
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics
NAV 7 Programming
Cookbook

Learn to customize, integrate and administer NAV 7 using
practical, hands-on recipes

Rakesh Raul

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 7 Programming
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-910-6

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Rakesh Raul

Reviewers
Danilo Capuano

Neil Murray

Giancarlo Zavala

Acquisition Editor
James Jones

Lead Technical Editor
Anila Vincent

Technical Editors
Veena Pagare

Jinesh Kampani

Iram Malik

Sandeep Madnaik

Shashank Desai

Copy Editors
Tanvi Gaitonde

Sayanee Mukherjee

Kirti Pai

Alfida Paiva

Adhiti Shetty

Project Coordinator
Navu Dhillon

Proofreader
Bridget Braund

Indexer
Monica Ajmera

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rakesh Raul is from a small town in India, with a vision of doing something big in
programming. He completed his first diploma in programming at the age of 16, and
continued higher studies in computer software development.

He started his programming career with a small software development company in
Mumbai. After 2 years of development in Visual Basic, he was introduced to Microsoft
Dynamics NAV Version 3. For the first 2-3 years he worked as a Microsoft Dynamics NAV
developer and at the same time he learned all the areas of the product and earned his first
Microsoft Certification-Business Solutions Professional. He continues to stay updated with
new releases of the product and is certified in multiple areas for versions 4.0, 5.0, 2009,
and 2013. Apart from Microsoft Dynamics NAV, he also has good knowledge of Microsoft SQL
Server and Business Intelligence.

His seven-year journey with Microsoft Dynamics NAV includes more than 30 implementations;
one horizontal and two vertical solution designs and development.

Currently, he works in Tectura, India, as a Senior Technical Consultant. Tectura is a worldwide
provider of business consulting services delivering innovative solutions.

I would like to thank my wife, Ashwini, for supporting and always standing by
my side in good and bad days.

I would like to take this opportunity to thank all the mentors I was blessed
with, who unconditionally shared their knowledge and inspired me.

Mibuso and all Microsoft Dynamics NAV related blogs are a great boon
for all NAV consultants. I would like to thank all the contributors of these
great sites.

Love you Aabha, my cute little princess!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Danilo Capuano is a Software Engineer with over seven years of industry experience. He
lives in Naples, Italy, where he earned a degree in computer science. He currently works as a
developer on Microsoft Dynamics NAV in an IT company where he also completed the MCTS
certification. You can visit his website: www.capuanodanilo.com or his Twitter account:
@capuanodanilo.

Neil Murray began his development career as a C++ and Visual Basic developer, qualifying
as a Microsoft Certified Solution Developer on Visual Basic 6.0 in 1999. He has been a
Microsoft Dynamics NAV developer since 2001, providing consulting, customization, and
support to customers across sub-Saharan Africa. He currently works for a large multi-national
IT organization, providing technical and business process support to dairy, manufacturing, and
retail clients.

I would like to thank my wife, Justine, and lovely daughters, Ember and
Danica, for their love and understanding while I have dedicated precious
family time to conduct the technical review of this book.

www.allitebooks.com

http://www.allitebooks.org

Giancarlo Zavala is an all-round expert in Microsoft Dynamics NAV technologies
specializing in Application Analysis, Design and Development, and ERP implementations.
He began as a network administrator in 1999 and eventually transitioned into application
management. He also has a strong background with more than 15 years on Microsoft Server
and networking technologies, Database Administration and Server Infrastructure deployment.

He has worked on a wide range of implementations and development projects in his career;
including working as lead technical and functional consulting roles, as well as project
management roles. He earned his first Microsoft Certification in SQL Database Administration
in 2003, and later studied the Microsoft Dynamics ERP and CRM technologies.

He has now been managing business applications for over 10 years. He has built a unique set of
skills working on full end-to-end implementations and application rollouts in various industries.
He has helped various mid- to large-scale organizations successfully implement Microsoft
Dynamics NAV in multiple countries around the globe, including Europe and Latin America.

Recently, he spent a couple of years in Houston working on the Oil and Energy industry
with one of the largest NAV application setups around the globe. He worked on dozens of
implementations as lead consultant, getting extensive knowledge of methodologies, business
workflows, and best operational practices including Manufacturing, Distribution, Servicing,
Warehouse Management, Intercompany Operations, Cost Accounting, and Financial Reporting
amongst others. During this time, he also transitioned into design and development for
Microsoft Dynamics NAV. He has worked with many of Microsoft's top partners and other
well-known software vendors on multiple projects.

His passion is to always learn new skills and technologies related to Microsoft Dynamics, to
create business specific solutions and to pass on his knowledge by training companies and
coaching other colleagues. He enjoys building and working with a good team and taking on
challenging projects with mission critical operations.

Currently, he lives in Miami and works at Tectura, U.S. as a Senior Consultant. He works on
leading implementations, doing system analysis and in program development. Tectura is one
of Microsoft's leading worldwide gold partners, providing consulting services and innovative
solutions for small to large businesses.

Outside of work he enjoys travelling, surfing, and painting.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

I want to thank everyone who helped me so that I could have the time and opportunity to work
on this book. I've taken time away from the people I love in order to be able to accomplish this
task. I wouldn't have been successful without the support from my family and friends who
have always been there for me; and from my colleagues who have given me endless help and
motivation. A very special thank you to my loving wife, Carolina, for her unconditional support
on this journey. While I spent many nights working away from my loved ones, she took care of
our two beautiful daughters on her own and made it all possible. I would be nowhere without
her and I can only hope that in time I can repay her for the time I took away from us.

I would like to give my gratitude to Rakesh Raul (the author of this book), and Anila Vincent
(Lead Technical Editor) for giving me the opportunity to work on this cookbook project.

Big thanks to my grandfather who gave me strong roots and good moral values to live a
positive life filled with love. Much love to my mom and dad who I wish could be here today to
see this. Big thanks to my Brother and Tia Magaly for believing in me always and showing me
the right path. Thanks again to all my friends and family who have been with us for so many
years and to those who have supported me throughout the review of this book. Thanks to my
friend, Chuck Luciano, for always giving me moral support; thanks to Jan Verleur, John Byrne,
David Diaz, Steve Bloch, Stacy Racca, Sowmya Sridhar, Brett Boullion, Lurleen Cloud, Kim
Parker, Craig Sanders, and Elizabeth Peña for teaching me, keeping faith in my abilities, and
giving me some of the most important opportunities in the early years of my career.

For every night that I have not been able to kiss you goodnight, this work is dedicated to the
two most beautiful and brightest lights in my world, Sofia and Valentina.

Live, Learn, Create, Teach, and Love.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: String, Dates, and Other Data Types	 7

Introduction	 7
Retrieving the system date and time	 8
Retrieving the work date	 9
Determining the day, month, and year from a given date	 11
Using the date formula to calculate dates	 13
Converting a value to a formatted string	 15
Creating an array	 17
Creating an option variable	 19
Converting a string to another data type	 21
Manipulating string contents	 23

Chapter 2: General Development	 27
Introduction	 27
Displaying the progress bar and data in process	 28
Repeating code using a loop	 30
Checking for conditions using an IF statement	 32
Using the CASE statement to test multiple conditions	 34
Rounding decimal values	 36
Creating functions	 37
Passing parameters by reference	 39
Referencing dynamic tables and fields	 41
Using recursion	 44

Chapter 3: Working with Tables, Records, and Queries	 47
Introduction	 48
Creating a table	 49
Adding a key to a table	 51
Retrieving data using the FIND and GET statements	 52

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Advanced filtering	 55
Adding a FlowField	 57
Creating a SumIndexField	 59
Retrieving data from FlowField and SumIndexField	 61
Using a temporary table	 63
Retrieving data from other companies	 65
Using a query to extract data	 66
Creating a query to link three tables	 69
Working with queries in C/AL	 74

Chapter 4: Designing Pages	 77
Introduction	 77
Creating a page using a wizard	 79
Using multiple options to run the page	 84
Applying filters on the lookup page	 86
Updating the subform page from a parent page	 88
Creating a FactBox page	 93
Creating a Queue page	 95
Creating a Role Center page	 99
Creating a wizard page	 102
Displaying a .NET add-in on a page	 107
Adding a chart to the page	 112

Chapter 5: Report Design	 117
Introduction	 117
Creating an RDLC report	 119
Using multiple options to run a report	 123
Adding custom filters to the Request Page	 124
Setting filters when report is loaded	 128
Creating reports to process data	 130
Creating a link from report to page	 132
Creating a link from report to report	 135
Adding totals on decimal field	 136
Adding interactive sorting on reports	 138
Creating a matrix report	 140

Chapter 6: Diagnosing Code Problems	 147
Introduction	 147
Using the debugger	 147
Setting breakpoints	 154
Handling runtime errors	 158
Using About This Page and About This Report	 161
Finding errors while using NAS	 164

iii

Table of Contents

Chapter 7: Roles and Security	 167
Introduction	 167
Assigning a role to a user	 168
Creating a new role	 170
Using the FILTERGROUP function	 172
Using security filters	 174
Applying security filter modes	 176
Field-level security	 177
Assigning permission to use the About This Page function	 182
Killing a user session	 185

Chapter 8: Leveraging Microsoft Office	 187
Introduction	 187
Sending data to Microsoft Word	 188
Managing stylesheets	 190
Sending an e-mail from NAV through SMTP	 191
Exporting data using the Excel Buffer	 193
Creating data connection from Excel to NAV	 197
Showing data in Excel using PowerPivot	 199
Creating an InfoPath form for the NAV data	 204
Creating charts with Visio	 208

Chapter 9: OS Interaction	 213
Introduction	 213
Using HYPERLINK to open external files	 214
Working with environmental variables	 216
Using SHELL to run external applications	 220
Browsing for a file	 221
Browsing for a folder	 223
Checking file and folder access permissions	 225
Querying the registry	 228
Zipping folders and files within NAV	 230

Chapter 10: Integration	 233
Introduction	 233
Sharing information through XMLports	 234
Writing to and reading from a file using the C/AL code	 238
Creating web services	 239
Consuming web services	 241
Sending data through FTP	 244
Printing a report in a PDF, Excel, and Word format	 246
Writing your own automation using C#	 247
Using ADO to access outside data	 249

iv

Table of Contents

Chapter 11: Working with the SQL Server	 253
Introduction	 253
Creating a basic SQL query	 254
Understanding SIFT	 256
Using the SQL profiler	 259
Displaying data from a SQL view in NAV	 262
Identifying Blocked and Blocking sessions from SQL	 264
Setting up a backup plan	 266
Maintaining the transaction logfiles	 269

Chapter 12: NAV Server Administration	 271
Introduction	 271
Creating a NAV Server Instance	 273
Configuring NAS to run Job Queue	 276
Creating a user on NAV	 278
Changing the NAV license	 281
Creating a new database	 284
Testing the NAV database	 286

Index	 289

Preface
Microsoft Dynamics NAV 7 is a product of the Microsoft Dynamics family. It's a business
management solution that helps simplify and streamline business processes, such as
finance, manufacturing, customer relationship management, supply chains, analytics,
and electronic commerce for small and medium-sized enterprises. Microsoft Dynamics
partners can have full access to the source code, which is very easy to customize. Learning
NAV programming in NAV 7 will give a full inside view of the ERP system and open doors to
many other exciting areas.

The Microsoft Dynamics NAV 7 Programming Cookbook will take you through interesting
topics that span a wide range of areas, for example, integrating the NAV system with other
software applications, such as Microsoft Office and creating reports to present information
from multiple areas of the system. You will not only learn the basics of NAV programming,
but you will also be exposed to the technologies that surround the NAV system, such as .NET
programming, SQL Server, and NAV system administration.

The first half of the cookbook will help programmers using NAV for the first time by walking
them through the building blocks of writing code and creating objects, such as tables, pages,
and reports.

The second half focuses on using the technologies surrounding NAV to build better solutions
and administration of the NAV service tier. You will learn how to write .NET code that works
with the NAV system and how to integrate the system with other software applications, such
as Microsoft Office or even custom programs.

Preface

2

What this book covers
Chapter 1, String, Dates, and Other Data Types, describes the method of working with the
most common data types. You will learn how to use the functions related to data types. Every
recipe includes actual NAV code with a brief explanation about code that will make the data
type learning process very interesting.

Chapter 2, General Development, covers the C/AL development structure that includes loops,
conditional statements, functions, and so on. You will find some recipes describing C/AL
specific commands and functions.

Chapter 3, Working with Tables, Records, and Queries, focuses on the database structure and
data retrieval. You will learn how to design a table using filters to retrieve specific data. This
chapter will also discuss new object type Query.

Chapter 4, Designing Pages, focuses on data presentation using pages. You will learn how to
develop different types of pages including Role Center, Queue, wizard, and many more.

Chapter 5, Report Design, explains how to design an RDLC report. You will find recipes
describing the process of adding a request page, setting filters, linking two reports and
many more interesting topics related to reports.

Chapter 6, Diagnosing Code Problems, explains how to use built-in tools to debug code
problems. You will also learn about debugging the NAV application server.

Chapter 7, Roles and Security, focuses on NAV user security, which includes creating roles
and assigning permissions to a role. It will also explain about security filters and filter groups.

Chapter 8, Leveraging Microsoft Office, describes different methods to integrate with the
Microsoft Office suite, which includes Word, Excel, InfoPath, and Visio.

Chapter 9, OS Interaction, focuses on different ways to integrate with the Windows
operating systems. You will learn how to search the filesystem as well as how to query
the system registry.

Chapter 10, Integration, describes different ways of integrating NAV with other applications.
You will learn how to exchange data using flat file and XMLport. You will find a recipe
describing how to use ADO to access data stored in other databases.

Chapter 11, Working with the SQL Server, provides an introduction to the SQL Server
environment. You will learn about writing queries, configuring automated backups,
and maintaining SQL logfiles. There is a recipe that will help you to understand the
Sum Index Field Technology.

Chapter 12, NAV Server Administration, will help you to learn and understand the NAV service
tier. It will also explain about creating a user and maintaining a NAV license.

Preface

3

What you need for this book
The following software are required for the recipes in this book:

ff Microsoft Dynamics NAV 7 with developer license

ff Microsoft SQL Server 2008 R2

ff Microsoft Visual Studio 2010

ff Microsoft Office 2010

Who this book is for
If you are an entry-level NAV developer, then the first half of the book is designed primarily
for you. You may or may not have any experience in programming. It focuses on the basics
of NAV programming. It would be best if you have already gone through a brief introduction
to the NAV client.

If you are a mid-level NAV developer, you will find the second half more useful. These chapters
explain how to think outside the NAV box when building solutions. Towards the end of the
book, we will learn NAV server tier configuration.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The sp_who command returns a list of all
connections to the server by querying the sys.sysprocesses system table."

A block of code is set as follows:

Customer.RESET;
IF Customer.FINDSET THEN
 REPEAT
 CustCount:=CustCount+1;
 UNTIL Customer.NEXT=0;
 MESSAGE('There are %1 customers in the database',
 CustCount);

Any command-line input or output is written as follows:

sn.exe -T "C:\Program Files (x86)\Microsoft Dynamics NAV\70\

RoleTailored Client\Add-ins\NAV_RSS.dll"

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "From the Tools menu in the
NAV client select Debugger | Debug Session (Shift + Ctrl + F11)".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
String, Dates, and Other

Data Types

In this chapter, we will cover the following recipes:

ff Retrieving the system date and time

ff Retrieving the work date

ff Determining the day, month, and year from a given date

ff Using the date formula to calculate dates

ff Converting a value to a formatted string

ff Creating an array

ff Creating an option variable

ff Converting a string to another data type

ff Manipulating string contents

Introduction
Data types are the base component in C/AL (Client/server Application Language)
programming. Most of the data types are equivalent to the data types used in other
programming language. Boolean, integer, decimal, dates, and strings are the most
used data types in C/AL programming.

As developers, our job is to build a business tool that will manipulate the data input by users
and make sure that data stored in tables is meaningful. Most of this data will be of the
decimal, string, and date data types. NAV is, after all, a financial system at heart. At its most
basic level, it cares about three things: "How much money?" (decimal), "What was it used for?"
(string), and "When was it used?" (date).

www.allitebooks.com

http://www.allitebooks.org

String, Dates, and Other Data Types

8

The recipes in this chapter are very basic, but they will help you to understand the basics of
C/AL coding. All recipes are accompanied by actual C/AL code from NAV objects.

Retrieving the system date and time
Most times, we need to capture the system date and time of users' actions on NAV. This recipe
will illustrate how to get the system date and time.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Now add the following code into the OnRun trigger of the codeunit:
MESSAGE('Todays Date: %1\Current Time: %2', TODAY, TIME);

3.	 To complete the development of the codeunit, save and close it.

4.	 On executing the codeunit, you should see a window similar to the one in the
following screenshot:

How it works...
The TODAY keyword returns the date and the TIME keyword returns the time from the NAV
Server system.

In the case of the older version of the NAV client—specifically the classic client—the date and
time are taken from the client computer, which allows users to manipulate the system clock
as per their personal requirement.

You can also retrieve the system date and time all at once using the CURRENTDATETIME
function. The date and time can be extracted using the DT2DATE and DT2TIME functions
respectively.

For a complete list of date functions, run a search for the date
function and the time function in the Developer and IT Pro Help
option in the Help menu of Microsoft NAV Development Environment

Chapter 1

9

There's more...
The change log is a base NAV module that allows you to track changes to specific fields in
tables. The following code can be found in the 423, Change Log Management codeunit
in the InsertLogEntry() method:

ChangeLogEntry.INIT;
ChangeLogEntry."Date and Time" := CURRENTDATETIME;
ChangeLogEntry.Time := DT2TIME(ChangeLogEntry."Date and Time");

Here, instead of using the WORKDATE function, we use the CURRENTDATETIME function
and then extract the time using the DT2TIME function. The system designers can just
do the following setup:

ChangeLogEntry.Date := TODAY;
ChangeLogEntry.Time := TIME;

The advantage of using CURRENTDATETIME over TODAY and TIME is minimal.
CURRENTDATETIME makes one request to the system while the second method makes two.
It is possible that another operation or thread on the client machine could take over between
retrieving the date and time from the computer; however, this is very unlikely. The operations
could also take place right before and after midnight, generating some very strange data. The
requirements for your modification will determine which method is best suited, but generally
CURRENTDATETIME is the correct method to use.

See also
ff Retrieving the work date

ff Determining the day, month, and year from a given date

ff Converting a value to a formatted string

Retrieving the work date
To perform tasks such as completing transactions for a date that is not the current date, you
may have to temporarily change the work date. This recipe will show you how to determine
what that actual work date is as well as when and where you should use it.

Getting ready
1.	 Navigate to Application Menu | Set Work Date or select the date in the status bar at

the bottom of Microsoft Dynamics NAV.

2.	 Input the work date in the Work Date field or select it from the calendar.

String, Dates, and Other Data Types

10

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Then add the following code into the OnRun trigger of the codeunit:
MESSAGE('Work Date: %1\Todays Date: %2\Current Time: %3',WORKDATE,
TODAY, TIME);

3.	 To complete the task, save and close the codeunit.

4.	 On executing the codeunit, you should see a window similar to the following screenshot:

How it works...
To understand WORKDATE, we have used two more keywords in this recipe. The work date is a
date internal to the NAV system. This date is returned using the WORKDATE keyword. It can be
changed at any time by the user. The next date is TODAY; it's a keyword to retrieve the present
date that provides the date from the system. In the end, we used the TIME keyword, which
provides current time information from the system clock.

It is important to understand the difference between the NAV work
date and the computer system date; they should be used in specific
circumstances. When performing general work in the system, you should
almost always use the WORKDATE keyword. In cases where you need to
log information and the exact date or time when an action occurred, you
should use TODAY or TIME, or CURRENTDATETIME.

Chapter 1

11

There's more...
The following code can be found in the 38, Purchase Header table, in the
UpdateCurrencyFactor() method:

IF "Posting Date" <> 0D THEN
CurrencyDate := "Posting Date"
ELSE
CurrencyDate := WORKDATE;

Looking at this code snippet, we can see that if a user has not provided any specific posting
date, the system will assign the value WORKDATE as the default value for the posting date.

See also
ff Determining the day, month, and year from a given date

ff Converting a value to a formatted string

ff The Checking for conditions using an IF statement recipe in Chapter 2,
General Development

ff The Using the CASE statement to test multiple conditions recipe in Chapter 2,
General Development

Determining the day, month, and year from
a given date

Sometimes it is necessary to retrieve only part of a date. NAV has built-in functions to do just
that. We will show you how to use them in this recipe.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Then add the following global variables by navigating to View | C/AL Globals
(Alt + V + B):

Name Type
Day Integer
Month Integer
Year Integer

String, Dates, and Other Data Types

12

3.	 Write the following code into the OnRun trigger of the codeunit:
Day := DATE2DMY(TODAY, 1);
Month := DATE2DMY(TODAY, 2);
Year := DATE2DMY(TODAY, 3);
MESSAGE('Day: %1\Month: %2\Year: %3', Day, Month, Year);

4.	 To complete the task, save and close the codeunit.

5.	 On executing the codeunit, you should see a window similar to the following screenshot:

How it works...
The Date2DMY function is a basic feature of NAV. The first parameter is a date variable.
This parameter can be retrieved from the system using TODAY or WORKDATE. Additionally,
a hardcoded date such as 01312010D or a field from a table, such as Sales Header or
Order Date can be used as a first parameter. The second parameter is an integer that tells
the function which part of the date to return. This number can be 1, 2, or 3, and corresponds
to the day, month, and year (DMY) respectively.

NAV has a similar function called Date2DWY. It will return the week of
the year instead of the month if 2 is passed as the second parameter.

There's more...
The following code can be found in the 485, Business Chart Buffer table in the
UpdateCurrencyFactor() method of the GetNumberOfYears() function:

EXIT(DATE2DMY(ToDate,3) - DATE2DMY(FromDate,3));

This function has two parameters of type date and it returns the value in integer. The basic
usage of this function is to calculate the duration between two dates in terms of years.

Chapter 1

13

See also
ff Retrieving the system date and time

ff Retrieving the work date

ff The Repeating code using a loop recipe in Chapter 2, General Development

ff The Checking for conditions using an IF statement recipe in Chapter 2,
General Development

Using the date formula to calculate dates
The date formula allows us to determine a new date based on a reference date. This recipe
will show you how to use the built-in CALCDATE NAV function for date calculations.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Add the following global variable by navigating to View | C/AL Globals (Alt + V + B):

Name Type
CalculatedDate Date

3.	 Write the following code into the OnRun trigger of the codeunit:
CalculatedDate := CALCDATE('CM+1D', 010110D);
MESSAGE('Calculated Date: %1', CalculatedDate);

4.	 Now save and close the codeunit.

5.	 On executing the codeunit, you should see a window similar to the following screenshot:

String, Dates, and Other Data Types

14

How it works...
The CALCDATE() function takes in two parameters: a calculation formula and a starting date.
The calculation formula is a string that tells the function how to calculate the new date. The
second parameter tells the function which date it should start with. A new date is returned by
this function, so the value must be assigned to a variable.

The following units can be used in the calculation formula:

Unit Description
D Day
WD Weekday
W Week
M Month
Q Quarter
Y Year

These units may be different depending on what language version NAV is running under.

You have two options to place the number before the unit. It can either be a standard number
ranging between 1 and 9 or the letter C, which stands for current. These units can be added
and subtracted to determine a new date based on any starting date.

Calculation formulas can become very complex. The best way to fully understand them
is to write your own formulas to see the results. Start out with basic formulas such as
1M + 2W - 1D and move on to more complex ones, such as –CY + 2Q - 1W.

There's more...
The following code is part of the CalcNumberOfPeriods() function of the 485, Business
Chart Buffer table:

"Period Length"::Week:
 NumberOfPeriods := (CALCDATE('<-CW>',ToDate)-
 CALCDATE('<CW>',FromDate)) DIV 7;

The preceding code snippet will return the difference between two dates in terms of weeks.
<-CW> will provide a week start date of ToDate whereas <CW> will provide a week end day
of FromDate. The difference between the calculated days will be divided by 7 to get the total
number of weeks.

For more details on CALCDATE, visit the following URL:

http://msdn.microsoft.com/en-us/library/dd301368(v=nav.70).aspx

Chapter 1

15

See also
ff Retrieving the system date and time

ff Retrieving the work date

ff Determining the day, month, and year from a given date

ff The Checking for conditions using an IF statement recipe in Chapter 2,
General Development

Converting a value to a formatted string
There will be many occasions when you will need to display information in a certain way or
multiple variable types on a single line. The FORMAT function will help you change almost
any data type into a string that can be manipulated in any way you see fit.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Then add the following global variable:

Name Type Length
FormattedDate Text 30

3.	 Now write the following code into the OnRun trigger of the codeunit:
FormattedDate := FORMAT(TODAY, 0, '<Month Text> <Day,2>,<Year4>');
MESSAGE('Today is %1', FormattedDate);

4.	 To complete the task, save and close the codeunit.

5.	 On executing the codeunit, you should see a window similar to the following screenshot:

String, Dates, and Other Data Types

16

How it works...
The FORMAT function takes one to three parameters. The first parameter is required
and can be of almost any type: date, time, integer, decimal, and so on. This parameter
is returned as a string.

The second parameter is the length of the string to be returned. The default, zero, means
that the entire string will be returned, a positive number tells the function to return a string
of exactly that length, and a negative number returns a string not larger than that length.

There are two options for the third, and final, parameter. One is a number, representing
a predefined format you want to use for the string, and the other is a literal string. In the
example, we used the actual format string. The text contained in the angular brackets (< >)
will be parsed and replaced with the data in the first parameter.

There are many predefined formats for dates. Run a search for Format
Property in the Developer and IT Pro Help option in the Help menu of
Microsoft NAV Development Environment or visit the following URL:
http://msdn.microsoft.com/en-us/library/
dd301059(v=nav.70).aspx

There's more...
The following code can be found on the OnValidate() trigger of the Starting Date field
from the 50, Accounting Period table:

Name := FORMAT("Starting Date",0,Text000);

In the preceding code, Text000 is a text constant and carries the <Month Text> value. This
code will return month of "Starting Date" in text format.

See also
ff Retrieving the system date and time
ff Retrieving the work date
ff Determining the day, month, and year from a given date
ff Converting a string to another data type
ff The Checking for conditions using an IF statement recipe in Chapter 2,

General Development
ff The Advanced filtering recipe in Chapter 3, Working with Tables, Records, and Queries
ff The Retrieving data using the FIND and GET statements recipe in Chapter 3, Working

with Tables, Records, and Queries

Chapter 1

17

Creating an array
Creating multiple variables to store related information can be time consuming. It leads to
more code and more work. Using an array to store related and similar types of information
can speed up development and lead to much more manageable code. This recipe will show
you how to create and access array elements.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Add the following global variables by navigating to View | C/AL Globals (Alt + V + B):

Name Type
i Integer
IntArray Integer

3.	 Now, with the cursor on the IntArray variable, navigate to View | Properties
(Shift + F4).

4.	 In the Property window, set the following property:

Property Value
Dimensions 10

5.	 Write the following code into the OnRun trigger of the codeunit:
FOR i := 1 TO ARRAYLEN(IntArray) DO BEGIN
 IntArray[i] := i;
 MESSAGE('IntArray[%1] = %2', i, IntArray[i]);
END;

6.	 To complete the task, save and close the codeunit.

7.	 On executing the codeunit, you should see a window similar to the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

String, Dates, and Other Data Types

18

How it works...
An array is a single variable that holds multiple values. The values are accessed using an
integer index. The index is passed within square brackets ([]).

NAV provides several functions to work with arrays. For instance, ARRAYLEN
returns the number of dimensions of the array and COPYARRAY will copy
all of the values from one array into a new array variable. You can find a
complete list of the array functions in the Developer and IT Pro Help option
in the Help menu of Microsoft NAV Development Environment.

There's more...
Open the 365, Format Address codeunit. Notice that the first function, FormatAddr, has
a parameter that is an array. This is the basic function that all of the address formats use. It is
rather long, so we will discuss only a few parts of it here.

This first section determines how the address should be presented based on the country of
the user. Variables are initialized depending on which line of the address should carry certain
information. These variables will be the indexes of our array.

CASE Country."Contact Address Format" OF
 Country."Contact Address Format"::First:
 BEGIN
 NameLineNo := 2;
 Name2LineNo := 3;
 ContLineNo := 1;
 AddrLineNo := 4;
 Addr2LineNo := 5;
 PostCodeCityLineNo := 6;
 CountyLineNo := 7;
 CountryLineNo := 8;
 END;

Then we will fill in the array values in the following manner:

AddrArray[NameLineNo] := Name;
AddrArray[Name2LineNo] := Name2;
AddrArray[AddrLineNo] := Addr;
AddrArray[Addr2LineNo] := Addr2;

Chapter 1

19

Scroll down and take a look at all of the other functions. You'll see that they all take in an array
as the first parameter. It is always a text array of length 90 with eight dimensions. These are the
functions you will call when you want to format an address. To use this codeunit correctly, we
will need to create an empty array with the specifications listed before and pass it to the correct
function. Our array will be populated with the appropriately formatted address data.

See also
ff Manipulating string contents

ff The Using the CASE statement to test multiple conditions recipe in Chapter 2,
General Development

Creating an option variable
If you need to force the user to select a value from a predefined list, an option is the way to
go. This recipe explains how to create an Option variable and access each of its values.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Then add the following global variable:

Name Type
ColorOption Option

3.	 With the cursor on the ColorOption variable, navigate to View | Properties or
(Shift + F4).

4.	 In the Property window, set the following property:

Property Value
OptionString None,Red,Green,Blue

5.	 Now write the following code into the OnRun trigger of the codeunit:
ColorOption := ColorOption::Green;
CASE ColorOption OF
 ColorOption::None: MESSAGE('No Color Selected');
 ColorOption::Red: MESSAGE('Red');
 ColorOption::Green: MESSAGE('Green');
 ColorOption::Blue: MESSAGE('Blue');
END;

6.	 Save and close the codeunit.

String, Dates, and Other Data Types

20

7.	 On executing the codeunit, you should see a window similar to the one shown in the
following screenshot:

How it works...
An Option is a field or variable that stores one value from a selectable list. In a form, this
list will appear as a dropdown from which the user can select a value. The list of options is
stored as a comma-separated string in the OptionString property. If we query such stored
values from a SQL database, we will receive an integer value representing each option. In our
current example, the integer value has been mapped with options, where None = 0, Red = 1,
Green = 2, and Blue = 3.

These values are accessed using the variable_name::option_name syntax. The first line
of the example assigns one of the possible values (Green) to the variable. Then we use a
CASE statement to determine which of the values were selected.

There are many predefined formats for dates. Run a search for
Format Property in the Developer and IT Pro Help option in
the Help menu of Microsoft NAV Development Environment.

There's more...
The Option fields are prevalent throughout the NAV system, but most commonly on
documents. In NAV, many documents share the same table. For example, sales quotes,
orders, invoices, and return orders are all based on the Sales Header table. In order to
distinguish between the types, there is an Option field called Document Type. Design the
36, Sales Header table to see the available options for this field.

Now design the 80, Sales-Post codeunit. Examine the OnRun trigger. At the start of the
function, you will see the following code:

 CASE "Document Type" OF
 "Document Type"::Order:
 Receive := FALSE;
 "Document Type"::Invoice:

Chapter 1

21

 BEGIN
 Ship := TRUE;
 Invoice := TRUE;
 Receive := FALSE;
 END;
 "Document Type"::"Return Order":
 Ship := FALSE;
 "Document Type"::"Credit Memo":
 BEGIN
 Ship := FALSE;
 Invoice := TRUE;
 Receive := TRUE;
 END;
 END;

This is a common example of how options are used in NAV. You can scroll through the
codeunit to find more examples.

See also
ff The Using the CASE statement to test multiple conditions recipe in Chapter 2,

General Development

Converting a string to another data type
Sometimes, a string representation isn't enough. In order to perform certain actions, you need
your data to be in a certain format. For example, we are reading data from a text file, so our
entire data is simple text, which needs to be converted into an appropriate data type to use it
in NAV. This recipe will show you how to change that data into a format that you can use.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Now add the following global variables:

Name Type Length
DateText Text 30
DateValue Date

String, Dates, and Other Data Types

22

3.	 Write the following code into the OnRun trigger of the codeunit:
DateText := '01/10/2012';
EVALUATE(DateValue, DateText);
MESSAGE('Microsoft Dynamics NAV 2013 launch date is %1',
 DateValue);

4.	 To complete the development, save and close the codeunit.

5.	 On executing the codeunit, you should see a window similar to the one shown in the
following screenshot:

How it works...
The EVALUATE() function takes in two parameters. The first is a variable of the type that we
want our value to be converted into. This could be date, time, Boolean, integer, or any other
simple data type. This parameter is passed by reference, meaning that the result of the function
is stored in that variable. There is no need to do a manual assignment to get a return value.

The second parameter is the string that you need to convert. This text is usually stored in a
field or variable, but can also be hardcoded.

EVALUATE() returns a Boolean value when executed. If the
conversion is successful, it returns TRUE or 1; otherwise, it returns
FALSE or 0. If the function returns FALSE, an error will be generated.

There's more...
The EVALUATE() function is widely used in NAV C/AL code. The following code snippet is
taken from the CheckCreditCardData() function of the 825, Do Payment Mgt codeunit:

EVALUATE (IntValue1,FORMAT(TODAY,0,'<Year>'));
EVALUATE (IntValue2,COPYSTR(DOPaymentCreditCard."Expiry Date",3,2));
IF IntValue1 > IntValue2 THEN
 ERROR (Text006, CreditCardNo,
 DOPaymentCreditCard.FIELDCAPTION ("No."));

Chapter 1

23

Before completing a transaction, the credit card's validity period needs to be checked.
The preceding code extracts the year from the current date provided by the TODAY function
and the expiry date of the credit card. Both the values are evaluated using the relational
operator. If the card has expired, the system will execute a predefined error message in
text constant Text006.

See also
ff Converting a value to a formatted string

ff The Checking for conditions using an IF statement recipe in Chapter 2,
General Development

ff The Passing parameters by reference recipe in Chapter 2, General Development

Manipulating string contents
It can be very useful to parse a string and retrieve certain values. This recipe will show you
how to examine the contents of a string and manipulate that data.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Add a function called RemoveNonNumeric. It should return a text variable
called NewString.

3.	 Add the following parameters for the same function:

Name Type Length
String Text 30

4.	 Now add the following global variables:

Name Type Length
OldPhoneNumber Text 30
NewPhoneNumber Text 30
I Integer

5.	 Write the following code to the RemoveNonNumeric function:
FOR i := 1 TO STRLEN(String) DO BEGIN
IF String[i] IN ['0', '1', '2', '3', '4', '5', '6', '7','8','9']
THEN
 NewString := NewString + FORMAT(String[i]);
END;

String, Dates, and Other Data Types

24

6.	 Write the following code into the OnRun trigger of the codeunit:
OldPhoneNumber := '(230) 299-876';
NewPhoneNumber := RemoveNonNumeric(OldPhoneNumber);
MESSAGE('Old Phone Number: %1\New Phone Number: %2',
OldPhoneNumber, NewPhoneNumber);

7.	 To complete the task, save and close the codeunit.

8.	 On executing the codeunit, you should see a window similar to the one shown in the
following screenshot:

How it works...
A string is actually an array of characters. The same array syntax will be used to access the
individual characters of the string.

We start with a FOR loop that begins at the first character, with index 1, and goes on until
we reach the end of our string. This is determined using the STRLEN() function, which
stands for string length. As the first index is 1, the last index will be N or the number of
characters in the string.

Next, we access the character at that index using square brackets. If the character is
a number, meaning we want to keep it because it is a numeric value, we add it to our
resulting string.

NAV comes with plenty of built-in string manipulation functions to
remove characters, return substrings, find characters within strings,
and many more. A search in the Developer and IT Pro Help option
of the Help menu of Microsoft NAV Development Environment for
string functions will give you a complete list.

Chapter 1

25

There's more...
The CheckIBAN function of the 79, Company Information table is a simple example
of string manipulation to validate IBAN (International Bank Account Number). IBAN is
internationally agreed on and adopted. It consists of up to 34 alphanumeric characters: the
first two letters are the country code, then two check digits, and finally a country-specific
Basic Bank Account Number. The same is validated by manipulating the input string using
various functions. The following code gives you an example for the same:

IF IBANCode = '' THEN
 EXIT;
IBANCode := DELCHR(IBANCode);
Modulus97 := 97;
IF (STRLEN(IBANCode) <= 5) OR (STRLEN(IBANCode) > 34) THEN
 IBANError;
ConvertIBAN(IBANCode);
WHILE STRLEN(IBANCode) > 6 DO
 IBANCode := CalcModulus(COPYSTR(IBANCode,1,6),Modulus97) +
 COPYSTR(IBANCode,7);
EVALUATE(I,IBANCode);
IF (I MOD Modulus97) <> 1 THEN
 IBANError;

There are a few more functions used to validate the string; such as ConvertIBAN,
CalcModulus, and ConvertLetter. These functions can give you a basic idea to
write your own code.

For more complex examples, please follow the DecomposeRowID() function in the 6500,
Item Tracking Management codeunit. The code evaluates the value stored in the Source
RowId field of the 6508, Value Entry Relation table.

See also
ff Converting a value to a formatted string

ff Creating an array

ff The Repeating code using a loop recipe in Chapter 2, General Development

ff The Checking for conditions using an IF statement recipe in Chapter 2,
General Development

http://en.wikipedia.org/wiki/Check_digit

2
General Development

In this chapter, we will learn the following:

ff Displaying the progress bar and data in process

ff Repeating code using a loop

ff Checking for conditions using an IF statement

ff Using the CASE statement to test multiple conditions

ff Rounding decimal values

ff Creating functions

ff Passing parameters by reference

ff Referencing dynamic tables and fields

ff Using recursion

Introduction
C/AL (Client/server Application Language) is a programming language used in Client/
server Integrated Development Environment (C/SIDE). Using C/AL, we can create business
rules to ensure that the data stored in the database is consistent and meaningful. The main
purpose of using C/AL is to manipulate data. Besides handling data, C/AL helps to manage
execution of C/SIDE objects (such as a table, page, report, codeunit, query, and XMLport).

This chapter consists of recipes that will make understanding of C/AL very easy.

www.allitebooks.com

http://www.allitebooks.org

General Development

28

Displaying the progress bar and data in
process

During the execution of a big batch job or reports, if the system is not displaying any progress
information it can be frustrating and confusing. To avoid this for our customers, we should
always display the progress bar and/or data in progress.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
ProgressBar Dialog
AmountProcessed Integer
AmountToProcess Integer
PercentCompleted Integer

3.	 Now let's add the following code to the OnRun trigger of the codeunit:
AmountToProcess := 500000;
ProgressBar.OPEN('@1@@@@@@@@@@@\#2############');
REPEAT
 AmountProcessed += 1;
 PercentComplete := ROUND(AmountProcessed / AmountToProcess
*10000, 1);
 ProgressBar.UPDATE(1, PercentComplete);
 ProgressBar.UPDATE(2, PercentComplete);

UNTIL AmountProcessed = AmountToProcess;

4.	 Save and close the codeunit.

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

Chapter 2

29

How it works...
In order to track the progress of something, we need to know two things: how much we
have to do and how much we have already done. We create two variables for this data,
AmountToProcess and AmountProcessed. In our code shown in step 3, we have set the
AmountToProcess value equal to 500000. Depending on the speed of the computer, this
may make the progress bar advance either too quickly or too slowly.

Basic information such as this is displayed to the user using what is called a dialog. A
string as an input parameter is given to the dialog. The @ sign tells the dialog to display the
information as a progress indicator, and 1 identifies the indicator for later updates. The rest
of the @ signs specify the length of the progress bar, whereas the # sign tells it to display the
information as a data string, and 2 identifies the indicator for later updates. The rest of the #
signs specify the length of the string to display.

The minimum and maximum values for the progress bar are not 0 and 100 as you
might expect. Instead, they are 0 and 10000 respectively. This is why we multiply
ROUND(AmountProcessed / AmountToProcess) by 10000 when we are calculating our
PercentComplete value. As the PercentComplete variable is an integer value, we must
also round up our result to the nearest digit.

There's more...
As I mentioned in the Introduction section, we should display the progress information on
the batch job activities; a common way to process a large amount of data is to create a
"processing only" report. In this situation, our AmountToProcess variable would be the
number of records in the table. This would be calculated in the OnPreDataItem trigger. We
would also open the dialog here. In the OnAfterGetRecord trigger, we would update our
AmountProcessed variable and update the progress bar as necessary.

Some examples of the "processing only" reports in the base system are 296 (Batch Post
Sales Orders) and 299 (Delete Invoiced Sales Orders).

See also
ff Checking for conditions using an IF statement

ff Creating a report to process data

General Development

30

Repeating code using a loop
Looping is an essential part of any data manipulation. Same as the other programming
languages, C/AL offers a variety of looping methods. The following recipe will help you
understand how to use the FOR loop in C/AL code.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Then add the following global variables:

Name Type
n Integer
i Integer
Factorial Integer

3.	 Now write the following code in the OnRun trigger of the codeunit:
Factorial := 1;
n := 4;
FOR i := 1 TO n DO BEGIN
 Factorial := Factorial * i;
 MESSAGE('Factorial of %1 = %2', n, Factorial);
END;

4.	 To complete the task, save and close the codeunit.

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

Chapter 2

31

How it works...
A FOR loop has four parts: a counter, a starting value, the step to be taken, and an ending
value. In this code, our counter variable is i. The starting value is 1 and the ending value is n,
which in this case has been assigned the value 4.

On execution of the previous code, we will get four messages with values 1, 2, 6, and 24. Each
time the loop iterates, the value of i is increased by one (the step). The code indented under
the FOR loop will be executed four times. It is exactly the same as:

Factorial := Factorial * 1;
Factorial := Factorial * 2;
Factorial := Factorial * 3;
Factorial := Factorial * 4;

If we want to use a step other than 1 or -1, we need to use a WHILE
loop or a REPEAT..UNTIL loop.

There's more...
You can also use a FOR loop by decreasing the counter. To do this, instead of TO, use DOWNTO.
The structure for this type of loop is as follows:

Factorial := 1;
n := 4;
FOR i := n DOWNTO 1 DO
Factorial := Factorial * i;
MESSAGE('Factorial of %1 = %2', n, Factorial);

Using a WHILE loop
A WHILE loop is similar to a FOR loop; the main difference is that you have to take control of
the counter, as shown in the following code:

Factorial := 1;
n := 4;
i := 1;
WHILE i <= n DO BEGIN
Factorial := Factorial * i;
i += 1;
END;
MESSAGE('Factorial of %1 = %2', n, Factorial);

General Development

32

The following is what happens in the WHILE loop:

1.	 First we have to initialize our starting value, which is accomplished by the third
line i := 1.

2.	 Then in the WHILE line, we have to give a stop condition. As long as i <= n (4)
holds true, we want the statements to execute.

3.	 Finally, we have added the i += 1; command to the code inside our loop. A FOR
loop does this behind the scenes, but a WHILE loop doesn't. Here, we can increment
our counter by any value we want. This basic line is perhaps most important. Without
it, we will never reach our stop condition, and will be stuck in an infinite loop.

Using a REPEAT..UNTIL loop
The difference between this type of loop and a standard WHILE loop is that the code is
guaranteed to execute at least once; we will use this type of loop often to access records
through tables. The following is the structure of a REPEAT..UNTIL loop:

Factorial := 1;
n := 4;
i := 1;
REPEAT
Factorial := Factorial * i;
i += 1;
UNTIL i > n;
MESSAGE('Factorial of %1 = %2', n, Factorial);

See also
ff Checking for conditions using an IF statement

ff The Creating reports to process data recipe in Chapter 5, Report Design

Checking for conditions using an IF
statement

Sometimes, we want to execute a section of code on a specific condition; this recipe will help
to explain the syntax for the same.

Chapter 2

33

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type SubType
SalesHeader Record Sales header
RecordsProcessed Integer

3.	 Now write the following code in the OnRun trigger of the codeunit:
IF SalesHeader.FINDSET THEN BEGIN
 REPEAT
 RecordsProcessed += 1;
 UNTIL SalesHeader.NEXT = 0;
 MESSAGE('Processed %1 records.', RecordsProcessed);
END ELSE
 MESSAGE('No records to process.');

4.	 Save and close the codeunit to complete the task.

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

How it works...
In order to execute the code that processes the records, there must be records in the table.
That's exactly what the first line of the previous code does. It tells the code that if you find
some records, then it should do these actions. In this case, the action is to count the records
in the table and display a message to the user.

When the condition in the IF statement does not evaluate to true, the control falls to the next
ELSE statement. So if we find some records, then the code must do something, otherwise
(ELSE) it should do something else. Our "something else" is to inform the user that no records
were found. The ELSE part is not required, but we should always consider what should
happen if the condition is false.

General Development

34

There's more...
You can also use the nested IF statement.

The nested IF statement
The following is the code for a nested IF statement:

IF DATE2DMY(WORKDATE,1) = 1 THEN
 MESSAGE('Monday')
ELSE IF DATE2DMY(WORKDATE,1) = 2 THEN
 MESSAGE('Tuesday')
ELSE IF DATE2DMY(WORKDATE,1) = 3 THEN
 MESSAGE('Wednesday')
ELSE IF DATE2DMY(WORKDATE,1) = 4 THEN
 MESSAGE('Thursday')
ELSE IF DATE2DMY(WORKDATE,1) = 5 THEN
 MESSAGE('Friday')
ELSE
 MESSAGE('Its the weekend!');

We can combine the operators (AND, OR, and NOT) to form complex conditionals, and test as
many conditions as necessary.

See also
ff Using the CASE statement to test multiple conditions

Using the CASE statement to test multiple
conditions

When we have more than two conditions to test, it will be beneficial to use a CASE statement
for better code readability.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Let's add the following global variables:

Name Type
i Integer

Chapter 2

35

3.	 Now write the following code in the OnRun trigger of the codeunit:
i := 2;
CASE i OF
 1:
 MESSAGE('Your number is %1.', i);
 2:
 MESSAGE('Your number is %1.', i);
 ELSE
 MESSAGE('Your number is not 1 or 2.');
END;

4.	 It's time to save and close the codeunit.

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

How it works...
A CASE statement compares the value given, in this case i, to various conditions contained
within that statement. Each condition other than the default ELSE condition is followed by a
colon. The same logic can be written using the IF statement:

IF i = 1 THEN
 MESSAGE('Your number is %1.', i)
ELSE IF i = 2 THEN
 MESSAGE('Your number is %1.', i)
ELSE
 MESSAGE('Your number is not 1 or 2.');

See also
ff Checking for conditions using an IF statement

General Development

36

Rounding decimal values
As Navision is a financial system, it's obvious that most of the time we need to handle
decimal values, and rounding decimals is a very important part of it. When we are converting
high-value currency to low-value currency, a small decimal can make a big difference.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
AmountToRound Decimal
RoundToNearest Decimal
RoundToUp Decimal
RoundToDown Decimal

3.	 Now write the following code in the OnRun trigger of the codeunit:
AmountToRound:=345.8689999999;
RoundToNearest:=ROUND(AmountToRound,0.01,'=');
RoundToUp:=ROUND(AmountToRound,0.01,'>');
RoundToDown:=ROUND(AmountToRound,0.01,'<');

MESSAGE('Amount Before Rounding = %1 \\Rounded to nearest value =
%2'+'\Rounded to upper value = %3\Rounded to lower value = %4',Amo
untToRound,RoundToNearest,RoundToUp,RoundToDown);

4.	 It's time to save and close the codeunit.

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

Chapter 2

37

How it works...
For a Round function, we need to specify three parameters, that is, a number to round, the
precision, and the direction. The precision parameter determines the precision used when
rounding off. The default value of the precision parameter is 0.01. The direction parameter
details how to round. The default value for direction is =, which will round our number to the
nearest value; > will round to the greater value, whereas < will round to a lesser value.

For more rounding examples, search for a Round Function in
the Developer and IT Pro Help menu in Help of the Microsoft NAV
Development Environment page or visit the following URL:
http://msdn.microsoft.com/en-us/library/
dd301418(v=nav.70).aspx

See also
ff The Retrieving data from a database with different FIND statements recipe in

Chapter 3, Working with Tables, Records, and Queries

Creating functions
Most programs will need to execute code from different NAV objects. This code is contained in
functions. This recipe will show you how to create a function and explain in more detail what
functions are.

How to do it...
1.	 To start, let's create a new codeunit from Object Designer.

2.	 Add a function called CountToN that takes an integer parameter n.

3.	 Now add the following global variables:

Name Type
i Integer

4.	 Write the following code in the function:
FOR i := 1 TO n DO
 MESSAGE('%1', i);

5.	 Write the following code in the OnRun trigger of the codeunit:
CountToN(3);

6.	 It's time to save and close the codeunit.

www.allitebooks.com

http://www.allitebooks.org

General Development

38

7.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

How it works...
By creating a function, we can reference multiple lines of code using one easy-to-understand
name. Our function is called CountToN, and it takes an integer n as a parameter. This
function will display a message box for every number ranging between one and the number
that is passed to the function.

There's more...
Proper use of functions is essential to good software development. You will have difficulty
finding any objects in NAV that don't contain even a single function.

The main use of functions is to divide complex tasks into manageable chunks of code. This
makes debugging a lot easier. Other developers who may add content to our code later will
be able to understand better what we were trying to accomplish. By encapsulating code in
functions, you also reduce the number of places where changes need to be made when you
find faulty business logic.

Once written, these functions can then be called from other objects. A better practice is
to keep a codeunit with common utility functions in it. We can load this codeunit into any
database we happen to be working on, and have instant access to our code from any object
in the system.

Creating local or private functions
By default, all functions are created as global functions, which means that they can be
accessed from any object in the system. Sometimes, though, you may only want a function to
be accessed from within the object in which it resides.

It may seem counterintuitive, but you still define these functions in the same way you define
global functions. If you view the properties of the function (Shift + F4 or navigate to View |
Properties from the menu), you will see one called Local. Set this property to Yes, and it will
only be available in the current object.

Chapter 2

39

See also
ff Passing parameters by reference

Passing parameters by reference
Sometimes, we may want our function to modify multiple values. As we can't return more
than one value from a function (unless we use an array), it can be beneficial to pass our
parameters by reference to the function.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type SubType Length
CustomerRec Record Customer
OldName Text 50
NewName Text 50

3.	 Then add a function called ChangeCustomerName.

4.	 The function should take the following parameter:

Name Type SubType
Customer Rec Customer

5.	 Let's write the following code in the ChangeCustomerName function:
Customer.Name := 'Changed Name';

6.	 Add another function called ChangeCustomerNameRef.

7.	 The function should take the following parameter:

Name Type SubType
Customer Rec Customer

8.	 Place a check mark in the Var column for the parameter.

9.	 Write the following code in the ChangeCustomerNameRef function:
Customer.Name := 'Changed Name';

General Development

40

10.	 Write the following code in the OnRun trigger of the codeunit:
IF CustomerRec.FINDFIRST THEN BEGIN
 OldName := CustomerRec.Name;
 ChangeCustomerName(CustomerRec);
 NewName := CustomerRec.Name;
 MESSAGE('Pass by value:\Old Name: %1\New Name: %2', OldName,
 NewName);
 OldName := CustomerRec.Name;
 ChangeCustomerNameRef(CustomerRec);
 NewName := CustomerRec.Name;
 MESSAGE('Pass by reference:\Old Name: %1\New Name: %2',
 OldName, NewName);
END;

11.	 It's time to save and close the codeunit.

12.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

How it works...
The first function, ChangeCustomerName, passes the parameter by value, which means that
a copy of the variable is created and the function uses that copy. So, even though the customer
name is changed in the function, only its copy is changed. The original stays the same.

The second function, ChangeCustomerNameRef, passes the parameter by reference. When
you pass a parameter by reference, the parameter refers to the same location in memory that
the actual variable is stored in. No copy is made. Any changes made to the parameter will be
reflected in the original variable.

Chapter 2

41

There's more...
Reference parameters are common throughout NAV, especially in codeunits. Codeunits such
as 12 (General Journal Lines), 80 (Sales), and 90 (Purchases) are all written to work
with a specific type of record. This is defined under the TableNo property in the codeunit's
properties. When you set a value here, the OnRun trigger will automatically have a reference
parameter named Rec added to it. Any changes made to the Rec variable will change the
actual value in that record. Also, if you only pass a record by value to a function, you do not
get any of the filters applied to the record set.

See also
ff Creating functions

Referencing dynamic tables and fields
On occasions, we may need to retrieve data from the system, but not know in advance where
that data should come from. NAV accommodates this by allowing you to reference tables and
fields dynamically.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Add a global function, GetFirstRecord:

3.	 The function should take the following parameter:

Name Type
TableNo Integer

4.	 Now add the following local variables:

Name Type
RecRef RecordRef

FieldRef FieldRef

5.	 With the cursor on the FieldRef variable, navigate to View | Properties or press
Shift + F4.

6.	 Let's set the following property:

Property Value
Dimensions 2

General Development

42

7.	 Write the following code in the GetFirstRecord function:
RecRef.OPEN(TableNo);
IF RecRef.FINDFIRST THEN BEGIN
 IF RecRef.FIELDEXIST(1) THEN
 FieldRef[1] := RecRef.FIELDINDEX(1);

 IF RecRef.FIELDEXIST(2) THEN
 FieldRef[2] := RecRef.FIELDINDEX(2);

 IF FieldRef[1].ACTIVE AND FieldRef[2].ACTIVE THEN
 MESSAGE('Table: %1\%2: %3\%4: %5', RecRef.NAME,

 FieldRef[1].NAME, FieldRef[1].VALUE,
 FieldRef[2].NAME, FieldRef[2].VALUE)
ELSE
 MESSAGE('You cannot retrieve an inactive field.');
END ELSE
 MESSAGE('No records found!');

8.	 Write the following code in the OnRun trigger of the codeunit:
GetFirstRecord(DATABASE::Customer);
GetFirstRecord(DATABASE::Vendor);

9.	 It's time to save and close the codeunit.

10.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

Chapter 2

43

How it works...
We are creating a function, GetFirstRecord, which will return information about the first
record found in an unknown table. The TableNo parameter will tell the function which table
in the database to find the data in.

When you don't know the table until runtime, you must use a RecordRef variable, which
stands for record reference, and can refer to any record/table in the database. To point it
to the right table, you use the OPEN command. Here, we tell the RecordRef variable to
open any table we pass into the function. If a record is found in that table, we continue on,
otherwise we display the message No records found!.

To store references to the fields, we have created an array of the FieldRef variables called
FieldRef. In this function, we have hardcoded a lookup for fields 1 and 2. We can even pass
another parameter with the ID value of the field we need. If that field exists, we assign its
value into our FieldRef variable to an appropriate index.

Finally, we have to determine whether the fields are active or in use and available for use by
the system. If they were not, we would not have been able to retrieve their values, and would
instead display a message to the user. But if they are active, we display the name and value of
each field using the properties of the same name.

The code in the OnRun trigger runs the function with two different tables. The
DATABASE::"Table Name" syntax resolves to an integer. You could also pass
the actual ID of the tables.

There's more...
Record references act just like their record counterparts. We can use them to insert, modify,
or delete records. We can set filters on them and use them to find records. For a complete list
of functions and properties, use the Symbol menu and investigate in the Developer and IT
Pro Help menu from Help of the Microsoft NAV Development Environment page.

The data migration codeunits in NAV are full of functions that use record and field references.
I recommend you to start with the functions in codeunit 8611 (Config. Package
Management). This is a great place to see real examples of how this type of code can be used.

General Development

44

See also
ff Checking for conditions using an IF statement

ff Passing parameters by reference

Using recursion
Recursion is not used often in NAV, but the option is available, and can shorten your code.
Recursion is the process by which a function calls itself.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Then add a global function called Fibonacci that returns an integer with no name.

3.	 Provide the following parameters for the function:

Name Type
i Integer

4.	 Now write the following code to the Fibonacci function:
IF (i <= 2) THEN
 EXIT(1);

EXIT (Fibonacci(i-1) + Fibonacci(i-2));

5.	 Write the following code in the OnRun trigger of the codeunit:
MESSAGE('Fibonacci(%1) = %2', 4, Fibonacci(4));

6.	 It's time to save and close the codeunit.

7.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

Chapter 2

45

How it works...
The Fibonacci sequence is a series of numbers, where the value in a certain position is the
sum of the number in the previous two positions, that is, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and
so on.

A recursive function has two parts. The first is a stopping condition. In our Fibonacci
function, the stopping condition is when the variable i is less than or equal to 2. In that case,
the function will return 1 as the output.

The second part is where the function calls itself with a different parameter. Recursion can be
confusing, so let's go through the code to get a better understanding. We'll use the following
diagram to explain this more clearly:

Fibonacci(4)

Fibonacci(3)

Fibonacci(2) Fibonacci(1)

1

Fibonacci(2)

1 1+

+

+

+

There's more...
We start by passing the number 4 as a parameter to our function, which means that
the variable i is equal to 4. As 4 is not less than or equal to 2, we move to the last line
of the function. The function will exit the loop with the value Fibonacci(4 – 1) +
Fibonacci(4 – 2) expression, but we don't know what those values are. Now we evaluate
each of those function calls separately.

Fibonacci(3) has a parameter that is also not less than 2. Again, we move to the last
line of the function and exit with Fibonacci(3 – 1) + Fibonacci(3 – 2). This time,
it gets easier.

General Development

46

Fibonacci(2) exits with the value 1. Fibonacci(1) also exits with the value 1, hence
Fibonacci(2) = 1 and Fibonacci(1) = 1. Substituting them back in, we get
Fibonacci(3) = Fibonacci(2) + Fibonacci(1) = 1 + 1 = 2.

But we're not done. We still have the original Fibonacci(4 – 2) expression to evaluate:

Fibonacci(2) = 1. So let's sum it all up.

Fibonacci(4) =[Fibonacci(3)] + [Fibonacci(2)] =

[Fibonacci(2) + Fibonacci(1)] + [Fibonacci(2)] =[1 + 1] + [1] = 3.

See also
ff Repeating code using a loop

ff Sharing information through XMLports

3
Working with Tables,
Records, and Queries

In this chapter, we will cover:

ff Creating a table

ff Adding a key to a table

ff Retrieving data using the FIND and GET statements

ff Advanced filtering

ff Adding a FlowField

ff Creating a SumIndexField

ff Retrieving data from FlowField and SumIndexField

ff Using a temporary table

ff Retrieving data from other companies

ff Using a query to extract data

ff Creating a query to link three tables

ff Working with queries in C/AL

www.allitebooks.com

http://www.allitebooks.org

Working with Tables, Records, and Queries

48

Introduction
Microsoft Dynamics NAV systems store business information (data) in tables. Tables may be
visualized as two-dimensional matrices consisting of columns and rows. Data stored in a table
can be viewed by clicking on Run in Object Designer. Each row is the record and each column
is the field, as shown in the following screenshot:

NAV 2013 displays table data in the RTC client, so it is necessary to have
NAV Server and Microsoft SQL Server (which is holding the NAV database)
configured and running even for viewing data from NAV Developer
Environment. Be careful! It is easy to accidently change something while
executing the table with Object Designer.

Chapter 3

49

A table can be divided into two parts: table data and table design. Table design comprises
properties, triggers, fields, and keys. The following diagram can help to understand how all
these are related to each other:

Table Design

Table Properties Triggers Fields Keys

Properties Triggers

Microsoft Dynamics NAV 2013 introduced a new object named Query; it helps you retrieve data
from one or more tables as a single dataset. This chapter will help you understand how to create
and use tables and queries. Detailed information on tables and queries can be found in the
Developer and IT Pro Help menu from Help of Microsoft NAV Development Environment.

Creating a table
Tables are the building blocks for all other Dynamics NAV objects. They store the data that the
business needs to access. This recipe will show you how to create a basic table and save it in
the system.

How to do it...
1.	 Create a new table object with Object Designer.

2.	 Add the following fields in the table designer window:

Field No. Field Name Data Type Length
1 Entry No. Integer

2 Document No. Code 20

3 Description Text 30

4 Value Decimal

5 Posting Date Date

Working with Tables, Records, and Queries

50

It should look like the window shown in the following screenshot:

3.	 To save the table, go to File | Save (or press Ctrl + S).

In the Save As window, provide values to the ID and Name fields and keep the Compiled
checkbox selected to save the table.

How it works...
Each field is just like a variable. These variables, however, are grouped together to form a new
type of variable called a record. The field definitions provide the structure for all of the tables,
as well as the data in them, inside the system. The data type of your fields can be almost
anything. In this example, we have created five fields of the most common types.

There's more...
After completing the initial draft of your object, it is good practice to add a few notes,
such as your initials and a date or a version number in the Description column, whenever
you add a new field. This allows future developers to know precisely when the change was
made and also what other modifications were made. An example description could be XX
01/01/2013 MOD001.

To maintain consistency and enable multilevel development, Microsoft has restricted
designing of table and fields depending on their IDs. Visit the following URL for more detailed
information on object numbering conventions:

http://msdn.microsoft.com/en-us/library/ee414238(v=nav.70).aspx

Chapter 3

51

See also
ff Adding a key to a table

ff Adding a FlowField

ff Creating a SumIndexField

ff Using a query to extract data

Adding a key to a table
Keys are used to make sure that every record in the table is unique. They are often also
referred to as indexes and are used to sort your data in ways that are most beneficial to the
user. If you do not specify a key manually, the field you have placed in Field No. with the
value 1 will act as the primary key for your table.

How to do it...
1.	 Follow the steps from the Creating a table recipe to create a table.

2.	 Navigate to Design in Object Designer to open the Table Designer page for that
table.

3.	 Navigate to Key in View (Alt + V + K).

4.	 On the empty line, add a new key for Document No., Posting date.

5.	 Our key should look like the window shown in the following screenshot:

Working with Tables, Records, and Queries

52

How it works...
Keys allow you to sort data in a way that will increase your application's performance. There is
a trade-off, though; increased application performance later, costs you some effort earlier.

When we insert data into a table, it is automatically sorted based on the primary key of that
table, but what about the other keys? The database engine doesn't just magically know how
records should be sorted. For every key, the database keeps some sort of information about
how the data will be ordered. More keys means it will take more time to insert and track all
of that information. This increase in time is usually not noticeable to users, but you should be
aware that there is a trade-off. One common technique for database optimization is to remove
the keys that are not being used, especially on tables that have a high volume of transactions,
such as Item Ledger Entry or G/L Entry.

There's more...
Tables can hold up to 40 active keys, out of which the first key will be the primary key and all
the rest are secondary keys. For more details on keys, visit the following URL:

http://msdn.microsoft.com/en-us/library/dd338755(v=nav.70).aspx

See also
ff Adding a key to a table

ff Adding a FlowField

ff Creating a SumIndexField

ff Retrieving data from FlowField and SumIndexField

Retrieving data using the FIND and GET
statements

The FIND and GET statements are two of the most commonly used functions in NAV
programming. When it comes to retrieving data, we need to select the right FIND/GET
function as it has a significant effect on the performance of the system. This recipe will
help you understand how to use the FIND and GET functions.

Chapter 3

53

How to do it...
1.	 Create a new codeunit with Object Designer.

2.	 Add the following local variables into the run trigger:

Name Type Subtype
Customer Record Customer

CustCount Integer

3.	 Add the following code into the OnRun trigger of the codeunit:
//FINDFIRST
Customer.RESET;
IF Customer.FINDFIRST THEN
 MESSAGE('The first customer in the database is:\No.:%1\Name:%2',
 Customer."No.", Customer.Name);

//FINDLAST
Customer.RESET;
IF Customer.FINDLAST THEN
 MESSAGE('The last customer in the database is:\No.: %1\Name:%2',
 Customer."No.", Customer.Name);

//FINDSET
Customer.RESET;
IF Customer.FINDSET THEN
REPEAT
 CustCount:=CustCount+1;
UNTIL Customer.NEXT=0;

MESSAGE('There are %1 customers in the database',
 CustCount);

//GET
IF Customer.GET('20000') THEN
 MESSAGE('Record Found!')
ELSE
 MESSAGE('Record NOT Found!');

4.	 Save and close the codeunit.

Working with Tables, Records, and Queries

54

5.	 On executing the codeunit, you should see windows similar to those shown in the
following screenshot:

How it works...
There are three types of FIND functions, each of which will be discussed. The first two types
are self-explanatory. FINDFIRST returns the first record in the dataset while FINDLAST
returns the last record. These functions should only be used when we want to retrieve a single
record from the database. For retrieving more than one record, we should use the FINDSET
function in combination with the function REPEAT..UNTIL.

FINDSET can retrieve records only in ascending order. If you
want to loop from the bottom up, you should use FIND('+').

The GET function always uses the primary key already associated with the table. It ignores any
filters that are set, except for the security filters. As No. is the primary key for the Customer
table, we provided the value 20000. A value can be replaced by a variable as well.

There's more...
These functions were not introduced until Version 5.0 of NAV. In earlier versions, we would use
FIND('-') for FINDFIRST and FIND('+') for FINDLAST.

Chapter 3

55

See also
ff The Checking for conditions using an IF statement recipe in Chapter 2,

General Development

ff Advanced filtering

Advanced filtering
Storing and retrieving data are the two main activities in Dynamics NAV. While retrieving data,
most times we are looking for a specific set of data. To choose our desired data, the system
needs to handle large datasets; in this situation, filtering plays a very important role. In this
recipe, we will look at the advanced filtering of datasets in the C/AL code.

How to do it...
1.	 Create a new codeunit with Object Designer.

2.	 Add the following local variable into the OnRun trigger:

Name Type Subtype
GLEntry Record G/L Entry

3.	 Add the following code into the OnRun trigger of the codeunit:
GLEntry.RESET;
GLEntry.SETCURRENTKEY("Document No.","Posting Date");
GLEntry.SETRANGE("Posting Date",010113D,310113D);
GLEntry.SETRANGE("Document Type",GLEntry."Document
Type"::Invoice);
GLEntry.SETFILTER(Amount,'>%1',25000);
IF GLEntry.FINDFIRST THEN
 MESSAGE('Found!\Document No.: %1\Amount: %2', GLEntry."Document
 No.",
 GLEntry.Amount)
ELSE
 MESSAGE('Not Found!');

4.	 Save and close the codeunit.

Working with Tables, Records, and Queries

56

5.	 On executing the codeunit, you should see a window similar to that shown in the
following screenshot:

How it works...
In this recipe, we are filtering the G/L Entry table to retrieve a specific record set and
selecting the first record out of the filtered record set. The RESET function will remove all
filters and change the current key to the primary key. SETCURRENTKEY is used to select a key
for a record and set the order of sorting. The key selected by us will sort data by Document
No. and then by Posting Date.

SETRANGE removes any filters that were set previously and replaces them with the "from-
value" and "to-value" parameters. While providing Date as a parameter, we need to remove
date separators and add D at the end of the Date value. In the filter, when we provide the
Date value, we need to consider the current system's data format. In this recipe, the data
format used is dd/mm/yyyy. If you are following the US date format, the value should be
013113D, and if it is the UK date format, the value should be 310113D. Our filter will provide
data between 01/01/2013 and 31/01/2013.

In the next SETRANGE filter, we provide only one value ("from-value"). In this system, we will
set the "to-value" to the same as the "from-value".

SETFILTER provides functionalities to use multiple operators to filter data. We selected the
Amount field and provided the relational operator > (greater than) with a placeholder. Finally,
we set the value 25000 for the placeholder. If you are not sure about the exact filter value, you
can use operators such as * and @ to provide an approximate or nearby value.

After applying filters, we used the FINDFIRST function to choose the first record out of the
filtered record set. If your database does not have any value for a given filter, you will receive
the Not Found! message.

Chapter 3

57

There's more...
There are many ways to filter your data; for more detailed information, run a search for the
help topic titled Field Filters and Table Filters in the Developer and IT Pro Help
menu in the Help menu of Microsoft NAV Development Environment. Microsoft provides
wonderful examples of all of the available filtering options, both individually and combined.

See also
ff The Creating functions recipe in Chapter 2, General Development

ff The Passing parameters by reference recipe in Chapter 2, General Development

ff Retrieving a single record from the database

ff Retrieving data using the FIND and GET statements

Adding a FlowField
FlowFields are fields that are not actually stored in the database. They are calculated fields
that the user can call instead of performing the calculations themselves. This recipe will show
you how to add a FlowField to your tables.

How to do it...
1.	 Follow the steps from the Creating a table recipe to create a table.

2.	 Add the following field to the table:

Field no. Field name Data type Length
10 Sell-to Customer No. Code 20

3.	 View the properties for this field (Shift + F4).

4.	 Set the following properties:

Property Value
FieldClass Flowfield

CalcFormula Lookup("Sales Invoice Header"."Sell-to

Customer No." WHERE (No.=FIELD(Document
No.)))

Editable No

5.	 Close the Properties window.

6.	 Save and close the table.

www.allitebooks.com

http://www.allitebooks.org

Working with Tables, Records, and Queries

58

How it works...
To start, we create a field like any other field. It should have an ID number, name, and type.
In order to make it a FlowField, we have to change the property named FieldClass. This
property tells the system whether or not this is an actual field to be stored in the database
(normal) or a field that should be calculated or used to calculate a value on the fly (FlowField
or FlowFilter).

When defining a FlowField, you must tell the database how to calculate its value. This is done
with the CalcFormula property. Our field is a lookup, meaning we just want to pull a value
from another table that matches any given criteria. We also have to tell the database which
table to pull its value from and which filters should be used to determine the value.

Chapter 3

59

There's more...
A FlowField is not actually stored in the database, which means it can't be used outside the
NAV client in other applications. It can't even be used in a SQL procedure. So what exactly is
its use?

FlowFields can be used to display related information more easily. A great example is the
Cost fields from the Item Ledger Entry table. The actual cost of an item is the sum of
67all of the associated records from the Value Entry table. You wouldn't want to manually
check its value every time you require that information. You also wouldn't want to calculate
them using code (this method of calculating and storing in a global variable does not allow
you to filter the values). That's where the FlowField comes in. Not only does it allow you to
compile information about related entries, but also the database keeps a track of it all for
you, allowing for faster reporting and viewing of data.

See also
ff Creating a table

ff Adding a key to a table

ff Creating a SumIndexField

ff Retrieving data from FlowField and SumIndexField

Creating a SumIndexField
A SumIndexField is like a running total of certain fields in your table. Instead of calculating
these sums manually, you can tell NAV to do it for you. Here, we'll tell you how to add a
SumIndexField to your table and show you how to use it.

How to do it...
1.	 Follow the steps from the Creating a table recipe to create a table.

2.	 View the key by clicking on Keys in the View menu.

3.	 Add a key for the Posting Date field with a SumIndexField value.

4.	 Close the Keys window.

5.	 Save and close your table.

Working with Tables, Records, and Queries

60

How it works...
This recipe, unlike a few others, is very straightforward. By adding fields to list in the
SumIndexFields column of a key, you tell the database to keep a track of the totals for
those fields for every combination of filters in the key, as shown in the following screenshot:

There's more...
Why use SumIndexFields? Why not just calculate these totals manually? The answer is that
it is much faster to let the database do it. We won't get into the details behind the scenes
regarding SumIndexFields, but will demonstrate how it works using a short example shown in
the following screenshot:

Chapter 3

61

In the background, NAV keeps a running total or sum of the values defined as SumIndexFields. If
you were to calculate the total manually, you would have to sum up all ten entries individually.

With SIFT (Sum Index Field Technology), NAV can sum up the entires with only two entries.
Let's try and find the sum of the entries 4 through 8. By manually adding up these five entries,
we have the total 300. From the database, SIFT will take the sum of the values up until our first
entry (so, the total of entries 1 through 3; that is, 60) and subtract that from the total of our last
entry, the number 8 entry that is equal to 360. 360 – 60 = 300 gives us the same result.

See also
ff Creating a table

ff Adding a key to a table

ff Creating a FlowField

ff Retrieving data from Flowfield and SumIndexField

Retrieving data from FlowField and
SumIndexField

We have seen how to add FlowFields and SumIndexField; in this recipe, we will see how to
calculate these fields using C/AL code.

How to do it...
1.	 Create a new codeunit with Object Designer.

2.	 Add the following local variables into the OnRun trigger:

Name Type Subtype
GLAccount Record G/L Account

GLEntry Record G/L Entry

3.	 Add the following code into the OnRun trigger of the codeunit:
GLAccount.GET('8410');
GLAccount.SETRANGE("Date Filter",0D,TODAY);
GLAccount.CALCFIELDS("Balance at Date");

GLEntry.SETCURRENTKEY("G/L Account No.","Posting Date");
GLEntry.SETRANGE("G/L Account No.",'8410');
GLEntry.SETRANGE("Posting Date",0D,TODAY);

Working with Tables, Records, and Queries

62

GLEntry.CALCSUMS(Amount);

MESSAGE ('G/L Account 8410 Balance at %1\By FlowField : %2 \By
SumIndex Field : %3' , TODAY,GLAccount."Balance at Date", GLEntry.
Amount)

4.	 Save and close the codeunit.

5.	 On executing the codeunit, you should see a window similar to the one shown in the
following screenshot:

How it works...
FlowFields are automatically updated when they are the direct source expressions of controls,
but when they are part of a more complex expression, the calculations must be performed
explicitly. First, we filtered the GL account for the A/C number 8410 and then the filters
applied on the date filter limited the data for the dates given in the database. The Date
Filter field is a virtual field of the type FlowFilter. FlowFilter fields are generally used to limit
the scope of FlowField data; in other words, they are used to apply filters to the FlowFields.
Filters applied to these fields are passed to the source table of the FlowField. Finally, the
CALCFIELD function will update the Balance at Date field. In the G/L Account table,
the Balance at Date field represents the Amount field from the G/L Entry table. So
basically, the Balance at Date data is fetched from the G/L Entry table.

There's more...
With NAV 2013, Microsoft introduced a new function, SETAUTOCALCFIELDS. This function
will update the FlowFields before we retrieve the record and improve performance as we need
not call CALCFIELD for every record.

For detailed information, search for the help topic titled FlowFields and SumIndex
fields in the Developer and IT Pro Help menu in the Help menu of Microsoft NAV
Development Environment.

Chapter 3

63

See also
ff Creating a table

ff Adding a key to a table

ff Creating a FlowField

ff Retrieving data from Flowfield and SumIndexField

Using a temporary table
Temporary tables can be useful when you need to insert data into a table to perform
calculations but don't want it saved to the database. This recipe will show you how to
mark your records as temporary and what to watch out for when you do so.

How to do it...
1.	 Create a new codeunit with Object Designer.

2.	 Add the following global variables:

Name Type Subtype
Customer Record Customer

TempCustomer Record Customer

3.	 With the cursor hovering over the Tempcustomer variable, click on Properties in the
View menu or press Shift + F4.

4.	 Set the following property:

Property Value
Temporary Yes

5.	 Write the following code into the OnRun trigger of the codeunit:
MESSAGE('Customer Count: %1\TempCustomer Count: %2',
 Customer.COUNT, TempCustomer.COUNT);

6.	 Save and close the codeunit.

Working with Tables, Records, and Queries

64

7.	 On executing the codeunit, you should see a window similar to the one in the
following screenshot:

How it works...
Declaring a record variable as temporary is as easy as setting the Temporary property to
Yes. But what is the purpose of setting a temporary table? A temporary table has all the code
and properties of a normal table. They function in exactly the same way. The only difference
is that when you perform a transaction, such as insert, modify, delete, or rename with a
temporary table the data is not stored in the database. Instead, it is held in memory, just
like any other variable.

There's more...
It may sound obvious, but when planning to work with a temporary table, don't forget to mark
it as Temporary! There's nothing worse than running TempGLEntry.DELETEALL and
realizing that all of your real data is gone. This is a perfect example of why you should always
perform your development in a test system and have a recent backup of your data before
performing any changes. Also, if you run a DELETEALL(TRUE) command on a temporary
record variable, the code that is called in the OnDelete trigger will run with variables that are
not temporary, which means that the actual data will be deleted. Again, be careful!

Storing records to be processed
Just as you can mark records that have to be processed using the MARK function, you can also
create a temporary table to store them. Instead of MARK, the following code can be used:

TempCustomer := Customer;
TempCustomer.INSERT;

Chapter 3

65

You assign the value of the actual data to a temporary record and then insert it into the
temporary table. The data will be stored in memory, but not in the database, and you can
use it for later operations.

See also
ff Creating a table

Retrieving data from other companies
NAV can hold data for many companies under your corporate umbrella. Often, users will
request consolidated reports that show them the data from all of the companies in the
system. This recipe will show you how to retrieve that data from anywhere in the system.

Getting ready…
Make sure you have at least two companies in your database.

How to do it...
1.	 Create a new codeunit with Object Designer.

2.	 Add the following global variables:

Name Type Subtype
Customer Record Customer

Company Record Company

3.	 Write the following code into the OnRun trigger of the codeunit:
 IF Company.FINDSET THEN
 REPEAT
 Customer.CHANGECOMPANY(Company.Name);
 MESSAGE('Company Name: %1\Customer Count: %2',
 Company.Name,Customer.COUNT);
 UNTIL Company.NEXT = 0;

4.	 Save and close the codeunit.

Working with Tables, Records, and Queries

66

5.	 On executing the codeunit, you should see a window similar to the one in the
following screenshot; the number of message screens displayed depends on the
number of companies available in the database:

How it works...
In order to get data from another company within NAV, we have to tell it which company we
want access to. Records have a built-in function called CHANGECOMPANY. This function takes
in a text value that represents the name of the company as a parameter.

In our example, we are going to show the number of customers in every company in NAV.
That's why we have the Record variable for Company. Looping through each record in the
dataset, we pass the name of the company through the CHANGECOMPANY command and
display the customer count. We could just as easily have stored our other company name
in a text constant and passed that value instead. In most cases though it is good to store
the name of the company you want to access in a setup table. This way if the company is
renamed, your code will not break.

See also
ff Retrieving data using the FIND and GET Statements

Using a query to extract data
Microsoft Dynamics NAV 2013 introduced a new object type called query. We can use a query
to retrieve data from one or multiple tables. A query can be configured with specific filters,
joins, and totaling methods. The following recipe will help to build a simple query to retrieve
data from one table.

How to do it...
1.	 Create a new query with Object Designer.

2.	 In Query Designer, leave the default value of the column Type as it is;
that is, DataItem.

Chapter 3

67

3.	 Select Customer as Data Source from the table list.

4.	 In the next row, select Column as Type and No. as Data Source. Keep the method
None as it is.

5.	 Add another two columns, Name and Balance, with the Method Type value None.

6.	 With the cursor hovering over the Balance row, click on Properties in the View menu
or press Shift + F4.

7.	 In ColumnFilter, select the assist edit button to apply the following filter:

Column Type Value
Balance Filter <>0

You should see the following screenshot:

8.	 Select the blank row and click on Properties from the View menu, or press
Shift + F4, to select the query properties.

9.	 In OrderBy, select the assist edit button and select the following fields:

Column Direction
Name Ascending

Working with Tables, Records, and Queries

68

10.	 You should be able to see a window similar to the one shown in the
following screenshot:

11.	 Save and close the query.

12.	 On executing the query, you should see a window similar to the one shown in the
following screenshot:

Chapter 3

69

How it works...
In Query Designer, DataItem refers to the table whereas Column refers to a table field. Our
query is retrieving data from the Customer table for the No., Name, and Balance fields.
Query autocalculated FlowField; that's why we have not selected any method to calculate the
value of the Balance fields. To avoid data with zero balances, we have added a filter on the
Balance field. At the end of the query, we added the sorting order based on the Name field.
As an output of our query, we see a window with multiple data export options.

There's more...
A query can be used to generate charts, export data (XML or CSV format), or expose the data
as an OData web service.

See also
ff Creating a table

ff Creating a query to link three tables

Creating a query to link three tables
Most times, we need to extract data from multiple tables; so, it's very important to understand
how to join multiple tables. In this recipe, we will see how to join three tables, set up the
method to calculate totals, and add filters to limit the result.

How to do it...
1.	 Create a new query object with Object Designer.

2.	 In Query Designer, choose DataItem from the drop-down list in the Type column.

3.	 Select Currency as a Data Source value from the table list.

4.	 In next row, select Column as Type and Code as Data Source. Keep the method
None as it is.

5.	 In the next row, select DataItem in the Type column and Sales Invoice Header
in the Data Source column.

6.	 In the next row, select DataItem in the Type column and Sales Invoice Line in
the Data Source column.

7.	 Add one more row with Column as Type and Amount as Data Source. For this row,
change Method Type to Totals and Method to Sum.

Working with Tables, Records, and Queries

70

8.	 Maintain the indentation of all rows as shown in the following screenshot:

9.	 To set up a relation between the Currency and Sales Invoice Header table,
hold the cursor over the Sales Invoice Header row and click on Properties in
the View menu, or press Shift + F4.

10.	 In DataItemLink, select the assist edit button to apply the following filter:

Field Reference DataItem Reference Field
Currency Code Currency Code

11.	 You should see a window similar to the one shown in the following screenshot:

12.	 Next, to set up a relation between the Sales Invoice Header and Sales
Invoice Line tables, hold the cursor over the Sales Invoice Line row
and click on Properties in the View menu, or press Shift + F4.

Chapter 3

71

13.	 In DataItemLink, select the assist edit button to apply the following filter:

Field Reference data item Reference field
Document No. Sales_Invoice_Header No.

14.	 Select Exclude Row If No Match as DataItemLinkType.

15.	 Save and close the query.

16.	 On executing the query, you should see a window similar to the one shown in the
following screenshot:

How it works...
As a result of the previous steps, we need to find total sales by each currency. To achieve
this, we are building a new query. As we want the final result per currency, we will take the
Currency table as the base table and add the Code field in the query. NAV saves the sales
history data in the Sales Invoice Header and Sales Invoice Line tables. The sales
value for each transaction is recorded in the Amount field of the Sales Invoice Line
table. To get the desired output, we added these two tables and the Amount field in our query.

To get the sum of amounts, we selected Method Type as Totals and Method as Sum. You
may have noticed that the system automatically selected Currency Code as a Group By
column. This will consolidate all values as per the currency code.

Working with Tables, Records, and Queries

72

After selecting all tables and fields, we need to set up a relation between all the tables. In
the Property window of the child table we need to set up DataItemLink. The relation of the
Currency and Sales Invoice Header tables is based on Currency Code, whereas the
Sales Invoice Header and Line tables' relation is based on Document No.

If we execute a query with the previous setup, we will get an output with all of the currency
codes and their respective sales values. To filter out currency with a zero amount value, we
selected DataItemLinkType of the Sales Invoice Line table as Exclude Row If
No Match. As the output of our query, we receive a window with multiple data export options.

There's more...
A query can be used to generate charts, export data (in XML or CSV format), or expose the
data as an OData web service.

A NAV query provides advanced options while joining tables. To access the advanced options,
we need to select the DataItemLinkType value SQL Advanced Option. On selecting this
option, we activate another property called SQLJoinType. This property provides multiple
options of join that we can use in the SQL queries. Let's take a quick look at these options.

Left outer join
The result for table A and B (as shown in the following diagram) always contains all records
of the left/upper table (A), even if the join condition does not find any matching record in the
right/lower table (B):

A B

Chapter 3

73

Inner join
An inner join creates a new result table, as shown in the following diagram, by combining the
column values of two tables (A and B) based on the value of the linked column:

A B

Right outer join
The result for tables A and B, as shown in the following diagram, always contains all records
of the right/lower table (B), even if the join condition does not find any matching record in the
left/upper table (A):

A B

Full outer join
The result contains all records from the left/upper table (A) and the right/lower table (B),
as shown in the following diagram, including records that do not have matching values for
columns that are linked by the DataItemLink property:

A B

Working with Tables, Records, and Queries

74

Cross join
A cross join contains rows that combine each row from the left/upper table (A) with each row
from a right/lower table (B). Cross joins are also called Cartesian products. A cross join does
not apply any comparisons between columns of data items, so the DataItemLink property is
left blank.

See also
ff Creating a table

ff Using a query to extract data

ff Working with queries in C/AL

Working with queries in C/AL
We can run a query and retrieve data using the C/AL code. To achieve this, NAV provides
several functions. This recipe will demonstrate a simple example of executing a query
using C/AL code.

How to do it...
1.	 Follow the steps from the Using a query to extract data recipe to create a query and

save it as Customer Balance.

2.	 Create a new codeunit with Object Designer.

3.	 Add the following local variable to the run trigger:

Name Type Subtype
CustBalance Query Customer Balance

4.	 Add the following code into the OnRun trigger of the codeunit:
CustBalance.TOPNUMBEROFROWS(2);
CustBalance.SETFILTER(Balance, '>10000');
CustBalance.OPEN;
WHILE CustBalance.READ DO
BEGIN
MESSAGE('Customer Name : %1 \Balance : %2', CustBalance.
Name,CustBalance.Balance);
END;
CustBalance.CLOSE;

5.	 Save and close the codeunit.

Chapter 3

75

6.	 On executing the codeunit, you should see a window similar to the one shown in the
following screenshot:

How it works...
We use the dataset provided by the Customer Balance query by setting it up as the
CustBalance variable. The function TOPNUMBEROFROWS helps to filter the desired number
of records from the result set. NAV provides functionality to filter the query objects using the
SETRANGE and SETFILTER functions. Using the SETFILTER function, we are filtering the
result dataset for amounts greater than 1000.

Open the function, run the query and provide the dataset. Read the function retrieve row
provided by the Open function. The values of columns in the row can be accessed by calling
Query.ColumnName.

There's more...
We can use the SAVEASCSV or SAVEASXML function to generate the query output in a file.

See also
ff Creating a table

ff Using a query to extract data

ff Creating a query to link three tables

4
Designing Pages

In this chapter, we will cover the following recipes:

ff Creating a page using a wizard

ff Using multiple options to run the page

ff Applying filters on the lookup page

ff Updating the subform page from a parent page

ff Creating a FactBox page

ff Creating a Queue page

ff Creating a Role Center page

ff Creating a wizard page

ff Displaying a .NET add-in on a page

ff Adding a chart to the page

Introduction
Microsoft announced a three-tier RoleTailored client (RTC) with Version 2009. As from
Version 2013, Microsoft offers only three-tier RTC with NAV. In RTC, the object of type "FORM"
is replaced by "PAGE". Pages provide the core way to interact with an NAV RoleTailored client.
The business logic called by the page is executed on the NAV Server tier, whereas previously,
the form was used by the client system to execute the business logic.

Designing Pages

78

A page and form share lots of similarities in terms of properties, triggers, and controls.
Some controls and features are reintroduced with a new presentation style and name.
For example, "buttons" become "actions", "Tab Control" becomes "FastTabs", and "Zoom"
is known as "About this Page". The following screenshot will help you to understand new
naming conventions of page controls:

Chapter 4

79

The preceding screenshot is of the Role Center page for the Sales Order Processor profile.
With NAV 2013, we received 21 profiles and 21 Role Center pages, designed considering
each profile work area. The following screenshot also gives additional information about
the same profile:

Creating a page using a wizard
Microsoft Dynamics NAV provides an option of a wizard to generate a page quickly.
|The page wizard presents a user with a sequence of dialog boxes that leads the
user through well-defined steps. The next recipe will demonstrate the page wizard.

Designing Pages

80

How to do it...
1.	 To start, create a new page from Object Designer.

2.	 Then select or type Customer in the Table selection.

3.	 Choose the Create a page using a wizard: option.

4.	 From the list of page types select Card.

5.	 Click on OK to proceed to the next step.

6.	 To create a new FastTab addition to the default one, add a line called Communication.

Chapter 4

81

7.	 Click on Next > to complete the current step.

8.	 Let's add some fields to our page. Add the No., Name, Address, City, and County
fields to the General tab.

9.	 Add the Phone No. and E-Mail fields to the Communication tab.

10.	 Click on the Finish button.

11.	 The page design generated by the wizard will look similar to the following screenshot:

12.	 Compile, save, and close the page to complete our development.

Designing Pages

82

13.	 On execution of the page from the object designer, you should see a window similar
to the following screenshot:

How it works...
Pages are the primary objects that capture and present data. They are similar to forms
in functionality, but different in their design. There is no visual Page Designer as a Form
Designer. The fastest way to design a page is by using the wizard. The page wizard is very
similar to the form wizard; it starts by selecting a table on which the page will be based on.

In RTC, vertical tabs are called FastTabs. The basic functionality of the FastTab is to group the
table fields as well as provide options to maximize or minimize the FastTab window. The wizard
creates one default FastTab with the name General. In this recipe, we have added one more
FastTab called Communication.

Now we must select fields that need to be displayed in the FastTabs. There is an option to
transfer a field from a table to a selected pool. The field selection process is the same as it
was available in the form wizard of the classic client.

Chapter 4

83

To display additional brief information about the current record, NAV provides an option of the
FactBox. These are basically divided into three types such as Page, System, and Chart. In the
next dialog box, we will select a FactBox for our page. This is an optional dialog box as we can
design a page without any FactBox to maintain the standard of the NAV GUI interface (I will
suggest adding FactBox).

Let's look at the Page Designer window. Type and SubType are the two primary
columns/settings to create a page. The following table will help you understand Type
and SubType options.

Type SubType Purpose
Container

ContentArea It is used as a general usage. An ordinary page (non-Role
Center) has this as the topmost element.

FactBoxArea It is used to define FactBox controls in a page.
RoleCenterArea It is used for the Role Center page instead of ContentArea.

Group
Group It is used to create FastTabs in the card pages and/or group

several controls together.
Repeater It presents data in a tabular format, such as in the list page.
CueGroup It creates CueGroups such as in the SO Processor Activities

page.
FixedLayout It fixes the layout of other controls, such as controls in the

bottom section of journals, for example, General Journals.
GridLayout It is used for nesting fields in a group.

Field It maps a data source, such as the table field or variable.
Part It is used to add subforms or FactBox to a page.

Page It provides a list of pages.
System This is used to select a fixed page in Outlook, Notes,

MyNotes, and RecordLinks
Chart It is used to add predefined graphical presentation of data.

Now we have an option to preview the page from Page Designer.

Designing Pages

84

There's more...
In the previous recipe, we have seen that NAV does not provide any visual Page Designer. The
presentation of controls depends on the type of the page; that means it's very important to
select a right page type. Some of the page types and their examples are as follows:

Page Example
Role Center Order Processor Role Center, Page 9006
List Customer List, Page 22
Card Customer Card, Page 21
CardPart Customer Details FactBox, Page 9084
ListPart My Customers, Page 9150
Document Sales Order, Page 42
Worksheet General Journal, Page 39
ConfirmationDialog Check Availability, Page 342
NavigatePage Navigate, Page 344
ListPlus Standard Sales Code Card, Page 170
StandardDialog Change Exchange Rate, Page 511

See also
ff Using multiple options to run the page

ff The Creating a table recipe in Chapter 3, Working with Tables, Records, and Queries

ff Updating the subform page from a parent page

ff Creating a FactBox page

Using multiple options to run the page
During development or the testing phase we may need to run the page individually. This recipe
has multiple subrecipes that will demonstrate the options to run the Customer Card page.

How to do it...
While using Object Designer, perform the following steps:

1.	 Open Microsoft Dynamics NAV development environment.

2.	 Go to the Tools menu, choose Object Designer, and then choose Page.

3.	 From the page list, select page 21 (Customer Card) and then click on Run.

Chapter 4

85

While using the command prompt, perform the following steps:

1.	 In the command prompt window, select the RoleTailored Client directory by
using the CD command.
CD C:\Program Files (x86)\Microsoft Dynamics NAV\70\RoleTailored
Client

2.	 Use the following command:
Microsoft.Dynamics.Nav.Client.exe Dynamicsnav:////runpage?page=21

3.	 While using the Run window, perform the following steps:

4.	 On the taskbar, choose Start and then choose Run.

5.	 In the Run window, type the following command:
Microsoft.Dynamics.Nav.Client.exe Dynamicsnav:////runpage?page=21

6.	 Finally, to execute our command, click on OK.

7.	 While using a browser, perform the following steps:

8.	 Open the Internet Explorer browser.

9.	 In the address bar, type the following:
Dynamicsnav:////runpage?page=21

How it works...
It is important to have a configured NAV server and RTC to run a page using any option
mentioned previously. On execution of any of the preceding options, the system will start
RTC with the last used database and company.

In the preceding commands, Microsoft.Dynamics.Nav.Client.exe represents a
RoleTailored client, whereas Dynamicsnav:////runpage?page= is a keyword to
run the page object type. Number 21 represents the Customer Card Page.

There's more...
At the time of NAV installation, Windows updates the registry entry to execute NAV clients.
The default value of the registry entry will always be the last NAV client installed. If you have
installed NAV 2009 R2 after NAV 2013, then Windows will execute the NAV 2009 R2 RoleTailored
client on execution of the Microsoft.Dynamics.Nav.Client.exe command.

Designing Pages

86

A simple modification in the registry will help to execute the desired client version. In the Run
window, type regedit; it will start Registry Editor. In Registry Editor, open the following
folder and update Default and the path string value.

HKEY_LOCAL_MACHINE | SOFTWARE | MICROSOFT | WINDOWS | CurrentVersion | App
Paths | Microsoft.Dynamics.NAV.Client.exe

To execute other NAV objects, we can use the preceding method by changing the keyword.
For example, to execute a report, use Dynamicsnav:////runreport?report=, and to
execute a table, use Dynamicsnav:////runtable?table=.

See also
ff Creating a page using a wizard

ff The Using multiple options to run the report recipe in Chapter 5, Report Design

Applying filters on the lookup page
Execution of the page with the filtered data is the usual requirement in NAV. Read the next
recipe to understand lookup options.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Then add the following global variable:

Name Data Type SubType
ItemRec Record Item

3.	 Write the following code in the OnRun trigger of the codeunit:
ItemRec.RESET;
ItemRec.SETRANGE("Inventory Posting Group",'FINISHED');
IF PAGE.RUNMODAL(PAGE::"Item List",ItemRec) = ACTION::LookupOK
THEN
 MESSAGE('Selected Item is %1, %2', ItemRec."No.", ItemRec.
Description);

4.	 To complete development, save and close the codeunit.

Chapter 4

87

5.	 On execution of the codeunit, you should see a window similar to the
following screenshot:

6.	 Select a desired record and click on OK, or you can even simply double-click on the
record to select it.

How it works...
For executing a page, NAV provides two functions RUN and RUNMODAL. If we use the RUN
function, we need to define a page variable that we can use before we run the page. If
we use the RUNMODAL function, we can use the variable before and after we run the page.

Designing Pages

88

We added a filter on the record variable of the table on which our page is based, and
passed it to our page. As we want our page to return the selected record, we are setting an
action lookup on our page. Now we add the code to display a message as we want to show
information about the selected record.

Once we execute our codeunit, it will open the Item List page with our filtered data. At this
time, our page is waiting for a user action to select the desired record. If the user does not
select any record and clicks on the OK button, the system will consider the first record as a
user selection.

There's more...
When a page is run modally, no input, such as a keyboard or a mouse click, can occur, except
for objects on the modal page. The RUN function is available for Page, Report, Codeunit, and
XMLport, whereas the RUNMODAL function is only available for Page and Report.

See also
ff The Advance filters recipe in Chapter 3, Working with Tables, Records, and Queries

ff The Create functions recipe in Chapter 2, General Development

Updating the subform page from a parent
page

The subform page only reloads data when it knows it needs to. Unfortunately, it is not very
smart. This recipe will show you how to force a subform page to refresh itself.

How to do it...
1.	 Create a new page from Object Designer.

2.	 Choose the Create Blank Page option to design a page from scratch.

3.	 Add the following global variables to the page:

Name Type
A Integer
B Integer

4.	 Next, add a global function called SetValues.

Chapter 4

89

5.	 Add the following parameters to the function:

Name Type
Aparam Integer
Bparam Integer

6.	 Now add the following code to the function.
A := Aparam;
B := Bparam;

7.	 Add another global function called UpdateSelf.

8.	 Then add the following code to the function:
CurrPage.UPDATE;

9.	 From the Page Designer window, set the following page property (Shift + F4):

Property Value
PageType CardPart

10.	 Add the following variables in the Page Designer window:

Type SubType SourceExpr Name
Container ContentArea MainContainer
Group Group MainGroup

Field A+B Sum of A & B

11.	 After the previous configuration and coding, Page Designer will look similar to the
following screenshot:

Designing Pages

90

12.	 Save and close the page (for later use, remember the ID it is saved under).

13.	 Now let's create another new page using Object Designer.

14.	 Then add the following global variables:

Name Type
A Integer
B Integer

15.	 Later, add the following variables in the Page Designer window:

Type SubType SourceExpr Name
Container ContentArea MainContainer

Group Group MainGroup

Field A Value For A

Field B Value For B

Part Page ChildPage

16.	 Make sure all controls are indented under Container as shown in the
following screenshot:

Chapter 4

91

17.	 Next, in the OnValidate trigger for each field, add the following code:
CurrPage.ChildPage.PAGE.SetValues(A,B);
CurrPage.ChildPage.PAGE.UpdateSelf;

18.	 In the next row, add the value Part for the column Type, and for the column
SubType add value as Page.

19.	 Set the following properties for the Part section (Shift + F4):

Property Value
Name ChildPage
PagePartID The ID of the page you just created

20.	 Finally save and close the page.

21.	 On execution of the page, you will see a window similar to the following screenshot:

Designing Pages

92

How it works...
To understand the concepts behind this recipe, we will use the following figure:

Parent Page

Integer A Integer B

Integer A

Integer B

Child Page

SetValues(Aparam, Bparam)

UpdateSelf

OnValidate

The main page knows only about things that are directly on itself, that is, two integer variables
and a subform page. The main page can request the subform page to return some values
and can also tell the subform page to set values if it needs to, but it cannot do it directly. The
subform page can only be of type CardPart or ListPart.

Also, the subform page knows only about things that are on its own page. These include the
two integer variables (completely different than the two integer variables on the main page),
the SetValues function, and the UpdateSelf function. While the main page can request
information from the subform page, the opposite does not hold true. The subform page knows
nothing about the main page.

That explains why we add code where we do. For the subform page to display the sum of A
and B, we have to tell it what the values of A and B are. Remember that just changing the
values on the main page is not enough. That's why we have the SetValues function. We call
this function every time the values are changed (OnValidate) in the main form.

That again is not enough, though. Just because the values have changed in the subform page,
it doesn't mean the subform page is smart enough to understand that it must display the new
information. Ordinarily, you would have to click on the subform page (or select it; you can do
anything that makes it the active control on the page) for it to refresh. You can also do this
with code, using the CurrPage.UPDATE command.

Chapter 4

93

See also
ff Creating a page using a wizard

Creating a FactBox page
In RTC, we can see small boxes on the right-hand side of the pages, which display brief
information about the current record. To maintain the standard NAV GUI in customized pages,
it is suggested to add FactBox related to the pages. In this recipe, we will create a FactBox
page based on Item table and add it on the default Item List page.

How to do it...
1.	 Create a new page from Object Designer.

2.	 Leave the Table Name field blank and choose the Create Blank Page option to
design a page from scratch.

3.	 From the Page Designer window, set the following page properties (Shift + F4):

Property Value
PageType CardPart
SourceTable Item

4.	 Add the following variables in the Page Designer window:

Type SubType SourceExpr Name
Container ContentArea MainContainer

Field "No." <No.>

Field Description <Description>

Field Inventory <Inventory>

5.	 The indented Page Designer window will look similar to the following screenshot:

Designing Pages

94

6.	 Save and close the page (for later use, remember the ID it is saved under).

7.	 Choose page 31 (Item List) in Object Designer and click on the Design button.

8.	 At the end of Page Designer, under FactBoxArea, add a new Part of type Page.

9.	 Now set the following properties for Part (Shift + F4):

Property Value
PagePartID The ID of the page you just created
SubPageLink No.=FIELD(No.)

10.	 To adjust the sequence of FactBoxes, use the up and down arrow buttons.

11.	 Save, close, and run the page. You should find your FactBox in the Item List page.

Chapter 4

95

How it works...
FactBox is nothing but a subform page; that's why the page type has to be a CardPart
or ListPart page. We have created our page based on the Item table with three simple
fields. As we are assigning the Inventory field directly to a control, even though it is of type
flowfield, we do not need to explicitly calculate it using CALCFIELD.

To use our new subform page as FactBox, it's important to add it under a container of type
FactBoxArea. To set the first position (by default), we used indentation buttons. Users
can use the personalization functionality of RTC and rearrange the position of FactBox
as per their convenience.

To associate the FactBox data with the main page's record, we need to set up the relation
between the main page and the FactBox page. To achieve this, we used the SubPageLink
property. If we do not set this property, we will see that of all the item records, FactBox
displays information of only the first record.

There's more...
Microsoft suggests using the word "FactBox" as a suffix for all the FactBox pages. It will help to
identify these pages easily.

See also
ff Creating a page using a wizard

ff Creating a Queue page

ff Creating a Role Center page

Creating a Queue page
The Queue page is a part of the Role Center page. This recipe will help us to create a Queue
page, which we will be utilizing in our next recipe, Creating a Role Center page.

Designing Pages

96

How to do it...
1.	 Create a new blank page from Object Designer.

2.	 Set the properties of the page as follows:

Property Value
Caption Activities
PageType CardPart
SourceTable Sales Cue

3.	 Add the following variables in the Page Designer window:

Type SubType SourceExpr Name Caption

Container ContentArea MainContainer <MainContainer>

Group CueGroup ForReleaseGroup For Release

Field "Sales

Quotes –
Open"

OpenQuotes Open Sales
Quotes

Field "Sales

Orders –
Open"

OpenOrders Open Sales
Orders

4.	 Set the following property in the OpenQuotes line:

Property Value
DrillDownPageID Sales Quotes

5.	 Set the following property in the OpenOrders line:

Property Value
DrillDownPageID Sales Orders

Chapter 4

97

6.	 After the previous configuration and coding, our page should look similar to the
following screenshot:

7.	 Keep the cursor on the ForReleaseGroup line and navigate to View |
Control Actions.

8.	 Then add the following variables:

Type Name Caption
Action Action1 New Sales Quote

Action Action2 New Sales Order

9.	 Set the following property in the New Sales Quote line:

Property Value
RunObject Page Sales Quotes

10.	 Set the following property in the New Sales Order line:

Property Value
RunObject Page Sales Order

11.	 Compile, save, and close the page.

Designing Pages

98

12.	 When you run the page, you will see a window similar to the following screenshot:

How it works...
The first part of the Role Center is known as activities. This is where the users look to know
what actions they need to perform. The activities are built on top of special tables known as
cues. These cue tables are made mostly of FlowFields and FlowFilters. We are going to
build our activities part on the Sales Cue table. It should display any Open Sales documents
we are working on.

By adding the Group line to our page and specifying SubType as CueGroup, we tell the RTC
to display the fields indented beneath it in a specific way. Activities are displayed as stacks of
paper that grow and shrink based on the numbers returned by the FlowFields in the cue
table. Additionally, in order to provide the same type of data access that you would gain on a
form, we specify DrillDownFormID for each of the fields or activities. We can also define
actions on our group lines. In this example we have created simple links to create new sales
quotes and sales orders.

See also
ff Creating a page using a wizard

ff Creating a FactBox page

ff Creating a Role Center page

ff Adding a chart to the page

Chapter 4

99

Creating a Role Center page
The Role Center is like a dashboard that displays data and functionality related to a specific
user role. This recipe will show you how to create a Role Center page for the new RTC.

How to do it...
1.	 Create a new page from Object Designer.

2.	 Set the properties of the page as follows:

Property Value
PageType RoleCenter

3.	 Add the following variables in the Page Designer window:

Type SubType SourceExpr Name
Container RoleCenterArea Content

Group Group LeftSide

Part Page Activities

Part System Outlook

Group Group RightSide

Part Page MyCustomers

Part Page MyItems

Part System MyNotes

4.	 All of the previous lines should be indented as shown in the following screenshot:

Designing Pages

100

5.	 Now set the following properties in the Activities line:

Property Value
PartType Page
PagePartID The Queue ID of the Activities page that we created

in the previous recipe

6.	 Then set the following properties in the Outlook line:

Property Value
PartType System
SystemPartID Outlook

7.	 Set the following properties in the MyCustomers line:

Property Value
PartType Page
PagePartID My Customers

8.	 Set the following properties in the MyItems line:

Property Value
PartType Page
PagePartID My Items

9.	 Set the following properties in the MyNotes line:

Property Value
PartType System
SystemPartID Notes

Chapter 4

101

10.	 Compile, save, and close the page. The resulting Role Center should look similar to
the one shown in the following screenshot:

How it works...
We begin with a container, but this time we set the SubType field to RoleCenterArea. This
essentially divides the page vertically into a left and right section. We add groups for each of
these sections and then choose what to display.

Designing Pages

102

Deciding what to display is fairly straightforward. Instead of adding fields to our group, we add
parts. First we choose what type of part will be shown. For our activities, this will be a Page
object, so we set the PartType property to Page and PagePartID to the object ID of the
page. Directly beneath that part, we are displaying the built-in Outlook part. For this, we
set the PartType property to System, because it comes with NAV, and the SystemPartID
property to Outlook. The right-hand side is made up of similar parts.

For more details on the PartType option, visit the following URL:
http://msdn.microsoft.com/en-us/library/
dd355029(v=nav.70).aspx

See also
ff Creating a page using a wizard

ff Creating a FactBox page

ff Creating a Queue page

Creating a wizard page
A wizard is a page that takes you through specific sections using the Next and Back buttons.
Here we will show you how to design a page that will do exactly that.

How to do it...
1.	 Create a new blank page from Object Designer.

2.	 Set the properties of the page as follows:

Property Value
PageType NavigatePage

3.	 Create the following global variables:

Name Type Length
FullName Text 200
Address Text 200
DateofBirth Date
ContactNo Text 30
BackEnable Boolean
NextEnable Boolean
FinishEnable Boolean

Chapter 4

103

Name Type Length
Step1Visible Boolean
Step2Visible Boolean
Step3Visible Boolean
Step4Visible Boolean

4.	 Add the following variables in Page Designer:

Type SubType SourceExpr Name
Container ContentArea Content

Group Group Step1

Field FullName Enter Your Full Name

Group Group Step2

Field Address Enter Your Present Address

Group Group Step3

Field DateofBirth Enter Your Date of Birth

Group Group Step4

Field ContactNo Enter Your Contact no.

5.	 They should be indented as shown in the following screenshot:

6.	 Select Group and Step1 and set the Enable property with a value Step1Visible.

7.	 Select Group and Step2 and set the Enable property with a value Step2Visible.

8.	 Select Group and Step3 and set the Enable property with a value Step3Visible.

9.	 Select Group and Step4 and set the Enable property with a value Step4Visible.

10.	 Then navigate to View | Page Actions (Ctrl + Alt + F4) to add actions on the page.

Designing Pages

104

11.	 In Action Designer, add the following variables:

Type Name Caption
Action Action1 &Back
Action Action2 &Next
Action Action3 &Finish

12.	 Set the following properties for Action1:

Property Value
Enabled BackEnable
Image PreviousRecord
InFooterBar Yes

13.	 Set the following properties for Action2:

Property Value
Enabled NextEnable
Image NextRecord
InFooterBar Yes

14.	 Set the following properties for Action3:

Property Value
Enabled FinishEnable
Image Approve
InFooterBar Yes

15.	 Add this code on the action trigger of Action1:
DoStep(CurrentStep-1);
CurrPage.UPDATE;

16.	 Add this code on the action trigger of Action2 and Action3:
DoStep(CurrentStep+1);
CurrPage.UPDATE;

17.	 Next, create a new function DoStep.

18.	 Add the following parameters to the function:

Name Type
Step Integer

Chapter 4

105

19.	 Add the following code to the function:
CurrentStep:=Step;
CASE Step OF
 1:
 BEGIN
 Step1Visible:=TRUE;
 Step2Visible:=FALSE;
 BackEnable := FALSE;
 NextEnable := TRUE;
 FinishEnable := FALSE;
 END;
 2:
 BEGIN
 Step2Visible:=TRUE;
 Step1Visible:=FALSE;
 Step3Visible:=FALSE;
 BackEnable := TRUE;
 NextEnable := TRUE;
 FinishEnable := FALSE;
 END;
 3:
 BEGIN
 Step3Visible:=TRUE;
 Step2Visible:=FALSE;
 Step4Visible:=FALSE;
 BackEnable := TRUE;
 NextEnable := TRUE;
 FinishEnable := FALSE;
 END;
 4:
 BEGIN
 Step4Visible:=TRUE;
 Step3Visible:=FALSE;
 BackEnable := TRUE;
 NextEnable := FALSE;
 FinishEnable := TRUE;
 END;
 5:
 BEGIN
 MESSAGE('%1\%2\%3\%4',FullName,Address,
 DateofBirth,ContactNo);
 CurrPage.CLOSE;
 END
 END;
CurrPage.UPDATE;

Designing Pages

106

20.	 To start with step 1, add the following code to the OnOpenPage trigger:
DoStep(1);

21.	 Compile, save, and close the page.

22.	 When you run the page, you will see a window similar to the following screenshot:

How it works...
The page contains four steps, only one of which is visible at any given time. To control this, we
assigned a Boolean variable to all the StepxVisible properties. To control the movement
of steps, we need to control our actions. To achieve this, we added other Boolean variables to
the Enable property of our actions.

Our custom function DoStep decides what should be visible and what should not. It is just
a large CASE statement based on the Step variable. In the first frame, for example, we can't
move backwards to disable the Back button. We can't finish until we get to the last frame, so
the Finish button is disabled until that point.

In the Back and Next buttons, we decrement and increment the Step variable, so that the
DoStep function knows what to do. To keep track of the current step, we assign a value to the
global CurrentStep variable; on the back action, we subtract 1 whereas on the next action
we add 1 into CurrentStep.

See also
ff Creating a page using a wizard

Chapter 4

107

Displaying a .NET add-in on a page
The Microsoft Dynamics NAV Page Designer is limited in what it can do and what data it can
display. By creating a visual .NET add-in and adding it to a page, you can display your data in
the same formats that are available in .NET Windows Forms.

Getting ready
Microsoft Visual Studio must be installed on your system to use this recipe. I have used Visual
Studio 2010; however, this recipe is compatible with Visual Studio 2008 as well.

How to do it...
1.	 Create a new class library project in Visual Studio.

2.	 Add the following references to the project:
System.Windows.Forms
Microsoft.Dynamics.Framework.UI.Extensibility

3.	 The latter can be found in the NAV's installation folder under RoleTailored Client.

4.	 Add the following code to the program:
using System.Xml;
using System.Data;
using System.Windows.Forms;
using Microsoft.Dynamics.Framework.UI.Extensibility;
using Microsoft.Dynamics.Framework.UI.Extensibility.WinForms;
namespace RSSReader
{
 [ControlAddInExport("NAV_RSS")]
 public class RSSReaderAddIn : WinFormsControlAddInBase
 {
 private DataGridView grid;
 public void LoadRSS(string URL)
 {
 System.Net.WebRequest myRequest =
 System.Net.WebRequest.Create(URL);
 System.Net.WebResponse myResponse =
 myRequest.GetResponse();
 System.IO.Stream rssStream =
 myResponse.GetResponseStream();
 System.Xml.XmlDocument rssDoc = new
 System.Xml.XmlDocument();
 rssDoc.Load(rssStream);

Designing Pages

108

 System.Xml.XmlNodeList rssItems =
 rssDoc.SelectNodes("rss/channel/item");
 XmlNode attribute;
 int i = 0;
 foreach (XmlNode node in rssItems)
 {
 attribute = node.SelectSingleNode("title");
 string[] rowArray = new string[] {
 attribute.InnerText };
 grid.Rows.Add(rowArray);
 i++;
 }
 }
 public override bool AllowCaptionControl
 {
 get
 {
 return false;
 }
 }
 protected override Control CreateControl()
 {
 grid = new DataGridView();
 grid.Columns.Add("Title", "Title");
 grid.Columns["Title"].Width = 600;
 grid.Height = 500;
 LoadRSS(
"http://mibuso.com/forum/smartfeed.php?u=7776&e=dGmFiU150Nty0r
hD8WG9KPwqlx38DiyvBH0tybeha8xNIA6Pr4x6EA..&lastvisit=1&filter_
foes=1&forum=32&limit=NO_LIMIT&count_limit=10&sort_by=postdate_
desc&feed_type=RSS2.0&feed_style=HTML");
 return grid;
 }
 }
}

5.	 Go to the project's properties and click on the Signing tab. Check the Sign the
assembly checkbox.

Chapter 4

109

6.	 Under choose a strong name key file, select an existing key or create a new one.

7.	 Build, save, and close the project.

8.	 Copy the NAV_RSS.dll file from your default project folder, usually under
C:\Users\Your Username\Documents\Visual Studio 2008\Projects\
RSSReader\RSSReader\bin\Debug folder for the RoleTailored client,
usually under C:\Program Files (x86)\Microsoft Dynamics NAV\70\
RoleTailored Client\Add-ins.

9.	 Run the command prompt as the administrator.

10.	 Locate the sn.exe file. The default folder for the Microsoft .NET Framework
SDK is C:\Program Files (X86)\Microsoft SDKs\Windows\v7.0\Bin.

11.	 In the command prompt, change to the directory that contains the sn.exe utility.

12.	 Type the following command:
sn.exe -T "C:\Program Files (x86)\Microsoft Dynamics NAV\70\
RoleTailored Client\Add-ins\NAV_RSS.dll"

13.	 Record the Public Key Token number.

14.	 From Object Designer, run the 2000000069 table in Client Add-in.

15.	 Create a new record for NAV_RSS as shown in the following screenshot:

Designing Pages

110

16.	 Then click on OK.

17.	 The add-in should be registered.

18.	 Create a new page from Object Designer.

19.	 Add the following variables:

Caption Type SubType Name
<MainContainer> Container ContentArea MainContainer

<NAV_RSS> Field NAV_RSS

20.	 Set the following property in the NAV_RSS line and use the Public key token
value, which we searched for earlier in this recipe:

Property Value
ControlAddIn NAV_RSS;PublicKeyToken=Your Public Key Token

21.	 Use the lookup arrow to select the add-in. Your page should look similar to the
following screenshot:

Chapter 4

111

22.	 When you run the page, it should look similar to the following screenshot:

How it works...
In NAV 2013, you can use your own .NET objects to display in RTC pages. This is done using
the functionalities in Microsoft.Dynamics.Framework.UI.Extensibility dll.

The LoadRSS function is the bulk of our class, but it is not important to the recipe, so we will
only discuss it in brief. Many sites publish data in a format called Really Simple Syndication
(RSS). This RSS format is just a form of XML, which can be parsed and used for our own use,
in this case to fill in our GridView.

We have two functions that allow us to control the way we interact with pages in NAV 2009.
The first is AllowCaptionControl. By overriding this function in extensibility.dll,
we can force our control to not display a label. The second function, which is CreateControl,
is the most important one. It returns a control object that tells the RTC what to display. Our
function sets up a simple grid with one column called Title. We then call our LoadRSS
function to fill in the actual data.

Designing Pages

112

In order to use this new DLL in NAV 2013, we have to also make sure it is a signed assembly.

With the Client Add-in tool, registering the new control in NAV is easy. When we select the
file to register, it automatically determines the Public Key Token number that is used to
identify the DLL.

Finally, it is time to use our control in a page. We create a new page and add a field line. There
is a property on the field line called ControlAddIn, which we can add to our newly registered
add-in. Although it may not be the prettiest add-in, it will give us a better idea of developing
add-ins. Our control is now ready to be used anywhere in the RTC.

See also
ff Creating a page using a wizard

ff The Zipping folders and files within NAV recipe in Chapter 9, OS Interaction

ff The Using SHELL to run external applications recipe in Chapter 9, OS Interaction

Adding a chart to the page
Microsoft Dynamics NAV 2013 provides functionality to design unlimited charts. These
charts can be based on a table or query. Users can add these charts on FactBoxes and
Role Center pages.

How to do it...
1.	 Start Microsoft Dynamics NAV 2013 RoleTailored client.

2.	 Go to Departments | Administration | Application Setup | RoleTailored Client |
Generic Charts.

3.	 Select the New action to create a chart.

4.	 In General FastTab, provide an ID and Name field to the chart (for later
use, remember the ID it is saved under).

5.	 Select the Source Type table and set the Source ID value 112.

6.	 Set Measures as follows:

Data Column Aggregation
Amount Sum

7.	 Then set Salesperson Code as X-Axis and Currency Code as Z-Axis.

8.	 Update the description text as Salesperson sales by currency.

9.	 Close the window.

Chapter 4

113

10.	 Go to Home | Role Center.

11.	 Go to the Application menu and navigate to Customize | Customize This Page....

12.	 In the Customize the Role Center window, in the Available parts: field, choose Chart
Part, and then click on Add>>.

13.	 To select our chart, click on the Customize Part... button at the right-hand side of
the window.

Designing Pages

114

14.	 In the Customize Chart window, choose the last generic chart we created. Then click
on the OK button.

15.	 Now on the Role Center page, in the FactBox area, we can see our newly added chart.

How it works...
To display the salesperson's sales by currency, we based our chart on the Posted
sales Invoice table. The Amount field is a measure, whereas Salesperson
Code and Currency Code are dimensions.

By personalizing RTC, we add our own customized charts and FactBoxes on the Role Center.

There's more...
Microsoft Dynamics NAV 2013 Generic Charts provide 14 different graph types to choose from.
In addition to generic charts, Microsoft provides specific charts such as Finance Performance.

For more information on Finance Performance, visit the Microsoft MSDN site.

http://msdn.microsoft.com/en-us/library/hh895991(v=nav.70).aspx

Chapter 4

115

See also
ff Creating a Role Center page

ff The Creating an RDLC report recipe in Chapter 5, Report Design

ff The Creating a Matrix report recipe in Chapter 5, Report Design

5
Report Design

In this chapter, we will cover:

ff Creating an RDLC report

ff Using multiple options to run a report

ff Adding custom filters to the Request Page

ff Setting filters when report is loaded

ff Creating reports to process data

ff Creating a link from report to page

ff Creating a link from report to report

ff Adding totals on decimal field

ff Adding interactive sorting on reports

ff Creating a matrix report

Introduction
Although reports are similar to pages, they serve a different purpose in NAV. Pages exist
primarily for data entry while reports show a higher-level view of what is going on in the
database. Reports can be customer-facing documents, such as order confirmations and
invoices or used for internal analysis, such as aged accounts receivables and aged accounts
payable. They can also be used to process large amounts of data.

Report Design

118

As developers, it is our job to design the dataset and visual layout of these reports. First, we
use the Report Dataset Designer in Microsoft Dynamics NAV Development Environment
to define the dataset of the report by choosing table as dataItem and field, variable,
expression, or a text constant as column. Next, we design Client Report Definition Layout
(RDLC) for reports that are used to print or display data. We use the Visual Studio report
designer to design an RDLC layout. The following table will help to understand the different
types of reports:

Report type Details Example
List report A list report contains a single data item based on either

a master or supplemental table to print the list. A report
name contains the table name and the word List.

Customer - List

Inventory -
List

Test report A test report is generally based on journal tables. The
purpose is to test each journal line before posting and
presenting the missing information to the user. The
name of this report contains the type of journal and the
word Test.

General Journal
-Test

Resource
Journal - Test

Posting
report

Posting reports are printed from the Post and
Print options of the journals. They contain a list of
transactions posted to register. The report name is the
name of the register.

G/L Register

Customer
Register

Transaction
report

A transaction report is based on two tables, the master
table and the related ledger table. It presents all the
ledger entries for each transaction record with a subtotal
for each transaction record and the grand total at the
end. There is no standard name for these reports.

Trial Balance

Customer -
Trial Balance

Document
report

This type of report is generally divided into three
sections—header, body, and footer. The header and
footer information is generally repeated on each page,
whereas the body mostly contains the column layout
presenting transaction details.

Sales – Invoice

Purchase -
Invoice

Processing-
only report

This type of report does not have a print layout;
the report itself does the processing. To make any
report a processing-only report, we need to set the
ProcessingOnly property to the report.

Import Budget
from Excel

Update Analysis
Views

Other
reports

These reports are designed as per client requirements.
There is a fixed format for these reports.

Chapter 5

119

Creating an RDLC report
This recipe will guide you to develop a simple RDLC report of the type list.

How to do it...
1.	 Create a new report from Object Designer.

2.	 Then add the following lines in the Report Designer:

Data type Data source Name
DataItem Customer <Customer>

Column "No." No_Customer

Column Name Name_Customer

Column Address Address_Customer

Column City City_Customer

Column Balance Balance_Customer

3.	 After the previous step, the Report Dataset Designer should look like the
following screenshot:

Report Design

120

4.	 From the View menu, choose Layout. You should see a window similar to the
following screenshot:

5.	 From the Toolbox explorer, select Table and add it to design as shown in the
following screenshot:

Chapter 5

121

6.	 Display the Report Data Explorer window from the View menu in Visual Studio or
press Ctrl + Alt + D. From the Report Data Explorer, select all the dataset items,
and add them to the table in the designer. After adding the dataset items to the
Visual Studio report designer, it should look like the following screenshot:

7.	 Save and close the Visual Studio report designer.

8.	 On clicking on the report designer in NAV, you will see the following confirmation
dialog. Click on Yes.

9.	 Save and close the report.

Report Design

122

10.	 On execution of the report from the NAV Object Designer page, you should see a
window similar to the following screenshot:

How it works...
The Report Dataset Designer provides options to select the tables and fields on which we
want to base our report. After selecting the desired table as DataItem, we can simply type
the field details or select it from the Field menu.

The Visual Studio report designer provides very flexible options to design a visual layout of
reports. To view the report data explorer, go to View | Report Data (or press Ctrl + Alt + D).
We selected the Table data region to display our data in the list format. We added fields from
the report data explorer.

NAV objects are designed and developed in C/AL, whereas an RDLC report visual layout
is designed and developed in the Visual Studio report designer. It is very important to
save/integrate layout metadata with a NAV report object. After closing the visual designer
and coming back to the report dataset designer, we get a dialog to save/integrate the visual
layout information with the report.

Chapter 5

123

There's more...
Microsoft Dynamics NAV 2013 provides an option to upgrade NAV 2009 reports. The following
table will help to understand how the upgrade process will develop the NAV 2013 report.
To upgrade the report from the Microsoft Dynamics NAV Development Environment, go
to Object Designer, select the report which needs to be upgraded, and then go to Tools |
Upgrade Report.

NAV 2009 Report After upgrade
Reports with both classic
report layouts and RDLC
layouts

The report dataset is upgraded to NAV 2013 dataset definition
and the RDLC 2005 layout is upgraded to RDLC 2008

Classic report The report dataset is upgraded to NAV 2013 dataset definition,
the request page is deleted, and an RDLC 2008 layout is created

Processing-only reports The report dataset is upgraded to NAV 2013 dataset definition

See also
ff Using multiple options to run a report

ff Adding custom filters to the Request Page

ff Creating a link from report to page

ff Creating a link from report to report

Using multiple options to run a report
During the development or testing phase, we may need to run a report individually. This recipe
has multiple subrecipes that will demonstrate options to run the Customer – List report.

How to do it...
1.	 Open Microsoft Dynamics NAV Development Environment.

2.	 From the Tools menu, choose Object Designer and then choose Report.

3.	 Select the report 101, Customer - List and then choose Run.

4.	 Firstly using command prompt, in the command prompt window, select
RoleTailored client directory by using the CD command:
CD C:\Program Files (x86)\Microsoft Dynamics NAV\70\RoleTailored
Client

Report Design

124

Secondly, use the following command:
Microsoft.Dynamics.Nav.Client.exe Dynamicsnav:////runreport?report
= 101

5.	 Firstly, using the Run window, on the taskbar, choose Start, and then choose Run.
In the Run window, type the following command:
Microsoft.Dynamics.Nav.Client.exe Dynamicsnav:////runreport?Report
=101

secondly, choose OK.

6.	 Using browser – Open the browser. In the address bar, type the following command:
Dynamicsnav:////runreport?report=101

How it works...
It is important to have a configured NAV server and the RoleTailored client to run a
report using any of the options mentioned in the previous section. On execution of any of
the previous options, the system will start the RoleTailored client with the last used
database and company.

In the previous commands, Microsoft.Dynamics.Nav.Client.exe represents the
RoleTailored client, whereas Dynamicsnav:////runreport?report= is a keyword
to run the object type report. The number 101 represents the Customer - List report.

See also
ff Creating an RDLC report

ff Using multiple options to run the page

Adding custom filters to the Request Page
When running a report, sometimes we want the user to be able to filter on something that
is not a field in a table. This recipe will show you how to add a filter to the request page
for this purpose.

Chapter 5

125

How to do it...
1.	 Create a report by following the Creating an RDLC report recipe.

2.	 Reopen the report in the designer mode and add the following global variables:

Name Type Length
CustomerNoFilter Code 250

3.	 Navigate to View | Request Page (Alt + V, A).

4.	 Add the following lines in the page designer:

Type SubType SourceExpr Name
Container ContentArea MainContainer

Group Group MainGroup

Field CustomerNoFilter Customer No. Filter

5.	 The request page should look like the following screenshot:

6.	 Add the following code to the OnPreDataItem trigger for the customer data item:
IF CustomerNoFilter <> '' THEN
 SETFILTER("No.", '%1', CustomerNoFilter);

7.	 Save and close the report.

Report Design

126

How it works...
The request page is just a normal page. We design it in the same way we would design any
other page.

Our example is basic. We could easily add the No. field to the filters on the data item. Instead,
we store the filter in a global text variable and then use that text variable to set the filter
properly before loading the data by adding the code to the OnPreDataItem trigger. The trick
is to set the filter only if the user has entered any value. If the filter was left blank, and this
blank was filtered, we would get an empty recordset.

Ordinarily when you run a report, assuming you have added fields to the ReqFilterFields
property and nothing has been added to the request page, you would see a window similar to
the following screenshot:

Chapter 5

127

When you run this report, you'll notice that a new FastTab is created. This is the tab that holds
the request page, but it only appears when you have added something to it:

There's more...
The fields on the request page have the same triggers and properties as textboxes on
a normal page. This means that you don't have to rely on the user to remember the
customer number. We can add the lookup functionality as shown:

Add the following local variables to the OnLookup trigger for the field:

Name Type Subtype
Customer Record Customer

Add the following code to the OnLookup trigger:

IF PAGE.RUNMODAL(22,Customer) = ACTION::LookupOK THEN
 CustomerNoFilter:=Customer."No.";

Report Design

128

This code enables the lookup arrow on the field. It runs the Customer List page in lookup
mode and retrieves the selected record. That value is assigned to the CustomerNoFilter
variable, which is what the field displays as shown in the following screenshot:

See also
ff Creating an RDLC report

ff Setting filters when report is loaded

ff Adding totals on decimal field

Setting filters when report is loaded
You will often want to run a report on a specific record. This recipe will show you how to set the
record that the report will use to execute.

Chapter 5

129

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Then add the following global variables:

Name Type Subtype
Customer Record Customer

3.	 Write the following code in the OnRun trigger of the codeunit:
Customer.FINDFIRST;
Customer.SETRANGE("No.", Customer."No.");
REPORT.RUN(REPORT::"Customer List", TRUE, FALSE, Customer);

4.	 Save and close the codeunit.

How it works...
The FINDFIRST value in this example is used here so that we have some data to work with.
It is not necessary to implement this example. We use this data to apply a filter for the first
customer number in the table.

Next comes the important part. NAV has a built-in variable named REPORT that has several
methods associated with it. One of these is the RUN() method that takes four parameters.
The first parameter is the ID of the report to run. It is best to reference the report using the
same syntax as an Option variable, REPORT::"Name of Report".

The second and third parameters are Booleans. The second tells the system whether or not
to display the request page. We definitely want to display it because we want to see how it
looks when we run it on a specific record. The third parameter tells it whether or not to use
the system printer.

Our final parameter is a record variable that matches the first data item of the report. This
parameter holds all of the filters that have been previously applied. When you run the
codeunit, the report request page will be shown and the No. filter will be filled in.

There's more...
The most common place in NAV to see the final parameters being used is when printing
reports-page-specific documents, such as an invoice. You can take a look at the flow of data
between the actual pages and the document-print codeunit to get a better understanding.

Report Design

130

See also
ff Using multiple options to run a report

ff Adding custom filters to the Request Page

Creating reports to process data
If we want to carry out some process without an output, we can use a report with the
Process-only option. It allow us to use the built-in processing loop along with sorting and
filtering capabilities to create a variety of data updating routines with minimum programming.
In addition to this, it gives access to the Request Page to allow user inputs and guidance for
the run. We can create the same functionality using codeunit, but for user inputs, we need to
develop an additional page. Here we will see how to build a processing-only report.

How to do it...
1.	 Create a new blank report from Object Designer.

2.	 Set the following property on the report:

Property Value
ProcessingOnly Yes

3.	 Now, the previous property system will open a dialog box to confirm the auto changes
done after setting this property. Click on Yes:

4.	 Add a data item with Customer as the table data source.

Chapter 5

131

5.	 In the OnAfterGetRecord trigger for the customer data item, add the
following code:
"Last Date Modified" := TODAY;
MODIFY;

6.	 Save and close the report.

How it works...
A data item is a record variable. However, instead of us writing our own code to loop through
each record, this functionality is built inside a report. That makes a report a great place
to perform mass processing of records. For this type of report, we don't want any pages
to be displayed. This slows down the processing speed dramatically. To do this, we set the
ProcessingOnly property of the report to Yes.

The OnAfterGetRecord trigger is fired after each record is retrieved from the database. This
is where we need to place our code. Here we are just changing the Last Modified Date
field, but you could do any sort of change that you want. When you run the report, you will see
different buttons on the Request Page. Instead of the normal print and preview button, there
is an OK button in its place:

Report Design

132

There's more...
When a normal report is running, the system displays a dialog box, which contains the count
of processed records. This lets the user know that the system is still doing something and
has not stopped. The processing-only reports don't tell the user what is going on. This means
that it is your responsibility to keep the user informed. The best way to do this is by displaying
a progress bar. You can assign the variables and open the dialog in the OnPreDataItem
trigger. The OnAfterGetRecord trigger is used to update the progress bar while the
OnPostDataItem trigger can be used to close the dialog.

See also
ff Creating an RDLC report

ff Using multiple options to run a report

ff Creating a matrix report

Creating a link from report to page
RDLC reporting offers plenty of options to make reports more interactive. This recipe will
demonstrate how to call a page from a report.

How to do it...
1.	 Create a report by following the Creating an RDLC report recipe.

2.	 Reopen the report in the designer mode.

3.	 Go to report properties. In Report Dataset Designer, select an empty line, and then
navigate to View | Properties or press Shift + F4, and set the following property:

Property Value
EnableHyperlinks Yes

4.	 From the View menu, choose Layout.

5.	 In the Visual Layout Designer, right-click on the No_Customer table box
field and select Table Box Properties. You should see a window similar to
the following screenshot:

Chapter 5

133

6.	 In the Properties window, choose the Action tab.

7.	 Select the Go to URL option.

8.	 Click on the Fx button to enter the following URL in the Select URL field and click on
the OK button:
="dynamicsnav://///runpage?page=21&$filter=Customer.'No.'%20IS%20
'''%40" + Fields!No_Customer.Value + "*'''"

9.	 In the Properties window, choose the Font tab and set the following properties:

Property Value
Color Blue

Effects Underline

10.	 Save and close the visual layout designer.

11.	 Save and close the report.

Report Design

134

How it works...
By updating two properties we can link a page to a report. Firstly, update the report properties
to let the report know that there is a hyperlink present in the report.

Secondly, configure the URL action for the report field. We selected the Customer No.
field and linked it to the Customer Card page. In the URL, dynamicsnav://///
runpage?page= is the keyword to run page and 21 is the Customer Card page ID.
Finally, we applied a filter of our selected Customer No. field.

Now, to make us aware that there is a link available on the Customer No. field, we have the
updated Color and Effect properties. On execution of the report you should see a screen
similar to the following screenshot:

Chapter 5

135

There's more...
We have seen how to link a report with a page using URL. Now the question is—how do we get
the right URL? The following steps will help you to get the proper URL to open a page:

1.	 Apply the required filter on the page using the RoleTailored client.

2.	 Go to the application menu and navigate to Page | Copy Link.

3.	 To view the copied link, paste it on a Notepad.

See also
ff Creating an RDLC report

ff Creating a link from report to report

ff Creating a matrix report

Creating a link from report to report
Linking one report to another report is very similar to the previous recipe Creating a link from
report to page. Let's see how it works.

How to do it...
1.	 Create a report by following the Creating an RDLC report recipe and open the report

in the designer mode.

2.	 Go to report properties. In Report Dataset Designer, select an empty line and then
navigate to View | Properties or press Shift + F4, and set the following property:

Property Value
EnableHyperlinks Yes

3.	 On the View menu, choose Layout.

4.	 In the visual layout designer, right-click on the No_Customer table box and select
Table Box Properties.

5.	 In the Properties window, choose the Action tab.

6.	 Select the Go to URL option.

7.	 Click on the Fx button to enter the following URL in the Select URL field:
="dynamicsnav:////runreport?report=104&filter=Customer.%22No.%22:"
+Fields!No_Customer.Value

Report Design

136

8.	 In the Properties window, choose the Font tab and set the following properties:

Property Value
Color Blue

Effects Underline

9.	 Save and close the visual layout designer.

10.	 Save and close the report.

How it works...
The principle of linking pages is applied here; the only difference is that we have changed
the keyword:

="dynamicsnav://///runpage?page=21&$filter=Customer.'No.'%20IS%20
'''%40" + Fields!No_Customer.Value + "*'''"

Reports can be linked to pie charts as well by configuring the series properties.

See also
ff Creating an RDLC report

ff Creating a link from report to page

ff Creating a matrix report

Adding totals on decimal field
As the reporting solution is changed, most of the old functions are either removed or replaced.
The next small recipe will show you a very basic but widely used function to get a total.

How to do it...
1.	 First, create a report by following the Creating an RDLC report recipe.

2.	 Open the report in the designer mode and navigate to View | Layout (Alt + V, Y) to
alter the report visual layout.

3.	 Select the last row of the table control, right-click and navigate to Insert Row |
Outside Group – Below.

4.	 In the newly added row, right-click on the cell of column Balance_Customer and
select Expression.

Chapter 5

137

5.	 Set the following value for the expression as you reach a form similar to the
following screenshot:
=SUM(Fields!Balance_Customer.Value)

6.	 Save and close the report.

How it works...
In NAV classic reporting, we used to set the data item property TotalFields or function
CREATETOTALS. As both these options are not available for the NAV 2013 report, we need
to base our report totals on Visual Studio functions.

Expression and Scope are the two parameters for the Visual Studio report designer SUM
function. Expression is required field on which aggregation need to be done whereas a
video scope is the name of a grouping, dataset, or data region.

See also
ff Creating an RDLC report

ff Creating a matrix report

Report Design

138

Adding interactive sorting on reports
After a classic report is generated, no change can be made on the sorting of data, whereas an
RDLC report offers the option of interactive sorting. The following recipe will guide you to add
interactive sorting on a report.

How to do it...
1.	 First, create a report by following the Creating an RDLC report recipe.

2.	 Open the report in the designer mode and navigate to View | Layout (Alt + V, Y) to
alter the report visual layout.

3.	 Right-click on the No. Customer cell and select Table Box Properties.

4.	 Select the Interactive Sorting tab.

5.	 Under Change interactive sort options for the text box, select the Enable
interactive sorting on this text box checkbox:

Chapter 5

139

6.	 In the Sort by drop-down list, select the No_Customer field. Click on OK to close the
properties window:

7.	 Right-click on the Name cell and select Table Box Properties.

8.	 Select the Interactive Sorting tab.

9.	 Under Change interactive sort options for the text box, select the Enable
interactive sorting on this text box checkbox.

10.	 In the Sort by drop-down list, select the Name_Customer field. Click on OK to close
the properties window.

11.	 Save and close the report.

Report Design

140

12.	 On execution of the report, you should see a window similar to the following screenshot:

How it works...
Interactive sorting will enable users to interactively change the sort order for the data
columns. To change the sort order between ascending and descending order, select
the sort control button in the column header.

See also
ff Adding custom filters to the Request Page

ff Setting filters when report is loaded

Creating a matrix report
Matrix report!!! This word suggests complexity. In reality, it's not that tough. In this recipe,
I tried to keep it as simple as possible.

Chapter 5

141

How to do it...
1.	 Create a new report from Object Designer.

2.	 Create global text constant with the following details:

Name ConstValue
ReportNameLbl Item by Location

3.	 Add the following lines in the Report Designer:

Data type Data source Name
DataItem Location <Location>

Column Code Location_Code

Column Name Location_Name

Column ReportNameLbl ReportName

DataItem Item <Item>

Column "No." Item_No

Column Description Item_Description

Column Inventory Item_Inventory

4.	 After making the previous changes, Report Dataset Designer should look like the
following screenshot:

Report Design

142

5.	 Set the following property for the Location data item:

Property Value
DataItemTableView SORTING(Code)

ORDER(Ascending)

6.	 Set the following property for the Item data item:

Property Value
DataItemTableView SORTING(No.)

ORDER(Ascending)
WHERE(Inventory=FILTER(<>0))

DataItemLink Location Filter=FIELD(Code)

7.	 To design the visual layout, go to View | Layout (Alt + V, Y).

8.	 From the Toolbox explorer, select Matrix and add it to design.

9.	 Right-click on the first cell of the matrix control and go to Insert Column |
Inside Group Left.

10.	 To merge two cells of the first row, select both the cells, right-click, and select
Merge Cells.

11.	 From the Report Data explorer, drag ReportName to the top-left cell in the
matrix control:

Chapter 5

143

12.	 In the next row, drag Item_No and Item_Description to the first two columns:

13.	 In the last column of the first row, drag the Location_Name field.

14.	 In the data cell, add the Item_Inventory field.

15.	 The Visual Designer should look like the following screenshot:

16.	 Select the Item_Inventory data cell, Table Box Properties, and go to the
Action tab.

17.	 Select the Go to URL option and add the following value as the URL expression:
="DynamicsNAV:////runreport?Report=705&Filter=Item.%22Location
Filter%22:"+Fields!Location_Code.Value+"&Filter=Item.%22No.%22:
"+Fields!Item_No.Value

Report Design

144

18.	 In the data cell Table Box Properties, go to the Font tab and set the
following properties:

Property Value
Color Blue

Effects Underline

19.	 Go to Report Properties from the NAV report designer and set the
EnableHyperlinks property to Yes.

20.	 Save and close the report.

21.	 On execution of the report, you should see a window similar to the following screenshot:

How it works...
Our matrix report is based on the Item and Location table. We are expecting an inventory
count per item by location. In the Location data item, we have added one column which is
taking the value from text constants. This field will be used as the matrix name. To pass any
information to the Visual Studio designer, we need to add that information as a column.

Chapter 5

145

After creating the required data items and columns, we need to set up a relation between the
two data items. Otherwise, we will receive the same value per item for all locations. To avoid
this, we have applied the location filter by using the DataItemLink property. To avoid data
with zero inventory value, we have added a filter on the inventory field of the Item table.

The matrix control simplifies our process of designing by allowing the dragging-and-dropping
of the required fields inside control, and we are now ready to run the report. Here, we have
added a hyperlink on our values to link the matrix report with the report 705 (Inventory
Availability) to offer more visibility on an inventory value.

There's more...
We can export an RDLC report in different ways.

Exporting an RDLC report from viewer
After the report is generated, it can be exported to Excel, Word, and PDF. The following
screenshot will show you the export options:

Exporting an RDLC report from C/AL code
Using the following C/AL code, a report can be exported to Excel, Word, PDF, XML, and HTML:

1.	 Excel:
REPORT.SAVEASEXCEL(Number, FileName[, Record])

2.	 Word:
REPORT.SAVEASWORD(Number, FileName[, Record])

3.	 PDF:
REPORT.SAVEASPDF(Number, FileName[, Record])

4.	 XML:
REPORT.SAVEASXML(Number, FileName [, SystemPrinter] [, Record])

Report Design

146

5.	 HTML:
REPORT.SAVEASHTML(Number, FileName [, SystemPrinter] [, Record])

6.	 NAV 2013 executes C/AL code on the NAV server, so the NAV server will search for
the file path on the server machine and not on the client machine. To avoid confusion
about the file location, create a folder on the server machine and share that folder
with all the users and use it as the EXPORT and IMPORT location for NAV.

See also
ff Using multiple options to run a report

ff Adding custom filters to the Request Page

ff Creating a link from report to page

ff Creating a link from report to report

ff Adding totals on decimal fields

ff Adding interactive sorting on reports

6
Diagnosing Code

Problems

In this chapter, we will cover:

ff Using the debugger

ff Setting breakpoints

ff Handling runtime errors

ff Using About This Page and About This Report

ff Finding errors while using NAS

Introduction
No one writes perfect code on their first attempt. When running hundreds or even thousands
of lines of code at a time, it can be extremely difficult to determine where exactly an error
occurred and what caused it. That's why we have tools such as the debugger in Microsoft
Dynamics NAV.

For the most part of the recipes in this chapter, we will not deal with writing your own code or
writing better code. Instead, we will focus more on how you can determine what is happening
with the code you have already written.

Using the debugger
This recipe will show you how to use the debugger to examine the code that is currently
executing. We will demonstrate how to go through the code line-by-line and watch how
values and objects change.

Diagnosing Code Problems

148

How to do it...
1.	 First create a new codeunit from Object Designer.

2.	 Then add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 We need to add the following global text constant as well:

Name ConstValue
Text001 Rakesh Raul

4.	 Add a global function called ChangeCustomerName.

5.	 The previous function should take the following parameter:

Name Type Length
NewName Text 50

6.	 Add the following code to the function:
Customer.Name := NewName;

7.	 Add the following code to the OnRun trigger:
Customer.FINDFIRST;
ChangeCustomerName(Text001);
Customer.VALIDATE("Post Code");

8.	 Save and close the codeunit.

9.	 Now from the Tools menu in the NAV client, go to Debugger | Debug Session
(Shift + Ctrl + F11).

10.	 You should see the currently running session list:

Chapter 6

149

11.	 To debug the session, select the session that has the login permissions used to run
the client.

12.	 From the ribbon, select the Debug action.

13.	 You should see a window similar to the following screenshot:

14.	 From the ribbon, select the Break action.

15.	 Run the codeunit.

Diagnosing Code Problems

150

How it works...
When you run the codeunit, the Microsoft Dynamics NAV debugger window will appear, just
like the one shown in the following screenshot:

Before we get into the details of this window, we need to understand what caused it to appear.
Setting the debugger for a particular session means that the debugger window will open every
time the system encounters an error; in this case, though, we know our code doesn't produce
any errors. We want to look at it anyway, so we turn on the Break option as well.

There are five components to the debugger window. The first is the Actions option on the
ribbon at the very top. We can hover over each button to get a tool tip of what it does.

The second component sits right below and contains the actual code from the current object.
Here you can see a small yellow arrow pointing to the first line of our codeunit in the OnRun
trigger. This is the line that is about to execute. Note that it has not yet executed. We'll explore
each of the other three components as we move through our code.

Chapter 6

151

Use the F11 key or click on the Step Into action on the ribbon. The window will now look like
the one shown in the following screenshot:

The yellow arrow has moved to the second line of the code and the first line has executed.
Click on the Variables action on the ribbon. It lists all the variables and their values in the
current object. At first, our Customer variable was uninitialized because we had not executed
the Customer.FINDFIRST line. That line retrieved a record from the database causing the
value of the variable to change.

The following is the next line of code that will be executed:

ChangeCustomerName(Text001);

Diagnosing Code Problems

152

What is this Text001 variable? If you're unsure of the value of a text constant, or you don't
want to open a new page of variables and scroll through a possibly long list of variables to
view a variable's value repeatedly, you can add a shortcut to the Watch list (the Watches
FactBox). Open the variable page, select the text constant, and select the Add Watch action.
The variable will be added to the Watch list along with its current value. Go ahead and hit
F11 to move onto the next line.

The yellow arrow jumps to the function that we just called. That brings us to our last window,
the Call Stack window (the second FactBox). It is important to know how we got to the code
that we are currently viewing. By looking at the Call Stack window, we can see that we were in
the OnRun trigger of the codeunit and then jumped to the ChangeCustomerName function.
We can click on each level of the stack to see the code for that object:

Chapter 6

153

You may not always want to go through your code line-by-line, though. Try hitting the F5 key
or the Go command from the Debug menu. This will cause you to jump to the next function
that is called instead of the next line. You will find yourself in a completely new object,
the Customer table. Notice how the Context menu completely changes because the old
variables are no longer in scope. They do not belong to the current object being examined.

There's more...
There are few facts we should be aware of before debugging:

ff Only one debugging session can be activated on a single NAV instance; this means
that if we need multiple debugging sessions at the same time, we need to have those
many NAV Server instances.

ff There is a setting available on the NAV Server instance to activate or deactivate
debugging, and that is Debugging Allowed.

Diagnosing Code Problems

154

ff As we enable the debugger for the first time, the system will create C# files for the
complete application. These files are placed in Windows' ProgramData folder. For
Windows 7 users, the following path will help them to find these files:
C:\ProgramData\Microsoft\Microsoft Dynamics NAV\70\Server\Micro
softDynamicsNavServer$YourNAVServerInstance\source\Codeunit

In the previous recipe, we only looked at very basic information about the NAV debugger; but
this tool has plenty of features and benefits. I suggest that you visit the following URL to learn
more on the debugging process and the NAV debugger:

http://msdn.microsoft.com/en-us/library/dd338786(v=nav.70).aspx

See also
ff Setting breakpoints

ff The Creating a NAV Server instance recipe in Chapter 12, NAV Server Administration

Setting breakpoints
Stepping through the code line-by-line or function-by-function can take forever. Luckily, there is
an easy way to tell the debugger to stop right where we want it to.

How to do it...
1.	 Create and save the same codeunit discussed in the Using the debugger recipe in

this chapter.

2.	 Design the codeunit.

3.	 Go to the following line of code in the OnRun trigger:
ChangeCustomerName(Text001);

4.	 Press F9 twice.

5.	 Then go to the following line of code in the OnRun trigger:
VALIDATE("Post Code");

6.	 Press F9 once.

Chapter 6

155

7.	 Your window should look like the following screenshot:

8.	 Save and close the codeunit.

9.	 From the Tools menu of the Microsoft Dynamics NAV Development Environment
page, navigate to Debugger | Debug Session (Shift + Ctrl + F11).

10.	 From the debugger window, select the user session and click on Debug
(Ctrl + Shift + S) to activate the debugger.

11.	 On execution of the codeunit, the system will take you to the debugging window; the
debugging screen should be identical to the following screenshot:

Diagnosing Code Problems

156

How it works...
While running the debugger on this codeunit, it should stop on the Customer.VALIDATE
("Post Code") line of code. This is because we have set a breakpoint here, which was the
filled red circle at the left of that line. The debugger stops right where we tell it to, that is, right
before that line of code executes. There is another mark; it is a red circle that is not filled.
This is used to mark old breakpoints that we are not currently using. This is useful when we
are trying to debug large amounts of code and want to temporarily remove a breakpoint or
remember where we had one.

There's more...
The debugger is not perfect by any means. Some might even say it has a mind of its own
sometimes. It doesn't always stop exactly where you want it to. It is a common practice to
set a breakpoint on a few successive lines of code in order to ensure that you stop in the
general area.

Breakpoint options in the debugger
The NAV 2013 debugger is pretty advanced as compared to the old versions. It provides some
nice options related to breakpoints.

By selecting the Toggle action, we can add or remove breakpoints while debugging:

Chapter 6

157

The Breakpoints action will provide the list of all breakpoints and options to enable or
disable them:

The following three options are provided under the Break Rules action:

ff Break on Error: Debuggers break the execution when an error occurs.

ff Break on Record Changes: If a record is going to be changed by using INSERT,
MODIFY, MODIFYALL, DELETE, and DELETEALL, this option will break the execution
before the change happens.

ff Skip Codeunit 1: The codeunit 1 is the base set of functions for NAV, which is used in
almost all actions/executions. This option will skip the codeunit 1 from the debugger.

Diagnosing Code Problems

158

The following screenshot shows the options in the Break Rules action:

See also
ff Using the debugger

Handling runtime errors
Runtime errors happen when we are actually executing the code. Most of these errors present
error messages that users cannot easily understand. This recipe will show how to handle
these errors as well as some of the most common errors.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Then add the following global variables:

Name DataType SubType
Customer Record Customer

Selection Integer

Chapter 6

159

3.	 Write the following code in the OnRun trigger of the codeunit:
Selection := STRMENU('Show Error,Handle Error', 1);
IF Selection = 1 THEN
 Customer.GET
ELSE
 IF NOT Customer.GET THEN
 ERROR('Unable to find a customer with a blank number.'+
 '\Are you sure you have selected a customer?');

4.	 Save and close the codeunit.

5.	 On execution of the codeunit, we will see a window with two options, as shown in the
following screenshot:

How it works...
This codeunit allows you to select between having NAV handle an error for you or handling it
with custom code. If you choose to let NAV handle the error for you, you will be presented with
the following error message:

Diagnosing Code Problems

160

This message can be confusing for new users. Its interpretation can be different depending on
the user.

For those who have been using NAV for a while, this message is obvious. Those users know
that two single quotes represent something blank, and that this message is saying that a
customer's record with a blank number does not exist.

Now look at the message that is displayed when we handle the error:

The GET function, and many others, returns a Boolean value. If this value is not used by the
developer and it is false, an error is thrown. We still want to throw an error, but we want one
that makes sense to everyone. Here, we tell the user what went wrong and a possible solution.

There's more...
With an older version of NAV, we used to have a very important and useful tool, that is, code
coverage; unfortunately, from NAV 2013, Microsoft has removed this tool. The code coverage
tool logs every line of code that is executed during a process; in addition to this, it also
provides a percentage of code (coverage ration) that was executed in the object.

NAV blogs are a great help for developers, thanks to all the contributors who share their
research. The following URL will take you to the MSDN blog on NAV 2013 code coverage; it
includes the solutions' explanation (in the German language) and an object text file. Online
translation tools can help you to translate the German text to English.

http://blogs.msdn.com/b/german_nav_developer/archive/2012/08/26/pimp-
your-nav-2013-code-coverage-in-30-minuten-nachr-252-sten.aspx

See also
ff Using the debugger

ff Using About This Page and About This Report

Chapter 6

161

Using About This Page and About This
Report

When a user reports that there is a bug, our first question is, in which object? We often find
errors on pages or reports, as these are the two main GUI objects used to present the data.
This recipe will help you to get more information about the page and report objects.

How to do it...
This recipe has two parts that will provide steps to use the about this feature on the object
type's page and report.

About This Page
The following are the steps to use About This Page:

1.	 Start the RoleTailored client.

2.	 Go to the Department menu.

3.	 Navigate to Sales & Marketing | Order Processing | Sales Order.

4.	 Select the first sales order and click on the View action.

5.	 On the Sales Order page, go to the Application menu and navigate to Help | About
This Page.

6.	 You should see a window similar to the following screenshot:

Diagnosing Code Problems

162

About This Report
The following are the steps to use About This Report:

1.	 Start the RoleTailored client.

2.	 Go to the Department menu.

3.	 Select Sales & Marketing and choose the Report and Analysis category.

4.	 Select the Customer List report and click on Preview.

5.	 In the Customer List report, go to the Application menu and navigate to Help |
About This Report.

The first time you run this option, the program will open About This
Report for the first time and ask the user to run the report again
and select About This Report to see the details!

6.	 The system will open a window displaying the row data on which the report is based:

How it works...
About This Page and About This Report provide the inside view of objects from
the RoleTailored client, which helps in troubleshooting and debugging issues.
The About This Page window shows the following FastTabs:

ff Page Information

ff Table Fields (sorted first by key fields, then alphabetically)

Chapter 6

163

ff Source Expressions

ff FlowFilter Fields

ff Filters

All the information displayed in the about this section can be exported in Word and Excel, and
can be set as an e-mail attachment or can be printed.

There's more...
If you try to run About This Page for a subform page, by selecting the Application menu and
then About This Page, you will see all the information about the main page.

How to get the subform information
The trick is to use the shortcut keys. Ctrl + Alt + F1 are the shortcut keys for the about this
feature. Select a record for the subform page and press Ctrl + Alt + F1, and you will see the
desired information, as shown in the following screenshot:

Diagnosing Code Problems

164

On a few computers, we need to add a Windows key in the
about this shortcut (Ctrl + Alt + the Windows key + F1).

See also
ff Using the debugger

Finding errors while using NAS
Navision Application Server (NAS) is just a NAV client without GUI. This can present
challenges in figuring out what has gone wrong while running your code using NAS.
This recipe will show how to debug NAS.

Getting ready
You must already have the NAV Application Server service installed on the machine on which
you are working.

How to do it...
1.	 Start Microsoft Dynamics NAV Development Environment.

2.	 Go to File | Database | Information.

3.	 The following screenshot will provide an idea about the expected window:

Chapter 6

165

4.	 In the Server Instance drill-down list, select the service instance that is running NAS.

5.	 From the Tools menu in the NAV client, navigate to Debugger | Debug Session
(Shift + Ctrl + F11).

6.	 You should see the currently running session list.

7.	 Select the NAS session.

8.	 From the ribbon select the Debug action.

9.	 From the ribbon select the Break action.

How it works...
In NAV 2013, debugging NAS is pretty much the same as debugging an RTC client; the only
difference is in selecting a right session. If you activate the debugger from an RTC client
service, you won't even see the NAS session.

To connect our development environment with the NAV Server, we need to select the NAS
service instance. A service instance field is non-editable, but you can select the required
service from the drill-down list.

Now, after this, if we activate the debugger we get a session list that contains our NAS session
entry. After this point, everything is the same regarding debugging.

The NAV Server instance has a dedicated tab to configure NAS;
it includes setting Enable Debugging, which provides a lead
time of 60 seconds before executing the first C/AL statement to
allow time for activating the debugger.

There's more...
From the RoleTailored client, go to Departments | Administration | IT Administration
| General | Sessions to get the list of active sessions.

Diagnosing Code Problems

166

The following screenshot of the session table showing Client Type is considered in the session
list for debugging:

The Session List page not only shows all clients but also allows us to debug the sessions
of other users. Even if you want to debug the immediate next session-accessing breakpoint
code, it is possible only by selecting the Debug Next action from the Session List page:

See also
ff Using the debugger

ff Using About This Page and About This Report

ff The Configuring NAS to run Job Queue recipe in Chapter 12, NAV Server Administration

7
Roles and Security

In this chapter, we will cover:

ff Assigning a role to a user

ff Creating a new role

ff Using the FILTERGROUP function

ff Using security filters

ff Applying security filter modes

ff Field-level security

ff Assigning permission to use the About This Page function

ff Killing a user session

Introduction
Enterprise resource planning (ERP) systems such as Dynamics NAV need a built-in security
model to make sure that the appropriate people have access to the appropriate information.
NAV supports four forms of user authentication: Windows, Username, NavUserPassword,
and ACS. Each login has assigned roles, which in turn have permissions, which the system
checks every time data is accessed or an object is run.

NAV security is somewhat limited and difficult to maintain. However, as system-security data
is stored in tables of the NAV database, we can write a custom code to handle permissions in
any way we like. We can even make calls to the Active Directory to examine user groups and
other Windows properties. As you will see in this chapter, the boundaries of NAV security are
limitless, but there will be a large amount of work involved for certain tasks.

Roles and Security

168

Assigning a role to a user
To provide access to certain areas of NAV, we need to assign permission of that area to the
user. In order to limit the complexity of assigning individual object permission to every user,
the NAV group-related permission under one head calls the role (Permission Set). This
recipe will show you how to assign the role (Permission Set) to a NAV user.

How to do it...
1.	 From the RoleTailored client, navigate to Department | Administration | IT

Administration | General | Users.

2.	 Now open User Card in the edit mode and add the role (Permission Set).

3.	 Then go to User Permission Set fast tab.

4.	 In the Permission column, click on the dropdown. You should see a window similar
to the following screenshot:

Chapter 7

169

5.	 From the role list, select Role ID and then Basic.

6.	 Click on OK.

How it works...
The security system in NAV is maintained using roles (Permission Sets) and permissions.
A role (Permission Set) is made up of permissions to access specific objects, such as
tables, pages, and reports in the database. These roles are then assigned to the users.

Everything related to security in NAV can be found under the Department | Administration
| IT Administration | General menu in the RoleTailored client. The NAV system has
built-in roles categorized by user activity. The role Basic contains permission to access the
NAV system; all NAV users need to have this role in their permission set.

There's more...
Access permission can be restricted for a particular company by applying a filter on the role.

Roles and Security

170

See also
ff Creating a new role

ff Using security filters

ff Field-level security

ff Assigning permission to use the About This Page function

Creating a new role
NAV has its own built-in methods for controlling access to certain parts of the system. This
recipe will show you how to create role (Permission Set) to limit that access.

How to do it...
1.	 From the RoleTailored client, navigate to Department | Administration | IT

Administration | General | Permission Set.

2.	 Use the New (Ctrl + N) action to enter a new role called SAMPLE with the description
PACKT – Sample Role.

3.	 Now with your cursor on the SAMPLE line, click on the action Permissions.

4.	 Let's add a permission for Object Type as TableData and Object ID as 18.

5.	 Set the permission as shown in the following table:

Object Type Object
ID

Read
Permission

Insert
Permission

Modify
Permission

Delete
Permission

Table
Data

18 Yes Yes Yes Yes

Chapter 7

171

6.	 After setting the permission, the NAV window will look like the following screenshot:

7.	 Click on OK.

How it works...
Roles are inserted into the system using the same shortcuts as in every other record,
by using the Ctrl + N key. These roles have a short name called the Role ID and a
longer description field.

Our role contains a permission that will allow the user full access to customer records.
For Table Data object types, there are four permission levels that can be combined in
any order. They include the ability to read, insert, modify, and delete records from this table.
The fifth permission level is run or executed and is used for the other object types. The options
for each of these permission levels are No, Yes, and Indirect.

In order to test this, we will need to assign the role to a user who does not already have
permission to the Customer table. Once that role is assigned, the user will need to close
the NAV client and reopen it in order to gain new permissions.

Roles and Security

172

There's more...
Permission can be defined for the following objects:

Object type Description
Table Data Data stored in table
Table Table object
Page Page objects
Report Report objects
Codeunit Codeunit objects
XMLPort XMLport object
MenuSuite MenuSuite object
Query Query object
System The system tables that allow the user to make

backups, change license files, and so on.

See also
ff Assigning a role to a user

ff Using security filters

ff Field-level security

Using the FILTERGROUP function
The FILTERGROUP function is used to apply filters that cannot be removed by the user. This
recipe will show you how to write a code to utilize them and what to watch out for.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Now add the following global variables:

Name Type Subtype
CurrFilterGroup Integer

Customer Record Customer

Chapter 7

173

3.	 Write the following code in the OnRun trigger of the codeunit:
CurrFilterGroup := Customer.FILTERGROUP;

Customer.FILTERGROUP(255);
Customer.SETRANGE("No.", '50000');
Customer.FILTERGROUP(CurrFilterGroup);
Customer.FINDFIRST;

MESSAGE('Filters: %1\First Customer: %2', Customer.GETFILTERS,
Customer.Name);

4.	 Save and close the codeunit.

How it works...
The FILTERGROUP function is used to set filters on a Record variable that cannot be
removed by the user. This function does not have any direct relation to roles, but it is part of
the complete security solution for NAV. It takes in a single integer as a parameter between
the numbers 0 and 255. Although you can use numbers one to six, they are reserved by the
system and manually assigning filters to those groups can override default functionality; for
example, NAV uses FILTERGROUP number four to apply the link between the header and line
values on pages such as Sales Order and Purchase Order.

In our short code segment, we first need to determine the FILTERGROUP function that
is currently assigned to the user, so that we can set it back when we are finished. Like
other functions in NAV, when the optional parameter is not used, the function returns the
current value. Next we set the FILTERGROUP to 255, assign a filter, and then reset the
FILTERGROUP. Finally, we find the first record in the table and then display a message with
the filters applied and the record that was found.

As you can see from the expected output, we cannot view filters that we have applied to the
record. However, if we look at the Customer List from the standard page, we can see that
Guildford Water Department is not the first customer on the list.

Roles and Security

174

See also
ff The Advanced filtering recipe in Chapter 3, Working with Tables, Records, and Query

Using security filters
Microsoft Dynamics NAV allows you to specify record-level security using the Security
Filters field on Permissions. Here we will discuss how to set up these filters and some
pitfalls to watch out for when using them.

How to do it...
1.	 From the RoleTailored client, navigate to Department | Administration | IT

Administration | General | Permission Set.

2.	 View permission for the role HR-EMPLOYEE.

3.	 Using the assist button, set the Security Filter field of Object ID 5200 to a
filter based on City equal to 'Cambridge'.

4.	 Close the Security window.

5.	 Create a new codeunit from Object Designer.

6.	 Add the following global variables:

Name Type Subtype
Employee Record Employee

7.	 Write the following code in the OnRun trigger of the codeunit:
Employee.SETPERMISSIONFILTER;
PAGE.RUNMODAL(0, Employee);

8.	 Save and close the codeunit.

Chapter 7

175

9.	 The resulting form will contain the details of a single Employee variable:

How it works...
We can limit the records, which the user can see in a table, using the Security Filter option.
This attribute is assigned in a way similar to the read/insert/modify/delete attributes
in the Permissions window for a Role.

If the user opens a page, these filters will automatically be applied. This is not the case,
though, when the page is opened through the code. In these cases you must call the
SETPERMISSIONFILTER function on the Record variable that is passed to the page.

There's more...
When used correctly, security filters can be of great use when setting up permissions. On the
other hand, they can also cause a lot of headaches.

For example, let's imagine a manager who needs to view the General Ledger entries to
make sure his department is not going over budget. He should be able to view the entries only
in the accounts that relate directly to his department. This seems like a great use for security
filters. But what about all the other General Ledger entries that are created when he posts
the documents? Tax and VAT are great examples. That security filter will not allow him to post
those accounts and he will receive errors during posting.

Roles and Security

176

Be careful when and how you use this type of security. If you apply a security filter to a
Customer permission, don't just open the Custom List page to test it out. As with all the
security pages, you will want to test your code extensively to make sure that you do not
introduce any problems into the system.

See also
ff The Advanced filtering recipe in Chapter 3, Working with Tables, Records, and Query

Applying security filter modes
In this recipe we will see how to apply security filter modes on record variables, records on
page, reports, XMLports, and query variables.

How to do it...
1.	 Select the record variable on which you want to add a security filter mode.

2.	 Use the following syntax to apply a filter:
RecordVar.SecurityFiltering := SecurityFilter:: <Disallowed|Filter
ed|Ignored|Validated>

How it works...
To change the security filtering property on the record variable, we have to simply apply the
desired filter value to a property. The filter values are as follows:

ff Disallowed: No security filters are allowed on variables; if there is any filter applied,
the system will fire error.

ff Filtered: All security filters are applied on the record variable.

ff Ignored: All security filters are ignored on the record variable.

ff Validated: All security filters are applied; on violation of a filter, an error will
be generated.

There's more...
For more details, search security filter modes in the Help | Developer and IT Pro Help menu
of Microsoft NAV Development Environment.

Chapter 7

177

See also
ff Using security filters

ff Field-level security

Field-level security
Field-level security does not exist out of the box in NAV and is not easy to implement. In fact,
a real field-level security is impossible to implement. This recipe will show you an example of
how to quickly create a work around this type of security model in your system.

How to do it...
1.	 Create a new table from Object Designer of the name Field Level Security.

2.	 Then add the following fields:

Name Type Length
Table No. Integer

Field No. Integer

Applied To Code 50

Editable Boolean

Visible Boolean

3.	 Set the following properties for these fields:

Field name Property Value
Table No. TableRelation Object.ID WHERE

(Type=CONST(Table))

Field No. TableRelation Field.No. WHERE
(TableNo=FIELD(Table No.))

Applied To TableRelation User."User Name"

Applied To NotBlank Yes

Applied To ValidateTableRelation No

Applied To TestTableRelation No

4.	 Set the primary key for the table to Table No., Field No., Applied To.

5.	 Create the following global variable:

Name Type Subtype
UserMgt Codeunit User Management

Roles and Security

178

6.	 Write the following code in the OnValidate trigger of the Applied To field:
UserMgt.ValidateUserID("Applied To")

7.	 Write the following code in the OnLookup trigger of the Applied To field:
UserMgt.LookupUserID("Applied To")

8.	 Save and close the table.

9.	 Using page generation wizard, create a List page that displays all the fields from
this table.

10.	 Save and close the page.

11.	 A sample page with data might look like this:

12.	 Create a new codeunit from Object Designer.

13.	 Create a global function named CheckSecurity.

14.	 This function should take in the following parameters:

Name Type Length
UserIDIn Code 119

TableID Integer

FieldID Integer

CurrentStatus Boolean

PropertyToCheck Boolean

Chapter 7

179

15.	 Set the following property for these fields:

Field name Property Value
PropertyToCheck OptionString Editable,Visible

16.	 The function should return a Boolean value.

17.	 Define the following local variables in the function:

Name Type Subtype
FieldLevelSecurity Record Field Level Security

SessionRec Record Session

18.	 Add the following code to the CheckSecurity function:
FieldLevelSecurity.SETRANGE("Table No.", TableID);
FieldLevelSecurity.SETRANGE("Field No.", FieldID);
FieldLevelSecurity.SETRANGE("Applies To", UserIDIn);
IF FieldLevelSecurity.FINDFIRST THEN
 CASE PropertyToCheck OF
 PropertyToCheck::Editable:
 EXIT(FieldLevelSecurity.Editable AND CurrentStatus);
 PropertyToCheck::Visible:
 EXIT(FieldLevelSecurity.Visible AND CurrentStatus);
 END;
EXIT(CurrentStatus);

19.	 Save and close the codeunit.

20.	 Create a page of type list for table 18, Customer. Add field No. and Name on
the page.

21.	 Add the following global variable to the page:

Name Type Subtype
FieldLevelSecurity Codeunit Field Level Security

NoEditable Boolean

NoVisible Boolean

22.	 Set the following properties for these variables:

Variable Property Value
NoEditable IncludeInDataset Yes

NoVisible IncludeInDataset Yes

Roles and Security

180

23.	 Add the following code to the OnInit trigger:
NoVisible := TRUE;
NoEditable := TRUE;

24.	 Set the following properties for these fields:

Field Property Value
No. Visible NoVisible

No. Editable NoEditable

25.	 Add the following code to the OnOpenPage trigger:
NoVisible := FieldLevelSecurity.CheckSecurity(USERID,
DATABASE::Customer, Rec.FIELDNO("No."),NoVisible, 1);

NoEditable := FieldLevelSecurity.CheckSecurity(USERID,

DATABASE::Customer, Rec.FIELDNO("No."),NoEditable, 0);

26.	 Save and close the page.

27.	 The resulting page might look something like the one shown in the following
screenshot, depending on the security assigned:

Chapter 7

181

How it works...
NAV does not have a place to store the security settings on a field-level, so we need to create
our own table and page to hold this information. This table will hold the user, table, and field
number that security needs to be tracked for. Similar to the read/insert/modify/delete
permissions, we will track the Editable and Visible properties.

We also need a codeunit to check the permissions when the fields are accessed. This function
will take in the table and field to check, the ID of the user, the current status of the property,
and the property to check. We set appropriate filters on the Field Level Security table based
on our parameters. If a record is found, we return the value and current status in the table.
This is so that we do not change the default value of the page to allow more access. For
example, if a field is not editable on a page, we do not want to allow our code to make the
field editable. It would be fine if it was the other way round. If no value is found, we return the
current value of the property.

Finally, we need a test page. When the page opens, we need to set the properties of the fields
based on the Field Level Security table. We will set an initial value to our variables,
which is assigned to the field property. We will be setting security for the No. field in the
customer table so that we can add the appropriate code to the OnOpenPage trigger.

There's more...
The concept of field-level security is neither difficult to understand nor something you will
need to write a code for. The problem is that in order to do it properly we have to add a code
to every page in the database. For this to work on a large scale, you would need to build your
own parser to analyze NAV objects in their text form. The code would then be added to the
correct areas and the objects imported into the system.

Adding too much code to the pages before they open can also cause some slowness.
Customer Card, for example, has 68 fields on it. That is, 136 checks (68 for Editable,
68 for Visible) that need to be made before the page can appear on the screen. Of course
many of these fields will never have security set up for them, but you would need to determine
that before making any modifications. You would also need to keep a documentation of
the fields whose security you won't be checking, as those fields could still be added to the
permissions table, but never utilized.

See also
ff The Checking for conditions using an IF statement recipe in Chapter 2,

General Development

ff The Creating a table recipe in Chapter 3, Working with Tables, Records, and Query

ff The Creating a page using a wizard recipe in Chapter 4, Designing Pages

Roles and Security

182

Assigning permission to use the About This
Page function

In this recipe we will see how to add permission to use the About This Page function.

How to do it...
1.	 From the RoleTailored client, navigate to Department | Administration | IT

Administration | General | Permission Set.

2.	 Use the New (Ctrl + N) action to enter a new role called SAMPLE-ATP with a
description of About This Page – Sample Role.

3.	 Now, with your cursor on the SMPLE-ATP line, click on action Permissions.

4.	 Add permission for Object Type as System, and for Object ID as 5330.

5.	 Set Execute Permission as Yes.

6.	 Close the Permissions window and the Permission Sets window.

How it works...
The standard role (permission set) does not include permission to run or view all the
information for About This Page. To provide this permission, we can just add permission
in any existing role or create a new role which can be added to any user permission set.

Here we have created a new role and added permission to execute object ID 5330. The object
name field will be filled in automatically with Tools, Zoom. As object type is the system's only
permission type, Execute needs to be configured for providing permission.

There's more...
In the previous versions of NAV, we have a function call Zoom that allows us to see the
complete record information from object type form. In NAV 2013, this functionality has
been expanded with some new features. Let's take a quick look at these features.

Chapter 7

183

About This Page for subform page
Typically, a subform is a tabular form, that is, a form with a table box. If you need to get
information on subform page and you execute the About This Page function from the
menu, you will be disappointed. This is because you will not get the subform details of the
parent. The solution for this is to keep the cursor on the subform page and use a shortcut for
About This Page, that is (Ctrl + Alt + F1). It will give you details of the subform page. Follow
these steps to validate it:

1.	 From the RoleTailored client, navigate to Department | Sales & Marketing |
Order Processing | Sales Order.

2.	 Select any sales order record and click on the action View.

3.	 Select the first line record and use the shortcut Ctrl + Alt + F1.

Roles and Security

184

About This Page for report
When we run the About This Page function on the request page of any report, the
details displayed in About This Page is related to report, and not to the subform page.
Just neglect the caption Page.

1.	 From the RoleTailored client, navigate to Sales Order Processor role center
and run the Customer – Order Summary report.

2.	 From the request page, navigate to the application menu Help | About This Page or
use the shortcut Ctrl + Alt + F1.

If the About This Page shortcut is not working, use the
shortcut Ctrl + Alt + F1 to open a new window.

Chapter 7

185

See also
ff Assigning a role to a user

ff Creating a new role

ff Using security filters

Killing a user session
In Microsoft Dynamics NAV 2013, user sessions are controlled by client services. The NAV
administration client provides plenty of options to manage user sessions; however, some time
is needed to kill a particular session. With the help of this recipe, we will add a small code on
the NAV standard session page to kill the session.

How to do it…
1.	 To start, open Object Designer and open page 9506, Session List in the

design mode.

2.	 To edit actions, navigate to View | Page Actions (Ctrl + Alt + F4).

3.	 Under the action group Session, add a new action with name Kill Session.

4.	 Set the following properties for the Kill Session action:

Property Value
Image Delete

Promoted Yes

PromotedCategory Category4

PromotedIsBig Yes

5.	 Let's add the following code to the OnAction trigger of the Kill Session action.
IF CONFIRM ('Are you sure?') THEN
 STOPSESSION("Session ID")

6.	 It's time to save and close the page.

Roles and Security

186

How it works...
As NAV provides a standard page for active sessions, we will use the same to take advantage
of the default features. After setting a newly created action, we can see our action, as shown
in the following screenshot:

To avoid an error during the killing session, we execute a confirmation dialog box before
killing the selected session. This reduces the chance of killing the wrong session. However,
the administrator who is killing the session should take care to avoid partial data posting.
STOPSESSION is a standard NAV function to end/kill a session.

See also
ff The Configuring a NAV Server Instance recipe in Chapter 12,

NAV Server Administration

8
Leveraging

Microsoft Office

In this chapter, we will learn:

ff Sending data to Microsoft Word

ff Managing stylesheets

ff Sending e-mail from NAV through SMTP

ff Exporting data using the Excel Buffer

ff Creating data connection from Excel to NAV

ff Showing data in Excel using PowerPivot

ff Creating an InfoPath form for the NAV data

ff Creating charts with Visio

Introduction
Microsoft Office is a related suite of applications. Just as the Dynamics platform encompasses
multiple products, so does the Office product line. The three most popular programs are
Word, Excel, and Outlook, which serve as word processor, spreadsheet application, and e-mail
manager, respectively. NAV does not offer the same functionality that these applications provide,
and integrating with them can open up many new possibilities for the users of the software.

Leveraging Microsoft Office

188

Office also comes with other, lesser-known, programs that are used by many companies. We
will also examine three of these products. The first is using stylesheets and sending data to
Excel and InfoPath, which is used to generate XML-based forms for users to enter and view
data. We will also learn about SMTP for sending mail. Finally, we will take a look at how to
create charts in Visio. With all of these products working together as one, you will easily be
able to see how to get your data to the people who need it.

Sending data to Microsoft Word
Creating attractive Word documents from NAV is a challenging task. This recipe will not show
you how to create a document that looks exactly like your report from NAV, but it will introduce
you to the basics of sending data to the application.

Getting ready
Microsoft Word must be installed on the client machine.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Then add the following global variables:

Name Type SubType Length
WordApp Automation 'Microsoft Word 14.0

Object Library'.
Application

WordDoc Automation 'Microsoft Word 14.0
Object Library'.Document

WordAppSelection Automation 'Microsoft Word 14.0
Object Library'.Selection

WordFont Automation 'Microsoft Word 14.0
Object Library'.Font

CompanyInformation Record Company Information

ExportedPicture Text 250

NewLine Char

3.	 At this stage, save an uncompiled version of the codeunit and close it.

4.	 Export the codeunit to a text file.

5.	 Open the file and remove all the events that were added by the automation variables.

6.	 It's time to save and close the text file.

Chapter 8

189

7.	 Import the text file into NAV and compile the object.

8.	 Write the following code in the OnRun trigger of the codeunit:
NewLine := 13;
ExportedPicture := 'D:\Temp\CompanyInformationPicture.bmp';

CompanyInformation.GET;
CompanyInformation.CALCFIELDS(Picture);
CompanyInformation.Picture.EXPORT(ExportedPicture);
CREATE(WordApp,FALSE,TRUE);

WordDoc := WordApp.Documents.Add;
WordDoc.Activate;

WordAppSelection := WordApp.Selection;
WordDoc.Shapes.AddPicture(ExportedPicture);
WordFont := WordAppSelection.Font;
WordFont.Size(40);
WordFont.Name('Arial');
WordAppSelection.TypeText('Big Text' + FORMAT(NewLine));
WordFont.Size(20);
WordFont.Name('Courier New');
WordAppSelection.TypeText('Medium Text' + FORMAT(NewLine));
WordFont.Size(10);
WordFont.Name('Times New Roman');
WordAppSelection.TypeText('Small Text' + FORMAT(NewLine));
WordApp.Visible := TRUE;

9.	 Save and close the codeunit.

How it works...
This recipe requires an odd step in which you have to manipulate the object from a text
file and not within Object Designer. When you add automation variables to your object,
regardless of whether or not you set the WithEvents property, the events are added to
the code. The WithEvents property just lets you see them when you are coding.

Unfortunately, NAV has a limit on just how long these event names can be, and many of them
are similarly named. When they are added to NAV, the application truncates the end of the
event name, which can result in duplicate events being defined. This throws an error when
you compile the object. If you want to use these events in your NAV code, you will have to write
your own .NET wrapper class with names that are not as long.

Leveraging Microsoft Office

190

Now we can move to the actual code. To start, we export the logo from Company Information.
Ideally, we would place this on a shared drive, or use an image that is not stored in NAV,
because the ENVIRON command is no longer supported in the RTC.

Next, we create an instance of the Microsoft Word application. We then create a new blank
document and activate it. Using the Shape.AddPicture method from the Word Document
object, we can insert the logo that we exported from Company Information.

We can also manipulate text just as we would if we were using the application manually. By
changing the font size and name, the TypeText method will alter the way it displays the text
on the screen. If you were trying to duplicate a NAV report, you could set the font name to
Helvetica and the font size to seven.

There's more...
For detailed reading on the Microsoft Word Object Model you can visit the following
MSDN site:

http://msdn.microsoft.com/en-us/library/kw65a0we(v=vs.100).aspx

See also
ff Managing stylesheets

Managing stylesheets
In this recipe we will set a stylesheet for a specific page.

Getting ready
Export the Excel stylesheet for page 22 from the older version of NAV which has
stylesheet tools.

How to do it...
1.	 To start, open the RoleTailored client. In the RTC Search box, type

Manage Style Sheets, and choose the related link.

2.	 In the Show field, choose Style sheet for a specific page.

3.	 In the Page No. field, type 22.

Chapter 8

191

4.	 From the Style Sheet assist edit option, select your customized stylesheet.

5.	 Provide Name and choose Microsoft Excel as Send-to Program.

6.	 Click on OK.

How it works...
Microsoft Dynamics NAV 2013 provides an option to export page data into Word and Excel.
Datasheet styles created in Word and Excel are predefined for all of the pages in the system.
NAV 2013 provides options to manage stylesheets where we can import old stylesheets or
export current stylesheets and customize them. For the older version of NAV, Microsoft has
provided a stylesheet tool to customize or develop your own stylesheets; unfortunately, this
tool is not supported in NAV 2013.

The Manage Style Sheet window helps to import and export stylesheets, as well as to view
the list of available stylesheets. Changes made on the stylesheets are applicable to all users.

Sending an e-mail from NAV through SMTP
NAV 2013 supports Simple Mail Transfer Protocol (SMTP), which makes mail sending easy
and independent. Through SMTP, NAV will send mail directly to the exchange server. In the
older version, when we used to send it through Outlook, it consisted of a more complex code.
This recipe will show you how to configure and use that SMTP code.

Getting ready
1.	 Open the RoleTailored client; in the RTC Search box type SMTP, and choose

the related link.

2.	 Provide the SMTP server address and the server port.

3.	 Choose authentication type set by your IT department and, if required,
provide credentials.

How to do it...
1.	 Start the development by creating a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type SubType
SMTPMailSetup Record SMTP Mail Setup

SMTP Codeunit SMTP Mail

Leveraging Microsoft Office

192

3.	 Write the following code in the OnRun trigger of the codeunit:
IF SMTPMailSetup.GET THEN BEGIN
 SMTP.CreateMessage('Rakesh Raul','YourE-mail@microsoft.com',
'Someone@somewhere.com','E-mail Subject', 'E-mail Body', FALSE);
 SMTP.Send;
End;

4.	 It's time to save and close the codeunit.

How it works...
SMTP is the preferred way of sending e-mails with NAV. The code behind this functionality,
and more specifically the CreateMessage function, is located in the codeunit 400 (SMTP
Mail). This function uses the 'Microsoft Navision Mail'.SmtpMessage automation
to create a message for us based on the input parameters. These parameters are Sender
Name, Sender E-mail Address, Recipient E-mail Addresses, Subject, Body, and
HTML Formatted. We must manually call the Send function in the codeunit if we want to
actually send the message.

There's more...
For more details on the Microsoft Outlook object model you can visit the following MSDN site:

http://msdn.microsoft.com/en-us/library/ms268893(v=vs.110).aspx

Sending an HTML-formatted e-mail
Many CRM applications or other programs send e-mails out automatically. Anything that is
customer-facing should look professional. That is not to say that simple text e-mails are bad, just
that HTML-formatted e-mails are more dynamic and more likely to get the customer's attention.

The following is a sample code which can be used to send an HTML-formatted e-mail:

IF SMTPMailSetup.GET THEN BEGIN
 SMTP.CreateMessage('Rakesh Raul','YourE-mail@YourCompany.com',
'Someone@Somewhere.com','E-mail Subject', '', TRUE);
 SMTP.AppendBody('<h2>Thank You!</h2>

');
 SMTP.AppendBody('Your message has been received,

');
 SMTP.AppendBody('Administrator');
 SMTP.Send;
END;

By passing a value of TRUE as the last parameter to the CreateMessage function, we tell the
system to format the e-mail for HTML. We can then use the AppendBody function to add lines
to our message. These could be read from an external file, stored in NAV, or hardcoded as we
have done here.

Chapter 8

193

Exporting data using the Excel Buffer
NAV contains a wrapper object that allows you to export data to Microsoft Excel. This recipe
will show you how to use it in its most common form—exporting a report to Excel.

Getting ready
Microsoft Excel must be installed on the client machine.

How to do it...
1.	 Create a new processing-only report based on the Customer table.

2.	 Add values in the No., Name, and Balance fields.

3.	 Add the following global variables:

Name Type SubType
ExcelBuf Record Excel Buffer

4.	 Let's set the property Temporary of the ExcelBuf variable to Yes.

5.	 Now add a function named MakeExcelInfo.

6.	 Add the following code to the function:
ExcelBuf.SetUseInfoSheet;
ExcelBuf.AddInfoColumn(FORMAT('Company Name'),FALSE,'',TRUE,FALSE,
FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(COMPANYNAME,FALSE,'',FALSE,FALSE,
FALSE,'',ExcelBuf."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Report Name'), FALSE,'',TRUE,FALSE,
FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(FORMAT('Print Report to Excel'),
FALSE,'',FALSE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Report Name'), FALSE,'',TRUE,FALSE,
FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(FORMAT('Print Report to Excel'),
FALSE,'',FALSE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Report No.'),
FALSE,'',TRUE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);

Leveraging Microsoft Office

194

ExcelBuf.AddInfoColumn(REPORT::"Print Report to Excel",
FALSE,'',FALSE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('User Id'),
FALSE,'',TRUE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(USERID,FALSE,'',FALSE,FALSE,FALSE,'',
ExcelBuf."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Date / Time'), FALSE,'',TRUE,FALSE,
FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(TODAY,FALSE,'',FALSE,FALSE,FALSE,'',
ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(TIME,FALSE,'',FALSE,FALSE,FALSE,'',ExcelBuf
."Cell Type"::Text);

ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Filters'),FALSE,'',
TRUE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddInfoColumn(Customer.GETFILTERS,FALSE,'',
FALSE,FALSE,FALSE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.ClearNewRow;
MakeExcelDataHeader;

7.	 Add a function called MakeExcelDataHeader.

8.	 Add the following code to the function:
ExcelBuf.NewRow;
ExcelBuf.AddColumn(Customer.FIELDCAPTION("No."),FALSE,'',
TRUE,FALSE,TRUE,'@',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddColumn(Customer.FIELDCAPTION(Name),FALSE,'',
TRUE,FALSE,TRUE,'',ExcelBuf."Cell Type"::Text);
ExcelBuf.AddColumn(Customer.FIELDCAPTION(Balance),FALSE,
'',TRUE,FALSE,TRUE,'',ExcelBuf."Cell Type"::Text);

9.	 Add a function called MakeExcelDataBody.

10.	 Add the following code to the function:
ExcelBuf.NewRow;
ExcelBuf.AddColumn(Customer."No.",FALSE,'',FALSE,FALSE,FALSE,'',
ExcelBuf."Cell Type"::Text);
ExcelBuf.AddColumn(Customer.Name,FALSE,'',FALSE,FALSE,FALSE,'',
ExcelBuf."Cell Type"::Text);
ExcelBuf.AddColumn(Customer.Balance,FALSE,'',FALSE,FALSE,FALSE,'#,
##0',ExcelBuf."Cell Type"::Number);

Chapter 8

195

11.	 Add a function called CreateExcelBook.

12.	 Add the following code to the function:
ExcelBuf.CreateBookAndOpenExcel('Data','',COMPANYNAME,USERID);
ERROR('');

13.	 Create a new page action Send Data To Excel.

14.	 Add the following code to the OnPreDataItem trigger for the Customer data item:
MakeExcelInfo;

15.	 Add the following code to the OnAfterGetRecord trigger for the Customer
data item:
MakeExcelDataBody;

16.	 Add the following code to the OnPostReport trigger:
CreateExcelbook;

17.	 It's time to save and close the report.

How it works...
Sending data to Excel requires a record variable that refers to the Excel Buffer table. This
table contains several functions that we will use throughout our code to communicate with
the Excel program.

We will use four functions in this page and go through each of them one-by-one. The first
function is named MakeExcelInfo and it contains a series of calls to the AddInfoColumn
and NewRow functions in the Excel Buffer table. This function replicates what you see in the
Header section of most reports, that is, the name of the report, the date and time when it
was created, who it was created by, and any filters that may have been used.

The AddInfoColumn parameters deal with formatting of the text that will be entered in the
cell. In order, the parameters are: Value, IsFormula, CommentText, IsBold, IsItalics,
IsUnderline, NumFormat, and CellType.

At the end of our function, we make a call to MakeExcelDataHeader, which adds our
column headings to the first row of a new sheet in the Excel Workbook.

There is a similar function, MakeExcelDataBody, which adds our actual data to the sheet.

Finally, we have a function called CreateBookAndOpenExcel, which loads the data from
the Excel Buffer and displays the Excel worksheet.

Leveraging Microsoft Office

196

Now that we have these functions, we need to use them in our report. When thinking about
what each one does and how the report flows from start to finish, it becomes obvious when
we should use them. The header information about the report is displayed in the Header
section of the Customer record, so we can use the MakeExcelInfo function in the
OnPreDataItem trigger. We retrieve data from the database in the OnAfterGetRecord
trigger, so here is where we should add the data to the Excel file. Lastly, we don't want
to view the Excel file until the report is completely generated, so we place the call to the
CreateBookAndOpenExcel function in the OnPostReport trigger; it will not only create
our Excel file but also display it on screen.

When you run the report, you should see a document like the one shown in the
following screenshot:

There's more...
Although the Excel Buffer table will provide for most of your needs, you can also write your own
Excel automations.

For more information on the Microsoft Excel Object Model, visit the
following MSDN site:
http://msdn.microsoft.com/en-us/library/
wss56bz7(v=vs.110).aspx

Chapter 8

197

See also
ff The Using a temporary table recipe in Chapter 3, Working with Tables, Records,

and Queries

ff The Using an RDLC report recipe in Chapter 5, Report Design

Creating data connection from Excel to NAV
Instead of copying and pasting data from NAV into Excel, you can easily create an external
connection to the NAV database.

Getting ready
Microsoft Excel must be installed on the client machine.

How to do it...
1.	 To start, open Microsoft Excel and select the Data tab.

2.	 From the Get External Data section of the menu, navigate to From Other Sources |
From SQL Server:

Leveraging Microsoft Office

198

3.	 In the data connection wizard, enter the name of the SQL Server and your
login credentials:

4.	 Click on Next.

5.	 In the next window, select the database and table you wish to view in Excel.

6.	 Click on Finish.

7.	 It may take a moment for the data to load into the workbook.

How it works...
Microsoft Excel maintains an active connection to the database when you set up an
external data connection. When you save and close a file with a connection in it, the data is
automatically reloaded the next time you open the document. This eliminates the need to log
in to NAV to copy and paste data.

There's more...
The following MSDN article provides more information about managing your connections in
Microsoft Excel:

http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx

Chapter 8

199

See also
ff Exporting data using the Excel Buffer

ff Showing data in Excel using PowerPivot

Showing data in Excel using PowerPivot
PowerPivot is a free add-in to the Excel 2010 version. It extends the capabilities of the
PivotTable data by introducing the ability to import data from multiple sources. In this
recipe, we will design a basic report on NAV database using PowerPivot.

Getting ready
Microsoft Excel must be installed on the client machine with PowerPivot add-in.

How to do it...
1.	 Start Microsoft Office Excel and select the PowerPivot Window action from

the ribbon:

2.	 From the PowerPivot window, navigate to From Database | From SQL Server:

3.	 Provide the connection name and select SQL Server where NAV database is attached.

4.	 Provide the Log on to the server credentials.

Leveraging Microsoft Office

200

5.	 Select a NAV database from the drop-down list provided by the Database name textbox.

6.	 Click on the Advance button; in the advance window, change the provider to .Net
Framework Data Provider For SQL Server.

7.	 Click on Next and choose Select from a list of tables and Views to choose the data to
import. You will then be directed to a window to select tables and views, as shown in
the following screenshot:

8.	 From the table list, select the Item Sales Invoice Header, Sales Invoice
Line, and Salesperson Purchaser tables, and then click on Finish.

9.	 PowerPivot will import data and provide import status. Click on Close.

Chapter 8

201

10.	 You will get three tables with data. If you choose Diagram, the view screen might look
something like the one shown in the following screenshot:

11.	 From the Design menu, select the Create Relationship action.

12.	 Set the first relationship of [Sales Invoice Header].[No.] with [Sales
Invoice Line].[Document No.].

13.	 Set the second relationship of [Sales Invoice Header].[Salesperson
Code] with [Salesperson Purchase].[Code].

14.	 Now from the Grid view go to the Sales Invoice Header table and add a new
column Invoice Amount at the end of the table.

15.	 Add the following code to the Invoice Amount column:
=CALCULATE(Sum('CRONUS International Ltd_Sales Invoice
Line'[Amount]))

16.	 Right-click on the Sales Invoice Line table, and from the context menu select
Hide from Client Tools:

Leveraging Microsoft Office

202

17.	 On the Home tab, select the PivotTable action.

18.	 In the Create PivotTable dialog, select the New Worksheet option. It will create a
new worksheet with the Pivot table options window.

19.	 From the Item Sales Invoice Header table's fields drag the Invoice Amount
field into the Values and Bill-to City fields in the Row Labels section.

20.	 From the Salesperson Purchaser table field, drag the Name field to the Column
Labels section.

21.	 Finally, from the Sales Invoice Header table fields, drag the Bill-to City
field to Slicers Vertical, and from the Salesperson Purchaser table drag the
Name field to the Slicers Horizontal section:

How it works...
PowerPivot allows end users to analyze data with complete freedom of applying filters
and selecting desired fields. In this recipe we are designing very basic reports on the Item
and Location tables. The process of designing a new PowerPivot report can de divided into
four steps.

Chapter 8

203

In the first step we have to set the connection details to connect the desired server and
database. In our case, we are using the NAV database. While connecting to the database,
we need to select an appropriate provider as per our system configuration. In our case, we
choose .NET provider.

The second step is to select tables involved in our report. You must have noticed that there
is an option to autoselect related tables; unfortunately, this option does not work for NAV
databases, as NAV does not maintain a standard way of defining the primary and forging keys.

In the third and the last step of designing, we set relationships or carry out additional
calculations on the PowerPivot tables. PowerPivot provides a wide range of functions to do
addition calculations. We have used the function CALCULATE and table relations to bring
invoice amount values from the line table to the header table.

To end the designing phase, we have selected the PivotTable action; this does not
mean that we cannot make any further change to our design. Design of PowerPivot
can be changed anytime.

Finally, we can analyze data from the Pivot table. By simply adding fields to report/filter/slicer
section, we can carry out data analysis.

There's more...
The following Microsoft article provides more information about PowerPivot:

http://www.microsoft.com/en-us/bi/powerpivot.aspx

PowerPivot is available in 32 and 64 bit versions, so you need to find which version of Excel
you are using. You will find the Excel version from the About Microsoft Excel section by
navigating to File | Help.

To download PowerPivot visit the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=7609

See also
ff Exporting data using the Excel Buffer

ff Creating data connection from Excel to NAV

Leveraging Microsoft Office

204

Creating an InfoPath form for the NAV data
Microsoft InfoPath allows you to create forms to view and enter data outside of the NAV
application. There is no programming involved, other than having an existing NAV page
exposed as a web service.

Getting ready
Microsoft InfoPath must be installed on the client machine.

How to do it...
1.	 Create a web service as described in the Creating web services recipe in

Chapter 10, Integration.

2.	 By navigating to File | New in InfoPath, select Web Service and click on
Design Form:

Chapter 8

205

3.	 Select Receive Data.

4.	 From the Dynamics NAV Web Server page, go to the following address and find the
web service:
http://localhost:7047/DynamicsNAV70/WS/services

5.	 In this case we will be using http://localhost:7047/DynamicsNAV70/WS/
Page/CustomerList, but this could be different on your system.

6.	 Enter this address in the Data Connection Wizard window.

7.	 Click on Next.

8.	 Select Read Multiple.

9.	 Click on Next and finally on Finish.

10.	 You should now have a design template that looks like the following screenshot:

Leveraging Microsoft Office

206

11.	 Change the title to Customer List.

12.	 From the queryFields node in the data source tree view on the right-hand side of the
screen, drag the Field node into the Drag query fields here box on the form.

13.	 Select Drop Down List Box.

14.	 Drag the Criteria and Set Size nodes to the same area on the form.

15.	 Click on the box labelled Drag data fields here.

16.	 From the Control Tool box, go to the Containers section and choose Repeating Table.

17.	 Drill down in the Data Fields node and select CustomerList.

18.	 Click on Next.

19.	 Add the No. and Name fields.

20.	 Click on Finish.

21.	 Your completed InfoPath form should look like the following screenshot:

Chapter 8

207

How it works...
To view the form, click on Preview in the InfoPath toolbar. Just like NAV, you can select your
filter fields, but you must select Run Query in order to retrieve the data. The data will be
presented in a list format at the bottom of the page.

There's more...
The most common use of InfoPath forms is to add them to a forms library in SharePoint.
Although this example is used only for viewing data, you can also create forms to enter
and modify data in NAV.

See also
ff The Consuming web services recipe in Chapter 10, Integration

Leveraging Microsoft Office

208

Creating charts with Visio
Visio is another Microsoft Office Suite product which helps to present data in a graphical
manner. In this recipe, we will create PivotDiagram based on NAV data.

Getting ready
Microsoft Visio must be installed on the client machine.

How to do it...
1.	 Start Microsoft Office Visio and create a new file by navigating to Business |

PivotDiagram.

2.	 You will receive the Data Selector dialog box as shown in the following screenshot:

3.	 Select the option Microsoft SQL Server database and click on Next.

4.	 Provide the server name and login credentials, and then click on Next.

5.	 Select NAV database and the Item Ledger Entry table, and then click on Finish.

6.	 From the Select Data Connection dialog box, click on Next to choose the table fields.

Chapter 8

209

7.	 To choose a column, click on Select Columns and select the Item No., Location Code,
and Quantity fields, then click on Finish:

8.	 Visio will import data and add three shapes to page with the PivotDiagram
option window:

Leveraging Microsoft Office

210

9.	 Select a primary shape and from the Add Category area, select Location code.

10.	 Select the Blue location and from the Add Category area, select Item No.

How it works...
Creating charts in Visio is very easy and similar to Excel PivotTable. First we create a
connection with our dataset. Once we define the dataset, Visio will save connection
information and offer these connection settings each time a new file is created.

After setting up the connection, it's time to select the specific data column to analyze. Once
we finish, Visio will generate a page with three shapes, a legend about the data source, a title
box, and the primary shape that imports the dataset. This Primary shape aggregates all the
data in the data source.

To see the data by location, we first select the primary shape. Then from the PivotDiagram
option's Add Category section, click on Location Code. Each child box corresponds to a
location. To analyze further, we add item details for the location Blue.

There's more...
We may want to refer to these Visio diagrams again in future; we can refresh the data to
reflect the changes in the underlying data sources. In the ribbon from the PivotDiagram tab,
click on the Refresh button, as shown in the following screenshot. The data only updates in
one direction. From the SQL data source to diagram, any change in the Visio diagram does not
affect data source.

Chapter 8

211

We can even add themes to our diagram. To find out more about Visio, visit the following URL:

http://office.microsoft.com/en-in/visio-help/basic-tasks-in-visio-
HA102749197.aspx

See also
ff Showing data in Excel using PowerPivot

9
OS Interaction

In this chapter, we will cover:

ff Using HYPERLINK to open external files

ff Working with environmental variables

ff Using SHELL to run external applications

ff Browsing for a file

ff Browsing for a folder

ff Checking file and folder access permissions

ff Querying the registry

ff Zipping folders and files within NAV

Introduction
When it comes to the operating system, we don't need to interact with device drivers or create
multidimensional graphics for users; most of the time we just need to search the filesystem to
access files or folders.

Windows provides multiple ways to interact with it. In this chapter, we will be using those
functions to not only read the filesystem but also to check the user's environment, query the
registry, or check for specific administrator permissions. These can all be performed within NAV,
although many require a little outside help from a built-in or a custom automation control.

OS Interaction

214

Using HYPERLINK to open external files
To open files externally, we use a hyperlink in most of the application or programming
languages because it opens a file with the appropriate application. Let's see how we
can use a hyperlink in NAV.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Then add the following global variables:

Name Type
Selection Integer

3.	 Write the following code in the OnRun trigger of the codeunit:
Selection := STRMENU('Image,Website');
IF Selection = 1 THEN
 HYPERLINK('C:\Users\Public\Pictures\SamplePictures\Penguins.jpg')
ELSE
 HYPERLINK('HTTP://www.mibuso.com');

4.	 It's time to save and close the codeunit.

How it works...
On execution of the codeunit, the system presents a simple selection menu where we need
to choose between an image and a website. For both the options, we have provided the file
location as a parameter to the HYPERLINK function. HYPERLINK visits the file location and
loads that pointer using the default program on the current machine.

If we choose Image, the penguins' image that ships with Microsoft Windows 7 will load in the
default program we have set to open pictures in our windows, usually Windows Photo Viewer.

Chapter 9

215

If we choose Website, the Mibuso website will open in our default Internet browser, typically
Internet Explorer.

OS Interaction

216

There's more...
For Microsoft NAV 2013, we need to use HYPERLINK with shared drives. This is because the
HYPERLINK command is running on the NAV service tier, not on the local computer or client.
This example is for the system having a service tier and an RTC client on the same machine
(thus the link to a file on the C:), but changing the parameter to a shared file on the network
should work fine.

See also
ff Using SHELL to run external applications

ff Browsing for a file

ff Checking file and folder access permissions

Working with environmental variables
The older version of Microsoft Dynamics NAV (version before 2013) has a built-in function
called ENVIRON that allows us to collect OS environmental information; unfortunately, it is not
compatible with the RoleTailored client. In this recipe, we will build a simple C# class
that will help us to achieve the output given by the ENVIRON function.

How to do it...
1.	 To start, create a new Class Library project in Visual Studio.

2.	 In the newly created class, create a new file with the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management;
using System.Runtime.InteropServices;

namespace RemoteSystemInfo
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("RemoteSystemInfo")]
 [ComVisible(true)]
 public class RemoteSystemInfo
 {
 public string GetSysInfo(string machine, string variable)
 {

Chapter 9

217

 ManagementObjectSearcher query = null;
 ManagementObjectCollection queryCollection = null;

 ConnectionOptions opt = new ConnectionOptions();
 opt.Impersonation = ImpersonationLevel.Impersonate;
 opt.EnablePrivileges = true;

 try
 {
 ManagementPath p = new ManagementPath(@"\\" +
 machine + @"\root\cimv2");
 ManagementScope msc = new ManagementScope(p, opt);
 SelectQuery q = new SelectQuery("Win32_
 Environment");
 query = new ManagementObjectSearcher(msc, q,
 null);
 queryCollection = query.Get();

 foreach (ManagementBaseObject envVar in
 queryCollection)
 {
 if (envVar["Name"].ToString() == variable)
 {
 return envVar["VariableValue"].ToString();
 }
 }
 }
 catch (ManagementException e)
 {
 throw new ManagementException("Management
 Exception: " + e.Message);
 }
 catch (System.UnauthorizedAccessException e)
 {
 throw new ManagementException("Access Exception: "
 + e.Message);
 }
 return "";
 }
 }
}

3.	 Set the properties of the program according to the Writing your own automation using
C# recipe from Chapter 10, Integration.

OS Interaction

218

4.	 Save, compile, and close the project.

5.	 Now in NAV, create a new codeunit from Object Designer.

6.	 Then add the following global variables:

Name Type Subtype Length
RemoteSystemInfo Automation 'RemoteSystemInfo'.

RemoteSystemInfo

Machine Text 30

EnvVarName Text 30

7.	 Add the following code to the OnRun trigger:
Machine := 'Your Machine NAME';
EnvVarName := 'TEMP';

CREATE(RemoteSystemInfo, FALSE, TRUE);
MESSAGE('%1', RemoteSystemInfo.GetSysInfo(Machine, EnvVarName));

8.	 Finally, save and close the codeunit.

How it works...
In the first part of the recipe, we have created a C# class to create an environmental function
for NAV 2013. The second part is to use that function in the NAV C/AL code.

The NAV CREATE function takes three parameters. The first parameter is the variable of which
we want to create an instance. The second parameter will instruct the system to create a new
instance of the variable or using already created one, and its default value is FALSE; if we set it
to TRUE, the system will create a new instance on every execution. The third and final parameter
of the CREATE function tells the system to create the instance of the automation on the client
(TRUE) and not the server (FALSE). As the code executes on the client machine, it can query
the environment variables and easily return the correct result; just pass the appropriate values
to the GetSysInfo function. In Windows 7, in order to see all of the options available to the
ENVIRON command, simply right-click on My Computer and go to Properties:

Chapter 9

219

Click on Advanced system settings, then the Advanced tab, and finally on the Environment
Variables button. You will find them in the System variables section of the window, as shown
in the following screenshot:

OS Interaction

220

See also
ff Using SHELL to run external applications

Using SHELL to run external applications
Opening an external program from NAV will not be a day-to-day activity for any NAV developer;
however, this recipe can still be handy for a client with a special request to execute any other
application from NAV. In the following recipe, we have taken Notepad as our external application.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type SubType
WshShell Automation 'Windows Script Host

Object Model'.WshShell

3.	 Write the following code in the OnRun trigger of the codeunit:
CREATE(WshShell,FALSE,TRUE);
WshShell.Run('C:\Windows\notepad.exe');

4.	 Save and close the codeunit.

How it works...
As the standard SHELL command is not compatible with NAV RoleTailored client,
we are using the class WshShell of Windows Script Host Object Model library. It provides
multiple commands that are close to the standard shell command.

After creating an instance of our automation on the client machine, we have used the run
command to execute our Notepad.exe file.

See also
ff Querying the registry

Chapter 9

221

Browsing for a file
In the first recipe of this chapter, we saw how to use HYPERLINK to open an external file in an
appropriate application; in this recipe, we will see how to use an NAV out of the box codeunit
to select a file using a dialog box.

How to do it...
1.	 First create a new codeunit from Object Designer and follow the steps.

2.	 Then add the following global variables:

Name Type Subtype Length
FileMgt Codeunit File Management

SelectedFile Text 255

3.	 Next, write the following code in the OnRun trigger of the codeunit:
SelectedFile := FileMgt.OpenFileDialog('NAV File Browser','*.
txt','');
MESSAGE('You selected %1', SelectedFile);

4.	 Finally, save and close the codeunit.

How it works...
To carry out file handling activities, NAV provides a codeunit 419 (File Management).
It uses .NET interoperability, which allows using the function of the .NET library. The
OpenFileDialog function of this codeunit allows us to open a simple dialog box in
Open mode. This function takes three parameters.

OS Interaction

222

The first is the title of the dialog box or window. Next is the default filename to look for. The
third parameter is the filter to show specific type of files:

If we want to open a dialog box with a custom file type, we will have to enter a filter. A sample
filter is provided as follows:

Text Files (*.txt)|*.txt|All Files (*.*)|*.*

There's more...
In the previous recipe, we saw how to use codeunit 419 to choose a file; the same codeunit
contains another function that will help to save the file. The syntax for saving the file will be
as follows:

FileMgt.SaveFileDialog('NAV File Browser',FileName,'');

See also
ff Using HYPERLINK to open external files

ff Checking file and folder access permissions

ff Browsing for a folder

Chapter 9

223

Browsing for a folder
We have seen how to browse a folder using the File Management codeunit. Unfortunately,
we do not have any function that will help us to browse folders. To overcome this, we will use
automation control that should be already installed on your Windows.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
MSShell Automation 'Microsoft

Shell
Controls

And
Automation'.
Shell

Folder Automation 'Microsoft
Shell
Controls

And
Automation'.
Folder3

FilesInFolder Automation 'Microsoft
Shell
Controls

And
Automation'.

FolderItems3

CurrentFile Automation 'Microsoft
Shell
Controls

And
Automation'.

FolderItem2

SelectedFolder Text 1024

OS Interaction

224

3.	 Write the following code in the OnRun trigger of the codeunit:
CREATE(MSShell, FALSE, TRUE);
Folder := MSShell.BrowseForFolder(0, 'NAV Folder Browser', 0);
FilesInFolder := Folder.Items();
CurrentFile := FilesInFolder.Item();
SelectedFolder := FORMAT(CurrentFile.Path);

MESSAGE('Selected Folder: %1\Contains %2 files',
SelectedFolder, FilesInFolder.Count());

4.	 Finally, save and close the codeunit.

How it works...
This recipe is based on Microsoft shell control and automation package.

For a list of the objects found in this package, you can search MSDN
or go to
http://msdn.microsoft.com/en-us/library/
bb776890%28VS.85%29.aspx

The main purpose of code is to get the folder name and address; nevertheless, let's go
through the code and see what we are doing. First, we create an instance of our MSShell
variable. The function BrowseForFolder of MSShell is used to launch the dialog box:

Chapter 9

225

As this function returns only a folder object, we have to take it a step further. We retrieve a
list of the files contained in that folder and stored in the FilesInFolder variable. Then
we can access the first item in this list. This file has a path, and we can store that as our
selected folder.

There's more...
There is another way to get the folder/directory name. In the codeunit 419 (File
Management), you will find the function GetDirectoryName. This function takes one
parameter, that is, FileName. So, to get the folder name, we have to first use the Browsing
for a file recipe with this function. The following recipe is demonstrating the complete code:

1.	 First create a new codeunit from Object Designer and follow the steps.

2.	 Then add the following global variables:

Name Type Subtype Length
FileMgt Codeunit File Management

SelectedFile Text 255

3.	 Now, write the following code in the OnRun trigger of the codeunit:
SelectedFile := FileMgt.OpenFileDialog('NAV File Browser','*.
txt','');
DirectoryName:=FileMgt.GetDirectoryName(SelectedFile);
MESSAGE('You selected %1', DirectoryName);

4.	 Finally, save and close the codeunit.

See also
ff Browsing for a file

ff Checking file and folder access permissions

Checking file and folder access permissions
In every organization, we have multiple departments and sections; every department and
section has their own role and permission matrix to access the filesystem. If we are accessing
files and folders that are under access control it is very important to check access rights to
our file which will be accessed by the system. We can carry out this activity manually and set
the rule. Still, let's take a look at this recipe to check the access permission by code.

OS Interaction

226

How to do it...
1.	 Create a new Class Library project in Visual Studio and follow the steps.

2.	 Create a new file with the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Security.Permissions;
using System.Runtime.InteropServices;

namespace FolderAccess
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("FolderAccess")]
 [ComVisible(true)]
 public class FolderAccess
 {
 public bool TestFolderAccess(string folder, string access)
 {
 System.Security.Permissions.FileIOPermissionAccess
 accessLevel;
 switch (access.ToUpper())
 {
 case "NOACCESS": accessLevel =
 FileIOPermissionAccess.NoAccess; break;
 case "READ": accessLevel =
 FileIOPermissionAccess.Read; break;
 case "WRITE": accessLevel =
 FileIOPermissionAccess.Write; break;
 case "APPEND": accessLevel =
 FileIOPermissionAccess.Append; break;
 case "PATHDISCOVERY": accessLevel =
 FileIOPermissionAccess.PathDiscovery; break;
 case "ALLACCESS": accessLevel =
 FileIOPermissionAccess.AllAccess; break;
 default: return false;
 }

 FileIOPermission permission = new
 FileIOPermission(accessLevel, folder);
 try
 {
 permission.Demand();

Chapter 9

227

 }
 catch (Exception ex)
 {
 return false;
 }

 return true;
 }
 }
}

3.	 Set the properties of the program according to the Writing your own automation using
C# recipe from Chapter 10, Integration.

4.	 Save, compile, and close the project.

5.	 Create a new codeunit from Object Designer.

6.	 Add the following global variable:

Name Type Subtype
FolderAccess Automation 'FolderAccess'.

FolderAccess

7.	 Add the following code to the OnRun trigger:
CREATE(FolderAccess, FALSE, TRUE);
MESSAGE('Access: %1',
FolderAccess.TestFolderAccess('C:\', 'WRITE'));

8.	 Save and close the codeunit.

How it works...
First, we have created a C# class to test the folder access. Our function TestFolderAccess
takes in two parameters: the path or the folder to check, and the type of permission to check
for. To get the access level, we used the FileIOPermission class. If we don't have access
permission, the function will throw the exception; in this case, we return FALSE, else in all
other cases, we return TRUE.

See also
ff Browsing for a file

ff Browsing for a folder

OS Interaction

228

Querying the registry
You must be thinking, "Why do we need to query the registry with NAV?" Just take this recipe
as an option.

How to do it...
1.	 Let's create a new Class Library project in Visual Studio.

2.	 Create a new file in the class with the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using Microsoft.Win32;

namespace RegistryQuery
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("RegistryQuery")]
 [ComVisible(true)]
 public class RegistryQuery
 {
 public string GetKeyValue(string key, string name)
 {
 RegistryKey regKey = Registry.Users.OpenSubKey(key);
 if (regKey == null)
 {
 return "Key not found!";
 }
 else
 {
 object value = regKey.GetValue(name);
 if (value != null)
 {
 return value.ToString();
 }
 else
 {
 return "Name not found!";
 }
 }
 }
 }
}

Chapter 9

229

3.	 Set the properties of the program according to the Writing your own automation using
C# recipe from Chapter 10, Integration.

4.	 Save, compile, and close the project.

5.	 Now create a new codeunit from Object Designer.

6.	 Add the following global variable:

Name Type Subtype
FolderAccess Automation 'RegistryQuery'.

RegistryQuery

7.	 Add the following code to the OnRun trigger:
CREATE(RegistryQuery, FALSE, TRUE);
MESSAGE('%1', RegistryQuery.GetKeyValue('.DEFAULT\Environment',
'TEMP'));

8.	 Finally, save and close the codeunit.

How it works...
We used the HKEY_USERS root of the registry in this recipe. By using the function Registry.
Users.OpenSubKey, we accessed the subkey. If the key is not found, or is null, we return a
suitable message. To access the other root folders, we have to pass an additional parameter.

Next, we try to access the names stored in the key. Again, if we are unable to find the key that
is equal to the second parameter of our function, we return null. If we do find it, we return its
value, as shown in the following screenshot:

OS Interaction

230

There's more...
To perform other actions on the registry, we can use the CreateSubKey and DeleteSubKey
functions, but we need to be very careful while playing with the registry. One mistake in
modification of the registry can cause an entire system crash.

For more information about the registry, you can view the following MSDN
article:
http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx

See also
ff Working with environment variables

Zipping folders and files within NAV
Zipping files or folders by code is not a common task; nevertheless, let's see how we can do it!

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
ZipFile File

MSShell Automation 'Microsoft Shell Controls And
Automation'.Shell

ZipFolder Automation 'Microsoft Shell Controls And
Automation'.Folder

Chapter 9

231

3.	 Write the following code in the OnRun trigger of the codeunit:
ZipFile.CREATE('C:\Users\Public\Pictures\Sample Pictures\Pictures.
zip');

CREATE(MSShell, FALSE, TRUE);

ZipFolder := MSShell.NameSpace('C:\Users\Public\Pictures\Sample
Pictures\Pictures.zip');

ZipFolder.CopyHere('C:\Users\Public\Pictures\Sample Pictures\
Desert.jpg');

4.	 Finally, save and close the codeunit.

How it works...
ZipFile is only a folder with compressed contents, so creating this file or folder is the
same as creating a text file using the CREATE function. We assigned the namespace of the
MSShell object to Zipfile, which means that the action done on the MSShell variable
will be actually done on our file.

After creating ZipFolder, we will simply move our file into it by using the CopyHere function.
The parameter of this function is the file that we want to copy in the ZipFolder.

10
Integration

In this chapter, we will cover the following recipes:

ff Sharing information through XMLports

ff Writing to and reading from a file using the C/AL code

ff Creating web services

ff Consuming web services

ff Sending data through FTP

ff Printing a report in a PDF, Excel, and Word format

ff Writing your own automation using C#

ff Using ADO to access outside data

Introduction
Business depends on multiple applications. Until now, all these applications were hosted
in-house, on the company's own server, which integrated applications by exchanging a flat
file or directly accessing the database. In the last few years, technologies have taken a big
leap and introduced numerous ways of managing business applications; cloud computing
is one of them.

Microsoft has made sure that Dynamics NAV will continue to meet its customer's integration
needs for this new type of infrastructure. In this chapter, we will be taking a look at the
different ways of integration with Microsoft Dynamics NAV.

This chapter will show you how to share information using XML or flat text files, creating and
consuming web services, and loading files on an FTP server. These recipes will serve as a
foundation for all your future integration efforts.

Integration

234

Sharing information through XMLports
Exporting or importing data is a common requirement for financial or ERP applications. There
are a number of formats in which data can be asked, but when there is no manual intervention
with data, or that data has to be used by two different applications, then it is mostly asked in
a delimited, fixed length or XML format. Extensible Markup Language (XML) is a format for
creating structured computer documents. XMLports are object types in Microsoft Dynamics
NAV that help to create these types of documents.

How to do it...
1.	 Let's get started by creating a new XMLport from Object Designer.

2.	 Add the following variables to XMLport designer:

Node Name Node Type Source Type Data Source
Root Element Text <Root>

Customer Element Table <Customer>(Customer)

No Element Field <Customer>::No.

Name Element Field <Customer>::Name

3.	 XMLport designer should look similar to the following screenshot:

4.	 Now save and close the XMLport.

Chapter 10

235

How it works...
XMLports are similar to discontinued NAV integration object type dataports. Developing
XMLports is a bit different from developing dataports. The following screenshot displays a
portion of an output file, which will help in understanding the XMLport structure:

XML is a tree-like structure made up of nodes. Every file has to start with a parent/root node.
Under the root node, we define a table from which we want to read the data, and finally we
define fields we want to use from that table. In this recipe, we have used a customer table.

In our output file, we can see that each value is surrounded by a node with the name
of the field, and a set of fields is surrounded by a parent node, which is just our table
named Customer.

There's more...
XMLports are not only made to export/import XML files, but we can even work with text files
of a fixed length and delimited formats. To achieve this, we have to change the Format
property of XMLport to Fixed Text or Variable Text. Along with this, we have the
FieldStartDelimiter, FieldEndDelimiter, and FieldSeparator properties that
help to read multiple file formats.

Integration

236

Exporting Sales Invoices in the CSV format
In the previous recipe, we took the first step by creating a very basic XMLport to export data
from a single table. Now let's take another step. Here we will export the sales data, but this
time it will be in the CSV (Comma Separated Values) format.

1.	 Let's get started by creating a new XMLport from Object Designer.

2.	 Go to the XMLport's properties from View | Properties (Shift + F4).

3.	 Set the properties mentioned in the following table:

Property Value
Direction Export
Format Variable Text
FieldDelimiter <None>
Table Separator <NewLine>

4.	 Add the following variables to the XMLport designer:

Node Name Node
Type

Source
Type

Data Source

Root Element Text <Root>

PurchaseHeader Element Table
<Purchase Header>(Purchase
Header)

PH_DocType Element Field Purchase Header::Document Type

PH_No Element Field Purchase Header::No.

PH_Vendor Element Field
Purchase Header::Buy-from
Vendor No.

PH_OrderDate Element Field Purchase Header::Order Date

PH_PostingDate Element Field Purchase Header::Posting Date

PurchaseLine Element Table <Purchase Line>(Purchase Line)

PL_DocType Element Field Purchase Line::Document Type

PL_DocNo Element Field Purchase Line::Document No.

PL_LineNo Element Field Purchase Line::Line No.

PL_Type Element Field Purchase Line::Type

PL_No Element Field Purchase Line::No.

PL_UOM Element Field Purchase Line::Unit of Measure

PL_Quantity Element Field Purchase Line::Quantity

PL_LineAmt Element Field Purchase Line::Line Amount

Chapter 10

237

5.	 After indenting all nodes, XMLport designer should look similar to the
following screenshot:

6.	 Now set the following property for the PurchaseHeader node:

Property Value
SourceTableView SORTING(Document Type,No.)

7.	 Set the following property for the PurchaseLine node:

Property Value
SourceTableView SORTING(Document Type,Document

No.,Line No.)

8.	 Now save and close XMLport.

On execution of the preceding recipe, the system will show a dialog box to save the output file.

While setting a value of the XMLport's TableSeparator property, we keep one space before
<NewLine>. This change will not help in exporting data, but if we use the same dataport to
import the file, the system needs to differentiate between a record and a table separator, and
this time our setting will help.

Integration

238

See also
ff The Browsing for a file recipe in Chapter 9, OS Interaction

ff The Checking file and folder access permissions recipe in Chapter 9, OS Interaction

ff Sending data through FTP

Writing to and reading from a file using the
C/AL code

Even though the XMLport takes care of the file integration requirements, sometimes we may
want to perform this activity by using the C/AL code. This recipe will demonstrate how to read
or write from a file using the C/AL code.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Length
StremOut OutStrem
FileOut File
StremIn InStrem
FileIn File
TextLine Text 250

3.	 Add the following code in the OnRun trigger:
IF NOT FileOut.CREATE('D:\NAVFile.txt') THEN
 IF NOT FileOut.OPEN('D:\NAVFile.txt') THEN
 ERROR('Unable to write to file!');
FileOut.CREATEOUTSTREAM(StreamOut);
StreamOut.WRITETEXT('Line 1');
StreamOut.WRITETEXT();
StreamOut.WRITETEXT('Line 2');
StreamOut.WRITETEXT();
FileOut.CLOSE;
IF NOT FileIn.OPEN('D:\NAVFile.txt') THEN
 ERROR('Unable to read file!');

Chapter 10

239

FileIn.CREATEINSTREAM(StreamIn);
WHILE NOT StreamIn.EOS DO BEGIN
 StreamIn.READTEXT(TextLine);
 MESSAGE('%1', TextLine);
END;
FileIn.CLOSE;

4.	 Save and close the codeunit.

How it works...
In this recipe, we are first creating a new file using the CREATE function. If the system fails
to create that file, we consider that there may be a file present with the same name in that
location. Then we try to open that file; if we fail in this attempt as well, we generate an error
message as we do not have any file to work with.

As we are writing data to a file, we have to use OutStream. Actually, the activity of sending
data to a file is done by the stream object's WRITETEXT function. This function does not send
a carriage return; that's why we are using the WRITETEXT function with a blank parameter.
After we finish writing to the file, we close the file.

The process of reading from a file is very similar to writing. Instead of using an OutStream
variable, we use an InStream variable. It has the EOS (End of Stream) function. The EOS
function returns the True value when we reach the end of the file. Until we reach the end of
the file, we can retrieve data using the READTEXT function. The parameter of the READTEXT
function is of the text datatype, which stores the line of text. In our code, we use the
MESSAGE function to display the line read by our code.

See also
ff Sharing information through XMLports

Creating web services
The web services allow sharing of an application's functionalities to an external system
and its users. It also takes proper authorization before sharing any information. In Microsoft
Dynamics NAV, creating a web service is an easy task; we can expose pages, codeunits, and
queries as web services.

Integration

240

How to do it...
1.	 Start Microsoft Dynamics NAV RoleTailored client and follow the steps.

2.	 Either search for Web Service in NAV's search, or from the Department menu,
visit the following path:

3.	 CRONUS International Ltd. | Departments | Administration | IT
Administration | General | Web Services.

4.	 Create a new web service using the following record:

Object Type Object ID Service Name Published
Page 22 Customer List Yes

5.	 Close the page.

How it works...
We can publish two types of web services, SOAP and OData. The SOAP web service provides
flexibility for building an operation-centric service. We can publish a page or a codeunit as
SOAP services. The OData web service is designed for querying tabular data. We can publish
a page or a query object as OData services. The SOAP services allow us to create, read,
update, and delete operations using the Page object, whereas OData services only support
the read-only operations.

Creating a web service requires us to expose a page, codeunit, or query object type, provide a
service name, and check the published field. At this time, the system does not have any idea
about the service type. The system chooses the service type when we execute or use it. NAV
provides the configuration of web services from the Microsoft Dynamics NAV administrator
console. Here we specify the ports for both the service types, and we also have an option to
enable or disable the service.

Chapter 10

241

To verify the web service, start Windows Internet Explorer and provide an address in the
following format:

http://<Server>:<WebServicePort>/<ServerInstance>/WS/<CompanyName>/
services

Our service type depends on the value mentioned for WebservicePort in the previous
address format.

See also
ff The Creating an InfoPath form for the NAV data recipe in Chapter 8, Leveraging

Microsoft Office

ff Consuming web services

Consuming web services
Microsoft Dynamics NAV provides an easy interface to create web services, which allow us to
expose the NAV data with business logic and proper authentication. Now, let's see how to use
these web services.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Add the function name as GetCustomer.

3.	 The function should take the following parameter:

Name DataType Length
CustNo Code 20

4.	 Add the following local variable to the function:

Name DataType Subtype
Customer Record Customer

5.	 The function should return a text variable of length 50.

6.	 Add the following code to the function:
IF Customer.GET(CustNo) THEN
 EXIT(Customer.Name)
ELSE
 EXIT('Not Found!');

Integration

242

7.	 Save and close the codeunit.

8.	 Search for the Web Services page in RoleTailored client.

9.	 In the Web Services page, choose New.

10.	 Create a new web service with our codeunit ID, and in the service name,
enter ConsumeWS.

11.	 Finally, mark the checkbox in the Published column.

12.	 Create a new Console Application project in Visual Studio.

13.	 In Solution Explorer, right-click on the Reference node and choose Add
Service Reference.

14.	 In the Add Service Reference window, choose the Advance button.

15.	 In the Service Reference Settings window, choose Add Web Reference. Then enter
http://localhost:7047/DynamicsNAV70/WS/Services (this may be different
depending on the web server, service name, and NAV company name) and click on
the green button with an arrow.

16.	 When the ConsumeWS service is displayed, choose View Service. Then enter
WebService in Web reference name: and choose Add Reference.

Chapter 10

243

17.	 Add the following code to the program:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsumeWebService
{
 using WebService;
 public class ConsumeWebService
 {
 public static void Main(string[] args)
 {
 ConsumeWS ws = new ConsumeWS();
 ws.UseDefaultCredentials = true;
 Console.WriteLine(ws.GetCustomer("10000"));
 Console.ReadLine();
 }
 }
}

18.	 Compile, save, and close the program.

How it works...
In the previous recipe, we had created a codeunit that returns the name of a customer if
executed successfully, else it returns a text saying Not Found. Then we published this
codeunit as a web service to make it available for external applications.

In the .NET program, we need to provide the right reference of our web service, otherwise we
will not be able to build our application with the code provided in the previous recipe.

To use our web service in the .NET program, we have provided its reference. The using
WebService line tells the program to use the functions from our web service. Then we
created an instance of our service ConsumeWS and used the default credentials. Now we
can call the functions of our page or of the codeunit. As we have created the GetCustomer
function in our codeunit, we are using that function for finding Customer No. 10000.

See also
ff The Creating an InfoPath form for the NAV data recipe in Chapter 8, Leveraging

Microsoft Office

ff Creating web services

Integration

244

Sending data through FTP
Sometimes, our client may ask us to upload a datafile on the FTP server. We can use the
Windows built-in client to develop our FTP upload program.

Getting ready
Make sure we have an active FTP server and logon credentials.

How to do it...
1.	 Let's start by creating a new codeunit from Object Designer.

2.	 Add a function name FTP that takes in the following parameters:

Name DataType Length
UserName Text 50
Password Text 50
ServerName Text 50
FileToMove Text 250

3.	 Then add the following local variables to the function:

Name Type Length
BatchFileName Text 250
BatchFile File
BatchfileStream OutStream
BatchFileData Text 250

4.	 Now add the following code to the function:
BatchFileData := 'D:\Temp\navFTP.dat';
BatchFileName := 'D:\Temp\navFTP.bat';
BatchFile.CREATE(BatchFileName);
BatchFile.CREATEOUTSTREAM(BatchfileStream);
BatchfileStream.WRITETEXT('@echo off');
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('echo user ' +UserName + ' >>
 ' + BatchFileData);
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('echo ' +Password + ' >>
 ' + BatchFileData);
BatchfileStream.WRITETEXT;

Chapter 10

245

BatchfileStream.WRITETEXT('echo bin >> ' +BatchFileData);
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('echo put ' +FileToMove + ' >>
 ' + BatchFileData);
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('echo quit >> ' +BatchFileData);
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('FTP -n -s:' +BatchFileData +
 ' ' + ServerName);
BatchfileStream.WRITETEXT;
BatchfileStream.WRITETEXT('del ' + BatchFileData);
BatchfileStream.WRITETEXT;
BatchFile.CLOSE;
CREATE(WshShell,FALSE,TRUE);
WshShell.Run(BatchFileName);

5.	 Write the following code in the OnRun trigger of the codeunit:
FTP('YourUserName', 'YourPassword', 'YourServer', 'YourFile');

6.	 Save and close the codeunit.

How it works...
File Transfer Protocol (FTP) is a way of sending data from one filesystem to another. Windows
provides a command-line utility to upload a file on FTP. Even though it is very basic, it works
well for our integration requirement.

We have created two files: a batch file and a data file. A batch file instructs the FTP program
and transfers the data file. Let's go through every line.

To enhance the security, we have added the first line, @echo off. It will not display any
command of our program on the screen. On the next two lines, we have applied the same
principle to secure our username and password. We are instructing the batch file for sending
text to an actual file, hence we are adding >>BatchFileData at the end of all the lines.
Next, we are setting the transfer type as binary and sending the file.

There's more...
For a list of available options or parameters that can be used with the FTP program,
type ftp ? in the command prompt.

Integration

246

With the default settings of NAV, you may get the following error on execution of this recipe:

You are receiving this error because of Navision's service configuration. Open
CustomSettings.Config from your server instance; the default path for this is
C:\Program Files\Microsoft Dynamics NAV\70\Service\Your Instance
name. You need to remove the file extension "bat" value from the default value of the key
ClientServicesProhibitedFileTypes.

See also
ff Sharing information through XMLports

Printing a report in a PDF, Excel, and Word
format

Sharing recorded information is very important in our day-to-day activities; having the same
format for the shared information is very important. If clients want to send a purchase order
to a vendor, they will prefer to do so in a PDF format, or if the management wants to do some
further analysis on a report's data, it will prefer Excel. Let's see how to do this.

How to do it...
1.	 Let's create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
FileName Text 250
Customer Rec Customer

3.	 Add the following code in the OnRun trigger:
Customer.setrange(City,' London');
//Export to PDF
FileName := 'C:\NAVReports\CuatomerList.pdf';

Chapter 10

247

REPORT.SAVEASPDF(101, FileName,Customer);
//Export to Excel
FileName := 'C:\NAVReports\CustomerList.xls';
REPORT.SAVEASPDF(101, FileName,Customer);
//Export to Word
FileName := 'C:\NAVReports\CustomerList.doc';
REPORT.SAVEASPDF(101, FileName,Customer);

4.	 Save and close the codeunit.

How it works...
Saving the report in a PDF, Excel, or Word format is a very simple activity. NAV provides a
built-in function for each file type, which takes three parameters. The first parameter is a
report object. The second parameter is the name and location of the file. The last parameter
is an optional parameter; it is used for filtering a record set on which the report is getting
generated. In our example, we have taken the report 101 (Customer-List) and we have
applied a filter on the city London.

See also
ff The Browsing for a file recipe in Chapter 9, OS Interaction

Writing your own automation using C#
C/AL provides almost everything to meet our client's requirements. Sometimes though,
we may need to extend the scope of C/AL to take care of some complex requirements. In
this recipe, we will see an example of how to develop a basic .NET application, and more
importantly, how to use it within NAV.

How to do it...
1.	 Let's get started by creating a new Class Library project in Visual Studio and

follow the steps.

2.	 Create a new file with the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
namespace NAVAdd
{

Integration

248

 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("NAVAdd")]
 [ComVisible(true)]
 public class NAVAdd
 {
 public int Add(int a, int b)
 {
 return a + b;
 }
 }
}

3.	 View the properties for the project.

4.	 Then on the Application tab, set the Assembly name to NAVAdd.

5.	 After that, on the Build* tab, set the Register for COM interop property to
true (checked):

6.	 Save and compile your objects.

7.	 Create a new codeunit from Object Designer.

Chapter 10

249

8.	 Add the following global variable:

Name DataType Subtype
NAVAdd Automation 'NAVAdd'.NAVAdd

9.	 Add the following code in the OnRun trigger:
CREATE(NavAdd,FALSE,TRUE);
MESSAGE('%1', NavAdd.Add(2, 3));

10.	 Save and close the codeunit.

How it works...
In our Visual Studio program, we are setting the ClassInterfaceType.AutoDual value to
call the CalssInterface attribute, which will register a program automatically. The second
attribute ProgID is the name of our program. Finally, to instruct the system about class
registration, we are using the last attribute, COMVisible.

Now, we set some properties of our program. To register our class as Automation, we need
to select the Register for COM interop property. As soon as we compile this program,
we can see that our NAVAdd is available in the Automation list.

See also
ff The Querying the registry recipe in Chapter 9, OS Interaction

Using ADO to access outside data
ActiveX Data Object (ADO) is a set of COM objects used for accessing data sources. ADO allows
developers to write programs to access data without knowing what a database structure is, or
how the database is implemented. Let's see how to use ADO in C/AL programing.

How to do it...
1.	 Let's get started by creating a new codeunit from Object Designer.

2.	 Create a function named CreateConnectionString.

Integration

250

3.	 Add the following parameters to the function:

Name DataType Length
ServerName Text 50
DatabaseName Text 50
UserName Text 50
Password Text 50

4.	 Set the function's return value of type text with length 1024.

5.	 Add the following code to the function:
EXIT(
 'Driver={SQL Server};' + 'Server=' + ServerName + ';'
 +'Database=' + DatabaseName + ';' + 'Uid=' + UserName
 +';' + 'Pwd=' + Password + ';');

6.	 Add the following global variables:

Name DataType Subtype Length
ADOConnection Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Connection
ADORecordSet Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Recordset
SQLString Text 250

7.	 Write the following code in the OnRun trigger of the codeunit:
CREATE(ADOConnection,FALSE,TRUE);
ADOConnection.ConnectionString :=
 CreateConnectionString('localhost', 'Book', 'Super',
 'rrsaw0201');
ADOConnection.Open;
SQLString:= 'SELECT * FROM [CRONUS International
 Ltd_$Customer] WHERE [No_] = ''10000''';
CREATE(ADORecordSet,FALSE,TRUE);
ADORecordSet:=ADOConnection.Execute(SQLString);
ADORecordSet.MoveFirst;
REPEAT
 MESSAGE(FORMAT(ADORecordSet.Fields.Item('Name').Value));
 ADORecordSet.MoveNext;
UNTIL ADORecordSet.EOF;
ADORecordSet.Close;
ADOConnection.Close;

8.	 Save and close the codeunit.

Chapter 10

251

How it works...
First of all, we are setting up the connection string, which carries the server, database, and
logon information. Once we open the connection, we can send our query to the database. In
this recipe, we are selecting the customer information from the Customer table with a filter
for Customer No. 10000.

To view the query result, we open the record set. Even though we know there will be only one
record, we loop through the record set, just to understand how to play with multiple records.
For looping, we use the simple REPEAT UNTIL loop till the end of the record set. Finally,
to read data from each field, we use the Fields.Item(FieldName) syntax. To send the
cursor to the next record, we use the MoveNext function.

11
Working with the

SQL Server

In this chapter, we will cover the following seven recipes:

ff Creating a basic SQL query

ff Understanding SIFT

ff Using the SQL profiler

ff Displaying data from a SQL view in NAV

ff Identifying Blocked and Blocking sessions from SQL

ff Setting up a backup plan

ff Maintaining the transaction logfiles

Introduction
NAV was introduced with a proprietary database management system. All the information was
stored in a flat file, which is called as FDB (Financial Database). With new versions, Microsoft
added a second option, that is, SQL Server. FDB was supported until Version 2009 R2. From
NAV 2013, SQL Server is the only database option for NAV.

With the SQL Server, we get better options to maintain, secure, optimize, and analyze
the data; these options make the SQL Server a very important part of the NAV system.
Considering this, Microsoft added a mandatory certification for every partner on SQL
Server implementation and maintenance.

In this chapter we will learn some of the basic activities, which all developers need to know
while developing NAV 2013.

Working with the SQL Server

254

Creating a basic SQL query
Let's write a very simple query to retrieve data from a table.

How to do it...
1.	 Open Microsoft SQL Server Management Studio and connect to the server that

holds the NAV database.

2.	 Click on the New Query option.

3.	 Then, select the NAV database in the database dropdown.

4.	 Enter the following code in the query window:
SELECT [No_], [Name], [Address], [City], [County], [Post
 Code]
FROM [CRONUS International Ltd_$Customer]
WHERE [No_] = '10000'

5.	 Press F5 to run the query. The result should be identical to the following screenshot:

How it works...
This query is just a simple question, which has three parts: what (fields of table), from (table),
and condition (filters). Using the SELECT keyword, we are telling the system the names of the
fields we want to retrieve. Most of the time, the NAV field names contain reserved keywords or
spaces. To let the system know the exact field name, we have enclosed the field names with
brackets, []. For example, we store the customer number field as No. in NAV, whereas in our
query we have referenced it by No_.

Chapter 11

255

After choosing the fields, we are telling our query which table these fields belong to. In our
case, it is the customer table. In the case of the NAV table, we have a slightly different naming
convention maintained in the SQL Server. The table name format is Company$Table. In NAV,
we have a table property called DataPerCompany. If we set this property to No, the table will
not contain the company's name as prefix. At the same time, our data for all the companies will
be stored in a single table. We do have such tables in NAV, for example, Users.

Finally, we are applying our condition to filter data. To do so, we are using the WHERE clause,
and applying a filter on customer number '10000'.

Let's see the equivalent C/AL code for this query:

CustomerRec.SETRANGE("No.", '10000');
IF CustomerRec.FINDFIRST THEN;

There's more...
The SQL queries can be used to retrieve, insert, modify, or delete data from multiple tables.
Let's take a look at these options:

ff Adding/inserting data:
INSERT INTO [CRONUS International Ltd_$Customer]
([No_],[Name],[Address],[City],[Post Code],[County])
VALUES ('98456','Rakesh Raul','104 Airoli',
'Navi Mumbai','400708','IN')

ff Editing/modifying data:
UPDATE [CRONUS International Ltd_$Customer]
SET [Name] = 'Rakesh Raul'
WHERE [No_] = '10000'

ff Deleting data:
DELETE [CRONUS International Ltd_$Customer]
WHERE [No_] = '10000'

It is not suggested to manipulate NAV data using SQL Server as it does not contain business
logic written in a NAV application. The NAV C/AL code is a powerful language, which can help
you to take care of any complex activity, including business logic.

See also
ff The Retrieving data using FIND and GET Statements recipe in Chapter 3, Working

with Tables, Records, and Query

ff The Advanced Filtering recipe in Chapter 3, Working with Tables, Records, and Query

Working with the SQL Server

256

Understanding SIFT
SIFT stands for Sum Index Field Technology; it keeps track of data of type decimal and helps
to complete complex calculations quickly. Let's see how it works.

How to do it...
1.	 Design Table 379 Detailed Cust. Ledg. Entry-keys.

2.	 Click on View | Keys from the menu.

3.	 The selected key has a value in the SumIndexFields column. Go to Properties of
the selected keys. The property, MaintainSIFTIndex, tells the SQL Server to store
the total of SumIndexFields.

How it works...
Initially, SIFT values were stored in actual tables. Later, it was identified that inserting
multiple entries in the SIFT table on every transaction puts an extra load on the system
performance. To reduce this load from NAV 5 SP1, these values are stored in View and
called VSIFT. In this example, we will focus on VSIFT.

Chapter 11

257

Let's take a look at the fourth key Customer No., Initial Entry Due Date,
Posting Date, Currency Code. In the NAV key, the count starts at zero; that's why
we said the fourth key. The VSIFT view name format is very similar to the table naming
convention. Additionally, it contains the key number, Company$Table$VSIFT$Key_Number.

Right click on the CRONUS International Ltd_$Detailed Cust_ Ledg_
Entry$VSIFT$4 view and go to Script View As | CREATE To | New Query Editor Window.
You should see a code similar to the following code:

CREATE VIEW [dbo].[CRONUS International Ltd_$Detailed Cust_ Ledg_
 Entry$VSIFT$4]
WITH SCHEMABINDING AS
SELECT [Customer No_],[Initial Entry Due Date],[Posting
 Date],COUNT_BIG(*) "$Cnt",SUM([Amount]) [SUM$Amount],SUM([Amount
 (LCY)]) [SUM$Amount (LCY)]
FROM dbo.[CRONUS International Ltd_$Detailed Cust_ Ledg_ Entry]
GROUP BY [Customer No_],[Initial Entry Due Date],[Posting Date]

Working with the SQL Server

258

VIEW is just a Select statement. If a table used in VIEW gets updated, the VIEW is also
updated. VIEW does not store data, it just collects it. The whole process is optimized by the
SQL Server for faster transactions.

We can retrieve the data from VIEW in the same way as tables. If we select the records from
our view used in the previous recipe, we should see the following result:

To understand how records are formed in VIEW, let's look at record number three of the
previous result.

SELECT [Customer No_],[Initial Entry Due Date],[Posting Date],
 [Amount],[Amount (LCY)]
FROM [CRONUS International Ltd_$Detailed Cust_ Ledg_ Entry]
WHERE [Customer No_] = '10000' AND
[Initial Entry Due Date] = '2015-01-01' AND
[Posting Date] = '2014-12-31'

We found two records, which form our VIEW record.

Now, let's take a look at the C/AL code identical to our previous SQL query to get the sum of
the Amount field.

DtlCustLedgEntry.SETCURRENTKEY(
 "Customer No.", "Initial Entry Due Date", "Posting Date");
DtlCustLedgEntry.SETRANGE("Customer No.", '10000');
DtlCustLedgEntry.SETRANGE("Initial Entry Due Date", 010115D);
DtlCustLedgEntry.SETRANGE("Posting Date", 123114D);
DtlCustLedgEntry.CALCSUMS(Amount);

Chapter 11

259

See also
ff The Adding a FlowField recipe in Chapter 3, Working with Tables, Records, and Query

ff The Creating a Sumindex Field recipe in Chapter 3, Working with Tables, Records,
and Query

Using the SQL profiler
The SQL profiler is a very helpful tool to monitor the T-SQL command sent through NAV by a
specific user. Let's take a look at the basic configuration of this tool.

How to do it...
1.	 Go to Start | All Programs | Microsoft SQL Server 2008 R2 | Performance Tools |

SQL Server Profiler.

Working with the SQL Server

260

2.	 Click on File | New Trace. This should prompt a new window to connect to the
SQL Server.

3.	 On successful connection to the SQL Server, the next window will be Trace Properties.

Chapter 11

261

4.	 Provide a name to the trace and the saving details. Open the Events Selection tab to
choose an event and a field, which needs to be recorded.

5.	 On completion of the setup, click on Run. This will begin the trace and we should get
an output similar to the following window:

Working with the SQL Server

262

How it works...
We can see, username reads and writes on the database execution time and actual query
in our trace result window. There are many fields and events, which can help to trace issues,
such as system slowness.

See also
ff Identifying Blocked and Blocking sessions from SQL

Displaying data from a SQL view in NAV
In this recipe we will see how to display data for a SQL view.

How to do it...
1.	 Open SQL Server Management Studio.

2.	 Select a database and open a new query window.

3.	 Copy the following code to the query window and execute it:
CREATE VIEW [Customer Ledger View] AS
SELECT "Customer No_","Initial Entry Due Date","Posting
 Date",
COUNT_BIG(*) "$Cnt", SUM("Amount") "SUM$Amount",
SUM("Amount (LCY)") "SUM$Amount (LCY)"
FROM [CRONUS International Ltd_$Detailed Cust_ Ledg_ Entry]
GROUP BY "Customer No_", "Initial Entry Due Date",
"Posting Date"

4.	 Create a new table in Object Designer.

5.	 Add the following fields to the table:

Name DataType Length
Customer No_ Code 20

Initial Entry
Due Date

Date

Posting Date Date

$Cnt BigInteger

SUM$Amount Decimal

SUM$Amount(LCY) Decimal

Chapter 11

263

6.	 Add the following properties to the table:

Property Value
DataPerCompany No

LinkedObject Yes

LinkedInTransaction No

7.	 Save the table as Customer Ledger View.

8.	 On execution of the table, you should see the following data:

Working with the SQL Server

264

How it works...
To start with, we are making a copy of the VSIFT view from the Customer Ledger Entry
table. Then we are careering the table exactly identical to our view.

Now, we have two different objects with the same structure. We are linking these two objects
to each other. To do so, we are setting the table property LinkedObject to Yes. We have
another property now to attend, LinkedInTransaction, which we need to set as No.
Finally, we set the DataPerCompany property to No. As we are setting the DataPerCompany
property to No, the table will not contain the company name as a prefix in the SQL Server. At
the same time our data for all the companies will be stored in a single table. With the help of
these properties and the same object name, we let the system know that these two objects
refer to each other.

There's more...
We need to be careful while displaying data from the linked object, as permission does not
apply to the linked objects.

See also
ff Creating a table

ff Creating a basic SQL query

Identifying Blocked and Blocking sessions
from SQL

Deadlock does not allow a user to work in the system. Blocking other user actions is a
common occurrence in NAV. In this recipe we will identify Blocked and Blocking sessions.

How to do it...
1.	 Open SQL Server Management Studio.

2.	 Open a new query window.

3.	 Execute the following code:
sp_who

Chapter 11

265

4.	 The resulting window should be similar to the following screenshot:

How it works...
The sp_who command returns a list of all the connections to the server by querying the sys.
sysprocesses system table. The column blk will show the spid of the user who is blocking.

There's more...
We can find deadlocks by writing a query on the SQL Server. Let's take a look at the query:

SELECT
SP.[spid] AS [SPID],
CASE WHEN SP.[blocked] > 0 THEN 'Yes' ELSE '' END AS [Blocked],
SP.[blocked] AS [Blocked by SPID],
SP.[nt_username] AS [User ID],
SD.[name] AS [Database],
SP.[waittime],
SP.[status] as [Current Status],
SP.cmd AS [Current Command]
FROM
[master].[dbo].[sysprocesses] AS SP JOIN
[master].[dbo].[sysdatabases] AS SD ON
(SP.dbid = SD.dbid) LEFT OUTER JOIN
[master].[dbo].[sysprocesses] AS SP2 ON (SP.[blocked] =
SP2.[spid])
WHERE SP.[program_name] Like '%Dynamics NAV%'
ORDER BY SP.[waittime] DESC, SP.cmd DESC

Working with the SQL Server

266

The previous query will give us blocked user IDs as well as other details, which will help us find
the root cause of the block. We can pass the KILL spid command on blocking the user IDs
to resolve our deadlock. Before killing any user, please collect all the user activity information
to avoid partial posting of data.

See also
ff Using the SQL profiler

Setting up a backup plan
Taking a backup of the database is very important; mostly the customer ID department takes
care of this activity. Still, it's better to have an idea of how to set up the backup plan.

How to do it...
1.	 Open SQL Server Management Studio and connect to your server. In the

Object Explorer pane on the left-hand side, expand the tree to Management
Maintenance Plans.

2.	 Right-click on the Maintenance Plans folder and select Maintenance Plan Wizard.

Chapter 11

267

3.	 Click on Next.

4.	 In the next window, set the backup plan name and the to-change schedule. Then click
on the Change… button.

5.	 We have scheduled our backup to run every midnight.

6.	 Click Ok in the Job Schedule Properties window.

7.	 Then click on Next.

8.	 Select the Back Up Database (Full) option.

9.	 Click on Next.

10.	 Select the desired database.

11.	 Keep clicking on Next until you finish the wizard.

Working with the SQL Server

268

How it works...
On completion of the wizard, we should see our backup plan in the Object Explorer tree
under Maintenance Plans.

Our backup plan will execute on the scheduled time only if the SQL Server Agent services are
running. To execute the backup plan at any other time than the scheduled time, just right-click
on back plan and choose execute.

There's more...
SQL Maintenance Plan provides multiple tasks, which can help us to keep our database
optimized. A few important tasks and their details are as follows:

ff Reorganize Index: This task will defragment and compact indexes. It will help to
improve index scanning performance. This task can be set on a monthly basis; if
there is a high volume of data insertion, it can also be set on a weekly basis.

ff Rebuild Index: This is equivalent to creating an index again. It will highly optimize the
seek-and-scan performance of the index. This activity can take a longer time as well
as lock the database tables.

See also
ff Creating a basic SQL query

Chapter 11

269

Maintaining the transaction logfiles
The transaction log is a record of all the transactions that have been performed on the
database. If not properly maintained, the transaction logfile can become very large. If the
size of the transaction logfile reaches its maximum limit or the disk hosting file is running
out of space, the user will receive an error and the system will not allow us to create new
transactions. In this recipe we will see how to shrink the transaction logfile.

Getting ready
Make a complete backup of the database and store it in an offline location.

How to do it...
1.	 Open SQL Server Management Studio and connect to the server that holds the

NAV database.

2.	 Click on New Query.

3.	 Then select the NAV database in the database dropdown.

4.	 Enter the following code in the query window:
BACKUP LOG <MyDatabase> WITH TRUNCATE_ONLY

5.	 Press F5 to run the query.

6.	 Delete the previous SQL statement from the Query window and add the
following code:
DBCC SHRINKFILE (Logfilename, Newsize)

7.	 Press F5 to run the query.

How it works...
The SQL Server database has three types of physical files, that is, primary datafile, secondary
datafile, and transaction logfile. There can be only one primary datafile; the extension of
a primary datafile is .mdf. We can have multiple secondary files; the maximum size of a
secondary file can be configured. A secondary file extension is .ndf. Multiple transaction
logfiles can be created; the file extension for this is .ldf.

Working with the SQL Server

270

The previous recipe is divided into two parts. In the first part, we are removing the committed
transactions in the logfile, which will leave an empty logfile. At this point, the size of the file
is the same. The TRUNCATE_ONLY command only removes the transactions, it does not
modify the file size. To modify the file size, we are using the next command, that is, DBCC
SHRINKFILE. As a parameter, we need to provide a logfile name, which is nothing but a
database file with extension .ldf and the desired file size. It is suggested not to shrink the
logfile completely, but to a size that you know will be used. If the file is completely shrunk, a
new log added to the file can have fragmentation.

See also
ff Creating a basic SQL query

ff Setting up a backup plan

ff The Creating a new database recipe in Chapter 12, NAV Server Administrator

12
NAV Server

Administration

In this chapter, we will cover the following recipes:

ff Creating a NAV Server Instance

ff Configuring NAS to run Job Queue

ff Creating a user on NAV

ff Changing the NAV license

ff Creating a new database

ff Testing the NAV database

Introduction
The old NAV versions were based on two-tier architecture; that means client executable is
directly talking to relational database management system (RDBMS) whereas NAV's current
version is based on three tiers. In addition to client executable and RDBMS, we have one
more tier, that is, Microsoft Dynamics NAV Server. This tier works as a middleman between
the client and RDBMS. With this new tier, Microsoft has not only allowed us to distribute the
user on multiple services for load management, but also opened a new way of integration,
which even takes care of NAV business logic. With these advantages, we also have new
responsibilities of implementing and maintaining the server tier.

NAV Server Administration

272

The two-tier and three-tier architectures are shown in the following diagram:

2-Tier Architecture

Database Tier

Client Tier

3-Tier Architecture

Business Logic Tier

Database Tier

Client Tier

Administering NAV Server, creating and managing users and their permissions, and managing
the license, database, and companies, are all done by the NAV administrator. Microsoft has
provided different tools for all these administrative tasks.

Tool Task
Microsoft Dynamics NAV
Administration

To create and manage Microsoft Dynamics NAV Server
Instance.

Microsoft Dynamics NAV
2013 Administration
Shell

To administer NAV by command line.

RoleTailored client To create and manage users, permissions, and profiles.
Development Environment To manage the license, database, and companies.

In this chapter, we will look at six simple recipes to carry out these administrative tasks.

Chapter 12

273

Creating a NAV Server Instance
NAV Server Instance is a service through which a NAV client interacts with the SQL Server
database. When we install NAV Server on a machine it creates a single instance of NAV
Server. In this recipe, we will see how to create an additional NAV Server Instance.

How to do it...
1.	 Open the Microsoft Dynamics NAV Administration tool. Your system will present the

window as shown in the following screenshot:

2.	 Right-click on Microsoft Dynamics NAV (Local) and choose Add Instance.

NAV Server Administration

274

3.	 A new server instance will be created as shown in the previous screenshot. Select
the newly created server instance from the left pane of Microsoft NAV Server
Administration and update the following settings for that instance:

Setting Value
Server Instance: DynamicsNAV70-Test

Management Services Port: 7145

Client Services Port: 7146

SOAP Services Port: 7147

OData Services Port: 7148

4.	 From the left pane of the Microsoft NAV Server Administration tool, select the newly
created instance.

5.	 Navigate to Edit to select a NAV Database Name and Database Server.

6.	 Select Microsoft Dynamics NAV (Local) from the left pane.

7.	 From the center pane, right-click on the newly created server instance and
choose Start.

Chapter 12

275

8.	 Start the RoleTailored client and provide the following value as the server
address to connect the newly created server, where LocalHost is your machine
name hosting the NAV Server service. Refer to the following screenshot.

LocalHost:7146/DynamicsNAV70-Test

How it works...
Creating an additional NAV Server Instance using the Microsoft Dynamics NAV
Administration tool is a very simple activity. We have already created a new instance by
providing very minimal information. To create the NAV Server Instance, we first create the
instance name; it is suggested we provide a name that gives us a quick hint about our
database. Then, we provide a TCP port number on which our server will communicate. The
valid range for a port number is from 1 to 65535. Then, we have an option to provide a
specific logon account. By default, the value for these settings is Network Service; but it is
suggested that on a production server, you use the valid domain account which is dedicated
to running the service.

After the creation of the instance, your system will update all the settings with default values.
These values are taken from the primary instance, which is created during the installation
of the server. To just access the database, we only need to verify the Database Name and
Database Server settings.

NAV Server Administration

276

There's more...
Details of all the settings options are provided in the last section of the Microsoft Dynamics
NAV Administrator tool. For more details, you can visit the following URL:

http://msdn.microsoft.com/en-us/library/dd355055(v=nav.70).aspx

Using Microsoft Dynamics NAV Administration Shell
Administration of NAV Server can be handled using the Administration Shell client. This client
is just Windows Powershell. You can find detailed information about the tasks we can carry
out using Administration Shell at the following URL:

http://msdn.microsoft.com/en-us/library/jj672916(v=nav.70).aspx

Let's take a look at a few basic commands:

ff Get-Command *NAVServer*: Used to get the list of commands

ff Get-Help <cmd name>: Used to get help about the commands

ff Get-Help Get-NAVServerInstance: Used to get help about NAV Server Instance

See also
ff Configuring NAS to run Job Queue

ff Changing the NAV license

Configuring NAS to run Job Queue
Navision Application Server (NAS) is nothing but a faceless client that is running as service
and Job Queue is the setup available in NAV to schedule multiple activities at designated
dates and times. In this recipe, we will be configuring NAS to execute Job Queue activities.

How to do it...
1.	 Open the Microsoft Dynamics NAV Administration tool and choose NAV Server

Instance to configure NAS.

Chapter 12

277

2.	 Update the following settings for NAS Services. Refer to the following screenshot.

Setting Value
Company: Your Company form NAV Database

Startup Argument: JOBQUEUE

Startup Codeunit: 1

Startup Method: NASHandler

3.	 Save the settings and restart the instance.

How it works...
NAS is executed on the basis of which company we select; so to instruct our service which
company to use, we have provided a company name for setting company. This means, for
every company for which we want to execute NAS, we need to create a Navision Server
Instance for that database and company. Beneath the Company: field, there is a selection
available to activate the debugging of NAS services.

The next setting is Startup Argument:; here we specify the application configuration
information. In our case, we provided the standard option, JOBQUEUE, to activate the Job
Queue application. This property is basically depending on Startup Codeunit: and Startup
Method: for its functioning.

Later, we have supplied the value for Startup Codeunit:, that is, 1 (ApplicationManagement).
The last setting is Startup Method:. In this setting, we provide the method that we want to
call from the codeunit mentioned in Startup Codeunit:. If we do not provide any value for this
setting, it will execute the OnRun trigger of Startup Codeunit:.

There's more...
There is another way to run Job Queue from NAS without using codeunit 1,
ApplicationManagement. In the previous example, we are executing the NASHandler
method of codeunit 1. If you follow that code, it is further going to codeunit 44,
NASManagement, in the function NASHandler. From this function, with the help of Startup
Argument, system executes Codeunit related to Job Queue.

NAV Server Administration

278

So, we can directly execute codeunit 450, Job Queue-NAS Startup, with blank Startup
Argument: and Startup Method: settings.

See also
ff Creating a NAV Server Instance

Creating a user on NAV
Creating a user is a very important activity. In this recipe, we will create one user and assign it
a role.

How to do it...
1.	 Start the RoleTailored client and navigate to Departments | Administration |

IT Administration | General | Users.

2.	 From the list page, navigate to Actions | New. You will see a window similar to the
one shown in the following screenshot:

Chapter 12

279

3.	 From the Windows Authentication fast tab, select the assist edit button in the
Windows User Name field.

4.	 It will open a window to run a search for the windows user account.

5.	 Enter the username and click on Check Names. Then, after getting the desired user
account, click on OK.

6.	 In License Type, select Full User.

7.	 Set State as Enabled.

8.	 Provide 31/12/2013 as Expiry Date.

9.	 Go to the User Permission Sets fast tab and assign the SUPER role to the user.

10.	 Click on OK to close the user creation page.

NAV Server Administration

280

How it works...
The Microsoft Dynamics NAV 2013 supports four credential authorization systems: Windows,
UserName, NavUserPassword, and AccessControlService. In this recipe, we are
creating a user of type Windows. Fields not mentioned in this recipe are irrelevant for creating
a Windows user.

In this recipe, we have purposely kept the User Name: field blank as we want the username
derived from the active directory settings which are updated as soon as we select Windows
User Name. We can simply type the windows user name including the domain; but in this
recipe, we are using Select User or Group to avoid mistakes. This feature will help us find
users for whom we do not have an exact user ID.

License Type, introduced with NAV 2013, is necessary at the time of purchasing a NAV license
to provide details of the license type. Based on the purchase details, we need to configure the
user with the right license type. In this recipe, we have selected the value Full User, which will
allow the user to access all areas of NAV, subject to its assigned role and permissions.

The next two settings provide control over user access by allowing you to change users' status
or providing an expiry date.

In the final setting, we have selected the role Super. Combination of the role Super and
license type Full User, allows user to have access to the entire NAV application. There is the
possibility of controlling user access based on the company selected. For this, we need to
select a company corresponding to each role. If the column Company does not have a value
entered for any role, that means the user has that particular role in all companies of the
current database.

There's more...
In the NAV application, we can create the user for any of the four authorization systems, but
the activation of that system is based on NAV Server settings. To activate any authorization
system, select it in Credential Type in the NAV Server service and restart the server instance
to apply the changes.

See also
ff Creating a NAV Server Instance

ff Changing the NAV license

Chapter 12

281

Changing the NAV license
NAV system access and modules are controlled by a license. The client can add a number
of concurrent users or modules with their existing license. In this recipe, we will see how to
update the license and check license information from the RoleTailored client.

How to do it...
1.	 Open Microsoft Dynamics NAV 2013 Development Environment.

2.	 Navigate to Tools | License Information; it will open a window displaying current
license information.

3.	 Click on Upload..., which will open the windows dialog box, and choose license file.

4.	 Restart the NAV Server Instance.

NAV Server Administration

282

5.	 Start RoleTailored client and navigate to Application Menu | Help | About
Microsoft Dynamics NAV.

6.	 From the About Microsoft Dynamics NAV window, select View your
license information.

Chapter 12

283

How it works...
With the purchase of additional concurrent users, new granule or NAV add-on solution,
Microsoft provides a new license file which contains the permission set for the new purchase.
Only after updating the license in the system can the user avail the benefit of these new
features. In NAV 2013, any changes related to license can only be done from the development
environment. In the License Information window, we see two buttons, that is, Upload...
and Change.... If we choose Change..., it will only change the license for the instance of the
development environment. In this recipe, we choose Upload... as we want to apply that license
on our NAV system.

The license will take effect only after restarting the NAV Server Instance. If you have multiple
NAV Server Instance connected to a single database, all server instances need to restart to
apply the new license.

There's more...
The license file carries a lot of important information, such as related NAV versions, number
of users, and application granules. Almost all the information is encrypted; only very basic
information is readable if the license file opens in Notepad. The same information can be
viewed by the client after applying for the license. Microsoft provides one more file with the
license file, which is not encrypted and provides detailed information about each and every
object the user is allowed to use.

Sometimes, we may not have this file and want to know the details of allowed objects.
This can be achieved by developing a simple report. Create a NAV report on a virtual table
2000000040, License Information and add all the fields of this table to that report.

See also
ff Creating a NAV Server Instance

ff Creating a user on NAV

ff Creating a new database

NAV Server Administration

284

Creating a new database
Creating a new database is not a day-to-day activity, but knowing about it will be an
advantage. In this recipe, we will create a new NAV database and take a look at a few
very important settings.

How to do it...
1.	 Open Microsoft Dynamics NAV 2013 Development Environment.

2.	 Go to File | Database | New and provide your SQL server details and logon
credentials. You will be presented with a New Database screen.

3.	 Provide the Server Name and Database Name. The database name needs to be
unique among all the databases of that server.

4.	 Next, go to the Database Files tab and modify the default value of the File Name
column to save the data file on the non-system drive.

Chapter 12

285

5.	 From the same tab, uncheck the column value of Unrestricted Growth and
provide a Maximum Size value, as shown in the previous screenshot.

6.	 As you did previously, update the Transaction Log File tab.

7.	 Next, open the Options tab and change Recovery model..... to Simple.

8.	 Finally, from the Integration tab, select the Save license in database option and
click on OK.

9.	 Your system will open a dialog box. To select the NAV license file, provide a valid NAV
license file to complete the database creation.

How it works...
From NAV 2013, we have only one database option, that is, Microsoft SQL Server. NAV
development environment provides a simple wizard to create a SQL Server Database. This
wizard starts by providing the database name. As soon as we provide the database name,
the system updates the remaining settings with default values.

NAV Server Administration

286

Next, we have provided a folder location to save the database files in a non-system location;
this is always advisable to protect the database file from system crash and provide efficient
HDD space management. The SQL server has a database logging system that keeps track of
each and every transaction. The Recovery Model..... setting helps to let the SQL server know
how to log the database's activities. Bulk-logged and Full will keep track of each and every
activity done on related databases, whereas Simple will only keep track of important activity.
It is advisable to keep the setting value Simple for test and temporary databases to save
HDD space.

Finally, we updated the settings to upload the license to the database.

There's more...
You must be thinking, since we need to create a SQL database, why can't we do it from SQL
Server Management Studio rather than NAV client. The first reason is that NAV does not
recognize a non-NAV database. Secondly, the NAV client database creation wizard takes care
of all NAV database-related settings and configurations.

While creating the previous database, we have seen that after providing the database name,
the system updates all other settings with default values. All these values are very specific
for NAV databases. For example, the system creates a secondary database file at the time of
creating the database, which is unusual for SQL database creation. For a NAV database, the
system saves all the configuration and metadata in a primary file, whereas transactional data
is stored in a secondary file.

See also
ff Creating a NAV Server Instance

ff Creating a user on NAV

ff Changing the NAV License

ff Testing the NAV database

Testing the NAV database
For any system, consistency of data is very important. NAV provides tool to verify consistency.
In this recipe, we will see how to run that tool.

Chapter 12

287

How to do it...
1.	 Open Microsoft Dynamics NAV 2013 Development Environment.

2.	 Navigate to File | Database | Test Database. Your system will present a window
similar to the one shown in the following screenshot:

3.	 Select the option Maximum and then the second tab Options.

4.	 From the Options tab, select the option File and provide a location to save the logfile.

5.	 Click on OK to start the test.

NAV Server Administration

288

How it works...
This tool verifies the consistency of data, so it is very important and viable to run this tool on
a periodical basis. If we have huge data, then executing this tool on the Maximum setting will
take a huge amount of time. Lets take a look at the task executed in the Maximum test.

Setting Feature tested
Test primary keys and data ff All records of all tables can be read

ff Record sorting order as per the primary key

ff Field data and data type relation
Test secondary keys ff All secondary keys can be read

ff Record sorting order as per secondary key
Test space allocation Allocation of space to key sorting order management
Test BLOBs All BLOBs fields can be read
Test field relationships
between tables

All field relation can be read and data flow is correct

On the second tab, we have the option to choose between the test result output methods. In
this recipe, we choose File, as in the case of Screen we will need to sit in front of our system
to accept each and every error so that the test will continue, and in the case of Event log, we
need to have windows system administration permission to read the log.

See also
ff Creating a NAV Server Instance

ff Changing the NAV license

ff Creating a new database

Index
Symbols
.NET add-in

displaying, on page 107-112

A
About This Page function

for report 184
for subform page 183
using 161
using, permission assigning for 182

About This Report
using 162, 163

ActiveX Data Object. See ADO
activities 98
AddInfoColumn function 195
Add Watch action 152
ADO

using, to access outside data 249, 250
array

creating 17-19
automation

writing, C# used 247-249

B
backup plan

setting up 266-268
Blocked sessions

from SQL, identifying 264, 265
Blocking sessions

from SQL, identifying 264, 265
breakpoints

options, in debugger 156-158
setting 154-156

Break Rules action
Break on Error 157
Break on Record Changes 157
Skip Codeunit 1 157

C
C#

used, for writing automation 247-249
C/AL programming

about 7, 27
query 74, 75

CALCDATE() function 14
CALCDATE NAV function 13
CalcNumberOfPeriods() function 14
C/AL code

RDLC report, exporting from 145, 146
used, for reading from file 238, 239
used, for writing to file 238, 239

Call Stack window 152
Cartesian products 74
CASE statement

using, to test multiple conditions 34, 35
ChangeCustomerName function 40, 152
ChangeCustomerNameRef function 40
chart

adding, to page 112-114
charts

creating, with Visio 208-211
CheckCreditCardData() function 23
Client Report Definition Layout. See RDLC
Client/server Application Language.

See C/AL programming
Client/server Integrated Development

Environment. See C/SIDE

290

code
repeating, loop used 30, 31

communication 80
companies

data, retieving from 65, 66
conditions

checking, IF statement used 32, 33
CopyHere function 231
CreateBookAndOpenExcel function 196
CREATE function 231, 239
cross join 74
C/SIDE 27
CSV format

about 236
sales invoices, exporting 236, 237

CURRENTDATETIME function 8, 9
CurrPage.UPDATE command 92
Customer table 153
Customer variable 151

D
data

connection creating from Excel, NAV used
197, 198

displaying, from SQL view 262-264
exporting, Excel buffer used 193-196
extracting, query used 66-69
processing, by report creation 130-132
retrieving, FIND statement used 52, 53, 54
retrieving, from FlowField 61, 62
retrieving, from other companies 65, 66
retrieving, from SumIndexField 62
retrieving, GET statement used 52-54
sending, through FTP 244-246
sending, to Microsoft Word 188-190
showing in Excel, PowerPivot used 199-203

database
new database, creating 284-286

database, NAV
testing 287, 288

data in process
displaying 28

DataPerCompany property 255, 264
data type

about 7
string, converting to 21, 22

date formula
using, to calculate dates 13, 14

dates
calculating, date formula used 13, 14

day
from given date, retrieving 11, 12

debugger
breakpoint, options 156-158
using 147-154

decimal field
totals, adding on 136, 137

decimal values
rounding 36, 37

DecomposeRowID() function 25
Development Environment 272
dialog 29
Document report 118
DT2DATE function 8
DT2TIME function 8, 9

E
Enable property 106
Enterprise resource planning. See ERP
ENVIRON command 190
ENVIRON function 216
environmental variables 216-219
EOS (End of Stream) function 239
ERP 167
errors

finding, NAS used 164, 165
EVALUATE() function 22
Excel

report, printing in 246, 247
to NAV, data connection creating

from 197, 198
Excel buffer

used, for exporting data 193-196
Extensible Markup Language. See XML
external applications

running, SHELL used 220
external files

opening, HYPERLINK used 214, 215

F
FactBox page

creating 93-95

291

FastTabs 82
FDB 253
Field-level security

about 177-180
working 181

file
access permissions, checking 225-227
browsing for 221, 222
reading, from C/AL code used 238, 239
writing to, C/AL code used 238, 239
zipping, with NAV 230, 231

File Transfer Protocol. See FTP
FILTERGROUP function

about 172
using 172, 173

filtering 55, 56
filters

applying, on lookup page 86-88
custom filters, adding to Request

Page 124-128
setting, on report loading 128, 129

Financial Database. See FDB
FINDFIRST function 56
FIND function 54
FINDSET function 54
FIND statement

used, for retrieving data 52, 54
FlowField

adding 57, 58
data, retrieving from 61, 62

folder
access permissions, checking 225-227
browsing for 223-225
zipping, with NAV 230, 231

FORMAT function 15, 16
formatted string

value, converting to 15, 16
FTP

data, sending through 244, 245
full outer join 73
functions

local functions, creating 38
private functions, creating 38

rounding 37, 38

G
Get-Command *NAVServer* command 276
GetCustomer function 243
GET function 160
Get-Help <cmd name> command 276
Get-Help Get-NAVServerInstance

command 276
GetNumberOfYears() function 12
GET statement

used, for retrieving data 52-54

H
HTML-formatted e-mail

sending 192
HYPERLINK

using, to open external files 214, 216

I
IBAN (International Bank Account

Number) 25
IF statement

nested 34
used, for checking conditions 32, 33

index
rebuilding 268
reorganizing 268

InfoPath form
creating, for NAV data 204-207

information
sharing, through XML ports 234, 235

inner join 73
InsertLogEntry() method 9
interactive sorting

adding, on reports 138-140
Inventory field 95

J
Job Queue

running, NAS configured 276-278

292

K
key

adding, to table 51, 52
KILL spid command 266

L
left outer join 72
license

changing 281, 283
License Information window 283
link

creating, from report to page 132-135
creating, from report to report 135, 136

List report 118
LoadRSS function 111
lookup page

filters, applying 86-88
loop

REPEAT..UNTIL loop, using 32
used, for repeating code 30, 31
WHILE loop, using 31

M
mail

sending from NAV, through SMTP 191, 192
MARK function 64
matrix report

creating 140-145
Microsoft Dynamics NAV 2013 Administration

Shell 272
Microsoft Dynamics NAV Administration 272
Microsoft Dynamics NAV Administration Shell

using 276
Microsoft Dynamics NAV Server 271
Microsoft Excel

URL 198
Microsoft MSDN site

Finance Performance, URL 114
Microsoft Office 187
Microsoft Word

data, sending to 188-190
month

from given date, retrieving 11, 12

N
NAS

configuring, to run Job Queue 276, 277, 278
used, for finding errors 164, 165

NAV
data connection, creating from

Excel 197, 198
data, displaying from SQL view 262-264
e-mail sending from, through SMTP 191, 192
files, zipping 230, 231
folders, zipping 230, 231
license, changing 281, 283
server instance, creating 273-276
users, creating on 278-280

NAV data
InfoPath, creating for 204-207

NAV database
testing 286-288

NAV query 72
NAV Server Instance

creating 273-275
Microsoft Dynamics NAV Administration Shell,

using 276
NewRow function 195

O
OData web service 240
OnAfterGetRecord trigger 196
OnPreDataItem trigger 196
OnRun trigger 150, 173
OnValidate() trigger 16
OpenFileDialog function 221
Option field 20
OptionString property 20
option variable

creating 19-21

P
page

.NET add-in, displaying 107-112
chart, adding 112-114
creating, wizard used 79-84
running, multiple options used 84, 86

293

Page Designer window
SubType column 83
Type column 83

parameters
passing, by reference 39-41

parent page
subform page, updating from 88-92

PDF
report, printing in 246, 247

permission
assigning, to use About This Page

function 182
Permission Set 168, 169
Posting report 118
PowerPivot

URL, for downloading 203
used, for showing data in Excel 199-203

precision parameter 37
Processing-only report 118
progress bar

displaying 28

Q
query

creating, to link three tables 69-72
in C/AL 74, 75
using, to extract data 66-68

Queue page
creating 95-98

R
RDBMS 271
RDLC 118
RDLC report

creating 119-122
exporting, from C/AL code 145, 146
exporting, from, viewer 145

READTEXT function 239
Really Simple Syndication (RSS) 111
record

about 50
to be processed, storing 64

recursion
about 44
using 44, 45

reference
parameters, passing by 39-41

Register for COM interop property 249
registry

querying 228-230
relational database management system. See

RDBMS
REPEAT..UNTIL loop

using 32
report

creating, to process data 130-132
interactive sorting, adding 138-140
loading, filters setting on 128, 129
matrix report, creating 141-145
printing, in Excel 246, 247
printing, in PDF 246, 247
printing, in Word format 246, 247
RDLC report, creating 119-123
running, multiple options used 123, 124
to page, link creating 132-135
to report, link creating 135

Request Page
custom filters, adding 124-128

right outer join 73
role

assigning, to user 168, 169
new role, creating 170, 171

Role Center page
about 99
creating 99-102

RoleTailored client (RTC) 77, 165, 272, 275
Round Function 37
RUNMODAL function 87
runtime errors

handling 158-160

S
Sales Invoices

exporting, in CSV format 236, 237
security filter

disallowed value 176
filtered value 176
ignored value 176
modes, applying 176
using 174, 175
validated value 176

294

SELECT keyword 254
SETRANGE filter 56
SetValues function 92
Shape.AddPicture method 190
SHELL

using, to run external applications 220
SIFT 61, 256, 257, 258
Simple Mail Transfer Protocol. See SMTP
SMTP

about 191
e-mail, sending from NAV 191, 192

SQL
Blocked sessions, identifying 264-266
Blocking sessions, identifying 264-266

SQL profiler
using 259-262

SQL query
about 254
creating 254, 255
data, addding 255
data. deleting 255
data, editing 255
data, inserting 255
data, modifying 255

Starting Date field 16
string

contents, manipulating 23-25
converting, to another data type 21-23

stylesheets
managing 190, 191

subform information
getting 163, 164

subform page
updating, from parent page 88-92

SumIndexField
about 59
creating 59-61
data, retrieving from 61, 62

Sum Index Field Technology. See SIFT
system date

retrieving 8, 9
system time

retrieving 8, 9

T
table

creating 49
data 49
design 49
key, adding 51, 52
linking, by query creation 69-72
temporary table, using 63, 64

Table Data object type 171
temporary table

using 63, 64
TestFolderAccess function 227
Test report 118
TIME keyword 8, 10
TODAY keyword 8
totals

adding, on decimal field 136, 137
transaction log 269
Transaction report 118
TRUNCATE_ONLY command 270
TypeText method 190

U
UpdateCurrencyFactor() method 11, 12
UpdateSelf function 92
users

creating, on NAV 278-280
role, assigning 168, 169

user session
killing 185, 186

V
value

converting, to formatted string 15, 16
viewer

RDLC report, exporting from 145
Visio

charts, creating with 208-210
used, for creating charts 208-210

VSIFT
data. deleting 256

295

W
web services

consuming 241-243
creating 239-241

WHILE loop
using 31, 32

WithEvents property 189
wizard

page, creating 102-106
used, for creating page 79-84

Word format
report, printing in 246, 247

work date
retrieving 9, 10

WORKDATE function 9

WRITETEXT function 239

X
XML 234
XML ports

used, for sharing information 234, 235

Y
year

from given date, retrieving 11, 12

Z
ZipFile 231

Thank you for buying
Microsoft Dynamics NAV 7 Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics AX 2012
Development Cookbook
ISBN: 978-1-84968-464-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX development
problems with over 80 practical recipes

1.	 Develop powerful, successful Dynamics AX
projects with efficient X++ code with this book and
eBook

2.	 Proven recipes that can be reused in numerous
successful Dynamics AX projects

3.	 Covers general ledger, accounts payable,
accounts receivable, project modules and general
functionality of Dynamics AX

Microsoft Dynamics
NAV 2009: Professional
Reporting
ISBN: 978-1-84968-244-2 Paperback: 352 pages

Discover all the tips and tricks for Dynamics NAV report
building

1.	 Get an overview of all the reporting possibilities, in
and out of the box

2.	 Understand the new architecture and reporting
features in Microsoft Dynamics NAV 2009 with
this book and e-book

3.	 Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real-world examples

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics NAV
2009 Programming Cookbook
ISBN: 978-1-84968-094-3 Paperback: 356 pages

Over 110 simple but incredibly effective recipes for
taking control of Microsoft Dynamics NAV 2009

1.	 Write NAV programs to do everything from finding
data in a table to integration with an instant
messenger client

2.	 Develop your own .NET code to perform tasks that
NAV cannot handle on its own

3.	 Work with SQL Server to create better integration
between NAV and other systems

4.	 Learn to use the new features of the NAV 2009
Role Tailored Client

Microsoft Dynamics AX 2009
Development Cookbook
ISBN: 978-1-84719-942-3 Paperback: 352 pages

Solve real-world Dynamics AX development problems
with over 60 simple but incredibly effective recipes

1.	 Develop powerful, successful Dynamics AX
projects with efficient X++ code

2.	 Proven AX recipes that can be implemented in
various successful Dynamics AX projects

3.	 Covers general ledger, accounts payable, accounts
receivable, project, CRM modules and general
functionality of Dynamics AX

4.	 Step-by-step instructions and useful screenshots
for easy learning

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	Acknowledgements
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
String, Dates, and Other Data Types
	Introduction
	Retrieving the system date and time
	Retrieving the work date
	Determining the day, month, and year from a given date
	Using the date formula to calculate dates
	Converting a value to a formatted string
	Creating an array
	Creating an option variable
	Converting a string to another data type
	Manipulating string contents

	Chapter 2:
General Development
	Introduction
	Displaying the progress bar and data in process
	Repeating code using a loop
	Checking for conditions using an IF statement
	Using the CASE statement to test multiple conditions
	Rounding decimal values
	Creating functions
	Passing parameters by reference
	Referencing dynamic tables and fields
	Using recursion

	Chapter 3:
Working with Tables, Records, and Queries
	Introduction
	Creating a table
	Adding a key to a table
	Retrieving data using the FIND and GET statements
	Advanced filtering
	Adding a FlowField
	Creating a SumIndexField
	Retrieving data from FlowField and SumIndexField
	Using a temporary table
	Retrieving data from other companies
	Using a query to extract data
	Creating a query to link three tables
	Working with queries in C/AL

	Chapter 4:
Designing Pages
	Introduction
	Creating a page using a wizard
	Using multiple options to run the page
	Applying filters on the lookup page
	Updating the subform page from a parent page
	Creating a FactBox page
	Creating a Queue page
	Creating a Role Center page
	Creating a wizard page
	Displaying a .NET add-in on a page
	Adding a chart to the page

	Chapter 5:
Report Design
	Introduction
	Creating an RDLC report
	Using multiple options to run a report
	Adding custom filters to the Request Page
	Setting filters when report is loaded
	Creating reports to process data
	Creating a link from report to page
	Creating a link from report to report
	Adding totals on decimal field
	Adding interactive sorting on reports
	Creating a matrix report

	Chapter 6:
Diagnosing Code Problems
	Introduction
	Using the debugger
	Setting breakpoints
	Handling runtime errors
	Using About This Page and About This Report
	Finding errors while using NAS

	Chapter 7:
Roles and Security
	Introduction
	Assigning a role to a user
	Creating a new role
	Using the FILTERGROUP function
	Using security filters
	Applying security filter modes
	Field-level security
	Assigning permission to use the About This Page function
	Killing a user session

	Chapter 8:
Leveraging
Microsoft Office
	Introduction
	Sending data to Microsoft Word
	Managing stylesheets
	Sending an e-mail from NAV through SMTP
	Exporting data using the Excel Buffer
	Creating data connection from Excel to NAV
	Showing data in Excel using PowerPivot
	Creating an InfoPath form for the NAV data
	Creating charts with Visio

	Chapter 9:
OS Interaction
	Introduction
	Using HYPERLINK to open external files
	Working with environmental variables
	Using SHELL to run external applications
	Browsing for a file
	Browsing for a folder
	Checking file and folder access permissions
	Querying the registry
	Zipping folders and files within NAV

	Chapter 10:
Integration
	Introduction
	Sharing information through XMLports
	Writing to and reading from a file using the C/AL code
	Creating web services
	Consuming web services
	Sending data through FTP
	Printing a report in a PDF, Excel, and Word format
	Writing your own automation using C#
	Using ADO to access outside data

	Chapter 11:
Working with the
SQL Server
	Introduction
	Creating a basic SQL query
	Understanding SIFT
	Using the SQL profiler
	Displaying data from a SQL view in NAV
	Identifying Blocked and Blocking sessions from SQL
	Setting up a backup plan
	Maintaining the transaction logfiles

	Chapter 12:
NAV Server Administration
	Introduction
	Creating a NAV Server Instance
	Configuring NAS to run Job Queue
	Creating a user on NAV
	Changing the NAV license
	Creating a new database
	Testing the NAV database

	Index

