
www.allitebooks.com

http://www.allitebooks.org


Microsoft Dynamics 
AX 2012 R3 Reporting 
Cookbook

Over 90 recipes to help you resolve your new SSRS 
Reporting woes in Dynamics AX 2012 R3

Deepak Agarwal

Chhavi Aggarwal

Kamalakannan Elangovan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Microsoft Dynamics AX 2012 R3  
Reporting Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-538-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors
Deepak Agarwal

Chhavi Aggarwal

Kamalakannan Elangovan

Reviewers
Parag Gunwant Chapre

Muhammad Anas Khan

Henrik Marx Larsen

Commissioning Editor
Usha Iyer

Acquisition Editor
Neha Nagwekar

Content Development Editor
Natasha DSouza

Technical Editor
Ankur Ghiye

Copy Editors
Puja Lalwani

Adithi Shetty

Alpha Singh

Trishla Singh

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Maria Gould

Bernadette Watkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Deepak Agarwal (Microsoft MVP) is a Microsoft Certified Professional and has been 
working professionally on Dynamics AX since 2011. He has worked with different versions of 
Axapta, such as AX 2009, AX 2012, R2, and R3. He has had a wide range of development, 
consulting, and leading roles, while always maintaining a significant role as a business 
application developer. Though his strengths are rooted in X++ development, he is a highly 
regarded developer and has knowledge of technical aspects of Dynamics AX development and 
customization. He has also worked on base product development with the Microsoft team.

He was awarded the Most Valuable Professional (MVP) on Dynamics AX in 2013 and 2014  
by Microsoft.

He has also contributed to the following books:

 f Microsoft Dynamics AX 2012 Reporting Cookbook

 f Microsoft Dynamics AX 2012 Programming

 f Microsoft System Centre Configuration Manager

Deepak shares his experience with Dynamics AX on his blog at http://theaxapta.
blogspot.in/.

Sincere thanks to my friend, Himashu, for his motivation and support.

I would also like to thank Mr. Kamalakannan Elangovan, the author of 
Microsoft Dynamics AX 2012 Reporting Cookbook, Packt Publishing, the 
earlier version of this book. Thanks to the Packt Publishing team for this 
great opportunity. It's a privilege to work with you all.

Also, thanks to all the reviewers who invested their time and provided  
useful feedback, which helped us a lot to make this book more effective  
and useful.

www.allitebooks.com

http://theaxapta.blogspot.in/
http://theaxapta.blogspot.in/
http://www.allitebooks.org


Chhavi Aggarwal started working on Dynamics AX in 2012. She is a Microsoft Certified 
Professional and has worked on both the 2009 and 2012 versions of Dynamics AX. She is an  
expert in SSRS reports and has also done a lot of customization and development in Dynamics 
AX R2/R3 through X++. She has a very deep knowledge of the technical aspects related 
to Dynamics AX R2/R3, as well as sound technical and logical skills in customization and 
development. She has also worked with the Microsoft team for standard base development.

I am grateful to my loving parents for motivating and supporting me through 
thick and thin. Sincere thanks to Mr. Puneet Agarwal (elder brother) and 
Mrs. Ankita Agarwal (sister-in-law), in addition to my dearly youngest brother 
Ankit Aggarwal for being the strongest pillars in my most difficult times.

I offer my immense reverence to the honorable Mr. Kamalakannan 
Elangovan, the author of the previous version of Microsoft Dynamics 
AX 2012 Reporting Cookbook, who has always been a great source of 
inspiration. Also, a special thanks to the Packt Publishing team, who  
always stood beside us throughout  this entire journey.

I am overwhelmed by the invaluable role played by the reviewers for  
their helpful comments and suggestions.

www.allitebooks.com

http://www.allitebooks.org


Kamalakannan Elangovan has over 8 years of development experience in Dynamics  
AX. He shares a passion for product development and has pioneered multiple ISV solutions  
on Dynamics AX. In the past, he has worked with Innovites to create the first multidimensional  
ISV solution for cable industries called "InnoVites for cable". Building the solution from scratch, 
he gained great insights into building, selling, and promoting a product among customers  
and partners in the Microsoft Ecosystem. You can find out more about him at http://
about.me/casperkamal.

Kamal is enthusiastic about sharing his learnings with the community, which led him  
to create one of the first few blogs for AX in 2006. It is currently available at http://
kamalblogs.wordpress.com. He is active on Twitter and is very well known in the 
community by his pseudonym, "Casperkamal".

First of all, I would like to thank my wife, Sangeetha, and my little daughter, 
Anu, for their considerable support during the long hours I put into this 
book. I also want to apologize for the time I stole from them to invest in  
this book.

Thanks to Dhangar Naveen who spent a considerable number of hours 
working along with me in making the examples involved in each recipe.

Special thanks to the wonderful team at Packt Publishing who have patiently 
guided and supported me in making this book a reality.

Also, a big thanks to the readers of my blog, my fellow bloggers, and the 
Dynamics AX community, who have directly and indirectly inspired me to 
create this book.

www.allitebooks.com

http://about.me/casperkamal
http://about.me/casperkamal
http://kamalblogs.wordpress.com
http://kamalblogs.wordpress.com
http://www.allitebooks.org


About the Reviewers

Parag Gunwant Chapre is currently working with Tieto Software Technologies Limited  
as a senior technical consultant. He completed his BE in CSE from Nagpur University in the 
year 2008 with first a division. He has over 6 years of experience in MS Dynamics  
AX 2009/2012 and ASP.NET/C#.NET.

Parag has worked with top MS Dynamics AX companies, such as Systems Advisers Group 
(SAG Global), Tectura Corporation at Noida, and Tata Consultancy Services in Pune. He  
has worked on different versions of Axapta, such as AX 2009, AX 2012 R2, and R3.

His work experience includes Windows and web applications, SSRS development, Microsoft 
Dynamics AX 2009/2012, Application Integration Framework (AIF), Microsoft Dynamics 
Connector, and MS Dynamics CRM.

He completed his certification in Windows and web application (.NET), Installation  
and Configuration, Introduction development, and MorphX Solution Development in  
MS Dynamics AX 2009/2012.

He has received much appreciation from various clients for developing SSRS reports  
and MS dynamics AX Integration with MS Dynamics CRM.

I would like to thank my parents and sister for their continuous support, 
guidance, and encouragement.

Special thanks to Rashi and the Packt Publishing team, who provided  
me with a chance to review this book.

www.allitebooks.com

http://www.allitebooks.org


Muhammad Anas Khan is a Microsoft Certified Professional, working as a technical 
consultant for Microsoft Dynamics AX at MazikGlobal, where he is responsible for delivering 
consultancy for Dynamics AX implementation projects. His technical expertise includes 
Application Integration Framework (AIF), forms, SSRS and SSAS reporting, Batch Framework, 
Role-based Security and custom workflow development.

He has more than 6 years of experience in the software industry, where he held various 
engineering positions to develop global enterprise systems. His career vision is to frame  
the right problems and find efficient solutions that deliver value to customers, partners,  
and shareholders. He has a master's degree in computer science from IBA University and  
lives with his family in Karachi.

You can find him on LinkedIn at https://www.linkedin.com/in/muhammadanaskhan, 
and read his Dynamics AX blog at http://dynamicsaxinsight.wordpress.com/.

I would like to thank my family for their continuous support especially my 
brother, Sohaib Khan, for guiding me well throughout my career.

Special thanks to Rashi and the whole Packt Publishing team for giving  
me the opportunity to review this book.

Henrik Marx Larsen has been implementing ERP across a number of industries, including 
wholesales, manufacturing, and financial services since 1994. In 1998, He started working 
with Microsoft Dynamics AX (formerly known as Damgaard Axapta) as a developer and helped 
deliver many projects across Europe. In recent years, Henrik Marx Larsen has worked as a 
Solution Architect on a number of enterprise projects and today is heading international jewelry 
giant PANDORA's global implementation of Microsoft Dynamics AX. He holds a BSc (Hons) in 
Computer Science from De Montfort University.

www.allitebooks.com

https://www.linkedin.com/in/muhammadanaskhan
http://dynamicsaxinsight.wordpress.com/
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print, and bookmark content
 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on 
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org




I would like to dedicate this book to my parents, who never let me down in the toughest  
times of my life, and to my nephew Shivansh Agarwal.

                                                                                                                  –Deepak Agarwal

This book is dedicated to Dick De Jong who selflessly mentored and trained me in the art of 
software development.

                                                                                                                  –Kamalakannan





i

Table of Contents
Preface v
Chapter 1: Understanding and Creating Simple SSRS Reports 1

Introduction 1
Using a query as a data source in a report 3
Creating auto designs from datasets 8
Grouping in reports 11
Adding ranges to the report 13
Deploying a report 15
Creating a menu item for a report 18
Creating a report using a query in Warehouse Management 20

Chapter 2: Enhancing Your Report – Visualization and Interaction 23
Introduction 24
Creating multiple data regions and charts in reports 24
Creating a chart data region 27
Creating a new layout template 29
Expression in reports 33
Aggregation in reports 36
Adding an image in auto design 38
Formatting reports 40
Adding unbounded parameters in reports 41
Adding filters to data regions 44
Adding document map navigation to reports 46
Creating drill-up/drill-down actions in reports 47

Chapter 3: Report Programming Model 49
Introduction 50
Opening a report through a controller 50



ii

Table of Contents

Modifying the report query in controller 55
Opening a report with a dialog 56
Creating a report using the UI Builder class 58
Adding a lookup on a report dialog using the UI Builder class 62
Connecting the UI builder class with a contract class 65
Adding ranges from unbound parameters to a query 66
Modifying the UI by caller 72
Turning off a report dialog 73
Setting up security for reports 73
Adding up the report menu item into privilege 74
Calling multiple reports from a controller 77
Calling multiple reports simultaneously using a single controller 78
Debugging a report model 80
Adding data methods in business logic 82
Adding a URL drill through action in reports 84
Debugging business logic 86
Unit testing business logic 87
Creating a report using a controller and the UI Builder class 88

Chapter 4: Report Programming Model – RDP 95
Introduction 95
Creating a simple RDP report 96
Testing the RDP report 103
Creating a simple precision design 104
Creating an advanced RDP report 107
Creating a report with multiple data sources in a single table 114
Creating a group view report 117
Adding headers and displaying company images 122
Using an existing temp table in RDP 123
Pre-processing reports 127

Chapter 5: Integrating External Datasources 129
Introduction 129
Adding a datasource through business logic 130
Using an XML feed as a datasource 133
Building a parameter lookup using business logic 136
Building a report through an external datasource 141
Adding a parameter for an external datasource query 145
Creating a customer summary OLAP report 146
Adding a parameter lookup for OLAP 150



iii

Table of Contents

Designing an OLAP table report with SQL Report Builder 156
Designing a map sub-report with SQL Report Builder 164
Creating a sub-report in auto design 170
Creating a sub-report in precision design 173

Chapter 6: Beyond Tabular Reports 177
Introduction 177
Creating a matrix report 178
Creating a multicolumn matrix report 183
Creating a column chart report 186
Creating a line chart 189
Gauges in reports 193
List and rectangle controls in reports 196
Adding reports to the role center 201

Chapter 7: Upgrading and Analyzing Reports 205
Introduction 206
Upgrading a report from its previous version 206
Analyzing and modifying an existing report 210
Implementing validation in reports 214
Surrogate fields in reports 216
Grouping and ordering controls in the report dialog 221
RDP with multiple temporary tables 227
Multi-value lookup 229
Inventory dimensions in reports 233
Financial dimensions in query reports 236
Financial dimensions in RDP reports 238

Chapter 8: Troubleshooting and Other Advanced Recipes 249
Introduction 250
Assessing report performance and usage 250
Handling long-running reports in AX 254
Troubleshooting reports in AX 260
Auto e-mail, save as file tasks in reports 266
Handling events after report completion 268
Generating and displaying barcodes in reports 271
Hiding controls by context 280
Using AXEnumProvider as the dataset for parameters in reports  282
Adding a new report design to print management 284
Deploying language-specific reports to speed up execution time 286
Improving the functionality of reports 287



iv

Table of Contents

Chapter 9: Developing Reports with Complex Databases 289
Introduction 289
Creating reports by fetching the data using complex queries 290
Creating reports by fetching the data using views 294
Creating reports by fetching the data using maps 297

Chapter 10: Unit Test Class and Best Practices Used for Reports 301
Introduction 301
Creating a unit test class for a contract class 302
Creating a unit test class for a controller class 305
Creating a unit test class for an RDP class 307
Best practices for AX 2012 report development 317

Index 321



v

Preface
Reporting provides consolidated, factual, and up-to date information about any area of 
business in an organization. This will help the organization member to take the right decision 
for their business. It acts as a treasure trove of reliable information for long-term planning and 
decision making.

In Microsoft Dynamics R2, AX provides the tool to build the SSRS reports but in Microsoft 
Dynamics R3, the tool to build the SSRS reports in a more simple and efficient way. This  
book will give over 90 more recipes for beginners to understand the SSRS reports in  
Microsoft Dynamics AX R3 faster and in a simplified manner.

What this book covers
Chapter 1, Understanding and Creating Simple SSRS Reports, helps you to walk through  
the basis of SSRS reports and create a simple report using queries. This chapter will also  
help you understand the basic characteristics of reports.

Chapter 2, Enhancing Your Report – Visualization and Interaction, covers how to enhance  
the visualization and interaction of reports through parameters, creating data regions and 
charts, and formatting the reports.

Chapter 3, A Report Programming Model, helps you build the SSRS reports programmatically 
inside Dynamics AX and add the validations programmatically.

Chapter 4, Report Programming Model – RDP, helps you to develop the advanced reports 
using the data provider framework. In this chapter, we will create a report using RDP classes.

Chapter 5, Integrating External Datasources, covers how the SSRS reports can be extended  
to include other data sources or through the integration framework.

Chapter 6, Beyond Tabular Reports, helps you understand the other formats of reports such 
as using matrices and charts. This book also covers the interesting components of reports 
such as gauges, rectangles, and lists.



Preface

vi

Chapter 7, Upgrading and Analyzing Reports, discusses the approaches for moving the 
MorphX-based reports into SSRS reports and also covers the patterns of reports.

Chapter 8, Troubleshooting and Other Advanced Recipes, dives into the performance and 
troubleshooting of SSRS reports. This will also introduce the log viewer through which you  
can analyze the report usage and its log.

Chapter 9, Developing Reports with Complex Databases, discusses developing the SSRS 
reports that have complex data and how to drive that data into reports using maps, views,  
and queries.

Chapter 10, Unit Test Class and Best Practices Used for Reports, helps you create the unit 
test classes for a report, which will help you test the business logic being written to develop 
reports. It will also tell you best practices to be followed when developing the reports.

What you need for this book
To practice the content in this book, you need the following software:

 f Microsoft Dynamics AX 2012 R3

 f SQL Server Reporting Services

 f SQL Server Analysis Services

 f Microsoft Visual Studio 2010

 f Microsoft Visual Studio 2013 in case of CU8

Alternatively, you can use the Virtual Image available for Microsoft Dynamics AX 2012 R3 
through the Microsoft Learning download center.

Who this book is for
This book is aimed at IT administrators looking to develop their own reports for their internal 
demands and for X++ developers who want to deepen their understanding of SSRS reports.

This book requires some basic knowledge of the SQL server reporting system, Microsoft 
Dynamics AX 2012, X++, and MorphX. Some examples are based on C#.NET; however, it  
is not a must to read this book.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:



Preface

vii

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software  
or preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "Add a new report to this 
project and name it PKTWarehouseMobileDeviceDetails."

A block of code is set as follows:

=drillVoucher(!Parameters.AX_ReportContext.Value, 
              !Fields.ItemTrans.VoucherNum.value, 
              !Fields.ItemTrans.TrandDate.value, 
              !Parameters.AX_CompanyName.Value);

Any command-line input or output is written as follows:

$>rs.exe -i C:\timeout.rss -s  
  http://[SSSRSServerName]:80/Reports -v timeout="72000" –l 0

www.allitebooks.com

http://www.allitebooks.org


Preface

viii

New terms and important words are shown in bold. Words that you see on the screen, for 
example, in menus or dialog boxes, appear in the text like this: "Right-click on the Dataset 
node and select the New Dataset option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention  
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

ix

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works in any form on the Internet, please provide us with  
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you  
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.





1

Understanding and 
Creating Simple  

SSRS Reports

This chapter will cover the following topics:

 f Using a query as a data source in a report

 f Creating auto designs from datasets

 f Grouping in reports

 f Adding ranges to the report

 f Deploying a report

 f Creating a menu item for a report

 f Creating a report using a query in Warehouse Management

Introduction
Reports are a basic necessity for any business process, as they aid in making critical 
decisions by analyzing all the data together in a customized manner. Reports can be fetched 
in many types, such as ad-hoc, analytical, transactional, general statements, and many more 
by using images, pie charts, and many other graphical representations. These reports help 
the user to undertake required actions. Microsoft SQL Reporting Services (SSRS) is the basic 
primary reporting tool of Dynamics AX 2012 R2 and R3.

1



Understanding and Creating Simple SSRS Reports

2

This chapter will help you to understand the development of SSRS reports in AX 2012 R3 by 
developing and designing reports using simple steps. These steps have further been detailed 
into simpler and smaller recipes. In this chapter, you will design a report using queries with 
simple formatting, and then deploy the report to the reporting server to make it available for 
the user. This is made easily accessible inside the rich client.

Reporting overview
Microsoft SQL Server Reporting Services (SSRS) is the most important feature of  
Dynamics AX 2012 R2 and R3 reporting. It is the best way to generate analytical, high user 
scale, transactional, and cost-effective reports. SSRS reports offer ease of customization 
of reports so that you can get what you want to see. SSRS provides a complete reporting 
platform that enables the development, design, deployment, and delivery of interactive 
reports. SSRS reports use Visual Studio (VS) to design and customize reports. They have 
extensive reporting capabilities and can easily be exported to Excel, Word, and PDF formats.

Dynamics AX 2012 has extensive reporting capabilities like Excel, Word, Power Pivot, 
Management Reporter, and most importantly, SSRS reports. While there are many 
methodologies to generate reports, SSRS remains the prominent way to generate analytical 
and transactional reports. SSRS reports were first seen integrated in AX 2009, and today,  
they have replaced the legacy reporting system in AX 2012.

SSRS reports can be developed using classes and queries. In this chapter, we will discuss 
query-based reports. Reports using classes will be discussed in later chapters.

In query-based reports, a query is used as the data source to fetch the data from Dynamics 
AX 2012 R3. We add the grouping and ranges in the query to filter the data. We use the auto 
design reporting feature to create a report, which is then deployed to the reporting server. 
After deploying the report, a menu item is attached to the report in Dynamics AX R3 so that 
the user can display the report from AX R3.

Through the recipes in this chapter, we will build a vendor master report. This report will list 
all the vendors under each vendor group. It will use the query data source to fetch data from 
Dynamics AX and subsequently create an auto design-based report. So that this report can  
be accessed from a rich client, it will then be deployed to the reporting servicer and attached 
to a menu item in AX.

Here are some important links to get started with this chapter:

 f Install Reporting Services extensions from https://technet.microsoft.com/
en-us/library/dd362088.aspx.

 f Install Visual Studio Tools from https://technet.microsoft.com/en-us/
library/dd309576.aspx.

https://technet.microsoft.com/en-us/library/dd362088.aspx
https://technet.microsoft.com/en-us/library/dd362088.aspx
https://technet.microsoft.com/en-us/library/dd309576.aspx
https://technet.microsoft.com/en-us/library/dd309576.aspx


Chapter 1

3

 f Connect Microsoft Dynamics AX to the new Reporting Services instance by visiting 
https://technet.microsoft.com/en-us/library/hh389773.aspx.

Before you install the Reporting Services extensions see https://
technet.microsoft.com/en-us/library/ee355041.aspx.

Using a query as a data source in a report
Queries offer the simplest and easiest way to retrieve data for SSRS reports in Dynamics AX 
R3. They are very advantageous as they are reusable, and the same query can be used as the 
data source of another SSRS report in Dynamics AX R3. They are also very easy to design.

We can create queries in two ways: either by using the query class, or under the Queries node 
in Application Object Tree (AOT). In this recipe, we will create a query under the Queries node 
in AOT and use it as a data source in SSRS reports. Later on, we will guide you on how to add 
the query as a data source through Visual Studio. 

Getting ready
To work through this recipe, you will require AX 2012 R2 or AX 2012 R3 rich clients with 
developer permission.

How to do it...
Create a new query named PKTVendorDetails under the Queries node in AOT, and add 
some fields in the query. Create a new SSRS report in Visual Studio 2010 and add the 
PKTVendorDetails query into that report as a data source.

1. Open the AX Development Workspace (Ctrl + D).

2. Go to AOT | Queries and add a new query.

3. Rename the query to PKTVendorDetails.

4. Go to query's data source node and add the new data source.

5. Rename the data source to VendTable and set property table to VendTable.

6. There are two steps to select fields from VendTable. You can use any of these:

 � Go to the Fields node under the VendTable data source and set Dynamic 
Property to Yes. This will automatically add all the fields in the VendTable  
to the query.

https://technet.microsoft.com/en-us/library/hh389773.aspx
https://technet.microsoft.com/en-us/library/ee355041.aspx
https://technet.microsoft.com/en-us/library/ee355041.aspx


Understanding and Creating Simple SSRS Reports

4

 � Drag and drop the required field directly from the table. Drag VendGroup, 
AccountNum, InvoiceAccount, and Blocked from VendTable as shown in 
the following screenshot. This is the best way to optimize the query and, 
consequently, reduce the fetch time, so we will go for this option in our recipes.

7. Save the query.

8. Now open Visual Studio.

9. Navigate to File | New | Project.

10. In the new project dialog, select Microsoft Dynamics AX, and then Report Model.

11. Set the name as PKTVendorDetailsReport.



Chapter 1

5

12. Now, right-click on project in Solution Explorer and Add a new Report to the 
PKTVendDetailReport project as shown in the following screenshot:

13. Rename the report as PKTVendorDetailsReport.

14. Now open the report by double-clicking on it in Solution Explorer.

15. Right-click on the Dataset node and select the New Dataset option.

16. Rename the dataset as VendorMaster.

17. Now, right-click on the VendorMaster dataset and select Properties.



Understanding and Creating Simple SSRS Reports

6

18. Click on the ellipsis (…) button  in Query.

19. Select the PKTVendorDetail query from the list and click on the Next button.

20. Select All Fields since we dropped all the unwanted fields during the creation of the 
query. From the All Display Methods node, select Name. Click on the OK button.



Chapter 1

7

This will generate the fields list for the dataset. This completes the addition of a dataset to  
a report.

How it works…
In this receipe we have used queries as a datasource in SSRS report in Dynamics AX R3 as 
queries are reusable and can help to add the ranges in a report.

Connecting VS to AX
When creating a new report project in Visual Studio, if there is no option such as Microsoft 
Dynamics AX, then ensure that you have your reporting extensions installed. When you have 
multiple instances of Dynamics AX installed, Visual Studio identifies the instance to connect to 
from the client configuration. The active client configuration is used to establish the connection. 
The layer in which the report must be created is also fetched from the client configuration.

www.allitebooks.com

http://www.allitebooks.org


Understanding and Creating Simple SSRS Reports

8

Retrieving metadata and data
With AX 2012, Windows Communication Foundation (WCF) based system services have 
been introduced. This includes the metadata service, query service, and user session service. 
The SSRS reporting extension uses the query and metadata services. The metadata service 
helps the report designer in Visual Studio to retrieve the metadata information of Queries, 
Tables, and Extended Data Types (EDT). The query service is used to fetch the data.

Verify the query
In the case of a complex query, a better approach would be validating the query before it is 
included in the report. Write a job in Dynamics AX that will use the query to retrieve the data 
and print the values to the infolog. This will help in identifying the problem when there is an 
issue with the report.

No joins
The report supports multiple datasets, but as in AX forms these datasets cannot be joined 
and they remain independent.

Creating auto designs from datasets
There are two ways to design an SSRS report in Visual Studio:

 f Precision design: This is for advanced structured design

 f Auto design: This is for general tabular design

In this recipe, we will create a simple auto design report by using the dataset added in the 
previous recipe, which will fetch the data and show it in the report.

In auto design, there are layouts that are already built in, and we can choose one in which  
we want to show the data, based on our preferences. 

Getting ready
To develop reports in Dynamics AX 2012 R3, you need Visual Studio, through which you can 
design, develop, and deploy the reports. SQL Reporting Services must be properly installed 
and configured. You must also have access to the reporting manager to manage and see the 
reports present in AX 2012 R3.

How to do it...
In this recipe, we will add an auto design under the Design node of the report. We will then 
assign its layout properties to ReportLayoutStyleTemplate and print the report.



Chapter 1

9

There are some standard report templates in AX. You can choose any 
of them for pre-designed layouts.

1. Right-click on the Designs node, select Add, and then select Auto Design. This will 
create a new auto design under the Design node. Rename it as VendorMaster.

2. In the VendorMaster properties, set the LayoutTemplate property to 
ReportLayoutStyleTemplate and set the Name property to VendorMaster.

3. Under the new auto design node, right-click on VendorMaster and select Add | Table. 
Set the properties for this table as shown in the following screenshot:



Understanding and Creating Simple SSRS Reports

10

4. Notice that the fields are added to the table design automatically.

5. Right-click on Auto design (VendorMaster) and select Preview. This will show a 
preview of the report.

6. To rearrange the fields as per the user requirement, go to the Data node under the 
Table node. You can move fields in two ways, by:

 � Using the right-click menu options, such as Move to Top, Move Up, Move 
Down, Move to Bottom

 � Using shortcuts, like Alt + Up/Down arrow



Chapter 1

11

The new format will look like the following screenshot:

How it works…
Auto design is much easier to design and develop when compared to precision design. The 
default type (table/chart) for auto design is defined in the properties of the dataset. The 
default type determines what kind of control is added when the dataset is dragged and 
dropped into the auto design node.

Templates: Templates are responsible for printing the header, footer, and company name  
on a report. They also manage the font and colors. Currently, AX does not support printing  
the company image in the header through auto design.

Report preview: This accesses the default company in AX to show a report preview. So, ensure 
that the default company in AX has data, otherwise you may not find data in the preview.

Standard SSRS reporting doesn't have the concept of auto design. 
This is only available in the AX SSRS implementation.

Grouping in reports
Grouping means putting things into groups. In the previous recipe, all the data shown in the 
report was listed sequentially. Grouping data simplifies the structure of the report and makes 
it more readable. It also helps you to find details, if required.



Understanding and Creating Simple SSRS Reports

12

We can group the data in the query as well as in the auto design node in Visual Studio. In 
this recipe, we will structure the report by grouping the VendorMaster report based on the 
VendorGroup to make the report more readable.

How to do it...
In this recipe, we will add fields under the grouping node of the dataset created earlier  
in Visual Studio. The fields that have been added in the grouping node will be added and 
shown automatically in the SSRS report.

1. Go to Dataset and select the VendGroup field.
2. Drag and drop it to the Groupings node under the VendorMaster auto design.

This will automatically create a new grouping node and add the VendGroup field  
to the group. Each grouping has a header row where even fields that don't belong  
to the group but need to be displayed in the grouped node can be added. 

This groups the record and also acts like a header, as seen in the following screenshot:



Chapter 1

13

How it works…
Grouping can also be done based on multiple fields. Use the row header to specify the fields 
that must be displayed in the header. A grouping can be added manually but dragging and 
dropping prevents a lot of tasks such as setting the row header.

Adding ranges to the report
Ranges are very important and useful while developing an SSRS report in AX 2012 R3. They 
help to show only limited data, which is filtered based on given ranges, in the report.

The user can filter the data in a report on the basis of the field added as a range. The range 
must be specified in the query. In this recipe, we will show how we can filter the data and  
use a query field as a range.

How to do it...
In this recipe, we will add the field under the Ranges node in the query that we made in the 
previous recipe. By adding the field as a range, you can now filter the data on the basis of 
VendGroup and show only the limited data in the report.

1. Open the PKTVendorDetails query in AOT.

2. Drag the VendGroup and Blocked fields to the Ranges node in AOT and save  
your query.

3. In the Visual Studio project, right-click on Datasets and select Refresh.



Understanding and Creating Simple SSRS Reports

14

4. Under the parameter node, VendorMaster_DynamicParameter collectively 
represents any parameter that will be added dynamically through the ranges.  
This parameter must be set to true to make additional ranges available during 
runtime. This adds a Select button to the report dialog, which the user can use  
to specify additional ranges other than what is added.

5. Right-click on the VendorMaster auto design and select Preview. The preview should 
display the range that was added in the query. Click on the Select button and set the 
VendGroup value to 10. Click on the OK button, and then select the Report tab, as 
shown in the following screenshot:

6. Save your changes and rebuild the report from Solution Explorer. Then, deploy  
the solution.



Chapter 1

15

How it works…
The report dialog uses the query service UI builder (that we will cover in later chapters) to 
translate the ranges and to expose additional ranges through the query.

Dynamic parameter: The dynamic parameter unanimously represents all the parameters  
that are added at runtime. It adds the Select button to the dialog from where the user can 
invoke an advanced query filter window. From this filter window, more ranges and sorting  
can be added. The dynamic parameter is available per dataset and can be enabled or 
disabled by setting up the Dynamic Filters property to True or False.

The Report Wizard in AX 2012 still uses MorphX reports to auto-create 
reports using the wizard. The auto report option is available on every 
form that uses a new AX SSRS report.

Deploying a report
SSRS, being a server side solution, needs to deploy reports in Dynamics AX 2012 R3. Until 
the reports are deployed, the user will not be able to see them or the changes made in them, 
neither from Visual Studio nor from the Dynamics AX rich client.

Reports can be deployed in multiple ways and the developer must make this decision. In this 
recipe, we will show you how we can deploy reports using the following:

 f Microsoft Dynamics AX R3

 f Microsoft Visual Studio 

 f Microsoft PowerShell



Understanding and Creating Simple SSRS Reports

16

Getting ready
In order to deploy reports, you must have the permission and rights to deploy them to SQL 
Reporting Services. You must also have the permission to access the reporting manager 
configuration.

Before deploying reports using Microsoft PowerShell, you must ensure that Windows 
PowerShell 2.0 is installed.

How to do it...
Microsoft Dynamics AX R3 supports the following ways to deploy SSRS reports.

Location of deployment
For each of the following deployment locations, let's have a look at the steps that need  
to be followed:

1. Microsoft Dynamics AX R3:

1. Reports can be deployed individually from a developer workspace in 
Microsoft Dynamics AX.

2. SSRS reports can be deployed by using the developer client in Microsoft 
Dynamics AX R3.

3. In AOT, expand the SSRS Reports node, expand the Reports node, select 
the particular report that needs to be deployed, expand the selected report 
node, right-click on the report, and then select and click on Deploy Element.

4. The developer can deploy as many reports as need to be deployed,  
but individually.



Chapter 1

17

5. Reports can be deployed for all the translated languages.

2. Microsoft Visual Studio:

1. Individual reports can be deployed using Visual Studio.

2. Open Visual Studio. In Solution Explorer, right-click on the reporting project 
that contains the report that you want to deploy, and click on Deploy.

3. The reports are deployed for the neutral (invariant) language only.

3. Microsoft PowerShell:

1. This is used to deploy the default reports that exist within Microsoft 
Dynamics AX R3.

2. Open Windows PowerShell and by using this, you can deploy multiple  
reports at the same time.

3. Visit http://msdn.microsoft.com/en-us/library/dd309703.aspx 
for details on how to deploy reports using PowerShell.

4. To verify whether a report has been deployed, open the report manager in the 
browser and open the Dynamics AX folder. The PKTVendorDetails report should  
be found in the list of reports.

You can find the report manager URL from System administration | Setup 
| Business intelligence | Reporting Services | Report servers.

5. The report can be previewed from Reporting Services also. Open Reporting Services 
and click on the name of the report to preview it.

www.allitebooks.com

http://msdn.microsoft.com/en-us/library/dd309703.aspx
http://www.allitebooks.org


Understanding and Creating Simple SSRS Reports

18

How it works
Report deployment is the process of actually moving all the information related to a report to a 
central location, which is the server, from where it can be made available to the end user. The 
following list indicates the typical set of actions performed during deployment:

1. The RDL file is copied to the server.

2. The business logic is placed in the server location in the format of a DLL.

Deployment ensures that the RDL and business logic are cross-referenced to  
each other.

The MorphX IDE from AX 2009 is still available. Any custom reports that are 
designed can be imported. This support is only for the purpose of backward 
compatibility. In AX 2012 R3, there is no concept of MorphX reports.

Creating a menu item for a report
The final step of developing a report in AX 2012 R3 is creating a menu item inside AX to  
make it available for users to open from the UI end.

This recipe will tell you how to create a new menu item for a report and set the major 
properties for it. Also, it will teach you to add this menu item to a module to make it  
available for business users to access this report.

How to do it...
You can create the new menu item under the Menu Item node in AOT. In this recipe, the 
output menu item is created and linked with the menu item with SSRS report.

1. Go to AOT | Menu Items | Output, right-click and select New Menu Item.  
Name it PKTVendorMasterDetails and set the properties as highlighted in  
the following screenshot:



Chapter 1

19

2. Open the Menu Item to run the report. A dialog appears with the Vendor hold and 
Group ranges added to the query, followed by a Select button. The Select button is 
similar to the MorphX reports option where the user can specify additional conditions. 
To disable the Select option, go to the Dynamic Filter property in the dataset of the 
query and set it to False.



Understanding and Creating Simple SSRS Reports

20

The report output should appear as seen in the following screenshot:

How it works…
The report viewer in Dynamics AX is actually a form with an embedded browser control. The 
browser constructs the report URL at runtime and navigates to the reports URL. Unlike in AX 
2009, when the report is rendering, the data it doesn't hold up using AX. Instead, the user 
can use the other parts of the application while the report is rendering. This is particularly 
beneficial for the end users as they can proceed with other tasks as the report executes.

The permission setup is important as it helps in controlling the access to a report. However, 
SSRS reports inherit user permission from the AX setup itself.

Creating a report using a query in 
Warehouse Management

In Dynamics AX 2012 R3, Warehouse Management is a new module. In the earlier version 
of AX (2012 or R2), there was a single module for Inventory and Warehouse Management. 
However, in AX R3, there is a separate module.



Chapter 1

21

AX queries are the simplest and fastest way to create SSRS reports in Microsoft Dynamics  
AX R3. In this recipe, we will develop an SSRS report on Warehouse Management. 

In AX R3, Warehouse Management is integrated with bar-coding devices such as RF-SMART, 
which supports purchase and receiving processes: picking, packing and shipping, transferring 
and stock counts, issuing materials for production orders, and reporting production as well.  
AX R3 also supports the workflow for the Warehouse Management module, which is used  
to optimize picking, packing, and loading of goods for delivery to customers.

Getting ready
To work through this recipe, Visual Studio must be installed on your system to design and 
deploy the report. You must have the permission to access all the rights of the reporting 
server, and reporting extensions must be installed.

How to do it...
Similar to other modules, Warehouse Management also has its tables with the "WHS" 
prefix. We start the recipe by creating a query, which consists of WHSRFMenuTable and 
WHSRFMenuLine as the data source. We will provide a range of Menus in the query. After 
creating a query, we will create an SSRS report in Visual Studio and use that query as the  
data source and will generate the report on warehouse management.

Open AOT, add a new query, and name it PKTWarehouseMobileDeviceMenuDetails.

1. Add a WHSRFMenuTable table.

2. Go to Fields and set the Dynamics property to Yes.

3. Add a WHSRFMenuLine table and set the Relation property to Yes. This will  
create an auto relation that will inherit from table relation node.

4. Go to Fields and set the Dynamics property to Yes.



Understanding and Creating Simple SSRS Reports

22

5. Now open Visual Studio and add a new Dynamics AX report model project. Name it 
PKTWarehouseMobileDeviceMenuDetails.

6. Add a new report to this project and name it 
PKTWarehouseMobileDeviceDetails.

7. Add a new dataset and name it MobileDeviceDetails.

8. Select the PKTWarehouseMobileDeviceMenuDetails query in the Dataset property.

9. Select all fields from both tables. Click on OK.

10. Now drag and drop this dataset in the design node. It will automatically create an 
auto design. Rename it MobileMenuDetails.

11. In the properties, set the layout property to ReportLayoutStyleTemplate.

12. Now preview your report.

How it works
When we start creating an SSRS report, VS must be connected with Microsoft Dynamics  
AX R3. If the Microsoft Dynamics AX option is visible in Visual Studio while creating the  
new project, then the reporting extensions are installed. Otherwise, we need to install the 
reporting extensions properly.



23

2
Enhancing Your  

Report – Visualization 
and Interaction

We will look at the following recipes in this chapter:

 f Creating multiple data regions and charts in reports

 f Creating a chart data region

 f Creating a new layout template

 f Expression in reports

 f Aggregation in reports

 f Adding an image in auto design

 f Formatting reports

 f Adding unbounded parameters in reports

 f Adding filters to data regions

 f Adding document map navigation to reports

 f Creating drill-up/drill-down actions in reports



Enhancing Your Report – Visualization and Interaction

24

Introduction
In every industry report, presentation plays an important role. Hence, every report development 
process places huge focus on the presentation and visualization of the report. This chapter 
offers you the knowledge of different available options that can be used to enhance visualization 
in reports through sample implementation. The chapter focuses on enhancing visualization and 
the interactivity in a report using Visual Studio's inbuilt tools. A report case is picked up and 
passed through several transformations to make it visually appealing. The flow is such that the 
concept and the practice are put side by side, so by the time the chapter is finished you will be 
familiar with the features.

Creating multiple data regions and charts in 
reports

This recipe will show how different data regions can be used to render data. Usually, a data 
region, in simple terms, is isolated small reports that share the parameter and datasets. This 
and the next recipe will help you understand how multiple regions can be created in SSRS. 
The first of the two data regions will display detailed customer transactions, while the second 
data region will show a pie chart that shows the total value of the transactions against each 
customer group.

Getting Ready
This and the other recipes in the chapter will extend the report built in this section. Working 
through Chapter 1, Understanding and Creating Simple SSRS Reports, should make it easier 
to create SSRS reports. So, following the guidelines from the previous chapter, create a simple 
SSRS report.

In the following recipe, we will create a customer account statement, which shows the 
transactions of different customers, by using multiple data regions:

1. Create a PktCustTransList query that includes the CustTable and CustTrans tables. 
Remove the unwanted fields and retain only the fields that are shown in the following 
screenshot. It's good from the performance perspective to use only fields and 
methods that are actually used in the report. This can be easily achieved by the  
drag and drop functionality.



Chapter 2

25

2. Open Visual Studio and create a new report model project called 
PktCustTransReport. Create a dataset that refers to the PktCustTransList query.

3. When selecting the fields in the query window, select all the fields and the name  
data method from CustTable.

How to do it…
1. Drag the CustTrans dataset to the auto design node. This will create a table  

design layout.

2. The grouping ability of data regions helps present data effectively by ordering and 
organizing it.

3. Drag the CustGroup field to the Group on node. Also drag the AccountNum field  
from the dataset to the Group on node.

4. Expand the Group on node and navigate to the Row1 property. Drag the field's 
Currency and Party_Name to the AccountNum group node.



Enhancing Your Report – Visualization and Interaction

26

5. The grouping helps render the data in a summarized view. The order of the  
grouping property determines the order in which the data is summarized.  
In this case, it is first by the customer group followed by customer.

6. Preview the report and see the multiple groupings in action as shown in the  
following screenshot:

How it works…
The Dynamics AX 2012 R3 SSRS reporting system differs from the legacy reporting system. 
If you have been working with the legacy reporting system, that is, MorphX reports, your mind 
might tune in to find two records: one for the customer table and the other for customer 
transactions. Here in Dynamics AX 2012 R3, it works differently with SSRS, where the data 
is completely flattened. This means if the customer table has c1 and c2 records and the 
transactions table has t11, t12, t21 and t22 records, then the flattened dataset of an SSRS 
report will have four records where each line will hold c1 t11, c1 t12, c2 t21 and c2 t22.



Chapter 2

27

The benefit of grouping on a flattened dataset is to recreate the data structure. So here, the 
grouping helps classify the transactions by customer and, in turn, acts as the header record.

Creating a chart data region
We will incorporate our second data region through this recipe. The same report has two 
sections that summarize the same data in alternate ways.

In this recipe, we will create a chart data region. This chart data region will show the total 
value of transactions against each customer group. The report will show a summary through 
the chart, followed by details of the transactions. Creating charts was not possible in the 
legacy system; however, with the new framework, it is just a matter of a few clicks and  
setups, as you will see in this recipe.

You can create and modify report definitions (.rdl) in the report builder 
and report designer in SQL Server Data Tools. Each authoring environment 
provides different ways to create, open, and save reports and related items.
For more details, visit http://technet.microsoft.com/en-us/
library/dd207141(v=sql.110).aspx.

Getting ready
This recipe is in continuation of the previously developed report in the Creating multiple data 
regions and charts in reports recipe in this chapter.

How to do it…
1. Right-click on the Designs | TransactionDetail node and select Add | Pie or 

Doughnut Chart.

2. Name it CustTransPie.

3. From the dataset, drag the AmountMst field and drop it in the Data node under  
the chart.

4. Set the following properties for the AmountMST control:

Property Value
Caption =SUM(Fields!AmountMST.Value)

Expression =SUM(Fields!AmountMST.Value)

Point label ="Group =" + Fields!CustGroup.Value

www.allitebooks.com

http://technet.microsoft.com/en-us/library/dd207141(v=sql.110).aspx
http://technet.microsoft.com/en-us/library/dd207141(v=sql.110).aspx
http://www.allitebooks.org


Enhancing Your Report – Visualization and Interaction

28

5. From the dataset, drag the CustGroup field and drop it in the Series node under  
the chart.

6. Start the preview. The preview will show the chart followed by the table. (The order  
is based on the position of data regions under auto design.)

How it works…
Multiple data regions present the capability to offer different representations of data. A data 
region creates smaller slices of the report to present related information in an isolated region. 
Each data region is attached to a dataset, and they are mutually exclusive except for the 
parameters. Parameters are shared between data regions and there is no ability to define 
parameters per data region.



Chapter 2

29

SSRS supports the following different visualizations for data regions through auto design, and 
a broader list through precision design, as discussed in Chapter 6, Beyond Tabular Reports:

 f List data regions

 f Table data regions

 f Matrix data regions

 f Chart data regions

You can also use views as data sources. Just add a view to the query and 
it is ready to be used as a data source. Due to huge data normalization 
done in AX 2012 with DirpartyTable, Financial Dimensions, and more, 
using views can make it easier and accurate to retrieve data.

Creating a new layout template
In Chapter 1, Understanding and Creating Simple SSRS Reports, we discussed how to use 
templates to standardize a report. There are several predefined layout and style templates 
that you can use for your reports. These templates are standard templates for Microsoft 
Dynamics AX reports and provide consistent layout and style settings.

The following table lists the predefined templates that are available, and describes what  
each template can be applied to:

Template name What each template can be applied to
BarChartStyleTemplate Bar chart data regions

ColumnChartStyleTemplate Column chart data regions
LineChartStyleTemplate Line chart data regions
ListStyleTemplate List data regions (top-down list or 

horizontal list data regions)

MatrixStyleTemplate Matrix data regions
PieAndDoughnutStyleTemlate Pie or doughnut chart data regions
ReportLayoutStyleTemplate Reports (company information is 

displayed in the report header)

ReportLayoutStyleTemplateNoCompany Reports (company information is not 
displayed in the report header)

RoleCenterReportLayoutStyleTemplate Reports that display in a role center
TableStyleTemplate Table data regions



Enhancing Your Report – Visualization and Interaction

30

Apart from using standard layouts, we have also the option to add a new template. Each 
style template is specific to a data region type and contains the layout and style setting for 
that data region, which is displayed in the body of report. This recipe will show how to create 
custom layout templates that can be used to standardize report aesthetics, such as font, size, 
color, and so on.

How to do it…
1. Open Visual Studio and select View | Application Explorer. This displays the entire 

AOT as in the AX environment in Visual Studio.

2. Navigate to the Sharedlibrary project under Visual Studio Projects | Dynamics AX 
Model Projects. Right-click and select Edit.

3. This project contains all the predefined templates. Right-click on the project and go to 
Add | Table style template. (Choose the template based on the data region, such as 
table, list, and so on.)

There is no inheritance concept among templates. Each template is independent  
and must define the entire formatting.

4. Double-click the template to open it in the editor, and rename it 
PktTableStyleFancyTemplate.



Chapter 2

31

5. In the current report design, there are two levels of groupings defined: CustGroup 
followed by AccountNum.

6. To set the fonts for both the levels, the GroupLevel1Style and GroupLevel2Style 
nodes must be modified.

7. Expand GroupLevel1Style and double-click on FieldCaptionStyle to open the form 
shown in the following screenshot (alternatively, open the properties window):



Enhancing Your Report – Visualization and Interaction

32

8. Set the following properties for both the nodes:

Property Value
Font | Family Verdana
Font | Size 8pt
Borders and Fill | Style Dashed

Repeat the same procedure for the FieldValueStyle node and set the properties except for 
the last one, which is not needed.

1. The template is set for the groupings; the next step is to set the template for the 
detailed rows.

2. Navigate to DetailRowStyle | FieldCaptionStyle and set the following properties:

Property Value
Font | Family Verdana
Font | Size 8 pt

3. Repeat the same for DetailRowStyle | FieldValueStyle.

4. Templates don't need deployment and they are available once they are created. 
Switch to the report node and select the CustTransTable table data region.

5. The dropdown will have the new template that was added. Set it as the template  
for the current report.

6. Right-click and preview to see that the fonts are different and the group nodes have  
a dashed line.



Chapter 2

33

How it works…
Layout templates define the general layout settings, such as company name, date, page 
number, and formatting for a report. Style templates are applicable to data regions, and 
depending on the data region the type of template also varies. AX offers a set of predefined 
report layout and style templates.

These templates provide the ability to present a uniform look and feel across reports. The 
elements in a template are fixed depending on the type; so elements cannot be added or 
removed but only have different formatting. Templates are useful only in the case of auto 
design and are not used in the case of precision design.

Layout and style templates are used in auto design reports and not 
accessed for precision design reports. If you want your reports to have 
the same look and feel as standard reports you must use the predefined 
layout and style templates.

Expression in reports
Expression is a very interesting property in SSRS reports. It is mostly used to do 
customizations at runtime. Expressions are basically used to change report appearances  
and report content at runtime. Microsoft Visual Studio has some built-in functions that  
can be used in expressions. In this recipe, we will implement the most important feature  
of printing the alternate line in different colors.

How to do it…
1. In the template, select the DetailRowStyle | FieldValueStyle node.

2. For the Background Color property, choose the <Expression...> list:

3. The Edit Expression window will pop up.



Enhancing Your Report – Visualization and Interaction

34

4. Type the following expression in the Edit Expression window, as shown in the 
screenshot:
=iif(RowNumber(Nothing)mod 3, "#e0e0e0", "#ffe0c0")

5. Save the template and go back to the PktCustTransList report for a preview.

6. The report should now appear with a different color on every third line when 
previewed, as seen in the following screenshot:

How it works…
Expressions are a powerful means through which you can manipulate the content and the 
formatting style of the report data. These are widely used across the report model to retrieve, 
calculate, display, group, sort, filter, parameterize, and format data. They are not just limited 
to the ones listed but apply to many other properties. A precise definition would be that 
anywhere in the report if a dropdown list displays <Expression…>, then expressions can  
be applied. Expressions start with the equals sign (=).

Expressions create a wide scope for manipulation by providing access to standard functions, 
data methods, fields, labels, and more. This can be compared to an Excel cell where a formula 
is evaluated to produce data. Expressions are evaluated when the report is run, so the results 
can be seen through the preview.



Chapter 2

35

Here are a few sample expressions:

Sample expression Purpose
=Fields!FirstName.Value Displays the value of the FirstName field
=IIF(Fields!Amount > 100, 
Fields!LineAmount * 3, 
Fields!LineAmount * 2

Evaluates if amount is greater than 100, then line 
amount multiplies by 3; otherwise, multiplies by 2

IIF conditions check the condition                                                                 
and return true or false based on the condition

=Year(Fields!OrderDate.
Value)

Displays the year from a date field

=Day(Fields!JoiningDate.
value)

Displays the day from the date field

=Sum(IIF(Fields!Quantity.
Value > 0,Fields!Amount.
Value , 0))

Conditionally sums the value of the amount field

=RowNumber(Nothing) Starts counting from the outermost data region

The expression syntax is based on Visual Basic, and any syntax error is highlighted by a red 
color in the Expression window.

For more details on expressions, visit https://technet.microsoft.
com/en-us/library/hh535216.aspx.

Understanding prefix symbols in simple expressions 
In the AX 2012 R3 SSRS reporting system, we use simple expression symbols to indicate 
whether the reference is to a field, a parameter, a built-in collection, or the ReportItems 
collection. The following table shows examples of display and expression:

Item Display text example Expression text example
Dataset fields [Sales]

[SUM(Sales)]

[FIRST(Store)]

=Fields!Sales.Value

=Sum(Fields!Sales.Value)

=First(Fields!Store.Value)

Report parameters [@Param]

[@Param.Label]

=Parameters!Param.Value

=Parameters!Param.Label

Built-in fields [&ReportName] =Globals!ReportName.Value

Literal characters used 
for display text

\[Sales\] [Sales]

https://technet.microsoft.com/en-us/library/hh535216.aspx
https://technet.microsoft.com/en-us/library/hh535216.aspx


Enhancing Your Report – Visualization and Interaction

36

Many invoice report designers tend to use the IIF() function to test the 
parameter expression for a true or false result and then explicitly return 
a true or false result from the function. Since all expressions can return 
Boolean results, and although this technique will work, it's redundant 
to use the IIF() function for this purpose. For example, the following 
expression could be used in place of the previous example:

=IIF(Parameters!ShowQuantity.Value = True, False, 
True)

The following example would be used to test the result of a non-Boolean 
value:

=(Parameters!ReportView.Label="Retail")

By wrapping an expression containing a comparison operator in 
parentheses, the expression returns a Boolean result.

Aggregation in reports
Aggregate functions are very useful in SSRS reports in AX R3 to calculate the aggregate  
values that show the numeric data. Totals are an obvious need in all reports. For example,  
the sum aggregate function calculates the total of transaction amounts. SSRS provides 
easy and powerful aggregation capabilities. This recipe will discuss a couple of aggregation 
methods and how they can be applied at different levels.

How to do it…
In this recipe two aggregations will be implemented:

 f Total value of transactions per customer

 f Count of the total number of transactions per customer

To define the total value of transactions implement the following steps: 

1. Navigate to the Data | AmountMst node.

2. Set the Aggregation Function property to Sum.

To display the count of records implement the following steps:

1. Go to the Groupings | AccountNum node in the table data region as shown in  
the following screenshot:



Chapter 2

37

2. Right-click and go to Add | Field.

3. Set the following properties:

Property Value
Caption Transactions

Expression =CountRows()

Name RecordCount

Text Align Left

4. Preview the report and notice the aggregated values appear with the customer 
details. The transactions column indicates the number of records while the  
other is the total value of the transaction.

How it works…
Aggregation provides the ability to calculate data based on various functions, such as  
Count, Sum, Avg, Min, and Max. These are applicable to a data region or dataset. The  
results of aggregation can be displayed based on the data region.

www.allitebooks.com

http://www.allitebooks.org


Enhancing Your Report – Visualization and Interaction

38

Here are some aggregate functions:

Aggregate 
functions

Syntax Purpose

sum Select sum(fieldname) from 
table_name

Returns sum of all transactions

min Select min(fieldname) from 
table_name

Returns minimum value of the data 

max Select max(fieldname) from 
table_name

Returns maximum value of the data

avg Select avg(fieldname) from 
table_name

Returns average value of the data

count Select count(fieldname) 
from table_name

Returns the number of non-null 
items

To use aggregate functions in AX 2012 R3, you should use integer/
real dataType/values.

When a certain field is to be displayed aggregated in the entire report, then the aggregation 
can be configured in the properties of the field in the dataset. Each field has a property called 
Aggregate Function that must be configured in this case. If the aggregation is only for the 
specific data region, then it must be defined in the report control in the data region.

Aggregate function results can be displayed as a summary in the header/footer of table  
and list data regions. In a matrix report, the columns and rows can be aggregated to  
display a grand total.

Adding an image in auto design
Images can easily be displayed in SSRS reports along with data in Dynamics AX R3. We can 
control the images dynamically at runtime by using expressions. This recipe will help you learn 
about using images in a report and using expressions to choose the images dynamically. 
A new column will be added to the report that indicates whether the transaction date was 
before or after the due date.We will use a tick image to show whether the transaction date 
was before the due date and a cross image for transactions that are after the due date. A 
visual expression is easier to identify than just having a Boolean type value.



Chapter 2

39

How to do it…
1. Identify the images that are going to be used and set them with right resolutions. 

(Syncfusion® Metrostudio has been used to generate these images.)

2. On the Images node, right-click and add a new image.

3. Locate the path of the image in the ImageSource property of the Images node.

4. The image is imported and a thumbnail becomes visible. The system identifies  
the nature of the file automatically.

5. Repeat the same steps to add the second image.

6. In the CustTransTable table data region, expand the Data node and add a new  
image type field.

7. Set the following properties:

Property   Value
Caption "On Time"

Source "Embedded"

MEME type "image/png"

Expression =IIF(Fields!DueDate.Value<>Fields!TransDate.
Value, "Wrong", "Right")

8. The report is ready to display images. Start a preview to see the expression getting 
evaluated to display the appropriate image.



Enhancing Your Report – Visualization and Interaction

40

How it works…
Images are used in scenarios to display a company logo or a product image. There are several 
ways to reference an image in a report: embedded images, external images, and database 
images. The following tabular overview details the reference type and their usage:

Reference type Applicable to Description
Embedded Auto/Precision design The image is part of the report or shared 

components
Database Auto/Precision design The image is stored as binary data in a table field 

such as product image
External Precision design The image is referenced through a URL or location

Adding a company logo is a common scenario, but at the moment only 
precision design supports it. Auto design cannot reference the company 
image in the report header.

See also
 f The Adding headers and displaying company images recipe in Chapter 4, Report 

Programming Model – RDP

Formatting reports
Formatting is very useful in SSRS reports to organize all the data. If you look carefully, the 
amount values in the previous report output recipes are not properly aligned.

In this recipe, we will make some formatting changes and align amount values as well as  
text fields.

How to do it…
1. To set the alignment, modify the Text Align property to Left and set the Format 

String property to Currency.

2. For the AmountMST field in the table data region, modify the Format String  
property and set it as Currency. The revised report will appear as shown in the 
following screenshot:



Chapter 2

41

How it works…
The format string property has a set of predefined formats that can be applied to a specific 
field, such as Date, Number, and so on.

If you have set up custom values on different properties and want to set the 
original value, then just right-click on the property window and then click on 
Reset. This will reset the selected property to its default value.

Adding unbounded parameters in reports
Parameters bring in interactivity to reports. In the previous chapter, we discussed how a new 
parameter can be added to a dataset through a query. There can be scenarios where we may 
have wanted to have a parameter that is not linked to dataset but needed it for the purpose of 
reporting. These parameters are referred to as unbound parameters. In this and the following 
recipe, we will discuss how to add a parameter and how to use it in the report. The How it works 
section of this recipe should also help you understand reports in more depth.

In this recipe, we will add two parameters, one of type Boolean and the other String type.  
The following recipe will show how they will be put to use.

How to do it…
1. Go to the Parameter node in the report and right–click on it. Go to  

Add | New Parameter.

2. In the new parameter, set the following properties:

Property Value
Name ShowPieChart

Prompt string Show Pie Chart

Data Type Boolean

Default Value True

Nullable True

AllowBlank True



Enhancing Your Report – Visualization and Interaction

42

3. Follow the same procedure and add a second parameter to the Parameter node. Set 
the following properties:

Property Value
Name CustGroup

Prompt string Customer Group

Data Type String

4. Previewing the report should show two new parameters in the report dialog, but filling 
these values will not have any influence as these have not been linked to the report.

How it works…
Parameters are the means to get user input in reports. The parameters of an SSRS report  
can be found under the Parameters node in the report.

There are two kinds of parameters here:

 f System parameter: These are parameters that start with AX_ and are defined by  
the system for internal purposes. However, they can be made visible to the user 
based on the requirement, except for the AX_UserContext parameter.

 f User-defined parameter: These are parameters that are defined in the dataset and 
any other parameters that are added are referred to as user-defined parameters.

System parameter
System parameters are hidden by default and have a default value, which is defined through 
an expression. For example, the AX_CompanyName parameter has the following expression 
filled in by default:

=Microsoft.Dynamics.Framework.Reports.BuiltInMethods. 
GetUserCompany(Parameters!AX_UserContext.Value)

System parameters consist of the following:

Parameter Function User modification
AX_CompanyName Indicates the company from which the data is 

to be fetched
Allowed

AX_
RenderingCulture

Language in which the report is rendered;  
for example, English

Allowed

AX_ReportContext Indicates whether the report is running in EP 
or client

Allowed

AX_UserContext User who runs the report Not recommended
AX_PartitionKey Defines the active partition for the report Not allowed



Chapter 2

43

User-defined parameters
There are two more types under user-defined parameters: bounded and unbounded 
parameters.

Bounded parameters
Parameters that are connected to a dataset are identified as bounded parameters. If a 
dataset is linked to a query, then the parameters are automatically created from the fields 
that are added to the Ranges node in the AOT query.

Unbounded parameters
These are parameters that are added manually and may or may not be connected to a 
dataset. These are used for the purpose of formatting, calculations, and so on.

Parameters and data source types
As seen in the previous chapter, AX SSRS supports different types of data sources, such as 
Query, RDP, OLAP, and external data sources. The parameters that are defined depend on  
the linked data source. This section will detail query-based parameters.

Query parameters
When a query is added as a dataset, the ranges defined for the query are automatically 
added to the Parameters node of the dataset and the report. The dataset parameters can 
be seen under the parameter node in dataset. Fields cannot be added manually in dataset 
parameters. Each parameter in the dataset refers to a report parameter, which can be seen 
through the Report parameter property:



Enhancing Your Report – Visualization and Interaction

44

If multiple datasets are added and they refer to the same type of field as 
parameter (for example, ItemId), then both the dataset parameters are 
added to the report parameter. This results in a redundant report parameter 
for the same field type. In this case, delete one of the two report parameters 
and then modify the dataset pointer to point to the same report parameter.

Dynamic filters
In line with the legacy system (AX 2009), it is possible to allow more parameters to be added 
by the user through the query framework. To enable this, set the Dynamic filters property to 
Yes in the data source node.

If you delete the dynamic parameter from the report parameter node 
by mistake, then you can retrieve it by right-clicking on the dataset and 
selecting Refresh.

See also
 f The Adding Ranges to the Report recipe in Chapter 1, Understanding and Creating 

Simple SSRS Reports

Adding filters to data regions
This recipe will use the parameters added in the previous recipe and influence the report. 
From the two parameters added, the Boolean type will be used to show or hide the chart data 
region while the string type will be used to restrict the data shown in the table data region.

How to do it…
1. Select the CustTransPie chart data region and open its properties.
2. In the visible property, key in the following expression. This links the first parameter  

to control the visibility of the data region:
=IIF(Parameters!ShowPieChart.Value, True, False)

3. Navigate to the Filters node of CustTransTable and create a new filter.



Chapter 2

45

4. In the new filter node, set the following properties:

Property Value
Name CustGroup

Value =1

Expression =IIF((Parameters!CustGroup.Value=Fields!CustGroup.
Value),1,0)

5. The data region displays only the data for which the expression evaluates to 1.

6. Now that the report is finally over, select Preview and activate the Parameters tab. 
The parameters that were added will be visible along with the standard parameters. 
Verify the parameters through the report preview.

The report is now ready to be deployed. The deployed report dialog should appear as 
shown in the following screenshot:

7. The deployed report will be displayed as shown in the following screenshot:



Enhancing Your Report – Visualization and Interaction

46

How it works…
Filters are present in the data region and are used to apply a filter to a specific data region. 
A filter works on the client side and operates on flattened data. It is used in cases where the 
data needs to be restricted only to a certain data region and not the entire dataset. As you 
can see, the chart data summarizes the data for the entire report, but the table data region 
shows the data only for the selected customer group.

Filters must be used cautiously and must not be considered as alternatives for query  
ranges. The reason is that the system fetches the whole data from the data source, after 
which it applies the filter. Check the property of the CustGroup field in filters as shown in  
the following screenshot:

Adding document map navigation to reports
A document map helps to navigate to report items. The user can click on the navigational 
link to jump to the report items that need to be displayed. It is similar to a table of contents. 
Whenever the user clicks on the navigational link, it refreshes the report. A navigational link 
can be added by setting the DocumentMapLabel property of the SSRS report.

In this simple recipe, we will see how we can create a powerful navigation system for a report. 
Document map navigation is an easy-to-use navigation style for reports.

How to do it…
1. The table data region already has the relevant table groupings based on CustGroup 

followed by Account num.

2. Select the CustTransTable table data region and set the Data Navigation Style 
property to DocumentMap.

3. Now preview the report.



Chapter 2

47

4. The navigation on the right-hand side is generated through the document map. This 
gives a summarized view and enables easy navigation to the right customer account 
without searching through a number of pages.

How it works…
The document map is an interesting design addition that offers an easier way to navigate 
through the report. This can be compared to a table of contents generated in a word document. 
To apply a document map to a data region, it is necessary to have grouping implemented.

Creating drill-up/drill-down actions in reports
Data in an SSRS report can be organized by adding drill-up/down-actions to it. The user can 
reveal details by clicking and can hide other details. Drill-down actions provide the plus and 
minus sign on a textbox, through which a user can reveal or hide the data accordingly.

Drill-down actions make the SSRS report in AX 2012 R3 very interactive and creative.  
By using the tables, a user can hide or reveal the rows and columns.

In this recipe, we will get introduced to another navigation style for reports. This is used  
to collapse or expand data. Additionally, we will learn about the list type data region.

www.allitebooks.com

http://www.allitebooks.org


Enhancing Your Report – Visualization and Interaction

48

How to do it…
1. In order to get a feel for this navigation style, hide the previous design. Go to the 

CustTransTable table data region and set the Visible property to false.

2. Right-click on the Auto design node, and go to Add | List data region.

3. On the new data region CustTransList list drag the same set of fields as in the  
table data region.

4. Similarly, add two levels of groupings, CustGroup followed by AccountNum.

5. Select the CustTransList data region and set the Data Navigation Style property  
to DrillDown.

6. Now your report should appear with collapsible groups in the preview as shown in  
the following screenshot:

How it works…
This is another navigation method like the document map. It displays collapsible groups in 
reports that can be expanded and closed by the user. This can be applied to Table, List and 
Matrix types of reports. The user can display the data in table, matrix which is nested inside 
the table or matrix. Data can also be displayed in a sub-report, which is contained within the 
main report.



49

3
Report Programming 

Model

We will look at the following recipes in this chapter:

 f Opening a report through a controller

 f Modifying the report query in controller

 f Opening a report with a dialog

 f Creating a report using the UI builder class

 f Adding a lookup on a report dialog using the UI Builder class

 f Connecting the UI builder class with a contract class

 f Adding ranges from unbound parameters to a query

 f Modifying the UI by caller

 f Turning off a report dialog

 f Setting up security for reports

 f Adding up the report menu items into privilege

 f Calling multiple reports from a controller

 f Calling multiple reports simultaneously using a single controller

 f Debugging a report model

 f Adding data methods in business logic

 f Adding a URL drill through action in reports

 f Debugging business logic

 f Unit testing business logic

 f Creating a report using the controller and the UI builder class



Report Programming Model

50

Introduction
In the previous chapters, report basics and graphical representations have been discussed 
extensively. In this chapter, we will discuss the report programming model using Dynamics 
AX 2012 R3 in greater detail. This chapter will give you a deeper understanding of how the 
reporting framework is modeled for report execution, and how to use report models to develop a 
complex report. The execution of a report not only involves designing the model but also involves 
receiving inputs and presenting these to the user. The recipes discussed in this chapter will 
assist you in making better choices on how to use the reporting framework to present and get 
inputs for the reports. The two important contracts—Report Data Providers (RDP) and Report 
Definition Language (RDL)—have been compared in detail for clarity. The later sections have 
recipes that detail how C#-based business logic can be designed, debugged, and tested in the 
report model.

Opening a report through a controller
A controller plays a key role in defining the entire report life cycle. It extends the 
SrsReportRunController base class. A controller class is used to control the execution of 
a report and preprocessing of data in a report. In Dynamics AX 2012 R3, the SSRS reporting 
framework uses this class to modify and call the report dialogs and pre/post processing the 
given parameters.

This recipe will be the first step in using the controller and will explain how a report can 
be invoked from a controller class. The How it works... section of this recipe will give you a 
detailed picture of the report programming model, which will help you understand the other 
recipes discussed in this chapter.

Getting Ready
To work with this recipe and the others explained here, it is required that you get familiar with 
the reports discussed in Chapter 1, Understanding and Creating Simple SSRS Reports, and 
Chapter 2, Enhancing Your Report – Visualization and Interaction.

How to do it...
To implement the recipe discussed here along with those that follow, create a report with the 
following steps:

1. Create a query called PktRdlItemTransList with limited selection fields as detailed  
in Chapter 1, Understanding and Creating Simple SSRS Reports.



Chapter 3

51

2. Create a new report by the name PktRdlItemTransList in Visual Studio using query.

3. Add an Auto design with grouping by Item Id.

4. Go to the Parameters node in the report and add the following unbound parameters:

Name Type Property "Nullable"
FromDate DateTime True
ToDate DateTime True
ShowApproved Boolean True

5. Build and deploy the report to AX.

6. Create a PktRdlItemTransController class that extends the 
SRSReportRunController class.

7. Add a new main method as shown in the following snippet:
public static void main(Args args)
{
    PktRdlItemTransController controller;
    controller = new PktRdlItemTransController ();
    controller.parmReportName(ssrsReportStr 
      (PktRdlItemTransList, ItemTransList));



Report Programming Model

52

//PktRdlItemTransList is report name while  
  ItemTransList is report design name.
    controller.parmArgs(args);
    controller.startOperation();
}

8. Save your changes and compile the class.

9. Now this controller class can be used to run the report. Press F5 to run the 
PktRdlItemTransList report through this controller class.

How it works...
Though we have added only a few lines of code to identify our report, the whole process is 
flowing smoothly. This is made possible by the SSRSReportRunController class that is 
extended by the controller created in this recipe. The detailed description that follows should 
help you understand the report programming model clearly.

Report programming model
The report programming model in Dynamics AX 2012 R3 adopts the Model View Controller 
(MVC) pattern to decouple the user interface and business logic. An MVC pattern, in simple 
terms, improves abstraction and creates clarity on responsibilities. Consequently, it brings 
down the growing complexity caused by mashing up the logic that drives the user interface 
and the business logic. The RunBase framework in AX 2009 is an example of how business 
logic and UI are put together in the patterns and adopted by legacy systems.



Chapter 3

53

The MVC pattern, when applied to a reporting framework, distributes the responsibilities as 
specified here:

 f Model: Represents the data that is generated by processing the parameters

 f Controller: Represents the parameters and UI builders that will be used to  
generate the report

 f View: Represents the visualization of the report 

Model
A model for an SSRS report can be an AOT query/RDP/business logic.

AOT queries are queries modeled using the MorphX IDE, while RDPs are classes that extend 
SRSReportDataProvider. An RDP model is used where complex business logic is involved 
in computing the data to be rendered. The data is modeled from different sources before it is 
sent to the report.

For more details on the RDP class visit http://technet.
microsoft.com/en-us/library/gg724119.aspx.

Controller
The controller is implemented in a report through a group of classes that are bounded under 
the report controller.

Report data contract
Implemented by SRSReportDataContract, this is the class that holds the different 
contracts used in a report. Each contract has its designated access method, such as 
ParmQueryContract and ParmRDLContract in the report data contract class. Here  
is a list of contracts present in a report data contract:

Contract Purpose
RDLDataContract

SRSReportRDLDataContract

Holds all the parameters related to the report 
including the system parameters, such as company, 
report context, user context

RDPDataContract Holds the parameters related to an RDP class
Query Contract Manages parameters for a query, including the 

dynamic filters and static ranges
PrintingContract

SRSPrintDestinationSettings

Manages the print settings, such as destination, 
format, and so on

http://technet.microsoft.com/en-us/library/gg724119.aspx
http://technet.microsoft.com/en-us/library/gg724119.aspx


Report Programming Model

54

Report controller
This is the main controller that binds different contract classes and controls the execution of 
the report, starting from parsing the report rdl, binding the contracts, UI builder classes to 
the report, rendering the UI, invoking the report viewer, and post processing actions after the 
report is rendered. It is implemented by the SRSReportRunController base class and can 
be extended to apply report-specific controls.

We can use a controller class in the following scenarios:

 f To open different reports/designs from the same menu item based on the input data

 f To record base reports that are opened from a form

 f To modify a report query based on the input data

 f To modify report contract data based on the input data

The report controller uses different contract classes, each aimed at different purposes.  
All contracts involved in a report are referenced through the report data contract.

Report UI builder
This is another controller class that is responsible for building the UI based on related 
contracts. Implemented by SRSReportDataContractUIBuilder, this class extends 
the SysOperationAutomaticUIBuilder class and can be modified for report-specific 
implementation. Overridden to handle UI events such as validate, modified, and more.

View
The report model or the design is the representation of the view and it is designed through  
the Visual Studio extension for Dynamics AX. (Designing a report model was discussed in  
the previous chapters.)

The following diagram will help to understand the flow from the time a request to open a 
report is invoked till it is rendered, and after it is rendered as well.



Chapter 3

55

Modifying the report query in controller
Queries present the ability to add dynamic ranges to a report. Some situations demand 
ranges or sorting orders to be filled in, making it easier for the user. A good example would 
be an instance when a report is opened from the customer from which the range customer is 
prefilled. This recipe will handle this scenario of modifying queries through the controller class.

Getting Ready
This and the following recipes will use the PktRdlItemTransList report created in the  
first recipe.

How to do it...
1. In your controller class, override the prepromptModifyContract method and  

write the following code:
protected void prePromptModifyContract()
{
    Query                   query;
    QueryBuildDataSource    qbds;
    InventTable             inventTable;
    
    //if an argument is received then see if it is inventTable
    inventTable = args ? args.record() as inventTable : null;
    
    if (inventTable.RecId)
    {
        //get the query associated with the report
        query = this.getFirstQuery();
        qbds  = query.dataSourceTable(tableNum(InventTable));
        qbds.addRange(fieldNum(InventTable,  
          ItemId)).value(inventTable.ItemId);
    } 

}

2. Create a new menu item and add it to the InventTable form. Verify that the data 
source property on the button is set to InventTable.



Report Programming Model

56

3. Click the button to see that item name is pre-filled in the range in the report dialog.

In the prepromptModifyContract method, do not call the super() 
method. 
For more details on the ternary operator (?), visit http://msdn.
microsoft.com/en-in/library/aa552755.aspx.

How it works...
The prePromptModifyContract method available in the SrReportRunController 
class as we extend this class in our report controller class we are able to override this. The 
prePromptModifyContract method in the controller class is the designated location to 
place the code for modifying queries before they are displayed in the dialog. So any caller-based 
modification, or locking of ranges based on a caller, or the addition of other data sources can  
be done here.

The code discussed here could be applied to the preRunModifyContract method as  
well, but this method is invoked after the report dialog. Thus, the user never gets an option  
to modify or see the changes to the query.

Opening a report with a dialog
In Microsoft Dynamics AX R2 and R3, we can run an SSRS report with the help of a dialog. 
Dialogs help the user print the SSRS report on the basis of the parameters defined in the 
report dialog. Suppose a user wants to print the details of a selected customer, they will  
select the parameter, run the report, and print the desired result. The dialog of an SSRS 
report can be opened through a menu item.

How to do it...
1. In this recipe, the user will print the SSRS report which shows the customer's details 

on the basis of the customer account and customer group. So, the first step is to 
create an SSRS report using a query (as explained in Chapter 1, Understanding and 
Creating Simple SSRS Reports), giving the range as AccountNum and CustGroup.

2. The next step is to create a new menu item. Go to AOT | Menu items | Output and 
right-click on it. Click on New Menu Item, as shown in the following screenshot:

http://msdn.microsoft.com/en-in/library/aa552755.aspx
http://msdn.microsoft.com/en-in/library/aa552755.aspx


Chapter 3

57

3. Now assign the SSRS report to the menu item.

4. The last step is to open the SSRS report through the menu item. The dialog looks  
like this:



Report Programming Model

58

How it works…
To print an SSRS report in Microsoft Dynamics AX R3, the user requires a menu item so that 
they can run the report. We have three different types of menu items in Dynamics AX R3: 
Display, Output, and Actions. When creating a menu item for an SSRS report, you should 
choose the Output menu item, because output menu items have a purpose to print a result, 
mostly used for referencing classes.

Creating a report using the UI Builder class
SSRS reports can be created using UI Builder classes. UI builder classes are used to customize 
and add parameters to the dialog box at runtime, which opens before the report runs in 
Microsoft Dynamics AX R3. The UI Builder is used to define the layout of the parameter dialog 
box which pops up when an SSRS report is open. We can add the parameter in the dialog box 
and modify those parameters at runtime. With the help of the UI Builder, we can add the lookup 
in the dialog box, which will be created in the next recipe.

In this recipe, we will create a new SSRS report through the UI builder in Microsoft Dynamics 
AX R3 and customize the dialog box which opens the SSRS report. To create the UI builder 
class, it must extend the SRSReportDataContractUIBuilder class.

Getting Ready
To work with this recipe, we need to create a UI builder that extends the 
SRSReportDataContractUIBuilder class. In the UI builder class, we have a build  
method which is used to create a dialog through which the user can open the report.

How to do it...
1. The first step is to add a UIBuilder class that extends the 

SRSReportDatacontractUIBuilder class as follows:
class PktRdlWarehouseUIBuilder 
extends SrsReportDataContractUIBuilder
{

}



Chapter 3

59

2. The next step is to create a contract class named PKTRdlWarehouseContract 
and add the parameters using this contract class. Also, it is important to validate 
the contract parameters so that all the parameters have a value as shown in the 
following code snippet:
[
    DataContractAttribute,
    SysOperationContractProcessingAttribute
(classstr(PktRdlWarehouseUIBuilder))
]
public class PktRdlWarehouseContract implements 
SysOperationValidatable
{
    TransDate                   fromDate;
    TransDate                   toDate;
    InventtransferUpdateType    status;
}

    [
        DataMemberAttribute('ToDate'),
        SysOperationLabelAttribute(literalStr("ToDate"))
    ]
public ToDate parmToDate(ToDate _toDate = toDate)
{
    toDate = _toDate;
    return toDate;
}

[
    DataMemberAttribute('FromDate'),
    SysOperationLabelAttribute(literalStr("FromDate"))
]
public FromDate parmFromDate(FromDate _fromDate = fromDate)
{
    fromDate = _fromDate;
    return fromDate;
}

[



Report Programming Model

60

    DataMemberAttribute('Status'),
    SysOperationLabelAttribute(literalStr("Status"))
]
public InventTransferUpdateTye  
  parmStatus(InventTransferUpdateTye _status = status)
{
    status = _status;
    return status;
}

public boolean validate()
{
    boolean isValid = true;

    if (fromDate && toDate && fromDate > toDate)
    {
        isValid = checkFailed("From date cannot be  
          greater than to date");
    }

    if (!fromDate)
    {
        isValid = checkFailed("From date must  
          be filled in");
    }

    if (!toDate)
    {
        isValid = checkFailed("To date must  
          be filled in ");
    }

    return isValid;
}

3. Next, declare the variables in the class declaration of the UI builder class as follows:
public class PKTRdlWarehouseUIBuilder extends  
  SrsReportDataContractUIBuilder
{
    DialogField     dialogStatus;
    DialogField     dialogFromDate;
    DialogField     dialogToDate;
}



Chapter 3

61

4. Now, we will override the build method—which is used to build the layout of the 
SSRS report—of the UI builder class as shown in the following snippet: 
public void build()
{
    PktRdlWarehouseContract    pktRdlWarehouseContract;

pktRdlWarehouseContract = this.dataContractObject() as  
  PktRdlWarehouseContract;
    
dialogStatus = this.addDialogField  
  (methodStr(PktRdlWarehouseContract, parmStatus),  
  pktRdlWarehouseContract);

dialogFromDate  = this.addDialogField  
  (methodStr(PktRdlWarehouseContract,parmFromDate),  
  pktRdlWarehouseContract);

dialogToDate  = this.addDialogField  
  (methodStr(PktRdlWarehouseContract,parmToDate),  
  pktRdlWarehouseContract);
}

5. The last step is to override the postBuild method—which initializes the dialog field 
after the fields have been built—of the UI builder class method as follows:
public void postBuild()
{
    PktRdlWarehouseContract    pktRdlWarehouseContract;
    super();

    pktRdlWarehouseContract = this.dataContractObject() as
      PktRdlWarehouseContract;

    dialogStatus = this.bindInfo().getDialogField
      (pktRdlWarehouseContract,  
      methodStr(PktRdlWarehouseContract, ParmStatus));

    dialogFromDate = this.bindInfo().getDialogField
      (pktRdlWarehouseContract,  
      methodStr(PktRdlWarehouseContract, parmFromdate));

    dialogToDate  = this.bindInfo().getDialogField
      (pktRdlWarehouseContract,  
      methodStr(PktRdlWarehouseContract, parmTodate));
}



Report Programming Model

62

How it works…
The three report parameters namely, FromDate, ToDate, and Status are added to the 
report, on the basis of which the report is printed. The methods that have been added in the 
contract class are created with the attributes. The UI and the controller are bounded by the 
SysOperationContractProcessingAttribute class while the contract associated  
with a report is determined by the SRSReportNameAttribute class.

The UI builder works with different scenarios, such as grouping dialog fields, overriding dialog 
events, creating a customized lookup in the dialog field, changing the layout of the report 
dialog, and binding the UI builder class with the data contract class.

Adding a lookup on a report dialog using the 
UI Builder class

The UI builder class is used to customize the layout of the report dialog through which the 
report is run. In the report dialog, we can add a lookup using this class. In the previous recipe, 
we created a dialog using the UI builder class. In the same recipe, we will add another field to 
create a lookup in the dialog.

Getting Ready
The prerequisites for creating this recipe are Microsoft Dynamics AX R3, reporting extensions 
must be installed, and the contract class.

How to do it...
1. The first step is to create a new parm method for a new parameter in the contract 

class made in the previous recipe. Add the method, named parmECCNumber, to  
the contract class as follows:
[
    DataMemberAttribute('ECCNumber'),
    SysOperationLabelAttribute(literalStr("ECC Number"))
]
public TaxRegistrationNumber_IN  
  parmEccNumber(TaxRegistrationNumber_IN _eccNumber =  
  eccNumber)
{
    eccNumber = _eccNumber;
    return eccNumber;
}



Chapter 3

63

The SysOperationLabelAttribute class is an attribute that is used to specify 
the label of the data member of the contract class. We are using the ECC number as 
the label of the data member of the contract class.

2. The next step is to create a lookup method in the UI builder class made in the 
previous recipe. We will create a lookup method using the syslookup class:
public static void eccNumberLookUp(FormControl  
  _formControl)
{
    SysTableLookup sysTableLookup =  
      SysTableLookup::newParameters(tablenum 
      (TaxRegistrationNumbers_IN), _formControl);
    Query                   query           = new Query();
    QueryBuildDataSource    queryBuildDataSource;
    QueryBuildRange         queryBuildRange;

    queryBuildDataSource =  
      query.addDataSource(tablenum 
      (TaxRegistrationNumbers_IN));
    queryBuildRange =  
      queryBuildDataSource.addRange(fieldnum 
      (TaxRegistrationNumbers_IN, TaxType));
    queryBuildRange.value(queryValue(TaxType_IN::Excise));

    sysTableLookup.addLookupfield(fieldnum 
      (TaxRegistrationNumbers_IN, RegistrationNumber));
    sysTableLookup.addLookupfield(fieldnum 
      (TaxRegistrationNumbers_IN, Name));
    sysTableLookup.parmQuery(query);
    sysTableLookup.performFormLookup();
}

In this method, we have created a lookup method for the ECC number. In the lookup 
method, we have stated that the range for the tax type should be equal to excise.  
So, using this lookup method will return the lookup with the ECC number of the  
excise tax type.

3. In the UI builder class, add a variable in the class declaration method of the class:
DialogField  dialogECCNumber;

4. To add the customized layout of the dialog of the report, we will override the build 
method of the UI builder class as follows:
public void build()
{
    PKTRDLWarehouseContract    pKTRDLWarehouseContract;



Report Programming Model

64

    pKTRDLWarehouseContract = this.dataContractObject()  
      as PKTRDLWarehouseContract;

    dialogECCNumber =  
      this.addDialogField(methodStr 
      PKTRDLWarehouseContract , parmECCnumber),  
      pKTRDLWarehouseContract );
}

5. Now, we will override the postBuild method—which is called when the dialog is 
created—of the UI builder class, as shown in the following snippet:
public void postBuild()
{
    PKTRDLWarehouseContract    pKTRDLWarehouseContract;
    super();

    pKTRDLWarehouseContract = this.dataContractObject()  
     as PKTRDLWarehouseContract;

    dialogECCNumber =  
      this.bindInfo().getDialogField 
      (pKTRDLWarehouseContract,  
      methodStr(PKTRDLWarehouseContract, ParmEccNumber));
    dialogECCNumber.registerOverrideMethod( 
      methodStr(FormStringControl, lookup), 
      methodStr(PKTRDLWarehouseUIBuilder_IN,  
      eccNumberLookup),this);
}

The BindInfo method returns the object of SysOperationUIBindInfo, which 
contains information about the dialog controls bounded to a report contract.

6. After running the report, the dialog will look like the following screenshot:



Chapter 3

65

How it works…
We have just finished adding another parameter of ECC number into the dialog box. By giving 
the lookup on the ECC number, the user will be able to choose the value from the multiple 
options. Lookup can easily be added to the report dialog using the UI builder class. To make 
the lookup, we need to write the query to get the lookup and then bind the lookup method 
with the contract parm method. The RegisterOverrideMethod is used to create a lookup 
which registers the runtime overridden method and object for the given method.

Connecting the UI builder class with a 
contract class

A contract class is used to define one or more parameters that are used in an SSRS report. It 
consists of parm methods with DataMemberAttribute, which is defined at the beginning 
of the parm method. If users want to customize the parameters in the report dialog, then they 
will require the UI builder class and will need to connect the UI builder class with the contract 
class. The SysOperationContractProcessingAttribute class is used to link the UI 
builder class with the contract class in an SSRS report in Microsoft Dynamics AX R3.

Getting Ready
In this recipe, we will link the contract class with the UI builder class. This can be done  
by using the BindInfo method of the UI builder class, which binds the dialog controls 
bounded to a report contract.

How to do it...
Create a contract class to link with the UI builder class as follows:

[
   SysOperationContractProcessingAttribute
(classStr(PKTRDLCustInvoiceUIBuilder))
]
public class PKTRDLCustInvoiceContract
{ 
    FromDate        fromDate;
    ToDate          toDate; 
}

The SysOperationContractProcessAttribute is used to bind the contract class with 
the UI builder class. It tells the contract class to build the parameter dialog.

In the earlier recipe, we used the bindInfo method in the UI builder class, which binds the 
report dialog controls with the report data contract parameters.



Report Programming Model

66

How it works…
Linking the UI builder class with the contract class of an SSRS report in Microsoft Dynamics 
AX R3 is necessary so that report parameters can be customized and shown in the report 
dialog. SysOperationContractProcessingAttribute is written above the class 
declaration of the data contract class in square brackets, which tells the data contract  
class that the UI builder class is linked to the contract class.

Adding ranges from unbound parameters to 
a query

SSRS reports support using parameters that are not part of a dataset. This recipe will attempt 
to use the unbound parameters FromDate and ToDate added to the report to set the ranges 
in the report query. These parameters are added to the report and are not connected to any 
dataset. The values in these controls will be received and set in the report query.

How to do it...
1. The first step is to create a contract and UI builder class and bind them together 

(assuming you have created the parameters as discussed in the first recipe  
Opening a report through a controller).

2. Add a UIBuilder class that extends SRSReportDatacontractUIBuilder  
as follows:
public class PktRdlItemTransListUIBuilder extends  
  SrsReportDataContractUIBuilder
{

}

3. Add a contract class that extends SRSReportRdlDataContract as shown in  
the following snippet:
[
    SrsReportNameAttribute(ssrsReportStr 
      (PktRdlItemTransList, ItemTransList)),
    SysOperationContractProcessingAttribute(classstr 
      (PktItemTransUIBuilder),  
      SysOperationDataContractProcessingMode:: 
      CreateSeparateUIBuilderForEachContract)
]
public class PktRdlItemTransListRdlContract extends  
  SRSReportRdlDataContract
{



Chapter 3

67

    TransDate   fromDate;
    TransDate   toDate;
    #define.FromDate('FromDate')
    #define.ToDate('ToDate')
}

4. The next step is to show these values in the UI. If the report is previewed in Visual 
Studio, the FromDate and ToDate parameters appear as shown in the following 
screenshot. This may not be a convenient way for the end user to specify date ranges.

5. To add the date fields to the report dialog, add the following method and call it from 
the overridden method PktItemTransListUIBuilder\build as follows:
class PktRdlItemTransListUIBuilder extends  
  SrsReportDataContractUIBuilder
{
    DialogField dialogFromDate;
    DialogField dialogToDate;

//identifier text for retrieving the value 
//from the parameter map in RDL data contract
//The names must match the name provided in the report //model

    #define.FromDate('FromDate')
    #define.ToDate('ToDate')
}

private void addDateFields()
{
    dialog                          dialogLocal;
    PktRdlItemTransListRdlContract  transContract;

    dialogLocal = this.dialog();
    transContract = this.getRdlContractInfo() 
      .dataContractObject()  
      as PktRdlItemTransListRdlContract;

    dialogFromDate = dialogLocal.addFieldValue( 
      extendedTypeStr(FromDate),



Report Programming Model

68

//set the value from the contract. 
//is equivalent of unPack and initialize in ax 2009
      DatetimeUtil::date(transContract.getValue( 
      #FromDate)), "@SYS5209");

    dialogToDate = dialogLocal.addFieldValue( 
      extendedTypeStr(ToDate),  
      DatetimeUtil::date(transContract.getValue( 
      #ToDate)), "@SYS14656");
}
public void build()
{
    super(); 
    this.addDateFields();
}

6. Run the report to see the result, which will look like the following screenshot:

The report image shows four controls. This is the result of the framework adding two 
controls for the type Datetime and two controls being added by the extended class for 
type Date. To make only the controls added by the child class visible, comment super 
in the build method. This turns out to be a disadvantage, as every other control such as 
showApproved present in the report dialog field must be added explicitly in the same 
way as FromDate and ToDate are added.



Chapter 3

69

The report image shows three controls. This is the result of the framework adding  
two controls for the type UTCDatetime and customer account controls being  
added by the extended class for type CustAccount.

7. After the controls have been added, these values must be saved in the contract to  
be set in the query. Override the getFromDialog method in the UI builder class  
and write the following code to save the value to the contract:
public void getFromDialog()
{
    PktRdlItemTransListRdlContract  transContract;

    transContract = this.getRdlContractInfo() 
      .dataContractObject() as  
      PktRdlItemTransListRdlContract;

    transContract.setValue(#FromDate, DateTimeUtil:: 
      newDateTime(dialogFromDate.value(), 0));
    transContract.setValue(#ToDate, DateTimeUtil:: 
      newDateTime(dialogToDate.value(), 0));
}

This completes adding the Date field to the UI, storing, and showing back the  
values from the data contract.

8. The values from the dialog should be set in the query to make it complete. This must 
be done after the user clicks OK on the report dialog. The preRunModifyContract 
method on the controller is invoked after the user clicks OK, so the 
preRunModifyContract method will be appropriate to use in this case.  
Override this method with the following code:
protected void preRunModifyContract()
{
    #define.parameterFromDate('FromDate')
    #define.parameterToDate('ToDate')

    SrsReportRdlDataContract    contract;
    contract = this.parmReportContract().parmRdlContract();

    Date fromDate =  
      contract.getParameter(#parameterFromDate) 
      .getValueTyped();
    Date toDate =  
     contract.getParameter(#parameterToDate) 
     .getValueTyped();



Report Programming Model

70

    Query query = this.getFirstQuery();

//Modify the query contract based on fromDate & toDate.
    SrsReportHelper::addFromAndToDateRangeToQuery( 
      query, fromDate, toDate, 
      tableNum(InventTrans), 
      fieldNum(InventTrans, DatePhysical));
}

9. The last part is to ensure that the value of FromDate is less than ToDate. Any 
validations in the contract values can be placed in the contract class. Override the 
PktRdlItemTransListRdlContract\Validate method with the following code:
public boolean validate()
{
    boolean isValid = super();
    fromDate = this.getValue(#FromDate);
    toDate = this.getValue(#ToDate);

    if(fromDate && toDate)
    {
        if(fromDate > toDate)
        {
            isValid = checkFailed("@SYS120590");
        }
    }

    return isValid;
}

How it works…
The two report parameters FromDate and ToDate that are added to the report directly are 
accessed through the controller. Since the report model only supports DateTime and not Date, 
the report dialog when previewed shows a control of type DateTime. The Datetime field type 
in the UI may not be convenient to enter inputs and the date value alone is required in this case. 
This can be done through adding custom controls of type Date to the UI. By blocking the super 
call, the controls are prevented from being added to the report dialog. Alternative date controls 
are added through the code and are bounded to the report parameters. The values from these 
overridden controls are then added to the query. This way we understand how we can create an 
unbounded control and override the type of control that is rendered to the UI.



Chapter 3

71

The classes created in this recipe are decorated with attributes. The attributes attached to 
the contract class create the necessary binding. The UI and the controller are bounded by the 
SysOperationContractProcessingAttribute while the contract associated with a 
report is determined by the SRSReportNameAttribute. As seen in the previous screenshot, 
a control of DateTime type is shown. To be able to do this, it is important to understand the 
parameters and contracts along with how they are stored.

RDP vs RDL data contract
This chapter will largely use the RDL contract to control report parameters. In this section, 
the major contract types have been discussed to create clarity in understanding. Contracts 
are used to share input values between the controller, UI builder, and the report at runtime. 
The RDL and RDP contracts are very important as these carry user inputs. RDP and RDL have 
been compared here to give a detailed understanding (RDP contracts have been discussed  
in detail in Chapter 4, Report Programming Model – RDP):

RDL data contract RDP data contract
A report is bound to a query, data method, or 
OLAP data source and validation logic must be 
added to the parameters.

A report is bound to an RDP class and 
validation logic must be added to the 
parameters.

It holds system parameters and report model 
parameters.

It holds contract-specific parameters.

Parameters are accessed by their identifier name; 
for example, Contract.get("FromDate"), 
Contract.set("FromDate").

Parameters are accessed by the 
corresponding parm method; 
for example, Contract.
ParmFromdates.

Contracts are stored in Maps. Contracts are stored in corresponding 
variables.

It is weakly typed. It is strongly typed.
It is used in all reports. It is only used for RDP-based reports.
The parameter map consists of all parameters, 
including the RDP parameters.

It holds reference only to its own 
parameters.

It is bounded to a report. It can be shared across reports.
It stores system parameters, such as Company 
name, Report context, and others.

System parameters are not accessible 
through this contract.

An RDP report can have both RDL and RDP data contracts. Each data 
contract can have its own UI builder, but care must be taken that events 
are carefully delegated and handled.



Report Programming Model

72

Modifying the UI by caller
This recipe will discuss how the controls in the report dialog can be added or removed 
based on the caller. For this purpose, the third parameter ShowApproved added in the first 
recipe will be used. ItemTrans has an Approved field and the idea is to link this unbound 
parameter to this field in the dataset so that users can easily choose it in the report dialog 
rather than adding it through the dynamic filters in the query.

How to do it…
1. The build method from the UI builder class will be the ideal choice to handle any 

changes to the UI. Create a method called enableApprovedFlag() and call this 
method from the build method in UI builder. This can alternatively be invoked from 
the postBuild method of the UI builder.
private void enableApprovedFlag()
{
    Dialog      dlg;
    TableId     tableId;
    PktRdlItemTransController transController;
    DialogField dialogApproved;

    dlg = this.dialog();
    //add the field since the super call is blocked  
    in the build method
    //dialogApproved is a global variable
    dialogApproved  = dlg.addFieldValue( 
      extendedTypeStr(NoYesId), this.dataContractObject() 
      .getValue(#ShowApproved), "Include Approved");
    //if super is not blocked then get the dialog field  
    using this syntax 

    transController = this.controller() as  
      PktRdlItemTransController;

    if (transController.parmArgs())
    {
        tableId = 
          transController.parmArgs().record().TableId;
        if (tableNum(InventTable) == tableId)
        {
            dialogApproved.visible(false);
        }
    }
}



Chapter 3

73

2. As we have learnt in the Adding ranges from unbound parameters to a query recipe, 
the methods getDialogField in the UI builder (PktRdlItemTransUIBuilder) 
and preRunModifyContract in the controller classes must be modified to retrieve 
the value and to set the value in the query correspondingly.

3. Save and compile the classes and now run the report. When the report is invoked 
from the InventTable form, the report dialog will now display the Show approved flag.

How it works…
The visibility of control can be easily switched, as shown here, thus helping in creating a 
dynamic and context-specific report dialog. If you wish a report parameter to be completely 
hidden, it is recommended that you use the visible property in Visual Studio.

Turning off a report dialog
When no user interaction is required, the report can be run directly without the report dialog. 
This short recipe will show how this can be done.

How to do it...
1. In the controller class of the report, add the following code:

public static void main(Args args)
{
    PktRdlItemTransController controller;

    controller = new PktRdlItemTransController();
    controller.parmReportName(ssrsReportStr 
      (PktRdlItemTransList, ItemTransList));
    controller.parmArgs(args);
    //turn off dialog
    controller.parmShowDialog(false);
    controller.startOperation();
}

2. Run the report to see that the report opens up directly without any prompts.

Setting up security for reports
Security set up for a report is significant as it helps apply the right control. As a developer, it is 
important to understand the right security approach during development. Through this recipe, 
we will learn how to properly set up security for reports.



Report Programming Model

74

How to do it…
1. Go to the Action menu item and add a new menu item.

2. In the properties of the menu item, set the properties as follows:

Property Value
Name PktItemTransList
Object Type Class
Object PktItemTransController
LinkedPermissionType SSRSReport
LinkedPermissionObject PktItemTransList
LinkedPermissionObjectChild ItemTransList
ViewUserLicense Functional
MaintainUserLicense Functional

How it works...
The LinkedPermissionType properties control the security of a report. They tell the security 
framework where the security for this menu item must be inferred from. The framework tries to 
retrieve the associated report from the object attached to the entry points, which is a menu item 
in this case. When there is no controller class, the steps discussed in this recipe can be applied 
to the display menu item that invokes the report.

Adding up the report menu item into 
privilege

The security privileges in Microsoft Dynamics AX R3 basically constitute a group of permissions. 
The entry points below each privilege identify the objects that the user can access. By using 
a privilege, we give permissions to forms, menu items, tables, and SSRS reports. A privilege 
provides multiple access levels to securable objects. These levels are Read, Update, Delete, 
Create, Correct, and NoAccess. In this recipe, we will learn how a menu item can be added 
into a privilege. We will create a new privilege and add a menu item into it.



Chapter 3

75

How to do it...
1. The first step is to create a new menu item in the SSRS report. Go to AOT | Menu 

Items | Output and right-click on it. Click on New Menu Item. Name the new menu 
item as PKTRDLMenuItem.

2. Assign the properties of the menu item as follows:

Properties Values
Name PktRdlMenutItem
LinkedPermissionType SSRSReport
LinkedPermissionObject PKTRdlCustInvoiceReport
LinkedPermissionObjectChild Report



Report Programming Model

76

3. The next step is to create a new privilege. Go to AOT | Security | Privileges and  
right-click on it. Click on New Privilege and name it as PktRdlPrivilege.

4. Now drag and drop PKTRdlMenuItem into the entry point of PKTRdlPrivilege. Assign 
the access level of the menu item to Read. This is how we assign the level  
of the menu item in the privilege.

How it works…
Privileges are a group of related permissions that are required to perform a duty. We can apply 
access levels to securable objects. In the standard Microsoft Dynamics AX R3 application, 
there are several existing privileges that meet the business requirements. However, if these 
requirements are not met, then users can make their own privileges. We can assign the 
privilege directly to security roles if needed. In Microsoft Dynamics AX R3, there are duties 
that are predefined by the application, which is the group of privileges. Now, the administrator 
no longer has the need to identify the application objects and can grant access to objects.

Find more information on creating new duties, roles, and privileges 
at http://technet.microsoft.com/en-us/library/
hh556870.aspx.

http://technet.microsoft.com/en-us/library/hh556870.aspx
http://technet.microsoft.com/en-us/library/hh556870.aspx


Chapter 3

77

Calling multiple reports from a controller
A single controller can be used to invoke multiple reports. This recipe will discuss how to use 
the same controller for different reports and the security set up for multiple reports from a 
single controller.

How to do it…
1. Here we have modified our method to choose two different reports: one developed  

in Chapter 2, Enhancing Your Report – Visualization and Interaction and the  
other from the current chapter. In this we will invoke the multiple reports using  
the single controller:
public static void main(Args args)
{
    PktRdlItemTransController controller;

    controller = new PktRdlItemTransController();
    if (args && args.record())
    {
        switch (args.record().TableId)            
        {
            case tableNum(InventTable)): 
              controller.parmReportName(ssrsReportStr 
              (PktRdlItemTransList, ItemTransList));  
                break;
            case tableNum(CustGroup)): 
              controller.parmReportName(ssrsReportStr 
              (PktItemTransList, TransList));
                break;
        }
    }
    controller.parmArgs(args);
    controller.startOperation();
}

2. When the controller is connected to more than one report, the permission setup  
for the menu item differs. It involves creating a security permission object and  
linking it to the report controller.

3. Go to AOT | Security | Code Permissions and right-click on it. Then select  
New Code Permission.



Report Programming Model

78

4. Create a new permission object called PktItemTransReport. Expand the 
Associated Objects node, select Reports, and add the reports that are used  
in the controller.

5. Create an action menu item and set the following properties:

Property Value
Object Type Class
Object PktRDLItemTransController
LinkedPermissionType CodePermission
LinkedPermissionObject PktRDLItemTransList

How it works...
The permission object bundles all the reports and helps the menu item determine the security 
rights that must be assigned to a role that will use these report bundles. Use the main method 
in the controller class to select the appropriate report based on context.

Calling multiple reports simultaneously 
using a single controller

In the previous recipe, we explained how to call multiple reports using a single controller. But 
in this recipe, we will explain how we can call multiple reports simultaneously. This means we 
will print multiple reports from a single trigger point.

In this recipe, we will show how to print the two SSRS reports together using a single controller 
in Microsoft Dynamics AX R3.

How to do it...
1. Suppose on the clicked method of any control of a form, we need to print two SSRS 

reports simultaneously. For that, firstly we need to create two menu items to call  
two SSRS reports. To create the menu item, follow these steps:



Chapter 3

79

2. Go to AOT | Menu Item | Output and right-click on it. Create a new menu item 
named PKTRDLCustListMenu. Similarly, create another menu item and name  
it PKTRDLVendListMenu.

3. Assign the SSRS report to both the menu items (as discussed in the previous recipe).

4. The controller class extends the SRSReportRunController class. In the  
controller, override the dialogShow() method as follows:
protected void dialogShow()
{
    SysOperationDialog  sysOperationDialog;
    FormRun             formRun;

    dialog.run();
    this.dialogPostRun();
    sysOperationDialog = dialog as SysOperationDialog;
    formRun = sysOperationDialog.formRun();
    formRun.detach();
}

This method will detach the form run and run another dialog of the report.

5. Now, override the dialogClose() method of the controller class and comment  
the Super() method of this method because in this method in the parent class,  
until the dialog is not closed, another report cannot be run. So we have to override 
this method and comment the Super() method as follows:
protected void dialogClose()
{
    //super();
}

6. Now we will modify the main method of the controller class as follows:
public static void main(Args _args)
{
    PKTRdlController formLetterController =  
      new PKTRdlController();

    if(_args.menuItemName() ==  
      menuitemOutputStr(PktRdlCustListMenu))
    {
        formlettercontroller.parmReportName 
          (ssrsReportStr(PktRdlCustReport, Report));
    }
    if(_args.menuItemName() ==  
      menuitemOutputStr(PktRdlVendListMenu))
    {



Report Programming Model

80

        formlettercontroller.parmReportName 
          (ssrsReportStr(PKTRdlVendReport, Report));
    }

    formLetterController.parmShowDialog(false);
    formLetterController.startOperation();
}

7. Finally, we call the controller class using the menu item on the clicked method of 
form control:

void clicked()
{
    Args                args = new Args();
    Args                args1 = new Args();

new MenuFunction(menuitemOutputStr(PktRdlCustListMenu _IN),  
  MenuItemType::Output).run(args);
new MenuFunction(menuitemOutputStr(PktRdlVendListMenu _IN),  
  MenuItemType::Output).run(args1);
}

How it works…
To control the report execution and processing of the report data, the controller class is being 
used. The controller class extends the SRSReportRunController class. To call the reports 
through the menu item, the controller class is used. Using the two menu items for two reports 
corresponding with the single controller, both reports can be printed simultaneously. By 
overriding the dialogClose() and dialogShow() methods, multiple SSRS reports can  
be printed simultaneously.

Debugging a report model
One challenge that comes along with the new reporting model is debugging. Different 
approaches for debugging issues must be taken based on the context. This is a short recipe 
that will tell you the configurations to debug the report model and the possible methods  
where the debugging points would be appropriate to start.

How to do it…
To debug framework-related classes the AX debugger can be used:

1. Under developer options, make sure the Execute business operations in CIL flag  
is unchecked to enable you to debug the code in X++ debugger.



Chapter 3

81

2. The following methods are ideal to place your debugger to examine the execution:

 � Controller: PrePromptModifyReport, PreRunModifyReport

 � UI Builder: build

You must first open your debugger manually to use it. Then run your code.

Changes to model and adding new classes
This subsection is about refreshing the code when you make changes to the model or 
framework classes.

When changes are made to the query by adding ranges or fields, ensure that you open  
Visual Studio. On the dataset, select refresh and then redeploy the project.

The report model is cached inside AX to ensure faster operation. In the event of changing  
the report model or introducing a new UI builder or contract class, it is important to refresh 
the cached elements under Tools | Caches | Refresh elements.

Refreshing elements

If this still doesn't reload the changes, resolve the problem by attempting to log in to AX  
again. This will definitely refresh the cache.



Report Programming Model

82

How it works…
Unlike AX 2009, every part of a report cannot be debugged by a unified approach like using 
the AX debugger. This specific recipe suggests how the report modeling framework inside AX, 
which comprises the controller and UI builder, can be done.

Adding data methods in business logic
While display methods in AX can be accessed through the table methods exposed in the Query 
window, there can be small computational needs in every report. If these small computations 
cannot be implemented by expressions, then they can be handled by data methods. These are 
based on C# and can be used to leverage the C# framework capabilities for small computations. 
This recipe will showcase adding a data method to the report where a text in a selected field is 
made upper case.

How to do it…
1. Right-click on the Data Methods node of your report data model to add a new  

data method.

Adding a data method

2. Rename the data method to changeCase.

3. Double-click on the new data method and a new C# project with the name of the 
report will be added to the solution.



Chapter 3

83

4. The cursor will point to a plain implementation method that appears similar to this:

[DataMethod (), PermissionSet (SecurityAction.Assert,  
  Name = "FullTrust")]
    public static string DataMethod1()
    {
    throw new NotImplementedException("The method or  
      operation is not implemented.");
    }

5. The [DataMethod] attribute indicates that this is a data method. The default return 
value is string, but this method can return any .Net supported types.

6. Rewrite the logic to convert the voucher number to upper case:
[DataMethod(), PermissionSet(SecurityAction.Assert,  
  Name = "FullTrust")]
    public static string changeCase(string value)
    {
        return value.ToUpper();
    }

7. Compile the code and it is ready to be used. Verify to see the report model showing 
the new parameters as sub nodes, as seen in the following screenshot:

8. To use the business logic that was created previously, expand the Data node  
under AutoDesign and add a new field.

9. Go to the property expression, open the expression dialog and key in the  
following code:
=changeCase(Fields!Voucher.Value)

This way the expression is tied to the data method that has been added.

10. Run the report and notice the new field showing the voucher number in upper case.



Report Programming Model

84

How it works...
Data methods in the report model provide the ability to manipulate and modify the report 
data. They can be used for:

 f Implementing expressions

 f Returning a DataTable that can be used as a dataset

 f Building URLs for the drill-through action connecting to a SubReport or a URL

It is wise to remember that these data methods are not alternatives to the AX business logic. 
Avoid using data methods to implement business logic or query the AX database. Simple data 
methods can be achieved using expressions as well, but the choice has to be made based on 
the requirement.

Data method vs Expressions
Chapter 1, Understanding and Creating Simple SSRS Reports and Chapter 2, Enhancing Your 
Report – Visualization and Interaction, detailed how the expressions window can be used to 
write simple logic, but they are limited to the number of lines that can be used. These logics  
are not reusable, and do not have the option of including any external references from the  
.NET framework to compute. A data method overcomes these disadvantages.

Data methods can be invoked from expressions and they offer the flexibility to include external 
references and write bigger computations, and the compiler indicates any break in the code 
with greater detail. A data method can be accessed and called via the expression.

Adding a URL drill through action in reports
A URL drill through action is similar to the View Details option in a form. AX supports a URL 
mechanism that can be processed to open a form with the appropriate record highlighted.

How to do it…
1. The first step is to identify the URL builder that will be used to construct the URL.  

The SRSDrillThroughCommon project consists of a list of helper classes for  
different modules.

2. In Visual Studio, go to AOT | Visual Studio Project | C Sharp Project | 
SRSDrillThroughCommon.

3. Right-click and select Edit. This will add the project to the current report solution.



Chapter 3

85

4. Search through the drillThroughCommon C# class for prebuilt methods for the field.

5. In this case, the field is Voucher and the finance helper classes have a prebuilt 
function that can handle drill through for vouchers.

6. Navigate back to the PktRdlItemTransList.BusinessLogic, right-click, and add the 
SRSDrillThroughCommon project as a reference.

7. Add the following namespace to the PktRdlItemTransList C# class:
using Microsoft.Dynamics.AX.Application.Reports;

8. Add this code to generate the URL to open the Voucher Transactions from the 
Voucher column in the report and build the solution:
[DataMethod(), PermissionSet(SecurityAction.Assert,  
  Name = "FullTrust")]
public static string DrillVoucher(string    reportContext,  
  string    VoucherNum, DateTime  ADate,  
  String    CompanyValue)
    {
        return DrillThroughCommonHelper 
          .ToLedgerTransVoucherForm(reportContext,  
          VoucherNum, ADate, CompanyValue);
    }

9. Move to the report model and right-click on the Voucher field. Select Add | URL drill 
through action and name it URLDrillAction.

10. In the new node properties node, select the expression and enter the following 
statement:
=drillVoucher(!Parameters.AX_ReportContext.Value, 
              !Fields.ItemTrans.VoucherNum.value, 
              !Fields.ItemTrans.TrandDate.value, 
              !Parameters.AX_CompanyName.Value); 

11. Rebuild the solution and deploy the report to see Drill Through in action.



Report Programming Model

86

How it works...
A typical URL to open a currency form appears as menuitemdisplay://
currency/+47+%5B1:USD%5D. These URLs are processed by the 
SysHelp::processStandardLink() method to open the appropriate forms  
and highlight the selection.

AX automatically adds drill through action to fields with foreign key relations, such as 
customer, vendor, and so on. In the case of specific fields such as Voucher Number, where 
finding the record involves more than one field or is different, a drill through action needs to 
be added. AX has built-in classes that have helper classes that can handle a majority of the 
drill through actions.

Debugging business logic
Business logic can be debugged using the Visual Studio debugger. Follow this recipe to 
activate debugger and debug the report.

How to do it…
1. Ensure that you are on the same server where the reporting services is installed.

2. Set the project configuration to point to debug mode, and rebuild and deploy the 
solution including the report model and the included business logic.

3. This will deploy the necessary symbols for debugging.

4. Open Tools | Attach to Process, and make sure Show Process from All users  
and Show Process from All sessions is checked.

5. Under the displayed process select ReportServicesService.exe and click Attach.

6. Open the report through the report services in the web browser or in AX.

7. After specifying the parameter values in the dialog, the reporting services  
will activate the debugger.

How it works…
The business logic for a report is stored along with the report as a DLL. These DLLs are 
deployed along with the RDL. To debug the data method, the debug files are loaded. If  
the files are not loaded, debugging is impossible. It is preferable to use the unit testing 
approach which is defined in the following recipe.



Chapter 3

87

Unit testing business logic
Debugging can be a time-consuming task as it is required to re-deploy the reports for every 
change that is made. An alternate way to reduce this cycle and make it easier to test is by 
creating unit test cases. Visual Studio has handy tools that can create a unit testing project. 
This recipe will implement unit testing for the drill-through action implemented in the Adding  
a URL drill through action in reports recipe.

How to do it…
1. Select the DrillVoucher method in the business logic class. Right-click and select 

Create Unit Tests.

2. A Create Unit Tests dialog will appear with the DrillVoucher method selected by 
default. If additional methods are present, check them and click on OK.

This will create a unit test project and a specific implementation to invoke the 
DrillVoucher method like this:
[TestMethod()]
        public void DrillVoucherTest()
        {
            string reportContext =  
              "?RunOnClient=1&PrintMediumType=Screen"
            string VoucherNum = "ARPM000004";
            DateTime ADate = new DateTime(200, 02, 28);
            string CompanyValue = "USSI"; 
            //initialize if you want use assert
            //string expected;



Report Programming Model

88

            string actual;
            actual =  
              ItemTransList.DrillVoucher(reportContext,  
              VoucherNum, ADate, CompanyValue);
            //initial approach would be test using 
            //Ax Class SysHelp::ProcessStandardLink
            //Once the link is verified it can be added to  
            the expected.
            //Assert.AreEqual(expected, actual);
        }

3. Place the debugger anywhere in the method. In the tool bar, select Test | Debug | All 
Tests in Solution. This will activate the debugger.

4. The business logic tested in the previous recipe is a drill through URL. Copy the 
returned URL from the unit test and run the following job in AX to see if it opens the 
right form and highlights the selection.

static void JobTestURL(Args _args)
{
    //Add the URL fetched through the unit test results
    SysHelp::processStandardLink('menuitemdisplay: 
      //ledgertransvoucher/+3123+%5B63:ARPM000004%5D%5B2: 
      02/28/2011%2000:00:00%5D%5B64:USSI%5D', null);
}

How it works...
The unit testing framework comes as part of Visual Studio and helps test code units. Most of 
the process is automated here and requires minimal effort to get it working such as passing 
the input parameters and validating the output parameters. This also helps in achieving better 
coverage of the logic since some logic never gets tested during functional testing. This unit 
test can be maintained or discarded after this testing, but opt to discard it as it can always  
be regenerated, unless you have huge prerequisites that are difficult to recreate, such as 
inserting records.

Creating a report using a controller and the 
UI Builder class

The controller class is primarily used to manage the report execution. This class is used in  
the SRS reporting framework to modify the dialog of a report, process the parameters of a 
report, as well as call SQL Reporting Services.

In this recipe, we will generate an SSRS report in Microsoft Dynamics using the controller 
class and UI builder class. The controller class extends SRSReportRunController.



Chapter 3

89

How to do it...
1. The first step is to create a contract class which implements 

SysOperationValidatable to validate all the report parameters (explained in  
the previous recipe).

2. The next step is to create a controller class which extends the 
SRSReportRunController class. The Main() method is used in the controller 
class of the report execution.
public client static void main(Args _args)
{
    PktRdlCustomerVendorController controller = new 
PktRdlCustomerVendorController ();

    controller.parmReportName(ssrsReportStr(PktRdlCustomerVendorRe
port, Report));

    controller.parmArgs(_args);
    controller.startOperation();
}

The ParmReportName method is used to define the name of the report and the 
design of the corresponding SSRS report.

3. The next step is to create a UI builder class which extends 
SRSReportDataContractUIBuilder class. In the UI builder, we will change  
the range of the query being used in the SSRS report depending upon the  
parameter selected.
public boolean TypeModified(FormComboBoxControl _control)
{
    boolean                 ret = true;
    QueryBuildDataSource    qbds;

Map queryContracts =  
  PktRdlCustomerVendorController.parmReportContract() 
 .parmQueryContracts();
    MapEnumerator mapEnum;

    if(queryContracts)
    {
        mapEnum = queryContracts.getEnumerator();
        if(mapEnum.moveNext())
        {
            query = mapEnum.currentValue();
        }



Report Programming Model

90

    }

    ret = _control.selectionChange();

    if (ret)
    {
        qbds =  
          query.dataSourceTable(tableNum(TaxTrans_IN));
        qbds.clearRanges();
        if (dialogField.value() == Type::Customer)
        {
            qbds.addRange(fieldNum(TaxTrans_IN, Customer));
        }
        else
        {
            qbds.addRange(fieldNum(TaxTrans_IN, Vendor));
        }
        this.rebuildQueryControl(this.getQueryBuilder());
    }
    return ret;
}

This method is used to modify the range of the query based on the parameter 
selected. If the user selects customer, then the range of the query will be customer, 
and if the user selects vendor, then the range of the query will be vendor.

4. Now create a new method named getQueryBuilder to get the query as follows:
private SysDataContractQueryUIBuilder getQueryBuilder()
{
    Map contractObjects;
    MapEnumerator contractEnumerator;
    SysOperationDataContractInfo contractInfo;
    SysOperationUIBuilder builder;

    contractObjects =  
      PktRdlCustomerVendorController 
      .getDataContractInfoObjects();
    if (contractObjects)
    {
        contractEnumerator =  
          contractObjects.getEnumerator();

        while (contractEnumerator.moveNext())
        {



Chapter 3

91

            contractInfo =  
              contractEnumerator.currentValue();

            builder =  
              PktRdlCustomerVendorController 
              .getUIBuilderForContractObject(contractInfo 
              .dataContractObject());
            if (builder is SysDataContractQueryUIBuilder)
            {
                return builder;
            }
        }
    }

    return null;
}

5. Next, create a method named rebuildQueryControl to rebuild the query on the 
basis of the parameters, as follows:
public void rebuildQueryControl(SysDataContractQueryUIBuilder _
queryUIBuilder)
{
    FormBuildControl        queryBuildControl;
    FormGroupControl        queryControl;
    Form                    form = this.dialog().form();
    FormRun                 formRun = this.dialog().formRun();

    SRSReportRunBuilder     queryHelper;

    #SrsFramework

    if (formRun)
    {
        formRun.lock();

queryControl = form.design().control(#GroupPrefix + _
queryUIBuilder.dataContractInfo().key());

        queryControl = formRun.control(queryControl.id());

        queryHelper = PktRdlCustomerVendorController.queryHelper
(_queryUIBuilder.dataContractInfo().key());
        queryHelper.updateQueryGroupControl(
            queryControl,



Report Programming Model

92

            new QueryRun(query));

        formRun.unLock();
    }

}

6. Finally, override the post build method of the UI builder class:

public void postBuild()
{
    PktRdlCustomerVendorController = this.controller();
    dialogField  = this.bindInfo().getDialogField( 
     this.dataContractObject(), methodStr( 
     PktRdlCustomerVendorContract, parmType));

    super();

    dialogField.registerOverrideMethod(
        methodStr(FormComboBoxControl, Modified),
        methodStr(PktRdlCustomerVendorUIBuilder,  
          TypeModified),
        this);
}

Open the report dialog; it will look like the following screenshot:



Chapter 3

93

How it works…
In the main method of the controller, the startOperation() method is called, which starts 
the execution of the SSRS report. The controller class can be used before the report dialog 
is shown to the user, and this can be done by overriding prePromptModifyContract. It 
can be used before the report is run using the preRunModifyContract method. Controller 
classes are mostly used when reports are opened from the form to show the selected details. 
In this recipe, using the controller class and UI builder, the range of the query changes as the 
user modifies the parameters of the dialog.





95

4
Report Programming 

Model – RDP

This chapter will discuss the following recipes:

 f Creating a simple RDP report

 f Testing the RDP report

 f Creating a simple precision design

 f Creating an advanced RDP report

 f Creating a report with multiple data sources in a single table

 f Creating a group view report

 f Adding headers and displaying company images

 f Using an existing temp table in RDP

 f Pre-processing reports

Introduction
In the earlier chapters, we have discussed how to create SSRS reports using queries in 
Microsoft Dynamics AX R3. In this chapter, we will discuss creating an SSRS report using  
the Report Data Provider (RDP) class. RDP-based SSRS reports are used when complex 
business logic cannot be achieved using an AOT query. When designing reports, not all the 
data can be retrieved through queries. Many reports involve analysis and consolidation of 
data that comes through business logic. RDP enables the use of existing business logic in 
reports but in an abstract manner.



Report Programming Model – RDP

96

We will discuss the working pattern of the RDP class and determine how to make the choice 
of using it in reports. The samples discussed in the chapter detail the different approaches 
and patterns to use RDP. This chapter will introduce you to precision design in SSRS, which 
offers a lot of flexibility and control in rendering a report. It will also discuss the widely used 
tabular design in greater detail. 

Creating a simple RDP report
In this recipe, we will help you to understand the concept of the RDP class. We will create  
a simple SSRS report using the RDP class and write a simple business logic in the RDP  
class to calculate the compounded interest and print it in the report.

Getting ready
To be able to do this recipe and the others involving RDP in this chapter, you need a basic 
understanding of X++, data contracts, and data attributes.

How to do it…
1. An RDP uses a temporary table to store data. So the first step in RDP development  

is to identify the fields involved in the report and create them as part of a  
temporary table.

2. For the present scenario, we will create a temporary table called 
PKTInterestCalcTmp with the fields Amount, Interest, Total, and Year.

3. In the table, set the property TableType as InMemory to make it temporary.

There are three types of TableType properties: Regular, InMemory, and 
TempDB. Regular tables are standard physical tables, while InMemory 
and TempDB are the temporary tables. InMemory tables are held 
in memory and written to the local disk file once they grow beyond a 
certain point. TempDB tables are held in the SQL server database. For 
more information, visit  https://msdn.microsoft.com/en-us/
library/gg863308.aspx.

4. After creating the table, the next step is to define the contract. The contract must 
contain all the parameters that are exposed to the user as well as those that are 
hidden. Here, based on the user inputs, the parameters would be the initial amount, 
interest rate, and total number of years. Create the contract class using the code 
here:
[
    DataContractAttribute
]

https://msdn.microsoft.com/en-us/library/gg863308.aspx
https://msdn.microsoft.com/en-us/library/gg863308.aspx


Chapter 4

97

classPktInterestCalcContract
{
    Amount arcmount, interest;
    Yr     yr;
}

[
    DataMemberAttribute('Amount')
]
public Amount parmAmount(Amount _amount = amount)
{
    amount = _amount;

return amount;
}

[
    DataMemberAttribute('Interest'),
    SysOperationLabelAttribute(literalStr("Interest")),
    SysOperationHelpTextAttribute(literalStr("Rate of  
      Interest")),
    SysOperationDisplayOrderAttribute('1')
]

public Amount parmInterest(Amount _interest = interest)
{
    interest = _interest;
    return interest;
}

[
    DataMemberAttribute('Year'),
    SysOperationLabelAttribute(literalStr("Period")),
    SysOperationHelpTextAttribute(literalStr("Number of  
      years")),
    SysOperationDisplayOrderAttribute('0')
]
public Yr parmYear(Yr _year = Yr)
{
    yr = _year;

return yr;
}



Report Programming Model – RDP

98

5. The attribute DataContractAttribute at class declaration indicates that this is a 
contract. If the contract requires a UI builder, that must also be defined in the class 
declaration.

6. Each parm method has the attribute DataMemberAttribute indicating it as a 
contract member. This helps having methods internal to the contract class, which 
don't have a decorator, and are not accessible by other components, say the 
controller.

7. The remaining attributes in the contract methods, as seen in the previous code,  
are used to set UI-specific values.

Attribute Name Description
SysOperationLabelAttribute Specifies the label for the data members 

in the data contract
SysOperationHelptextAttribute Specifies the help text for the data 

members in the data contract
SysOperationDisplayOrderAttribute Shows the data members of the data 

contract in a particular order
SysOperationGroupAttribute Groups the data members of the data 

contract

8. The contract class is used by the UI builder to construct the report dialog 
automatically, unlike in AX 2009, where the dialog field must be added for  
each field that is exposed to the user.

9. The next step involves the creation of the RDP class. Create the RDP class using  
the following code, where the SRSReportParameterAttribute decorator in  
the class declaration binds the contract and the RDP class:
[
    SRSReportParameterAttribute(classStr 
      (PktInterestCalcContract))
]
class PktInterestCalcDp extends SRSReportDataProviderBase
{
    PktInterestCalcTmp interestCalcTmp;
}



Chapter 4

99

10. The ProcessReport method is decorated with the SysEntryPoint attribute  
to be invoked from the services framework. The temporary table must be filled in  
the ProcessReport method.
[SysEntryPointAttribute(false)]
publicvoid processReport()
{
    PktInterestCalcContract contract;

    Amount amount, total, oldTotal;
    Amount interestRate, interest;
    percent interestPct;
    yr     yr, yrCount = 1;

    contract = this.parmDataContract() as  
      PktInterestCalcContract;

    amount      = contract.parmAmount();
    interestPct = contract.parmInterest();
    yr          = contract.parmYear();

    interestRate = interestPct / 100;
    oldTotal     = amount;

while (yrCount <= yr)
    {
        interest = (oldTotal*interestRate);
        total    = oldTotal +  interest;

        this.insertInTmp(yrCount, oldTotal,  
          interest, Total);
        oldTotal = total;
        yrCount++;
    }
}

privatevoid insertInTmp(
        Yr          _yr,
        Amount      _amount,
        Amount      _interest,
        Total       _total)
{



Report Programming Model – RDP

100

    interestCalcTmp.clear();
    interestCalcTmp.Year = _yr;
    interestCalcTmp.Interest = _interest;
    interestCalcTmp.Amount   = _amount;
    interestCalcTmp.Total    = _total;
    interestCalcTmp.insert();
}

11. Any method that is decorated with SRSReportDataSetAttribute will be used to 
identify the temporary tables returned by RDP. There can be more than one method 
with this attribute, but in this case there is only one table.
[
    SRSReportDataSetAttribute(tableStr(PktInterestCalcTmp))
]
public PktInterestCalcTmp getInterestCalcTmp()
{
select interestCalcTmp;
return interestCalcTmp;
}

This completes the design of RDP. The next recipe will use this RDP class to create a simple 
precision design-based report.

How it works…
In this section, we will discuss all the classes which we used in making SSRS reports in 
Microsoft Dynamics AX R3 using the RDP class.

RDP
To be able to set RDP as your data source type on your report with parameters, there are  
two required classes:

1. Data Contract Class: It defines the parameters in the report.

2. RDP Class: It processes the business logic based on a  
query and parameters defined in the data contract class, and then returns the  
data in temporary tables as a dataset for the report.

The concept of RDP is very simple. We need a temporary table of either InMemory or  
TempDB type that has all the necessary fields that store all the required values which need  
to be shown on the report. While using the RDP concept, the temporary table is used as a 
data source in the SSRS report. All the required values are filled through the business logic  
in the temporary table. This temporary table is used as a data source and the report is 
rendered. An RDP comprises the following components:



Chapter 4

101

RDP class
The RDP class is a major component in an RDP. Any class that extends 
SRSReportDataProviderbase/SRSReportDataProviderPreprocess can act as an 
RDP. As per the best practice, if our temporary table is of the TempDB type, then the RDP class 
must extend SRSReportDataProviderPreProcessTempDB. If our temporary table is of 
InMemory type, then the RDP class must extend SRSReportDataProviderPreProcess. 
The RDP class resides inside the AX, executes the business logic, processes the data, and  
stores the data in the temporary table which is rendered in the report. An RDP receives its 
inputs optionally through a contract or a query and implements the logic involved in filling  
the temporary table. The reporting services invoke the data provider through the query  
services framework to fetch the data.

The RDP class uses two important attributes:

 f SRSReportQueryAttribute: This attribute specifies which AOT query is used in the 
report. If the RDP class uses the AOT query, then this attribute must be specified  
at the beginning of the class.

 f SRSReportParameterAttribute: This attribute is used to link the data contract  
class with the RDP class. This defines that the data contract class will be used  
by the report to prompt for parameter values. To link the RDP class and contract 
class, this attribute must be defined at the beginning of the RDP class.

RDP data contract
The RDP data contract class is used to define one or more parameters in the SSRS 
report. The data contract class contains the parm method with DataMemberAttribute, 
which specifies the data member of the contract class written at the beginning of the 
parm method. The data contract is also used by the report UI builder to render the form 
controls for user inputs. A contract can use its own UI builder, which is bound through 
SysOperationContractProcessingAttribute. A data contract can include or 
extend other contracts; for example, SalesFormLetterconfirmcontract and 
InventDimviewcontract.



Report Programming Model – RDP

102

UI builder
Similar to an RDL contract, an RDP contract can also bind itself to a UI builder. The UI builder 
class is used to customize the report dialog through which a user opens the SSRS report. The 
UI builder class extends the SRSReportDataContractUI builder class. If a report has both 
RDL and RDP contracts with each bounded to a UI builder, then the system invokes both in a 
sequence. A report dialog is built by several UI builder classes, such as query, print destination, 
and the contract UI builders. This class is responsible for grouping dialog fields, adding a 
customized lookup to a dialog field, grouping and handling form control events, adding custom 
controls to the dialog, and binding the dialog fields with the data contract member in the data 
contract class. The following figure will give you a clear view of how the report programming  
flow works with RDP:

Choosing RDP for a report
A report can be designed to use an RDP data source type in the following cases:

 f Data to be rendered cannot be constructed as a query

 f Business logic to be processed depends on the parameters

 f Data can be rendered using existing business logic

 f More filters are to be added at runtime

Did you know that the majority of the reports in AX 2012 are 
RDP-based reports?



Chapter 4

103

See Also
 f The Adding ranges from unbound parameters to a query recipe in Chapter 3,  

Report Programming Model.

Testing the RDP report
In this recipe, we will explain about testing the RDP class using the code. The RDP class can 
be tested even without hooking it to a report. This has the advantage of testing it faster and 
ensuring that it works reliably before connecting it to a report. This topic is explained in  
details in a later chapter.

How to do it…
1. Create a new job as shown in the code here:

static void TestInterestCalcRDP(Args _args) 
{ 
    //initialize contract 
    PktInterestCalcContract cont = new  
      PktInterestCalcContract(); 
      PktInterestCalcDp dp; 
    //fill the contract 
    cont.parmAmount(2000); 
    cont.parmInterest(10); 
    cont.parmYear(5); //instantiate 
    dp = new PktInterestCalcDp(); 
    //pass the contract 
    dp.parmDataContract(cont); 
    //fill the table 
    dp.processReport(); 
}

2. Change the temporary table used for this RDP to a persistent table by setting the 
table type property as Regular.

3. Run the job and verify that the data is filled in the table. If the RDP works well,  
then data must be filled in the table created. After verifying, change the property  
of the table back to InMemory.



Report Programming Model – RDP

104

How it works…
This is an effective way of testing your RDP even before the report is made. This can also be 
applied in a different instance where you don't want the RDP logic to be executed every time. 
When testing reports that have longer execution time, make the table permanent and execute 
the report once. Once the table is filled, the entire RDP logic can be commented. This allows 
only the reporting logic to be executed, making it easier and faster to test.

Creating a simple precision design
Precision designs are the most flexible and creative design in SSRS reporting in which you can 
design your report in a flexible manner. Precision design is a report design created by the SQL 
Report Designer in Visual Studio. It is like a pre-defined format, in which you know the format 
of the report and are designing it according to that format. Precision designs are flexible and 
offer abundant options to customize your report by allowing you to decide the location, font, 
and much more.

Getting ready
This recipe will use the RDP created in the Creating a simple RDP report recipe to create a 
precision design report.

How to do it…
1. Open Visual Studio and create a reporting project. Add a report and name it 

PktInterestCalcReport.

2. Add a dataset and change the property Data Source Type to Report Data Provider. 
Click on the Query property button to view the list of the RDP classes.

3. Select the RDP class created and click on Next to add the fields. Expand the  
dataset to see the fields from the temporary table and the parameters listed  
from the data contract.



Chapter 4

105

4. To start with precision design, right-click on the Design node and select  
Precision Design.

5. Select the precision design node and set the following properties:

Property Value
Name InterestReport
Style Template TableStyleTemplate

6. Right click on Precision Design and select Edit Using Designer. This opens  
the designer. The left side of the designer holds the report data, which lists all  
the fields available for use in the report design. Right-click on the design area  
and select Insert | Table.



Report Programming Model – RDP

106

7. Drag the fields from the RDP table and drop them into the table.

8. Save the report design, and in the report model, click on Preview to see the report  
as shown here:

9. Now deploy the report and create a menu item to use the report in AX.

How it works…
This report shows how RDP can be used as a data source. The RDP doesn't necessarily 
require a query or contract; the key part is the content in the temporary table.



Chapter 4

107

Did you know that an actual SSRS has no concept called auto design?

Creating an advanced RDP report
In the earlier recipe, we created a very simple SSRS report using the RDP concept. In this recipe, 
we will create an advanced SSRS report using RDP. This recipe is more practical in nature. The 
goal is to build a report for the customer desk where the user can key in the manufacturing 
date and find the batches manufactured on that date. On selection of a batch or batches, the 
user can print a report with the batch and its transactions to track its history. This report will be 
implemented through the next two recipes. The first recipe will involve creating the RDP for the 
business functionality while the next recipe discusses the report design part.

How to do it…
1. As seen in the last RDP recipe, the first step is to identify the fields involved in the 

report and create a table for it. Create a table named PktInventBatchTransTmp  
with the fields indicated here:

2. The contract class is to be created next. The parameters required are the 
manufacturing date and batch number. Create a data contract as shown here:
[
    DataContractAttribute,
]
class PktInventBatchTransContract
{
    InventDimViewContract       inventDimViewContract;
    InventBatchProdDate         prodDate;



Report Programming Model – RDP

108

    InventBatchId               batchId;
}

[DataMemberAttribute('Batch')]
public InventBatchId parmBatchId(InventBatchId _batchId =  
  batchId)
{
    batchId = _batchId;

return batchId;
}

[DataMemberAttribute('ProdDate')]
public InventBatchProdDate parmProdDate(InventBatchProdDate  
  _prodDate = prodDate)
{
    prodDate = _prodDate;

return prodDate;
}

3. The next step is to fill the data in the temporary table. A select statement (DML) 
can be used to fetch the data, but using a query would mean that the report ranges 
(parameters) can be extended later. So design a query named  PktInventBatch as 
seen in the following screenshot:



Chapter 4

109

4. An RDP must be created with a binding to the contract. The query created can also 
be bound to be exposed in the report dialog. We bind query and contract class in the 
ClassDeclarion method of RDP as shown in the following code:
[
//bind query - shows in the report dialog
    SRSReportQueryAttribute(queryStr(PktInventBatch)),
//bind the contract
    SRSReportParameterAttribute(classStr( 
      PktInventBatchTransContract))
]
class PktInventBatchTransDP extends  
  SRSReportDataProviderBase
{
    PktInventBatchTransTmp tmpBatchTrans;
}

5. The processReport method must be designed to receive the parameters from  
the contract and set them on the query. This query must be executed further to  
insert the data in the tables.

6. The processReport method as seen here will get the RDP query and set the  
range from the contract for the batch ID and the production date. This is followed  
by the execution of the query to insert the records in the temporary table.
[
SysEntryPointAttribute(false)
]
publicvoid processReport()
{
    Query                   query;
    QueryRun                queryRun;
    QueryBuildRange         batchRange, dateRange;
    QueryBuildDataSource    qbds;

    InventBatch             inventBatch;
    InventTrans             inventTrans;
    InventTransOrigin       transOrigin;

    InventDimViewContract       viewContract;

    batchContract = this.parmDataContract() as  
      PktInventBatchTransContract;

    query = this.parmQuery();
    qbds = query.dataSourceTable(tableNum(InventBatch));

//set the range



Report Programming Model – RDP

110

batchRange = SysQuery::findOrCreateRange(qbds,  
  fieldNum(InventBatch, InventBatchId));

batchRange.value(batchContract.parmBatchId());

if (batchContract.parmProdDate())
    {
dateRange = SysQuery::findOrCreateRange(qbds,  
  fieldNum(InventBatch, ProdDate));
    dateRange.value(SysQuery::value( 
      batchContract.parmProdDate()));
    }

    queryRun = new queryRun(query);

while (queryRun.next())
    {
        if (queryRun.changed(tablenum(InventBatch)))
        {
            inventBatch =  
              queryRun.get(tableNum(InventBatch));
        }

        if (queryRun.changed(tablenum(InventTransOrigin)))
        {
            transOrigin =  
              queryRun.get(tableNum(InventTransOrigin));
        }

        inventTrans = queryRun.get(tableNum(InventTrans));

        this.insertTmpTable(inventBatch,  
          transOrigin, inventTrans);
    }

}

7. The insertTmpTable method is invoked from the process report to simply insert 
the records into the temporary table:
privatevoid insertTmpTable(
    InventBatch         _inventBatch,
    InventTransOrigin   _transOrigin,



Chapter 4

111

    InventTrans         _inventTrans,
    InventDim           _inventDim
    )
{
    tmpBatchTrans.clear();
    tmpBatchTrans.ItemId = _inventTrans.ItemId;
    tmpBatchTrans.InventBatchId =  
      _inventBatch.inventBatchId;

    tmpBatchTrans.ReferenceId = _transOrigin.ReferenceId;
    tmpBatchTrans.ReferenceCategory =  
      _transOrigin.ReferenceCategory;

    tmpBatchTrans.StatusIssue = _inventTrans.StatusIssue;
    tmpBatchTrans.StatusReceipt =  
      _inventTrans.StatusReceipt;
    tmpBatchTrans.DatePhysical = _inventTrans.DatePhysical;
    tmpBatchTrans.Qty = _inventTrans.Qty;
    tmpBatchTrans.CostAmountPhysical =  
      _inventTrans.CostAmountPhysical;

    tmpBatchTrans.insert();
}

8. The following method is used by the reporting extension to retrieve the data  
from temptable:
[
    SRSReportDataSetAttribute(tableStr( 
      PktInventBatchTransTmp))
]
public PktInventBatchTransTmp getinventOnhandTmp()
{
select  tmpBatchTrans;
return  tmpBatchTrans;
}

9. All the artifacts to enable a proper RDP are complete.

10. There is one UI related change that needs to be incorporated, that is, when a 
manufacturing date is chosen, the batch displayed must be from the same date.  
This change deems a UI builder that must be bound to the contract. The approach  
is to override the postRun method in the UI builder and build a local lookup  
method for the batch ID field.



Report Programming Model – RDP

112

11. The UI builder PktInventBatchTransUIBuilder must be designed as  
shown here:
class PktInventBatchTransUIBuilder extends  
  SysOperationAutomaticUIBuilder
{
    DialogField batchDialog, dateDialog;
}

publicvoid build()
{

super();

    batchDialog = this.bindInfo().getDialogField(
      this.dataContractObject(),
      methodStr(PktInventBatchTransContract, parmBatchId));

    dateDialog = this.bindInfo().getDialogField(
      this.dataContractObject(),
      methodStr(PktInventBatchTransContract,  
      parmProdDate));
}

publicvoid postRun()
{
super();

 //setup the event routing
    batchDialog.registerOverrideMethod(
      methodStr(FormStringControl, lookup),
      methodStr(PktInventBatchTransUIBuilder, batchLookup),
      this);
}

publicvoid batchLookup(FormStringControl _control)
{
    Query                query;
    SysTableLookup       sysTableLookup;
    QueryBuildDataSource qbds;

    sysTableLookup =  
      SysTableLookup::newParameters(tableNum(InventBatch),  
      _control);



Chapter 4

113

    sysTableLookup.addLookupfield(fieldNum(InventBatch,  
      InventBatchId));

    query = new Query();
    qbds = query.addDataSource(tableNum(InventBatch));
//if no date is specified show all batch
if (datedialog.value())
    {
        qbds.addRange(fieldNum(InventBatch,  
          prodDate)).value(queryValue(datedialog.value()));
    }

    sysTableLookup.parmQuery(query);
    sysTableLookup.performFormLookup();
}

12. Decorate the class declaration of the contractor class to bind the UI builder:
[
    DataContractAttribute,
    SysOperationContractProcessingAttribute( 
      classStr(PktInventBatchTransUIBuilder),
    SysOperationDataContractProcessingMode:: 
      CreateUIBuilderForRootContractOnly)
]
class PktInventBatchTransContract
{
    InventDimViewContract       inventDimViewContract;
    InventBatchProdDate         prodDate;
    InventBatchId               batchId;
}

This completes the design of the RDP.

Testing the RDP
As performed in the previous recipe, write a test job and validate the RDP. This completes all 
coding-related modifications for the report. The next recipe will model a report using this RDP.

How it works…
The RDP designed here uses a query to iterate through the data and insert into a temporary 
table. The query is bounded to the report through the query attribute in the class declaration 
of the RDP. However, if the business logic doesn't demand a lot of dynamic behavior, opt to 
use a DML (select statements) to fetch the information. This can speed up the report process.



Report Programming Model – RDP

114

When designing a temporary table for an RDP, remember to add replacement keys for any 
surrogate key, and add relations to the table to enable drill through.

RDP classes can be used for multiple purposes and need not be restricted 
to only reporting. The TrialbalanceDP class is used by the trial balance 
report and form.

Creating a report with multiple data sources 
in a single table

In this recipe, we will create an SSRS report using the RDP concept with multiple data sources. 
The process method of the RDP class is used to write the business logic in the report and to 
insert the data into the temporary table. In the previous recipe, we took only one temporary 
table, but in this recipe, we will take one more temporary table and use both the temporary 
tables in a single table in the SSRS report.

How to do it…
1. The first step is to create a new temporary table called PktItemTableTmp with the 

fields indicated here:

2. Now we will insert the data into this temporary table in the RDP class. Add another 
line of code in the ProcessReport method.
this.insertItemTmpTable(inventBatch,  inventTrans);

3. Add a method in the RDP class named insertItemTmpTable, which is used to 
insert the data into PKTItemTableTmp invoked from the ProcessReport method:
privatevoid insertItemTmpTable(
    InventBatch         _inventBatch,



Chapter 4

115

    InventTrans         _inventTrans
    )
{
pktItemTableTmp.clear();
pktItemTableTmp.ItemId = _inventTrans.ItemId;
pktItemTableTmp.InventBatchId = _inventBatch.inventBatchId;
pktItemTableTmp.InventDimId = _inventBatch.InventDimId;

pktItemTableTmp.insert();
}

4. Now get the temporary table from the RDP class:
[
SRSReportDataSetAttribute(tableStr(PKTItemTableTmp))
]
public PKTItemTableTmp getPKTItemTableTmp()
{
select pKTItemTableTmp;
return pKTItemTableTmp;
}

5. Next, add a new dataset in the visual design in the SSRS report:

6. Now edit the precision design in the SSRS report. Add a table in the report and assign 
its PKTInventBatchTransTmp as a dataset of that table. In the report, we will get 
the itemid and inventBatchId from PKTItemTableTmptable and other data 
from .PKTInventBatchTransTmp. We have just created the table and assigned  
the fields of the PKTInventBatchTransTmp table:



Report Programming Model – RDP

116

7. Now, we will get the details of ItemId and InventBatchId from 
PKTItemTableTmp in the same table used in step 6 in the header row.  
In the first column of the header row, right-click and go to Expression and  
write the code as seen in the following screenshot:

8. Similarly, write the code for InventBatchId:

How it works…
Precision design allows you to modify the report in your own report format. Using multiple  
data sources in a single table helps a lot in showing complex data in a single table. This will 
help the developers to break the code into smaller pieces and insert the data into multiple 
data sources.



Chapter 4

117

Creating a group view report
We have started using precision design. The most prominently used reporting technique in 
precision design is tabular grouping. Grouping helps render the data hierarchy, and precision 
design leverages the capability manifold when compared to auto design in this respect. The 
RDP created in the previous recipe will be used here as the source of data.

How to do it…
1. Create a new precision design and set the property name as BatchTransReport 

and style as TableStyleAlternatingRow. Double-click on Design to open the designer.

2. In the designer area, right-click on the report page and select Insert New Table.

3. A header and detail row will appear. Drop the header by selecting the header row  
and right-click delete rows.

4. Place the cursor in the column to see this icon . Click on this to get the list of  

fields and select the required field.

5. To add a new column, right-click and insert a column to the right.

Insert a new Column

6. This shows all the detail lines. To add a grouping on batch, go to the Grouping tab at 
the bottom (if grouping is not visible select Report | Grouping from Menu). Click on 
the downward arrow in the right corner of the row that says Details, as shown in the 
following screenshot:



Report Programming Model – RDP

118

7. Select Add Group | Parent Group… and in the prompted dialog, select 
[InventBatchId]. This sets the grouping based on the selected field.

8. A new column InventBatchId is added to the design. Preview the report. It will appear 
as seen in the following screenshot:

9. This view takes up one column for the batch, reducing the space for details.  
A better idea would be displaying the batch at the top. Also missing are the  
labels for the detail lines. In the steps to follow, let's work this out.



Chapter 4

119

10. Select the header of the InventBatchId column, right-click on it, and select  
Delete Columns. In the delete dialog, choose the Delete columns only option.  
This option will retain the grouping but delete only the fields.

11. In the table row, select the row and right-click and select the Insert Row | Outside 
Group - above option. This will add a new row. Add two rows: one for the labels and 
the other for the group header displaying the batch.

12. To create labels in the row immediately above the data fields, double-click the cell, 
right-click and select Create Placeholder. A property window for the cell will open. 
Click on the  button next to the value field and enter the following expression:
=Labels!@sys13647

Repeat this for each column header. (Identify the label ID from the label editor in the 
rich client before entering it.)

13. Of the two rows inserted, the top row will be used to display the group header. Select 
the first cell and enter the label for InventBatchId in the same manner as explained 
earlier. In the top-most row, the first cell is used for the expression label for the batch. 
Select all the remaining cells and right-click and select Merge Cells. In the merged 

cell, click the  icon and select the field Invent Batch.



Report Programming Model – RDP

120

14. This will display a batch at the top followed by the transaction with labels. You can 
collectively change the font, color, and size of each cell by selecting all of them. 
The sample here uses Segoe UI font, 8pt for values and Grey color background 
for the header cells. Precision design gives the comfort of setting up the properties 
collectively by multi-selection.

15. Set the property Can Shrink in the cells to True. This will allow automatic  
report sizing.

16. To add totals to each group in the Grouping node, at the bottom select Group1 and 
click on the small arrow at the end. Select Add Totals | After. This will insert a new 
row at the bottom and add two sum fields for Quantity and CostAmountPhysical. 
Delete Quantity since we don't need it, and instead, modify the expression to set  
the label as Total. This will print the label after each group.

Adding a total

17. To add a grand total, insert a row at the bottom outside the group. Right-click on the 
cell below the group total and select Expression. In the expression window, set the 
label expression as Grand Total and enter the following expression:
=Sum(Fields!CostAmountPhysical.Value)



Chapter 4

121

18. The following screenshot shows how the final report will appear:

How it works…
Precision design allows in-detail modeling of a report, thus offering more flexibility and control. 
However, when the design is simple, opt to use auto design. In many reports, we need to add 
a company logo in a report header. This can only be added using precision design. The next 
topic will discuss adding a company logo to the header in a report. So you may have to make 
this choice even in this case.

When using expressions in precision design, be specific to ensure that they are right.  
Since the compiler doesn't indicate where these errors occur, it might result in opening  
every expression window. However, you will get an error message in Visual Studio while 
building/rebuilding or deploying the solution. Though precision design might look  
exhaustive at first sight, it is more convenient and easier to control than auto design.

Use the document outline view to see the controls in precision design 
to identify the name of the controls in the design. The document outline 
view can be opened by using Ctrl + W, U.



Report Programming Model – RDP

122

Adding headers and displaying company 
images

Images and headers give a report a professional appearance. This interesting recipe will 
guide you to build a report with company images and headers. It is good to add a header and 
company logos for all reports which will be used outside the company; for example, purchase 
orders, vendor/customer account statements, and statutory reports.

How to do it…
1. To insert a header, right-click Insert | Header. In the header, add a textbox each for 

company name, page, date, and report name as shown in the following screenshot:

2. In the expression field of these controls, add the following code:

Controls Code
Company name =Microsoft.Dynamics.Framework.Reports.

DataMethodUtility.GetFullCompanyNameForUser(
Parameters!AX_CompanyName.Value,  
  Parameters!AX_UserContext.Value)

Report name ="Batch Transactions Report"

Page =System.String.Format(Labels!@SYS182566, "" &  
  Globals!PageNumber & "", "" &  
  Globals!TotalPages & "")

Date =Microsoft.Dynamics.Framework.Reports. 
DataMethodUtility 
ConvertUtcToAxUserTimeZoneForUser(Parameters!AX_
CompanyName.Value,Parameters!AX_UserContext.Value, 
System.DateTime.UtcNow, "d", Parameters!AX_
RenderingCulture.Value) & vbCrLf & Microsoft.Dynamics.
Framework.Reports.DataMethodUtility.
ConvertUtcToAxUserTimeZoneForUser(Parameters!AX_
CompanyName.Value, Parameters!AX_UserContext.Value,  
System.DateTime.UtcNow, "t", Parameters!AX_
RenderingCulture.Value)



Chapter 4

123

3. Adding a company image starts with defining a query. Create a query called 
PktCompanyImage and add a table called CompanyImage. Come back to your  
Visual Studio report and add the query as a data source. Set the Dynamic Filter 
property to False, save the report, and open the designer.

4. In the designer, the new data source will appear in the report data view. In the page 
header, create a new field of type image. In the prompting window, select the image 
source as database and point the value field to image field from the companyImage 
datasource. Set the MIME type based on the image you have added. Resize the 
image and place it before the company name. Save and preview it to see the image.

5. Deploy the report and create a menu item to see the report working.

How it works…
The company logo query that was created for this report can be reused for other reports that 
require the same. If there are images that are specific to this report then the field can be directly 
added to the temporary table field used by the RDP. You can also use embedded images in 
precision design, as seen in Chapter 2, Enhancing Your Report – Visualization and Interaction.

Precision design enables copying controls from one report/report design to another  
report/report design, so you can copy the header field if the same alignment is required  
in other reports.

Debugging RDP
The most preferable mode to debug an RDP report would be to use the test job discussed in 
the Testing the RDP report recipe. However, if you prefer to debug it in the processReport 
method of your RDP class, type the keyword breakpoint. Open the debugger even before 
opening or previewing the report by running the axdebug.exe file in the client installation. 
Once the execution reaches the debugging point, the debugger will be activated.

See Also
 f The Adding an image in auto design recipe in Chapter 2, Enhancing Your  

Report – Visualization and Interaction

Using an existing temp table in RDP
Temporary tables in AX are used in existing business logic and also as a data source in  
some forms. The reporting framework provides the ability to use these temporary tables  
filled outside in a form or a business logic, to be copied to the RDP without re-implementing 
the business logic. The reporting framework offers the ability to do this through a set of  
helper classes: SRSTmpTableMarshaller and SRSTmpTblMarshallercontract.



Report Programming Model – RDP

124

This recipe will simplify and make it easy to understand the temporary table pattern. This 
pattern helps in designing RDP reports faster when the temporary table and logic to fill it 
already exists.

How to do it…
1. To better understand the Marshaller class and its usage, we will use the interest 

calculation example. In this example, the interest calculation is done in a form using 
a temporary table. The simulation in the form must be printed in a report. We will  
use the Marshaller class to pass the prefilled table to the RDP.

We have used the interest calculation example where the calculation is already  
done using the temporary table and shown in the following screenshot:

2. The user enters the value in the Amount, Interest, and Years input boxes and  
clicks on the Calc button. The simulation is shown in the form. When the user clicks 
on the Print button, the temporary table must be passed to the RDP and rendered  
in the report.

3. The first step begins with creating a contract since the temporary table already  
exists. This step can be surpassed. There are no further inputs from the user to be 
received. So our contract class needs no parm methods except the one for holding 
RecId from the data source. So the SRSTmpTableMarshallerContract contract 
can be directly used as the contract for RDP. (In situations where you have your own 
contract class, SRSTmpTableMarshallerContract must be used as a nested  
data contract. See the Inventory dimensions in reports recipe in Chapter 7, Upgrading 
and Analyzing Reports.)



Chapter 4

125

4. The RDP for a pre-populated temp table is much simpler. The only logic to be 
performed is to retrieve the data from the database. The processReport  
method of RDP appears as seen here:
[SysEntryPointAttribute]
publicvoid processReport()
{
    SrsReportRunPermission  permission;

    SrsTmpTblMarshallerContract contract =  
      this.parmDataContract() as  
      SrsTmpTblMarshallerContract;
breakpoint;

    tmpTableDataRecId   = contract.parmTmpTableDataRecId();
    permission          = new SrsReportRunPermission();
    permission.assert();

//Temp Table Object that was returned from  
  SRSTmpTblMarshaller
    tmpCalc =  
      SRSTmpTblMarshaller::GetTmpTbl(tmpTableDataRecId);
    //drop the temp table from data store since it is 
    //copied to the local buffer
    SRSTmpTblMarshaller::deleteTmpTblData(tmpTableDataRecId);
    CodeAccessPermission::revertAssert();
}

Bind the contract class SRSTmpTableMarshallerContract in the class 
declaration and create a data return method as in the previous RDP classes.

5. The controller class owns the responsibility of storing the temp table. Create a 
controller class and override preRunModifyContract with the following code:
publicvoid preRunModifyContract()
{
    RecId recid;
    PktInterestCalcTmp tmp;

    SrsTmpTblMarshallerContract contract;

new SRSReportRunPermission().assert();

    tmp.setTmpData(this.parmArgs().record());

//store the data in data store and retrieve the recid        



Report Programming Model – RDP

126

    recid =  
      SRSTmpTblMarshaller::sendTmpTblToDataProvider(tmp);
    CodeAccessPermission::revertAssert();

//set the recid in contract to be used in RDP
    contract = this.parmReportContract().parmRdpContract()  
      as SrsTmpTblMarshallerContract;
    contract.parmTmpTableDataRecId(recid);
}

6. In the main method, switch off the dialog since no user input is needed:
publicstaticvoid main(Args args)
{
    PktMarshallCalcController control;

    control = new PktMarshallCalcController();
    control.parmArgs(args);
    control.parmReportName( 
      'PktMarshallCalc.InterestReport');
    control.parmShowDialog(false);
    control.startOperation();
}

7. Once all the code artifacts are ready, design the report to look similar to the one in 
the first recipe in this chapter. The final part is to hook the controller to the clicked 
event in the button. Override the Print button and call the controller:
void clicked()
{
    PktMarshallCalcController cont;
    Args args;

super();

    args = new args();
//pass the temptable buffer from the form
//to the contract class
    args.record(PktInterestCalcTmp);
    PktMarshallCalcController::main(args);
}

8. Click the Print button to run the report.



Chapter 4

127

How it works…
The contents of the temporary table are transferred to a container and stored in a table in the 
SQL called the data store. The data is identified by the Recid of the record in the data store. 
This Recid is stored in the contract and passed to the RDP. The RDP again retrieves the data 
from the data store by using the Recid when required. Once the data is retrieved, it must 
be explicitly deleted from the data store. The deletion is performed in the processReport 
method in the RDP class.

Pre-processing reports
SSRS uses the Windows Communication Foundation (WCF) to connect to the AOS for  
data access. This connection has a threshold limit and might fail if a report takes a longer 
time to execute. The report server execution waits for the RDP to process the data and  
return. In the event where the RDP takes a longer time to execute the reporting service  
might fail. Pre-processing is a strategy to beat this issue. This recipe will help you  
understand how to enable pre-processing for any RDP report.

How to do it…
When a report processes a huge amount of data or is found to take considerable time  
during execution, you can decide to incorporate pre-processing. Follow these steps to enable 
pre-processing:

1. Extend the RDP class from the SrsReportDataProviderPreProcess class.

2. Set the following properties in the temp table used by RDP:

Properties Value
Table Type Regular
CreatedBy Yes
CreatedTransactionId Yes



Report Programming Model – RDP

128

3. The crucial portion of RDP is inserting records in the table with the scope. In order  
for the tables to automatically generate the TransactionId in the beginning of  
the process report, set the userconnection as shown here:
Public void processReport()
{
InventBatchTransTmp.setConnection( 
  this.parmUserConnection());
}

This sets a scope and generates a TransactionId which is valid only for that 
scope; for example, AgreementConfirmationDP.

4. Open the report in Visual Studio and refresh the data source to include the new 
CreatedTransactionId field. To do this, in the Model Editor, right-click on the 
dataset and then click refresh.

5. In Solution Explorer, right-click on Solution and click Deploy Solution to deploy the 
new report.

How it works…
The AX reporting framework delays the invocation of the reporting framework until the data is 
processed. After the data is processed and inserted, the reporting framework is invoked, thus 
preventing timeouts. The hindrance here is that RDP uses a temporary table. Converting this 
to persistent introduces a different sort of problem with two different instances of the report 
inserting conflicting data.

The AX reporting framework solves this problem by making the table persistent and  
introducing a scope field called TransactionId. The TransactionId field allows the 
reporting framework to identify the records created for the session. In the case of pre-processed 
reports, the data is inserted in the table and the details of the pre-processing are stored in the 
SRSReportPreProcessDetail table. The recid of the record is passed as preprocessid to 
the report framework, and the data is fetched using this scope from the table.

Clean up
The data in these tables is cleaned up after the report is run automatically.

For more details on the use of WCF in SSRS reports, you may 
visit http://www.codeproject.com/Articles/37270/
Consuming-a-WCF-Service-from-an-SSRS-RDL-Server-Re.

http://www.codeproject.com/Articles/37270/Consuming-a-WCF-Service-from-an-SSRS-RDL-Server-Re
http://www.codeproject.com/Articles/37270/Consuming-a-WCF-Service-from-an-SSRS-RDL-Server-Re


129

5
Integrating External 

Datasources

This chapter will cover the following recipes:

 f Adding a datasource through business logic

 f Using an XML feed as a datasource

 f Building a parameter lookup using business logic

 f Building a report through an external datasource

 f Adding a parameter for an external datasource query

 f Creating a customer summary OLAP report

 f Adding a parameter lookup for OLAP

 f Designing an OLAP table report with SQL Report Builder

 f Designing a map sub-report with SQL Report Builder

 f Creating a sub-report in auto design

 f Creating a sub-report in precision design

Introduction
One of the main lookout features from the transformation to SSRS reports is the ability to 
support multiple sources to render data. An ERP is one of many single corporate systems,  
with the data involved in making decisions spread across multiple systems. It is important that 
the reports are able to pull through data from different sources. For example, when a company 
switches to a new ERP, the legacy system is still kept alive for transactional data references.  
This chapter will focus on offering recipes that involve different sources of data, such as XML 
feeds, SQL databases, and OLAP that can be used as a datasource for the report.



Integrating External Datasources

130

Adding a datasource through business logic
This recipe will show how a simple datasource can be created and used as a source of data 
through the business logic option in reports.

Getting ready
This recipe requires that you have access to Visual Studio with the Dynamics AX  
reporting extension.

How to do it...
1. Create a new reporting project called PktExchRateReports in Visual Studio.

2. Add a report and name it PKTExchRateDataTable.

3. Right-click on the Data Method node and create a new method as shown in the 
following screenshot:

4. Double click the TestMethod node. This adds a new C# project to the solution and a 
C# class with the same name as the report.



Chapter 5

131

5. Replace the empty data method with the business logic shown here:
[DataMethod(), PermissionSet(SecurityAction.Assert,  
  Name = "FullTrust")]
Public static DataTable ExchangeRateDataset(string _stest)
    {
DataTable dt;
// Adding rows and columns in DataTable 
dt = new DataTable();
dt.Columns.Add("Category", typeof(string));
dt.Columns.Add("Base Currency", typeof(string));
dt.Columns.Add("Currency", typeof(string));
dt.Columns.Add("Base Rate", typeof(double));
dt.Columns.Add("Rate", typeof(double));

dt.Rows.Add("Australia", "USD", "AUD", 1, 1.03);
dt.Rows.Add("Asia", "USD", "SGD", 1, 1.26);
dt.Rows.Add("Europe", "USD", "EUR", 1,0.77);
dt.Rows.Add("Middle East", "USD", "AED", 1, 3.67);

return dt;
    }

6. Save and build the solution. This will refresh the data method in the report model.

7. Open the report model, select the Datasets node, and create a new dataset. In the 
new dataset Properties, set the Data Source Type to Business Logic.



Integrating External Datasources

132

8. Now click the ellipsis (…) button on the Query property and select the business logic 
that was just created. Click the exclamation on the right corner to validate the data 
retrieval. This action will add the fields from the data table and the parameters of  
the method (if any will be added as parameters).

9. Drag the dataset to the report design. Apply templates, align the controls, and  
specify the labels for rendering. Save and preview the report. It should look like  
the following screenshot:



Chapter 5

133

How it works…
Any data method that returns a data type of System.data can be added as a dataset to the 
report. The datatable filled in the data method is used by SSRS to identify fields of the table. If 
there are parameters for the data method, then they are added as parameters for the dataset. 
The program logic creates a datatable instance and adds columns with the data type, and 
then inserts rows in the table. The row details are hardcoded in the table in this recipe.

See Also
 f The Expressions in reports recipe in Chapter 2, Enhancing Your Report – Visualization 

and Interaction

 f The Adding data methods in business logic recipe in Chapter 3, Report  
Programming Model

Using an XML feed as a datasource
In the previous recipe, the entire data for the report was hardcoded. In this recipe, we will 
continue to use the data table as a datasource, but the data for this report will come through 
an XML feed. The XML is retrieved at runtime, and parsed and filled in a data table, which is 
then rendered in the report.

Getting ready
This recipe requires the machine on which you work to be connected to the Internet. The  
XML feed (http://themoneyconverter.com/rss-feed/USD/rss.xml) used in this 
report is downloaded at runtime.

How to do it…
1. In the existing project, PKTExchRateReports, add a new report called 

PKTExchRateFromWeb.

2. Add a new data method and double-click on it to create the business logic.

3. Replace the empty method with the logic given here:
[DataMethod(), PermissionSet(SecurityAction.Assert,  
  Name = "FullTrust")]
Public static DataTableExchangeRateData()
    {
DataTable dt;

dt = new DataTable();



Integrating External Datasources

134

dt.Columns.Add("Category", typeof(string));
dt.Columns.Add("Base Currency", typeof(string));
dt.Columns.Add("Currency", typeof(string));
dt.Columns.Add("Base Rate", typeof(string));

Xdocument xdoc =  
  XDocument.Load("http://themoneyconverter.com/rss- 
  feed/USD/rss.xml");

var q = from c in xdoc.Descendants("item")

select new {
title    = c.Element("title").Value,
pubDate  =c.Element("pubDate").Value,
desc     = c.Element("description").Value,
cat      = c.Element("category").Value
        };

foreach (var obj in q){

dt.Rows.Add(obj.cat,
obj.title.Substring(0, 2),
obj.title.Substring(4, 3),
obj.desc);
        }

return dt;
    }

4. Before adding this as a datasource, it is important to ensure that this method  
works well, since any runtime issues might prevent it from adding this data  
method as a datasource.

5. Create a unit test method (refer to the Unit testing business logic recipe in Chapter 3, 
Report Programming Model) and run the test to ensure execution at runtime.

6. Add the data method as a datasource and then add it to the report design.



Chapter 5

135

7. Remember to set the templates and adjust fonts and labels before you run the report. 
The report preview should be as seen in the following screenshot:



Integrating External Datasources

136

How it works…
The data table is initialized with columns followed by the logic to access the XML feed. The 
XML feed is downloaded at runtime and parsed. Parsing is done using Language Integrated 
Query (LINQ) to XML in C# and is inserted into the data table. LINQ offers a robust retrieval 
mechanism by abstracting the source of data.

It is good to keep in mind that the method must return a type of system.datatable, 
otherwise it will fail to show up as a datasource. The unit test can be used to debug the  
logic during design without much hooking involved in services, such as the reporting  
service for debugging.

Spin-off recipes
This business logic idea can be further extended to create and insert data in tables at runtime 
using other sources, such as web services, JSON API, and even AX queries.

Do not modify the design in the report model when the precision design 
editor is open. Close the precision design editor before modifying the 
report model, otherwise the changes will not be stored.

Building a parameter lookup using business 
logic

In the last two recipes, there was no user interaction, but real-time scenarios will demand that 
a user input be taken. Adding a parameter doesn't make it usable, as the user might be left 
clueless about what the possible values are. This is because there is no lookup available for 
the external data. This recipe will show you how a dataset can be used just for the purpose 
of creating parameter lookups. The parameter here will be the category field that indicates 
the geographical location of the country. Apart from adding a parameter, this recipe will also 
discuss how to show the report parameter lookup from business logic. The report built through 
this recipe will provide a parameter category and the lookup for the parameter through which 
the user can view the exchange rate data only for the selected category.



Chapter 5

137

Getting ready
This recipe requires the machine on which you work to be connected to the Internet. The XML 
feed (http://themoneyconverter.com/rss-feed/USD/rss.xml) used in this report is 
downloaded at runtime.

How to do it…
1. Create a report called PKTExchRateDataLookup in the project PktExchRateReports.

2. Create a data method, which receives a string parameter category and applies it to 
the category field in the XML, using the code here: 
[DataMethod(), PermissionSet(SecurityAction.Assert,  
  Name = "FullTrust")]
Public static DataTable ExchangeRateDataFilter(string  
  category)
    {
DataTable dt;

dt = new DataTable();
dt.Columns.Add("Category", typeof(string));
dt.Columns.Add("Base Currency", typeof(string));
dt.Columns.Add("Currency", typeof(string));
dt.Columns.Add("Base Rate", typeof(string));

Xdocument xdoc =  
  XDocument.Load("http://themoneyconverter.com/rss- 
  feed/USD/rss.xml");

var q = from c in xdoc.Descendants("item")
where (c.Element("category").Value == category ||
string.IsNullOrEmpty(category))

select new
                {
title = c.Element("title").Value,
pubDate = c.Element("pubDate").Value,
desc = c.Element("description").Value,



Integrating External Datasources

138

cat = c.Element("category").Value
                };

foreach (var obj in q)
        {

dt.Rows.Add(obj.cat,
obj.title.Substring(0, 2),
obj.title.Substring(4, 3),
obj.desc);
        }

Return dt;
    }

3. Rebuild the solution.

4. The next step is to build a lookup for this parameter. Create a new data method and 
place the business logic shown here:
Public static DataTable CategoryData()
    {
DataTable dt;

dt = new DataTable();
dt.Columns.Add("Category", typeof(string));

Xdocument xdoc =  
  XDocument.Load("http://themoneyconverter.com/rss- 
  feed/USD/rss.xml");
XNamespace space = xdoc.Root.GetDefaultNamespace();

IEnumerable<string> q =  
  xdoc.Descendants("item").Descendants("category").Select( 
  pn =>pn.Value).Distinct().ToList();

foreach (string category in q)
        {
dt.Rows.Add(category);
        }

return dt;
    }



Chapter 5

139

5. Rebuild the solution. Add the business logic as datasets. The parameter that was 
added in the ExchangeRateDataFilter data method should now be seen  
in the Parameters node of the dataset and the report parameter.



Integrating External Datasources

140

6. Under the Parameters node, select the parameter ExchRateFilter_category and  
on the Values property click the button. A dialog box opens up; fill the dialog box  
with the values shown in the following screenshot. This hooks up the category 
dataset to the lookup.

7. Preview the report after setting the template, font, label, and alignment. In the 
preview, you should notice that the category shows the geographical classification,  
as seen in the following screenshot:



Chapter 5

141

How it works…
When executed, the value for the lookups appears through the dataset category. Once the 
user selects a value, this is passed as a parameter to the business logic that returns the  
data for the report.

Business logic
The business logic for the exchange rate filter uses LINQ to read data. The difference here 
from the business logic used in the previous recipe is the additional where condition that 
determines if the node has a category that is equal to the parameter received. The OR 
condition in the logic is to deactivate this conditional check when the parameter is null and 
will retrieve all the data from the XML lookup.

The business logic for category lookup uses LINQ to identify all the distinct values from the 
XML. Since there can be more than one node in the XML with the same category, the category 
dataset that is created using the business logic is used as a lookup source. This should give 
you an idea of how a lookup can be built using business logic.

Building a report through an external 
datasource

In this recipe, we will create a report that connects to an Online Transaction Processing 
(OLTP) datasource and retrieves data through an SQL query. You will learn how to add a 
generic report datasource that can be used across all reports. The report here will retrieve  
the employee information from the Adventure Works sample database.

Getting Ready
In order to execute this recipe, you will need the Adventure Works database installed in the 
SQL server. This is available for free to download from Microsoft at http://technet.
microsoft.com/en-us/library/ee873271.aspx.

How to do it…
1. Open Visual Studio and create a project with the name AdventureWorkDatasoure. 

This project is created to hold the new report datasource in AX.

http://technet.microsoft.com/en-us/library/ee873271.aspx
http://technet.microsoft.com/en-us/library/ee873271.aspx


Integrating External Datasources

142

2. In the project, add a new element of type ReportDatasource.

3. Open ReportDatasource and set the following properties:

Property Value
Name AdventureWorks

Connection 
String*

Server=AX2012R2A;Database=AdventureWorks2008R2
;Integrated Security=SSPI

Provider SQL

'*' – The database name and server name must be modified 
according to your setup.

4. The reason to add it as a separate project is so that you can later easily identify 
the project that holds the report data source to change its properties; for example, 
connection string. This report datasource is now ready to be used across all  
reporting projects.

5. Create a new project with the name PktEmployeeInfoReportAdvWorks.

6. Add a new dataset, and in the Data Source property, select AdventureWorks. The 
new data source that was added must be visible along with other data sources.



Chapter 5

143

7. Select this as a datasource and click on the ellipsis (…) button on the Query property. 
This opens a new editor window.

8. It is advisable to design your query in SQL Server Management Studio before you 
apply it here. In the editor window, key in the following SELECT statement: 
SELECT NationalIDNumber, LoginID, JobTitle,  
  BirthDate, MaritalStatus, Gender, HireDate,  
  VacationHours, SickLeaveHours

FROM HumanResources.Employee

9. Click the exclamation button  to validate the query.



Integrating External Datasources

144

10. Click OK to see the fields added to the new dataset.

11. Now drag it to the auto design node. Set the template and appropriate labels to 
present the report.

12. Run the report preview.

How it works...
The report uses the Reportdatasource connection string to establish a connection with 
the report datasource. Ensure the necessary permission for the database is set up and is 
accessible. The query that is specified in the editor is an SQL query and not one from AX. It is 
a good practice to design the query in the Management Studio and verify it before specifying 
it here. The editor in the database can be used to select fields, join tables, specify conditions, 
and validate them.

Global values such as company name and report name can be used only 
in headers and footers in precision design.



Chapter 5

145

Adding a parameter for an external 
datasource query

This recipe will extend the previous recipe to add a parameter that will influence the data 
retrieved through the SQL query.

Getting Ready
This recipe requires that you have the Adventure Works database installed and you have ready 
access to the SQL server. This is a continuation of the report developed in the  
Building a report through an external datasource recipe in this chapter.

How to do it…
1. Open the project and the report associated with the project.

2. Select the dataset and open the query editor window to modify the query as shown 
here:
SELECT NationalIDNumber, LoginID, JobTitle,  
  BirthDate, MaritalStatus, Gender, HireDate,  
  VacationHours, SickLeaveHours
FROM HumanResources.Employee
WHERE (NationalIDNumber LIKE @Id)
// @ID will be treated as a variable

3. Click OK to see the parameter reflected in the Parameters node in the dataset  
and report parameters in the report model. A new popup will show up asking for  
the parameter; you can key in a valid ID or %.

4. Optionally, you can attach a lookup to the parameter by creating an additional  
dataset that filters NationalIdNumber from the table as was done in the  
Building a parameter lookup using business logic recipe.

5. Save and preview the report.

How it works…
The SQL statement uses a like condition to make it work more like a search rather than look 
for a match. The parameter to retrieve all the employees is not * as in AX and should be %.



Integrating External Datasources

146

Creating a customer summary OLAP report
Online Analytical Processing (OLAP) helps create interesting data mash-ups that can show 
trends, distribution, and various other dimensions summarized for top-level management. 
Dynamics AX offers many different ways to represent OLAP reports, such as SQL Report 
Builder, Power View, and Excel. But when it comes to exposing the reports over the Web  
or deploying them to a role center, then SSRS reports are an ideal choice. In this recipe, 
we will get into the details of creating a simple OLAP report that will summarize the total 
transaction value across customer groups quarterly in a year.

Getting Ready
To be able to implement this recipe, you need OLAP configured for Dynamics AX. You must 
have a basic understanding of OLAP and the ability to write Multidimensional Expressions 
(MDX) queries.

How to do it…
The goal of the recipe is to display the total value of transactions for a customer group 
represented quarterly in the year 2012:

1. The first step is to create an MDX query, and the best place to do this is in the 
management studio. Open the Analysis Service MDX Query Editor.

For more details on the MDX Query Editor, follow these links:
https://msdn.microsoft.com/en-us/library/hh231197.aspx

https://msdn.microsoft.com/en-us/library/ms187058.aspx

2. In the Microsoft Dynamics AX Query Editor, run the following query and ensure that it 
works fine:
SELECT {[Measures].[Accounts receivable amount -  
  transaction currency]} oncolumns, 
nonempty(
[Transaction date].[Quarter].[Quarter].Members*
[Customer].[Customer group].[Customer group].Members*
[Customer].[Customer group name].[Customer group  
  name].Members,

https://msdn.microsoft.com/en-us/library/hh231197.aspx
https://msdn.microsoft.com/en-us/library/ms187058.aspx


Chapter 5

147

{([Measures].[Accounts receivable amount - transaction 
currency])})
onrows
FROM [Accounts Receivable Cube]  
WHERE( [Transaction date - fiscal  
  calendar].[Year].&[USPI]&[2012], 
  [Company].[Company].&[USPI]) 

3. The query editor lists all the available cubes and their dimensions and measures. 
As you execute the query, the results can be viewed at the bottom, as seen in the 
following screenshot:

4. Create a new reporting project in Visual Studio and add a report called 
PKTCustgroupSalesSummary.

5. Add a dataset and set the Data SourceTypeas property to DynamicsAxOLAP.



Integrating External Datasources

148

6. Now copy the MDX query from the Management Studio and paste it in the report 
query editor that is opened by clicking the ellipsis (…) button in the Query property.

7. Click the exclamation button to validate the query. This should display the data  
in the data editor window at the bottom. Click OK to add the dataset.

8. Add a precision design node CustGroupSummary and double-click to open  
the designer.



Chapter 5

149

9. Insert a new table and add the following fields as seen here:

10. Add a Parent Group... field in Row Groups as shown in the following screenshot:

11. Select Transaction_date_Quarter_Quarter_MEMB in the group by option dialog.

12. Preview the report after adding labels and setting fonts.



Integrating External Datasources

150

How it works…
The MDX query used in this report uses the account receivable cube that comes along with 
standard AX. It tries to represent the total amount in transaction currency for each quarter 
against each customer. The nonempty function ensures that the query doesn't return any 
blank values.

Did you know you can copy and paste controls from precision design in 
one report to another precision design?

See also
 f The Creating a group view report recipe in Chapter 4, Report Programming  

Model – RDP

Adding a parameter lookup for OLAP
The previous recipe was a simple implementation of a static MDX query. This recipe will 
further extend it to influence it through parameters. We will parameterize both transaction 
year and company under the WHERE condition. Users will be able to do a lookup for these 
parameters that are again attached to MDX queries.

Getting Ready
To be able to implement this recipe, you need OLAP configured for Dynamics AX. You must 
have a basic understanding of OLAP and the ability to write MDX queries. This recipe extends 
the report built in the Creating a customer summary OLAP report recipe in this chapter.

How to do it…
1. The MDX query used in the existing report has two conditions hardcoded: one for the 

company and the other for the year. Modify the query as shown in the following code 
snippet to parameterize the hardcoded values:
SELECT {[Measures].[Accounts receivable amount -  
  transaction currency]} oncolumns, 
nonempty(



Chapter 5

151

[Transaction date].[Quarter].[Quarter].Members*
[Customer].[Customer group].[Customer group].Members*
[Customer].[Customer group name].[Customer group  
  name].Members,
{([Measures].[Accounts receivable amount -  
  transaction currency])})
onrows
FROM [Accounts Receivable Cube]  
WHERE( STRTOMEMBER(@EndDate),  
  strtomember("[Company].[Company].&[" + @Company + "]")) 

2. Clicking OK in the query editor will prompt for the values. Fill in a valid value 
to proceed. For example, [Transaction date - fiscal calendar].
[Year].&[USPI]&[2012] , USPI.

3. This adds the parameter to the dataset and report. Any error in the MDX query  
will fail to add it as a datasource, so double check it with the MDX Query Editor  
and make sure the right parameter values are entered. Entering wrong parameter 
values also stops adding the query to the dataset.



Integrating External Datasources

152

4. The two parameters @Enddate and @Company are now added to the Parameters 
node as shown in the following screenshot:

5. The next step involves creating the lookup for these parameters. Use the following 
MDX queries to create a report dataset to look up the company:
WITH 
MEMBER [Measures].[ParameterCaption] AS  
  '[Company].[Company].CURRENTMEMBER.MEMBER_CAPTION'
MEMBER [Measures].[ParameterValue] AS  
  '[Company].[Company].CURRENTMEMBER.UNIQUENAME'
MEMBER [Measures].[ParameterLevel] AS  
  '[Company].[Company].CURRENTMEMBER.LEVEL.ORDINAL'
MEMBER [Measures].[Key] AS  
  '[Company].[Company].CURRENTMEMBER.PROPERTIES("Key")'
SELECT {[Measures].[ParameterCaption],  
  [Measures].[ParameterValue],  
  [Measures].[ParameterLevel],[Measures].[Key]} 



Chapter 5

153

ON COLUMNS ,
Except(  
  [Company].[Company].ALLMEMBERS,{[Company] 
  .[Company].[Unknown],[Company].[Company].[All]})  
ON ROWS 
FROM  [Accounts Receivable Cube]

6. In the Report parameters node, for the CustGroupTrans_Company parameter, set the 
following values for the parameter dialog that opens by clicking the Values property 
button. This links the dataset company to this parameter for lookup purposes.

7. To set a default value for the Company parameter, modify the Default value property 
to the expression =Parameters!AX_CompanyName.Value.

8. For the Enddate parameter, create a dataset by using the following query:
WITH
MEMBER [Measures].[ParameterCaption] AS '[Transaction date  
  - fiscal calendar].[Year].CURRENTMEMBER.MEMBER_CAPTION'
MEMBER [Measures].[ParameterValue] AS '[Transaction date -  
  fiscal calendar].[Year].CURRENTMEMBER.UNIQUENAME'
MEMBER [Measures].[ParameterLevel] AS '[Transaction date -  
  fiscal calendar].[Year].CURRENTMEMBER.LEVEL.ORDINAL'
MEMBER [Measures].[Key] AS  
  '[Company].[Company].CURRENTMEMBER.Properties("Key")'
SELECT 
{
[Measures].[ParameterCaption], [Measures].[ParameterValue],  
  [Measures].[ParameterLevel]
} 
ON COLUMNS, 
{ 
[Transaction date - fiscal calendar].[Year].[All],
FILTER
( 
    [Transaction date - fiscal calendar].[Year].MEMBERS, 



Integrating External Datasources

154

    INSTR( [Transaction date - fiscal  
      calendar].[Year].CURRENTMEMBER.UNIQUENAME,"&[" +  
      [Measures].[Key] + "]"  ) > 0
    AND 
    INSTR( [Transaction date - fiscal calendar].[Year].
CURRENTMEMBER.UNIQUENAME,"&[1900]") = 0
)
 } ON ROWS
FROM [Accounts receivable cube] 
WHERE STRTOMEMBER("[Company].[Company].&[" +  
  @Company + "]")

9. This dataset, used to look up Year for the EndDate parameter, has another parameter 
called Company, as seen in the MDX query. In the dataset for this MDX query, expand 
the Parameters node and select the Company parameter. Set the Report parameters 
property to CustGroupTrans_Company. This way, the company parameter is attached 
to the value set for the company parameter in CustGroupTrans, resulting in showing 
the years applicable for the selected company.

10. Bind the dataset to the Enddate parameter by modifying the Values property  
as shown here, to show up as lookup:

11. Select From dataset radio button from the CustGroupTrans_EndDate - Select values 
window and click on OK.



Chapter 5

155

12. Preview the report and verify that the lookups show properly. Notice that the year 
value changes based on the company selected. This is because of the binding 
created between the parameters in the CustGroupTrans and Year datasets.



Integrating External Datasources

156

How it works…

Company parameter
The Company parameter uses the default value that comes from the system parameter  
AX_company. The user can alternatively choose the value from the lookup and that  
comes from the Company dataset.

EndDate parameter
The lookup dataset uses a query that also has a Company parameter. This is because the 
lookup should only show values that are applicable for a company selected by the user. So, 
a binding is created between this parameter and the company parameter. This dependency 
causes the EndDate parameter to be activated only after the company parameter value is set.

Main query
The main query has two conditions: company and end date (actually holds year value and 
not date). Both have different formats. This has mainly to do with how they are represented 
in the cube. Each dimension in a cube has different attributes, such as Member_Name, 
UniqueName, and Ordinal. To construct the company parameter, the Member_Name 
is sufficient; so, the parameter lookup values Value field and Label field  are both set to 
Measures_Parameter Caption. For end date, the complete value must be constructed; so, 
the parameter lookup values Value Field is set to Measures_ParameterValue and the Label 
Field is set to Measures_ParameterCaption.

Designing an OLAP table report with SQL 
Report Builder

Ad-hoc reports using SQL Report Builder—the reports that we have designed so far—use Visual 
Studio based report development tools. This section will show how SQL Report Builder can be 
used to build ad-hoc reports to be viewed and published back to the reporting services. SQL 
Report Builder is not an AX-based solution but a generic reporting tool which can be used to 
generate reports. Designing reports using SQL Report Builder is so convenient and user-friendly 
that sometimes end users themselves can design reports. In the upcoming recipes, we will see 
how, with no coding or model changes, reports are developed with the help of inbuilt wizards.

This recipe will specifically show how the customer group cube report that was made using 
SSRS in the Creating customer summary OLAP report recipe can be designed and published 
using SQL Report Builder.



Chapter 5

157

Getting Ready
This recipe requires that you have installed and have access to the Reporting Services 
Manager and the Report Builder.

How to do it…
1. Open the Reporting Services in the browser and click on the Report Builder icon  

at the top.

2. This opens up the Report Builder editor. In the wizard that shows up, select Table or 
Matrix Wizard and click on Next.

The New Report tab



Integrating External Datasources

158

3. The next tab is where the dataset must be defined. Select Create a dataset and click 
Next. The following tab is to choose the source of the report data. Click on New.

Selecting DynamicsAXOLAP

4. In create new connection for the Data Source property, give the connection a name, 
such as AxOLAP. Set the Select connection type to Microsoft SQL Server Analysis 
Service and click on Build.



Chapter 5

159

5. In the Connection Properties, type the name of the server and choose the database. 
Click on OK to return and press the Next button in the wizard.



Integrating External Datasources

160

6. The wizard displays the query designer. Since we will use the Accounts receivable 
cube, use the datasource selector to select the cube.

7. In the top dimension row, set the values, as seen in the following screenshot, by using 
the lookups in the columns:



Chapter 5

161

8. After completing this, in the empty space below, drag Customer group name, 
Customer name, and State from Customer Dimension from the left pane.  
Similarly, traverse to the Dimension Transaction Date node and drag  
Transaction date and Year-Quarter-Month-Date to the empty space.

9. The next step is to go to Measures at the top in the left pane, expand Customer 
transactions, and drag Accounts receivable amount currency to the columns.  
The query automatically executes and shows the data returned in the screen:



Integrating External Datasources

162

10. Click Next and from the available fields, drag and drop the fields as shown here:

11. Click on Next. The layout designer provides options to select Total and Subtotal.

12. In the subsequent screen, select the theme and click on Finish to see the fully 
designed report in the editor.



Chapter 5

163

13. Click on Run to see the report preview.

14. To save the report, publish this to the report server. From the menu, select the File | 
Save As option and choose the location in the report server, preferably the DynamicsAX 
folder. Once saved, the report can be accessed through the Reporting Services.



Integrating External Datasources

164

How it works...
SQL Report Builder also doubles as an easier way to verify a cube query before creating it 
using SSRS. The Report Builder can also be used against the OLTP database, but the label 
transformations and security might not be put to action, so care must be taken in using it.

Designing a map sub-report with SQL Report 
Builder

Though the AX SSRS extension has improved the capability of AX reports, it is still to catch up 
with the actual SSRS. Features such as map and a few other graphical additions to reports 
are yet to make way into it. However, there is a way to bring nice map reports to AX through 
SQL Report Builder. This recipe will extend our previous recipe to add a map data, which will 
then be added as a sub-report.

Getting Ready
This recipe requires that you have installed and have access the Report Server Manager and 
Report Builder. This recipe is a continuation of the recipe, Designing an OLAP table report 
with SQL Report Builder, in this chapter.

How to do it
1. Continue with your last report by stretching the borders of the report to make some 

space to insert a new control. On the Insert ribbon bar, select Map | Map Wizard.

2. In the wizard, choose USA by State Exploded and click on Next.



Chapter 5

165

3. Let's use the same dataset that was added, so set the option to choose the already 
added datasource and click on Next.



Integrating External Datasources

166

4. The next step is to relate the spatial data and the analytical data. In the below tab, 
choose the spatial data which identifies a geographical location. Select STUSPS in 
Match Fields and select the State field from the Analytical Dataset Fields.

5. In the next tab choose a theme, preferably Generic, and choose the amount field 
sum for visualization. Set the Color rule to your preferred choice. Click on Finish to 
complete the wizard.



Chapter 5

167

6. The map is inserted in the report. Before we make it a sub-report, it is necessary to 
drop all the extra add-ons in the map, such as Title, Scale, and so on. So, select each 
of them and uncheck the Show Distance Scale and Show Color Scale options.

7. In the map area, right-click and select Viewport Properties.... In the properties, set 
the Fill and Border color to None and Border size to 0 pt. The map should appear 
plain as seen in the following screenshot. Resize it to a smaller size so that it can be 
inserted as a sub-report.



Integrating External Datasources

168

8. We have now added our map to the report.

9. Now, in the tabular design, right-click on the Sum field as seen in the following 
screenshot. Insert a row by selecting Inside Group - Below in Insert Row.



Chapter 5

169

10. Readjust the table design by stretching the columns and rows to build some space for 
the map. Cut the map and paste it in the new column. This automatically makes the 
map a sub-report.

11. Run the report.

12. To save the report, publish this to the report server. From the menu, select the File | 
Save As option and choose the location in the report server, preferably the DynamicsAX 
folder. Once saved, the report can be accessed through Reporting Services.



Integrating External Datasources

170

How it works...
A sub-report reflects the data inside the slice in which it is placed. The sub-report option is 
automatically applied to the map when it is dragged and dropped into the existing table. The 
main report passes the relevant parameters to the sub-report to render the right data; all 
these settings are taken care of automatically by the Report Builder in this case.

These reports, once published, can be reused and made accessible to all users. To open the 
reports inside the rich client, modify the report viewer (SRSReportViewer) to pass the URL 
and the report name through the SRSReportRunAdapter class.

Creating a sub-report in auto design
Sub-reports can be compared to the View Details option in the Dynamics AX rich client forms. 
It is another way of adding drill down information to reports. In this recipe, we will see how to 
add sub-reports to auto design. The approach here is to create a report that shows the list of 
customer groups, and when the user clicks on a customer group, then a sub-report with all  
the customers belonging to the group.

Getting Ready
This recipe requires that you have access to Visual Studio, and the Dynamics reporting 
extension installed before you start.

 How to do it...
1. Create a reporting project in Visual Studio and add a report PktCustGroup.

2. To this report, add a dataset through AX query to list all the customer groups.

3. Drag the dataset to the auto design and create a design. Preview the report.

4. Add another report to the project PktCustReport.

5. To the report, add CustTable Ax query to list all the customers.

6. Drag the dataset to the auto design and create a design.

7. In the Parameters node, create a new parameter called CustGroup of type String.



Chapter 5

171

8. In the Designs node, expand the Filters node, create a new filter, and set the 
following properties:

9. The columns are displayed as follows:

Property Value
Name GroupFilter
Expression =Parameters!CustGroup.Value
Operator Equals
Value =Fields!CustGroup.Value

10. Open the report PktCustGroup. In the Design node, expand the data node and  
right-click on the CustGroup field. Select Add | Report Drill Through Action.



Integrating External Datasources

172

11. This will add a new ReportDrillThroughAction node. Open the properties of  
the node and click the button on the ReportDesign property. This will list all  
the reports in the same project. Expand PktCustReport and select the Design  
node. Then click on OK.

12.  All the parameters—including CustGroup—that were created in PktCustReport will be 
added as sub-nodes. Navigate to each sub-report and set it to the system parameter 
of the current report in the Value field, except for the CustGroup parameter.



Chapter 5

173

13. For the CustGroup parameter, set the value field to the expression 
=Fields!CustGroup.Value. Save and preview the report.

14. In the report preview, as you navigate to CustGroup, the cursor will change to indicate 
a link. Clicking on the link will open the customer list filtered by the customer group.

How it works...
The reports that are linked must be in the same project to make it work. The filter that is added 
to the CustList report will restrict the design to show only records whose customer group value 
is equal to the parameter, as the filter is mapped to the parameter. This parameter value is filled 
with the CustGroup field value in the CustGroup report. When the user clicks on the link, the 
corresponding field value is automatically passed as a parameter to the sub-report.

The link field (CustGroup) doesn't need to match with the parameter field. This means the  
drill through could be implemented for the Name field as well, since the link is governed by  
the expression that is set up for parameters under ReportDrillThroughAction.

Creating a sub-report in precision design
This recipe is to design a sub-report for precision design. To implement this recipe, let's use 
the cube report that was designed in the recipe Creating a customer summary OLAP report  
in this chapter.

Getting ready
This recipe extends the OLAP report developed in Creating Customer Summary OLAP report  
in this chapter and uses the report added in the recipe Creating a sub-report in auto design  
in this chapter.

How to do it...
1. Add PktCustgroupSalesSummary (OLAP report) to the PktCustReport project used 

in the previous recipe. We need to do this because the sub-reports and main report 
must exist in the same project.



Integrating External Datasources

174

2. Open precision design and navigate to the field for Customer group. Select the field, 
right-click, and choose Textbox Properties....

3. In the properties dialog, select the Action tab and choose Go to Report under Enable 
as a hyperlink.



Chapter 5

175

4. In the Specify a report field, manually fill the values with PktCustReport.CustList 
since no lookup is available as in auto design.

5. Click on the Add button to add parameters. In the Name field, type the parameter name 
used in PktCustReport, and in the Value field, use the  expression button and 

select the appropriate values from the PktCustgroupSalesSummary report.

6. Rebuild and deploy the report.

How it works...
Sometimes in the preview option, the links may not work, resulting in an error. Go ahead and 
deploy the project to the report server and verify it in the report server to ensure that it works.

Precision design can be created from auto design. This can be helpful as 
it is easier to add fields to auto design. Also, creating report drill through 
actions is manual in precision design but automatic in auto design. So, 
when auto design is converted to precision design, the drill through is 
automatically translated.

See also
 f The Adding Drill Up/Drill Down actions in reports recipe in Chapter 2, Enhancing Your 

Report – Visualization and Interaction.





177

6
Beyond Tabular Reports

In this chapter, we will cover the following recipes:

 f Creating a matrix report

 f Creating a multicolumn matrix report

 f Creating a column chart report

 f Creating a line chart

 f Gauges in the reports

 f List and rectangle controls in the reports

 f Adding reports to the role center

Introduction
The legacy reporting system in Dynamics AX, which used to develop through the MorphX IDE 
or X++, had very limited capabilities for rendering data. Something as simple as adding an 
image and placing it correctly was a massive task, while adding things like graphs and charts 
was not even imaginable. SSRS takes away this pain and makes it easy to represent data in 
different formats that offer convenient representation options, making it easier for the end-
user to absorb the data. This chapter will discuss the recipes that cover the kinds of controls 
other than the table layout control discussed so far, and this can be used to represent data, 
such as matrix, charts, gauges, and more. The reader will be familiarized with the different 
controls and how these can be put to use in reports through this chapter.



Beyond Tabular Reports

178

Creating a matrix report
A matrix is an interesting representation format with a two-dimensional view of data, allowing 
capabilities to consolidate by row and column. This recipe will discuss how to add and use a 
matrix data region in reports. Totaling capabilities in the matrix reports will also be discussed.

How to do it…
The recipe is broken down into two sections. In the basic report design section, we will  
build a simple RDP that will be used in this recipe as well as in the other recipes found  
in this chapter; however, the actual recipe is given in the second section.

Basic report design
Before we start discussing this recipe, we will build an RDP class that can be used as a  
source for all the recipes in this chapter. This RDP will be used as the source of the dataset  
for all the reports in this chapter:

1. Create a query as seen here, the InventItemGroupItem table, which uses the  
existing join and is added for the purpose of limiting the sales lines data to  
certain item groups.

2. The goal of the RDP is to run across SalesLine in the system and retrieve the  
item, item group, and then confirm the shipping date. The shipping date that  
was confirmed is split into multiple parts like years, months, and days.

This RDP can be time consuming if you have a huge database of sales 
orders, so limit your data to certain item groups or a certain period, as 
required by the RDP processReport method.



Chapter 6

179

3. This RDP will fill a temporary table, as shown in the following illustration:

Temporary table creation

4. The RDP shown here will fill the temporary table by running through all the sales  
lines in the system.

The general approach for an analysis like this is to use OLAP so that it is faster 
and provides multiple dimensions of consolidations, but uses an OLAP to 
demonstrate these report controls, which might stop several from practicing. 
This is because a majority of the AX developers are not BI experts. Keeping 
this in mind, this RDP has been used to demonstrate the following examples:

[
//bind query - shows in the report dialog
SRSReportQueryAttribute(queryStr(PktSalesLine))
]
Class PktItemSalesHistoryDP extends SRSReportDataProviderBase
{
PktItemSalesHistoryTmp salesHistoryTmp;
}

[
SRSReportDataSetAttribute(tableStr(PktItemSalesHistoryTmp))
]
public PktItemSalesHistoryTmp getItemSalesHistoryTmp()
{
Select salesHistoryTmp;
Return salesHistoryTmp;
}

private void insertTmpTable(SalesLine _salesLine)
 {



Beyond Tabular Reports

180

Qty qty;
Date shipDate;
InventItemGroupItem groupItem;

qty             = _salesLine.QtyOrdered;
shipDate        = _salesLine.ShippingDateConfirmed;
groupItem       = InventItemGroupItem::findByItemIdLegalEntity(
                                            _salesLine.ItemId,
                                            _salesLine.
DataAreaId);

salesHistoryTmp.clear();
salesHistoryTmp.ItemId          = _salesLine.ItemId;
salesHistoryTmp.ItemGroupId     = groupItem.ItemGroupId;
salesHistoryTmp.Price           = _salesLine.salesPrice;
salesHistoryTmp.Amount          = _salesLine.SalesPrice * Qty;
salesHistoryTmp.Qty             = qty;
salesHistoryTmp.Year            = year(shipDate);
salesHistoryTmp.MonthOfYearId   = mthOfYr(shipDate);
salesHistoryTmp.Days            = dayOfMth(shipDate);
salesHistoryTmp.insert();
}

[
SysEntryPointAttribute(false)
]
Public void processReport()
{
    Query       query;
QueryRun        queryRun;
SalesLine       salesLine;
InventItemGroup ItemitemGroup;

query = this.parmQuery();

queryRun = new queryRun(query);

while (queryRun.next())
    {
salesLine = queryRun.get(tableNum(salesLine));
this.insertTmpTable(salesLine);
    }
}



Chapter 6

181

Creating a matrix report
1. Create a report in Visual Studio PktMatrixReport and add the RDP provider as  

the dataset.

2. Set the Dynamic filter property to False.

3. Create a new precision design and name it MatrixDesign, and then double click  
to open the editor.

4. Right-click and Insert a new Matrix data region, as shown in the following screenshot:

5. Use the field selector to set the fields; choose the Qty in the data section and it will 
automatically add the Sum function to it:

6. To add the total quantity for each row, navigate to Row Groups at the bottom, click on 
the small arrow, and then select Add Totals | After.



Beyond Tabular Reports

182

7. To add the total quantity for each column, on  Column Groups at the bottom,  
click on the small arrow, and then select Add Totals | After.

8. There are a total of three boxes in the design, each represents the row total, the 
column total, and the grand total. The grand total tallies the sum of the rows and  
the sum of the columns.

9. As you can see in the following screenshot, the title rows and the grand total row are 
colored, and the font is  set to bold. This will give a better appearance for the matrix.

10. The header for the row is present, but there isn't a similar header for the column group. 
So, right-click on the first column and select Insert Row | Outside Group – Above. This 
will give a header to the column; enter the expression string ItemGroupId using the 
label id or the static text. The design that appears will be as shown here:

11. Save the report and preview it.



Chapter 6

183

How it works…
A matrix data region is a tablix control behind the hood. The tablix control combines the 
behavior of the table, the list, and the matrix reports. Though UI has the table and the matrix 
list, they are the same controls under the hood but they open with a different configuration. 
The matrix data region has both the row and column groups, whereas a table control only  
has a column group. Matrix helps in creating summary type reports.

Creating a multicolumn matrix report
This recipe will show you how a multicolumn matrix can be implemented. Here, we will expand 
our report to see how we can dissect it in detail, and see how the rows can be split by months, 
followed by years, and how the columns can show the average price  and the quantity.

Getting ready
This recipe requires that you complete the Creating a matrix report recipe in this chapter.

How to do it…
Create a new design as done in the previous recipe, or extend the design created in the 
previous recipe with the help of the following steps:

1. From the Report Data toolbar, drag the MonthOfYearId1 control to the Row Group 
control, which is next to the Year. When you drop, a blue bar appears, and it must 
face the year column as shown here:



Beyond Tabular Reports

184

2. From the Report Data toolbar, drag the control Price to the Column Group that is 
next to the quantity field. A vertical blue bar appears, and it must face the quantity 
column, as illustrated in the following screenshot:

3. By default, the price field gets placed as a Sum operation; change it to Average  
by right-clicking on the cell and choosing Expression. In the expression field,  
modify the Sum and set it to Average.

4. Since the price can have decimal values, it is important to set the decimal ranges, 
otherwise it will  have an improper formatting. Right-click on the price control and 
choose Textbox properties.

5. On the Textbox properties, set the Formatting to the Decimal and ensure that  
the decimal place is set to 2.



Chapter 6

185

6. If you want to extend the previous recipe, drop the column totals before doing this, 
otherwise directly move to the column group at the bottom and click on the arrow 
button and then select Add Totals | After. This will add the total for the quantity  
and price fields.

7. The report design appears as shown here; save the report and preview it.

8. The first image shows the preview with a limited data (this is because the load 
dataset fully option is not activated).



Beyond Tabular Reports

186

9. The second image shows the preview with the full dataset loaded:

How it works…
In this report, the summary has been broken down by years and months, while the columns 
summarize the multiple values rather than just one value. This way the matrix can be used to 
build the detailed drilled summary reports.

The report preview option in Visual Studio always loads only a limited 
amount of sampled data and doesn't load the entire data on the system. 
This is not the case with small datasets. When using big datasets as we have 
been doing in this chapter, you will notice that the data changes every time. 
In that case, to confirm if everything has loaded, activate the Load data set 
fully option, which is available at the right corner of your preview window.

Creating a column chart report
This recipe will guide you in creating chart-based reports in Dynamics AX. Charts are an 
interesting pictorial representation of the data, and the SSRS reports support a multitude  
of chart types. It is easier to switch among the chart types in SSRS. In this recipe, we will 
create a column chart that represents the total sale of a quantity over a couple of years.

Getting ready
Complete the RDP defined in the getting ready section of the Creating a matrix report recipe 
in this chapter.



Chapter 6

187

How to do it…
1. Since the RDP class can return a large number of item groups, it is ideal to limit it  

to two item groups, so as to test this recipe. This will make it faster and easier to  
work through the recipe.

2. Modify the processreport in the RDP to add the ranges for the item group in  
the query.

3. In Visual Studio, create a new report, PktColumnChartReport, and link the RDP  
class to it. Remember to set the Dynamic filter property in the dataset to False.

4. Create a new precision design and name it ChartDesign.

5. Open the editor, right-click and choose Insert | Chart. In the prompting dialog  
window that shows the different chart types available, choose the column chart,  
as shown in the following screenshot:



Beyond Tabular Reports

188

6. Resize the chart to the required size and double click on the chart area.  
This will display additional square boxes around the chart image, and there will  
be one each for category, series, and data. Drag the following fields to the specified 
region accordingly,

Field Drop area
Year Category
ItemGroupId Series
Qty Data

7. As the fields are dropped in the chart area, you can see the report changing at the 
design time. Though this may not reflect the exact data, it will give you a feeling of 
how it looks during run time.

8. Modify the chart and axis title. Save the report design.

9. The report preview will appear as shown in the following screenshot:



Chapter 6

189

How it works…
The aforementioned report  is a multi-series chart. This means that the category has been 
applied across the series.  In a static series, we represent a single series item, for example, 
item group. In this case, if the item group is not restricted, then each year might be displayed 
for all the item groups in the system. Care has to be taken while considering what is added to 
the series, as it should make sense to the user when a comparison is made.

See also
 f The Creating a Chart Data region recipe in Chapter 2, Enhancing Your  

Report – Visualization and Interaction. 

Creating a line chart
This recipe will discuss another chart based report. Here, we will try to show the monthly 
quantity trend for the item groups over the years. The line chart is the best option for revealing 
the trends. This recipe will also focus on the aesthetic properties of the charts, such as color, 
axis design, and so on.

Getting ready
This recipe requires the Creating a column chart report recipe to be completed first.

How to do it…
1. Create a new precision design for the report. Call it line design.

2. Open the editor and insert a new chart.



Beyond Tabular Reports

190

3. Double click on the chart area to open  the field editor. In the field editor, add the 
following fields as specified.

Field Drop area
Year, MonthOfYearId Category
ItemGroupId Series
Qty Data

4. In the steps discussed next, we will deal with how the aesthetics of a chart can be  
made better. In the General Properties window, set the Palette to SeaGreen,  
which will apply a different set of colors for each of the series.

5. To set up the markers for the series on the value points in the chart area,  
right-click and select Series Properties, and in the Markers tab, set the type  
of marker as Square:

6. The axis may not show all the labels for the category axis. To make sure that it shows 
all the months as labels, right-click on the Axis and open the Axis properties form. 
In the property form, in the Axis options tab, under Set axis scale and style, set the 
Interval to 1. This will ensure that all the labels are visible.

7. Right-click on the Legend and choose Legend Properties. In the General tab, under 
Legend position, choose the position of the legend from the circular radio buttons:



Chapter 6

191

8. To disable the quantity axis, right-click on any axis and uncheck Show Value Axis, 
and then the design will be similar to the screenshot as shown here:



Beyond Tabular Reports

192

9. Save the report and preview it.

How it works…
The recipe provides details on the appearance of a report and how it could be controlled 
through the various properties associated with it. The recipe discusses only a limited set  
of options, while there are tons of other options, that you can explore.

There's more…
Though the chart design shown here is from the precision design, the auto design also 
supports charts.

Chart reports in auto design
In the auto design, the category, the series, and the data appear as a group node as shown  
in the upcoming screenshot. The chart type can be changed through the properties node of 
the chart control. The fields can be dragged into it from the datasets. The precision design  
is very flexible and convenient, as compared to the auto design, for the following reasons:

 f Modifies and previews the chart in the design time

 f Provides clarity for understanding the field and its corresponding axis



Chapter 6

193

 f Good extent of customization and visibility of the available charts

 f More control of where and how the data is rendered, for example, the marker, the 
legend, and so on

It is preferable to use the precision design over the auto design when it 
comes to charts.

Gauges in reports
Gauges are one-dimensional data regions, which can display a single value in your dataset.  
A gauge can be used as a KPI, in the table or the matrix cells to indicate single values. This 
recipe will show you how a gauge can be added to a matrix cell for indicating the average price.

Getting ready
Complete a report design as specified in the Create a multicolumn matrix report recipe.  
The report design must appear as the following screenshot shows:



Beyond Tabular Reports

194

How to do it…
1. Open the precision design created in the matrix report recipe.

2. Select the ItemGroupId field, right-click and select Insert Column | Inside  
group - Left

3. In the newly created column, drag the gauge control from the report items in the 
toolbox. Select radial and choose the design highlighted in the screenshot:

4. Stretch the box so that it allows you to resize the gauge control.  Notice that  
the gauge control increases as the box expands. Stretch it to a visible limit.

5. Double click on the gauge control and on the Drop data fields here box that appears 
over the gauge, drop the field Price by dragging it from the report data. By default this 
value might appear as Sum(Qty), in which case convert it to Avg(price):



Chapter 6

195

6. Right-click on the gauge and select Pointer properties. In the properties form in 
the Pointer options tab, click on the Expression button in the value field and then 
convert the Sum to Avg in the expression editor.

7. The gauge by default shows the max value in red but in case of the average price, 
the higher the value, the greener it is. To modify, select the range in red, followed 
by a right-click, and then open Range properties. In the range properties, set the 
Secondary color to Green in the default color option.

Selecting the range properties

8. To add a new range, right-click on the gauge and select Add Range. A new range will 
be added to the lower corner.



Beyond Tabular Reports

196

9. Select the range and open  Range properties by right-clicking on the new range. In 
the Range properties form, set the Start range at scale value and End range at 
scale value to 1 and 20, respectively, and change the fill color to Red. Any number  
of ranges with different scale values can be similarly added.

10. The final design appears as shown in the following screenshot:

11. Save and preview the report.

List and rectangle controls in reports
List and rectangle are types of container controls in SSRS. Rectangle control is used for the flow 
control, while the List data region is a kind of  array control. The List region can help in creating 
very interesting representations of the report. In this recipe, we will discuss the idea of the list 
and rectangle controls in the process of building a summary sheet for each item group.



Chapter 6

197

How to do it…
1. Create a new report with the RDP PktItemSalesHistoryDP, and add a new  

precision design.

2. In the editor window, insert a list region. Right-click on the control and select the 
Tablix properties. In the properties window, set the dataset to the RDP dataset 
ItemSalesHistory.

3. The Row Groups window, which is at the bottom, must indicate a details row.  
Click on the arrow at the corner and open Group Properties:

4. In Group Properties, add a new grouping by ItemGroupId:



Beyond Tabular Reports

198

5. Stretch the list data region to fit the entire report. From the toolbox, drag the text box 
control and set the field to ItemGroupId. Also, enter the text title as Summary Sheet 
before ItemGroupId as illustrated in the following screenshot:

6. Increase the font size, set the alignment to center, and the back color using the  
text tool bar.

7. From the tool box, again drag the rectangle control to the list box. Add the quantity 
and price sum to the rectangle control. Also, add labels, header text, back color.  
The rectangle should reflect the total Quantity and Amount for the item group.

8. Stretch the list box to increase the height, and insert a radial gauge below the total. 
In the pointer properties, set the field to Avg(Price). Add a text box for the title of the 
gauge, which is Average Price.



Chapter 6

199

9. In the rest of the available area of the list, we will create two charts. One is a  
bar chart that indicates the quantity sold across items, and the other will be a  
line chart that indicates the price graph across items.

10. Insert a chart, choose the Barchart option, drop ItemId in the categories and Quantity 
in the Data fields. Delete the axis titles and legends to make space for the graph.



Beyond Tabular Reports

200

11. Similarly, insert a line chart and add ItemId to the categories and Price to the  
Data fields. Give it a title, after removing the axis titles and legend.

12. The final design of the report should look as follows:

13. Since this is a summary, it is preferable to print each summary in a single sheet.  
To activate this, navigate to the Group properties | Page breaks tab and enable  
the Between each instance of a group flag. This will enable the printing of the 
summary in one sheet. Preview the report to see the summary print per page.



Chapter 6

201

How it works…
Surprisingly, the list data region internally is also a Tablix control with altered configuration. 
The list data region helps in setting up a format that can be repeated for every record in the 
dataset. To experiment with how the list data region works, do the following: drag a list data 
region and connect it to a dataset; then add a field from the dataset. When previewed, you 
will see that the list is repeated for each record in the dataset. In the example discussed 
here, since a grouping is added to the ItemGroupId, it is only repeated for the number of item 
groups in the system.

Adding reports to the role center
The analysis or the consolidation reports are usually used by those higher up in the organization, 
and it will be easier for them if these analysis reports are visible in their integrated role center 
dashboard. This recipe will discuss how any report can be added to the role center page.

How to do it…
1. Deploy a report and create a menu item for the report. In this case, we will use the 

PktColumnChartReport from Create ColumnChartReport. Give the menu item a 
label, Year To Year Sales Order Report.

2. Open the role center page that you wish to edit and click on the Personalize this 
page option at the right corner. This opens a view that can be edited.



Beyond Tabular Reports

202

3. Click on Add a web Part.

4. A screen listing all the categories and web parts will appear. Select Microsoft 
Dynamics AX from the category and Report from the Web Part. Click Add:

5. This adds the web part; the web part must be configured. Select the drop down box at 
the upper right corner, and then select Edit My Web Part:



Chapter 6

203

6. A report bar will appear on one end of the web page. From this bar, select the report; 
in this case, it is the column chart. The list highlights the reports based on the report 
menu item label. Select the report and set the properties, such as parameter, layout, 
and so on. Click on OK:



Beyond Tabular Reports

204

7. The report will show up in the role center. Click Stop Editing in the tool bar to 
complete the setup. This recipe can be performed either on the Dynamics AX  
role center page or on the enterprise portal.

How it works…
The role center modifications can be done by an end user as well as by the administrators.  
If a report is made visible at the role center, then see that you don't have too many  
dynamic parameters.



205

7
Upgrading and 

Analyzing Reports

This chapter will cover the following recipes:

 f Upgrading a report from its previous version

 f Analyzing and modifying an existing report

 f Implementing validation in reports

 f Surrogate fields in reports

 f Grouping and ordering controls in the report dialog

 f RDP with multiple temporary tables

 f Multi-value lookup

 f Inventory dimensions in reports

 f Financial dimensions in query reports

 f Financial dimensions in RDP reports



Upgrading and Analyzing Reports

206

Introduction
This chapter will walk you through how to upgrade your reports from previous versions to the 
new SSRS reporting framework. With this you will also learn how to approach existing reports 
to identify the components that are a part of it. The next few recipes will discuss how to place 
validations and structure the report controls in the report dialog. You will also learn how to 
implement multi-value lookup reports and how to return multiple tables from an RDP. Finally, 
the most used patterns for reports, such as inventory and financial dimensions will  
be discussed.

Upgrading a report from its previous version
As discussed earlier, reporting has gone through a major change with the new versions of  
AX. Though SSRS reports were introduced in AX 2009, there were only a handful of them  
with limited framework support. AX 2012 uses SSRS as a mainstream report while still 
supporting the legacy framework. Moving reports from AX 2009 to AX 2012, though termed  
as an upgrade, is in reality a redevelopment. This recipe will basically discuss how to map  
the different implementations in an AX 2009 report to the new framework. It assumes that 
the report in AX 2009 is completely custom developed and not found in AX.

How to do it…
Migrating reports from an older version to a newer one is a multistep process since it  
is a complete redesign. This process has been broken down into major headings and is 
described here.

Defining the data source
Designing a report starts with making the choice of the report data source. If the existing 
report uses only a report query, the ideal choice in 2012 would be to use an AOT Query.

Even if there are simple display methods or computations present in the fetch method, it is 
fine to use a report query. Choose to go with an RDP only when there is a pure business logic 
placed in a report. The following are the decisional points that should help you choose the 
data source:

 f Source of the data contained in the report dataset

 f Elements of the report that are from the report business logic



Chapter 7

207

 f Calculated columns based on Microsoft Dynamics AX data

 f The Extended Data Types (EDTs) that are used to format data

Mapping the parameters and fields
The next step is based on the data source you choose to work with to create the necessary 
parameters and decide the fields that are required in the report:

1. For Query: If there are parameters from the old report dataset, then add them to  
the Ranges node in the newly created AOT query. This will add them as dialog fields 
using dynamic filters.

2. For RDP:

1. Identify the data that is needed for the report and create one or more 
temporary tables based on the business logic. For example, SalesConfirm 
and ProjInvoice are reports that use more than one temporary table.

2. After the temporary table is created, create the RDP class and move the 
business logic placed inside the Fetch method into the RDP. Also to be 
moved are any computed columns that have been implemented as display 
methods in AX 2009. The display value is mapped to the field in the 
temporary table and is filled by RDP.

3. When creating the RDP, you will identify the parameters that are necessary. 
Create a contract class with the list of parameters.

Mapping the design
Once the data source decision is complete, the next step is to work on the design. Like AX 
2009 has auto design and generated design, AX 2012 has auto design and precision design. 
The generated design is what maps as precision design in AX 2012, but before plainly moving 
all the generated design to precision design—and similarly auto design—consider rethinking 
the strategy. Sometimes, it is possible that what was achieved through generated design in 
AX 2009 can be achieved with the help of auto design and RDP in AX 2012. Take into account 
the following points as you do your design mapping:

1. Choice of control: SSRS reports have a wider choice of presentation methods,  
such as charts, matrices, and lists. So consider if you can use an alternate way  
to display your data.

2. Segregate display methods: Display methods must be carefully redesigned. In AX 
2009, it was a common practice to write a display method to even fetch a value 
using the foreign key. Such methods can be eliminated in AX 2012. Here are a few 
suggestions for the commonly found display methods:



Upgrading and Analyzing Reports

208

 � Find methods: If a query is the report data source, it allows you to add display 
methods present in the table as datasource fields. So, directly choose the 
display method when choosing the fields in the Query selection window in  
the report designer as shown in the following screenshot:

 � Simple computations: There can be conditional computations, such as 
If (PriceDiscTable.Value) then Total = Total + Value. For 
such conditional computations, try to use expressions. If expressions prove 
difficult, then use the business logic in the report design to create a method 
which then can be referred from the expressions. For more on this, refer 
to the Adding data methods in business logic recipe in Chapter 3, Report 
Programming Model. 

Business logic in C# must be used only for simple mathematical 
computations. For anything that involves access to AX business 
logic, the recommended approach would be using an RDP.

 � Formatting changes: For simple formatting purposes such as background 
color, it is recommended to use expressions.

 � Business logic in computations: If there is business logic in computations, 
make it a part of the RDP and add a field in the temp.

3. If the company image must be displayed in the report, then it is recommended to  
use precision design over auto design.



Chapter 7

209

Datasets in AX 2012 R3 vs AX 2009 reports
As compared to the report dataset in AX 2009, the report dataset in AX 2012 has stark 
differences:

 f Two datasets cannot be related or joined to each other.

 f The dataset is flattened and accessed by the dataset name, unlike in AX 2009,  
where when there is a SalesTable and SalesLine, there are two cursors to  
identify them individually.

 f In AX 2012, use the group by property on the report design to achieve the header  
line pattern as in AX 2009, where the header fields point to the header table and  
the lines point to the child table.

Refer to the Grouping in Reports recipe in Chapter 1, Understanding and 
Creating Simple SSRS reports.

 f There are no multiple header/footer/prolog sections in AX 2012. There is only one 
header and footer for each report.

 f Programmable sections are not present in AX 2012. To display designs conditionally, 
use expressions for visible properties.

 f This completes the migration of a report.

Developing the controller
If your report also uses the RunbaseReport class, then proceed with these steps:

1. If the RunbaseReport class chooses the report or design at runtime, then  
a controller must be created in AX 2012. The controller class can be used to  
choose the report at runtime.

2. If the ranges in the query are modified based on the caller in the RunbaseReport 
class or in the report, then use the controller class in AX 2012.

Handling UI events
1. Adding dialog fields: Simple dialog fields are constructed by the framework  

from the contract parameters. If any dialog modifications are required, then  
create a UI controller class.

2. Reacting to dialog field changes: Any changes such as lookup modification  
or dependency fields must be implemented in the UI controller class.

3. Validations: Any validations must be placed in the contract class.

4. Aligning report dialog controls: Use the SysOperationAttribute to order  
the controls in the contract class. For more complex restructuring, use the Visual 
Studio parameter nodes to create groups.



Upgrading and Analyzing Reports

210

Analyzing and modifying an existing report
This recipe aims to guide you on how you can approach the identification of the components 
involved in an existing report, either for the purpose of upgrading your report or to make 
customizations. The easiest way would be updating a cross reference, but the chances of 
having a cross reference updated system are less. Hence, this recipe will help you proceed  
with an approach where it doesn't require the cross reference to be updated.

How to do it...
1. The first step is to identify the report you need to work on. Here are several instances 

of your starting point and the corresponding method to find the report name:

 � Moving from AX 2009: If you are moving from AX 2009, then use the 
following links to search for the report name in the current version: http://
technet.microsoft.com/EN-US/library/gg731909.aspx. If it 
doesn't exist, check at http://technet.microsoft.com/EN-US/
library/gg731897.aspx, that it is not deprecated. This will help you 
identify the report name.

 � End user tells me the main menu navigation: If the main menu navigation 
is known, then go to AOT | Menu. Expand the corresponding module and 
identify the output menu item. If the menu item is connected to a controller 
class and if the Linked Permission Type is SSRSReport, then check for the 
Linked Permission Object property for the name of the report. Otherwise, 
open the controller class and look for the parmReportName method to 
identify the reports that are being used for the controller.

 � I know the report name but not sure which report layout is used: Say from 
the previous step you identify the controller but are still not sure which layout 
is used, since there are many layouts being referenced. Then you could 
use this approach. Place the debugger in \Forms\SrsReportViewer\
Methods\init. When the debugger hits this point, choose Classes\
SrsReportRunController from the stack trace and look for the variable 
reportname under this in the watch window. This will clearly indicate the 
report name and design. It will also help you identify the controller.

http://technet.microsoft.com/EN-US/library/gg731909.aspx
http://technet.microsoft.com/EN-US/library/gg731909.aspx
http://technet.microsoft.com/EN-US/library/gg731897.aspx
http://technet.microsoft.com/EN-US/library/gg731897.aspx


Chapter 7

211

 � I'm searching for an example: If you are looking for an example report 
to learn about a certain type of report, then download the Excel sheet 
from http://www.microsoft.com/download/en/details.
aspx?id=27877. This contains the complete list of reports with different 
details based on their usage, design, and so on. This can help you choose 
the report that might serve you as a good example.

http://www.microsoft.com/download/en/details.aspx?id=27877
http://www.microsoft.com/download/en/details.aspx?id=27877


Upgrading and Analyzing Reports

212

2. To know your report name, the next step is to explore the kind of data sources used 
in it. To do this, navigate to your report and right-click on it. Go to Add-ins | Cross 
reference | Using (Instant View).

This will work even if your cross reference is not updated.

3. This will help you identify the query, temporary table, RDP contract, and any business 
logic project present as part of the report. What you don't find is the Visual Studio 
project to which the report belongs.

 � Navigate to the SRSReportRDLDataContract and right-click on  
Add-ins | Type Hierarchy Browser. The Type Hierarchy Browser shows  
all the extended classes from where you can shortlist the appropriate  
RDL contract class. Following these steps can help you identify all the 
artifacts related to your report.

4. To find the project, there are two options. One is to go by the naming convention.  
The standard naming convention for a project is <ReportName>Report (for 
example, CustTransListReport). In case you don't find it, the alternate way is to  
visit http://msdn.microsoft.com/EN-US/library/hh496433.aspx,  
where all the reports are listed with the associated project name.

5. In case you identify that the report uses RDP, the next step is to figure out if it has  
any contract and which UI builder is being used. To identify the contract, navigate  
to the RDP class, and in the class declaration look for the contract class passed to 
the SRSReportParameterAttribute class. The SRSReportQueryAttribute 
class will help you identify the query it uses.

http://msdn.microsoft.com/EN-US/library/hh496433.aspx


Chapter 7

213

6. Further, the contract class can optionally be associated with a UI builder. To identify 
the UI builder, adopt the same approach that was used to identify the contract.

7. The report can have an RDL contract and a UI builder optionally as well. Finding an 
RDL contract without the cross reference updated is not a straightforward approach. 
The best approach here would be trying to go by the naming convention. If that is not 
successful, then use the Type Hierarchy Browser.

8. Modifying your report: There are different approaches that can be adopted to modify 
a report design, and the choice depends on the level of requirements. Here are a few 
approaches that you can adopt:

 � Modify the design: Use this approach when the number of changes are 
minimal and are not country/context specific. If too many changes are  
made, it becomes cumbersome to handle them when the standard report  
is modified in later releases. This is the simplest of all that is discussed  
and similarly can be adopted only for minor changes.

 � Create a new design: Here, the standard design is duplicated and the 
design is altered. Use this approach when the report is heavily modified  
or when implementing it for a specific country, but when the RDP, contract, 
and UI builder can still be shared. The choice of the design at runtime can  
be made through the controller class.

 � Create a new report: A completely new report can be designed and used 
instead of the existing report. Adopt this approach when the RDP logic 
used by the standard report or the UI classes cannot be shared, and the 
report also requires deeper changes. The reports, however, can share the 
temptable contract if possible. 

9. Merging changes: The challenge that arises when modifying a standard report is the 
manageability in the longer run, when more changes flow in from the SYS level changes 
from release packs. As of now there are not great tools in AX to merge report changes. 
There are no references from Microsoft, but there are a few blogs that widely discuss 
the usage of external code compare tools to do the merge. Though it is not a standard 
approach, it can work. Please read further at http://www.k3technical.com/
using-code-compare-to-merge-ssrs-reports-in-dynamics-ax-2012/  
to understand how you can merge changes between different layers.

How it works…
The steps discussed in the recipe help you to identify all the components involved in a  
typical reporting project. Create a separate project and add the elements to it; this will  
make it easier to perform the changes required. Also, apply the design guidelines to see  
how you can accommodate the changes.

http://www.k3technical.com/using-code-compare-to-merge-ssrs-reports-in-dynamics-ax-2012/
http://www.k3technical.com/using-code-compare-to-merge-ssrs-reports-in-dynamics-ax-2012/


Upgrading and Analyzing Reports

214

Implementing validation in reports
Validations are important to ensure the integrity of the process. Here, in this recipe, let's see 
how we can implement validations for reports.

Getting ready
The sample discussed is extending the InventBatch report discussed in the Creating an  
advanced RDP report recipe in Chapter 4, Report Programming Model – RDP.

How to do it…
1. To make a parameter mandatory, in the report model in Visual Studio, expand and 

open the parameter that you wish to make mandatory. In the Properties node, 
ensure that the AllowBlank property is False. Modify it to True if the parameter 
needs to be optional. This property by default is False, so any property is mandatory 
by default. Also, you can set Default Value if you want. This is particularly useful for 
Boolean type parameters where the default value can be True in some cases.

2. Sometimes the validations go beyond verifying mandatory. In that case, the validate 
operation must be implemented in the contract. As we have seen in previous 
chapters, there are two kinds of contracts. In the following steps, let's see how  
to implement validations in each contract.



Chapter 7

215

3. To implement the validation in an RDP contract, the contract must implement the 
SysOperationValidatable interface. Once this interface is implemented, the 
validate method is automatically triggered by the framework.

4. After implementing the interface, write the validate method. This validate method  
can be used to place all your validations. Here is an example of how the validation 
might look:
class PktInventBatchTransContract implements  
  SysOperationValidatable
{
}
public boolean validate()
{
    boolean isValid;
        
    if (this.parmProdDate() > today())
    {
        error("Production date must be in the past.");
        isValid = false;
    }        
}

5. In case of an RDL contract, the approach differs. There is no need to extend the 
interface since the RDL base class SSRReportRdlDatacontract already 
implements it. Override the validate method from the base class and write your 
validation as shown here:
[
    SrsReportNameAttribute(ssrsReportStr( 
      PktRdlCustTransList, CustTransList)),
    SysOperationContractProcessingAttribute( 
      classstr(PktRdlCustTransListUIBuilder))
]

class PktRdlCustTransListRdlContract extends  
  SrsReportRdlDataContract
{
    Date fromDate, toDate;

    #define.FromDate('FromDate')
    #define.ToDate('ToDate')
}

public boolean validate()



Upgrading and Analyzing Reports

216

{

    boolean isValid = super();

    fromDate = this.getValue(#FromDate);
    toDate = this.getValue(#ToDate);

    if(fromDate && toDate)
    {
        if(fromDate > toDate)
        {
            isValid = checkFailed("@SYS120590");
        }
    }
    return isValid;
}

How it works…
 f RDP contract validation: The RDP contract validation is invoked by verifying if the 

contract class is implementing the interface. The framework triggers a validate call 
automatically following the user input. This is because the RDP contract doesn't 
extend any class, unlike the RDL contract.

 f RDL contract validation: The RDL contract has a base class 
SRSReportRDLDataContract and it is used for all reports. The base class  
carries out the framework-level validation for the report. To implement a custom 
validation for a specific report that extends this class and decorate it with the 
attributes to indicate the report for which it should work. Since the RDL contract 
stores and retrieves values based on their names, the first line in the validate logic  
is to retrieve the values followed by the validation logic. Remember not to prevent  
the super method as it contains validations.

Surrogate fields in reports
The feature of surrogate keys that was introduced with AX 2012 is powerful, but at times 
creates ambiguity on their usage. A surrogate key is a key whose value has no meaning to 
people. A large number generated by the system, such as Recid, could be a surrogate key. 
The goal of this recipe is to clarify and showcase examples that use surrogate keys in possible 
patterns. This recipe is divided into two sections: the first section will discuss the usage of 
surrogate keys in a query-based report, followed by the section that details their application  
in RDP-based reports.



Chapter 7

217

How to do it…
1. To implement this recipe, we will use the example of student and student marks 

tables. Create these tables and relate the student marks table to the student table 
with the surrogate key. For the student table, add Student Id as a replacement key  
in the table properties.

2. Create the surrogate key by creating a new relation in the student marks table and 
then using the option New | Foreign Key | Primary Key Based. In the relations 
property, make sure CreateNavigationPropertyMethods is set to Yes.

3. Add a method that returns the student ID to the students marks table with the code 
shown here:
public display PktStudId studId()
{
    return this.PktStudentMaster().StudId;
}



Upgrading and Analyzing Reports

218

Surrogate keys in query-based reports
1. Create a query for the student marks table and add the surrogate key to the range.

2. Open Visual Studio, create a new reporting project, and add a new report. Add a 
new dataset to the report and click on the data source property. In the query prompt 
window, select the query that was created, and in the fields selection window, you will 
see the display method that was written for student ID. Check the display method as 
well. Once you click OK, watch it getting added as a dataset field. This is one way to 
bring the information from related tables through the surrogate key.

The method described here can also be used for regular computed methods.

3. Now deploy and run the report in AX. When the report opens up, the range is  
seen as Recid. This may not be a convenient way for the user to make his selection. 
This approach can be used when the report needs to show the related fields only  
and no selection is needed.

4. For reports that use the selection field from the parent table, adopt the approach 
where the parent table is added as a child datasource. Drop all the fields leaving  
only the relevant field that needs to appear in the selection dialog and in the report. 
In this case, the student master is added to the child data source and the student 
ID is added to the range. The rest of the report remains the same. So when a report 
dialog is shown, the user is able to see the student list instead of Recid.

Surrogate keys in RDP
1. In an RDP report, the temporary table that is created can be used to store the 

replacement values directly. In this example report, the temporary table for student 
marks will have the student ID field instead of the reference to Recid.



Chapter 7

219

2. Create an RDP for this temporary table. The process report method must be a  
simple query that fills this temporary table, as shown here:
[SysEntryPointAttribute(false)]
public void processReport()
{
    Query                   query;
    QueryRun                queryRun;
    QueryBuildRange         studIdRange;
    QueryBuildDataSource    qbds;

    PktStudentMarks          studMarks;
    PktStudentMarksContract  studContract;

    studContract = this.parmDataContract() as  
      PktStudentMarksContract;

    query = new query();
    qbds = query.addDataSource(tableNum(PktStudentMarks));

    //set the range
    studIdRange = SysQuery::findOrCreateRange(qbds,  
      fieldNum(PktStudentMarks,
    RefRecId));

    studIdRange.value(int642str(studContract.parmStudIdSFK()));

    queryRun = new queryRun(query);

    while (queryRun.next())
    {
        studMarks =  
          queryRun.get(tableNum(PktStudentMarks));
        this.insertTmpTable(studMarks);
    }
}



Upgrading and Analyzing Reports

220

3. The contract has surrogate key as the parm method since the StudentMarks table 
does not have other values.
[
    DataMemberAttribute('StudentId'),
    SysOperationLabelAttribute(literalStr("Student")),
    SysOperationHelpTextAttribute(literalStr("Student  
      Details")),
    SysOperationDisplayOrderAttribute('1')
]
public StudISurrogateKey  
  parmStudIdSFK(StudISurrogateKey_idSFK = idSFK)
{
    idSFK = _idSFK;

    return idSFK;
}

4. Create a report in Visual Studio and add the RDP created as a data source. Preview 
and deploy the report to AX.

5. When you open the report, you will see that the lookup appears for the replacement 
key and not the surrogate key. When the user selects the student ID, the appropriate 
Recid is stored in the contract.

How it works…
Comprehending the approach of surrogate keys in reports:

1. Surrogate keys in query-based reports:

 � If you want the replacement fields only to be displayed in the report, then 
use the display methods present in the table.



Chapter 7

221

 � If the replacement values are added as selection fields, then use a multilevel 
query where the parent table is added as a child data source, and the 
appropriate replacement keys are retained from the child data source.

2. Surrogate keys in RDP-based reports:

 � Create new fields in the temporary table for the replacement fields and fill 
them in the RDP class.

 � If a contract uses a surrogate key as the parm method, then the lookup is 
shown appropriately based on the replacement key setup in the table.

Spin-off idea
For the RDP report discussed here, try to increase the replacement key to more than one field 
and see how the report dialog behaves. In this case, the student name is also added along 
with the student ID. The resulting dialog box is as seen in the screenshot here:

Grouping and ordering controls in the report 
dialog

The report dialog is constructed automatically by the UI builder in Sysoperationframework, 
but sometimes you may want to influence how the controls are visualized in the dialog. In this 
recipe, let's see the different options available for grouping and ordering controls in a report. 
There are multiple options for this. We will start with a simple grouping mechanism and move  
on to more sophisticated changes.



Upgrading and Analyzing Reports

222

Getting ready
This recipe will extend the PktRDLCustTransList report we built in Chapter 3, Report 
Programming Model, and the PktInventBatchTrans report built in Chapter 4, Report 
Programming Model – RDP.

How to do it...
This section will discuss grouping controls at the model level, that is, in the Visual Studio 
editor, followed by grouping controls at the UI builder and contract level.

Grouping in report model
In the Visual Studio report, expand the Parameters node. Right-click and go to Add | 
Parameter Group. Specify the Date Range label in the caption property. Drag the  
FromDate and ToDate controls into the report:

1. Similarly, add another group called Options and specify the label.

2. Create another parameter group and drag both the groups inside this new group. 
Modify the layout direction to Horizontal. This will align all the components within  
the group horizontally (the default mode is vertical).



Chapter 7

223

3. Save and deploy the report. The modified report dialog should appear as seen here:

When creating report parameters that are hidden to the end user, follow 
the best practice of creating a separate hidden group. This will help 
easily identify the fields that are part of the report parameters but are 
not exposed to the user.

Grouping in the UI builder
This grouping mechanism can be applied to both RDP- and query-based reports:

1. The modification here is done completely in the UI builder. Open the UI builder 
PktRdlCustTransListUIBuilder.

2. Declare a new field in the class declaration for the dialog group as follows:
class PktRdlCustTransListUIBuilder extends  
  SrsReportDataContractUIBuilder
{
    DialogField dialogFromDate;
    DialogField dialogToDate;
    DialogField dialogReversed;
    
    DialogGroup dialogDateGroup;

    #define.ShowReversedParam('ShowReversed')
    #define.FromDate('FromDate')
    #define.ToDate('ToDate')
}



Upgrading and Analyzing Reports

224

3. Modify the addDateFields method to include a new group. Additionally, we  
will make this group a checkbox-enabled group. This deactivates the entire  
group control if the checkbox is deactivated.

The other important noticeable change here is setting the number of 
columns to 2. If this is not set, the groups will get added vertically.

private void addDateFields()
{
    dialog                          dialogLocal;
    PktRdlCustTransListRdlContract  transContract;
    SRSReportParameter              reportParameter;
    FormBuildGroupControl           buildGroupControl;

    dialogLocal    = this.dialog();
        buildGroupControl = dialogLocal.curFormGroup();
    buildGroupControl.columns(2);
        
    transContract  = this.getRdlContractInfo().
dataContractObject()
                        as PktRdlCustTransListRdlContract;
   
    dialogDateGroup = dialogLocal.addGroup("Date Range");
    dialogDateGroup.frameOptionButton( 
      FormFrameOptionButton::Check);
    //enabled by default
    dialogDateGroup.optionValue(1);
    
    dialogFromDate  = dialogLocal.addFieldValue(
      extendedTypeStr(FromDate),  
      DatetimeUtil::date(transContract.getValue( 
      #FromDate)), "@SYS5209");
    dialogToDate  = dialogLocal.addFieldValue(
      extendedTypeStr(ToDate),  
      DatetimeUtil::date(transContract.getValue( 
      #ToDate)), "@SYS14656");
}

4. Now, when the report is opened, the report dialog has a new group with a  
checkbox at the top. The checkbox can be used to enable and disable the  
controls under this group.



Chapter 7

225

Grouping in contracts
The grouping mechanism described here applies only to RDP-based reports:

1. In the RDP contract of the PktInventBatchTrans report, modify the class declaration 
to add two new groups to the report dialog:
[
    DataContractAttribute,
    SysOperationContractProcessingAttribute( 
      classStr(PktInventBatchTransUIBuilder),
    SysOperationDataContractProcessingMode:: 
      CreateUIBuilderForRootContractOnly),
    SysOperationGroupAttribute('BatchGroup', "Batch", '1'),
    SysOperationGroupAttribute('DateGroup', "Date", '2')
]
class PktInventBatchTransContract implements  
  SysOperationValidatable
{
    InventDimViewContract       inventDimViewContract;
    InventBatchProdDate         prodDate;
    InventBatchId               batchId;
    boolean                     dummyValue;
}



Upgrading and Analyzing Reports

226

2. Modify the parm methods BatchId and ProdDate to include the new attributes:
[DataMemberAttribute('Batch'),
SysOperationGroupMemberAttribute('BatchGroup'),
SysOperationDisplayOrderAttribute('1')
]
public InventBatchId parmBatchId(InventBatchId  
  _batchId = batchId)
{
    batchId = _batchId;

    return batchId;
}

[DataMemberAttribute('ProdDate'),
SysOperationGroupMemberAttribute('DateGroup'),
SysOperationDisplayOrderAttribute('1')
]
public InventBatchProdDate parmProdDate( 
  InventBatchProdDate _prodDate = prodDate)
{
    prodDate = _prodDate;

    return prodDate;
}

3. Include a new dummy parm attribute to verify the display order:
[DataMemberAttribute('Verifydisporder'),
SysOperationGroupMemberAttribute('DateGroup'),
SysOperationDisplayOrderAttribute('2'),
SysOperationLabelAttribute("Dummy Value")
]
public boolean parmDummyValue(boolean _prodDate =  
  dummyValue)
{
    dummyValue = _prodDate;

    return dummyValue;
}



Chapter 7

227

4. Run the report to see that two new groups, date and batches, are added. The dummy 
value appears second since its display order attribute was 2.

How it works…
In this section, we saw a multitude of short recipes that explain how you can control grouping 
in reports. The important point to keep in mind is what sort of grouping works for different 
types of reports. In the case of query-based reports, only the first two models apply, while  
all three models can be used for RDP.

In the RDP contract, choose one of the grouping methods—either 
the RDP contract or use Visual Studio. The Visual Studio grouping 
overrides the RDP grouping.

RDP with multiple temporary tables
This is another simple recipe that will show you the possibility of using RDP with multiple 
temporary tables. RDP is a data provider and a single RDP can be used to create different 
datasets in the report. Walk through this recipe to understand how this can be done.



Upgrading and Analyzing Reports

228

Getting ready
This recipe requires that you complete the report discussed in the Surrogate fields in reports 
recipe in this chapter.

How to do it…
1. In this recipe, we will use the student table that we used for the Surrogate fields in 

reports recipe. Create two temporary tables: Student and Student Marks.

2. Create an RDP class that will fill these two tables through the process report 
method. The difference comes here: generally RDP has a method with the 
SRSReportDataSetAttribute class that is used to return the temporary table. 
When you have more than one temporary table, create two methods, one for each 
temporary table, as shown here:
[
    SRSReportDataSetAttribute(tableStr( 
      PksStudentMasterTmp))
]
public PksStudentMasterTmp getStudentTemp()
{
    select  studentTmp;
    return  studentTmp;
}

[
    SRSReportDataSetAttribute(tableStr( 
      PksStudentMarksTmp))
]
public PksStudentMarksTmp getStudentmarksTemp()
{
    select  studentMarksTmp;
    return  studentMarksTmp;
}

3. Open Visual Studio, create a report, and in the new dataset, choose RDP. Click on  
the Query node and select the RDP just created. There will be two datasets that  
will be returned by the RDP—one for each temporary table. Add the student dataset  
to the report.



Chapter 7

229

4. Similarly, add another dataset and use the RDP to choose the second temporary 
table, student marks.

5. The two datasets are not related as in AX and are independent of each other. In this 
example, we create two multiple data regions, where one lists the students and the 
other lists their marks.

6. Drag the datasets to create two different data regions, and then run it to see the data 
being rendered.

How it works…
Standard reports such as SalesInvoice and SalesConfirm adopt the same approach. In these 
cases, there is a header table that stores all the header-related information, such as company 
address, email, and VATnum that is common across all reports, while the other stores the line 
level information. An RDP class can return any number of temporary tables, not just two.

Multi-value lookup
All the report dialog controls that we have seen so far in this book only store a single value. 
But there can be cases where you want the users to be able to choose multiple values. This 
recipe is going to show you how to do it.

Getting ready
This recipe will extend the PKtInventBatchReport built in Chapter 4, Report Programming 
Model – RDP.



Upgrading and Analyzing Reports

230

How to do it…
This recipe will add a multi-value lookup for the batch ID so that the user can select multiple 
batches to be printed in the report:

1. The first step is to create a parm method in the contract of type list. The parm  
method should appear as seen here:
[
    DataMemberAttribute('MultipleBatch'),
    SysOperationLabelAttribute("Multiple Batch"),
    AifCollectionTypeAttribute('return', Types::String)
]
public List parmMultiBatch(List _multiBatch = multiBatch)
{
    multiBatch = _multiBatch;
    return multiBatch;
}

2. Once the parm method is added, the dialog shows a report with a list control, but 
the lookup has no values in it. To enable and modify the lookup, the UI builder class 
must be modified. The framework makes it very easy to add lookup for multi-select 
controls; even the overriding of the event is automatically done. Use the following 
code to enable multi-batch lookup:
class PktInventBatchTransUIBuilder extends  
  SysOperationAutomaticUIBuilder
{
    DialogField batchDialog, dateDialog;
    DialogField multiBatchDialog;
} 

public void multiBatchLookup()
{
    Query       query;
    QueryBuildData qbds;
    TableId     multiSelectTableNum =  
      tableNum(InventBatch);
    container   selectedFields =  
      [multiSelectTableNum,  
      fieldName2id(multiSelectTableNum,  
      fieldStr(InventBatch, InventBatchId))];

    query = new Query();
    qbds = query.addDataSource(tableNum(InventBatch));



Chapter 7

231

    qbds.addSelectionField(fieldNum(InventBatch,  
      InventBatchId));
    qbds.addSelectionField(fieldNum(InventBatch, ItemId));

    SysLookupMultiSelectCtrl::constructWithQuery( 
      this.dialog().dialogForm().formRun(),  
      multiBatchDialog.control(), query,  
      false, selectedFields);
} 

public void postRun()
{
    //super();

    this.multiBatchLookup();
} 

3. We have, so far, added the list control and enabled a multi-lookup. The next step  
is to use it in the RDP class. To do this, modify the RDP class in the process report 
method where the list values are enumerated and added to the query range:
[
SysEntryPointAttribute(false)
]
public void processReport()
{
    Query                   query;
    QueryRun                queryRun;
    QueryBuildRange         batchRange, dateRange;
    QueryBuildDataSource    qbds;

    InventBatch             inventBatch;
    InventTrans             inventTrans;
    InventDim               inventDim;
    InventTransOrigin       transOrigin;

    InventDimViewContract       viewContract;
    PktInventBatchTransContract batchContract;

    List                    batchList;
    ListEnumerator          listEnumerator;

    batchContract = this.parmDataContract() as  
      PktInventBatchTransContract;



Upgrading and Analyzing Reports

232

    viewContract =  
      batchContract.parmInventDimViewContract();

    query = this.parmQuery();
    qbds = query.dataSourceTable(tableNum(InventBatch));

    if (batchContract.parmProdDate())
    {
        dateRange = SysQuery::findOrCreateRange(qbds,  
          fieldNum(InventBatch, ProdDate));
        dateRange.value(SysQuery::value( 
          batchContract.parmProdDate()));
    }

    batchList = batchContract.parmMultiBatch();
    listEnumerator = batchList.getEnumerator();

    //copy the range from the list 
    //to the query
    while (listEnumerator.moveNext())
    {
        batchRange = qbds.addRange( 
          fieldNum(InventBatch, InventBatchId));
        dateRange.value(SysQuery::value( 
          listEnumerator.current()));
    }

    queryRun = new queryRun(query);

    while (queryRun.next())
    {
        if (queryRun.changed(tablenum(InventBatch)))
        {
            inventBatch =  
              queryRun.get(tableNum(InventBatch));
        }

        if (queryRun.changed(tablenum(InventTransOrigin)))
        {
            transOrigin =  
              queryRun.get(tableNum(InventTransOrigin));
        }

        inventTrans = queryRun.get(tableNum(InventTrans));



Chapter 7

233

        inventDim   = queryRun.get(tableNum(inventDim));

        this.insertTmpTable(inventBatch, transOrigin,  
          inventTrans, inventDim);
}
}

4. Open the Visual Studio project for the report, expand the dataset, and refresh it by 
right-clicking and selecting refresh. This will add the new contract parameter to the 
report. Optionally, set the values to AllowBlank and Nullable.

5. Run the report and see that the report dialog shows multiple values:

 

How it works…
Multi-value lookups are easy to build due to the framework support offered in building lookups 
and maintaining list values. Care must be taken to use the list data returned from multi-select 
in RDPs appropriately.

Inventory dimensions in reports
An inventory dimension is like a lifeline for trade and logistics, and its presence in reports  
is indispensable. There is usually a good framework support for the inventory dimension  
in AX and that continues into the reporting framework. We will explore how to use the 
standard framework to easily handle inventory dimensions in this recipe. This recipe will  
also demonstrate nested contracts through this example.

The recipe will add inventory dimensions to the report design and create control parameters 
that will determine if an inventory dimension is displayed in the report.



Upgrading and Analyzing Reports

234

Getting ready
This recipe will extend the PKtInventBatchReport built in Chapter 4, Report Programming 
Model – RDP.

How to do it…
1. Modify the temporary table of the report to include the dimension field.

2. Open the contract and add a parm method—which will add a Boolean flag for each 
inventdim field—as shown in the following code:
[DataMemberAttribute('InventDimViewContract'),
SysOperationControlVisibilityAttribute(false)
]
public InventDimViewContract parmInventDimViewContract(InventDimVi
ewContract _inventDimViewContract = inventDimViewContract)
{
    inventDimViewContract = _inventDimViewContract;

    return inventDimViewContract;
}

3. Modify the process report method to fetch the inventory dimension through  
the inventrans and fill the temporary table. The code changes are that simple  
and they are complete with this step.

4. Open the corresponding Visual Studio report, expand the dataset, and refresh.  
The new fields will be added to the dataset and the parameters will now show  
the Boolean dimensions flag for each dimension.

5. Open the precision design and modify the design to include the dimensions  
from the dataset. The next step is to enable these dimensions based on their 
corresponding parameters.

6. In the Row Groups and Column Groups window at the right-hand bottom corner,  
click on the dropdown and select the Advanced Mode. This will make the static 
control visible in the Column Groups.



Chapter 7

235

7. Each static control represents one column in the active row. Identify the column 
count where the inventory dimensions are starting and traverse to the corresponding 
static control column. The Properties window on the left will show the property for 
each control. Once the static control is selected, choose the Hidden property from  
the properties, open the expression editor, and enter this expression:
=Not(Parameters!InventBatchTrans_ViewConfigId.Value)



Upgrading and Analyzing Reports

236

8. Build and deploy the report. The report dialog will show all the inventory dimension 
parameters, and choosing a specific parameter should print it in the report.

How it works…
A nested data contract is a sort of abstraction where the commonly used parameters can 
be grouped and used in other contracts. The use of an RDP contract is not much different 
from other parm methods, except that it returns a class object. The framework automatically 
creates the parameters in the report design and the dialog by expanding it. The recipe here 
uses InventDimViewContract as a nested contract, thereby avoiding the hassle of 
rebuilding the entire list of parm methods.

Financial dimensions in query reports
As inventory dimensions influence trade and logistics reports, so do financial dimensions 
influence financial reports. In this recipe, we will see extensively how financial dimensions 
can be used in the design of a report, in the report dialog, and more. There are two recipes 
discussed here: one using financial dimensions in a simple query report and the other in  
an RDP report.

The following recipe will discuss how to use dimensions in a simple query-based report.

How to do it…
1. Create a new query and add the LedgerJournalTrans table to it. Set the Dynamic 

field property to Yes.

2. In Visual Studio, create a new project. Create a new report and add a dataset.



Chapter 7

237

3. In the Query properties, click the browse button to open the query list. Select the 
query that was created and check these fields: journalNum, Txt, LedgerDimension_
String.

4. Expand the AXDimensions node. This shows all the applicable dimensions for this 
query. Select CostCenter and Department and click OK.

5. Drag the dataset into the auto design node to create the design. Previewing 
the report shows all the ledgerjournaltrans records with the CostCenter and 
Department dimensions.

6. To add a filter based on this dimension, create a new parameter under the 
Parameters node of type String. Click on the ellipsis button on the Values property. 
This shows the value window. Here, select the From Dataset radio button and set  
the following field values:

Property Value
Dataset LedgerDimension
Value Field Department
Label Field Department

7. The previous step will help the user to choose the value that he wants to filter.  
This filter value must be passed on to the query so that the data is filtered.  
The easiest way to do this is to create a filter in the table data region.

8. Right-click on the Filters node under auto design and click on Add Filter. In the  
new filter, set the following properties:

Property Value
Expression =Fields!Department.Value
Name DepartmentFilter
Operator Equals
Value =Parameters!DepartmentParameter.Value

9. The filter region restricts the data that is shown in auto design. So when the report  
is previewed, it shows only the dimension selected by the user.



Upgrading and Analyzing Reports

238

10. Based on the value of the parameter selected by the user, the report is generated.

How it works…
The AX query framework is programmed to automatically bring up the dimensions related to 
a dimension record. That is the reason why the query shows all the dimensions tables while 
what was actually added was only LedgerJournalTrans.

The lookup set up here works by executing the query and retrieving all the values from the 
database using the query. This is then exposed in the lookup, and when the user selects the 
value, it is applied to the auto design filter. It is important to understand that when using 
filters, the whole query is executed, since filters restrict data only to a specific region.

Financial dimensions in RDP reports
This recipe will extend the simple steps that we learned in the previous recipe to build a more 
sophisticated report. In this report, the user will be given the option to choose a dimension 
and a range for it. The report will list all the general journal entries for the selected dimension 
in the specified range.

How to do it…
1. Since this is an RDP report, start with creating a temporary table, as shown here:



Chapter 7

239

2. Create a new contract with four fields: one for the account, one for the dimension 
attribute, and the other two for the dimension ranges. Use the following code to 
create the contract:
[
DataContractAttribute,
SysOperationContractProcessingAttribute( 
  classStr(PktGeneralJournalReportUIBuilder),
SysOperationDataContractProcessingMode:: 
  CreateUIBuilderForRootContractOnly)
]
class PktGeneralJournalReportContract
{
    Name            dimensionAttribute;
    MainAccountNum  account;
    DimensionValue  fromDimensionValue;
    DimensionValue  toDimensionValue;
}

[
    DataMemberAttribute('Account'),
    SysOperationLabelAttribute(literalStr("@SYS182387")),
    SysOperationDisplayOrderAttribute('1')
]
public MainAccountNum parmAccount(MainAccountNum _account =  
  account)
{
    account = _account;
    return account;
}
[
    DataMemberAttribute('DimensionAttribute'),
    SysOperationLabelAttribute(literalStr("@SYS24410")),
    SysOperationDisplayOrderAttribute('5')
]
public Name parmDimensionAttribute(Name _dimensionAttribute  
  = dimensionAttribute)
{
    dimensionAttribute = _dimensionAttribute;
    return dimensionAttribute;
}
[
    DataMemberAttribute('FromDimensionValue'),
    SysOperationLabelAttribute(literalStr("@SYS105870")),
    SysOperationDisplayOrderAttribute('2')



Upgrading and Analyzing Reports

240

]
public DimensionValue parmFromDimensionValue(DimensionValue  
  _fromDimensionValue = fromDimensionValue)
{
    fromDimensionValue = _fromDimensionValue;
    return fromDimensionValue;
}
[
    DataMemberAttribute('ToDimensionValue'),
    SysOperationLabelAttribute(literalStr("@SYS103530")),
    SysOperationDisplayOrderAttribute('6')
]
public DimensionValue parmToDimensionValue(DimensionValue  
  _toDimensionValue = toDimensionValue)
{
    toDimensionValue = _toDimensionValue;
    return toDimensionValue;
}

3. The UI builder for the financial dimension plays a crucial role since that is where the 
dimension and dimension range must be set by the user. The standard comes to 
our rescue by offering a whole set of logic that can be reused. This ranges from the 
lookup method to the validate logic. To harness this, the UI builder class must extend 
the LedgerAccountReportUIBuilder class. The UI builder implementation logic 
is as follows:

class PktGeneralJournalReportUIBuilder extends  
  LedgerAccountReportUIBuilder
{
    DialogField dialogFieldAccountName;

    Name        dimensionAttribute;

    #define.Columns(2)
    #define.DialogFieldLength(30)
}

public void build()
{
    FormBuildGroupControl   formBuildGroupControl;

    super();

    formBuildGroupControl = this.dialog().curFormGroup();



Chapter 7

241

    formBUildGroupControl.columns(#Columns);
}

public void dimensionAttributeLookup(FormStringControl  
  _dimensionAttributeDialogControl)
{
    super(_dimensionAttributeDialogControl);
}

public boolean dimensionAttributeModify(FormStringControl  
  _dimensionAttributeDialogControl)
{
    if (dimensionAttribute != dialogFieldAttribute.value())
    {
        /*If modified "Dimension Attribute" is different  
          with previous,set the "From Dimension" and "To  
          Dimension" as null*/
        dialogFieldFromDimension.value('');
        dialogFieldToDimension.value('');
        dimensionAttribute = dialogFieldAttribute.value();
    }

    return true;
}

public boolean dimensionAttributeValidate(FormStringControl  
  _dimensionAttribute)
{
    boolean ret;

    ret = super(_dimensionAttribute);

    return ret;
}

public void dimensionValueLookup(FormStringControl  
  _dimensionValueControl)
{
    super(_dimensionValueControl);
}
public boolean dimensionValueValidate(FormStringControl  
  _dimensionValue)
{
    boolean ret;

    ret = super(_dimensionValue);

    return ret;



Upgrading and Analyzing Reports

242

}

protected void modifyOverrideMethod()
{
    this.overrideDialogFieldLookup(dialogFieldAttribute,  
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionAttributeLookup));
    this.overrideDialogFieldLookup( 
      dialogFieldFromDimension, methodStr( 
      PktGeneralJournalReportUIBuilder,  
      dimensionValuelookup));
    this.overrideDialogFieldLookup(dialogFieldToDimension,  
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionValuelookup));

    this.overrideDialogFieldMethod( 
      dialogFieldAttribute, 
      methodStr(FormStringControl, Modified), 
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionAttributeModify));
    this.overrideDialogFieldMethod( 
      dialogFieldAttribute, 
      methodStr(FormStringControl, Validate), 
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionAttributeValidate));
    this.overrideDialogFieldMethod( 
      dialogFieldFromDimension, 
      methodStr(FormStringControl, Validate), 
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionValueValidate));
    this.overrideDialogFieldMethod( 
      dialogFieldToDimension, 
      methodStr(FormStringControl, Validate), 
      methodStr(PktGeneralJournalReportUIBuilder,  
      dimensionValueValidate));
}

public void postBuild()
{
    SysOperationUIBindInfo binfo = this.bindInfo();
    Object contract = this.dataContractObject();
    
    dialogFieldAttribute = binfo.getDialogField( 
      contract, methodStr(PktGeneralJournalReportContract,  
      parmDimensionAttribute));



Chapter 7

243

    dialogFieldFromDimension = binfo.getDialogField( 
      contract, methodStr(PktGeneralJournalReportContract,  
      parmFromDimensionValue));
    dialogFieldToDimension  = binfo.getDialogField( 
      contract, methodStr(PktGeneralJournalReportContract,  
      parmToDimensionValue));
    dialogFieldAccount = binfo.getDialogField( 
      contract, methodStr(PktGeneralJournalReportContract,  
      parmAccount));

    super();

    dialogFieldAccount.displayLength(#DialogFieldLength);
}

4. The next step is to get the RDP class. Create a new RDP class and add the code 
shown here:
[
    SRSReportParameterAttribute(classStr( 
      PktGeneralJournalReportContract))
]
class PktGeneralJournalReportDP extends  
  SRSReportDataProviderBase
{
    PksGeneralJournalEntryReportTmp reportTmp;
}
[
    SRSReportDataSetAttribute(tableStr( 
      PksGeneralJournalEntryReportTmp))
]
public PksGeneralJournalEntryReportTmp getJournalTmp()
{
    select  reportTmp;
    return  reportTmp;
}

private void insertinTmp(
    GeneralJournalAccountEntry          accountEntry,
    GeneralJournalEntry                 journalEntry,
    DimensionAttributeLevelValueView    restrictView,
    DimensionAttributeLevelValueView    accountValue)
{
    ;

    reportTmp.initValue();



Upgrading and Analyzing Reports

244

    reportTmp.AccountNum = accountValue.DisplayValue;
    reportTmp.Quantity   = accountEntry.Quantity;
    reportTmp.AccountingCurrencyAmount =  
      accountEntry.AccountingCurrencyAmount;
    reportTmp.Text      = accountEntry.Text;
    reportTmp.IsCredit  = accountEntry.IsCredit;
    reportTmp.JournalNumber = journalEntry.JournalNumber;
    reportTmp.DocumentNumber = journalEntry.DocumentNumber;
    reportTmp.DocumentDate = journalEntry.DocumentDate;
    reportTmp.Dimension    = restrictView.DisplayValue;
    reportTmp.insert();
}

[
SysEntryPointAttribute(false)
]
public void processReport()
{
    GeneralJournalAccountEntry      accountEntry;
    GeneralJournalEntry             journalEntry;
    DimensionAttributeLevelValueView valueView,  
      restrictView;
    DimensionAttributeLevelValueView accountValue;

    DimensionAttribute      dimensionAttributeTable;

    PktGeneralJournalReportContract contract;

    Name            dimensionAttribute;
    MainAccountNum  account;
    DimensionValue  fromDimensionValue;
    DimensionValue  toDimensionValue;

    contract = this.parmDataContract();

    dimensionAttribute = contract.parmDimensionAttribute();
    dimensionAttributeTable =  
      DimensionAttribute::findByLocalizedName( 
      dimensionAttribute, false,  
      SystemParameters::find().SystemLanguageId);

    fromDimensionValue = contract.parmFromDimensionValue();



Chapter 7

245

    toDimensionValue   = contract.parmToDimensionValue();

    account            = contract.parmAccount();

    delete_from reportTmp;

    ttsBegin;

    while select DisplayValue from accountValue
        where  accountValue.DisplayValue == account
        join AccountingCurrencyAmount, Text, quantity from  
          accountEntry
        where accountEntry.LedgerDimension ==  
          accountValue.ValueCombinationRecId
            join journalNumber, DocumentDate,  
              DocumentNumber from journalEntry
            where journalEntry.RecId ==  
              accountEntry.GeneralJournalEntry
            join restrictView
            where restrictView.ValueCombinationRecId ==  
              accountEntry.LedgerDimension
            &&  restrictView.DimensionAttribute ==  
              dimensionAttributeTable.RecId
            &&  restrictView.DisplayValue  >=  
              fromDimensionValue
            &&  restrictView.DisplayValue  <=  
              toDimensionValue
    {
        this.insertinTmp(accountEntry, journalEntry,  
          restrictView, accountValue);
    }

    ttsCommit;

}

5. The process report method is so designed to find all general journal entries for a 
specific account number in a specified range. A DML is used to retrieve this data.

6. Once the coding changes are complete, create a new report in Visual Studio and  
link the RDP report that was just created.



Upgrading and Analyzing Reports

246

7. Create a precision design with a table control as shown in the following image. 
Choose the fields. For the dimension attribute field in the precision design, enter  
the following expression:
=Parameters!JournalData_DimensionAttribute.Value 

This will ensure that the label printed is based on the selected dimension. The 
following image indicates how the report design would look:

8. Compile and deploy the report. Create a menu item for the report and run the report 
to see that the report prints only the specified range in the selected dimension.



Chapter 7

247

9. Select the parameter on which the report will be printed.

How it works…
AX makes it really easy to add financial dimensions by standard support for frequently used 
dimension methods. In this report, the lookup for the dimension attribute and the ranges are 
derived from the base class.





249

8
Troubleshooting 

and Other Advanced 
Recipes

This chapter will cover the following recipes:

 f Assessing report performance and usage

 f Handling long running reports in AX

 f Troubleshooting reports in AX

 f Auto e-mail, save as file tasks in reports

 f Handling events after report completion

 f Generating and displaying barcodes in reports

 f Hiding controls by context

 f Using AXEnumProvider as the dataset for parameters in reports

 f Adding a new report design to print management

 f Deploying language-specific reports to speed up execution time

 f Improving the functionality of reports



Troubleshooting and Other Advanced Recipes

250

Introduction
The last few chapters should have helped you gain a good command over new SSRS reports 
in Dynamics AX 2012 R3. This chapter will help handle problems that you might face while 
executing SSRS reports. It also introduces a few handy recipes that are required time and 
again in report customization, such as generating barcodes, hiding controls, e-mailing, and  
so on. This chapter has very useful insights that can aid you in getting the right fundamentals  
for effective report development.

Assessing report performance and usage
SSRS introduces some interesting capabilities as we have been seeing through the previous 
chapters. Here is another interesting aspect to add to the list: SSRS report logs. SSRS reports 
log key usage parameters into the system automatically. The free Report Log Viewer tool can 
unravel a lot of useful production data that helps to understand which reports are being used, 
what is consuming a lot of time, and which reports fail. This recipe will throw some light on 
how to configure and use the log viewer for this purpose.

Getting ready
Download the SSRS report log viewer from http://www.microsoft.com/en-us/
download/details.aspx?id=24774 and install it.

This tool will demonstrate the best way to analyze the Report Server Service Trace Log  
and Report Server Execution Log, which are useful if you are debugging an application  
or investigating an issue or event.

How to do it…
1. The Report Log Viewer is installed by default in the following location:

Program Files (x86)\Microsoft\Reporting Services LogViewer\
RSLogViewer.exe.

Open the log viewer, select the Catalog tab, and click on the Connect button.

http://www.microsoft.com/en-us/download/details.aspx?id=24774
http://www.microsoft.com/en-us/download/details.aspx?id=24774


Chapter 8

251

2. In the prompt dialog, enter the details of the report server, as shown in the  
following screenshot:

3. In the Execution Log Reports field, select Reports Execution Summary. This gives a 
detailed insight into the report's overall performance. Click on Show Filters and apply 
a date range from the different kinds of ranges available.



Troubleshooting and Other Advanced Recipes

252

This report reveals the time for data retrieval, report processing, and report rendering 
for reports in the selected filter criteria.

4. The catalog view offers other reports, such as Reports by User and Reports by 
Month, as seen in the following screenshot. These offer more beneficial parameters 
that help in fine tuning the report performance and usage.



Chapter 8

253

5.  Here is another sample report that lists the report usage by month:

How it works…
The Report Log Viewer connects to the report server database and offers a presentable 
view of the data from the SQL tables. It also has the capability to analyze the logs that 
are generated. This is discussed in the Expression-related issues section under the 
Troubleshooting reports in AX recipe in this chapter. This is a non-intrusive analysis, so it  
could be performed even on the production reporting servers without bringing them down.

Some sections in your report may not have data, but the custom header 
sections might print. In these cases, to make it informative for the user, 
a "No data available" message might be helpful since the user is then 
assured that there is no data for that particular data section. Select the 
Tablix/List/Matrix control where you want the message to be 
available and open the properties window. Find the NoRowsMessage 
property. This property can be filled in with text or with dynamic text using 
expressions. Type in something like "No data available".



Troubleshooting and Other Advanced Recipes

254

Handling long-running reports in AX
Reports are used to render data from a couple of pages to a larger volume of copies. There 
can be many cases when a report may not render the data in an acceptable format, which  
can be identified using tools such as the Report Log Viewer. This recipe will list out the  
various approaches that can be used to manage performance-related issues in reports.

How to do it…
This section will discuss approaches to resolve long-running reports by adopting best 
practices at the time of design and at runtime through configuration changes.

Design-based resolution
The following actions can be taken to see if they improve the report performance. The 
modifications enlisted here are changes to the components involved in a report, and so  
must not be implemented in a production environment before taking the report through a  
testing cycle:

1. Reindex: If the report uses a query directly or uses one in RDP, see if the indexes 
have been properly used in the tables.

2. Restrict the data: If no index-related issues are found, then see if the following 
design level changes can be made:

 � Improve the performance by showing only a limited set of data; for example, 
the first 1000 records.

 � Improve the performance by limiting the data. To do this, add a range to  
the dialog so that the user can narrow down the data.

3. Inefficient report parameters: If the issue is caused by the user not utilizing 
the ranges and running the report for a broad set of parameters, then consider 
implementing this change.

In the controller method for the report, override the preRunValidate method and  
write a code that will warn the user based on the number of records the query  
might return. When the user executes this report, and if it returns a large number  
of records, it will throw an error advising the user to use a better range. Use the 
following code for this purpose:

protected container preRunValidate()
{
    /* More than 100,000 rows will take at least 12 
      minutes on a warm box with low volume and not 
      under load while 1,000 records will take about 
      10 seconds, so these are used as the warning 



Chapter 8

255

      and error limits.*/
    #Define.ErrorLimit(100000)
    #Define.WarningLimit(1000)

    /* Using the query from the contract, count up 
      to the error limit + 1 since anything over the 
      error limit will return the same error*/
    container   validateResult;
    Query       query = this.getFirstQuery();
    int         rowCount =  
      queryRun::getQueryRowCount(query, #ErrorLimit + 1);

    if (rowCount > #ErrorLimit)
    {
        validateResult = [SrsReportPreRunState::Error];
    }
    else if (rowCount > #WarningLimit)
    {
        validateResult = [SrsReportPreRunState::Warning];
    }
    else
    {
        validateResult = super();
    }

    return validateResult;
}

4. Implement pre-process: If during design or at a later point you identify that the delay  
in the report data is caused because of the data insertion into the temporary table  
in the processReport method, then enable pre-processing.

SSRS uses the Windows Communication Foundation (WCF) to connect to the 
Application Object Server (AOS) for data access. This connection has a threshold 
limit and it might fail if a report takes a long time to execute. The report server 
execution waits for the RDP to process the data and return. In the event where the 
RDP takes a longer time to execute, the reporting service might fail. Pre-process is  
a strategy to beat through this issue. To understand how to enable pre-process  
for reports, read the Pre-processing reports recipe from Chapter 4, Report 
Programming Model – RDP.



Troubleshooting and Other Advanced Recipes

256

Configuration-based resolution
Report execution time must be always kept at minimum by applying the design time principles 
and best practices discussed in the preceding section. The following configuration-based 
methods must be adopted to make sure that the overall reporting experience is smooth.

Data extension-based timeout
This timeout happens when there is a delay for the Reporting Services to fetch data from 
Dynamics AX. It is to be understood that the AX-specific data extension uses the WCF-based 
query service to access the data. So, any data-related timeout has to be configured by fine 
tuning the WCF time out. WCF has two ends: the client and the server; the timeout has to  
be adjusted at both ends.

Server-side WCF timeout
Following are the steps to adjust the server-side WCF timeout:

1. Locate the AX32Serv.exe.config file located in \Program Files\Microsoft 
Dynamics AX\ <version>\Server\Microsoft DynamicsAX\Bin.

2. Open the file for editing (notepad/Visual Studio) and identify the 
QueryServiceBinding element as shown in the following screenshot:

3. Increase the sendTimeout property. The default value is set to 10, which can  
be changed to a longer time as needed. The range must be decided based on  
your longest running report.

4. Save the changes.

Client-side WCF timeout
Following are the steps to adjust the client-side WCF timeout:

1. Open the Run window and type AXclicfg to open the client configuration.

2. Create a new client configuration and give it a name.



Chapter 8

257

3. In the Connection tab, click on the Configure Services button. A message is 
displayed as seen in the following screenshot; click OK to continue.

4. In the Configuration window that opens up, select the Bindings node from the tree 
node and identify the sibling QueryServiceEndPoint(netTcpBinding).



Troubleshooting and Other Advanced Recipes

258

5. In the adjacent Binding tab, locate the SendTimeOut property and increase it from 
the default value of 10 to the desired amount.

6. Similarly, in the MaxReceivedMessageSize property, increase the message size  
from the default value to the desired value. The maximum value is the int64 limit, 
since this is an int64 field.

7. Click on Apply followed by OK.

Report execution timeout
This setting decides how long the report attempts to keep the execution going before it stops 
the execution through a timeout. The time specified here ideally must be the time taken by  
the longest report in the application. This can be defined for all reports or a specific report.

Specifying timeouts for all reports
Following are the steps to specify timeouts for all reports:

1. Open the Report Manager with the URL; for example,  
http://[SSSRSServerName]:80/Reports.

2. Click on Site Settings to open the property page.



Chapter 8

259

3. In the properties page under Report Timeout, specify the number of seconds.

4. Click on Apply to save the changes.

Specifying timeouts for a specific report
To specify the timeout for a specific report, select the report and click on the dropdown  
arrow, and then click on Manage. In the Properties page, set the Report Timeout that  
will apply to that specific report.

User session timeout
Though this has nothing to do with performance, it governs the total time a user is  
allowed to have their session open, untouched. This value must be greater than the  
report processing timeout:

1. Create a file called timeout.rss with the following script and save it to the drive:
Public Sub Main()
    Dim props() as [Property]
    props = new [Property] () { new [Property](),  
      new [Property]() }
    
    props(0).Name = "SessionTimeout"
    props(0).Value = timeout
    
    props(1).Name = "SessionAccessTimeout"
    props(1).Value = timeout
    
    rs.SetSystemProperties(props)
End Sub



Troubleshooting and Other Advanced Recipes

260

2. In the command prompt, run the rs.exe command—which can be found in \
Program Files\Microsoft SQL Server\110\Tools\Bin—in the format 
shown here:
$>rs.exe -i C:\timeout.rss -s  
  http://[SSSRSServerName]:80/Reports -v timeout="72000" –l 0

3. This will set the timeout to 20 hours for both session timeout and session  
access timeout.

Troubleshooting reports in AX
This recipe will discuss the possible issues that arise during the development of a report,  
and the approaches that can be taken to identify the cause and resolve these issues.  
The issues mostly seen in SSRS fall into three broad categories:

 f Deployment-related

 f Data-related

 f Rendering-related

While deployment and rendering are mostly on the SSRS end, data-related issues concern 
X++ or the programming elements. The recipe will discuss the issues by placing them in  
these broader categories.

How to do it…
This section is classified into three broad categories: deployment-, data-, and  
rendering-related issues.

Deployment-related issues
These are issues concerning deploying reports from AX or Visual Studio and getting  
them updated in AX.

Unable to deploy
1. Verify SSRS configuration: The first thing to ensure when you face a deployment 

issue is the configuration. Ensure that the configuration specified in System 
Administration | Setup | Business Intelligence | Reporting Services | Reporting 
Servers is accessible and valid. Try opening the SSRS Reporting Services Manager 
through the browser.

2. Rebuild Visual Studio project: Open the Visual Studio project along with the 
reference assemblies, if any, and rebuild the project.

3. File lock errors: On receiving file lock errors, restart the report server.



Chapter 8

261

Unable to refresh
1. Restore report: Open the SSRS report node and navigate to your report. Right-click 

and select Restore.

2. Refresh cache: Since caching is enabled, there might be cache-related issues.  
Go to Tools | Caches and click on Refresh Elements.

3. Redeploy: Delete the report from the Reporting Services Manager and redeploy  
the report.

4. Restart client / reporting server / AOS: RDL is not parsed every time and is  
cached in AX. So restart the client / reporting server / AOS to clear the cache  
and reload the report.

5. Default values: For changes in the default values, update the parameters in  
the report manager. The Parameters window can be opened from the dropdown 
menu under each report and by choosing Manage thereafter.



Troubleshooting and Other Advanced Recipes

262

Rendering-related issues
This section will further discuss how issues that arise at the time of report rendering can  
be handled:

1. Parameter issues: If you have issues with the parameters and are unable to identify 
what parameters are passed to the report, then try to render the parameters in the 
report design so that they are visible. Navigate to the auto design node and set the 
Render Parameters property to True. This will display the parameters in the auto 
design node window. In the case of precision design, parameters have to be added  
to the report area manually, as there is no option as in auto design.

Make sure the Allow Blank property is set to True for optional parameters, 
as this can cause a missing report parameters error when running reports 
from AX.

2. Dynamic parameters: In case of dynamic parameters, verify the ranges in the query 
node and whether there is any initialization done in the controller, since ranges for 
dynamic parameters come from the Ranges node under query.

3. Issues with label/grouping: Grouping can be implemented at various levels in a 
report, and it varies based on the report. Make sure to visit the places listed below  
to identify and resolve issues related to grouping:

 � For a query-based report, visit the VS Project/UI builder.

 � For an RDP-based report, visit the Contract/VS Project/UI builder.



Chapter 8

263

4. Initialization and validation issues: Check the contract / controller classes for issues 
related to initialization and validation.

5. Formatting issues: Use color coding to understand the spacing between controls. 
This will give you knowledge of the control that is taking up space, based on which 
you can modify the parameters to fine tune the spacing. Once you are done, you can 
remove the color coding.

6. Localization issues: Use the Visual Studio preview to quickly switch between 
languages and verify the report rendering in different languages.

7. Enum translation issues: Each Enum field in a query or contract, when added to the 
dataset, results in two different fields. One holds the label and the other holds the 
system name. Always use the Enum.Label field in report rendering. In the following 
screenshot, you can see two fields being rendered for the TransType field. The name 
type can be used in programming references and the label type for rendering purposes.



Troubleshooting and Other Advanced Recipes

264

8. Control visibility issues: Expressions are mostly used to handle the visibility of 
controls. Whenever an issue arises, verify the expression attached to the visible 
property of the control.

9. Group header issues: Use the advanced mode to fine tune headers. Refer to the 
Inventory dimensions in reports recipe in Chapter 7, Upgrading and Analyzing 
Reports, to understand how to use Advanced mode.

10. Expression-related issues: Try to translate the expression into a data method  
and do a unit testing. Refer to unit testing business logic in the Debugging business 
logic recipe from Chapter 3, Report Programming Model, to identify how to test data 
methods. Break down the expression into simple pieces in the data method, rather 
than having one long expression to analyze.

11. Enable verbose logging: To enable the log, open the ReportingServices\
ReportServer\bin folder in the reporting server and identify the 
ReportingServicesService.exe.config file. Open the file and set the value  
to 4 for the properties DefaultTraceSwitch and Components. This enables the  
log to switch to a verbose mode, which creates more detailed logs of the actions in  
the report server. The log files can be found typically in %ProgramFiles%\Microsoft 
SQL Server\MSSQL.x\Reporting Services\LogFiles.

Remember to switch the values to 3 after debugging, as this adds load 
to the report execution.



Chapter 8

265

12. Use the Log viewer to read the log: Though the log file can be opened and read 
using notepad, it is cumbersome to read in this raw format. Use the Log File Viewer 
discussed in the Assessing report performance and usage recipe in this chapter. 
Open the Report Log Viewer, and in the Log Files tab, navigate to the folder 
where the log files are located; for example Microsoft SQL Server\MSRS11.
MSSQLSERVER\Reporting Services\LogFiles. Choose Current week in the 
Date Range and Raw in the View Details text boxes, respectively. This will present 
the log in a way that is easier to analyze.

Data-related issues
The first step in a data-related issue is to identify the source of the data. Based on  
the report data source, you can then decide how best to handle the issue.

Query-based report
To handle issues related to data not showing in a query-based report, use the  
following approaches:

1. Verify if the user running the report has access to the data in the company.

2. Verify if the query returns data:

 � Write a job to verify the query

 � Add the query to a form and see that the data is returned

 � Use the query service through services like InfoPath to ensure it returns data



Troubleshooting and Other Advanced Recipes

266

3. Queries are cached. Delete data from the SRSReportQuery and 
SRSReportParameters tables to clear the cache.

4. If any changes are made to the query/contract, then open the Visual Studio  
project and refresh the dataset and re-deploy.

5. Ensure that the correct query is used by accessing the query in the controller.  
You can place the following code in the preRunModifyContract method to  
get the query displayed in the infolog:

info(this.getFirstQuery().toString());

RDP-based report
To handle issues related to data not showing in an RDP-based report, use the following 
approaches:

1. Debug by adding the keyword breakpoint in the processreport method and 
ensure the flow is smooth.

2. If the RDP uses a query or DML, ensure that it returns the data by running it in a job.

3. Try to invoke the RDP through a job by converting the Temptable instance to a 
persistent table. Refer to the Testing the RDP report recipe in Chapter 4, Report 
Programming Model – RDP.

Controller issues
For runtime design selection issues, look into the controller. Use the 
prePromptModifyContract and preRunModifyContract methods in  
the controller classes for debugging. This is a good entry point.

Auto e-mail, save as file tasks in reports
There are some reports that demand no user interaction and are expected to be directly  
saved in a file or e-mailed. This recipe will share how the printer settings contract can be  
used to achieve this in a simple manner.

How to do it…
This recipe has been divided into two sections. The first section details how to save the  
report to a file, and the second section details how to send it through e-mail.

Saving the report to a file
1. To save a file onto the printer, create a new static method in the controller class  

or in the class from where the report is invoked.



Chapter 8

267

2. In the method, place the following code to save the report:

public static void saveReporttoFile(Args _args)
{
/*if the controller is not overriden for your report  
  then use appropriate controller*/
    SrsReportRunController controller = new  
      PktRdlCustTransListController();
    SRSPrintDestinationSettings printSettings;
        
    controller.parmReportName(ssrsReportStr( 
      PktRdlCustTransList, CustTransList));

    // get print settings from contract
    printSettings =  
      controller.parmReportContract().parmPrintSettings();

    // set print medium
    printSettings.printMediumType(SRSPrintMediumType::File);
    printSettings.fileFormat(SRSReportFileFormat::PDF);
    printSettings.overwriteFile(true);
    printSettings.fileName(@"C:\Temp\CusttransReport.pdf");

    // suppress the parameter dialog
    controller.parmShowDialog(false);
        
    controller.startOperation();
}

Here, the file location is hard coded but you may want to turn it into a parameter or 
refer a table location.

Sending the report through e-mail
To send the file to an e-mail, the procedure is not much different, except for the need to pass 
an e-mail contract.

public static void mailReport(Args _args)
{
    SrsReportRunController controller = new  
      PktRdlCustTransListController();
    SRSPrintDestinationSettings printSettings;
    SrsReportEMailDataContract emailContract;

    // set report name



Troubleshooting and Other Advanced Recipes

268

    controller.parmReportName(ssrsReportStr( 
      PktRdlCustTransList, CustTransList));

    // create email contract
    emailContract = new SrsReportEMailDataContract();

    // fill in the email contract details
    emailContract.parmAttachmentFileFormat( 
      SRSReportFileFormat::PDF);
    emailContract.parmSubject("Customer Transaactions");
    emailContract.parmTo("admin@contoso.com");
        
    printSettings =  
      controller.parmReportContract().parmPrintSettings();
    
    printSettings.printMediumType( 
      SRSPrintMediumType::Email);
    printSettings.parmEMailContract(emailContract);
    printSettings.fileFormat(SRSReportFileFormat::PDF);

    // suppress the parameter dialog
    controller.parmShowDialog(false);
    
    controller.startOperation();
}

How it works…
The print setting is a contract similar to the RDL and RDP contract. The print setting can also 
be modified inside the controller if it requires manipulation. This must be performed in the 
preRunModifyContract method in the controller. If the report is required to be opened 
through code, then all that is needed is to invoke the code given in this recipe. Keeping the 
printer setting related changes is optional.

Handling events after report completion
To handle events after report completion, the reporting framework in AX gives the ability to 
hook custom events that will be called after a report is complete. This event can be used to 
find when the report execution is complete and take the corresponding actions. The recipe 
here discusses a sample implementation.



Chapter 8

269

How to do it…
1. In this example, let's say that we update the Printed field in the table with status Yes 

after the report is printed. The reporting framework has the renderingCompleted 
delegate, which is invoked once a report is complete. So, the first step is to create a 
method that can be linked to this delegate.

2. The method's signature must match the delegate, while the rest such as the name, 
instance method, or static method doesn't matter.
public static void renderingComplete(SrsReportRunController _
sender, SrsRenderingCompletedEventArgs _eventArgs)
{
    Query               query;
    QueryRun            queryRun;
    
    InventBatchId       batchNum;    
    PktBatchPrintStatus batchStatus;
    
    SRSReportExecutionInfo executionInfo;
    
    executionInfo = _eventArgs.parmReportExecutionInfo();
    
    if(executionInfo && executionInfo.parmIsSuccessful())
    {
        // Get the report's query
        query = _sender.getFirstQuery();

        // Mark all the records as printed
        queryRun = new QueryRun(query);
        
        ttsbegin;
        while(queryRun.next())
        {
            batchNum =  
              queryRun.get(tableNum(InventBatch)).( 
              fieldNum(InventBatch, inventBatchId));
            update_recordset batchStatus
                setting Printed       = NoYes::Yes,
                        PrintDateTime =  
                        executionInfo. 
                        parmExecutionDateTime();



Troubleshooting and Other Advanced Recipes

270

                where batchStatus.inventBatchId ==  
                  batchNum;
        }
        ttscommit;
    }
}

3. The next step is to hook the event to the delegate. This can be done anywhere before 
the preRunModifyContract event, but the standard recommendation is to write it 
inside the preRunModifyContract method as shown in the following code:
protected void preRunModifyContract()
{
    this.renderingCompleted += eventhandler(PktInventBatchTransCon
troller::renderingComplete);
}

4. When the report execution is complete, the method will be invoked and the records 
fetched through the query will be updated. 

How it works…
Since SSRS report execution is asynchronous, as it connects to the AOS via the WCF service, 
the rendering complete will be the best approach to hook events after the report is complete. 
Though the method attached to the delegate here is a static method, instance methods can 
also be used. The arguments controller gives complete access to the report that is executed. 
The SRSRenderingCompletedEventArgs has access to the SRSReportExecutionInfo 
object. The execution info carries information pertaining to the report that was just executed, 
such as the number of pages, whether the print was successful, layout, execution time, and 
much more. 

Make sure the event is hooked in preRunModifyContract to ensure it gets called during 
both the batch and interactive modes.

There can be cases where you want a contract in the attribute but do not 
want the UI builder to expose it to the user. The reporting framework in AX 
provides a very easy way to incorporate this. Open the parm method in the 
contract that you don't want to expose. Add the following attribute along with 
other attributes:
SysOperationControlVisibilityAttribute(False)

This attribute, when found in the parm method, will automatically prevent 
the UI builder from adding this to the dialog.



Chapter 8

271

Generating and displaying barcodes in 
reports

Shop floor and warehouse reports require barcodes to be printed to handle goods. Many  
other reports also demand barcode strings to be printed in the report. This recipe is focused 
on building barcodes in SSRS. Here, we will attempt to print the barcode of the inventory 
batch table.

How to do it…
1. Create a simple query. Add the InventBatch table as the data source. Keep the 

fields selective only with InventBatch and ItemId.

2. This will be an RDP-based report, so create a temporary table with the fields shown  
in the screenshot. The fields Barcode and BarcodeHR will store encoded values  
and so must extend the EDT BarcodeString.

3. Create a contract class where the barcode setup field in the contract is used to 
choose the format of the barcode, such as Code39/EAN and so on:
 [
    DataContractAttribute,
    SysOperationGroupAttribute('BatchGroup', "Batch", '1')
]
class PktInventBatchBarCodeContract
{
    InventBatchId           batchId;



Troubleshooting and Other Advanced Recipes

272

    BarcodeSetupId          barcodeSetupId;
    FontSize                batchFontSize;
    FontName                barcodeFontName;
}

[DataMemberAttribute('Batch'),
SysOperationGroupMemberAttribute('BatchGroup'),
SysOperationDisplayOrderAttribute('1')]
public InventBatchId parmBatchId( 
  InventBatchId _batchId = batchId)
{
    batchId = _batchId;
    return batchId;
}
[
    DataMemberAttribute('BarcodeSetupId'),
    SysOperationGroupMemberAttribute('BatchGroup'),
    SysOperationHelpTextAttribute(literalStr("@SYS102646")),
    SysOperationDisplayOrderAttribute('2')
]
public BarcodeSetupId parmBarcodeSetupId(BarcodeSetupId  
  _barcodeSetupId = barcodeSetupId)
{
    barcodeSetupId  =    _barcodeSetupId;
    
    return barcodeSetupId;
}

[
    DataMemberAttribute('BarcodeFontName'),
    SysOperationGroupMemberAttribute('BatchGroup'),
    SysOperationDisplayOrderAttribute('3')
]
public FontName parmBarcodeFontName(FontName  
  _barcodeFontName = barcodeFontName)
{
    barcodeFontName     =   _barcodeFontName;
    
    return barcodeFontName;
}



Chapter 8

273

4. Create an RDP class—which will apply the selected barcode setup chosen by the user 
in the report dialog to encode the batch number to the barcode—using the code here:
[
    //bind query - shows in the report dialog
    SRSReportQueryAttribute(queryStr( 
      PktinventBatchBarCode)),
    //bind the contract
    SRSReportParameterAttribute(classStr( 
      PktInventBatchBarCodeContract))
]
class PktInventBatchBarCodeDp Extends  
  SRSReportDataProviderBase
{
    BarcodeSetupId  barcodeSetupId;
    FontName        barcodeFontName;
    FontSize        barcodeFontSize;

    PktInventBarCodeTmp  barCodeTmp;
}

[SysEntryPointAttribute(false)]
public void processReport()
{
    QueryRun                        queryRun;
    PktInventBatchBarCodeContract   contract;
    BarcodeSetup                    barcodeSetup;
    Barcode                         barcode;
    QueryBuildRange                 batchRange;

      

    contract = this.parmDataContract() as  
      PktInventBatchBarCodeContract;

    barcodeSetup    =  
      BarcodeSetup::find(contract.parmBarcodeSetupId());
    barcode         = barcodeSetup.barcode();

     
    
    batchRange  =  this.parmQuery().dataSourceTable( 
      tableNum(InventBatch)).addRange(fieldNum( 
      InventBatch,InventBatchId));



Troubleshooting and Other Advanced Recipes

274

    batchRange.value(contract.parmBatchId());

    queryRun = new QueryRun(this.parmQuery());

    while (queryRun.next())
    {
        this.insertBarCodeTmpTable(queryRun.get(tableNum( 
          InventBatch)) as InventBatch,  
          barcodeSetup, barcode);
    }
}

protected void insertBarCodeTmpTable(
          InventBatch     _inventBatch
        , BarcodeSetup    _barcodeSetup,
          Barcode         _barcode)
{
    int                     currentInfologLine;
    SysInfologEnumerator    infoEnumerator;

    // encode barcodes
    barCodeTmp.clear();

    if(_barcodeSetup)
    {
        currentInfologLine = infologLine();

        if (_barcodeSetup.validateBarcode(_inventBatch.
inventBatchId))
        {
            _barcode.string(true,  
            _inventBatch.inventBatchId);

            if (_barcodeSetup.FontName)
            {
                barCodeTmp.Barcode = _barcode.barcodeStr();
            }

            barCodeTmp.BarcodeHR = _barcode.barcodeStrHR();
            barCodeTmp.InventBatchId =  
              _inventBatch.inventBatchId;
            barCodeTmp.insert();
        }
        else



Chapter 8

275

        {
            infoEnumerator =  
              SysInfologEnumerator::newData(infolog.copy( 
              currentInfologLine + 1, infologLine()));
            return;
        }
    }
}

[SRSReportDataSetAttribute(tableStr(PktInventBarCodeTmp))]
public PktInventBarCodeTmp getBarCodeTmp()
{
    select  barCodeTmp; 
    return  barCodeTmp;
}

5. Create a controller class as shown in the following code. The controller class will find 
the barcode setup and set the FontName and FontSize accordingly. This makes it 
possible to dynamically change the barcode type at runtime.
public class PktInventBatchBarCodeController extends 
SrsReportRunController
{
}

public static void main(Args _args)
{
    PktInventBatchBarCodeController  controller =  
      new PktInventBatchBarCodeController();

    controller.parmReportName(ssrsReportStr( 
      PktInventBatchBarCode, InventBatchBarCode));
    controller.parmArgs(_args);
    controller.startOperation();
}

public void preRunModifyContract()
{
    BarcodeSetup                     barcodeSetup;
    PktInventBatchBarCodeContract    contract =  
      this.parmReportContract().parmRdpContract() as  
        PktInventBatchBarCodeContract;

    barcodeSetup =  
      BarcodeSetup::find(contract.parmBarcodeSetupId());

    if (barcodeSetup)
    {



Troubleshooting and Other Advanced Recipes

276

        contract.parmBarcodeFontName( 
          barcodeSetup.FontName);
        contract.parmBatchFontSize(barcodeSetup.FontSize);
    }
    else
    {
        contract.parmBarcodeFontName('');
        contract.parmBatchFontSize(0);
    }
}

public void prePromptModifyContract()
{
    BarcodeSetup                    barcodeSetup;
    PktInventBatchBarCodeContract    contract;
    Query                           query;
    InventBatch                     inventBatch;
    QueryBuildDataSource            queryBuildDataSource;
    QueryBuildRange                 qbrInventBatchId;

    contract = this.parmReportContract().parmRdpContract()  
      as PktInventBatchBarCodeContract;

    if (!contract.parmBarcodeSetupId())
    {
        select firstonly barcodeSetup
            where barcodeSetup.BarcodeType ==  
              BarcodeType::Code39;

        if (barcodeSetup)
        {
            contract.parmBarcodeSetupId( 
              barcodeSetup.BarcodeSetupId);
        }
    }

    query                   = this.getFirstQuery();
    queryBuildDataSource    = 
      SysQuery::findOrCreateDataSource(query,  
      tableNum(inventBatch));

    if (this.parmArgs()



Chapter 8

277

     && this.parmArgs().record() is InventBatch
     && this.parmArgs().record().isFormDataSource())
    {
        inventBatch = this.parmArgs().record() as  
          InventBatch;
        qbrInventBatchId =  
          SysQuery::findOrCreateRange( 
          queryBuildDataSource, fieldNum( 
          InventBatch, InventBatchId));
        qbrInventBatchId.value(queryValue( 
          inventBatch.inventBatchId));
    }
}

6. Create a report and attach the RDP class as a data source.

7. Create a new precision design and add a table control.

8. In the table control, delete all the columns except the first column and select  
the InventBatchId field in the first column.

9. Insert three columns at the bottom and select the barcode, barcodehr,  
and barcode fields sequentially.

10. Select the text boxes for the barcode field. In the font toolbar, modify the font  
to BC C39 3 to 1 HD Wide, set the size to 48pt, and set the alignment to Center. 
This is a static way of specifying the barcode setup.



Troubleshooting and Other Advanced Recipes

278

11. Select the last barcode box at the bottom and in the Properties window, set the 
WritingMode property to Vertical. This will print the barcode in a vertical direction.

12. Select the barcode and in the property window, set the following expression for  
font family.
=iif(IsNothing(Parameters!BarcodeFontName.Value),"Tahoma",  
  Parameters!BarcodeFontName.Value)

This will make the font dynamic so that it can be chosen at runtime.

13. Resize the barcode text box to fit the barcode when printed.



Chapter 8

279

14. Run the report to see the barcode being printed in both horizontal and  
vertical directions.

How it works…
Dynamics AX has inbuilt classes that support encoding for most types of barcodes, and more 
can be added easily by extending the Barcode class.



Troubleshooting and Other Advanced Recipes

280

The report here flexibly allows the user to choose the encoding mechanism at runtime. The 
report picks up the available barcode from Organization administration | Setup | Barcode.

The RDP receives this setup parameter through the contract and instantiates the appropriate 
Barcode class. This helps in building more dynamic and generic solutions, since the barcode 
report can run for any kind of barcode without changing the font for each format. Also of note 
is the ease with which barcodes can be printed vertically in comparison to AX 2009, where the 
only feasible solution was to save it as a vertical image and print it in the report.

Sometimes you may want to create interactive text in the report but still 
use the standard labels as part of the message; for example, Page 1 
of 10 where the string "Page" and "of" are plain strings. In the case of 
pages, the value comes from the global variable, but you may also want 
to use labels to construct such texts. In that case, use the String format 
option. Open the report control properties and in the Value property, 
select the Expression option and place your text in the format seen here:
=System.String.Format("This is a label id converted 
at run time {0}", Lables!@SYS1560);

Hiding controls by context
Among the customizations done in a report, one of the most common is to disable certain 
report controls by context. This recipe will showcase how to hide a report control in the  
report design using the context.



Chapter 8

281

How to do it…
1. Create a new report in Visual Studio with the CustTable query as the data source.

2. Add an auto design and drag the data source to the design.

3. In the Parameters node, add a new parameter of type Boolean and call it 
HiddenParm. Set its properties as follows:

Property Value
Nullable True
AllowBlank True
Default Value False

4. In the Designs node, navigate to the control which must be toggled based on the  
flag. In the Properties window, set the visible property through expression to point  
to the newly added parameter using the following expression:
=Not(!Parameter.HiddenParm.Value)

5. The next step is to set this flag from the controller based on the context. To do  
this, navigate to the controller class and in the preRunModifyContract  
method, access the contract and set the value as shown here:
class PktRdlCustTransListController extends  
  SrsReportRunController
{
}
protected void preRunModifyContract()



Troubleshooting and Other Advanced Recipes

282

{
    #ISOCountryRegionCodes
    SrsReportRdlDataContract    contract =  
      this.parmReportContract().parmRdlContract();

    if(SysCountryRegionCode:: 
      isLegalEntityInCountryRegion([#isoIN]))
    {
        contract.setValue("HiddenParm", true);
    }
}
public static void main(Args args)
{
    PktRdlCustTransListController controller;

    controller = new PktRdlCustTransListController();
    controller.parmReportName(ssrsReportStr( 
      PktRdlCustTransList, CustTransList));
    controller.parmArgs(args);
    controller.startOperation();
}

6. Re-deploy the report and run it to see the field getting disabled or enabled based  
on the context.

How it works…
This recipe, in spite of its simplicity, will be immensely applicable as an idea in report 
development to toggle report controls. The best practice to keep in mind is to add the  
hidden parameter by creating a separate group under the parameters node. This will  
help in understanding and extending at a later point.

Using AXEnumProvider as the dataset for 
parameters in reports 

When you use Enum as a parameter in reports, it works well within the AX client. However, 
to deploy it to the Enterprise Portal (EP), the parameter lookup must be built through the AX 
Enum provider. This recipe will discuss how an Enum provider can be added to a report and 
used in parameters.



Chapter 8

283

Getting ready
To verify the recipe output, you may require the enterprise portal configured for your Dynamics 
AX installation.

How to do it…
1. In the report, identify the Enum field that must be added to the parameters. Drag it  

to the Parameters node to create a new parameter.

2. Create a new dataset and set the Data Source Type to AX Enum Provider. Click on 
the ellipsis button (…) on the Query property.

3. In the application explorer, click on DataDictionary | Tables and select the table  
that has the enumerator, then go to Fields  and select the Enum field and identify  
the Enum that it uses. Type the value in the Query property in the dataset.

4. This will add a dataset with the fields Name, Value, and Label.



Troubleshooting and Other Advanced Recipes

284

5. Go to the Enum parameter that was added in the Parameters node and click on the 
ellipsis button (…). In the Select values, set these properties:

Field Value
Dataset Enum provider dataset that was added
Value field Value
Label field Label

6. This completes the process. Once this is done, you are good to deploy the report.  
The system will automatically take care of filling the Enum values at runtime and  
will display it in the lookup, both in EP and the rich client.

Adding a new report design to print 
management

Print management allows end users to specify the print format and type (print/e-mail) of 
reports based on hierarchical relations, such as modules, accounts (customer/vendor), and 
transactions (picking/packing). The goal of this recipe is to explain how you can make a new 
report design for one of the existing document types as an option for users to choose in the 
print management setup.

How to do it…
This recipe assumes that a new design ready for one of the document types supported by 
print management, say SalesInvoice, is available:

1. Open the PrintMgmtReportFormat table and add a new record, as shown in the 
following screenshot. If the report must be applied to a specific country, then fill in  
the country name.



Chapter 8

285

2. If it is required to make this the default report in print management, then in the 
PrintMgmtDocType class, modify the getDefaultReportFormat method to 
replace the report name with the document type. If the report layout is country-
specific, then apply the appropriate condition.
if (SysCountryRegionCode::isLegalEntityInCountryRegion([#isoIN]))
            {
                return ssrsReportStr(SalesInvoice, Report_Custom);
            }

3. Navigate to Accounts Receivable | Setup | Forms | Forms Setup. Click on the  
Print Management button.

4. In Print management setup, navigate to the Customer Invoice record and drop  
down the Report Format field to see the new report that was added.



Troubleshooting and Other Advanced Recipes

286

Though AX SSRS is an extension of SSRS, it still does stop a few SSRS 
features from being directly used, such as resetting page numbers 
after a group change, using Maps in reports, and a few chart types 
such as Spark line.

Deploying language-specific reports to 
speed up execution time

Generally, when a report is deployed to the report server, it is deployed once and is rendered 
per language. However, large-scale transactional reports such as Sales Invoice, which run in 
batch operations, can harness this option to speed up processing. Walk through this recipe to 
see how this can be done.

How to do it…
1. Navigate to SystemAdministration |Setup | Business Intelligence | Reporting 

services | Report Deployment settings.

2. In the Report Deployment settings, create a new record for the report and activate 
Use static report design.

3. Re-deploy the report to the report server.



Chapter 8

287

How it works…
Enabling the static report design speeds up the report as it uses what is called static RDL. 
Static RDL is different from dynamic RDL because the labels are pre-rendered. This works 
by creating a language-specific version in the report server for each language, making the 
processing of the report faster. However, keep in mind that changing a label means that  
the report must be deployed again. When redesigning any report in this list, make sure to 
uncheck Use static report design.

Improving the functionality of reports
Designing a report and making it function better relies on getting it fundamentally right.  
This recipe will cover some simple steps, which when implemented, can help design a  
better, faster, and more reliable report.

How to do it…
1. Use query: Opt to use a query-based report over an RDP-based report wherever 

possible, and use RDP only if there is a compulsion to use business logic for  
the query.

2. Use SSRS for totals: Use the totals functions in SSRS to run totals, and don't 
calculate them in the RDP logic.

3. Use relations in RDP: Create relations in an RDP table to get automatic drill  
through in reports.

4. Make parameters optional: Remember to set Allow blank to True and Nullable  
to True for optional report parameters.

5. Use Run on property for menu item: In the menu item that invokes a report,  
make sure the property is set to Called from, otherwise it may not be invoked  
from a batch process.

6. Use SSRSReportStr: When specifying the design in reports, avoid strings and  
use the inbuilt function SSRSReportStr(ReportName, DesignName).  
This validates the design at compile time.

7. Concentrate on computation in RDP: Complete all computations in the RDP and 
don't spread logical computations to the report through data methods.

8. Limit C# data methods: Use C# based data methods to make formatting-related 
changes, and avoid using it to invoke AX service for querying and so on.

9. Limit Display methods form Query node: Though you are allowed to choose display 
methods using the query data source, always limit the number of methods and 
consider if they are really needed in the report. When there are a lot of display 
methods or a performance delay is noticed, create a view. This can bring in a 
significant difference to the performance of the report.



Troubleshooting and Other Advanced Recipes

288

10. Use query ranges: Strive to place select conditions as much possible as ranges  
on the query rather using the Filter option in the report design or by adding if 
conditions in the RDP. 

11. Use set-based processing RDP: Evaluation of an RDP requires a query to collect  
user inputs. If not, try to use set-based operations, such as insert_recordset  
and update_recordset to process records in bulk to the temporary table used in  
RDP. These operations are exponentially faster.

12. Resize images: The AOS service has a limit of 1 GB for streaming data to the reporting 
service. Using reports that contain images and a large number of transactions can 
cause choking or slowing down. Avoid using the BMP file format; use compressed 
image formats, such as JPG or PNG instead.



289

9
Developing Reports 

with Complex 
Databases

The following recipes will be covered in this title:

 f Creating reports by fetching the data using complex queries

 f Creating reports by fetching the data using views

 f Creating reports by fetching the data using maps

Introduction
In the earlier chapters, we designed simple SSRS reports using queries or database tables. 
However, sometimes businesses need more analytical reports with a complex logic that would  
not be possible through queries or database tables. We need to use other AOT objects to 
develop such reports. In this chapter, we will develop the SSRS reports in Dynamics AX R3  
using complex queries, views, and maps to fulfill business requirements. Using queries,  
maps, and views will help fetch the data in a faster and easier way.



Developing Reports with Complex Databases

290

Creating reports by fetching the data using 
complex queries

In this recipe, we will develop an SSRS report in Dynamics AX R3 using complex queries.  
This will help to fetch the complex data and show it in the report. In this recipe, we will  
create three queries and get the data from these queries in a single SSRS report.

Getting ready
In this recipe, we will create three queries which will be further used in the next recipe for 
fetching data. These three queries will be based on the sales order, purchase order, and 
transfer order.

How to do it…
1. Go to AOT | Queries, right-click on New Query, and create a new query named 

PKTCustInvoiceTrans.

2. This query is used to fetch the data related to post sales orders. By using this query  
we can fetch related customer details and tax information corresponding to the 
posted sales order.



Chapter 9

291



Developing Reports with Complex Databases

292

3. Similarly, we will create a query based on the purchase order and name it as 
PKTVendinvoiceTrans. This will help to fetch the data related to the vendor  
and tax information corresponding to the invoiced purchase order.



Chapter 9

293

4. In the same way, we will create another query named PKTInventTransferJourLine 
which will fetch all the data related to the transfer order.



Developing Reports with Complex Databases

294

Creating reports by fetching the data using 
views

In this recipe, we will create views which will be used further on the maps to fetch the data 
in the RDP class for creating the SSRS report in Dynamics AX R3. Views are the virtual tables 
that contain the fields specified in the query as the data source of the view. Views store the 
data, made by joining the multiple data sources, as a table and can be reused in other X++ 
SQL statements.

Getting ready
This recipe is a continuation of the previously developed report in the recipe Creating reports 
by fetching the data using complex queries in this chapter. 

How to do it…
1. Right click on the AOT | Data Dictionary | Views node and select New View.

2. Create a new view named PKTCustInvoiceTrans and add a data source as query 
created in previous recipe PKTCustInvoiceTrans.



Chapter 9

295

3. Now we will add the fields in the view.

4. In a similar way, we will create another view named PKTVendInvoiceTrans  
for fetching the data related to posted purchase order. In this view, we use the  
above created query PKTVendInvoiceTrans as the datasource.



Developing Reports with Complex Databases

296

5. Now we will add the fields in the view.

6. The next step is to create a last view named PKTInventTransferJourLine  
by adding the query created in previous recipe PKTInventTransferJourLine  
as the datasource.

7. The last step is to add the fields in the above view.



Chapter 9

297

Creating reports by fetching the data using 
maps

Maps unify access to similar columns and methods that are present in multiple tables  
and views. Maps enable the use of the same field name to access fields with different  
names in different tables. We will map all the three view fields created in the previous  
recipe with the map fields.

Getting ready
To work through this recipe, you will need to have AX 2012 R2 or AX 2012 R3 rich clients  
with developer permission.



Developing Reports with Complex Databases

298

How to do it...
1. Firstly, go to AOT | Data Dictionary | Maps, right-click the node and create a new 

map named PKTSalesPurchTransferMap.

2. Add the fields in the map created in the previous step.



Chapter 9

299

3. Now, we will add all the above created three views in the mapping node of the map 
and map the fields of view with the fields of maps.

4. After mapping the fields, we will add a method in the map to insert the data into a 
temporary table.
public static void insertTableTmp(
    PKTTmpTable             _pKTTmpTable,
    PKTSalesPurchTransfer   _pKTSalesPurchTransfer)
{
    insert_recordset _pKTTmpTable(InvoiceNumber,  
      AssessableValueMST, ItemId, 
      DescriptionOfGoods, ExciseTariffCode,  
      InvoiceDate, TotalDutyAmountMST)
    select InvoiceId, AssessableValue, ItemId, ItemName,  
      ExciseTariffCode, InvoiceDate, sum(TaxAmount) from  
      _pKTSalesPurchTransfer;
}

5. The last step is to use this method in the process report of the RDP class to fetch the 
data using the map. We can give the view name as the parameter of the map method 
and fetch the data from the map using the view name.

[SysEntryPointAttribute(false)]
public void processReport()
{
    PKTCustInvoiceTrans         pKTCustInvoiceTrans;
    PKTVendInvoiceTrans         pKTVendInvoiceTrans;
    PKTInventTransferJourLine   pKTInventTransferJourLine;
    PKTTmpTable                 pKTTmpTable;
    
    PKTSalesPurchTransfer::insertTableTmp(pKTTmpTable,  
      pKTCustInvoiceTrans);
    PKTSalesPurchTransfer::insertTableTmp(pKTTmpTable,  
      pKTVendInvoiceTrans);
    PKTSalesPurchTransfer::insertTableTmp(pKTTmpTable,  
      pKTInventTransferJourLine);
}

For more details on MAP, see the following link:
https://msdn.microsoft.com/en-us/library/
bb278211.aspx.

https://msdn.microsoft.com/en-us/library/bb278211.aspx
https://msdn.microsoft.com/en-us/library/bb278211.aspx




301

10
Unit Test Class and 

Best Practices Used  
for Reports

We will cover the following recipes in this chapter:

 f Creating a unit test class for a contract class

 f Creating a unit test class for a controller class

 f Creating a unit test class for an RDP class

 f Best practices for AX 2012 report development

Introduction
In earlier chapters, we have discussed the process of developing simple and advanced SSRS 
reports in Microsoft Dynamics AX R3. In this last chapter, we will discuss unit test classes and 
the best practices used while developing SSRS reports. Unit test framework is integrated into 
MorphX IDE in Microsoft Dynamics AX R3. Unit test classes are classes that are used to test 
the feature logic. These unit test classes are written along the business feature logic to test 
the feature logic. We can add test methods to test each requirement of feature code. Unit test 
classes have some of their own methods, such as assertTrue, which checks whether two 
values are equal and whether a condition is true; assertFalse, which checks whether a 
condition is not true; and assertNotEqual, which checks whether two values are not equal.



Unit Test Class and Best Practices Used for Reports

302

Creating a unit test class for a contract 
class

To write the unit test class of a contract class, first of all we need to create a new contract 
class and then test the logic of that contract class using the unit test class. In this recipe,  
we will use an existing contract class; we will write the unit test class of that existing contract 
class. As explained in earlier chapters, a contract class consists of parm methods which are 
used to set or get the variables. A unit test class extends the SysTestCase class.

We can also check the code coverage of business logic in Microsoft Dynamics AX R3 using  
a unit test parameter.

Getting ready
To work through this recipe, you will require AX 2012 R2 or AX 2012 R3 rich client with 
developer permission. You need a contract class for the unit test class. We will use the 
existing contract class, VendInvoiceContract.

How to do it...
We will first set some parameters of unit test in Dynamics AX R3 to measure the code 
coverage of business logic, as follows:

1. Go to Tools | Unit test | Parameters as shown in the following screenshot:



Chapter 10

303

2. This opens the unit test parameter form. Check the Record code coverage option.

3. The VendInvoiceContract class consists of eight methods. So we will write the 
unit test methods of every method in the contract class. As per standard practice,  
the code coverage of the whole class should be 100%.

4. As per best practices, the naming convention of the unit test class should start with 
the class name suffix with test and the naming convention of unit test method should 
start with test suffix then method name.

5. Firstly, we will create a new class named PktVendInvoiceContractTest and 
extend the class with the SysTestCase class:
class PKTVendInvoiceContractTest extends SysTestCase
{
    #define.DimensionFocus('DimensionFocus')
}

6. Now, we will add the testParmFromDate method, which will be the test method  
of the parmFromDate method of the VendInvoiceContract class:
public void testParmFromDate()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

    this.assertEquals(dateNull(), contract.parmFromDate());

    contract.parmFromDate(2\2\2020);
    this.assertEquals(2\2\2020, contract.parmFromDate());
}

In this method, the assertEqual method, which checks whether two values are 
equal, is used to test the code of parmFromDate.



Unit Test Class and Best Practices Used for Reports

304

7. Similarly, we can write the test method of another method of the 
VendInvoiceContract class:

public void testParmInvoiceType()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

this.assertEquals(OpenPaidBoth::Open,  
  contract.parmInvoiceType());

    contract.parmInvoiceType(OpenPaidBoth::Both);
    this.assertEquals(OpenPaidBoth::Both,  
      contract.parmInvoiceType());
}

public void testParmToDate()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

    this.assertEquals(dateNull(), contract.parmToDate());

    contract.parmToDate(1\1\2010);
    this.assertEquals(1\1\2010, contract.parmToDate());
}
public void testParmWithTransactionText()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

    this.assertFalse(contract.parmWithTransactionText());

    contract.parmWithTransactionText(true);
    this.assertTrue(contract.parmWithTransactionText());
}
public void testInitialize()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

    contract.parmInvoiceType(OpenPaidBoth::Paid);

    contract.initialize();
    this.assertEquals(OpenPaidBoth::Open, contract.
parmInvoiceType());



Chapter 10

305

}
public void testValidateDateRange()
{
    VendInvoiceContract contract =  
      VendInvoiceContract::construct();

    contract.parmDimensionFocus("");
    contract.parmFromDate(dateNull());
    contract.parmToDate(dateNull());
    this.assertFalse(contract.validate(),  
      'validate must return false when  
      either from date or to date are null.');

    contract.parmFromDate(1\1\2001);
    contract.parmToDate(dateNull());
    this.assertFalse(contract.validate(),  
      'validate must return false when  
      either from date or to date are null.');

    contract.parmFromDate(dateNull());
    contract.parmToDate(2\2\2020);
    this.assertFalse(contract.validate(),  
      'validate must return false when  
      either from date or to date are null.');

    contract.parmFromDate(1\1\2001);
    contract.parmToDate(1\1\1982);
    this.assertFalse(contract.validate(),  
      'validate must return false when FromDate >  
      ToDate, all other contract values are valid.');

    contract.parmFromDate(1\1\2001);
    contract.parmToDate(2\2\2020);
    this.assertTrue(contract.validate(),  
      'validate must return true when FromDate <  
      ToDate, all other contract values are valid.');
}

Creating a unit test class for a controller 
class

In the previous recipe, you learned how to write a unit test class for a contract class. In this 
recipe, you will learn how to create unit test classes for a controller class. A controller class is 
used for report execution as well as processing of report data. For the unit test class, first we 
will create a new controller class and then test the business logic inside that controller class 
in AX R3.



Unit Test Class and Best Practices Used for Reports

306

Getting ready
To work with this recipe, we need to create a controller class named 
PKTVendInvoiceController that extends SRSReportRunController.

How to do it...
1. The first step is to add a PKTVendInvoiceController class which extends 

SRSReportRunController:
public class PKTVendInvoiceController extends  
  SrsReportRunController
{
}
public void execute(Args _args)
{
    this.parmReportName(ssrsReportStr(PKTVendInvoice,  
      Report));
    this.parmArgs(_args);
    this.startOperation();
}

public static PKTVendInvoiceController construct()
{
    return new PKTVendInvoiceController();
}

public static void main(Args _args)
{
    PKTVendInvoiceController::construct().execute(_args);
}

2. Now, add a unit test class called PKTVendInvoiceControllerTest, which 
extends the SysTestCase class:
public void PKTVendInoviceControllerTest extends 
SysTestCase ()
{
    
}

3. Next, write the unit test method for the construct method named testConstruct, 
which will return the instance of the PKTVendInvoiceController class:
public void testConstruct()



Chapter 10

307

{
    this.assertTrue(PKTVendInvoiceController::construct() is 
PKTVendInvoiceController);
}

4. Finally, write the unit test method for the execute method. The execute method  
tells us which report should be printed. So, in the unit test method, we will equate  
the report design using the assertEqual method:
public void testExecute()
{
    Args    args;
    PKTVendInvoiceController pktVendInvoiceController;
    pktVendInvoiceController .execute(args);
    this.assertEquals(ssrsReportStr(PKTVendInvoice,  
      Report), pktVendInvoiceController .parmReportName());
}

Creating a unit test class for an RDP class
Report data provider is the most important class while creating and designing an SSRS  
report in Dynamics AX R3. In an RDP class, all the business logic has been written in this 
class. In earlier chapters, we discussed the creation of SSRS reports using the RDP class.  
So in this recipe, we will use the existing RDP class VendInvoiceDP and we will write the  
unit test class for this RDP class.

Getting ready
To work with this recipe, we will create PKTVendInvoiceDPTest class which will extend  
the SysTestCase class.

How to do it...
1. In an RDP class, all the business logic is written in the processReport()  

method. So we will write the unit test method for the processReport()  
method. First, create the PKTVendInvoiceDPTest class:
class PKTVendInvoiceDPTest extends SysTestCase
{
    RecId mainAccount_11005;
    RecId accountStructureId; 
    #define.inv1('inv1')
    #define.DimHier_BalSht('DimHier_BalSht')
    #define.p1('p1')



Unit Test Class and Best Practices Used for Reports

308

    #define.v1('v')
    #define.test1('test1')
    #define.vend1('vend1')
    #define.vend2('vend2')
    #define.vend3('vend3')
    #define.vend4('vend4')
    #define.vend5('vend5')
    #define.Currency1_NT('Currency1_NT')
    #define.Currency2_NT('Currency2_NT')
    #define.Currency3_NT('Currency3_NT')
    #define.Currency4_NT('Currency4_NT')
    #define.Currency5_NT('Currency5_NT')
    #define.DimFocus_DeptCostCenter('DeptCostCenter')

    #define.inv2('inv2')
    #define.p2('p2')
    #define.v2('v2')
    #define.test2('test2')

    #define.inv3('inv3')
    #define.p3('p3')
    #define.v3('v3')
    #define.test3('test3')

    #define.inv4('inv4')
    #define.p4('p4')
    #define.v4('v4')
    #define.test4('test4')

    #define.inv5('inv5')
    #define.p5('p5')
    #define.v5('v5')
    #define.test5('test5')
}

2. To write the unit test class, we first have to insert the hardcode data into tables 
through which data is being fetched for reports. So, override the setUpData() 
method and insert the hardcode data into the tables:

public void setUpData()
{
    DimensionHierarchy dimensionHierarchy;
    GeneralJournalEntry generalJournalEntry;



Chapter 10

309

    GeneralJournalAccountEntry generalJournalAccountEntry;
    LedgerEntry ledgerEntry;
    MainAccount mainAccount;
    SubledgerVoucherGeneralJournalEntry  
      subledgerVoucherGeneralJournalEntry;
    VendTrans vendTrans;
    VendTransOpen vendTransOpen;

    mainAccount.initValue();
    mainAccount.MainAccountId = 'MainAccountId';
    mainAccount.Name = 'Test';
    mainAccount.Type =  
      DimensionLedgerAccountType::BalanceSheet;
    mainAccount.LedgerChartOfAccounts =  
      LedgerChartOfAccounts::current();
    mainAccount.doInsert();

    mainAccount_11005 = mainAccount.RecId;

    select firstonly RecId, Name from dimensionHierarchy
    where dimensionHierarchy.Name == #DimHier_BalSht;

    accountStructureId = dimensionHierarchy.RecId;

    //------------------------  Vendor transaction # 1 -----------
-------------
    vendTrans.AccountNum = #vend1;
    vendTrans.Invoice = #inv1;
    vendTrans.PaymMode = #p1;
    vendTrans.AmountCur = 3;
    vendTrans.AmountMST = 5;
    vendTrans.TransType = LedgerTransType::Purch;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.CurrencyCode = #Currency1_NT;
    vendTrans.DueDate = mkdate(21,01,2000);
    vendTrans.TransDate = mkdate(01,01,2001);
    vendTrans.Voucher = #v1;
    vendTrans.Txt = #test1;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.doInsert();

    generalJournalEntry.JournalNumber = #v1;
    generalJournalEntry.AccountingDate =  
      vendTrans.TransDate;



Unit Test Class and Best Practices Used for Reports

310

    generalJournalEntry.Ledger = Ledger::current();
    generalJournalEntry.doInsert();

    subledgerVoucherGeneralJournalEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    subledgerVoucherGeneralJournalEntry.Voucher = #v1;
    subledgerVoucherGeneralJournalEntry.VoucherDataAreaId  
      = curext();
    subledgerVoucherGeneralJournalEntry.AccountingDate  
      = generalJournalEntry.AccountingDate;
    subledgerVoucherGeneralJournalEntry.doInsert();

    generalJournalAccountEntry.PostingType  
      = LedgerPostingType::VendBalance;
    generalJournalAccountEntry.LedgerDimension  
      = DimensionDefaultingEngine:: 
      getLedgerDimensionFromAccountAndDim( 
      mainAccount_11005, accountStructureId);
    generalJournalAccountEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    generalJournalAccountEntry.doInsert();

    ledgerEntry.GeneralJournalAccountEntry  
      = generalJournalAccountEntry.RecId;
    ledgerEntry.doInsert();

    //------------------------  Vendor transaction # 2 -----------
-------------
    vendTrans.AccountNum = #vend2;
    vendTrans.Invoice = #inv2;
    vendTrans.PaymMode = #p2;
    vendTrans.AmountCur = 6;
    vendTrans.AmountMST = 9;
    vendTrans.TransType = LedgerTransType::Payment;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.DueDate = mkdate(21,01,2001);
    vendTrans.TransDate = mkdate(02,02,2002);
    vendTrans.CurrencyCode = #Currency2_NT;
    vendTrans.Voucher = #v2;
    vendTrans.Txt = #test2;
    vendTrans.doInsert();

    generalJournalEntry.JournalNumber = #v2;



Chapter 10

311

    generalJournalEntry.AccountingDate =  
      vendTrans.TransDate;
    generalJournalEntry.Ledger = Ledger::current();
    generalJournalEntry.doInsert();

    subledgerVoucherGeneralJournalEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    subledgerVoucherGeneralJournalEntry.Voucher = #v2;
    subledgerVoucherGeneralJournalEntry.VoucherDataAreaId  
      = curext();
    subledgerVoucherGeneralJournalEntry.AccountingDate  
      = generalJournalEntry.AccountingDate;
    subledgerVoucherGeneralJournalEntry.doInsert();

    generalJournalAccountEntry.PostingType  
      = LedgerPostingType::VendBalance;
    generalJournalAccountEntry.LedgerDimension  
      = DimensionDefaultingEngine:: 
      getLedgerDimensionFromAccountAndDim( 
      mainAccount_11005, accountStructureId);
    generalJournalAccountEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    generalJournalAccountEntry.doInsert();

    ledgerEntry.GeneralJournalAccountEntry  
      = generalJournalAccountEntry.RecId;
    ledgerEntry.doInsert();

    vendTransOpen.AccountNum = #vend2;
    vendTransOpen.AmountCur = 3;
    vendTransOpen.AmountMST = 4.5;
    vendTransOpen.PossibleCashDisc = 1;
    vendTransOpen.DueDate = mkdate(21,01,2001);
    vendTransOpen.CashDiscDate = mkdate(21,01,2001);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    vendTransOpen.AccountNum = #vend2;
    vendTransOpen.AmountCur = 3;
    vendTransOpen.AmountMST = 4.5;
    vendTransOpen.PossibleCashDisc = 1;
    vendTransOpen.DueDate = mkdate(31,01,2001);
    vendTransOpen.CashDiscDate = mkdate(31,01,2001);



Unit Test Class and Best Practices Used for Reports

312

    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    //------------------------  Vendor transaction # 3 -----------
-------------
    vendTrans.AccountNum = #vend3;
    vendTrans.Invoice = #inv3;
    vendTrans.PaymMode = #p3;
    vendTrans.AmountCur = 48;
    vendTrans.AmountMST = 35;
    vendTrans.TransType = LedgerTransType::Settlement;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.DueDate = mkdate(21,01,2003);
    vendTrans.TransDate = mkdate(03,03,2003);
    vendTrans.CurrencyCode = #Currency3_NT;
    vendTrans.Voucher = #v3;
    vendTrans.Txt = #test3;
    vendTrans.doInsert();

    generalJournalEntry.JournalNumber = #v3;
    generalJournalEntry.AccountingDate  
      = vendTrans.TransDate;
    generalJournalEntry.Ledger = Ledger::current();
    generalJournalEntry.doInsert();

    subledgerVoucherGeneralJournalEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    subledgerVoucherGeneralJournalEntry.Voucher  
      = #v3;
    subledgerVoucherGeneralJournalEntry.VoucherDataAreaId  
      = curext();
    subledgerVoucherGeneralJournalEntry.AccountingDate  
      = generalJournalEntry.AccountingDate;
    subledgerVoucherGeneralJournalEntry.doInsert();

    generalJournalAccountEntry.PostingType  
      = LedgerPostingType::VendBalance;
    generalJournalAccountEntry.LedgerDimension  
      = DimensionDefaultingEngine:: 
      getLedgerDimensionFromAccountAndDim( 
      mainAccount_11005, accountStructureId);
    generalJournalAccountEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;



Chapter 10

313

    generalJournalAccountEntry.doInsert();

    ledgerEntry.GeneralJournalAccountEntry  
      = generalJournalAccountEntry.RecId;
    ledgerEntry.doInsert();

    vendTransOpen.AccountNum = #vend3;
    vendTransOpen.AmountCur = 13;
    vendTransOpen.AmountMST = 23;
    vendTransOpen.PossibleCashDisc = 2;
    vendTransOpen.DueDate = mkdate(23,02,2003);
    vendTransOpen.CashDiscDate = mkdate(24,02,2003);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    vendTransOpen.AccountNum = #vend3;
    vendTransOpen.AmountCur = 35;
    vendTransOpen.AmountMST = 12;
    vendTransOpen.PossibleCashDisc = 2;
    vendTransOpen.DueDate = mkdate(23 ,02,2003);
    vendTransOpen.CashDiscDate = mkdate(24 ,02,2003);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    //------------------------  Vendor transaction # 4 -----------
-------------
    vendTrans.AccountNum = #vend4;
    vendTrans.Invoice = #inv4;
    vendTrans.PaymMode = #p4;
    vendTrans.AmountCur = 500;
    vendTrans.AmountMST = 260;
    vendTrans.TransType = LedgerTransType::Transfer;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.Txt = #test4;
    vendTrans.DueDate = mkdate(21,01,2005);
    vendTrans.TransDate = mkdate(04,04,2004);
    vendTrans.CurrencyCode = #Currency4_NT;
    vendTrans.Voucher = #v4;
    vendTrans.doInsert();

    generalJournalEntry.JournalNumber = #v4;
    generalJournalEntry.AccountingDate  
      = vendTrans.TransDate;



Unit Test Class and Best Practices Used for Reports

314

    generalJournalEntry.Ledger = Ledger::current();
    generalJournalEntry.doInsert();

    subledgerVoucherGeneralJournalEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    subledgerVoucherGeneralJournalEntry.Voucher = #v4;
    subledgerVoucherGeneralJournalEntry.VoucherDataAreaId  
      = curext();
    subledgerVoucherGeneralJournalEntry.AccountingDate  
      = generalJournalEntry.AccountingDate;
    subledgerVoucherGeneralJournalEntry.doInsert();

    generalJournalAccountEntry.PostingType  
      = LedgerPostingType::VendBalance;
    generalJournalAccountEntry.LedgerDimension  
      = DimensionDefaultingEngine:: 
      getLedgerDimensionFromAccountAndDim( 
      mainAccount_11005, accountStructureId);
    generalJournalAccountEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    generalJournalAccountEntry.doInsert();

    ledgerEntry.GeneralJournalAccountEntry  
      = generalJournalAccountEntry.RecId;
    ledgerEntry.doInsert();

    vendTransOpen.AccountNum = #vend4;
    vendTransOpen.AmountCur = 280;
    vendTransOpen.AmountMST = 130;
    vendTransOpen.PossibleCashDisc = 18;
    vendTransOpen.DueDate = mkdate(23,02,2005);
    vendTransOpen.CashDiscDate = mkdate(23,02,2005);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    vendTransOpen.AccountNum = #vend4;
    vendTransOpen.AmountCur = 100;
    vendTransOpen.AmountMST = 20;
    vendTransOpen.PossibleCashDisc = 20;
    vendTransOpen.DueDate = mkdate(24,02,2005);
    vendTransOpen.CashDiscDate = mkdate(24,02,2005);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    vendTransOpen.AccountNum = #vend4;



Chapter 10

315

    vendTransOpen.AmountCur = 120;
    vendTransOpen.AmountMST = 110;
    vendTransOpen.PossibleCashDisc = 12;
    vendTransOpen.DueDate = mkdate(25,02,2005);
    vendTransOpen.CashDiscDate = mkdate(25,02,2005);
    vendTransOpen.RefRecId = vendTrans.RecId;
    vendTransOpen.doInsert();

    //------------------------  Vendor transaction # 5 -----------
-------------
    vendTrans.AccountNum = #vend5;
    vendTrans.Invoice = #inv5;
    vendTrans.PaymMode = #p5;
    vendTrans.AmountCur = -1;
    vendTrans.AmountMST = 2.5;
    vendTrans.TransType = LedgerTransType::Transfer;
    vendTrans.Approved = NoYes::Yes;
    vendTrans.Txt = #test5;
    vendTrans.DueDate = mkdate(21,01,2006);
    vendTrans.TransDate = mkdate(05,05,2005);
    vendTrans.CurrencyCode = #Currency5_NT;
    vendTrans.Voucher = #v5;
    vendTrans.doInsert();

    generalJournalEntry.JournalNumber = #v5;
    generalJournalEntry.AccountingDate = vendTrans.TransDate;
    generalJournalEntry.Ledger = Ledger::current();
    generalJournalEntry.doInsert();

    subledgerVoucherGeneralJournalEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    subledgerVoucherGeneralJournalEntry.Voucher = #v5;
    subledgerVoucherGeneralJournalEntry.VoucherDataAreaId  
      = curext();
    subledgerVoucherGeneralJournalEntry.AccountingDate  
      = generalJournalEntry.AccountingDate;
    subledgerVoucherGeneralJournalEntry.doInsert();

    generalJournalAccountEntry.PostingType  
      = LedgerPostingType::VendBalance;
    generalJournalAccountEntry.LedgerDimension  
      = DimensionDefaultingEngine:: 
      getLedgerDimensionFromAccountAndDim( 
      mainAccount_11005, accountStructureId);



Unit Test Class and Best Practices Used for Reports

316

    generalJournalAccountEntry.GeneralJournalEntry  
      = generalJournalEntry.RecId;
    generalJournalAccountEntry.doInsert();

    ledgerEntry.GeneralJournalAccountEntry  
      = generalJournalAccountEntry.RecId;
    ledgerEntry.doInsert();
}

3. Now, create another method which returns the instance of the  
VendinvoiceDP class:
private VendInvoiceDP constructDataProvider(
    Name _dimensionFocus,
    FromDate _fromDate,
    ToDate _toDate,
    OpenPaidBoth _invoiceType,
    NoYes _withTransactionText)
{
    VendInvoiceContract contract;
    VendInvoiceDP vendInvoiceDP;

    contract = VendInvoiceContract::construct();
    contract.parmDimensionFocus(_dimensionFocus);
    contract.parmFromDate(_fromDate);
    contract.parmToDate(_toDate);
    contract.parmInvoiceType(_invoiceType);
    contract.parmWithTransactionText(_withTransactionText);

    vendInvoiceDP = new VendInvoiceDP();
    vendInvoiceDP.parmDataContract(contract);

    return vendInvoiceDP;
}

4. Finally, write the unit test method of processReport and equate the two  
values using the assertsEqual() method to test the business logic:

public void testProcessReport()
{
    VendInvoiceDP vendInvoiceDP;
    VendInvoiceTmp vendInvoiceTmp;

    ttsBegin;
    this.setUpData();
    vendInvoiceDP = this.constructDataProvider( 
      #DimFocus_DeptCostCenter, mkdate(1, 1, 2000),  
      mkdate(31, 12, 2005), OpenPaidBoth::Both, true);



Chapter 10

317

    vendInvoiceDP.processReport();
    vendInvoiceTmp = vendInvoiceDP.getVendInvoiceTmp();
    
    this.assertEquals(#p1 , vendInvoiceTmp.PaymModeVendTrans);
    this.assertEquals(#v1                   , vendInvoiceTmp.
Voucher);
    this.assertEquals(mkdate(01,01,2001)    , vendInvoiceTmp.
TransDate);
    this.assertEquals(#inv1                 , vendInvoiceTmp.
Invoice);
    this.assertEquals(#test1                , vendInvoiceTmp.Txt);
    this.assertEquals(5.00                  , vendInvoiceTmp.
AmountMST);
    this.assertEquals(3.00                  , vendInvoiceTmp.
AmountCur);
    this.assertEquals(5.00                  , vendInvoiceTmp.
RemainAmountMST);
    this.assertEquals(3.00                  , vendInvoiceTmp.
RemainAmountCur);
    this.assertEquals(NoYes::Yes            , vendInvoiceTmp.
Approved);
    ttsAbort;
}

Best practices for AX 2012 report 
development

The upcoming sections will discuss the best practices for report development:

Report design
The following points must be kept in mind while developing reports: 

 f Use templates to design reports to provide a consistent report presentation  
across the system

 f Use labels in caption and description properties for report controls

 f Use auto design for all simple reports

 f Use a proper report name so that it can be easily referred back to in AOT

 f Use auto design for form-based reports, such as Invoice or Confirmation reports, 
where a field's position is set to a value instead of auto

 f Include a report design in the report which is not used



Unit Test Class and Best Practices Used for Reports

318

AOT queries
Keep these points in mind while developing reports:

 f Provide a field list while creating a query so that only required field values  
are selected

 f Use a Query directly in a report which has multiple joins and grouping instead  
of using the RDP class

Data source table
The following best practices must be kept in mind while developing SSRS reports in  
Dynamics AX 2012 R3:

 f Use the Regular table to insert data in the reporting table while using the 
srsReportDataProviderPreProcess class as RDP, and use TempDB tables 
when dealing with a high volume of data. Also, set the CreatedTransactionId  
property to Yes.

 f Use Extended Data Types (EDT) for the table fields to handle labels and other 
properties automatically.

 f Provide table relations to the foreign key fields to enable auto links to the report.  
It helps to drill through to the master form.

RDP class
Follow these best practices while working with the RDP class:

 f Use the RDP class to insert data into the temp table while dealing with a complex 
query which involves multiple joins.

 f In the SrsReportDataProviderPreProcess class, use a user connection in  
the beginning of processReport() method. The use of this class is best while 
dealing with a large volume of data.

 f Use client-based operations such as printing information, warnings, or errors.

Contract class
When using contract classes, keep these points in mind while developing reports:

 f If you need to add any parameter in a report, use the contract class to add a  
simple dialog to get the user input as a parameter. Perform a validation to check  
if all parameters have correct values, or to check the mandate parameters.

 f Use proper EDTs and labels in your syntax.



Chapter 10

319

Controller class
The following best practices must be kept in mind while developing reports:

 f While dealing with multiple report designs, use the controller class to  
modify contracts.

 f Process business logic in the controller class and send the dataset to the RDP class.

UI Builder class
When using the UI Builder class, follow these best practices:

 f Use the UI Builder class when a specific UI is required to be rendered before  
report generation

 f Use the build method to add all dialog fields to the report dialog

 f Use the postRun()  method to override dialog fields' behavior; for example, providing 
lookups and modified events on the basis of other selected parameters

General best practices
The following table provides additional general best practices to develop Microsoft Dynamics 
AX reports:

Best practice Advantages
Use query-based reports, whenever 
possible, for best performance.

A query to access data has the following advantages:

 f A query with a display method has no code that 
needs to run.

 f You can query for data directly from a table.

 f The filter of data occurs in SQL, which is faster.

 f There are no X++ classes to develop.

 f You define a query in the AOT.
Return a TempDB based temporary 
table when appropriate.

In-Memory, tables are not an SQL-based concept, 
so the performance is slower than when you return 
a TmpDB temporary table. This is especially true for 
large datasets.

Use a view wrapped in a query for 
calculated fields.

Views provide the ability to add calculations. For more 
information, see View Overview.

Keep business logic as close to the 
data as possible.

This promotes reuse of business logic. When the 
business logic filters data, less data is moved through 
the system, and it demands fewer resources.



Unit Test Class and Best Practices Used for Reports

320

Best practice Advantages
Use precision design for all reports. Auto design is a good start point to create precision 

design for a report. Auto design will not create medium 
or complex reports. For more information, see Creating 
a simple precision design recipe, in Chapter 4, Report 
Programming Model – RDP and Creating auto designs 
from datasets recipe, in Chapter 1, Understanding and 
Creating Simple SSRS Reports.

Do not define a sort or a group in a 
Microsoft Dynamics AX query.

The dataset returned to SQL Server Reporting Services 
will be flattened. Use sort and group in the Reporting 
Services report definition.

Use RDP class based reports when 
calculated fields in a view perform 
poorly.

In reports where there is reuse of one or more 
expensive calculated fields, performance might 
improve when you use temporary tables to cache data.

Avoid using RDP classes when the 
data for the report is in a table 
and the report dataset can use the 
table.

RDP classes provide extra flexibility but also introduce 
complexity and potential performance degradation.

Use an RDP class when the report data needs to be 
calculated and complex business logic is required to 
define the data for a report.

When the report data is accessible in Microsoft 
Dynamics AX tables, then use a query and display 
methods or use a view.

For more details, you may visit http://technet.microsoft.
com/EN-US/library/dn280817.aspx.

 http://technet.microsoft.com/EN-US/library/dn280817.aspx
 http://technet.microsoft.com/EN-US/library/dn280817.aspx


321

Index
A
Adventure Works database

URL  141
aggregation

in reports  36-38
AOT queries

best practices  318
Application Object Tree (AOT)  3
auto design

chart reports  192, 193
creating, from datasets  8-11
image, adding  40
sub-report, creating  170-173

AX
long running reports, handling in  254
VS, connecting to  7

AX 2009
URL  210

AX 2012 R3 datasets
vs. AX 2009 reports  209

AX 2012 report development, best practices
AOT queries  318
contract class  318
controller class  319
data source table  318
general  319, 320
RDP class  318
report design  317
UI Builder class  319
URL  320

AXEnumProvider
using as dataset for parameters,  

in reports  282-284

B
barcodes

displaying, in reports  271-280
generating, in reports  271-280

business logic
about  141
data methods, adding  82-84
debugging  86
unit testing  87, 88
used, for adding datasource  130-133
used, for building parameter lookup  136-141

C
caller

UI, modifying by  72, 73
chart data region

creating  27-29
chart reports

in auto design  192, 193
charts

creating, in reports  24-27
column chart report

creating  186-189
company images

displaying  122, 123
complex queries

used, for fetching data for reports  290-293
configuration-based resolution,  

long running reports
about  256
client-side WCF timeout  256-258
data extension-based timeout  256
report execution timeout  258



322

server-side WCF timeout  256
timeouts, specifying  258, 259
user session timeout  259, 260

context
controls, hiding by  280-282

contract class
best practices  318
unit test class, creating for  302-304
used, for connecting UI Builder class  65

contracts
grouping  225-227

controller
about  53
multiple reports, calling  77, 78
Report controller  54
Report data contract  53
report query, modifying  55, 56
Report UI builder  54
used, for creating reports  88-93
used, for opening reports  50-52

controller class
best practices  319
unit test class, creating for  305-307

controls
grouping, in report dialog  221-223
hiding, by context  280-282
ordering, in report dialog  223

customer summary OLAP report
creating  146-150

D
data

fetching for reports, complex queries  
used  290-293

fetching for reports, maps used  297-299
fetching for reports, views used  294-296
retrieving  8

data methods
adding, in business logic  82, 83
vs. expressions  84

data regions
filters, adding  44-46

data-related issues
about  265
controller issues  266

query-based report  265, 266
RDP-based report  266

datasets
auto design, creating  8-11

datasource
adding, business logic used  130-133
XML feed, using as  133-136

data source table
best practices  318

deployment-related issues  260, 261
design-based resolution, long running reports

about  254, 255
dialog

used, for opening reports  56-58
document map navigation

adding, to reports  46, 47
drill-down actions

creating, in reports  47, 48
drill-up actions

creating, in reports  47, 48
duties

URL  76
dynamic filters  44
dynamic parameter  15

E
e-mail

reports, sending through  267, 268
Enterprise Portal (EP)  282
events

post reporting completion, handling  268-270
expressions

in reports  33-36
URL  35
vs. data method  84

Extended Data Types (EDTs)  207
external datasource

parameter, adding for  145
used, for building reports  141-144

F
filters

adding, to data regions  44-46
financial dimensions

in query reports  236-247



323

G
gauges

in reports  193-196
group view report

creating  117-121

H
headers

adding  122, 123

I
image

adding, in auto design  38-40
inventory dimension

in reports  233-235

L
Language Integrated Query (LINQ)  136
language-specific reports

deploying, to speedup execution  
time  286, 287

layout template
creating  29-33

legacy reporting system  177
line chart

creating  189-192
list control

in reports  196-201
long running reports

configuration-based resolution  256
design-based resolution  254, 255
handling, in AX  254

M
maps

URL  299
used, for fetching data for reports  297-299

map sub-report
designing, SQL Report Builder used  164-169

matrix report
creating  178-183
design  178, 179
multicolumn matrix report, creating  183-186

MDX Query Editor
URL  146

menu item
creating, from report  18-20
of report into privilege, adding up  74-76

metadata
retrieving  8

Microsoft Dynamics AX
URL  3

Microsoft SQL Server Reporting Services 
(SSRS). See  reports

model  53
Model View Controller (MVC) pattern  52
multicolumn matrix report

creating  183-186
Multidimensional Expressions (MDX)  

queries  146
multiple data regions

creating, in reports  24-26
multiple temporary table

with RDP  227-229
multi-value lookup

selecting  229-233

O
Online Analytical Processing (OLAP)

parameter lookup, adding  150-156
table report designing, SQL Report Builder 

used  156-164
Online Transaction Processing (OLTP)  141

P
parameter lookup

adding, for OLAP  150-155
building, business logic used  136-141
Company parameter  156
EndDate parameter  156
main query  156

parameters
about  42
and data source types  43
adding, for external datasource query  145
dynamic filters  44
query parameters  43, 44
system parameter  42
user defined parameters  43



324

PowerShell
for report deployment, URL  17

precision design
creating  104-106
used, for creating sub-report  173-175

print management
used, for adding new report design  284, 285

privileges
URL  76

Q
query

using as data source, in reports  3-7
verifying  8

query-based reports
surrogate keys  218

query parameters  43, 44
query reports

financial dimensions  236-238

R
ranges

adding, from unbound parameters to  
query  66-70

adding, to report  13-15
RDL

about  50
contract validation  216

RDP
about  50, 100
contract validation  216
data contract class  101
debugging  123
existing temp table, using  123-127
multiple temporary table  227-229
precision design, creating  104-106
selecting, for report  102, 103
surrogate keys  218-221
testing  113
UI builder  102

RDP class
best practices  318
unit test class, creating for  307-316
URL  53

RDP class, attributes
SRSReportParameterAttribute  101

SRSReportQueryAttribute  101
RDP data contract

vs. RDL data contract  71
RDP report

advanced RDP report, creating  107-113
creating  96-100
financial dimensions  238-247
testing  103

rectangle control
in reports  196-201

rendering-related issues  262-265
Report Data Provider. See  RDP
Report Definition Language. See  RDL
report design

best practices  317
report dialog

controls, grouping  221
controls, grouping in RDP-based  

reports  225-227
controls, grouping in report model  222, 223
controls, grouping in UI builder  223, 224
controls, ordering  221
lookup adding, UI Builder class used  62-64
turning off  73

Reporting Services extensions
URL  2, 3

report query
modifying, in controller  55, 56

reports
about  1
adding, to role centre  201-204
aggregation  36, 37
AXEnumProvider, using as dataset for  

parameters  282-284
barcodes, displaying  271-280
barcodes, generating  271, 280
building, through external  

datasource  141-144
charts, creating  24-27
cleaning up  128
creating by data fetching, complex  

queries used  290-293
creating by data fetching,  

maps used  297-299
creating by data fetching,  

views used  294-296
creating, controller used  88-93



325

creating, UI Builder class  
used  58-62, 88-93

creating, Warehouse Management query  
used  20-22

creating, with multiple data sources in  
single table  114-116

deploying  15, 16
deployment, location  16, 17
design, best practices  317
designing  287, 288
designing, ways  8
document map navigation, adding  46, 47
drill-down actions, adding  47, 48
drill-up actions, adding  47, 48
existing report, analyzing  210-213
existing report, modifying  210-213
existing report, URL  211
expression  33, 34
formatting  40, 41
gauges  193-196
grouping  11-13
improving  287, 288
inventory dimension  233-236
list controls  196-200
menu item, adding into privilege  74-76
menu item, creating  18-20
model, changes  81, 82
model, debugging  80
multiple data regions, creating  24-27
multiple reports, calling from  

controller  77, 78
multiple reports calling, single controller  

used  78-80
new classes, adding  81, 82
new report design adding, print management 

used  284, 285
opening, controller used  50-52
opening, dialog used  56-58
overview  2
performance, assessing  250-253
pre-processing  127, 128
preview  11
project, URL  212
ranges, adding  13-15
rectangle controls  196-200
saving, to file  266

security, setting up  73, 74
sending, through e-mail  267, 268
surrogate fields  216, 217
troubleshooting, in AX  260
unbounded parameters, adding  41, 42
upgrading, from previous version  206
URL drill, adding through action  84, 85
usage, assessing  250-253
validation, implementing  214-216

reports, upgrading
AX 2012 R3 datasets vs. AX 2009  

reports  209
controller, developing  209
datasource, defining  206
design, mapping  207, 208
fields, mapping  207
from previous version  206
parameters, mapping  207
UI events, handling  209

role centre
reports, adding  201-204

roles
URL  76

S
security

for reports, setting up  73, 74
single controller

used, for calling multiple reports  
simultaneously  78-80

SQL Report Builder
used, for designing map sub-report  164-170
used, for designing OLAP table  

report  156-164
SSRS report log viewer

URL  250
SSRS reports. See  reports
sub-report

creating, in auto design  170-173
creating, precision design used  173-175

surrogate fields
in reports  216, 217
surrogate keys, in query-based reports  218
surrogate keys, in RDP  218-221

system parameter  42



326

T
TempDB tables

URL  96
templates  11
temporary tables 

existing temp table, using in RDP  123-127
ternary operator (?)

URL  56
troubleshooting, reports

about  260
data-related issues  265
deployment-related issues  260
rendering-related issues  262

U
UI

modifying, by caller  72, 73
UI Builder class

best practices  319
connecting, contract class used  65
grouping  223, 224
 used, for adding lookup on  

report dialog  62-64
used, for creating reports  58-93

unbound parameters
to query, ranges adding from  66-70

unit test class
creating, for contract class  302-304
creating, for controller class  305-307

creating, for RDP class  307-316
URL drill

adding, through action in reports  84, 85
user defined parameters

bounded parameters  43
unbounded parameters  43

V
validation

implementing, in reports  214-216
views

about  54
used, for fetching data for reports  294-296

Visual Studio Tools
URL  2

VS
connecting, to AX  7

W
WCF

in SSRS reports. URL  128

X
XML feed

Spin-off recipes  136
URL  133, 137
using, as datasource  133-136



Thank you for buying  
Microsoft Dynamics AX 2012 R3  

Reporting Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL 
Management, in April 2004, and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution-based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our unique 
business model allows us to bring you more focused information, giving you more of what you need to 
know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge books 
for communities of developers, administrators, and newbies alike. For more information, please visit our 
website at www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order  
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books 
published on enterprise software – software created by major vendors, including (but not limited to) IBM, 
Microsoft, and Oracle, often for use in other corporations. Its titles will offer information relevant to a 
range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent  
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it 
first before writing a formal book proposal, then please contact us; one of our commissioning editors will 
get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing experience, 
our experienced editors can help you develop a writing career, or simply get some additional reward for 
your expertise.

www.PacktPub.com


Microsoft Dynamics AX 2012 
R2 Services
ISBN: 978-1-78217-672-5             Paperback: 264 pages

Harness the power of Microsoft Dynamics AX 2012 R2  
to create and use your own services effectively

1. Learn about the Dynamics AX 2012  
service architecture.

2. Create your own services using wizards  
or X++ code.

3. Deploy your services in a variety of ways  
using High Availability.

Microsoft Dynamics AX 2012 
Development Cookbook
ISBN: 978-1-84968-464-4            Paperback: 372 pages

Solve real-world Microsoft Dynamics AX development 
problems with over 80 practical recipes

1. Develop powerful, successful Dynamics AX 
projects with efficient X++ code with this  
book and eBook.

2. Proven recipes that can be reused in  
numerous successful Dynamics AX projects.

3. Covers general ledger, accounts payable,  
accounts receivable, project modules and  
general functionality of Dynamics AX.

Please check www.PacktPub.com for information on our titles



Implementing Microsoft 
Dynamics AX 2012 with  
Sure Step 2012
ISBN: 978-1-84968-704-1            Paperback: 234 pages

Get the grips with AX 2012 and learn a whole host of 
tips and tricks to ensure project success

1. Get the confidence to implement AX 2012 projects 
effectively using the Sure Step 2012 Methodology.

2. Packed with practical real-world examples  
as well as helpful diagrams and images that  
make learning easier for you.

3. Dive deep into AX 2012 to learn key technical 
concepts to implement and manage a project.

Microsoft Dynamics AX 2012 
R2 Administration Cookbook
ISBN: 978-1-84968-806-2            Paperback: 378 pages

Over 90 hands-on recipes to efficiently administer and 
maintain your Dynamics AX 2012 implementation

1. Task-based examples for application and  
third-party interactions through the AIF.

2. Step-by-step instructions for performing user  
and security management operations.

3. Detailed instructions for performance and 
troubleshooting AX 2012.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding and Creating SimpleSSRS Reports
	Introduction
	Using a query as a data source in a report
	Creating auto designs from datasets
	Grouping in reports
	Adding ranges to the report
	Deploying a report
	Creating a menu item for a report
	Creating a report using a query in Warehouse Management

	Chapter 2: Enhancing Your Report – Visualization and Interaction
	Introduction
	Creating multiple data regions and charts in reports
	Creating a chart data region
	Creating a new layout template
	Expression in reports
	Aggregation in reports
	Adding an image in auto design
	Formatting reports
	Adding unbounded parameters in reports
	Adding filters to data regions
	Adding document map navigation to reports
	Creating drill-up/drill-down actions in reports

	Chapter 3: Report Programming Model
	Introduction
	Opening a report through a controller
	Modifying the report query in controller
	Opening a report with a dialog
	Creating a report using the UI Builder class
	Adding a lookup on a report dialog using the UI builder class
	Connecting the UI builder class with a contract class
	Adding ranges from unbound parameters to a query
	Modifying the UI by caller
	Turning off a report dialog
	Setting up security for reports
	Adding up the report menu item into privilege
	Calling multiple reports from a controller
	Calling multiple reports simultaneously using a single controller
	Debugging a report model
	Adding data methods in business logic
	Adding a URL drill through action in reports
	Debugging business logic
	Unit testing business logic
	Creating a report using a controller and the UI Builder class

	Chapter 4: Report Programming Model – RDP
	Introduction
	Creating a simple RDP report
	Testing the RDP report
	Creating a simple precision design
	Creating an advanced RDP report
	Creating a report with multiple data sources in a single table
	Creating a group view report
	Adding headers and displaying company images
	Using an existing temp table in RDP
	Pre-processing reports

	Chapter 5: Integrating External Datasources
	Introduction
	Adding a datasource through business logic
	Using an XML feed as a datasource
	Building a parameter lookup using business logic
	Building a report through an external datasource
	Adding a parameter for an external datasource query
	Creating a customer summary OLAP report
	Adding a parameter lookup for OLAP
	Designing an OLAP table report with SQL Report Builder
	Designing a map sub-report with SQL Report Builder
	Creating a sub-report in auto design
	Creating a sub-report in precision design

	Chapter 6: Beyond Tabular Reports
	Introduction
	Creating a matrix report
	Creating a multicolumn matrix report
	Creating a column chart report
	Creating a line chart
	Gauges in reports
	List and rectangle controls in reports
	Adding reports to the role center

	Chapter 7: Upgrading and Analyzing Reports
	Introduction
	Upgrading a report from its previous version
	Analyzing and modifying an existing report
	Implementing validation in reports
	Surrogate fields in reports
	Grouping and ordering controls in the report dialog
	RDP with multiple temporary tables
	Multi-value lookup
	Inventory dimensions in reports
	Financial dimensions in query reports
	Financial dimensions in RDP reports

	Chapter 8: Troubleshooting and Other Advanced Recipes
	Introduction
	Assessing report performance and usage
	Handling long-running reports in AX
	Troubleshooting reports in AX
	Auto e-mail, save as file tasks in reports
	Handling events after report completion
	Generating and displaying barcodes in reports
	Hiding controls by context
	Using AXEnumProvider as the dataset for parameters in reports 
	Adding a new report design to print management
	Deploying language-specific reports to speed up execution time
	Improving the functionality of reports

	Chapter 9: Developing Reports with Complex Databases
	Introduction
	Creating reports by fetching the data using complex queries
	Creating reports by fetching the data using views
	Creating reports by fetching the data using maps

	Chapter 10: Unit Test Class and Best Practices Used for Reports
	Introduction
	Creating a unit test class for a contract class
	Creating a unit test class for a controller class
	Creating a unit test class for an RDP class
	Best practices for AX 2012 report development

	Index

