firstName + ' ' + user.lastName) %>
<% } %>

This example looks a bit messier, but we can use functions and just call them inside
our templates instead of writing a lot of logic there.

Jade is another popular template engine that allows us to insert JavaScript code. It is
inspired by HAML (Ruby) and has whitespace-sensitive syntax for writing HTML.
To achieve the same end result as you did with the previous template engines for the
user example, the code will be as follows:

doctype html
html(lang="en")
 body
 if user
 if user.gender === 'male'
 |Hello sir
 else
 |Hello madam
 =user.firstName + ' ' + user.lastName

Chapter 4

[125]

This is a bit far-fetched because instead of building the full name each time, we could
create a function and call it from the template. However, the point here is Jade allows
us to do this in the templates.

Some template engines such as EJS or Haml.js (https://github.com/visionmedia/
haml.js) not only provide custom filters, but also allow us to define our own filters.
Let's pretend for a second that there is no filter to convert a string to uppercase, and
we need to add it to EJS. First, we would need to add the filter to the EJS filters
object and then use it in the template:

// server file
require('ejs').filters.toUpper = function(str) { return
 str.toUpperCase(); }

// view template
<%-: (user.firstName + ' ' + user.lastName) | toUpper %>

Programmatic template engines
The previous engines that we presented either have their own syntax that compile
to HTML or they add custom syntax to HTML.

This category of template engines builds HTML from scratch or augments it with
dynamic data. Some engines such as hyperglue (https://www.npmjs.org/
package/hyperglue) use CSS style selectors to bind attributes, text, and hypertext
to HTML elements. Others create HTML code out of JSON objects, such as
transparency (https://www.npmjs.org/package/transparency) or json2html
(https://www.npmjs.org/package/node-json2html). Let's see how we can update
our example to use json2html instead. First, we will need to install and require the
module using the following line of code:

var json2html = require('node-json2html').transform;

This module takes a JSON object that represents dynamic data, and another JSON
object for the transformation (tags and attributes). Our route handler becomes
the following:

app.get('/users/:index', function(req, res){
 var data = {
 tag: "p",
 html: function() {
 var str = '';

 if (this) {
 if (this.gender === 'male') {

Leveraging the Power of Template Engines

[126]

 str += 'Hello sir ';
 } else {
 str += 'Hello madam ';
 }

 str += this.firstName + ' ' + this.lastName;
 return str;
 }
 }
 };

 res.send(json2html(users[parseInt(req.params.index) || 0],
 data));
});

View helpers and application-level data
Things tend to get messy when including a lot of control-flow statements into our
templates, such as if statements. You might have even noticed this from some of
the previous examples.

The first step to clean this up would be to extract the logic from the templates into
functions (view helpers). They can reside either in the route handler or, better yet,
in a separate folder. An example of such a function would be the one used to
construct the full name of a user:

function getFullName(firstName, lastName) {
 return firstName + ' ' + lastName;
}

Now, we can pass this function as a local variable to the template and invoke it
from there, as shown in the following snippet:

// route handler
res.render('index', {
 user: users[parseInt(req.params.index) || 0],
 getFullName: getFullName
});
// ejs template
<%= getFullName(user.firstName, user.lastName) %>

It's a bit better now since we removed that inline logic, and we can reuse this
function for multiple views. However, this can be kind of tedious because we would
have to pass the same function over and over again each time render gets called.

Chapter 4

[127]

An even better way to do this is to make this function globally accessible for all the
templates, without having to pass it as a parameter to the render function. We can
do this by assigning it as a property on the app.locals object provided by Express:

app.locals.getFullName = getFullName;

Besides the view helpers, we can assign other application-level variables such as the
application title or contact e-mail for the admin.

Express only exposes one application level, variable by default, which is called
settings. Every time we set a property using app.set(), which will be
automatically visible in the templates using the settings variable, we don't need to
manually include it again by using app.locals. The code for settings might look
like the following snippet:

{ 'x-powered-by': true,
 etag: true,
 env: 'development',
 'subdomain offset': 2,
 view: [Function: View],
 views: '/Users/alexandruvladutu/www/mastering_express/chapter_04/ ',
 'jsonp callback name': 'callback',
 'json spaces': 2,
 'view engine': 'html' }

It's worth mentioning that other template engines such as Handlebars.js allow us
to register custom helpers on the engine object itself. For more information, you
can visit https://github.com/wycats/handlebars.js/#registering-helpers.

Handlebars.js is a superset of Mustache that supports compiling
and has other additional features such as the one mentioned
previously. It is generally better suited than Mustache for larger
projects.

Sharing code between templates with
partial views
Partial views (more commonly known as partials) allow us to define commonly
shared parts of a web page (for example, the header and the footer) that can be
reused in multiple views.

Partials have been removed from Express since Version 3, and they are now template-
specific, meaning it's the decision of the template engine to provide them or not.

Leveraging the Power of Template Engines

[128]

Let's consider a sample application that has multiple pages but each one shares the
header and the footer. For starters, we are going to create this application using EJS
and then achieve the same with Jade.

The server-ejs.js file will initialize everything and render index.html as the
main page of the application, as shown in the following code:

var express = require('express');
var ejs = require('ejs');
var app = express();

// assign the ejs engine to .html files
app.engine('html', ejs.renderFile);

// set .html as the default extension
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

app.get('/', function(req, res, next) {
 res.render('index');
});

app.listen(7777);

It's not necessary to create a view template with the .html extension,
but some editors might not recognize the .ejs format, and this will
make sure that at least the HTML syntax will be properly highlighted.

Next, we will just create the index.html template inside /views that contains some
basic information:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Hello app</title>
</head>
<body>
 <header>
 <h1>Hello app!</h1>
 </header>

Chapter 4

[129]

 Welcome from the main page!

 <footer>
 Mastering Express
 </footer>
</body>
</html>

When creating a new page each time, we will want to reuse the header and footer
code, so let's extract it into /views/header.html and /views/footer.html. The
index.html page should only contain the bits that are original to that page and
include the partials:

<%- include header.html %>
 Welcome from the main page!
<%- include footer.html %>

In the preceding code, we use <%- content %> to output unescaped
content. To escape the HTML, we should use <%= content %>
instead.

Now, if, for example, we want to create a search page, we will have to include the
two partial views as well as the original content for that specific page:

<%- include header.html %>

<form action="/search" method="POST">
 <input type="text" name="term" />
 <input type="submit" value="search site" />
</form>

<%- include footer.html %>

EJS is not the only template engine that provides the partial view functionality; many
others do so as well (such as Jade or Handlebars). Usually, this is achieved by using
the include keyword.

Leveraging the Power of Template Engines

[130]

DRY templates with layouts
Being able to reuse code using partials is a good thing, but it's still not ideal to copy
all the include statements with the same partial views over and over again. When
more than one page needs the same partial views, and they are located in different
sections of the page (such as the header at the top and the footer at the bottom), it's
not possible to make another partial that includes them and defines a placeholder
for the content. That's where layouts come in handy.

With layouts, we can establish an inheritance-like system, where the subviews
not only inherit code from a master view but also extend parts of it (usually
called blocks).

Just like partial views, layouts are template-engine-specific, so they might be
available or not (depending on which engine we use).

Jade supports layouts with the use of its extends and block citizens. A template
can extend a layout and also fill in a certain gap/placeholder by using the block
functionality.

As usual, we will create a simple server.js file at first, which does the initial
setup and adds a route for the home page:

var express = require('express');
var jade = require('jade');
var app = express();

app.set('views', __dirname + '/views');

app.get('/', function(req, res, next) {
 res.render('index.jade');
});

app.listen(7777);

Next, we will create the layout.jade file inside /views, which will contain two
placeholders: one for content inside the head section and another one for the main
content of the website:

doctype html
html
 head
 block head
 body
 #container
 block content

Chapter 4

[131]

Now, in the index.jade file, we will need to reference the layout.jade file (let the
engine know we are extending it) and define the content for the two blocks:

extends layout

block head
 title App homepage

block content
 h1 Hello && welcome to the homepage!

Template engine consolidation with
consolidate.js
Not all template engines have out-of-the-box support for Express, nor do they have
the same API.

Consolidate.js (https://github.com/visionmedia/consolidate.js) is meant to
help with that and provides the same function signature for the various template
engines it supports. Another benefit of this module is that it makes it easy to switch
from one engine to another with minimal effort. The signature it supports is the same
as the one used in Express: (path[, locals], callback).

To use a certain template engine, we still have to install it with NPM, but the rest
is just a few lines of code in our server setup:

var cons = require('consolidate');
app.engine(jade', cons.jade);

From this point on, we can just use response.render() as we have done before.

View caching in production
During development, it's useful to be able to make changes to the templates,
refresh the browser, and see the new changes without having to reload the server.

However, when the application enters production, you would not want the
template files to be read over and over again with each page load, because
that would decrease throughput considerably.

Leveraging the Power of Template Engines

[132]

The view cache setting and its effect
Express automatically enables the view cache setting when run in production
mode, as shown in the following source code snippet:

if (env === 'production') {
 this.enable('view cache');
}

We can enable that flag by ourselves using app.enable('view cache'). This might
be useful at times when we want to stress test our application, for example, but run it
in a different environment mode (other than production).

Let's make a sample application using Jade that displays a list of users. We will check
its throughput with the view cache setting disabled first and then with it enabled.

We will create a JSON file called users.json with dummy user records, so here's an
example of some items from the array:

[{
 "id": 0,
 "employed": false,
 "age": 33,
 "name": "Daniels Richmond",
 "gender": "male",
 "company": "Dogtown",
 "email": "danielsrichmond@dogtown.com",
 "friends": [
 {
 "id": 0,
 "name": "Harding Terrell"
 },
 {
 "id": 1,
 "name": "Nichols Carey"
 },
 {
 "id": 2,
 "name": "Mai Bradley"
 }
]
},
 {
 "id": 1,
 "employed": false,
 "age": 21,

Chapter 4

[133]

 "name": "Molly Fields",
 "gender": "female",
 "company": "Xleen",
 "email": "mollyfields@xleen.com",
 "friends": [
 {
 "id": 0,
 "name": "Tameka Sears"
 },
 {
 "id": 1,
 "name": "Bean Hebert"
 },
 {
 "id": 2,
 "name": "Antonia Williamson"
 }
]
 }
]

The server.js file is straightforward; it requires the users, does the initial setup,
and assigns the route handler to the /users path:

var express = require('express');
var jade = require('jade');
var app = express();

app.engine('jade', jade.renderFile);
app.set('views', __dirname + '/views');

var users = require('./users.json');

app.get('/users', function(req, res, next) {
 res.render('users.jade', { users: users });
});

app.listen(7777);

Now, for the last piece of the puzzle, we will create the view file that renders the users:

doctype html
html(lang="en")
 head
 title Sample page that lists users details

Leveraging the Power of Template Engines

[134]

 body
 h1 Sample page that lists users details
 ul
 each user in users
 li
 p(class="user-item")
 strong Name:
 | #{user.name}
 p(class="user-item")
 strong Age:
 | #{user.age}
 p(class="user-item")
 strong Gender:
 | #{user.gender}
 p(class="user-item")
 strong Friends:
 ul
 each friend in user.friends
 li=friend.name

All that we do in this template is iterate through the list of users, and for each user,
display some properties such as name, gender, age, or friends.

If we start the server and visit the /users URL in the browser, we should see the
following page:

Chapter 4

[135]

Now that we have our server running in development mode, it's time to see how
many requests per second the /users page can handle with view caching disabled.
We will use the ab (Apache Benchmark) tool:

$ ab -n 300 -c 10 http://127.0.0.1:7777/users

There are other HTTP benchmarking tools out there, such as wrk
(https://github.com/wg/wrk), siege (http://www.joedog.
org/siege-home/), and httperf (http://www.hpl.hp.com/
research/linux/httperf/).

The output will include the number of requests per second:

Requests per second: 46.53 [#/sec] (mean)

We found out that it can support 46 requests per second; that's not great at all. The
next step is to run the application in production mode (with view caching enabled)
and see how it behaves:

$ NODE_ENV=production node server.js

$ ab -n 300 -c 10 http://127.0.0.1:7777/users

The result is as follows:

Requests per second: 1036.98 [#/sec] (mean)

That's more than 20 times the number of requests it can handle without view caching
enabled, which is really impressive.

However, what happens exactly to justify this enormous difference between
development and production (view caching disabled and then enabled)? Without
caching enabled, Jade has to perform the following steps:

• Read the file from the disk
• Parse the input and compile it into a JavaScript function
• Run the compiled JavaScript function with the locals (dynamic data)

When caching is enabled, Jade will only perform these three steps once for a specific
filename and then store the compiled function into the cache. For all subsequent
requests that use the same filename, Jade will only run the compiled function with
the data, because it already has it in the cache. This means instead of performing
three steps, Jade will skip to the final step and basically run a function using locals
as the argument.

Leveraging the Power of Template Engines

[136]

These operations aren't exclusive to Jade; most template engines act in the same way,
so be sure to run your application in production mode (NODE_ENV=production)
or manually enable view cache when it matters (in production mode or while
performing load testing, for example).

Clearing the cache without a restart
The performance improvements with the cache enabled are significant, but there
is a problem that we often need to tackle, that is, how to cache the views while
simultaneously allowing them to be updated without restarting the server.

We could simply spin up new processes that use the updated templates and get
rid of the old processes one by one (known as zero downtime redeploys). That
feels like overkill since we only want to update the views code, like we did during
development, and not the rest of the application.

There is a way to benefit from view caching as well as from being able to clear the
cache at some point in time for most template engines. These template engines either
have a cache object that can be manipulated or can provide a function that can be
used for clearing the cache.

Next, we will look at how to clear the cache when using EJS, Jade, Handlebars
(more specifically, the express-hbs module), and Swig.

First, we will create the server.js file that renders a view with each of these
templates:

var express = require('express');
var app = express();

var ejs = require('ejs');
var jade = require('jade');
var hbs = require('express-hbs');
var swig = require('swig');

app.set('views', __dirname + '/views');

app.engine('hbs', hbs.express3({
 partialsDir: [__dirname + '/views']
}));

app.engine('swig', swig.renderFile);

Chapter 4

[137]

app.get('/', function(req, res, next) {
 res.render('example.ejs');
});

app.get('/jade', function(req, res, next) {
 res.render('example.jade');
});

app.get('/hbs', function(req, res, next) {
 res.render('example.hbs');
});

app.get('/swig', function(req, res, next) {
 res.render('example.swig');
});

app.listen(7777);

The example.<template extension> files will only contain static data, as we are
only testing the feature. If we read the source code of these template engines, we will
discover that Jade and Handlebars (express-hbs) have a cache object, while Swig
and EJS both have functions for cache invalidation. The easiest way to integrate this
cache-clearing feature is to create a GET route that triggers it:

app.get('/clean-cache', function(req, res, next) {
 swig.invalidateCache();
 ejs.clearCache();
 jade.cache = {};
 hbs.cache = {};

 res.end('Cache cleared');
});

To test the clearing functionality, we need to run the application in production mode
and visit the relevant URLs in the browser (or just use cURL) so that the cache is built:

$ NODE_ENV=production node server.js

After modifying the sources for the views, we need to visit /clean-cache to clear
the cache (the whole cache for the views), and voila; if we visit /swig or /ejs for
example, the content will be updated.

Leveraging the Power of Template Engines

[138]

This works but requires an extra step besides modifying the view files, so it's not
ideal. There are several ways in which we can improve this in production:

• Watch the views folder and clear the cache when changing a file (this works
well if we don't have the application running on multiple servers but on a
single server)

• Create a post-commit hook that checks whether the view files have changed
and triggers the cache invalidation (by making a request or sending a
message using a message queue)

• If the application needs to scale across multiple processes, then a good
option would be to use a shared cache and have a separate job to take
are of the update

We'll explore the first option to watch the views folder for file changes using the
watch module from NPM, and invalidate the cache once such a change occurs.
To achieve this, we only need to add a few lines of code to our existing example:

var watch = require('watch');
watch.createMonitor(__dirname + '/views', function(monitor) {
 monitor.on("changed", function(file) {
 swig.invalidateCache();
 ejs.clearCache();
 jade.cache = {};
 hbs.cache = {};
 });
});

Another module we could have used instead of watch for watching a
file is chokidar (https://www.npmjs.org/package/chokidar).

Chapter 4

[139]

Integrating a template engine with
Express
In the remaining part of the chapter, we are going to integrate a template engine
with Express, specifically the template function from the lodash module (this can
be applied for other template engines too).

But what do we have to do exactly? We are going to tackle the following issues:

• How the template engine's rendering function gets called (what arguments
are called)

• What the function should return
• Caching and cache invalidation
• Partials and layouts

The rendering function from Express calls the template engine function with the
following arguments:

• The path of the template file
• The locals passed to the response.render function when called (as the

second argument)
• A callback function that should be called with the (error and content)

arguments

Let's make a small sample application and an empty view file and see exactly what
gets logged to the console:

app.set('views', __dirname + '/views');
app.engine('html', function() {
 console.log(arguments);
});

app.get('/', function(req, res, next) {
 res.render('home', {
 firstLocal: 1,
 secondLocal: 2
 });
});

Leveraging the Power of Template Engines

[140]

If we start the application and visit the home page, we should get the following
output:

Express exposed the application's settings variable to the templates, but we also
see a cache Boolean variable as well. When the view caching setting is enabled,
the cache variable will be set to true.

Let's create a sample project and start working on the template engine's integration
in the engine.js file. First, we will include the module dependencies and initialize
the cache:

var fs = require('fs');
var path = require('path');
var _ = require('lodash');

exports.cache = {};

Chapter 4

[141]

In the following code, we will create the main renderFile function that will call the
render function using the file path, cache, and data parameters:

exports.renderFile = function(filePath, data, callback) {
 var isCacheEnabled = !!data.settings['view cache'];

 try {
 var tmpl = exports.render(filePath, isCacheEnabled, data);
 return setImmediate(callback.bind(null, null, tmpl));
 }
 catch(err) {
 return setImmediate(callback.bind(null, err));
 }
};

The main function, render, does the following things:

• If the cache is set and the compiled template exists, send the evaluated result
• If the cache is not set, then read the file, compile the template, store it in the

cache, and send the evaluated result back
• While compiling the template, check whether there is <% extend

layoutPath %> somewhere, replace it with the content from layoutPath
(that will be the way of defining layouts), and place the current content in
the layout within the <% body %> placeholder

The code for this function will therefore be as follows:

exports.render = function(filePath, isCacheEnabled, data) {
 var layoutPath, compiledFn;

 if (!isCacheEnabled || (isCacheEnabled &&
 !exports.cache[filePath])) {
 content = fs.readFileSync(filePath, 'utf8').replace(/<%
 extends (.*) %>/, function(arg1, p) {
 layoutPath = path.resolve(data.settings.views, p);
 return '';
 });

 if (layoutPath) {
 content = fs.readFileSync(layoutPath, 'utf8').replace('<%
 body %>', content);
 }

Leveraging the Power of Template Engines

[142]

 // compile template
 content = exports.compileTemplate(content,
 data.settings.views);
 compiledFn = content;

 // cache the compiled template if caching enabled
 if (isCacheEnabled && !exports.cache[filePath]) {
 exports.cache[filePath] = content;
 }
 } else {
 // compiled function can be found in cache
 compiledFn = exports.cache[filePath];
 }

 // evaluate the compiled function
 return compiledFn(data || {});
};

In the previous code, we are making synchronous calls while reading
the content of the template, which we shouldn't normally do. Because
the content is cached after the first read, the readFileSync()
function will be called only once per template. This makes for an
acceptable use case for the synchronous function.

There are two pieces left to complete this template engine puzzle: compiling the
template and making sure partials are supported.

The code for including partials will be similar to the code used for including the
layout, but with the difference that we will have to perform a recursive check in
each partial view to see whether it includes another view. This wasn't the case
for layouts as only a single layout is supported. Here is the implementation for
the remaining two methods:

exports.getPartials = function(template, currentPath) {
 return template.replace(/<% include (.*) %>/g, function(arg1,
 filePath) {
 var fullPath = path.resolve(currentPath, filePath);
 var content = fs.readFileSync(fullPath, 'utf8');

 if (/<% include (.*) %>/.test(content)) {
 return exports.getPartials(content, path.dirname(fullPath));
 }

Chapter 4

[143]

 return content;
 });
};

exports.compileTemplate = function(template, viewsPath) {
 template = exports.getPartials(template, viewsPath);

 return _.template(template);
};

This concludes the work for our template engine integration; it's now time to take
it for a spin. As always, we'll write the code for server.js first and then create
the templates:

var express = require('express');
var app = express();

var tmpl = require('./engine');

app.locals.APP_NAME = 'Sample Express App';

app.set('views', __dirname + '/views');
app.set('view engine', 'html');
app.engine('html', tmpl.renderFile);

app.get('/', function(req, res, next) {
 res.render('home', { pageTitle: 'home' });
});

app.get('/now', function(req, res, next) {
 res.render('now', { pageTitle: 'now' });
});

var watch = require('watch')
watch.createMonitor(__dirname + '/views', function(monitor) {
 monitor.on("changed", function(file) {
 tmpl.cache = {};
 });
});

app.listen(7777);

Leveraging the Power of Template Engines

[144]

There is nothing special about this file; we make the initial setup, declare the routes,
and clear the view cache on file changes.

Next, let's create the layout.html file inside /views so that we can test both the
layout and the partial functionality:

<% include header.html %>
<% body %>
<% include footer.html %>

Here, we actually include two partial files and specify the location for the main
content (using <% body %>). The header and footer files are pretty basic; the
only thing to note is that the header will include two variables, as shown in the
following code:

// header.html file follows:
<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title><%= APP_NAME %></title>
</head>
<body>

 <h1><%= pageTitle %></h1>

// footer.html file follows:
 <hr />
 Copyright might be here.

</body>
</html>

The remaining view files are home.html and now.html; both of them extend the
layout. The now.html file also displays the current timestamp. You can see the
code for both of them as follows:

// home.html
<% extends layout.html %>

<p>Welcome to the homepage!</p>

// now.html
<% extends layout.html %>

<h2>Current time: </h2>

Chapter 4

[145]

<p>
 <%= new Date() %>
</p>

The project is complete, so let's boot up the server in production mode using the
following command line:

$ NODE_ENV=production node server.js

If we visit the main page, we should see the following page:

The (dynamic) page title was successfully displayed. The layout was extended,
and we know that the partials system worked as well as the layout file used it.

We can also verify the clearing of the cache when a view file gets modified. In our
code, we have watched the file changes using watch (https://www.npmjs.org/
package/watch) and reset the cache once that happened. Let's modify the welcome
message in the home page to This is the homepage and see whether the page
gets updated:

Leveraging the Power of Template Engines

[146]

The page indeed got updated, so that means the cache invalidation worked.

The last thing we need to take care of now is stress testing. We know that the cache
invalidation functions correctly, but the easiest way to check whether the caching
system itself is working (besides outputting debugging messages to the console)
is to make some load tests for development and then production. For the sake of
diversity, we will use the wrk (https://github.com/wg/wrk) tool this time with
the same settings as the ones used to benchmark Express (https://github.com/
visionmedia/express/blob/master/benchmarks/run). After running it, you
should see an output similar to the following screenshot:

We run the first test with caching disabled (development mode) and can handle
1519 requests per second (because we don't have anything too complicated in the
template). We run the second test with caching enabled (production mode) and
it can handle approximately three times more requests per second.

Chapter 4

[147]

We shouldn't interpret these results as being conclusive for what the server can
handle in production because the views aren't too complicated (no conditionals, no
loops, and little content). The scope of these tests, however, is to check two things:

• The server can handle a decent amount of requests per second with caching
enabled.

• The difference between the two environments should be considerable (unless
caching is enabled for all environments). This is a clear indicator that the
application is not trying to read the views from the disk and compile them
each time.

These tests aren't a replacement for unit tests, but they are
complementary. You should always create unit tests for the code you
are writing.
This template engine integration can be extracted into a separate
module with its own repository that can be published to NPM. You can
read more on tiny reusable modules at https://gist.github.com/
substack/5075355.

Choosing a template engine
It's not easy to choose a template engine considering that there are so many of them
available with different features. Instead of choosing a clear winner, we should focus
on what criteria we should have in mind when selecting them:

• Do you plan on using it both with Express and the browser? A few examples
include EJS, Handlebars.js, and Jade.

• Should it have logic or not? Some of them support regular JavaScript (such
as EJS), others just have the basics, while the rest disallow logic inside
templates.

• Is it widely used and maintained? To see a list of the most depended-on
modules, check out the NPM registry (https://www.npmjs.org/browse/
depended).

• Should it be the best performing? It would be good to run benchmarks with
potential use cases and see how they perform. However, if you are using
a caching mechanism to store the whole responses, you might not need to
touch the template engine more than a few times.

• Does it precompile templates or not?
• Should it support streaming?

Leveraging the Power of Template Engines

[148]

These are just a couple of questions you should be asking yourself before choosing
a template engine. In the end, it's a subjective choice, and therefore, there's no
clear winner.

You can find a tool to help you choose a template engine at
http://garann.github.io/template-chooser/.

Summary
In this chapter, we learned how to differentiate template engines and what
the characteristics of each category are. We then studied how to extract complex
logic from templates to view helpers and how to make globally-accessed variables
(for all the views).

By using layouts and partial views, we managed to eliminate repetition and keep
our code base DRY.

Next, we tackled the importance of view caching and how to clear the cache without
restarting the server once the templates have been updated.

In the final part of the chapter, we integrated a template engine with Express
by providing the correct function signature needed by the framework as well
as other advanced features such as partials, layouts, and caching.

In the next chapter, we will look at other modules and techniques that help us
keep our code base DRY. We will discover ways of handling control flow with tiny
modules, elegant error checking, creating custom errors, and making sure callbacks
are executed only once.

Reusable Patterns for
a DRY Code Base

When creating web applications with Express or Node in general, there are situations
that keep repeating, and we handle them by writing the same code over and over
again. In this chapter, we will create a sample application and then refactor it to
eliminate the duplicated logic using the existing NPM modules.

In this chapter, we will cover the following topics:

• Eliminating the if (err) {} pieces of code spread throughout our
application

• Using control-flow modules instead of counters and avoiding a tree-like
code structure

• Ensuring that the callback method execution only happens once
• Extending objects in a reusable way with properties
• Creating custom errors without having to manually define them and their

properties each time

The repetitive code portions found in our sample application are common to most
Express applications. They are not something specifically catered for the purpose
of this chapter alone.

Reusable Patterns for a DRY Code Base

[150]

Creating the MovieApp sample
application
Throughout this chapter, we will create a sample movie application using The
Movie Database API provided at http://www.themoviedb.org/. This application
will allow users to search for movies by name, browse the results, and view a page
containing the details of a specific movie (such as the cast, release date, trailer, and
so on).

In the first version of our code, we are not going to use any NPM modules besides
the one used for communicating with the API. This means that we will use raw Node
for things such as control-flow, error handling, extending objects, or to ensure that
the callbacks get executed once.

After that, we will eliminate code repetition step by step for each of these topics and
introduce the NPM modules that will do most of the work for us.

Before we begin writing the code, we will need to register and create an API key on
the site and check out the documentation available at http://docs.themoviedb.
apiary.io.

Application structure and required modules
To have a better picture of the files and folders used by the project in a tree-view-like
form, there is a really handy command-line tool named tree.

The tree tool might not be installed by default for some operating
systems, such as Windows or Mac. To install it on Mac, you can
use homebrew (brew install tree), while for Windows, you
can download it from http://gnuwin32.sourceforge.net/
packages/tree.htm.

We don't want to see the files stored inside the node_modules folder, so we will
be using the –I flag. In the root of the project, we need to execute the following
command in the terminal:

$ tree –I node_modules

Chapter 5

[151]

The result will be similar to the following screenshot:

As you can see in the screenshot, we will have the following files and folders:

• The server.js file will contain the express startup code
• The config.json file will hold our API key to access http://www.

themoviedb.org/

• The basic CSS style sheet for the application will be put inside the public
folder

• The movie.js file under the models folder will contain the functions needed
to communicate with the external API and process the results

• The routes folder will have two files: one for the movie-related routes and
another for handling the errors

• The views application will reside inside the views folder
• The package.json file will define the dependencies, as always

Besides the express module, we will use the ejs module for templates, body-
parser to populate req.body with the parsed request bodies, and the moviedb
module to communicate with the external REST API.

Reusable Patterns for a DRY Code Base

[152]

Let's create the package.json file next using the NPM wizard, and then install the
following modules:

$ npm init

$ npm i express ejs body-parser moviedb –save

Instead of typing npm install each time, we will install a new
module and use the shorthand version instead, namely npm i.

Creating the server.js file
To get started with the application, we will create its main entry point, named
server.js. This file will contain the initialization of the Express application,
set up the view logic, load the middleware and the routes, as well as create
the movie model.

This API key will be used to initialize the model object inside server.js and
is loaded as an environment variable. This object will be stored as the movie
property on the request, so we can easily access it from the route handlers.

The complete code for the file is as follows:

var bodyParser = require('body-parser');
var express = require('express');
var app = express();
var config = require('./config');

app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

app.use(bodyParser());
app.use(express.static(__dirname + '/public'));

var Movie = require('./models/movie');
var movie = new Movie(process.env.API_KEY);

app.use(function(req, res, next) {
 req.movie = movie;
 next();
});

Chapter 5

[153]

var routes = require('./routes');
app.get('/', routes.movies.search);
app.get('/movies', routes.movies.index);
app.get('/movies/:id', routes.movies.show);
app.all('*', routes.errors.handleNotFound);

app.use(routes.errors.handleInternalError);

app.listen(7777);

Here, we are extending the request object with the movie model,
making it available throughout our route handlers. Another
approach would be to add the object creation functionality in its own
file and export it as a singleton. These two approaches are similar, but
the first one is more convenient because we don't need to have the
movie object inside each route.

Creating the route handlers
We will create two route files for this application (index.js will just export these
files into a single object): one for movies (movies.js), and another one for handling
different errors generated by the application (errors.js).

The movie route handlers will take care of the following cases:

• If there is a parameter required, check its validity and pass an error to
the next() function

• Retrieve the dynamic data using model functions
• Render the view with the dynamic data (except for the search page)

The complete code for the movies.js file is as follows:

exports.search = function(req, res, next) {
 res.render('search', {
 pageTitle: 'Search for movies'
 });
};

exports.index = function(req, res, next) {
 if (!req.query.title) {

Reusable Patterns for a DRY Code Base

[154]

 var err = new Error('Missing search param');
 err.code = 422;
 return next(err);
 }

 req.movie.search(req.query.title, function(err, movies) {
 if (err) { return next(err); }

 res.render('movies', {
 pageTitle: 'Search results for ' + req.query.title,
 movies: movies
 });
 });
};

exports.show = function(req, res, next) {
 if (!/^\d+$/.test(req.params.id)) {
 var err = new Error('Bad movie id');
 err.code = 422;
 return next(err);
 }

 req.movie.getMovie(req.params.id, function(err, movie) {
 if (err) { return next(err); }

 res.render('movie', {
 pageTitle: movie.title,
 movie: movie
 });
 });
};

The errors.js file is a lot slimmer, having two functions that handle the display
of different errors (by looking at their status code) and not of the found pages:

var STATUS_CODES = require('http').STATUS_CODES;

// 500 - Internal Server Error
exports.handleInternalError = function(err, req, res, next) {
 var html = '';

 if (err.code === 404 || /not found/.test(err.message)) {
 return exports.handleNotFound(req, res, next);

Chapter 5

[155]

 } else if (err.code && STATUS_CODES[err.code]) {
 html = '<h1>' + err.code + ' - ' + STATUS_CODES[err.code] +
 '</h1>';
 html += '<p>' + err.message + '</p>';

 res.send(err.code, html);
 } else {
 console.error(err.stack);
 res.send(500, '<h1>500 - Internal Server Error</h1>');
 }
};

exports.handleNotFound = function(req, res, next) {
 res.send(404, '<h1>404 - Page Not Found</h1>');
};

Doing the heavy lifting inside the model
After defining the constructor of our model class, we will create a function
to get the configuration (the images' base path and poster sizes interest us):

var mdb = require('moviedb');

function Movie(API_KEY) {
 if (!API_KEY) { throw new Error('API_KEY is required'); }

 this.client = mdb(API_KEY);
 this.imagesPath = '';
 this.posterSizes = '';
}

Movie.prototype.getConfiguration = function(callback) {
 var that = this;

 if (!this.imagesPath) {
 this.client.configuration(function(err, config) {
 if (err) { return callback(err); }

 that.imagesPath = config.images.base_url;
 that.posterSizes = config.images.poster_sizes;

 callback();
 });

Reusable Patterns for a DRY Code Base

[156]

 } else {
 process.nextTick(callback);
 }
};

The getFullImagePath method takes the relative path of an image as the first
parameter and retrieves the full image path. The second parameter of the function
that is taken into consideration is the size, which is included in the generated path
and is a string (the possible values returned by the configuration API call at the
moment are 'w92', 'w154', 'w185', 'w342', 'w500', 'w780', and 'original'):

Movie.prototype.getFullImagePath = function(relativePath, size) {
 if (!relativePath) { return ''; }

 if (!size) {
 // Default to the smallest size
 size = this.posterSizes[0];
 } else {
 var index = this.posterSizes.indexOf(size);
 size = this.posterSizes[index];

 if (!size) {
 throw new Error('unknown image size');
 }
 }

 return this.imagesPath + size + relativePath;
};

The search method is fairly simple; it retrieves the movies that match a certain
string and converts the relative images' paths to full URLs:

Movie.prototype.search = function(title, callback) {
 var that = this;

 this.getConfiguration(function(err) {
 if (err) { return callback(err); }

 that.client.searchMovie({ query: title }, function(err, movies) {
 if (err) { return callback(err); }

 // Convert relative to full path
 movies.results.forEach(function(movie) {

Chapter 5

[157]

 movie.poster_path =
 that.getFullImagePath(movie.poster_path);
 });

 callback(null, movies);
 });
 });
};

The majority of the code is located within the getMovie method, which does a lot
of things in the following order:

1. Retrieves the movie details based on its ID.
2. After this, it makes two parallel requests to get the trailer and the cast.
3. For each cast member, it then retrieves that person's details, again using

parallel requests.
4. Once the two previous actions are finished, it returns the aggregated results

in a single movie object.

A thing to note in the code for this method is that we are not using any control-flow
library; instead, for parallel requests, we are using a counter that decreases until it
reaches 0 and then executes the callback function. The first control-flow function
looks like the following code:

var doneCalled = false;
var tasksCount = 2;
var done = function(err) {
 if (doneCalled) { return; }

 if (err) {
 doneCalled = true;
 return callback(err);
 };

 tasksCount--;

 if (tasksCount === 0) {
 movieInfo.trailers = trailers;
 movieInfo.cast = cast;

 callback(null, movieInfo);
 }
};

Reusable Patterns for a DRY Code Base

[158]

Both of the two main functions inside the getMovie method will call the done
function, which in turn will know when to call the main callback function.

We will apply the same logic to retrieve the details of the cast members. This time,
the counter will be set to the number of existing members:

var cb = function(err) {
 if (called) { return; }

 if (err) {
 called = true;
 return done(err);
 };

 count--;

 if (count === 0) {
 that.getConfiguration(function(err) {
 if (err) { return done(err); }

 movieInfo.poster_path =
 that.getFullImagePath(movieInfo.poster_path, 'w185');

 done();
 });
 }
};

The complete code for this method is available in the code bundle provided with
the book.

Wrapping it up
The remaining files of the application are the templates and the CSS style sheet,
which we won't show here since they are simple and beyond the scope of this
chapter. You can find them in the source code accompanying the book.

Basically, there are three pages in this application; the first page shows a basic
search form, the second page displays the results, and the final page shows the
details of a movie. Here's how the movie details page should look once you have
installed the required modules, started the application, and followed the steps
previously described:

Chapter 5

[159]

Error checks and callback functions
A well-established pattern with the Node programs is to have an error argument
as the first parameter of the callback function, since we cannot use try-catch for
asynchronous code and we also don't want our programs to break each time an
error occurs.

The most common line found in our sample application is the one that checks for an
error and returns early by executing the callback function with the error parameter:

if (err) { return callback(err); }
// or:
if (err) { return next(err); }

Reusable Patterns for a DRY Code Base

[160]

If there is no error, the rest of the code that follows will execute.

Luckily for us, there are some modules that can help us avoid having to write this
boilerplate code each time we need to delegate the error to the callback function.
These modules are available at the following URLs:

• https://www.npmjs.org/package/errto

• https://www.npmjs.org/package/okay

• https://www.npmjs.org/package/err-handler

Each of these modules provides a function that takes two parameters and should be
used as the callback argument to the asynchronous function. The two parameters
are as follows:

• The function that should be executed early if there's an error (we can call it
the error handler)

• The function that should be executed if there was no error; the success
handler will be called with the rest of the parameters passed to the callback
function (other than the error)

The errTo module consists of just a couple of lines of code to achieve this:

var slice = Array.prototype.slice;

module.exports = function(errorHandler, successHandler) {
 var called = false;
 function errTo(err) {
 if (called) return; // Ignore all calls after the first one.
 called = true;

 if (err) {
 if (errorHandler && !errorHandler._errToCalled) {
 errorHandler._errToCalled = true; // Prevent calling
 error handler several times.
 errorHandler.apply(this, slice.call(arguments, 0));
 }
 } else {
 if (successHandler) {
 successHandler.apply(this, slice.call(arguments, 1)); //
 Give all arguments except err.
 }
 }
 };

Chapter 5

[161]

 errTo.errorHandler = errorHandler;
 errTo.successHandler = successHandler;
 return errTo;
};

As you can see from its source code, the errTo module does a simple check to see
whether the first parameter of the function is the error and calls the error handler
if it is. For the success use case, it calls the other handler with the rest of the
arguments except the error (which should be null or undefined).

Now, it's time to see how we can actually improve parts of our code by integrating
the errTo module. An example would be the following code inside the show
function (routes/movies.js):

req.movie.getMovie(req.params.id, function(err, movie) {
 if (err) { return next(err); }

 res.render('movie', {
 pageTitle: movie.title,
 movie: movie
 });
});

After we update the callback of the getMovie function to use the errTo module,
it will look like the following:

req.movie.getMovie(req.params.id, errTo(next, function(movie) {
 res.render('movie', {
 pageTitle: movie.title,
 movie: movie
 });
}));

Besides the route handlers (where we constantly delegate the error to next()),
the model has a lot of places that can benefit by using this approach.

Tiny modules for better control flow
In the getMovie() function from the movie.js model file, there are two places
where we are performing parallel tasks. In both scenarios, we are creating counters
and decrementing them in a custom callback function (called done or cb) that is
executed when each asynchronous task finishes (the counters reach 0), and in the
end, the main callback function is run.

Reusable Patterns for a DRY Code Base

[162]

Another thing we have taken care of in the custom callback function is whether
or not the main callback function has been invoked (because passing an error
argument at least once to the custom callback function will trigger this).

To get a better picture of the custom callback code, check out the following snippet:

var doneCalled = false;
var tasksCount = 2;
var done = function(err) {
 if (doneCalled) { return; }

 if (err) {
 doneCalled = true;
 return callback(err);
 };

 tasksCount--;

 if (tasksCount === 0) {
 movieInfo.trailers = trailers;
 movieInfo.cast = cast;

 callback(null, movieInfo);
 }
};

Fortunately, there is a module that can help us out with these kinds of situations,
so we don't have to manually define custom callbacks that get executed each time a
task is completed. This module is called after (https://www.npmjs.org/package/
after), and its signature is straightforward. It takes two parameters: a number
(related to the number of concurrent tasks) and a callback function to be executed
when the tasks are completed. Here's a small example:

var next = after(number, callback);

We first have to call the module function with the two parameters. The result is
another function that we invoke each time a task is completed.

We can, therefore, rewrite the preceding custom callback function as follows:

var done = after(2, errTo(callback, function() {
 movieInfo.trailers = trailers;
 movieInfo.cast = cast;

 callback(null, movieInfo);
}));

Chapter 5

[163]

This version is lighter and focuses on the things that are indeed unique to the done
function: extending the movieInfo object and invoking the main callback function.

We can refactor the other custom callback function that retrieves the cast's details
concurrently as well:

var next = after(credits.cast.length, errTo(done, function(err) {
 that.getConfiguration(errTo(done, function() {
 movieInfo.poster_path =
 that.getFullImagePath(movieInfo.poster_path, 3);

 done();
 }));
}));

In the model code, there aren't many levels of indentation, but without using a
control-flow library in some complex situations, the source code can resemble a tree
and become harder to read.

The async-series (https://www.npmjs.org/package/async-series) module can
make our lives easier because it allows us to run a series of asynchronous functions
in a sequence. We have to pass them as the first argument representing an array,
while the other parameter consists of a callback function that gets executed when
all of them have finished.

Although the search function inside the model is pretty small, we can still update
it to use the async-series module so that it's more clear which actions execute in
which order. The original code for the function is (after applying the errTo update)
as follows:

Movie.prototype.search = function(title, callback) {
 var that = this;

 this.getConfiguration(errTo(callback, function() {
 that.client.searchMovie({ query: title }, errTo(callback,
 function(movies) {
 // Convert relative to full path.
 movies.results.forEach(function(movie) {
 movie.poster_path =
 that.getFullImagePath(movie.poster_path);
 });

 callback(null, movies);
 }));
 }));
};

Reusable Patterns for a DRY Code Base

[164]

Now, after we have applied the changes, it will become the following code:

Movie.prototype.search = function(title, callback) {
 var that = this;
 var movies = {};

 series([
 function(next) {
 that.getConfiguration(next);
 },
 function(next) {
 that.client.searchMovie({ query: title }, errTo(next,
 function(mov) {
 // Convert relative to full path.
 mov.results.forEach(function(movie) {
 movie.poster_path =
 that.getFullImagePath(movie.poster_path);
 });

 movies = mov;

 next();
 }));
 }
], errTo(callback, function() {
 callback(null, movies);
 }));
};

This isn't a dramatic change since we don't have a lot of nested indentation levels,
but this makes it clearer that the functions are executed sequentially. The same
changes can be applied to the getMovie() function, but consider that homework.

There are a ton of control-flow modules out there. And in the end, it comes down
to personal preference, but the point of this exercise is to show you that lightweight
and simple alternatives are available and that they can be easily integrated in our
projects to improve the existing code base.

Chapter 5

[165]

Ensuring a single callback execution
We have used the after module to handle the parallel task, and this module does
internal checks to ensure that the callback function has not already been executed.
This check usually needs to be done because a function could be called with an
error argument, triggering the callback function to be executed early. If the callback
function has been run with an error parameter, we don't care about sending the final
result after all the tasks have finished, because we expect the callback function to be
executed only once.

Let's take a moment to reflect on the done callback function before using the after
module to modify it:

var doneCalled = false;
var tasksCount = 2;
var done = function(err) {
 if (doneCalled) { return; }

 if (err) {
 doneCalled = true;
 return callback(err);
 };

 tasksCount--;

 if (tasksCount === 0) {
 movieInfo.trailers = trailers;
 movieInfo.cast = cast;

 callback(null, movieInfo);
 }
};

There is a doneCalled Boolean variable that is set to true after the callback
function has been invoked, so all the subsequent calls to the done function will
not re-execute it.

Reusable Patterns for a DRY Code Base

[166]

Using a flag for this type of a check is a common thing (as we could see from the
errTo source code as well); so, there is an NPM module that can help us out in this
situation called once (https://www.npmjs.org/package/once). Instead of checking
for a doneCalled variable each time, we can simply redefine the callback function
using once without performing checks anymore, making our code look like the
following code:

var tasksCount = 2;
callback = once(callback);
var done = function(err) {
 if (err) {
 return callback(err);
 };

 tasksCount--;

 if (tasksCount === 0) {
 movieInfo.trailers = trailers;
 movieInfo.cast = cast;

 callback(null, movieInfo);
 }
};

Extending objects in a reusable way
We have probably been confronted with situations where we have to assign
multiple properties to the same object, as shown in the following example:

person.name = values[0];
person.age = values[1];
person.job = values[2];

In the preceding example, there are only three properties, but when we have more,
it becomes kind of tedious to write object.property = value each time. There
is a better way to do this: by using the xtend module (https://www.npmjs.org/
package/xtend):

var xtend = require('xtend');
person = xtend(person, {
 name: values[0],
 age: values[1],
 job: values[2]
});

The preceding code looks much cleaner, doesn't it?

Chapter 5

[167]

These properties from an object (the source) are merged into another object (the
target). This approach enables us to use mixins efficiently and in an elegant manner.

Mixins allow objects to reuse existing properties or functions
(from other objects) without having to redefine them. This pattern
facilitates the inheritance of a functionality from different sources,
which makes it really valuable.

Taking a look back at our application, we can apply this to the following code:

movieInfo.trailers = trailers;
movieInfo.cast = cast;

The updated version will look as follows:

movieInfo = xtend(movieInfo, {
 trailers: trailers,
 cast: cast
});

Another use case for the xtend module (which is probably the most popular one)
is to have some default settings that get merged with the settings manually specified
as a parameter to the parent function.

A simple way to create custom errors
Sometimes, we need to create errors with additional properties so that we can treat
them differently in our error handlers or simply to provide more information for
logging and monitoring purposes.

Here are some practical examples extracted from our sample movie application
(/routes/movies.js):

// First example.
if (!req.query.title) {
 var err = new Error('Missing search param');
 err.code = 422;
 return next(err);
}

// Second example.
if (!/^\d+$/.test(req.params.id)) {
 var err = new Error('Bad movie id');
 err.code = 422;
 return next(err);
}

Reusable Patterns for a DRY Code Base

[168]

Instead of directly calling next() using the error object, we need another two lines
to create and extend it with the custom properties.

Fortunately, there are some modules that help us with this:

• https://www.npmjs.org/package/custom-err

• https://www.npmjs.org/package/createerror

• https://www.npmjs.org/package/error-create

The custom-err module accepts two parameters: the first parameter is the error
message, and the second is a properties object. With this in mind, our two examples
transform into the following code:

// At the top of the file.
var Err = require('custom-err');

// First example updated.
if (!req.query.title) {
 return next(Err('Missing search param', { code: 422 }));
}

// Second example updated.
if (!/^\d+$/.test(req.params.id)) {
 return next(Err('Bad movie id', { code: 422 }));
}

Now, instead of writing the same code snippet over and over again, we simply pass
the newly-created error to the callback function.

Summary
In this chapter, we created a sample movie application that we have later refactored
step by step to use the available NPM modules for keeping the code base DRY.

There are many tiny reusable modules that allow us to make the most out of code
reuse. We have only tackled some of them in this chapter, but the NPM registry
contains a lot more of these modules that await our attention.

In the next chapter, we are going to learn how to handle errors in our Express
applications. We will be covering topics such as how to create a custom error
handler, the different types of errors that can occur and how to handle them,
enabling longer stack traces, and handling uncaught exceptions.

Error Handling
In this chapter, we will learn how to handle errors in the Express applications.
More specifically, the following topics will be covered:

• Error categories—runtime and programmer errors
• Synchronous, asynchronous, and eventful errors
• Writing a custom Express error handler
• Return errors, not strings
• Handling uncaught exceptions
• Longer stack traces

Most of these topics not only apply to the Express applications but also to the Node
applications in general, so try not to skim through this chapter. To make it more
interesting, we will be creating a Wall microblogging application (from scratch),
where people can publish posts and be notified in real time about the updates.

Runtime (operational) errors and human
errors
There are two big categories of errors: those that happen at runtime (also called
operational errors) and bugs caused by programmers.

Some examples of the runtime errors include:

• System out of memory
• Failure to look up domains
• Database connection time out
• Failure to proxy requests because the server is down

Error Handling

[170]

These types of errors do not occur because our programs were badly written, but
because a server is down, the network is unreliable, or some other problem that is
not caused by an error in the code.

On the other hand, human errors are bugs and can be avoided, for instance:

• Trying to read a property of an object that may be undefined
• Calling a function with the wrong parameters
• Specifying a bad path when requiring a Node module

Operational errors are unavoidable and can happen in any program, so they must
be dealt with. Programmer errors, on the other hand, cannot be dealt with reliably.
In these situations, we should log the error and let the server crash.

Ways of delivering errors in the Node
applications
Due to the asynchronous nature of Node, there are two additional ways to deliver
errors while writing applications, besides the synchronous style: using callbacks that
have the error as the first parameter and for the more complicated cases (streams,
for example), emitting error events.

Throwing errors in the synchronous style
A common situation to throw errors synchronously is when we call a function
with the wrong parameters, as shown in the following example:

function startServer(port) {
 if (typeof port !== 'number') {
 throw new Error('port should be a number');
 }

 // Do stuff.
}

startServer('8888');

Chapter 6

[171]

The preceding program will throw an error (which can be caught using try and
catch) because the parameter has a wrong type. There is a more elegant way to
achieve the same result using the native assert module:

var assert = require('assert');

function startServer(port) {
 assert.equal(typeof (port), 'number', 'port should be a
 number');
 // Do stuff.
}

startServer('8888');

We can use try and catch to capture these synchronous errors thrown, as shown
in the following example:

try {
 JSON.parse(input);
}
catch(err) {
 // Could not parse the input.
}

The error-first callback pattern
Since try and catch will not help us trap the errors for asynchronous operations,
the callback function takes an error as the first argument usually, as shown in the
following code:

var fs = require('fs');

fs.readFile('/i-dont-exist', function(err, content) {
 if (err) { /* handle the error here */ }

 // Success case.
});

Error Handling

[172]

When creating our own function, we should respect this pattern and have the error
as the first argument of the callback function. It's important not to throw an error
synchronously inside the asynchronous function since there is no clean way to catch
it; this will blow up our program:

// word-count.js
var fs = require('fs');

function getWordCount(callback) {
 fs.readFile(__filename, 'utf-8', function(err, content) {
 // Bad, don't do this.
 // if (err) { throw err; }

 // The proper way.
 if (err) { return callback(err); }

 return callback(null, content.split(' ').length);
 });
}

The EventEmitter errors
In more complex situations, when there are objects that inherit the EventEmitter
publish-subscribe functionality (such as streams), we cannot return a callback
function with the error since there is no callback function to begin with. Instead, we
can emit an error event when an error occurs, as shown in the following example:

// eventemitter-errors.js
var EventEmitter = require('events').EventEmitter;
var util = require('util');

function WalkyTalky() {
 setTimeout(function() {
 this.emit('error', new Error('sample error'));
 }.bind(this), 2000);
}

util.inherits(WalkyTalky, EventEmitter);

new WalkyTalky();

Chapter 6

[173]

In the getWordCount example, we had a callback function with the error as the first
argument (and we could potentially ignore it—not recommended at all). Now, if we
forget to bind a handler to the error event, the program will crash, as shown in the
preceding example (just as if we would have used throw directly).

A more concrete example is when dealing with streams and piping the output to
a stream:

// stream-error.js
var fs = require('fs');

fs.createReadStream('/i-dont-exist')
 .on('error', function(err) {
 // Log the error and exit.
 console.error('Something bad happened with the stream: ' +
 err.message);
 process.exit(1);
 })
 .pipe(process.stdout);

Note that in the preceding example, we have handled the error event and chose
to exit the program ourselves. However, there are situations when you can simply
log the error and move on (when there are no reasons to crash the application).

Strings instead of errors as an
antipattern
One of the worst things you can do is to throw or return a string instead of an error.
However, why is that? Let's describe a few features that the error objects have:

• The stack property is fundamental, and it lets you know where the error
originated from

• Different types that allow us to treat errors distinctly (using instanceof
for example)

• Since an error is an object, we can assign custom properties on it

Error Handling

[174]

All of these functionalities are gone in an instant when you use strings instead
of errors. However, let's take a look at a practical example:

// err-vs-string.js
var fs = require('fs');

function getWordCount(filename, callback) {
 fs.readFile(filename, 'utf-8', function(err, content) {
 if (err) { return callback(err); }

 return callback(null, content.split(' ').length);
 });
}

getWordCount('/i-dont-exist', function(err, length) {
 if (err) {
 if (err.code === 'ENOENT') {
 return console.error('File not found!');
 }

 throw err;
 }

 console.log('The file has %s words', length);
});

In the preceding example, we are checking for the code property on the error to
display a special message in case the file was not found. If there is a different type
of error, we throw it and stack gets displayed on the terminal. We couldn't have
achieved the same functionality if we would have returned a string instead.

Improving stack traces
The error stack trace limit is set to 10 by default in Node (v8 actually). We can,
however, modify that limit by overriding Error.stackTraceLimit.

We will create a sample application and see how to achieve that:

function a() { throw new Error('stop right there mister'); }
function b() { a(); }
function c() { b(); }
function d() { c(); }
function e() { d(); }
function f() { e(); }

Chapter 6

[175]

function g() { f(); }
function h() { g(); }
function i() { h(); }
function j() { i(); }
function k() { j(); }
function l() { k(); }
function m() { l(); }
function n() { m(); }
function o() { n(); }
function p() { o(); }
function q() { p(); }

q();

The stack should look like the following code:

Error: stop right there mister
 at a (/Users/alexandruvladutu/www/improving-stacks.js:1:84)
 at b (/Users/alexandruvladutu/www/improving-stacks.js:2:16)
 at c (/Users/alexandruvladutu/www/improving-stacks.js:3:16)
 at d (/Users/alexandruvladutu/www/improving-stacks.js:4:16)
 at e (/Users/alexandruvladutu/www/improving-stacks.js:5:16)
 at f (/Users/alexandruvladutu/www/improving-stacks.js:6:16)
 at g (/Users/alexandruvladutu/www/improving-stacks.js:7:16)
 at h (/Users/alexandruvladutu/www/improving-stacks.js:8:16)
 at i (/Users/alexandruvladutu/www/improving-stacks.js:9:16)
 at j (/Users/alexandruvladutu/www/improving-stacks.js:10:16)

Now, we should add the line that alters the stack trace limit to our sample application:

Error.stackTraceLimit = 25;

In addition to what we saw displayed before, the following lines will be present
at the terminal:

 at k (/Users/alexandruvladutu/www/improving-stacks.js:13:16)
 at l (/Users/alexandruvladutu/www/improving-stacks.js:14:16)
 at m (/Users/alexandruvladutu/www/improving-stacks.js:15:16)
 at n (/Users/alexandruvladutu/www/improving-stacks.js:16:16)
 at o (/Users/alexandruvladutu/www/improving-stacks.js:17:16)
 at p (/Users/alexandruvladutu/www/improving-stacks.js:18:16)
 at q (/Users/alexandruvladutu/www/improving-stacks.js:19:16)
 at Object.<anonymous> (/Users/alexandruvladutu/www/improving-
stacks.js:21:1)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)

Error Handling

[176]

 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Function.Module.runMain (module.js:497:10)
 at startup (node.js:119:16)
 at node.js:902:3

The last few lines aren't really helpful, since they are adding information from the
core Node functions. We can avoid them by installing the clarify module with
NPM and requiring it in our application:

require('clarify');

And there we have it—no more Node core noise.

There are other NPM modules that help us improve the error stack traces (such as
longjohn), but we have to be wary of the memory and CPU consumption they bring.

Handling uncaught exceptions
When errors are not handled, the Node applications crash. To catch unexpected
errors, we have two options: to use process.on('uncaughtException', ..)
or the native domains API (which might be removed in a future version of Node).

If we decide to catch these unexpected exceptions, it is extremely important to not
ignore the error and just move on. Whatever we do with the error, we still need to
exit the process because it's in an inconsistent or unrecoverable state.

Here's a small snippet of how we can handle uncaught exceptions:

process.on('uncaughtException', function (err) {
 console.error((new Date).toUTCString() + ' uncaughtException:',
 err.message);
 console.error(err.stack);
 process.exit(1);
});

throw new Error('bad things happen');

Logging errors
You may have noticed in our code snippets so far that we weren't using console.
log(err) or console.error(err). That's because starting with the Node 0.6, core
error properties are not enumerable anymore, which means we won't get stack
for example.

Chapter 6

[177]

Let's test this out and see what happens:

console.log(new Error('bad things happen'));

The preceding snippet displays the following command at the terminal:

$ node logging-errors.js

[Error: bad things happen]

So, all we got was the error message, which isn't very helpful without the full stack
trace. A popular logging module called bunyan has a custom serializer for errors,
so you won't encounter this problem if you use it.

Another simpler module that only does error serialization is nice-error, which we
can install with NPM. If we adjust the snippet to use this module, we get what we'd
expect, namely the error properties (name, message, and stack):

$ node logging-errors.js

{ name: 'Error',

 message: 'bad things happen',

 stack: 'Error: bad things happen\n at Object.<anonymous> (/Users/
alexandruvladutu/www/logging-errors.js:3:21)\n at Module._compile
(module.js:456:26)\n at Object.Module._extensions..js (module.
js:474:10)\n at Module.load (module.js:356:32)\n at Function.
Module._load (module.js:312:12)\n at Function.Module.runMain (module.
js:497:10)\n at startup (node.js:119:16)\n at node.js:902:3' }

Creating a custom Express error handler
Error-handling middleware is different from the rest of the middleware because it
takes four arguments (error, request, response, next) instead of three.

Another thing we should take into consideration is that the custom error-handling
middleware should be placed after the rest of the middleware. If we don't do
the placement, when we call next(err), Express will not find any custom error
handler (because the middleware is loaded in order) and will default to the
built-in error handler.

Now that we know this, let's create a custom error handler that we can use during
development to show us the relevant stack trace information. It should exclude core
native method calls and also the NPM dependencies (node_modules). The handler
should display the source code for each method call that caused the error.

Error Handling

[178]

We will use the stack-trace module to parse the stack trace (get line number,
file name, and so on) and the async-each module to handle reading the files
and process the content in parallel; so, let's install them:

npm i stack-trace async-each errto -–save-dev

Now, let's create the sample application and leave the error handler empty for now:

var fs = require('fs');
var stackTrace = require('stack-trace');
var asyncEach = require('async-each');
var errTo = require('errto');
var express = require('express');
var app = express();

function getSampleError() {
 return new Error('sample error');
}

app.use(function(req, res, next) {
 if (req.url === '/favicon.ico') { return res.end(); }
 next(getSampleError());
});

app.use(function(err, req, res, next) {
 // TODO
});

app.listen(7777);

Reflecting on what we have to do in the custom error handler, perform the
following steps:

1. Parse the stack trace and get the information related to the relevant method
calls (exclude the Node internals and code related to the NPM modules
installed).

2. For each method call, get the code snippet that caused the error (from the
file), not only one line but a few lines before and after the method call.

3. Highlight each method call, so we can differentiate it from the rest of
the code.

4. After the processing has finished, create the HTML code and display it.

Chapter 6

[179]

Here is the complete code for the error handler:

app.use(function(err, req, res, next) {
 var stack = stackTrace.parse(err);

 asyncEach(stack, function getContentInfo(item, cb) {
 // Exclude core node modules and node modules.
 if (/\//.test(item.fileName) &&
 !/node_modules/.test(item.fileName)) {
 fs.readFile(item.fileName, 'utf-8', errTo(cb,
 function(content) {
 var start = item.lineNumber - 5;
 if (start < 0) { start = 0; }
 var end = item.lineNumber + 4;
 var snippet = content.split('\n').slice(start, end);
 // Decorate the error line.
 snippet[snippet.length - 5] = '' +
 snippet[snippet.length - 5] + '';
 item.content = snippet.join('\n');

 cb(null, item);
 }));
 } else {
 cb();
 }
 }, function(e, items) {
 items = items.filter(function(item) { return !!item; });

 // If something bad happened while processing the stacktrace,
 // make sure to return something useful.
 if (e) {
 console.error(e);

 return res.send(err.stack);
 }

 var html = '<h1>' + err.message + '</h1>';

 items.forEach(function(item) {
 html += 'at ' + item.functionName || 'anonymous';
 html += ' (' + item.fileName + ':' + item.lineNumber + ':' +
 item.columnNumber + ')';

Error Handling

[180]

 html += '<p><pre><code>' + item.content +
 '</code></pre><p>';
 html += '';
 });

 html += '';

 res.send(html);
 });
});

We can now spin up the server and check out the error handler in action:

This error handler displays the stack trace with the source code (method calls
that caused the error in bold), so we don't have to dig through the code ourselves
during development.

Chapter 6

[181]

Richer errors with VError
The VError module combines errors and adds additional context from the current
level while keeping the existing information intact. This is useful because the
additional information helps us determine exactly the different levels the error has
been propagated through.

To picture this better, let's create a brief example:

require('clarify');
var VError = require('verror');
var err1 = new Error('No such file or directory');
var err2 = new VError(err1, 'failed to stat "%s"', '/junk');
var err3 = new VError(err2, 'request failed');

var err = err3;

while (err) {
 console.log(err.stack);
 console.log('--------');
 if (err.cause) {
 err = err.cause();
 } else {
 err = null;
 }
}

Since we use the clarify module to strip the Node core method calls from the stack
trace, we will get the following data logged to the terminal:

$ node verror-test.js

VError: request failed: failed to stat "/junk": No such file or directory

 at Object.<anonymous> (/Users/alexandruvladutu/www/verror-test.
js:6:12)

VError: failed to stat "/junk": No such file or directory

 at Object.<anonymous> (/Users/alexandruvladutu/www/verror-test.
js:5:12)

Error: No such file or directory

 at Object.<anonymous> (/Users/alexandruvladutu/www/verror-test.
js:3:12)

Error Handling

[182]

Instead of having a single error message at the deepest level, we basically have three
nested error messages combined in one that provides better debugging information.

The snippet was a really simple one, but when we have different functions from
different files that call each other, this can prove to be extremely helpful to pinpoint
the root of the problem.

Error handling in a practical application
For the remainder of this chapter, we will create a sample microblogging application
from scratch with error handling included.

Guests should be able to register, log in, and publish posts on the home page of
the application. Everybody should be able to view published posts (from newest to
oldest) and new post notifications should be sent in real time to the web interface.
A counter will display the number of posts that have been published since viewing
the page, and there will be a button for the users who want to load them.

We will use the following modules:

• mongoose: This module will be used for the database layer (thus, MongoDB
as the database)

• EJS: This module will be used for rendering views
• passport-local-mongoose: This module will be used to help us with the

user registration/authentication
• primus: This module will be used to manage real-time updates (server and

browser)

We will also reuse the error handler created earlier in this chapter, and the validation
library from the Notes application.

The project will have the following structure:

Chapter 6

[183]

Creating the application entry point
The main server.js file will load the required middleware for the static file serving,
logging during development, parsing forms, session management, and so on. It will
also set up the view system and assign the view helpers. The full code is shown
as follows:

var http = require('http');
var bodyParser = require('body-parser');
var morgan = require('morgan');
var methodOverride = require('method-override');
var serveStatic = require('serve-static');
var session = require('cookie-session');
var express = require('express');
var app = express();
var passport = require('passport');
var flash = require('connect-flash');

Error Handling

[184]

var mongoose = require('mongoose');
var LocalStrategy = require('passport-local').Strategy;
var gravatar = require('nodejs-gravatar');
var moment = require('moment');
var User = require('./models/user');
var Post = require('./models/post');
var Primus = require('./lib/primus');
var handleErrors = require('./lib/errorHandler');
var die = require('./lib/die');
var niceErr = require('nice-error');
var ENV = process.env.NODE_ENV || 'development';

// view set up
app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

// view helpers
app.locals.getGravatarImage = gravatar.imageUrl.bind(gravatar);
app.locals.moment = moment;

// express middleware
app.use(serveStatic(__dirname + '/public'));
if (ENV === 'development') {
 app.use(morgan('dev'));
}
app.use(bodyParser());
app.use(methodOverride());
app.use(session({
 keys: ['a', 'b']
}));
app.use(passport.initialize());
app.use(passport.session());
app.use(flash());

Before loading the route handlers, we will create a middleware that makes the
models and the primus broadcast function accessible from the routes (by assigning
them on the request object). This is more for convenience because we could have
also required these in each route as dependencies:

// Make models accessible inside the route handlers.
app.use(function(req, res, next) {
 req.User = User;
 req.Post = Post;

Chapter 6

[185]

 // Function used to broadcast messages to all connected peers
 // broadcast will be defined below
 req.broadcast = broadcast;

 next();
});

During development, we will reuse the error handler previously created in this
chapter. However, in production, we will log the errors to stderr and display an
error page with a general message. We are doing this because in production, it
wouldn't be helpful for the user to see the stack traces or code snippets. It would
also be considered a security issue.

If the connection to the database cannot be established or an uncaught error occurs,
we will crash the program, but not before assigning a timestamp on the error and
logging it:

// Passport configuration.
passport.use(new LocalStrategy(User.authenticate()));
passport.serializeUser(User.serializeUser());
passport.deserializeUser(User.deserializeUser());

// routes
var routes = require('./routes/index');

app.get('/', routes.posts.index);
app.get('/login', routes.session.new);
app.post('/login', passport.authenticate('local', {
 failureRedirect: '/login?unsuccessful=1'
}), routes.session.create);
app.del('/logout', routes.session.destroy);
app.get('/register', routes.users.new);
app.post('/register', routes.users.create);
app.post('/posts', routes.users.ensureAuthenticated,
 routes.posts.create);

// Reuse previously created error handler.
if (ENV === 'development') {
 app.use(handleErrors);
} else if (ENV === 'production') {
 app.use(function(err, req, res, next) {
 err.timestamp = Date.now();
 console.error(niceErr(err));

Error Handling

[186]

 res.status(500).send('500 - Internal Server Error');
 });
}

// mongoose
mongoose.connect('mongodb://localhost/WallApp', function(err) {
 if (err) {
 err.message = 'Failed to connect to MongoDB database \n' +
 err.message;
 die(err);
 }
});

process.on('uncaughtException', die);

var server = require('http').createServer(app);
var broadcast = Primus(server);

server.listen(7777);
console.log('server up on port %s', 7777);

The die function used for unrecoverable errors (database connection failed and
uncaught exceptions) is minimal; it assigns a timestamp to the error, logs it, and
crashes the process:

var niceErr = require('nice-error');

module.exports = function(err) {
 err.timestamp = Date.now();
 console.error(niceErr(err));
 process.exit(1);
};

Real-time updates with Primus
Primus is an abstraction module on top of the existing real-time modules such as
Engine.IO, Faye, Sock.js, and others. By using Primus, we avoid module lock
in and can easily switch between modules in future if needed.

Chapter 6

[187]

The primus module from /lib is also simple to grasp—it starts a primus server
with the default options and returns the broadcast function (which we will use
later to publish real-time updates to all connect clients):

var Primus = require('primus');

module.exports = function startPrimus(server, opts) {
 opts = opts || {};

 var primus = new Primus(server, {
 transformer: opts.transformer || 'websockets',
 parser: opts.parser || 'json',
 pathname: opts.pathname || '/primus'
 });

 return function broadcast(msg) {
 primus.write(msg);
 };
};

Post and User models
Since we'll be dealing only with the users and posts, it makes sense to create models
for each. The models will define the schemas (enforcing the validation rules),
creating a custom query (for posts), and integrating an existing plugin (for users).

The Post model defines a custom query function to retrieve posts with some
predefined parameters, besides creating the schema:

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var validator = require('../lib/validator');

var Post = new Schema({
 content: {
 type: String,
 required: true,
 validate: validator.validate('isLength', 2, 255)
 },
 author: {
 type: Schema.Types.ObjectId,
 ref: 'User',
 required: true
 },

Error Handling

[188]

 createdAt: {
 type: Number,
 default: Date.now
 }
});

Post.statics.getWith = function(opts, callback) {
 // opts are optional
 if (typeof opts === 'function') {
 callback = opts;
 opts = {};
 }

 // Limit defaults to 20, but you can also enforce
 // that limit is an integer.
 opts.limit = opts.limit || 20;

 var query = this.find();

 if (opts.older) {
 query = query.where('createdAt').lte(opts.older);
 } else if (opts.newer) {
 query = query.where('createdAt').gte(opts.newer);
 }

 query.limit(opts.limit).populate({
 path: 'author',
 select: 'username email'
 })
 .sort('-createdAt')
 .exec(callback);
};

module.exports = mongoose.model('Post', Post);

The User model is even simpler—it defines the schema properties and loads the
passport plugin that does the registering and authentication logic. The plugin
adds some useful functions such as .register() or .authenticate(). You can
read more about this on its official page at https://github.com/saintedlama/
passport-local-mongoose.

Chapter 6

[189]

The code for the model is as follows:

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var passportLocalMongoose = require('passport-local-mongoose');
var validator = require('../lib/validator');

var User = new Schema({
 username: {
 type: String,
 required: true,
 unique: true,
 validate: [{
 validator: validator.validate('isAlphanumeric'),
 msg: 'username must be alphanumeric'
 }, {
 validator: validator.validate('isLength', 4, 255),
 msg: 'username must have 4-255 chars'
 }]
 },
 email: {
 type: String,
 required: true,
 unique: true,
 validate: validator.validate('isEmail')
 }
});

User.plugin(passportLocalMongoose);

module.exports = mongoose.model('User', User);

About routes
The routes modules will do what is expected from them, which include mainly the
following tasks:

• Registering and authenticating new users
• Sending an intuitive error message to the view when the user creation fails
• Saving new posts
• Returning different post pages based on the query parameters

Error Handling

[190]

The posts route (/routes/posts.js) has two functions: the index function to
display the main page (or a partial page that contains posts that match specific
criteria) and the create function, which is called while creating a post.

The index function has the following two roles:

• It displays the main page with the posts and the new post form (or register
and login links)

• It displays a partial page that contains the HTML code for the posts that are
older than a certain date (for the infinite scrolling functionality implemented
on our frontend code)

The code for the index function is as follows:

var errTo = require('errto');
var niceErr = require('nice-error');

exports.index = function(req, res, next) {
 var opts = {};
 var tpl = 'index';

 if (req.query.partial) {
 opts.older = req.query.older;
 tpl = '_posts';
 }

 req.Post.getWith(opts, errTo(next, function(posts) {
 res.render(tpl, {
 posts: posts,
 user: req.user,
 successMsg: req.flash('success')[0],
 errorMsg: req.flash('error')[0]
 });
 }));
};

The create page attempts to save a post to the database, broadcast its HTML code to
the clients connected using primus, and then redirects the user to the main page.

If the save failed because of a validation error (for example, the post content only has
one character), we store a message using connect-flash and display it in the main
page. The connect-flash module saves the messages to the session, and then clears
them after being displayed to the user, which makes it really handy for use between
redirects as well. If the save failed because of a database error, we just delegate it to
the error handler.

Chapter 6

[191]

The complete code for the method is as follows:

exports.create = function(req, res, next) {
 var post = new req.Post({
 content: req.body.content,
 author: req.user._id
 });

 post.save(function(err) {
 if (err) {
 if (err.name === 'ValidationError') {
 req.flash('error', 'Could not publish the post, please
 make sure it has a length of 2-255 chars');
 } else {
 return next(err);
 }
 } else {
 req.flash('success', 'Successfully published the post');
 // Creating another var so we can populate the author
 // details.
 var _post = {
 _id: post._id,
 content: post.content,
 createdAt: post.createdAt,
 author: {
 username: req.user.username,
 email: req.user.email
 }
 };

 res.render('_posts', {
 posts: [_post]
 }, function(err, content) {
 if (!err) {
 return req.broadcast(content);
 }
 console.error(niceErr(err));
 });
 }

 res.redirect('/');
 });
};

Error Handling

[192]

The preceding broadcast approach works fine for a single process.
However, when you have multiple server.js processes opened at
the same time, we should use a message bus to publish this event to
the rest of the processes opened. These other processes should listen
for incoming events and broadcast them to their connected peers. This
approach assures us that not only the clients connected to the server
that saves the get post are updated but everybody else is as well.

The most important function from the users route (/routes/users.js) is create,
which tries to save a user to the database. If the save fails, we check to see whether
the errors occurred because of validation rules, duplicate key in the database, or some
other error. If the validation has failed or the username/e-mail already exists in the
database, we display specific messages to the user. If the error differs from these two
situations, we again delegate it to the Express error handler.

The complete code for the users route file is as follows:

var passport = require('passport');
var User = require('../models/user');

exports.new = function(req, res, next) {
 res.render('register');
};

exports.create = function(req, res, next) {
 var newUser = new User({
 username : req.body.username,
 email : req.body.email
 });

 User.register(newUser, req.body.password, function(err, user) {
 var errMessage;

 if (err) {
 // failed validation || duplicate key shouldn't result in a
 // 500 error page
 // We should display the form with an error message instead.
 if (err.name === 'BadRequestError' || err.name ===
 'ValidationError' || err.name === 'MongoError') {
 // Showing specific messages for some situations.
 if (err.name === 'MongoError' && err.code === 11000) {
 errMessage = 'username/email already exists';
 } else if (err.name === 'ValidationError') {

Chapter 6

[193]

 errMessage = 'Validation failed for the following
 fields: ' + Object.keys(err.errors).join(', ');
 }

 return res.render("register", {
 error: errMessage || err.message
 });
 } else {
 return next(err);
 }
 }

 // Auto-login to the newly created user
 passport.authenticate('local')(req, res, function() {
 res.redirect('/');
 });
 });
};

exports.ensureAuthenticated = function(req, res, next) {
 if (req.isAuthenticated()) { return next(); }

 res.redirect('/login')
}

The session route file is small and self-explanatory; it just renders the login page
and redirects users to the main page (after they log in or log out):

exports.new = function(req, res) {
 res.render('login', { user : req.user });
};

exports.create = function(req, res) {
 res.redirect('/');
};

exports.destroy = function(req, res) {
 req.logout();
 res.redirect('/');
};

Error Handling

[194]

Views and static resources
The index.html view displays the existing posts along with the new post form or
register/login links (depending on whether or not the user is logged in). The login.
html and register.html files deal with user registration and authentication.

You can find the view files as well as the rest of the files for
the application in the source code accompanying the book.
They are not included here because it's beyond the scope of
the chapter.

The static JavaScript file (core.js) does a lot of things as follows:

• Displays the remaining characters the user can enter in the new textarea post
• Detects when the user has scrolled to the bottom of the main page and loads

older posts via AJAX (before the request is being made, the scroll detection
is disabled, but when the request completes, its enabled again—this way,
we make sure not to send multiple requests that retrieve the same thing)

• Displays the new posts available banner and updates it with the exact
number of posts that have been published since the user has viewed the
current page (using primus)

• Adds the new posts available when the user clicks on that banner

Running the application
Once you have all the NPM dependencies installed for the project and start the
server, you are free to register a user and publish posts. To install the dependencies
and start the server, just enter the following commands in the terminal:

$ npm i

$ npm start

If you log in and post a few messages, you will see a page similar to the
following screenshot:

Chapter 6

[195]

If you scroll to the bottom of the page, you will see that the application will load
older posts:

Error Handling

[196]

Summary
In this chapter, we learned about error handling, one of the most important
aspects to consider when writing web applications. We learned that operational
errors should be dealt with, and we should allow programmer errors to crash our
application. Using different techniques to improve the error objects (most notably
the stack trace), we have made our debugging lives easier.

In the next chapter, we will tackle different ways of improving the performance
of our Express web applications.

Improving the Application's
Performance

This chapter will focus on improving the performance of our Express applications
in order to make them faster, use less memory, and be able to handle more
concurrent users.

We will be handling the following topics:

• Frontend optimization tricks to serve static resources
• Creating a cache system that can be easily integrated into our application
• Using streams to process data
• Flushing the content early using streaming templates
• Handling more users with the cluster

Serving static resources with Express
One of the first things that comes to mind when writing a web application is the
ability to serve static files. While there are other solutions that we can use alongside
our applications for this functionality, it's good to know that we can always load
an Express middleware to take care of serving the static files.

Using Node modules
Even though serving the static files isn't optimal with Node, it's worth knowing
that existing modules can handle thousands of connections per second. If our
web application doesn't have a traffic level that exceeds this, it's an option
worth considering.

Improving the Application's Performance

[198]

There are several modules that handle serving static files with Node for us, such as
st (https://www.npmjs.org/package/st) or serve-static (https://www.npmjs.
org/package/serve-static), which come bundled with Express. We will be using
the latter for the following example:

var express = require('express');
var app = express();
var ejs = require('ejs');

app.set('view engine', 'html');
app.engine('html', require('ejs').renderFile);

// serving static files (that expire after a month)
app.use(express.static(__dirname + '/public', {
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

app.get('/', function(req, res, next) {
 res.render('home');
});

app.listen(7777);

Before running the example, you should install the required modules (express, ejs,
morgan, serve-static) and create the /views folder with home.html as the default
(home page) view.

There are several things we can improve in the preceding example, and we'll discuss
them one by one.

The middleware order can impact performance
The order in which the middleware functions are loaded in Express matters. This
is a valid point not only because some functions depend on other functions getting
executed before them, but also for performance considerations.

Let's start by inserting the following snippet at the top of the file:

var fs = require('fs');
var fsStat = fs.stat;
fs.stat = function(path, cb) {
 console.log('fs.stat: ' + path);
 fsStat(path, cb);
};

Chapter 7

[199]

Now, let's make a request to the home URL / and see what happens:

$ node server.js

fs.stat: /Users/alexandruvladutu/www/mastering_express/chapter_07/apps/
static-resources/public/index.html

GET / 304 - - 13 ms

Because the static middleware has been included before the route handler, it
will attempt to serve a static file with each request. When serving a file, the static
middleware will check whether it exists and get its properties (thus, calling fs.stat
with the file path argument).

This means that even though we have defined route handlers for certain requests,
our application will first touch the filesystem. It will proceed to the next middleware
in the stack only after this (our route handler, in this case).

The first measure we can think of is to move the serving middleware after the route
handlers, as shown in the following code:

app.get('/', function(req, res, next) {
 res.render('home');
});

app.use(serve(__dirname + '/public', {
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

Now, if we visit the same home URL, the file system will not be touched and we will
see the page slightly faster (the static middleware isn't called this time).

However, this approach doesn't fix our problem entirely. Even if the user types in a
bad URL, the application calls the static middleware to see whether there's a file with
that name. We can also add a path prefix to the static middleware, as shown in the
following code:

app.get('/', function(req, res, next) {
 res.render('home');
});

app.use('/assets', serve(__dirname + '/public', {
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

Improving the Application's Performance

[200]

This will require us to update the path to our static resources (JavaScript files, CSS
files, and more such), but now, when we visit /some-unknown-page, the application
will see that there is no middleware matching that route, and it will show you the
404 page faster.

There are other optimizations that we can do on the middleware side. Generally, we
might have other middleware as well, such as a cookie parser or a session handler.
When serving the static files, we don't care about cookies and sessions, but we will
still need to add these to the top (before defining the routes). We can also move the
static middleware so that it gets loaded before others. Our example, thus, becomes
something like the following code:

// New dependencies.
var cookieParser = require('cookie-parser');
var session = require('express-session');

app.use('/assets', serve(__dirname + '/public', {
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

app.use(cookieParser());
app.use(session({ secret: 'random words', key: 'sid', cookie: {
 secure: true }}));

app.get('/', function(req, res, next) {
 res.render('home');
});

Asset versioning
You might have seen the line with the maxAge property in the code when loading
the static middleware. By setting the serve-static property to a number of
milliseconds, we will let the browser know how long it can store it in its cache for
(by using the Cache-Control header).

Unfortunately, when the resources are old and need to be updated (but haven't
expired in the browser), we need to change their URL in order to force the browser
to reload them. There are two ways by which we can achieve this:

• Appending a version to the URL as a querystring (/assets/sample.
js?v=0.1)

• Storing the version in the URL (for instance, /assets/v0.1/sample.js)

Chapter 7

[201]

The recommended approach is the latter, because some proxies do not cache
resources with a query string.

There are two things to be taken into consideration now: removing the version from
the URL so that the static middleware performs like before and using a function to
create the URL for a resource. The versionator module (https://www.npmjs.org/
package/versionator) does both of these things for us.

This module provides you with a middleware function that removes the version
from the request.url property and also provides another function that constructs
the resource URL in the views (or elsewhere, for that matter). Our server.js code
will be updated to include the following snippet:

var versionator = require('versionator');
app.version = process.env.VERSION || '0.1';
var versionate = versionator.createBasic('v' + app.version);
app.locals.getResourcePath = versionate.versionPath;

// Remove the version from the URL so the serve middleware works
// as expected
app.use('/assets', versionate.middleware);
// Serving static files (that expire after a month)
app.use('/assets', serve(__dirname + '/public', {
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

You might notice the getResourcePath function that is assigned to app.locals and
made available to all the views. We will use this function to construct the URLs for
our scripts and style sheets in /views/home.html:

<link rel="stylesheet" href="<%-
 getResourcePath('/assets/sample.css') %>" />
<script src="<%- getResourcePath('/assets/sample.js')
 %>"></script>

Let's take a short recap and ask ourselves why we went through all this trouble for
asset versioning:

• We want the resources to have an expiry date in the faraway future so that
the browser doesn't even try to make a request to the server if it has got the
cached resource

• Even though we set up a high maximum age, we still need to be able to push
new versions in production, and that's why we need to add a version to the
resource URL (because the browser would not reload them otherwise)

Improving the Application's Performance

[202]

Now, if we run the server and visit the home page twice, we should see that the
resource was served from the cache the second time (without touching the server)
and that the version (0.1 in our case) is in the path.

When we will need to upgrade the version for the assets, we have to pass a new
VERSION environment variable only when starting the application:

VERSION=0.2 node server.js

Compress and minify
To minimize the content size for the responses and consequently speed them
up, we can use the compression module (https://www.npmjs.org/package/
compression). Just add the following lines before the static middleware and the
routes in order to enable the gzip compression:

var compress = require('compression')();

app.use(compress);

Chapter 7

[203]

One thing to note here is that if the response is too small (less than
1 kilobyte), it won't be zipped, so be sure to test this feature with
larger files.

To further speed up our application, we can minify and concatenate all the JavaScript
files into a single one (this is the case for the style sheets as well). Apart from this, we
can also reduce the images' size using the existing modules.

There are two popular build tools that we can use to help us with these tasks: grunt
(https://www.npmjs.org/package/grunt) and gulp (https://www.npmjs.org/
package/gulp). We will choose gulp for this example, but either one is fine.

We will need the following NPM modules to be installed before we proceed: gulp,
gulp-concat, gulp-ugilify, gulp-imagemin, and gulp-minify-css. Considering
that the static resources will be stored inside the /public folder and the /assets
folder will be used for the final resources, our gulpfile.js file will look like the
code in the following example:

var gulp = require('gulp');
var concat = require('gulp-concat');
var uglify = require('gulp-uglify');
var imagemin = require('gulp-imagemin');
var minifyCSS = require('gulp-minify-css');

var paths = {
 dev: {
 scripts: 'public/js/*',
 stylesheets: 'public/css/*',
 images: 'public/imgs/*'
 },
 prod: {
 scripts: 'assets/js',
 stylesheets: 'assets/css',
 images: 'assets/imgs'
 }
};

gulp.task('scripts', function() {
 // Minify and concatenate all JavaScript files into a single one
 return gulp.src(paths.dev.scripts)
 .pipe(concat('build.js'))
 .pipe(gulp.dest(paths.prod.scripts));
});

Improving the Application's Performance

[204]

gulp.task('stylesheets', function() {
 // Minify and concatenate all the style sheets into a single one.
 return gulp.src(paths.dev.stylesheets)
 .pipe(minifyCSS({}))
 .pipe(concat('build.css'))
 .pipe(gulp.dest(paths.prod.stylesheets));
});

// Copy all the static images.
gulp.task('images', function() {
 return gulp.src(paths.dev.images)
 // Pass in options to the task
 .pipe(imagemin({
 optimizationLevel: 5,
 progressive: true,
 interlaced: true
 }))
 .pipe(gulp.dest(paths.prod.images));
});

// Rerun the task when a file changes.
gulp.task('watch', function() {
 gulp.watch(paths.dev.scripts, ['scripts']);
 gulp.watch(paths.dev.stylesheets, ['stylesheets']);
 gulp.watch(paths.dev.images, ['images']);
});

// The default task (called when you run 'gulp' from cli).
gulp.task('default', ['scripts', 'stylesheets', 'images']);

If we open a terminal tab and keep the gulp watch running in the background, we
don't have to rerun the tasks each time a file changes (to run the default task, just
type gulp in the terminal).

An in-memory static middleware
We can take our optimizations a step further if we have a limited number of
static resources and they don't take up a lot of space. If this is the case, we can
consider integrating node-buffet (https://www.npmjs.org/package/buffet)
into the project.

Chapter 7

[205]

The node-buffet module loads all the static files into the memory, so in terms of
speed and handling a lot of requests per second, it's probably the most efficient
module out there. According to the project's README file, it can compete with the
Varnish cache (https://www.varnish-cache.org) when it comes to the number of
requests per second:

**************** varnish (4874.64 rps)

*************** buffet-server (4421.13 rps)

************* buffet (3742.6 rps)

********* st (2659.29 rps)

********* node-static (2645.31 rps)

****** send (1646.75 rps)

***** ecstatic (1302.24 rps)

*** paperboy (625.28 rps)

We can replace serve-static with buffet using just a few lines of code (remember
to remove the serve-static middleware from the project):

var buffet = require('buffet');
app.use('/assets', buffet({
 maxAge: (1000 * 60 * 60 * 24 * 31)
}));

This module is a nice addition to the project when you don't want to include
external tools such as Varnish or NGiNX to the project but still want to have a great
performance. Unless there are tens or hundreds of megabytes of static resources to be
loaded, this module is a great fit for serving files with Express.

Using a content delivery network
There are advantages and disadvantages of using a content delivery network (CDN)
to host static assets, depending on the case. In the next section, we are going to talk
about when CDN helps and when it doesn't.

The main advantages of CDN are as follows:

• Decreases the server load and allows our Express application to focus on
more important aspects

• Because the server doesn't handle serving static assets, it has the ability to
handle more concurrent requests per second

Improving the Application's Performance

[206]

• If the users come from different countries and continents, CDN will serve the
static assets from the closest (and probably the fastest) location to the user,
thus reducing latency

• The customer might already have the content if we're talking about popular
libraries such as jQuery (and if we use well-known CDN)

Using CDN doesn't help us in all situations. Some examples are as follows:

• If our web application is destined for local use (in a certain country) and
CDN doesn't have any servers in that particular country

• It adds additional complexity to the application as we'd now have to manage
another layer besides Node (the Express application, in particular)

• It requires an extra DNS lookup
• In some situations, CDN might be blocked

Although hosting static resources on CDN isn't a silver bullet, it can be extremely
handy when you do need it.

Using NGiNX
NGiNX (https://github.com/nginx/nginx) is a good alternative to Node when
it comes to serving static files. We can proxy every other request to our Express
application and let NGiNX deal with serving the assets.

After installing it, we should create /usr/local/nginx/sites-enabled. Next, we
will include the following snippet inside the http block from /usr/local/nginx/
nginx.conf:

include sites-enabled/nodeapp.dev;

Depending on the operating system you use, this path might be
different. Please check the NGiNX documentation for more details
at http://wiki.nginx.org/Main.

Instead of nodeapp.dev, you should include your own domain. Now, we should
create the configuration file (/usr/local/nginx/sites-enabled/nodeapp.dev)
that will tell NGiNX to perform the following tasks:

• Listen on port 80
• Enable the gzip compression for static assets

Chapter 7

[207]

• Serve all static files (URLs that begin with /assets) from a specified
local folder

• Proxy everything else to our Express application while setting the
X-Forwarded-For and Host headers appropriately

The file should now look like the following code:

upstream nodeapp {
 server 127.0.0.1:7777;
 keepalive 64;
}

server {
 listen 80;
 server_name nodeapp.dev;

 # enable gzip compression
 gzip on;
 gzip_comp_level 6;
 gzip_vary on;
 gzip_min_length 1000;
 gzip_proxied any;
 gzip_types text/plain text/html text/css application/json
 application/x-javascript text/xml application/xml
 application/xml+rss text/javascript;
 gzip_buffers 16 8k;

 location ~ ^/assets {
 root /Users/alexandruvladutu/www/nodeapp/static-resources/;
 access_log off;
 expires max;
 }

 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;

 proxy_pass http://nodeapp;
 }
}

Improving the Application's Performance

[208]

NGiNX has a lot of options that you can tweak, but this should get you started.
As you can see from the preceding example, the requests that don't match the
static files are proxied to http://127.0.0.1:7777/, which is the address of
our Express application.

We should not forget to restart NGiNX so it can load these settings and also let
Express know that we are behind a trusted proxy by adding the next line inside
server.js:

app.set('trust proxy', true);

Now, if we use the request.ip property, it will correctly retrieve the IP of the user
(and not that of the proxy).

If you are wondering how many requests per second it can handle, try running the
following command in the terminal (if you don't have it already installed, the wrk
load testing tool is available at https://github.com/wg/wrk):

$ wrk 'http://nodeapp.dev/assets/v0.1/sample.css' -d 3 -c 50 -t 8

The result should look more or less like the following output:

Running 3s test @ http://nodeapp.dev/assets/v0.1/sample.css

 8 threads and 50 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 2.61ms 202.22us 3.01ms 70.32%

 Req/Sec 2.00k 0.00 2.00k 100.00%

 55154 requests in 3.00s, 744.80MB read

Requests/sec: 18376.75

Transfer/sec: 248.16MB

This looks pretty impressive, to say the least.

For this setup, we can still use the versionator module when
constructing the paths for the assets, but we have to be careful to add /
assets/v0.1/ along with all the assets where NGiNX searches for the
static files (specified as the root setting from the configuration file).

Chapter 7

[209]

Backend improvements
Now that we have mostly tackled various techniques of improving our frontend
assets, it's time to concentrate on the server-side stuff. In the rest of the chapter, we
will explore techniques that can make our application faster and more responsive.

Avoiding synchronous functions
You are probably familiar with the synchronous functions provided by the fs native
Node module by now. The most common example is the one for reading a file:

var content = fs.readFileSync(filePath);

We should really avoid having this anywhere apart from having it beside the boot
time (when the application spins up), because it will block the event loop (and make
every client wait for this to finish). Doing this only once isn't a big deal, but when
you're reading a file synchronously for each request made to the server, for example,
it's going to block the event loop over and over again.

There are asynchronous counterparts to these functions, and we should use them as
much as we can. However, if you're just using the synchronous functions to load the
configuration files when the application has started, it's probably acceptable (because
the application shouldn't move on until these functions have finished).

Doing things in parallel whenever possible
Since we're using Node, we might as well take advantage of its capabilities whenever
we can, and this includes calling several functions at once and executing
a callback function when they're all done.

Let's consider the following classical example: the application is making three
queries to the database, but in a series (after the first one has retrieved the results,
and then the second query is executed, and so on until the end). Without using
any control flow module (such as async-series, for example), the code might
look as follows:

function getData(callback) {
 db.query(query1, function(err, userSettings) {
 if (err) { return callback(err); }

 db.query(query2, function(err, sidebarNews)) {
 if (err) { return callback(err); }

Improving the Application's Performance

[210]

 db.query(query3, function(err, visitorStats) {
 if (err) { return callback(err); }

 callback(null, {
 userSettings: userSettings,
 sidebarNews: sidebarNews,
 visitorStats: visitorStats
 });
 });
 }
 });
}

If the database calls are independent (and the second query does not depend on the
results of the first one), we can execute the queries in parallel and trigger the callback
function once they're all done. Exaggerating a bit (by not using any control flow
module), a (pure) version of the code might look like the following code:

function getData(callback) {
 var userSettings, sidebarNews, visitorStats;
 var counter = 3;
 var called = false;
 var next = function(err) {
 if (called) { return; }
 if (err) {
 called = true;
 return callback(err);
 }

 if (!--counter) {
 callback(null, {
 userSettings: userSettings,
 sidebarNews: sidebarNews,
 visitorStats: visitorStats
 });
 }
 };

 db.query(query1, function(err, val) {
 userSettings = val;
 next(err);
 });

Chapter 7

[211]

 db.query(query2, function(err, val) {
 sidebarNews = val;
 next(err);
 });

 db.query(query3, function(err, val) {
 visitorStats = val;
 next(err);
 });

}

Using streams to process data
Streams are one of the most important concepts in Node. If you are familiar with
the Unix pipes, streams will be easy to understand, since they are similar. Streams
represent an abstract interface that can be reused. They can be readable, writable,
or both. You can pipe a read stream into a write stream using the pipe method
(as you would use | in Unix).

In many situations, streams represent the fastest solution to a problem as well as the
least expensive one (memory-wise). However, why is that? When using streams, we
are able to process each chunk of data as it comes and finalize our task once the last
chunk has arrived. This means that instead of buffering everything into the memory
and having to wait until it's completely loaded to process it, we can apply the
process at each step of the way.

Let's try to serve a static file without streams first, and then try and use streams
to do this. Without streams, the example would look like the following code:

var fs = require('fs');
var express = require('express');
var app = express();

app.get('/big-file.txt', function(req, res, next) {
 fs.readFile(__dirname + '/big-file.txt', 'utf8', function(err,
 content) {
 if (err) { return res.status(500).send('Internal Error'); }

 res.send(content);
 });
});

app.listen(7777);

Improving the Application's Performance

[212]

The following things happen in the preceding example:

• The whole file content is loaded into the memory
• After the complete content has been loaded, the server begins to respond

to the client

Now, for the stream version, the example would look like the following code:

app.get('/big-file.txt', function(req, res, next) {
 fs.createReadStream(__dirname + '/big-file.txt').on('error',
 function(err) {
 // Handle error.
 }).pipe(res);
});

Things happen in a different way now:

• The file is read chunk by chunk
• Once the first chunk has been loaded, it is sent back to the client
• After the last chunk has been loaded, the server sends it back to the client

and finishes the response

Some practical applications of using streams include the following tasks:

• Parsing a file or spawned process response or HTTP response with each
incoming chunk and emitting data events. Once a data event has been
emitted, we can insert a row into a database or send a partial response back
to the client, for example.

• Progressively calculating a hash for a file.
• Uploading files received from the clients to an external service without

having to store them on our server.
• Minifying and concatenating static resources into a single file.

Streaming templates with trumpet
When rendering templates using the render function from Express, we have to wait
until both the templates and the data are loaded until we can send the response back
to the client.

This means that if one asynchronous function takes 10 seconds to return the result,
we have to wait until it is completed before we can start sending the content, even
though that data is lower in the page.

Chapter 7

[213]

Wouldn't it be better to flush the header early and other data as it comes? The answer
is yes indeed; this will not only avoid having to buffer stuff into the memory, but this
also means that the clients will start seeing the parts of the page already (because we
will start flushing the response early).

So, let's imagine a practical scenario: we are creating a web application that
aggregates the prices of clothes from different stores (using their REST APIs, for
example). If seven out of 10 stores respond fast, we can already display these results
and not have to wait for the other three out of 10 stores (let's say that they will return
the results after 10 seconds). Instead of having to wait for 10 seconds for all the APIs
to respond, we can now show partial results after a few milliseconds and stream the
rest later. Not only will the users see something useful really fast, but they will also
have a better opinion on the responsiveness of your web application.

The trumpet module (https://www.npmjs.org/package/trumpet) helps us flush
the content early using CSS selectors and streaming the HTML templates. When
using a selector, it will return a writable stream that we will push data into once it
comes. Another writable stream will be the one that accepts the HTML template. The
trumpet module will send everything to the client until it reaches a portion of the
template that's waiting for the incoming data to be streamed.

For the next example, we'll have two files: template.html (representing the
template HTML data) and server.js (our Express app).

The template is really basic:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Clothes aggregator</title>
</head>
<body>
 <h1>Socks prices</h1>

 <div></div>

</body>
</html>

Improving the Application's Performance

[214]

We will start the server.js file by first loading the dependencies and the template
file into the memory:

// server.js
var express = require('express');
var app = express();
var stream = require('stream');
var trumpet = require('trumpet');
var fs = require('fs');

var template = fs.readFileSync('./template.html', 'utf8');

Then, we will create a fake readable stream that sends an item each second until it is
finished (to simulate making requests to multiple REST endpoints):

var data = ['Store A - socks $1', 'Store B - socks $2', 'Store C -
 socks $10', 'Store D - socks 100$'];

var getData = function() {
 var readableStream = new stream.Readable();
 readableStream.setEncoding('utf8');
 readableStream._read = function(size) {};
 var counter = 0;

 var interval = setInterval(function() {
 if (counter >= data.length) {
 readableStream.push(null);
 return clearInterval(interval);
 }
 readableStream.push(data[counter]);
 counter++;
 }, 1000);

 return readableStream;
};

The last part will contain the route handler that will create a new trumpet instance
to which we will write the template data. We will also create a writable stream using
the ul (list) selector. Once each chunk has been received, we will send a list item to
that stream, which will be sent to the end user. The rest of the file is as follows:

app.get('/', function(req, res, next) {
 var tr = trumpet();

Chapter 7

[215]

 // writable stream
 var ws = tr.select('ul').createWriteStream();

 setImmediate(function() {
 tr.write(template);
 tr.end();
 });

 getData().on('data', function(data) {
 ws.write('' + data + '');
 }).on('end', function() {
 ws.end();
 });

 tr.pipe(res);
});

app.listen(7777);

If you have all the dependencies installed, run the example and visit the URL in the
browser. You should see the following page after two seconds (two list items have
been loaded at this time):

Caching dynamic data
When you want to speed up the backend response times, something that can help is
caching. Caching is a matter of trading space for time. It's up to you to decide how
much you want to cache. For example, when running on a 2 GB RAM box, we can
tell Memcached (the in memory key-value store) to limit itself to using 400 megabytes.

Improving the Application's Performance

[216]

An important thing to pay attention to when using caching is that we
have to be careful to maintain the cache in sync with the database.
When a record has been changed, it must be updated in the cache
layer as well.

Next, we'll develop a general-purpose caching mechanism that has the following
functions:

• Add/get/delete an item from the cache (these functions should be adapted
based on the caching store you are using)

• Transparently memorize the results of an asynchronous function (in the
cache) by using a wrapper

• It has a function similar to the memorize one, except it does the opposite,
namely, removing the date from the cache once a function has been executed

First, we'll start by defining the dependencies and creating some utility functions:

var ms = require('ms');
var cache = {};

var exists = function(val) {
 return (typeof val !== 'undefined');
};

var getHash = function(key, args, prefix) {
 prefix = prefix || '';
 return prefix + (key || args.toString());
};

var callFunctions = function(functionsArray, args) {
 functionsArray.forEach(function(cb) {
 cb.apply(null, args);
 });
};

After this, we will implement the function to perform the memorization. This
function should create a wrapper around the function passed as the first parameter
so that we can easily integrate it. For example, considering that we have an
asynchronous function called getUser that takes id and callback as the signature,
we should be able to swap it with the following code:

getUser = cache.remember(getUser);

Chapter 7

[217]

That's all we have to do to integrate this memorization feature. The cache.remember
function should perform the following tasks:

• Take the original function as the first argument and an optional object as the
second one, containing the following properties: key (the ID of the cache item
to be stored), ttl (time to leave it might be relevant to some cache stores),
and prefix (this will be appended to key).

• It should try to fetch the item from the cache (using the generated key as
the ID).

• If it doesn't find the item in the cache and we need to call the original
function (passed as a parameter) to retrieve it, we should first keep track of
the pending functions (multiple concurrent function calls to retrieve the same
item). If we don't do this, each of them will first execute the original function
and then add the item to the cache.

• Once the item has been retrieved (by the original function), add it to the
cache and execute all the pending functions (that wanted to access it).

The code for this function is as follows:

cache.remember = function(originalFunc, opts) {
 opts = opts || {};

 // default ttl one day
 var ttl = opts.ttl || ms('24h');
 var pendingFuncs = {};

 return function() {
 var args = Array.prototype.slice.call(arguments);
 // Extract the callback function from the function's arguments
 // (should be the last one).
 var callback = args.pop();
 var key = getHash(opts.key, args, opts.prefix);

 // Try to fetch the data from the cache.
 cache.get(key, function(err, val) {
 if (err) { return callback(err); }

 if (!exists(val)) {
 // If there are pending functions for the key, push this
 // callback
 // To the array and return, because the first function
 // call will be taking care of the rest.

Improving the Application's Performance

[218]

 if (pendingFuncs['get_' + key]) {
 return pendingFuncs['get_' + key].push(callback);
 } else {
 // Since it's the first function call for 'key',
 // we will continue to call the original function and
 // add the value to the cache (if there's no error and
 // the value is not empty).
 pendingFuncs['get_' + key] = [callback];
 }

 // Remember we have the arguments that we need to pass to
 // the original function, but without the callback
 // function, now we are adding our own callback (that will
 // execute all the pending functions once called) to the
 // 'args' array (so we can use 'originalFunc.apply'
 // later).
 args.push(function(err, value) {
 // If there's an error or if the value wasn't found,
 // call all functions early.
 if (err || !exists(value)) {
 return callFunctions(pendingFuncs['get_' + key],
 [err]);
 }

 // Value found, add it to the cache and execute pending
 // functions.
 cache.set(key, value, ttl, function(err) {
 callFunctions(pendingFuncs['get_' + key], [err,
 value]);
 delete pendingFuncs['get_' + key];
 });
 });

 originalFunc.apply(null, args);
 } else {
 // Data found in cache, no need to get it by using the
 // original function.
 callback(null, val);
 }
 });
 };
};

Chapter 7

[219]

This function should be used when, for example, retrieving something from a
database and wanting to cache the result afterwards.

Now, we can move on and implement its counterpart, which is the forget function.
This will be easier since there are fewer things to do, such as removing an item from
the cache and notifying all the pending functions:

cache.forget = function(originalFunc, opts) {
 opts = opts || {};

 // default ttl one day
 var ttl = opts.ttl || ms('24h');
 var pendingFuncs = {};

 return function() {
 var args = Array.prototype.slice.call(arguments);
 // Extract the callback from the function's arguments (should
 // be the last one).
 var callback = args.pop();
 var key = getHash(opts.key, args, opts.prefix);

 // If there are pending functions for the key, push this
 // callback to the array and return, because the first
 // function call will be taking care of the rest.
 if (pendingFuncs['del_' + key]) {
 return pendingFuncs['del_' + key].push(callback);
 } else {
 // Since it's the first function call for 'key',
 // we will continue to remove the value from the cache and
 // call the original function.
 pendingFuncs['del_' + key] = [callback];
 }

 // First, delete the value from the cache.
 cache.del(key, function(err) {
 // If there's an error, execute all pending functions early
 // but not the original function.
 if (err) {
 callFunctions(pendingFuncs['del_' + key], [err]);
 delete pendingFuncs['del_' + key];
 } else {
 // Execute the original function and all the pending
 // functions after.

Improving the Application's Performance

[220]

 args.push(function(err) {
 callFunctions(pendingFuncs['del_' + key], [err]);
 delete pendingFuncs['del_' + key];
 });

 originalFunc.apply(null, args);
 }
 });
 };
};

With these two functions implemented, we are done with the generic functionality
and what is left is to implement the set, get, and del functions that are specific to
a certain cache store: in memory, a key-value store of some sort (Redis, Memcached),
and so on.

For our current testing needs, we will just implement an in-memory basic solution
to check whether everything is working as expected:

var store = {};
cache.set = function(key, val, ttl, cb) {
 store['prefix-' + key] = val;
 // keep it async
 setImmediate(cb);
};
cache.get = function(key, cb) {
 // keep it async
 setImmediate(function() {
 cb(null, store['prefix-' + key]);
 });
};
cache.del = function(key, cb) {
 // keep it async
 setImmediate(function() {
 delete store['prefix-' + key];
 cb();
 });
};

Chapter 7

[221]

Now, it's finally time to see this caching layer in action with some dummy
asynchronous functions:

var users = ['John Doe', 'Jane Doe'];
var getUser = function(userId, cb) {
 console.log('getUser CALLED');
 return setTimeout(function() {
 cb(null, users[userId]);
 }, 300);
};

var removeUser = function(userId, cb) {
 console.log('removeUser CALLED');
 return setTimeout(function() {
 delete users[userId];
 cb();
 }, 300);
};

getUser = cache.remember(getUser);
removeUser = cache.forget(removeUser);

getUser(0, function(err, user) {
 console.log('user 0', user);

 // Much faster now, retrieved value from cache.
 getUser(0, function(err, user) {
 console.log('user 0', user);

 // This one's slow, it isn't cached yet.
 getUser(1, function(err, user) {
 console.log('user 1', user);

 removeUser(1, function(err) {
 cache.get(1, function(err, user) {
 console.log('user 1 should be undefined now:', user);
 });
 });
 });
 });
});

Improving the Application's Performance

[222]

There is, however, a slight problem with our implementation that we haven't
taken into consideration so far: the remember and forget functions aren't atomic
operations. This means that if the (original) function that fetches the data takes
longer to return and at the same time, the functions that delete the item occur faster
(both from the database and from the cache), we might have old data in the cache
(out of sync).

There are situations where you might be okay with that, because the data doesn't
change too often and the time to leave the option should also help, but it's important
to know about this aspect if you want to keep the caching layer in sync at all times.

If we want to make sure that these functions access the resources in an order and
don't step on each other (both in the same process and in different processes), it's
necessary to implement some sort of locking mechanism. We won't delve into this
now, but if you want to add this functionality to the existing caching system, be sure
to check the redis-lock module (https://www.npmjs.org/package/redis-lock).
This will help with concurrency control.

ETag for dynamic data
Express automatically adds an ETag header and takes care of checking whether the
resources have been modified or not when using response.send() or response.
render(). However, this requires loading the content, because ETag is generated
based on the content.

However, what happens when we know the hash of the content (ETag) without
having to load it from the database/caching layer/filesystem? As explored in
Chapter 3, Creating RESTful APIs, we can create a function that handles managing this
automatically and only executes the function that loads the content when necessary.
The function is pretty basic and can be created as a middleware:

var handleEtag = function(req, res, next) {
 res.cachable = function(etag, isStaleCallback) {
 if (!etag) {
 throw new Error('Etag required');
 }

 // Set up the ETag header.
 res.set({ 'ETag': etag });

 // 304 Not Modified.
 if (req.fresh) {
 // Remove content headers.

Chapter 7

[223]

 if (res._headers) {
 Object.keys(res._headers).forEach(function(header) {
 if (header.indexOf('content') === 0) {
 res.removeHeader(header);
 }
 });
 }

 res.statusCode = 304;
 return res.end();
 } else {
 // Load dynamic content now.
 isStaleCallback();
 }
 };

 next();
};

The function checks whether the request is fresh and sends 304 Not-Modified if
it is, and otherwise, it calls the function for loading and sending back the content.
First of all, we should have a function that retrieves ETag from somewhere (cache,
for example). A mocked function (for our testing purposes) might look like the
following code:

var getEtag = function(key, cb) {
 return setImmediate(function() {
 cb(null, '4ALOzWNKcFh6OImOu5t68l0C2os=');
 });
};

The rest of the server.js file will define a route that loads this middleware and
calls the previously implemented res.cachable function once it has loaded ETag:

var express = require('express');
var app = express();

app.get('/cached-data', handleEtag, function(req, res, next) {
 getEtag('cached-data', function(err, etag) {
 if (err) { return next(err); }

 res.cachable(etag, function() {
 // The second time you visit the page this won't get called.

Improving the Application's Performance

[224]

 console.log('loading dynamic content');
 res.send('Big content loaded from database/cache/filesystem
 here.');
 });
 });
});

app.listen(7777);

There you have it. If you visit the /cached-data page twice, the second time the
content-loading callback will not be executed because the client will remember ETag,
send it back to the server, and the application will respond with 304 Not-Modified.
With this mechanism in place, there's no need to load the data in order to generate
ETag, and this mean less memory overhead as well.

Using a cluster to handle more concurrent
connections
In order to support more concurrent requests, we will need to make full use of all
the CPUs of the machine. For this, we will need to spawn a new Node process for
each CPU.

We can use the native Node cluster module for this, but to ensure consistency
between different major Node versions (because the cluster module functionality
isn't yet stable and might change), it is better to use the cluster-master module
(https://www.npmjs.org/package/cluster-master). The module also provides
some nice helper methods for different features (such as restarting all the workers
or adding new ones). A basic usage of the module will look like the following code:

var clusterMaster = require("cluster-master");

clusterMaster({
 exec: "server.js",
 env: { NODE_ENV: "production" },
 size: process.env.SIZE || null
});

Chapter 7

[225]

HTTPS with Stud
Although we can use Node to serve the HTTPS requests, it's probably better to
let it focus on what's more important and have an external tool handle the SSL
termination. Stud (https://github.com/bumptech/stud) is such a tool. To
install it, just clone the repository and run the following commands:

$ make

$ sudo make install

Then, we'll need to generate a PEM file for our server. After this, considering the
application is running on port 7777 and we want to have the HTTPS version up and
running on port 443 (the default HTTPS port), a basic configuration might look like
the following code:

stud(8), The Scalable TLS Unwrapping Daemon's configuration
Listening address. REQUIRED.
type: string
syntax: [HOST]:PORT
frontend = "[*]:80"
Upstream server address. REQUIRED.
type: string
syntax: [HOST]:PORT.
backend = "[127.0.0.1]:7777"
pem-file = "certs/nodeapp.pem"
EOF

This should get you started, but it's recommended that you read the documentation
thoroughly and adjust the settings after that.

To run the example with the configuration file loaded, type the following command
into the terminal:

stud --config=stud.conf

The server should be up and running at https://yourapp.tld/, and it should
proxy the requests to the Node application.

Improving the Application's Performance

[226]

Summary
In this chapter, we explored various tips and tricks to improve the overall
performance of our Express applications. You learned about creating a cache system
for asynchronous functions using the streaming templates instead of buffering data
on the server or implementing an efficient ETag header mechanism.

In the next chapter, you will learn how to monitor applications that are into
production. You will see how to collect different metrics such as CPU and
memory usage, event loop delay, and others.

Monitoring Live Applications
This chapter explains how to effectively monitor an application so that it can detect
anomalies and measure performance over time. Using different techniques, we will
be aware of the state of our application at all times.

We will be handling the following topics:

• Logging
• Creating a simple health checkpoint
• Collecting different metrics
• General tools for monitoring
• Ensuring application uptime

Logging
Logging can be used to understand the behavior of a web application and detect
potential problems. It should be considered as important as unit testing when
creating an application. It's not only useful for tracking down bugs but also for
other reasons:

• Performing business analysis
• Used in conjunction with other tools to trigger alerts
• Creating various statistics
• Performance analysis

Monitoring Live Applications

[228]

Bunyan – a battle-tested logger
There are lots of logging modules in NPM that we can use. However, in this chapter,
we will focus on bunyan (https://www.npmjs.org/package/bunyan). This module
has been battle-tested in production at Joyent and has a lot of useful features,
as follows:

• Logs are structured using the JSON format
• It has the ability to specify custom destinations for logs (such as custom

streams, files, and logfile rotation)
• It provides support for the custom serialization of objects (it comes

bundled with serializers for the request, response, and error objects)
• It comes with a great CLI tool that we can use to pretty-print and filter log

data

Now, we are going to create a sample Express application that uses bunyan to log
the request and the response details as well as possible errors.

Since we want to log an accurate response time, we will start by creating a function
that returns the high-resolution time in milliseconds. To get the high-resolution time,
we can use native process.hrtime(), which is provided by Node, and convert the
result into milliseconds. The code should look like the following snippet:

// lib/getHrTime.js
// Get high resolution time (in milliseconds).
module.exports = function() {
 // ts = [seconds, nanoseconds]
 var ts = process.hrtime();
 // Convert seconds to milliseconds and nanoseconds to
 // milliseconds as well.
 return (ts[0] * 1000) + (ts[1] / 1000000);
};

Next, we are going to create the logger into its own file and allow it to be
customizable by passing configuration options as arguments to the logger creation
function. We will create a custom serializer for the request object so that it logs the
request ID property (which will be a unique ID assigned by a middleware) and the
user's IP address. The logs will be written to a file named after the environment
mode (development.log, for example) stored inside the /logs folder. Here is the
complete code for the logger file:

Chapter 8

[229]

// lib/logger.js
var bunyan = require('bunyan');
var logger;

var serializers = {};

serializers.req = function(req) {
 return {
 reqId: req.reqId,
 method: req.method,
 url: req.originalUrl,
 headers: req.headers,
 ip: req.ip
 };
};

exports.serializers = serializers;

exports.createLogger = function(opts) {
 opts = opts || {};

 if (!logger) {
 logger = bunyan.createLogger({
 name: opts.appName,
 serializers: {
 req: serializers.req,
 res: bunyan.stdSerializers.res,
 err: bunyan.stdSerializers.err
 },
 streams: [{
 type: 'rotating-file',
 path: opts.logFile,
 period: '1d', // Daily rotation.
 count: 3, // Keep three back copies.
 level: opts.level || 'info'
 }]
 });
 }

 return logger;
};

Monitoring Live Applications

[230]

Besides bunyan and express, we will use three other modules:

• cuid (https://www.npmjs.org/package/cuid): This module will be used
to generate a unique ID that will be associated with a request. When logging
the request, the response and error objects of that ID will also be included.
This helps us later when filtering all the information related to a request,
if required.

• verror (https://www.npmjs.org/package/verror): This module will be
used to create richer JavaScript errors, as we learned in the previous chapter.

• server-destroy (https://www.npmjs.org/package/server-destroy):
This module will enable us to close the current server and terminate
currently opened connections. This will be of use when logging uncaught
exceptions, as we will see in a moment.

The entry point of the application (server.js) will first include the dependencies,
create the logger, and assign the unique ID to the request object:

var http = require('http');
var express = require('express');
var app = express();
var ENV = process.env.NODE_ENV || 'development';
var cuid = require('cuid');
var VError = require('verror');
var enableDestroy = require('server-destroy');

var getHrTime = require('./lib/getHrTime');
var logger = require('./lib/logger').createLogger({
 appName: 'logging-sample-app',
 logFile: __dirname + '/logs/' + ENV + '.log',
 level: 'info'
});

// Assign a unique ID for this request, so we can later filter
// everything related to it if necessary.
app.use(function(req, res, next) {
 req.reqId = cuid();
 next();
});

We will then continue by creating a middleware that logs the request and response
information. To have a better idea of how our application performs, we will include
the response time (time elapsed from the current moment till the response.
writeHead function is called) and the time taken to finish the response.

Chapter 8

[231]

The request data will be logged straightaway, but to compute the response data, we
will have to wait until the response is finished (listen to the response finish event):

// Log in to the request information and the response begin and
// end time.
app.use(function(req, res, next) {
 var startTime = getHrTime();

 logger.info({ req: req }, 'request-data');

 var writeHead = res.writeHead;
 res.writeHead = function() {
 res._responseTime = getHrTime() - startTime;
 writeHead.apply(res, arguments);
 };

 // Log in to the finished requests.
 res.once('finish', function() {
 var responseTotalTime = getHrTime() - startTime;

 logger.info({
 res: res,
 reqId: req.reqId,
 responseTime: res._responseTime,
 responseTotalTime: responseTotalTime
 }, 'response-data');
 });

 next();
});

Next, we will create some routes that send simple responses back to the user or
generate errors (either delegating the work to the error handler or throwing an error).

We will use verror to enrich the error object and provide more details about the
error (additional message and stack trace auto-generated and added). Luckily, the
error serializer that bunyan uses has support for verror, so it will show the full error
stack, which means it will include the stacks for both the original error and the one
we have added on top:

app.get('/', function(req, res, next) {
 res.send('Hello World');
});

Monitoring Live Applications

[232]

var queryDb = function(cb) {
 setImmediate(function() {
 cb(new Error('Data unavailable'));
 });
};

app.get('/error', function(req, res, next) {
 queryDb(function(err) {
 if (err) {
 // Provide a richer error object using VError.
 // bunyan will know how to handle the full error stack.
 var err2 = new VError(err, 'GET /error route handler -
 queryDb');
 return next(err2);
 } else {
 res.send('ok');
 }
 });
});

app.get('/uncaught', function(req, res, next) {
 setTimeout(function() {
 throw new Error('something bad happened');
 }, 10000);

 setInterval(function() {
 res.write(new Date().toString());
 }, 2000);
});

When logging the error in our custom-defined Express error handler, we will also
log the request ID. As stated previously, this will help us filter all the data associated
with a request ID from the logs. The error handler is pretty straightforward:

app.use(function(err, req, res, next) {
 logger.error({
 err: err,
 reqId: req.reqId
 }, 'middleware:errorHandler');

 res.status(500).send('500 - Internal Server Error');
});

Chapter 8

[233]

You can find out what properties are logged using the standard
bunyan serializers by browsing the source code of the module at
https://github.com/trentm/node-bunyan/blob/12eda
6036fc702d410a1c31532baef682a1d667a/lib/bunyan.
js#L861-L931.

Now comes the interesting part. Since we want to log uncaught exceptions, and
bunyan writes the data to the logfile asynchronously, we cannot simply call the log
method and exit the process right away, because this means the log information
will be lost.

Unfortunately, the log method does not provide a callback function, so we cannot be
sure when the information has been flushed to disk. So, we will have to set a timer
and exit the process after a specified amount of time.

When an uncaught exception happens, our application is in an inconsistent state. So,
it's best to just shut down the server (using the server-destroy module), call the
log function, and bind a function that does nothing to the uncaughtException event
(because we are just interested in the first uncaught exception—we wait for it to be
logged and then we exit). When the timeout is done, the process will exit:

process.once('uncaughtException', function(err) {
 // Log in to the error to 'process.stderr' just this once.
 console.error(err.stack);

 // Close the server; kill all connections.
 server.destroy();

 logger.fatal({ err: err }, 'uncaughtException');
 // Ignore possible uncaught exceptions in the near future
 // since we are closing the server
 // and exiting the process as soon as possible.
 process.on('uncaughtException', function() {});

 // Give the logger some time to write the error to the file,
 // and then exit the process.
 setTimeout(function() {
 process.exit(1);
 }, 2000);
});

var server = http.createServer(app).listen(process.env.PORT ||
 7777);
enableDestroy(server);

Monitoring Live Applications

[234]

If all the dependencies are installed correctly on our system, we can start the server
and visit the sample pages. In parallel, we can keep a terminal window open and
use the bunyan CLI tool (run npm i bunyan –g to install it) to see the log output
in real time.

We are logging to a file. So, if we are on a Unix-like system, we can use the tail –f
command to pass the output to the bunyan CLI tool.

If you are on Windows, the tail command won't be available
by default, but you can still install it with UnxUtils at
http://sourceforge.net/projects/unxutils/.

Chapter 8

[235]

Redirecting logs to an external service
There are a lot of commercial applications that can help us manage our logs and
enable complex searches and other advanced functionality. The bunyan module is
easily extensible, so we can create a custom stream that will take care of storing the
logs wherever we want.

Let's suppose our application should send a POST request for each log that we want
to store. We can create a write stream that sends that request each time there is new
data available. In case an error occurs when sending the request to the server, we
will retry after an interval until we reach a number of attempts:

// lib/customStream.js
// Streams2 Writable when available (Node > 0.10.x)
// or falling back to use a polyfill.
var util = require('util');
var stream = require('stream');
var Writable = stream.Writable || require('readable-
 stream').Writable;
var request = require('request');

function LogStream(options) {
 options = options || {};

 this._url = options.url;
 this._attemptInterval = 1000;
 this._maxAttempts = 3;

 Writable.call(this, options);
}
util.inherits(LogStream, Writable);

LogStream.prototype._write = function(chunk, enc, cb) {
 this._sendLog(chunk, 1, cb);
};

LogStream.prototype._sendLog = function(data, attempt, cb) {
 var _this = this;

 if (attempt > this._maxAttempts) {
 // Silently ignore and lose the data, not the best option
 // though.
 return cb();
 }

Monitoring Live Applications

[236]

 request({
 headers: {
 'Content-Type': 'application/json'
 },
 method: 'POST',
 body: data,
 url: this._url
 }, function(err, res, body) {
 if (err || (res.statusCode !== 200 && res.statusCode !== 201))
 {
 setTimeout(function() {
 attempt++;
 _this._sendLog(data, attempt, cb);
 }, _this._attemptInterval);
 } else {
 cb();
 }
 });
};

module.exports = LogStream;

To integrate it in our logger, simply modify the existing code and add the following
lines when creating the logger:

var LogStream = require('./customStream');
var logStream = new LogStream({ url: 'http://site.tld/appName/
logs?key=SECRET' });
logger = bunyan.createLogger({
 name: opts.appName,
 serializers: {
 req: serializers.req,
 res: bunyan.stdSerializers.res,
 err: bunyan.stdSerializers.err
 },
streams: [{
 stream: logStream,
 level: opts.level || 'info'
 }]
});

Chapter 8

[237]

Things to note
It is up to you to decide what to log, but it's worth knowing that having too
much noise will make it more difficult to debug an application. Also, you should
pay attention to the logging overhead and see how it affects your application
(throughput, memory usage, and so on).

Last but not least, we should be careful with logging really big objects, because
bunyan will have to convert these objects to strings using JSON.stringify(),
which is a synchronous operation and will block the event loop.

Simple tips for improving the application
monitoring
Next, we are going to learn about simple techniques that can ease our work
when monitoring the Express web applications. Their purpose is to make the
application more visible and provide output-relevant details regarding the
status of the application.

Probably the most popular filename for Express applications is server.js.
Another thing that is really likely to happen is that for most (or perhaps all) of our
applications, we will use this name as the entry point (main file) of our application.

Let's suppose that we have three different applications running on the same instance:
a blog, a notes application, and a file-sharing application. Since their entry point is
server.js, we will see the same process title everywhere:

36864 node server.js

36865 node server.js

36866 node server.js

Alright then, so how can we differentiate between them? Well, sure we can type
in some command to find out the current working directory of a PID, but that's
extra effort.

The easiest thing we could do is have suggestive process.title for an application,
so we can add this code to our server.js file:

if (process.env.APP_NAME) {
 process.title = process.env.APP_NAME;
}

Monitoring Live Applications

[238]

Then, when running it, use the following command line:

$ APP_NAME=blog node server.js

Now, when we use tools such as top or other tools to monitor the activity of a process,
we will see our process named correctly, as shown in the following screenshot:

Another thing that we can achieve without much effort is add a health endpoint
(the status-check endpoint) to our Express application. This endpoint can respond
with information on the memory usage, the number of concurrent connections,
information about the process, and so on. To add a bit of security to the top, we
can check for the key query parameter and only send the information if it's correct.

Here's how we can do this:

var http = require('http');
var express = require('express');
var app = express();

var os = require('os');
var hostname = os.hostname();

var addStatusEndpoint = function(key, server) {
 return function(req, res, next) {
 if (!req.query.key || req.query.key !== key) {
 res.status(401).send('401 - Unauthorized');
 } else {
 server.getConnections(function(err, count) {
 if (err) {
 return res.status(500).send('Error getting connections'
 + err.message);
 }

 res.send({
 hostname: hostname,
 pid: process.pid,
 uptime: process.uptime(),

Chapter 8

[239]

 memoryUsage: process.memoryUsage(),
 activeConnections: count
 });
 });
 }
 }
};

var server = http.createServer(app).listen(process.env.PORT ||
 7777);
app.get('/app-status', addStatusEndpoint('long_secret_key',
 server));

The addStatusEndpoint function can be loaded as a middleware for all of our
Express applications and contains two configurable parameters: key (required for
authentication) and server (so that we can get the number of active connections
at a point in time).

When we make a request to that URL, we should get a response similar to the
following command:

$ curl http://localhost:7777/app-status?key=long_secret_key

{

 hostname: "MBP.local",

 pid: 39673,

 uptime: 93,

 memoryUsage: {

 rss: 21397504,

 heapTotal: 16571136,

 heapUsed: 6632784

 },

 activeConnections: 2

}

Collecting metrics
There are commercial services that take care of gathering as much data as possible
from our Express applications, from process metrics to operating system metrics,
and so on. We can choose to use such a service, or we can collect data on our own.

Monitoring Live Applications

[240]

However, we will next focus on gathering data from our applications and creating a
dashboard with real-time charts.

Among the metrics, we will collect the following parameters:

• Requests per second
• Response time
• CPU usage
• Event loop delay
• Memory usage
• OS load average

The dashboard will look like in the following screenshot once we're done
implementing everything:

For this application, we will use the usage module to get the CPU usage and the
measured module for collecting measurements.

Chapter 8

[241]

The timer functionality from the measured module also uses the same high-
resolution time-tracking technique that we used earlier in this chapter to get the
elapsed time between two moments.

First, we will begin by listing the dependencies and initializing variables, such as
the hostname, process ID, and sample interval by using this code:

var fs = require('fs');
var os = require('os');
var usage = require('usage');
var metrics = require('measured');
var httpCollection = new metrics.Collection('http');
var processCollection = new metrics.Collection('process');
var osCollection = new metrics.Collection('os');
var express = require('express');
var app = express();
var SAMPLE_INTERVAL = 15000;

var hostname = os.hostname();
var pid = process.pid;

Next, we will define our metrics. Since we don't want to retrieve this information
every second, we will use the sample interval when making regular checks for
the CPU usage and the event loop delay. Most of our data will be retrieved
synchronously though, using native functions such as process.memoryUsage()
or os.loadavg():

// HTTP metrics.
var rps = httpCollection.meter('requestsPerSecond');
var responseTime = httpCollection.timer('responseTime');

// Process metrics.
var memoryUsage = processCollection.gauge('memory-usage',
 function() {
 return process.memoryUsage();
});
var processUptime = processCollection.gauge('uptime', function() {
 return process.uptime();
});
var _cpuUsage = 0;
var processCpuUsage = processCollection.gauge('cpu-usage',
 function() {
 return _cpuUsage;
});

Monitoring Live Applications

[242]

var getCpuUsage = function() {
 usage.lookup(process.pid, { keepHistory: true }, function(err,
 result) {
 if (!err) {
 _cpuUsage = result.cpu;
 }
 });
};
setInterval(getCpuUsage, SAMPLE_INTERVAL - 1000);

var delay = processCollection.timer('eventLoopDelay');
var getEventLoopDelay = function() {
 var stopwatch = delay.start();
 setImmediate(function() {
 stopwatch.end();
 });
};
setInterval(getEventLoopDelay, SAMPLE_INTERVAL - 1000);

// OS metrics.
var osUptime = osCollection.gauge('uptime', function() {
 return os.uptime();
});
var osMemory = osCollection.gauge('memory', function() {
 return {
 total: os.totalmem(),
 free: os.freemem()
 };
});
var osLoad = osCollection.gauge('load-average', function() {
 return os.loadavg();
});

We will measure the response time and requests per second in an Express
middleware, as we did in our previous examples:

app.use(function(req, res, next) {
 // Measuring the response time.
 var stopwatch = responseTime.start();

 // Measuring requests per second.

Chapter 8

[243]

 rps.mark();

 var writeHead = res.writeHead;

 res.writeHead = function() {
 writeHead.apply(res, arguments);
 stopwatch.end();
 };

 next();
});

The rest is just serving the static resources, some sample paths, and most
importantly, our /metrics endpoint where we send the collected data:

app.use('/public', express.static(__dirname + '/public'));

app.get('/metrics', function(req, res, next) {
 res.set({
 'Access-Control-Allow-Origin': '*'
 });
 res.json({
 hostname: hostname,
 pid: pid,
 http: httpCollection.toJSON().http,
 process: processCollection.toJSON().process,
 os: osCollection.toJSON().os
 });
});

app.get('/', function(req, res, next) {
 fs.createReadStream(__filename).pipe(res);
});

app.get('/long', function(req, res, next) {
 setTimeout(function() {
 res.end('ok');
 }, 1000);
});

app.listen(process.env.PORT || 7777);

Monitoring Live Applications

[244]

In production, we should require some sort of authentication for the
/metrics endpoint, such as the HTTP basic authorization or using
a token. Another thing we might do is reset the metrics once sent,
because what happens currently is that we keep the old data in the
history. If possible, we should use something like WebSockets or
server-sent events to minimize the network overhead and decrease the
latency when transmitting the data over the wire. Last but not least,
we should store these metrics in a database or an external service over
time so that we can keep track of them.

The frontend JavaScript code uses the flot library (https://github.com/flot/
flot) to manage the charts (create and then update them at regular intervals).
We will not paste the code here since it's beyond the scope of the chapter, but
feel free to check the complete source code of the example if you want to check
its inner workings.

To see the dashboard in action, start the server and visit http://127.0.0.1:7777/
public/dashboard.html.

Getting the slowest endpoints of the
application
By learning which pages load the slowest, we will know where to start the
optimization. In the next example, we will store the 10 slowest pages into the
memory and make them available through the /slowest-endpoints URL.

We will use the same technique as the one used earlier to measure the response time,
calculating the difference between high-resolution times and using a middleware
that replaces the response.writeHead function. At each point, we keep track of the
last item in the slow response time array (the page that loaded faster) because we
might need to swap it with the current page information (the URL and current page
response time):

var express = require('express');
var app = express();

var slowestEndPoints = [];
var fastestOfTheSlowest = 0;

var getHrTime = function() {
 // ts = [seconds, nanoseconds]
 var ts = process.hrtime();
 // Convert seconds to milliseconds and nanoseconds to

Chapter 8

[245]

 // milliseconds as well.
 return (ts[0] * 1000) + (ts[1] / 1000000);
};

app.use(function(req, res, next) {
 res._startTime = getHrTime();

 var writeHead = res.writeHead;

 res.writeHead = function() {
 var min = Infinity;
 var index;
 var responseTime = getHrTime() - res._startTime;

 // We want to store the 10 slowest endpoints.
 if (slowestEndPoints.length < 10) {
 slowestEndPoints.push({
 url: req.url,
 responseTime: responseTime
 });
 } else {
 if (fastestOfTheSlowest === 0) {
 fastestOfTheSlowest = Infinity;
 // This will happen only once, after the first 10 elements
 // are inserted in the array and the eleventh is compared.
 slowestEndPoints.forEach(function(endpoint) {
 fastestOfTheSlowest = Math.min(endpoint.responseTime,
 fastestOfTheSlowest);
 });
 }

 // Is the response time slower than the fastest response
 // time in the array?
 if (responseTime > fastestOfTheSlowest) {
 slowestEndPoints.forEach(function(endPoint, i) {
 if (endPoint.responseTime === fastestOfTheSlowest) {
 // Remember what array item should be replaced.
 index = i;
 } else {
 // Searching for the next fastest response time.
 min = Math.min(endPoint.responseTime, min);
 }
 });

Monitoring Live Applications

[246]

 slowestEndPoints[index] = {
 url: req.url,
 responseTime: responseTime
 };
 fastestOfTheSlowest = min;
 }
 }

 writeHead.apply(res, arguments);
 };

 next();
});

Before displaying the slowest endpoints, we will sort them in the descending order
based on the response time:

app.get('/slowest-endpoints', function(req, res, next) {
 // Display in the descending order.
 res.send(slowestEndPoints.sort(function(a, b) {
 if (a.responseTime > b.responseTime) {
 return -1;
 } else if (a.responseTime < b.responseTime) {
 return 1;
 } else {
 return 0;
 }
 }));
});

To test this feature properly, we will add a route that will take a random amount
of time to respond:

var getRandomNrBetween = function(low, high) {
 return Math.floor(Math.random() * (high - low + 1) + low);
};

app.get('*', function(req, res, next) {
 setTimeout(function() {
 res.end('ok');
 }, getRandomNrBetween(100, 1000));
});

app.listen(process.env.PORT || 7777);

Chapter 8

[247]

We should be able to start the server and make requests to different URLs now.
When checking the /slowest-endpoint route, it should output data like the
following code:

[
 {
 url: "/random-page",
 responseTime: 965.4086880087852
 },
 {
 url: "/another-random-page",
 responseTime: 649.4605540037155
 },
 {
 url: "/random",
 responseTime: 777.0275410115719
 },
 …
]

There is definitely room for improvements here, since the same URL might exist
multiple times in the array, but we're off to a great start and we can add another
metric to our toolbox.

Tracking the network traffic
Measuring the network traffic in bytes is another doable task in our Express
application. Fortunately, Node allows us to access the underlying request socket
and provides access to the bytes read and written by the application.

There is only one catch; when using the keep-alive property for the Connection
header, the socket will be reused, which means we have to take into consideration
the bytes sent or received previously (with other requests).

Here is the code for the application:

var express = require('express');
var app = express();

function getByteStats(socket, cb) {
 var bytesRead, bytesWritten;

Monitoring Live Applications

[248]

 // The 'Connection' header is set to 'keep-alive', meaning we
 // reuse the socket.
 if (!socket.destroyed) {
 bytesRead = socket.bytesRead - (socket.___previousBytesRead ||
 0);
 bytesWritten = socket.bytesWritten -
 (socket.___previousBytesWritten || 0);

 // HACK: remember previously read or written bytes
 // since we're dealing with the same socket
 // (the 'Connection' header set to 'keep-alive').
 socket.___previousBytesRead = socket.bytesRead;
 socket.___previousBytesWritten = socket.bytesWritten;
 } else {
 // The 'Connection' header is set to 'closed', meaning the
 // socket is destroyed.
 bytesRead = socket.bytesRead;
 bytesWritten = socket.bytesWritten;
 }

 cb({ read: bytesRead, written: bytesWritten });
}

var totalBytesRead = 0;
var totalBytesWritten = 0;
app.use(function(req, res, next) {
 var cb = function(bytes) {
 totalBytesRead += bytes.read;
 totalBytesWritten += bytes.written;
 };

 res.once('close', getByteStats.bind(null, req.socket, cb));
 res.once('finish', getByteStats.bind(null, req.socket, cb));

 next();
});

app.get('/bytes', function(req, res, next) {
 res.json({
 read: totalBytesRead,
 written: totalBytesWritten
 });
});

Chapter 8

[249]

app.get('*', function(req, res, next) {
 // res.writeHead(200, { 'Connection': 'close' });
 require('fs').createReadStream(__filename).pipe(res);
});

app.listen(process.env.PORT || 7777);

The /bytes endpoint exposes the statistics, and every other GET requests will display
the content of the current file.

Using this data with the measured module, we can see the traffic status in the last
minute, for example, or calculate the average size of the bytes being sent or received
every second.

Measuring the average function response time
Sometimes, we need to know exactly where our application spends more time, so we
instrument a function and check how much time it spends until returning the result.

By doing this, we can monitor how much time MySQL queries take to return or how
long it takes for an Express middleware to call the next function.

For this, we need to wrap a function (whether it's asynchronous or synchronous)
and calculate the difference between the start time and the end time. If the function
is asynchronous, we will replace the callback function (the last argument) so that we
can determine when it gets executed.

We will first include two utility functions to get a random number and to retrieve the
high-resolution time (reused from our previous examples):

var getRandomNrBetween = function(low, high) {
 return Math.floor(Math.random() * (high - low + 1) + low);
};

var getHrTime = function() {
 // ts = [seconds, nanoseconds]
 var ts = process.hrtime();
 // Convert seconds to milliseconds and nanoseconds to
 // milliseconds as well.
 return (ts[0] * 1000) + (ts[1] / 1000000);
};

Monitoring Live Applications

[250]

Next, we will create the two wrappers, one for asynchronous functions and another
for synchronous functions. They will both take three arguments: the original function
to be wrapped, the context in which the original function should be executed, and a
callback that will return the time spent in the function:

var wrapAsyncFn = function(func, callback) {
 return function() {
 var args = Array.prototype.slice.call(arguments);
 var startTime = getHrTime();

 // The last argument should be the callback function.
 var funcCallback = args.pop();

 // Put our own wrapper instead of the original callback
 // function.
 args.push(function() {
 var endTime = getHrTime();
 funcCallback.apply(null, arguments);
 callback(endTime - startTime);
 });

 func.apply(context, args);
 };
};

var wrapSyncFn = function(func, callback) {
 return function() {
 var startTime = getHrTime();
 func.apply(context, arguments);
 var endTime = getHrTime();
 callback(endTime - startTime);
 };
};

Finally, we can include some examples and see whether these patterns work:

var printTime = function(fnName, time) {
 console.log('%s took %s milliseconds to return', fnName, time);
};

var queryDbSampleFn = function(userId, cb) {
 return setTimeout(function() {
 // cb(error, result)

Chapter 8

[251]

 cb(null, { user: 'John', fullname: 'John Doe' });
 }, getRandomNrBetween(300, 1000));
};

queryDbSampleFn = wrapAsyncFn(queryDbSampleFn,
 printTime.bind(null, 'queryDbSampleFn'));
queryDbSampleFn(32, function(err, data) {});

// Dummy method.
var calculateSum = function(lastNr) {
 var sum = 0;

 for (var i = 0; i <= lastNr; i++) {
 sum += i;
 }

 return sum;
};

calculateSum = wrapSyncFn(calculateSum, printTime.bind(null,
'calculateSum'));
calculateSum(9000000);

The output should look like the following command:

$ node index.js

calculateSum took 0.010109007358551025 milliseconds to return

queryDbSampleFn took 843.4235440194607 milliseconds to return

Useful existing monitoring tools
Voxer released a Node metrics library called Zag (https://github.com/Voxer/
zag) to aggregate and visualize metrics in real time. The library contains multiple
components (server and agent) and supports two backend storages at the moment:
LevelDB and Postgres (recommended for production use). We will have to host this
application on our own servers.

During this chapter, we tackled different metrics that can be collected and monitored
by writing custom code for our applications. However, it's good to know that there
are several (commercial) applications that gather a lot of data about our application
(including information that we have not talked about, such as garbage collection),
such as Nodetime, StrongOps, or Concurix.

Monitoring Live Applications

[252]

A topic that we have not covered in depth in this chapter is uptime monitoring. An
Express application might be unavailable at some point in time because of various
reasons (such as network outage or an instance temporarily down for maintenance).
It's important to get notified when this happens. We can either create a Node service
that checks whether the application is up or not and store it on a different instance,
or we can use one of the many commercial applications that take care of this for us
(such as pingdom, uptimerobot, or statuscake).

To monitor other services besides our Express applications (such as databases,
different network services, and others) and gather them into one single location,
the Nagios open source project is a good tool to have in mind.

Ensuring the application uptime
Making sure that a web application is running should be a primary concern for us.
Big companies like to brag about 99.9 percent uptime for their applications, and this
should be the goal for everybody, really.

To monitor live applications and restart them when they crash, there are a number
of solutions, including native OS ones:

• mon: This tool (https://github.com/visionmedia/mon) is a simple single
process-monitoring program written in C by the creator of Express

• forever: This tool (https://www.npmjs.org/package/forever) is a Node
solution that has been battle-tested at Nodejitsu and is actively maintained

• monit: This tool is a utility that monitors services on a Unix system

It's important to have such a monitoring tool for our Express applications, whether
it's one of the preceding tools or another one. Without such a tool, we will have to
manually take care of restarting the application when it crashes.

Summary
In this chapter, we learned about different techniques and tools that we can apply
into production to monitor our code and collect various metrics. Another topic we
tackled is logging with bunyan, which is a production-ready Node-logging module.

Next, we will focus on debugging Express applications. We will see how to set
up breakpoints, debug step-by-step with the node inspector, and add REPL to the
application, among others.

Debugging
Even the most experienced developers introduce bugs into their applications,
whether these represent typos or overlooked aspects. In this chapter, you will learn
about tools and techniques that will aid us in our journey of fixing the broken pieces
of our applications.

We will be covering the following topics:

• Improving the error handler middleware to include more useful data
• Using the Node core debugging technique in our own applications
• Debugging with breakpoints
• Connecting to a live application with the replify module
• Removing debugging leftovers from our production code

A better error-handling middleware
As you have learned from the previous chapters, all the errors that are forwarded
using the next callback in the middleware are given special treatment by using
a middleware that has four parameters: the error, response, and request objects
as well as the callback function. Since Express wraps the middleware code into
a try catch block, if we make a typo, it will also catch that.

The error-handling middleware that used to come with Express now lives in a
separate module called errorhandler (https://www.npmjs.org/package/
errorhandler). When using it, we get a nice-looking page with the error message
and the stack, but we can do better.

Debugging

[254]

Reflecting on what exactly it is that we do after seeing the error stack in the page,
we'll probably get to the following conclusion: open the editor and go to the line that
generated the error (or even more down the stack). That's because we most likely
need to see a bigger portion of the code to figure out what's going on. Besides that,
our editor has syntax highlighting, which also helps. In Chapter 6, Error Handling,
we created a custom error-handling middleware that displays portions of the code
for each line in the error stack. Now, we are going to improve that middleware to
support the following features:

• Besides displaying code snippets for each item in the error stack, also
highlight those snippets (just like our editor would do)

• Instead of using the tag, use a class to style the error line
• Open the file in the editor by clicking on it in the web interface

The end result should be similar to the following screenshot:

As you can see from the screenshot, we have a lot of information that helps us fix the
bug as soon as possible: syntax-highlighted code snippets, the error line visibly marked
with a red border, and the ability to open the file in our editor with a single click.

Application for displaying the time in the
current time zone
Before creating our sample application, we will install the express and timezone-js
(https://www.npmjs.org/package/timezone-js) modules. Once we're done with
that, we will have to generate the time zone data required by the second module
(use the get-data script that does this automatically in the source code
accompanying the book).

Chapter 9

[255]

The structure of the project will be as follows (similar to the previous ones):

• The server.js file will be the entry point for the application
• We will put all the route handlers inside the /routes folder
• The /lib folder will contain a file related to the time zone interaction
• The static resources will be stored inside the /public folder
• The template files will reside inside /views
• The data generated by the time zone will be stored inside all_cities.json

in the project root

The first thing we will create is the tz.js file (inside /lib) that initializes and
exports our time zone-related data:

var timezoneJS = require('timezone-js');
var tz = timezoneJS.timezone;
var zoneData = require('../all_cities.json');

var zones = Object.keys(zoneData.zones);

tz.loadingScheme = tz.loadingSchemes.MANUAL_LOAD;
tz.loadZoneDataFromObject(zoneData);

module.exports = {
 timezoneJS: timezoneJS,
 zones: zones
};

The /routes/timezones.js file is pretty straightforward as well, and contains
two routes: one for the home page and another one for displaying the time for the
selected time zone. Here is its code:

var tz = require('../lib/tz');
var timezoneJS = tz.timezoneJS;

exports.index = function(req, res, next) {
 res.render('home', {
 zones: tz.zones
 });
};

exports.show = function(req, res, next) {
 var place = req.url.slice(1);

Debugging

[256]

 var time = new timezoneJS.Date(Date.now(), place).toString();
 res.render('time', {
 time: time,
 timezone: place
 });
};

The main file that creates the Express application is more interesting because of the
middleware order. We have to first include the static resources and then the time
zone routes because the show function uses a wildcard to extract the time zone:

var express = require('express');
var app = express();

app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

var routes = require('./routes');

// no favicon
app.get('/favicon.ico', function(req, res, next) {
 res.status(404).end();
});

app.use(express.static(__dirname + '/public'));

app.get('/', routes.timezones.index);
app.get('/*', routes.timezones.show);

app.listen(process.env.PORT || 7777);

For the rest of the files, check the source code accompanying the book.

You should now be able to start up the server and get the time information for a
specific zone at http://localhost:7777/Europe/Berlin.

Adding the improved error handler
If we make a typo in our code (or forget to declare a variable) and refresh the page,
it will dump the unformatted error stack on the screen. It's time to come up with a
better solution.

Chapter 9

[257]

We will need to install the following modules before getting to work:

• The stack-trace (https://www.npmjs.org/package/stack-trace)
module for parsing the error stack

• The async-each (https://www.npmjs.org/package/async-each) module
for asynchronously iterating over the stack array

• A modified version of highlight.js (https://github.com/alessioalex/
highlight.js/tree/npm-v0.1.0#line-numbers) for syntax highlighting
(this fork adds line number support and highlights the content passed as an
argument)

This middleware will also have static resources (one or more stylesheets and
JavaScript files), so it's probably a good idea to create a separate folder inside /lib,
called error-handler. The JavaScript frontend code is used to add a click handler
on the filename, so the client can make an Ajax request to the server to let it know it
needs to open that file in the editor.

We will start by requiring the dependencies and configuring the highlight.js module to
replace tabs with spaces and enable line number support. Since we don't want to load
the static resources each time, we'll just load them once and keep them in memory:

var fs = require('fs');
var path = require('path');
var exec = require('child_process').exec;
var stackTrace = require('stack-trace');
var asyncEach = require('async-each');
var hljs = require('highlight.js');
var sep = require('path').sep;
var ejs = require('ejs');

var renderTmpl = ejs.compile(fs.readFileSync(__dirname +
 '/public/template.html', 'utf8'));

var hljsStyle = fs.readFileSync(__dirname + '/public/style.css',
 'utf8');
var mainJs = fs.readFileSync(__dirname + '/public/main.js',
 'utf8');

hljs.configure({
 tabReplace: ' ',
 lineNodes: true
});

Debugging

[258]

Now, we can work on the actual error handler function and make it do the following:

• Parse the error stack
• Iterate through the items in the stack and load the file content for each
• Add syntax highlight to each file content
• Slice the content to have four lines before and after the error line, if possible

(snippets)
• Wrap the error line with a special tag

so we can style it
• Output the response using ejs

The code for the function is as follows:

function displayDetails(err, req, res, next) {
 var stack = stackTrace.parse(err);
 var fileIndex = 1;

 console.error(err.stack);

 asyncEach(stack, function getContentInfo(item, cb) {
 // exclude core node modules and node modules
 if (/\//.test(item.fileName) &&
 !/node_modules/.test(item.fileName)) {
 fs.readFile(item.fileName, 'utf-8', function(err, content) {
 if (err) { return cb(err); }

 content = hljs.getHighlighted
 (content, 'javascript').innerHTML;

 // start a few lines before the error or at the beginning
 of the file
 var start = Math.max(item.lineNumber - 5, 0);
 var lines = content.split('\n');
 // end a few lines after the error or the last line of the
 file
 var end = Math.min(item.lineNumber + 4, lines.length);
 var snippet = lines.slice(start, end);
 // array starts at 0 but lines numbers begin with 1, so we
 have to

Chapter 9

[259]

 // subtract 1 to get the error line position in the array
 var errLine = item.lineNumber - start - 1;

 snippet[errLine] = snippet[errLine].replace('<span
 class="line">', '');

 item.content = snippet.join('\n');
 item.errLine = errLine;
 item.startLine = start;
 item.id = 'file-' + fileIndex;

 fileIndex++;

 cb(null, item);
 });
 } else {
 cb();
 }
 }, function(e, items) {
 items = items.filter(function(item) { return !!item; });

 // if something bad happened while processing the stacktrace
 // make sure to return something useful
 if (e) {
 console.error(e);

 return res.send(err.stack);
 }

 res.send(renderTmpl({
 hljsStyle: hljsStyle,
 mainJs: mainJs,
 err: err,
 items: items
 }));

 });
}

Debugging

[260]

Our mission is partly finished; we still have to create the regular middleware
function that opens the clicked file in the editor of our choice. To do this, we will use
the child_process native Node module and invoke an external process, as shown
in the following code:

// in this case the file will be opened with MacVim
// but feel free to replace with whatever editor you use
var editorCmd =
 '/Users/alexandruvladutu/bin/dotfiles/MacVim/mvim';

function openEditor(req, res, next) {
 var file = '/' + req.params[0];

 exec(editorCmd + ' ' + file, function(err) {
 if (!err) {
 res.send('The file should open in your editor now:
 '
 + file);
 } else {
 res.status(500).send(err.message);
 }
 });
}

Last but not least, we should export the two functions previously created:

module.exports = {
 displayDetails: displayDetails,
 openEditor: openEditor
};

Now, we need to update our server.js file to include the error handler and the
editor middleware. The editor middleware should be loaded before the time zone
route handler because it uses a wildcard. The error handler must be added after all
the route handlers (so it can catch the errors). The code snippet is as follows:

var errorHandler = require('./lib/error-handler');
var ENV = process.env.NODE_ENV || 'development';
if (ENV === 'development') {
 app.get('/open-editor/*', errorHandler.openEditor);
}

app.get('/', routes.timezones.index);
app.get('/*', routes.timezones.show);

if (ENV === 'development') {
 app.use(errorHandler.displayDetails);
}

Chapter 9

[261]

These additions are really useful in development, but you
wouldn't want all that information exposed into production,
so that's why we perform an environment check before
including them.

Try to manually throw an error in a route or remove a variable, then start the server
and see what happens. If everything is set up correctly, your page should resemble
the screenshot presented at the beginning. If you click on a filename, it should open
MacVim (our editor in this case) with the code.

This might not seem like much, but instead of having to switch context (between your
code and the browser) and to manually search for the file that generated the error,
you now have access to everything in one place (even the code will be a click away).

Using a debug flag
Many of us have probably used console.log while debugging, and once we were
done, removed it. This is not ideal because later on, either us or some colleagues
might need to check out the same information, so it would have to be added (and
perhaps removed or commented out) again.

Instead, we can employ the same technique used in Node core, Express, and
other modules using a debug function that only outputs the arguments when an
environment variable is set.

Try to run the preceding application (or any other Express application) using the
following command:

$ NODE_DEBUG="http,net" node server.js

The Node core files make use of the NODE_DEBUG environment variable to output
debug information. In the preceding example, we have specified that we want to
listen for the output that comes from two native modules: http and net. After you
visit a page or two, the output should be similar to the following:

NET: 15418 listen2 0.0.0.0 7777 4 false

NET: 15418 _listen2: create a handle

NET: 15418 bind to 0.0.0.0

NET: 15418 onconnection

NET: 15418 _read

NET: 15418 Socket._read readStart

HTTP: SERVER new http connection

Debugging

[262]

NET: 15418 onread undefined 0 529 529

NET: 15418 got data

HTTP: outgoing message end.

NET: 15418 afterWrite 0 { domain: null, bytes: 595, oncomplete:
[Function: afterWrite] }

The format of the preceding logs includes the module name (NET or HTTP), the
process ID (15418 in this case), and other parameters. These logs are useful when
trying to debug something at a lower level (tcp/http) in Node core.

Luckily, Express and other middleware use the same technique to output useful
debugging information, but instead of the NODE_DEBUG environment variable, they
use a simple DEBUG variable, as shown in the following screenshot:

Express internally uses the debug module to achieve this, which has some
handy features:

• The ability to select the output of different modules (comma-delimited)
• Shows the time spent between debug calls
• Wildcard support with the * char

Chapter 9

[263]

The convention is to use a namespace for our application and separate the features
by using (:). For example, we could add the following code to the server.js file in
our time zone application:

var debug = require('debug')('timezone-app:main');
debug('application started on port %s', process.env.PORT || 7777);

We may want to add other debugging information, such as the time zone selected by
the user in the timezones.js route:

// at the beginning of the file
var debug = require('debug')('timezone-app:routes:timezones');

// in the show function
debug('showing time for %s', place);

Let's start the application and only show the output that we have included
previously (namespace timezone-app):

$ DEBUG=timezone-app:* node server.js

After we visit the time zone page a couple of times, it will output the following
information to the terminal:

 timezone-app:main application started on port 7777 +0ms

 timezone-app:routes:timezones showing time for Europe/Berlin +0ms

 timezone-app:routes:timezones showing time for Europe/London +5s

 timezone-app:routes:timezones showing time for America/Los_Angeles +7s

Debug versus logger
There are several benefits to using the debug module versus a regular logger in the
debug mode, such as the following:

• We can selectively output the information based on features/files.
• With a logger, we normally get the output of all the logs (because if we

enable the debug level; this means all higher levels will be enabled too).
• Perhaps the application we are developing is just a piece of a larger puzzle

(a monitoring/admin dashboard, for example), so instead of using another
logger (the main application surely has one already), we use debug and let
the developer activate it when needed.

• We can debug multiple Node modules using the same interface
(Express, Node core files, and others), so it's a good thing to adhere
to the same standards.

Debugging

[264]

Debugging routes and middleware
When we start working on an application that's already being developed, one of
the first things we want to find out is what are the routes and middleware functions
defined. In general, we should be able to deduce that right away from a server.js
file for example, but some applications are more complex than that and might load
middleware from different files.

To check out what routes and middleware functions are present on the stack, we can
iterate through the app._router.stack object, as shown in the following example:

var express = require('express');
var app = express();
var inspect = require('util').inspect;
var morgan = require('morgan');

var users = [{ name: 'John Doe', age: 27 }];

app.use(morgan());

app.route('/users').get(function(req, res, next) {
 res.send(users);
}).post(function(req, res, next) {
 res.send('ok');
});

app._router.stack.forEach(function(item) {
 if (item.route) {
 console.log('Route: %s', inspect(item.route, { depth: 5 }));
 } else {
 console.log('Middleware: %s', item.handle.name || 'anonymous');
 }
 console.log('--------------------');
});

app.listen(process.env.PORT || 7777);

This is not an official/documented feature, so it may change in the
future. For example, in Express 3.x, the stack was defined in the app.
stack array. The thing to have in mind here is that we can inspect the
middleware stack (some have gone so far as to even modify it).

Chapter 9

[265]

Using the V8 debugger
V8 comes with a debugger that can be accessed from outside the process by using
a TCP protocol. Node comes with a built-in client for the debugger, but we can
also add external tools to connect to the debugger—such as node-inspector
(https://www.npmjs.org/package/node-inspector).

Creating our buggy application
To showcase the debugger, we will create a sample Express application that contains
a bug (not that hard to spot actually). The application will have three endpoints:

• /: The main page will assign a random name and e-mail to the session in case
they don't already exist, or redirect the user to /whoami if they are already set

• /whoami: This is used to check the name and e-mail stored in the session
• /refresh: This destroys the session and redirects to the main page

The code for this application is as follows:

var express = require('express');
var app = express();
var morgan = require('morgan');
var cookieParser = require('cookie-parser');
var session = require('express-session');
var Faker = require('Faker');

app.use(morgan('dev'));
app.use(cookieParser()); // required before session.
app.use(session({
 secret: 'secret keyword'
}));

app.get('/', function(req, res, next) {

 if (req.session.name) {
 res.redirect('/whoami');
 }

 var secretIdentity = {
 name: Faker.Name.findName(),
 email: Faker.Internet.email()
 };

Debugging

[266]

 req.session.name = secretIdentity.name;
 req.session.email = secretIdentity.email;

 var tmpl = 'We will call you ' + secretIdentity.name;
 tmpl += ' from now on and email you at ' + secretIdentity.email;
 tmpl += '</br > Reset your identity by going to the following
 URL: ';
 tmpl += '/refresh';

 res.send(tmpl);
});

app.get('/whoami', function(req, res, next) {
 res.send('Name ' + req.session.name + ' | Email: ' +
 req.session.email);
});

app.get('/refresh', function(req, res, next) {
 req.session.destroy(function(err) {
 if (err) { return next(err); }

 res.redirect('/');
 });
});

app.listen(process.env.PORT || 7777);

Before running the application, we should install the required dependencies: morgan
(the logger), cookie-parser, express-session, and Faker (for generating fake
data).

Now we can start the application and check it out. The problem appears when visiting
the main page twice since we are assigned a new identity (name and e-mail) each time.
It should normally assign a name and an e-mail for the first time, and then for each
subsequent visit, it should just redirect us to /whoami without reassigning them.

Chapter 9

[267]

Using Node's debugger client in the terminal
First of all, we will add some breakpoints (using the debugger keyword) in our code
so that we can pause the execution and take a look at what's going on:

app.get('/', function(req, res, next) {
 debugger;

 if (req.session.name) {
 res.redirect('/whoami');
 }

 debugger;

To start the Node process with the debugger client, we need to add the debug
argument as follows:

$ node debug server.js

We can then type cont in the terminal when we want to continue execution, and
repl if we want to have access to the variables in that context, as shown in the
following screenshot:

Debugging

[268]

Make sure you make a request to the main page after the first cont (we have to wait
for the server to bind to the port).

While debugging, we see that after the first debugger statement, the route handler
for the main page does not redirect and exit, but it continues to execute what
remains in that function. So that was our problem; we simply forgot to call return
after using res.redirect().

Using node-inspector
One of the most popular Node debugging solutions is node-inspector (https://
www.npmjs.org/package/node-inspector) because it has a familiar interface that
resembles the Google Chrome developer tools.

All we have to do is start our Node process with the –debug flag and run node-
inspector in the terminal (because it's globally installed). Then, we can open
the debugging interface in the browser, by visiting http://127.0.0.1:8080/
debug?port=5858, as shown in the following screenshot:

Chapter 9

[269]

Debugging memory leaks
Memory leaks are one of the nastiest bugs you can encounter in your applications.
That's because they are usually hard to track down, since some of them can take
days to build and require certain conditions to be met.

The heapdump (https://www.npmjs.org/package/heapdump) module allows us
to take heap snapshots programmatically, so we can inspect them at a later point in
time. The snapshots will be saved in the current working directory and will have the
heapsnapshot file extension.

Let's create a sample application that stores a lot of new objects into an array with
each request made. The application will check for the memory usage every minute
and compare it with the threshold; if it's bigger than the threshold, then a heap
snapshot will be written to the disk, and the threshold will be augmented with
another 100 megabytes; otherwise, it does nothing.

The full code for the application will thus be the following:

var heapdump = require('heapdump');
var express = require('express');
var app = express();

var leaks = [];
function Leak() {};
var memoryThreshold = 50;

setInterval(function () {
 // get RSS in bytes and convert to megabytes
 var memoryUsage = process.memoryUsage().rss / 1024 / 1024;

 if (memoryUsage > memoryThreshold) {
 // write to disk
 heapdump.writeSnapshot();
 // increase memory threshold
 memoryThreshold += 100;
 }
}, 60000);

app.use(function(req, res, next) {
 for (var i = 0; i < 1000; i++) {
 leaks.push(new Leak());
 }

Debugging

[270]

 res.send('Memory usage: ' + (process.memoryUsage().rss / 1024 /
 1024));
});

app.listen(process.env.PORT || 7777);

To make a lot of connections to the server, we can use the ab benchmarking tool.
Once the memory increases above the threshold, the heap snapshot will be made,
but take into consideration that it may take a minute before that happens (because
of the interval).

To inspect the snapshot, open the Google Chrome browser, press F12 to open the
developer tools, select the Profiles tab, right-click in the tab pane, and select Load.
Now, select the file and click on Open. You should see something similar to what
is shown in the following screenshot:

Notice that there are tons of objects that have the Leak constructor, so in this particular
example, it isn't hard to figure out the culprit. In production applications it can be
harder to track down these issues, so you'll probably need to take multiple snapshots
from time to time and compare them (this can be done in the Profiles tab too).

Chapter 9

[271]

Taking the snapshots will require extra CPU, so we have to pay attention as to
when and how often we do that. We could use different strategies when taking the
snapshots, such as:

• Use the idle module to let us know when Node is idling
• If we are using something like node-http-proxy (https://www.npmjs.org/

package/http-proxy) or hipcache (https://www.npmjs.org/package/
hipache), we could have multiple processes open for the same server, detach
one while the snapshot is being taken, and continue the process with the rest
(one by one)

• For further insights on this topic, feel free to check out the following links:

 ° https://developers.google.com/chrome-developer-tools/
docs/memory-analysis-101

 ° http://addyosmani.com/blog/taming-the-unicorn-easing-
javascript-memory-profiling-in-devtools/

 ° https://developers.google.com/chrome-developer-tools/
docs/heap-profiling#views

Adding a REPL to our Express
application
A Read-Eval-Print-Loop (REPL) is an interactive environment that accepts user
input, evaluates it, and outputs the result back to the user.

It is possible to connect to a live, running application by using the replify
(https://www.npmjs.org/package/replify) and repl-client (https://www.
npmjs.org/package/repl-client) modules. The first one will add a REPL to our
application, while the second one can be used to connect to it. The following are the
commands to use replify and repl-client:

$ npm i replify

$ npm i repl-client –g

First, we should set up a quick sample application using the following code:

var replify = require('replify');
var express = require('express');
var app = express();

Debugging

[272]

app.use(function(req, res, next) {
 res.send('all good');
});

app.listen(process.env.PORT || 7777);
replify('replify-app-' + process.pid, app);
console.log('Use the command below to connect to the REPL:');
console.log('rc /tmp/repl/replify-app-' + process.pid + '.sock');

The two parameters of the replify function represent the name of the application
(which will also be used to name the .sock file) and the application object itself,
which will be accessible in the REPL. To make other objects accessible in the REPL,
we can pass in a third parameter.

After we start the server, we can now connect to the REPL using the repl-client
and inspect and manipulate the app variable or other objects the application shares:

$ rc /tmp/repl/replify-app-20352.sock

replify-app-20352> app.settings

{ 'x-powered-by': true,

 etag: true,

 env: 'development',

 'subdomain offset': 2,

 view: [Function: View],

 views: '/Users/alexandruvladutu/www/mastering_express/chapter_09/using-
replify/views',

 'jsonp callback name': 'callback' }

replify-app-20352>

The app object can be inspected, but we can do other interesting things such as
changing the application settings. If we make a request to the application now, we
will see the following header (among others):

X-Powered-By: Express

Let's disable the x-powered-by setting from the REPL and see what happens:

replify-app-20352> app.disable('x-powered-by')

Now, when we make another request to the application, the header will not be
present anymore. We have to be careful when dealing with production applications,
but this technique can prove to be a great addition to our debugging toolbox.

Chapter 9

[273]

Removing debugging commands
While using debugging techniques during development is helpful (such as the debug
module, console.log, or the debugger statement), you should remove the leftovers
from the code for production-ready applications.

Fortunately, there's a handy tool just for that, which is called groundskeeper
(https://www.npmjs.org/package/groundskeeper):

$ npm i groundskeeper –g

Let's consider the following sample application:

var debug = require('debug')('myapp:main');
var express = require('express');
var app = express();

app.use(function(req, res, next) {
 req.session = { user: 'John', email: 'john@example.com' };
 next();
});

app.get('/', function(req, res, next) {
 debug('user %s visited /', req.session.user);

 res.send('ok');
});

app.listen(process.env.PORT || 7777);

The application is really light and contains a single call to the debug function after
requiring it. To remove the two debug lines and write to a new file, run the following
command in the terminal:

$ groundskeeper -n debug < server.js > clean-server.js

The tool uses esprima (https://www.npmjs.org/package/esprima) and falafel
(https://www.npmjs.org/package/falafel) to walk through the abstract syntax
tree and regenerate the code without the debugging functions.

Debugging

[274]

Summary
We have covered some useful debugging tools and techniques that can give us
a hand when trying to discover the bugs within our code. While we have tackled
every existing tool, we should have a pretty solid debugging toolbox now.

In the next chapter, we are going to focus on the security aspects of
Express applications.

Application Security
In this chapter, we are going to talk about various security issues that we should
handle if we want our web applications to be more secure. We will cover the
following topics:

• Running Express applications on privileged ports in a secure way
• Cross-site request forgery (CSRF) and cross-site scripting (XSS)
• Adding security headers using Helmet
• Handling file uploads
• Session middleware parameters

Running Express applications on
privileged ports
The root user on Unix systems is a special user who has the ability to make system-
wide changes and practically has full control over the machine. If we run an Express
application as the root, and it has a vulnerability that is exploited by a hacker, then
the hacker can cause a lot of damage, such as formatting the disk for instance.

To bind a web application to a port below 1024, (such as ports 80 or 443), root
permissions are needed, but there are some workarounds to the problem, which
are as follows:

• Redirect port 80 to another port that does not require superuser permissions
(such as port 8000), by using iptables (https://help.ubuntu.com/
community/IptablesHowTo)

Application Security

[276]

• Start the application using authbind (http://manpages.ubuntu.com/
manpages/hardy/man1/authbind.1.html), a system utility that allows us to
run applications that would normally require superuser privileges to bind to
low-numbered ports as a non-privileged user

• Drop the root privileges after binding to a special port (which requires an
extra few lines of code inside our Express application)

• Run the application behind a proxy such as HAProxy or NGiNX

Now, we are going to explore the preceding first three ways to achieve this.

Dropping root privileges
To be able to bind the server to a port number lower than 1024 (such as 80 or 443),
one option would be to start the program as an admin using sudo. However, for
security reasons, it's not okay to continue running our application with admin rights
after it starts listening on such a port, so we should downgrade to a regular user
instead.

A solution to this problem is to add a few lines of code to our application and change
the user and group identity of the process once the port has been opened:

var http = require('http');
var express = require('express');
var app = express();
var PORT = process.env.PORT || 7777;

app.get('*', function(req, res, next) {
 res.send({
 uid: process.getuid(),
 gid: process.getgid()
 });
});

http.createServer(app).listen(PORT, function() {
 console.log("Express server listening on port " + PORT);
 downgradeFromRoot();
});

function downgradeFromRoot() {
 if (process.env.SUDO_GID && process.env.SUDO_UID) {
 process.setgid(parseInt(process.env.SUDO_GID, 10));
 process.setuid(parseInt(process.env.SUDO_UID, 10));
 }
}

Chapter 10

[277]

In the preceding code, we have reverted the application's permissions to those of a
normal user by reading the SUDO_GID and SUDO_UID environment variables. These
variables are automatically set on Unix systems when running a program with the
sudo command, as shown in the following example:

$ sudo PORT=80 node server.js

Redirecting to another port using iptables
Another popular approach for running Express on privileged ports safely is to
redirect the incoming connections from a privileged port to a port higher than
1024 by using iptables.

Let's say we want to redirect port 80 to port 8080. To achieve this, we need to add
the following rules:

$ sudo iptables -A INPUT -i eth0 -p tcp --dport 80 -j ACCEPT

$ sudo iptables -A INPUT -i eth0 -p tcp --dport 8080 -j ACCEPT

$ sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j
REDIRECT --to-port 8080

The first two will make sure the ports are open, while the last command will ensure
the redirection.

Using authbind
The authbind utility is a system utility that allows applications to listen to privileged
ports. To install it on a Debian/Ubuntu system, run the following command in
the terminal:

$ sudo apt-get install authbind

Next, we will need to configure authbind so that it will allow our user to bind
applications to a port, specifically port 80 in our example:

$ sudo touch /etc/authbind/byport/80

$ sudo chown type_your_username_in_here /etc/authbind/byport/80

$ sudo chmod 755 /etc/authbind/byport/80

Now, to start the Express application, we need to type in the following command
into the console:

$ authbind PORT=80 node server.js

Application Security

[278]

There may be situations where we aren't directly booting up the Express application;
instead, we are using another program to run it and keep it alive perhaps (such as
the forever module, which is installable with NPM). In such a case, we need
to make sure we are calling authbind with the –deep flag, as shown in the
following example:

$ authbind --deep forever server.js

Cross-site request forgery protection
Cross-site request forgery (CSRF) is an attack that exploits the fact that a user
is logged in to a site to make a malicious request to that website with the user's
browser. For example, the user can be tricked into visiting a page that's making
a background request to another website for which the user is authenticated.

Let's create a simple Express application that allows users to place orders. Since
we're just trying to showcase how to be protected against CSRF attacks, we won't
have a login system; just suppose that it's a single-user application this time. All
the orders will be stored into memory.

This application will have two pages: the home page that allows the user to place
an order, and the orders page that lists all the orders made by the user. Besides the
two pages mentioned, there is another Express route to place an order.

Along with express, we will also need to install the body-parser and ejs modules
for this example. The server.js file will have the following code:

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

// view setup
app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

app.use(bodyParser());

// in memory store this time
var orders = [];

Chapter 10

[279]

app.get('/', function(req, res, next) {
 res.render('index');
});

app.post('/orders', function(req, res, next) {
 orders.push({
 details: req.body.order,
 placed: new Date()
 });

 res.redirect('/orders');
});

app.get('/orders', function(req, res, next) {
 res.render('orders', {
 orders: orders
 });
});

app.listen(3000);

The index.html file is pretty regular and contains a simple form with an input for
the order. The index.html file contains the following code:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Place your order</title>
</head>
<body>
 <h1>Order anything!</h1>

 <form action="/orders" method="POST">
 <input type="text" name="order" />
 <input type="submit" value="Go" />
 </form>

</body>
</html>

If we install the dependencies and run the application, we'll see that we can place
orders and see the list of orders while visiting the /orders page.

Application Security

[280]

Now, let's create another application that outputs a single page that contains a form
similar to the previous one, the differences being that this one will contain the value
for the order, and it will submit the form right away using JavaScript. The code is
shown as follows:

var express = require('express');
var app = express();

app.use(function(req, res, next) {
 var html = '<form id="place-order" action="http://localhost:3000/
orders" method="POST">';
 html += '<input type="text" name="order" value="1000 pizzas"
 />';
 html += '</form>';
 html += '<script>document.getElementById("place-
 order").submit();</script>'

 res.send(html);
});

app.listen(4000);

Now, let's run the preceding application. Imagine it's hosted somewhere on the
Web (using a normal domain) and somebody tricked us into visiting this page. On
opening http://localhost:4000/ now, this is what you will see:

We placed the first two orders, but hold on for a second. Where did the third order
with 1,000 pizzas come from?

Well, we visited that malicious page that made a POST request to the ordering
application on behalf of us, taking advantage of the fact that we were authenticated
(actually, in this specific case, there was no login mechanism, so it's kind of the
same thing).

Chapter 10

[281]

We can prevent this from happening by ensuring the user visited the page before
placing the order. Generating a unique token on the backend and sending it along
with the form can achieve this.

First, we must install cookie-session (we can also use the Express session
middleware) and the csurf modules:

$ npm i cookie-session csurf

Then, we need to integrate the two into the server.js file, making our
middleware-loading code look like the following:

var session = require('cookie-session');
var csrf = require('csurf');
app.use(session({
 secret: 'a3Bys4#$2jTs'
}));
app.use(bodyParser());
app.use(csrf());

The csurf module does two things:

• It ensures the csrf token is included when making a request that modifies
the data on the backend (which means it will ignore the GET, HEAD, and
OPTIONS requests, for example)

• It provides a req.csrfToken() function to generate the token

The only thing left would be to include this token into a hidden input field named
_csrf in our form. We would need to repeat this for every form we create, so we
could create a helper that we can reuse for every form:

app.use(function(req, res, next) {
 if (req.method === 'GET') {
 res.locals.csrf = function() {
 return "<input type='hidden' name='_csrf' value='" +
 req.csrfToken() + "' />";
 }
 }

 next();
});

To include the csrf token into our form, add the following line before the </form>
closing tag:

<%- csrf() %>

Application Security

[282]

If we run the application in the production mode (NODE_ENV=production node
server.js) and visit the malicious site (http://localhost:4000/), we should
get a Forbidden error message. However, if we try to place the order ourselves,
it should work as it did before.

Basically, what we did so far is to ensure that the user visited a page from our
application and then clicked on the Submit button.

Using CSRF while caching full pages is tricky because CSRF tokens
are unique for each user session. A solution would be to partially
cache pages that contain CSRF placeholders into a database (such as
Redis) and then replace the placeholders with the real tokens when
rendering them to the client. If client-side JavaScript is mandatory for
your application to work properly (it should not be disabled), other
solutions can be used to include dynamically loading the token into
the page (using Ajax, for example).

Cross-site scripting
A Cross-site scripting (XSS) type of attack allows hackers to inject malicious
client-side scripts into web applications. Once the script is injected into a trusted
website, it has access to the user's sensitive information such as cookies, the content
of the page, and others.

To guard our Express applications against this type of attack, we should employ
the following techniques:

• Validate data sent by the user (input)
• Sanitize output stored on the backend, such as into a database
• Enable content-security policy

Validating input
We should always try to validate data sent by the users before processing it. In
some situations, we can validate it against a list of known values, but this isn't
always the case.

A handy module to do validation is express-validator (https://www.npmjs.
org/package/express-validator), which has all sorts of functions built in.

Chapter 10

[283]

Sanitizing output
Validation is the first line of defense, but it's not enough. We cannot stop the user from
entering quotes, for example, when writing a description. These situations require the
output to be escaped/sanitized in some way, as shown in the following steps:

1. Let's create an insecure application that displays a user's details. We will
store the details into memory and use ejs again as the template engine. The
first thing we are going to set up is the template, so we can figure out ways
to exploit it:
<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>User <%- user.id %></title>
</head>
<body style="background: <%- user.color %>">

 <h1>Details for user <%- user.id %></h1>

 Name: <%- user.name %>
 Alias: <%- user.alias %>
 Description: <%- user.description %>

 <script type="text/javascript">
 var userConfig = "<%- JSON.stringify(user.config) %>";
 </script>
</body>
</html>

2. Now, for the server.js file, start with the module dependencies and the
view engine setup:
var express = require('express');
var app = express();
var ejs = require('ejs');

// view setup
app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', ejs.renderFile);

Application Security

[284]

3. The next part is interesting because we will define the users object with
specific data to hack the application (exploit it using XSS and display an
alert pop up to the user). We will achieve that by doing the following:

 ° Since the description is not escaped, we can include a script
 ° To hack the color property, we must enter double quotes and then

the onload attribute that contains an alert
 ° Last but not least, JSON.stringify() does not eliminate the need

for escaping because we can include a closing script tag and then
another script that gets evaluated

The rest of the code for the file is as follows:

var users = {
 1: {
 name: 'John Doe',
 alias: 'john',
 description: '<script>alert("hacked!")</script>',
 color: '#CCC;" onload="javascript:alert(\'yet another
 hack!\')',
 config: {
 motto: "</script>
<script>alert('hacked again!!'); </script>"
 },
 id: 1
 }
};

app.use('/users/:id', function(req, res, next) {
 res.render('user', {
 user: users[req.params.id]
 });
});

app.listen(7777);

4. We can start the application using the following command and see what
happens now:
$ node server.js

Chapter 10

[285]

5. When we visit the page, we will see three alerts pop up, indicating that
there are also three exploits on the page. If you look closely at the code
for the template, you will see that there are different places where data
is not sanitized:

 ° The style attribute on the body tag
 ° The HTML code inside the list item
 ° The JavaScript code at the bottom of the page

Because the data is outputted in different contexts, we cannot use the same
sanitization technique all over the place. This is where the secure-filters module
(https://www.npmjs.org/package/secure-filters) comes into play because it is
aware of the context.

According to the documentation, the secure-filters module has the following
functions for sanitizing output:

• html(value): This function is used for HTML content sanitization using
entity encoding

• js(value): This function is used for JavaScript string sanitization using
backslash encoding

• jsObj(value): This function is used for JavaScript literal sanitization, and
it's useful when including objects in an HTML script tag

Application Security

[286]

• jsAttr(value): This function is used for JavaScript string sanitization in
the context of an HTML attribute (which uses a combination of entity and
backslash encoding)

• uri(value): This function is used for URL sanitization using percent
encoding

• css(value): This function is used for CSS context sanitization using
backslash encoding

• style(value): This function is used for CSS context sanitization in an
HTML-style attribute

These functions can be used either as standalone or with ejs. Since we are already
using ejs for the application, we will go with the second option.

We will have to add a single line of code to the server.js file to make those
functions visible inside the template:

var ejs = require('secure-filters').configure(require('ejs'));

To sanitize the output, three filters need to be added to the template: one for escaping
HTML content, a second one for escaping the value in the style attribute, and the
last one for sanitizing the JavaScript string. The template code will now contain the
following code:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>User <%- user.id %></title>
</head>
<body style="background: <%-: user.color | style %>">

 <h1>Details for user <%- user.id %></h1>

 Name: <%- user.name %>
 Alias: <%- user.alias %>
 Description: <%= user.description %>

 <script type="text/javascript">
 var userConfig = "<%-: JSON.stringify(user.config) | js %>";
 </script>
</body>
</html>

Chapter 10

[287]

Now, when we run the server and revisit the page, it will be alert-free, but bear
in mind that an attacker can do a lot worse if he wants (such as stealing a user's
cookies and impersonating him).

The important thing to keep in mind is to watch out for the context and use the
correct filter where needed.

HTTP security headers with Helmet
We have previously discussed input validation and data sanitization for protection
against XSS attacks, but there is another last line of defense we can employ, that is,
using the content-security-policy header.

This header allows us to declare resources (such as JavaScript files, images, and
stylesheets) that can be served from trusted domains only. The most common CSP
directives are as follows:

• connect-src: This specifies which origin the server is allowed to connect
to (this applies to XHR requests, WebSockets, and EventSource)

• font-src: This defines where the fonts can be loaded from
• frame-src: This specifies which origins can be embedded as frames
• img-src, media-src, object-src, and script-src: These define the origins

from where images, media elements (audio and video), plugins (flash and
others), stylesheets, and JavaScript files can be loaded

By default, the directives are open, which means the resources can be loaded from
everywhere. This behavior can be changed with the default-src directive.

The helmet module (https://www.npmjs.org/package/helmet) allows us to
specify these directives by using an Express middleware:

app.use(helmet.csp({
 'default-src': ["'self'", 'default.com'],
 'script-src': ['scripts.com'],
 'style-src': ['style.com'],
 'img-src': ['img.com'],
 'connect-src': ['connect.com'],
 'font-src': ['font.com'],
 'object-src': ['object.com'],
 'media-src': ['media.com'],
 'frame-src': ['frame.com'],
 'sandbox': ['allow-forms', 'allow-scripts'],
 'report-uri': ['/report-violation'],

Application Security

[288]

 reportOnly: false, // set to true if you only want to report errors
 setAllHeaders: false, // set to true if you want to set all headers
 safari5: false // set to true if you want to force buggy CSP in
Safari 5
});

Besides the CSP middleware, the helmet module also includes other helpful security
middleware, such as the following:

• hsts (HTTP Strict Transport Security): This adds the Strict-Transport-
Security header, which restricts users to connect to the website only via
secure connections

• xframe (X-Frame-Options): This header specifies whether the website can
be loaded into a frame or an iframe

• iexss (X-XSS-Protection for IE8+): This adds basic XSS protection
• ienoopen (X-Download-Options for IE8+): This sets the X-Download-

Options header to noopen to prevent IE users from opening file downloads
in the website's context

• contentTypeOptions (X-Content-Type-Options): This sets the X-Content-
Type-Options to nosniff to prevent the browser from doing MIME-type
sniffing

• hidePoweredBy (remove X-Powered-By): This removes the X-Powered-By
header, which is automatically set by Express

Handling file uploads
A common thing that people sometimes forget when dealing with file uploads is
to remove the temporary files after they're done with them.

Let's create an application that allows the user to upload an image and list its
properties. We will first need to install the express, gm, connect-multiparty,
and ejs modules, using the following command:

$ npm i express gm connect-multiparty ejs

For the gm module to work properly, we also need to install
GraphicsMagick and ImageMagick. For more details, check
out the NPM page for the module at https://www.npmjs.org/
package/gm.

Chapter 10

[289]

First, let's create the home.html template file inside the /views folder, using the
following code:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Uploading files</title>
</head>
<body>
 <h1>Upload file</h1>

 <form action="/files" method="POST" enctype="multipart/form-
 data">
 <div>
 <label for="file">File:</label>
 <input type="file" name="file" />
 </div>
 <div>
 <input type="submit" value="Upload" />
 </div>
 </form>
</body>
</html>

Next, we will create the server.js file, which lists the image properties after
the upload:

var express = require('express');
var app = express();
var multipart = require('connect-multiparty');
var gm = require('gm');

// view setup
app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

app.get('/', function(req, res, next) {
 res.render('home');
});

app.post('/files', multipart(), function(req, res, next) {
 // console.log(req.files);

Application Security

[290]

 if (!req.files.file) {
 return res.send('File missing');
 }

 gm(req.files.file.path).identify(function(err, data) {
 if (err) { return next(err); }

 res.send(data);
 });
});

app.listen(7777);

Now, if we run the server and upload an image, we should see a page similar to the
following screenshot:

Chapter 10

[291]

The problem with this code is that we forgot to delete the temporary file once we
extracted its properties. We can fix this by adding a few lines of code; let's first
declare the fs dependency at the beginning of the server.js file:

var fs = require('fs');

Then, we need to actually remove the temporary file from the callback of the
gm.identify() function:

fs.unlink(req.files.file.path, function() { /* ignored the error
 */ });

Another solution to the problem would be to use something like the reap module
(https://www.npmjs.org/package/reap), which makes regular checks for old
files and deletes them.

Session middleware parameters
When using the session middleware (https://github.com/expressjs/session)
in Express, we have to pay attention to the parameters we pass when initializing the
middleware, which are as follows:

• The httpOnly property on the cookie property: This defaults to true and
should really stay that way, meaning the cookie cannot be read by frontend
JavaScript code

• The secure property on the cookie property: When using HTTPS, we should
enable this option, which will prevent the browser from transmitting the
cookies over an unencrypted connection

• The maxAge property on the cookie property: If this property is unset,
then it means that the cookie will become a browser-session cookie and will
be removed once the user closes the browser; perhaps this should be set to
something like 30 minutes (30 * 60 * 1000 in milliseconds) to avoid prolonged
idle sessions

• The secret property: This is used to sign the session cookie to prevent
tampering; this should not be copied from the module's page (such as
keyboard cat); it should preferably be something long and random

Application Security

[292]

Reauthenticating the user for sensitive
operations
When performing really sensitive operations, it's a good practice to re-prompt
the user for the password to make sure the right person is sitting in front of the
computer and not somebody who is impersonating them.

Let's imagine for a second that our web application has features such as account
deletion or changing the e-mail address for a user. For the sake of argument, let's
also consider the possibility that the user who logged in went out for a lunch
break and forgot to log out. What can we do to enhance security? Well, two things:
expiring the session after a period of time and re-prompting the user when doing
critical transactions.

Fortunately for us, the cookie-session middleware (as well as the session
middleware) supports setting an expiry time. For reauthenticating the user, we can
use a simple trick: remember the last login time of the user and check if it's less than
one minute ago, for example.

Next, we will create an application to put this into practice. We'll need the following
dependencies to be installed: express, ejs, cookie-session, body-parser,
method-override, and csurf.

Now, let's include these dependencies, load the middleware, and set up the view
using the following code:

var express = require('express');
var app = express();
var session = require('cookie-session');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
var csrf = require('csurf');

// view setup
app.set('view engine', 'html');
app.set('views', __dirname + '/views');
app.engine('html', require('ejs').renderFile);

app.use(session({
 secret: 'aqEosdP3%osn',
 maxAge: (30 * 60 * 1000) // expires in 30 minutes
}));

Chapter 10

[293]

app.use(bodyParser());
app.use(methodOverride(function(req, res) {
 if (req.body && typeof req.body === 'object' && '_method' in
 req.body) {
 var method = req.body._method;
 delete req.body._method;

 return method;
 }
}));
app.use(csrf());
app.use(function(req, res, next) {
 if (req.method === 'GET') {
 res.locals.csrf = function() {
 return "<input type='hidden' name='_csrf' value='" +
 req.csrfToken() + "' />";
 }
 }

 next();
});

As shown previously, the sessions are set to expire after 30 minutes, and for CSRF
protection, we are reusing the middleware that was previously created in this
chapter. Now, we will define the routes and bind the application to a port:

// using this only in development instead of a real db
var users = {
 john: 'password'
};

app.get('/', function(req, res, next) {
 if (!req.session.user) {
 return res.redirect('/login');
 }

 res.render('home');
});

app.get('/login', function(req, res, next) {
 res.render('login');
});

Application Security

[294]

app.post('/login', function(req, res, next) {
 if (users[req.body.username] === req.body.password) {
 req.session.loggedInTime = new Date().getTime();
 req.session.user = req.body.username;
 res.redirect('/');
 } else {
 res.redirect('/login?login=unsuccessful');
 }
});

app.get('/sensitive-data', function(req, res, next) {
 if (!req.session.user) {
 return res.redirect('/login');
 }

 var ago = (Date.now() - req.session.loggedInTime);

 if (ago <= 60000) {
 res.send('really sensitive data here');
 } else {
 res.redirect('/login');
 }
});

app['delete']('/logout', function(req, res, next) {
 req.session = null;
 res.redirect('/login');
});

app.listen(7777);

Delete is a reserved word in JavaScript, so instead of using app.
delete, it's better to have the delete property in brackets, as
shown in the previous example.

If we run the application and log in with the combination john/password (where
john is the username and the password is password) we can access the /sensitive-
data page, but only for one minute after logging in. This means that, for example,
if somebody takes control of our computer and tries to check out that page after
more than a couple of minutes, they will be redirected to the /login page.

The CSRF check was to make sure that the user actually clicked on the Submit
button, but all of this is to ensure that the person sitting in front of the computer
is the user who is authenticated.

Chapter 10

[295]

Summary
In this chapter, we have tackled some of the security issues we need to be aware
of when writing a web application, but we haven't exhausted the list. One should
always be on the lookout for new threats and ways to be protected against them.

In the next chapter, we will be looking at how to write tests and tools to improve
code quality.

Testing and Improving
Code Quality

In this chapter, we are going to see how to test Express applications and how
to improve the code quality of our code by leveraging existing NPM modules.
We will cover the following topics:

• Testing Express applications with Mocha, should.js, and supertest
• Mocking Node modules using proxyquire
• Code coverage
• Load testing
• Static analysis tools
• Automatically running tests before committing
• Continuous Integration
• An overview of client-side testing tools

The importance of having automated tests
By writing tests for our code, we are verifying its correctness, ensuring it does
what it's supposed to do.

Moreover, if we have an extensive test suite, it gives us confidence to refactor
code anytime, because we can always rerun our tests and check if something broke
in the process. This means we have a solid foundation that we can build upon.

Testing and Improving Code Quality

[298]

However, tests not only represent a form of ensuring the correctness of our application
and managing risks but also act as a form of documentation. They basically describe
how your application is supposed to behave under certain conditions.

Last but not least, this is an ideal task for a computer: it's a repetitive task that
requires the same level of attention when executed and should be done as fast
as possible.

These are just a few reasons why you should write tests for your applications,
but you can find a lot more if you browse the Internet.

Testing toolbox
There are a handful of modules in NPM that can help us out when testing our
applications, but in the next few lines we are going to focus on some of the most
used ones:

• Mocha: This is a popular test framework for Node and for the browser created
by the author of Express, TJ Holowaychuk

• should.js: This is an assertion library, which is framework agnostic
• sinon: This is a library that provides spies, stubs, and mocks, and it works

in Node and the browser
• supertest: This is a high-level abstraction module for testing Node HTTP

servers with a fluent API
• proxyquire: This is a simple library for mocking the required dependencies

Mocha
Mocha is one of the most feature-rich JavaScript testing frameworks. It has features
such as multiple interfaces (such as behavior-driven development or test-driven
development), multiple reporters, and runs asynchronous tests and specifies
timeouts (for different levels). For more details, you can find the full documentation
of the project page at http://visionmedia.github.io/mocha/.

Chapter 11

[299]

should.js
The should.js file (https://github.com/shouldjs/should.js) is a BDD
assertion library for Node that extends Object.prototype to provide a sugar syntax
that is useful when writing tests. Without this library, our assertions might look like
the following code:

assert.ok(err instanceof Error);
assert.ok(err.status === 400);

After refactoring the code to use the should module, it might look like this:

err.should.be.an.instanceOf(Error).and.have.property('status',
 404);

As you can see, the second version of the code is much more expressive and readable.

Another popular assertion module that provides a similar
functionality is chai (https://www.npmjs.org/package/chai).

Sinon.js
Sinon.js (http://sinonjs.org/) is a handy library for writing unit tests. It provides
us with spies, stubs, and mocks out of the box and can run both in the browser and in
Node.js. It is an essential tool for testing JavaScript applications and has other useful
features beyond these three, such as fake timers and sandboxing. You can find the full
documentation on the official website at http://sinonjs.org/docs/.

Spies
Test spies allow us to record function calls for later verification. A test spy is a
function that can wrap another existing one, or it can be a standalone anonymous
function. Here is a simple example:

{
 before: function () {
 // spying on an existing function
 sinon.spy(fs, "rename");
 },

 after: function () {
 fs.rename.restore(); // Unwraps the spy
 },

Testing and Improving Code Quality

[300]

 "should move file to new location": function () {
 // anonymous spy
 var spy = sinon.spy();
 File.move('example.js', spy);

 // make sure spies were called
 fs.rename.calledOnce.should.be.true;
 spy.calledOnce.should.be.true;
 }
}

Stubs
A Sinon.js stub is similar to a spy, but it also represents a function that supports
predefined behavior. A good use case for using stubs is when we want to simulate
a functionality to make our system work normally during the testing phase.

A thing worth noting is that when using a stub to wrap a function, the stub does not
call the original function. The following short example shows how to return different
things based on the arguments provided to a File.getExtension() function:

var stub = sinon.stub(File.getExtension);
stub.withArgs('image.jpg').returns('jpg');
// will return 'jpg'
stub('image.jpg')
stub.withArgs('invalid_filename_*').throws();
// will throw an errror
stub('invalid_filename_*');

Mocks
Mocks, in Sinon.js, are similar to spies and stubs, the difference being that they
require the expectations up-front. Here's an example:

var mock = sinon.mock(Validate);
mock.expects("isNumber").once().throws();

Validate.isNumber('string');

mock.verify();

Chapter 11

[301]

Supertest
The supertest module is a great module for testing HTTP servers because of its
intuitive API, which allows expectations to be used with status codes or headers.
You can also chain the expectations, as shown in the following example:

request(app)
 .get('/login')
 .expect('Content-Type', /html/)
 .expect('Content-Length', '100')
 .expect(200)
 .end(function(err, res){
 if (err) throw err;
 });

Proxyquire
We will most likely need to override the dependencies used by a module when
writing our unit tests. This is where proxyquire comes in, because it allows us
to achieve that. Instead of using the regular require function when including a
certain module, we will use the proxyquire function and specify the overridden
dependencies as the second argument.

For example, let's imagine that we have a module /lib/db.js, and we would like
to stub the mysql module, using the following code:

var proxyquire = require('proxyquire');
var db = proxyquire('./lib/db', {
 mysql: sinon.stub(mysql)
});

Generating phony data using Faker.js
Faker.js (https://www.npmjs.org/package/faker) allows us to generate fake
data for all kinds of things ranging from names and addresses to catchphrases.
The following is a simple example that generates fake data for a user:

var user = {};
user.ip = Faker.Internet.ip();
user.company = Faker.Company.companyName();
user.name = Faker.Name.firstName() + ' ' + Faker.Name.lastName();

Testing and Improving Code Quality

[302]

Creating and testing an Express
file-sharing application
Now, it's time to see how to develop and test an Express application with what
we have learned previously.

We will create a file-sharing application that allows users to upload files and
password-protect them if they choose to. After uploading the files to the server,
we will create a unique ID for that file, store the metadata along with the content
(as a separate JSON file), and redirect the user to the file's information page. When
trying to access a password-protected file, an HTTP basic authentication pop up will
appear, and the user will have to only enter the password (no username in this case).

The package.json file, so far, will contain the following code:

{
 "name": "file-uploading-service",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.2.0",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "ejs": "~0.8.5",
 "connect-multiparty": "~1.0.5",
 "cuid": "~1.2.4",
 "bcrypt": "~0.7.8",
 "basic-auth-connect": "~1.0.0",
 "errto": "~0.2.1",
 "custom-err": "0.0.2",
 "lodash": "~2.4.1",
 "csurf": "~1.2.2",
 "cookie-session": "~1.0.2",
 "secure-filters": "~1.0.5",
 "supertest": "~0.13.0",
 "async": "~0.9.0"
 },
 "devDependencies": {
 }
}

Chapter 11

[303]

When bootstrapping an Express application using the CLI, a /bin/www file will be
automatically created for you. The following is the version we have adopted to
extract the name of the application from the package.json file. This way, in case
we decide to change it we won't have to alter our debugging code because it will
automatically adapt to the new name, as shown in the following code:

#!/usr/bin/env node
var pkg = require('../package.json');
var debug = require('debug')(pkg.name + ':main');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' +
 server.address().port);
});

The application configurations will be stored inside config.json:

{
 "filesDir": "files",
 "maxSize": 5
}

The properties listed in the preceding code refer to the files folder (where the files
will be updated), which is relative to the root and the maximum allowed file size.

The main file of the application is named app.js and lives in the root. We need the
connect-multiparty module to support file uploads, and the csurf and cookie-
session modules for CSRF protection. The rest of the dependencies are standard
and we have used them before. The full code for the app.js file is as follows:

var express = require('express');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var session = require('cookie-session');
var bodyParser = require('body-parser');
var multiparty = require('connect-multiparty');
var Err = require('custom-err');
var csrf = require('csurf');
var ejs = require('secure-filters').configure(require('ejs'));
var csrfHelper = require('./lib/middleware/csrf-helper');

Testing and Improving Code Quality

[304]

var homeRouter = require('./routes/index');
var filesRouter = require('./routes/files');

var config = require('./config.json');
var app = express();
var ENV = app.get('env');

// view engine setup
app.engine('html', ejs.renderFile);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'html');

app.use(favicon());
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
// Limit uploads to X Mb
app.use(multiparty({
 maxFilesSize: 1024 * 1024 * config.maxSize
}));
app.use(cookieParser());
app.use(session({
 keys: ['rQo2#0s!qkE', 'Q.ZpeR49@9!szAe']
}));
app.use(csrf());
// add CSRF helper
app.use(csrfHelper);

app.use('/', homeRouter);
app.use('/files', filesRouter);

app.use(express.static(path.join(__dirname, 'public')));

/// catch 404 and forward to error handler
app.use(function(req, res, next) {
 next(Err('Not Found', { status: 404 }));
});

/// error handlers

// development error handler
// will print stacktrace
if (ENV === 'development') {
 app.use(function(err, req, res, next) {

Chapter 11

[305]

 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

Instead of directly binding the application to a port, we are exporting
it, which makes our lives easier when testing with supertest. We
won't need to care about things such as the default port availability or
specifying a different port environment variable when testing.

To avoid having to create the whole input when including the CSRF token, we have
created a helper for that inside lib/middleware/csrf-helper.js:

module.exports = function(req, res, next) {
 res.locals.csrf = function() {
 return "<input type='hidden' name='_csrf' value='" +
 req.csrfToken() + "' />";
 }

 next();
};

For the password–protection functionality, we will use the bcrypt module
and create a separate file inside lib/hash.js for the hash generation and
password–compare functionality:

var bcrypt = require('bcrypt');
var errTo = require('errto');

Testing and Improving Code Quality

[306]

var Hash = {};

Hash.generate = function(password, cb) {
 bcrypt.genSalt(10, errTo(cb, function(salt) {
 bcrypt.hash(password, salt, errTo(cb, function(hash) {
 cb(null, hash);
 }));
 }));
};

Hash.compare = function(password, hash, cb) {
 bcrypt.compare(password, hash, cb);
};

module.exports = Hash;

The biggest file of our application will be the file model, because that's where most
of the functionality will reside. We will use the cuid() module to create unique IDs
for files, and the native fs module to interact with the filesystem.

The following code snippet contains the most important methods for models/file.js:

function File(options, id) {
 this.id = id || cuid();
 this.meta = _.pick(options, ['name', 'type', 'size', 'hash',
 'uploadedAt']);
 this.meta.uploadedAt = this.meta.uploadedAt || new Date();
};

File.prototype.save = function(path, password, cb) {
 var _this = this;

 this.move(path, errTo(cb, function() {
 if (!password) { return _this.saveMeta(cb); }

 hash.generate(password, errTo(cb, function(hashedPassword) {
 _this.meta.hash = hashedPassword;

 _this.saveMeta(cb);
 }));
 }));
};

Chapter 11

[307]

File.prototype.move = function(path, cb) {
 fs.rename(path, this.path, cb);
};

For the full source code of the file, browse the code bundle. Next, we will create
the routes for the file (routes/files.js), which will export an Express router. As
mentioned before, the authentication mechanism for password-protected files will
be the basic HTTP one, so we will need the basic-auth-connect module. At the
beginning of the file, we will include the dependencies and create the router:

var express = require('express');
var basicAuth = require('basic-auth-connect');
var errTo = require('errto');
var pkg = require('../package.json');
var File = require('../models/file');
var debug = require('debug')(pkg.name + ':filesRoute');

var router = express.Router();

We will have to create two routes that will include the id parameter in the URL: one
for displaying the file information and another one for downloading the file. In both
of these cases, we will need to check if the file exists and require user authentication
in case it's password-protected. This is an ideal use case for the router.param()
function because these actions will be performed each time there is an id parameter
in the URL. The code is as follows:

router.param('id', function(req, res, next, id) {
 File.find(id, errTo(next, function(file) {
 debug('file', file);

 // populate req.file, will need it later
 req.file = file;

 if (file.isPasswordProtected()) {
 // Password–protected file, check for password using HTTP
 basic auth
 basicAuth(function(user, pwd, fn) {
 if (!pwd) { return fn(); }

 // ignore user
 file.authenticate(pwd, errTo(next, function(match) {
 if (match) {
 return fn(null, file.id);
 }

Testing and Improving Code Quality

[308]

 fn();
 }));
 })(req, res, next);
 } else {
 // Not password–protected, proceed normally
 next();
 }
 }));
});

The rest of the routes are fairly straightforward, using response.download() to
send the file to the client, or using response.redirect() after uploading the file:

router.get('/', function(req, res, next) {
 res.render('files/new', { title: 'Upload file' });
});

router.get('/:id.html', function(req, res, next) {
 res.render('files/show', {
 id: req.params.id,
 meta: req.file.meta,
 isPasswordProtected: req.file.isPasswordProtected(),
 hash: hash,
 title: 'Download file ' + req.file.meta.name
 });
});

router.get('/download/:id', function(req, res, next) {
 res.download(req.file.path, req.file.meta.name);
});

router.post('/', function(req, res, next) {
 var tempFile = req.files.file;
 if (!tempFile.size) { return res.redirect('/files'); }

 var file = new File(tempFile);

 file.save(tempFile.path, req.body.password, errTo(next, function() {
 res.redirect('/files/' + file.id + '.html');
 }));
});

module.exports = router;

Chapter 11

[309]

The view for uploading a file contains a multipart form with a CSRF token inside
(views/files/new.html):

<%- include ../layout/header.html %>

<form action="/files" method="POST" enctype="multipart/form-data">
 <div class="form-group">
 <label>Choose file:</label>
 <input type="file" name="file" />
 </div>

 <div class="form-group">
 <label>Password protect (leave blank otherwise):</label>
 <input type="password" name="password" />
 </div>

 <div class="form-group">
 <%- csrf() %>
 <input type="submit" />
 </div>
</form>

<%- include ../layout/footer.html %>

To display the file's details, we will create another view (views/files/show.html).
Besides showing the basic file information, we will display a special message in case
the file is password-protected, so that the client is notified that a password should
also be shared along with the link:

<%- include ../layout/header.html %>

<p>
 <table>
 <tr>
 <th>Name</th>
 <td><%= meta.name %></td>
 </tr>
 <th>Type</th>
 <td><%= meta.type %></td>
 </tr>
 <th>Size</th>
 <td><%= meta.size %> bytes</td>
 </tr>

Testing and Improving Code Quality

[310]

 <th>Uploaded at</th>
 <td><%= meta.uploadedAt %></td>
 </tr>
 </table>
</p>

<p>
 <a href="/files/download/<%- id %>">Download file |
 Upload new file
</p>

<p>
 To share this file with your friends use the <a href="/files/<%-
 id %>">current link.
 <% if (isPasswordProtected) { %>

 Don't forget to tell them the file password as well!
 <% } %>
</p>

<%- include ../layout/footer.html %>

Running the application
For the sake of brevity, not all the files needed to run the application were included
previously, but you can find them in the source code accompanying this book.

To run the application, we need to install the dependencies and run the start script:

$ npm i

$ npm start

The default port for the application is 3000, so if we visit http://localhost:3000/
files, we should see the following page:

Chapter 11

[311]

After uploading the file, we should be redirected to the file's page, where its details
will be displayed:

Unit tests
Unit testing allows us to test individual parts of our code in isolation and verify their
correctness. By making our tests focused on these small components, we decrease the
complexity of the setup, and most likely, our tests should execute faster.

Using the following command, we'll install a few modules to help us in our quest:

$ npm i mocha should sinon––save-dev

We are going to write unit tests for our file model, but there's nothing stopping us
from doing the same thing for our routes or other files from /lib.

The dependencies will be listed at the top of the file (test/unit/file-model.js):

var should = require('should');
var path = require('path');
var config = require('../../config.json');
var sinon = require('sinon');

We will also need to require the native fs module and the hash module, because
these modules will be stubbed later on. Apart from these, we will create an empty
callback function and reuse it, as shown in the following code:

// will be stubbing methods on these modules later on
var fs = require('fs');
var hash = require('../../lib/hash');

var noop = function() {};

Testing and Improving Code Quality

[312]

The tests for the instance methods will be created first:

describe('models', function() {
 describe('File', function() {
 var File = require('../../models/file');

 it('should have default properties', function() {
 var file = new File();

 file.id.should.be.a.String;
 file.meta.uploadedAt.should.be.a.Date;
 });

 it('should return the path based on the root and the file id',
 function() {
 var file = new File({}, '1');
 file.path.should.eql(File.dir + '/1');
 });

 it('should move a file', function() {
 var stub = sinon.stub(fs, 'rename');

 var file = new File({}, '1');
 file.move('/from/path', noop);

 stub.calledOnce.should.be.true;
 stub.calledWith('/from/path', File.dir + '/1',
 noop).should.be.true;

 stub.restore();
 });

 it('should save the metadata', function() {
 var stub = sinon.stub(fs, 'writeFile');
 var file = new File({}, '1');
 file.meta = { a: 1, b: 2 };

 file.saveMeta(noop);

 stub.calledOnce.should.be.true;
 stub.calledWith(File.dir + '/1.json',
 JSON.stringify(file.meta), noop).should.be.true;

Chapter 11

[313]

 stub.restore();
 });

 it('should check if file is password protected', function() {
 var file = new File({}, '1');

 file.meta.hash = 'y';
 file.isPasswordProtected().should.be.true;

 file.meta.hash = null;
 file.isPasswordProtected().should.be.false;
 });

 it('should allow access if matched file password', function() {
 var stub = sinon.stub(hash, 'compare');

 var file = new File({}, '1');
 file.meta.hash = 'hashedPwd';
 file.authenticate('password', noop);

 stub.calledOnce.should.be.true;
 stub.calledWith('password', 'hashedPwd',
 noop).should.be.true;

 stub.restore();
 });

We are stubbing the functionalities of the fs and hash modules
because we want to test our code in isolation. Once we are done with
the tests, we restore the original functionality of the methods.

Now that we're done testing the instance methods, we will go on to test the static
ones (assigned directly onto the File object):

 describe('.dir', function() {
 it('should return the root of the files folder', function() {
 path.resolve(__dirname + '/../../' +
 config.filesDir).should.eql(File.dir);
 });
 });

Testing and Improving Code Quality

[314]

 describe('.exists', function() {
 var stub;

 beforeEach(function() {
 stub = sinon.stub(fs, 'exists');
 });

 afterEach(function() {
 stub.restore();
 });

 it('should callback with an error when the file does not
 exist', function(done) {
 File.exists('unknown', function(err) {
 err.should.be.an.instanceOf(Error).and.have.
property('status',
 404);
 done();
 });

 // call the function passed as argument[1] with the
 parameter `false`
 stub.callArgWith(1, false);
 });

 it('should callback with no arguments when the file exists',
 function(done) {
 File.exists('existing-file', function(err) {
 (typeof err === 'undefined').should.be.true;
 done();
 });

 // call the function passed as argument[1] with the
 parameter `true`
 stub.callArgWith(1, true);
 });
 });

 });
});

Chapter 11

[315]

To stub asynchronous functions and execute their callback, we use the
stub.callArgWith() function provided by sinon, which executes the
callback provided by the argument with the index <<number>> of the
stub with the subsequent arguments. For more information, check out the
official documentation at http://sinonjs.org/docs/#stubs.

When running tests, Node developers expect the npm test command to be the
command that triggers the test suite, so we need to add that script to our package.
json file. However, since we are going to have different tests to be run, it would be
even better to add a unit-tests script and make npm test run that for now. The
scripts property should look like the following code:

 "scripts": {
 "start": "node ./bin/www",
 "unit-tests": "mocha --reporter=spec test/unit",
 "test": "npm run unit-tests"
 },

Now, if we run the tests, we should see the following output in the terminal:

Testing and Improving Code Quality

[316]

Functional tests
So far, we have tested each method to check whether it works fine on its own, but
now, it's time to check whether our application works according to the specifications
when wiring all the things together.

Besides the existing modules, we will need to install and use the following ones:

• supertest: This is used to test the routes in an expressive manner
• cheerio: This is used to extract the CSRF token out of the form and pass

it along when uploading the file
• rimraf: This is used to clean up our files folder once we're done with

the testing

We will create a new file called test/functional/files-routes.js for the
functional tests. As usual, we will list our dependencies first:

var fs = require('fs');
var request = require('supertest');
var should = require('should');
var async = require('async');
var cheerio = require('cheerio');
var rimraf = require('rimraf');
var app = require('../../app');

There will be a couple of scenarios to test when uploading a file, such as:

• Checking whether a file that is uploaded without a password can be
publicly accessible

• Checking that a password-protected file can only be accessed with the
correct password

We will create a function called uploadFile that we can reuse across different tests.
This function will use the same supertest agent when making requests so it can
persist the cookies, and will also take care of extracting and sending the CSRF token
back to the server when making the post request. In case a password argument is
provided, it will send that along with the file.

Chapter 11

[317]

The function will assert that the status code for the upload page is 200 and that the
user is redirected to the file page after the upload. The full code of the function is
listed as follows:

function uploadFile(agent, password, done) {
 agent
 .get('/files')
 .expect(200)
 .end(function(err, res) {
 (err == null).should.be.true;

 var $ = cheerio.load(res.text);
 var csrfToken = $('form input[name=_csrf]').val();

 csrfToken.should.not.be.empty;

 var req = agent
 .post('/files')
 .field('_csrf', csrfToken)
 .attach('file', __filename);

 if (password) {
 req = req.field('password', password);
 }

 req
 .expect(302)
 .expect('Location', /files\/(.*)\.html/)
 .end(function(err, res) {
 (err == null).should.be.true;

 var fileUid =
 res.headers['location'].match(/files\/(.*)\.html/)[1];

 done(null, fileUid);
 });
 });
}

Testing and Improving Code Quality

[318]

Note that we will use rimraf in an after function to clean up the files folder, but
it would be best to have a separate path for uploading files while testing (other than
the one used for development and production):

describe('Files-Routes', function(done) {
 after(function() {
 var filesDir = __dirname + '/../../files';
 rimraf.sync(filesDir);
 fs.mkdirSync(filesDir);

When testing the file uploads, we want to make sure that without providing the
correct password, access will not be granted to the file pages:

 describe("Uploading a file", function() {
 it("should upload a file without password protecting it",
 function(done) {
 var agent = request.agent(app);

 uploadFile(agent, null, done);
 });

 it("should upload a file and password protect it",
 function(done) {
 var agent = request.agent(app);
 var pwd = 'sample-password';

 uploadFile(agent, pwd, function(err, filename) {
 async.parallel([
 function getWithoutPwd(next) {
 agent
 .get('/files/' + filename + '.html')
 .expect(401)
 .end(function(err, res) {
 (err == null).should.be.true;
 next();
 });
 },
 function getWithPwd(next) {
 agent
 .get('/files/' + filename + '.html')
 .set('Authorization', 'Basic ' + new Buffer(':' +
 pwd).toString('base64'))
 .expect(200)
 .end(function(err, res) {
 (err == null).should.be.true;

Chapter 11

[319]

 next();
 });
 }
], function(err) {
 (err == null).should.be.true;
 done();
 });
 });
 });
 });
});

It's time to do the same thing we did for the unit tests: make a script so we can run
them with npm by using npm run functional-tests. At the same time, we should
update the npm test script to include both our unit tests and our functional tests:

 "scripts": {
 "start": "node ./bin/www",
 "unit-tests": "mocha --reporter=spec test/unit",
 "functional-tests": "mocha --reporter=spec --timeout=10000 --
 slow=2000 test/functional",
 "test": "npm run unit-tests && npm run functional-tests"
 }

If we run the tests, we should see the following output:

Testing and Improving Code Quality

[320]

Running tests before committing in Git
It's a good practice to run the test suite before committing to git and only allowing
the commit to pass if the tests have been executed successfully. The same applies for
other version control systems.

To achieve this, we should add the .git/hooks/pre-commit file, which should
take care of running the tests and exiting with an error in case they failed. Luckily,
this is a repetitive task (which can be applied to all Node applications), so there
is an NPM module that creates this hook file for us. All we need to do is install
the pre-commit module (https://www.npmjs.org/package/pre-commit) as
a development dependency using the following command:

$ npm i pre-commit ––save-dev

This should automatically create the pre-commit hook file so that all the tests are
run before committing (using the npm test command).

The pre-commit module also supports running custom scripts
specified in the package.json file. For more details on how to
achieve that, read the module documentation at https://www.
npmjs.org/package/pre-commit.

Code coverage
Long gone are the days when we used to rely on Java for outputting JavaScript
code-coverage data. Now, there are Node-based tools out there that can help us out,
such as the following:

• Istanbul (https://www.npmjs.org/package/istanbul)
• Blanket.js (https://www.npmjs.org/package/blanket)
• SteamShovel (https://www.npmjs.org/package/steamshovel)

These kinds of tools instrument your code and usually track statement, branch,
function, and line coverage.

Integrating code coverage with istanbul into our project is a simple process
that has two steps:

1. Installing the module as a development dependency using the
following command:
$ npm i istanbul ––save-dev

Chapter 11

[321]

2. Adding the CLI command as an NPM script inside package.json:
"coverage": "node node_modules/istanbul/lib/cli.js cover node_
modules/.bin/_mocha test/* -- --reporter=spec".

Now, if we want to run the tests with code-coverage data, we should see the
following output:

If we want to set a hard threshold for code coverage, istanbul also supports that.
Let's suppose that we want 100 percent function coverage and 90 percent coverage
for branches, statements, and lines. After running istanbul with the cover
command to generate the code-coverage data, we would need to run the following
command into the terminal:

$./node_modules/.bin/istanbul check-coverage --statement 100

A sample output might look like the following:

/Users/alexandruvladutu/www/file-share-app/node_modules/istanbul/lib/cli.
js:30

 throw ex; // turn it into an uncaught exception

 ^

ERROR: Coverage for branches (59.09%) does not meet threshold (90%)

ERROR: Coverage for functions (85.71%) does not meet threshold (100%)

We could choose to add this script after the coverage command is run and make it
our default npm test script. Using the pre-commit module would ensure that not
only our tests are run but also strict limits are imposed for code coverage.

Testing and Improving Code Quality

[322]

Complexity analysis of our code
Complex code is hard to read, test, and work on, even more so if we're trying
to decipher somebody else's code. Fortunately, there's a tool to measure code
complexity called complexity-report (https://www.npmjs.org/package/
complexity-report).

As always, we need to install the module first so that we can use it:

$ npm i complexity-report ––save-dev

When running this tool, we must specify which folders it should ignore, so that
we don't get reports for the dependencies used or code-coverage files:

$./node_modules/.bin/cr . --dirpattern '^((?!(test|node_
modules|coverage)).)*$'

A sample output could look like the following screenshot:

Chapter 11

[323]

We can also specify the desired format, which can be one of the following: plain,
markdown, minimal, JSON, and XML.

Just like the code-coverage tool, this one also supports thresholds for things such
as cyclomatic complexity or Halstead difficulty threshold. These represent software
metrics that determine the complexity of a program by analyzing its source code.
For example, if we run the script again using the –C 1 arguments (set the
cyclomatic complexity threshold to 1), at the end of the output, we would
get the following information:

Warning: Complexity threshold breached!

Failing modules:

/Users/alexandruvladutu/www/file-share-app/app.js

/Users/alexandruvladutu/www/file-share-app/models/file.js

/Users/alexandruvladutu/www/file-share-app/routes/files.js

Code linting
So far, we have learned about complexity and code-coverage tools, but there are
some other static-analysis tools we can use to lint our code based on different rules:

• ESLint (https://www.npmjs.org/package/eslint)
• JSHint (https://www.npmjs.org/package/jshint)
• JSLint (https://www.npmjs.org/package/jslint)

JSLint is highly opinionated when it comes to the rules, while JSHint is more flexible.
ESLint is the newest of the three and has support for pluggable rules.

To find out more about the differences between JSHint and ESLint, read
the blog post at http://www.nczonline.net/blog/2013/07/16/
introducing-eslint/.

For our example, we will use ESLint using the following command:

$ npm i eslint ––save-dev

Before we run the eslint command-line tool, we should create two files inside
our root: .eslintignore and eslint.json. The first one indicates what files
should be ignored:

node_modules/*
test/*
coverage/*

Testing and Improving Code Quality

[324]

The second one is used for overriding the default configuration of eslint:

{
 "env": {
 "node": true
 },
 "rules": {
 "quotes": 0,
 "no-unused-vars": [2, {"vars": "all", "args": "none"}],
 "no-underscore-dangle": 0
 }
}

In the preceding file, we're setting the environment to Node.js, which won't display
warnings related to global variable leaks such as require, module, or __filename,
because it will know that these are defined by Node.

Next, we will disable the enforcement of double quotes so that we can use both
single quotes and double quotes if we'd like without seeing warnings.

After that, we will apply the rule to disallow unused variables, but not the ones that
are arguments. This is useful because Express checks the function arity (number of
arguments) to determine the error handler.

Last but not least, we are disabling the rule that disallows the use of underscore in
identifiers, so we can use free variables such as _foo or _this.

You can check the documentation for all the ESLint rules at https://
github.com/eslint/eslint/tree/master/docs/rules.

You might have noticed that these rules can be applied based on personal preference,
so you and your team should pick a coding style and stick with it.

Now, it's time to add the lint script to the package.json file and then run it. We
need to add the following line to the scripts property inside package.json:

 "lint": "eslint . -c eslint.json",

Chapter 11

[325]

To run the lint script, simply use npm run lint, which might output something
like the following:

$ npm run lint

> file-uploading-service@0.0.1 lint /Users/alexandruvladutu/www/file-
share-app

> eslint . -c eslint.json

app.js

 26:30 error Missing semicolon semi

 6:4 error logger is defined but never used no-unused-vars

Ò 2 problems

As you can see from the preceding output, when a rule fails, it will show the
filename along with the line, column, and then a descriptive message followed
by the rule name.

Load testing
Load testing is a testing technique used to determine how an application behaves
when subjected to both normal and extreme load conditions. It can also be referred
to as performance testing, volume testing, or reliability testing.

A common load-testing tool is ab (Apache Benchmark). It can be used from the
terminal easily. We will perform the test on a file page, so make sure you upload
a file and get its URL afterwards.

To perform 1,000 requests with a concurrency level of 10, we will enter the following
command in the terminal:

$ ab -n 1000 -c 10 http://127.0.0.1:3000/files/chwrjte880000qsn9ivmx0q77.
html

Testing and Improving Code Quality

[326]

A sample output would look like the following screenshot:

There are similar CLI tools such as wrk (https://github.com/wg/wrk).

For more complex use cases, Apache JMeterTM (http://jmeter.apache.org/)
is a good solution as it also comes bundled up with a GUI.

Client-side testing
So far, we have covered testing the backend functionality of our projects as well
as ensuring that the server returns the correct HTTP responses by using supertest.
To achieve the holy grail of programming, we can go even further and test our
client-side code.

We will not focus on test frameworks or how to write client-side tests and run them
step-by-step, but instead, we will see what our toolbox contains so that we have our
options clear.

Chapter 11

[327]

There are different types of tools that can help us in our quest by either spinning up
a real browser or simulating their environment, such as the following ones:

• Those that try to emulate a browser, such as the NPM module Zombie.js
(https://www.npmjs.org/package/zombie), which used jsdom
(https://www.npmjs.org/package/jsdom) under the hood to
simulate a browser environment

• Those that launch headless browsers and have a custom API for interacting
with it, such as PhantomJS (http://www.phantomjs.org)

• Those that launch native browsers and execute the client-side JavaScript
unit test, such as Karma (http://karma-runner.github.io/)

• Those that have a built-in browser control mechanism and launch
local or remote browsers, such as Selenium Webdriver
(http://docs.seleniumhq.org/projects/webdriver/)

Most of these tools are designed primarily for end-to-end testing, while others are
specifically targeted to run unit tests in the browsers (such as Karma).

It is worth noting that you can also use PhantomJS with Selenium Webdriver starting
with Version 1.8 (http://phantomjs.org/release-1.8.html). The benefit of this
approach is that you can reuse the same tests for executing them locally in the headless
browser as well as on a CI server with a more complex setup, for example (which spins
up multiple native browsers). On top of that, it is also faster to spin up PhantomJS
instead of a real browser, so that would make your local tests run faster too.

In case you choose Selenium Webdriver to run your tests, there are two useful
NPM modules you can use:

• selenium-webdriver: This module represents the official WebDriver
JavaScript bindings from the Selenium project. You can find it at
https://www.npmjs.org/package/selenium-webdriver.

• wd: This module implements the Selenium JsonWireProtocol. You can find
it at https://www.npmjs.org/package/wd.

There are also commercial solutions available to run both unit tests and functional
tests in the cloud, with a variety of web browsers available. You can find examples
of such services by visiting the following sites:

• https://ci.testling.com/

• https://saucelabs.com/

• http://www.browserstack.com/

In the end, it's up to you to figure out what tools work best for your project,
but the important thing is to have the big picture in mind.

Testing and Improving Code Quality

[328]

Continuous Integration
Continuous Integration (CI) represents the development practice of pushing code to
a shared repository several times a day to identify problems quickly and solve them
as early as possible. This has multiple benefits, such as the following:

• Caching bugs quickly
• Supports distributed builds on different operating systems and CPU

architectures
• Keeps the build history available
• Sends real-time notifications with the build status
• Automatically generates metrics, such as code coverage and code complexity,

among others

CI servers
There are several CI platforms available, whether they are open source, commercial,
or self-hosted or not.

One of the most popular CI solutions is Jenkins, an extendable open source
continuous integration server written in Java, which you can install on your own
servers. Although it is used primarily by the Java community, it can be set up to
work with Node projects as well.

For more details on how to set up your Node project with Jenkins,
read the article at https://blog.dylants.com/2013/06/21/
jenkins-and-node/.

If you are a Node purist, then StriderCD (https://github.com/Strider-CD/
strider) might also be a good option since it's written in Node, and is open sourced
and self-hosted.

You can find a more comprehensive list of continuous integration software at
http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_
software.

Chapter 11

[329]

Free CI for open source projects
If you are working on an open source project hosted on GitHub, then you
can integrate it with the Travis CI continuous integration service for free
(https://travis-ci.com).

This integration has several benefits; the most important ones are as follows:

• Automatically running builds when pushing to GitHub
• Generating status images that you can include in the project's readme file
• Checking the build status of the pull requests before merging them
• Getting notified of failed builds by e-mail

In fact, Express itself is integrated with Travis CI, as you can integrate it from the
project's main page on GitHub or NPM. You can see what the Travis build history
looks like for Express in the following screenshot:

Testing and Improving Code Quality

[330]

To integrate your open source project with Travis CI, you will first need to sign up
for the service. Afterwards, you can use the travisify CLI tool from NPM (https://
www.npmjs.org/package/travisify) to automatically add Travis CI hooks to your
GitHub project and generate a status badge for the readme markdown file. You can
see an example of how to do it in the following screenshot:

Summary
In this chapter, we have learned about writing tests for Express applications and in
the process, explored a variety of helpful modules. We have also integrated static
analysis tools into our project to provide meaningful information related to code
complexity and linting. To conclude the chapter, we have explored continuous
integration and client-side testing.

At the end of our mastering Express journey, we have covered quite a lot of ground
and hopefully, you have a better understanding of the ins and outs of developing
real-world applications using the framework. More specifically, we have covered
the following topics:

• Comparing Express with other web frameworks
• Structuring Express applications
• Understanding the inner workings of the middleware system and building

our own
• Creating RESTful APIs using Express
• Express templating
• Reusing NPM modules to keep the codebase dry
• Using efficient strategies for error handling
• Optimizing the performance and throughput of Express web applications
• Monitoring and debugging applications using the latest techniques
• Securing Express web applications against common attacks
• Improving code quality using existing tools
• Testing Express applications

Index
Symbols
& (ampersand) 38
.authenticate() function 188
.register() function 188

A
ab (Apache Benchmark) 325
after module

URL 162
API

rate limiting 114, 115
versioning 113

application
running 194, 195

application endpoint
obtaining 244-247

application entry point
creating 183-186

application, for time display in current
time zone

creating 254-256
application-level data 126, 127
application, middleware system replication

demonstrating 67, 68
application monitoring

improving, tips 237-239
application structure

about 13
files, grouping by feature 13
Model-View-Controller (MVC) 14
of MovieApp sample application 150-152

application uptime
ensuring 252
forever tool 252
monit tool 252
mon tool 252

app.use() method 35, 69
app.VERB() function 52, 53
asset versioning 200-202
async-each module

URL 257
async-series module

URL 163
authbind

URL 276
using 277, 278

automated tests
need for 297, 298

average function response time
measuring 249, 250

B
backend improvements

about 209
concurrent connections, handling with

cluster 224
data processing, with streams 211, 212
dynamic data, caching 215-222
HTTPS, using with Stud 225
queries, executing in parallel 209
synchronous functions, avoiding 209
templates, streaming with trumpet

module 212-215

[332]

bitwise operators
URL 115

Blanket.js
URL 320

bootstrapping phase 84-88
buggy application, V8 debugger

creating 265, 266
endpoints 265

bunyan module
about 228-234
features 228
URL 228

C
caching

facilitating 116, 117
caching middleware

about 39
configuring 44, 45
performance benefits, measuring 42, 43
working with 39-41

callback 34
callback functions 159-161
categories, template engines

logic-less template engines 122
programmatic template engines 122
template engines with logic 122

chai module
URL 299

cheerio module 316
chokidar module

URL 138
CI

about 328
benefits 328, 329
free CI, for open source projects 329, 330
servers 328
software, URL 328

clarify module 181
Client error 4xx status codes

400 Bad Request 80
401 Unauthorized 80
403 Forbidden 80
404 Not Found 80
409 Conflict 80
422 Unprocessable Entity 80

429 Too Many Requests 80
about 80

client-side testing 326, 327
closure 39
cluster

used, for handling concurrent
connections 224

cluster-master module
URL 224

code
complexity analysis 322, 323

code coverage 320, 321
code linting 323-325
code sharing, between templates

partials, using 128, 129
complex applications

I/O bound operations, handling 10
complexity-report

URL 322
compression module

URL 202
configurable middleware

caching middleware 39
closure 39
creating 38

connect-flash module 190
Connect GitHub page

URL 16
connect-src, CSP directives 287
consolidate.js

URL 122, 131
used, for template engine

consolidation 131
content delivery network (CDN)

about 205
advantages 205
disadvantages 206

content negotiation mechanism
about 117, 118
URL 117

Continuous Integration. See CI
create function 106
cross-site request forgery (CSRF) 53, 278
cross-site scripting. See XSS
CSP directives

connect-src 287
font-src 287

[333]

frame-src 287
img-src 287
media-src 287
object-src 287
script-src 287

CSRF protection 278-282
css(value) function 286
csurf module 281
cuid module

about 230
URL 230

custom-err module 168
custom errors

creating 167, 168
custom Express error handler

creating 177-180
custom validation module

creating 88-91

D
database library 18
debug flag

debug module, versus regular logger 263
using 261-263

debugging commands
removing 273

debug module, versus regular logger
benefits 263

DELETE method 76
DRY templates

using, with layouts 130
Dust.js

URL 124
dynamic data, caching

about 215-222
Etag 222-224

E
EJS module 39, 182
environment-based loading,

of middleware 45-47
error

checking 159-161
handling, with middleware 53-57

human errors 169
logging 176, 177
runtime errors 169

error delivery ways, in Node applications
error first callback pattern 171
EventEmitter errors 172
synchronous style 170, 171

error-first callback pattern 171
errorhandler module

adding 256-261
URL 253

error handling, in practical application
about 182
application entry point, creating 183-186
application, running 194, 195
Post model 187
Primus, using 186
routes modules 189-193
static JavaScript file (core.js) 194
User model 188
view files 194

error-handling middleware
about 253, 254
application, for time display in current

time zone 254-256
improved error handler,

adding 256-261
error objects

features 173
errTo module 160
ESLint

URL 323
esprima

URL 273
ETag

about 222-224
URL 116

EventEmitter errors 172, 173
Express

about 12, 13
benchmarking, URL 146
comparing, with frameworks 8
features 7, 8
template engines, integrating with 139-147
used, for serving static resources 197

[334]

Express application
authbind, using 277, 278
iptables used, for redirecting

to another port 277
REPL, adding to 271, 272
root privileges, dropping 276, 277
running, on privileged ports 275, 276

Express, comparing with frameworks
about 8, 9
conventions 9
databases 9
goal 8
views 9

Express file-sharing application
creating 302-309
functional tests 316-319
running 310
testing 302-309
Unit tests 311-315

Express routes
about 47
path, specifying 47-49
reusable route handlers 49-51
route wildcards 52

express-validator module
URL 282

extend function 89

F
Faker.js

URL 301
used, for generating phony data 301

falafel
URL 273

file model 24-26
file uploads

handling 288-291
font-src, CSP directives 287
forever tool

URL 252
frame-src, CSP directives 287
functionality, middleware

arguments, callback 34
arguments, request object 34
arguments, response object 34

execution flow observation,
logs used 36, 37

items, adding to array 36
functional tests

about 316-319
writing 101-103
writing, for notes endpoints 109-112
writing, for user endpoints 103-108

G
getFullImagePath method 156
GET method 76
gm module

about 288
URL 288

groundskeeper tool
URL 273

grunt
URL 203

guests, SmartNotes application
actions, performing 81

gulp
URL 203

H
Haml.js, template engines with logic

URL 125
Handlebars.js

URL 127
handleRequest method 63
HEAD method 76
health endpoint 238
heapdump module

URL 269
Helmet

HTTP security headers, used with 287, 288
helmet module

URL 287
highlight.js module

URL 257
hipcache

URL 271
homebrew 150
html(value) function 285

[335]

HTTP benchmarking tools
httperf, URL 135
siege, URL 135
wrk, URL 135

httperf tool
URL 135

HTTP methods
about 76-78
DELETE 76
GET 76
HEAD 76
idempotence property 76
POST 76
PUT 76

HTTPS
Stud, using with 225

HTTP security headers
with Helmet 287, 288

HTTP status codes
about 78, 79
Client error 4xx status codes 80
code digits 78
Redirection 3xx status codes 79
references 81
Server error 5xx status codes 80, 81
Successful 2xx class 79
URL 78

human errors
about 169
avoiding 170

hyperglue, programmatic template engines
URL 125

I
index function

roles 190
input

validating 282
iptables

URL 275
used, for redirecting to another port 277

Istanbul
URL 320

items
pushing, to array 36

J
jsAttr(value) function 286
jsdom

URL 327
JSHint

URL 323
JSLint

about 323
URL 323

jsObj(value) function 285
json2html

URL 125
JSON Patch 77
js(value) function 285

K
Karma

URL 327

L
layouts

DRY templates, using with 130, 131
load testing 325, 326
logging

about 227
advantages 227
bunyan 228

logic-less template engines 122-124
login folder, application structure 13
logs

redirecting, to external service 235, 236

M
main file, middleware system

replication 61-64
memory leaks

debugging 269-271
references 271

metrics
average function response time,

measuring 249-251
collecting 239-244
network traffic, tracking 247-249

[336]

parameters, collecting 240
slowest application endpoint,

obtaining 244-247
middleware

about 33
debugging 264
environment-based loading 45-47
functionality 34, 35
ordering 52, 53
URL 33
used, for handling errors 53-57

middleware parameters
httpOnly property on the cookie

property 291
maxAge property on the cookie

property 291
secret property 291
secure property on the cookie property 291

middleware system, replicating
about 61, 62
application, demonstrating 67, 68
main file 61-64
requests, handling 65-67
routes handler, adding 69-71

mixins
URL 167

Mocha
about 298
URL 298

mocks 300
models

about 23
file model 24-26
implementing 93
Note model 96
reusable features for Mongoose models,

testing 93-96
User model 100

Model-View-Controller (MVC)
about 8, 14, 15
application, developing 15
public folder 15
routes folder 15
views folder 15

Model-View-Controller (MVC), developing
configuration 16, 17
database library 18

file model 24-26
folder structure, bootstrapping 15
full application, running 32
models 23
NPM dependencies, installing 15, 16
routes folder 19
starting script 17
User model 27, 28
views 29, 30

modules
URL 160, 168
used, for enhancing control flow 161-164

Mongoose models
Notes model, creating 93-96
User model, creating 93-100

mongoose module 182
monitoring tools

backend storages 251
Zag 251

monit tool 252
mon tool

URL 252
MovieApp sample application

application structure 150, 151
creating 150
heavy lifting, performing inside

model 155-158
overview 158
required modules 150, 151
route handlers, creating 153, 154
server.js file, creating 152, 153
URL, for documentation 150

mustache.js
URL 122

Mustache, logic-less template engines 122

N
network traffic

tracking 247-249
next function 66
NGiNX

tasks, performing 206
URL 206

Node applications
ways, of delivering errors 170

[337]

node-buffet module
about 205
URL 204

node-http-proxy
URL 271

node-inspector
URL 265, 268
using 268

Node modules
asset versioning 200-202
compression module, using 202-204
content delivery network, using 205
content size, minimizing 202-204
in-memory static middleware 204
middleware order 198-200
NGiNX using 206-208
using 197, 198

node-ratelimiter module
URL 114

Node's debugger client
using 267, 268

node-semver page
URL 16

Note model
about 96
creating 97, 98
required attributes 96

notes endpoints
functional tests, writing for 109-112

npm documentation
URL 16

npm registry
URL 147

O
Object Relational Mapper (ORM) 9
objects

extending 166, 167
once module

URL 166
operational errors. See runtime errors
output

sanitizing 283-287

P
partials (partial views)

about 127
used, for code sharing between

templates 128, 129
passport-local-mongoose module 182
PATCH method 77
PhantomJS

URL 327
POST method 76
Post model 187, 188
posts-api folder, application structure 13
posts route 190
practical application

error, handling 182
pre-commit module

URL 320
Primus

using 186, 187
primus module 182, 187
privileged ports

Express applications, running on 275, 276
production

view caching 131
programmatic template engines

about 122, 125
hyperglue 125
json2html 125
transparency 125

proxyquire 298, 301
PUT method 76

R
Read-Eval-Print-Loop. See REPL
reap module

URL 291
Redirection 3xx status codes

301 Moved Permanently 79
302 Found 79
304 Not Modified 79

registered users, SmartNotes application
actions, performing 81

render function
tasks 141

[338]

Rendr
URL 11

REPL
adding, to Express application 271, 272

repl-client module
URL 271

replify module
URL 271

Representational State Transfer. See REST
request object 34
requests, middleware system replication

handling 65-67
req.url property 35
response object 34
REST

HTTP methods 76
HTTP status codes 78
overview 75

RESTful APIs
precautions, URL 83

RESTful URLs
creating 82, 83

reusable applications 11
reusable route handlers 50, 51
rimraf module 316
root privileges

dropping 276, 277
route handlers

creating 153, 154
routes

about 19, 189-193
create function 192
debugging 264
posts route, functions 190
tasks 189

routes handler, middleware system
replication

adding 69-72
route wildcards 52
runtime errors

about 169
examples 169

S
safe methods 76
search method 156

secure-filters module
css(value) function 286
html(value) function 285
jsAttr(value) function 286
jsObj(value) function 285
js(value) function 285
style(value) function 286
uri(value) function 286
URL 285

security middleware, helmet module
about 288
contentTypeOptions

(X-Content-Type-Options) 288
hidePoweredBy

(remove X-Powered-By) 288
hsts (HTTP Strict Transport Security) 288
ienoopen

(X-Download-Options for IE8+) 288
iexss (X-XSS-Protection for IE8+) 288
xframe (X-Frame-Options) 288

Selenium Webdriver
URL 327

server-destroy module
about 230
URL 230

Server error 5xx status codes
500 Internal Server Error 80
501 Not Implemented 80
503 Service Unavailable 80
problems 80

server.js file
creating 152, 153

serve-static module 198
session middleware

parameters 291
URL 291

should.js file
about 298, 299
URL 299

siege tool
URL 135

signup folder, application structure 13
single callback execution

ensuring 165
single-page applications, Express 10
Sinon.js

about 299

[339]

mocks 300
spies 299
stubs 300
URL 299

slow-stream module 116
SmartNotes application

about 81
category attribute 82
description attribute 81
implementing 83
public attribute 82
rating attribute 82
requirements 81, 82
title attribute 81
types, guests 81
types, registered users 81
updatedAt attribute 82
userId attribute 82

SmartNotes application implementation
bootstrapping phase 84-88
Express routes, implementing 101-103
functional tests, writing 101-103
models, creating 93
validation, dealing with 88

stack-trace module
URL 257
using 178

stack traces
improving 174, 175

static JavaScript file (core.js)
tasks 194

staticMiddleware function 37
static resources

Node modules, using 197
serving, with Express 197

SteamShovel
URL 320

st modules
URL 198

streams
using, for data processing 211, 212

StriderCD
URL 328

strings
examples 174
using, instead of errors 174

stub.callArgWith() function 315

stubs 300
Stud

URL 225
using, with HTTPS 225

style(value) function 286
subapplications

mountable applications,
considerations 60, 61

mounting 59, 60
use cases 59

Successful 2xx status codes
200 OK 79
201 Created 79
202 Accepted 79
204 No Content 79

supertest module 298, 301, 316
synchronous functions

avoiding 209

T
tail command 234
template engines

about 121
consolidating, with consolidate.js 131
integrating, with Express 139-147
selecting 147, 148
selecting, URL 148

template engines with logic
about 122, 124
EJS 124
Haml.js 125

test spy 299
tests

running 320
The Movie Database API

URL 150
throttling 115
timezone-js module

URL 254
toolbox, testing

Mocha 298
phony data generation, Faker.js used 301
proxyquire 301
should.js 299
Sinon.js 299
supertest 301

[340]

travisify CLI tool
URL 330

tree tool 150
trumpet module

URL 213
using, for streaming templates 212-215

U
uncaught exceptions

handling 176
unit tests 311-315
unsafe methods 76
UnxUtils

URL 234
uptime monitoring 252
uri(value) function 286
use cases

about 10
bad use cases 12
base, for creating complex frameworks 11
code sharing, between server and client 11
complex applications, with heavy I/O

bound operations 10
reusable applications 11
single-page applications 10

use() function 63
user

reauthenticating, for sensitive
operations 292-294

User model
about 27, 100, 187
attributes 100

user endpoints
functional tests, writing for 103-108

users folder, application structure 13

V
V8 debugger

buggy application, creating 265, 266
node-inspector, using 268
Node's debugger client, using 267, 268
using 265

validation
custom validation module, creating 88-91
dealing with 88

performance, improving with
memoization 92

Varnish cache
URL 205

VError module 181
versionator module

about 208
URL 201

view cache setting
about 132-135
effects 132-135

view caching
cache, clearing 136-138
view cache setting 132

view files 194
view helpers 126, 127
views folder 29, 30

W
watch module

URL 145
wd module

about 327
URL 327

wrk HTTP benchmarking tool
URL 42

wrk load testing tool
URL 208

wrk tool
URL 135, 146

X
XSS

about 282
input, validating 282
output, sanitizing 283-287

xtend module
URL 166
use case 167

Z
Zag

URL 251
Zombie.js module

URL 327

Thank you for buying
Mastering Web Application Development

with Express

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Express Web Application
Development
ISBN: 978-1-84969-654-8 Paperback: 236 pages

Learn how to develop web applications with the
Express framework from scratch

1. Exploring all aspects of web development
using the Express framework.

2. Starts with the essentials.

3. Expert tips and advice covering all Express
topics.

Advanced Express Web
Application Development
ISBN: 978-1-78328-249-4 Paperback: 148 pages

Your guide to building professional real-world web
applications with Express

1. Learn how to build scalable, robust, and
reliable web applications with Express using
a test-first, feature-driven approach.

2. Full of practical tips and real-world examples,
and delivered in an easy-to-read format.

3. Explore and tackle the issues you encounter
while commercially developing and deploying
an Express application.

Please check www.PacktPub.com for information on our titles

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1. Learn about server-side JavaScript with Node.js
and Node modules.

2. Website development both with and without the
Connect/Express web application framework.

3. Developing both HTTP server and client
applications.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diving into Express
	The best parts of Express
	Comparing Express with other frameworks
	Goal
	Conventions
	Databases
	Views
	Overall

	Use cases
	Complex applications with heavy I/O bound operations
	Single-page applications
	Reusable applications
	Code sharing between the server and the client
	A base to create more complex frameworks
	Bad use cases

	Express into the wild
	Application structure
	Group files by features
	Model-View-Controller
	Developing a real MVC application

	Summary

	Chapter 2: Component Modularity
Using Middleware
	Connecting middleware
	The functionality of middleware
	Pushing items to an array
	Looking at the execution flow using logs

	Creating configurable middleware
	Closures to the rescue
	Caching middleware – a practical example
	A first try at the caching middleware
	Measuring the performance benefits of the caching middleware
	Making the caching middleware configurable

	Environment-based loading of middleware
	Express routes
	Specifying the path
	Reusable route handlers
	Route wildcards

	Ordering of middleware
	Handling errors with middleware
	Mounting subapplications
	Replicating the middleware system
	The main file
	Handling requests
	Demoing the application
	Adding the routes handler

	Summary

	Chapter 3: Creating RESTful APIs
	An overview of REST
	HTTP methods (verbs)
	HTTP status codes
	Successful 2xx
	Redirection 3xx
	Client error 4xx
	Server error 5xx

	SmartNotes application requirements
	Creating the RESTful URLs of the application
	Implementing the SmartNotes application
	The bootstrapping phase
	Dealing with validation
	Creating a custom validation module
	Improving performance with memoization

	Implementing the models
	Test helpers
	The Note model
	The User model

	Functional tests and route implementation
	User endpoints
	Notes endpoints

	API versioning
	API rate limiting
	Throttling
	Facilitating caching
	Content negotiation
	Summary

	Chapter 4: Leveraging the Power of Template Engines
	The different types of template engines
	Logic-less template engines
	Template engines with logic
	Programmatic template engines

	View helpers and application-level data
	Sharing code between templates with partial views
	DRY templates with layouts
	Template engine consolidation with consolidate.js
	View caching in production
	The view cache setting and its effect
	Clearing the cache without a restart

	Integrating a template engine with Express
	Choosing a template engine
	Summary

	Chapter 5: Reusable Patterns for
a DRY Code Base
	Creating the MovieApp sample application
	Application structure and required modules
	Creating the server.js file
	Creating the route handlers
	Doing the heavy lifting inside the model
	Wrapping it up

	Error checks and callback functions
	Tiny modules for better control flow
	Ensuring a single callback execution
	Extending objects in a reusable way
	A simple way to create custom errors
	Summary

	Chapter 6: Error Handling
	Runtime (operational) errors and human errors
	Ways of delivering errors in the Node applications
	Throwing errors in the synchronous style
	Error first callback pattern
	The EventEmitter errors

	Strings instead of errors as an antipattern
	Improving stack traces
	Handling uncaught exceptions
	Logging errors
	Creating a custom Express error handler
	Richer errors with VError
	Error handling in a practical application
	Creating the application entry point
	Real-time updates with Primus
	Post and User models
	About routes
	Views and static resources
	Running the application

	Summary

	Chapter 7: Improving the Application's Performance
	Serving static resources with Express
	Using Node modules
	The middleware order can impact performance
	Asset versioning
	Compress and minify
	An in-memory static middleware
	Using a content delivery network
	Using NGiNX

	Backend improvements
	Avoiding synchronous functions
	Doing things in parallel whenever possible
	Using streams to process data
	Streaming templates with trumpet
	Caching dynamic data
	Etag for dynamic data

	Using cluster to handle more concurrent connections
	HTTPS with Stud

	Summary

	Chapter 8: Monitoring Live Applications
	Logging
	Bunyan – a battle-tested logger
	Redirecting logs to an external service
	Things to note

	Simple tips for improving the application monitoring
	Collecting metrics
	Getting the slowest endpoints of the application
	Tracking the network traffic
	Measuring the average function response time

	Useful existing monitoring tools
	Ensuring the application uptime
	Summary

	Chapter 9: Debugging
	A better error-handling middleware
	Application for displaying the time in the current time zone
	Adding the improved error handler

	Using a debug flag
	Debug versus logger

	Debugging routes and middleware
	Using the V8 debugger
	Creating our buggy application
	Using Node's debugger client in the terminal
	Using node-inspector

	Debugging memory leaks
	Adding a REPL to our Express application
	Removing debugging commands
	Summary

	Chapter 10: Application Security
	Running Express applications on privileged ports
	Dropping root privileges
	Redirecting to another port using iptables
	Using authbind

	Cross-site request forgery protection
	Cross-site scripting
	Validating input
	Sanitizing output

	HTTP security headers with Helmet
	Handling file uploads
	Session middleware parameters
	Reauthenticating the user for sensitive operations
	Summary

	Chapter 11: Testing and Improving
Code Quality
	Importance of having automated tests
	Testing toolbox
	Mocha
	should.js
	Sinon.js
	Spies
	Stubs
	Mocks

	Supertest
	Proxyquire
	Generating phony data using Faker.js

	Creating and testing an Express
file-sharing application
	Running the application
	Unit tests
	Functional tests

	Running tests before committing in git
	Code coverage
	Complexity analysis of our code
	Code linting
	Load testing
	Client-side testing
	Continuous Integration
	CI servers
	Free CI for open source projects

	Summary

	Index

