
Migrating to

Swift from Android

ook

M
igrating

 Sw
ift

 Android

Sean Liao

Make the jump to iOS development using

Apple’s Swift programming language

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a
Glance

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

Part I : Prepare Your Tools ■ .. 1

Chapter 1: Setting Up the Development Environment ■ 3

Chapter 2: iOS Programming Basics ■ .. 11

Part II: A Roadmap for Porting ■ 45

Chapter 3: Structure Your App ■ .. 47

Chapter 4: Implement Piece by Piece ■ ... 117

Part III: Pulling It All Together ■ 185

Chapter 5: Recap with a Case Study ■ .. 187

Index .. 245

www.allitebooks.com

http://www.allitebooks.org

xv

Introduction

In 2000, I started my first PalmOS mobile app for an inventory-tracking project.
The initial project was a full-staffed team effort that consisted of mobile
developers, SAP consultants, supply-chain subject matter experts, middleware
developers, QA testers, architects, business sponsors, and so forth. JavaME
came up strong in 2002, followed by Pocket PC/Windows Mobile. I did several
mobile projects in which I converted mobile apps to the Pocket PC platform by
blindly translating JavaME code to C# .NETCF mobile code. These “translation”
efforts prolonged the whole product life cycle. The project achieved higher ROI
as the product life extended, because the extra cost of translating mobile code
was surprisingly low. Ever since then, I have been translating front-end mobile
apps among JavaME, BlackBerry, and Windows Mobile platforms.

In early 2009, by repeating the same porting process, I created my first iOS
app by translating a Windows mobile app. That started my iOS programming
journey, and later it was a no-brainer for me to try porting to Android. Most
mobile apps are platform agnostic. When you have the whole solution
completed for either iOS or Android, all the business and technical issues
have been verified and the other deliverables and project artifacts are already
reusable. It would be a waste not to port it to the other platform. Earlier this
year, I wrote my first book, Migrating to Android for iOS Developers, to share my
beliefs and experiences. After Swift was introduced at Worldwide Developers
Conference (WWDC) 2014, I decided to write this book because the similarity
between Java and Swift makes the porting method even easier while the same
ROI analysis remains true.

The primary objective of this book is to help experienced Android developers
leap into native iOS–Swift mobile development. It is easier than you think,
and this book will make it even easier with Android analogies and mapping
guidelines. You can immediately translate common mobile use cases to iOS.

www.allitebooks.com

http://www.allitebooks.org

Introductionxvi

Who Is This Book For?
This book is specifically written for Android developers who want to take
advantage of their mobile knowledge and make mobile applications available
on the iOS mobile platform. The book will show you the common iOS
programming subjects and frameworks using your familiar Android vocabularies
without lengthy explanations, because you already know these mobile subjects
from being an Android developer.

How This Book Is Organized
In Part I, you will get the iOS Xcode integrated development environment (IDE)
up and running in no time. You will be guided in creating tutorial projects that
will become your porting sample projects. I believe this is the best way for you
to get hands-on experience while learning programming topics.

Part II of this book shows you how to plan and structure your iOS apps: by
creating a storyboard and breaking the app into model-view-controller (MVC)
classes. You will be able to reuse most of the existing software artifacts and
design the rest from their Android counterparts. The common mobile topics are
followed, including user interface, managing data, and networking with remote
services. After you finish Part II, you will be able to create simple but meaningful
iOS apps with rich UI components, and to handle common CRUD (create, read,
update, delete) operations locally and remotely.

Last, Part III walks you through a case study that ports a complete iOS app to
Android. It recaps how to use mapping guidelines from the topics in Part II. You
can also use the book’s table of contents to help find the porting guidelines as
needed.

When you complete this journey, you will be able to use Xcode and Swift to
effectively port your existing Android apps to iOS.

www.allitebooks.com

http://www.allitebooks.org

Part I
Prepare Your Tools

A handy tool makes a handy person. This is very true for creating software,
too. Xcode is the integrated development environment (IDE) for writing,
compiling, debugging, and building code for iOS application development.
The first part of the chapter walks you through the installation and steps for
getting it up and running. All the topics in this book come with sample code.
You will need to use Xcode to learn from these sample projects, and you will
use Xcode to create world-class iOS apps, too.

For iOS programming, Swift is the latest and greatest programming
language released for iOS 8. The chapters in this part will give you enough
knowledge to read and write the sample code in Swift. You will find learning
Swift a very natural extension from your use of Java, and you will surely feel
comfortable using the code from this book as your own code.

1

www.allitebooks.com

http://www.allitebooks.org

3

Chapter 1
Setting Up the

Development

Environment

It is more fun to see apps run than to read the source code, and you cannot
get hands-on programming experience by just reading books. Let’s get the
development environment up and running first so you can use it—and learn
Swift programming for iOS along the way.

Xcode and the iOS SDK

ANDROID ANALOGY

The Android Developer Tools (ADT plug-in for Eclipse or Android Studio.

Xcode is the complete toolset for building iOS apps. It is an integrated
development environment (IDE) that helps you build, test, debug, and
package your iOS apps. It is free but you must have an Intel-based Mac
running Mac OS X Mavericks or later. You will use the latest Xcode,
version 6, throughout this book.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment4

Installing from the Mac App Store
Xcode is distributed in the Mac App Store, which takes care of the download
and install for you. With a single click to start the download and installation
of Xcode, you get the compilers, code editor, iOS SDK, debugger, device
emulators, and everything you need to create iOS apps. Figure 1-1 shows
Xcode in the Mac App Store app.

Figure 1-1. Xcode in Mac App Store

All you need to do is install the latest Xcode from the Mac App Store.
After completing the installation, go ahead and launch Xcode from the
Applications folder. Keep it in the Mac OS Dock so that you can launch it at
any time.

The first time you launch Xcode, it immediately prompts you to install the
required components (see Figure 1-2). Click Install to complete the Xcode
installation.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment

5

After the required components are installed, you should see the screenshot
in Figure 1-3. Your iOS IDE, Xcode, is ready!

Figure 1-2. Install the required components

Figure 1-3. Welcome to Xcode

Create an iOS Project Using the Template

ANDROID ANALOGY

New Android Application Project template in ADT.

You’ve got the right tool; now, wouldn’t you like to see some real
action—like creating an iOS app and seeing it run? I’d like that, too!
You want to do this to ensure your IDE is working properly as well.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment6

I actually created my very first Android app using the ADT New Android
Application Project template when I had no idea how to create Android
mobile apps. All I wanted was to see something running in no time. Yep,
ADT did it for me nicely. I was very happy with myself when I felt I’d created
an Android app without knowing anything! Hey, there’s nothing wrong with
making yourself happy, right?

Xcode offers the same thing. The objective of this section is to show you
how to create an iOS app as quickly as possible. Hold any programming
questions so you can finish the project as fast as you can. For now,
complete the following steps:

1. Launch Xcode if you haven’t launched it yet.

2. Select Create a new Xcode project from the Welcome

to Xcode screen (see Figure 1-3). Figure 1-4 shows

the prompt that asks you to choose a template for your

project:

a. In the left panel of Figure 1-4, select
iOS ➤ Application.

b. In the right panel of Figure 1-4, you may choose any
of the templates. Just for fun, choose Game.

c. Click the Next button.

Figure 1-4. Choose a template

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment

7

3. Figure 1-5 depicts the basic project info that requires

you to fill in the following:

a. Product Name: This is the app name. Name your
project LessonOne.

b. Organization Name: Optional; for example,
Your organization or any name you choose.

c. Organization Identifier: Together with the product
name, the organization identifier should uniquely
identify your app. Reverse domain name is
recommended (e.g., com.yourdomain.xxx).

d. Language, Game Technology, and Device: You don’t
need to change these settings.

e. Click the Next button when done.

f. Select a folder in which to save your LessonOne
project.

Figure 1-5. iOS project options

That is it! You just created an iOS project, the LessonOne project as shown
in Figure 1-6.

CHAPTER 1: Setting Up the Development Environment8

The LessonOne project can be seen on the left-hand side panel as shown
in Figure 1-6; this is the Project Navigator in the navigation area. Just as
when you use ADT project creation templates, the Xcode project template
creates the project folder, the application source code, and all the resources
for building the LessonOne apps.

Build the Project

ANDROID ANALOGY

The Eclipse ADT Build action keyboard shortcut on the Mac is the same as the build command

in Xcode: Command+B (z+B). In Windows the Eclipse build shortcut is Control+B.

To build and compile the Xcode project, use the Build action, which is located
in the Xcode menubar ➤ Product ➤ Build (or z+B). You will get used to
using the z+B keyboard shortcut a lot because Xcode doesn’t automatically
build your code, unlike Eclipse ADT, which builds it automatically by default.

Launch the App

The LessonOne project should have no errors. You can launch the app and
see it run on an iOS emulator. The emulator is a very important piece of any
IDE. Unlike ADT, there is no need to mess with something like AVD Manager
to create an emulator. All the emulators are right there in Xcode and you can

Figure 1-6. LessonOne project in Xcode Project Navigator

CHAPTER 1: Setting Up the Development Environment

9

launch the LessonOne project onto the selected device, including the iOS
emulator, with a click on the triangle button in the upper left corner as shown
in Figure 1-6.

Alternatively, you may use an Xcode keyboard shortcut key for the Run
action, Command+R (z+R), to launch the app. You should see your
LessonOne app running on the iPhone emulator as shown in Figure 1-7.

Figure 1-7. LessonOne app in Emulator

Play with the app, and then select other emulators from the device emulator
selector (see the pointer in Figure 1-6). A mouse-click event on an emulator
is equivalent to a touch event, and three-finger movement on the trackpad
is equivalent to touch-drag on a physical iOS screen. If you don’t have a
particular device yet, definitely play with the emulator to get familiar with the
emulated iOS devices.

Tip To change to landscape or portrait orientation, press z+left arrow

or right arrow to rotate the emulator.

The iOS emulators are way better than AVD—very robust and responsive,
and they behave just like real devices. For learning Swift programming for iOS,
the emulator actually is better, as iOS developers use emulators much more
frequently than Android developers. In this book, you are not required to run

CHAPTER 1: Setting Up the Development Environment10

apps on a physical iOS device; for that you would need to be a registered
iOS developer and an iOS device. You can save the $99 iOS developer
membership fee until you are ready to submit your first app to the App Store
or if your app requires certain features not available in the emulator (e.g., the
camera or certain sensors). For now, if your app is launched and running on
an iOS emulator, your mission is completed!

Summary
By installing Xcode 6, you immediately have a fully functional IDE ready to
create iOS apps without hassle. This chapter walked you through the basic
project-creation tasks in Xcode 6, using an iOS project template to start your
first iOS project. This chapter also showed you how to build and run your
iOS app in iOS emulators. You haven’t written any code yet, but your tool is
working and verified. You will learn more and gain hands-on programming
experience from the guided exercises in the following chapters.

11

Chapter 2
iOS Programming Basics

Creating mobile apps for both iOS and Android is fun and rewarding. With
Xcode in place, you are ready to write code, build, and run iOS apps now.
Objective-C had been the primary programming language for iOS apps until
Swift was officially announced at the 2014 Apple Worldwide Developers
Conference. If you’re just starting to learn iOS programming, you should
go with Swift because there is no reason to choose the old way and
miss the latest and great features. Your next steps should be learning the
fundamentals of the following:

The Swift programming language	
The anatomy of the iOS project and the Xcode 	
storyboard editor

The purpose of this chapter is to get you comfortable with reading the Swift
code in this book. To achieve this goal, you will be creating a HelloSwift
project while learning Swift programming language highlights.

You will create another Xcode iOS project in the second part of the chapter.
All iOS apps have a user interface (UI). You normally start by creating the
UI using the most important Xcode tool, Storyboard Editor, which draws
the UI widgets and components and connects them to your code. You also
will see the typical iOS project structures and components while creating
this iOS app. You may not need to understand everything about the iOS
framework in the beginning, but the first storyboard lesson should be
“just enough” for you to feel the different programming paradigm. Later, the
materials in Chapters 3 and 4 continue with step-by-step instructions for
common programming tasks and framework topics. Follow these mapping
instructions, and the ideas will more easily stick with you as you get a
broader picture of the whole app.

CHAPTER 2: iOS Programming Basics12

The Swift Language in a Nutshell
Swift, the newest programming language for creating iOS apps, has many
similar rules and aspects of language syntax to Java. I am very confident
that learning the Swift language won’t be the highest hurdle for you; Java
or C# developers will pick up Swift code naturally. Just to give you a quick
preview, Table 2-1 depicts a quick Java-to-Swift comparison:

Table 2-1. Java-to-Swift Language Syntax Comparison in an Absolute Nutshell

Java Swift

import packagename.Xyz; import framework

class Xyz extends SomeClass class Xyz : SomeClass

interface Abc protocol Abc

class Xyz extends SomeClass

implements Abc

class Xyz: SomeClass, Abc

int mProperty; var mProperty : Int

Xyz() // constructor init()

Xyz obj = new Xyz(); var obj : Xyz = Xyz()

void doWork(String arg) func doWork (arg: String) -> Void

obj.doWork(arg); obj.doWork(arg)

Access Modifier:

private vs. public

private vs. public

Swift also defines file and the module access control: private, public,
and internal. Although they have different meanings from their Java
counterparts, if you define each class in each own file, the private/public
access controls can be used the same way. The default internal access
control is also public to any file in the same project, but is not visible when
being imported to other projects. The Swift internal control is more useful
for creating framework projects as opposed to app modules.

HelloSwift with Xcode
Instead of my describing the uses and syntax rules in a formal way, you
are going to create a HelloSwift Xcode project and write the code listing
from Table 2-1 yourself. You will also perform the following common Xcode
programming tasks: create a class, build and run a project, and use the
debugger.

CHAPTER 2: iOS Programming Basics

13

Create a Swift Command-Line Project

Let’s create a command-line Swift program, because it is really simple and
you can focus on the Swift language subjects without being sidetracked by
other questions.

Follow these instructions to proceed:

1. Launch Xcode 6 if it is not running. You should see the

Welcome to Xcode launch screen as shown in Figure 1-3.

Select Create a new Xcode Project

(see Figure 1-3). Alternatively, you may do the same by

selecting File ➤ Project... from the Xcode menu bar.

2. Choose OS X ➤ Application ➤ Command Line Tool

as shown in the Choose a template for your new

project screen (see Figure 2-1).

Figure 2-1. Choosing an Xcode template

3. Follow the same on-screen instruction that you used to

create the LessonOne project (see Chapter 1, “Create an

iOS Project Using the Template”) to finish creating the

new project with the template:

a. Product Name: HelloSwift

b. Organization Name: for example, PdaChoice

c. Organization Identifier: for example, com.liaollc

d. Language: Swift

CHAPTER 2: iOS Programming Basics14

e. Click the Next button when done.

f. Select a folder in which to save your
HelloSwift project.

The HelloSwift project appears in the Project Navigator area (see Figure 2-2).

Figure 2-2. Creating the HelloSwift project

The command-line template creates the main.swift file for you. This is the
entry point of the program, just like the main(...) in Java. You will be writing
code in main.swift to demonstrate common object-oriented code.

Figure 2-2 shows that the typical Xcode workspace contains three areas
from left to right and a top toolbar. Inside each area, there are subviews that
you may switch to using the selector bars.

The 	 Project Navigator area is on the left. Similar to
Eclipse Project Explorer, this is where you can see the
whole project structure and select the file that you want
to edit. There are other views in this area; for example,
you can enable Search view by selecting the Search
icon in the selector bar.

The 	 Source Editor area in the middle shows the
selected file in its editor, in which you can edit the
file, writing your code or modifying project settings
depending on the file selected. The Console and
Variable views are inside the Debug area. Most likely
you will want to show them during debugging sessions.
You can hide or show them by clicking the toggle
buttons on the top and bottom toolbars.

CHAPTER 2: iOS Programming Basics

15

The 	 Utility area on the right contains several Inspector
views that allow you edit attributes of the whole file or
the item selected in the Source Editor. Depending on
the type of files you select, different types of Inspectors
will be available in the top selector bar. For example,
you will have more Inspectors showing in the selector
bar if you are editing a screen or UI widgets. The bottom
of the area is called Libraries. Use the selector bar to
select one of the Library views. You can drag and drop
items from Libraries to the appropriate editor to visually
modify file content. You will use Object Library a lot to
compose UIs visually.

Click on any of the icons on the selector bars, or hover your mouse over
the pointer in Figure 2-2, to see the hover text tips in the workspace, to
get yourself familiar with Xcode workspace. The subviews appear more
condensed than those in Eclipse, but essentially Xcode is a tool for the
same purpose: editing project files and compiling, building, debugging, and
running the executables. You will use it repeatedly throughout the book.

Create a Swift Class

To create a new Swift class, you can create it in the existing main.swift
file, or follow the Java convention to create it in its own file as shown in the
following steps:

4. Expand the newly created HelloSwift project,

right-click the HelloSwift folder to bring up the folder

context menu (see Figure 2-3), and select

New File...

a. Choose iOS ➤ Source from the left panel and
select Swift File from the right panel in the Choose
a template for your new file screen.

b. Save the file and name it MobileDeveloper.swift.
The file should appear in your project.

CHAPTER 2: iOS Programming Basics16

5. Enter the code in Listing 2-1 in the MobileDeveloper.swift

file to create the MobileDeveloper Swift class.

Listing 2-1. Declare MobileDeveloper Class

class MobileDeveloper {

}

Figure 2-3. Create a Swift class from the folder context menu

Note Unlike Java, a Swift class doesn’t implicitly inherit from any class.

It can be the base class on its own.

 6. Create a property called name by declaring a variable

inside the class (see Listing 2-2). This is called a stored

property in Swift, where the variable type is inferred by

the assigned value (known as type inference in Swift).

Listing 2-2. Stored Property in Swift

class MobileDeveloper {
 var name = "" // var type is String inferred by the value
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

17

Note Semicolon (;) is optional for terminating a statement.

Create a Swift Protocol

JAVA ANALOGY

The Java interface defines object obligations.

In object-oriented programming (OOP), it is important to define a set of
behaviors that are expected of certain objects. In Java, you declare an
interface; in Swift, you declare a protocol.

Create a Swift protocol called Programmer by doing the following:

1. Right-click the HelloSwift folder to create the

Programmer.swift file.

2. In Source Editor, create the Programmer protocol with a

method, writeCode(...) as shown in Listing 2-3.

Listing 2-3. Declare the Programmer Protocol

protocol Programmer {
 func writeCode(arg: String) -> Void
}

Implement the Protocol

JAVA ANALOGY

Implement a Java interface.

To conform to the expected behavior defined in a Swift protocol, the tagged
class must implement the methods defined in the protocol. To make the
MobileDeveloper class implement the Programmer protocol, do the following:

1. Modify MobileDeveloper.swift and declare the

MobileDeveloper class to implement the Programmer

protocol as shown in Listing 2-4.

Listing 2-4. Conform to MobileDeveloper Protocol

class MobileDeveloper : Programmer {
 ...
}

CHAPTER 2: iOS Programming Basics18

Note If the Swift class already has a superclass, list the superclass

name before any protocols it adopts, followed by a comma (,)—for

example, class MobileDeveloper : Person, Programmer

2. Provide the writeCode(...) method implementation

body, as shown in Listing 2-5.

Listing 2-5. Method Body

class MobileDeveloper: Programmer {
 ...
 func writeCode(arg: String) -> Void {
 println("\(self.name) wrote: Hello, \(arg)")
 }
}

Note \(self.name) is evaluated first inside the quoted String literal.

Use the Swift Instance

JAVA ANALOGY

Programmer you = new MobileDeveloper();

you.setName("You");

you.writeCode("Java");

You have created a Swift MobileDeveloper class and implemented the
Programmer obligations, in pretty much the same way you normally do in
Java except with minor syntax differences. To use the class, it is the same
as Java in principle, calling a method defined in the receiver from the sender.
Modify HelloSwift/main.swift as shown in Listing 2-6.

Listing 2-6. Swift Entry main.swift

var you = MobileDeveloper()
you.name = "You";
you.writeCode("Java");

CHAPTER 2: iOS Programming Basics

19

Xcode Debugger

Knowing how to use the debugger when creating software can make a
big difference in your productivity. Do the following to see the common
debugging tasks in the Xcode debugger:

1. To set a breakpoint, click on the line number in the

Xcode code editor. Figure 2-4 depicts a breakpoint that

was set in the main.swift file.

Figure 2-4. Breakpoint

Note To turn on line numbers in Xcode editors, go to the Xcode top

menu bar and select Xcode ➤ Preferences... ➤ Text Editing ➤ Show

Line Numbers. There are other handy settings there that you may want to

look at (e.g., shortcut keys are defined under Key Binding).

2. To run the HelloSwift project, click the triangle-shaped

Run button in the upper left corner, or press z+R

(see Figure 2-5).

CHAPTER 2: iOS Programming Basics20

3. The Swift program should start and then stop at the

breakpoint as shown in Figure 2-5. While debugging,

I normally toggle the following subviews on or off as

needed:

a. Hide the Navigation area or switch to the Debug
Navigator to view threads.

b. Show the Debug area with debug toolbar, Variable,
and Console views.

c. Hide the Utility Area.

Stack Trace, Variables Inspector, Output Console, and the Debug toolbar
have a similar look and feel in most IDEs, including Xcode and Eclipse.

This completes your HelloSwift application exercise. As you follow through
the iOS projects in this book, you will discover more productivity tips in the
Xcode IDE.

More About the Swift Language
A lot of Java syntax and conventional coding approaches would work just
fine in Swift. However, Swift does have some pretty neat features of its own,
so it’s worth taking a quick look at them now.

To go through this section, it is best to use the new Xcode feature called
Playgrounds. Launch Xcode and select Get Started with a playground.
You can write any code snippets you want and see the result or syntax
errors immediately. Figure 2-6 depicts the Playground: you write code in the
left panel and the right panel renders the result immediately.

Figure 2-5. Xcode debugging

CHAPTER 2: iOS Programming Basics

21

JAVA ANALOGY

Java scratchpad.

Variables and Constants

You declare a variable using the var keyword, and you use let to declare
constants. While Java variables are always defined within the enclosing
brackets, Swift variables are global if defined not within enclosing brackets.
The following code snippet (see Listing 2-7) depicts usage of Swift variables:

Listing 2-7. Common variables usages

var GlobalVar : String = "Global Variable"; // global scope

class MyClass {
 var mProperty : String = ""; // class scope
 let mConstant : Int = 0; // constant

 func myMethod(arg : String) {
 var aVar : String = ""; // local variable in method scope
 let aConstant = 1;
 }
}

Type Safety and Type Inference

Both Java and Swift are type-safe languages. Any variable must be declared
with a type; the compiler will help flag any mismatched types. In Swift, if
the type can be inferred by its value, you don’t need to explicitly declare
the type. Listing 2-8 is essentially exactly the same as Listing 2-7. The Swift
type inference feature encourages developers to assign initial values that
reduce the common errors from uninitialized data.

Figure 2-6. Xcode Playground

CHAPTER 2: iOS Programming Basics22

Listing 2-8. Common type inference usages

var GlobalVar = "Global Variable"

class MyClass {
 var mProperty = ""
 let mConstant = 0

 func myMethod(arg : String) {
 var aVar = "";
 let aConstant = 1
 }
}

Optional Variable

The optional variables are declared with the type and a postfixed question
mark (?), called optional type. This indicates the value it contains may be
absent (nil, equivalent to null in Java) for the intended type. For example,
Listing 2-9 depicts the difference in Swift and Java for converting a string to
an integer.

Listing 2-9. Optional Type in Swift vs. Handle Exception in Java

////// Java NumberFormatException
String intStr = "123"; // or "xYz"
int myInt;
try {
 myInt = Integer.parseInt("234");
} catch (NumberFormatException e) {
 myInt = Integer.MAX_VALUE;
}

////// Swift Optional Int
var intStr = "123"
var myInt : Int? = intStr.toInt() // myInt can be nil

Optionals make the Swift language more type safe and more robust by
encouraging developers to understand whether the variable can be absent.
Listing 2-10 demonstrates two practical Swift optional usages:

Forced Unwrapping, which uses a postfixed 	
exclamation pointer (!)

Optional Binding	

CHAPTER 2: iOS Programming Basics

23

Listing 2-10. Swift Optional Int

var intStr = "123"
var myOptionalInt : Int? = intStr.toInt() // Optional Int
if myOptionalInt != nil {
 var myInt = myOptionalInt! // Unwrap Int? to Int
 println("unwrapped Int: \(myInt)")
}

// optional binding used in if and while local scope.
if var myInt = intStr.toInt() {
 // myInt is auto unwrapped
 println("unwrapped and local scope: \(myInt)")
}

Implicitly Unwrapped Optionals

For the situations where a variable will always have a value after the value is
set, you declare the variable as Implicitly Unwrapped Optional postfixed
with ! instead of ?. For example: var delegate: MyDelegate!

Any of the Optionals usages described earlier are applicable here. You treat
it as Optionals but you don’t need to force unwrapping it. You commonly see
this usage in the iOS framework for properties that are initialized somewhere
else (i.e., by the caller). Particularly, iOS frameworks embed delegate properties
everywhere. These delegates are declared as Implicitly Unwrapped Optionals
but their values are typically assigned by the caller. As another example, UI
widgets are normally drawn in the Storyboard editor and connect to your code
as IBOutlet properties. These IBOutlet properties are declared as Implicitly
Unwrapped Optionals. I just wanted to give you a quick heads up for now
because you will see these usages frequently later in this book.

Tuples

Tuples group multiple values into a single compound value. This seems to
have been the useful feature that Java developers (as well as those using
C#, Objective-C, C/C++, etc.) have been looking for. For example, you can
pass or return a value without creating a class or a struct (structs are also
supported in Swift). Listing 2-11 shows the most common tuple usages.

Listing 2-11. Common Tuple Usages

var xyz = (x: 0, y: 0, z: 0)
println("xyz \(xyz) x is: \(xyz.x)\ty is: \(xyz.y)\tz is: \(xyz.z)")

// or decompose tuples
var xy : (Int, Int) = (1, 1) // or simply var xy = (1, 1)
var (a, b) = xy
println("xy \(xy) x is: \(a)\ty is: \(b)")

CHAPTER 2: iOS Programming Basics24

func httpResponse() -> (rc: Int, status: String) {
 return (200, "OK")
}

var resp = httpResponse()
println("resp is: \(resp.rc)\t\(resp.status)")

Collections

JAVA ANALOGY

java.lang.ArrayList and HashMap.

Array and Dictionary are the two Swift collections. Listing 2-12 shows the
common usages, which include the following:

Initialization	
Access and modify elements using subscript syntax	
Common collection APIs	

Listing 2-12. Common Array and Dictionary usages

// collections
var emptyArray = Array<String>() // or [String]()
var emptyDict = Dictionary<Int, String>() // [Int: String]()
var colors = ["red", "green", "blue"]
var colorDictionary = ["r" : "red", "g" : "green", "b" : "blue"]
colors.append("alpha") // or: colors += "alpha"
colorDictionary["a"] = colors[3]
colors.insert("pink", atIndex: 2)
colors.removeAtIndex(2)
println(colors.isEmpty ? "empty" : "\(colors.count)")

Constant Dictionary or Array is immutable, meaning it is not allowed to add
or remove elements, nor modify existing items. On the other hand, variable
Dictionary or Array is mutable.

Control Flow

Similar to Java, in Swift you use if and switch to make conditionals,
and use for-in, for, while, and do-while to make loops. Parentheses
around the condition or loop variable are optional. Braces around the body

CHAPTER 2: iOS Programming Basics

25

are required. Listing 2-13 demonstrates the following common control
flow usages:

	for-loop

	for-in

	while-loop

Listing 2-13. Control Flows

for (var idx = 0; idx < 10; idx++) { // optional parenthesis
 println("for-loop: \(idx)")
}

for item in [1,2,3,4,5] { // or for item in 1...5
 println("for-in: \(item)")
}
for c in "HelloSwift" { // loop thru characters
 print(c)
}

for (key, value) in colorDictionary {
 println("for-in dictionary:\(key) - \(value)")
}

// while-loop, or do-while that run at least once
var idx = 0
while idx < colors.count {
 println("while-loop: \(colors[idx])")
 idx++
}

Switch

In Swift, the switch cases can be any types in addition to int primitive data.
Listing 2-14 shows the following improved control flow switch usages in Swift:

Combined cases and always break implicitly	
Cases with ranges	
Cases with tuples	

Listing 2-14. Improved Switch

var condition = "red"
switch condition {
case "red", "green", "blue": // combined cases
 println("\(condition) is a prime color")
 // always break implicitly (no follow thru)

CHAPTER 2: iOS Programming Basics26

case "RED", "GREEN", "BLUE":
 println("\(condition) is a prime color in uppercase")
default: // not optional anymore
 println("\(condition) is not prime color")
}

var range = 9 // by range
switch range {
case 0:
 println("zero")
case 0...9:
 println("one-digit number")
case 10...99:
 println("two-digit number")
case 10...999: // first hit first
 println("three-digit number")
default:
 println("four or more digits")
}

var coord = (0, 1)
switch coord { // by tuples
case (0...Int.max, 0...Int.max):
 println("1st quad")
case (Int.min...0, 0...Int.max):
 println("2nd quad")
case (Int.min...0, Int.min...0):
 println("3rd quad")
case (0...Int.max, Int.min...0):
 println("4th quad")
default:
 println("on axis")
}

A switch can bind the matched value within its local scope. You can specify
a where clause to test the condition, too. Listing 2-15 demonstrates both
value bindings.

Listing 2-15. Temporary Value Binding and Using where Clause

var rect = (10, 10)
switch rect {
case let (w, h) where w == h:
 println("\((w, h)) is a square")
default:
 println("rectangle but not square")
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

27

Enumerations

You use enum to define a common type for a group of related values. After
the enumeration is defined, you use it just as a Swift type that is type safe.
Listing 2-16 shows the following common enum usages:

Enum with or without raw values	
Enum associated with values	

Listing 2-16. Common Enum usages

enum DayOfWeek { // raw value is optional
 case SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

var aDay = DayOfWeek.SUNDAY
switch aDay {
case DayOfWeek.SATURDAY, DayOfWeek.SUNDAY:
 println("\(aDay) is weekend")
default:
 println("\(aDay) is weekday")
}

enum DayOfWeek2 : String { // assign raw value
 case SUNDAY = "Sun", MONDAY = "Mon", TUESDAY = "Tue",
 WEDNESDAY = "Wed", THURSDAY = "Thu", FRIDAY = "Fri", SATURDAY = "Sat"
}

var aDay2 = DayOfWeek2.SUNDAY
switch aDay2 {
case DayOfWeek2.SATURDAY, DayOfWeek2.SUNDAY:
 println("\(aDay2.rawValue) is weekend")
default:
 println("\(aDay2.rawValue) is weekday")
}

// associated values
enum Color {
 case RGB(Int, Int, Int)
 case HSB(Float, Float, Float)
}

var aColor = Color.RGB(255, 0, 0)
switch aColor {
case var Color.RGB(r, g, b):
 println("R: \(r) G: \(g) B: \(b) ")
default:
 println("")
}

CHAPTER 2: iOS Programming Basics28

Functions

Swift functions are declared with the func keyword. Unlike Java methods,
the parameter and return type are declared after the type name. Here are the
typical Swift function usages you most likely will encounter (see Listing 2-17):

	Tuples: You can return multiple values without creating a
struct or class (see Listing 2-11).

	External parameter names: You should treat external
parameter names as part of the function signature. All of
the iOS Objective-C SDK APIs are ported to Swift with
external parameter names.

	Default parameter values: Not only does this feature
provide a default value, but it also makes method
overloading easier in many situations, as opposed to
method chaining.

	Variadic parameters: Variable length of the method
parameters without using Array type.

	Function parameters are constant by default—this is
different from Java rules.

	Swift Functions are of a reference type. Just as you can
with a class type, you can pass functions as function
parameters or return them as function return types.
In practice, you would use closure expressions more
frequently.

	Closure expression is one of the three types of Closure
defined in Swift. It is an unnamed self-contained block
of code that can be passed as a function parameter. The
second type of closure is the global function mentioned
right here, which is actually a special case of closure. The
third type of closure is called a nested function declared
inside a function, which is not used in this book.

Listing 2-17. Function Usages

func doWork(parm : String) -> String { // simple form
 return "TODO: " + parm
}
println(doWork("Swift"))

// External parameter names is part of the func signature
func doWork2(name parm : String) -> String {
// arg = arg.uppercaseString; // error: constant parm
 return "TODO: " + parm
}

CHAPTER 2: iOS Programming Basics

29

println(doWork2(name: "Swift"))

// use # to indicate same name for internal and external
func doWork3(#name: String) -> String {
 return "TODO: " + name
}
println(doWork3(name: "Swift"))

// With default parm value, it also implies #, same external name
func doWork4(name: String = "Swift") -> String {
 return "TODO: " + name
}
println(doWork4()) // default parm value

// parm is constant by default unless declaring it with var
func doWork5(var name: String = "Swift") -> String {
 name = name.uppercaseString;
 return "TODO: " + name;
}

// variadic parms
func sumNumbers(parms : Int...) -> Int {
 var sum = 0
 for number in parms {
 sum += number
 }
 return sum
}
println(sumNumbers(2,5,8))

// func is a type, can be used for parm or return type.
func separateByAnd(p1: String, p2: String) -> String {
 return p1 + " and " + p2
}
func printTwoString(p1: String, p2: String, format: (String, String)->
String) {
 println(format(p1, p2))
}
printTwoString("Horse", "Carrot", separateByAnd)

// closure expression is unnamed func
printTwoString("Horse", "Carrot",
 {(p1: String, p2: String) -> String in
 return p1 + " and " + p2
 })

CHAPTER 2: iOS Programming Basics30

printTwoString("Horse", "Carrot",
 {p1, p2 in // type inferences
 return p1 + " and " + p2
 })
printTwoString("Horse", "Carrot",
 { // Inference and shorthanded parm names, $0, $1 ...
 return $0 + " and " + $1
 })

You may get by with not using most of the shorthand options at first, but
for iOS programming, you definitely will need to get used to the external
parameter names, because they are used heavily in iOS frameworks.

Class

Swift classes contain similar elements to Java classes. The simplest
Java-like class form can be depicted as shown in Listing 2-18.

Listing 2-18. Simple Java-Like Swift Class

class SimpleClass {
 var mProperty : Int = 0 // public int mProperty ...
 var mConstant : String = "MyKey" // public String ...
 func myMethod(name: String) -> Void { println(name)}
}

Property

Java fields can be mapped to Swift properties as shown previously in
Listing 2-18; they are called stored properties. In Swift, properties can
do more than Java fields. Listing 2-19 demonstrates the following Swift
property usages:

	Stored property: Java field.

	Computed property: For derived values.

	Property observer: Optional coding block that responds
to changes in a property value.

	Type property: Similar to a Java class variable, but the
stored type property is not supported in the Swift class
type yet. Since struct type property is now supported,
you may choose to define an inner struct for porting
Java static variables as a workaround for now.

CHAPTER 2: iOS Programming Basics

31

Listing 2-19. Swift Class Property

class MyClass {
 var width = 10, height = 10 // stored properties

 // computed properties, can have set as well
 var size : Int {
 get {
 return width * height
 }
 }

 var size2 : Int { // readonly, shorthanded
 return width * height
 }

 // property observer
 var depth : Int = 10 {
 willSet {
 println("depth (\(depth)) will be set to \(newValue)")
 }
 didSet {
 println("depth (\(depth)) was be set from \(oldValue)")
 }
 }

 // Swift class Type property,
 class var MyComputedTypeProperty : String {
 return "Only computed Type property is supported"
 }

 // use inner struct stored Type property as a workaround
 struct MyStatic {
 static let MyConst = "final static in Java"
 static var MyVar: String?
 }
}

println(MyClass.MyStatic.MyConst)
MyClass.MyStatic.MyVar = "class var in Java"
println(MyClass.MyStatic.MyVar)

CHAPTER 2: iOS Programming Basics32

Method

Methods are functions defined inside a type context (i.e., a class). They are
still functions as described previously (see Listing 2-17). You can define
instance methods or class methods just as Java does. Listing 2-20 shows
the following typical method usages:

Method declarations enforce external names implicitly, 	
except for the first parameter. This is different from the
global function (see the “Functions” section). All iOS
Objective-C methods are ported to Swift using this
convention.

Use 	 class func to declare class type methods, or
static func to declare type methods in struct or
enum types.

Listing 2-20. Common Method Usages

class MyClass {

///////// methods copied from Listing 2-17 //////////
 func doWork(parm : String) -> String { // just like func
 return "TODO: " + parm
 }

 // default parm value, always imply externl parm name
 func doWork2(name: String = "Swift") -> String {
 return "TODO: " + name
 }

 // func is a type, can be used for parm or return type, etc.
 func separateByAnd(p1: String, p2: String) -> String {
 return p1 + " and " + p2
 }

 func printTwoString(p1:String, p2:String, format:(String, String)->String)
{
 println(format(p1, p2))
 }

 // Type methods, aka Java class static method
 class func DoWork(parm : String) -> String {
 return "TODO: (Just like Java class static method)" + parm
 }
}

CHAPTER 2: iOS Programming Basics

33

var c = MyClass()
println(c.doWork("Swift"))
println(c.doWork2()) // default parm value
println(c.doWork2(name: "Swift")) // external name enforced

// closure is unnamed func
c.printTwoString("Horse", p2: "Carrot", format: c.separateByAnd)
// Inference and shorthanded parm names apply to method, too.
c.printTwoString("Apple", p2: "Orange", format: {
 return $0 + " and " + $1
 })

MyClass.DoWork("Swift Type method")

Reference Type vs. Value Types

Just as in Java, reference types are passed by reference (the reference to
the instance is copied to another variable) and values types are passed by
copy (the whole value type instance is copied to another memory space).
However, you do need to pay attention to certain differences:

Similar to Java, your custom classes are reference 	
types. Primitives, structs, and enums are value types.

Unlike Java, some of the frequently used data types are 	
value types, including String, Dictionary and Array
(they are not classes in Swift). This is very nice, but may
surprise you in the beginning.

Since 	 Dictionary and Array are value types, they are
copied during assignment. The contained items are also
deep-copied if they are value types.

You will encounter the Swift 	 NSString, NSArray, and
NSDictionary because they are directly ported from
counterpart Objective-C Foundation framework classes.
They are all implemented as classes, and are thus
reference types.

iOS Project Anatomy
Most GUI apps are composed of more than programming source code;
for example, a typical iOS project contains Swift or Objective-C source
code, libraries, storyboard files, images or multimedia non-code application
resources, an application-information property Info.plist file, and so forth.
Xcode compiles and builds the whole project and bundles all the artifacts
required for an app into an archive file with an .app file extension, and signs
the .app file with the appropriate signing certificate.

CHAPTER 2: iOS Programming Basics34

Let’s translate a simple HelloMobile ADT project to Xcode so that you can
visualize these software artifacts in a typical iOS app. The Android app in
Figure 2-7 was created using the ADT Create Android Project template:

It only has one screen: one Java Fragment class and 	
one layout file.

On this screen, it has an 	 EditText to take user input.
When the Hello... button is pressed, it shows a greeting
on a TextView.

Figure 2-7. HelloMobile, Android version

To create the HelloMobile iOS app, start Xcode and proceed with the
following steps:

1. Select Create a new Xcode project (See Figure 1-3) from

the Welcome to Xcode launch screen. Or, you can select

File ➤ New ➤ Project... from Xcode’s top menu bar.

2. Select iOS Application, then choose Single View

Application as the project template (see Figure 2-8).

CHAPTER 2: iOS Programming Basics

35

Figure 2-8. Single View Application template

3. Complete the following fields to finish the new-project

creation:

a. Product Name: HelloMobile

b. Organization Name: for example, PdaChoice

c. Organization Identifier: for example, com.liaollc

d. Language: Swift

e. Click the Next button when done.

f. Select a folder to save your HelloMobile project.

The bare-bones HelloMobile iOS project is created and it now appears in
the Xcode Project Navigator area (see Figure 2-9).

Figure 2-9. HelloMobile project

CHAPTER 2: iOS Programming Basics36

It is immediately runnable. Let’s examine the typical iOS software artifacts in
an Xcode project, which comprise the iOS app:

Swift classes in 	 .swift files. There are two classes:

a. AppDelegate.swift: Each iOS app must have
one AppDelegate class. Similar to android.app.
Application, you don’t need to modify this file
if your program doesn’t need to track the global
application state.

b. ViewController.swift: There is a ViewController
class paired with the content view. The intended
purpose is the same as the Android Fragment class
in an Android project: the content view controller for
the content view.

	Main.storyboard file with .storyboard file extension:

a. You commonly create one storyboard scene per
content view and use only one storyboard file for
all content views so you can visually implement the
linkages among them.

	Images.xcassets. This is where you put your image
assets, in what is called the assets catalog:

a. Developers should provide different assets for each
device configuration. This is done for the same
purpose as providing alternative resources in Android.

b. PNG and JPEG image formats are both supported
as of this writing. Using the assets catalog is not
a must. You may drop any resource files into the
Xcode project. (You may want to create a folder to
organize them yourself.)

	Info.plist file. This file describes how the app is
configured and the required capabilities the system
needs to know:

a. The best Android analogy is the AndroidManifest.xml
file, but not exactly. You may glance through this file
to get a feel for the configurations and settings that
Xcode needs to know about the app. Xcode initially
creates it in XML format, which you can edit directly.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

37

Unlike ADT projects that must follow the ADT 	
project-folder structure, you can organize your project
structure any way you want. For example, normally I
manually create Java-package-like folders to organize
my Swift classes and create a res folder to organize any
resources files, including the Images.xcassets.

a. In Xcode, the folder can be a actual folder of a
light-blue color (e.g., the Images.xcassets folder).

b. Folders in Xcode can also be just a tag, called
a group, with a yellow color (e.g., HelloMobile,
Supporting Files, etc.). Their actual location could
be in any of the physical subfolders, but you should
not care.

Xcode 6 automatically creates a unit test target for 	
your primary project. It contains a TestCase class
skeleton in which you can write your unit test code.
Although you will not use this feature in this book, it is
actually very useful.

	Project Settings and Target Settings instruct Xcode
how to compile and build the projects. To show the
Project Settings, select the top-level application name in
the Xcode Project Navigator area (see Figure 2-9).
The Project Settings editor shows in the Editor area:

a. For this simple project, you don’t need to modify
anything. But you should glance through the editor
to get a quick idea of what Xcode requires to
compile and build the executable.

The iOS app is not completed yet, but it has everything a typical iOS app
should have.

Xcode Storyboard

ANDROID ANALOGY

There is no storyboard-like feature in ADT. You use the Graphic Layout Editor to create one

content view in one layout file at a time.

CHAPTER 2: iOS Programming Basics38

Use the Xcode Storyboarding feature to visually compose the UI for your
app. As its name implies, not only does it create individual screens and UI
widgets, but it also lets you compose the whole app as one storyboard.
Since iOS apps are all GUI apps, this tool will greatly determine your
productivity in creating iOS apps through the following actions:

Drag and drop 	 View Controller from the Object Library
to create a content view, called a Storyboard Scene.

Drag and drop UI widgets from the 	 Object Library onto
the Storyboard Scene (content view), and position the
widget appropriately.

Implement Auto Layout to make the UI widgets and 	
content view flexible and adaptive for various screen
sizes, similar to the Android relative layout manager.

Implement specific content views for specific 	 size
classes of different devices.

Link the UI widgets to the properties of the view 	
controller via outlets, and write code to respond to UI
widget events.

You can even draw the view controller transitions all 	
within the storyboard editor.

There are other subviews in the Utility area that you can select from the top
selector tool bar. All of them are important; you should take a moment to get
familiar with them (see Figure 2-10):

	File Inspector: Shows you the actual file identity and
document type options in Xcode.

	Quick Help Inspector: Shows you the reference doc.

	Identity Inspector: Shows you the Swift class from
SDK or your custom class that is associated with the
item in the storyboard.

	Attributes Inspector: This is our primary interest now.
You will see different attributes for different widgets.

	Size Inspector: Shows you the rectangular area in
which the widget is located.

	Connections Inspector: Lets you draw the connection
to the view controller. I will discuss this later
(see “Interact with Content View” in Chapter 3).

CHAPTER 2: iOS Programming Basics

39

Now is the time for you to get familiar with Xcode Storyboarding feature.
The iOS HelloMobile project doesn’t look like the counterpart Android app
yet; it only has one screen in the Main.storyboard file, which is empty. The
counterpart Android layout file has three UI widgets: EditText, TextView,
and a hello Button.

First you will Implement the user interface of the HelloMobile iOS app.
Xcode storyboard provides everything you need for this mission.

Object Library and Attributes Inspector

ANDROID ANALOGY

Drag and drop the UI widgets from Palette View in the ADT Graphical Layout Editor and set

the widget attributes in the layout file.

You need to add three UI widgets to the content view, just as in the
counterpart Android app, using the following steps:

1. Select the Main.storyboard file in the Project

Navigator. Figure 2-10 depicts the storyboard editor

in the Editor area. Currently, there is only one screen,

known as a storyboard scene.

2. Select the Object Library from the Library selector bar

in the Utility area. This is where you can find the UI

widgets and elements to compose the storyboard.

Figure 2-10. Select UI components from Object Library

CHAPTER 2: iOS Programming Basics40

3. Optionally, to make more room for your storyboard

editor, you may hide the Navigator and Debug areas by

selecting the toggle buttons, as indicated in Figure 2-10.

4. I will talk about size class, an important new iOS 8

feature, in Chapter 3. For now, disable it: uncheck

Use Size Classes in the File Inspector of the Utility

area, as shown in Figure 2-11. This will give you a better

WYSIWYG storyboard editor.

Figure 2-11. Disable Size Classes in File Inspector

5. To add the UI widget to storyboard scene, find the

desired UI widget from Object Library and drag it to

the existing View in the Storyboard scene. Both Android

and iOS screens must have one root view, and any view

element should be added to a parent view. This forms

the parent-child view hierarchy.

a. You must select the parent view (see pointer in
Figure 2-11) first so you can drop the TextField
element onto it.

b. You may browse and select the UI widgets from
Object Library. The list is long, so the search bar
on the bottom is very useful for finding the right
widget. Type the name of the iOS widget, as shown
in Figure 2-10, or just type in your best guess as
many characters as needed.

CHAPTER 2: iOS Programming Basics

41

Tip The iOS widgets you need are called TextField, Label, and Button.

Figure 2-12. Guide lines

c. To position the newly added TextField, drag it to
where you want it to be. Xcode gives you guide lines
to show you when the widgets are at certain positions
of the common interests, such as in the center, or
aligned to any other widgets (see Figure 2-12).

d. Figure 2-13 shows the three simple UI widgets
added to the storyboard scene.

Figure 2-13. Three simple UI widgets

CHAPTER 2: iOS Programming Basics42

6. Just as in Android, the attributes of UI widgets in Swift

affect the look, feel, and behavior of the widgets, and

you can change them visually. You can find and modify

these attributes in the Attributes Inspector located in

the Utility area. To make the TextField like the Android

counterpart, modify the following attributes:

a. Font size: System 24

b. Placeholder (a.k.a. android:hint):
"Enter a Name, e.g., You"

c. Alignment: center

d. TextField has a handful of attributes. Glance
through them and you should have no problem
relating them to the counterpart attributes you
normally use in Android EditText.

e. Switch to Size Inspector view and change the
width to 200. You will need to drag the TextField to
reposition it to center horizontally.

7. To make the Label widget like the Android counterpart

TextView, modify the following attributes:

a. Text: for example, "Hello World!"

b. Font: for example, System 20 or Headline

c. Alignment: center

d. Lines: 1

e. Switch to the Size Inspector and change the width
to 200. You will need to drag the label to reposition it
to center horizontally.

8. To make the Button widget like the Android counterpart,

modify the following attributes:

a. Text: "Hello World!"

b. Title: "Hello ..."

9. To preview your storyboard in Xcode, select the

Assistant Editor button on the toolbar and select

Preview in the Assistant Editor, as shown in

Figure 2-14.

CHAPTER 2: iOS Programming Basics

43

The look and feel in portrait mode is close enough for our purposes: using a
storyboard to visually compose the content view without writing a single line
of code. The iOS HelloMobile is not completed yet: the Hello ... button
doesn’t read “Hello...”, and the landscape mode is not acceptable yet. Both
are important topics and have their own sections in Chapter 3.

In this exercise, I just wanted to give you a quick look of the Xcode
storyboard editor. The Xcode workspace seems quite different from Eclipse.
Spend a moment to get familiar with the Xcode workspace, including the
storyboard editor, the Utility area, selector tool bar, and so forth. Xcode
storyboarding is a very important tool that will greatly influence your
productivity when creating iOS apps.

Summary
On the surface, you actually learned about a lot of things in this chapter.
You started with a discussion of Swift–Java language comparisons to learn
their similarities, then you went over Swift language topics to highlight
the new language features. However, the rest of the book will focus on
iOS programming instead of the Swift language. The code will address
readability as opposed to being concise using new tricks. You surely
won’t have a problem reading all the Swift code in the rest of the book.
Sooner or later, though, you will need the reference document to the Swift
programming language, which is available free in iTunes (https://itunes.
apple.com/us/book/swift-programming-language/id881256329).

You created a HelloMobile iOS project using Xcode to visualize a typical iOS
application structure so you can visualize. You also got your first taste of the
Xcode storyboard, which is very important and which you will use for every
iOS app, including all the sample projects in this book—so plan on revisiting
the storyboard repeatedly.

Figure 2-14. Three simple widgets added to storyboard

https://itunes.apple.com/us/book/swift-programming-language/id881256329
https://itunes.apple.com/us/book/swift-programming-language/id881256329

Part II
A Roadmap for Porting

In Part II, you will plan and structure your iOS apps following the iOS
thinking process, which can be explained in Android vocabulary using the
common top-down design approach. After you finish Part II, you will be able
to create simple but meaningful iOS apps with rich UI components, and to
handle common CRUD operations locally and remotely.

Your migrating-to-Swift roadmap follows the common top-down approach,
with translation guidelines in lower-level implementation using your
comfortable Android vocabulary, which you can then relate to the mobile
functions that you normally do in Android.

Part II shows you the common screen-navigation patterns that you normally
encounter in your Android apps, and how to carry out the same tasks in iOS
apps. Not only do you get a high-level runnable iOS storyboard; you also
get Android-like MVC structured classes that are mapped to the counterpart
Swift classes. The rest of Part II provides instructions on how to convert
the common mobile implementation tasks from Android SDK to iOS SDK—
including UI, saving data, networking, and so forth—that are widely used
in almost any Android GUI app. Again, after completing Part II, you will be
capable of creating iOS apps that are simple but meaningful.

45

47

Chapter 3
Structure Your App

To implement your software, you will make design decisions based on how
you’d like to structure your app in terms of organizing your code into classes.
To decide your iOS app structure up front, the top-down approach and
model-view-controller (MVC) design pattern are recommended and actually
embedded in the iOS SDK and tools. MVC is also implicitly embedded in
Android SDK (with different vocabularies), and if you are used to the top-down
approach for creating your Android apps, where you design the application
workflow prior to detailing each individual screen, it is even easier for you to
switch your programming thinking process between iOS and Android.

In this first step, you are aiming at class-level mapping from the Android
counterparts. I will discuss MVC first, followed by how to create the iOS
storyboard in Xcode. With the guided screen navigation patterns, your iOS
storyboard naturally breaks your iOS apps into MVC components that can
be mapped from their Android counterparts.

Model-View-Controller

ANDROID ANALOGY

•฀ Content view: Layout files

•฀ Content view controller: Fragment class

•฀ Delegate: Java event listener

•฀ Container view controller: the Activity class that coordinates the child

Fragments in it

CHAPTER 3: Structure Your App48

MVC immediately breaks the GUI app into three layers. The iOS MVC
design pattern specifies that a GUI application consists of a data model,
a presentation view, and controller layers, as shown in Figure 3-1.

Figure 3-1. The iOS MVC design pattern

Although there seem to be no explicit MVC vocabularies defined in the
Android SDK, it implicitly enforces separating content view from the content
view controller in terms of Layout files and Fragment classes.

In iOS, you explicitly use the MVC vocabularies: content view and content
view controller. You naturally break down your iOS app into MVC classes,
starting with creating a storyboard prototype using the Xcode storyboard
editor.

Unless your app only has one screen, you need to decide how to implement
navigations and screen transitions among multiple view controllers. You
need an optional MVC participant: Container View Controller. In Android,
there seems to be no explicit framework class that does the work for you.
However, the parent-child relationship between Activity and Fragment
makes the parent Activity a natural candidate for the Container View
Controller participant. In practice, I use the parent Activity to manage the
child Fragments, including for navigation code.

In iOS, the SDK provides several Container View Controllers for screen
navigation; you simply choose the appropriate Container View Controller
class and let the iOS framework facilitate the tasks for you.

I’ll start with content view and content view controller, then talk about the
Container View Controller next.

Content View

ANDROID ANALOGY

Android Layout file.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Structure Your App

49

A content view provides a visible area so that users can interact with the
app. The content view defines how to render itself with contents and can
interact with user actions. To create content views in iOS, use Xcode
storyboard.

Recall that in the iOS HelloMobile app, you drew the UI widgets in the
storyboard scene in a very similar fashion to what you normally do in ADT:
drag and drop the widgets to draw them on the parent view. However, this
iOS content view is not adaptive to other device types and screen orientations
yet. You can easily observe the landscape problem in the Assistant Editor
previews (see Figure 2-14). Creating adaptive content views for various
screen sizes is a common task in both iOS and Android. In Android, you
achieve this via alternative layout resources and layout managers. In iOS, you
essentially use iOS platform features for the same purposes:

	Auto Layout: This works best with responsive UX
designs that are agnostic/adaptive to screens sizes.

	Size classes: These provide ultimate flexibility for
customizing the screens for different screen sizes.

Auto Layout

ANDROID ANALOGY

RelativeLayout.

You can think of iOS Auto Layout as Android RelativeLayout: you position
each UI widget by aligning or spacing it relative to neighbors or the parent view.

The three widgets in the current iOS HelloMobile project are not positioned
properly in landscape mode (see Figure 2-14). Use iOS Auto Layout to fix
this while learning its uses.

While extremely powerful, some Xcode editors or operations are collapsed
in the menus and could be difficult to locate for a beginner. Figure 3-2
depicts some quick tips:

If you cannot find any editor or navigator, go to 	
View ➤ ... in the Xcode top menu bar.

Auto Layout operations are grouped in 	 Editor ➤ ...
in the Xcode top menu bar.

There are four small buttons in the bottom toolbar of the 	
storyboard editor. They offer quick Auto Layout operations
and give you some visual hints of what they are.

CHAPTER 3: Structure Your App50

	Assistant Editor that you will use next.

The view selector in the 	 Utility area allows you to switch
between several inspectors. You will use them a lot in
the next chapter, too.

Figure 3-3. Two steps to reach the Xcode storyboard Preview

Figure 3-2. Storyboard Auto Layout operations in Xcode

Continue working on the HelloMobile project. Do the following:

1. Storyboard Preview in Assistant Editor is extremely

useful for immediately seeing any changes for the

selected storyboard scene:

a. Select the main.storyboard file and open Assistant
Editor (see the right pointer in Figure 3-3).

b. Click the Assistant menu button to select Preview
(see the left pointer in Figure 3-3).

CHAPTER 3: Structure Your App

51

2. Horizontal Center the TextField in Container to create

an x-alignment constraint as shown in Figure 3-4:

a. Select the TextField in the storyboard editor.

b. In the Xcode top menu bar, select Editor ➤ Align ➤
Horizontal Center in Container.

Figure 3-4. Using Horizontal Center in Container on the TextField in Auto Layout editor

3. Use Vertical Center in Container to create a

y-alignment constraint (see Figure 3-5):

a. From the Xcode top menu bar, select Editor ➤
Align ➤ Vertical Center in Container.

b. In the Attributes Inspector in the Utility area, to
position the TextField at the one-sixth of the view
height instead of half, you can apply a Multiplier of 3.

Figure 3-5. Creating constraint y-alignment constraint using a multiplier

CHAPTER 3: Structure Your App52

Note Use Multiplier or Constant to offset the second item position:

(first item center position) == (second item center) * multiplier + constant

Figure 3-6. Using Update Frames to reposition the UI widgets based on constraints

4. Select Resolve Auto Layout issue ➤ Update Frames

as shown in Figure 3-6.

5. Select the Hello World! label and click the Pin button

to add multiple constraints for appropriate spacing and

widgets height as shown in Figure 3-7:

a. Pin the Top space to the nearest widget, the
TextField, with 48.5 pixels.

b. Pin both Leading and Trailing spaces to the
nearest widget, its parent View, with 60 pixels.

c. Pin its Height to be 21 pixels.

CHAPTER 3: Structure Your App

53

Note The combined constraints need to make sense without ambiguity.

You can set priority to each individual constraint. However, if you start

using priority to resolve conflicts, you might want to think about using

fewer constraints for your purpose.

Figure 3-7. Spacing Hello World! label relative to its neighbors

6. Select the Hello... button. You can align it similar to

the TextField:

a. Use Horizontal Center in Container to create an
x-alignment constraint.

b. Use Vertical Center in Container to create a
y-alignment constraint with Multiplier to be 0.75.

Using the Auto Layout with responsive UX designs immediately provides
proper landscape layout. Figure 3-8 shows the previews in both landscape
and portrait modes for iPhone 4-inch and 3.5-inch modes. Click the + icon
(see the pointer in Figure 3-8) to add multiple previews for different devices.

CHAPTER 3: Structure Your App54

Size Classes

ANDROID ANALOGY

Provide alternative layout resources for different screen sizes.

While Auto Layout provides an effective way to implement responsive UX
for various screen sizes, it may not utilize the valuable mobile-screen real
estate in the most efficient ways. For example, it is fairly common to portray
landscape view different from portrait due to different aspect ratios, or to
have tablet-specific UX design, and so forth.

Prior to iOS 8, you generally implemented two storyboards, one for iPhone
and one for iPad. The concept is very similar to Android alternative-layout
resources for different screen sizes. Beginning with iOS 8, Size Classes were
introduced to solve this common programming issue by using the abstract
presentations of device sizes in terms of horizontal widths and vertical
heights. The current iOS devices can be classified as shown in Table 3-1.

Figure 3-8. Auto Layout with responsive UX design

CHAPTER 3: Structure Your App

55

You can provide all the implementation for all size classes all in one storyboard!

Recall the iOS HelloMobile app—it only works in iPhone portrait mode
(see Figure 2-14) and it disabled the Size Classes feature. Now you should
enable Size classes to demonstrate its use. Do the following:

1. As shown in Figure 3-9, enable the Use Size Classes

(bottom pointer) in the File Inspector (accessed as

shown by the top two pointers).

Table 3-1. iOS Device Size Classes

Size Classes Compact Width

iPhone portrait width ·

iPhone landscape width ·

Regular Width

iPad portrait width ·

iPad landscape width ·

Compact Height:

iPhone landscape height ·

iPhone in landscape Customized view controller

Regular Height:

iPad portrait height ·

iPad landscape height ·

iPhone portrait height ·

iPhone in portrait iPad in portrait

iPad in landscape

Figure 3-9. Enabling Use Size Classes

CHAPTER 3: Structure Your App56

2. Use Assistant Editor to preview iPhone and iPad screens.

Size Classes could be overwhelming in the beginning, but

I found the previews very helpful (see Figure 3-10).

a. The scenes are converted to the most adaptive size
class: (wAny hAny). The Auto Layout constraints are
also preserved in this size class. You immediately
get the iPad scene working as expected.

Figure 3-10. Size Classes preview

Figure 3-11. Using the size class selector to select a specific size class

3. Click the Size Class control to select the size class

(see Figure 3-11).

a. Hover your mouse to see the highlight and title
changes. Comparing with Table 3-1, you can select
the appropriate row and column that targets specific
size classes. The default is Any Width | Any Height,
which is applied to all the size classes to start with.

CHAPTER 3: Structure Your App

57

4. To provide a specific layout for an iPhone landscape

scene, select the Compact Width | Compact Height as

shown in Figure 3-12.

Figure 3-12. Compact Width | Compact Height for iPhones in landscape

5. To demonstrate the powerful Size Class feature, start fresh

for the compact-compact size class. From the top menu

bar, select Clear Constraints in View Controller from

Editor ➤ Resolve Auto Layout Issues. This only clears

the Auto Layout constraints in the selected size class; you

can see the constraints still there but grayed out.

6. Drag the widgets to reposition them, just to get a quick

idea—you don’t need to be precise (see Figure 3-13).

a. Since you are providing a custom layout explicitly
for iPhones in landscape, you actually can draw the
positions precisely and let storyboard do the rest by
choosing Reset to Suggested Constraints
in View Controller in the top menu bar from
Editor ➤ Resolve Auto Layout Issues.

b. If you tried the preceding step, select Clear
Constraints in View Controller again to have a
clean start for creating Auto Layout constraints.

CHAPTER 3: Structure Your App58

7. For the TextField, add the following Auto Layout

constraints:

a. Use Horizontal Center in Container to create an
x-alignment constraint with Multiplier, 2.

b. Use Vertical Center in Container to create a
y-alignment constraint with Multiplier, 1.5.

c. From the top menu bar, select Update Frame at
Editor ➤ Resolve Auto Layout Issues.

d. To update the existing constraints, either select the
constraint from the storyboard navigator, or select
the widget on the scene first to see and click on the
guided line in the storyboard scene. Use Attributes
Inspector in the Utility area (see Figure 3-14) to
update any constraint attribute.

Figure 3-13. Two-sided view for compact height (iPhone landscape mode)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Structure Your App

59

8. For the Label, add the following Auto Layout constraints

in the same way as in step 7:

a. Use Horizontal Center in Container to create an
x-alignment constraint with Multiplier, 2.

b. Use Vertical Center in Container to create a
y-alignment constraint with Multiplier, 0.75.

c. From the top menu bar, select Update Frame at
Editor ➤ Resolve Auto Layout Issues.

9. For the Button, add the following Auto Layout

constraints in the same way as in step 7:

a. Use Horizontal Center in Container to create an
x-alignment constraint with Multiplier, 0.67.

b. Use Vertical Center in Container to create a
y-alignment constraint with Multiplier, 1.

c. From the top menu bar, select Update Frame at
Editor ➤ Resolve Auto Layout Issues.

All the device classes in previews look good as expected (Figure 3-15).

Figure 3-14. Updating the Auto Layout constraint

CHAPTER 3: Structure Your App60

You can run the app in all emulators to see the work in action. The iPhone 4s
emulator is shown in Figure 3-16.

Figure 3-16. iPhone4s portrait and landscape size class

Figure 3-15. Device classes previewed in the storyboard editor

Content View Controller

ANDROID ANALOGY

Fragment.

CHAPTER 3: Structure Your App

61

The Content View Controller participant pairs with a content view
(see Figure 3-1). In both the iOS and Android programming paradigms, the
content view normally is created statically (i.e., by layout.xml or storyboard).
The Content View Controller class manages the content view to present
the dynamic behavior of the user interface by conveying information to
and interacting with users. You normally subclass Fragment to create your
Content View Controllers in Android. In iOS, you create a class subclassing
from UIViewController for the same purpose.

Your primary Content View Controller tasks are:

Pair with its own content view	
Keep object references to the UI widgets in 	
content view

Implement methods to respond to widget events.	
In iOS, you normally use the storyboard editor to connect the UI widgets or
events to your code to facilitate these common programming tasks.

Pair with Content View

ANDROID ANALOGY

Inflate the layout.xml file in Fragment.onCreateView(...).

In iOS, you normally create a storyboard for your apps first (like the iOS
HelloMobile project). Generally, for every storyboard scene (content view),
you create a Swift class subclassed from UIViewController to pair with it.

The iOS HelloMobile project is not completed yet: it only renders the initial
screen but does not do anything when you click on the Hello... button.
You need a functional Content View Controller that can fulfill this responsibility.
The Single View Application Template pairs a controller class for you already:
ViewController.swift. To demonstrate the whole subject, don’t use this
class; instead, do the following to create our own class:

1. Create a new file for a new Swift class:

a. Right-click on the HelloMobile folder in the
Navigator area, then select New File ... ➤ iOS ➤
Source ➤ Swift File (see Figure 2-3).

b. Save the file as HelloViewController.swift.

c. Create the HelloViewController class subclassed
from UIViewController as shown in Listing 3-1.

CHAPTER 3: Structure Your App62

Listing 3-1. HelloViewController Class Skeleton

import UIKit
class HelloViewController: UIViewController {
 // TODO
}

2. Pair the storyboard scene with the HelloViewController

class (see Figure 3-17):

a. Select Main.storyboard to open the storyboard
editor.

b. Select the view controller in the storyboard scene
and open the Identity Inspector in the Utility area.

c. Enter HelloViewController in the Custom
Class field to pair the storyboard scene with the
HelloViewController class.

Figure 3-17. Identity Inspector to pair with view controller

Specifying the custom class in Identity Inspector is all you need to pair with
the content view controller.

Interact with Content View

ANDROID ANALOGY

In the Fragment view controller class,

rootView.findViewById(...) to get the object reference.

Register event listener using the setOnXxxListener(...) methods.

CHAPTER 3: Structure Your App

63

Generally in both Android and iOS, you create UI widgets in a content
view and your content view controller code updates the widget’s states or
interacts with users at runtime. In iOS, you use Connections Inspector to
create IBOutlet and IBAction to facilitate this common programming task
by drawing connections to your code in the Swift class:

	IBOutlet: the view controller property that is connect to
the widgets in the storyboard scene.

	IBAction: the view controller method that is called when
the widget events occur.

The following walks you through the steps to connect the UI widgets and
delegates action events to your controller class:

1. Select Main.storyboard to open the storyboard editor.

a. Open the storyboard Assistant Editor. The
HelloViewController class should automatically
open in the assistant editor.

b. Sometimes the right file may not be opened
automatically in the Assistant Editor, so you may
need to select the right file manually (see Figure 3-18).

Figure 3-18. Selecting a file manually in Assistant Editor

2. Select the TextField in the storyboard scene (the left

pointer in Figure 3-19), and open the Connections

Inspector (the right pointer in Figure 3-19) as shown in

Figure 3-19 (make sure the Utility Area is unfolded).

CHAPTER 3: Structure Your App64

3. Create an IBOutlet for the TextField in the storyboard

scene (see Figure 3-20).

a. Drag the circle next to New Referencing Outlet
with three fingers (or hold the left trackpad button
at the same time) and drop it inside the class. You
should see the line from the circle as shown in
Figure 3-20.

b. Enter the connection name (i.e., mTextField). This
creates a property in the Swift class.

Figure 3-19. Opening the Connections Inspector

Figure 3-20. IBOutlet in Connections Inspector

4. Repeat steps 2 and 3 to create mLabel and mButton
IBOutlets.

CHAPTER 3: Structure Your App

65

5. Create an IBAction for the button touch down events.

a. Drag the circle next to Touch Down in Sent Events
section and drop it inside the Swift class
(see Figure 3-21).

Figure 3-21. Creating an IBAction in the Connections Inspector

b. Enter the method name: i.e., onButtonTouchDown.
This creates a method stub in the Swift class.

c. Add the Say-Hello code to complete the IBAction
method implementation in HelloViewController.swift
as shown in Listing 3-2.

Listing 3-2. HelloViewController with IBOutlet and IBAction

import UIKit

class HelloViewController: UIViewController {

 @IBOutlet weak var mTextField: UITextField!
 @IBOutlet weak var mLabel: UILabel!
 @IBOutlet weak var mButton: UIButton!

 @IBAction func onButtonTouchDown(sender: AnyObject) {
 var str = mTextField.text
 mLabel.text = "Hello \(str)!"
 }
}

CHAPTER 3: Structure Your App66

This completes the whole HelloMobile iOS app. You can run the project in
all iOS simulators to see the code in action.

You’re almost done with the MVC topics. Just one more small lecture before
we get into more fun stuff: UIViewController lifecycle events.

UIViewController Life Cycle

ANDROID ANALOGY

Fragment life cycle.

Similar to the Android Fragment class, lifecycle callbacks are called at
various points when a content view is being rendered. Certain tasks need
to be performed in certain states to ensure the content view is rendered
smoothly. This applies to both iOS and Android. The iOS lifecycle concept
may not be a beginner topic, but it is easy for Android developers to pick up
because the purpose is the same: they want to perform certain computing
tasks at the right time, with which Android developers are already familiar.

In Android, the lifecycle events are described as the states of the view
controller itself. In iOS, these lifecycle events are directly related to the
content view events, so you actually can visualize the effects better because
they are directly related to the view-rendering process.

Implementing these view events is essentially the same as writing your
Fragment lifecycle callback methods: you can choose to override these
inherited system methods to receive timely callbacks if you wish.

viewDidLoad

ANDROID ANALOGY

Fragment.onCreate() and onCreateView().

iOS system calls the viewDidLoad() method when the view controller
loads its content view from the storyboard scene. You commonly put the
initialization code here.

CHAPTER 3: Structure Your App

67

viewWillAppear

ANDROID ANALOGY

onStart().

iOS system calls the viewWillAppear() method when the view is about to
appear. Generally, you can safely translate the Android onStart() into this
method.

viewDidAppear

ANDROID ANALOGY

onResume().

iOS system calls the viewDidAppear() method when the view becomes
visible. Generally, you can safely translate the Android onResume() into this
method.

viewWillDisappear

ANDROID ANALOGY

onPause().

The system calls the viewWillDisappear() method when the content view
is about to become invisible—for example, leaving for another storyboard
scene. This is usually where you should commit any changes that should
be persisted beyond the current user session (because the user might not
come back).

viewDidDisappear()

ANDROID ANALOGY

onStop().

CHAPTER 3: Structure Your App68

The system calls the viewDidDisappear() method when the content view is
not visible.

When implementing these lifecycle events, you almost always will want to
call the corresponding super.viewXXX(), just like Android.

Screen Navigation Patterns
You commonly use multiple screens to convey hierarchical information to
and interact with users. Considering the relatively small mobile screens, it
is even more crucial that you use well-known navigation patterns to make
mobile apps more predictable. A consistent and predictable navigation
pattern guides users to complete a task with multiple screens. Efficient
navigation is one of the cornerstones of a well-designed app.

This section will focus on the most common screen navigation patterns
supported in both iOS and Android.

Storyboard Segue
Segue, pronounced “seg-way”, is a type of a connection in storyboard that
specifies transitions from one scene to another. For instance, you can create
an Action Segue that is performed immediately when the action is triggered.
More frequently, you will create a Manual Segue in storyboard and write
logics to perform the segue. Depending on its transition type, the segue may
require a Container View Controller. For example, to implement the typical
navigation stack transitions, you will need a Navigation Controller in iOS.

The following steps will walk you through the steps of a storyboard segue:

1. Create a new Xcode project using Single View

Application with a product name of Segues.

(See Chapter 2, “iOS Project Anatomy” for step-by-step

instructions)

2. Open Main.storyboard in the storyboard editor.

It should look like Figure 3-22 when done.

a. Add two Button widgets to the existing scene: one
for Action Segue and the other for Manual Segue.

b. Drop two ViewControllers onto the storyboard from
Object Library to add two storyboard scenes. Add
a UILabel to each scene with titles “From Action
Segue” and “From Manual Segue,” respectively.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Structure Your App

69

3. Create an Action Segue from the Action Segue Button

to the From Action Segue scene.

a. Select the Action Segue Button and open the
Connections Inspector in the Utility area.

b. Drag the action outlet in the Triggered Segue
section to From Action Segue view controller as
shown in Figure 3-23.

Figure 3-22. Segues preparation

Figure 3-23. Creating an Action Segue

c. Select Show for transition type.

CHAPTER 3: Structure Your App70

4. Select the segue (see the pointer in Figure 3-24) and

enter the name of the segue Identifier in the segue

Attributes Inspector (i.e., actionSegue), as shown in

Figure 3-24.

Figure 3-24. Selecting the segue and setting up the attributes

5. Create a Manual Segue from the presenting controller

to the From Manual Segue view controller as shown in

Figure 3-25:

a. Select the presenting View Controller and open the
Connections Inspector in the Utility area.

b. Drag the circle (outlet) in the Manual Triggered
Segue section to the From Manual Segue view
controller.

c. Select Show for transition type.

d. Select the segue and enter the name of the segue
Identifier in the segue Attributes Inspector
(i.e., manualSegue).

CHAPTER 3: Structure Your App

71

6. Set up Manual Segue to be performed programmatically

when the Manual Segue button is selected:

a. Create an IBAction to ViewController class with
the name onManualSegueTouchDown.

b. In the onManualSegueTouchDown(...) method, use
the code in Listing 3-3 to perform the manual segue.

Listing 3-3. Performing the Manual Segue

import UIKit
class ViewController: UIViewController {
 @IBAction func onManualSegueTouchDown(sender: AnyObject) {
 self.performSegueWithIdentifier("manualSegue", sender: sender)
 }
}

Run the app in different emulators to see these segues work in different size
classes. Since iOS 8, the segues are presented in an adaptive manner to the
size classes.

Pass Data with a Segue
The storyboard segues perform screen transitions nice and easy by drawing
the segue connections. You don’t even need a line of code for an Action
Segue. However, you normally will need to pass data from the presenting
view controller to the presented view controller, which cannot be done alone
by the storyboard segue itself.

Figure 3-25. Creating a Manual Segue

CHAPTER 3: Structure Your App72

The following steps demonstrate the conventional iOS way to pass data
from the presenting view controller to the presented view controller in the
Xcode Segues project:

1. Create a PresentedViewController class with a property

to receive data. Listing 3-4 simply prints the received

data in the viewDidLoad() method.

a. Specify the PresentedViewController class in the
Identity Inspector to pair with the From Action
Segue storyboard scene (see Figure 3-17 for
details).

b. Pair the From Manual Segue storyboard scene
with the PresentedViewController class as well.

c. Add a property, data, to receive the data from the
presenting view controller.

Listing 3-4. Data Property to Receive Data from Presenting View Controller

import UIKit
class PresentedViewController: UIViewController {
 var data: String?
 override func viewDidLoad() {
 if let tmp = data {
 println("received data: \(tmp)")
 }
 }
 ...
}

2. The system invokes a prepareForSegue(...) method in

the source view controller. You need to implement this

method to receive the callback. To pass data from the

source view controller, ViewController, override the

prepareForSegue method as shown in Listing 3-5.

Listing 3-5. Presenting View Controller Override prepareForSegue

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?)
{
 var identifier = segue.identifier
 var destVc = (segue.destinationViewController as PresentedViewController)
 destVc.data = "some data from presenting vc \(identifier)"
}

CHAPTER 3: Structure Your App

73

Container View Controller

ANDROID ANALOGY

Activity is the parent of child Fragments.

In iOS, screen navigations are primarily implemented by storyboard segues
and the Container View Controller classes from SDK that facilitate the screen
navigations. You may create subclasses from these system container view
controllers, but normally you can just use them as is.

Navigation Stack

ANDROID ANALOGY

FragmentManager back stack.

The Navigation Stack is widely used to manage screen transitions, and
particularly for displaying information hierarchy, such as a master drilldown
list. To show the next screen, push the next view controller into the
navigation stack. To go back to the previous screen, pop out the previous
view controller in the navigation stack.

Create an iOS version of the following simple Android app that has an action
bar, as shown in Figure 3-26. This simple Android app does the following:

It has three content views.	
It uses 	 FragmentManager API to create fragment
transaction for screen transitions.

The device back button automatically removes the 	
FragmentTransaction from back stack.

You probably used the Fragment Animation API to 	
implement the slide-in and slide-out animations.

CHAPTER 3: Structure Your App74

In iOS, you draw appropriate storyboard segues with the
UINavigationController Container View Controller to accomplish this
navigation stack pattern. Let’s create a new Xcode project to demonstrate
the iOS way.

1. Create a new Xcode project using iOS Single View

Application template (see chapter 2, “iOS Project

Anatomy”). Name it NavigationStack.

2. Select Main.storyboard to open the storyboard in the

Editor area. It has one scene already.

3. Add two more content view (scenes): drag

ViewController from Object Library onto the

storyboard twice. Figure 3-27 depicts the storyboard

containing three scenes.

Figure 3-26. The Android NavigationStack app with three screens

CHAPTER 3: Structure Your App

75

4. Use the counterpart Android Screen One layout to guide

you as you update the first storyboard scene:

a. Add a Label from the Object Library. Change its
font size to 30 and text to “Screen One”, and center
its alignment with the Attributes Inspector in the
Utility area.

b. Add Auto Layout constraints to center the label as
shown in Figure 3-28.

Figure 3-27. Three storyboard scenes in the NavigationStack project

Figure 3-28. Screen One label with center constraints

c. Add the Next button with the right and bottom
space constraints to anchor the position as shown
in Figure 3-29.

CHAPTER 3: Structure Your App76

5. Repeat step 4 to add a “Screen Two” Label and the

Next button to the Screen Two scene.

6. Repeat step 4 to add a “Screen Three” Label to the

Screen Three scene. Figure 3-30 shows the UI widgets

added to storyboard.

Figure 3-29. Next button with alignment constraints

Figure 3-30. Three scenes with widgets in NavigationStack project

7. Create an Action Segue from the Next button in Screen

One to the Screen Two scene, and another Action

Segue from the Next button in Screen Two to the Screen

Three scene.

Figure 3-31 shows the results of the storyboard. Run the app to see what is
working and what is not working yet. Nothing is new yet, just repeated steps
that create storyboard scenes, UI widgets, Auto Layout constraints, and
segues that connect them together.

CHAPTER 3: Structure Your App

77

UINavigationController

ANDROID ANALOGY

FragmentTransaction Back Stack

The only missing piece in this iOS project is a way to show the appropriate
child view controller in the typical push and pop fashions. In iOS, the
UINavigationController manages the push and pop screen navigation
stack behaviors. It also provides a navigation bar that has a default back
button, a title in the center, and an optional right button (see Figure 3-32).

Figure 3-31. NavigationStack storyboard

Figure 3-32. The UINavigationController navigation bar

All you need to do is to set up a UINavigationController that associates its
root view controller with the first scene:

Add a Navigation Controller from 	 Object Library.

Connect the root view controller segue (in 	 Connections
Inspector) to the first view controller.

CHAPTER 3: Structure Your App78

You can accomplish both in one simple storyboard operation: embed the
Screen One view controller in a Navigation Controller as shown in the
following steps:

1. Select Screen One View Controller from the storyboard.

2. In the Xcode menu bar, select Editor ➤ Embed In ➤

Navigation Controller as shown in Figure 3-33.

Figure 3-33. Creating a Navigation Controller

3. This creates a Navigation Controller and connects

the root view controller segue to the Screen One view

controller (see Figure 3-34).

a. The Navigation Controller has a NavigationBar.

b. The root view controller automatically gets a
NavigationItem where you can add a center title
and a rightBarButtonItem.

CHAPTER 3: Structure Your App

79

4. Select the NavigationItem in Screen One to add title

text (i.e., Navigation Stack), as shown in Figure 3-35.

a. The title on the NavigationBar also affects the Back
button title. iOS automatically updates the button
title attribute to reflect where the Back button is
going. The button text defaults to Back if the title
is not assigned in the view.

Figure 3-34. Navigation Controller scene and root view controller connection

Figure 3-35. Title on the Navigation Item

Note The title on the Android Action bar is meant for the App identity.

The iOS navigation bar title is more meant for the screen title.

5. Optional: The title and the rightBarButtonItem

need to be installed on NavigationItem as you seen in

previous step. If you want to set the title attribute or

the rightBarButtonItem to Screen Two or Three, you

need to add a NavigationItem to Screen Two or Three

view controller first.

CHAPTER 3: Structure Your App80

Note The title can be derived from the view controller title when

Navigation Item is not being configured.

Figure 3-36. The final NavigationStack app

Build and run the app to see the live app in action (see Figure 3-36).

Master List with Details Drilldown

ANDROID ANALOGY

ListView and GridView.

Many apps need to display a list of items that users can tap to view more
detailed information. They present a master list of items first, and the user
selects one item to drill into.

This is probably one of the most common mobile navigation patterns. Both
Android and iOS provide guidelines and offer system APIs to promote
consistency by making the implementation easy for developers. In fact, both
Xcode and ADT supply project templates for creating apps with this UX pattern.

In ADT, you can get the following master-detail app using the ADT
Master/Detail Flow template. Initially, it presents the master list with three
items. The app shows the detailed screen with the selected item content.
You will port this app (see Figure 3-37) to the iOS platform.

CHAPTER 3: Structure Your App

81

UITableViewController

ANDROID ANALOGY

The implementation concept appears very similar with different vocabularies:

•฀ ListFragment = UITableViewController

List View = Table View•฀

List View Item = Table View Cell•฀

List Adapter = Data Source•฀

Even the adapter/data source implementations are sort of similar, too.

Figure 3-37. Android master list detailed drilldown

CHAPTER 3: Structure Your App82

To port this Android app to iOS, you need two storyboard scenes: one for
the master list and the other for the detailed content view. To have a fresh
start, create a new iOS project:

1. Launch Xcode and create a new application using the

usual Single View Application template, and name it

MasterDetail.

a. You get a ViewController class that already pairs
with a scene in Main.storyboard. Use this pair for
the detail view screen.

2. Create the master list storyboard scene and draw a

segue to connect the two scenes. Figure 3-38 depicts

the result of the storyboard work.

a. Drag the UITableViewController from the Object
Library, and drop it in the storyboard editor.

b. Create a Manual Segue from the
UITableViewController to the detailed view
controller with the Show transition type
(see Figure 3-25). Always give the segue an
identifier, such as detail (see Figure 3-24).

3. Select the Table View Cell in the UITableViewController

scene and open the Attribute Inspector to configure

the Table View Cell (see pointers in Figure 3-38):

a. Style: Select Basic (or others to see what they are in
the editor).

b. Identifier: Enter mycell. Always give it an identifier.
You need it to create reusable cells, just as the
Android recycled list item does.

c. Accessory: Select Detail.

d. Optionally, you may add an image that shows the
icon on the left.

Figure 3-38. TableViewCell attributes

CHAPTER 3: Structure Your App

83

4. Embed the UITableViewController in a Navigation

Controller (see Figure 3-33 in Navigation Stack). You

normally use a Navigation Stack pattern for the screen

transitions.

5. Check the Is the Initial Scene in the Navigation

Controller Attributes Inspector (see Figure 3-39)

to make the Navigation Controller the starting view

controller of this app.

Figure 3-39. MasterDetail storyboard

6. Create a MasterTableViewController Swift class in the

ViewController.swift file as shown in Listing 3-6.

a. Subclass MasterTableViewController from
UITableViewController.

b. Pair this MasterTableViewController class with
the Table View Controller scene in the Identity
Inspector (see Figure 3-17).

Listing 3-6. MasterListTableViewController Class

class MasterTableViewController : UITableViewController {
 // TODO
}

Note In Swift, the class doesn’t need to be in its own file. I choose to put

in it the existing ViewController.swift file for no particular reason.

If you are used to the Java way, you may create a new file to host this class.

CHAPTER 3: Structure Your App84

UITableViewDataSource

ANDROID ANALOGY

android.widget.Adapter.

To populate the items in the Table View, you implement a Data Source:
provide the TableViewCell with data by overriding the methods defined in
the UITableViewDataSource protocol (see Listing 3-7). Do the following in the
MasterDetail project:

1. Implement tableView(tableView,numberOfRowsInSection)

to return number of items in the tableView.

2. Implement tableView(tableView,
cellForRowAtIndexPath) to return the tableViewCell

instance.

Listing 3-7. Implement UITableViewDataSource Protocol

class MasterTableViewController : UITableViewController {
 var items = ["item 1", "item 2", "item 3"]

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return self.items.count
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("mycell") as
UITableViewCell

 cell.textLabel.text = self.items[indexPath.row]
 return cell
 }
}

Note Use dequeueReusableCellWithIdentifier(...) to

implement recycled views. This is a very common pattern for saving

memory with a large amount of items, and iOS makes it easy by offering

this method. Make sure you assign a cell identifier in storyboard.

CHAPTER 3: Structure Your App

85

UITableViewDelegate

ANDROID ANALOGY

ListFragment.onListItemClick(...).

To handle Table View item selected events, override the
UITableViewDelegate.tableView(tableView, didSelectRowAtIndexPath)
method (see Listing 3-8):

1. Implement UITableViewDelegate.
didSelectRowAtIndexPath(...) to perform segues

2. Implement a prepareForSegue(...) callback to pass

data to the detail view controller (see Listing 3-5

for details).

Listing 3-8. Implementing UITableViewDelegate

class MasterTableViewController : UITableViewController {
 ...
 override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {

 self.performSegueWithIdentifier("detail", sender: indexPath.row)
 }

 override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {

 var destVc = segue.destinationViewController as UIViewController
 destVc.navigationItem.title = self.items[sender as Int]
 }

3. To add or delete items, you need to explicitly refresh the

table view:

a. Drag and drop a Bar Button Item to the navigation
bar and draw an IBAction to create the doAdd()
method (Figure 3-40).

CHAPTER 3: Structure Your App86

b. To add an item when the Add button is selected,
implement the doAdd() method as shown in
Listing 3-9. Make sure you call TableView.
reloadData() in the main thread to refresh the table
view just like the notifyDataSetChanged() does in
Android.

Listing 3-9. Refresh Table View

class MasterTableViewController : UITableViewController {
 var items = ["item 1", "item 2", "item 3"]

 @IBAction func doAdd(sender: AnyObject) {
 self.items.append("item \(self.items.count + 1)")
 self.tableView.reloadData()
 }
 ...

Build and run (z+R) the app to see the MasterDetail iOS app live in action
(see Figure 3-41).

Figure 3-41. MasterDetail app screens in iOS

Figure 3-40. Navigation bar right button

CHAPTER 3: Structure Your App

87

UITableView

ANDROID ANALOGY

android.widget.ListView.

Just like the Android ListFragment class, which is a Fragment containing
a ListView, UITableViewController is a regular UIViewController with a
pre-wired tableView in it. You will have the same choice to make: whether
or not to use UITableViewController, which simplifies some coding for
you (actually not that much, IMO). More often, I choose to do the following
instead of using UITableViewController:

1. In storyboard, create a regular View Controller with

TableView:

a. Add a regular ViewController scene.

b. Add a TableView to the scene. This gives you
more flexibility (i.e., to draw the table view at any
location).

c. Connect the table view to an IBOutlet (see
Figure 3-20 for details).

d. Select the TableView and connect delegate and
dataSource outlets to the ViewController in
Connection Inspector.

2. Create a Swift class to pair with the content view:

a. Subclass from the regular UIViewController class.

b. Implement UITableViewDataSource and
UITableViewDelegate protocols.

The previous MasterTableViewController is essentially equivalent to the
code in Listing 3-10, and you still implement the same methods declared in
UITableViewDataSource and UITableViewDelegate.

Listing 3-10. Explicitly Implement Table View Protocols

class MasterTableViewController : UIViewController, UITableViewDataSource,
UITableViewDelegate {
 @IBOutlet weak var tableView: UITableView!
 ...

CHAPTER 3: Structure Your App88

UITableViewCell

ANDROID ANALOGY

R.id.simple_list_item_1 from Android SDK, or create custom list item layout.

Similar to Android list-view item usages, you get some free types of
UITableViewCell that you can select from iOS SDK. Previously in the
MasterDetail project, we selected the Basic style, which gives you
one textLabel in the Table View cell (see Figure 3-38). Right Details,
Left Details, or Subtitle styles all give you a second label called
detailedTextLabel. You can also set a left image icon and other
TableViewCell attributes as shown in Figure 3-38.

You may programmatically configure TableViewCell using the tableView
(cellForRowAtIndexPath) method. Listing 3-11 shows a typical example:

Listing 3-11. TableViewCell Properties

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 var cell = ...
 cell.textLabel.text = self.items[indexPath.row]
 cell.detailTextLabel.text = "some detail label"
 cell.imageView.image = UIImage(named: "pointer.png")
 cell.accessoryType = UITableViewCellAccessoryType.DetailButton
 return cell
}

You can also choose “Custom” style, and draw the cell freely using
storyboard; you will do so in the next section.

UICollectionView

ANDROID ANALOGY

GridView.

In Android, GridView is just a variant of the master-detail drilldown
pattern using a different UI widget to show the master list. However, on
tablets or large-screen devices, GridView is widely used due to greater
space efficiencies that use multiple columns to organize the master
list items, rather than a simple one-dimensional list. On iOS platforms,
UICollectionView comes to the rescue.

CHAPTER 3: Structure Your App

89

It would be a shame if you didn’t try this variant right now, because it
is a really useful widget that takes very little extra effort. The key is the
UICollectionView class.

Note You can also use UICollectionViewController, which

contains a UICollectionView that occupies the whole scene by default.

Same choice: UITableViewController versus UITableView, which

we discussed earlier (see “UITableView” section).

The MasterDetail project you created fits comfortably on an iPhone,
but when it is running in iPad, it feels like the space is not being utilized
efficiently. Create a new Xcode project using UICollectionView to
demonstrate the usage:

1. Launch Xcode and create a new application using

the usual Single View Application template. Name it

MasterGridDetail.

a. You get a scene in the Main.storyboard and a
ViewController class pair.

b. Rename the class to MasterViewController in both
the ViewController.swift file and as the custom
class name of the view controller scene (see
Figure 3-17).

c. Drag a Collection View from the Object Library
and drop it onto the MasterViewController scene.
Let it take up the whole space and pin zero spacing
to Superview in all four directions from the Xcode
menu bar at Editor ➤ Pin ➤

d. Embed the MasterViewController controller in the
Navigation Controller (see Figure 3-33)

2. Select the Collection View in storyboard to create

connections in Connections Inspector as shown in

Figure 3-42:

a. Connect dataSource and delegate outlets to the
MasterViewController.

b. Open Assistant Editor and connect New
Referencing Outlet to MasterViewController
property. Name it mCollectionView.

CHAPTER 3: Structure Your App90

3. Draw your own custom collection view cell in

storyboard:

a. In Attributes Inspector, assign Collection
Reusable View Cell Identifier a value (i.e., mycell).
There are some attributes you can change safely
in the Attributes Inspector, such as the white
background color.

b. To change the size of the cell, select the parent
collection view and change the cell size to
150 × 150 in Size Inspector. Figure 3-43 shows
other measurements that you can set.

Figure 3-42. Collection View dataSource, delegate, and IBOutlet connections

Figure 3-43. Size Inspector

c. Add a Label to the cell, make the font size bigger
(i.e., 30), center alignment, and add Auto Layout
constraints as shown in Figure 3-44.

CHAPTER 3: Structure Your App

91

4. Create a custom Swift class for the collection view

cell. Listing 3-12 shows the SimpleCollectionViewCell

class:

a. Create a swift class, SimpleCollectionViewCell,
subclassed from UICollectionViewCell.

b. Select the collection view cell in storyboard and
assign the SimpleCollectionViewCell class in
Identity Inspector.

c. Open the Assistant Editor with the
SimpleCollectionViewCell class. In the
Connections Inspector, connect the Referencing
Outlet to create an IBOutlet, and name it
textLabel.

Listing 3-12. SimpleCollectionViewCell class

class SimpleCollectionViewCell : UICollectionViewCell {
 @IBOutlet weak var textLabel: UILabel!
}

5. Create the detail view controller scene in storyboard as

shown Figure 3-45:

a. Add a regular view controller from the Object
Library.

b. Create a manual segue from the Master View
Controller scene to the detailed view controller with
a Show transition type (see Figure 3-25). Always
enter a storyboard segue Identifier (i.e., detail).

Figure 3-44. Drawing the collection view cell

CHAPTER 3: Structure Your App92

6. MasterViewController must implement

UICollectionViewDataSource and

UICollectionViewDelegate protocols (see Listing 3-13):

a. Implement numberOfSectionsInCollectionView
(collectionView) to return the section number; it
defaults to 1 if not implemented.

b. Implement collectionView(collectionView,
numberOfItemsInSection) to return number of items
in each section.

c. Implement collectionView(collectionView,
cellForItemAtIndexPath) to return the collection
view cell instance.

d. Implement collectionView(collectionView,
didSelectItemAtIndexPath) to respond to cell
selection.

Listing 3-13. UICollectionViewDataSource and UICollectionViewDelegate Protocols

class MasterViewController : UIViewController, UICollectionViewDataSource,
UICollectionViewDelegate {
 ...
 // implement UICollectionViewDataSource
 var items = ["item 1", "item 2", "item 3", "item 4", "item 5", "item 6",
"item 7"]

 func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {

 return self.items.count
 }

Figure 3-45. Creating the detail view controller in MasterDetail storyboard

CHAPTER 3: Structure Your App

93

 // The cell that is returned must be retrieved from a call to -dequeueReus
ableCellWithReuseIdentifier:forIndexPath:

 func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) -> UICollectionViewCell {

 var cell = collectionView.dequeueReusableCellWithReuseIdentifier("cell",
forIndexPath: indexPath) as SimpleCollectionViewCell

 cell.textLabel.text = self.items[indexPath.row]
 cell.backgroundColor = (indexPath.row % 2 == 0) ? UIColor.whiteColor() :

UIColor.lightGrayColor()
 return cell
 }

 func numberOfSectionsInCollectionView(collectionView: UICollectionView)
-> Int {

 return 1
 }

 // implement UICollectionViewDelegate
 func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {

 self.performSegueWithIdentifier("detail", sender: self)
 }
}

Both TableView and CollectionView are very versatile. You should look into
the data source and delegate protocols to see the rich options offered to
developers. Build and run the MasterGridDetail iOS app to see your code
live in action as shown in Figure 3-46.

Figure 3-46. Collection view

CHAPTER 3: Structure Your App94

Navigation Tabs

ANDROID ANALOGY

Actionbar Navigation Tabs.

Navigation tabs are another popular UX design pattern. Apple’s iOS Human
Interface Guidelines suggest using a tab bar to give users access to different
perspectives on the same set of data or on different subtasks related to
the overall function of your app. Each navigation tab is associated with a
view controller. When the user selects a specific tab, the associated view
controller presents its own content view.

In Android, you normally use Actionbar. Figure 3-47 shows an example;
let’s translate it to iOS.

Figure 3-47. Android TabbedApp

The key in iOS is the Container View Controller, UITabBarController class.
You can use it as is most of the time. If you want to keep some application
states in the Container View Controller, simply subclass from it.

CHAPTER 3: Structure Your App

95

Implementing Navigation Tabs

The following instructions walk you through the steps you normally take to
implement navigation tabs:

1. Launch Xcode to create a new app using Single View

Application template, and name it TabbedApp.

a. You get an empty scene in the Main.storyboard and
a ViewController class.

b. Rename the class to FirstViewController in both
the ViewController.swift file and the class name in
Identity Inspector for the storyboard scene.

c. Draw the content view in the storyboard scene
using the Android app as your wireframe.

2. You need the second content view and view controller

pair.

a. You can copy, paste, and modify from the
FirstViewController class. Listing 3-14 shows the
SecondViewController class.

Listing 3-14. SecondViewController Class

class SecondViewController: UIViewController {
 ...
}

b. You can copy, paste, and modify the storyboard
scene in the storyboard editor, too. Don’t forget
to update the class name in Identify Inspector.
Figure 3-48 shows that the storyboard has the
Screen One and Screen Two scenes.

CHAPTER 3: Structure Your App96

3. Add a Container View Controller, UITabBarController,

which will be responsible for managing the two content

view controllers.

a. Embed both storyboard scenes in a
TabBarController: multiselect both storyboard
scenes (press and hold the z key for multiselect)
and select the command from Editor ➤ Embed
In ➤ Tab Bar Controller in the Xcode menu bar
(see Figure 3-49).

Figure 3-48. First and second scenes in TabbedApp

CHAPTER 3: Structure Your App

97

The app is not complete yet, but you actually can run it now to see the app
live (see Figure 3-50).

Figure 3-49. Embed content views in Tab Bar Controller (the result on the right)

Figure 3-50. TabbedApp draft

CHAPTER 3: Structure Your App98

UITabBarController

As you can see from previous work (see Figure 3-49), a bottom tab bar
comes with UITabBarController. Each tab bar item is associated with a
content view controller. By selecting a tab bar item, the UITabBarController
automatically presents the selected content view controller.

Add/Remove a Tab Bar Item

UITabBarController maintains an array of references to its child view
controllers. In its Connections Inspector, you can draw a view controller’s
outlet in the Triggered Segues section to add the child view controllers to the
UITabBarController.viewControllers array property. You can write code to
add or remove the child view controller in the runtime, too.

Update the Look and Feel of the Tab Bar Items

You should assign a title and an image to the tab bar items. When a
UIViewController is added to a tab bar controller, the UIViewController.
tabBarItem property represents the tab bar item in the tab bar. You assign
appropriate values in the tab bar item’s Attributes Inspector. In the
runtime, you use code to update the text and image by setting appropriate
tabBarItem properties. Previously, Figure 3-50 shows two tab bar items
with the same label and without an icon image. Do the following to give our
TabbedApp a better look:

1. System provides a set of common tab bar items

(System Item in Attributes Inspector). Use them when

possible for consistent platform convention. Select the

Featured system item for Screen One (see Figure 3-51).

Figure 3-51. Adding the Featured System Item to Screen One

CHAPTER 3: Structure Your App

99

2. For Screen Two, select Custom to supply your own tab

bar item Title and Image icon (see Figure 3-52).

a. Enter the Title (e.g., Two).

b. Create an image icon in images.xcassets (i.e., tab1),
and drop a transparent PNG with size about 25 × 25
(max 48 × 32). The icon color is not required, as only
the alpha channel is to be rendered.

Figure 3-52. Custom tab item with badgeValue

Note iOS is very picky about the right image specs. See the online

reference for image specs: https://developer.apple.com/

library/ios/documentation/UserExperience/Conceptual/

MobileHIG/IconMatrix.html.

c. Enter the Image name (e.g., tab1).

d. You may enter a badge (e.g., New), which will
appear on the upper right corner of the icon.
Frequently, it is set programmatically in the runtime
using the UITabbatItem.badgeValue property.

Handle Runtime Behavior

To respond to the runtime behavior programatically, just like most of the
UIKit widgets, you implement a delegate protocol: UITabBarDelegate.
Continue with the TabbedApp to learn the common tasks for handling
UITabBarDelegate runtime events.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html

CHAPTER 3: Structure Your App100

1. Create a custom tab bar controller to handle runtime

behaviors as shown in Listing 3-15:

a. Create a SimpleTabBarController class subclassing
from UITabBarController.

b. Declare SimpleTabBarController to implement
UITabBarControllerDelegate protocol.

c. In storyboard, select the tab bar controller and
assign the SimpleTabBarController class in the
Identity Inspector.

Listing 3-15. SimpleTabBarController Class

class SimpleTabBarController : UITabBarController,
UITabBarControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 self.delegate = self
 }

 func tabBarController(tabBarController: UITabBarController,
shouldSelectViewController viewController: UIViewController) -> Bool {

 // you may do something and return true
 // Or, return false to not to select viewController
 return true
 }

 func tabBarController(tabBarController: UITabBarController,
didSelectViewController viewController: UIViewController) {

 // you may do something
 }
}

2. Each child content view controller can access

UIViewController.tabBarController and

UIViewController.tabBarItem properties. Listing 3-16

shows how to change the second tab’s badgeValue from

the FirstViewController.

Listing 3-16. Change badgeValue of Other tabBarItem

(self.tabBarController!.viewControllers![1] as
 UIViewController).tabBarItem.badgeValue = "Zzz"

CHAPTER 3: Structure Your App

101

By the way, the tab bar is located on the bottom screen in iOS instead of
at the top in Android. In general, platform-specific UX guidelines should
never be overlooked. Keep the navigation bar on the bottom in iOS, which is
where most iOS users expect it.

Swipe Views
The Carousel is a popular UX pattern commonly used in many platforms,
including desktop and web apps. On mobile platforms, you use this pattern with
swipe gestures to display content, page by page. It allows the user to move
from item to item efficiently. With animated transitions, it offers a more enjoyable
viewing experience. Both iOS and Android provide framework classes, as well
as a project creation template to promote this navigation UX pattern.

In Android, you normally use the ViewPager widget. Figure 3-53 shows
the Android SwipeViews app that was created using the ADT Swipe View
template:

The container Activity has a 	 ViewPager to show the
swipeable views from a fragment layout.

It has one fragment that contains a label that represents 	
the page content.

The pager adapter creates the fragment with content for 	
each page.

Figure 3-53. Android SwipeViews app

CHAPTER 3: Structure Your App102

You will port this to iOS. Use the Android app or layout file (see Figure 3-54)
as the wireframe to construct the storyboard scenes to start with.

Figure 3-54. Android layout.xml file

1. Launch Xcode to create a new project using the

usual Single View Application template, and name it

SwipeViews.

2. Rename the existing class ViewController to

ParentViewController in both the ViewController.swift

file and the custom class name in the Identity

Inspector of the view controller’s storyboard scene.

CHAPTER 3: Structure Your App

103

3. Drag and drop a UIView onto the storyboard scene from

Object Library:

a. Open the storyboard Assistant Editor and
create an IBOutlet in Connections Inspector by
connecting the referencing outlet to the paired view
controller, and name it mPageView.

b. Add Auto Layout constraints to pin the edges to
nearest neighbors and set the background to be
light gray, as shown in the final storyboard
(see Figure 3-55).

Figure 3-55. Main.storyboard in SwipeViews project

4. You need another content view–view controller pair for

the page content.

a. Create a new PageContentViewController class
(see Listing 3-17).

Listing 3-17. Two Classes in ViewController.swift File

import UIKit
class ParentViewController : UIViewController {
 @IBOutlet weak var mPageView: UIView!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

CHAPTER 3: Structure Your App104

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

class PageContentViewController: UIViewController {
 @IBOutlet weak var textLabel : UILabel
}

b. Draw the second storyboard scene (see the screen on
the right in Figure 3-55). Make sure you give the
Page Content View controller a storyboard ID
(e.g., PageContentViewController). You need the ID
to programmatically load a controller from storyboard.

Nothing is new yet; just draw two storyboard scenes with the view
controllers to start with. You may build and run the app to make sure it
contains no errors. Unlike previous Navigation Stack or Tab patterns to
which you can draw segues for view controller transitions, you need to write
code to complete the app, which you will do next.

UIPageViewController

ANDROID ANALOGY

ViewPager.

The key to implementing the swipe view pattern in iOS is the
UIPageViewController class, which uses the same data source pattern:
implement a data source that is responsible for providing content views
populated with data. Continue with the folowing steps in the SwipeViews
Xcode project:

1. Modify the PageContentViewController class so it can

receive data and present the three simple screens (see

Listing 3-18).

Listing 3-18. Add data and pageNo Properties

class PageContentViewController: UIViewController {

 @IBOutlet weak var textLabel : UILabel

CHAPTER 3: Structure Your App

105

 var data = ""
 var pageNo = 0

 override func viewDidLoad() {
 self.textLabel.text = data
 }
}

2. UIPageViewController works with dataSource

and delegate protocol. The parent view controller,

ParentViewController, is a legitimate candidate for

implementing them (see Listing 3-19).

a. UIPageViewControllerDataSource is responsible for
supplying the content view controller before and
after the current content one.

b. UIPageViewControllerDataSource also defines the
optional page count and page selection indicator.

c. UIPageViewControllerDelegate defines the optional
page controller events callbacks.

Listing 3-19. ParentViewController Implements dataSource and delegate Protocol

class ParentViewController : UIViewController,
UIPageViewControllerDataSource, UIPageViewControllerDelegate {

 ...
 // implement data source
 let items = ["Page: 1", "Page: 2", "Page: 3"]
 func pageViewController(pageViewController: UIPageViewController,
viewControllerBeforeViewController viewController: UIViewController) ->
UIViewController? {

 var pageNo = (viewController as PageContentViewController).pageNo
 if pageNo > 0 {
 var vc = self.storyboard.

instantiateViewControllerWithIdentifier("PageContentViewController")
as PageContentViewController

 vc.data = self.items[pageNo-1]
 vc.pageNo = pageNo - 1
 return vc
 }

 return nil
 }

CHAPTER 3: Structure Your App106

 func pageViewController(pageViewController: UIPageViewController,
viewControllerAfterViewController viewController: UIViewController) ->
UIViewController? {

 var pageNo = (viewController as PageContentViewController).pageNo
 if pageNo < self.items.count - 1 {
 var vc = self.storyboard.

instantiateViewControllerWithIdentifier("PageContentViewController")
as PageContentViewController

 vc.data = self.items[pageNo+1]
 vc.pageNo = pageNo + 1
 return vc
 }

 return nil
 }

 func presentationCountForPageViewController(pageViewController:
UIPageViewController) -> Int {

 return self.items.count
 }
 func presentationIndexForPageViewController(pageViewController:
UIPageViewController) -> Int {

 return (pageViewController.viewControllers[0] as
PageContentViewController).pageNo

 }

}

3. In the ParentViewController viewDidLoad() method,

the following conventional code (see Listing 3-20) sets

up the UIPageViewController:

a. Initialize page view controller.

b. Set up the dataSource and delegate.

c. Set the first page view controller.

d. Establish the parent-child view controller hierarchy.

Listing 3-20. Setting Up UIPageViewController in viewDidLoad

class ParentViewController : UIViewController,
UIPageViewControllerDataSource, UIPageViewControllerDelegate {

 @IBOutlet weak var mPageView: UIView
 var mPageViewController: UIPageViewController

CHAPTER 3: Structure Your App

107

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // a. initialize page view controller, view and gestures
 self.mPageViewController = UIPageViewController(transitionStyle:

UIPageViewControllerTransitionStyle.Scroll, navigationOrientation:
UIPageViewControllerNavigationOrientation.Horizontal, options: nil)

 self.mPageViewController.view.frame = self.mPageView.bounds
 self.mPageView.gestureRecognizers = self.mPageViewController.

gestureRecognizers

 // b. set data source and delegate
 self.mPageViewController.delegate = self
 self.mPageViewController.dataSource = self

 // c. set the first page
 var vc = self.storyboard.

instantiateViewControllerWithIdentifier("PageContentViewController") as
PageContentViewController

 vc.data = self.items[0]
 vc.pageNo = 0
 self.mPageViewController.setViewControllers([vc], direction: .Forward,

animated: false, completion: nil)

 // d. establish parent-child view and view controller hierachy
 self.mPageView.addSubview(self.mPageViewController.view)
 self.addChildViewController(self.mPageViewController)
 self.mPageViewController.didMoveToParentViewController(self)
 }

This is all about the UIPageViewController class and the Swipe View
navigation pattern in iOS. Build and run the iOS SwipeViews app to see your
code in action (see Figure 3-56).

Figure 3-56. iOS SwipeViews app

CHAPTER 3: Structure Your App108

Dialogs
Generally, you use the Dialogs UX pattern to give mobile users quick
feedback or to request simple confirmation of choices. Dialogs normally sit
on top of the current screen while that screen remains partially visible or
dimmed. This creates a visual effect that is meant to get more user attention
without losing the current context.

Create an Xcode project to demonstrate the uses of Dialogs and common
programming tasks:

1. Launch Xcode to create a new project using the Single

View Application template, and name it Dialogs.

2. Draw two Button widgets with titles set to Alert and

Popup in the storyboard scene as shown in Figure 3-57.

Figure 3-57. Dialogs storyboard

3. Open the storyboard Assistant Editor and connect

the Send Event ➤ Touch Down outlet in Connections

Inspector to create IBAction methods in the

paired ViewController class for both buttons (see

doAlert(...) and doPopup(...) in Listing 3-21).

CHAPTER 3: Structure Your App

109

Listing 3-21. Create IBAction methods for the Alert and Popup buttons

import UIKit
class ViewController: UIViewController, UIAlertViewDelegate {
 ...
 @IBAction func doAlert(sender: AnyObject) {
 // TODO
 }
 @IBAction func doPopup(sender: AnyObject) {
 // TODO
 }
}

Nothing should be new to you here, but this Dialogs Xcode project should
give you a refresher on dialog topics.

UIAlertController

ANDROID ANALOGY

AlertDialog.

Figure 3-58 shows the standard Android and iOS alert dialogs side by side.
On iOS, you use UIAlertController. The basic usages are almost identical
except the extra title icon on the Android AlertDialog.

Figure 3-58. Android (left) vs. iOS (right) alert dialogs

CHAPTER 3: Structure Your App110

Contiune with the Xcode Dialogs project and add the following code to
learn the UIAlertController code:

1. To show the iOS dialog as depicted in Figure 3-58, add

the following code in the ViewController.doAlert(...)

method (see Listing 3-22):

a. Create a UIAlertController instance.

b. Add UIAlertAction for dialog buttons.

c. To prompt user input, add TextField to
UIAlertController.

d. Use the regular UIViewController API to present it
as a view controller.

Listing 3-22. Present UIAlertController

@IBAction func doAlert(sender: AnyObject) {

 var alert = UIAlertController(title: "My title", message: "My message",
preferredStyle: UIAlertControllerStyle.Alert)

 // add action buttons
 var actionCancel = UIAlertAction(title: "Cancel", style:
UIAlertActionStyle.Cancel,

 handler: {action in
 // do nothing
 })

 var actionOk = UIAlertAction(title: "Ok",

style: UIAlertActionStyle.Default, handler: {action in
 println((alert.textFields[0] as UITextField).text)
 })

 alert.addAction(actionCancel)
 alert.addAction(actionOk)

 // add text fields
 alert.addTextFieldWithConfigurationHandler({textField in
 // config the UITextField
 textField.backgroundColor = UIColor.yellowColor()
 textField.placeholder = "enter text, i.e., Do Ra Me"
 })

 // UIViewController API to presend viewController
 self.presentViewController(alert, animated: true, completion: nil)
 }

Everything inside the UIAlertController is created programatically.
Figure 3-59 shows the UIAlertController code live in action.

CHAPTER 3: Structure Your App

111

UIPopoverController

ANDROID ANALOGY

DialogFragment.

On iOS devices with large screens such as the iPad, you can use
PopoverController to present a regular viewController as a popover.
The popover can be anchored at a given position to associate the presented
dialog with the presenting context. On devices with compact size classes
such as the iPhone, the popover controller automatically falls back to
the regular full-screen view controller. You can also take advantage of the
storyboard editor to draw the content views and segue instead of writing code.

The following steps demonstrate the PopoverController in the Dialogs project:

1. Add a new storyboard scene for the popover.

a. Create a GreenViewController class as shown in
Listing 3-23 and draw a view controller scene in
storyboard to pair with it by specifying the class
name in Identity Inspector.

Listing 3-23. GreenViewController Class

class GreenViewController : UIViewController {
 @IBAction func doDone(sender: AnyObject) {
 // do something and dismiss
 self.dismissViewControllerAnimated(true, completion:nil)
 }
}

Figure 3-59. iOS UIAlertController

CHAPTER 3: Structure Your App112

b. Embed the view controller in a Navigation Controller
(Editor ➤ Embed in from the Xcode menu bar) to
take advantage of the navigation bar title, or any
Navigation Controller features.

c. In the Navigation Controller Attributes Inspector,
change the Simulated Metrics Size to Freeform,
and then change the Simulated Size to 250 × 300
in the Size Inspector.

d. In the Navigation Controller Identity Inspector,
specify the Storyboard ID, i.e., nav. You always need
the ID if you want to instantiate a view controller
instance directly from a storyboard (see Listing 3-24).

e. You normally draw meaningful contents in content
view. For simplicity, use the Attributes Inspector
to change the GreenViewController view’s
Background attribute to be Green.

f. Draw a BarButtonItem on the right side of navigation
bar in the GreenViewController, and connect the
Send Actions outlet to the IBAction method in
GreenViewController as shown in Listing 3-23.
Figure 3-60 depicts the completed storyboard.

Figure 3-60. Dialogs storyboard completion

CHAPTER 3: Structure Your App

113

2. To present the GreenViewController, draw a Manual

Segue from the presenting ViewController to the parent

Navigation Controller of GreenViewController. Specify

the segue attributes value as shown in Attributes

Inspector in Figure 3-61.

Figure 3-61. Storyboard segue attributes in the Attributes Inspector

a. Identifier: mypopover.

b. Segue type: Present As Popover.

c. Direction: Up (you may play with other values).

d. Anchor outlet: Drag the outlet to the Popup button in
the presenting view controller.

3. To perform the mypopover Manual Segue, update the

ViewController.doPopup(...) IBAction method as

shown in Listing 3-24. Note that the commented code

programmatically presents a UIPopoverController

without using the storyboard segue.

Listing 3-24. Perform the mypopover Manual Segue

// In ViewController class
@IBAction func doPopup(sender: AnyObject) {
 self.performSegueWithIdentifier("mypopover", sender: nil)

// var nav = self.storyboard.instantiateViewControllerWithIdentifier("nav")

as UIViewController
// var popover = UIPopoverController(contentViewController: nav)
// popover.delegate = self;
// popover.popoverContentSize = nav.view.bounds.size
// popover.presentPopoverFromRect(self.mPopupButton.frame, inView: self.view,

permittedArrowDirections: UIPopoverArrowDirection.Up, animated: true)
}

CHAPTER 3: Structure Your App114

4. You may dismiss the popover by tapping anywhere

inside the presenting view controller but outside

the GreenViewController content view. To

dismiss the popover programmatically, implement

GreenViewController.doDone(...) to call the

dismissViewControllerAnimated(...) as shown in

Listing 3-23.

You can build and run the Xcode Dialogs project to see the
UIPopoverController code live in action. The UIPopoverController is
rendered as a popup dialog on an iPad, while the same code renders a
full-screen modal screen in compact-sized classes such as the iPhone, as
shown in Figure 3-62.

Figure 3-62. The results of the UIPopoverController code on the iPad vs. the iPhone

Toasts

For giving users quick feedback, which dismisses automatically, you
normally use Toast in Android apps. There is no Android-like Toast widget
in iOS. I really like it, but it probably would look Android-ish on iOS.
You can always create a small view area with fade-in and fade-out effects
programmatically with a timer.

CHAPTER 3: Structure Your App

115

Summary
To port Android to an iOS app, first create storyboard scenes using the
counterpart Android app as the wireframe to break your app naturally into
a structured MVC project in a top-down fashion. The result is a set of
content view–view controller pairs that map to the Android counterpart
layout-fragment pairs.

Next, to implement the screen navigation patterns, you draw storyboard
segues to connect storyboard scenes. You also choose the appropriate
container view controller (i.e., UINavigationController) from SDK to
facilitate the screen transitions. The remaining content view and view
controller mappings between iOS and Android are trivial. You will dive into
the details of each screen in Chapter 4.

117

Chapter 4
Implement Piece

by Piece

In the previous chapter, you started with iOS storyboard to lay down the
groundwork using navigation patterns. It resulted in a set of connected
UIViewController classes set in an MVC framework that mapped to Android
counterpart fragments.

In this chapter, you are going to implement each view-controller pair, one
piece at a time, with a detailed user interface and business logic that should
already be present in the counterpart Android Fragment and the layout file.
You will also focus on the following common programming-task mappings
from iOS to Android:

User interface and common UI widgets	
Persistent storage options	
Network and remote services with JSON	

User Interface
All those storyboard scenes that you implemented using the screen
navigation patterns in Chapter 3 were intentionally very simple. Obviously,
a useful mobile app provides rich content and offers better functionality
to gracefully interact with users. The user interface will certainly play an
important role in the overall user experience.

CHAPTER 4: Implement Piece by Piece 118

The techniques and vocabularies for creating meaningful user interfaces
for iOS are definitely different from those for Android. UI components are
normally platform dependent. You just need to know the usages of the UI
widgets and where to look up the platform-specific widget specifications.

On the other hand, there are similarities among many UI frameworks. Both
iOS and Android view blocks are structured as a view container (view/parent)
model, which has been in the industry for a long time. In iOS, UIView is an
object that draws something on the screen with which the user can interact.
A UIView is also a container that holds other UIView objects to define the
hierarchical layout of the UI.

The view container model appears similar to Android but with differences
in how to position a UI widget within its parent view or relative to siblings.
Android uses layout managers, whereas iOS uses auto layout.

UIView
The UIView object is the basic building block for UI components. It is the
base class for all widgets, such as common widgets like UIButton and
UILabel. It is also used as the parent container view.

ANDROID ANALOGY

android.view.View or android.view.ViewGroup.

A visible UIView occupies a rectangular area on the screen and is
responsible for drawing and event handling. The UIViewController class has
a root view defined in the UIViewController.view property that is inherited
by all the view controllers. All UI widgets are special types of UIView that
have attributes for the intended look, feel, and behaviors. When drawing the
view elements in storyboard, they are added to the parent view, and you use
the storyboard view Inspectors to visually edit the view properties.

All the iOS UI widgets inherit from UIView. You can set the inherited UIView
attributes in the storyboard view Attributes Inspector. For example,
Figure 4-1 depicts the View section in the Attributes Inspector for any UI
widgets.

CHAPTER 4: Implement Piece by Piece

119

At runtime, you can programmatically update these properties of the UIView
object. UIView is the ultimate super class of all the widgets. It offers a fairly
rich API for developers to implement a number of UI related responsibilities:

rendering content	
layout and manage subviews	
event handling	
animations	

The rest of the chapter demonstrates the common attributes or APIs that
you most likely will encounter or that are just good to know beforehand.
Before diving into common iOS UI widgets from the iOS SDK, I want to talk
about an important related topic, Application Resources, which will be
used by UI widgets as well as many other common programming tasks.

Figure 4-1. View section of Attributes Inspector

CHAPTER 4: Implement Piece by Piece 120

Application Resources

ANDROID ANALOGY

Android Application Resources

Most GUI apps are composed of more than programming code—they
require other resources, such as images and externalized strings. In iOS, you
will encounter similar tasks for how to provide different assets for different
device configurations. This will demonstrate how to implement two common
use cases in Xcode: the Assets Catalog and externalizing strings.

Assets Catalog

Android developers must be familiar with the concept of providing
alternative resources for images. This section will show you how in iOS.
As usual, create a new Xcode project and do the following:

1. Launch Xcode, use the Single View Application

template, and name the project CommonWidgets. The

project comes with one Asset Catalog, Images.xcassets,

that already contains the AppIcon set as shown in

Figure 4-2 (left pointer). The editor shows you the icons

and pixel resolutions for different device types. Toggle

the iOS 6.1 and Prior Sizes check box (right pointer in

Figure 4-2) to see the differences in the editor.

Figure 4-2. AppIcon set in Images.xcassets

CHAPTER 4: Implement Piece by Piece

121

2. You can recreate the icons from the Android

counterpart, res/drawable-xxhdpi/ic_launcher.png,

with the different image resolutions specified in the

editor. Drag and drop the appropriate image files on the

guided squares. Figure 4-3 depicts the result.

Figure 4-3. Recreating Android icons in iOS with Images.xcassets

3. To add an image asset, click the Add (+) button and

select New Image Set as shown in Figure 4-4:

a. Use the Attributes Inspector to select the type of
devices you want to provide.

b. You may choose to supply the image set by
selecting the Universal size class or device-specific
types. Either way, 1x, 2x, and 3x should cover all
the iOS devices now.

c. Select the image with 1x resolution and drop it
on the right spot (as shown by the pointer under
sample in Figure 4-4). Repeat the step for 2x and
3x images.

d. Give the Image Set a name (e.g., sample). The name
is the identifier to access the image from your code
or from storyboard.

CHAPTER 4: Implement Piece by Piece 122

You have created two image assets. The first, AppIcon, is used for the launch
icon on the home screen by default. The other one, sample, can be used by
your code or any widgets in storyboard. You can use the sample icon in later
exercises.

Figure 4-4. Adding an image set in Images.xcassets

Note You can use your favorite image editor to create the images, or

download them from www.pdachoice.com/bookassets.

Externalize Strings
Generally, you store string texts in external files. Both Android and iOS
actually read externalized strings in a similar manner. In Android, the string
files are stored in res/values/strings.xml in XML format. In iOS, they are
stored in "key" = "value"; format in .strings files.

To translate the externalized strings from your Android project to an iOS
project, do the following:

1. Create a new file anywhere in your Xcode project.

For example, to create a new file in "Supporting
Files" folder first, and do +N (shortcut key for

New File).

a. In the Choose a template screen, select
iOS ➤ Resource ➤ Strings File.

b. Save as Localizable.strings. This is the
default file name used by the iOS API.

http://www.pdachoice.com/bookassets

CHAPTER 4: Implement Piece by Piece

123

2. You may copy and comment out the Android

counterpart strings.xml file into your iOS

Localizable.strings to start with. Listing 4-1 translates

a simple Android string.xml to iOS.

Listing 4-1. Translation from Android strings.xml to iOS Localizable.strings

/*
==== copied from HelloAndroid Android project ===
<resources>

 <string name="app_name">HelloAndroid</string>
 <string name="action_settings">Settings</string>
 <string name="hello_world">Hello world!</string>
 <string name="hello_buttn">Hello ...</string>
 <string name="name_hint">Enter a Name, i.e, You</string>

</resources>
*/

"app_name" = "HelloAndroid";
"action_settings" = "Settings";
"hello_world" = "Hello world!";
"hello_buttn" = "Hello ...";
"name_hint" = "Enter a Name, i.e, You";

3. To read the strings from the Localizable.strings

file, use the NSLocalizedString(...) method to

retrieve the string by key, as shown in Listing 4-2.

Listing 4-2. Read Strings from iOS Localizable.strings File

// hello_world" = "Hello world!";
var str = NSLocalizedString("hello_world", comment: "")
println(str) // Hello world!

With the strings externalized in a text file, you can translate the text to
different languages, a common process to implement I18N. Although I am
not going to cover Localization/I18N in detail the concept and process
actually are the same as in Android.

CHAPTER 4: Implement Piece by Piece 124

Common UI Widgets
UI widgets are the interactive software-control components in the
application’s UI, such as buttons, text fields, and so forth. You create
screens to contain the appropriate UI widgets to interact with users, to
collect information from users, and/or to display information to users.

The iOS UIKit framework provides rich system UI widgets that you “draw” in
storyboard. You also “connect” them to the Swift class as IBOutlet properties
so that your code can directly use the view object, update its attributes, or
invoke the widget methods to provide dynamic application behaviors.

The rest of this section introduces the common iOS UI widgets and
compares them with their Android counterparts. Continuing with the
CommonWidgets created previously, do the following:

1. The storyboard already has a storyboard scene that

pairs with the ViewController class. This scene

won’t be tall enough for all the widgets you’re going

to add. Just to enable you to see all the widgets

to be added to this scene, change the Simulated
Metrics size to Freeform and make it long enough so

you can see all the widgets in storyboard.

2. Select the View Controller from storyboard, and in Size

Inspector, change Simulated Size to Freeform, and

make the size 320x1500 (Figure 4-5) to give the view

enough height to start with.

Figure 4-5. Changing the Simulated Metrics size in storyboard to Freeform

CHAPTER 4: Implement Piece by Piece

125

Later, you will wrap the whole screen in scroll view in the end so that you
can scroll the view up and down.

Figure 4-6. Adjusting UILabel size and position

Note Don’t bother to implement auto layout for each widget in the

beginning. The auto layout constraints will get messed up while setting up

UIScrollView. Instead, implement the auto layout constraints after you

set up scroll view.

UILabel

ANDROID ANALOGY

android.widget.TextView.

You commonly use UILabel to draw one or multiple lines of static text, such
as those that identify other parts of your UI.

Using the Android app as the wireframe, add a UILabel to the iOS
CommonWidgets app:

1. Select Main.storyboard, and drag a UILabel from

Object Library to the root View as shown in Figure 4-6.

Drag the widget to position the UILabel as shown in the

Size Inspector.

CHAPTER 4: Implement Piece by Piece 126

2. Update UILabel attributes in Attributes Inspector as

shown in Figure 4-7:

a. Text: My simple text label

b. Alignment: center

c. The others (Shadow, Autoshrink, etc.) are all safe
to play with, too.

Figure 4-7. Updating UILabel attributes

3. Open Assistant Editor and connect the IBOutlet in

Connections Inspector to your code so that you can

update UILabel programmatically. Most of the attributes

in Attributes Inspector can be modified in the runtime

via the IBOutlet mLabel property, as shown in Listing 4-3.

CHAPTER 4: Implement Piece by Piece

127

Listing 4-3. UILabel Properties

...
@IBOutlet weak var mLabel: UILabel!
override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 self.initLabel()
}

func initLabel() {
 self.mLabel.text = "My simple text label"
 self.mLabel.textColor = UIColor.darkTextColor()
 self.mLabel.textAlignment = NSTextAlignment.Center
 self.mLabel.shadowColor = UIColor.lightGrayColor()
 self.mLabel.shadowOffset = CGSize(width: 2, height: -2)
}
...

Build and run the CommonWidgets app to see UILabel live in action (Figure 4-8).

Figure 4-8. A simple iOS UILabel look and feel

CHAPTER 4: Implement Piece by Piece 128

UITextField

ANDROID ANALOGY

Single-line EditText.

In iOS, UITextField accepts a single line of user input and shows a
placeholder text when the user input is still empty. To learn by example,
do the following to use UITextField in the CommonWidgets project.

1. Select Main.storyboard, and drag a UITextField from

Object Library to the root View as shown in Figure 4-9.

Position the UITextField right under the UILabel.

Figure 4-9. Changing UILabel size and position

2. Update its attributes in Attributes Inspector as shown

in Figure 4-10:

a. Placeholder: Hint: one-line text input

b. Fill in the others as shown in the Attributes
Inspector.

CHAPTER 4: Implement Piece by Piece

129

3. Open Assistant Editor and connect the following

outlets in Connections Inspector to your code as

shown in Listing 4-4:

a. Connect IBOutlet to the mTextField property so
that you can update UITextField programmatically.

b. Connect the delegate outlet to the ViewController
class so that the UITextField sends a message to
its delegate object.

c. Implement UITextFieldDelegate protocol in
ViewController. Listing 4-4 shows the common
way to dismiss the keyboard when the Return key is
pressed.

Figure 4-10. Defining UITextField in the Attributes Inspector

CHAPTER 4: Implement Piece by Piece 130

Build and run the CommonWidgets app to see UITextField live in action.

UITextView

ANDROID ANALOGY

Multiple-line EditText.

In iOS, UITextView accepts and displays multiple lines of text. To learn by
example, do the following to use UITextView in the CommonWidgets project.

1. Select Main.storyboard, and drag a UITextView from

Object Library to the root view as shown in Figure 4-11.

Position the widget right under the UITextField.

Note Other methods are defined in UITextFieldDelegate. -click

the symbol in editor to bring up the class definition. I normally check the

method signatures without memorizing them.

Listing 4-4. UITextFieldDelegate

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 @IBOutlet weak var mTextField: UITextField!

 // called when 'return' key pressed. return false to ignore.
 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 textField.resignFirstResponder()
 return true
 }
 ...

CHAPTER 4: Implement Piece by Piece

131

2. Update its attributes in Attributes Inspector:

a. Text: multiple lines

b. Take a look at its Attributes Inspector. Many
attributes are similar to UITextField, but not exact
(e.g., no Placeholder).

3. Open Assistant Editor and connect the IBOutlet in

Connections Inspector to your code, mTextView, so

that you can update UITextView programmatically. Add

a method, logText(...), that prints text to UITextView.

You will use it later (see Listing 4-5).

Listing 4-5. UILabel Properties

class ViewController: UIViewController ... {
 ...
 @IBOutlet weak var mTextView: UITextView!
 func logText(text : String) {
 self.mTextView.text = self.mTextView.text + "\n" + text

 // to make sure the last line is visible
 var count = self.mTextView.text.utf16Count // string length
 self.mTextView.scrollRangeToVisible(NSMakeRange(count, 0))
 }
 ...

UITextView can have multiple lines separated by line breaks. You won’t
be able to dismiss the keyboard the same way you normally do for
UITextField. Normally, you use another control—for instance, if you have a
save button, you may use it to trigger the View.resignFirstResponder() that
dismisses the keyboard.

Figure 4-11. Changing UILabel size and position

CHAPTER 4: Implement Piece by Piece 132

UIButton

ANDROID ANALOGY

android.widget.Button.

In iOS, UIButton, the common Button control widget, intercepts touch
events and sends an action message to the delegate. To learn by example,
do the following in the CommonWidgets project.

1. Select Main.storyboard, drag a UIButton from Object

Library to the root View, and position the UIButton

right under the text view as shown in Figure 4-12.

Figure 4-12. UIButton position and attributes

2. Update its attributes in Attributes Inspector

(see Figure 4-12):

a. Just like Android Button, most of the Button
attributes are associated with the button states.
Select the State Config first: Default

b. Title: Action Button

c. Image: sample

d. Leave the other attributes as shown in Figure 4-12.

CHAPTER 4: Implement Piece by Piece

133

3. Open Assistant Editor and connect the IBOutlet and

IBAction in Connections Inspector to your code as

shown in Listing 4-6.

Listing 4-6. IBOutlet and Implement IBAction

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 @IBOutlet weak var mButton: UIButton!
 @IBAction func doButtonTouchDown(sender: AnyObject) {
 println(self.mButton.titleForState(UIControlState.Normal))
 self.mButton.setTitle("Click me!", forState: UIControlState.Normal)
 self.logText("Button clicked")
 }
 ...

Build and run the CommonWidgets app to make sure everything is good. When
the button is pressed, it simply logs "Button clicked" text in the UITextView
(See Figure 4-13).

Figure 4-13. Button clicked in UITextView

CHAPTER 4: Implement Piece by Piece 134

UISegmentedControl

ANDROID ANALOGY

android.widget.RadioGroup.

In iOS, UISegmentedControl offers closely related but mutually exclusive
choices. In Android, RadioGroup offers the same option, but in my opinion,
the Android L&F is more of a desktop app or web page style. To show and
learn by example, do the following in the CommonWidgets app.

1. Select Main.storyboard, and drag a UISegmentedControl

from Object Library to the root View under the button

as shown in Figure 4-14.

Figure 4-14. UISegmentedControl size and position

2. Update its attribute in Attributes Inspector

(see Figure 4-15):

a. Style: Bar

b. Segments: 3

c. Title: First, Second, and Third for each segment
respectfully.

d. Optionally, you may assign an Image instead of
Title for each segment.

e. You may check the Selected segment
(e.g., Segment 0).

CHAPTER 4: Implement Piece by Piece

135

3. Open Assistant Editor and connect IBOutlet and

IBAction in Connections Inspector to your code.

Frequently, you implement IBAction for the

Value Changed events to capture the selections

(see Listing 4-7).

Listing 4-7. UISegmentControl IBOutlet and Implement IBAction

class ViewController: ...{
 ...
 @IBOutlet weak var mSegmentedControl: UISegmentedControl!
 @IBAction func doScValueChanged(sender: AnyObject) {
 var idx = self.mSegmentedControl.selectedSegmentIndex
 self.logText("segment \(idx)")
 }
 ...

Build and run the CommonWidgets app to see how UISegmentedControl in
action. Each segment has a zero-based index (see Figure 4-16).

Figure 4-15. UISegmentedControl attributes

CHAPTER 4: Implement Piece by Piece 136

UISlider

ANDROID ANALOGY

android.widget.SeekBar.

iOS UISlider allows users to make adjustments to a value given a range
of allowed values. Users drag the slider left or right to set the value. The
interactive nature of the slider makes it a great choice for settings that reflect
intensity levels, such as volume, brightness, or color saturation.

To translate the Android SeekBar to the iOS UISlider, do the following:

1. Select Main.storyboard, drag a UISlider

from Object Library, and place it below the

UISegmentedControl as shown in Figure 4-17.

Figure 4-16. UISegmentedControl zero-based index

CHAPTER 4: Implement Piece by Piece

137

2. Update its attribute in Attributes Inspector

(see Figure 4-17):

a. Values: min 0 and max 100

b. Min and Max Image.

c. Min and Max Track Tint.

d. You may disable Continuous Updates.

3. Open Assistant Editor and connect IBOutlet and

IBAction to your code in Connections Inspector. You

will often implement IBAction for the Value Changed

event to capture the selections (see Listing 4-8).

Listing 4-8. UISlider IBOutlet and implement IBAction

class ViewController: ...{
 ...
 @IBOutlet weak var mSlider: UISlider!
 @IBAction func doSliderValueChanged(sender: AnyObject) {
 var value = self.mSlider.value
 self.logText("slider: \(value)")
 }
 ...

Build and run the CommonWidgets app to see how UISlider in action. As you
drag the thumb (the circle on the slider), its value continues to be printed in
the UITextView (see Figure 4-18).

Figure 4-17. Updating the UISlider attributes

CHAPTER 4: Implement Piece by Piece 138

UIActivityIndicatorView

ANDROID ANALOGY

android.widget.ProgressBar default style.

In iOS, UIActivityIndicatorView displays a “busy” activity indicator for a task
or something else in progress. This is the so-called indeterminate ProgressBar
with a spinning wheel in Android. To port the Android indeterminate
ProgressBar to iOS, do the following in the CommonWidgets iOS app:

1. Select Main.storyboard, drag a

UIActivityIndicatorView from Object Library,

and position it left-aligned and below the UISlider

(see Figure 4-19).

Figure 4-18. UISlider value updates

CHAPTER 4: Implement Piece by Piece

139

2. Update its attribute in Attributes Inspector as shown in

Figure 4-19:

a. Style: Gray

b. Color: Default

c. Behavior: both Animating and Hides When Stopped
are commonly enabled.

3. Open Assistant Editor and connect IBOutlet in

Connections Inspector to your code so that you can

enable or disable the activity indicator as shown in

Listing 4-9.

Listing 4-9. UIActivityIndicatorView IBOutlet

class ViewController: ...{
 ...
 @IBOutlet weak var mActivityIndicator: UIActivityIndicatorView!
 func toggleActivityIndicator() {
 var isAnimating = mActivityIndicator.isAnimating()
 isAnimating ? mActivityIndicator.stopAnimating() :
mActivityIndicator.startAnimating()
 }
 ...

Build and run the CommonWidgets app to see the iOS animated activity
indicator. You will call the toggleActivityIndicator() method later.

UIProgressView

ANDROID ANALOGY

android.widget.ProgressBar horizontal style.

Figure 4-19. UIActivityIndicatorView attributes

CHAPTER 4: Implement Piece by Piece 140

To show a task with known duration in progress, use UIProgressView to
show how far the task has progressed. With this, users can better anticipate
how much longer until it completes. To translate the Android horizontal
ProgressBar to the iOS UIProgressView, do the following:

1. Select Main.storyboard, drag a UIProgressView

from Object Library, and position it below and

left-aligned to the activity indicator as shown

in Figure 4-20.

Figure 4-20. UIActivityIndicatorView attributes

2. Update its attributes in Attributes Inspector

(see Figure 4-20):

a. Style: Default (or Bar)

b. Progress: 0.5 (between 0.0 and 1.0)

c. Progress Tint: Purple.

d. Track Tint: Yellow.

3. Open Assistant Editor and connect IBOutlet in

Connections Inspector to your code so that you can

update UIProgressView programmatically. Modify the

UISlider delegate method, doSliderValueChanged(...)

as shown in Listing 4-10, to see the progress change

visually (see Figure 4-21).

Listing 4-10. UIActivityIndicatorView IBOutlet

class ViewController: ...{
 ...
 @IBAction func doSliderValueChanged(sender: AnyObject) {
 ...
 self.updateProgress(value/100)
 }

CHAPTER 4: Implement Piece by Piece

141

 ...
 @IBOutlet weak var mProgressView: UIProgressView!
 func updateProgress(value: Float) {
 self.mProgressView.progress = value
 }
 ...

Figure 4-21. UIProgressView update in action

Build and run the CommonWidgets app to visualize iOS UIProgressView in
action (see Figure 4-21).

UISwitch

ANDROID ANALOGY

android.widget.Switch, Checkbox, or ToggleButton.

CHAPTER 4: Implement Piece by Piece 142

The switch-like widgets are user friendly for presenting mutually exclusive
choices. In Android, you may use CheckBox, ToggleButton, or Switch. All are
capable for the intended purpose with different L&F.

In iOS, you use UISwitch to allow a user to change values by toggling or
dragging the thumb between two states.

To learn UISwitch by example, do the following.

1. Select Main.storyboard and drag a UISwitch

from Object Library. Position it to the right of

UIActivityIndicatorView (see Figure 4-22).

Figure 4-22. UIActivityIndicatorView

2. Update its attribute in Attributes Inspector

(see Figure 4-22):

a. State: On

b. You may change any other attributes safely.

3. Open Assistant Editor and connect IBOutlet and

IBAction in Connections Inspector to your code.

You will often implement IBAction for the

Value Changed event to capture the selections

(see Listing 4-11).

Listing 4-11. UISwitch IBOutlet

class ViewController: ...{
 ...
 @IBOutlet var mSwitch: UISwitch!
 @IBAction func doSwitchValueChanged(sender: AnyObject) {
 var isOn = self.mSwitch.on
 self.toggleActivityIndicator()
 }
 ...

CHAPTER 4: Implement Piece by Piece

143

UIImageView

ANDROID ANALOGY

android.widget.ImageView.

In iOS, UIImageView displays one image or a series of images for simple
graphic animations. For a simple usage like the CommonWidgets app, all you
need to do is specify the image source and the attributes in storyboard for
how you want to render the image.

Figure 4-23. iOS UISwitch look and feel

Build and run the app and toggle the UISwitch to see the activity indicator’s
animation changes (see Figure 4-23).

CHAPTER 4: Implement Piece by Piece 144

To learn iOS UIImageView by example, do the following:

1. UIImageView can now render vector-based images! This

is a new feature in Xcode 6. I only know that the first

page of a PDF is rendered nicely. You can definitely use a

bitmap image for this exercise, or create a new image set

for a PDF file, as shown by the pointers in Figure 4-24:

a. Select Images.xcassets to add a New Image Set.
Name it pdf.

b. Set the Type to Vectors in the Attributes Inspector.

c. Drag a PDF file to the universal slot as shown in
Figure 4-24. There is no need to provide 2x or
3x images.

Figure 4-24. create image set

2. Select Main.storyboard, drag a UIImageView from

Object Library to the view, and position it under the

UIProgressView as shown in Figure 4-25.

3. Update its attributes in Attributes Inspector:

a. Image: pdf

b. Mode: Aspect Fit

c. Select others as shown in Figure 4-25.

CHAPTER 4: Implement Piece by Piece

145

4. Open Assistant Editor and connect IBOutlet in

Connections Inspector to your code. Listing 4-12

demonstrate a simple setImage(...) method that

assigns an UIImage object to UIImageView.

Listing 4-12. UISwitch IBOutlet

class ViewController: ...{
 ...
 @IBOutlet weak var mImageView: UIImageView!
 func setImage(name: String) {
 self.mImageView.image = UIImage(named: name)
 }
 ...

As you can see in Figure 4-25, there are very few attributes you would
need to master. However, when it comes down to creating a UIImage and
optimizing size and performance, you want to look into the UIImage class to
see how you would construct the UIImage instances from various sources.
There are actually iOS frameworks that primarily deal with images, like
Quartz 2D or OpenGL. If you know Android OpenGL ES, you definitely want
to take advantage of your existing knowledge and explore the counterpart
iOS OpenGL framework. If you come from a graphics editing background,
Quartz 2D offers a very rich graphics API that will support you for iOS
graphics editing tasks.

Figure 4-25. UIImageView attributes

CHAPTER 4: Implement Piece by Piece 146

You may build and run the CommonWidgets iOS app to see UIImageView in
action as shown in Figure 4-26.

Menu

Menu is frequently used to provide quick access to frequently used actions.
It is particularly common in desktop and Android platforms. Although there
is no such similarly named feature in the iOS SDK, UIBarButtonItem in
UIToolbar or UINavigationBar serves a similar purpose as the Android menu
system: quick access.

You might also encounter the Android context and popup menus. Again,
there is no such menu system in iOS, but I will show you my iOS choices for
porting purposes.

Figure 4-26. UIImageView in iPhone 5

CHAPTER 4: Implement Piece by Piece

147

UIBarButtonItem

ANDROID ANALOGY

Options Menu or Action Items in ActionBar.

iOS and Android provides widgets for quick access. In iOS, you commonly
use UIBarButtonItem in the navigation bar for a limited number of action
buttons that can fit into the fixed space. On the iPhone, you may create a
bottom bar, UIToolbar, if all of the buttons in UIBarButtonItem don’t fit on
the navigation bar.

To learn and show the UIBarButtonItem in the navigation bar and toolbar by
example, do the following in the CommonWidgets project:

1. Drag a UINavigationBar from Object Library to the

view and position it on top of the view. Often, it is

simpler to add a NavigationController by selecting

the View Controller in storyboard, and from the Xcode

menu bar select Editor ➤ Embed In ➤ Navigation

Controller. Figure 4-27 depicts the operation results in

a new Navigation Controller scene and a Navigation

Item in the existing View Controller scene:

a. Multi-select all the widgets in the scene and
reposition them to make room for the top bar.

b. Update Navigation Item attributes in Attributes
Inspector (e.g., enter Title: CommonWidgets).

Figure 4-27. Navigation Controller and Navigation Bar

CHAPTER 4: Implement Piece by Piece 148

2. Double-click the Navigation Bar to select it, and

drag-and-drop a UIBarButtonItem from the Object

Library on the right side of the Navigation Bar to

add a rightBarButtonItem (see Figure 4-28). Choose

a Identifier from selections for those common

actions. Or enter a title, such as Action, as shown

in Figure 4-28.

Figure 4-28. UIBarButtonItem attributes

3. Open Assistant Editor and connect the IBAction in the

UIBarButtonItem Connections Inspector to your code

(see Listing 4-13).

Listing 4-13. UIBarButtonItem IBOutlet and IBAction

class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 println(">>doBarButtonAction")
 }
 ...

Action Sheet

ANDROID ANALOGY

Context Menu or android.widget.PopupMenu.

In Android, the Context Menu is a floating menu that appears when the
user right-clicks an element. The operations and look and feel establish
a strong relationship to the context that originates the operations. On
the iPad, you may safely choose UIPopoverController (see Chapter 3,
UIPopoverController) to present the list of selections, which on the iPhone
is automatically presented as full screen.

CHAPTER 4: Implement Piece by Piece

149

If you don’t want to use full screen, perhaps for a smaller selection, you can
also choose UIActionSheet, which is presented as popover for iPad, in an
sheet that emerges from the bottom of the screen.

The key SDK class is UIAlertController, which was introduced in Chapter 3
for alert dialogs (see Listing 3-22). To learn the iOS action sheet by example,
modify the previous doBarButtonAction(...) IBAction method as shown in
Listing 4-14:

1. Create an instance of UIAlertController with the

style UIAlertControllerStyle.ActionSheet.

2. You may use Title or Message to establish visual

connection to the originating context.

3. It is common to have a destructive UIAlertAction in

red for delete or remove, which is specified with the

UIAlertActionStyle.Destructive style.

Listing 4-14. UIAlertController with ActionSheet style

class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 println(">>doBarButtonDone: ")

 var actionSheet = UIAlertController(title: "Action (from bar button
item)", message: "Choose an Action", preferredStyle: UIAlertControllerStyle.
ActionSheet)

 // add action buttons
 var actionCancel = UIAlertAction(title: "Cancel", style:
UIAlertActionStyle.Cancel,
 handler: {action in
 // do nothing
 })

 var actionNormal1 = UIAlertAction(title: "Action 1", style:
UIAlertActionStyle.Default,
 handler: {action in
 println(">>actionNormal1")
 })

 var actionNormal2 = UIAlertAction(title: "Action 2", style:
UIAlertActionStyle.Default,
 handler: {action in
 println(">>actionNormal2")
 })

CHAPTER 4: Implement Piece by Piece 150

 var actionDestruct = UIAlertAction(title: "Destruct", style:
UIAlertActionStyle.Destructive,
 handler: {action in
 println(">>actionDestruct")
 })

 actionSheet.addAction(actionCancel) // always the last one
 actionSheet.addAction(actionNormal1)
 actionSheet.addAction(actionNormal2)
 actionSheet.addAction(actionDestruct)

 // UIViewController API to presend viewController
 self.presentViewController(actionSheet, animated: true, completion: nil)
 }
 ...

Build and run the CommonWidgets app to visualize the iOS action sheet
(see Figure 4-29).

Figure 4-29. UIAlertController with ActionSheet style

CHAPTER 4: Implement Piece by Piece

151

The android.widget.PopupMenu is anchored to a view. You can do the
same thing in iOS by using iOS UIPopoverController to present a
UITableViewController. This is either a perfect translation in iPad or a
full-screen table view in iPhone. Or, you may use the iOS ActionSheet
style to avoid the full-screen UITableView for the iPhone.

UIPickerView

ANDROID ANALOGY

android.widget.Spinner.

In iOS, UIPickerView displays a set of values from which the user selects. It
provides a quick way to select one value from a spinning-wheel–like list that
shows all or part of the selections.

In traditional desktop apps or web pages, you normally see a drop-down
list, or the android.widget.Spinner in Android, for this purpose, except
with one trivial difference: they only show the selected value with the other
choices folded.

The iOS UIPickerView uses the same pattern as UITableView DataSource
to supply the items. To learn by example, add a UIPickerView widget to our
CommonWidgets app and do the following:

1. Select Main.storyboard and drag a UIPickerView from

Object Library. Position it below the UIImageView

(see Figure 4-30).

Figure 4-30. Placing the UIPickerView

CHAPTER 4: Implement Piece by Piece 152

2. Open Assistant Editor and establish UIPickerView

outlet connections to your code in Connections

Inspector (see Figure 4-31):

a. Connect IBOutlet to your code.

b. Connect delegate and dataSource outlets to
ViewController class (just like UITableView or any
widgets using Data Source).

Figure 4-31. Connecting the UIPickerView outlets

3. To implement the UIPickerView delegate and data

source, declare the ViewController class to implement

UIPickerViewDelegate and UIPickerViewDataSource

protocols as shown in Listing 4-15.

Listing 4-15. UIPickerView IBOutlet

class ViewController: ..., UIPickerViewDelegate, UIPickerViewDataSource {
 ...
 @IBOutlet weak var mPickerView: UIPickerView!
 // returns the number of 'columns' to display.
 func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int {
 return 2
 }

 // returns the # of rows in each component..
 func pickerView(pickerView: UIPickerView, numberOfRowsInComponent
component: Int) -> Int {
 return 10
 }

CHAPTER 4: Implement Piece by Piece

153

 func pickerView(pickerView: UIPickerView, titleForRow row: Int,
forComponent component: Int) -> String! {
 return "(\(component), \(row))"
 }

 func pickerView(pickerView: UIPickerView, didSelectRow row: Int,
inComponent component: Int) {
 println("\(self.mPickerView.selectedRowInComponent(0))") // before
selection
 println("\(self.mPickerView.selectedRowInComponent(1))")
 println("(\(component), \(row))") // current selection
 }
 ...

Build and run the app to see iOS UIPickerView in action. The iPhone
emulator is too small for all the widgets you have so far. You need an
Android-like ScrollView (which you will implement soon). You can run it in
the iPad emulator for now (see Figure 4-32).

CHAPTER 4: Implement Piece by Piece 154

Figure 4-32. UIPickerView in the iPad emulator

Note that if the app looks like a big iPhone while running in the iPad
emulator and all the widgets simply scale up, your project deployment
info must have been set to iPhone only. Change the deployment device to
Universal under Deployment Info, as shown by the pointer in Figure 4-33.

CHAPTER 4: Implement Piece by Piece

155

Play Video

ANDROID ANALOGY

android.widget.VideoView.

Similar to Android, the iOS SDK gives you an easy-to-use API to play
video resources from a URL. To play full-screen video, you can use the
MPMoviePlayerViewController class, which already has the appropriate
content view and media player controls built in. You only need to present the
whole view controller. The following method (see Listing 4-16) demonstrates
the simplest usage:

1. Implement the useMoviePlayerViewController()

method, which plays a video in

MPMoviePlayerViewController view controller

(see Listing 4-16):

a. Create an instance with a URL. Just like Android,
it can link to a remote video source. iOS supports
HTTP live-streaming protocol (HLS). You can also
create a file URL for bundled content, as shown in
the commented code in Listing 4-16. Just as you
would in Android, make sure the video format is
supported. MPEG4 QuickTime is fairly agnostic, and
HLS is good for progressive loading.

b. MPMoviePlayerViewController contains a
MPMoviePlayerController property, which is
the core class to play video. Almost all the
customization is done via this property. You will use
this class in a moment.

2. Earlier you implemented two actions in an ActionSheet

(see Figure 4-29). Use the Action 1 button to trigger the

useMoviePlayerViewController() method (see Listing 4-16).

Figure 4-33. Changing Devices to Universal in Deployment Info

CHAPTER 4: Implement Piece by Piece 156

Listing 4-16. useMoviePlayerViewController

import MediaPlayer
...
class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 ...
 var actionNormal1 = UIAlertAction(title: "Action 1", style:
UIAlertActionStyle.Default,
 handler: {action in
 println(">>actionNormal1")
 self.useMpMoviePlayerViewController()
 })
 ...
 }
 ...
 func useMpMoviePlayerViewController() {
// var filepath = NSBundle.mainBundle().pathForResource("sample.mp4",
ofType: nil)
// var fileUrl = NSURL(fileURLWithPath: filepath)
// var pvc = MPMoviePlayerViewController(contentURL: fileUrl)

 var contentUrl = NSURL(string: "http://devimages.apple.com/iphone/
samples/bipbop/gear3/prog_index.m3u8")
 var pvc = MPMoviePlayerViewController(contentURL: contentUrl)

 pvc.moviePlayer.shouldAutoplay = false;
 pvc.moviePlayer.repeatMode = MPMovieRepeatMode.One

 self.presentViewController(pvc, animated: true, completion: nil)
 }
 ...

3. To play video in non-fullscreen mode, use the

MPMoviePlayerController directly to play video in a

View widget:

a. Select Main.storyboard, drag a UIView from Object
Library, and position it below the UIPickerView as
shown in Figure 4-34. This is the viewing area that
shows the video.

http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8
http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8

CHAPTER 4: Implement Piece by Piece

157

b. Open the Assistant Editor to Connect IBOutlet in
Connections Inspector to your code, mVideoView
property.

c. Create a stored property for the
MPMoviePlayerController instance to allow users to
seek through, play, or stop the playback.

d. In viewDidLoad(...), invoke the
useMoviePlayerController() method to prepare the
video to play.

e. Use the Action 2 button to start the video.
(see Listing 4-17).

Listing 4-17. Using the MPMoviePlayercontroller

class ViewController: ...{
 ...
 override func viewDidLoad() {
 ...
 self.useMoviePlayerController()
 }
 ...
 @IBOutlet weak var mVideoView: UIView!
 var mMoviePlayer : MPMoviePlayerController!
 func useMoviePlayerController() {
 var url = NSURL(string:
"http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8")
 self.mMoviePlayer = MPMoviePlayerController(contentURL: url)

Figure 4-34. View element for the video

http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8

CHAPTER 4: Implement Piece by Piece 158

 self.mMoviePlayer.shouldAutoplay = false
 self.mMoviePlayer.controlStyle = MPMovieControlStyle.Embedded
 self.mMoviePlayer.setFullscreen(false, animated: true)

 self.mMoviePlayer.view.frame = self.mVideoView.bounds
 self.mVideoView.addSubview(self.mMoviePlayer.view)

 self.mMoviePlayer.currentPlaybackTime = 2.0
 self.mMoviePlayer.prepareToPlay()
 }
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 ...
 var actionNormal2 = UIAlertAction(title: "Action 2", style:
UIAlertActionStyle.Default,
 handler: {action in
 self.mMoviePlayer.play()
 })
 ...
 }

Build and run the app. Select Action 1 for full screen and Action 2 to play
video embedded in a subview. You don’t have the Android-like ScrollView
yet, but you can run it in the iPad emulator for now (see Figure 4-35).

Figure 4-35. Playing video full screen vs. embedded in the iPad emulator

CHAPTER 4: Implement Piece by Piece

159

WebView

ANDROID ANALOGY

android.widget.WebView.

You can display rich HTML content in your mobile apps on almost all the
popular mobile platforms, including iOS, Android, BlackBerry, and Windows
phones. This enables you to deliver web content as part of your mobile
apps. One common scenario is when you want to provide information in
your app that needs to be updated frequently, and you want to host the
content online as a web page. To take it one step further, the web content
does not have to be remote; you can bundle the web page content with the
native app. This enables web developers to leverage their web development
skills and create so-called hybrid apps.

With new features from HTML5 and CSS3, many web developers are
creating meaningful and interactive web apps that are shortening the gap
between native apps and mobile web apps. In iOS, the key SDK class is
UIWebView, and it does support many HTML5 and CSS3 features
(e.g., Offline Cache and WebSocket, etc.).

As an example, the following steps demonstrate common tasks using
UIWebView:

1. Select Main.storyboard, drag a UIWebView from the

Object Library, and position it below the video View

(see Figure 4-36). Set its attributes in Attributes

Inspector; it is commonly set Scales Page To Fit.

Figure 4-36. iOS UIWebView attributes in the Connections Inspector

CHAPTER 4: Implement Piece by Piece 160

2. As usual, open Assistant Editor and connect the

following outlets in Connections Inspector to your

code (see Figure 4-36):

a. Connect IBOutlet so you can use the widget in
your code.

b. Connect the delegate outlet so your code can
intercept UIWebView life-cycle events.

3. Listing 4-18 demonstrates the programming code

commonly used for UIWebView.

a. Use loadRequest(...) to load the URL. You can
also create a file URL to load a local HTML file.

b. Use loadHTMLString(...) to render simple
string text.

c. Although not demonstrated here, you can
also use loadData(...) to render NSData that
you normally get from remote contents using
NSURLConnection, which I will demonstrate later in
the "NSURLConnection" section.

Listing 4-18. UIWebView Code for Loading a URL or String Text

class ViewController: ... {
 ...
 override func viewDidLoad() {
 ...
// self.showWebPage(url: "http://pdachoice.com/me/webview")
 self.showWebPage(htmlString: "<H1>Hello UIWebView</H1>")
 }
 ...
 @IBOutlet weak var mWebView: UIWebView!
 func showWebPage(#url: String) {
 var req = NSURLRequest(URL: NSURL(string: url)!)
 self.mWebView.loadRequest(req)
 }

 func showWebPage(#htmlString: String) {
 self.mWebView.loadHTMLString(htmlString, baseURL: nil)
 }
 ...

http://pdachoice.com/me/webview

CHAPTER 4: Implement Piece by Piece

161

4. To intercept UIWebView life-cycle events, implement

the UIWebViewDelegate protocol as shown in

Listing 4-19.

Listing 4-19. UIWebViewDelegate protocol

class ViewController: ... , UIWebViewDelegate{
 ...
 func webView(webView: UIWebView, shouldStartLoadWithRequest request:
NSURLRequest, navigationType: UIWebViewNavigationType) -> Bool {
 // do something, like re-direct or intercept etc.
 return true; // false to stop http request
 }
 func webViewDidStartLoad(webView: UIWebView) {
 // do something, e.g., start UIActivityViewIndicator
 self.mActivityIndicator.startAnimating()
 }
 func webViewDidFinishLoad(webView: UIWebView) {
 // do something, e.g., stop UIActivityViewIndicator
 self.mActivityIndicator.stopAnimating()
 }
 func webView(webView: UIWebView, didFailLoadWithError error: NSError) {
 // do something, i.e., show error alert
 self.mActivityIndicator.stopAnimating()
 var alert = UIAlertController(title: "Error", message:
error.localizedDescription, preferredStyle: UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "Close", style: UIAlertActionStyle.
Cancel, handler: nil))
 self.presentViewController(alert, animated: true, completion: nil)
 }
 ...

Build and run the app to see iOS UIWebView in action. Now, even the iPad Air
screen is too small (see Figure 4-37). You need an Android-like ScrollView,
which you will implement next.

CHAPTER 4: Implement Piece by Piece 162

Figure 4-37. UIWebView in the iPad Air emulator

CHAPTER 4: Implement Piece by Piece

163

ScrollView

ANDROID ANALOGY

android.widget.ScrollView.

Due to the smaller screen size on mobile devices, ScrollView is very useful
for displaying a content view larger than the physical display. To implement
this in iOS, you use UIScrollView.

To make UIScrollView work with auto layout, it is easier to wrap all the
widgets in a container view first, which will let you lay out the widgets in the
container view as you normally would with auto layout.

The following steps demonstrate how you would normally do this with iOS
UIScrollView in the CommonWidgets app:

1. Select all widgets in the root View, select

Embed In ➤ View from the Xcode menu bar

to embed all these common widgets in a View

(see Figure 4-38), and change this storyboard label

to containerView.

Figure 4-38. Embed all widgets in a View

2. Change View Controller Simulated Size to Fixed.

The storyboard scene becomes shorter, with

some widgets left out of the screen as shown in

Figure 4-39.

CHAPTER 4: Implement Piece by Piece 164

3. With the container, you can scroll the containerView

as a whole by embedding the containerView in

UIScrollView. Select containerView first and

embed it in a scroll view as shown in Figure 4-40

(Menubar ➤ Editor ➤ Embed In ➤ Scroll View).

Figure 4-40. Embed containerView in a scroll view

Figure 4-39. Change scene to Fixed size

4. Open the Add New Constraints popup and pin

the UIScrollView edges to the edge of the super

view with zero spacing, and update the Frame (see

Figure 4-41).

CHAPTER 4: Implement Piece by Piece

165

5. The preceding operation shifts the contentView.

In contentView Size Inspector, reposition the

contentView at (0,0) with size 600 (do not change

the height).

6. The auto layout constraints are repurposed for

calculating the scrolling position. You have to create

auto layout constraints to pin the edges to the parent

UIScrollView with zero spacing (see Figure 4-42).

Figure 4-41. Set the UIScrollView position

Figure 4-42. contentView pinned to UIScrollView with zero spacing

7. To makes the containerView adaptive to size classes,

create constraints that align the widget to the parent’s

leading and trailing edges. Currently, you cannot use

storyboard to draw auto layout for this, so you have to

write code as shown in Listing 4-20.

CHAPTER 4: Implement Piece by Piece 166

Listing 4-20. Pin contentView Edges to Screen/Root View Edges

class ViewController: ... {
 ...
 @IBOutlet var mContainer: UIView!
 override func viewDidLoad() {
 ...
 var leftConstraint = NSLayoutConstraint(
 item: self. mContainer,
 attribute: NSLayoutAttribute.Leading,
 relatedBy: NSLayoutRelation(rawValue: 0)!,
 toItem: self.view,
 attribute: NSLayoutAttribute.Leading,
 multiplier: 1.0,
 constant: 0)
 self.view.addConstraint(leftConstraint)

 var rightConstraint = NSLayoutConstraint(
 item: self. mContainer,
 attribute: NSLayoutAttribute.Trailing,
 relatedBy: NSLayoutRelation(rawValue: 0)!,
 toItem: self.view,
 attribute: NSLayoutAttribute.Trailing,
 multiplier: 1.0,
 constant: 0)
 self.view.addConstraint(rightConstraint)

 }
 ...

8. You can also set the other widgets for auto layout so

they adapt to different size classes.

Build and run the app to see iOS UIScrollView in action. You should be able
to see all the widgets by scrolling the view up and down (see Figure 4-43).

CHAPTER 4: Implement Piece by Piece

167

Animations
Back in the old days, I cared a lot less about animation effects, but I think
the evolution of iOS definitely raised the bar. In iOS, you can animate UIView
properties using the simple UIView animation API.

To learn by example, modify the existing
UISegmentedControl.doScValueChanged(...) method as shown in
Listing 4-21 to create some animation effects using the
UIView.animateWithDuration(...) method.

Listing 4-21. UIView.animateWithDuration(...)

...
@IBAction func doScValueChanged(sender: AnyObject) {
 var idx = self.mSegmentedControl.selectedSegmentIndex
 self.logText("segment \(idx)")
 let center = self.mButton.center
 UIView.animateWithDuration(1, animations: { action in
 self.mButton.center = CGPoint(x: center.x, y: center.y / (idx + 1))
 self.mButton.alpha = 1 / (idx + 1)
 }, completion: { action in
 UIView.animateWithDuration(1, delay: 0, usingSpringWithDamping: 0.5,
initialSpringVelocity: 0.5, options: UIViewAnimationOptions.CurveEaseInOut,
animations: { action in

Figure 4-43. CommonWidgets with scrollable view

CHAPTER 4: Implement Piece by Piece 168

 self.mButton.center = center
 }, completion: { action in
 // do nothing
 })
 })
}
...

The UIView.animateWithDuration(...) has several overloaded variants that
all work the same way. You can animate the following UIView properties by
modifying them inside the animation block:

	frame for the viewing area,

	center for position,

	transform for scale and rotation,

	alpha for transparency, and

	backgroundColor.

Save Data
Saving data is an essential programming task in almost all common
programming platforms. In addition to transactional data, most of the mobile
apps also save application states and user preferences so that users can
resume their tasks later. Both iOS and Android provide several persistent
storage options. The iOS SDK offers the following choices:

	User Defaults System storage

	File storage

	CoreData framework and SQLite database (not covered
in this book)

Before diving into the first two options, you will create an Xcode project so
that you can write code and visualize how these options work.

1. Launch Xcode, use the Single View Application

template, and name the project SaveData.

2. Create a Navigation Bar with an UIBarButtonItem

(see Figure 4-44):

a. Select the View Controller in storyboard, and from
the Xcode menu bar, select Editor ➤ Embed In ➤
Navigation Controller.

b. In the Navigation Item Attributes Inspector, enter a
Title of SaveData.

CHAPTER 4: Implement Piece by Piece

169

c. Drag a BarButtonItem from Object Library and
drop it onto the Navigation Item in the View
Controller scene. Update the Bar Item Title in
Attributes Inspector to be Delete.

d. Select the Bar Button Item and open Assistant
Editor to connect the selector outlet to your code.
Name the IBAction doDelete.

Figure 4-44. SaveData project storyboard

3. Create a UITextField to get user input as shown in

Figure 4-44:

a. Drag a UITextField onto the View Controller
scene. In the Attributes Inspector, enter the
placeholder, "Please save my inputs !!!".

b. Add auto layout constraints to center the
UITextField in the View.

4. Open Assistant Editor, and in the UITextField

Connections Inspector connect the following

outlets to your code:

a. Connect Referencing Outlet to IBOutlet property,
mTextField.

b. Connect delegate to your ViewController class.

CHAPTER 4: Implement Piece by Piece 170

5. Implement UITextFieldDelegate protocol in the

ViewController class and create the stubs that will

triggers the retrieve, save, and delete code as shown in

Listing 4-22:

a. Load the saved data in
ViewController.viewDidLoad().

b. Save the user input when the Return key is pressed.

c. Give users a choice to delete any persistent data
they created.

Listing 4-22. SaveData ViewController

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let STORAGE_KEY = "key"
 @IBOutlet weak var mTextField: UITextField!
 override func viewDidLoad() {
 ...
 self.mTextField.text = self.retrieveUserInput()
 }

 @IBAction func doDelete(sender: AnyObject) {
 self.deleteUserInput();
 }

 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 ...
 self.saveUserInput(self.mTextField.text)
 return true
 }

 func saveUserInput(str: String) {
 // TODO
 }

 func retrieveUserInput() -> String? {
 // TODO
 return nil
 }

 func deleteUserInput() {
 // TODO
 }
 ...

CHAPTER 4: Implement Piece by Piece

171

Without completing the method stubs, this new project exhibits a common
problem that can be observed in the following three steps:

1. Enter something in the input text field.

2. Exit the app.

3. Relaunch the app. The previous input is gone!

For typical app settings or user preferences, users are not happy if they
need to reenter them every time they launch the app. The app needs to save
the data and load it back when the app restarts.

NSUserDefaults

ANDROID ANALOGY

SharedPreferences.

Just like Android’s SharedPreferences, which saves key-value pairs of
primitive data types, you use NSUserDefaults class to interface with
iOS’s User Defaults system for the same purpose. NSUserDefaults takes
care of data caching and syncing for developers. It is easy to use and its
performance is already optimized.

The values to be managed in the iOS defaults system can be primitives or
the so-called property list object (e.g., NSData, NSString, NSNumber, NSDate,
NSArray, or NSDictionary). For NSArray and NSDictionary objects, their
contents must be property list objects as well.

Continue with the SaveData project. You are going to fix the problem you just
observed.

Figure 4-45. The SaveData project display

Nothing is new yet. Build and run the SaveData project (see Figure 4-45).

CHAPTER 4: Implement Piece by Piece 172

1. Create the convenient methods that save, retrieve,

and delete data using the NSUserDefaults API

(see Listing 4-23):

a. Get the NSUserDefaults object.

b. You may accumulate multiple updates and call
synchronize() to send the batched updates to the
defaults system storage.

Listing 4-23. Save, Retrieve, and Delete in defaults system

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let userDefaults = NSUserDefaults.standardUserDefaults()
 func saveUserdefault(data: AnyObject, forKey: String) {
 userDefaults.setObject(data, forKey: forKey)
 userDefaults.synchronize()
 }

 func retrieveUserdefault(key: String) -> String? {
 var obj = userDefaults.stringForKey(key)
 return obj
 }

 func deleteUserDefault(key: String) {
 self.userDefaults.removeObjectForKey(key)
 }
 ...

2. Earlier, you already created the stubs that are wired

to the right events. Call the convenient methods just

created to complete the persistent code

(see Listing 4-24).

Listing 4-24. Save, Retrieve, and Delete using the UserDefaults system

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 func saveUserInput(str: String) {
 self.saveUserdefault(str, forKey: STORAGE_KEY)
 }

 func retrieveUserInput() -> String? {
 return self.retrieveUserdefault(STORAGE_KEY)
 }

CHAPTER 4: Implement Piece by Piece

173

 func deleteUserInput() {
 self.deleteUserDefault(STORAGE_KEY)
 }
 ...

Relaunch the SaveData project and repeat the failed test case. You should no
longer need to reenter the name when reopening the app.

File Storage
Just like Java, the iOS SDK provides system APIs to interface with the file
system. In iOS, you commonly use the following API:

The 	 NSFileManager class.

The 	 NSString, NSArray, NSDictionary, and NSData
Foundation classes also have convenient methods to
store and retrieve themselves from file systems.

NSFileManager

ANDROID ANALOGY

java.io.File.

If you need to perform any file-related tasks to manipulate File and
Directory, the NSFileManager class provides the API to do the work. You
need to specify the file path or file URL for the destination file and specify
the NSData object for the file contents.

To show and to learn by example, use NSFileManager to achieve the same
save/retrieve/delete purpose.

1. Create the convenient methods that save, retrieve, and

delete data using the NSFileManager API

(see Listing 4-25):

a. Get the NSFileManager object.

b. Use NSHomeDirectory().
stringByAppendingPathComponent(...) to build the
iOS file path.

CHAPTER 4: Implement Piece by Piece 174

c. NSFileManager deals with NSData, which can be

converted to common Foundation data types

(e.g., String, array and dictionary).

Listing 4-25 . Manage Data in files using NSFileManager

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let fileMgr = NSFileManager.defaultManager()
 func saveToFile(str: String, file: String) {
 var path = NSHomeDirectory().stringByAppendingPathComponent("Documents").
stringByAppendingPathComponent(file)
 var data = str.dataUsingEncoding(NSUTF8StringEncoding)
 var ok = fileMgr.createFileAtPath(path, contents: data, attributes: nil)
 }

 func retrieveFromFile(file: String) -> String? {
 var path = NSHomeDirectory().stringByAppendingPathComponent("Documents").
stringByAppendingPathComponent(file)
 var data = fileMgr.contentsAtPath(path)
 var str = NSString(data:data, encoding: NSUTF8StringEncoding)

 return str
 }

 func deleteFile(file: String) {
 var path = NSHomeDirectory().stringByAppendingPathComponent("Documents").
stringByAppendingPathComponent(file)
 var ok = fileMgr.removeItemAtPath(path, error: nil)
 }
 ...

Note Each app can only write to certain folders inside the application

home (e.g., the Documents folder). As in Android, the most common write

error is probably trying to create a file in the wrong place.

2. Call the convenient methods just created

to complete the persistent code that uses

NSFileManager (see Listing 4-26).

CHAPTER 4: Implement Piece by Piece

175

Listing 4-26. Save, Retrieve, and Delete in File using NSFileManager

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 func saveUserInput(str: String) {
// self.saveUserdefault(str, forKey: STORAGE_KEY)
 self.saveToFile(str, file: STORAGE_KEY)
 }

 func retrieveUserInput() -> String? {
// return self.retrieveUserdefault(STORAGE_KEY)
 return self.retrieveFromFile(STORAGE_KEY)
 }

 func deleteUserInput() {
// self.deleteUserDefault(STORAGE_KEY)
 self.deleteFile(STORAGE_KEY)
 }
 ...

Many Foundation data types contains convenient methods to interface with
File for saving and retrieving themselves. Listing 4-27 depicts the code that
saves and retrieves the string itself:

Listing 4-27. Save String using Foundation Class API

 func saveToFile(str: String, file: String) {
 var path = ...
 var error: NSError?
 str.writeToFile(path, atomically: true, encoding: NSUTF8StringEncoding,
error: &error)
 }

 func retrieveFromFile(file: String) -> String? {
 var path = ...
 var error: NSError?
 var str = String(contentsOfFile: path, encoding:
NSUTF8StringEncoding, error: &error)

 return str
 }

CHAPTER 4: Implement Piece by Piece 176

You can find the same writeToFile(...) and constructor(...) methods
in NSDictionary, NSArray, and NSData for saving and retrieve themselves
as well. Just for a quick exercise, Listing 4-28 serves the same purpose as
Listing 4-27:

Listing 4-28. Save String using Foundation Class API instead of using the NSFileManager API

let KEY_JSON = "aKey"
func saveJsonToFile(str: String, file: String) {
 var path = ...
 // one entry dict, for sure can have more
 var ser = NSDictionary(objects: [str], forKeys: [KEY_JSON])
 ser.writeToFile(path, atomically: true)
}

func retrieveJsonFromFile(file: String) -> String? {
 var path = ...
 var ser = NSDictionary(contentsOfFile: path)!
 return ser[KEY_JSON] as String?
}

This is particularly useful when dealing with JSON messages because most
remote messages are in JSON format nowadays.

Generally, you only need to use NSFileManager directly for pure file-system
operations like inspecting file attributes, or iterating thru files in directories.

Networking and Using Remote Service
A typical client-server solution hosts information on the server side, while
client apps either fetch data from the server and present it to users in
meaningful ways, or collect data from the users to submit to the server. You
probably hear the buzzwords “mobile commerce” or “m-commerce” a lot
nowadays. To describe them in simple terms, mobile apps fetch product
items from a server and then submit the purchase orders to the server via
the Internet. From a mobile-apps programming perspective, this is really not
new at all. It is still a client-server programming topic using HTTP GET/POST,
which is what most of the e-commerce web sites do.

I will talk about JSON messages and RESTful services for mobile apps
specifically because of their popularity versus traditional SOAP-based web
services.

CHAPTER 4: Implement Piece by Piece

177

Perform Network Operations in Background
For apps with a user interface, you want to perform I/O tasks or
network-related code in the background, and do UI updates in the UI
main thread. Otherwise, the app appears to the user to lag because the
UI thread is blocked, waiting for the task to finish. This principle applies to
iOS, Android, and probably any UI platforms. The Android SDK provides the
convenient android.os.AsyncTask class to perform tasks in a background
thread and hook back to the UI main thread when the background task is
completed. Generally, when interfacing with a remote server, you want to
fetch data in the background thread. When the remote data is received, your
UI code presents the data on the screen.

To show how to achieve the same objectives in iOS, you will create a simple
iOS app, as shown in Figure 4-46, to demonstrate some basic RESTFul
client code that consumes remote RESTFul services:

When the 	 GET or POST button is selected, the app sends
HTTP GET or POST to the server in a background thread.

When the HTTP response is received, the app renders 	
the data on the user interface.

Figure 4-46. The iOS RestClient app

Create a new Xcode project to have a fresh start.

1. Launch Xcode, use the Single View Application

template, and name the project RestClient.

2. Draw your storyboard with the following widgets

(see Figure 4-47):

a. A UIButton to invoke HTTP GET

b. A UIButton to invoke HTTP POST

CHAPTER 4: Implement Piece by Piece 178

c. A UITextField to take user input

d. A UIWebView to render the HTTP response

Figure 4-47. RestClient storyboard

3. Connect storyboard outlets to your code

(see Listing 4-29):

a. Connect the GET button Touch Down event to your
doGet()IBAction method.

b. Connect the POST button Touch Down event to your
doPost()IBAction method.

c. Connect the UITextField delegate outlet to
ViewController class.

d. Connect the UIWebView delegate to ViewController
class.

e. Connect the text field New Referencing Outlet to
the ViewController mTextField IBOutlet property

f. Connect the webview New Referencing Outlet to
the ViewController mWebView IBOutlet property

CHAPTER 4: Implement Piece by Piece

179

Listing 4-29. RestClient Preparation Code

class ViewController: UIViewController, UITextFieldDelegate,
UIWebViewDelegate {

 @IBOutlet weak var mWebView: UIWebView!
 @IBOutlet weak var mTextField: UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 }

 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 textField.resignFirstResponder();
 return true
 }

 @IBAction func doGet(sender: AnyObject) {
 }

 @IBAction func doPost(sender: AnyObject) {
 }
}

Nothing is new yet, just the repeated storyboard tasks and the process of
connecting the outlets to your code with the method stubs. You will fill the
main topics in these stubs next.

RESTFul Service using HTTP
Most of the RESTFul services support HTTP/HTTPS protocols. Since the
RESTFul services are supposed to be agnostic to client apps, it is not
surprising that your Android code most likely can be translated nicely to
the iOS platform if it consumes the same RESTFul services. To retrieve
data from most RESTFul services, it is similar to how browsers use HTTP
GET to fetch a remote HTML file. You can use HTTP GET to fetch an HTML
document from mobile apps, too—or it can fetch any data, such as raw
bytes, an XML or JSON document, and so forth.

To submit user input, you will very often use HTML Form to submit form data
from an HTML page to HTTP servers. The form data is transmitted using
the HTTP POST method. This is very common in iOS and Android apps as
well. Technically speaking, you can also send a query string to an HTTP
server using the HTTP GET method, just as some web pages do. In this
case, you can simply build the URL with query strings and use the HTTP

CHAPTER 4: Implement Piece by Piece 180

GET method to send data to your server. It is a design decision that you will
make by understanding usages and conventions of GET versus POST. The
key is to design the interface so both your mobile clients and the server can
understand it.

NSURLConnection

ANDROID ANALOGY

HttpURLConnection.

To interface with HTTP protocol in iOS, you can use the NSURLConnection
class to send GET and POST URL requests. The API is fairly similar to
Android’s HttpUrlConnection.

Continue with the RestClient project and add code to send HTTP requests
by doing the following:

1. Implement the IBAction doGet() method to send

the HTTP GET request and to get data from the HTTP

response (see Listing 4-30):

a. Create an NSMutableURLRequest object.

Note You commonly escape/encode the URL path or query string just

like you normally do using URLEncoder in Android.

b. Set HTTP method to GET.

Note An HTTP method is case-sensitive according to HTTP

protocol specs.

c. Set the accept header, which is commonly
used for content negotiation (e.g., text/html,
json/application, etc.).

CHAPTER 4: Implement Piece by Piece

181

Note Our sample echo service supports "text/html", "text/

plain", and "application/json" content types. To demonstrate

the content negotiation visually, I choose to use a UIWebView widget to

render the server response and specify the "text/html". In general,

"application/json" is more suitable for data exchange.

d. NSURLConnection.sendAsynchronousRequest sends

asynchronous HTTP Request and receives the HTTP

response in the completionHandler closure in the UI

main thread.

Listing 4-30. HTTP GET

let URL_TEST = "http://pdachoice.com/ras/service/echo/"
@IBAction func doGet(sender: AnyObject) {
 var text = self.mTextField.text.
stringByAddingPercentEncodingWithAllowedCharacters(NSCharacterSet.
URLPathAllowedCharacterSet())
 var url = URL_TEST + text
 var urlRequest = NSMutableURLRequest(URL: NSURL(string: url)!)
 urlRequest.HTTPMethod = "GET"
 urlRequest.setValue("text/html", forHTTPHeaderField: "accept")

 NSURLConnection.sendAsynchronousRequest(urlRequest, queue:
NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!, error:
NSError!) -> Void in
 self.mWebView.loadData(data, MIMEType: resp.MIMEType,
textEncodingName: resp.textEncodingName, baseURL: nil)
 })
 }

2. Implement the IBAction doPost() method to send

HTTP POST to post data to the server and receive an

HTTP response (see Listing 4-31). Almost the same

as sending HTTP GET, you use NSURLConnection.
sendAsynchronousRequest to send asynchronous

HTTP messages, except you set the HTTP method

to POST:

a. Make sure set the HTTP method is set to POST.

b. POST data has the same format as a query string,
but you want to encode it to put in the HTTP Body,
the same way you do in Android.

http://pdachoice.com/ras/service/echo/

CHAPTER 4: Implement Piece by Piece 182

c. To parse JSON content or create a JSON object,
NSJSONSerialization is your friend. You want to
convert the JSON object to NSDictionary or the
JSON array to NSArray.

Listing 4-31. HTTP POST

@IBAction func doPost(sender: AnyObject) {
 var text = self.mTextField.text.
stringByAddingPercentEncodingWithAllowedCharacters(
 NSCharacterSet.URLQueryAllowedCharacterSet())
 var queryString = "echo=" + text;
 var formData = queryString.dataUsingEncoding(NSUTF8StringEncoding)!
 var urlRequest = NSMutableURLRequest(URL: NSURL(string: URL_TEST)!)
 urlRequest.HTTPMethod = "POST"
 urlRequest.HTTPBody = formData

 urlRequest.setValue("application/json", forHTTPHeaderField: "accept")

 NSURLConnection.sendAsynchronousRequest(urlRequest,
 queue: NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!, error:
NSError!) -> Void in
 println(resp.MIMEType)
 println(NSString(data: data, encoding: NSUTF8StringEncoding))

 var json = NSJSONSerialization.JSONObjectWithData(data, options:
 NSJSONReadingOptions.AllowFragments, error: nil) as NSDictionary
 self.mWebView.loadHTMLString(json["echo"] as String, baseURL: nil)
 })
})
}

Note SERVER_URL = "http://pdachoice.com/ras/service/echo" is

a simple web service that echoes back the path parameter. Desktop browsers

are fully capable of rendering plain text as well as HTML documents. You can

use a desktop browser to verify the data from the server.

Build and run the RestClient project and enter "Hi you!" to see the live app
in action. The simple echo service with the GET method actually responded
in HTML format, <html><body><h1>Hi you!</h1></body></html>, which is
rendered as shown in Figure 4-48.

http://pdachoice.com/ras/service/echo

CHAPTER 4: Implement Piece by Piece

183

Summary
This chapter introduced the most common programming component
mappings from Android to iOS:

User interface and UI widgets	
Persistent storage options	
Network and remote services with JSON	

Many meaningful apps only ever deal with the components discussed
herein. This chapter listed all the viable mappings with step-by-step
instructions on how to translate Android components to their iOS
counterparts. You will see how to apply these guidelines to build a simple
but complete utility app from start to finish next.

Figure 4-48. RestClient doGet and doPost responses

Part III
Pulling It All Together

Previously, you have covered many discrete Android-to-iOS mapping topics.
They are purposely self-contained with very few classes in the individual
Xcode projects so they can serve as independent sample projects. In the
real programming world, it is the combination of features and use cases that
makes your app useful and entertaining. You will definitely need to apply
more than one mapping guideline to complete a meaningful app.

To walk you through the whole porting process, you will port a fully
functioning Android app from start to finish by applying the mapping topics
from Part II:

1. Create the runnable storyboard using the counterpart

live Android app as the wireframe.

2. Port the Android classes and classes’ member

signatures to Swift first. Preserve any signatures if

possible.

3. Fill in the blanks one method at a time. The caller,

receivers, and “dots” mostly will just connect to

each other without any glitch by blindly translating

the Java statements or expressions to Swift at the

method level.

Nothing will really be new here; you will systematically repeat the same top-
down development approach you have been taking, and implement one
piece at a time.

185

187

Chapter 5
Recap with a Case Study

Thus far in this book, you have covered many discrete Android-to-iOS
mapping topics and created more than 10 Xcode projects. Those mapping
topics were purposely implemented in individual Xcode projects with very
few classes. In Chapter 3, you learned the top-down development approach
using the storyboard to break the whole app into MVC-oriented content
view and View Controller pairs. In Chapter 4, you learned how to port
smaller individual components from the counterpart Android app, piece by
piece. However, all those topics were designed to be self-contained without
dependencies so they can serve as independent instructions.

In the real programming world, it is the combination of features and use
cases that makes your app useful and entertaining. You will surely need
more than one mapping guideline to complete a meaningful app. In this
chapter, you are going to port an existing Android app from start to finish
using the mapping topics from Chapters 3 and 4. Nothing will be new; you
are still going to repeat the same top-down development approach as you
have been using, and implement one piece at a time.

Perhaps there is one thing new that I have not yet mentioned explicitly:
which piece should go first, and then what goes next. For any app, including
the Android apps from which you are porting, you must go through the same
thinking process. If you remember how you created the Android apps you
are porting, that will be a great start because it will make your porting tasks
to iOS more efficient. Otherwise, you will use the same thinking process
that you normally use: decide the dependencies among the pieces and
try to reduce the dependencies along the way. After all, there is really no
absolutely right or wrong way. This is off our porting topic, but I think you
will begin to understand my thinking process in this final exercise.

Again, to show and learn by example, your goal is to port an Android app,
RentalROI, to iOS. Figure 5-1 shows the Android app you’re porting.

CHAPTER 5: Recap with a Case Study188

This Android app performs the following tasks:

Every time a user enters new rental property 	
parameters, user input is saved using
SharedPreferences.

The amortization schedule is calculated on the remote 	
server. The Android client simply calls the remote
service to get the amortization schedules and stores the
data locally.

If a saved amortization schedule exists, the app uses it 	
instead of making a remote service call.

You will port this Android app to iOS and preserve the design decisions
already made.

Figure 5-1. Android RentalROI screens

Note This is just for exercise purposes. It would be better to calculate

the amortization schedules locally without using the remote service—then

you wouldn’t need to persist the result.

You can download the ADT project from
http://pdachoice.com/bookassets/RentalROI-adt.zip.

First, you’ll create a new Xcode project using the Single View Application
template, and give it the same name as the Android app: RentalROI. You
will be following the same porting approaches you used in Chapters 3
(“Structure Your App”) and 4 (“Implement Piece by Piece”).

http://pdachoice.com/bookassets/RentalROI-adt.zip

CHAPTER 5: Recap with a Case Study

189

Structure Your App
Your first step is to create the Xcode storyboard as instructed in Chapter 3:

Draw the storyboard scenes for each content view and 	
connect UI widgets to the custom UIViewController
that pairs with the storyboard scenes.

Choose a navigation pattern and connect storyboard 	
scenes together with segues.

This will result in a runnable iOS app with all the content views and the
view controller classes’ skeletons connected using the appropriate screen
navigation pattern.

Draw Storyboard Scenes
You can clearly see four content views in Figure 5-1, and you will need
to draw four storyboard scenes in Main.storyboard. You should use the
counterpart ADT project as your live wireframe to create the iOS storyboard:

1. In no particular order, let’s start with the simplest

one, the EditTextViewFragment in the counterpart

ADT project. The content view layout has only one

EditText in the counterpart ADT project. You want

to add a UITextField to the storyboard scene

(see Chapter 4, “UITextField” for the detailed

instructions).

a. Drag a UITextField from Object Library to the
View, and update its attributes in the Attributes
Inspector as shown in Figure 5-2.

Figure 5-2. EditTextView storyboard scene

CHAPTER 5: Recap with a Case Study190

b. Center it vertically and add some space to the
leading and trailing spaces (e.g., 20).

c. Create a bare-bones Swift EditTextViewController
class that extends from UIViewController (see
Listing 5-1).

d. To pair with the storyboard scene, enter the custom
class name in the Identity Inspector.

e. In the Connections Inspector, connect the
delegate outlet and New Referencing Outlet to
your code.

Listing 5-1. EditTextViewController

import UIKit

class EditTextViewController: UIViewController, UITextFieldDelegate {
 @IBOutlet weak var mEditText: UITextField!
}

Continue drawing the next content view in no particular order, (e.g., the
Property screen). In the Android counterpart RentalPropertyViewFragment
class, I used ListFragment to achieve the L&F. In iOS, your natural choice
is UITableViewController (see Chapter 3, “UITableViewController” for the
detailed instructions).

a. Drag a UITableViewController from the Object
Library and drop it onto the storyboard editor to
create a storyboard scene.

b. Select the Table View and update the Style
attribute to Grouped in Attributes Inspector (see
Figure 5-3).

Figure 5-3. Creating a Table View scene

CHAPTER 5: Recap with a Case Study

191

c. Select the Table View Cell and update the attributes
in Attributes Inspector (see Figure 5-4):

Style: Select 	 Right Detail.

Identifier: Enter 	 aCell.

Figure 5-4. Right Detail, Table View Cell

d. Create a bare-bones Swift
RentalPropertyViewController class that extends
from UITableViewController (see Listing 5-2). To
pair with the storyboard scene, enter the custom
class name in the Identity Inspector.

Listing 5-2. RentalPropertyViewController

import UIKit
class RentalPropertyViewController: UITableViewController {

}

2. Continue drawing the next content view in no

particular order (e.g., the Amortization screen). The

counterpart Android AmortizationViewFragment is

a standard ListFragment. Again, in iOS your natural

choice for this is UITableViewController.

a. Drag a UITableViewController from Object Library
and drop it onto the storyboard editor to create a
storyboard scene.

b. Select the Table View Cell. In the Attributes
Inspector, update the following attributes:

Style: Select 	 Subtitle.

Identifier: Enter 	 aCell.

c. Create a bare-bones Swift
AmortizationViewController class that extends
from UITableViewController (see Listing 5-3).

CHAPTER 5: Recap with a Case Study192

d. To pair with the storyboard scene, enter the custom
class name in the Identity Inspector.

Listing 5-3. AmortizationViewController

import UIKit
class AmortizationViewController: UITableViewController {

}

3. Move on to the draw the last content view,

Monthly Details. The counterpart Android

MonthlyTermViewFragment layout looks like a ListView

but actually was implemented with two TextViews and

a decorated divider View for each line. You can translate

these Android widgets piece by piece to iOS, or you can

choose to use UITableView as in Step 2. In iOS, there is

actually a better choice: using UITableViewController

with static cells, each static cell for each line.

a. Drag a UITableViewController from
Object Library and drop it onto the
storyboard editor to create a storyboard scene.

b. Select the Table View to update the attributes in the
Attributes Inspector as shown in Figure 5-5.

Content: Select 	 Static Cells.

Sections: 	 2

Style: Select 	 Grouped.

Figure 5-5. Static Cells Table View

CHAPTER 5: Recap with a Case Study

193

4. The Monthly Details screen contains

Mortgage Payment and Investment sections. You

need to update the section title and add Table View

Cells to both sections as shown in Figure 5-6.

Figure 5-6. Two sections in the Monthly Details screen

a. To update the section title, select the Table View
Section and update the Header attributes in
Attributes Inspector:

Section 1: 	 Mortgage Payment

Section 2: 	 Investment

b. Since all of the Table View Cells in this view are
designed to have the same style, it is easier just to
create one and duplicate it. You may keep the first
Table View Cell and delete the rest.

c. Select the Table View Cell and update the Style to
Right Detail.

d. Select the Mortgage Payment section and update
number of Rows to 6.

CHAPTER 5: Recap with a Case Study194

e. You need three Table View Cells for Section 2. You
may repeat the preceding steps, or copy and paste
in the storyboard editor.

 f. Update all the Table View Cell titles as shown in the
counterpart Android content view.

g. Create a bare-bones Swift
MonthlyTermViewController class that extends
from UITableViewController. To pair with the
storyboard scene, enter the custom class name in
the Identity Inspector.

h. Open the Assistant Editor and connect the first
Table View Cell left text label and each Table View
Cell right detail label, respectively, to your code’s
IBOutlet properties as shown in Listing 5-4.

Listing 5-4. MonthlyTermViewController IBOutlet Properties

import UIKit
class MonthlyTermViewController : UITableViewController {

 @IBOutlet weak var mPaymentNo: UILabel!
 @IBOutlet weak var mTotalPmt: UILabel!
 @IBOutlet weak var mPrincipal: UILabel!
 @IBOutlet weak var mInterest: UILabel!
 @IBOutlet weak var mEscrow: UILabel!
 @IBOutlet weak var mAddlPmt: UILabel!
 @IBOutlet weak var mBalance: UILabel!
 @IBOutlet weak var mEquity: UILabel!
 @IBOutlet weak var mCashInvested: UILabel!
 @IBOutlet weak var mRoi: UILabel!
}

Figure 5-7 depicts the storyboard scenes translated from the Android
counterparts.

CHAPTER 5: Recap with a Case Study

195

Choose a Screen Navigation Pattern
When choosing appropriate navigation pattern(s), you will naturally get a
very good idea by playing with the Android app from which you’re porting.
Sometimes you may need more than one pattern, such as a Navigation
Stack plus Navigation Tabs. In this RentalROI app, you want to be able go
back to a previous scene from the Monthly Details to Amortization List to
Property Detail screens. The popular Navigation Stack navigation pattern is
prefect for this intended behavior (see Chapter 3, “Navigation Stack”). For
going to and from the Edit Text scene, you can choose a different navigation
pattern that shows a stronger relationship to the originating context. Dialog
or the iOS Popover is the choice (see Chapter 3, “UIPopoverController”).

Your immediate mission is to add the navigation patterns and draw
storyboard segues to connect all the storyboard scenes to one another.
Figure 5-8 shows the final storyboard with all the scenes connected.

Figure 5-7. Four RentalROI scenes

CHAPTER 5: Recap with a Case Study196

Continue with the storyboard tasks by doing the following (see Chapter 3,
“Storyboard Segue” for step-by-step instructions):

1. Select RentalPropertyViewController in

the storyboard editor and embed it in a

UINavigationController (see Figure 3-33 in

Chapter 3, “UINavigationController” for detailed

instructions).

a. Make sure Is Initial View Controller is checked
in the Navigation Controller Attributes Inspector.

b. Select the Navigation Item in the
RentalPropertyViewController to update the Title
attribute to Property in Attributes Inspector.

c. Add a right BarButtonItem to the Property
Navigation Item in RentalPropertyViewController.
Also update the button Title attribute to Schedule
in the BarButtonItem Attributes Inspector.

d. Connect the Schedule BarButtonItem action outlet
in Connections Inspector to your code, such as
doSchedule(...).

2. Connect a Manual Segue from

RentalPropertyViewController to

AmortizationViewController.

Figure 5-8. RentalROI connected scenes

CHAPTER 5: Recap with a Case Study

197

a. Segue: Show (e.g., Push).

b. Identifier: AmortizationTable.

3. Connect a Manual Segue from

RentalPropertyViewController to

EditTextViewController.

a. Segue: Present As Popover.

b. Identifier: EditText.

c. Anchor: Table View.

d. Directions: none (uncheck all).

4. Connect a Manual Segue from

AmortizationViewController to

MonthlyTermViewController.

a. Segue: Show (e.g., Push).

b. Identifier: MonthlyTerm.

5. Add Navigation Item to AmortizationViewController

and MonthlyTermViewController as shown in

Figure 5-8.

a. Drag Navigation Item from Object Libraries
and drop it onto the controller in the storyboard
document outline.

b. Update the Navigation Item Title respectively
(e.g., Amortization and Payment).

6. Since you are not showing the

EditTextViewController with the navigation

pattern, EditTextViewController doesn’t have a

Navigation Item for Title or BarButtonItem like the

rest of the storyboard scenes. You may either draw

a UINavigationBar from Object Libraries, or more

commonly, you can simply embed it in another

UINavigationController.

a. Select the view controller and select Editor ➤
Embedded In ➤ Navigation Controller from the
Xcode Editor menu.

b. Add a right BarButtonItem. Update the Title
attribute to be Save and connect the action outlet to
your code, such as doSave(...).

CHAPTER 5: Recap with a Case Study198

c. Add a left BarButtonItem. Update the Title
attribute to be Cancel and connect the action outlet
to your code, such as doCancel(...).

You should have a storyboard with all scenes connected with segues as
shown in Figure 5-8.

Implement Piece by Piece
Let’s take a look at the pieces you have now. Figure 5-9 shows the
structures of both projects side by side.

Figure 5-9. Android and iOS RentalROI project structures

The iOS ViewController classes are in place and mapped one-to-one
with the Android counterpart Fragments. There is one model class,
RentalProperty, not in the iOS project yet. Let’s create a Swift class
skeleton for the RentalProperty model class (see Listing 5-5) first.

Listing 5-5. RentalProperty.swift Skeleton

import Foundation
public class RentalProperty {

}

CHAPTER 5: Recap with a Case Study

199

Application Resources
Same as Android apps, most iOS apps need images or digital assets to
dress up the whole app. Also, you definitely want to port the externalized
text to iOS. Do the following to port the application resources (see
Chapter 4, “Application Resources”) from the Android counterpart to iOS:

1. Translate the Android strings.xml to iOS:

a. In Xcode, select the Supporting Files folder to
create a new file (+N) in it, and follow the
on-screen instructions to select iOS ➤ Resource
➤ Strings File. Name it: Localizable.strings.

b. Copy the content in Android res/values/strings.xml
to the iOS Localizable.strings file. The translation
is straightforward, as shown in Listing 5-6.

Listing 5-6. Externalized Text Translation

"app_name" = "RentalROI";
"label_schedule" = "Schedule";
"label_property" = "Property";
"label_Amortization" = "Amortization";
"label_monthlydetails" = "Monthly Details";
"button_next" = "Next";

/* RentalPropertyView */
"mortgage" = "MORTGAGE";
"operations" = "OPERATIONS";
"purchasePrice" = "Purchase Price";
"downPayment" = "Down Payment %";
"loanAmount" = "Loan Amount";
"interestRate" = "Interest Rate %";
"mortgageTerm" = "Mortgage Term (Yr.)";
"escrowAmount" = "Escrow Amount";
"extraPayment" = "Extra Payment";
"expenses" = "Expenses";
"rent" = "Rent";

/* EditTextView */
"save" = "Save";
"editTextSize" = "15";

/* Monthly Details */
"MortgagePayment" = "MORTGAGE PAYMENT";
"no" = "No.";
"Principal" = "Principal";
"interest" = "Interest";

CHAPTER 5: Recap with a Case Study200

"escrow" = "Escrow";
"addlPayment" = "Add\'l Payment";
"mortgageBalance" = "Mortgage Balance";
"equity" = "Equity";
"cashInvest" = "Cash Investment";
"roi" = "ROI";

2. Generally, you reuse or recreate digital assets from

your Android project. In this app, you only have one:

the application icon, ic_launcher.png.

a. Create ic_launcher120.png, ic_launcher180.png,
ic_launcher76.png, and ic_launcher152.png from
the Android project res/xxhdpi/ic_launcher.png file.

b. Select Images.xcassets and AppIcon in the Xcode
asset catalog and drag the four files you just made
as shown in Figure 5-10: ic_launcher120.png
for iPhone 2x, ic_launcher180.png for
iPhone 3x, ic_launcher76.png for iPad 1x
and ic_launcher152.png for iPad 2x. The image
resolution must match exactly or Xcode will give
you warnings.

Figure 5-10. Xcode project AppIcon

If the Android app contains resources for I18N, you want to port them to the
iOS app as well.

CHAPTER 5: Recap with a Case Study

201

Java Class to Swift Class
Now, you have all the matching classes in your Xcode iOS project. Your
next step is to break each class into more pieces, porting Android methods
to iOS methods. Again, I use a top-down approach in each class: port the
member signatures first, and try to defer the internal implementations as late
as possible. For your convenience, you may use Table 5-1 as a step-by-step
guide. You will find that the information in the table is common sense after one
or more exercises, but I think it makes translation efforts more systematic.

Table 5-1. Class Porting Steps

Step Instructions

1. For each class, copy the contents of the Java counterpart to Swift.

2. Translate Java fields to Swift Stored Properties. For Java static constants,

translate them to Swift inner struct static variables.

3. Translate the method declarations to Swift. Preserve signatures as much

as possible except those that are life cycle methods.

a. Keep the Java impl as Swift comments. They are perfect

and tested logics.

b. Translate Android life cycle methods signature to iOS counterparts

including constructors.

c. Preserve utility methods signatures.

Steps 1 and 2 are straightforward. Step 3 is the key to break the class into
smaller pieces: methods. After you run down all the classes with Table 5-1,
all the classes should have callable method skeletons. You can start to
translate the commented Java code to Swift in each method one by one
(see “Java Methods to Swift Methods” later in this chapter).

For your convenience, Table 5-2 recaps the member declarations mappings
that you will surely encounter in this step.

CHAPTER 5: Recap with a Case Study202

Model Class: RentalProperty

A great deal of the translation effort involves converting the general Java-to-
Swift language programming rules (see Table 2-1). Your immediate goal is to
port the counterpart Java class RentalProperty members to Swift without
renaming them. For methods, focus on signatures by commenting all the
implementation code. Follow the class porting steps in Table 5-1 to port
RentalProperty.java to Swift:

1. To start, copy the whole RentalProperty.java

class to the RentalProperty.swift file. You will get a

lot of errors. These compilations errors are your free

guidance.

2. Next, define the classes. A general rule of thumb:

keep any signature including class name. The caller

and callee will just connect without glitches in later

steps. Delete or comment out pure Java things, i.e.,

implements Serializable (see Listing 5-7).

Listing 5-7. RentalProperty.swift Class Declaration

public class RentalProperty /* implements Serializable */ {
// private static final long serialVersionUID = 1L;
 ...
}

Table 5-2. Member declarations in Java and Swift

Languages Java Swift

Variables String aName var aName: String

Class variable static ... static var in inner struct

Method declaration String aMethod(int a) func aMethod(a: Int) -> String

Class method static ... class func ...

Constructor ClassName(...) init(...)

Android Context Activity, Context Remove them.

CHAPTER 5: Recap with a Case Study

203

Tip Java: String mProperty; => Swift: var mProperty: String

Or, var mProperty = "" // use type inference when possible

a. Java fields to Swift Stored Properties (see
Listing 5-8).

b. Java static variables to Swift inner struct static
variables.

Listing 5-8. RentalProperty.swift Stored Properties

public class RentalProperty /* implements Serializable */ {
 ...
// private double purchasePrice;
// private double loanAmt;
// private double interestRate;
// private int numOfTerms;
// private double escrow;
// private double extra;
// private double expenses;
// private double rent;
 var purchasePrice = 0.0;
 var loanAmt = 0.0;
 var interestRate = 5.0;
 var numOfTerms = 30;
 var escrow = 0.0;
 var extra = 0.0;
 var expenses = 0.0;
 var rent = 0.0;

// public static final String KEY_AMO_SAVED = "KEY_AMO_SAVED";
// public static final String KEY_PROPERTY = "KEY_PROPERTY";
// private static final String PREFS_NAME = "MyPrefs";
// private static final int MODE = Context.MODE_PRIVATE;

// MODE_WORLD_WRITEABLE
// private static RentalProperty _sharedInstance = null;
 struct MyStatic {
 static let KEY_AMO_SAVED = "KEY_AMO_SAVED";
 static let KEY_PROPERTY = "KEY_PROPERTY";
 private static let PREFS_NAME = "MyPrefs";
 private static let MODE = 0; // probably Android thing
 private static var _sharedInstance = RentalProperty()
 }
 ...
}

3. Translate Java fields to Swift:

CHAPTER 5: Recap with a Case Study204

4. Translate the method declarations to Swift, as shown

in Listing 5-9. Preserve signatures as much as

possible except those that are life cycle methods.

Tip Java: String doWork(int param); => Swift: func doWork(Int:

Type) -> String

a. Keep the Java impl as Swift comments. They are
perfect/tested logics.

b. Translate Android life cycle methods signatures to
iOS counterparts including constructors.

c. Preserve utility methods signatures.

d. You can safely delete the Android Context (or any
pure Android or Java specifics).

Note Conventionally, you don’t need to port the Java field accessors.

I choose to port them now just because they are used by Java callers a

lot. I normally remove/refactor these Java-ish accessors after the app

is working.

Listing 5-9. Porting RentalProperty Methods

class RentalProperty {
 ...
// private RentalProperty() {
 private init() {
 // Commented Java code omitted
 }

// public static RentalProperty sharedInstance() {
 class func sharedInstance() -> RentalProperty {
 // Commented Java code omitted
 return RentalProperty()
 }

// public String getAmortizationPersistentKey() {
 func getAmortizationPersistentKey() -> String {

CHAPTER 5: Recap with a Case Study

205

 // Commented Java code omitted
 return ""
 }

// public JSONArray getSavedAmortization(Context activity) {
 func getSavedAmortization() -> NSArray? {
 // Commented Java code omitted
 return nil
 }

// public boolean saveAmortization(String data, Context activity){
 func saveAmortization(data: NSArray) -> Bool {
 // Commented Java code omitted
 return false
 }

// public boolean load(Context activity) {
 func load() -> Bool {
 // Commented Java code omitted
 return true
 }

// public boolean save(Context activity) {
 func save() -> Bool {
 // Commented Java code omitted
 return true
 }

/////////// SharedPreferences usage /////////////////
// public boolean saveSharedPref(String key, String data, Context activity) {
 func saveSharedPref(key:String,data:AnyObject)->Bool{
 // Commented Java code omitted
 return true
 }

// public String retrieveSharedPref(String key, Context activity) {
 func retrieveSharedPref(key: String) -> AnyObject? {
 // Commented Java code omitted
 return nil
 }

// public void deleteSharedPref(String key, Context activity) {
 func deleteSharedPref(key: String) {
 // Commented Java code omitted
 }

CHAPTER 5: Recap with a Case Study206

 // JavaBean accessors
 func getPurchasePrice()-> Double {
 return self.purchasePrice;
 }

 func setPurchasePrice(purchasePrice: Double) {
 self.purchasePrice = purchasePrice;
 }

 func getLoanAmt()-> Double {
 return self.loanAmt;
 }

 func setLoanAmt(loanAmt: Double) {
 self.loanAmt = loanAmt;
 }

 func getInterestRate()-> Double {
 return self.interestRate;
 }

 func setInterestRate(interestRate: Double) {
 self.interestRate = interestRate;
 }

 func getNumOfTerms()-> Int {
 return self.numOfTerms;
 }

 func setNumOfTerms(numOfTerms: Int) {
 self.numOfTerms = numOfTerms;
 }

 func getEscrow()-> Double {
 return self.escrow;
 }

 func setEscrow(escrow: Double) {
 self.escrow = escrow;
 }

 func getExtra()-> Double {
 return self.extra;
 }

 func setExtra(extra: Double) {
 self.extra = extra;
 }

CHAPTER 5: Recap with a Case Study

207

 func getExpenses()-> Double {
 return self.expenses;
 }

 func setExpenses(expenses: Double) {
 self.expenses = expenses;
 }

 func getRent()-> Double {
 return self.rent;
 }

 func setRent(rent: Double) {
 self.rent = rent;
 }
 ...

You have achieved the immediate goal.

Note You really cannot get any better method comments than these,

because they are actually code that has been proven to work.

EditTextViewController

ANDROID ANALOGY

The iOS counterpart is EditTextViewFragment.

Let’s start on the first view controller, EditTextViewController.

Note I would’ve chosen RentalPropertyController first if it didn’t

need EditTextViewController. The dependencies can be easily seen

in the counterpart Java packages’ import statements. You may choose any

one to start with and bear with those temporary compilation errors.

CHAPTER 5: Recap with a Case Study208

Your immediate goal is to translate the Android EditTextViewFragment
Java class definitions and member signatures to iOS Swift classes. Again,
copy the whole EditTextViewFragment.java class onto the existing
EditTextViewController.swift class to start with:

1. Start with the class-level definition. There is an inner

interface, but Swift doesn’t have inner protocol. You

can safely create the protocol in the same file outside

of the class definition as shown in Listing 5-10.

Listing 5-10. Java Interface to Swift Protocol

// Java interface to Swift protocol
protocol EditTextViewControllerDelegate {
 func onTextEditSaved(tag: Int, text: String);
 func onTextEditCanceled();
}

class EditTextViewController : UIViewController, UITextFieldDelegate {
 ...
//// inner interface
// interface EditTextViewControllerDelegate {
// public void onTextEditSaved(int tag, String text);
// public void onTextEditCanceled();
// }
 ...

2. Translate Java fields to Swift (see Listing 5-11):

a. Java fields to Swift Stored Properties.

b. Most likely, the Java fields related to UI widgets are
the existing IBOutlet properties.

Listing 5-11. Java Fields to Swift Stored Properties

class EditTextViewController : ... {
 ...
// private int editTextTag;
// private String header;
// private String text;
// private EditTextViewControllerDelegate delegate;
// private View contentView; => in super.view already
// private EditText mEditText; => existing IBOutlet
 var editTextTag = 0
 var header = ""
 var text = ""
 var delegate: EditTextViewControllerDelegate!
 ...

CHAPTER 5: Recap with a Case Study

209

3. Translate the method declarations to Swift (see

Listing 5-12). Preserve signatures except those that

are life cycle methods.

a. Keep the Java impl as Swift comments. They are
perfect/tested logics.

b. Translate Android Fragment life cycle method
signatures to iOS counterpart View life cycle
methods.

c. Preserve utility method signatures.

d. You can safely delete the Android Context (or any
pure Android or Java specifics).

e. You don’t need those conventional Java bean
accessors in Swift.

Listing 5-12. EditTextViewController Life Cycle Callbacks

class EditTextViewController : ... {
 ...
// @Override public View onCreateView(...) {
 override func viewDidLoad() {
 // Commented Java code omitted
 }

// @Override public void onResume() {
 override func viewDidAppear(animated: Bool) {
 // Commented Java code omitted
 }

// @Override public void onPause() {
 override func viewWillDisappear(animated: Bool) {
 // Commented Java code omitted
 }

// @Override public void onCreateOptionsMenu(...) {
 // the navigationBar already drawn in storyboard

// @Override public boolean onOptionsItemSelected(...) {
 // the IBActions: doSave and doCancel

// private void showKeyboard() {
 func showKeyboard(){
 // Commented Java code omitted
 }

CHAPTER 5: Recap with a Case Study210

// private void hideKeyboard() {
 func hideKeyboard() {
 // Commented Java code omitted
 }
 // public accessors, not needed in Swift
 ...

RentalPropertyViewController

IOS ANALOGY

The ADT counterpart is RentalPropertyViewFragment.

Move on to the next view controller: RentalPropertyViewController.
Copy the RentalPropertyViewFragment Java class onto the existing
RentalPropertyViewController.swift class. Use the porting steps in
Table 5-1 and do the following:

1. Start with the class-level definition. ListFragment

naturally maps to iOS UITableViewController (see

Listing 5-13).

Listing 5-13. Java Interface to Swift Protocol

// public class RentalPropertyViewFragment extends ListFragment
// implements EditTextViewControllerDelegate
class RentalPropertyViewController: UITableViewController,
EditTextViewControllerDelegate {
 ...

2. Translate Java fields to Swift (see Listing 5-14):

a. Java fields to Swift Stored Properties.

b. Most likely, the UI widgets’ related Java fields are
already the existing IBOutlet properties.

c. Swift doesn’t support class-type variables yet.
Create an inner struct for those Java final
constants.

CHAPTER 5: Recap with a Case Study

211

Listing 5-14. Java Fields to Swift Stored Properties

class RentalPropertyViewController: ... {
 ...
///// from Java counterpart
//private static let URL_service_tmpl = "http://www.pdachoice.com/ras/
service/amortization?loan=%.2f&rate=%.3f&terms=%d&extra=%.2f&escrow=%.2f"
// private static final String KEY_DATA = "data";
// private static final String KEY_RC = "rc";
// private static final String KEY_ERROR = "error";
 struct MyStatic {
 private static let URL_service_tmpl = "http://www.pdachoice.
 com/ras/service/amortization?loan=%.2f&rate=%.3f&terms=%d&ext
 ra=%.2f&escrow=%.2f"
 private static let KEY_DATA = "data"
 private static let KEY_RC = "rc"
 private static let KEY_ERROR = "error"
 }

// private RentalProperty _property;
// private JSONArray _savedAmortization;
// private BaseAdapter mAdapter; // pure Android
 var _property = RentalProperty.sharedInstance()
 var _savedAmortization: NSArray?
 ...

3. Translate the method declarations to Swift as shown

in Listing 5-15:

a. Keep the Java impl as Swift comments. They are
perfect/tested logics.

b. Translate Android Fragment life cycle method
signatures to iOS counterpart View life cycle
methods.

c. Preserve utility methods signatures.

d. Translate Android BaseAdapter to iOS DataSource
impl.

Listing 5-15. EditTextViewController Life Cycle Callbacks

class RentalPropertyViewController: ... {
 ...
///// from Java counterpart
// @Override public void onCreate(Bundle savedInstanceState) {
 override func viewDidLoad() {
 // Commented Java code omitted
 }

http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f
http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f
http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f
http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f
http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f

CHAPTER 5: Recap with a Case Study212

// @Override public void onResume() {
 override func viewDidAppear(animated: Bool) {
 // Commented Java code omitted
 }

// @Override public void onCreateOptionsMenu(...) {
 // UINavigationBar already drawn in storyboard

// @Override public boolean onOptionsItemSelected(...) {
 @IBAction func doSchedule(sender: AnyObject) {
 // Commented Java code omitted
 self.performSegueWithIdentifier("AmortizationTable", sender: sender)
 }

//// callback method when list item is selected.
// @Override public void onListItemClick(...) {
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {
 // Commented Java code omitted
 }
//private BaseAdapter createListAdapter() {
// Commented Java code omitted }
 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 // TODO: Android Adapter to iOS DataSource impl later
 return 0
 }

 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 // TODO: Android Adapter to iOS DataSource impl later
 return 0
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 // TODO: Android Adapter to iOS DataSource impl later
 return UITableViewCell()
 }

//// delegate interface
// public void onTextEditSaved(int tag, String text) {
 func onTextEditSaved(tag: Int, text: String) {
 // Commented Java code omitted
 }

// public void onTextEditCanceled() {
 func onTextEditCanceled() {
 // Commented Java code omitted
 }

CHAPTER 5: Recap with a Case Study

213

// public void doAmortization(Object sender) {
 func doAmortization() {
 // Commented Java code omitted
 }

//// GET data from url
// private JSONObject httpGet(String myurl) {
 private func httpGet(myurl: String) -> NSDictionary? {
 // Commented Java code omitted
return [:]
 }

// private String readStream(InputStream stream) {
 func readStream(stream: NSInputStream) -> String {
 // Commented Java code omitted
 return ""
 }
 ...

Note It is all about the same idea: move the code from the Android

counterpart; translation will be done in a top-down fashion. In other words,

get the Swift classes in place first, and then get the Swift method stubs in

place with precise comments written in the tested Android code.

AmortizationViewController

IOS ANALOGY

The ADT counterpart is AmortizationViewFragment.

Move on to the next view controller: AmortizationViewController. Follow
the porting steps in Table 5-1; Listing 5-16 shows the intermediate results.

Listing 5-16. AmortizationViewController Properties and Method Signatures

class AmortizationViewController : UITableViewController {

///// from Java counterpart
// private JSONArray monthlyTerms;
// private BaseAdapter mAdapter;
 var monthlyTerms = NSArray()

CHAPTER 5: Recap with a Case Study214

// @Override public void onCreate(Bundle savedInstanceState) {
 override func viewDidLoad() {
 // Commented Java code omitted
 }

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 // TODO: Android Adapter to iOS DataSource impl later
 return 0
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 // TODO Android Adapter to iOS DataSource impl later
 return UITableViewCell()
 }

// @Override public void onResume() {
 override func viewDidAppear(animated: Bool) {
 // Commented Java code omitted
 }

// public void onListItemClick(...) {
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {
 // Commented Java code omitted
 }
}

MonthlyTermViewFragment

IOS ANALOGY

The ADT counterpart is MonthlyTermViewFragment.

The MonthlyTermViewController is the last view controller. Follow the
porting steps in Table 5-1; Listing 5-17 shows the intermediate results.

Listing 5-17. MonthlyTermViewController Properties and Method Signatures

class MonthlyTermViewController : UITableViewController {

 @IBOutlet weak var mPaymentNo: UILabel!
 @IBOutlet weak var mTotalPmt: UILabel!
 @IBOutlet weak var mPrincipal: UILabel!
 @IBOutlet weak var mInterest: UILabel!
 @IBOutlet weak var mEscrow: UILabel!

CHAPTER 5: Recap with a Case Study

215

 @IBOutlet weak var mAddlPmt: UILabel!
 @IBOutlet weak var mBalance: UILabel!
 @IBOutlet weak var mEquity: UILabel!
 @IBOutlet weak var mCashInvested: UILabel!
 @IBOutlet weak var mRoi: UILabel!

///// from Java counterpart
// private JSONObject monthlyTerm;
 var monthlyTerm = NSDictionary()

//// IBOutlets above, and super.view
// private TextView mPaymentNo;
// private TextView mTotalPmt;
// private TextView mPrincipal;
// private TextView mInterest;
// private TextView mEscrow;
// private TextView mAddlPmt;
// private TextView mBalance;
// private TextView mEquity;
// private TextView mCashInvested;
// private TextView mRoi;
// private View contentView;

// @Override public View onCreateView(...) {
 override func viewDidLoad() {
 // Commented Java code omitted
 }

// @Override public void onResume() {
 override func viewDidAppear(animated: Bool) {
 // Commented Java code omitted
 }

// JavaBean accessors => not needed with Swift properties
}

Unlike UITableViewController with dynamic cells, you don’t need to provide
the Data Source. This is the last class. You should have all the classes that
contain properties and methods that can be called from other classes. In
other words, the programming interface is in place.

Java Methods to Swift Methods
You already broke each class into more pieces—that is, methods. The last step
to complete your iOS project is to fully implement each method by translating
from the commented Java code. The language syntax invoking methods in
Swift is the same as Java. Except for the code using the Android-specific API,
most of the Java code should work in Swift! For the code using Android-specific
APIs, use Chapter 4 to guide you through your translating efforts.

CHAPTER 5: Recap with a Case Study216

Note that you can always use Find and Replace (F) in the Xcode editor,
or the Find Navigator to replace repeatable patterns in the whole project.
Figure 5-11 depicts an example.

Table 5-3. Replaceable Java to Swift Syntax or Symbols

Item Java Swift

Self this.aMember self.aMember

Variables String aName var aName: String

Boolean boolean Bool

Integer Integer or int Int, UInt

Null value null nil

Array ArrayList or JSONArray if string

serialization is required

Array or NSArray

Hash table HashMap or JSONObject if string

serialization is required

Dictionary or NSDictionary

Figure 5-11. Find and Replace in Xcode editor

EditTextViewController

Now move on to the first view controller, EditTextViewController. In the
ADT project, this counterpart Android Fragment only has a EditText that
presents the text for editing from the presenting Fragment. It also displays
the name of the text on the title. When the user saves or cancels the edit
operations, the modified text is returned to the presenting Fragment. Do the
following to port the same functionalities to iOS:

1. Translate the Android life cycle methods to iOS

counterparts, IBAction methods, and other

matching methods (see Listing 5-18). The Android

action items in Options Menu are translated to iOS

barButtonItems on the Navigation Bar. Connect the

Save and Cancel buttons to your IBAction methods;

for example, doSave() and doCancel().

Programming languages naturally embed rules. For your convenience,
Table 5-3 lists some common types or syntax in both languages.

CHAPTER 5: Recap with a Case Study

217

Listing 5-18. EditTextViewController Life Cycle Callbacks

class EditTextViewController : UIViewController, UITextFieldDelegate {
 ...
 override func viewDidLoad() {
// contentView = inflater.inflate(...);
// setHasOptionsMenu(true); // enable Option Menu.
// mEditText = (EditText) contentView.findViewById(...);
// this.mEditText.setText(this.text);
// getActivity().setTitle(header);
// return contentView;
 super.viewDidLoad()
 mEditText.text = self.text
 self.navigationItem.title = self.header
 }

 override func viewDidAppear(animated: Bool) {
// super.onResume();
// ((MainActivity) getActivity()).slideIn(...);
// showKeyboard();
 super.viewDidAppear(animated)
 showKeyboard()
 }

 override func viewWillDisappear(animated: Bool) {
// super.onPause();
// hideKeyboard();
 super.viewWillDisappear(animated)
 hideKeyboard()
 }

 override func viewDidDisappear(animated: Bool) {
// super.onPause();
// hideKeyboard();
 super.viewDidDisappear(animated)
 }

// @Override
// public boolean onOptionsItemSelected(...) {
// String returnText = this.mEditText.getText().toString();
// if(delegate != null) {
// this.delegate.onTextEditSaved(this.getEditTextTag(),returnText);
// }
// return true;
// }

CHAPTER 5: Recap with a Case Study218

 @IBAction func doSave(sender: AnyObject) {
 var returnText = self.mEditText.text
 if(delegate != nil) {
 delegate.onTextEditSaved(self.editTextTag, text: returnText)
 }
 }

 @IBAction func doCancel(sender: AnyObject) {
 if(delegate != nil) {
 delegate.onTextEditCanceled()
 }
 }

 private func showKeyboard() {
// InputMethodManager imm = (InputMethodManager) ... ;
// imm.showSoftInput(...);
// mEditText.selectAll();
 self.mEditText.becomeFirstResponder()
 }

 private func hideKeyboard() {
// InputMethodManager imm = (InputMethodManager) ... ;
// imm.hideSoftInputFromWindow(...);
 self.mEditText.endEditing(true)
 }
 ...

2. The soft keyboard does not behave the same.

Keyboard implementation is very platform

dependent. Unlike Android, which shifts the view up

automatically when the keyboard appears, you need

to write code to mimic the same behavior, as shown

in Listing 5-19.

Listing 5-19. Keyboard Implementation

class EditTextViewController : ... {
 ...
 override func viewDidLoad() {
 ...
 if UIDevice.currentDevice().userInterfaceIdiom == .Phone {
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "keyboardAppeared:", name:
UIKeyboardDidShowNotification, object: nil)
 }
 }

CHAPTER 5: Recap with a Case Study

219

 override func viewDidDisappear(animated: Bool) {
 ...
 NSNotificationCenter.defaultCenter().removeObserver(self)
 }

 func keyboardAppeared(notification: NSNotification) {
 var keyboardInfo = notification.userInfo as NSDictionary!
 var kbFrame = keyboardInfo.valueForKey(UIKeyboardFrameBeginUs erInfoKey)

as NSValue
 var kbFrameRect: CGRect = kbFrame.CGRectValue()
 var keyboardH = min(kbFrameRect.size.width, kbFrameRect.size.height)
 var screenRect: CGRect = UIScreen.mainScreen().bounds;

 var tfRect: CGRect = self.mEditText.frame
 var y = screenRect.size.height - keyboardH - mEditText.frame.
 size.height - 20
 var x = (screenRect.size.width - tfRect.size.width) / 2

 UIView.animateWithDuration(0.1, animations: { () -> Void in
 var newRect = CGRectMake(x, y, tfRect.size.width, tfRect.size.height);
 self.mEditText.frame = newRect
 })
 }
 ...

RentalPropertyViewController

When the app is launched, this is the first content view. The purpose of
this view controller is to collect user input. Do the following to port the
implementation from Android to iOS:

1. Translate the life cycle methods, as shown in

Listing 5-20.

a. Same as in Android, always call super.viewXXX.

b. Remove the Android Options Menu code. You have
an iOS-drawn NavigationController/NavigationBar
in storyboard already (see Chapter 3).

Listing 5-20. Life Cycle Methods Implementation

class RentalPropertyViewController : UITableViewController {
 ...
 override func viewDidLoad() {
 super.viewDidLoad() // super.onCreate(savedInstanceState);
 _property = RentalProperty.sharedInstance();
 _property.load(/*getActivity()*/);

CHAPTER 5: Recap with a Case Study220

// setHasOptionsMenu(true); // enable Option Menu.
// mAdapter = createListAdapter();
// this.setListAdapter(mAdapter);
 }

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated) // super.onResume();
// getActivity().setTitle(getText(R.string.label_property));
 self.navigationItem.title = "Property"
 }

 @IBAction func doSchedule(sender: AnyObject) {
// doAmortization();
 doAmortization()
 }
 ...
}

2. Translate the Android Adapter for ListFragment to

iOS UITableViewDataSource as shown in Listing 5-21.

Just for demonstrating how to reuse the Android

BaseAdapter code more effectively, I chose to flatten

the iOS cell section-row indexPath to the Android list

view item position. For example, the UITableViewCell

at the first row of the second section is the original

Android list item at position 9.

Listing 5-21. Implement TableView DataSource

class RentalPropertyViewController : UITableViewController {
...
// private BaseAdapter createListAdapter() {
// return new BaseAdapter() {
//
// @Override
// public int getItemViewType(int pos) {
// if (pos == 0 || pos == 8) {
// return 0;
// } else {
// return 1;
// }
// }
//
// @Override
// public int getViewTypeCount() {
// return 2;
// }
//

CHAPTER 5: Recap with a Case Study

221

// @Override
// public View getView(int pos, ...) {
//
// if (view == null) {
// LayoutInflater inflater = getActivity().getLayoutInflater();
// if (pos == 0 || pos == 8) {
// // header list item
// view = inflater.inflate(android.R.layout.simple_list_item_1, null);
// } else {
// // right detail list item
// view = inflater.inflate(R.layout.rightdetail_listitem, null);
// }
// }
//
// if (pos == 0 || pos == 8) {
// // header list item
// view.setBackgroundColor(Color.argb(32, 0, 128, 128));
// TextView text1 = (TextView) view.

findViewById(android.R.id.text1);
//
// if (pos == 0) {
// text1.setText(getResources().getString(R.string.mortgage));
// } else {
// text1.setText(getResources().getString(R.string.operations));
// }
// } else {
// // right detail list item
// view.setBackgroundColor(Color.argb(0, 0, 0, 0));
// TextView textLabel = (TextView) view.findViewById (R.id.textLabel);
// TextView detailTextLabel = (TextView) view.
 findViewById(R.id.detailTextLabel);
//
// switch (pos) {
// case 1:
// textLabel.setText(R.string.purchasePrice);
// detailTextLabel.setText(String.format("%.0f",

_property.getPurchasePrice()));
// break;
// case 2:
// textLabel.setText(R.string.downPayment);
// if (_property.getPurchasePrice() > 0) {
// double down = (1 - _property.getLoanAmt() /
 _property.getPurchasePrice()) * 100.0f;
// detailTextLabel.setText(String.format("%.0f",
 down));//
// if (_property.getLoanAmt() == 0 && down > 0) {

CHAPTER 5: Recap with a Case Study222

// _property.setLoanAmt(_property.getPurchasePrice()
 * (1 - down / 100.0f));
// }
// } else {
// detailTextLabel.setText("0");
// }
// break;
// case 3:
// textLabel.setText(R.string.loanAmount);
// detailTextLabel.setText(String.format("%.2f",
 _property.getLoanAmt()));
// break;
// case 4:
// textLabel.setText(R.string.interestRate);
// detailTextLabel.setText(String.format("%.3f",
 _property.getInterestRate()));
// break;
// case 5:
// textLabel.setText(R.string.mortgageTerm);
// detailTextLabel.setText(String.format("%d",
 _property.getNumOfTerms()));
// break;
// case 6:
// textLabel.setText(R.string.escrowAmount);
// detailTextLabel.setText(String.format("%.0f",
 _property.getEscrow()));
// break;
// case 7:
// textLabel.setText(R.string.extraPayment);
// detailTextLabel.setText(String.format("%.0f",
 _property.getExtra()));
// break;
// case 9:
// textLabel.setText(R.string.expenses);
// detailTextLabel.setText(String.format("%.0f",
 _property.getExpenses()));
// break;
// case 10:
// textLabel.setText(R.string.rent);
// detailTextLabel.setText(String.format("%.0f",
 _property.getRent()));
// break;
//

CHAPTER 5: Recap with a Case Study

223

// default:
// break;
// }
// }
//
// return view;
// }
//
// @Override
// public int getCount() {
// return 11; // 2 section + 9 fields
// }
//
// @Override
// public long getItemId(int pos) {
// return pos; // not used
// }
//
// @Override
// public Object getItem(int pos) {
// TextView textLabel = (TextView) getView(pos, null, null).
 findViewById(R.id.textLabel);
// if (textLabel == null) {
// return null;
// } else {
// TextView detailTextLabel = (TextView) getView(pos,
 null, null).findViewById(R.id.detailTextLabel);
// NameValuePair nvp = new BasicNameValuePair(textLabel.
 getText().toString(), detailTextLabel.getText().
 toString());
// return nvp;
// }
// }
// };
//}

 // android adapter to iOS datasource
 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 2
 }

 override func tableView(tableView: UITableView, titleForHeaderInSection
section: Int) -> String? {
 if section == 0 {
 return NSLocalizedString("mortgage", comment: "")
 } else {
 return NSLocalizedString("operations", comment: "")
 }
 }

CHAPTER 5: Recap with a Case Study224

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 if section == 0 {
 return 7
 } else {
 return 2
 }
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 var cell = tableView.dequeueReusableCellWithIdentifier("aCell",
forIndexPath: indexPath) as UITableViewCell
 var textLabel = cell.textLabel!
 var detailTextLabel = cell.detailTextLabel!

 var pos = indexPath.row
 var section = indexPath.section

 if section == 0 {
 pos = indexPath.row + 1
 } else { // 1
 pos = indexPath.row + 9
 }

 switch (pos) {
 case 1:
 textLabel.text = NSLocalizedString("purchasePrice",
 comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.
 getPurchasePrice());
 case 2:
 textLabel.text = NSLocalizedString("downPayment", comment:
 "")

 if (_property.getPurchasePrice() > 0) {
 var down = (1 - _property.getLoanAmt() / _property.
 getPurchasePrice()) * 100.0;
 detailTextLabel.text = NSString(format: "%.0f", down);

 if (_property.getLoanAmt() == 0 && down > 0) {
 _property.setLoanAmt(_property.getPurchasePrice() *
 (1 - down / 100.0));
 }
 } else {
 detailTextLabel.text = "0";
 }

CHAPTER 5: Recap with a Case Study

225

 case 3:
 textLabel.text = NSLocalizedString("loanAmount", comment: "")
 detailTextLabel.text = NSString(format: "%.2f", _property.
 getLoanAmt())
 case 4:
 textLabel.text = NSLocalizedString("interestRate", comment:
 "")
 detailTextLabel.text = NSString(format: "%.3f", _property.
 getInterestRate())
 case 5:
 textLabel.text = NSLocalizedString("mortgageTerm",
 comment: "")
 detailTextLabel.text = NSString(format: "%d", _property.
 getNumOfTerms())
 case 6:
 textLabel.text = NSLocalizedString("escrowAmount",
 comment: "")
 detailTextLabel.text = NSString(format: "%.0f",
 _property.getEscrow())
 case 7:
 textLabel.text = NSLocalizedString("extraPayment",
 comment: "")
 detailTextLabel.text = NSString(format: "%.0f",
 _property.getExtra());
 case 9:
 textLabel.text = NSLocalizedString("expenses", comment: "")
 detailTextLabel.text = NSString(format: "%.0f",
 _property.getExpenses());
 case 10:
 textLabel.text = NSLocalizedString("rent", comment: "")
 detailTextLabel.text = NSString(format: "%.0f",
 _property.getRent());

 default:
 break;
 }

 return cell
 }
 ...
}

CHAPTER 5: Recap with a Case Study226

3. RentalPropertyViewController presents

EditTextViewController with text for editing (see

Listing 5-22):

a. Use performSegueWithIdentifier(...) and
prepareForSegue(...) for screen transition and
passing data to EditTextViewController (see
Chapter 3, “Pass Data with a Segue,” for detailed
instructions).

b. To return data to the presented view controller,
the conventional delegate pattern works both in
Android and iOS.

Listing 5-22. Present EditTextViewController

class RentalPropertyViewController : UITableViewController {
 ...
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {
// ((MainActivity) getActivity()).pushViewController(toFrag, true);
 self.performSegueWithIdentifier("EditText", sender: indexPath)
 }

 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
 var identifier = segue.identifier
 if identifier == "EditText" {
 var indexPath = sender as NSIndexPath

 // if (position == 0 || position == 8) {
 // return; // position 0 and 8 are header
 // }
 // EditTextViewFragment toFrag = new EditTextViewFragment();
 var toFrag = (segue.destinationViewController as
 UINavigationController).topViewController as EditTextViewController
 // NameValuePair data = (NameValuePair) mAdapter.getItem(position);
 var cell = tableView.cellForRowAtIndexPath(indexPath)!
 var row = indexPath.row
 var section = indexPath.section
 // toFrag.setEditTextTag(position);
 // toFrag.setHeader(data.getName());
 // toFrag.setText(data.getValue());
 // toFrag.setDelegate(this);
 toFrag.editTextTag = (section == 0) ? row + 1 : row + 9
 toFrag.header = cell.textLabel!.text!
 toFrag.text = cell.detailTextLabel!.text!
 toFrag.delegate = self
 }
 }

CHAPTER 5: Recap with a Case Study

227

//// delegate interface
 func onTextEditSaved(tag: Int, text: String) {
// ((MainActivity) getActivity()).popViewController();
 self.dismissViewControllerAnimated(true, completion: nil)

 switch (tag) {
 case 1:
 _property.setPurchasePrice((text as NSString).doubleValue);
// String percent = ((NameValuePair) mAdapter.getItem(2)).getValue();
 var indexPath = (tag < 9) ? NSIndexPath(forRow: tag - 1, inSection: 0)
: NSIndexPath(forRow: tag - 9, inSection: 1)
 var percent = tableView.cellForRowAtIndexPath(indexPath)!.
 detailTextLabel!.text!
 var down = (percent as NSString).doubleValue
 if (_property.getPurchasePrice() > 0 && _property.getLoanAmt() == 0 &&
 down > 0) {
 _property.setLoanAmt(_property.getPurchasePrice() * (1 - down /
 100.0));
 }

 break;
 case 2:
 var percentage = (text as NSString).doubleValue / 100.0;
 _property.setLoanAmt(_property.getPurchasePrice() * (1 - percentage));
 break;
 case 3:
 _property.setLoanAmt((text as NSString).doubleValue);
 break;
 case 4:
 _property.setInterestRate((text as NSString).doubleValue);
 break;
 case 5:
 _property.setNumOfTerms((text as NSString).integerValue);
 break;
 case 6:
 _property.setEscrow((text as NSString).doubleValue);
 break;
 case 7:
 _property.setExtra((text as NSString).doubleValue);
 break;
 case 9:
 _property.setExpenses((text as NSString).doubleValue);
 break;
 case 10:
 _property.setRent((text as NSString).doubleValue);
 break;

 default:
 break;
 }

CHAPTER 5: Recap with a Case Study228

 tableView.reloadData() // mAdapter.notifyDataSetChanged();
 _property.save(/* getActivity() */);
 }

 func onTextEditCanceled() {
// ((MainActivity) getActivity()).popViewController();
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 ...

Every method is translated except doAmortization(). This method touches
two common topics: RESTful Service and Saving Data (see Chapter 4). You
will do this later.

Build and run the Swift project to test your code. When the Table View Cell
is selected, it presents the EditTextViewController with the title and the
text of the selected field for editing. After editing is done, the modified text is
sent into the presenting RentalPropertyViewController via delegate and the
new text is updated on the TableViewCell.

AmortizationViewController

Move on to the AmortizationViewController. It needs to render the
amortization items. Do the following to port the Java implementation from
Android to iOS Swift:

1. Translate the commented Java code to Swift (see

Listing 5-23).

a. Port Android Fragment life cycles to iOS View life
cycles.

b. Convert the Android BaseAdapter to iOS
DataSource and delegate methods.

c. Present MonthlyTermViewController.

Listing 5-23. EditTextViewController Life Cycle Callbacks

class AmortizationViewController : UITableViewController {

 var monthlyTerms: NSArray!

 override func viewDidLoad() {
// super.onCreate(savedInstanceState);
// mAdapter = new BaseAdapter() {
// ...
// };
// this.setListAdapter(mAdapter);
 super.viewDidLoad()
 }

CHAPTER 5: Recap with a Case Study

229

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
// @Override public int getCount() {
// return monthlyTerms.length();
// }
 return monthlyTerms.count
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
// @Override public View getView(int pos, View view, ViewGroup parent) {
// if (view == null) {
// view = getActivity().getLayoutInflater().inflate(...);
// }
// TextView textLabel = (TextView) view.findViewById(...);
// TextView detailTextLabel = (TextView) view.findViewById(...);
//
// JSONObject monthlyTerm =(JSONObject)monthlyTerms.opt(pos);
// int pmtNo = monthlyTerm.optInt("pmtNo");
// double balance0 = monthlyTerm.optDouble("balance0");
// textLabel.setText(String.format("%d\t$%.2f", pmtNo, balance0));
//
// double interest = monthlyTerm.optDouble("interest");
// double principal = monthlyTerm.optDouble("principal");
// detailTextLabel.setText(String.format("Interest: %.2f\tPrincipal:
%.2f", interest, principal));
// return view;
// }
 var cell = tableView.dequeueReusableCellWithIdentifier("aCell") as
UITableViewCell!
 var textLabel = cell.textLabel!
 var detailTextLabel = cell.detailTextLabel!
 var pos = indexPath.row
 var monthlyTerm = monthlyTerms[pos] as NSDictionary
 var pmtNo = monthlyTerm["pmtNo"] as Int
 var balance0 = monthlyTerm["balance0"] as Double
 textLabel.text = NSString(format: "%d\t$%.2f", pmtNo, balance0)

 var interest = monthlyTerm["interest"] as Double
 var principal = monthlyTerm["principal"] as Double
 detailTextLabel.text = NSString(format: "Interest: %.2f\tPrincipal:
%.2f", interest, principal);

 return cell
 }

 override func viewDidAppear(animated: Bool) {
// super.onResume();
// ((MainActivity) getActivity()).slideIn(...);
// getActivity().setTitle(getText(...));

CHAPTER 5: Recap with a Case Study230

 super.viewDidAppear(animated)
 self.navigationItem.title = NSLocalizedString("label_Amortization",
comment: "")
 }

// public void onListItemClick(...) {
// MonthlyTermViewFragment toFrag = new MonthlyTermViewFragment();
// JSONObject jo = (JSONObject) mAdapter.getItem(position);
// toFrag.setMonthlyTerm(jo);
// ((MainActivity)getActivity()).pushViewController(toFrag);
// }
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {
 self.performSegueWithIdentifier("MonthlyTerm", sender: indexPath)
 }

 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
 var vc = segue.destinationViewController as MonthlyTermViewController
 var row = (sender! as NSIndexPath).row
 vc.monthlyTerm = monthlyTerms[row] as NSDictionary
 }
}

This completes the whole AmortizationViewController Swift class
implementation.

MonthlyTermViewController

Move on to the MonthlyTermViewController. It needs to render the
detailed info for the selected month. Do the following to port the Java
implementation from Android to iOS Swift as shown in Listing 5-24:

1. Port Android Fragment life cycles to iOS View life

cycles.

2. Convert the Android BaseAdapter to iOS DataSource

and implement the delegate methods.

Listing 5-24. MonthlyTermViewController Life Cycle Callbacks

class MonthlyTermViewController : UITableViewController {
 ...
// @Override public View onCreateView(...) {
// contentView = inflater.inflate(...e);
//

CHAPTER 5: Recap with a Case Study

231

// mPaymentNo = (TextView)contentView.findViewById(...);
// mTotalPmt = (TextView)contentView.findViewById(...);
// mPrincipal = (TextView)contentView.findViewById(...);
// mInterest = (TextView)contentView.findViewById(...);
// mEscrow = (TextView)contentView.findViewById(...);
// mAddlPmt = (TextView)contentView.findViewById(...);
// mBalance = (TextView)contentView.findViewById(...);
// mEquity = (TextView)contentView.findViewById(...);
// mCashInvested = (TextView)contentView.findViewById(...);
// mRoi = (TextView)contentView.findViewById(...);
//
// double principal = this.monthlyTerm["principal");
// double interest = this.monthlyTerm["interest");
// double escrow = this.monthlyTerm["escrow");
// double extra = this.monthlyTerm["extra");
// double balance = this.monthlyTerm["balance0") - principal;
// int paymentPeriod = this.monthlyTerm.optInt("pmtNo");
// double totalPmt = principal + interest + escrow + extra;
// this.mTotalPmt.setText(String.format("$%.2f", totalPmt));
// this.mPaymentNo.setText(String.format("No. %d", paymentPeriod));
// this.mPrincipal.setText(String.format("$%.2f", principal));
// this.mInterest.setText(String.format("$%.2f", interest));
// this.mEscrow.setText(String.format("$%.2f", escrow));
// this.mAddlPmt.setText(String.format("$%.2f", extra));
// this.mBalance.setText(String.format("$%.2f", balance));
//
// RentalProperty property = RentalProperty.sharedInstance();
// double invested = property.getPurchasePrice() - property.getLoanAmt() +
 property.getExtra() * paymentPeriod;
// double net = property.getRent() - escrow - interest - property.

getExpenses();
// double roi = net * 12 / invested;
//
// this.mEquity.setText(String.format("$%.2f", property.getPurchasePrice()
 - balance));
// this.mCashInvested.setText(String.format("$%.2f", invested));
// this.mRoi.setText(String.format("%.2f%% ($%.2f/mo)", roi * 100, net));
// return contentView;
// }
 override func viewDidLoad() {
 super.viewDidLoad()
 var principal = self.monthlyTerm["principal"] as Double
 var interest = self.monthlyTerm["interest"] as Double
 var escrow = self.monthlyTerm["escrow"] as Double
 var extra = self.monthlyTerm["extra"] as Double
 var balance = (self.monthlyTerm["balance0"] as Double) - principal
 var paymentPeriod = self.monthlyTerm["pmtNo"] as Int

CHAPTER 5: Recap with a Case Study232

 var totalPmt = principal + interest + escrow + extra
 self.mTotalPmt.text = NSString(format: "$%.2f", totalPmt)
 self.mPaymentNo.text = NSString(format: "No. %d", paymentPeriod)
 self.mPrincipal.text = NSString(format: "$%.2f", principal)
 self.mInterest.text = NSString(format: "$%.2f", interest)
 self.mEscrow.text = NSString(format: "$%.2f", escrow)
 self.mAddlPmt.text = NSString(format: "$%.2f", extra)
 self.mBalance.text = NSString(format: "$%.2f", balance)

 var property = RentalProperty.sharedInstance();
 var invested = property.getPurchasePrice() - property.getLoanAmt() +
 (property.getExtra() * Double(paymentPeriod))
 var net = property.getRent() - escrow - interest - property.
 getExpenses();
 var roi = net * 12 / invested

 self.mEquity.text = NSString(format: "$%.2f", property.
 getPurchasePrice() - balance)
 self.mCashInvested.text = NSString(format: "$%.2f", invested)
 self.mRoi.text = NSString(format: "%.2f%% ($%.2f/mo)", roi * 100, net)
 }

 override func viewDidAppear(animated: Bool) {
// super.onResume();
// ((MainActivity) getActivity()).slideIn(contentView, MainActivity.SLIDE_
LEFT);
// getActivity().setTitle(getText(R.string...));

 super.viewDidAppear(animated)
 }
 ...

This completes the whole MonthlyTermViewController Swift class
implementation.

RESTful Service and Saving Data
Back to the RentalPropertyViewController—when the “Schedule”
UIBarButtonItem is selected, the iOS app does the following:

1. Checks if the amortization schedule is already saved

locally.

2. If there is no schedule found in local storage, it calls

a remote RESTful service to get the schedules and

save them in local storage.

3. Presents the AmortizationViewController, which

renders the schedules in it in content view.

CHAPTER 5: Recap with a Case Study

233

The preceding Android code was previously copied into your iOS
doAmortization() method. Your mission is to translate this method to Java
code, as shown in Listing 5-25.

Listing 5-25. doAmortization(...)

 private func doAmortization() {
// _savedAmortization = _property.getSavedAmortization(getActivity());
// if (_savedAmortization != null) {
// AmortizationViewFragment toFrag = new AmortizationViewFragment();
// toFrag.setMonthlyTerms(_savedAmortization);
// ((MainActivity) getActivity()).pushViewController(toFrag, true);
// } else {
// String url = String.format(URL_service_tmpl, _property.getLoanAmt(),
 _property.getInterestRate(), _property.getNumOfTerms(), _property.
 getExtra(), _property.getEscrow());
// getActivity().setProgressBarIndeterminate(true);
// getActivity().setProgressBarVisibility(true);
//
// AsyncTask<String, Float, JSONObject> task = new AsyncTask<String,

Float, JSONObject>() {
// @Override
// protected JSONObject doInBackground(String... params) {
// String getUrl = params[0];
// InputStream in = null;
// HttpURLConnection conn = null;
//
// JSONObject jo = new JSONObject();
// try {
// URL url = new URL(getUrl);
// // create an HttpURLConnection by openConnection
// conn = (HttpURLConnection) url.openConnection();
// conn.setRequestMethod("GET");
// conn.setRequestProperty("accept", "application/json");
//
// int rc = conn.getResponseCode(); // HTTP status code
// String rm = conn.getResponseMessage(); // HTTP response message.
// Log.d("d", String.format("HTTP GET: %d %s", rc, rm));
//
// // read message body from connection InputStream
// in = conn.getInputStream();
// StringBuilder builder = new StringBuilder();
// InputStreamReader reader = new InputStreamReader(in);
// char[] buffer = new char[1024];
// int length;
// while ((length = reader.read(buffer)) != -1) {
// builder.append(buffer, 0, length);
// }

CHAPTER 5: Recap with a Case Study234

// in.close();
//
// String httpBody = builder.toString();
// jo.put(KEY_DATA, httpBody);
//
// } catch (Exception e) {
// e.printStackTrace();
// try {
// jo.putOpt(KEY_ERROR, e);
// } catch (JSONException e1) {
// e1.printStackTrace();
// }
// } finally {
// conn.disconnect();
// }
// return jo;
// }
//
// @Override
// protected void onPostExecute(JSONObject jo) {
// getActivity().setProgressBarVisibility(false);
// Exception error = (Exception) jo.opt(KEY_ERROR);
// String errMsg = null;
// if (error == null) {
// AmortizationViewFragment toFrag = new AmortizationViewFragment();
// String data = jo.optString(KEY_DATA);
// _property.saveAmortization(data, getActivity());
//
// try {
// toFrag.setMonthlyTerms(new JSONArray(data));
// ((MainActivity) getActivity()).pushViewController(toFrag, true);
// return;
// } catch (JSONException e) {
// e.printStackTrace();
// errMsg = e.getMessage();
// }
// } else {
// errMsg = error.getMessage();
// }
// Toast.makeText(getActivity(), errMsg, Toast.LENGTH_LONG).show();
// }
// };
// task.execute(url);
// }
...

CHAPTER 5: Recap with a Case Study

235

Saving Data

In the Android RentalPropertyViewFragment.doAmortization(...), the code
for saving and retrieving data is delegated to the RentalProperty model
class. This uses SharedPreferences, which should be translated to iOS
NSUserDefaults (see Chapter 4, “NSUserDefaults”). Do the following:

1. Use NSUserDefaults to create the following utility

methods in RentalProperty.swift methods as

shown in Listing 5-26.

Listing 5-26. Porting RentalProperty Save Data Utility Methods

class RentalProperty {
 ...
 let userDefaults = NSUserDefaults.standardUserDefaults()
 func saveUserdefault(data:AnyObject, forKey:String) -> Bool{
 userDefaults.setObject(data, forKey: forKey)
 return userDefaults.synchronize()
 }

 func retrieveUserdefault(key: String) -> AnyObject? {
 var obj: AnyObject? = userDefaults.objectForKey(key)
 return obj
 }

 func deleteUserDefault(key: String) {
 self.userDefaults.removeObjectForKey(key)
 }
 ...

2. Translate the load() method that loads the saved

RentalProperty object from storage, as shown in

Listing 5-27.

Listing 5-27. Loading RentalProperty Object from Storage

class RentalProperty {
 ...
// public boolean load(Context activity) {
// String jostr = retrieveSharedPref(KEY_PROPERTY, activity);
// if(jostr == null) {
// return false;
// }
//
// try {
// JSONObject jo = new JSONObject(jostr);

CHAPTER 5: Recap with a Case Study236

// this.purchasePrice = jo.getDouble("purchasePrice");
// this.loanAmt = jo.getDouble("loanAmt");
// this.interestRate = jo.getDouble("interestRate");
// this.numOfTerms = jo.getInt("numOfTerms");
// this.escrow = jo.getDouble("escrow");
// this.extra = jo.getDouble("extra");
// this.expenses = jo.getDouble("expenses");
// this.rent = jo.getDouble("rent");
// return true;
// } catch (JSONException e) {
// e.printStackTrace();
// return false;
// }
// }
 func load() -> Bool {
 var data = retrieveUserdefault(MyStatic.KEY_PROPERTY) as
 NSDictionary?
 if var jo = data {
 self.purchasePrice = jo["purchasePrice"] as Double
 self.loanAmt = jo["loanAmt"] as Double
 self.interestRate = jo["interestRate"] as Double
 self.numOfTerms = jo["numOfTerms"] as Int
 self.escrow = jo["escrow"] as Double
 self.extra = jo["extra"] as Double
 self.expenses = jo["expenses"] as Double
 self.rent = jo["rent"] as Double
 return true;

 } else {
 return false
 }
 }
 ...

3. Translate the save() method that persists the

RentalProperty instance in storage as shown in

Listing 5-28.

Listing 5-28. Saving RentalProperty Object

class RentalProperty {
 ...
// public boolean save(Context activity) {
// JSONObject jo = new JSONObject();
// try {
// jo.put("purchasePrice", purchasePrice);
// jo.put("loanAmt", loanAmt);
// jo.put("interestRate", interestRate);

CHAPTER 5: Recap with a Case Study

237

// jo.put("numOfTerms", numOfTerms);
// jo.put("escrow", escrow);
// jo.put("extra", extra);
// jo.put("expenses", expenses);
// jo.put("rent", rent);
// } catch (JSONException e) {
// e.printStackTrace();
// }
// return this.saveSharedPref(KEY_PROPERTY, jo.toString(),
 activity);
// }
 func save() -> Bool {
 var jo : [NSObject : AnyObject] = [
 "purchasePrice": purchasePrice,
 "loanAmt" : loanAmt,
 "interestRate" : interestRate,
 "numOfTerms" : Double(numOfTerms),
 "escrow" : escrow,
 "extra" : extra,
 "expenses" : expenses,
 "rent" : rent]

 return self.saveUserdefault(jo, forKey: MyStatic.KEY_
 PROPERTY)
 }
 ...

4. Translate the getSavedAmortization() method

that retrieves the amortization schedule array from

storage as shown in Listing 5-29.

Listing 5-29. Retrieve Amortization Schedule Array from Persistent Storage

class RentalProperty {
 ...
// public JSONArray getSavedAmortization(Context activity) {
// String savedKey = retrieveSharedPref(KEY_AMO_SAVED, activity);
// String aKey = this.getAmortizationPersistentKey();
// if(savedKey.length() > 0 && savedKey.equals(aKey)) {
// String jsonArrayString = retrieveSharedPref(savedKey, activity);
// try {
// return new JSONArray(jsonArrayString);
// } catch (JSONException e) {
// return null;
// }
// } else {
// return null;
// }
// }

CHAPTER 5: Recap with a Case Study238

 func getSavedAmortization() -> NSArray? {
 var savedKey = retrieveUserdefault(MyStatic.KEY_AMO_SAVED) as String?
 var aKey = self.getAmortizationPersistentKey()
 if let str = savedKey {
 if(str.utf16Count > 0 && str == aKey) {
 var jo = retrieveUserdefault(str) as NSArray?
 return jo
 }
 }
 return nil
 }
 ...

5. Translate the saveAmortization() method that

persists the amortization schedule array as shown in

Listing 5-30.

Listing 5-30. Persist Amortization Schedule Array

class RentalProperty {
 ...
// public boolean saveAmortization(String data, Context activity) {
// String aKey = this.getAmortizationPersistentKey();
// saveSharedPref(KEY_AMO_SAVED, aKey, activity);
// saveSharedPref(aKey, data, activity);
// }
 func saveAmortization(data: NSArray) -> Bool {
 var aKey = self.getAmortizationPersistentKey()
 saveUserdefault(aKey, forKey: MyStatic.KEY_AMO_SAVED)
 return saveUserdefault(data, forKey: aKey)
 }
 ...

6. Translate the rest of the commented Java code to Swift

as shown in Listing 5-31. Swift static variables are

always lazily initialized. Unlike in Java, you don’t need

to do null check in the sharedInstance() method.

Listing 5-31. Miscellaneous Methods in RentalProperty Model

class RentalProperty {
 ...
// public static RentalProperty sharedInstance() {
// if (_sharedInstance == null) {
// _sharedInstance = new RentalProperty();
// }
// return _sharedInstance;
// }

CHAPTER 5: Recap with a Case Study

239

 class func sharedInstance() -> RentalProperty {
 return MyStatic._sharedInstance
 }

// public String getAmortizationPersistentKey() {
// String aKey = String.format("%.2f-%.3f-%d-%.2f", this.loanAmt, this.
interestRate, this.numOfTerms, this.extra);
// return aKey;
// }
 func getAmortizationPersistentKey() -> String {
 var aKey = String(format: "%.2f-%.3f-%d-%.2f", self.loanAmt, self.
interestRate, self.numOfTerms, self.extra);
 return aKey;
 }
 ...

You have ported the “save data” code and the whole RentalProperty model
class from the Android app.

Use RESTful Service

Recall the doAmortization() method—it performs remote operations in
the background, then updates the UI when data is returned. The Android
counterpart uses AsyncTask and HttpURLConnection to accomplish this task
(see Listing 5-25). In iOS, use the instructions in the “NSURLConnection”
section in Chapter 4 to do the following:

1. To pass data to the presented

AmortizationViewController from the

presenting RentalPropertyViewController,

call performSegueWithIdentifier(...) and

prepareForSegue(...).

2. To get data from a remote RESTFul service, use

iOS’s NSURLConnection.sendAsynchronousRequest to

replace the Android AsyncTask+ HttpURLConnection

as shown in Listing 5-32.

CHAPTER 5: Recap with a Case Study240

Listing 5-32. Using RentalPropertyViewController to Pass Data to the Presented

AmortizationViewController

class RentalProperty {
 ...
 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
 var identifier = segue.identifier
 if identifier == "EditText" {
 ...
 } else { // AmortizationTable segue
 // AmortizationViewFragment toFrag = new AmortizationViewFragment();
 // toFrag.setMonthlyTerms(_savedAmortization);
 var toFrag = segue.destinationViewController as
AmortizationViewController
 toFrag.monthlyTerms = sender as NSArray
 }
 }

 private func doAmortization() {
 _savedAmortization = _property.getSavedAmortization();
 if (_savedAmortization != nil) {
 performSegueWithIdentifier("AmortizationTable", sender: _
savedAmortization!)
 } else {
 var url = NSString(format: MyStatic.URL_service_tmpl, _property.
 getLoanAmt(), _property.getInterestRate(), _property.getNumOfTerms(),
 _property.getExtra(), _property.getEscrow())
 UIApplication.sharedApplication().networkActivityIndicatorVisible =
 true

 var urlRequest = NSMutableURLRequest(URL: NSURL(string: url)!)
 urlRequest.HTTPMethod = "GET"
 urlRequest.setValue("text/html",forHTTPHeaderField: "accept")
 NSURLConnection.sendAsynchronousRequest(urlRequest, queue:
 NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!, error:
 NSError!) -> Void in
 NSURLConnection.sendAsynchronousRequest(urlRequest,
 queue: NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!,
 error: NSError!) -> Void in
 UIApplication.sharedApplication().

networkActivityIndicatorVisible = false
 var errMsg: String?
 if error == nil {
 var statusCode = (resp as NSHTTPURLResponse).statusCode
 if(statusCode == 200) {
 var str = NSString(data: data, encoding: NSUTF8StringEncoding)

CHAPTER 5: Recap with a Case Study

241

 var parseErr: NSError?
 var json = NSJSONSerialization.JSONObjectWithData(data,
options: NSJSONReadingOptions.AllowFragments, error: &parseErr) as NSArray?
 if parseErr == nil {
 self._property.saveAmortization(json!)
 self.performSegueWithIdentifier("AmortizationTable",
 sender: json!)
 return
 } else {
 errMsg = parseErr?.debugDescription
 }
 } else {
 errMsg = "HTTP RC: \(statusCode)"
 }
 } else {
 errMsg = error.debugDescription
 }

 // show error
 var alert = UIAlertController(title: "Error", message: errMsg,
 preferredStyle: UIAlertControllerStyle.Alert)
 var actionCancel = UIAlertAction(title: "Cancel", style:
 UIAlertActionStyle.Cancel,
 handler: {action in
 // do nothing
 })
 alert.addAction(actionCancel)
 self.presentViewController(alert, animated: true,
 completion: nil)
 })
 })
 }
 }
 ...

All the class translations are completed. Build and run the iOS RentalROI
app to make sure it behaves the same as the Android app. I normally put the
iOS and Android apps side by side for testing. Even for testing activities, it
takes less time to test iOS and Android apps in parallel. Figure 5-12 shows
the iOS version in action.

CHAPTER 5: Recap with a Case Study242

Figure 5-12. The completed iOS RentalROI app

CHAPTER 5: Recap with a Case Study

243

Summary
This chapter intended to show how to port the whole app, end to end, by
applying the individual mapping topics introduced in Chapters 3 and 4, such
as the master list details drill-down, navigation patterns, basic UI widgets,
saving data, and using remote services.

You started by using the storyboard to create MVC components and using
storyboard segues to connect the View Controller together. The result was a
set of connected View Controllers.

You continued to drill down into each class, one by one, starting by
translating all the members’ declarations for all the classes first. Then, you
drilled down into each method. Translating expressions in each method was
generally straightforward. Using a global find-and-replace makes this type
of translation quick and fun. When you encounter platform-specific SDK
or topics, use this book’s Table of Contents to find the instructions that will
guide you through your porting efforts.

As you port an app, you will start to see more searchable and replaceable
patterns. I use the Xcode editor’s Find and Replace All one click at a time,
so that I can have a quick read on the code being replaced. Learning is the
main objective in your early iOS journey. Reading, typing, and debugging the
code seems the best way to learn a new programming language.

Although the RentalROI app is not complicated enough to show you more
advanced topics that are not included in this book, the porting steps
remain the same: you always break the app down into the smallest porting
components possible—a single line of expression, a method, or sometimes
an entire class or even a common use case. This porting strategy always
works for me.

A, B, C ■
Animations, 167–168

D, E ■
Dialogs, 108

AlertDialog, 110
IBAction methods, 109
PopOverController, 111

Attributes Inspector, 113
GreenViewController

class, 111
iPad vs iPhone, 114
storyboard completion, 112

toasts, 114
Drilldown patterns

GridView, 89
ListFragment, 82

MasterDetail
storyboard, 83

table view cell, 82
UITableView, 87
UITableViewCell, 88
UITableViewDataSource, 84
UITableViewDelegate, 85

mobile navigation patterns, 80

F, G ■
Fragment lifecycle

onCreateView() method, 66
onPause() method, 67
onResume() method, 67
onStart() method, 67
onStop() method, 67

H ■
HelloSwift Xcode project, 12

class creation, 15
context menu, 16
MobileDeveloper class, 16
stored property, 16

command-line tool, 13
Project Navigator area, 14
Source Editor area, 14
template, 13
utility area, 15

debugger, 19
instance, 18
protocol declaration, 17

MoileDeveloper protocol, 17

I, J, K, L ■
IBAction doGet() method, 180
IBAction doPost() method, 181
iOS project app

HelloMobile ADT project,
Xcode, 34

application view, 35
classes, 36
editor area, 37
image.assets, 36
Info.plist file, 36
Project Navigator area, 35
storyboard, 36
template, 34

UI widgets, 39
Assistant Editor, 43
Attributes Inspector, 42

Index

245

File Inspector, 40
Object Library, 39
storyboard scene, 41
TextField, 41

Xcode Storyboard, 38

M ■
Menu button

action sheet, 148
UIBarButtonItem, 147
usage, 146

Model-view-controller (MVC), 47
content view, 49

Auto Layout, 49
size classes, 54

design pattern, 48
Fragment, 61

IBAction, 63
IBOutlet, 63
life cycle, 66
onCreateView(), 61

screen navigation patterns.
See Screen navigation
patterns

N, O, P, Q ■
Navigation Bar, 148
Navigation Controller, 147
Navigation tabs, 94

implementation, 95
IOS tabbed app, 94
UITabBarController, 98

add/remove, 98
runtime behavior, 99
text and image, update, 98

Network operations, 177
coding implementation, 179
HTTP GET/POST, 177
HTTP GET/POST

method, 177, 179

NSURLConnection
IBAction doGet() method, 180
IBAction doPost()

method, 181–183
widgets, 177–178

NSLocalizedString() method, 123

R ■
Reference type vs. value types, 33
RentalROI app, iOS, 187

amortization schedule, 188
application resources, 199
doAmortization() method, 232
navigation pattern, 195
RESTful service, 239
saving data

getSavedAmortization()
method, 237

load() method, 235
NSUserDefaults, 235
saveAmortization()

method, 238
save() method, 236
sharedInstance() method, 238

screens, 188
SharedPreferences, 188
storyboard scenes, 189, 194

AmortizationView
Controller, 191

EditTextViewController, 189
MonthlyTermView

Controller, 192
RentalPropertyView

Controller, 190
swift class, 201

AmortizationView
Controller, 213

class porting steps, 201
EditTextViewController, 207
member declarations, 202
MonthlyTermView

Controller, 214

Index246

iOS project app (cont.)

Index

247

RentalProperty, 202
RentalPropertyView

Controller, 210
swift methods, 215

AmortizationView
Controller, 228

EditTextViewController, 216
MonthlyTermView

Controller, 230
RentalPropertyView

Controller, 219
syntax/symbols, 216

Xcode storyboard creation, 189

S, T ■
Saving data, 168

building, 171
file storage, 173
Navigation Bar creation, 168
NSFileManager, 173–176
NSUserDefaults, 171–172
UITextField, 169
ViewController class, 170

Screen navigation patterns, 68
Container View Controller, 73
dialogs, 108

AlertDialog, 109
PopoverController, 111
toasts, 114

drilldown pattern, 80
GridView, 88
ListFragment, 82
mobile navigation

patterns, 80
navigation stack, 73–74
navigation tabs, 94

implementation, 95
iOS tabbed app, 94
UITabBarController, 98

pass data, segue, 71
storyboard segue, 68
swipe views, 101
UINavigationController, 77
ViewPager, 104

setImage() method, 145
Storyboard scenes

AmortizationViewController, 192
EditTextViewController, 190
MonthlyTermViewController, 192
RentalPropertyViewController, 191

Swift language, 11–12
classes, 30

methods, 32
property, 30

collections, 24
control flows, 25
enumerations, 27
functions, 28
HelloSwift Xcode project, 12

class creation, 15
command-line tool, 13
debugger, 19
instance, 18
protocol declaration, 17

in Nutshell, 12
iOS project app, 33

HelloMobile ADT project,
Xcode, 34

UI widgets, 39
Xcode Storyboard, 38

reference type vs. value types, 33
switch cases, 25
tuples, 23
variables and constants, 21

optional variable, 22
type inference, 21
unwrapped optionals, 23

Xcode playground, 21

U, V ■
UI widgets

creation, 124
iOS UIKit framework, 124
menu button. See Menu button
playing video, 155

iPad emulator, 158
MPMovie

Playercontroller, 157–158

Index248

useMoviePlayerView
Controller() method, 155–156

View element, 157
ScrollView, 163
UIActivityIndicatorView/

UIProgressView, 138
UIButton, 132

IBOutlet and IBAction, 133
position and attributes, 132

UIImageView, 143
Attributes Inspector, 145
IBOutlet, 145
image set creation, 144
iOS OpenGL framework, 145
iPhone 5, 146

UILabel
Attributes Inspector, 126
properties, 127
size and position, 125

UIPickerView, 151
Connections Inspector, 152
IBOutlet, 152–153
iPad emulator, 153, 155
object library, 151

UIProgressView, 140–141
UISegmentedControl

attributes, 135
size and position, 134
zero-based index, 136

UISlider
Android SeekBar, 136
attributes, 137
value updation, 138

UISwitch, 142
activity indicator’s, 143
Attributes Inspector, 142
IBOutlet, 142

UITextField, 128
UITextView, 130
WebView. See WebView

User interface (UI), 117
animations, 167–168
Assets Catalog, application

resources, 120
drag and drop files, 121
Images.xcassets, 120
New Image Set, 121–122

frameworks, 118
string

externalization, 122–123
View object, 118
widgets, 118
widgets. See UI widgets

W ■
WebView

Connections Inspector, 160
Delegate protocol, 161
iPad Air emulator, 162
programming code, 160
tasks, 159
URL/string text, 160

X, Y, Z ■
Xcode, 3

iOS app creation, 5
Build action, 8
LessonOne app,

emulator, 9
Project Navigator, 8
project options, 7
template, 6

Mac App Store, 4

UI widgets (cont.)

Migrating to Swift
from Android

Sean Liao

Migrating to Swift from Android

Copyright © 2014 by Sean Liao

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0437-5

ISBN-13 (electronic): 978-1-4842-0436-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Alex Decker
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James T. DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: James M. Fraleigh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

Part I : Prepare Your Tools ■ .. 1

Chapter 1: Setting Up the Development Environment ■ 3

Xcode and the iOS SDK ... 3

Installing from the Mac App Store .. 4

Create an iOS Project Using the Template .. 5

Summary ... 10

Chapter 2: iOS Programming Basics ■ .. 11

The Swift Language in a Nutshell ... 12

HelloSwift with Xcode... 12

More About the Swift Language ... 20

Contentsvi

iOS Project Anatomy .. 33

Xcode Storyboard ... 37

Object Library and Attributes Inspector .. 39

Summary ... 43

Part II: A Roadmap for Porting ■ 45

Chapter 3: Structure Your App ■ .. 47

Model-View-Controller .. 47

Content View ... 48

Content View Controller .. 60

Screen Navigation Patterns ... 68

Storyboard Segue ... 68

Pass Data with a Segue .. 71

Container View Controller ... 73

Navigation Stack ... 73

UINavigationController .. 77

Master List with Details Drilldown .. 80

Navigation Tabs .. 94

Swipe Views ... 101

UIPageViewController ... 104

Dialogs .. 108

Summary ... 115

Chapter 4: Implement Piece by Piece ■ ... 117

User Interface ... 117

UIView ... 118

Application Resources .. 120

Externalize Strings .. 122

Common UI Widgets ... 124

Animations .. 167

Contents

vii

Save Data .. 168

NSUserDefaults... 171

File Storage .. 173

NSFileManager ... 173

Networking and Using Remote Service ... 176

Perform Network Operations in Background .. 177

RESTFul Service using HTTP .. 179

NSURLConnection ... 180

Summary ... 183

Part III: Pulling It All Together ■ 185

Chapter 5: Recap with a Case Study ■ .. 187

Structure Your App .. 189

Draw Storyboard Scenes .. 189

Choose a Screen Navigation Pattern .. 195

Implement Piece by Piece ... 198

Application Resources .. 199

Java Class to Swift Class .. 201

Java Methods to Swift Methods ... 215

RESTful Service and Saving Data ... 232

Summary ... 243

Index .. 245

ix

About the Author

Sean Liao (PMP®) started his first mobile
app on a PalmOS PDA app in 2000. He hasn’t
missed any major mobile evolutions. He has
written mobile code for PalmOS, JavaME,
Microsoft .NET CF, and BlackBerry, and he also
has some Nokia Symbian experience. He has
been a seasoned Java solution architect
since 1998.

In 2009, Sean started programming in iOS, and
then began programming in Android the same
year by following the same porting strategy,

based on years of hands-on mobile programming experience. Currently,
Sean is primarily engaged in creating iOS apps and porting them to Android
as a bonus.

xi

About the Technical
Reviewer

Alex Decker is a mobile application developer
specializing in enterprise applications. He
graduated from the University of Illinois and
currently lives with his wife in California.

xiii

Acknowledgments

Looking back on the journey of this book-writing experience, I realize clearly
now that I never would have started it without the encouragement from my
lovely wife, Lily, and I never would have completed it without her support. My
two little princesses, Megan and Melanie, also really motivated me. As I was
writing the book they would come by repeatedly to ask me silly questions, like,
“Can I help you, Daddy? Daddy, will the book be this thick? Daddy, can your
book be my bedtime story? Will you play with me more after you finish it?”

I knew I would never give up.

Special thanks to my publisher, who had faith in this topic, and the editors,
who never stopped making the book better. Their professional services and
guidance are unparalleled. I am really grateful to have had the Apress publishing
and editorial teams with me at all times.

	Contents at a
Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction

