
Migrating to

Swift from Web
Development

ook

Make the leap from front-end web development
to iOS development with Swift

Sean Liao | Mark Punak

•
•
•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a

Glance

About the Author .. ix

Acknowledgments .. xi

Introduction .. xiii

Part 1: Prepare Your Tools ■ .. 1

Chapter 1: Setting Up the Development Environment ■ 3

Chapter 2: iOS Programming Basics ■ .. 11

Part 2: A Roadmap for Porting ■ 49

Chapter 3: Structure Your App ■ .. 51

Chapter 4: Implement Piece by Piece ■ ... 119

Part 3: Finishing Touches ■ ... 187

Chapter 5: Pulling It All Together ■ .. 189

Chapter 6: Bonus Chapter: Hybrid Apps ■ 225

Index .. 239

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

In 2000, I created my first mobile app for an inventory-tracking project using
PalmOS handheld devices. The initial project was a full-staffed team effort
that consisted of mobile developers, SAP consultants, supply-chain
subject-matter experts, middleware developers, QA testers, architects,
business sponsors, and so forth. JavaME came up strong in 2002, followed
by Pocket PC/Windows Mobile. I did several mobile projects in which
I converted mobile apps to the Pocket PC platform by blindly translating
C++ to JavaME to C# .NETCF mobile code. These “translation” efforts
prolonged the whole product life cycle. The project achieved a higher return
on investment (ROI) by extending the product life because the extra cost of
translating mobile code was surprisingly low. Ever since then, I have been
translating front-end mobile apps among various mobile platforms. In recent
years, most of my work has involved porting mobile apps between Android
and iOS and mobilizing existing web sites. Porting apps between iOS and
Android is fairly straightforward. This is also true for porting mobile web
apps using a RESTful service. Even for traditional non-service-oriented web
apps, you still want to follow the same path: reusing existing business cases
and software artifacts and reaching a bigger audience to maximize the ROI.

One thing is for sure: there are a lot demands for mobilizing existing web
apps to reach mobile users. That’s why I decided to write this book.

The primary objective of this book is to help experienced web developers
leap into native iOS–Swift mobile development. It is easier than you think,
and this book will make it even easier with step-by-step guidelines. You can
immediately translate common mobile use cases to iOS.

www.allitebooks.com

http://www.allitebooks.org

Introductionxiv

Who Is This Book For?
This book was specifically written for web developers who want to make
iOS mobile apps. The book will show you the common iOS programming
subjects and frameworks by relating them to your familiar web programming
tasks when appropriate.

How This Book Is Organized
In part I, you will get the iOS Xcode integrated development environment
(IDE) up and running. You will be guided in creating tutorial projects that will
become your porting sample projects. I believe this is the best way for you
to get hands-on experience while learning programming topics.

Part II of this book shows you how to plan and structure your iOS apps
by creating a storyboard and breaking the app into model-view-controller
(MVC) classes. The common mobile topics are followed, including creating
a user interface, managing data, and enabling networking with remote
services. You will then be able to create simple but meaningful iOS apps
with rich UI components and be able to handle common create, read,
update, delete (CRUD) operations locally and remotely.

Last, part III walks you through a case study for a complete iOS app.
It recaps the topics in this book. You can also use the book’s table of
contents or index to help find the mobile topics you need.

A bonus chapter was added in the end reveals how to mix and match
web front development with iOS SDK, the so-called hybrid apps. You may
choose to bundle the web contents and HTML pages with Javascript code
just like you normally do for frontend web apps. You can interface with the
native iOS platform features and communicate between your JavaScript and
iOS code back and forth.

When you complete this journey, you will be able to use Xcode and Swift to
effectively implement simple and meaningful iOS apps.

www.allitebooks.com

http://www.allitebooks.org

Part 1
Prepare Your Tools

www.allitebooks.com

http://www.allitebooks.org

3

Chapter 1
Setting Up the

Development

Environment

It is more fun to see apps run than to read the source code, and you cannot
get hands-on programming experience by just reading books. Let’s get the
development environment up and running first so you can use it—and learn
Swift programming for iOS along the way.

There is no single integrated development environment (IDE) that can be
called the IDE for web development. Eclipse and Eclipse-based products
such as Aptana and Spket, and others such as NetBeans, IntelliJ Idea,
and Visual Studio, are all popular tools for building and deploying web
applications. In fact, some outstanding web developers use only a text
editor to create Hypertext Markup Language (HTML), Cascading Style
Sheets (CSS), or JavaScript files! In the iOS programming world, Apple
purposely requires a single development environment for creating iOS apps.
It makes for no jailbreakers, and all you need is the one tool: Xcode.

Note Rather than attempt to provide specific examples from every

web IDE, this book will instead reference analogous tasks from web

development where applicable.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment4

Figure 1-1. Xcode in Mac App Store

Xcode and the iOS SDK
Xcode is a complete tool set for building iOS apps. In other words, it is an
IDE that helps you build, test, debug, and package your iOS apps. It is free,
but you must have an Intel-based Mac running Mac OS X Mavericks or
newer. You will use the latest Xcode, version 6, throughout this book.

Installing from the Mac App Store
Xcode is distributed via the Mac App Store, which takes care of the
download and install for you. With a single click to start the download and
installation of Xcode, you get the compilers, code editor, iOS software
development kit (SDK), debugger, device emulators, and everything you
need to create iOS apps. Figure 1-1 shows Xcode in the Mac App Store.

All you need to do is install the latest Xcode from the App Store. After
completing the installation, launch Xcode from the Applications folder. Keep
it in the Mac OS Dock so that you can launch it at any time.

The first time you launch Xcode, it immediately prompts you to install the
required components (see Figure 1-2). Click Install to complete the Xcode
installation.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment

5

After the required components are installed, you should see the screen in
Figure 1-3. Your iOS IDE, Xcode, is ready!

Figure 1-2. Install the required components

Figure 1-3. Welcome to Xcode screen

Creating an iOS Project Using the Template

WEB ANALOGY

You can create a New Web Application project in Visual Studio, create a new project in

Sencha Architect (and select a framework), use the web app project templates in Eclipse

web projects, and so on.

You’ve got the right tool; now, wouldn’t you like to see some real action—
like creating an iOS app and seeing it run? I’d like that, too! You want to do
this to ensure your IDE is working properly as well.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment6

Out of the box, Xcode offers the project creation templates that immediately
give you a starting point that contains the minimal software artifacts for the
given project types. The objective of this section is to show you how to create
an iOS app as quickly as possible. Hold any programming questions so you
can finish the project as fast as you can. For now, complete the following steps:

1. Launch Xcode if you haven’t launched it yet.

2. Click “Create a new Xcode project” on the Welcome

to Xcode screen (shown earlier in Figure 1-3).

Figure 1-4 shows the prompt that asks you to

choose a template for your project.

a. In the left panel of Figure 1-4, select iOS ➤
Application.

b. In the right panel of Figure 1-4, you may choose
any of the templates. Just for fun, choose Game.

Figure 1-4. Choose a template

3. Click the Next button.

4. Figure 1-5 depicts the basic project information that

requires you to fill in the following:

a. Product Name: This is the app name. Name your
project LessonOne.

b. Organization Name: This is optional; for example,
you can use your organization’s name or any
name you choose.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Setting Up the Development Environment

7

c. Organization Identifier: Together with the product
name, the organization identifier should uniquely
identify your app. A reverse domain name is
recommended (for example, com.yourdomain.xxx).

d. Language, Game Technology, and Devices:
You don’t need to change these settings.

Figure 1-5. iOS project options

5. Click the Next button when done.

6. Select a folder in which to save your LessonOne

project.

That is it! You just created an iOS project, the LessonOne project, that you
can see the in Xcode as shown in Figure 1-6.

CHAPTER 1: Setting Up the Development Environment8

The LessonOne project can be seen on the left panel, as shown in Figure 1-6;
this is the Project Navigator in the navigation area. The Xcode project template
creates the project folder, the application source code, and all the resources
for building the LessonOne apps.

Building the Project

WEB ANALOGY

This is the process that bundles, minifies, and packages your app and all the referenced

code that will be deployed with it.

To build and compile the Xcode project, use the Build action, which
is located in the Product ➤ Build menu in Xcode (or press +B). You
will get used to using the +B keyboard shortcut a lot because Xcode
doesn’t automatically build your code (unlike Eclipse ADT, which builds it
automatically by default).

Launching the App

The LessonOne project should have no errors. You can launch the app and
see it run on an iOS emulator. The emulator is an important piece of any
IDE, probably even more important for mobile apps. All the iOS devices

Figure 1-6. LessonOne project in Xcode Project Navigator (left panel)

CHAPTER 1: Setting Up the Development Environment

9

emulators are right there in Xcode, and you can launch the LessonOne
project on the selected device, including the iOS emulator, by clicking the
triangle button in the upper-left corner, as shown earlier in Figure 1-6.

Alternatively, you can use the +R Xcode keyboard shortcut key for the Run
action to launch the app. You should see your LessonOne app running on
the iPhone emulator, as shown in Figure 1-7.

Figure 1-7. LessonOne app in the emulator

Play with the app and then select other emulators from the device drop-
down selector (see the pointer in Figure 1-6). A mouse-click event on an
emulator is equivalent to a touch event, and three-finger movement on the
trackpad is equivalent to a touch-drag on a physical iOS screen. If you don’t
have a particular device yet, definitely play with the emulator to get familiar
with the emulated iOS devices.

Tip To change to landscape or portrait orientation, press +left arrow

or +right arrow to rotate the emulator.

The iOS emulators are robust and responsive, and they behave almost
exactly like real devices. For learning Swift programming for iOS, the
emulator actually is better. In this book, you are not required to run apps
on a physical iOS device; for that you would need to be a registered iOS
developer. You can save the $99 iOS developer membership fee until you
are ready to submit your first app to the App Store or for when your app
requires certain features not available in the emulator (for example, the
camera or certain sensors). For your convenience, I have provided how

CHAPTER 1: Setting Up the Development Environment10

to build and sign an app for on-device debugging in the appendix of this
book. For now, if your app is launched and running on an iOS emulator, your
mission is completed!

Summary
By installing Xcode 6, you immediately have a fully functional IDE ready to
create iOS apps without hassle. This chapter walked you through the basic
project creation tasks in Xcode 6, using an iOS project template to start
your first iOS project. This chapter also showed you how to build and run
your iOS app in iOS emulators. You haven’t written any code yet, but your
Xcode tool is working and verified. You will learn more and gain hands-
on programming experience from the guided exercises in the following
chapters.

11

Chapter 2
iOS Programming Basics

Creating mobile apps for both iOS and web deployment is fun and
rewarding. With Xcode in place, you are ready to write code, build, and run
iOS apps now. Objective-C had been the primary programming language for
iOS apps until Swift was officially announced at the 2014 Apple Worldwide
Developers Conference. If you’re just starting to learn iOS programming, you
should go with Swift because there is no reason to choose the old way and
miss the latest and greatest features. Your next steps should be learning the
fundamentals of the following:

The Swift programming language	
The anatomy of the iOS project and the Xcode 	
storyboard editor

The purpose of this chapter is to get you comfortable with reading the Swift
code in this book. To achieve this goal, you will be creating a HelloSwift
project while learning about Swift programming language highlights.

You will create another Xcode iOS project in the second part of the chapter.
All iOS apps have a user interface (UI). You normally start by creating the
UI using the most important Xcode tool, the storyboard editor, which draws
the UI widgets and components and connects them to your code. You also
will see the typical iOS project structures and components while creating
this iOS app. You may not need to understand everything about the iOS
framework in the beginning, but the first storyboard lesson should be “just
enough” for you to get a feel for the different programming paradigm. Later,
the materials in Chapters 3 and 4 continue with step-by-step instructions for
common programming tasks and framework topics. Follow these mapping
instructions, and the ideas will more easily stick with you as you get a
broader picture of the whole app.

CHAPTER 2: iOS Programming Basics12

The Swift Language in a Nutshell
Swift is the newest programming language for creating iOS apps. I am
confident that learning the Swift language won’t be the highest hurdle for
you; JavaScript and C# developers will pick up Swift code naturally because
they are syntactically similar and follow the conventions of typical object-
oriented (OO) programming languages. Just to give you a quick preview,
Table 2-1 briefly compares JavaScript to Swift.

Table 2-1. Java-to-Swift Language Syntax Comparison in a Nutshell

JavaScript Swift

<script type="text/javascript"

src="scripts/packagename/Xyz.js">

</script>

import framework

Xyz.prototype = new SomeClass(); class Xyz : SomeClass

var mProperty; var mProperty : Int

Xyz.prototype.constructor=Xyz

// constructor

init()

var obj = new Xyz(); var obj : Xyz = Xyz()

Xyz.prototype.doWork(arg) func doWork (arg: String) -> Void

obj.doWork(arg); obj.doWork(arg)

The Table 2-1 cross-reference refers to how native JavaScript prototype-
based inheritance might be used to implement classical inheritance used
by Swift, Java, and C#. For those familiar with Prototype and Sencha, the
extension libraries and methods for inheritance should make the transition
even more straightforward. If you come from a basic JQuery programming
background, the syntax of Swift will seem familiar, but the structure of your
code will move from a flat list of functions to encapsulated objects and
object instances with a hierarchal source structure. In this section, I will not
discuss the in-depth OO theory or techniques. However, I do want to point
out certain important ideas for pure-JavaScript developers.

HelloSwift with Xcode
Instead of my describing the uses and syntax rules in a formal way, you
are going to create a HelloSwift Xcode project and write the code listing
from Table 2-1 yourself. You will also perform the following common Xcode
programming tasks: creating a class, building and running a project, and
using the debugger.

CHAPTER 2: iOS Programming Basics

13

Creating a Swift Command-Line Project

Let’s create a command-line Swift program because it is really simple and you
can focus on the Swift language without being sidetracked by other questions.

Follow these instructions to proceed:

1. Launch Xcode 6 if it is not running. You should see

the Welcome to Xcode screen. Click “Create a new

Xcode project.” Alternatively, you can select File ➤

Project from the Xcode menu bar.

2. Choose OS X and then Application in the left column

and then select the Command Line Tool template

in the “Choose a template for your new project”

window (see Figure 2-1).

Figure 2-1. Choosing an Xcode template

3. To finish creating the new project with the template,

follow the same onscreen instructions that you used

to create the LessonOne project in Chapter 1:

a. Product Name: Enter HelloSwift.

b. Organization Name: You can use anything here,
such as PdaChoice.

c. Organization Identifier: You can use anything
here, such as com.liaollc.

d. Language: Select Swift.

CHAPTER 2: iOS Programming Basics14

4. Click the Next button when done.

5. Select a folder in which to save your HelloSwift

project.

6. The HelloSwift project appears in the Project

Navigator (see Figure 2-2).

Figure 2-2. Creating the HelloSwift project

The command-line template creates the main.swift file for you. This is the
entry point of the OS X command line tool program. You will be writing code
in main.swift to demonstrate common object-oriented code.

Figure 2-2 shows that the typical Xcode workspace contains three areas
from left to right and a top toolbar. Inside each area, there are subviews that
you may switch to using the selector bars.

The Project Navigator area is on the left. Similar to 	
many IDE, this is where you can see the whole project
structure and select the file you want to edit. There are
other views in this area; for example, you can enable
Search view by selecting the Search icon in the
selector bar.

The Editor area in the middle shows the selected file in its 	
editor, in which you can edit the file, write your code, or
modify project settings depending on the file selected. The
Console and Variable views are inside the Debug area.
Most likely you will want to show them during debugging
sessions. You can hide or show them by clicking the
toggle buttons on the top and bottom toolbars.

CHAPTER 2: iOS Programming Basics

15

The Utility area on the right contains several inspector views 	
that allow you to edit attributes of the whole file or the item
selected in the Editor area. Depending on the type of files
you select, different types of inspectors will be available
in the top selector bar. For example, you will have more
inspectors showing in the selector bar if you are editing a
screen or UI widgets. The bottom of the area is called the
Libraries area. Use the selector bar to select one of the
library views. You can drag and drop items from Libraries to
the appropriate editor to visually modify file content. You will
use the Object Library a lot to compose UIs visually.

Click any of the icons on the selector bars, or hover your mouse over
the pointer in Figure 2-2, to see the hover text tips in the workspace to
get yourself familiar with Xcode workspace. The subviews appear more
condensed than those in most of the IDE I ever experienced, but essentially
it is a tool for the same purpose: editing project files and compiling,
building, debugging, and running the executables. You will use it repeatedly
throughout the book.

Creating a Swift Class

A class is the fundamental building block of any classic OO programming
language. A class is a software template that defines what the objects know
(state) and how the objects behave (methods). JavaScript uses functions
and their prototypes to accomplish the same goal.

While JavaScript web applications often make use of objects by creating and
manipulating DOM elements, it is entirely possible to create a JavaScript web
application without creating a single new reusable object structure. Using
anonymous objects and scripts running in the global scope, referencing function
libraries like JQuery, is quite common. Swift, however, requires developers to
structure their code into named class types before the objects can be created.

To create a new Swift class, you can create it in the existing main.swift file,
or you can follow the Java convention to create it in its own file as shown in
the following steps:

1. Expand the newly created HelloSwift project, right-

click the HelloSwift folder to bring up the folder

context menu (see Figure 2-3), and select New File.

a. Select iOS and then Source from the left panel
and then select the Swift File template in the
“Choose a template for your new file” screen.

b. Save the file and name it MobileDeveloper.swift.
The file should appear in your project.

CHAPTER 2: iOS Programming Basics16

2. Enter the code in Listing 2-1 in the MobileDeveloper.
swift file to create the MobileDeveloper Swift class.

Figure 2-3. Create a Swift class from the folder context menu

Note Unlike Java, a Swift class doesn’t implicitly inherit from any class.

It can be the base class on its own.

Listing 2-1. Declare MobileDeveloper Class

class MobileDeveloper {

}

3. Create a property called name by declaring a variable

inside the class (see Listing 2-2). This is called a

stored property in Swift, where the variable type is

inferred by the assigned value (known as type

inference in Swift).

Listing 2-2. Stored Property in Swift

class MobileDeveloper {
 var name = "" // var type, String, is inferred by the value
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

17

Note The semicolon (;) is optional for terminating a statement in the

same line.

Creating a Swift Protocol

WEB ANALOGY

Though JavaScript has no native comparable for a Swift protocol, web developers using C#

or PHP for their server-side code will find comparable examples in the use of interfaces.

In object-oriented programming (OOP), an interface or protocol is essentially
a predefined set of behaviors, methods, or properties. The protocol provides
no implementation of the methods themselves but rather defines the method
names, parameters, and return types. Consumers of the protocol can count
on objects they are consuming to properly implement the items defined in
the protocol. Protocols allow objects of different types and class inheritance
to provide a common, strongly typed interface, thus implementing the
concept of polymorphism, one of the fundamental concepts of OOP. You
may also provide multiple implementation classes for the same contract and
programmatically supply the appropriate instances in the runtime.

In simpler terms, this is a great way to explicitly break dependencies
between callers and callees because callers and callees can be
implemented independently with clearly defined programming contracts,
called protocols in Swift.

Create a Swift protocol called Programmer by doing the following:

1. Right-click the HelloSwift folder to create the

Programmer.swift file.

2. In the Editor area, create the Programmer protocol

with the method writeCode(...), as shown in

Listing 2-3.

Listing 2-3. Declare the Programmer Protocol

protocol Programmer {
 func writeCode(arg: String) -> Void
}

CHAPTER 2: iOS Programming Basics18

Implementing the Protocol

To conform to the expected behavior defined in a Swift protocol, the tagged
class must implement the methods defined in the protocol. To make the
MobileDeveloper class implement the Programmer protocol, do the following:

1. Modify MobileDeveloper.swift and declare the

MobileDeveloper class to implement the Programmer

protocol, as shown in Listing 2-4.

Listing 2-4. Conform to MobileDeveloper Protocol

class MobileDeveloper : Programmer {
 ...
}

Note If the Swift class already has a superclass, list the superclass

name before any protocols it adopts, followed by a comma (,)—for

example:

class MobileDeveloper : Person, Programmer

2. Provide the writeCode(...) method implementation

body, as shown in Listing 2-5.

Listing 2-5. Method Body

class MobileDeveloper: Programmer {
 ...
 func writeCode(arg: String) -> Void {
 println("\(self.name) wrote: Hello, \(arg)")
 }
}

Note \(self.name) is evaluated first inside the quoted String literal.

CHAPTER 2: iOS Programming Basics

19

Using the Swift Instance

WEB ANALOGY

var you = new MobileDeveloper();

you.setName("You");

you.writeCode("Javascript");

You have created a Swift MobileDeveloper class and implemented the
Programmer obligations in pretty much the same way you would in Java with
some minor syntax differences. To use the class, it is the same as Java in
principle, calling a method defined in the receiver from the sender. Modify
HelloSwift/main.swift as shown in Listing 2-6.

Listing 2-6. Swift Entry main.swift

var you = MobileDeveloper()
you.name = "You"
you.writeCode("Java")

Implementing Access Control

WEB ANALOGY

While JavaScript doesn’t have access control keywords, many JavaScript developers use

closures and constructor variables to create methods and variables with private access from

the object.

Here’s an example:

function MyObject() {

 var private;

 this.getPrivate = function (arg) {

 return private;

 }

CHAPTER 2: iOS Programming Basics20

 this.setPrivate = function (val) {

 private=val;

 }

}

var test =new MyObject();

test.setVal("My private value");

console.log("Private value is "+test.getVal());

Encapsulation is one of the fundamental principles of OOP; in a
nutshell, certain internal states or methods are meant only for internal
implementations but not to be used directly by the callers. Swift provides
access controllers to prevent access to the members or methods that
developers decide to hide. This is achieved with access modifiers for files
and with module access controls using the following keywords as the access
modifiers: private, public, and internal. The internal access modifier is
the default access control that is public to the whole module but not visible
when the modules are imported. If you are building a reusable module
that can be imported by other program, use the public access modifier to
expose the API to another module. The private access modifier makes your
custom classes or type or members visible only within the file scope.

To demonstrate the private access control, modify MobileDeveloper.swift
as shown in Listing 2-7.

Listing 2-7. The private Access Modifier in MobileDeveloper

private class MobileDeveloper {
 var name = "" // var type is infered by the value

 func writeCode(arg: String) -> Void {
 // some dummy implementation
 println("\(self.name) wrote: Hello, \(arg)")
 }

 private func doPrivateWork() {
 println(">> doPrivateWork")
 }
}

// another class in the same source file
class TestDriver {
 func testDoPrivateWork() -> Void {
 var developer = MobileDeveloper()
 developer.doPrivateWork()
 }
}

CHAPTER 2: iOS Programming Basics

21

Since TestDriver is implemented in the same source file, the code in
TestDriver still can access the private class and its private method.
However, the MobileDeveloper class in Listing 2-6 becomes not visible
anymore from the main.swift file.

Using the Xcode Debugger

Knowing how to use the debugger when creating software can make a
big difference in your productivity. Do the following to see the common
debugging tasks in the Xcode debugger:

1. To set a breakpoint, click the line number in the

Xcode code editor. Figure 2-4 depicts a breakpoint

that was set in the main.swift file.

Figure 2-4. Breakpoint

Note To turn on line numbers in Xcode editors, go to the Xcode top

menu bar and select Xcode ➤ Preferences ➤ Text Editing ➤ Show Line

Numbers. There are other handy settings there that you may want to look

at (for example, shortcut keys are defined under Key Binding).

 2. To run the HelloSwift project, click the triangle-

shaped Run button in the upper-left corner or press

+R (see Figure 2-5).

CHAPTER 2: iOS Programming Basics22

3. The Swift program should start and then stop at the

breakpoint as shown in Figure 2-5. While debugging,

I normally toggle the following subviews on or off as

needed:

a. Hide the navigation area or switch to the Debug
Navigator to view threads.

b. Show the Debug area with the Debug toolbar
and Variable and Console views.

c. Hide the Utility area.

Stack Trace (in Debug navigator), Variables Inspector, Output Console, and
the Debug toolbar (in Debug area) have a similar look and feel in most IDEs,
including Xcode.

This completes your HelloSwift application exercise. As you follow along
with the iOS projects in this book, you will discover more productivity tips in
the Xcode IDE.

More About the Swift Language
The new Xcode environment and the Swift language have some pretty neat
features, so it’s worth taking a quick look at them now.

To go through this section, it is best to use the new Xcode feature called
playgrounds. Launch Xcode and select “Get started with a playground.” You
can write any code snippets you want and see the result or syntax errors
immediately. Figure 2-6 shows the playground; you write code in the left
panel, and the right panel renders the result immediately.

Figure 2-5. Xcode debugging

CHAPTER 2: iOS Programming Basics

23

JAVASCRIPT ANALOGY

Browser developer tools, JavaScript console, or JSFiddle give you immediate feedback for

the Javascript code you write.

Variables and Constants

You declare a variable using the var keyword, and you use let to declare
constants. Similar to JavaScript, Swift variables are global if defined not
within any enclosing brackets. Listing 2-8 depicts the usage of Swift
variables.

Listing 2-8. Common Variables Usages

var GlobalVar : String = "Global Variable"; // global scope not enclosed in
any brackets

class MyClass {
 var mProperty : String = ""; // class scope
 let mConstant : Int = 0; // constant

 func myMethod(arg : String) {
 var aVar : String = ""; // local variable in method scope
 let aConstant = 1;
 }
}

Figure 2-6. Xcode playground

CHAPTER 2: iOS Programming Basics24

Type Safety and Type Inference

Unlike Swift, JavaScript is a weakly typed language. A JavaScript variable
can be assigned values of any type or passed as a parameter to a function
that expects a value of a completely different type or no parameters at all.
JavaScript’s lack of strong typing can result in code that is vulnerable to
runtime errors, especially as web applications grow in size and complexity.

As a strongly typed language, Swift requires that all variables be declared
with a type that they will keep through their lifetime, with the compiler
flagging any mismatched types. If the type of a variable can be inferred
by its value, you don’t need to explicitly declare the type. Listing 2-9
is essentially the same as Listing 2-8. The Swift type inference feature
encourages developers to assign initial values that reduce common errors
because of variables not initialized yet.

Listing 2-9. Common Type Inference Usages

var GlobalVar = "Global Variable"

class MyClass {
 var mProperty = ""
 let mConstant = 0

 func myMethod(arg : String) {
 var aVar = "";
 let aConstant = 1
 }
}

Optional Variable

The optional variables are declared with the type and a postfixed question
mark (?), called an optional type. This indicates the value it contains may be
absent (nil, equivalent to undefined in JavaScript) for the intended type.
For example, Listing 2-10 depicts the difference in Swift and JavaScript for
converting a string to an integer.

Listing 2-10. Optional Type in Swift vs. Handle Exception in JavaScript

////// Javascript TypeError
function StringToInt(str) {

}
var intStr;
var int

CHAPTER 2: iOS Programming Basics

25

function useObject(objParm) {
 try {
 objParm.badFunction()
 } catch(err) {
 console.log(err);
 }
}

var undefinedObject;
useObject(undefinedObject);

////// Swift Optional Int
var intStr = "123"
var myInt : Int? = intStr.toInt() // myInt can be nil

Optionals make the Swift language more type-safe and more robust by
encouraging developers to understand whether the variable can be absent.
Listing 2-11 demonstrates two practical Swift optional usages.

Forced unwrapping, which uses a postfixed exclamation 	
pointer (!)

Optional binding, which automatically unwrap the 	
variable in the if or while statement

Listing 2-11. Swift Optional Int

var intStr = "123"
var myOptionalInt : Int? = intStr.toInt() // Optional Int
if myOptionalInt != nil {
 var myInt = myOptionalInt! // Unwrap Int? to Int
 println("unwrapped Int: \(myInt)")
}

// optional binding used in if and while local scope.
if var myInt = intStr.toInt() {
 // myInt is auto unwrapped
 println("unwrapped and local scope: \(myInt)")
}

Implicitly Unwrapped Optionals

For the situations where a variable will always have a value after the value is
set, you declare the variable as an implicitly unwrapped optional postfixed
with ! instead of ?, as in var delegate: MyDelegate!.

Any of the optionals’ usages described earlier are applicable here. You treat
them as optionals, but you don’t need to force unwrapping the variable
(Implicitly Unwrapped Optionals). You commonly see this usage in the

CHAPTER 2: iOS Programming Basics26

iOS framework for properties that are initialized somewhere else
(in other words, by the caller). Particularly, iOS frameworks embed
delegate properties everywhere. These delegates are declared as implicitly
unwrapped optionals, but their values are typically assigned by the caller.
As another example, UI widgets are normally drawn in the storyboard editor
and connect to your code as IBOutlet properties. These IBOutlet properties
are declared as implicitly unwrapped optionals. I just wanted to give you a
quick heads up for now because you will see these usages frequently later in
this book.

Tuples

WEB ANALOGY

Tuples are equivalent to JavaScript objects created by literal notation, sometimes called

anonymous objects.

Here’s an example:

var xyz = {x: 2, y: 3, z: 0};

var total=xyz.x+xyz.y;

console.log("Total is now:"+total);

// Displays: total is now 5

Tuples group multiple values into a single compound value. For example,
you can pass or return multiple values without creating a class or a struct
(structs are also supported in Swift). Listing 2-12 shows the most common
tuple usages.

Listing 2-12. Common Tuple Usages

var xyz = (x: 0, y: 0, z: 0)
println("xyz \(xyz) x is: \(xyz.x)\ty is: \(xyz.y)\tz is: \(xyz.z)")

// or decompose tuples
var xy : (Int, Int) = (1, 1) // or simply var xy = (1, 1)
var (a, b) = xy
println("xy \(xy) x is: \(a)\ty is: \(b)")

func httpResponse() -> (rc: Int, status: String) {
 return (200, "OK")
}

var resp = httpResponse()
println("resp is: \(resp.rc)\t\(resp.status)")

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

27

Collections

JAVASCRIPT ANALOGY

JavaScript arrays are used as collections, having case-sensitive string names as the

unique index.

Here’s a JavaScript example:

var colors = ['red','green','blue'];

var colorDictionary = {};

colorDictionary.red = colors[0];

Array and Dictionary are the two Swift collections. Listing 2-13 shows the
common usages, which include the following:

Initialization	
Accessing and modifying elements using subscript 	
syntax

Common collection APIs	
Listing 2-13. Common Array and Dictionary Usages

// collections
var emptyArray = Array<String>() // or [String]()
var emptyDict = Dictionary<Int, String>() // [Int: String]()
var colors = ["red", "green", "blue"]
var colorDictionary = ["r" : "red", "g" : "green", "b" : "blue"]
colors.append("alpha") // or: colors += "alpha"
colorDictionary["a"] = colors[3]
colors.insert("pink", atIndex: 2)
colors.removeAtIndex(2)
println(colors.isEmpty ? "empty" : "\(colors.count)")

The constant Dictionary or Array is immutable, meaning it is not allowed
to add or remove elements or modify existing items. On the other hand,
the variable Dictionary or Array is mutable. JavaScript has no concept of
constants or access modifiers.

CHAPTER 2: iOS Programming Basics28

Control Flow

Similar to JavaScript, in Swift you use if and switch to make conditionals and
use for-in, for, while, and do-while to make loops. Parentheses around the
condition or loop variable are optional. Braces around the body are required.
Listing 2-14 demonstrates the following common control flow usages:

	for-loop

	for-in

	while-loop

Listing 2-14. Control Flows

for (var idx = 0; idx < 10; idx++) { // optional parenthesis
 println("for-loop: \(idx)")
}

for item in [1,2,3,4,5] { // or for item in 1...5
 println("for-in: \(item)")
}

for c in "HelloSwift" { // loop thru characters
 print(c)
}

for (key, value) in colorDictionary {
 println("for-in dictionary:\(key) - \(value)")
}

// while-loop, or do-while that run at least once
var idx = 0
while idx < colors.count {
 println("while-loop: \(colors[idx])")
 idx++
}

Switch

In Swift, the switch cases can be any types in addition to int primitive data.
Listing 2-15 shows the following improved control flow switch usages in Swift:

Combined cases and always break implicitly	
Cases with ranges	
Cases with tuples	

CHAPTER 2: iOS Programming Basics

29

Listing 2-15. Improved Switch

var condition = "red"
switch condition {
case "red", "green", "blue": // combined cases
 println("\(condition) is a prime color")
 // always break implicitly (no follow thru)
case "RED", "GREEN", "BLUE":
 println("\(condition) is a prime color in uppercase")
default: // not optional anymore
 println("\(condition) is not prime color")
}

var range = 9 // by range
switch range {
case 0:
 println("zero")
case 0...9:
 println("one-digit number")
case 10...99:
 println("two-digit number")
case 10...999: // first hit first
 println("three-digit number")
default:
 println("four or more digits")
}

var coord = (0, 1)
switch coord { // by tuples
case (0...Int.max, 0...Int.max):
 println("1st quad")
case (Int.min...0, 0...Int.max):
 println("2nd quad")
case (Int.min...0, Int.min...0):
 println("3rd quad")
case (0...Int.max, Int.min...0):
 println("4th quad")
default:
 println("on axis")
}

A switch can bind the matched value within its local scope. You can specify
a where clause to test the condition, too. Listing 2-16 demonstrates both
value bindings.

CHAPTER 2: iOS Programming Basics30

Listing 2-16. Temporary Value Binding and Using the where Clause

var rect = (10, 10)
switch rect {
case let (w, h) where w == h:
 println("\((w, h)) is a square")
default:
 println("rectangle but not square")
}

Enumerations

You use an enum to define a common type for a group of named and
related constant values. JavaScript has no analogous concept, often leaving
developers passing numeric values to functions with code comments to
explain the meaning of each numeric value. After the enumeration is defined,
you use it just as a Swift type that is type-safe. Listing 2-17 shows the
following common enum usages:

Enum with or without raw values	
Enum associated with values	

Listing 2-17. Common Enum Usages

enum DayOfWeek { // raw value is optional
 case SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

var aDay = DayOfWeek.SUNDAY
switch aDay {
case DayOfWeek.SATURDAY, DayOfWeek.SUNDAY:
 println("\(aDay) is weekend")
default:
 println("\(aDay) is weekday")
}

enum DayOfWeek2 : String { // assign raw value
 case SUNDAY = "Sun", MONDAY = "Mon", TUESDAY = "Tue",
 WEDNESDAY = "Wed", THURSDAY = "Thu", FRIDAY = "Fri", SATURDAY = "Sat"
}

var aDay2 = DayOfWeek2.SUNDAY
switch aDay2 {
case DayOfWeek2.SATURDAY, DayOfWeek2.SUNDAY:
 println("\(aDay2.rawValue) is weekend")

CHAPTER 2: iOS Programming Basics

31

default:
 println("\(aDay2.rawValue) is weekday")
}

// associated values
enum Color {
 case RGB(Int, Int, Int)
 case HSB(Float, Float, Float)
}

var aColor = Color.RGB(255, 0, 0)
switch aColor {
case var Color.RGB(r, g, b):
 println("R: \(r) G: \(g) B: \(b) ")
default:
 println("")
}

Functions

Swift functions are declared with the func keyword. Unlike JavaScript
functions, which do not declare a return type, the parameter and return
types must be declared after the parameter names and function signature.
Here are the typical Swift function usages you most likely will encounter (see
Listing 2-18):

	Tuples: You can return multiple values without creating a
struct or class (see Listing 2-11).

	External parameter names: You should treat external
parameter names as part of the function signature. All of
the iOS Objective-C SDK APIs are ported to Swift with
external parameter names.

	Default parameter values: Not only does this feature
provide a default value, but it also makes method
overloading easier in many situations, as opposed to
method chaining.

	Variadic parameters: This is convienent to specify
functions with variable number of function parameters
without using Array type.

	Function parameters: These are constant by default.

CHAPTER 2: iOS Programming Basics32

	Swift functions: These are of a reference type. Just as
you can with a class type, you can pass functions as
function parameters or return them as function return
types. In practice, you would use closure expressions
more frequently.

	Closure expression: This is one of the three types of
closure defined in Swift. It is an unnamed self-contained
block of code that can be passed as a function
parameter.

Note The second type of closure is the global function mentioned right

here, which is actually a special case of closure. The third type of closure

is called a nested function declared inside a function, which is not used in

this book.

Listing 2-18. Function Usages

func doWork(parm : String) -> String { // simple form
 return "TODO: " + parm
}
println(doWork("Swift"))

// External parameter names is part of the func signature
func doWork2(name parm : String) -> String {
// arg = arg.uppercaseString; // error: constant parm
 return "TODO: " + parm
}
println(doWork2(name: "Swift"))

// use # to indicate same name for internal and external
func doWork3(#name: String) -> String {
 return "TODO: " + name
}
println(doWork3(name: "Swift"))

// With default parm value, it also implies #, same external name
func doWork4(name: String = "Swift") -> String {
 return "TODO: " + name
}
println(doWork4()) // default parm value

CHAPTER 2: iOS Programming Basics

33

// parm is constant by default unless declaring it with var
func doWork5(var name: String = "Swift") -> String {
 name = name.uppercaseString;
 return "TODO: " + name;
}

// variadic parms
func sumNumbers(parms : Int...) -> Int {
 var sum = 0
 for number in parms {
 sum += number
 }
 return sum
}
println(sumNumbers(2,5,8))

// func is a type, can be used for parm or return type.
func separateByAnd(p1: String, p2: String) -> String {
 return p1 + " and " + p2
}
func printTwoString(p1: String, p2: String, format: (String, String)
->String) {
 println(format(p1, p2))
}
printTwoString("Horse", "Carrot", separateByAnd)

// closure expression is unnamed func
printTwoString("Horse", "Carrot",
 {(p1: String, p2: String) -> String in
 return p1 + " and " + p2
 })
printTwoString("Horse", "Carrot",
 {p1, p2 in // type inferences
 return p1 + " and " + p2
 })
printTwoString("Horse", "Carrot",
 { // Inference and shorthanded parm names, $0, $1 ...
 return $0 + " and " + $1
 })

You may get by with not using most of the shorthand options at first, but
for iOS programming, you definitely will need to get used to the external
parameter names because they are used heavily in iOS frameworks.

CHAPTER 2: iOS Programming Basics34

Class

Like other classic OO languages, Swift uses classes to define the shared
functionality and properties of a given type. Though many web developers
may be unfamiliar with the creation of classes using prototype inheritance
in JavaScript, almost every web developer has made use of the JavaScript
classes that define the support for DOM manipulation. The simplest Swift
class form can be depicted as shown in Listing 2-19.

Listing 2-19. Simple Swift Class

class SimpleClass {
 var mProperty : Int = 0
 var mConstant : String = "MyKey"
 func myMethod(name: String) -> Void { println(name)}
}

Property

Listing 2-20 demonstrates the following Swift property usages:

	Stored property: Analogous to normal JavaScript object
property.

	Computed property: For derived values, executes code,
but referenced as a property.

	Property observer: Optional coding block that responds
to changes in a property value.

	Type property: A property with scope defined at the
class level, rather than at the instance level. Stored type
properties are not supported in the Swift class type yet.
Since struct type property is now supported, you may
choose to define an inner struct for porting Java static
variables as a workaround for now.

Listing 2-20. Swift Class Property

class MyClass {
 var width = 10, height = 10 // stored properties

 // computed properties, can have set as well
 var size : Int {
 get {
 return width * height
 }
 }

CHAPTER 2: iOS Programming Basics

35

 var size2 : Int { // readonly, shorthanded
 return width * height
 }

 // property observer
 var depth : Int = 10 {
 willSet {
 println("depth (\(depth)) will be set to \(newValue)")
 }
 didSet {
 println("depth (\(depth)) was set from \(oldValue)")
 }
 }

 // Swift class Type property,
 class var MyComputedTypeProperty : String {
 return "Only computed Type property is supported in class type for now"
 }

 // use struct stored Type property as a workaround
 struct MyStatic {
 static let MyConst = "final static in Java"
 static var MyVar: String?
 }
}

println(MyClass.MyStatic.MyConst)
MyClass.MyStatic.MyVar = "class var in Java"
println(MyClass.MyStatic.MyVar)

Method

Methods are functions defined inside a type context (in other words, a
class). They are still functions as described previously (see Listing 2-17). You
can define instance methods, which are called on an instance of a class, or
type methods, which are called on the class itself. Listing 2-21 shows the
following typical method usages:

Method declarations enforce external names implicitly, 	
except for the first parameter. This is different from the
global function (see the “Functions” section). All iOS
Objective-C methods are ported to Swift using this
convention.

Use 	 class func to declare class type methods, or use
static func to declare type methods in struct or enum
types.

CHAPTER 2: iOS Programming Basics36

Listing 2-21. Common Method Usages

class MyClass {

///////// methods copied from Listing 2-17 //////////
 func doWork(parm : String) -> String {
 return "Do something with: " + parm
 }

 // default parm value, always imply externl parm name
 func doWork2(name: String = "Swift") -> String {
 return "Do something with: " + name
 }

 // func is a type, can be used for parm or return type.
 func separateByAnd(p1: String, p2: String) -> String {
 return p1 + " and " + p2
 }

 func printTwoString(p1:String, p2:String, format:(String, String)->String)
{
 println(format(p1, p2))
 }

 // Type methods, methods which can be called on the Class
 class func DoWork(parm : String) -> String {
 return "Do something with: " + parm
 }
}

var c = MyClass()
println(c.doWork("Swift"))
println(c.doWork2()) // default parm value
println(c.doWork2(name: "Swift")) // external name enforced

// closure is unnamed func
c.printTwoString("Horse", p2: "Carrot", format: c.separateByAnd)
// Inference and shorthanded parm names apply to method, too.
c.printTwoString("Apple", p2: "Orange", format: {
 return $0 + " and " + $1
 })

MyClass.DoWork("Swift Type method")

Reference Type vs. Value Types

Just as in JavaScript, reference types are passed by reference (the reference
to the instance is copied to another variable), and values types are passed
by copy (the whole value type instance is copied to another memory space).
However, you do need to pay attention to certain differences.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

37

Custom classes are reference types. Primitives, structs, 	
and enums are value types. This is similar to JavaScript,
where objects and functions are passed by reference
and primitives are passed by value.

Unlike JavaScript, arrays are value types (they are not 	
classes in Swift). This is nice but may surprise you in the
beginning.

Since 	 Dictionary and Array are value types, they are
copied during assignment. The contained items are also
deep-copied if they are value types.

You will encounter the Swift 	 NSString, NSArray, and
NSDictionary because they are directly ported from
counterpart Objective-C framework classes. They are all
implemented as classes and are thus reference types.

iOS Project Anatomy
Most GUI apps are composed of more than programming source code;
for example, a typical iOS project contains Swift or Objective-C source
code, libraries, storyboard files, images or multimedia noncode application
resources, an application-information property Info.plist file, and so forth.
Xcode compiles and builds the whole project and bundles all the artifacts
required for an app into an archive file with an .app file extension and signs
the .app file with the appropriate signing certificate.

Let’s create a simple HelloMobile Xcode project so that you can visualize
these software artifacts in a typical iOS project.

It has only one screen.	
On this screen, it has an 	 EditText to take user input.
When the Hello button is pressed, it shows a greeting in
a TextView.

To create the HelloMobile iOS app, start Xcode and proceed with the
following steps:

1. Select “Create a new Xcode project” on the

Welcome to Xcode launch screen. Or, you can select

File ➤ New ➤ Project from Xcode’s top menu bar.

2. Select iOS Application and then choose Single View

Application as the project template (see Figure 2-7).

CHAPTER 2: iOS Programming Basics38

3. Complete the following fields to finish creating the

new project:

a. Product Name: Enter HelloMobile.

b. Organization Name: Use something like
PdaChoice.

c. Organization Identifier: Use something like
com.liaollc.

d. Language: Select Swift.

4. Click the Next button when done.

5. Select a folder to save your HelloMobile project.

The bare-bones HelloMobile iOS project is created, and it now appears in
the Xcode Project Navigator area (see Figure 2-8).

Figure 2-7. Single View Application template

CHAPTER 2: iOS Programming Basics

39

Figure 2-8. HelloMobile project

It is immediately runnable. Let’s examine the typical iOS software artifacts in
an Xcode project, which comprise the iOS app.

Swift classes in 	 .swift files. There are two classes.

a. AppDelegate.swift: Each iOS app must have
one AppDelegate class. This is the entry point of
the iOS program. You don’t need to modify this
file if your program doesn’t need to track the
global application state.

b. ViewController.swift: There is a
ViewController class paired with the content
view. The intended purpose is the content view
controller for the content view.

	Main.storyboard file with .storyboard file extension.

a. You commonly create one storyboard scene per
content view and use only one storyboard file for
all content views so you can visually implement
the linkages among them.

b. Images.xcassets. This is where you put your
image assets, in what is called the assets
catalog. Developers should provide different
assets for each device configuration. This
is done for the same purpose as providing
alternative resources in Android.

c. PNG and JPEG image formats are both
supported as of this writing. Using the assets
catalog is not a must. You may drop any resource
files into the Xcode project. (You may want to
create a folder to organize them yourself).

CHAPTER 2: iOS Programming Basics40

	Info.plist file. This file describes how the app is
configured and the required capabilities the system
needs to know.

a. You may glance through this file to get a feel for
the configurations and settings that Xcode needs
to know about the app. Xcode initially creates it
in XML format, which you can edit directly.

Like most web development projects, you can organize 	
your project structure in any way you want. Many web
developers follow a strict naming convention pattern
for the storage of their CSS files, images, and so on,
and Swift will allow you to do the same. Swift currently
has no concept of namespaces. All classes in Swift
are scoped by the module they are defined in (that is,
NSLog Swift scopes as Foundation.NSLog). I normally
manually organize my Swift classes in folders structured
by functionality and create a res folder to organize any
resources files, including the Images.xcassets.

a. In Xcode, the folder can be an actual folder in light
blue (for example, the Images.xcassets folder).

b. Folders in Xcode can also be just a tag, called a
group, that is yellow (for example, HelloMobile,
Supporting Files, and so on). Their actual
location could be in any of the physical
subfolders, but you should not care.

Xcode 6 automatically creates a unit test target for your 	
primary project. It contains a TestCase class skeleton in
which you can write your unit test code. Although you
will not use this feature in this book, it is actually useful.

Project Settings and Target Settings instruct Xcode how 	
to compile and build the projects. To show the Project
Settings, select the top-level application name in the
Xcode Project Navigator area. The Project Settings
editor shows in the Editor area. For this simple project,
you don’t need to modify anything. But you should
glance through the editor to get a quick idea of what
Xcode requires to compile and build the executable.

The iOS app is not completed yet, but it has everything a typical iOS app
should have.

CHAPTER 2: iOS Programming Basics

41

Xcode Storyboard

WEB ANALOGY

There is no storyboard-like feature in most web dev environments. Views are normally

either built one at a time in a quasi-WYSIWIG markup editor (Visual Studio, Eclipse, and so

on) or, more often than not, built in a text editor for use with libraries such as Handlebars

or Knockout. Even web developers familiar with Sencha Architect will find the storyboard

designer’s presentation of application flow to be tremendously powerful and intuitive by

comparison.

Use the Xcode storyboarding feature to visually compose the UI for your
app. As its name implies, not only does it create individual screens and UI
widgets, but it also lets you compose the whole app as one storyboard.
Since iOS apps are all GUI apps, this tool will greatly determine your
productivity in creating iOS apps through the following actions:

Drag and drop a View Controller from the Object Library 	
to create a content view, called a storyboard scene.

Drag and drop UI widgets from the Object Library onto 	
the storyboard scene (content view) and position each
widget appropriately.

Implement Auto Layout to make the UI widgets and 	
content view flexible and adaptive for various screen
sizes, similar to the Android relative layout manager.

Implement specific content views for specific size 	
classes of different devices.

Link the UI widgets to the properties of the view 	
controller via outlets and write code to respond to UI
widget events.

You can even draw the view controller transitions all 	
within the storyboard editor.

There are other subviews in the Utility area that you can select from the top
selector toolbar. All of them are important; you should take a moment to get
familiar with them.

	File Inspector: This shows you the actual file identity
and document type options in Xcode.

	Quick Help Inspector: This shows you the reference doc.

CHAPTER 2: iOS Programming Basics42

	Identity Inspector: This shows you the Swift class from
SDK or your custom class that is associated with the
item in the storyboard.

	Attributes Inspector: This is your primary interest now.
You will see different attributes for different widgets.

	Size Inspector: This shows you the rectangular area in
which the widget is located.

	Connections Inspector: This lets you draw the connection
to the view controller. I will discuss this later in the book
(see “Interact with Content View” in Chapter 3).

Now is the time for you to get familiar with the Xcode storyboarding feature.
The iOS HelloMobile project doesn’t look like the complete app yet; it has
only one screen in the Main.storyboard file, which is empty. You will need to
add three UI widgets: EditText, TextView, and a hello Button.

First you will implement the user interface of the HelloMobile iOS app.
Xcode storyboards provide everything you need for this mission.

Object Library and Attributes Inspector

WEB ANALOGY

Many web developers find themselves building their markup and code in a tool of their

choosing, running the application in a browser with the developer tools open, and inspecting

and manipulating the attributes of their layout directly from the browser.

You need to add three UI widgets to the content view using the following
steps:

1. Select the Main.storyboard file in the Project

Navigator. Figure 2-10 depicts the storyboard editor

in the Editor area. Currently, there is only one screen,

known as a storyboard scene.

2. Select the Object Library from the Library selector

bar in the Utility area. This is where you can find the

UI widgets and elements to compose the storyboard.

3. Optionally, to make more room for your storyboard

editor, you may hide the navigation and Debug areas

by selecting the toggle buttons, as indicated in

Figure 2-9.

CHAPTER 2: iOS Programming Basics

43

4. I will talk about size class, an important new iOS

8 feature, in Chapter 3. For now, disable it by

unchecking Use Size Classes in the File Inspector

of the Utility area, as shown in Figure 2-10. This will

give you a better WYSIWYG storyboard editor.

Figure 2-10. Disable Use Size Classes in File Inspector

Figure 2-9. Select UI components from the Object Library

5. To add the UI widget to storyboard scene, find the

desired UI widget from the Object Library and drag

it to the existing view in the storyboard scene. Both

Android and iOS screens must have one root view,

and any view element should be added to a parent

view. This forms the parent-child view hierarchy.

CHAPTER 2: iOS Programming Basics44

a. You must select the parent view (see the
pointer in Figure 2-11) first so you can drop the
TextField element onto it.

b. You may browse and select the UI widgets from
Object Library. The list is long, so the search
bar on the bottom is useful for finding the right
widget. Type the name of the iOS widget, as
shown in Figure 2-10, or just type in your best
guess for as many characters as needed.

Figure 2-11. Guide lines

Tip The iOS widgets you need are called UITextField, UILabel, and

UIButton.

c. To position the newly added TextField, drag
it to where you want it to be. Xcode gives you
guide lines to show you when the widgets are at
certain positions of the common interests, such
as in the center, or aligned to any other widgets
(see Figure 2-11).

d. Figure 2-12 shows the three simple UI widgets
added to the storyboard scene.

CHAPTER 2: iOS Programming Basics

45

Figure 2-12. Three simple UI widgets

6. The attributes of UI widgets in Swift control the look,

feel, and behavior of the widgets, and you can change

them visually. You can find and modify these attributes

in the Attributes Inspector located in the Utility area.

Set the attributes of the TextField like this:

a. Set the font size to System 24.

b. For the placeholder, enter Enter a Name,

e.g., You.

c. Set the alignment to center.

d. TextField has a handful of attributes. Glance
through them and you should have no problem
relating them to the counterpart attributes you
normally use in an HTML element.

e. Switch to the Size Inspector view and change
the width to 200. You will need to drag the
TextField to reposition it to center horizontally.

CHAPTER 2: iOS Programming Basics46

7. To make the Label widget like the Android

counterpart TextView, modify the following attributes:

a. For Text, enter something like Hello World!.

b. Set Font to something like System 20 or Headline.

c. Set Alignment to center.

d. Set Lines to 1.

e. Switch to the Size Inspector and change the
width to 200. You will need to drag the label to
reposition it to center horizontally.

8. To make the Button widget like the Android

counterpart, modify the following attributes:

a. Text: Hello World!

b. Title: Hello ...

9. To preview your storyboard in Xcode, click the

Assistant Editor button on the toolbar and

select Preview in the Assistant Editor, as shown

in Figure 2-13.

Figure 2-13. Three simple widgets added to the storyboard

The look and feel in portrait mode is close enough for our purposes, in other
words, using a storyboard to visually compose the content view without
writing a single line of code. The iOS HelloMobile is not completed yet.
The Hello button doesn’t read “Hello...,” and the landscape mode is not
acceptable yet. Both are important topics and have their own sections in
Chapter 3.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: iOS Programming Basics

47

In this exercise, I just wanted to give you a quick look at the Xcode
storyboard editor. The Xcode workspace could be a little overwhelming if
you are not used to using any IDE. Spend a moment to get familiar with
the Xcode workspace, including the storyboard editor, the Utility area, the
selector toolbar, and so forth. Xcode storyboarding is an important tool that
will greatly influence your productivity when creating iOS apps.

Summary
On the surface, you learned about a lot of things in this chapter. I started
with a discussion of Swift–JavaScript language comparisons to show
their similarities, and then I went over Swift language topics to highlight
the new language features. However, the rest of the book will focus on
iOS programming instead of the Swift language. The code will address
readability as opposed to being concise using shorthanded notations or
Swift tricks. You surely won’t have a problem reading all the Swift code in
the rest of the book. Sooner or later, though, you will need the reference
document to the Swift programming language, which is available free in
iTunes (https://itunes.apple.com/us/book/swift-programming-language/
id881256329).

You created a HelloMobile iOS project using Xcode to visualize a typical iOS
application structure. You also got your first taste of the Xcode storyboard,
which is important and which you will use for every iOS app, including all the
sample projects in this book, so plan on revisiting the storyboard repeatedly.

https://itunes.apple.com/us/book/swift-programming-language/id881256329
https://itunes.apple.com/us/book/swift-programming-language/id881256329

Part 2
A Roadmap for Porting

51

Chapter 3
Structure Your App

To implement your software, you make design decisions based on how
you’d like to structure your app in terms of organizing your code.
To decide your iOS app structure up front, the top-down approach and
model-view-controller (MVC) design pattern are recommended and actually
embedded in the iOS software development kit (SDK) and tools. MVC
may not be enforced in most of the popular web development platforms,
but the vocabularies should be familiar to both front-end and back-end
web developers. The techniques may vary, but the principle is the same:
structure your app into three software layers consisting of the model, view,
and controller.

In the iOS programming paradigm, you are encouraged to take the so-called
top-down approach for creating your mobile apps, where you design the
application workflow prior to detailing each individual screen. Xcode will
guide you to turn on your top-down programming thinking hat.

I will discuss MVC first, followed by how to create the iOS storyboard in
Xcode. With the guided screen navigation patterns, your iOS storyboard
naturally breaks your iOS apps into MVC components to form the skeleton
of the iOS mobile app.

CHAPTER 3: Structure Your App52

Model-View-Controller

WEB DEV ANALOGY

Perhaps it is best not to try to compare the iOS MVC design pattern with any web MVC

design patterns. For those who have worked in web development for a long time, you

probably have seen many MVC framework variants. All you need to know now is there is

only one MVC in iOS, and it is very clean compared to the various web MVC framework

libraries.

MVC breaks the graphical user interface (GUI) app into three layers. The
iOS MVC design pattern specifies that a GUI application consists of a data
model, a presentation view, and controller layers, as shown in Figure 3-1.

Figure 3-1. The iOS MVC design pattern

In the iOS SDK, you explicitly use the MVC vocabularies of Content View
and Content View Controller. You naturally break down your iOS app into
MVC classes, starting with creating a storyboard prototype using the Xcode
storyboard editor.

Unless your app has only one screen, you need to decide how to implement
navigation and screen transitions among multiple view controllers. You need
an optional MVC participant: a Container View Controller to coordinate the
view controllers. In iOS, the SDK provides several Container View Controllers
for screen navigation purposes; you simply choose the appropriate
Container View Controller class and let the iOS framework facilitate the
tasks for you.

I’ll start with the Content View and Content View Controller and then talk
about the Container View Controller.

CHAPTER 3: Structure Your App

53

Content View

WEB ANALOGY

The Content View is equivalent to the web presentation layer. It could be a static HTML

page, server-side template, or client-side template. The technique may be different, but the

principle is the same: you create a presentation layer that is not tightly coupled to the data.

A Content View provides a visible area so that users can interact with the
app. The Content View defines how to render itself with content and can
interact with user actions. To create Content Views in iOS, use an Xcode
storyboard.

When it comes down to implementing a Content View, you face the same
issue you normally encounter when implementing a web page: how to
make the page rendering adaptive to screen size. This is actually a hot topic
in web development as well. Recall that in the iOS HelloMobile app, you
drew the UI widgets in the storyboard scene by dragging and dropping the
widgets to draw them on the parent view. However, this iOS Content View
is not adaptive to other device types and screen orientations yet. You can
easily observe the landscape problem in the Assistant Editor previews (for
example, see Figure 2-14 in Chapter 2). Creating adaptive Content Views
for various screen sizes is a common task in many platforms. In iOS, you
essentially use iOS platform features for the same purposes.

	Auto Layout: This works best with responsive user
experience (UX) designs that are agnostic/adaptive to
screen sizes.

	Size classes: These provide ultimate flexibility for
customizing the screens for different screen sizes.

Auto Layout

You use iOS Auto Layout to position each UI widget by aligning or spacing it
relative to other widgets, that is, siblings or the parent view.

The three widgets in the current iOS HelloMobile project are not positioned
properly in landscape mode (see Figure 2-14 in Chapter 2). Here you’ll use
iOS Auto Layout to fix this while learning its uses.

CHAPTER 3: Structure Your App54

While extremely powerful, some Xcode editors and operations are collapsed
in the menus and can be difficult to find for a beginner. Figure 3-2 depicts
some quick tips.

If you cannot find an editor or navigator, look in the View 	
menu in Xcode’s top menu bar.

Auto Layout operations are grouped in the Editor menu 	
in the Xcode top menu bar.

There are four small buttons on the bottom toolbar 	
of the storyboard editor. They offer quick Auto
Layout operations and give you some visual hints of
what they are.

Assistant Editor is an important frequent used feature, 	
that you will use next.

The view selector in the Utility area allows you to switch 	
between several inspectors. You will use inspectors a lot
in the next chapter, too.

Figure 3-2. Storyboard Auto Layout operations in Xcode

Continue working on the HelloMobile project. Do the following:

1. The storyboard preview in Assistant Editor is useful

for immediately seeing any changes for the selected

storyboard scene.

a. Select the main.storyboard file and open the Assistant
Editor (see the right pointer in Figure 3-3).

b. Select the Preview option from the Assistant menu
selector that is default to “Automatic” (see the left pointer
in Figure 3-3).

CHAPTER 3: Structure Your App

55

2. Center the TextField horizontally in the container

to create an x-alignment constraint, as shown in

Figure 3-4.

a. Select the TextField in the storyboard editor.

b. In the Xcode top menu bar, select Editor ➤ Align ➤
Horizontal Center in Container.

Figure 3-3. Two steps to reach the Xcode storyboard preview

Figure 3-4. Using Horizontal Center in Container on the TextField in the Auto Layout editor

CHAPTER 3: Structure Your App56

3. Use Vertical Center in Container to create a

y-alignment constraint (see Figure 3-5).

a. From the Xcode top menu bar, select Editor ➤ Align ➤
Vertical Center in Container.

b. In the Attributes Inspector in the Utility area, to
position the TextField at the one-sixth of the view
height instead of half, you can apply a multiplier of 3.

Figure 3-5. Creating a y-alignment constraint using a multiplier

Note Use Multiplier or Constant to create an offset for the second

item position:

 (first item position) == (second item) * multiplier + constant

4. Select Resolve Auto Layout Issues ➤ Update

Frames, as shown in Figure 3-6.

CHAPTER 3: Structure Your App

57

5. Select the Hello World! label and click the Pin button

to add multiple constraints for appropriate spacing

and widgets height, as shown in Figure 3-7.

a. Pin the Top space to the nearest widget, the TextField,
with 48.5 pixels.

b. Pin both the Leading and Trailing spaces to the nearest
widget, the parent view of the label, with 60 pixels.

c. Pin the label’s Height to be 21 pixels.

Figure 3-6. Using Update Frames to reposition the UI widgets based on constraints

CHAPTER 3: Structure Your App58

Note The combined constraints need to make sense without ambiguity.

You can set a priority for each individual constraint. However, if you start

using priorities to resolve conflicts, you might want to think about using

fewer constraints.

Figure 3-7. Spacing Hello World! label relative to its neighbors

6. Select the Hello World... button. You can align it

similar to the TextField.

a. Use Horizontal Center in Container to create an
x-alignment constraint.

b. Use Vertical Center in Container to create a
y-alignment constraint with a multiplier of 0.75.

Using Auto Layout with responsive UX designs immediately provides the
proper landscape layout. Figure 3-8 shows the previews in both landscape
and portrait modes for iPhone 4-inch and 3.5-inch modes. Click the + icon
(see the pointer in Figure 3-8) to add multiple previews for different devices.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Structure Your App

59

Size Classes

WEB ANALOGY

Responsive web design would use media query breakpoints in the style sheet to target

specific screen sizes.

While Auto Layout provides an effective way to implement responsive UX
for various screen sizes, it may not utilize the valuable mobile-screen real
estate in the most efficient way. For example, it is fairly common to lay out
landscape view differently from portrait because of the different aspect
ratios to have tablet-specific UX design, and so forth.

Prior to iOS 8, you generally implemented two storyboards, one for iPhone
and one for iPad. Beginning with iOS 8, size classes were introduced to
solve this common programming issue by using the abstract presentations
of device sizes in terms of horizontal widths and vertical heights. The current
iOS devices can be classified as shown in Table 3-1.

Figure 3-8. Auto Layout with responsive UX design

CHAPTER 3: Structure Your App60

You can provide the entire implementation for all size classes all in one
storyboard!

Recall the iOS HelloMobile app—it works only in iPhone portrait mode
(see Figure 2-14 in Chapter 2), and it disables size classes. In the following
steps, you will enable size classes to see how to use them:

1. As shown in Figure 3-9, select Use Size Classes

(bottom pointer) in the File Inspector (accessed as

shown by the top two pointers).

Table 3-1. iOS Device Size Classes

Size Classes Compact Width

•	 iPhone:	portrait	width

•	 iPhone:	landscape	width

Regular	Width

•	 iPad:	portrait	width

•	 iPad:	landscape	width

Compact Height:

• iPhone: landscape height iPhone in landscape Customized view controller

Regular Height:

• iPad: portrait height

• iPad: landscape height

• iPhone: portrait height

iPhone in portrait iPad in portrait

iPad in landscape

CHAPTER 3: Structure Your App

61

2. Use the Assistant Editor to preview the iPhone and

iPad screens. Size classes can be overwhelming in

the beginning, but I have found the previews helpful

(see Figure 3-10).

a. The scenes are converted to the most adaptive size
class: (wAny hAny). The Auto Layout constraints are
also preserved in this size class. You immediately get
the iPad scene working as expected.

Figure 3-10. Size classes preview

Figure 3-9. Selecting Use Size Classes

CHAPTER 3: Structure Your App62

3. Click the size class control to select the size class

(see Figure 3-11).

a. Hover your mouse to see the highlight and title changes.
Comparing this with Table 3-1, you can select the Any row
or column that targets the wider size classes. The default
is Any Width | Any Height, which is applied to all the size
classes to start with.

Figure 3-11. Using the size class selector to select a specific size class

4. To provide a specific layout for an iPhone landscape

scene, select the Compact Width | Compact Height,

as shown in Figure 3-12.

CHAPTER 3: Structure Your App

63

5. To demonstrate the powerful size class feature, start

fresh for the compact-compact size class. From

the top menu bar, select Editor ➤ Resolve Auto

Layout Issues ➤ Clear Constraints in View Controller.

This clears the Auto Layout constraints only in the

selected size class; you can see the constraints still

there, but they are grayed out.

6. Drag the widgets to reposition them to get a quick

idea—you don’t need to be precise (see Figure 3-13).

a. Since you are providing a custom layout explicitly for
iPhones in landscape, you can draw the positions
precisely and let the storyboard editor do the rest by
choosing Editor ➤ Resolve Auto Layout Issues ➤
Reset to Suggested Constraints in View Controller.

b. If you tried the preceding step, select Clear
Constraints in View Controller again to have a clean
start for creating Auto Layout constraints.

Figure 3-12. Compact Width | Compact Height for iPhones in landscape

CHAPTER 3: Structure Your App64

7. For the TextField, add the following Auto Layout

constraints:

a. Use Horizontal Center in Container to create an x-alignment
constraint with a multiplier of 2.

b. Use Vertical Center in Container to create a y-alignment
constraint with a multiplier of 1.5.

c. From the top menu bar, select Update Frame at Editor ➤
Resolve Auto Layout Issues.

d. To update the existing constraints, either select the
constraint from the storyboard navigator or select
the widget on the scene first to see and click the
guided line in the storyboard scene. Use the Attributes
Inspector in the Utility area (see Figure 3-14) to update
any constraint attribute.

Figure 3-13. Two-sided view for compact height (iPhone landscape mode)

Figure 3-14. Updating the Auto Layout constraint

CHAPTER 3: Structure Your App

65

8. For the Label object, add the following Auto Layout

constraints in the same way as in step 7:

a. Use Horizontal Center in Container to create an
x-alignment constraint with a multiplier of 2.

b. Use Vertical Center in Container to create a
y-alignment constraint with a multiplier of 0.75.

c. From the top menu bar, select Update Frame at
Editor ➤ Resolve Auto Layout Issues.

9. For the Button object, add the following Auto Layout

constraints in the same way as in step 7:

a. Use Horizontal Center in Container to create an
x-alignment constraint with a multiplier of 0.67.

b. Use Vertical Center in Container to create a
y-alignment constraint with a multiplier of 1.

c. From the top menu bar, select Update Frame at
Editor ➤ Resolve Auto Layout Issues.

All the device classes in previews look good, as expected (Figure 3-15).

Figure 3-15. Device classes previewed in the storyboard editor

You can run the app in all emulators to see the work in action. Figure 3-16
shows the iPhone 4s emulator. The framework takes care the transition
animations for you, too!

CHAPTER 3: Structure Your App66

Content View Controller

WEB ANALOGY

This is the code that is responsible for getting data and injecting it into the template or

Document Object Model (DOM) elements.

The Content View Controller participant pairs with a Content View (see
Figure 3-1). In the iOS, the Content View normally is created statically in
the storyboard. The Content View Controller class manages the Content
View to present the dynamic behavior of the user interface by conveying
information to and interacting with users. In iOS, you create a custom class
by subclassing from UIViewController.

Your primary Content View Controller tasks are as follows:

Pair with its own Content View	
Keep object references to the UI widgets in the 	
Content View

Implement methods to respond to widget events	

Figure 3-16. iPhone 4s portrait and landscape size classes

CHAPTER 3: Structure Your App

67

In iOS, you normally use the storyboard editor to connect the UI widgets
or events to your code to facilitate these common Content View Controller
programming tasks.

Pair with Content View

In iOS, you normally create a storyboard for your apps first (like the iOS
HelloMobile project). Generally, for every storyboard scene (Content View),
you create a Swift class subclassed from UIViewController to pair with it.

The iOS HelloMobile project is not completed yet; it renders only the initial
screen but does not do anything when you click the Hello... button. You
need a functional Content View Controller that can fulfill this responsibility.
The Single View Application template already pairs a controller class for you:
ViewController.swift. To demonstrate the whole subject, don’t use this
class; instead, do the following to create your own class:

1. Create a new file for a new Swift class.

a. Right-click the HelloMobile folder in the Navigator area
and then select New File ➤ iOS ➤ Source ➤ Swift File
(see Figure 2-3).

b. Save the file as HelloViewController.swift.

c. Create the HelloViewController class subclassed from
UIViewController, as shown in Listing 3-1.

Listing 3-1. HelloViewController Class Skeleton

import UIKit
class HelloViewController: UIViewController {
 // TODO
}

2. Pair the storyboard scene with the

HelloViewController class (see Figure 3-17).

a. Select Main.storyboard to open the storyboard editor.

b. Select the view controller in the storyboard scene
and open the Identity Inspector in the Utility area.

c. Enter HelloViewController in the Custom Class
field to pair the storyboard scene with the
HelloViewController class.

CHAPTER 3: Structure Your App68

Specifying the custom class in the Identity Inspector is all you need to pair
with the Content View Controller.

Interact with Content View

WEB ANALOGY

To interact with an element in a web app, you would attach an event listener, such as

onClick(), which would call a function in your controller code.

Generally speaking, you create UI widgets in a Content View, and your
Content View Controller code updates the widget’s states or interacts
with users at runtime. In iOS, you use the Connections Inspector to create
IBOutlet and IBAction to facilitate this common programming task by
drawing connections to your code in the Swift class.

	IBOutlet: The view controller property that is connected
to the widgets in the storyboard scene

	IBAction: The view controller method that is called
when the widget events occur

Figure 3-17. Identity Inspector to pair with the view controller

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Structure Your App

69

The following walks you through the steps to connect the UI widgets and
delegates action events to your controller class:

3. Select Main.storyboard to open the storyboard editor.

a. Open the storyboard Assistant Editor. The
HelloViewController class should automatically
open in the Assistant Editor.

b. Sometimes the right file may not be opened
automatically in the Assistant Editor, so you may
need to select the right file manually (see the
pointer in Figure 3-18).

Figure 3-19. Opening the Connections Inspector

Figure 3-18. Selecting a file manually in the Assistant Editor

4. Select the TextField in the storyboard scene (the left

pointer in Figure 3-19) and open the Connections

Inspector (the right pointer in Figure 3-19), as shown

in Figure 3-19 (make sure the Utility area is unfolded).

CHAPTER 3: Structure Your App70

5. Create an IBOutlet for the TextField in the

storyboard scene (see Figure 3-20).

a. Drag the circle next to New Referencing Outlet with
three fingers (or hold the left trackpad button at the
same time) and drop it inside the class. You should see
the line from the circle, as shown in Figure 3-20.

b. Enter the connection name (that is, mTextField). This
creates a property in the Swift class.

Figure 3-20. IBOutlet in the Connections Inspector

6. Repeat steps 2 and 3 to create mLabel and mButton
IBOutlets.

7. Create an IBAction for the button touch-down events.

a. Drag the circle next to the Touch Down in Sent
Events section and drop it inside the Swift class
(see Figure 3-21).

b. Enter the method name, that is,
onButtonTouchDown. This creates a method stub
in the Swift class.

c. Add the Say-Hello code to complete the IBAction
method implementation in HelloViewController.swift,
as shown in Listing 3-2.

CHAPTER 3: Structure Your App

71

Listing 3-2. HelloViewController with IBOutlet and IBAction

import UIKit

class HelloViewController: UIViewController {

 @IBOutlet weak var mTextField: UITextField!
 @IBOutlet weak var mLabel: UILabel!
 @IBOutlet weak var mButton: UIButton!

 @IBAction func onButtonTouchDown(sender: AnyObject) {
 var str = mTextField.text
 mLabel.text = "Hello \(str)!"
 }
}

This completes the whole HelloMobile iOS app. You can run the project in all
iOS emulators to see the code in action.

You’re almost done with the MVC topics. Just one more small lecture before
getting into more fun stuff: UIViewController life-cycle events.

UIViewController Life Cycle

WEB ANALOGY

DOM life-cycle events such as DOMContentLoaded, window.onload, or callbacks using

jQuery.ready() are typical for web applications that need to manipulate the DOM. To

detect when a page is being closed, the window.onbeforeunload event is used.

Figure 3-21. Creating an IBAction in the Connections Inspector

CHAPTER 3: Structure Your App72

In iOS apps, life-cycle callbacks are called at various points when a Content
View is being rendered. Certain tasks need to be performed in certain states
to ensure the Content View is rendered smoothly. This applies to many
modem UI platforms including iOS and Android. These events may not be
a beginner topic, but the purpose is simple: you want to perform certain
computing tasks at the right time to ensure the rendering process is smooth
and data is ready at the right time.

Most of these events are optional to implement; you can choose to override
these inherited system methods to receive timely callbacks if you want.

viewDidLoad

The iOS system calls the viewDidLoad() method when the view controller
loads its Content View. You commonly put the initialization code here.

viewWillAppear

The iOS system calls the viewWillAppear() method when the view is about
to appear. Compared to vewDidLoad(), this method gets called every time
you revisit the view, while viewDidLoad() gets called only the first time.

viewDidAppear

The iOS system calls the viewDidAppear() method when the view becomes
visible. If you want to show rendering effects upon the view being visited,
that is, animation effects, you want to put the code in this method. On the
other hand, you want to avoid time-consuming code in this method to avoid
the UI not being responsive.

viewWillDisappear

The system calls the viewWillDisappear() method when the Content View
is about to become invisible—for example, leaving for another storyboard
scene. This is usually where you should commit any changes that should
be persisted beyond the current user session (because the user might not
come back).

viewDidDisappear()

The system calls the viewDidDisappear() method when the Content View is
not visible.

When implementing these life-cycle events, you almost always want to call
the corresponding super.viewXXX().

CHAPTER 3: Structure Your App

73

Screen Navigation Patterns
You commonly need multiple screens to convey hierarchical information and
to interact with users. Considering the relatively small mobile screens, it is
more crucial that you use well-known navigation patterns to make mobile
apps more predictable. A consistent and predictable navigation pattern
guides users to complete a task with multiple screens. Efficient navigation is
one of the cornerstones of a well-designed mobile app.

Storyboard Segue
A segue (pronounced “seg-way”) is a type of a connection in a storyboard that
specifies transitions from one scene to another. For instance, you can create
an action segue that is performed immediately when the action is triggered.
More frequently, you will create a manual segue in storyboard and write logic
to perform the segue. Depending on its transition type, the segue may require
a Container View Controller. For example, to implement the typical navigation
stack transitions, you will need a Navigation Controller in iOS.

The following steps will walk you through creating a storyboard segue:

1. Create a new Xcode project using the Single

View Application template with a product name

of Segues. (See Chapter 2 for step-by-step

instructions.)

2. Open Main.storyboard in the storyboard editor. It

should look like Figure 3-22 when you’re done.

a. Add two Button widgets to the existing scene: one for
the action segue and the other for the manual segue.

b. Drop two View Controller objects onto the storyboard
from the Object Library to add two storyboard scenes.
Add a UILabel to each scene with the titles
From Action Segue and From Manual Segue.

CHAPTER 3: Structure Your App74

3. Create an action segue from the Action Segue button

to the From Action Segue scene.

a. Select the Action Segue button and open the Connections
Inspector in the Utility area.

b. Drag the action outlet in the Triggered Segue section
to the From Action Segue view controller, as shown in
Figure 3-23.

c. Select Show for the transition type.

Figure 3-22. Segue preparation

Figure 3-23. Creating an action segue

CHAPTER 3: Structure Your App

75

4. Select the segue (see the pointer in Figure 3-24) and

enter the name of the segue identifier in the segue’s

Attributes Inspector (that is, type actionSegue), as

shown in Figure 3-24.

Figure 3-24. Selecting the segue and setting up the attributes

5. Create a Manual Segue from the presenting

controller to the From Manual Segue view controller,

as shown in Figure 3-25.

a. Select the presenting view controller and open the
Connections Inspector in the Utility area.

b. Drag the circle (outlet) in the Manual Triggered Segue
section to the From Manual Segue view controller.

c. Select Show for the transition type.

d. Select the segue and enter the name of the segue
identifier in the segue’s Attributes Inspector (in other
words, type manualSegue).

CHAPTER 3: Structure Your App76

6. Set up the manual segue to be performed

programmatically when the Manual Segue button

is clicked.

a. To connect the button touch down events to
your code, create an Touch Down IBAction
to the ViewController class with the name
onManualSegueTouchDown.

b. In the onManualSegueTouchDown(...) method, use the
code in Listing 3-3 to perform the manual segue.

Listing 3-3. Performing the Manual Segue

import UIKit
class ViewController: UIViewController {
 @IBAction func onManualSegueTouchDown(sender: AnyObject) {
 self.performSegueWithIdentifier("manualSegue", sender: sender)
 }
}

Run the app in different emulators to see these segues work in different size
classes. Since iOS 8, the segues are presented in an adaptive manner to the
size classes.

Figure 3-25. Creating a manual segue

CHAPTER 3: Structure Your App

77

Pass Data with a Segue

WEB ANALOGY

Typically, web apps will send requests to the server by passing data through the URL query

string, form posting, or cookies. This loads the entire page content for each user action.

Single-page front-end apps can utilize animated screen transitions through asynchronous

data loading or by front loading more data during their initialization.

The storyboard segues perform screen transitions easily by drawing the
segue connections. You don’t even need a line of code for an action segue.
However, you normally will need to pass data from the presenting view
controller to the presented view controller, which cannot be done alone by
the storyboard segue itself.

The following steps demonstrate the conventional iOS way to pass data
from the presenting view controller to the presented view controller in the
Xcode Segues project:

1. Create a PresentedViewController class with a

property to receive data. Listing 3-4 simply prints the

received data in the viewDidLoad() method.

a. Specify the PresentedViewController class in the
Identity Inspector to pair with the From Action Segue
storyboard scene (see the earlier Figure 3-17
for details).

b. Pair the From Manual Segue storyboard scene with
the PresentedViewController class.

c. Add a property, data, to receive the data from the
presenting view controller.

Listing 3-4. Data Property to Receive Data from Presenting View Controller

import UIKit
class PresentedViewController: UIViewController {
 var data: String?
 override func viewDidLoad() {
 if let tmp = data {
 println("received data: \(tmp)")
 }
 }
 ...
}

CHAPTER 3: Structure Your App78

2. The system invokes a prepareForSegue(...) method

in the source view controller. You need to implement

this method to receive the callback. To pass data

from the source view controller, ViewController,

override the prepareForSegue method, as shown in

Listing 3-5.

Listing 3-5. Presenting View Controller Override prepareForSegue

override func prepareForSegue(segue: UIStoryboardSegue!, sender: AnyObject!)
{
 var identifier = segue.identifier
 var destVc = (segue.destinationViewController as PresentedViewController)
 destVc.data = "some data from presenting vc \(identifier)"
}

Container View Controller
In iOS, screen navigations are primarily implemented by storyboard segues
and the Container View Controller classes from the iOS SDK that facilitate
the screen navigations. You may create subclasses from these system
Container View Controllers, but you normally just use them as is in most of
the cases.

Note Generally speaking, the navigation patterns in this book should

appear more familiar to mobile web developers with experience in

responsive design or using a mobile framework. For traditional web

developers, it is a small investment to get familiar with mobile web

development. In addition to HTML5/CSS3, the jQueryMobile and Sencha

Touch frameworks are both good choices to leap into this space.

Navigation Stack
The navigation stack is widely used to manage screen transitions,
particularly for displaying an information hierarchy, such as a master drill-
down list. To show the next screen, push the next view controller into the
navigation stack. To go back to the previous screen, pop out the previous
view controller from the navigation stack.

You will be guided to create a simple iOS app yourself so you know how to
create it and can visualize how it works (see Figure 3-26).

CHAPTER 3: Structure Your App

79

It has three content views.	
The screen transition is animated that shows the 	
navigation directions.

Figure 3-26. Preview of the iOS NavigationStack app with three screens

In iOS, you draw appropriate storyboard segues with the
UINavigationController Container View Controller to accomplish this
navigation stack pattern. Let’s create a new Xcode project to demonstrate
the iOS way.

1. Create a new Xcode project using the iOS Single

View Application template (see Chapter 2). Name it

NavigationStack.

2. Select Main.storyboard to open the storyboard in

the Editor area. It has one scene already.

3. Add two more Content View (scenes): drag a View

Controller object from the Object Library onto the

storyboard twice. Figure 3-27 depicts the storyboard

containing three empty scenes.

CHAPTER 3: Structure Your App80

4. Use the preview in Figure 3-26 to guide you as you

update the first storyboard scene.

a. Add a Label from the Object Library. Change its font
size to 30 and text to Screen One, and center its
alignment with the Attributes Inspector in the
Utility area.

b. Add Auto Layout constraints to center the label,
as shown in Figure 3-28.

c. Add the Next button with the right and bottom
space constraints to anchor the position,
as shown in Figure 3-29.

Figure 3-27. Three storyboard scenes in the NavigationStack project

Figure 3-28. Screen One label with center constraints

CHAPTER 3: Structure Your App

81

5. Repeat step 4 to add a Screen Two label and the

Next button to the Screen Two scene.

6. Repeat step 4 to add a Screen Three label to the

Screen Three scene. Figure 3-30 shows the UI

widgets added to storyboard.

Figure 3-30. Three scenes with widgets in NavigationStack project

Figure 3-29. Next button with alignment constraints

7. Create an action segue from the Next button in

Screen One to the Screen Two scene, and create

another action segue from the Next button in Screen

Two to the Screen Three scene.

Figure 3-31 shows the results of the storyboard. Run the app to see what is
working and what is not working yet. Nothing is new yet; these are the same
steps that create storyboard scenes, UI widgets, Auto Layout constraints,
and segues that connect them together.

CHAPTER 3: Structure Your App82

UINavigationController
The only missing piece in this iOS project is a way to show the appropriate
child view controller in the typical push and pop fashions. In iOS,
UINavigationController manages the push and pop screen navigation
stack behaviors. It also provides a navigation bar that has a default Back
button, a title in the center, and an optional right button (see Figure 3-32).

Figure 3-31. NavigationStack storyboard

Figure 3-32. The UINavigationController navigation bar

All you need to do is to set up a UINavigationController that associates its
root view controller with the first scene.

Add a Navigation Controller from the Object Library.	
Connect the root view controller segue (in the 	
Connections Inspector) to the first view controller.

CHAPTER 3: Structure Your App

83

You can accomplish both in one simple storyboard operation: embed the
Screen One view controller in a Navigation Controller, as shown in the
following steps:

1. Select the Screen One view controller from the

storyboard.

2. In the Xcode menu bar, select Editor ➤ Embed In ➤

Navigation Controller, as shown in Figure 3-33.

Figure 3-33. Creating a Navigation Controller

3. This creates a Navigation Controller and connects

the root view controller segue to the Screen One

view controller (see Figure 3-34).

a. The Navigation Controller has a NavigationBar.

b. The root view controller automatically gets
a NavigationItem where you can add a center
title and a rightBarButtonItem.

CHAPTER 3: Structure Your App84

4. Select the Navigation Item object in Screen One to

add title text (that is, type Navigation Stack), as

shown in Figure 3-35.

a. The title on the navigation bar also affects the Back
button title. iOS automatically updates the button title
attribute to reflect where the Back button is going.
The button text defaults to Back if the title is not
assigned in the view.

Figure 3-34. Navigation Controller scene and root view controller connection

Figure 3-35. Title on the Navigation Item

5. Optional: The title and the rightBarButtonItem

need to be installed on Navigation Item, as shown in

previous step. If you want to set the title attribute

or rightBarButtonItem to Screen Two or Three, you

need to add a Navigation Item to the Screen Two or

Three view controller first.

CHAPTER 3: Structure Your App

85

Note The title can be derived from the view controller title when the

Navigation Item is not being configured.

Build and run the app to see the live app in action. You should see that your
app looks like Figure 3-26 (shown previously).

Master List with Details Drill-Down
Many apps need to display a list of items that users can select to view more
detailed information. They present a master list of items first, and the user
selects one item to drill into.

This is probably one of the most common mobile navigation patterns.
Most of the popular mobile frameworks including iOS, Android, jQuery
mobile, and Sencha Touch mobile JavaScript libraries take care of the
memory management for you using recycle views without rendering
off-screen list items.

Android and iOS provide guidelines and offer system APIs to promote
consistency by making the implementation easy for developers. Both
Xcode and the Android IDE supply project templates for creating apps with
this UX pattern.

You will create a simple iOS app (see Figure 3-36) to visualize how this
works and how to create it.

CHAPTER 3: Structure Your App86

Figure 3-36. Preview of the MasterDetail app screens in iOS

UITableViewController

As you can see in Figure 3-36, this app is purposely simple with two screens
only. You need two storyboard scenes: one for the master list and the other
for the detailed Content View. To make a fresh start, create a new iOS project.

1. Launch Xcode, create a new application using the

usual Single View Application template, and name it

MasterDetail.

a. You get a ViewController class that already pairs
with a scene in Main.storyboard. Use this pair for the
detail view screen.

CHAPTER 3: Structure Your App

87

2. Create the master list storyboard scene and draw a

segue to connect the two scenes.

a. Drag UITableViewController from the Object Library
and drop it in the storyboard editor.

b. Create a Manual Segue from the UITableViewController
to the detailed view controller with the Show transition
type. Always give the segue an identifier, such as detail
(see the earlier Figure 3-25).

3. Select the Table View Cell in the

UITableViewController scene and open the

Attributes Inspector to configure the Table View Cell

(see the pointers in Figure 3-37).

a. Style: Select Basic (or others to see what they are in
the editor).

b. Identifier: Enter mycell. Always give the table view
cell an identifier. You need it to create reusable cells.

c. Accessory: Select Detail.

d. Optionally, you can add an image that shows the
icon on the left.

Figure 3-37. TableViewCell attributes

4. Embed the UITableViewController in a Navigation

Controller (see the earlier Figure 3-33). You normally

use a navigation stack pattern for the screen

transitions.

5. Check the Is the Initial View Controller in the

Navigation Controller Attributes Inspector (see

Figure 3-38) to make the Navigation Controller the

starting view controller of this app.

CHAPTER 3: Structure Your App88

6. Create a MasterTableViewController Swift class in the

ViewController.swift file, as shown in Listing 3-6.

a. Subclass MasterTableViewController from
UITableViewController.

b. Pair this MasterTableViewController class with the
Table View Controller scene in the Identity Inspector
(see the earlier Figure 3-17).

Listing 3-6. MasterListTableViewController Class

class MasterTableViewController : UITableViewController {
 // TODO
}

Figure 3-38. MasterDetail storyboard

Note In Swift, the class doesn’t need to be in its own file. I chose to put

it in the existing ViewController.swift file for no particular reason.

CHAPTER 3: Structure Your App

89

UITableViewDataSource

To populate the items in the Table View, UITableView, you implement a data
source. Specifically, you provide the TableViewCell with data by overriding
the methods defined in the UITableViewDataSource protocol (see Listing 3-7).
Do the following in the MasterDetail project:

1. Implement tableView(tableView,numberOfRowsInSec
tion) to return the number of items in the tableView.

2. Implement tableView(tableView,
cellForRowAtIndexPath) to return the tableViewCell

instance.

Listing 3-7. Implement UITableViewDataSource Protocol

class MasterTableViewController : UITableViewController {
 var items = ["item 1", "item 2", "item 3"]

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return self.items.count
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 var cell = tableView.dequeueReusableCellWithIdentifier("mycell") as
UITableViewCell
 cell.textLabel!.text = self.items[indexPath.row]
 return cell
 }
}

Note Use dequeueReusableCellWithIdentifier(...) to

implement recycled views. This is a common pattern for saving memory

with a large number of items, and iOS makes it easy by offering this method.

Make sure you assign a cell identifier to the table view cell in the storyboard.

UITableViewDelegate

To handle table view item selected events, override the
UITableViewDelegate.tableView(tableView, didSelectRowAtIndexPath)
method (see Listing 3-8).

CHAPTER 3: Structure Your App90

1. Implement UITableViewDelegate.
didSelectRowAtIndexPath(...) to perform segues.

2. Implement a prepareForSegue(...) callback to pass

data to the detail view controller (see Listing 3-5 for

details).

Listing 3-8. Implementing UITableViewDelegate

class MasterTableViewController : UITableViewController {
 ...
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {
 self.performSegueWithIdentifier("detail", sender:
 indexPath.row)
 }

 override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject) {
 var destVc = segue.destinationViewController as
 UIViewController
 destVc.navigationItem.title = self.items[sender as Int]
 }

3. After adding or deleting items, you need to explicitly

refresh the table view.

a. Drag a Bar Button Item object to the navigation bar and
draw an IBAction to create the doAdd() method
(Figure 3-39).

b. To add an item when the Add button is selected,
implement the doAdd() method, as shown in Listing 3-9. Make
sure you call TableView.reloadData() in the main thread to
refresh the table.

Listing 3-9. Refresh Table View

class MasterTableViewController : UITableViewController {
 var items = ["item 1", "item 2", "item 3"]

 @IBAction func doAdd(sender: AnyObject) {
 self.items.append("item \(self.items.count + 1)")
 self.tableView.reloadData()
 }
 ...

CHAPTER 3: Structure Your App

91

Build and run (+R) the app to see the MasterDetail iOS app in action.
You should see that your app looks like the preview shown previously in
Figure 3-36.

UITableView

Previously, you used UITableViewController, which is a regular
UIViewController with a prewired tableView object in it. The prewired
tableView also prewires the dataSource and delegate to the host
UITableViewController, which simplifies some coding for you (actually
not that much, in my opinion). The prewired tableView takes up the whole
screen, which may not be what you want. More often, I choose to do the
following instead of using UITableViewController.

1. In the storyboard, create a regular ViewController

with TableView.

a. Add a regular View Controller scene.

b. Add a table view to the scene. This gives you more
flexibility (that is, to draw the table view at any
location and size).

c. Connect the table view to an IBOutlet (see the earlier
Figure 3-20 for details).

d. Select the table view and connect delegate and
dataSource outlets to the ViewController in the
Connection Inspector.

2. Create a Swift class to pair with the Content View.

a. Subclass from the regular UIViewController class.

b. Implement the UITableViewDataSource and
UITableViewDelegate protocols.

The previous MasterTableViewController is essentially equivalent to the
code in Listing 3-10, and you still implement the same methods declared in
UITableViewDataSource and UITableViewDelegate.

Figure 3-39. Navigation bar right button

CHAPTER 3: Structure Your App92

Listing 3-10. Explicitly Implement Table View Protocols

class MasterTableViewController2 : UIViewController, UITableViewDataSource,
UITableViewDelegate {
 @IBOutlet weak var tableView: UITableView!
 ...

UITableViewCell

In iOS, the line items in the UITableView are called cells. You get some
free types of UITableViewCell that you can select from the iOS SDK.
Previously in the MasterDetail project, you selected the Basic style,
which gives you one textLabel in the Table View cell (see Figure 3-37).
Right Details, Left Details, or Subtitle styles all give you a second label
called detailedTextLabel. You can also set a left image icon and other
TableViewCell attributes, as shown in Figure 3-37.

Still, it is the data source’s responsibility to render the cell with data: You
programmatically bind each UITableViewCell with data by implementing
the tableView(cellForRowAtIndexPath) method. Listing 3-11 shows a
typical example.

Listing 3-11. TableViewCell Properties

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 var cell = ...
 cell.textLabel!.text = self.items[indexPath.row]
 cell.detailTextLabel!.text = "some detail label"
 cell.imageView!.image = UIImage(named: "pointer.png")
 cell.accessoryType = UITableViewCellAccessoryType.DetailButton
 return cell
}

You can also choose the Custom style and draw the cell freely using the
storyboard; you will do so in the next section.

UICollectionView

The MasterDetail project you created fits comfortably on an iPhone, but
when it is running on the iPad, it feels like the space is not being utilized
efficiently. On iOS platforms, UICollectionView comes to the rescue: it
allows multiple columns to organize the master list items, rather than a
simple one-dimensional list.

It would be a shame if you didn’t try this variant right now because it
is a really useful widget that takes very little extra effort. The key is the
UICollectionView class.

CHAPTER 3: Structure Your App

93

Note You can also use UICollectionViewController, which

contains a UICollectionView that occupies the whole scene by default.

Same choice: UITableViewController versus UITableView, which

was discussed earlier (see the “UITableView” section).

Figure 3-40. Collection View dataSource, delegate, and IBOutlet connections

Create a new Xcode project using UICollectionView to demonstrate the usage.

1. Launch Xcode and create a new application using

the usual Single View Application template. Name it

MasterGridDetail.

a. You get a scene in the Main.storyboard file and a
ViewController class pair.

b. Rename the class to MasterViewController in the
ViewController.swift file and as the custom class
name of the view controller scene (see Figure 3-17).

c. Drag a Collection View from the Object Library and
drop it onto the MasterViewController scene. Let it
take up the whole space and pin zero spacing to the
Superview in all four directions from the Xcode menu
bar by selecting Editor ➤ Pin.

d. Embed the MasterViewController controller in the
Navigation Controller (see Figure 3-33).

2. Select the Collection View in the storyboard to create

connections in the Connections Inspector, as shown

in Figure 3-40.

a. Connect the dataSource and delegate outlets to the
MasterViewController.

b. Open the Assistant Editor and connect the New
Referencing Outlet to the MasterViewController
property. Enter mCollectionView for its name.

CHAPTER 3: Structure Your App94

3. Draw your own custom collection view cell in the

storyboard.

a. In the Attributes Inspector, assign the Collection
Reusable View Cell Identifier a value (mycell). There are
some attributes you can change safely in the Attributes
Inspector, such as the white background color.

b. To change the size of the cell, select the parent
collection view and change the cell size to 150 × 150
in the Size Inspector. Figure 3-41 shows other
measurements that you can set.

Figure 3-41. Size Inspector

c. Add a label to the cell, make the font size bigger (that
is, 30), use center alignment, and add Auto Layout
constraints, as shown in Figure 3-42.

CHAPTER 3: Structure Your App

95

4. Create a custom Swift class for the collection view

cell. Listing 3-12 shows the SimpleCollectionViewCell

class.

a. Create a Swift class, SimpleCollectionViewCell,
subclassed from UICollectionViewCell.

b. Select the collection view cell in the storyboard and
assign the SimpleCollectionViewCell class in the
Identity Inspector.

c. Open the Assistant Editor with the
SimpleCollectionViewCell class. In the Connections
Inspector, connect the referencing outlet to create an
IBOutlet, and name it textLabel.

Listing 3-12. SimpleCollectionViewCell Class

class SimpleCollectionViewCell : UICollectionViewCell {
 @IBOutlet weak var textLabel: UILabel!
}

5. Create the detail view controller scene in the

storyboard, as shown Figure 3-43.

a. Add a regular view controller from the Object Library.

b. Create a manual segue from the Master View Controller scene
to the detailed view controller with a Show transition type
(see Figure 3-25). Always enter a storyboard segue Identifier
(detail).

Figure 3-42. Drawing the collection view cell

CHAPTER 3: Structure Your App96

6. MasterViewController must implement

the UICollectionViewDataSource and

UICollectionViewDelegate protocols (see Listing 3-13).

a. Implement numberOfSectionsInCollectionView
(collectionView) to return the section number;
it defaults to 1 if not implemented.

b. Implement collectionView(collectionView,
numberOfItemsInSection) to return the number of items
in each section.

c. Implement collectionView(collectionView,
cellForItemAtIndexPath) to return the collection
view cell instance.

d. Implement collectionView(collectionView,
didSelectItemAtIndexPath) to respond to the cell selection.

Listing 3-13. UICollectionViewDataSource and UICollectionViewDelegate Protocols

class MasterViewController : UIViewController, UICollectionViewDataSource,
UICollectionViewDelegate {
 ...
 // implement UICollectionViewDataSource
 var items = ["item 1", "item 2", "item 3", "item 4", "item 5", "item 6",
"item 7"]
 func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {
 return self.items.count
 }

 // The cell that is returned must be retrieved from a call to -dequeueReus
ableCellWithReuseIdentifier:forIndexPath:
 func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) -> UICollectionViewCell {

Figure 3-43. Creating the detail view controller in MasterDetail storyboard

CHAPTER 3: Structure Your App

97

 var cell = collectionView.dequeueReusableCellWithReuseIdentifier("cell",
forIndexPath: indexPath) as SimpleCollectionViewCell
 cell.textLabel.text = self.items[indexPath.row]
 cell.backgroundColor = (indexPath.row % 2 == 0) ? UIColor.whiteColor() :
UIColor.lightGrayColor()
 return cell
 }

 func numberOfSectionsInCollectionView(collectionView: UICollectionView) ->
Int {
 return 1
 }

 // implement UICollectionViewDelegate
 func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {
 self.performSegueWithIdentifier("detail", sender: self)
 }
}

Both TableView and CollectionView are versatile. You should look into
the data source and delegate protocols to see the rich options offered to
developers. Build and run the MasterGridDetail iOS app to see your code
live in action, as shown in Figure 3-44.

Figure 3-44. Collection view

CHAPTER 3: Structure Your App98

Navigation Tabs

WEB ANALOGY

Navigation tabs are easily implemented in a web app by using a UI widget library like

jQueryUI or Bootstrap.

Navigation tabs are another popular UX design pattern. Apple’s iOS Human
Interface Guidelines suggest using a tab bar to give users access to different
perspectives on the same set of data or on different subtasks related to
the overall function of your app. Each navigation tab is associated with a
view controller. When the user selects a specific tab, the associated view
controller presents its own Content View.

Not only does this pattern exist in iOS, but it also widely used in many
mobile platforms. You may simply call it tabs in desktop or web apps.

You will create a simple tabbed iOS app (see Figure 3-45) to visualize how
this works and how to create it.

Figure 3-45. Preview of the iOS TabbedApp

CHAPTER 3: Structure Your App

99

The key in iOS is the Container View Controller, which is the
UITabBarController class. You can use it as is most of the time. If you want
to keep some application states in the Container View Controller, simply
subclass from it.

Implementing Navigation Tabs

The following instructions walk you through the steps you normally take to
implement navigation tabs:

1. Launch Xcode to create a new app using the Single

View Application template and name it TabbedApp.

a. You get an empty scene in the Main.storyboard and a
ViewController class.

b. Rename the class to FirstViewController in both the
ViewController.swift file and the class name in the
Identity Inspector for the storyboard scene.

c. Draw the Content View in the storyboard scene using
the Android app as your wireframe.

2. You need the second Content View and view

controller pair.

a. You can copy, paste, and modify from the
FirstViewController class. Listing 3-14 shows the
SecondViewController class.

Listing 3-14. SecondViewController Class

class SecondViewController: UIViewController {
 ...
}

b. You can copy, paste, and modify the storyboard scene
in the storyboard editor, too. Don’t forget to update
the class name in the Identify Inspector. Figure 3-46
shows that the storyboard has the
Screen One and Screen Two scenes.

CHAPTER 3: Structure Your App100

3. Add a Container View Controller,

UITabBarController, which will be responsible for

managing the two Content View Controllers.

c. Embed both storyboard scenes in a TabBarController:
multiselect both storyboard scenes (press and hold the
 key for multiselect) and select the command from
Editor ➤ Embed In ➤ Tab Bar Controller in the Xcode
menu bar (see Figure 3-47).

Figure 3-46. First and second scenes in TabbedApp

CHAPTER 3: Structure Your App

101

The app is not complete yet, but you actually can run it now to see the app
live. It should look like the preview shown in Figure 3-45.

UITabBarController

As you can see from the previous work (see Figure 3-45), a bottom tab bar
comes with UITabBarController. Each tab bar item is associated with a
Content View Controller. By selecting a tab bar item, the UITabBarController
automatically presents the selected Content View Controller.

Add/Remove a Tab Bar Item

UITabBarController maintains an array of references to its child view
controllers. In its Connections Inspector, you can draw a view controller’s
outlet in the Triggered Segues section to add the child view controllers to
the UITabBarController.viewControllers array property. You can write
code to add or remove the child view controller in the runtime, but doing so
in a storyboard is easier and more robust for creating static tabs.

Update the Look and Feel of the Tab Bar Items

You should assign a title and an image to the tab bar items. When a
UIViewController is added to a tab bar controller, the UIViewController.
tabBarItem property represents the tab bar item in the tab bar. You
assign appropriate values in the tab bar item’s Attributes Inspector. In the
runtime, you use code to update the text and image by setting appropriate
tabBarItem properties. Figure 3-48 shows two tab bar items with the same
label and without an icon image. Do the following to give your TabbedApp a
better look:

Figure 3-47. Embed Content Views in Tab Bar Controller (the result on the right)

CHAPTER 3: Structure Your App102

Note iOS is picky about the right image specs. See the online reference

for image specs: https://developer.apple.com/library/ios/

documentation/UserExperience/Conceptual/MobileHIG/

IconMatrix.html.

1. System provides a set of common tab bar items

(System Item in the Attributes Inspector). Use them

when possible for consistent platform convention.

Select the Featured system item for Screen One

(see Figure 3-48).

Figure 3-48. Adding the Featured system item to Screen One

2. For Screen Two, select Custom to supply your own

tab bar item title and image icon (see Figure 3-49).

a. Enter Two for the title.

b. Create an image icon in images.xcassets (in other
words, tab1) and drop a transparent PNG with size
about 25 × 25 (maximum 48 × 32). The icon color is
not required because only the alpha channel is to be
rendered.

c. Enter the image name (for example, tab1).

d. You may enter a badge (for example, New), which
will appear in the upper-right corner of the icon.
Frequently, it is set programmatically in the runtime
using the UITabbatItem.badgeValue property.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html

CHAPTER 3: Structure Your App

103

Figure 3-49. Custom tab item with badgeValue

Handle Runtime Behavior

To respond to the runtime behavior programatically, just like most of the
UIKit widgets, you implement a delegate protocol: UITabBarDelegate.
Continue with the TabbedApp to learn the common tasks for handling
UITabBarDelegate runtime events.

1. Create a custom tab bar controller to handle runtime

behaviors, as shown in Listing 3-15.

a. Create a SimpleTabBarController class subclassing from
UITabBarController.

b. Declare SimpleTabBarController to implement the
UITabBarControllerDelegate protocol.

c. In the storyboard, select the tab bar controller and assign
the SimpleTabBarController class in the Identity Inspector.

Listing 3-15. SimpleTabBarController Class

class SimpleTabBarController : UITabBarController,
UITabBarControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 self.delegate = self
 }

 func tabBarController(tabBarController: UITabBarController!,
shouldSelectViewController viewController: UIViewController!) -> Bool {
 // you may do something and return true
 // Or, return false to not to select viewController
 return false;
 }

CHAPTER 3: Structure Your App104

 func tabBarController(tabBarController: UITabBarController!,
didSelectViewController viewController: UIViewController!) {
 // you may do something
 }
}

2. Each child Content View Controller can access

the UIViewController.tabBarController and

UIViewController.tabBarItem properties.

Listing 3-16 shows how to change the second tab’s

badgeValue from the FirstViewController.

Listing 3-16. Change badgeValue of Other tabBarItem

(self.tabBarController!.viewControllers![1] as UIViewController).tabBarItem.
badgeValue = "Zzz"

By the way, the tab bar is located on the bottom screen in iOS instead of
at the top in Android or many web sites. In general, platform-specific UX
guidelines should never be overlooked. Keep the navigation bar on the
bottom in iOS, which is where most iOS users expect it.

Swipe Views
The carousel is a popular UX pattern commonly used in many platforms,
including desktop and web apps. On mobile platforms, you use this pattern
with swipe gestures to display content page by page. It allows the user
to move from item to item efficiently. With animated transitions, it offers a
more enjoyable viewing experience. Both iOS and many JavaScript libraries
provide framework classes or APIs, as well as a project creation template to
promote this navigation UX pattern.

You will be guided to create a simple SwipeViews iOS app (see Figure 3-50)
to visualize how this works and how to create it.

CHAPTER 3: Structure Your App

105

As usual for a top-down approach, you want to construct the storyboard
scenes to start.

1. Launch Xcode to create a new project using the

usual Single View Application template and name it

SwipeViews.

2. Rename the existing class ViewController to

ParentViewController in both the ViewController.
swift file and the custom class name in the Identity

Inspector of the view controller’s storyboard scene.

3. Drag and drop a UIView onto the storyboard scene

from the Object Library.

a. Open the storyboard Assistant Editor, create an IBOutlet
in the Connections Inspector by connecting the referencing
outlet to the paired view controller, and name it mPageView.

b. Add Auto Layout constraints to pin the edges to the nearest
neighbors and set the background to be light gray.

4. You need another Content View–view controller pair

for the page content.

a. Create a new PageContentViewController class
(see Listing 3-17).

Listing 3-17. Two Classes in ViewController.swift File

import UIKit
class ParentViewController : UIViewController {
 @IBOutlet weak var mPageView: UIView!

 override func viewDidLoad() {

Figure 3-50. Preview of the iOS SwipeViews app

CHAPTER 3: Structure Your App106

 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

class PageContentViewController: UIViewController {
 @IBOutlet weak var textLabel : UILabel!
}

b. Draw the second storyboard scene (see the screen
on the right in Figure 3-51). Make sure you give the
Page Content View Controller a storyboard ID (such
as PageContentViewController). You need the ID
to programmatically load a view controller from the
storyboard.

Figure 3-51. Main.storyboard in SwipeViews project

Nothing is new yet; you just drew two storyboard scenes with the view
controllers to start with. You may build and run the app to make sure it
contains no errors. Unlike previous navigation stack or tab patterns to which
you can draw segues for view controller transitions, you need to write code
to complete the app, which you will do next.

CHAPTER 3: Structure Your App

107

UIPageViewController
The key to implementing the swipe view UX pattern in iOS is the
UIPageViewController class, which uses the same data source pattern: you
implement a data source that is responsible for providing Content Views
populated with data. Continue with the following steps in the SwipeViews
Xcode project:

1. Modify the PageContentViewController class so

it can receive data and present the three simple

screens (see Listing 3-18).

Listing 3-18. Add the data and pageNo Properties

class PageContentViewController: UIViewController {

 @IBOutlet weak var textLabel : UILabel!

 var data = ""
 var pageNo = 0

 override func viewDidLoad() {
 self.textLabel.text = data
 }
}

2. UIPageViewController works with the dataSource

and delegate protocols. The parent view controller,

ParentViewController, is a legitimate candidate for

implementing them (see Listing 3-19).

a. UIPageViewControllerDataSource is responsible for
supplying the Content View Controller before and
after the current content one.

b. UIPageViewControllerDataSource also defines the
optional page count and page selection indicator.

c. UIPageViewControllerDelegate protocol defines the
optional page view controller callback methods.

Listing 3-19. ParentViewController Implements dataSource and delegate Protocol

class ParentViewController : UIViewController,
UIPageViewControllerDataSource, UIPageViewControllerDelegate {

 ...
 // implement data source
 let items = ["Page: 1", "Page: 2", "Page: 3"]

CHAPTER 3: Structure Your App108

 func pageViewController(pageViewController: UIPageViewController,
viewControllerBeforeViewController viewController: UIViewController) ->
UIViewController? {

 var pageNo = (viewController as PageContentViewController).pageNo
 if pageNo > 0 {
 var vc = self.storyboard!.
instantiateViewControllerWithIdentifier("PageContentViewController") as
PageContentViewController
 vc.data = self.items[pageNo-1]
 vc.pageNo = pageNo - 1
 return vc
 }

 return nil
 }

 func pageViewController(pageViewController: UIPageViewController,
viewControllerAfterViewController viewController: UIViewController) ->
UIViewController? {

 var pageNo = (viewController as PageContentViewController).pageNo
 if pageNo < self.items.count - 1 {
 var vc = self.storyboard!.
instantiateViewControllerWithIdentifier("PageContentViewController") as
PageContentViewController
 vc.data = self.items[pageNo+1]
 vc.pageNo = pageNo + 1
 return vc
 }

 return nil
 }

 func presentationCountForPageViewController(pageViewController:
UIPageViewController) -> Int {
 return self.items.count
 }

 func presentationIndexForPageViewController(pageViewController:
UIPageViewController) -> Int {
 return (pageViewController.viewControllers[0] as
PageContentViewController).pageNo
 }
 ...

CHAPTER 3: Structure Your App

109

3. In the ParentViewController viewDidLoad() method,

the following conventional code (see Listing 3-20)

sets up the UIPageViewController:

a. Initialize the page view controller.

b. Set up the dataSource and delegate.

c. Set up the first page view controller.

d. Establish the parent-child view controller hierarchy.

Listing 3-20. Setting Up UIPageViewController in viewDidLoad

class ParentViewController : UIViewController,
UIPageViewControllerDataSource, UIPageViewControllerDelegate {

 @IBOutlet weak var mPageView: UIView!
 var mPageViewController: UIPageViewController!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // a. initialize page view controller, view and gestures
 self.mPageViewController = UIPageViewController(transitionStyl
e: UIPageViewControllerTransitionStyle.Scroll, navigationOrientation:
UIPageViewControllerNavigationOrientation.Horizontal, options: nil)
 self.mPageViewController.view.frame = self.mPageView.bounds
 self.mPageView.gestureRecognizers = self.mPageViewController.
gestureRecognizers

 // b. set data source and delegate
 self.mPageViewController!.delegate = self
 self.mPageViewController!.dataSource = self

 // c. set the first page
 var vc = self.storyboard!.
instantiateViewControllerWithIdentifier("PageContentViewController") as
PageContentViewController
 vc.data = self.items[0]
 vc.pageNo = 0
 self.mPageViewController.setViewControllers([vc], direction: .Forward,
animated: false, completion: nil)

 // d. establish parent-child view and view controller hierachy
 self.mPageView.addSubview(self.mPageViewController.view)
 self.addChildViewController(self.mPageViewController)
 self.mPageViewController.didMoveToParentViewController(self)
 }
 ...

CHAPTER 3: Structure Your App110

This is all about the UIPageViewController class and the swipe view
navigation pattern in iOS. Build and run the iOS SwipeViews app to see your
code in action. It should look like the preview shown in Figure 3-50.

Dialogs

WEB ANALOGY

Web application dialogs typically use the built-in window.alert() or window.confirm()

method, or they use a modal dialog via an add-on UI library.

Generally, you use the dialogs UX pattern to give users quick feedback or
to request a simple confirmation of choices. Dialogs normally sit on top of
the current screen while that screen remains partially visible or dimmed. This
creates a visual effect that is meant to get more user attention without losing
the current context.

Create an Xcode project to demonstrate the uses of dialogs and common
programming tasks.

1. Launch Xcode to create a new project using the

Single View Application template and name it Dialogs.

2. Draw two Button widgets with titles set to Alert and

Popup in the storyboard scene, as shown in Figure 3-52.

Figure 3-52. Dialogs storyboard

CHAPTER 3: Structure Your App

111

3. Open the storyboard Assistant Editor and connect

the Send Event ➤ Touch Down outlet in the

Connections Inspector to create IBAction methods

in the paired ViewController class for both buttons

(see doAlert(...) and doPopup(...) in Listing 3-21).

Listing 3-21. Create IBAction Methods for the Alert and Pop-up Buttons

import UIKit
class ViewController: UIViewController, UIAlertViewDelegate {
 ...
 @IBAction func doAlert(sender: AnyObject) {
 // TODO
 }
 @IBAction func doPopup(sender: AnyObject) {
 // TODO
 }
}

Nothing should be new to you here, but this Dialogs Xcode project should
give you a refresher on dialog topics.

UIAlertController

WEB ANALOGY

The window.alert() method halts code execution and offers only one action for the user:

to close the alert dialog and continue.

Figure 3-53 shows the standard Android and iOS alert dialogs side by side. On
iOS, you use UIAlertController that replaces UIAlertView since iOS 8.

Figure 3-53. Android (left) and iOS (right) alert dialogs

CHAPTER 3: Structure Your App112

Contiune with the Xcode Dialogs project and add the following code to learn
the UIAlertController code:

1. To show the iOS dialog as depicted in Figure 3-53,

add the following code in the ViewController.
doAlert(...) method (see Listing 3-22):

a. Create a UIAlertController instance.

b. Add UIAlertAction for dialog buttons.

c. To prompt user input, add TextField to
 UIAlertController.

d. Use the regular UIViewController API to present
it as a view controller.

Listing 3-22. Present UIAlertController

@IBAction func doAlert(sender: AnyObject) {

 var alert = UIAlertController(title: "My title", message: "My message",
preferredStyle: UIAlertControllerStyle.Alert)

 // add action buttons
 var actionCancel = UIAlertAction(title: "Cancel", style:
UIAlertActionStyle.Cancel,
 handler: {action in
 // do nothing
 })

 var actionOk = UIAlertAction(title: "Ok", style: UIAlertActionStyle.
Default,
 handler: {action in
 println((alert.textFields![0] as UITextField).text)
 })

 alert.addAction(actionCancel)
 alert.addAction(actionOk)

 // add text fields
 alert.addTextFieldWithConfigurationHandler({textField in
 // config the UITextField
 textField.backgroundColor = UIColor.yellowColor()
 textField.placeholder = "enter text, i.e., Do Ra Me"
 })

 // UIViewController API to presend viewController
 self.presentViewController(alert, animated: true, completion: nil)
 }

CHAPTER 3: Structure Your App

113

Everything inside UIAlertController is created programatically. Figure 3-54
shows the UIAlertController code in action.

Figure 3-54. Android iOS UIAlertController

UIPopoverController

On iOS devices with large screens such as the iPad, you can use
PopoverController to present a regular viewController as a pop-over.
The pop-over can be anchored at a given position to associate the presented
dialog with the presenting context. On devices with compact size classes
such as the iPhone, the pop-over controller automatically falls back to the
regular full-screen view controller. You can also take advantage of the storyboard
editor to draw the Content Views and segue instead of writing code.

The following steps demonstrate how to use PopoverController in the
Dialogs project:

1. Add a new storyboard scene for the pop-over

Content View (see Figure 3-55).

CHAPTER 3: Structure Your App114

a. Create a GreenViewController class, as shown in
Listing 3-23, and draw a view controller scene in the
storyboard to pair with it by specifying the class name
in the Identity Inspector.

Listing 3-23. GreenViewController Class

class GreenViewController : UIViewController {
 @IBAction func doDone(sender: AnyObject) {
 // do something and dismiss
 self.dismissViewControllerAnimated(true, completion:nil)
 }
}

b. Embed the view controller in a Navigation Controller
(Editor ➤ Embed in from the Xcode menu bar) to take
advantage of the navigation bar title or any Navigation
Controller features.

c. In the Navigation Controller Attributes Inspector, change
the Simulated Metrics Size value to Freeform; then
change the Simulated Size value to 250 × 300 in the
Size Inspector.

d. In the Navigation Controller Identity Inspector, specify
the storyboard ID as nav. You always need the ID if you
want to instantiate a view controller instance directly from
a storyboard (see Listing 3-24).

Figure 3-55. Dialogs storyboard completion

CHAPTER 3: Structure Your App

115

e. You normally draw meaningful contents in a Content
View. For simplicity, use the Attributes Inspector to
change the GreenViewController view’s Background
attribute to Green.

f. Draw a BarButtonItem on the right side of navigation
bar in the GreenViewController and connect the
Send Actions outlet to the IBAction method in
GreenViewController, as shown in Listing 3-23.
Figure 3-55 depicts the completed storyboard.

2. To present the GreenViewController, draw a manual

segue from the presenting ViewController to the

parent Navigation Controller of GreenViewController.

Specify the segue attribute values as shown in the

Attributes Inspector in Figure 3-56.

a. Identifier: Set this to mypopover.

b. Segue type: Set this to Present As Popover.

c. Direction: Set this to Up (you may play with other values).

d. Anchor outlet: Drag the outlet to the Popup button in
the presenting view controller.

Figure 3-56. Storyboard segue attributes in the Attributes Inspector

3. To perform the mypopover manual segue, update the

ViewController.doPopup(...) IBAction method as

shown in Listing 3-24. Note that the commented code

programmatically presents a UIPopoverController

without using the storyboard segue.

CHAPTER 3: Structure Your App116

Listing 3-24. Perform the mypopover Manual Segue

// In ViewController class
@IBAction func doPopup(sender: AnyObject) {
 self.performSegueWithIdentifier("mypopover", sender: nil)

// var nav = self.storyboard!.instantiateViewControllerWithIdentifier("nav")
as UIViewController
// var popover = UIPopoverController(contentViewController: nav)
// popover.delegate = self;
// popover.popoverContentSize = nav.view.bounds.size
// popover.presentPopoverFromRect(self.mPopupButton.frame, inView: self.
view, permittedArrowDirections: UIPopoverArrowDirection.Up, animated: true)
}

4. You can dismiss the pop-over by tapping anywhere

inside the presenting view controller but outside

the GreenViewController Content View. To

dismiss the pop-over programmatically, implement

GreenViewController.doDone(...) to call the

dismissViewControllerAnimated(...), as shown in

Listing 3-23.

You can build and run the Xcode Dialogs project to see the
UIPopoverController code in action. UIPopoverController is rendered as a
pop-up dialog on an iPad, while the same code renders a full-screen modal
screen in compact-sized classes such as the iPhone, as shown in Figure 3-57.

Figure 3-57. The results of the UIPopoverController code on the iPad vs. the iPhone

CHAPTER 3: Structure Your App

117

Summary
To start developing an iOS app, first create storyboard scenes using the
wireframe or mock-up to break your app naturally into a structured MVC
project in a top-down fashion. The result is a set of Content View–View
Controller pairs.

Next, to implement the screen navigation patterns, you draw storyboard
segues to connect storyboard scenes. You also choose the appropriate
Container View Controller (such as UINavigationController) from the SDK
to facilitate the screen transitions. You will dive into the details of each
screen in Chapter 4.

119

Chapter 4
Implement Piece by

Piece

In the previous chapter, you used an iOS storyboard to lay the
groundwork for using navigation patterns. It resulted in a set of connected
UIViewController classes in a model-view-controller (MVC) framework that
mapped to Android counterpart fragments.

In this chapter, you will implement each view-controller pair one piece at
a time. You will also focus on the following common programming-task
mappings from iOS to Android:

User interface and common UI widgets	
Persistent storage options	
Network and remote services with JavaScript Object 	
Notation (JSON)

User Interface
All those storyboard scenes that you implemented using the screen
navigation patterns in Chapter 3 were intentionally simple. Obviously, a
useful mobile app provides rich content and offers better functionality to
gracefully interact with users. The user interface (UI) will certainly play an
important role in the overall user experience.

The techniques and vocabularies for creating meaningful user interfaces
for iOS are definitely different from those for most of the front-end and
back-end web development platforms. UI components are normally

CHAPTER 4: Implement Piece by Piece120

platform dependent. You just need to know the application programming
interface (API) usages of the user interface widgets and where to look up the
platform-specific widget specifications.

iOS content views and storyboard scenes are structured in a view container
(view-parent) model, which has existed in the industry for a long time. In
iOS, UIView is an object that draws content and UI widgets on the screen
with which the user can interact. A UIView is also a container that holds
other UIView objects to define the hierarchical layout of the UI.

To position UI widgets in the content view, iOS uses Auto Layout to set the
location and size of the widgets within each one’s parent view or relative to
a sibling.

Note There might be some similarities between the iOS UI framework

and HTML mock-up structures. However, I think the amount of similarity is

not enough to help you to understand the iOS UIKit framework. I strongly

suggest you have an open mind and learn the object-oriented style of the

iOS UI framework from scratch without trying to force your current HTML

and web approaches into this subject.

UIView
The UIView object is the basic building block for UI components. It is the
base class for all widgets, such as common widgets like UIButton and
UILabel. It is also used as the parent container view.

WEB ANALOGY

In HTML, there is no equivalent for a UI base class, but an HTML element like <div> has few

default attributes but its look and behavior can be customized in infinite ways.

A visible UIView occupies a rectangular area on the screen and is
responsible for drawing and event handling. The UIViewController class has
a root view defined in the UIViewController.view property that is inherited
by all the view controllers. All UI widgets are special types of the UIView
object that have attributes for the intended look and feel and behaviors.
When drawing the view elements in a storyboard, they are added to the
parent view, and you use the storyboard view inspectors to visually edit the
view properties.

CHAPTER 4: Implement Piece by Piece

121

All the iOS UI widgets inherit from UIView. You can set the inherited UIView
attributes in the storyboard view’s Attributes Inspector. For example,
Figure 4-1 depicts the View section in the Attributes Inspector for UI widgets.

Figure 4-1. View section of the Attributes Inspector

At runtime, you can programmatically update the properties of the UIView
object. UIView is the ultimate superclass of all widgets. It offers a fairly rich
API for developers to implement a number of UI-related responsibilities,
such as the following:

Rendering content	
Layout and manage subviews	
Event handling	
Animations	

The rest of the chapter demonstrates the common attributes or APIs that
you most likely will encounter or that are just good to know now. Before
diving into common iOS UI widgets from the iOS software development kit

CHAPTER 4: Implement Piece by Piece122

(SDK), I will talk about an important related topic, application resources,
which are used by the UI widgets as well as many other common
programming tasks.

Application Resources

WEB ANALOGY

Web applications can use images located anywhere, but organized projects will store these

assets in logical locations.

Most GUI apps are composed of more than programming code; they require
other resources, such as images and externalized strings. In iOS, you will
encounter similar tasks for how to provide different assets for different device
configurations. This section will demonstrate how to implement two common
use cases in Xcode: using the assets catalog and externalizing strings.

Using the Assets Catalog

You can group images for different device configurations in the assets

catalog. This simplifies the management of the images for different screen
sizes and device configurations when using them in your iOS code. This
section will show you how to do this in iOS. Do the following:

1. Launch Xcode, use the Single View Application

template, and name the project CommonWidgets.

The project comes with one assets catalog,

Images.xcassets, that already contains the AppIcon

set, as shown in Figure 4-2 (left pointer). The editor

shows you the icons and pixel resolutions for

different device types. Toggle the iOS 6.1 and Prior

Sizes check box (right pointer in Figure 4-2) to see

the differences in the editor.

CHAPTER 4: Implement Piece by Piece

123

2. Create images for the iOS app icon with the different

image resolutions specified in the editor. Drag the

appropriate image files to the guided squares.

Figure 4-3 depicts the result.

Figure 4-2. AppIcon set in Images.xcassets

Figure 4-3. Re-creating icons for iOS with Images.xcassets

3. To add a regular image asset, click the Add (+)

button and select New Image Set, as shown in

Figure 4-4.

a. Use the Attributes Inspector to select the type of devices
you want to provide.

b. You can choose to supply the image set by selecting the
Universal size class or other device-specific types. Either
way, 1x, 2x, and 3x should cover all the iOS devices now.

CHAPTER 4: Implement Piece by Piece124

c. Select the image with 1x resolution and drag it to the
right spot (as shown by the pointer under the sample in
Figure 4-4). Repeat the step for the 2x and 3x images.

Figure 4-4. Adding an image set in Images.xcassets

d. Give the image set a name (for example, type sample).
The name is the identifier to access the image from your
code or from a storyboard.

You have created two image assets. The first, AppIcon, is used for the launch
icon on the home screen by default. The other one, sample, can be used by
your code or any widgets in your storyboard. You will use the sample icon in
later exercises.

Note You can use your favorite image editor to create the images or

download them from www.pdachoice.com/bookassets.

http://www.pdachoice.com/bookassets

CHAPTER 4: Implement Piece by Piece

125

Externalizing Strings

Generally, you store string text in external files. Both Android and iOS read
externalized strings in a similar manner. In iOS, they are stored in "key" =
"value"; format in .strings files. In your Swift code, instead of hard-coding
the values directly, use the system API to get the string values by key. This
is similar to the method for localizing web applications for international
audiences. To externalize strings for an iOS project, do the following:

1. Create a new file anywhere in your Xcode project.

For example, to create a new file in the Supporting
Files folder, press +N (the keyboard shortcut for

New File).

a. On the “Choose a template” screen, select
iOS ➤ Resource ➤ Strings File.

b. Save the file as Localizable.strings. This is the
default file name used by the iOS API. You can create
multiple .strings files and specify the file name using
the iOS system API.

2. Copy Listing 4-1 into your iOS Localizable.strings

to start with. You will use these strings later.

Listing 4-1. iOS Localizable.strings

"app_name" = "HelloAndroid";
"action_settings" = "Settings";
"hello_world" = "Hello world!";
"hello_button" = "Hello ...";
"name_hint" = "Enter a Name, i.e, You";

3. To read the strings from the Localizable.strings

file, use the NSLocalizedString(...) method to

retrieve the string by key, as shown in Listing 4-2.

Listing 4-2. Read Strings from the iOS Localizable.strings File

// hello_world" = "Hello world!";
var str = NSLocalizedString("hello_world", comment: "")
println(str) // Hello world!

With the strings externalized in a text file, you can translate the text to
different languages, a common process to implement internationalization.
Although I will not cover localization/internationalization in depth, the
concept and process are similar in many programming platforms.

CHAPTER 4: Implement Piece by Piece126

Common UI Widgets
UI widgets are the interactive software-control components in the
application’s UI, such as buttons, text fields, and so forth. You create
screens to contain the appropriate UI widgets to interact with users, to
collect information from users, and to display information to users.

The iOS UIKit framework provides rich system UI widgets that you “draw” in the
storyboard. You also “connect” them to the Swift class as IBOutlet properties so
that your code can directly use the view object, update its attributes, or invoke
the widget methods to provide dynamic application behaviors.

The rest of this section introduces the common iOS UI widgets and
compares them with web UI components when appropriate. Continuing with
the CommonWidgets project created previously, do the following:

1. The storyboard already has a storyboard scene that

pairs with the ViewController class. This scene

won’t be tall enough for all the widgets you’re going

to add. Just to enable you to see all the widgets

to be added to this scene, change the Simulated

Metrics size to Freeform and make it long enough so

you can see all the widgets in storyboard.

2. Select the View Controller from the storyboard, and

in the Size Inspector, change Simulated Size to

Freeform. Make the size 320x1500 (Figure 4-5) to

give the view enough height to start with.

Figure 4-5. Changing the simulated size in the storyboard to Freeform

Later, you will wrap the whole screen in a scroll view so that you can scroll
the view up and down.

CHAPTER 4: Implement Piece by Piece

127

Note Don’t bother implementing Auto Layout for each widget in the

beginning. The Auto Layout constraints will get messed up while setting

up UIScrollView. Instead, implement the Auto Layout constraints after

you set up the scroll view.

Figure 4-6. Adjusting UILabel size and position

UILabel

WEB ANALOGY

<h1> to <h6> or <p> elements are commonly used in HTML pages.

You commonly use UILabel to draw one or multiple lines of static text, such
as those that identify other parts of your UI.

Using the Android app as the wireframe, add a UILabel to the iOS
CommonWidgets app by following these steps:

1. Select Main.storyboard and drag a Label from the

Object Library to the root view, as shown in Figure 4-6.

Drag the widget to position the UILabel, as shown in

the Size Inspector.

CHAPTER 4: Implement Piece by Piece128

2. Update the UILabel attributes in the Attributes

Inspector, as shown in Figure 4-7.

a. For Text, enter My simple text label.

b. For Alignment, use center alignment.

c. The other options (Shadow, Autoshrink, and so on)
are all safe to play with, too.

Figure 4-7. Updating UILabel attributes

3. Open the Assistant Editor and connect IBOutlet in

the Connections Inspector to your code so that you

can update UILabel programmatically. Most of the

attributes in the Attributes Inspector can be modified

in the runtime via the IBOutlet mLabel property, as

shown in Listing 4-3.

CHAPTER 4: Implement Piece by Piece

129

Listing 4-3. UILabel Properties

...
@IBOutlet weak var mLabel: UILabel!
override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 self.initLabel()
}

func initLabel() {
 self.mLabel.text = "My simple text label"
 self.mLabel.textColor = UIColor.darkTextColor()
 self.mLabel.textAlignment = NSTextAlignment.Center
 self.mLabel.shadowColor = UIColor.lightGrayColor()
 self.mLabel.shadowOffset = CGSize(width: 2, height: -2)
}
...

Build and run the CommonWidgets app to see the UILabel in action
(Figure 4-8).

Figure 4-8. A simple iOS UILabel look and feel

CHAPTER 4: Implement Piece by Piece130

UITextField

WEB ANALOGY

<input> elements are commonly used in HTML pages.

In iOS, UITextField accepts a single line of user input and shows
placeholder text when the user input is still empty. To learn by example, do
the following to use UITextField in the CommonWidgets project:

1. Select Main.storyboard and drag a TextField from

the Object Library to the root view, as shown in

Figure 4-9. Position the UITextField right under the

UILabel.

Figure 4-9. Changing the UITextField size and position

2. Update its attributes in the Attributes Inspector as

shown in Figure 4-10.

a. For Placeholder, enter “Hint: one-line text input.”

b. Fill in the other attributes as shown in Figure 4-10.

CHAPTER 4: Implement Piece by Piece

131

3. Open the Assistant Editor and connect the following

outlets in the Connections Inspector to your code, as

shown in Listing 4-4:

a. Connect IBOutlet to the mTextField property so that you
can update UITextField programmatically.

b. Connect the delegate outlet to the ViewController class
so that the UITextField sends a message to its
delegate object.

c. Implement the UITextFieldDelegate protocol in
ViewController. Listing 4-4 shows the common way to
dismiss the keyboard when the Return key is pressed.

Figure 4-10. Defining UITextField in the Attributes Inspector

CHAPTER 4: Implement Piece by Piece132

Note Other methods are defined in UITextFieldDelegate. ⌘-click

the symbol in the editor to bring up the class definition. I normally check

the method signatures without memorizing them.

Listing 4-4. UITextFieldDelegate

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 @IBOutlet weak var mTextField: UITextField!

 // called when 'return' key pressed. return false to ignore.
 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 textField.resignFirstResponder()
 return true
 }
 ...

Build and run the CommonWidgets app to see UITextField in action.

UITextView

WEB ANALOGY

<textarea> elements are commonly used in HTML pages.

In iOS, UITextView accepts and displays multiple lines of text. To learn by
example, do the following to use UITextView in the CommonWidgets project:

1. Select Main.storyboard and drag a UITextView

from the Object Library to the root view, as shown

in Figure 4-11. Position the widget right under the

UITextField.

CHAPTER 4: Implement Piece by Piece

133

2. Update its attributes in the Attributes Inspector:

a. For Text, enter “multiple lines.”

b. Take a look at its Attributes Inspector. Many attributes are
similar to the UITextField but not exactly (for example, there
is no Placeholder attribute).

3. Open the Assistant Editor and connect IBOutlet in

the Connections Inspector to your code, mTextView,

so that you can update UITextView programmatically.

Add a method, logText(...), that prints text to

UITextView. You will use it later (see Listing 4-5).

Listing 4-5. UITextView Properties

class ViewController: UIViewController ... {
 ...
 @IBOutlet weak var mTextView: UITextView!
 func logText(text : String) {
 self.mTextView.text = self.mTextView.text + "\n" + text

 // to make sure the last line is visible
 var count = self.mTextView.text.utf16Count // string length
 self.mTextView.scrollRangeToVisible(NSMakeRange(count, 0))
 }
 ...

Figure 4-11. Changing the UITextView size and position

CHAPTER 4: Implement Piece by Piece134

UITextView can have multiple lines separated by line breaks. You won’t
be able to dismiss the keyboard the same way you normally do for
UITextField. Normally, you use another control; for instance, if you have
a save button, you may use it to trigger View.resignFirstResponder() to
dismiss the keyboard.

UIButton

ANDROID ANALOGY

<button> or <input type="button"> form elements are commonly used in

HTML pages.

In iOS, UIButton, the common Button control widget, intercepts touch
events and sends an action message to the delegate. To learn by example,
do the following in the CommonWidgets project:

1. Select Main.storyboard, drag a UIButton from the

Object Library to the root view, and position the

UIButton right under the text view, as shown in

Figure 4-12.

2. Update its attributes in the Attributes Inspector (see

Figure 4-12).

a. Most of the Button attributes are associated with the button
states. Set the State Config attribute first to Default.

b. Set Title to Action Button.

c. Set Image to sample.

d. The other settings are all safe to play with. You may accept
the defaults, as shown in Figure 4-12.

CHAPTER 4: Implement Piece by Piece

135

3. Open the Assistant Editor and connect IBOutlet and

IBAction in the Connections Inspector to your code,

as shown in Listing 4-6.

Listing 4-6. IBOutlet and Implement IBAction

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 @IBOutlet weak var mButton: UIButton!
 @IBAction func doButtonTouchDown(sender: AnyObject) {
 println(self.mButton.titleForState(UIControlState.Normal))
 self.mButton.setTitle("Click me!", forState: UIControlState.Normal)
 self.logText("Button clicked")
 }
 ...

Build and run the CommonWidgets app to make sure everything is good.
When the button is clicked, it simply logs the “Button clicked” text in the
UITextView (see Figure 4-13).

Figure 4-12. UIButton position and attributes

CHAPTER 4: Implement Piece by Piece136

UISegmentedControl

ANDROID ANALOGY

<select /> elements are commonly used in HTML pages.

In iOS, UISegmentedControl offers closely related but mutually exclusive
choices. To show and learn by example, do the following in the
CommonWidgets app:

1. Select Main.storyboard and drag a

UISegmentedControl from the Object Library to the

root view under the button, as shown in Figure 4-14.

Figure 4-13. Button clicked in UITextView

CHAPTER 4: Implement Piece by Piece

137

2. Update its attribute in the Attributes Inspector

(see Figure 4-15):

a. For Style, select Bar.

b. Set Segments to 3.

c. For Title, select First, Second, and Third for each segment,
respectfully.

d. Optionally, you may assign an image instead of title for
each segment.

e. You can check the Selected segment
(for example, Segment 0).

Figure 4-14. UISegmentedControl size and position

Figure 4-15. UISegmentedControl attributes

CHAPTER 4: Implement Piece by Piece138

3. Open the Assistant Editor and connect IBOutlet

and IBAction in the Connections Inspector to your

code. Frequently, you implement IBAction for the

Value Changed events to capture the selections

(see Listing 4-7).

Listing 4-7. UISegmentControl IBOutlet and Implement IBAction

class ViewController: ...{
 ...
 @IBOutlet weak var mSegmentedControl: UISegmentedControl!
 @IBAction func doScValueChanged(sender: AnyObject) {
 var idx = self.mSegmentedControl.selectedSegmentIndex
 self.logText("segment \(idx)")
 }
 ...

Build and run the CommonWidgets app to see UISegmentedControl in
action. Each segment has a zero-based index (see Figure 4-16).

Figure 4-16. UISegmentedControl zero-based index

CHAPTER 4: Implement Piece by Piece

139

UISlider

WEB ANALOGY

<input type="range"> elements are commonly used in HTML pages.

iOS’s UISlider allows users to make adjustments to a value given a range
of allowed values. Users drag the slider left or right to set the value. The
interactive nature of the slider makes it a great choice for settings that reflect
intensity levels, such as volume, brightness, or color saturation.

To demonstrate the iOS UISlider, do the following:

1. Select Main.storyboard, drag a UISlider from

the Object Library, and place it below the

UISegmentedControl object, as shown in Figure 4-17.

2. Update its attributes in the Attributes Inspector

(see Figure 4-17):

a. Set the Min value to 0 and the max to 100.

b. Min Image and Max Image.

c. Leave Min Track Tint and Max Track Tint at the defaults.

d. Disable Continuous Updates.

Figure 4-17. Updating the UISlider attributes

3. Open the Assistant Editor and connect IBOutlet and

IBAction to your code in the Connections Inspector. You

will often implement IBAction for the Value Changed

event to capture the selections (see Listing 4-8).

CHAPTER 4: Implement Piece by Piece140

Listing 4-8. UISlider IBOutlet and Implement IBAction

class ViewController: ...{
 ...
 @IBOutlet weak var mSlider: UISlider!
 @IBAction func doSliderValueChanged(sender: AnyObject) {
 var value = self.mSlider.value
 self.logText("slider: \(value)")
 }
 ...

Build and run the CommonWidgets app to see UISlider in action. As you
move the slider by dragging the circle on the slider, called thumb, its value
continues to be printed in the UITextView (see Figure 4-18).

Figure 4-18. UISlider value updates

CHAPTER 4: Implement Piece by Piece

141

UIActivityIndicatorView

WEB ANALOGY

This is not a built-in HTML element, but it is commonly implemented in front-end web pages

using JavaScript or CSS.

UIActivityIndicatorView displays a “busy” activity indicator for a task or
something else in progress. You may commonly call it a spinner, loader, or
wait cursor in your web app. To learn and visualize this iOS UI widget, do
the following in the CommonWidgets iOS app:

1. Select Main.storyboard, drag a

UIActivityIndicatorView from the Object Library,

and position it left-aligned and below the UISlider

(see Figure 4-19).

2. Update its attribute in the Attributes Inspector, as

shown in Figure 4-19:

a. Style: Set this to Gray.

b. Color: Set this to Default.

c. Behavior: Both Animating and Hides When Stopped are
commonly enabled.

Figure 4-19. UIActivityIndicatorView attributes

3. Open the Assistant Editor and connect IBOutlet in

the Connections Inspector to your code so that you

can enable or disable the activity indicator, as shown

in Listing 4-9.

CHAPTER 4: Implement Piece by Piece142

Listing 4-9. UIActivityIndicatorView IBOutlet

class ViewController: ...{
 ...
 @IBOutlet weak var mActivityIndicator: UIActivityIndicatorView!
 func toggleActivityIndicator() {
 var isAnimating = mActivityIndicator.isAnimating()
 isAnimating ? mActivityIndicator.stopAnimating() : mActivityIndicator.

startAnimating()
 }
 ...

Build and run the CommonWidgets app to see the iOS animated activity
indicator. You will call the toggleActivityIndicator() method later.

UIProgressView

ANDROID ANALOGY

HTML <progress> elements (new in HTML 5) are commonly used in HTML pages.

To show a task with a known duration in progress, use UIProgressView to
show how far the task has progressed. With this, users can better anticipate
how much longer until it completes. To learn and visualize how the iOS
UIProgressView works, do the following:

1. Select Main.storyboard, drag a UIProgressView from

the Object Library, and position it below and left-aligned

to the activity indicator, as shown in Figure 4-20.

2. Update its attributes in the Attributes Inspector

(see Figure 4-20).

a. Style: Default (or Bar)

b. Progress: 0.5 (between 0.0 and 1.0)

c. Progress Tint: Purple

d. Track Tint: Yellow

CHAPTER 4: Implement Piece by Piece

143

3. Open the Assistant Editor and connect IBOutlet in the

Connections Inspector to your code so that you can

update UIProgressView programmatically. Modify the

UISlider delegate method, doSliderValueChanged(...)
as shown in Listing 4-10.

Listing 4-10. UIActivityIndicatorView IBOutlet

class ViewController: ...{
 ...
 @IBAction func doSliderValueChanged(sender: AnyObject) {
 ...
 self.updateProgress(value/100)
 }
 ...
 @IBOutlet weak var mProgressView: UIProgressView!
 func updateProgress(value: Float) {
 self.mProgressView.progress = value
 }
 ...

Build and run the CommonWidgets app to visualize iOS’s UIProgressView in
action (see Figure 4-21).

Figure 4-20. UIActivityIndicatorView attributes

CHAPTER 4: Implement Piece by Piece144

UISwitch

WEB ANALOGY

<input type="checkbox"> elements are commonly used in HTML pages.

The switch-like widgets are user friendly for presenting mutually exclusive
choices. In web pages, you may find widgets with many different styles
for the same purpose. In iOS, you use UISwitch to allow a user to change
values by toggling or dragging the thumb between two states.

To learn UISwitch by example, do the following:

1. Select Main.storyboard and drag a UISwitch

from the Object Library. Position it to the right of

UIActivityIndicatorView (see Figure 4-22).

Figure 4-21. UIProgressView update in action

CHAPTER 4: Implement Piece by Piece

145

2. Update its attribute in the Attributes Inspector

(see Figure 4-22).

a. Set State to On.

b. You can change any other attributes safely.

Figure 4-22. UIActivityIndicatorView

3. Open the Assistant Editor and connect IBOutlet

and IBAction in the Connections Inspector to your

code. You will often implement IBAction for the

Value Changed event to capture the selections

(see Listing 4-11).

Listing 4-11. UISwitch IBOutlet

class ViewController: ...{
 ...
 @IBOutlet var mSwitch: UISwitch!
 @IBAction func doSwitchValueChanged(sender: AnyObject) {
 var isOn = self.mSwitch.on
 self.toggleActivityIndicator()
 }
 ...

Build and run the app and toggle the UISwitch to see the activity indicator’s
animation changes (see Figure 4-23).

CHAPTER 4: Implement Piece by Piece146

UIImageView

WEB ANALOGY

HTML elements are commonly used in HTML pages.

In iOS, UIImageView displays one image or a series of images for simple
graphic animations. For a simple usage like the CommonWidgets app,
all you need to do is specify the image source and the attributes in a
storyboard for how you want to render the image.

Figure 4-23. iOS UISwitch look and feel

CHAPTER 4: Implement Piece by Piece

147

To learn iOS UIImageView by example, do the following:

1. UIImageView can now render vector-based images!

This is a new feature in Xcode 6. I only know that

the first page of a PDF is rendered nicely. You can

definitely use a bitmap image for this exercise or

create a new image set for a PDF file, as shown by

the pointers in Figure 4-24.

a. Select Images.xcassets to add a new image set.
Name it pdf.

b. In pdf, set Type to Vectors in the Attributes Inspector.

c. Drag a PDF file to the universal slot, as shown in
Figure 4-22. There is no need to provide 2x or 3x images.

Figure 4-24. Creating an image set

2. Select Main.storyboard, drag a UIImageView object

from the Object Library to the view, and position

it under the UIProgressView object, as shown in

Figure 4-25.

CHAPTER 4: Implement Piece by Piece148

3. Update its attributes in the Attributes Inspector:

a. Set Image to pdf.

b. Set Mode to Aspect Fit.

c. Set the others as shown in Figure 4-23.

4. Open the Assistant Editor and connect IBOutlet in

the Connections Inspector to your code. Listing 4-12

demonstrates a simple setImage(...) method that

assigns an UIImage object to UIImageView.

Listing 4-12. UISwitch IBOutlet

class ViewController: ...{
 ...
 @IBOutlet weak var mImageView: UIImageView!
 func setImage(name: String) {
 self.mImageView.image = UIImage(named: name)
 }
 ...

As you can see in Figure 4-25, there are few attributes you need to master.
However, when it comes to creating a UIImage and optimizing its size and
performance, you want to look into the UIImage class to see how you would
construct the UIImage instance from various sources. There are actually iOS
frameworks that primarily deal with images, like Quartz 2D or OpenGL.

Figure 4-25. UIImageView attributes

CHAPTER 4: Implement Piece by Piece

149

If you know WebGL, you definitely want to take advantage of your existing
knowledge and explore the counterpart iOS OpenGL framework. If you
come from a graphics-editing background, Quartz 2D offers a rich graphics
API that will support you for iOS graphics-editing tasks.

You can build and run the CommonWidgets iOS app to see UIImageView in
action, as shown in Figure 4-26.

Figure 4-26. UIImageView in iPhone 5

Menu

Menus are used to provide quick access to frequently used actions. They
are particularly common in desktop, Android, and web apps. Although
there is no such similarly named feature in the iOS SDK, UIBarButtonItem in
UIToolbar or UINavigationBar serves a similar purpose: quick access.

CHAPTER 4: Implement Piece by Piece150

UIBarButtonItem

WEB ANALOGY

This is usually implemented with an add-on UI widget library.

For quick access actions in iOS, you commonly use UIBarButtonItem in the
navigation bar for a limited number of action buttons that can fit into the
fixed space. On the iPhone, you can create a bottom bar, UIToolbar, if all of
the buttons in UIBarButtonItem don’t fit on the top navigation bar.

To learn and show the UIBarButtonItem in the navigation bar and toolbar by
example, do the following in the CommonWidgets project:

1. Drag a UINavigationBar from the Object Library

to the view and position it on top of the view.

Frequently, you will just select the View Controller

to embed it in a NavigationController in the

storyboard (from the Xcode menu bar, select

Editor ➤ Embed In ➤ Navigation Controller).

Figure 4-27 depicts the operation results in a new

Navigation Controller scene and a Navigation Item in

the existing View Controller scene:

a. Multiselect all the widgets in the scene and reposition
them to make room for the top bar.

b. Update the Navigation Item attributes in the Attributes
Inspector (for example, enter CommonWidgets for Title).

Figure 4-27. Navigation Controller and Navigation Bar

CHAPTER 4: Implement Piece by Piece

151

2. Double-click the Navigation Bar to select it and

drag a UIBarButtonItem from the Object Library

onto the right side of the Navigation Bar to add

a rightBarButtonItem (see Figure 4-28). Choose

an Identifier from selections for those common

actions. Or enter a title, such as Action, as shown in

Figure 4-28.

Figure 4-28. UIBarButtonItem attributes

3. Open the Assistant Editor and connect IBAction in

the UIBarButtonItem Connections Inspector to your

code (see Listing 4-13).

Listing 4-13. UIBarButtonItem IBOutlet and IBAction

class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 println(">> doBarButtonAction")
 }
 ...

Action Sheet

WEB ANALOGY

This is an add-on modal window widget.

In web apps, you can use a modal callout to prompt users to make a
selection. The operations and the look and feel (L&F) establish a strong
relationship to the context that originates the operations. On the iPad, you
can safely choose UIPopoverController (see Chapter 3) to present the list of
selections, which on the iPhone is automatically presented full-screen.

CHAPTER 4: Implement Piece by Piece152

If you don’t want to use full-screen, perhaps for a smaller selection you can
choose UIActionSheet, which is presented as a pop-over for the iPad or
in an sheet that emerges from the bottom of the screen for smaller iPhone
devices.

The key SDK class is UIAlertController, which was introduced in Chapter 3
for alert dialogs (see Listing 3-22). To learn the iOS UIActionSheet by
example, modify the previous doBarButtonAction(...) IBAction method as
shown in Listing 4-14.

1. Create an instance of UIAlertController with the

style UIAlertControllerStyle.ActionSheet.

2. You can use Title or Message to establish a visual

connection to the originating context.

3. It is common to have a destructive UIAlertAction in

red for a delete or remove action, which is specified

with the UIAlertActionStyle.Destructive style.

4. UIActionSheet is presented as a pop-over on the

iPad. You need to specify location information or the

barButtonItem.

Listing 4-14. UIAlertController with ActionSheet Style

class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 println(">> doBarButtonDone: ")

 var actionSheet = UIAlertController(title: "Action (from bar

button item)", message: "Choose an Action", preferredStyle:
UIAlertControllerStyle.ActionSheet)

 // add action buttons
 var actionCancel = UIAlertAction(title: "Cancel", style:

UIAlertActionStyle.Cancel,
 handler: {action in
 // do nothing
 })

 var actionNormal1 = UIAlertAction(title: "Action 1", style:

UIAlertActionStyle.Default,
 handler: {action in
 println(">> actionNormal1")
 })

CHAPTER 4: Implement Piece by Piece

153

 var actionNormal2 = UIAlertAction(title: "Action 2", style:
UIAlertActionStyle.Default,

 handler: {action in
 println(">> actionNormal2")
 })

 var actionDestruct = UIAlertAction(title: "Destruct", style:

UIAlertActionStyle.Destructive,
 handler: {action in
 println(">> actionDestruct")
 })

 actionSheet.addAction(actionCancel) // always the last one
 actionSheet.addAction(actionNormal1)
 actionSheet.addAction(actionNormal2)
 actionSheet.addAction(actionDestruct)

 // UIViewController API to presend viewController
 // 4. for iPAD support
 if let popoverController = actionSheet.popoverPresentationController {
 popoverController.barButtonItem = sender as UIBarButtonItem
 }

 self.presentViewController(actionSheet, animated: true, completion: nil)
 }
 ...

Build and run the CommonWidgets app to visualize the iOS UIActionSheet
(see Figure 4-29).

CHAPTER 4: Implement Piece by Piece154

UIPickerView

WEB ANALOGY

HTML <select> elements are commonly used in HTML pages.

In iOS, UIPickerView displays a set of values from which the user selects. It
provides a quick way to select one value from a spinning wheel–like list that
shows all or part of the selections.

In traditional desktop apps or web pages, you normally see a drop-down list
for this purpose, except with one trivial difference: drop-downs show only
the selected value while the other choices are not shown after selected.

Figure 4-29. UIAlertController with UIActionSheet style

CHAPTER 4: Implement Piece by Piece

155

The iOS UIPickerView uses the same pattern as UITableView DataSource
to supply the items. To learn by example, add a UIPickerView widget to the
CommonWidgets app and do the following:

1. Select Main.storyboard and drag a UIPickerView

from the Object Library. Position it below the

UIImageView (see Figure 4-30).

Figure 4-31. Connecting the UIPickerView outlets

Figure 4-30. Placing the UIPickerView

2. Open the Assistant Editor and establish

UIPickerView outlet connections to your code in the

Connections Inspector (see Figure 4-31).

a. Connect IBOutlet to your code.

b. Connect the delegate and dataSource outlets to the
ViewController class (just like UITableView or any widgets
using data source).

CHAPTER 4: Implement Piece by Piece156

3. To implement the UIPickerView delegate and

data source, declare the ViewController class

to implement the UIPickerViewDelegate and

UIPickerViewDataSource protocols, as shown in

Listing 4-15.

Listing 4-15. UIPickerView IBOutlet

class ViewController: ... , UIPickerViewDelegate, UIPickerViewDataSource {
 ...
 @IBOutlet weak var mPickerView: UIPickerView!
 // returns the number of 'columns' to display.
 func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int {
 return 2
 }

 // returns the # of rows in each component..
 func pickerView(pickerView: UIPickerView, numberOfRowsInComponent
component: Int) -> Int {

 return 10
 }

 func pickerView(pickerView: UIPickerView, titleForRow row: Int,
forComponent component: Int) -> String! {

 return "(\(component), \(row))"
 }

 func pickerView(pickerView: UIPickerView, didSelectRow row: Int,
inComponent component: Int) {

 println("\(self.mPickerView.selectedRowInComponent(0))")
// before selection

 println("\(self.mPickerView.selectedRowInComponent(1))")
 println("(\(component), \(row))") // current selection
 }
 ...

Build and run the app to see iOS’s UIPickerView in action. The iPhone
emulator is too small for all the widgets you have so far. You need a
browser-like scroll bar (which you will implement soon). You can run it in
the iPad emulator for now (see Figure 4-32).

CHAPTER 4: Implement Piece by Piece

157

Note that if the app looks like a big iPhone while running in the
iPad emulator and all the widgets simply scale up, your project
deployment information must have been set to iPhone only. Change
the deployment device to Universal under Deployment Info, as shown
by the pointer in Figure 4-33.

Figure 4-33. Changing Devices to Universal in Deployment Info

Figure 4-32. UIPickerView in the iPad emulator

CHAPTER 4: Implement Piece by Piece158

Play Video

WEB ANALOGY

This is equivalent to the <video> element in HTML 5 or the Flash video player.

The iOS SDK gives you an easy-to-use API to play video resources from a URL.
To play full-screen video, you can use the MPMoviePlayerViewController
class, which already has the appropriate content view and media player
controls built in. You only need to present the whole view controller. The
following steps (see Listing 4-16) demonstrate the simplest usage:

1. Implement the useMoviePlayerViewController()

method, which plays a video in

MPMoviePlayerViewController (see Listing 4-16).

a. Create an instance with a URL link to a remote video
source. iOS supports the HTTP Live Streaming (HLS)
protocol. You can also create a file URL for bundled
content, as shown in the commented code in
Listing 4-16. Just as you would in web apps, make sure
the video format is supported. MPEG4 QuickTime is fairly
agnostic, and HLS is good for progressive loading.

b. MPMoviePlayerViewController contains a
MPMoviePlayerController property, which is the core class to
play video. Almost all the customization is done via this property.
You will use this class in a moment.

2. Earlier you implemented two actions in an UIActionSheet

(see Figure 4-29). Use the Action 1 button to trigger the

useMoviePlayerViewController() method (see Listing 4-16).

Listing 4-16. useMoviePlayerViewController()

import MediaPlayer
...
class ViewController: ...{
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 ...
 var actionNormal1 = UIAlertAction(title: "Action 1", style:

CHAPTER 4: Implement Piece by Piece

159

UIAlertActionStyle.Default,
 handler: {action in
 println(">> actionNormal1")
 self.useMpMoviePlayerViewController()
 })
 ...
 }
 ...
 func useMpMoviePlayerViewController() {
// var filepath = NSBundle.mainBundle().
 pathForResource("sample.mp4", ofType: nil)
// var fileUrl = NSURL(fileURLWithPath: filepath)
// var pvc = MPMoviePlayerViewController(contentURL: fileUrl)

 var contentUrl = NSURL(string: "http://devimages.apple.com/
 iphone/samples/bipbop/gear3/prog_index.m3u8")
 var pvc = MPMoviePlayerViewController(contentURL: contentUrl)

 pvc.moviePlayer.shouldAutoplay = false;
 pvc.moviePlayer.repeatMode = MPMovieRepeatMode.One

 self.presentViewController(pvc, animated: true, completion: nil)
 }
 ...

3. To play video in non-full-screen mode, use

MPMoviePlayerController directly to play video in a

UIView widget:

a. Select Main.storyboard, drag a UIView from the Object
Library, and position it below the UIPickerView, as shown in
Figure 4-34. This is the viewing area that shows the video.

Figure 4-34. View element for the video

http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8
http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8

CHAPTER 4: Implement Piece by Piece160

b. Open the Assistant Editor to connect IBOutlet in
the Connections Inspector to your code’s
mVideoView property.

c. Create a stored property for the MPMoviePlayerController
instance to allow users to seek through, play, or stop the
playback.

d. In viewDidLoad(...), invoke the useMoviePlayerController()
method to prepare the video to play.

e. Use the Action 2 button to start the video (see Listing 4-17).

Listing 4-17. Using the MPMoviePlayercontroller

class ViewController: ...{
 ...
 override func viewDidLoad() {
 ...
 self.useMoviePlayerController()
 }
 ...
 @IBOutlet weak var mVideoView: UIView!
 var mMoviePlayer : MPMoviePlayerController!
 func useMoviePlayerController() {
 var url = NSURL(string: "http://devimages.apple.com/iphone/samples/

bipbop/gear3/prog_index.m3u8")
 self.mMoviePlayer = MPMoviePlayerController(contentURL: url)

 self.mMoviePlayer.shouldAutoplay = false
 self.mMoviePlayer.controlStyle = MPMovieControlStyle.Embedded
 self.mMoviePlayer.setFullscreen(false, animated: true)

 self.mMoviePlayer.view.frame = self.mVideoView.bounds
 self.mVideoView.addSubview(self.mMoviePlayer.view)

 self.mMoviePlayer.currentPlaybackTime = 2.0
 self.mMoviePlayer.prepareToPlay()
 }
 ...
 @IBAction func doBarButtonAction(sender: AnyObject) {
 ...
 var actionNormal2 = UIAlertAction(title: "Action 2", style:

UIAlertActionStyle.Default,
 handler: {action in
 self.mMoviePlayer.play()
 })
 ...
 }

http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8
http://devimages.apple.com/iphone/samples/bipbop/gear3/prog_index.m3u8

CHAPTER 4: Implement Piece by Piece

161

Build and run the app. Select Action 1 for full-screen and Action 2 to play
video embedded in a subview. You don’t have the browser-like scroll view
yet, but you can run it in the iPad emulator for now (see Figure 4-35).

Figure 4-35. Playing video full-screen vs. embedded in the iPad emulator

UIWebView

WEB ANALOGY

HTML <iframe> elements are commonly used in HTML pages..

You can display rich HTML content in your mobile apps on almost all the
popular mobile platforms, including iOS, Android, BlackBerry, and Windows
phones. This enables you to deliver web content as part of your mobile
apps. One common scenario is when you want to provide information in
your app that needs to be updated frequently and you want to host the
content online as a web page. To take it one step further, the web content
does not have to be remote; you can bundle the web page content with the
native app. This enables web developers to leverage their web development
skills and create so-called hybrid apps.

CHAPTER 4: Implement Piece by Piece162

With new features from HTML5 and CSS3, many web developers are
creating meaningful and interactive web apps that are shortening the gap
between native apps and mobile web apps. In iOS, the key SDK class is
UIWebView, and it supports many HTML5 and CSS3 features (for example,
offline cache and web sockets, and so on).

As an example, the following steps demonstrate common tasks using
UIWebView:

1. Select Main.storyboard, drag a UIWebView from the

Object Library, and position it below the video View

(see Figure 4-36). Set its attributes in the Attributes

Inspector; it is commonly set to Scales Page To Fit.

Figure 4-36. iOS UIWebView delegate in the Connections Inspector

2. As usual, open the Assistant Editor and connect the

following outlets in the Connections Inspector to

your code (see Figure 4-36):

a. Connect IBOutlet so you can use the widget in your code.

b. Connect the delegate outlet so your code can intercept
UIWebView life-cycle events.

3. Listing 4-18 demonstrates the programming code

commonly used for UIWebView.

a. Use loadRequest(...) to load the URL. You can
also create a file URL to load a local HTML file.

b. Use loadHTMLString(...) to render simple
string text.

CHAPTER 4: Implement Piece by Piece

163

c. Although not demonstrated here, you can also use

loadData(...) to render NSData that you normally get

from remote contents using NSURLConnection, which

I will demonstrate later in the “NSURLConnection”

section.

Listing 4-18. UIWebView Code for Loading a URL or String Text

class ViewController: ... {
 ...
 override func viewDidLoad() {
 ...
// self.showWebPage(url: "http://pdachoice.com/me/webview")
 self.showWebPage(htmlString: "<H1>Hello UIWebView</H1>")
 }
 ...
 @IBOutlet weak var mWebView: UIWebView!
 func showWebPage(#url: String) {
 var req = NSURLRequest(URL: NSURL(string: url)!)
 self.mWebView.loadRequest(req)
 }

 func showWebPage(#htmlString: String) {
 self.mWebView.loadHTMLString(htmlString, baseURL: nil)
 }
 ...

4. To intercept UIWebView life-cycle events, implement the

UIWebViewDelegate protocol, as shown in Listing 4-19.

Listing 4-19. UIWebViewDelegate Protocol

class ViewController: ... , UIWebViewDelegate {
 ...
 func webView(webView: UIWebView, shouldStartLoadWithRequest request:
NSURLRequest, navigationType: UIWebViewNavigationType) -> Bool {

 // do the needful, like re-direct or intercept etc.
 return true; // false to stop http request
 }
 func webViewDidStartLoad(webView: UIWebView) {
 // do the needful, i.e., start UIActivityViewIndicator
 self.mActivityIndicator.startAnimating()
 }
 func webViewDidFinishLoad(webView: UIWebView) {
 // do the needful, i.e., stop UIActivityViewIndicator
 self.mActivityIndicator.stopAnimating()
 }
 func webView(webView: UIWebView, didFailLoadWithError error: NSError) {

http://pdachoice.com/me/webview

CHAPTER 4: Implement Piece by Piece164

 // do something, i.e., show error alert
 self.mActivityIndicator.stopAnimating()
 var alert = UIAlertController(title: "Error", message: error.

localizedDescription, preferredStyle: UIAlertControllerStyle.Alert)
 alert.addAction(UIAlertAction(title: "Close", style: UIAlertActionStyle.

Cancel, handler: nil))
 self.presentViewController(alert, animated: true, completion: nil)
 }
 ...

Build and run the app to see iOS UIWebView in action. Now, even the iPad Air
screen is too small (see Figure 4-37). You need a widget that scrolls content
just like any browser does with HTML pages; you will implement this next.

Figure 4-37. UIWebView in the iPad Air emulator

CHAPTER 4: Implement Piece by Piece

165

ScrollView

Because of the smaller screen size on mobile devices, ScrollView is useful
for displaying a content view larger than the physical display. To implement
this in iOS, you use UIScrollView.

To make UIScrollView work with Auto Layout, it is easier to wrap all the
widgets in a container view first, which will let you lay out the widgets in the
container view as you normally would with Auto Layout.

The following steps demonstrate how you would normally do this with iOS’s
UIScrollView in the CommonWidgets app:

1. Using a single child view will simplify scrolling all

the widgets in it. Select all widgets in the root view,

select Embed In ➤ View from the Xcode menu bar

to embed all these common widgets in a View (see

Figure 4-38), and change this storyboard label to

containerView.

Figure 4-38. Embed all widgets in a View

2. Change View Controller Simulated Size to Fixed. The

storyboard scene becomes shorter, with some widgets

left out of the screen, as shown in Figure 4-39.

CHAPTER 4: Implement Piece by Piece166

3. With the containerView that contains all the widgets,

you can scroll the containerView as a whole by

embedding the containerView in UIScrollView.

Select containerView first and embed it in a scroll

view, as shown in Figure 4-40 (Editor ➤ Embed In ➤

Scroll View).

Figure 4-39. Change the scene to a fixed size

Figure 4-40. Embed containerView in a scroll view

4. Open the Add New Constraints pop-up and pin

the UIScrollView edges to the edge of the super

view with zero spacing; then update the frame (see

Figure 4-41).

CHAPTER 4: Implement Piece by Piece

167

5. The preceding operation shifts the containerView.

In the containerView Size Inspector, reposition the

containerView to (0,0) with a size of 600 (do not

change the height).

6. ScrollView needs to know the content size, either

explicitly or calculated from Auto Layout if you set up

your constraints the right way. To make it adaptive to

a size class, the next step is to add constraints from

the content view to the scroll view:

a. The Auto Layout constraints are repurposed for calculating
the scrolling content size. You have to create Auto Layout
constraints to pin the edges to the parent UIScrollView
with zero spacing (see Figure 4-42).

Figure 4-42. contentView pinned to UIScrollView with zero spacing

Figure 4-41. Set the UIScrollView constraint

CHAPTER 4: Implement Piece by Piece168

7. The content view width is not adaptive yet because

the leading and trailing Auto Layout constraints to

the scroll view created in the preceding step were

repurposed for the scroll view contentSize. You can

create the same constraints to views outside of the

scroll view, that is, the root view.

a. Connect the containerView view element in
storyboard scene to your Swift code: the @IBOutlet
mContainerView property.

b. Currently, you cannot use a storyboard to add constraints
to a parent’s parent. You have to write code, as shown in
Listing 4-20.

Listing 4-20. Pin contentView Edges to Screen/Root view Edges

class ViewController: ... {
 ...
 @IBOutlet var mContainerView: UIView!
 override func viewDidLoad() {
 ...
 var leftConstraint = NSLayoutConstraint(
 item: self.mContainerView,
 attribute: NSLayoutAttribute.Leading,
 relatedBy: NSLayoutRelation(rawValue: 0)!,
 toItem: self.view,
 attribute: NSLayoutAttribute.Leading,
 multiplier: 1.0,
 constant: 0)
 self.view.addConstraint(leftConstraint)

 var rightConstraint = NSLayoutConstraint(
 item: self.mContainerView,
 attribute: NSLayoutAttribute.Trailing,
 relatedBy: NSLayoutRelation(rawValue: 0)!,
 toItem: self.view,
 attribute: NSLayoutAttribute.Trailing,
 multiplier: 1.0,
 constant: 0)
 self.view.addConstraint(rightConstraint)
 ...

8. You can also set the widgets inside the

containerView for Auto Layout so they adapt to

different size classes.

Build and run the app to see iOS UIScrollView in action. You should be able
to see all the widgets by scrolling the view up and down (see Figure 4-43).

CHAPTER 4: Implement Piece by Piece

169

Animations
Back in the “old days,” I cared a lot less about animation effects, but I think
the evolution of iOS has definitely raised the bar. In iOS, you can animate
UIView properties using the simple UIView animation API.

To learn by example, modify the existing UISegmentedControl.
doScValueChanged(...) method, as shown in Listing 4-21, to create some
animation effects using the UIView.animateWithDuration(...) method.

Listing 4-21. UIView.animateWithDuration(...)

...
@IBAction func doScValueChanged(sender: AnyObject) {
 var idx = self.mSegmentedController.selectedSegmentIndex
 self.logText("segment \(idx)")
 let center = self.mButton.center
 UIView.animateWithDuration(1, animations: { action in
 self.mButton.center = CGPoint(x: center.x, y: center.y / CGFloat(idx + 1))
 self.mButton.alpha = 1 / CGFloat(idx + 1)
 }, completion: { action in

Figure 4-43. CommonWidgets with scrollable view

CHAPTER 4: Implement Piece by Piece170

 UIView.animateWithDuration(1, delay: 0, usingSpringWithDamping: 0.5,
initialSpringVelocity: 0.5, options: .CurveEaseInOut,

 animations: { action in
 self.mButton.center = center
 }, completion: { action in
 // do nothing
 })
 })
}
...

The UIView.animateWithDuration(...) method has several overloaded
variants that all work the same way. You can animate the following UIView
properties by modifying them inside the animation block:

	frame for the viewing area

	center for position

	transform for scale and rotation

	alpha for transparency

	backgroundColor

Note, you cannot animate the hidden property directly. You would need to
animate the alpha value to animate the fade-out or fade-in effects.

Save Data

WEB ANALOGY

Traditionally, a web app’s front end is more of a thin client approach that saves data on the

server side. You may find the topic more familiar to back-end implementations. Even in the

front-end JavaScript development, the HTML5 local storage is good to store a small amount

of user preferences as well.

Saving data is an essential programming task in almost all common
programming platforms. In addition to transactional data, most of the mobile
apps also save application states and user preferences so that users can

CHAPTER 4: Implement Piece by Piece

171

resume their tasks later. Most of the native including desktop, iOS, and other
mobile platforms provide several persistent storage options. The iOS SDK
offers the following choices:

User Defaults System	
File storage	
Core Data framework and SQLite database (not covered 	
in this book)

Before diving into the first two options, you will create an Xcode project so
that you can write code and visualize how these options work.

1. Launch Xcode, use the Single View Application

template, and name the project SaveData.

2. Create a Navigation Bar with an UIBarButtonItem

(see Figure 4-44):

a. Select the View Controller in storyboard, and from the
Xcode menu bar, select Editor ➤ Embed In ➤ Navigation
Controller.

b. In the Navigation Item Attributes Inspector, enter a Title of
SaveData.

c. Drag a BarButtonItem from the Object Library and drop it
onto the Navigation Item in the View Controller scene. Update
the Bar Item Title in the Attributes Inspector to Delete.

d. Select the Bar Button Item and open the Assistant Editor to
connect the selector outlet to your code. Name the IBAction
doDelete.

3. Create a UITextField to get user input, as shown in

Figure 4-44.

a. Drag a UITextField onto the View Controller scene.
In the Attributes Inspector, enter the placeholder “Please

save my inputs !!!”.

b. Add Auto Layout constraints to center the UITextField
in the View.

CHAPTER 4: Implement Piece by Piece172

4. Open the Assistant Editor; in the UITextField

Connections Inspector, connect the following outlets

to your code:

a. Connect Referencing Outlet to the IBOutlet property,
mTextField.

b. Connect delegate to your ViewController class.

5. Implement the UITextFieldDelegate protocol in the

ViewController class and create the stubs that will

trigger the retrieve, save, and delete code, as shown

in Listing 4-22.

a. Load the saved data in ViewController.viewDidLoad().

b. Save the user input when the Return key is pressed.

c. Give users a choice to delete any persistent data they
created.

Listing 4-22. SaveData ViewController

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let STORAGE_KEY = "key"
 @IBOutlet weak var mTextField: UITextField!
 override func viewDidLoad() {
 ...

Figure 4-44. SaveData project storyboard

CHAPTER 4: Implement Piece by Piece

173

 self.mTextField.text = self.retrieveUserInput()
 }

 @IBAction func doDelete(sender: AnyObject) {
 self.deleteUserInput();
 }

 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 ...
 self.saveUserInput(self.mTextField.text)
 return true
 }

 func saveUserInput(str: String) {
 // TODO
 }

 func retrieveUserInput() -> String? {
 // TODO
 return nil
 }

 func deleteUserInput() {
 // TODO
 }
 ...

Nothing is new yet. Build and run the SaveData project (see Figure 4-45).

Figure 4-45. The SaveData project display

CHAPTER 4: Implement Piece by Piece174

Without completing the method stubs, this new project exhibits a common
problem that can be observed in the following three steps:

1. Enter something in the input text field.

2. Exit the app.

3. Relaunch the app. The previous input is gone!

For typical app settings or user preferences, users are not happy if they
need to reenter them every time they launch the app. The app needs to save
the data and load it when the app restarts.

NSUserDefaults
You typically store a small amount of nonsensitive user preferences or
application settings so that your users don’t need to reenter the setting
all the time in web apps. You can store this data in a server database,
in HTML5 browser local storage, or in cookies. In iOS, you use the
NSUserDefaults class to interface with iOS’s User Defaults System for the
same purpose. NSUserDefaults takes care of data caching and syncing for
developers. It is easy to use, and its performance is already optimized.

The values to be managed in the iOS User Defaults System can be
primitives or the so-called property list object (for example, NSData,
NSString, NSNumber, NSDate, NSArray, or NSDictionary). For NSArray and
NSDictionary objects, their contents must be property list objects as well.

Continue with the SaveData project. You will fix the problem you just
observed.

1. Create the convenient methods that save, retrieve,

and delete data using the NSUserDefaults API

(see Listing 4-23):

a. Get the NSUserDefaults object.

b. You want to accumulate multiple updates and call
synchronize() to send the batched updates to the User
Defaults System storage.

Listing 4-23. Save, Retrieve, and Delete in User Defaults System

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let userDefaults = NSUserDefaults.standardUserDefaults()
 func saveUserdefault(data: AnyObject, forKey: String) {
 userDefaults.setObject(data, forKey: forKey)
 userDefaults.synchronize()
 }

CHAPTER 4: Implement Piece by Piece

175

 func retrieveUserdefault(key: String) -> String? {
 var obj = userDefaults.stringForKey(key)
 return obj
 }

 func deleteUserDefault(key: String) {
 self.userDefaults.removeObjectForKey(key)
 }
 ...

2. Earlier, you already created the stubs that are wired

to the right events. Call the convenient methods

just created to complete the persistent code

(see Listing 4-24).

Listing 4-24. Save, Retrieve, and Delete Using the User Defaults System

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 func saveUserInput(str: String) {
 self.saveUserdefault(str, forKey: STORAGE_KEY)
 }

 func retrieveUserInput() -> String? {
 return self.retrieveUserdefault(STORAGE_KEY)
 }

 func deleteUserInput() {
 self.deleteUserDefault(STORAGE_KEY)
 }
 ...

Relaunch the SaveData project and repeat the failed test case. You should
no longer need to reenter the name when reopening the app.

File Storage

WEB ANALOGY

This is commonly available for back-end server development but not available for front-end

web development.

CHAPTER 4: Implement Piece by Piece176

The iOS SDK provides system APIs to interface with the file system. In iOS,
you commonly use the following API:

You can use the 	 NSFileManager class.

The 	 NSString, NSArray, NSDictionary, and NSData
Foundation classes also have convenient methods to
store and retrieve themselves from file systems.

NSFileManager
If you need to perform any file-related tasks to manipulate File and
Directory, NSFileManager provides the API to do the work. You need to
specify the file path or file URL for the destination file and specify the NSData
object for the file contents.

To show and to learn by example, use NSFileManager to achieve the same
save/retrieve/delete purpose.

1. Create the convenient methods that save, retrieve,

and delete data using the NSFileManager API

(see Listing 4-25).

a. Get the NSFileManager object.

b. Use NSHomeDirectory().stringByAppendingPathComponent(...)
to build the iOS file path.

Note Each app can write only to certain a certain folder inside the

application home (for example, the Documents folder). The most common

error is probably trying to create a file in the wrong place.

c. NSFileManager deals with NSData, which can be converted to
common Foundation data types (for example, String, array,
and dictionary).

Listing 4-25. Manage Data in Files Using NSFileManager

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 let fileMgr = NSFileManager.defaultManager()
 func saveToFile(str: String, file: String) {
 var path = NSHomeDirectory().stringByAppendingPathComponent
("Documents").stringByAppendingPathComponent(file)

CHAPTER 4: Implement Piece by Piece

177

 var data = str.dataUsingEncoding(NSUTF8StringEncoding)
 var ok = fileMgr.createFileAtPath(path, contents: data, attributes: nil)
 }

 func retrieveFromFile(file: String) -> String? {
 var path = NSHomeDirectory().stringByAppendingPathComponent

("Documents").stringByAppendingPathComponent(file)
 if let data = fileMgr.contentsAtPath(path) {
 return NSString(data:data, encoding: NSUTF8StringEncoding)
 }

 return nil
 }

 func deleteFile(file: String) {
 var path = NSHomeDirectory().stringByAppendingPathComponent

("Documents").stringByAppendingPathComponent(file)
 var ok = fileMgr.removeItemAtPath(path, error: nil)
 }
 ...

2. Call the convenient methods just created to complete the

persistent code that uses NSFileManager (see Listing 4-26).

Listing 4-26. Save, Retrieve, and Delete Using NSFileManager

class ViewController: UIViewController, UITextFieldDelegate {
 ...
 func saveUserInput(str: String) {
// self.saveUserdefault(str, forKey: STORAGE_KEY)
 self.saveToFile(str, file: STORAGE_KEY)
 }

 func retrieveUserInput() -> String? {
// return self.retrieveUserdefault(STORAGE_KEY)
 return self.retrieveFromFile(STORAGE_KEY)
 }

 func deleteUserInput() {
// self.deleteUserDefault(STORAGE_KEY)
 self.deleteFile(STORAGE_KEY)
 }
 ...

Generally, you only need to use NSFileManager directly for pure file-system
operations such as inspecting file attributes or iterating through files in
directories because iOS Foundation data types contain convenient methods
to interface with File for saving and retrieving themselves. Listing 4-27
depicts simpler code that saves and retrieves the string itself.

CHAPTER 4: Implement Piece by Piece178

Listing 4-27. Save String Using Foundation Class API

 func saveToFile(str: String, file: String) {
 var path = ...
 var error: NSError?
 str.writeToFile(path, atomically: true, encoding: NSUTF8StringEncoding,

error: &error)
 }

 func retrieveFromFile(file: String) -> String? {
 var path = ...
 var error: NSError?
 var str = String(contentsOfFile: path, encoding: NSUTF8StringEncoding,

error: &error)

 return str
 }

You can find the same writeToFile(...) and init(...) methods in
NSDictionary, NSArray, and NSData for saving and retrieving themselves. Just
as a quick exercise, Listing 4-28 serves the same purpose as Listing 4-27.

Listing 4-28. Save NSDictionary Using Foundation Class API

 let KEY_JSON = "aKey"
 func saveJsonToFile(str: String, file: String) {
 var path = NSHomeDirectory().stringByAppendingPathComponent

("Documents").stringByAppendingPathComponent(file)
 // one enry dict, for sure can be more
 var json = NSDictionary(objects: [str], forKeys: [KEY_JSON])
 json.writeToFile(path, atomically: true)
 }

 func retrieveJsonFromFile(file: String) -> String? {
 var path = NSHomeDirectory().stringByAppendingPathComponent
 ("Documents").stringByAppendingPathComponent(file)
 var ser = NSDictionary(contentsOfFile: path)!
 return ser[KEY_JSON] as String?
 }

This is particularly useful when dealing with JSON messages because most
remote messages are in JSON format nowadays.

Networking and Using Remote Service
A typical client-server solution hosts information on the server side, while
client apps either fetch data from the server and present it to users in
meaningful ways or collect data from the users to submit to the server. You

CHAPTER 4: Implement Piece by Piece

179

probably have heard the buzzwords mobile commerce or m-commerce a
lot recently. To describe them in simple terms, mobile apps fetch product
items from a server and then submit the purchase orders to the server via
the Internet. From a mobile-apps programming perspective, this is really not
new at all. It is still a client-server programming topic using HTTP GET/POST,
which is what most e-commerce sites do.

I will talk about JSON messages and RESTful services for mobile apps
specifically because of their popularity versus traditional SOAP-based
web services.

Perform Network Operations in Background
For apps with a user interface, you want to perform I/O tasks or network-
related code in the background and do UI updates in the UI main thread.
Otherwise, the app appears to the user to lag because the UI thread is
blocked, waiting for the task to finish. This principle applies to iOS, Android,
and probably any UI platforms. Generally, when interfacing with a remote
server, you want to fetch data in the background thread. When the remote data
is received, your UI code presents the data on the screen in the UI thread.

To show how to achieve the objectives in iOS by example, you will create
a simple iOS app, as shown in Figure 4-46, to demonstrate some basic
RESTful client code that consumes remote RESTful services.

When the 	 GET or POST button is selected, the app sends
an HTTP GET or POST to the server in a background
thread.

When the HTTP response is received, the app renders 	
the data on the user interface.

Figure 4-46. The iOS RestClient app

CHAPTER 4: Implement Piece by Piece180

Create a new Xcode project.

1. Launch Xcode, use the Single View Application

template, and name the project RestClient.

2. Draw your storyboard with the following widgets

(see Figure 4-47):

a. A UIButton to invoke an HTTP GET

b. A UIButton to invoke an HTTP POST

c. A UITextField to take user input

d. A UIWebView to render the HTTP response

Figure 4-47. RestClient storyboard

3. Connect the following storyboard outlets to your

code (see Listing 4-29):

a. Connect the GET button Touch Down event to your
doGet()IBAction method.

b. Connect the POST button Touch Down event to your
doPost()IBAction method.

c. Connect the UITextField delegate outlet to the
ViewController class.

d. Connect the UIWebView delegate to the
ViewController class.

CHAPTER 4: Implement Piece by Piece

181

e. Connect the text field New Referencing Outlet to the
ViewController mTextField IBOutlet property.

f. Connect the webview New Referencing Outlet to the
ViewController mWebView IBOutlet property.

Listing 4-29. RestClient Preparation Code

class ViewController: UIViewController, UITextFieldDelegate,
UIWebViewDelegate {

 @IBOutlet weak var mWebView: UIWebView!
 @IBOutlet weak var mTextField: UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view ...
 }

 func textFieldShouldReturn(textField: UITextField!) -> Bool {
 textField.resignFirstResponder();
 return true
 }

 @IBAction func doGet(sender: AnyObject) {
 }

 @IBAction func doPost(sender: AnyObject) {
 }
}

Nothing is new yet; you just used the same storyboard tasks and the same
process of connecting the outlets to your code with the method stubs. You
will fill the main topics in these stubs next.

RESTful Service Using HTTP
Most of the RESTful services support the HTTP and HTTPS protocols. To
retrieve data from a RESTful services, use HTTP GET to fetch a remote HTML
file. You can use an HTTP GET to fetch an HTML document from mobile
apps, too—or it can fetch any data, such as raw bytes, an XML or JSON
document, and so forth.

To submit user input, you often use an HTML form to submit form data
from an HTML page to HTTP servers. The form data is transmitted using
the HTTP POST method. This is common in iOS apps as well. Technically
speaking, you can also send a query string to an HTTP server using the

CHAPTER 4: Implement Piece by Piece182

HTTP GET method, just as some web pages do. In this case, you can simply
build the URL with query strings and use the HTTP GET method to send data
to your server. It is a design decision that you will make by understanding
the usages and conventions of GET versus POST. The key is to design the
interface so both your mobile clients and the server can understand it.

NSURLConnection
To interface with the HTTP protocol in iOS, you can use the NSURLConnection
class to send GET and POST URL requests. The API is fairly similar to JAVA’s
HttpUrlConnection.

Continue with the RestClient project and add code to send HTTP requests
by doing the following:

1. Implement the IBAction doGet() method to send

the HTTP GET request and to get data from the HTTP

response (see Listing 4-30).

a. Create an NSMutableURLRequest object.

Note You commonly escape/encode the URL path or query string.

 b. Set the HTTP method to GET.

Note An HTTP method is case-sensitive according to the HTTP protocol specs.

c. Set the accept header, which is commonly used for content
negotiation (for example, text/html, json/application,
and so on).

Note The sample echo service supports "text/html", "text/plain", and

"application/json" content types. To demonstrate the content negotiation

visually, I chose to use a UIWebView widget to render the server response and

specify "text/html". In general, "application/json" is more suitable for

data exchange.

CHAPTER 4: Implement Piece by Piece

183

d. NSURLConnection.sendAsynchronousRequest sends an
asynchronous HTTP request and receives the HTTP
response in the completionHandler closure in the
UI main thread.

Listing 4-30. HTTP GET

let URL_TEST = "http://pdachoice.com/ras/service/echo/"
@IBAction func doGet(sender: AnyObject) {
 UIApplication.sharedApplication().networkActivityIndicatorVisible = true
 var text = self.mTextField.text.
stringByAddingPercentEncodingWithAllowedCharacters(NSCharacterSet.
URLHostAllowedCharacterSet())

 var url = URL_TEST + text!
 var urlRequest = NSMutableURLRequest(URL: NSURL(string: url)!)
 urlRequest.HTTPMethod = "GET"
 urlRequest.setValue("text/html", forHTTPHeaderField: "accept")

 NSURLConnection.sendAsynchronousRequest(urlRequest, queue:
NSOperationQueue.mainQueue(),

 completionHandler: {(resp: NSURLResponse!, data: NSData!, error:
NSError!) -> Void in

 UIApplication.sharedApplication().networkActivityIndicatorVisible = false
 println(resp.textEncodingName)
 self.mWebView.loadData(data, MIMEType: resp.MIMEType,

textEncodingName: resp.textEncodingName, baseURL: nil)
 })
}

1. Implement the IBAction doPost() method to

send an HTTP POST to post data to the server

and receive an HTTP response (see Listing 4-31).

Almost the same as sending HTTP GET, you use

NSURLConnection.sendAsynchronousRequest to send

asynchronous HTTP messages, except you set the

HTTP method to POST.

a. Make sure to set the HTTP method to POST.

b. POST data has the same format as a query string,
but you want to encode it to put in the HTTP Body,
the same way you do in Android.

c. To parse JSON content or create a JSON object,
NSJSONSerialization is your friend. You want to
convert the JSON object to NSDictionary or the
JSON array to NSArray.

http://pdachoice.com/ras/service/echo/

CHAPTER 4: Implement Piece by Piece184

Listing 4-31. HTTP POST

@IBAction func doPost(sender: AnyObject) {
 UIApplication.sharedApplication().networkActivityIndicatorVisible = true
 var text = self.mTextField.text.
stringByAddingPercentEncodingWithAllowedCharacters(

 NSCharacterSet.URLQueryAllowedCharacterSet())
 var queryString = "echo=" + text!;
 var formData = queryString.dataUsingEncoding(NSUTF8StringEncoding)!
 var urlRequest = NSMutableURLRequest(URL: NSURL(string: URL_TEST)!)
 urlRequest.HTTPMethod = "POST"
 urlRequest.HTTPBody = formData

 urlRequest.setValue("application/json", forHTTPHeaderField: "accept")

 NSURLConnection.sendAsynchronousRequest(urlRequest,
 queue: NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!, error:

NSError!) -> Void in
 UIApplication.sharedApplication().networkActivityIndicatorVisible = false

 println(NSString(data: data, encoding: NSUTF8StringEncoding))

 var json = NSJSONSerialization.JSONObjectWithData(data, options:
 NSJSONReadingOptions.AllowFragments, error: nil) as NSDictionary
 var echo = json["echo"] as String
 self.mWebView.loadHTMLString(echo, baseURL: nil)
 })
}

Note SERVER_URL = "http://pdachoice.com/ras/service/echo"

is a simple web service that echoes back the path parameter. Desktop browsers

are fully capable of rendering plain text as well as HTML documents. You can

use a desktop browser to verify the data from the server.

Build and run the RestClient project and enter Hi you! to see the app in
action. The simple echo service with the GET method actually responded
in HTML format, <html><body><h1>Hi you!</h1></body></html>, which is
rendered as shown in Figure 4-48.

http://pdachoice.com/ras/service/echo

CHAPTER 4: Implement Piece by Piece

185

Summary
This chapter introduced the most common programming component
mappings from Android to iOS.

User interface and UI widgets	
Persistent storage options	
Network and remote services with JSON	

Many meaningful apps only ever deal with the simple components
discussed in this chapter. You will see how to apply these guidelines to build
a simple but complete utility app from start to finish in the next chapter.

Figure 4-48. RestClient doGet and doPost responses

Part 3
Finishing Touches

189

Chapter 5
Pulling It All Together

Thus far in this book, you have learned about many discrete mobile topics
and created more than ten Xcode projects. Those topics were purposely
implemented in individual Xcode projects with few classes. In Chapter 3,
you learned the top-down development approach of using the storyboard
to break the whole app into model-view-controller (MVC) content view and
view controller pairs. In Chapter 4, you learned how to port smaller individual
components, including user interface (UI), create read update delete (CRUD),
and remote operations, piece by piece. However, all those topics were
designed to be self-contained without dependencies so they could serve as
independent instructions.

In the real programming world, it is the combination of features and use
cases that makes your app useful and entertaining. You will surely need
to understand more than one topic to complete a meaningful app. In this
chapter, you will implement a simple but meaningful Swift app from start to
finish using the mapping topics from Chapters 3 and 4. Nothing will be new;
you will repeat the same top-down development approach as you have been
using and implement one piece at a time.

Perhaps there is one thing new that I have not yet mentioned explicitly:
which piece should be developed first and then what comes next. For any
app, including web apps, you should go through the same thought process:
you should decide the dependencies of the pieces and try to reduce the
dependencies along the way. After all, there is really no right or wrong way
to do it.

Again, to learn by example, your goal is to implement a RentalROI iOS app.
Figure 5-1 shows the completed iOS app you will be creating.

CHAPTER 5: Pulling It All Together190

Figure 5-1. RentalROI screens

CHAPTER 5: Pulling It All Together

191

Figure 5-1. (continued)

This RentalROI app performs the following tasks:

Every time a user enters new rental property 	
parameters, user input is saved using
SharedPreferences.

The amortization schedule is calculated on the remote 	
server. The iOS client simply calls the remote service
to get the amortization schedules and stores the data
locally.

If a saved amortization schedule exists, the app uses it 	
instead of making a remote service call.

CHAPTER 5: Pulling It All Together192

Note This is just for exercise purposes. It would be better to calculate

the amortization schedules locally without using the remote service—then

you wouldn’t need to persist the result.

First, you’ll create a new Xcode project using the Single View Application
template; name it RentalROI. You will be following the same porting
approaches you used in Chapters 3 and 4.

Structure Your App
As usual, use top-down approach starting with storyboard tasks. Your first
step is to create the Xcode storyboard as instructed in Chapter 3.

Draw the storyboard scenes for each content view and 	
connect UI widgets to the custom UIViewController
that pairs with the storyboard scenes.

Choose a navigation pattern and connect the 	
storyboard scenes together with segues.

This will result in a runnable iOS app with all the content views and the
view controller classes’ skeletons connected using the appropriate screen
navigation pattern.

Draw Storyboard Scenes
You can clearly see four content views in Figure 5-1, and you will need to
draw four storyboard scenes in Main.storyboard, covered next.

Edit Text Screen

In no particular order, let’s start with the simplest one, the second screen in
Figure 5-1. You want to add a UITextField to the storyboard scene
(see Chapter 4 for the detailed instructions).

1. Drag a UITextField from the Object Library to the

view and update its attributes in the Attributes

Inspector, as shown in Figure 5-2.

CHAPTER 5: Pulling It All Together

193

2. Center it vertically and add some space to the

leading and trailing spaces (for example, enter 20).

3. Create a bare-bones Swift EditTextViewController

class that extends from UIViewController

(see Listing 5-1).

4. To pair with the storyboard scene, enter the custom

class name in the Identity Inspector.

5. In the Connections Inspector, connect the delegate

outlet and New Referencing Outlet to your code

(see Chapter 4 for step-by-step operations).

Listing 5-1. EditTextViewController

import UIKit

class EditTextViewController : UIViewController, UITextFieldDelegate {
 @IBOutlet weak var mEditText: UITextField!
}

Rental Property Info Screen

Continue drawing the next content view in no particular order (for example,
draw the Property screen, shown in Figure 5-1). To achieve the list view
L&F, you should use UITableViewController (see Chapter 3 for the detailed
instructions).

Figure 5-2. EditTextView storyboard scene

CHAPTER 5: Pulling It All Together194

1. Drag a Table View Controller from the Object

Library and drop it onto the storyboard editor to

create a storyboard scene.

2. Select the Table View object and set the Style

attribute to Grouped in the Attributes Inspector

(see Figure 5-3).

Figure 5-3. Creating a Table View scene

3. Select the Table View Cell object and update the

attributes in the Attributes Inspector (see Figure 5-4).

Figure 5-4. Right Detail, Table View Cell

a. Style: Select Right Detail.

b. Identifier: Enter aCell.

c. Create a bare-bones Swift
RentalPropertyViewController class that extends
from UITableViewController (see Listing 5-2). To
pair with the storyboard scene, enter the custom
class name in the Identity Inspector.

CHAPTER 5: Pulling It All Together

195

Listing 5-2. RentalPropertyViewController

import UIKit
class RentalPropertyViewController : UITableViewController {

}

Amortization Screen

Continue drawing the next content view in no particular order (for example,
the Amortization screen, shown in Figure 5-1). It shows a list of amortization
items, and a natural choice for this is UITableViewController.

1. Drag a Table View Controller from the Object

Library and drop it onto the storyboard editor to

create a storyboard scene.

2. Select the Table View Cell. In the Attributes

Inspector, update the following attributes:

a. Style: Select Subtitle.

b. Identifier: Enter aCell.

3. Create a bare-bones Swift

AmortizationViewController class that extends from

UITableViewController (see Listing 5-3).

To pair with the storyboard scene, enter the custom

class name in the Identity Inspector.

Listing 5-3. AmortizationViewController

import UIKit
class AmortizationViewController: UITableViewController {

}

Monthly Details Screen

Move on to drawing the last content view, Monthly Details (shown in Figure 5-1).
It has a listlike look and feel but does not really show list items. You can choose
to implement this screen with labels for each line items in iOS, or you can
choose to use a UITableView, as in RentalPropertyViewController. There is
actually a better choice, though: using UITableViewController with static cells,
with one static cell for each line.

1. Drag a Table View Controller from the Object

Library and drop it onto the storyboard editor to

create a storyboard scene.

CHAPTER 5: Pulling It All Together196

2. Select the Table View to update the attributes in the

Attributes Inspector, as shown in Figure 5-5.

a. Content: Select Static Cells.

b. Sections: Enter 2.

c. Style: Select Grouped.

Figure 5-5. Static Cells Table View

3. The Monthly Details screen contains Mortgage

Payment and Investment sections. You need to

update the section title and add Table View Cell

objects to both sections, as shown in Figure 5-6.

CHAPTER 5: Pulling It All Together

197

4. To update the section title, select the Table View

section and update the Header attributes in the

Attributes Inspector:

a. Section 1: Enter Mortgage Payment.

b. Section 2: Enter Investment.

5. Since all the Table View Cells in this view are

designed to have the same style, it is easier just to

create one and duplicate it. You may keep the first

Table View Cell and delete the rest.

a. Select the Table View Cell and update the Style
value to Right Detail.

b. Select the Mortgage Payment section and update
the number of rows to 6.

c. You need three Table View Cells for Section 2. You
may repeat the preceding steps or copy and paste
in the storyboard editor.

d. Update all the Table View Cell titles, as shown in
Figure 5-6.

Figure 5-6. Two sections in the Monthly Details screen

CHAPTER 5: Pulling It All Together198

6. Create a bare-bones Swift

MonthlyTermViewController class that extends from

UITableViewController. To pair with the storyboard

scene, enter the custom class name in the Identity

Inspector.

7. Open the Assistant Editor and connect the first Table

View Cell left text label and each Table View Cell right

detail label, respectively, to your code’s IBOutlet

properties, as shown in Listing 5-4.

Listing 5-4. MonthlyTermViewController IBOutlet Properties

import UIKit
class MonthlyTermViewController : UITableViewController {

 @IBOutlet weak var mPaymentNo: UILabel!
 @IBOutlet weak var mTotalPmt: UILabel!
 @IBOutlet weak var mPrincipal: UILabel!
 @IBOutlet weak var mInterest: UILabel!
 @IBOutlet weak var mEscrow: UILabel!
 @IBOutlet weak var mAddlPmt: UILabel!
 @IBOutlet weak var mBalance: UILabel!
 @IBOutlet weak var mEquity: UILabel!
 @IBOutlet weak var mCashInvested: UILabel!
 @IBOutlet weak var mRoi: UILabel!
}

Figure 5-7 depicts the results of the storyboard scenes’ tasks.

CHAPTER 5: Pulling It All Together

199

Choose a Screen Navigation Pattern
When choosing appropriate navigation patterns, you will get good ideas
from using wireframes. You normally need more than one pattern, such as
a navigation stack plus navigation tabs. In this RentalROI app, you want to
be able go back to a previous scene from Monthly Details to Amortization
List to Property. The popular navigation stack navigation pattern is perfect
for this intended behavior (see Chapter 3 for more information). For going to
and from the Edit Text scene, you can choose a different navigation pattern
that shows a stronger relationship to the originating context. Dialog or the
iOS pop-over is the best choice (see Chapter 3).

Your immediate mission is to add the navigation patterns and draw
storyboard segues to connect all the storyboard scenes to one another.
Figure 5-8 shows the final storyboard with all the scenes connected.

Figure 5-7. Four RentalROI scenes

CHAPTER 5: Pulling It All Together200

Continue with the storyboard tasks by doing the following (see Chapter 3 for
more detailed instructions):

1. Select RentalPropertyViewController in

the storyboard editor and embed it in a

UINavigationController (see Figure 3-33 in

Chapter 3 for step-by-step instructions).

a. Make sure Is Initial View Controller is checked in the
Navigation Controller’s Attributes Inspector.

b. Select the Navigation Item in
RentalPropertyViewController to update the Title
attribute to Property in the Attributes Inspector.

c. Add a right BarButtonItem to the Property
Navigation Item in RentalPropertyViewController.
Also, update the button’s Title attribute to Schedule
in the BarButtonItem Attributes Inspector.

d. Connect the Schedule BarButtonItem action outlet
in the Connections Inspector to your code, such as
doSchedule(...).

Figure 5-8. RentalROI-connected scenes

CHAPTER 5: Pulling It All Together

201

2. Connect a Manual Segue from

RentalPropertyViewController to

AmortizationViewController.

a. Segue: Show (for example, Push)

b. Identifier: AmortizationTable

3. Connect a Manual Segue from

RentalPropertyViewController to

EditTextViewController.

a. Segue: Present As Popover

b. Identifier: EditText

c. Anchor: Table View

d. Directions: none (uncheck all)

4. Connect a Manual Segue from

AmortizationViewController to

MonthlyTermViewController.

a. Segue: Show (for example, Push)

b. Identifier: MonthlyTerm

5. Add Navigation Item to AmortizationViewController

and MonthlyTermViewController, as shown in

Figure 5-8.

a. Drag a Navigation Item from the Object Library
and drop it onto the controller in the storyboard
document outline.

b. Update the Navigation Item titles, respectively
(for example, Amortization and Payment).

CHAPTER 5: Pulling It All Together202

6. Since you are not showing the

EditTextViewController with the navigation pattern,

EditTextViewController doesn’t have a Navigation

Item for Title or BarButtonItem like the rest of the

storyboard scenes. You can draw a UINavigationBar

as usual by dragging one from the Object Library, or,

more commonly, you can simply embed it in another

UINavigationController.

a. Select the view controller and select Editor ➤
Embedded In ➤ Navigation Controller from the
Xcode Editor menu.

b. Add a right BarButtonItem. Set the Title attribute to
Save and connect the action outlet to your code,
such as doSave(...).

c. Add a left BarButtonItem. Update the Title attribute
to be Cancel and connect the action outlet to your
code, such as doCancel(...).

You should have a storyboard with all scenes connected with segues, as
shown in Figure 5-8.

Business Object
In object oriented programming, you create classes to present the business
domain. You define properties to encapsulate the object attributes and methods
for behaviors in the classes. After finishing the storyboard tasks, you naturally
gain a better understanding of the business domain and the attributes you
need to deal with. You don’t have to discover all of them at once. You simply
create the business object when you discover any. For this RentalROI app, you
only need a class that presents the rental property. Let’s create a Swift class
skeleton for the RentalProperty business object class first (see Listing 5-5).

Listing 5-5. RentalProperty.swift Skeleton

import Foundation
public class RentalProperty {

}

For its attributes and behaviors, you might see some from the storyboard
immediately, but you normally would not know them all in the beginning.
You will discover them along the way and just fill in the blanks when you
discover any.

CHAPTER 5: Pulling It All Together

203

Application Resources
Like with any GUI apps, you need images or digital assets to dress up the
app. You also want to externalize strings to avoid coding these display
texts directly. Do the following to implement the application resources
(see Chapter 4) in this Xcode project:

1. All the display text needs to be externalized, as

shown in Listing 5-6.

a. In Xcode, select the Supporting Files folder to
create a new file (+N) in it, and follow the on-
screen instructions to select iOS ➤ Resource ➤
Strings File. Name the file Localizable.strings.

b. Define key-value pairs. You will access the value by
the key from your Swift code.

Listing 5-6. Externalized Text Translation

"app_name" = "RentalROI";
"label_schedule" = "Schedule";
"label_property" = "Property";
"label_Amortization" = "Amortization";
"label_monthlydetails" = "Monthly Details";
"button_next" = "Next";

/* RentalPropertyView */
"mortgage" = "MORTGAGE";
"operations" = "OPERATIONS";
"purchasePrice" = "Purchase Price";
"downPayment" = "Down Payment %";
"loanAmount" = "Loan Amount";
"interestRate" = "Interest Rate %";
"mortgageTerm" = "Mortgage Term (Yr.)";
"escrowAmount" = "Escrow Amount";
"extraPayment" = "Extra Payment";
"expenses" = "Expenses";
"rent" = "Rent";

/* EditTextView */
"save" = "Save";
"editTextSize" = "15";

/* Monthly Details */
"MortgagePayment" = "MORTGAGE PAYMENT";
"no" = "No.";
"Principal" = "Principal";
"interest" = "Interest";

CHAPTER 5: Pulling It All Together204

"escrow" = "Escrow";
"addlPayment" = "Add\'l Payment";
"mortgageBalance" = "Mortgage Balance";
"equity" = "Equity";
"cashInvest" = "Cash Investment";
"roi" = "ROI";

2. You should use the Xcode assets catalog to manage

images. In this app, you need only one image: the

application icon, ic_launcher.png. You can do it in

the same way for any other images.

a. Create ic120.png, ic180.png, ic76.png, and
ic152.png.

b. Select Images.xcassets and AppIcon in the Xcode
assets catalog and drag the four files you just made
into the appropriate slots, as shown in Figure 5-9:
ic120.png for iPhone 2x, ic180.png for iPhone 3x,
ic76.png for iPad 1x, and ic152.png for iPad 2x.The
image resolution must match exactly or Xcode will
give you warnings.

Figure 5-9. Xcode project AppIcon

Implement Piece by Piece
You have all the Swift class files, storyboards, and external assets in place.
Your next step is to fill in the class by implementing methods. You will start
to see how your code works piece by piece!

Normally, you would discover the methods by analyzing the intended
behaviors per use cases. For the purposes of this book, I will go over the
existing classes one at a time, focusing on iOS SDK topics instead.

CHAPTER 5: Pulling It All Together

205

RentalProperty
RentalProperty is the model class that encapsulates the business
knowledge in terms of property and mortgage attributes, and so on. Since
we going to persist these attributes, I chose to implement the persistent
storage logic directly inside the model class. Let’s start implementing the
RentalProperty Swift class.

1. The Swift stored properties represent the application

states (see Listing 5-7). All the attributes can be

visualized in the Rental Property scene in the

storyboard.

2. This app deals with one rental property at a time.

The singleton pattern is commonly used in object-

oriented code. This is how you do it in Swift:

a. Declare a shared instance as a private static type
property in the inner struct.

b. Make the initializer private to prevent multiple
instances from being created.

c. Create a public class method to access the shared
instance inside the inner strut.

Listing 5-7. The RentalProperty Class Singleton Implementation

import Foundation

public class RentalProperty {

 // 1. Swift stored properties to keep the application states
 var purchasePrice = 0.0;
 var loanAmt = 0.0;
 var interestRate = 5.0;
 var numOfTerms = 30;
 var escrow = 0.0;
 var extra = 0.0;
 var expenses = 0.0;
 var rent = 0.0;

 struct MyStatic {
 static let KEY_AMO_SAVED = "KEY_AMO_SAVED";
 static let KEY_PROPERTY = "KEY_PROPERTY";
 // 2a. singleton impl
 private static var _sharedInstance = RentalProperty()
 }

CHAPTER 5: Pulling It All Together206

 // 2b. singleton impl, private initializer
 private init() {

 }

 // 2c. singleton accessor
 class func sharedInstance() -> RentalProperty {
 return MyStatic._sharedInstance
 }
 ...
}

3. Use NSUserDefaults to create the following utility

methods in the RentalProperty.swift methods, as

shown in Listing 5-8 (see Chapter 4).

Listing 5-8. Create Save Data Utility Methods

class RentalProperty {
 ...
 let userDefaults = NSUserDefaults.standardUserDefaults()
 private func saveUserdefault(data:AnyObject, forKey:String) -> Bool{
 userDefaults.setObject(data, forKey: forKey)
 return userDefaults.synchronize()
 }

 private func retrieveUserdefault(key: String) -> AnyObject? {
 var obj: AnyObject? = userDefaults.objectForKey(key)
 return obj
 }

 private func deleteUserDefault(key: String) {
 self.userDefaults.removeObjectForKey(key)
 }
 ...

4. Implement the load() method that loads the saved

RentalProperty object from storage, as shown in

Listing 5-9.

Listing 5-9. Loading RentalProperty Object from Storage

class RentalProperty {
 ...
 func load() -> Bool {
 var data = retrieveUserdefault(MyStatic.KEY_PROPERTY) as NSDictionary?
 if var jo = data {
 self.purchasePrice = jo["purchasePrice"] as Double
 self.loanAmt = jo["loanAmt"] as Double
 self.interestRate = jo["interestRate"] as Double

CHAPTER 5: Pulling It All Together

207

 self.numOfTerms = jo["numOfTerms"] as Int
 self.escrow = jo["escrow"] as Double
 self.extra = jo["extra"] as Double
 self.expenses = jo["expenses"] as Double
 self.rent = jo["rent"] as Double
 return true;

 } else {
 return false
 }
 }
 ...

5. Implement the save() method that persists the

RentalProperty instance in storage, as shown in

Listing 5-10.

Listing 5-10. Saving RentalProperty Object

class RentalProperty {
 ...
 func save() -> Bool {
 var jo : [NSObject : AnyObject] = [
 "purchasePrice": purchasePrice,
 "loanAmt" : loanAmt,
 "interestRate" : interestRate,
 "numOfTerms" : Double(numOfTerms),
 "escrow" : escrow,
 "extra" : extra,
 "expenses" : expenses,
 "rent" : rent]

 return self.saveUserdefault(jo, forKey: MyStatic.KEY_PROPERTY)
 }
 ...

6. Implement the getSavedAmortization() and

saveAmortization() methods to retrieve and save the

amortization schedule array, as shown in Listing 5-11.

Listing 5-11. Retrieve Amortization Schedule Array from Persistent Storage

class RentalProperty {
 ...
 private func getAmortizationPersistentKey() -> String {
 var aKey = String(format: "%.2f-%.3f-%d-%.2f-%.2f", self.loanAmt,

self.interestRate, self.numOfTerms, self.escrow, self.extra);
 return aKey;
 }

CHAPTER 5: Pulling It All Together208

 func getSavedAmortization() -> NSArray? {
 var savedKey = retrieveUserdefault(MyStatic.KEY_AMO_SAVED) as String?
 var aKey = self.getAmortizationPersistentKey()
 if let str = savedKey {
 if(str.utf16Count > 0 && str == aKey) {
 var jo = retrieveUserdefault(str) as NSArray?
 return jo
 }
 }
 return nil
 }

 func saveAmortization(data: NSArray) -> Bool {
 var aKey = self.getAmortizationPersistentKey()
 saveUserdefault(aKey, forKey: MyStatic.KEY_AMO_SAVED)
 return saveUserdefault(data, forKey: aKey)
 }
 ...

EditTextViewController
The purpose of this controller is to prompt users to enter text and return
the user input to its presenting view controller. Although this EditTextView
storyboard scene looks simple, it demonstrates a frequent usage in iOS
apps: the presenting view controller passes data to the presented view
controller (see Chapter 3). Also, frequently, the presented view controller
returns data to the presenting view controller, introduced next.

Return Data to the Presenting View Controller

To return data to the presenting view controller, the iOS SDK uses a callback
to the delegate pattern in many system classes. You will implement the
same design pattern for your purposes. Do the following:

1. Define the EditTextViewControllerDelegate

delegate protocol, as shown in Listing 5-12.

a. Conventionally, you declare this protocol in the
same Swift file where the presented view controller
is declared.

b. Conventionally, the first argument in the callback
methods are the presented view controller.

CHAPTER 5: Pulling It All Together

209

Listing 5-12. The Callback Protocol in EditTextViewController.swift File

// Callback protocol
protocol EditTextViewControllerDelegate {
 func onTextEditSaved(vc: EditTextViewController, data: String);
 func onTextEditCanceled(vc: EditTextViewController);
}

class EditTextViewController : UIViewController, UITextFieldDelegate {
 ...

2. Implement the presented view controller, as shown in

Listing 5-13.

a. Implement stored properties to receive data
from the presenting view controller including the
delegate.

b. To return the data to the presenting view controller,
use the delegate stored property to deliver the
return data via the callback method. The doSave()
code returns the text entered in the UITextField
when the Save button is clicked.

Listing 5-13. Java Fields to Swift Stored Properties

class EditTextViewController : ... {
 ...
 // a.
 var tag: NSIndexPath!
 var header = ""
 var text = ""
 var delegate: EditTextViewControllerDelegate?
 ...
 @IBAction func doSave(sender: AnyObject) {
 var returnText = self.mEditText.text
 if(delegate != nil) {
 // b. return data to the delegate
 delegate!.onTextEditSaved(self, data: returnText)
 }
 }

 @IBAction func doCancel(sender: AnyObject) {
 if(delegate != nil) {
 delegate!.onTextEditCanceled(self)
 }
 ...

CHAPTER 5: Pulling It All Together210

3. Listing 5-14 depicts the code in

RentalPropertyViewController using

EditTextViewController to get user inputs.

a. Declare that you are implementing the
EditTextViewControllerDelegate protocol.

b. Assign itself to be the callback delegate, the
same way as you pass data to the presented view
controller. (See Chapter 3.)

c. Implement the EditTextViewControllerDelegate
callback methods to receive the data returned from
the presented view controller.

Listing 5-14. Presenting ViewController

// 3a implement protocol
class RentalPropertyViewController : UITableViewController,
EditTextViewControllerDelegate {
 ...
 // You will often want to do a little preparation before segue navigation
 override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {

 var identifier = segue.identifier
 if identifier == "EditText" {
 var indexPath = sender as NSIndexPath

 var presentedVc = (segue.destinationViewController as

UINavigationController).topViewController as EditTextViewController
 var cell = tableView.cellForRowAtIndexPath(indexPath)!

 presentedVc.tag = indexPath
 presentedVc.header = cell.textLabel!.text!
 presentedVc.text = cell.detailTextLabel!.text!

 // 3b. assign self to the callback
 presentedVc.delegate = self
 } else { // AmortizationTable segue
 var toFrag = segue.destinationViewController as

AmortizationViewController
 toFrag.monthlyTerms = sender as NSArray // TODO: a temp

compilation error
 }
 }

CHAPTER 5: Pulling It All Together

211

 // 3c. delegate protocol to receive data via callback from presented VC
 func onTextEditSaved(vc: EditTextViewController, data: String) {
 self.dismissViewControllerAnimated(true, completion: nil)
 // TODO: use data
 }

 func onTextEditCanceled(vc: EditTextViewController) {
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 ...
}

Handle Soft Keyboard

The rest of the code in EditTextViewController primarily handles
a soft keyboard, aka on-screen keyboard. On iOS, you should use
NSNotificationCenter to detect the keyboard shown or hidden and update
the widget positions accordingly to accommodate the soft keyboard
size. Listing 5-15 shows the completed EditTextViewController class
implementation, including how to handle the soft keyboard.

1. In viewDidLoad(), register the keyboard notification

callback.

2. Remove the notification callback before the view

disappears.

3. Shift the UITextField up or down according

to the keyboard shown or hidden by updating

NSLayoutConstraint.

4. Use UITextField.becomeFirstResponder to show a

soft keyboard programmatically.

Listing 5-15. EditTextViewController Completed Code

class EditTextViewController : UIViewController, UITextFieldDelegate {

 @IBOutlet weak var bottomConstraint: NSLayoutConstraint!
 @IBOutlet weak var mEditText: UITextField!

 var tag : NSIndexPath!
 var header = ""
 var text = ""
 var delegate: EditTextViewControllerDelegate!

CHAPTER 5: Pulling It All Together212

 override func viewDidLoad() {
 super.viewDidLoad()
 self.navigationItem.title = self.header
 mEditText.text = self.text

 // 1. Register keyboard shown notification
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "keyboardAppeared:",
 name: UIKeyboardDidShowNotification, object: nil)
 }

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 showKeyboard()
 }

 override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)
 }

 override func viewDidDisappear(animated: Bool) {
 super.viewDidDisappear(animated)
 // 2. Remove keyboard notification
 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: UIKeyboardDidShowNotification, object: nil)
 }

 @IBAction func doSave(sender: AnyObject) {
 var returnText = self.mEditText.text
 if(delegate != nil) {
 delegate.onTextEditSaved(self, data: returnText)
 }
 }

 @IBAction func doCancel(sender: AnyObject) {
 if(delegate != nil) {
 delegate.onTextEditCanceled(self)
 }
 }

 // 3. shift the text field up by changing the autolayout constraint
 func keyboardAppeared(notification: NSNotification) {
 println(">>keyboardAppeared")
 var keyboardInfo = notification.userInfo as NSDictionary!
 var kbFrame = keyboardInfo.valueForKey(UIKeyboardFrameBeginUserInfoKey)

as NSValue

CHAPTER 5: Pulling It All Together

213

 var kbFrameRect: CGRect = kbFrame.CGRectValue()
 var keyboardH = min(kbFrameRect.size.width, kbFrameRect.size.height)
 UIView.animateWithDuration(0, animations: { () -> Void in

 if UIDevice.currentDevice().userInterfaceIdiom == .Phone {
 self.bottomConstraint.constant = self.bottomConstraint.constant +

keyboardH/self.bottomConstraint.multiplier
 }

 }, completion: {(b) -> Void in
 self.mEditText.selectAll(self);
 })
 }

 // 4. show keyboard
 private func showKeyboard() {
 self.mEditText.becomeFirstResponder()
 }

 private func hideKeyboard() {
 self.mEditText.endEditing(true)
 }
}

RentalPropertyViewController

When the app is launched, this is the first content view. The purpose of
this view controller is to collect user input and present the amortization
schedule.

Listing 5-16 shows the typical ViewController life-cycle methods and UI code.

1. You don’t have to implement all the view life-cycle

methods. (See Chapter 3 for details.)

a. Call viewDidLoad() only once. Use it for initialization
code.

b. The viewDidAppear() method is called every time
the view appears.

c. Don’t forget call super().

2. Implement the TableView data source for rendering

the TableView (see Chapter 3 for details).

CHAPTER 5: Pulling It All Together214

3. When user selects each table row, present

EditTextViewController for editing the text.

a. Use a Manual Segue to present the
EditTextViewController.

b. Pass the current value to the presented view
controller (see Chapter 3).

c. To use the data from EditTextViewController,
implement the EditTextViewControllerDelegate.
onTextEditSaved(...) method.

Listing 5-16. RentalPropertyViewController Completed Implementation

import UIKit

class RentalPropertyViewController : UITableViewController,
EditTextViewControllerDelegate {
 ...
 var _property = RentalProperty.sharedInstance()
 var _savedAmortization: NSArray?

 // 1a. Lifecycle callback
 override func viewDidLoad() {
 super.viewDidLoad()
 _property.load();
 }

 // 1b. Lifecycle callback
 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.navigationItem.title = "Property"
 }

 // button action handle
 @IBAction func doSchedule(sender: AnyObject) {
 // TODO
 }

 // 2. implement tableview datasource
 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 2 // 2a.
 }

CHAPTER 5: Pulling It All Together

215

 // 2b.
 override func tableView(tableView: UITableView, titleForHeaderInSection
section: Int) -> String? {

 if section == 0 {
 return NSLocalizedString("mortgage", comment: "")
 } else {
 return NSLocalizedString("operations", comment: "")
 }
 }

 // 2c
 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 if section == 0 {
 return 7
 } else {
 return 2
 }
 }

 // 2d
 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("aCell",
forIndexPath: indexPath) as UITableViewCell

 var textLabel = cell.textLabel!
 var detailTextLabel = cell.detailTextLabel!

 var pos = (indexPath.section, indexPath.row)

 switch (pos) {
 case (0, 0):
 textLabel.text = NSLocalizedString("purchasePrice", comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.

purchasePrice);
 case (0, 1):
 textLabel.text = NSLocalizedString("downPayment", comment: "")

 if (_property.purchasePrice > 0) {
 var down = (1 - _property.loanAmt / _property.purchasePrice) * 100.0;
 detailTextLabel.text = NSString(format: "%.0f", down);

 if (_property.loanAmt == 0 && down > 0) {
 _property.loanAmt = _property.purchasePrice * (1 - down / 100.0);
 }
 } else {
 detailTextLabel.text = "0";
 }

CHAPTER 5: Pulling It All Together216

 case (0, 2):
 textLabel.text = NSLocalizedString("loanAmount", comment: "")
 detailTextLabel.text = NSString(format: "%.2f", _property.loanAmt)
 case (0, 3):
 textLabel.text = NSLocalizedString("interestRate", comment: "")
 detailTextLabel.text = NSString(format: "%.3f", _property.

interestRate)
 case (0, 4):
 textLabel.text = NSLocalizedString("mortgageTerm", comment: "")
 detailTextLabel.text = NSString(format: "%d", _property.numOfTerms)
 case (0, 5):
 textLabel.text = NSLocalizedString("escrowAmount", comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.escrow)
 case (0, 6):
 textLabel.text = NSLocalizedString("extraPayment", comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.escrow);
 case (1, 0):
 textLabel.text = NSLocalizedString("expenses", comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.expenses);
 case (1, 1):
 textLabel.text = NSLocalizedString("rent", comment: "")
 detailTextLabel.text = NSString(format: "%.0f", _property.rent);

 default:
 break;
 }

 return cell
 }

 // tableView delegate
 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {

 // 3a.
 self.performSegueWithIdentifier("EditText", sender: indexPath)
 }

 // You will often want to do a little preparation before segue navigation
override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 var identifier = segue.identifier
 if identifier == "EditText" {
 var indexPath = sender as NSIndexPath

 var presentedVc = (segue.destinationViewController as

UINavigationController).topViewController as EditTextViewController
 var cell = tableView.cellForRowAtIndexPath(indexPath)!

CHAPTER 5: Pulling It All Together

217

 // 3b.
 presentedVc.tag = indexPath
 presentedVc.header = cell.textLabel!.text!
 presentedVc.text = cell.detailTextLabel!.text!
 presentedVc.delegate = self
 } else { // AmortizationTable segue
 // 4e.
 // TODO: coming next
 }
 }

 // 3c. delegate protocol to receive data from presented VC
 func onTextEditSaved(vc: EditTextViewController, data: String) {
 self.dismissViewControllerAnimated(true, completion: nil)

 switch (vc.tag.section, vc.tag.row) {
 case (0,0):
 _property.purchasePrice = (data as NSString).doubleValue;
 var indexPath = NSIndexPath(forRow: 0, inSection: 0)
 var percent = tableView.cellForRowAtIndexPath(indexPath)!.

detailTextLabel!.text!
 var down = (percent as NSString).doubleValue
 if (_property.purchasePrice > 0 && _property.loanAmt == 0 && down > 0) {
 _property.loanAmt = _property.purchasePrice * (1 - down / 100.0)
 }

 break;
 case (0,1):
 var percentage = (data as NSString).doubleValue / 100.0;
 _property.loanAmt = _property.purchasePrice * (1 - percentage);
 break;
 case (0,2):
 _property.loanAmt = (data as NSString).doubleValue;
 break;
 case (0,3):
 _property.interestRate = (data as NSString).doubleValue;
 break;
 case (0,4):
 _property.numOfTerms = (data as NSString).integerValue;
 break;
 case (0,5):
 _property.escrow = (data as NSString).doubleValue;
 break;
 case (0,6):
 _property.extra = (data as NSString).doubleValue;
 break;
 case (1,0):
 _property.expenses = (data as NSString).doubleValue;
 break;

CHAPTER 5: Pulling It All Together218

 case (1,1):
 _property.rent = (data as NSString).doubleValue;
 break;

 default:
 break;
 }
 tableView.reloadData()
 _property.save();
 }

 func onTextEditCanceled(vc: EditTextViewController) {
 self.dismissViewControllerAnimated(true, completion: nil)
 }
}

4. When the Schedule UIBarButtonItem is selected,

the IBAction doAmortization() method does the

following (see Listing 5-17):

a. Check whether the amortization schedule is already
saved locally.

b. To get data from a remote RESTFul service, use
NSURLConnection.sendAsynchronousRequest.

c. Save the results from the remote service.

d. Use a Manual Segue to present
AmortizationViewController, which will render the
schedules in it in content view.

e. Pass the amortized monthly terms to the presented
view controller (see Chapter 3).

f. Handle errors for remote service calls (see
UIAlertController in Chapter 3 for details).

Listing 5-17. doAmortization(...)

class RentalPropertyViewController : ... {
 ...
 // define constants
 struct MyStatic {
 private static let URL_service_tmpl = "http://www.pdachoice.com/ras/

service/amortization?loan=%.2f&rate=%.3f&terms=%d&extra=%.2f&escrow=%.2f"
 private static let KEY_DATA = "data"
 private static let KEY_RC = "rc"
 private static let KEY_ERROR = "error"
 }

http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f
http://www.pdachoice.com/ras/service/amortization?loan=%25.2f&rate=%25.3f&terms=%25d&extra=%25.2f&escrow=%25.2f

CHAPTER 5: Pulling It All Together

219

 // button action handle
 @IBAction func doSchedule(sender: AnyObject) {

 // 4a
 _savedAmortization = _property.getSavedAmortization();
 if (_savedAmortization != nil) {
 performSegueWithIdentifier("AmortizationTable",

sender: _savedAmortization!)
 } else {
 // 4b
 var url = NSString(format: MyStatic.URL_service_tmpl,

_property.loanAmt, _property.interestRate, _property.numOfTerms,
_property.extra, _property.escrow)

 UIApplication.sharedApplication().networkActivityIndicatorVisible = true

 var urlRequest = NSMutableURLRequest(URL: NSURL(string: url)!)
 urlRequest.HTTPMethod = "GET"
 urlRequest.setValue("text/html",forHTTPHeaderField: "accept")
 NSURLConnection.sendAsynchronousRequest(urlRequest, queue:

NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!,

error: NSError!) -> Void in
 NSURLConnection.sendAsynchronousRequest(urlRequest, queue:

NSOperationQueue.mainQueue(),
 completionHandler: {(resp: NSURLResponse!, data: NSData!,

error: NSError!) -> Void in
 UIApplication.sharedApplication().

networkActivityIndicatorVisible = false
 var errMsg: String?
 if error == nil {
 var statusCode = (resp as NSHTTPURLResponse).statusCode
 if(statusCode == 200) {
 var str = NSString(data: data, encoding:

NSUTF8StringEncoding)
 var parseErr: NSError?
 var json = NSJSONSerialization.JSONObjectWithData(data,

options: NSJSONReadingOptions.AllowFragments,
error: &parseErr) as NSArray?

 if parseErr == nil {
 // 4c. save
 self._property.saveAmortization(json!)
 // 4d. segue navigation
 self.performSegueWithIdentifier("AmortizationTable",

sender: json!)
 return
 } else {
 errMsg = parseErr?.debugDescription
 }

CHAPTER 5: Pulling It All Together220

 } else {
 errMsg = "HTTP RC: \(statusCode)"
 }
 } else {
 errMsg = error.debugDescription
 }

 // 4f. simple error handling
 var alert = UIAlertController(title: "Error", message: errMsg,

preferredStyle: UIAlertControllerStyle.Alert)
 var actionCancel = UIAlertAction(title: "Cancel",

style: UIAlertActionStyle.Cancel,
 handler: {action in
 // do nothing
 })
 alert.addAction(actionCancel)
 self.presentViewController(alert, animated: true,

completion: nil)
 })
 })
 }
 }

 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 var identifier = segue.identifier
 if identifier == "EditText" {
 // 3b.
 ...
 } else { // AmortizationTable segue
 // 4e.
 var toVc = segue.destinationViewController as

AmortizationViewController
 toVc.monthlyTerms = sender as NSArray // a temp error to be fixed next
 }
 }
...

You should get a temporary compilation error in 4e because you haven’t
defined the monthlyTerms stored properties yet. You will do that next.

CHAPTER 5: Pulling It All Together

221

AmortizationViewController

Let’s move on to AmortizationViewController. The sole purpose of this
view is to render the amortization items in a TableView. Listing 5-18 shows
the completed implementation.

1. The amortization schedule results are obtained

and passed by the presenting view controller,

RentalPropertyViewController (Listing 5-17 step

4b and 4f).

2. Implement the UITableViewDataSource methods

(see Chapter 3).

3. When a particular month is selected, present the

monthly details in MonthlyTermViewController using

a segue navigation.

4. Pass the monthly term data to the presented view

controller.

Listing 5-18. AmortizationViewController Class, Completed Code

import UIKit
class AmortizationViewController: UITableViewController {

 // 1. From the presenting view controller
 var monthlyTerms: NSArray!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return monthlyTerms.count
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("aCell") as

UITableViewCell!
 var textLabel = cell.textLabel!
 var detailTextLabel = cell.detailTextLabel!
 var pos = indexPath.row
 var monthlyTerm = monthlyTerms[pos] as NSDictionary

CHAPTER 5: Pulling It All Together222

 var pmtNo = monthlyTerm["pmtNo"] as Int
 var balance0 = monthlyTerm["balance0"] as Double
 textLabel.text = NSString(format: "%d\t $%.2f", pmtNo, balance0)

 var interest = monthlyTerm["interest"] as Double
 var principal = monthlyTerm["principal"] as Double

 var property = RentalProperty.sharedInstance();
 var invested = property.purchasePrice - property.loanAmt + (property.

extra * Double(pmtNo))
 var net = property.rent - property.escrow - interest - property.expenses
 var roi = net * 12 / invested

 detailTextLabel.text = NSString(format: "Interest: %.2f\tPrincipal:

%.2f\t ROI: %.2f", interest, principal, roi * 100);

 return cell
 }

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.navigationItem.title = NSLocalizedString("label_Amortization",

comment: "")
 }

 override func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {

 // 3. Present MonthlyTerm view controller
 self.performSegueWithIdentifier("MonthlyTerm", sender: indexPath)
 }

 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {

 var vc = segue.destinationViewController as MonthlyTermViewController
 // 4. Pass data to the presented view controller
 var row = (sender! as NSIndexPath).row
 vc.monthlyTerm = monthlyTerms[row] as NSDictionary // TODO: a temp error
 }
}

This completes the whole AmortizationViewController Swift class
implementation, with a temporarily compilation error in step 4. You will
define the monthlyTerm stored property next.

CHAPTER 5: Pulling It All Together

223

MonthlyTermViewController

Let’s move on to MonthlyTermViewController. It renders the detailed
information for the selected month, as shown in Listing 5-19.

1. The monthlyTerm data is obtained

from the presenting view controller,

AmortizationViewController (Listing 5-18 step 4).

2. Fill the IBOutlet UI widgets with data in the selected

monthlyTerm stored property.

Listing 5-19. AmortizationViewController Class Completed Code

import UIKit
class MonthlyTermViewController : UITableViewController {

 @IBOutlet weak var mPaymentNo: UILabel!
 @IBOutlet weak var mTotalPmt: UILabel!
 @IBOutlet weak var mPrincipal: UILabel!
 @IBOutlet weak var mInterest: UILabel!
 @IBOutlet weak var mEscrow: UILabel!
 @IBOutlet weak var mAddlPmt: UILabel!
 @IBOutlet weak var mBalance: UILabel!
 @IBOutlet weak var mEquity: UILabel!
 @IBOutlet weak var mCashInvested: UILabel!
 @IBOutlet weak var mRoi: UILabel!

 // 1. From the presenting view controller
 var monthlyTerm: NSDictionary!

 override func viewDidLoad() {
 super.viewDidLoad()

 // 3. Fill the widget with data before view appears.
 var principal = self.monthlyTerm["principal"] as Double
 var interest = self.monthlyTerm["interest"] as Double
 var escrow = self.monthlyTerm["escrow"] as Double
 var extra = self.monthlyTerm["extra"] as Double
 var balance = (self.monthlyTerm["balance0"] as Double) - principal
 var paymentPeriod = self.monthlyTerm["pmtNo"] as Int
 var totalPmt = principal + interest + escrow + extra
 self.mTotalPmt.text = NSString(format: "$%.2f", totalPmt)
 self.mPaymentNo.text = NSString(format: "No. %d", paymentPeriod)
 self.mPrincipal.text = NSString(format: "$%.2f", principal)
 self.mInterest.text = NSString(format: "$%.2f", interest)
 self.mEscrow.text = NSString(format: "$%.2f", escrow)
 self.mAddlPmt.text = NSString(format: "$%.2f", extra)
 self.mBalance.text = NSString(format: "$%.2f", balance)

CHAPTER 5: Pulling It All Together224

 var property = RentalProperty.sharedInstance();
 var invested = property.purchasePrice - property.loanAmt +

(property.extra * Double(paymentPeriod))
 var net = property.rent - escrow - interest - property.expenses;
 var roi = net * 12 / invested

 self.mEquity.text = NSString(format: "$%.2f", property.purchasePrice -

balance)
 self.mCashInvested.text = NSString(format: "$%.2f", invested)
 self.mRoi.text = NSString(format: "%.2f%% ($%.2f/mo)", roi * 100, net)
 }
}

This completes the whole MonthlyTermViewController Swift class
implementation.

All the class translations are completed. Build and run the iOS RentalROI
app and do some testing. Your app should look like Figure 5-1.

Summary
This chapter showed you how to apply the individual topics introduced in
Chapters 3 and 4—such as creating master list details, creating drill-down
navigation, exchanging data between view controllers, using basic UI
widgets, saving data, and using remote services—all in one simple and
meaningful app.

Although the RentalROI app is not complicated enough to show you all
the topics in this book, the general iOS app development steps remain the
same. You started with the Xcode storyboard and created view controllers to
pair with the storyboard scenes. Then, you implemented storyboard segues
to connect the view controller together. The result was a set of connected
view controllers. With the storyboard in place, you started following the use
case paths and discovering the business objects and methods, and the dots
started connecting to each other.

When you encounter platform-specific SDK or topics, use this book’s table
of contents to find the instructions that will guide you through the iOS SDK.

225

Chapter 6
Bonus Chapter:

Hybrid Apps

For serious web developers using JavaScript to create interactive web
apps, UIWebView provides a seamless way to transfer those skills to creating
mobile apps. UIWebView also allows native code to interface with the
JavaScript that is loaded with the web page. Both iOS and Android inject
JavaScript code from the native code into the embedded browser. Web
developers normally think it is easier to use their familiar development skills
to create their web apps, but using this hybrid approach opens up a different
way to create mobile apps.

The so-called hybrid approach has gained a bit of attraction in recent years;
there are many cross-platform compilers aimed at JavaScript developers
who want to create mobile apps. To name a few, PhoneGap, Apache
Cordova, Titanium, Icenium, Trigger.IO, and so forth, all seem to be doing a
good job for the intended purpose.

The key is how to interface the code between JavaScript and native iOS SDK
to make it bi-directional. It is relatively easier to have your native iOS code
interface with your JavaScript code because this process is well-documented
using the existing iOS API. However, how to call iOS code from your
JavaScript code doesn’t seem to be well-known yet, so I will reveal the secret
that’s used in those third-party frameworks. The process is actually very easy.

To learn by example, you will be implementing an iOS app that calls
functions between your Swift code and your JavaScript code. Figure 6-1
shows the completed iOS app you will be creating.

CHAPTER 6: Bonus Chapter: Hybrid Apps 226

This hybrid app performs the following tasks:

The content is implemented as an HTML page and 	
rendered in an UIWebView that takes up all the space
under the iOS-native UINavigationBar.

To change the image from your iOS code, select the 	
UISegmentedControl.

To change the image from your JavaScript code, 	
click the element. This also changes the native
UISegmentedControl selection.

Follow the usual steps to get started, shown here:

1. Create an iOS project using the Xcode Single View

Application template. Name the project HybridApp.

You immediately get a storyboard with one

ViewController.swift file that pairs with the view

controller scene, as shown in Figure 6-2.

Figure 6-1. Simple hybrid app screens

CHAPTER 6: Bonus Chapter: Hybrid Apps

227

2. Drag a web view from the Object Library onto the

root view in the view controller scene.

a. Position and size it to take up the whole space.

b. With the web view selected, select Resolve Auto
Layout Issues ➤ Reset to Suggested Constraints
to automatically add zero-space constraints to its
parent view.

3. With the view controller in the storyboard selected,

from the Xcode menu bar, select Editor ➤ Embed

In ➤ Navigation Controller. You get a navigation

controller scene, a navigation item, and a navigation

bar in the view controller scene.

4. With the navigation item selected, drag a segmented

control from the Object Library onto the right side of

the navigation bar, as shown in Figure 6-3.

Figure 6-2. Creating an iOS project using the Single View Application template

CHAPTER 6: Bonus Chapter: Hybrid Apps 228

5. Use the Assistant Editor to connect the following

storyboard outlets to your code in ViewController.
swift. Listing 6-1 depicts the storyboard operations

results.

a. Connect a web view delegate to the ViewController
class.

b. Connect a web view referencing outlet to the
ViewController mWebview stored property.

c. Connect a segmented control referencing outlet
to the ViewController mSegmentControl stored
property.

d. Connect a segmented control value changed
event to the ViewController onValueChanged(...)
IBAction function.

e. Declare a ViewController that implements
UIWebViewDelegate protocol. (You will implement the
protocol methods later.)

f. To make sure the previous storyboard tasks are
working, you can add a line in viewDidLoad and
some logging code just to see whether all the
outlets are good.

Figure 6-3. Drawing a navigation bar and a segmented control in the right bar button

CHAPTER 6: Bonus Chapter: Hybrid Apps

229

Listing 6-1. Storyboard Outlets in ViewController.swift

import UIKit

class ViewController: UIViewController, UIWebViewDelegate {

 @IBOutlet weak var mWebview: UIWebView!
 @IBOutlet weak var mSegmentControl: UISegmentedControl!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 mWebview.loadHTMLString("<h1>Hello HybridApp</h1>", baseURL: nil)
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func onValueChanged(sender: AnyObject) {
 println(">> onValueChanged")
 }

 func webView(webView: UIWebView, shouldStartLoadWithRequest request:
NSURLRequest, navigationType: UIWebViewNavigationType) -> Bool {

 return true
 }

}

Nothing you’ve done here is new yet. It was the same storyboard tasks as
usual. Run and test the HybridApp project. You should see the HybridApp
app as shown in Figure 6-4.

CHAPTER 6: Bonus Chapter: Hybrid Apps 230

Bundle Web Contents
Recall that in the UIWebView code in Chapter 4’s Listing 4-18, you used
UIWebView.loadRequest(NSURLRequest) to load the remote URL. You can
bundle the web contents with the iOS app and still use the same API to
load the web contents using a file URL to the bundled local files. Do the
following:

1. Develop your web content as usual. Instead of

deploying the web content to the web server, bundle

it in the HybridApp project.

a. Figure 6-5 shows a simple web content root folder.
You can organize your web content with subfolders
like you normally do.

Figure 6-4. HybridApp storyboard tasks

CHAPTER 6: Bonus Chapter: Hybrid Apps

231

b. Listing 6-2 depicts the demo index.html file that

contains two inline JavaScript functions. You will

use them in later sections.

Listing 6-2. The Simple Web content-index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<script>
 function onClicked() {
 console.log('onClicked');
 var name = document.getElementById('imgId').name;
 // <scheme name> : <hierarchical part> [? <query>] [# <fragment>]
 document.location.href = 'uiwebview://onClicked?img=' + name;
 }

 function replaceImg(src) { // to be called from Swift code
 console.log('replaceImg: ' + src);
 document.getElementById('imgId').src = src;
 document.getElementById('imgId').name = src;
 }
</script>

<title>Hybrid App</title>
</head>
<body>
 <div>
 <H1>My Image</H1>

 </div>
</body>
</html>

Figure 6-5. HybridApp web content

CHAPTER 6: Bonus Chapter: Hybrid Apps 232

2. Drag the WebContent root folder from the iOS Finder

to the Xcode HybridApp project.

a. This is similar to adding image assets to your Xcode
project, but make sure you select Create Folder
Reference to preserve the URL path, as shown in
Figure 6-6.

Figure 6-6. Adding web content to the Xcode project

b. You may directly modify index.html or any web

content in the Xcode editor from now on. For

example, you can remove the <h1> element in the

index.html file using the Xcode editor. Figure 6-7

depicts the results with the WebContent folder in the

HybridApp project.

CHAPTER 6: Bonus Chapter: Hybrid Apps

233

3. Listing 6-3 depicts how to render the local web

content in UIWebView.

a. Obtain the file path for the bundled resource using

NSBundle.pathForResource(...).

b. You still use the same UIWebView.loadRequest(...)
method to load the file URL.

Listing 6-3. Load Bundled Web Contents

class ViewController: UIViewController, UIWebViewDelegate {

 @IBOutlet weak var mWebview: UIWebView!
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 var htmlfile = NSBundle.mainBundle().pathForResource("index", ofType:

"html", inDirectory: "WebContent")
 var htmlfileUrl = NSURL(fileURLWithPath: htmlfile!)

 // mWebview.loadHTMLString("<h1>Hello HybridApp</h1>", baseURL: nil)
 mWebview.loadRequest(NSURLRequest(URL: htmlfileUrl!))
 }

You can build and run the iOS HybridApp project to see the bundled web
contents being rendered in offline mode.

Figure 6-7. WebContent folder in Xcode

CHAPTER 6: Bonus Chapter: Hybrid Apps 234

Invoke JavaScript Function
To call JavaScript functions from iOS code, you simply inject JavaScript
code into UIWebView. The following steps walk you through a typical usage
that invokes a JavaScript function from iOS code:

1. You can inject any JavaScript code, including declaring

the whole function. Previously in Listing 6-2, the inline

replaceImg(src) JavaScript function replaces the

src attribute in the DOM element, which you

can easily invoke from your native Swift code

(see Listing 6-4).

Listing 6-4. The replaceImg(...) JavaScript Function Inline in index.html

...
<script>
 ...
 function replaceImg(src) {
 console.log('replaceImg: ' + src);
 document.getElementById('imgId').src = src;
 document.getElementById('imgId').name = src;
 }
 ...

2. Listing 6-5 changes the image in UIWebView by

invoking the replaceImg(...) JavaScript code. This

is achieved by injecting JavaScript into UIWebView

using stringByEvaluatingJavaScriptFromString.

Listing 6-5. Inject JavaScript Code into the Embedded Browser, UIWebView

class ViewController: UIViewController, UIWebViewDelegate {
 ...
 @IBAction func onValueChanged(sender: AnyObject) {
 var selection = (sender as UISegmentedControl).selectedSegmentIndex
 var img = selection == 0 ? "img0.png" : "img1.png"
 var jsCode = "replaceImg('" + img + "')" // js: replaceImg('img2.png')
 self.mWebview.stringByEvaluatingJavaScriptFromString(jsCode)
 }
 ...

You can build and run the iOS HybridApp project and select the
UISegmentedControl to change the image in the UIWebView.

CHAPTER 6: Bonus Chapter: Hybrid Apps

235

Invoke Native Code
UIWebView goes through the life cycle defined in the UIWebViewDelegate protocol
when loading a URL. The following approach intercepts the UIWebView’s early
life-cycle events and takes the chance to call your Swift code:

1. Previously in Listing 6-2, the onClick() event

invokes the onClicked() JavaScript function. In the

JavaScript code, build a URL request with a custom

URI scheme that only your native code understands.

a. I chose uiwebview as my custom URI scheme name.
You can choose any scheme name as long as it is
unique and only your native code understands it.

b. To pass extra data from JavaScript, I chose to use
the URI query part.

c. To dispatch the request to the appropriate native
method, I chose to use the URI hierarchical part.

d. document.location.href will start loading the URL,
which gives UIWebView a chance to intercept the
request via callback. See Listing 6-6.

Listing 6-6. The Simple Web content-index.html

<html>
...
<script>
 function onClicked() {
 console.log('onClicked');
 var name = document.getElementById('imgId').name;
 // <scheme name> : <hierarchical part> [? <query>] [# <fragment>]
 document.location.href = 'uiwebview://onClicked?img=' + name;
 }
 ...

Note URI is defined as consisting of four parts: <scheme name> :

<hierarchical part> [? <query>] [# <fragment>].

As long as you set them, you will be able to intercept them easily in your

native code.

CHAPTER 6: Bonus Chapter: Hybrid Apps 236

 2. Implement the UIWebViewDelegate protocol to

intercept the URL request, as shown in Listing 6-7.

a. Intercept the request by the custom scheme name
and return false to stop the page load. You just
need to know an action is triggered from JavaScript,
but you return true without breaking the real page
load request.

b. Since there is only one interface method, I didn’t
care that the URI hierarchical part is passed
from JavaScript function. If I need to interface with
different methods from different JavaScript code,
I would use it as the switch-case condition to
dispatch calls to appropriate Swift method.

c. The Swift code updated the segmented control
selection and updated the images by calling the
existing UISegmentedControl.onValueChanged(...)
method discussed previously in Listing 6-5.

Listing 6-7. Intercept the Custom Page Load Request

class ViewController: UIViewController, UIWebViewDelegate {
 ...
 let CUSTOM_SCHEME = "uiwebview"
 func webView(webView: UIWebView, shouldStartLoadWithRequest request:
NSURLRequest, navigationType: UIWebViewNavigationType) -> Bool {

 println(">>shouldStartLoadWithRequest")

 var url = request.URL
 if let scheme = url.scheme {
 if scheme.lowercaseString == CUSTOM_SCHEME {
 var host = url.host // URI hierarchical part, not used

 var queryString = url.query!
 println("queryString: \(queryString)");

 var img = queryString.componentsSeparatedByString("=")[1]
 var isImg0 = img == "img0.png"
 self.mSegmentControl.selectedSegmentIndex = isImg0 ? 1 : 0
 self.onValueChanged(self.mSegmentControl)

 return false
 }
 }

 return true
 }

CHAPTER 6: Bonus Chapter: Hybrid Apps

237

Build and run HybridApp. You can select the UISegmentedControl or click the
 element in the UIWebView to change the image in the UIWebView.

This completes the bi-directional interface between JavaScript and
iOS native code. It is much lighter than those popular cross-platform
frameworks and has great extensibility. In most cases, you really don’t need
those heavy cross-platform frameworks that often offer too many features
for your apps.

239

A, B, C ■
AppDelegate.swift, 39

D ■
Dialogs

IBAction methods, 111
storyboard, 110
UIAlertController, 112
UIPopoverController, 113

Attributes Inspector, 115
GreenViewController

class, 114
iPad vs. iPhone, 116
mypopover manual

segue, 115
storyboard completion, 114

Drilldown patterns
mobile navigation patterns, 85
UICollectionView, 92
UITableViewController, 86

dequeueReusableCellWith
Identifier(), 89

MasterDetail
storyboard, 88

table view cell, 87
UITableView, 91
UITableViewCell, 92
UITableViewDataSource, 89
UITableViewDelegate, 89

E, F ■
Efficient navigation, 73
Emulator, LessonOne app in, 9

G ■
Graphical user interface (GUI), 52

H ■
HelloSwift Xcode project, 12

class creation
context menu, 16
MobileDeveloper class, 16
stored property, 16
Swift file template, 15

command-line tool
Project Navigator area, 14
Source Editor area, 14
template, 13
utility area, 15

debugger, 21
instance, 19
Programmer protocol, 17
protocol declaration

method, 18
MobileDeveloper

protocol, 18
HTTP GET method, 182
HTTP POST method, 181
Hybrid approach

iOS app creation, 225
Assistant Editor, 228
Navigation Controller, 227
Object Library, 227
screens, 226
Single View Application

template, 227
storyboard tasks, 229
ViewController.swift, 229

Index

Index240

JavaScript function, 234
life-cycle events

onClick() event, 235
Page Load Request, 236
UIWebViewDelegate

protocol, 236
web contents, bundled, 230

I ■
Integrated development

environment (IDE)
for web development, 3
Xcode (see Xcode)

iOS project app
HelloMobile Xcode project

classes, 39
editor area, 40
images.xcassets, 39
Info.plist file, 40
Project Navigator area, 39
single view application

template, 37–38
storyboard file

extension, 39
UI widgets, 42

Assistant Editor, 46
Attributes Inspector, 45
File Inspector, 43
Object Library, 43
storyboard scene, 44–45
TextField, 44

Xcode Storyboard, 41

J, K ■
JavaScript vs. Swift language

syntax, 12

L ■
LessonOne app, emulator, 9

M ■
Mac App Store, 4
MobileDeveloper, private access

modifier in, 20–21
Model-view-controller (MVC)

Content View, 52–53
Auto Layout, 53
size classes, 59

Content View Controller, 66
IBAction, 68, 70
IBOutlet, 68, 70
UIViewController, 67
viewDidAppear() method, 72
viewDidDisappear()

method, 72
viewDidLoad() method, 72
viewWillAppear() method, 72
viewWillDisappear()

method, 72
design pattern, 52
GUI application, 52

N, O ■
Navigation tabs, 98

implementation, 99
IOS tabbed app, 99
UITabBarController

add/remove, 101
runtime behavior, 103
text and image, update, 101

Network operations
in background thread, 179
NSURLConnection class

IBAction doGet()
method, 182

IBAction doPost()
method, 183

RESTful services
HTTP GET method, 181–182
HTTP POST method, 181

Hybrid approach (cont.)

Index

241

P, Q ■
Piece by piece. See RentalProperty
Private Access Modifier, in

MobileDeveloper, 20–21

R ■
Reference vs. value types, 36
RentalProperty

AmortizationViewController
class, 221

doAmortization() method, 218
EditTextViewController, 208

callback protocol, 209
code implementation, 211
stored properties, 209
ViewController,

presented, 210
getSavedAmortization()

method, 207
load() method, 206
MonthlyTermViewController

class, 223
RentalPropertyViewController

code implementation, 214
EditTextViewController, 214
TableView data, 213
viewDidAppear() method, 213
viewDidLoad() method, 213

saveAmortization()
method, 207

save() method, 207
singleton implementation, 205
utility methods, 206

RentalROI app, 189
amortization schedule, 191
application resources, 203
business object class, 202
navigation patterns, 199
remote service, 191
screens, 190
SharedPreferences, 191

storyboard scenes
AmortizationView

Controller class, 195
EditTextViewController

class, 192
MonthlyTermView

Controller class, 195
RentalPropertyView

Controller class, 193
top-down approach, 192

S ■
Saving data, 170

Assistant Editor, 172
code implementation, 172
file storage, 176
NSFileManager, 176
NSUserDefaults, 174
problems, 174
UIBarButtonItem, 171
UITextField, 171
ViewController class, 172

Screen navigation patterns, 73
Container View Controller, 78
dialogs

IBAction methods, 111
storyboard, 110
UIAlertController, 111
UIPopoverController, 113

drilldown pattern
mobile navigation

patterns, 85
UICollectionView, 92
UITableViewController

(see UITableViewController)
navigation stack, 78
navigation tabs, 98

implementation, 99
UITabBarController

(see UITabBarController)
pass data, segue, 77
storyboard segue, 73

Index242

SwipeViews, 104
UINavigationController, 82
UIPageViewController, 107

Segue, 73
Swift language

collections, 27
control flows, 28
switch cases, 28

Swift programming language
classes

methods, 35
property, 34

collections, 27
control flow, 28
enumerations, 30
functions, 31
HelloSwift Xcode project, 12

access control, 19
class creation, 15
command-line tool, 13
debugger, 21
instance, 19
Programmer protocol, 17
protocol implementation, 18

iOS project app
HelloMobile Xcode

project, 37
UI widgets, 42
Xcode Storyboard, 41

reference vs. value types, 36
switch cases, 28
tuples, 26
variables and constants, 23
vs. JavaScript syntax, 12
Xcode playground, 22–23

T ■
Top-down approach, 192
Tuples, 26
Type inference, 24
Type safety, 24

U ■
UITabBarController

add/remove, 101
runtime behavior, 103
text and image, update, 101

UITableViewController
dequeueReusableCellWith

Identifier(), 89
MasterDetail storyboard, 88
table view cell, 87
UITableView, 91
UITableViewCell, 92
UITableViewDataSource, 89
UITableViewDelegate, 89

User interface, 119
application resources, 122

assets catalog, 122
externalizing strings, 125

UIView.animateWithDuration()
method, 169

UIView object, 120
Attributes Inspector, 121
responsibilities, 121

UI widgets, 120, 126
MPMoviePlayerView

Controller, 158
UIActionSheet, 151
UIActivityIndicatorView, 141
UIAlertController, 152
UIBarButtonItem, 150
UIButton, 134
UIImageView, 146
UILabel, 127
UIPickerView, 154
UIProgressView, 142
UIScrollView, 165
UISegmentedControl, 136
UISlider, 139
UISwitch, 144
UITextField, 130
UITextView, 132
UIWebView, 162

Screen navigation patterns (cont.)

Index

243

V, W ■
Variables and constants

optional
variable, 24

type inference, 24
type safety, 24
unwrapped

optionals, 25
ViewController.swift, 39

X, Y, Z ■
Xcode

iOS app creation, 5
Build action, 8
LessonOne app, emulator, 9
Project Navigator, 7–8
project options, 6–7
template, 6

Mac App Store, 4

Migrating to
Swift from Web
Development

Sean Liao

Mark Punak

Migrating to Swift from Web Development

Copyright © 2015 by Sean Liao and Mark Punak

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed. Exempted from this legal reservation are brief

excerpts in connection with reviews or scholarly analysis or material supplied speciically for the

purpose of being entered and executed on a computer system, for exclusive use by the purchaser of

the work. Duplication of this publication or parts thereof is permitted only under the provisions of the

Copyright Law of the Publisher’s location, in its current version, and permission for use must always

be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright

Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0932-5

ISBN-13 (electronic): 978-1-4842-0931-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and

images only in an editorial fashion and to the beneit of the trademark owner, with no intention of

infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they

are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are

subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal responsibility

for any errors or omissions that may be made. he publisher makes no warranty, express or implied,

with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,

Matthew Moodie, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke,

Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Image: Michelle Lowman

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a

California LLC and the sole member (owner) is Springer Science + Business Media Finance

Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.

eBook versions and licenses are also available for most titles. For more information, reference our

Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to

readers at www.apress.com. For detailed information about how to locate your book’s source code,

go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author .. ix

Acknowledgments .. xi

Introduction .. xiii

Part 1: Prepare Your Tools ■ ...1

Chapter 1: Setting Up the Development Environment ■ 3

Xcode and the iOS SDK ... 4

Installing from the Mac App Store .. 4

Creating an iOS Project Using the Template ... 5

Summary ... 10

Chapter 2: iOS Programming Basics ■ .. 11

The Swift Language in a Nutshell ... 12

HelloSwift with Xcode... 12

More About the Swift Language ... 22

iOS Project Anatomy .. 37

Xcode Storyboard ... 41

Object Library and Attributes Inspector .. 42

Summary ... 47

Contentsvi

Part 2: A Roadmap for Porting ■ 49

Chapter 3: Structure Your App ■ .. 51

Model-View-Controller .. 52

Content View ... 53

Content View Controller .. 66

Screen Navigation Patterns ... 73

Storyboard Segue ... 73

Pass Data with a Segue .. 77

Container View Controller ... 78

Navigation Stack ... 78

UINavigationController .. 82

Master List with Details Drill-Down .. 85

Navigation Tabs .. 98

Swipe Views ... 104

UIPageViewController ... 107

Dialogs .. 110

Summary ... 117

Chapter 4: Implement Piece by Piece ■ ... 119

User Interface .. 119

UIView ... 120

Application Resources .. 122

Common UI Widgets ... 126

Animations .. 169

Save Data .. 170

NSUserDefaults... 174

File Storage .. 175

NSFileManager ... 176

Contents

vii

Networking and Using Remote Service ... 178

Perform Network Operations in Background .. 179

RESTful Service Using HTTP ... 181

NSURLConnection ... 182

Summary ... 185

Part 3: Finishing Touches ■ ..187

Chapter 5: Pulling It All Together ■ .. 189

Structure Your App .. 192

Draw Storyboard Scenes .. 192

Choose a Screen Navigation Pattern .. 199

Business Object .. 202

Application Resources .. 203

Implement Piece by Piece ... 204

RentalProperty .. 205

EditTextViewController .. 208

Summary ... 224

Chapter 6: Bonus Chapter: Hybrid Apps ■ 225

Bundle Web Contents .. 230

Invoke JavaScript Function ... 234

Invoke Native Code ... 235

Index .. 239

ix

About the Author

Sean Liao started his first mobile app on a
PalmOS PDA app in 2000. He hasn’t missed
any major mobile evolutions. He has written
mobile code for PalmOS, JavaME, Microsoft
.NET CF, and BlackBerry, and he also has
some Nokia Symbian experience. He has been
a seasoned Java solution architect since 1998.

Currently, Sean is primarily engaged in creating
iOS apps and porting them to Android as a
bonus.

xi

Acknowledgments

This book is the joint effort of three developers who specialize in different
areas. While specializing in native mobile platforms, I don’t have enough
hands-on experiences in web technologies. Thanks to my old friend, Mark
Punak, who started the book project with me. Without his endorsement and
early validations, this book would never have gotten started.

Thank you to my colleague, Tony Nemec, who gave me a huge boost.
He is always my go-to guy pretty much for everything, from JavaScript
programming and CSS to DIY projects in my garage. Without his help, this
book would not have gotten to the finish line.

Special thanks to our publisher, who had faith in this topic, and the editors,
who never stopped making the book better. Their professional services
and guidance were unparalleled. I am really grateful to have had the Apress
publishing and editorial teams with me at all times.

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	Index

