
Arun Gupta & Aditya Gupta

Minecraft
Modding
with Forge
A FAMILY-FRIENDLY GUIDE TO BUILDING FUN MODS IN JAVA

www.allitebooks.com

http://www.allitebooks.org

COMPUTING

Minecraft Modding with Forge

ISBN: 978-1-491-91889-0

US $29.99 CAN $34.99

“	This	book	is	a	great	way	
to	introduce	your	kids	
to	programming,	using	
what	they	are	already	
passionate	about.”

—Stephen Chin
JavaOne Content Chair,
Devoxx4Kids Instructor

Twitter: @oreillymedia
facebook.com/oreilly

Playing Minecraft is a lot of fun, but the game is more engaging, entertaining,
and educational when kids learn how to build mods—small programs that
let them modify game elements and add content. This family-friendly
guide teaches kids and parents how to create mods of different types,
using the Minecraft Forge modding tool. No programming experience
is needed.

You'll not only build some amazing mods with the book's easy-to-follow
instructions, but you'll also learn how to work with Java, the same programming
language that Minecraft uses. Why wait? Get started with computer
programming and be more creative with Minecraft while you're at it!

This book will help you:

 ■ Learn the fundamentals of Minecraft Forge and other tools,
such as Eclipse

 ■ Start out by building and testing a simple chat message mod

 ■ Build cool mods that make things explode on contact, and help
entities jump higher and climb walls

 ■ Introduce new Minecraft content, including commands, blocks,
items, and recipes and textures

 ■ Work with Java fundamentals such as classes, methods,
annotations, control structures, and arrays

 ■ Learn techniques for creating your own mods

This guide is based on workshops the authors deliver to kids around the world.

Arun Gupta is a founding member and board chair of Devoxx4Kids USA, the
organization that promotes technology education among kids. During the day, he
works as Director of Developer Advocacy at Red Hat, where he focuses on JBoss
Middleware.

Aditya Gupta is a twelve-year-old Minecraft enthusiast who loves to create
new mods for the game. He works alongside his father, Arun Gupta, to build
and deliver workshops for Devoxx4Kids USA.

Arun Gupta & Aditya Gupta

Minecraft
Modding
with Forge
A FAMILY-FRIENDLY GUIDE TO BUILDING FUN MODS IN JAVA

M
inecraft M

odding w
ith Forge

Gupta &
 Gupta

www.allitebooks.com

http://www.allitebooks.org

Arun Gupta and Aditya Gupta

Minecraft Modding with Forge

www.allitebooks.com

http://www.allitebooks.org

978-1-491-91889-0

[LSI]

Minecraft Modding with Forge
by Arun Gupta and Aditya Gupta

Copyright © 2015 Arun Gupta and Aditya Gupta. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Foster and Brian MacDonald
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn
Proofreader: Sharon Wilkey

Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2015: First Edition

Revision History for the First Edition
2015-03-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491918890 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Minecraft Modding with Forge, the
cover image of a Texas horned lizard, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491918890
http://www.allitebooks.org

To all Devoxx4Kids Minecraft modding workshop attendees around the world.
To my dear wife, Menka, and little boy, Mihir, for keeping us charged and entertained.

—Arun
To Trevor and Anil, for being good friends and generally being awesome.

—Aditya

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. ix

Preface. xi

1. Introduction. 1
Downloading and Installing Tools 2

Java 2
Minecraft Forge 3
Eclipse 4

Setting Up Forge in Eclipse 5
Understanding the Example Mod 9
Running Minecraft and Verifying the Mod 13
Summary 14

2. Block-Break Message. 15
Creating the Main File 15
Adding the Event Handler 21

Creating a Java Class for Event Handling 22
Adding Methods for Event Handling 22
Registering the Event Handler on the Event Bus 24

Running Minecraft and Verifying the Mod 25
Summary 25

3. Fun with Explosions. 27
Exploding Minecarts 27
Exploding Anvils 31
Diamond Ore Trap 35
Bigger TNT Explosions 38

v

www.allitebooks.com

http://www.allitebooks.org

Without a Fuse 38
With a Fuse 40

Summary 43

4. Entities. 45
Pigs Dropping Diamonds 45
Zombie Knights 49
Creeper Reinforcements 52
Summary 55

5. Movement. 57
Super Jump 57

Bouncy Sponges 60
Parachute 61
Wall-Climbing Golems 64
Summary 66

6. New Commands. 67
Flaming Pigs 67
Block Filler 74
Summary 83

7. New Block. 85
Creating the Block Class 85
Registering Your Block 87
Naming Your Block 88
Running Minecraft and Verifying the Mod 89
Variations of the New Block 91

Block Changer 91
Majestic Enderium Block 92

Summary 94

8. New Item. 97
Creating the Item Class 97
Variations of the New Item 99

Enderman Spawner 99
Edible Ingots 101
Item from Block 103

Summary 104

9. Recipes and Textures. 105
Recipes 105

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Shaped Crafting Recipe 106
Shapeless Crafting Recipe 110
Smelting Recipe 112
Brewing Recipe 113

Textures 116
Tools 116
Images 117
Files 118
Register and Verify the Textures 122

Summary 123

10. Sharing Mods. 125
Building the JAR File 125
Installing Minecraft Forge on Your Client 126
Cool Mods That You Can Install 128
Summary 129

A. What Is Minecraft?. 131

B. Eclipse Shortcuts and Correct Imports. 149

C. Downloading the Source Code from GitHub. 151

D. Devoxx4Kids. 153

Index. 167

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Learning how to code is an important life skill for today’s youth. It not only provides
them with a greater understanding of the computers and software that surround us
all in our daily lives, but also has the potential to lead them toward an amazing and
fulfilling career in technology. The genius of the Minecraft modding community is
that it is helping to teach an enormous number of young programmers that coding
can be fun. The ability to enhance and modify a game enjoyed by millions makes
coding something that is approachable and enjoyable for kids of all ages.

The Eclipse Java IDE is one of the world’s most successful open source software
projects. Millions of developers use Eclipse every day as their tooling platform. The
Eclipse community has hundreds of dedicated committers and thousands of contrib‐
utors. Speaking on their behalf, it is incredibly gratifying for all of us to see our open
source Eclipse IDE being used to help so many young people get started with coding.

As a father-and-son team, Arun Gupta and Aditya Gupta have created an incredible
resource to help get this next generation of coders off to a great start. Arun is a well-
known and respected Java technology evangelist who has held positions at Sun, Ora‐
cle, and Red Hat. Both he and Aditya have been active for several years in the
Minecraft and Devoxx4Kids communities, helping to demonstrate that Java, Eclipse,
and Minecraft modding are approachable and fun. I am sure that their book will pro‐
vide you with a great start for your coding adventures.

—Mike Milinkovich, Executive Director of the Eclipse Foundation

ix

Preface

One day a couple of years ago, I was stunned when my son told me, “Dad, my JAR
snapshot messed up the configuration.” As a curious dad and an experienced Java
programmer, my question to him was, “How do you know what a JAR is?”

What I didn’t anticipate at that time was how that one question would completely
change our discussions over the ensuing months and years. I learned that the game of
Minecraft is written in Java, and that my son had been installing mods, which are
other JARs, to modify the gameplay. After helping him fix the configuration problem,
my son expressed a desire to write a mod and we started exploring how to do that.
This marked the beginning of an extremely rewarding and enjoyable journey for the
both of us: he taught me about Minecraft, and I taught him basic Java programming
concepts. Notes were exchanged over breakfast and dinner, during drives to school or
classes while grocery shopping, and pretty much everywhere.

After building our first mod during Christmas 2012, we decided to share the knowl‐
edge with his Minecraft buddies. That gave rise to the first Minecraft modding work‐
shop in our living room with about 12 kids. Most of the kids had no programming
experience, let alone experience with Java. However, there was high Minecraft experi‐
ence in the group, with some kids playing for about two years and up to two hours
every day. When given the topic of Minecraft, the small group would talk excitedly
about different aspects of the game, constantly using hundreds of game-specific terms
and phrases as if speaking a different language. My goal was to leverage their passion
and introduce them to Java programming.

We built our first trivial mod, but there were a lot of hiccups. After that, everything
slowly started to get better. Once we learned more about modding and gained more
experience, we were able to improve the quality of the workshops. Since then, my son
and I have delivered multiple modding workshops in different cities around the
world. Starting a US chapter of Devoxx4Kids in December 2013 definitely exploded
the interest in and visibility of these workshops, as well as other technology-related

xi

http://devoxx4kids.org/usa/

workshops targeted toward kids. You can read more about Devoxx4Kids in Appen‐
dix D.

Parents whose kids play Minecraft are well aware of how addicting the game can
become. Playing the game is a lot of fun, but what makes it more engaging, entertain‐
ing, and educational is when kids start building mods. This book is targeted at
parents and kids who would like to learn how to mod the game of Minecraft. It can be
read by parents or kids independently, but it is more fun to read it together. No prior
programming experience is required, but some familiarity with software installation
will be very helpful (you’ll also need some basic troubleshooting know-how in case
there is a problem with the installation, but this information can easily be found via a
quick Google search).

How to Use This Book
This book does not intend to teach the game of Minecraft, as that is a vast topic by
itself. Refer to the numerous articles at the official Minecraft wiki or check out You‐
Tube for tutorials. Appendix A provides a basic introduction to Minecraft for readers
who have never played the game.

Chapter 1 starts with a quick overview of the tools required for modding, and pro‐
vides step-by-step instructions on how to download and install them. The remainder
of the chapter walks through how to verify the sample mod bundled in the down‐
loads. We explain the key concepts of the modding tools and familiarize you with
Minecraft Forge terminology. This chapter builds the fundamentals required to create
mods in subsequent chapters. As with learning any new skill, the concepts covered in
this first chapter might be overwhelming for some readers, but it will soon become
more familiar.

Moving on from there, Chapters 2 through 5 will walk you through building mods
that modify existing parts of the game, such as exploding minecarts, bigger TNT
explosions, bouncy sponges, and zombie knights. Each of these chapters has a specific
theme: block-break messages (Chapter 2), explosions (Chapter 3), entities (Chap‐
ter 4), and movement (Chapter 5). Some of the mods also have variations that you
can try out.

Next, we’ll explain how to add features to the game such as new commands (Chap‐
ter 6), blocks (Chapter 7), items (Chapter 8), and recipes and textures (Chapter 9).
This book shows multiple mods that you can build with Forge. Each chapter provides
suggestions on what additional mods can be tried based upon what you’ve learned so
far. You are encouraged to try them out.

Once you have them set up, you’ll want to share these mods with your friends, so we
take a look at how to do that in Chapter 10.

xii | Preface

http://minecraft.gamepedia.com/Minecraft_Wiki

Throughout the book, you will also be exposed to many Java concepts, including key‐
words and syntax, classes, methods, annotations, control structures, arrays, and much
more. Eclipse tooling is used to author Java files, so you’ll pick up that skill as well.

The book is focused on learning, so you should find the instructions easy to follow.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xiii

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/AdityaGupta1/minecraft-modding-book; see Appendix C for
download details.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Minecraft Modding with Forge by
Arun Gupta and Aditya Gupta (O’Reilly). Copyright 2015 Arun Gupta and Aditya
Gupta, 978-1-491-91889-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

xiv | Preface

https://github.com/AdityaGupta1/minecraft-modding-book
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/minecraft-modding-forge.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to express our gratitude to many people who made writing this book
an extremely joyful experience.

First and foremost, many thanks to O’Reilly for providing an opportunity to write
this book. The team provided excellent support throughout the editing, reviewing,
proofreading, and publishing processes.

At O’Reilly, Brian Foster provided excellent editorial help throughout all the stages of
the book. Brian MacDonald, the developmental editor, was always thorough and pro‐
vided excellent and detailed feedback. Minecraft advice and information was pro‐
vided to Brian by Alex MacDonald, a seventh grader at Lionville Middle School.
Brian and Alex helped to make sure that the level of detail was appropriate for the
intended audience, which was of utmost importance to us.

The Tools team at O’Reilly was very helpful in answering all authoring and format‐
ting questions. Jasmine Kwityn’s copyedit and Kristen Brown’s work as production
editor made the book fluent and consistent. Thanks also to the rest of the O’Reilly
team, some of whom we may not have interacted with directly, but who helped in
many other ways.

Preface | xv

http://bit.ly/minecraft-modding-forge
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Jack Walker, a sophomore at The Dinoff School in Griffin, Georgia, and Adam
Cameron Little, an eighth-grader from Consett Academy, Consett, County Durham,
United Kingdom, did an excellent technical review and helped shape the book so that
it’s easy for beginners to start modding.

This book also forms the basis of the Minecraft modding workshops delivered at dif‐
ferent worldwide chapters of Devoxx4Kids. Most of our Minecraft modding experi‐
ence has come from preparing instructions for these workshops. A huge thanks goes
to all the instructors, volunteers, and attendees of these workshops over the past
months.

Many thanks to Stephan Janssen, a good friend, the man behind Devoxx4Kids, and
the author of Appendix D, which provides more information on Devoxx4Kids. May
his positive energy and support keep inspiring kids to stay engaged in technology.

The members of the Minecraft Forge Forums were very patient and extremely helpful
in answering our questions. We highly encourage you to ask any of your Forge-
related questions there.

Last, but not least, we seek forgiveness from all those who have helped us over the
past few months and whose names we have failed to mention.

xvi | Preface

CHAPTER 1

Introduction

Minecraft is a 3D game that involves breaking and placing blocks to obtain materials.
These materials can then be used to build or craft new items and tools. These, in turn,
can be used to harvest more types of blocks. The game also contains entities, which
are dynamic moving objects in Minecraft (e.g., cows, pigs, and horses). Entities that
are hostile are called monsters (e.g., zombies and creepers). Bosses are monsters that
are very hard to defeat. Appendix A provides more details on how to get started with
the game of Minecraft.

Playing the game itself is a lot of fun, but the game is even more interesting and
engaging because it allows modifications (commonly referred to as mods in the gam‐
ing community). These modifications can change certain aspects of how the game
was originally written (e.g., changing the size of a TNT explosion). In addition, they
can add content to the game to alter gameplay (e.g., new blocks, items, and smelting
recipes).

An individual player uses a client, analogous to a program downloaded on your
machine. The client by itself is not of much use, though. It connects to a server, which
is similar to a program running on your machine or a different machine on the Inter‐
net. This is called singleplayer mode. Minecraft also allows multiple players to join a
server. This is called multiplayer mode. It’s unusual to run a server on your own
machine. However, this book will explain how to make mods and run them on your
Minecraft client and a server running on your machine.

It is very common to play Minecraft with multiple mods, and there are many kinds of
mods that can be made to make Minecraft a more interesting game. The ability to
write these mods gives a player complete control over the game. There is no official
way to create mods, but there are several third-party vendors that provide that ability;
Minecraft Forge is one of these ways.

1

Downloading and Installing Tools
In order to create mods, we need to use the following tools:

• Java Development Kit
• Minecraft Forge
• Eclipse

Let’s learn about these tools and review how to download and install them.

You can also follow along with a video of the installation instruc‐
tions on YouTube.

Java
Markus “Notch” Persson (@notch on Twitter) wrote the game of Minecraft using the
Java programming language. Java is one of the most popular programming languages.
Game developers like Notch write computer programs as text files following the rules
defined by Java. Image files end with different extensions like .png, .gif, or .jpg. Movie
files end with extensions like .mov, .mp4, or .ogg. Similarly, Java programs are text
files ending with the .java extension. These text files are called Java source files.

Java programs are written as text, but computers understand the binary language of
0s and 1s. To translate the text into something computers can understand, the files
must be compiled, which is a task done in several steps in Java. The Java Development
Kit (JDK) is a free toolkit bundled with Java; it is like a Swiss Army knife for Java that
provides a variety of tools. The most common tools include the following:

javac

The Java compiler takes the .java source file, checks if the class is following the
syntax correctly, and converts it into a binary .class file. If there are syntax errors,
those errors are reported by the tool and the .class file is not generated. This pro‐
cess of conversion from source file to binary file in Java terminology is called
compilation.

java

The Java virtual machine (JVM) reads a .class file and interprets it as binary
instructions for the computer. This process of reading a binary file and running
on the JVM is called interpretation.

2 | Chapter 1: Introduction

www.allitebooks.com

http://bit.ly/1BqmQ2Z
http://bit.ly/1BqmQ2Z
http://twitter.com/notch
http://www.allitebooks.org

jar

Used to create or extract a named archive by bundling multiple .class files and
other files such as images and configuration files. The named archive ends with
a .jar extension.

These tools are simple to use, and most of the time you don’t even realize that they
are used in the background to do all the work for you. We’ll look at this a little bit
later in this chapter.

For Minecraft modding, we’ll write Java source files. These files are then converted
into binary .class files and bundled into JAR files using the tools provided by the JDK.
Before you can run Minecraft, and later build mods, you need to install the JDK.

To get started with the JDK, go to its download page at Oracle and install it on your
computer by following the instructions.

If you are not sure whether the JDK is already installed on your machine, follow the
installation instructions on the website. If the JDK is already installed on your com‐
puter, reinstalling it will simply update to the latest version, which is the recom‐
mended version for this book.

Minecraft Forge
Minecraft Forge is a tool that helps you build mods. Forge is currently the most pop‐
ular way to modify the game. Other mod-building tools, such as Bukkit or Mod‐
Loader, have either shut down or become obsolete.

To get started with Forge, go to the Minecraft Forge downloads page. As shown in
Figure 1-1, you will need to select the version of Minecraft to download.

Figure 1-1. Choosing Forge version

From the drop-down menu, select 1.8. The page should now look like the one shown
in Figure 1-2.

The latest version of Forge at the time of writing this book is 1.8.
This version might change by the time this book is published or
you are reading this book. So select the appropriate version accord‐
ingly. The mods in this book have been made for Forge 1.8. If the
mods in this book do not work with future versions of Forge, then
we will update the book, as well as the source code on GitHub.
Appendix C includes additional details on the GitHub source code.

Downloading and Installing Tools | 3

http://bit.ly/TEA7iC
http://bit.ly/1ESTUoY
http://files.minecraftforge.net/

Figure 1-2. Downloading Forge

The first entry in the list shown in Figure 1-2 is 1.8-Latest. In that row, click the link
that says Src, which will lead you to an AdFly page. Wait for five seconds and then
click Skip Ad in the upper-right corner to download the ZIP file. This file contains
the source code of Forge and will be used for modding.

Note that nothing has been installed yet. In fact, it might be tempting to download
the Installer. This file, however, is only used to install Forge libraries on your regular
Minecraft launcher so that you can load, not make, mods through it. All you’ve done
so far is downloaded a ZIP file that will be used to generate the source for Minecraft.

Eclipse
Eclipse is an integrated development environment (IDE). An IDE is a tool that can edit
files, package and run those files, and help find and fix the errors within those files.
There are many IDEs available for use, but this book will use Eclipse for creating our
mods.

We will be using Eclipse mostly to make new files, edit them, and run the game to see
if they work. Eclipse is a very important tool, because without it you cannot run the
game to test it, even if you can edit the source files with another text editor.

To get started with Eclipse, go to the Eclipse downloads page. Figure 1-3 shows how
the page looks on a Windows machine. The drop-down menu in the upper-right cor‐
ner is set to Windows by default, but you can change it to match your operating sys‐
tem.

Figure 1-3. Downloading Eclipse

4 | Chapter 1: Introduction

http://www.eclipse.org/downloads/

Click the appropriate link to download the correct version.

The version of Eclipse at the time of writing this book is 4.4.1. This
version might change by the time this book is published or you are
reading this book. It would be fine to download the latest available
version of Eclipse.

Installing Eclipse is straightforward: it simply involves unzipping the downloaded
file. The Eclipse website provides detailed instructions on the installation process.

Setting Up Forge in Eclipse
We need to set up Forge in Eclipse before mods can be created. In order to do that,
create a new directory on your Desktop and call it forge. On Windows, this can be
created by pressing the Ctrl and Esc keys together, which brings up a textbox where
you can type any command that needs to run. Type cmd and press the Enter key,
which will open the Command Prompt in a separate window. On Mac, pressing the
Command key and space bar together brings up Spotlight, which allows you to search
for different commands on your Mac. Type terminal to open up a Terminal window.

The Windows Command Prompt and Mac’s Terminal are prebuilt tools that allow
you to see all the directories on your operating system, issue commands to manipu‐
late them, and do lots of other interesting things. For now, we’ll focus on navigating
to the appropriate directory and creating a new one for Forge.

Type the following series of commands at the Command Prompt or Terminal to cre‐
ate the directory and navigate to it:

cd Desktop
mkdir forge
cd forge

Next, move the previously downloaded ZIP file to this newly created directory. If you
use a Mac, double-click the file to extract it in this directory. If you use Windows,
right-click the ZIP file, select Extract All, and select this directory to extract the con‐
tents. This should create a new forge/ directory. Change to that directory by using the
cd forge command.

Use the dir command on a Windows computer or ls on a Mac computer to see the
contents of the directory you are currently in. If you don’t see something similar to
Figure 1-4, then move on to the next folder and try using dir or ls there, and see if it
matches Figure 1-4.

Setting Up Forge in Eclipse | 5

https://wiki.eclipse.org/Eclipse/Installation

Figure 1-4. Forge folder in Command Prompt

Don’t worry about all the files that are shown here (we’ll explain these in more depth
later). Once you see the correct output, run the command shown in Example 1-1 to
set up Forge.

Example 1-1. Setting up a Forge workspace

gradlew setupDecompWorkspace eclipse

On Mac, you may have to give the command as ./gradlew instead of just gradlew.

Make sure your computer is connected to the Internet before issu‐
ing this command.

The command shown in Example 1-1 will download the required files on your com‐
puter and prepare the directory for modding. This may take anywhere from 5 to 30
minutes, depending on the speed of your computer and Internet connection. If every‐
thing goes well, the following output will be shown:

BUILD SUCCESSFUL

In most cases, you should see this output. However, if you do not see this message,
the command did not succeed. This could happen for several reasons. First, there
might be errors in preparing the directory for modding. If that happens, you should
wait a few minutes and try the command again. Another option is to consult the
instructions on the Minecraft Forge website. The instructions there may not be up to
date; they were for 1.6.4 when this book was written. However, the installation for
1.6.4 is the same as the installation for 1.8, so don’t worry about the version.

Another occasion when the command may fail is when you receive the following
error:

6 | Chapter 1: Introduction

http://bit.ly/1NfDPvn
http://bit.ly/1NfDPvn

Execution failed for task ':deobfuscateJar'.

> Java heap space

This can be fixed by editing gradlew.bat on Windows or gradlew on Mac. On Win‐
dows, you can use Notepad to edit the file. This can be started by typing notepad on
the Command Prompt and pressing the Enter key. Open the file by navigating to
File→Open… and selecting the gradlew.bat file from the correct directory.

On Mac, you can use TextEdit to edit the file. This can be started by going to Applica‐
tions and clicking TextEdit. Open the file by navigating to File→Open… and selecting
the gradlew file from the correct directory.

In either case, change DEFAULT_JVM_OPTS="" to DEFAULT_JVM_OPTS="-Xmx1024m".
Once you’ve done that, save the file and quit the text editor. Rerun the command after
making this change.

If that doesn’t work, you can check out the Minecraft Forge forum. You can search
existing threads for the information you need, and if nothing turns up, you can post a
question of your own.

After the setup is done, open Eclipse by locating the directory where it was installed
and double-clicking eclipse.exe on Windows or eclipse on Mac. Eclipse is a tool that
can do general Java editing, and by default, it has no idea that you want to make
Minecraft mods. You will have to tell it that you want to, as well as the location of
Forge code and where the mods should be stored. All of this information is stored in
a Project and created for you as part of the command run in Example 1-1.

The project details are stored in a workspace, which is basically a directory in which
all your project details are stored so you can work with it easily. A workspace can
have multiple such projects. After opening Eclipse, you should see a box similar to
the one in Figure 1-5.

Figure 1-5. Choosing the workspace

Setting Up Forge in Eclipse | 7

http://www.minecraftforge.net/forum/

Click Browse… to choose the workspace and navigate to the unzipped forge/ folder.
In that folder, there should be another folder called eclipse/. Click that folder once to
select it, then click Open. Click OK to finalize your choice.

Make sure to choose the eclipse/ folder; otherwise, you will not be
able to access your project.

If you accidentally clicked OK without choosing the correct workspace location, then
quit the Eclipse window and start it again. It will prompt you for the workspace again.

After selecting the correct workspace location in Eclipse, your project will open up,
and it should look as shown in Figure 1-6.

Figure 1-6. Eclipse workspace with project

The Eclipse window has a few main components:

Package Explorer
This is the panel on the lefthand side, where your project structure is shown.

Big white window in the middle
This is where your project files are opened and available for editing. Multiple files
can be opened in different tabs in this window.

8 | Chapter 1: Introduction

Status window
Located at the bottom of the screen, this window has multiple tabs that indicate
the status of different tasks that we perform in Eclipse. For example, the Mine‐
craft server console will be displayed here when we launch the game.

It has a few other windows on the right side, but they are not directly relevant for our
modding. Feel free to click X to close them.

Understanding the Example Mod
Mods are written as .java files, which are later compiled into .class files. As mentioned
earlier, each Java class is a text-based file, and ends with the .java extension. A class
follows the set of rules defined by the Java programming language.

In Eclipse, click the arrow next to the Minecraft/ folder. This expands the folder so
that you can see its contents, as shown in Figure 1-7.

Figure 1-7. Eclipse workspace with Minecraft project expanded

This expanded folder has many subfolders (identified by another arrow before them)
and several files. Most of these are required to create a JAR file for Forge, but fortu‐
nately we don’t have to worry about all of them. For now, let’s see where our mod
source files will be added.

Click the arrow next to the src/main/java folder. This expands the folder where all the
Java source files are stored. Click com.example.examplemod to expand a subfolder. It
consists of the ExampleMod.java Java source file, which is an example mod bundled
with Forge. Double-clicking the file shows it in the middle part of the IDE. You can
view or make changes to it there.

Understanding the Example Mod | 9

The Java class looks like Example 1-2.

Example 1-2. Example mod

package com.example.examplemod;

import net.minecraft.init.Blocks;
import net.minecraftforge.fml.common.Mod;
import net.minecraftforge.fml.common.Mod.EventHandler;
import net.minecraftforge.fml.common.event.FMLInitializationEvent;

@Mod(modid = ExampleMod.MODID, version = ExampleMod.VERSION)
public class ExampleMod
{
 public static final String MODID = "examplemod";
 public static final String VERSION = "1.0";

 @EventHandler
 public void init(FMLInitializationEvent event)
 {
 // some example code
 System.out.println("DIRT BLOCK >> "+Blocks.dirt.getUnlocalizedName());
 }
}

There is no need to worry too much about different Java keywords, parentheses, and
formatting in this code. However, there are some key Java concepts you should
understand:

Each class belongs to a package. This is identified using the package keyword in
Java, followed by a space, the package name, and ending with ;. This must be the
first line in your Java class. It also defines the location of your file (in this case,
com/example/examplemod).

Java packages allow logically related classes to be grouped
together. This allows similar class names to be used across dif‐
ferent packages. This is analogous to sorting different colors of
crayons in multiple buckets. Without sorting, it will be diffi‐
cult to find the appropriate crayon. Similarly, without organiz‐
ing classes in multiple packages, it will be difficult to find
them.

A Java class can use other Java classes from different packages. These classes need
to be imported so that they can be referred to within the code. Note, however, that
this does not mean that the classes are included here, but just that they can be
used here. This class is importing four classes.

10 | Chapter 1: Introduction

Each import statement starts with the import keyword and provides the fully
qualified class name. For example, the Blocks class is in the net.minecraft.init
package, and so is imported as net.minecraft.init.Blocks. The Mod class is in
the net.minecraftforge.fml.common package, and so is imported as net.mine
craftforge.fml.common.Mod. Similarly, other classes are imported from their
appropriate package.

@Mod tells Forge that this class is a mod and provides some basic information
about the mod. The @ at the beginning indicates that this is a Java annotation,
which allows Java to define special marks in the code. The exact behavior of this
particular annotation is defined by Forge.

A Java annotation can have one or more elements that provide more details about
the annotation. Each element has a value assigned to it using the equals sign (=).
Different elements, along with their value, are separated using a comma.

The @Mod annotation has two elements: modid and version. Their values are
defined using MODID and VERSION variables in the class.

Each Java class has a unique name that is followed by the Java keyword class. It
must match the filename, without the .java extension. Our class’s name is Exam
pleMod, so it’s saved as ExampleMod.java.

The first opening parentheses, {, and the last closing parentheses, }, define the
scope of the class. This means that everything defined within these two braces
belongs to the class.

Defines MODID and VERSION variables. Variables are used to store values of a spe‐
cific type. Each variable has a name and a type associated with it. In our case,
MODID and VERSION are the names and String is the type, which means they can
store text data. Each variable is then assigned a value using = and the exact value
is enclosed within quotes. The MODID variable has a value of examplemod, and the
VERSION variable has a value of 1.0.

Java is a case-sensitive language, so make sure the code you
make is exactly the same as the code here. For example, if the S
in String was lowercase, you would get an error, because
string is not a Java class, but String is. So MODID and modid
will define two different variables.

Forge mods are created by “listening” for different events. Events are something
that happens in your world such as initializing a mod, player breaks a block, an
entity explodes, a Zombie dies, or a player sends a chat message. An event is han‐

Understanding the Example Mod | 11

dled by an event handler. An event handler in a Forge mod is marked with an
@EventHandler annotation.

New functionality is added to a Java program by creating new methods. A
method has four parts:

• Name that uniquely identifies the method (init, in our case).
• Parameters that provide different functionality based upon their value. Each

parameter has a name and a type. Our method has one parameter with the
FMLInitializationEvent type and event name. All the parameters are
enclosed between (and), and different parameters are separated by a
comma.

• Body is the Java code enclosed between { and } that is executed when the
method is called. Just as in a class, these parentheses define the scope of the
method. This is where all the action that needs to happen is defined.
The statements inside a method are generally executed from top to bottom,
in the order that they appear.

• Return type defines a return value that can be used by the caller of this func‐
tion. If the method returns no value, then a special type of void is used.
Method init is a special method that is called by Forge when the mod is
loaded. This is where the main code for the mod should be defined.

This line is a comment in Java and used for giving some useful information to
other programmers who are reading the code. Comments can take up one line of
the source file and start with two forward slashes, or //. They can also take up
many lines, and start with /* and end with */.

Lot of Java concepts are used in this line:

• System.out.println prints messages to the Minecraft server console. It’s
like calling a method, and the parameters are enclosed between (and).

• The first part "DIRT BLOCK >> " is printed exactly like itself, but without the
quotation marks.

• + combines the first string and the value returned by the second method call.
• Blocks.dirt.getUnlocalizedName() returns the name of the dirt block.

The next section reviews the exact message that will be shown in the console.

12 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

Running Minecraft and Verifying the Mod
Let’s launch the game to see what this mod does!

Press the green arrow shown in Figure 1-8 to run the game.

Figure 1-8. Running Minecraft with Eclipse

There is a lot that happens in the background to run the game. Remember javac,
java, and jar, all of which are tools that we installed earlier as part of the JDK?
Eclipse uses these tools to compile all the Java source files from our project (including
the Forge source files and our example mod) into class files. These files are then pack‐
aged into a JAR file. This JAR file is then used to run the Minecraft server and the
client launcher. The client is also connected to this server as well. This is shown in
Figure 1-9.

Figure 1-9. Default Minecraft client

The lower-left corner of the client window shows the version of Forge, 1.8 in this
case. It also shows how many mods are loaded, four in this case. Three of the mods
are default Forge mods that are required by Forge, and the fourth one is the example
mod that is explained in this chapter.

The server console is displayed within a new tab in Eclipse, as shown in Figure 1-10.

Running Minecraft and Verifying the Mod | 13

Figure 1-10. Server console in Eclipse

Figure 1-10 shows an empty server console, but this will be populated with messages
from the server log. You should see the message shown here in the Minecraft server
console:

[Client thread/INFO] [STDOUT]: [com.example.examplemod.ExampleMod:init:18]:
DIRT BLOCK >> tile.dirt

As the mod is loaded, Forge calls the special init method explained earlier. It then
executes the code inside this method, which basically prints the game name of the
dirt block. You need to scroll up the console to see this exact message, though.

And so now you have run the Minecraft client and can play the usual game. The big
difference between now and before is that you can change the game to your liking.
Doesn’t that feel more exciting than just playing the game?

Summary
Wow, you’re already at the end of the first chapter!

This chapter explained how to get started with Minecraft modding using Forge. The
tools required for modding were downloaded and installed. The basic structure of the
project was opened in Eclipse. A basic introduction to the layout of Eclipse was also
introduced. Fundamental Java concepts like class, package, and method were
explained while walking through the sample mod. Finally, the Minecraft client was
run, and the output from the sample mod was verified.

You are now all set up and ready to create new mods. All the mods in this book
mostly follow the same basic pattern as the sample here; you’ll just be creating new
files and altering them. And you’ll see that in action in the next chapter.

14 | Chapter 1: Introduction

CHAPTER 2

Block-Break Message

In the previous chapter, we looked at the sample mod that is bundled with Forge. It
printed a message in the console when the game started. However, it is a very simple
and boring mod, so in this chapter, we will make one that is slightly more interesting.
This mod will send a chat message saying, “You broke a block!” whenever you break a
block. This may sound simple, but it will demonstrate some of the fundamental
aspects of modding that will be used throughout this book.

Creating the Main File
The most important file in your mods is the main file, a Java class. It is also the first
file the mod goes to because it has a method that gets called when the game starts. A
group of mods will typically have one main file, and this will be the main file for the
mods created in this book.

If you are using a print version of this book, you will obviously not
be able to copy and paste the code from it. Instead, follow the
instructions in Appendix C to download the source code.

Each Java file needs to exist in a package. The sample mod from Chapter 1 is in the
package com.example.examplemod, which makes sense because it is the example mod.
For our mods, however, we will be using the package org.devoxx4kids.forge.mods.
First, you have to create this package.

In Eclipse, right-click the src/main/java folder, and navigate to New→Package, as
shown in Figure 2-1.

15

Figure 2-1. Creating a new package

A window asking for the name of the package should open. In the Name box, enter
org.devoxx4kids.forge.mods. Don’t change any other values. When you are done, it
should look like Figure 2-2.

Figure 2-2. Choosing a package name

16 | Chapter 2: Block-Break Message

Click the Finish button to create your package. The directory structure in the Package
Explorer should now look like Figure 2-3.

Figure 2-3. Directory structure after new package creation

The package icon is gray right now because you haven’t added any Java files to it.
Now, you will have to make a main file to register all the event handlers you will
make. In Eclipse, right-click your new package and navigate to New→Class, as shown
in Figure 2-4.

Figure 2-4. Creating the main file

Creating the Main File | 17

A window asking for the class name should open. In the Name box, enter Main
(hence the name main file). Don’t change any other values. The box should now look
like Figure 2-5.

Figure 2-5. Choosing the main file name

Click Finish to create the new file. The directory structure should now look like
Figure 2-6.

18 | Chapter 2: Block-Break Message

Figure 2-6. Directory structure after main file creation

The package icon should now be brown, because it contains the main file. The work
area should show the generated source file, and the source code should look like
Example 2-1.

Example 2-1. Main file in the work area

package org.devoxx4kids.forge.mods;

public class Main {

}

This file looks very small compared to the file for the previous mod, but that is
because you haven’t added any code to it yet. This file is just a standard starting point
for a Java file.

We’ll manipulate this file and add some code to it now. First, you will have to add two
variables. The first will be the mod’s unique identifier, which separates it from other
mods. The second will be the version. For now, let’s use a fixed value for the version.
This value can be updated if a newer version of the mod is created. These variables
should be added directly after the line that says public class Main {:

public static final String MODID = "myMods";
public static final String VERSION = "1.0";

The variables are just like the ones in the previous mod, but we’ve changed MODID so
that Forge knows this is a separate mod from the example mod. The version is 1.0

Creating the Main File | 19

because you just created the mod; you can increase it as you go along, but it is not
neccessary.

Next, just as with the previous mod, you will need an @Mod annotation. It should look
as follows (add it directly before the line that says public class Main {):

@Mod(modid = Main.MODID, version = Main.VERSION)

The completed class is shown at the end of each section in case you
need to better understand where the code should be added.

If you recall, @Mod is an annotation defined by Forge, and it tells Forge that this Java
class is the mod’s main file. However, you will see an error on the left of the line, and

it should look like . This symbol is shown by Eclipse. Whenever this symbol is
shown, it means that there is something wrong with your code. In this case, you are
using the @Mod annotation but have not imported it yet.

Importing Classes

Press Ctrl-Shift-O on a Windows computer or Cmd-Shift-O on a
Mac computer. This will automatically add the code to the file to
import the classes from the right package for you.
These keyboard shortcuts (or simply shortcuts) provide an alterna‐
tive way to run commands in the menu. A commonly used list of
Eclipse shortcuts is shown in “Eclipse Shortcuts” on page 149.

Lastly, you will need to add the initialization method that will run when the game
starts. It is shown and should be added after the two variables, but before the last
bracket:

@EventHandler
public void init(FMLInitializationEvent event)
{

}

It looks very similar to the method from the previous mod, but it doesn’t have the line
that prints out a message with the name of the dirt block. Instead, this method will be
used to register the event handlers. The @EventHandler annotation tells Forge to run
this method on an event, which in this case is the initialization of the game. The event
for this, FMLInitializationEvent event, is shown between the two parentheses.
You will see some errors, and again they are related to unimported class files. So

20 | Chapter 2: Block-Break Message

import them using Ctrl-Shift-O on Windows or Cmd-Shift-O on Mac. Your main file
is now finished, and should look like Example 2-2.

Example 2-2. Finished main file

package org.devoxx4kids.forge.mods;

import net.minecraftforge.fml.common.Mod;
import net.minecraftforge.fml.common.Mod.EventHandler;
import net.minecraftforge.fml.common.event.FMLInitializationEvent;

@Mod(modid = Main.MODID, version = Main.VERSION)
public class Main {
 public static final String MODID = "myMods";
 public static final String VERSION = "1.0";

 @EventHandler
 public void init(FMLInitializationEvent event)
 {

 }
}

Once you have added the code and imported it, if you still see errors, you probably
either misspelled something or forgot to capitalize a letter. As stated in Chapter 1,
Java is case sensitive, so make sure that the code you’re using exactly matches what is
shown here. There should be no errors in your code at this point.

Adding the Event Handler
As explained in Chapter 1, Forge mods are created by listening for events. Events hap‐
pen when something happens in your world (e.g., when a block breaks, an entity
explodes, a zombie dies, or a player sends a chat message). Forge can listen for these
events and do something when they happen. There is so much that you can do with
these events—even simple event-driven mods can be very fun. The Minecraft website
includes a complete list of events for your reference.

Each event handler is basically a method in a Java class that “handles” an event, or
performs the intended action when that event occurs (e.g., displaying a chat message
when a player breaks a block). Forge lets you write mods that contain multiple event
handlers.

Forge provides event buses where these event handlers are registered. A good way to
visualize what this means is to think of a tour bus in a big city. People get on the bus
at one point; then the bus starts going to different places. When the bus reaches a bus
stop, some people might go outside to see a tourist spot, but some people might stay
inside. After the people see the sights near a particular bus stop, they get back on the

Adding the Event Handler | 21

http://bit.ly/1LXnnVu

bus. The bus goes to multiple bus stops and eventually gets back to its starting point.
At that point, all of the people get off the bus and go back to their houses. The next
day, it happens all over again. Forge events and event buses operate in the same way.
The tour bus is the event bus, the bus stops are the event handlers, and the people are
the events. Each day is one tick (1/20th of a second) in Minecraft. When an event
happens, it boards the event bus. If the bus stops at an event handler that can handle
the event, the event gets off the bus, notifies the handler, and gets back on. When the
bus finishes its route, which is when the tick is over, all of the events get off and disap‐
pear. Then, in the next tick, the same thing happens again with new events.

Three steps are required for an event handler:

1. Create a Java class for event handling.
2. Add methods that handle different events. Each method must meet two criteria:

a. Take a parameter identifying the event type that needs to be handled.
b. Annotate with the @SubscribeEvent annotation.

3. Register the event handler on the event bus.

Creating a Java Class for Event Handling
Now that you have finished your main file, it is time to create the event handler class.
In Eclipse, right-click your org.devoxx4kids.forge.mods package again and navi‐
gate to New→Class. Notice the package name is automatically chosen for you. This
time, in the Name box, enter BlockBreakMessage. You can choose any name for the
class, but it’s important to use a name that shows what the event handler does.

Your event handler class should look like Example 2-3.

Example 2-3. Event handler class in the work area

package org.devoxx4kids.forge.mods;

public class BlockBreakMessage {

}

Adding Methods for Event Handling
Again, this is just a generic Java file. You will need to add some code to it before it
does what you want it to do. In our case, it will send a chat message to the player
when she breaks a block. The first thing you will need to add is a method that will run
on the event of a block being broken. It looks like Example 2-4 and should be added
after the first bracket.

22 | Chapter 2: Block-Break Message

www.allitebooks.com

http://www.allitebooks.org

Be sure to import all the relevant classes using Ctrl-Shift-O or Cmd-Shift-O.

Example 2-4. Block-break message event handler method

@SubscribeEvent
public void sendMessage(BreakEvent event)
{

}

Notice the @SubscribeEvent annotation above the method. This annotation comes
from Forge. It tells that the method directly underneath is an event handler method,
and will run on the occurrence of an event. The parameter BreakEvent event tells
Forge that this method will run on a BreakEvent, which happens when a block is bro‐
ken. The parameter name is event and can be used in the method.

Now, you have to add some code inside the method to make it send a message to the
player who broke the block. The code is shown in Example 2-5 and should go
between the { and } to define the scope of the sendMessage method. Again, make
sure to import everything after you add this code.

Example 2-5. Block-break message method code

event
 .getPlayer()
 .addChatComponentMessage(
 new ChatComponentText(
 EnumChatFormatting.GOLD +
 "You broke a block!"));

The block-break event is referred to by the parameter name event.

getPlayer() gets the player who broke the block.

addChatComponentMessage() adds a new chat message to that player’s chat bar.

new ChatComponentText() makes a chat message using colors and text.

EnumChatFormatting.GOLD adds a gold color, and + tells it to combine with the
text directly afterward.

"You broke a block!" is the actual message.

Combined together, all these elements simply put a message in the player’s chat bar
saying, “You broke a block!” in golden letters.

Adding the Event Handler | 23

Your finished event handler class should now look like Example 2-6.

Example 2-6. Block-break message finished event handler

package org.devoxx4kids.forge.mods;

import net.minecraft.util.ChatComponentText;
import net.minecraft.util.EnumChatFormatting;
import net.minecraftforge.event.world.BlockEvent.BreakEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class BlockBreakMessage {

 @SubscribeEvent
 public void sendMessage(BreakEvent event){
 event.
 getPlayer()
 .addChatMessage(
 new ChatComponentText(
 EnumChatFormatting.GOLD +
 "You broke a block!"));
 }
}

You may not see as many import statements because sometimes Eclipse condenses
them all into one line.

Registering the Event Handler on the Event Bus
Finally, go back to the main file. You can do so by double-clicking MainMod.java in
the Package Explorer. Add the line from Example 2-7 in the init method. This line
registers the event handler on the bus, and should be added between the two brackets
after public void init(FMLInitializationEvent event).

Example 2-7. Register the event handler

MinecraftForge.EVENT_BUS.register(new BlockBreakMessage());

MinecraftForge.EVENT_BUS is the event bus where all Forge events are registered.
There are other buses too, but we won’t be using them. The register method is
called on that bus, and the BlockBreakMessage class name is passed. new is a Java key‐
word and creates a new copy, or instance in Java terms, of the class. You will see some
more import errors, so make sure to import the classes.

24 | Chapter 2: Block-Break Message

Running Minecraft and Verifying the Mod
Now, you can launch the game to test out your mod. Click the green arrow shown in
Figure 1-8 to run the game. Chapter 1 explained the background processes necessary
to run the game. The only difference here is that the newly added mods are now
included as part of compilation and packaging.

Eclipse will ask if you want to save your files. The files need to be saved, or else none
of your changes will be included in the compilation. Click OK to save the files and
run the launcher. The save file window should look like Figure 2-7.

Figure 2-7. Save file window when running Minecraft

Once you have launched Minecraft, make a new world to test your mods. Try to
break a block, and you should get a message like the one in Figure 2-8.

Figure 2-8. Message shown when you break a block

Summary
Congratulations, you wrote your very first mod!

This chapter explained how Forge event handlers and the event bus work together to
modify the game’s behavior. A new event handler class with methods that listen for
events was created. A main file was also created, and the event handler class was reg‐
istered on the event bus there. Basic Eclipse tricks to import Java classes using short‐

Running Minecraft and Verifying the Mod | 25

cuts were also used. Fundamental Java concepts like new and instance were explained
while walking through the code. Finally, the Minecraft client was run, and the output
from the mod was verified.

Now you know how to listen for events and output a message when that event hap‐
pens. For instance, LivingDeathEvent happens when an entity dies, and if you
wanted to, you could print a message when that event occurs. Some other examples of
events include ItemTossEvent (when a player throws an item), LivingJumpEvent
(when an entity jumps), and MinecartCollisionEvent (when a minecart collides
with something). The next couple of chapters will show you samples of other interest‐
ing and cool event handlers.

26 | Chapter 2: Block-Break Message

CHAPTER 3

Fun with Explosions

Chapter 2 explained how to make your first mod. Now that the basic fundamentals
are well understood, we can move at a slightly faster pace and make more interesting
mods. This chapter will teach you how to make mods related to explosions.

First, you will make minecarts explode when they collide with a mob. Next, you will
make anvils explode when they fall on an entity. Then, you will make diamond ore
explode when mined. Lastly, you will increase the size of TNT explosions. Each mod
will also include ways to use the mod, such as falling anvil traps or bouncing zombie
towers!

Let’s make some explosions!

Exploding Minecarts
Minecarts are one of the main ways of transport in Minecraft. They use rails to travel
and can carry mobs or players. However, they don’t do much besides that. This mod
aims to make our minecarts do some fun stuff. With this mod, minecarts will make a
small explosion when they collide with an entity, possibly killing the entity in ques‐
tion.

As explained in the last chapter, a group of mods need to have only one main file. We
already created that, and so the only new file that needs to be created is an event han‐
dler. Create the event handler as explained in “Creating a Java Class for Event Han‐
dling” on page 22, and name it ExplodingMinecarts. Once again, you can use
whatever name you like for the file, but it’s best to indicate the mod’s purpose in the
filename.

27

Add a Java method to this class that will listen for the event. The code you will need
to add is shown in Example 3-1 and should be added in the class’s scope (i.e., between
{ and } for the class).

Example 3-1. Exploding minecarts method code

@SubscribeEvent
public void explode(MinecartCollisionEvent event){
 EntityMinecart minecart = event.minecart;
 minecart.worldObj.createExplosion(
 minecart,
 minecart.posX,
 minecart.posY,
 minecart.posZ,
 2,
 false);
}

This method runs on a MinecartCollisionEvent, which happens when a mine‐
cart crashes into an entity.

A variable called minecart, of the Forge-defined type EntityMinecart, is created
to store the minecart in the event. Each Java class can have different properties
that store more details about the class. These property values can be accessed by
using . notation. In this case, the minecart that caused the event is accessed as
event.minecart.

worldObj defines the world in which the minecart exists. The createExplo
sion() method creates an explosion at the specified coordinates. It takes some
other parameters, explained next, that define the nature of the explosion.

Even though all the parameters are on separate lines, they’re still within the
parentheses, and are all considered to be the parameters of the one method.

This parameter is the source of the explosion, which in this case is the minecart.

This line and the two lines after it tell Forge to create the explosion at the x, y,
and z coordinates of the minecart. These coordinates are the exact position of the
minecart.

The parameter 2 is the power of the explosion, so it will be two blocks in radius.

The parameter false tells Forge that the explosion should not break any blocks;
if it was true, then blocks would be broken.

28 | Chapter 3: Fun with Explosions

If you haven’t already, make sure to import everything as explained in the Importing
Classes tip.

The class should now look like Example 3-2.

Example 3-2. Exploding minecarts final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.item.EntityMinecart;
import net.minecraftforge.event.entity.minecart.MinecartCollisionEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class ExplodingMinecarts {

 @SubscribeEvent
 public void explode(MinecartCollisionEvent event){
 EntityMinecart minecart = event.minecart;
 minecart.worldObj.createExplosion(
 minecart,
 minecart.posX,
 minecart.posY,
 minecart.posZ,
 2,
 false);
 }
}

Finally, you need to register it with the event bus by using the following line:

MinecraftForge.EVENT_BUS.register(new ExplodingMinecarts());

The only difference between this line and Example 2-7 is the name of the event han‐
dler: ExplodingMinecarts instead of BlockBreakMessage. Remember, if you named
your file differently, then that name should be used here.

Note that this event handler class is registered along with the previously registered
handler. So the completed init method would look like Example 3-3.

Example 3-3. init method after registering ExplodingMinecarts event handler

@EventHandler
public void init(FMLInitializationEvent event)
{
 MinecraftForge.EVENT_BUS.register(new BlockBreakMessage());
 MinecraftForge.EVENT_BUS.register(new ExplodingMinecarts());
}

The order of event handler registration usually does not matter.

Your mod is now finished, and you can test it out!

Exploding Minecarts | 29

Run Minecraft by using the green arrow and place some rails down. Place a minecart
on the rails and walk into it. You should cause an explosion, because the minecart is
colliding with you. When a minecart is exploding, you won’t be able to see the mine‐
cart because it is covered up by the explosion.

Figure 3-1 shows a practical use of this mod as a security system.

Figure 3-1. House with security system

The minecart is constantly going around the house, so when a mob steps on to the
rails, the minecart will bump into the mob and blow it up.

Another fun use of this mod is a bouncing zombie tower. It is shown in Figure 3-2.

To make a tower like this, place a rail down on the ground. Build a tall glass tower
around it, about 20 to 30 blocks high. Place a minecart on the rail. Spawn zombies at
the top of the tower, and make sure to give them diamond armor or they will die as
soon as they hit the minecart.

To spawn a zombie with diamond armor, use this command:

/summon Zombie ~ ~ ~{Equipment:[{},{id:diamond_boots},
{id:diamond_leggings},{id:diamond_chestplate},{id:diamond_helmet}]}''

You will need to put it into a command block because it is too long to put in the chat
window.

30 | Chapter 3: Fun with Explosions

Figure 3-2. Bouncing zombie tower

Exploding Anvils
Now that you have a basic idea of how to create an explosion, we can move on to a
slightly more complex mod. This mod will make anvils explode when they fall on an
entity. Currently, when anvils fall, they only do damage, but this mod will make them
more explosive.

Again, as in the previous mod, the only file you need to create is the event handler
file. Its name should be ExplodingAnvils.

The method code you need to add is shown in Example 3-4.

Example 3-4. ExplodingAnvils method code

@SubscribeEvent
public void explode(LivingHurtEvent event) {
 if (event.source != DamageSource.anvil) {
 return;
 }

 Entity entity = event.entity;
 event.entity.worldObj.createExplosion(
 entity,
 entity.posX,
 entity.posY,

Exploding Anvils | 31

 entity.posZ,
 2,
 false);
}

This method is run when a living entity is damaged.

This line introduces an important Java concept: the if statement. The if state‐
ment is used to check whether a condition is true or not. The code within the
parentheses after if is the condition, which in this case is whether the damage
was caused by an anvil.

!= is a Java operator. Operators are used to change a value or compare multiple
values. Operators like +, -, and * are used to add, subtract, and multiply, respec‐
tively, so they change values. Operators like == and != are used to compare val‐
ues. == checks whether two values are equal, while != checks whether two values
are not equal. In this case, because the operator is !=, the if statement runs only
if the damage source is not an anvil.

Note, = is an assignment operator and is different from ==, which compares two
values. In this case, we are using neither of them, but it’s important to understand
the difference between the two.

return is another important Java keyword. It is used to return to whatever called
this method (the Minecraft game, in our case).

In this case, if the damage source isn’t an anvil, this event handler ends without
doing anything, and returns control back to the game.

This line creates a variable of the type Entity and the name entity, which stores
the entity that was hurt in the event.

This last line creates the explosion by using the entity variable. The method
parameters are similar to the one explained in Example 3-1.

Make sure to import everything as explained in the Importing Classes tip, if you
haven’t already. When importing the Entity class, Eclipse will ask you which Entity
class you want to import, because there are many to choose from. Choose net.mine
craft.entity.Entity. For more help with importing, refer to “Correct Imports” on
page 150.

The final code should now look like Example 3-5.

32 | Chapter 3: Fun with Explosions

www.allitebooks.com

http://www.allitebooks.org

Example 3-5. Exploding anvils final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.Entity;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraft.util.DamageSource;
import net.minecraftforge.event.entity.living.LivingHurtEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class ExplodingAnvils {

 @SubscribeEvent
 public void explode(LivingHurtEvent event) {
 if (event.source != DamageSource.anvil) {
 return;
 }

 Entity entity = event.entity;
 event.entity.worldObj.createExplosion(
 entity,
 entity.posX,
 entity.posY,
 entity.posZ,
 2,
 false);
 }

}

Register your event handler class with the event bus, as shown here:

MinecraftForge.EVENT_BUS.register(new ExplodingAnvils());

Now, you can run Minecraft and try out your code. Spawn an entity such as a creeper
or a spider, preferrably in a cage, and build a tower high over it. Place an anvil on the
tower so there are no blocks underneath it and it is directly above the spawned entity.
The anvil will drop onto the entity and create an explosion. A contraption like the
one in Figure 3-3 can automate the process for you.

The anvil is on top of an iron block, which will be pulled back by the sticky piston
when the lever is pulled. The anvil will then drop and either kill or greatly damage the
villager underneath. The villager will be killed only if the anvil is high enough. The
anvil falling already inflicts damage; the explosion just does more damage.

Another example of a use for this mod is an anvil trap. This trap drops an anvil on
whoever walks underneath, and it explodes. It looks like Figure 3-4. There is some
hidden redstone behind the top redstone torch that powers the sticky piston.

Exploding Anvils | 33

Figure 3-3. Automatic anvil dropper

Figure 3-4. Exploding anvil trap

When a mob steps on the iron pressure plate, the piston above retracts, letting the
anvil fall on the unlucky mob’s head. However, because the anvil drops from a low

34 | Chapter 3: Fun with Explosions

position, it won’t kill most mobs. If you want to inflict more damage, add more anvils
on top of the first one.

Diamond Ore Trap
With this explosive mod, you can make traps with diamond ore as bait. This mod will
make diamond ore explode when mined, with an explosion 2.5× as big as a TNT
explosion.

First, like any other mod, create the event handler file and call it DiamondOreTrap.
The code you need to add is shown in Example 3-6.

Example 3-6. Diamond ore trap method code

@SubscribeEvent
public void explode(BreakEvent event) {
 if (event.block != Blocks.diamond_ore) {
 return;
 }

 event.world.createExplosion(null,
 event.x, event.y, event.z,
 10, true);
}

This method runs on a BreakEvent, which happens when a block is broken.

This if statement checks whether the block being broken is a diamond ore block.
If it is not, the method returns.

This line creates an explosion with null as the source. null is a Java keyword that
basically means “nothing.” The explosion is located at the x, y, and z position of
the event/block broken, the power is 10, and it does break blocks.

Make sure to import everything. The final code should now look like Example 3-7.

Example 3-7. Diamond ore trap final code

package org.devoxx4kids.forge.mods;

import java.util.Random;

import net.minecraft.init.Blocks;
import net.minecraftforge.event.world.BlockEvent.BreakEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class DiamondOreTrap {

Diamond Ore Trap | 35

 @SubscribeEvent
 public void explode(BreakEvent event) {
 if (event.block != Blocks.diamond_ore) {
 return;
 }

 event.world.createExplosion(null,
 event.x, event.y, event.z,
 10, true);
 }
}

Register your event handler class with the event bus, as shown here:

MinecraftForge.EVENT_BUS.register(new DiamondOreTrap());

Now your mod is done, and you can test it out in Minecraft. One example of a use for
this mod is shown in Figure 3-5.

Figure 3-5. Diamond ore trap

A great use of this mod is to save your diamond ore. When players see the diamond
ore, they will want to steal it, but when they do, it will explode and kill them!

This mod is also good if you want a bigger alternative to TNT in creative mode.
Because it will explode right away, you also don’t need to wait for a TNT fuse to burn.

Another way to use the mod is to make a huge bomb. One example is shown in
Figure 3-6.

36 | Chapter 3: Fun with Explosions

Figure 3-6. Diamond ore trap TNT bomb

The bomb is basically a 5×5×5 cube of TNT with a diamond ore in the middle, and
an opening so that you can break the diamond ore. The stairs lead to the platform
from which you can reach the ore. The crater made by breaking the diamond ore is
shown in Figure 3-7.

Figure 3-7. Diamond ore trap TNT bomb crater

Diamond Ore Trap | 37

Bigger TNT Explosions
Currently, TNT explosions are four blocks in radius. This mod will aim to change
that by increasing the size. The maximum explosion size allowed by Minecraft is 16
blocks in radius, and we will go all the way up to the limit.

This mod will contain two parts: a simple one and an advanced one. The simple one
will make the explosions bigger, but the explosions will happen right away instead of
after a fuse of four seconds. The advanced one will contain slightly more code, but it
will have a fuse.

First, create an event handler file and call it BiggerTNTExplosions. Register your
event handler class with the event bus in the main file, as shown here:

MinecraftForge.EVENT_BUS.register(new BiggerTNTExplosion());

Now proceed to either section for an explosion with or without a fuse.

Without a Fuse
Open BiggerTNTExplosion again in the work area. First, you will need to add a vari‐
able, right after the first bracket. It should look as shown here and will be used to
determine the power of the explosion:

float power = 32.0F;

float is a variable type that can store decimals. By default (i.e., without F), Java
defines a decimal number of the type double. This type allows much bigger decimal
numbers. But we need to store only a rather small number, so we can use a float. So
we need to tell the compiler that the defined decimal number is a float, and cast the
number to a float by adding F after the number. Adding f would have the same effect.
There are other types of casting available in Java, but we don’t need to worry about it.

You can change the number to whatever you want, but the actual explosion might not
be the same radius. This is because each block has blast resistance that slows down
explosions that break the block. Some blocks, like obsidian, have so much blast resist‐
ance that they stop the explosion altogether. The code you need to add is shown in
Example 3-8.

38 | Chapter 3: Fun with Explosions

Example 3-8. Bigger TNT explosions without fuse method code

@SubscribeEvent
public void explode(EntityJoinWorldEvent event) {
 if (!(event.entity instanceof EntityTNTPrimed)) {
 return;
 }

 Entity entity = event.entity;
 event.entity.worldObj.createExplosion(entity,
 entity.posX, entity.posY, entity.posZ,
 power, true);
}

This method runs on an EntityJoinWorldEvent, which happens when an entity
is created.

instanceof is another Java keyword that returns true if the lefthand side of this
keyword is not of the type defined by the righthand side.

EntityTNTPrimed is a Forge class that defines a primed TNT. Primed TNT is
what you get when you light a TNT block. (event.entity instanceof Enti
tyTNTPrimed) returns true if the entity is primed TNT—so far, so good. But you
want the method to return if the entity is not TNT, so you use the ! operator to
indicate the opposite of the value inside the parentheses.

A variable called entity and of the type Entity is created, storing the entity from
the event.

An explosion is created, using entity as the source and location, and with a
power of power. The explosion also breaks blocks.

Make sure to import everything.

Launch the game and place down a TNT block. Right-click it with a flint and steel to
light it. It should explode immediately. Figure 3-8 shows the crater size of a 32-block
explosion. Notice that it is not 32 blocks in radius, because of blast resistance. A regu‐
lar TNT explosion is about four blocks in radius because there are fewer blocks to
resist the explosion.

TNT without a fuse also makes for great traps. If you have a house that uses pressure
plates to open doors, you can place TNT under the block holding one of the pressure
plates. As soon as someone walks over it, it explodes and that person dies (but note
that your house will explode as well).

Bigger TNT Explosions | 39

Figure 3-8. Bigger TNT explosions crater

With a Fuse
Open BiggerTNTExplosion again in the work area. If you want to make TNT explode
with a fuse, it is a good idea to make two variables: one for explosion power and one
for the fuse. The variables should look as shown here:

int fuse = 4;
float power = 32.0F;

“Without a Fuse” on page 38 introduced the decimal variable types float and deci
mal. What if you want to store integers that are whole numbers, and not decimals?
Java defines several data types for that, and int is the most common type to store
such numbers. It can store fairly big integer numbers for our purpose.

Like the explosions without a fuse, you can change the power and fuse to whatever
you want. Minecraft uses ticks (1/20th of a second each) as time, but the fuse here is
in seconds to make it simpler.

The method code for this mod contains two methods with a lot of code, but it will be
broken down into parts to make it easier to understand. It will create an item with
four seconds until it despawns. When the item despawns, another event handler will
actually create the explosion.

The code is shown in Example 3-9.

40 | Chapter 3: Fun with Explosions

Example 3-9. Bigger TNT explosions with fuse method code

@SubscribeEvent
public void spawnTNTItem(EntityJoinWorldEvent event) {
 if (!(event.entity instanceof EntityTNTPrimed)) {
 return;
 }

 Entity entity = event.entity;
 EntityItem explosion = new EntityItem(event.world,
 entity.posX, entity.posY, entity.posZ,
 new ItemStack(Blocks.tnt));
 explosion.setInfinitePickupDelay();
 explosion.motionX = 0;
 explosion.motionY = 0;
 explosion.motionZ = 0;
 explosion.lifespan = fuse * 20;
 if (!event.world.isRemote) {
 event.world.spawnEntityInWorld(explosion);
 }
}

@SubscribeEvent
public void explode(ItemExpireEvent event) {
 if (event.entityItem.getEntityItem().getItem() !=
 Item.getItemFromBlock(Blocks.tnt)) {
 return;
 }

 EntityItem explosion = event.entityItem;
 event.entity.worldObj.createExplosion(explosion,
 explosion.posX, explosion.posY, explosion.posZ,
 power, true);
}

This method runs on an EntityJoinWorldEvent, which happens when an entity
is created.

Checks whether the item in question is a primed TNT entity; if it isn’t, the
method returns.

A variable called entity and of the type Entity is created, storing the entity in
the event.

A new EntityItem entity called explosion is created at the position of the TNT.
The item of the entity is set to new ItemStack(Blocks.tnt), which is a block of
TNT. EntityItem is the entity that is created when an item is dropped.

Bigger TNT Explosions | 41

An ItemStack is a class that stores one stack of items. It contains information like
the item type, number of items, and things like enchantments.

This method prevents the item from being picked up, so a player can’t disable the
TNT by picking up the item.

In this line and the two lines that follow, the motionX, motionY, and motionZ of
the item are set to 0, because otherwise, the item would spring up a bit.

The item’s lifespan is set to the fuse amount times 20, because it is in ticks, and
there are 20 ticks in a second. This will make the item despawn after fuse
amount of seconds, triggering the explosion.

An if statement checks if the world isRemote, meaning is it a client world or a
server world. In Forge, sometimes events run twice, once on the client side and
once on the server side. This if statement contains a line of code that spawns in
the explosion item, and it makes sure that only one item is spawned.

This line spawns the explosion item into the world.

This event runs on an ItemExpireEvent, which happens when an item despawns.
Because the item created in the previous method despawns when the fuse is fin‐
ished, this method will run when the fuse is finished.

event.entityItem.getEntityItem().getItem() returns the item held by the
entity. Nothing needs to happen if the item is not TNT, and so != checks whether
the item in question is a TNT block; if it isn’t, the method returns. event.enti
tyItem.getEntityItem().getItem() also shows how properties and methods
can be accessed using the . operator.

Another variable named explosion is used to store the item of the event. Notice
that this variable has the same name as the one in the previous method. This is
because both the variables were defined in that method’s scope. This means they
will only exist and be referenced in that method. That way, two or more methods
can have a variable with the same name.

An explosion is created, using explosion as the source and location, and with a
power of power. The explosion also breaks blocks.

Make sure to import everything. When importing Item, select net.mine

craft.item.Item from the list of options. Refer to “Correct Imports” on page 150 for
a complete list of imports.

42 | Chapter 3: Fun with Explosions

www.allitebooks.com

http://www.allitebooks.org

You are now ready to test out your mod in Minecraft. Just as you did for the explo‐
sions without a fuse, place a TNT block and light it with a flint and steel. You might
be able to see the item created.

The only time this mod does not work correctly is when the item falls through a hole,
but because the TNT is offset a bit when it is lit, it stays on top. Because the item
causes the explosion, the big explosion happens at the bottom of the hole, and a small
one happens on top because of the primed TNT entity.

Summary
In this chapter, you learned a lot about mods that made explosions. You learned
about lots of different events, such as MinecartCollisionEvent, BreakEvent, and
EntityJoinWorldEvent. You created mods like explosive minecarts and bigger TNT
explosions, both with and without a fuse. Now that you have a better understanding
of how to use event handlers, you can use them to make villagers explode when they
spawn, enlarge creeper explosions, or make players explode when they get hurt.

The next chapter will be about entities and mobs, and how you can change their
behavior.

Summary | 43

CHAPTER 4

Entities

Now that you have a good understanding of how to make mods with event handlers,
we can move on to other types of mods. The theme of Chapter 3 was explosions,
which are fun, but this chapter’s theme will be entities. First, you will make pigs drop
diamonds in addition to their normal drop of porkchops. Next, you will make all
zombies receive diamond armor and a diamond axe when they spawn. Finally, you
will allow creepers to spawn five reinforcements when they die.

Pigs Dropping Diamonds
Pigs are passive entities. They will follow you if you hold a carrot. You can also breed
them with a carrot. You can even ride on them with a saddle and a carrot on a stick.
When pigs die, they drop porkchops. Wouldn’t it be fun to make them drop dia‐
monds or some other material instead? Let’s do that!

First, create an event handler class called PigsDroppingDiamonds. The method code
you need to add is shown in Example 4-1.

Example 4-1. Pigs dropping diamonds method code

@SubscribeEvent
public void dropDiamonds(LivingDeathEvent event){
 if (!(event.entity instanceof EntityPig)) {
 return;
 }

 Random random = new Random();

 if (!event.entity.worldObj.isRemote) {
 event.entity.dropItem(Items.diamond, random.nextInt(3));

45

 }
}

This method runs on a LivingDeathEvent, which happens when an entity dies.

If the entity is not a pig, the method returns.

This line creates a new variable of the name random and type Random. This is a
Java class that generates random numbers.

If the world is not a client world, tested by the isRemote field, then the method
continues. If this statement was not here, the pig would drop twice the number of
items, but half of the items would be ghost items, and would be impossible to pick
up.

dropItem is a method on the entity class that drops an item at the position of
the entity. It takes two parameters: the first is the item to be dropped, and the
second is the number of items to be dropped.

In this case, event.entity refers to the pig. Items is a Forge class that has the
complete list of items in Minecraft. Items.diamond refers to the diamond item,
as the name says. The nextInt() method gets a random number between 0 and
the number before the parameter given, 2 in this case. This line then drops 0 to 2
diamond items when the pig dies.

The final code should look like Example 4-2.

Example 4-2. Pigs dropping diamonds final code

package org.devoxx4kids.forge.mods;

import java.util.Random;

import net.minecraft.entity.passive.EntityPig;
import net.minecraft.init.Items;
import net.minecraftforge.event.entity.living.LivingDeathEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class PigsDroppingDiamonds {

 @SubscribeEvent
 public void dropDiamonds(LivingDeathEvent event){
 if (!(event.entity instanceof EntityPig)) {
 return;
 }

 Random random = new Random();

46 | Chapter 4: Entities

 if (!event.entity.worldObj.isRemote) {
 event.entity.dropItem(Items.diamond, random.nextInt(3));
 }
 }
}

Make sure to import everything, and import java.util.Random when you are
importing the Random class.

Now, you are ready to try out your mod.

Run Minecraft by clicking the green arrow at the top and log in to your world. Spawn
a pig by using a Spawn Pig item, and kill it by using a sword. You should see some‐
thing like Figure 4-1.

Figure 4-1. A pig dropping a diamond

There are a variety of items in Minecraft. Instead of dropping diamonds, you can
experiment with dropping some other items as well. You are limited, however, to
items known to Forge. So delete diamond from the code, place your cursor right after
Items. and press Ctrl-Space. This will show the list of Minecraft items that are
known to Forge, as shown in Figure 4-2.

Figure 4-2. List of items in Forge

You can select any item that you wish, click the green arrow to run Minecraft, and
your dead pig will then drop that particular item. For example, a pig dropping a
potato is shown in Figure 4-3.

Pigs Dropping Diamonds | 47

Figure 4-3. A pig dropping a potato

The brown splotch under the pig is the potato that it dropped.

Another twist to this mod involves dropping a block, instead of an item, when the
pigs die. For example, change Items.diamond to Item.getItemFrom

Block(Blocks.cobblestone) to drop a cobblestone instead of a diamond. You need
the Item.getItemFromBlock() method because Blocks.cobblestone is a block, not
an item, so it can’t be used in the method dropItem(). Item.getItemFromBlock()
turns it into an ItemBlock, which is the item version of the block. A pig dropping a
cobblestone is shown in Figure 4-4.

Figure 4-4. A pig dropping a cobblestone

Just as the complete list of items can be seen by placing the cursor after Items. and
pressing Ctrl-Space, the complete list of blocks can be seen by placing the cursor right
after Blocks. and using the same key sequence. This is shown in Figure 4-5.

Try dropping different items and blocks when the pig dies.

48 | Chapter 4: Entities

Figure 4-5. List of blocks in Forge

Any living entity such as a cow, iron golem, or skeleton fires a LivingDeathEvent as
well. Change the first line in the dropDiamonds() method to check for that particular
entity instead of EntityPig. For example, replace EntityPig with EntityIronGolem
to change the items dropped on iron golem death. This will allow you to drop any
item or block on the death of that entity.

Zombie Knights
Zombies are the most common hostile mobs in the game. They also drop many
things (e.g., iron ingots and carrots), and they can pick up armor. This next mod will
make zombies spawn with armor whenever they enter the world. They will also be
given an axe. This way, zombies will be much stronger and harder to kill.

First, make an event handler class called ZombieKnights. Then, add the code shown
in Example 4-3.

Example 4-3. Zombie knights method code

@SubscribeEvent
public void giveArmor(EntityJoinWorldEvent event){
 if (!(event.entity instanceof EntityZombie)) {
 return;
 }

 EntityZombie zombie = (EntityZombie) event.entity;

 zombie.setCurrentItemOrArmor(0, new ItemStack(Items.diamond_axe));
 zombie.setCurrentItemOrArmor(1, new ItemStack(Items.diamond_chestplate));
 zombie.setCurrentItemOrArmor(2, new ItemStack(Items.diamond_leggings));
 zombie.setCurrentItemOrArmor(3, new ItemStack(Items.diamond_boots));
 zombie.setCurrentItemOrArmor(4, new ItemStack(Items.diamond_helmet));
}

Zombie Knights | 49

This method runs on an EntityJoinWorldEvent, which happens when an entity
is created.

If the entity is not a zombie, the method returns.

This line shows a good example of casting in Java. Before we understand the con‐
cept of casting, let’s first discuss inheritance.

Java allows a class to be derived from another class. A class that is derived from
another class is called a subclass or a child class. The class from which the subclass
is derived is called a superclass or a parent class. A child class inherits a parent
class by using the extends Java keyword. So a child class is also known to extend
the parent class.

For example, Animal could be a parent class, and Cat, Fish, and Bat could be
child classes. Each animal knows how to eat, and that ability can be defined in the
Animal class. However, each animal also has special abilities that separate them
from the others (e.g., in our sample of animals, only cats can walk, only fish can
swim, and only bats can fly). Those specific abilities can then be defined in their
respective child classes.

A class can be derived from a class that is derived from another class, and so on,
and ultimately derived from the topmost class, java.lang.Object. All the classes
up to java.lang.Object are said to be in the parent hierarchy of the child class.
This concept is commonly known as inheritance. A subclass inherits fields and
methods of all the classes in the parent hierarchy.

Casting is taking an object and “turning it into” an object of a different type.
Specifically, you can take an object from the parent hierarchy and cast it into an
object of a more specific type.

In our case, Entity is in the parent hierarchy of EntityZombie. So after we’ve
confirmed that the given entity is of the type EntityZombie, as done in , we can
cast event.entity to EntityZombie. This will allow us to call all the methods
from EntityZombie, of course, after casting. We are particularly looking for
methods that give armor/items to the zombie.

Casting is done by specifying the more specific type in parentheses, (and),
before the more generic type.

The setCurrentItemOrArmor method assigns an item or armor at a particular
slot for the given entity. There are five available slots, starting with slot 0. The
first slot is meant for an item that the entity will hold. This line gives the zombie
a diamond axe in this slot.

50 | Chapter 4: Entities

The next four slots are meant for armor. This line and the three lines after it give
the zombie full diamond armor in the armor slots: 1–4. Slot 1 is chestplate, slot 2
is leggings, slot 3 is boots, and slot 4 is helmet. You can put any kind of these
armor in the appropriate slot, and in this mod, all the armor is diamond armor.

Import everything, and you should then be good to go.

The final code should look like Example 4-4.

Example 4-4. Zombie knights final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.monster.EntityZombie;
import net.minecraft.entity.passive.EntityHorse;
import net.minecraft.init.Items;
import net.minecraft.item.ItemStack;
import net.minecraftforge.event.ServerChatEvent;
import net.minecraftforge.event.entity.EntityJoinWorldEvent;
import net.minecraftforge.event.entity.living.LivingHurtEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class ZombieKnights {

 @SubscribeEvent
 public void giveArmor(EntityJoinWorldEvent event){
 if (!(event.entity instanceof EntityZombie)) {
 return;
 }

 EntityZombie zombie = (EntityZombie) event.entity;

 zombie.setCurrentItemOrArmor(0, new ItemStack(Items.diamond_axe));
 zombie.setCurrentItemOrArmor(1, new ItemStack(Items.diamond_chestplate));
 zombie.setCurrentItemOrArmor(2, new ItemStack(Items.diamond_leggings));
 zombie.setCurrentItemOrArmor(3, new ItemStack(Items.diamond_boots));
 zombie.setCurrentItemOrArmor(4, new ItemStack(Items.diamond_helmet));
 }
}

Run Minecraft by clicking the green arrow. Spawn a zombie, and it should have a dia‐
mond armor.

In Chapter 3, in the bouncing zombie tower picture, all the zombies had full diamond
armor. This is because the player who took the screenshot was using the zombie
knights and the exploding minecarts mods at the same time. An example of a zombie
knight by itself is shown in Figure 4-6.

Zombie Knights | 51

Figure 4-6. Zombie knight

Creeper Reinforcements
The final mod in this chapter will be about creepers. Creepers are probably the most
famous hostile mob in Minecraft, even if they aren’t the most common one. A bit of
interesting history about the creeper: its entity model (shape) was made when Notch
accidentally inverted the model of a pig.

This mod will spawn five creepers when a creeper dies, making the game much
harder. You won’t be able to just kill the creepers, but will instead have to trap them. If
you make the mistake of killing them, five more will attack you.

Create an event handler class called CreeperReinforcements. The method code for it
is shown in Example 4-5.

Example 4-5. Creeper reinforcements method code

@SubscribeEvent
public void spawnReinforcements(LivingDeathEvent event){
 if (!(event.entity instanceof EntityCreeper)) {
 return;
 }

 for (int i = 0 ; i < 5 ; i++) {
 EntityCreeper creeper = new EntityCreeper(event.entity.worldObj);
 creeper.setLocationAndAngles(event.entity.posX,
 event.entity.posY,
 event.entity.posZ,
 0,
 0);

52 | Chapter 4: Entities

www.allitebooks.com

http://www.allitebooks.org

 if (!event.entity.worldObj.isRemote) {
 event.entity.worldObj.spawnEntityInWorld(creeper);
 }
 }
}

This method runs on a LivingDeathEvent, which happens when an entity dies.

If the entity is not a creeper, the method returns.

This line is the start of a for loop, another Java concept. A for loop is a way to
repeat code until a certain condition is met. The general form of the for loop
requires three values between the parentheses: the initialization, termination, and
increment. These values are separated by semicolons. The initialization is run
once, as the loop begins. The termination tells the loop when to stop; when the
statement in this section becomes false, the loop stops. This statement is
checked after each repetition of the code. The increment happens after each time
a loop is completed. The code that is repeated every time is within the opening
bracket after for (int i = 0 ; i < 5 ; i++) and the corresponding closing
bracket two lines after event.entity.worldObj.spawnEntityIn

World(creeper);.

In this case, a new integer variable called i is made in the initialization and set to
0. The termination says to keep going until i is not less than 5. ++ is a new Java
operator called an increment. This operator can be placed after an integer vari‐
able, and increments the value of the variable by 1. In our case, the increment
says to increase i by 1 each time.

So when the loop starts out, i is set to 0 and the code inside the for loop is run
once. After the completion of the first run, it is incremented by 1, so it is now
equal to 1. Before the next run of the loop, the termination condition is checked.
If it is false, then the loop is stopped and the next Java statement after the loop
is executed. If it is true, then the loop is run once again, the value incremented,
the termination checked, and so on.

This keeps going on until i is incremented to 5, at which point it is not less than
5, because it is equal to 5. The loop has run five times by now. Because the termi‐
nation statement is false, the loop stops.

A new variable called creeper is created. This variable will store the creeper that
should be spawned. Because it is inside the for loop, it will run five times.

This moves the creeper to the position of the dead creeper. It is also inside the
for loop.

Creeper Reinforcements | 53

This if statement checks whether the world is remote (isRemote). Just as in the
bigger TNT explosions mod, this is done so that the statement inside does not
run twice. If this statement was not here, five regular creepers would spawn, but
five creepers without AI would also spawn. If a mob does not have AI, it can’t
move and can’t take any damage.

This spawns the creeper. Because this line and the surrounding if statement are
in the for loop, they will run twice.

You have now finished your mod and can test it out in Minecraft. Spawn a creeper by
using a Spawn Creeper item, and kill it with a diamond sword. Five more creepers
should spawn. Figure 4-7 shows what happens if you spawn one creeper and con‐
stantly kill its offspring. You can also spawn an iron golem inside the area, and it will
start killing creepers and making more for you. When one creeper explodes, a lot of
creepers will die and make tons of creepers. The only way to get rid of them is by
setting your game difficulty to peaceful.

Figure 4-7. Creeper infestation

Notice the gray items in the picture; those are the gunpowder items dropped upon
creeper death. There are also a few experience orbs, which are dropped upon a mob’s
death. All these creepers came from one creeper, which eventually multiplied on
death.

54 | Chapter 4: Entities

Summary
In this chapter, you learned about entities and how you can mod them to make them
more interesting. First, you made pigs drop diamonds. You also learned how different
items and blocks can be dropped and how the same technique can be applied to other
living entities. Armored zombies were created, and finally, you made creepers spawn
reinforcements on death. Now that you know how to modify entities’ behavior, you
can make cool mods like faster creepers, skeletons with swords, and flying pigs.

We discussed Java concepts like generating random numbers, using a for loop for
repeating code until a condition was met, and using the increment operator. We also
looked at inheritance and casting, two fundamental concepts that were applied in
multiple places.

In the next chapter, you will learn about movement and how to mod the player’s
movement.

Summary | 55

CHAPTER 5

Movement

Most entities in Minecraft—such as creepers, pigs, and zombies—move in the game.
But they don’t have the capability to jump or get damaged when they fall. Also, none
of the entities except spiders can climb up walls, and spiders can climb only up to
three blocks high. In this chapter, you’ll learn how to change all this by modding the
movement of the player.

First, you will make the player jump much higher; then you will add a parachute so
that the player can avoid fall damage. Finally, you will make a mod that lets snow
golems and iron golems climb up walls to reach hostile mobs that they can kill.

Super Jump
A Minecraft player can normally jump up to 1.252 blocks. This is typically done to
jump over a block or get out of a cave. But what if you were to jump over a cliff that is
much higher or a cave that is much deeper? This mod will give you the ability to jump
much higher and reach new heights.

First, make a new class and call it SuperJump. Register it in the main file to activate
the mod. The event handler method code that needs to be added to this class is shown
in Example 5-1.

Example 5-1. Super jump method code

@SubscribeEvent
public void makeJumpHigher(LivingJumpEvent event){
 if (!(event.entity instanceof EntityPlayer)) {
 return;
 }

57

 event.entity.motionY *= 5;
}

This method runs on a LivingJumpEvent, which happens when an entity jumps.

If the entity is not a player, the method returns. It would be kind of weird to see
creepers or zombies jumping 10 blocks into the air, so we are limiting this
method to only players.

* is an arithmetic operator that multiplies two values. For example, if x and y are
two variables, then they can be multiplied using x * y. = is an assignment opera‐
tor that is used to assign the value on the right side of the operator to the left side.
For example, result = x * y will multiply x and y and assign it to the result
variable. *= is a combined operator that multiplies the value on the left side by
the value on the right side and assigns it back to the left side.

In our case, the player’s Y motion is multiplied by 5 and assigned back to itself.
So if the motionY field was equal to 2 when the method ran, it would be equal to
10 afterward.

The final code of the event handler should look like Example 5-2.

Example 5-2. Super jump final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.player.EntityPlayer;
import net.minecraftforge.event.entity.living.LivingEvent.LivingJumpEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class SuperJump {

 @SubscribeEvent
 public void makeJumpHigher(LivingJumpEvent event){
 if (!(event.entity instanceof EntityPlayer)) {
 return;
 }

 event.entity.motionY *= 5;
 }
}

An important part to understand is that this only multiplies the Y motion by 5, which
does not translate into jumping 5 blocks. Figure 5-1 shows approximately how Y
motion multiplication is translated to the jump height in a number of blocks. So if the
Y motion is multiplied by 2, then the player jumps by 4.5 blocks. If the Y motion is
multiplied by 5, then the player jumps by 23 blocks, and so on.

58 | Chapter 5: Movement

Figure 5-1. Translate Y motion to number of blocks

Now, you are ready to test out your new mod in Minecraft.

Click the green arrow in Eclipse to run Minecraft. Log on to your existing world and
try to jump. You should find yourself 23 blocks in the air.

A player in mid-jump is shown in Figure 5-2.

Figure 5-2. Player in mid-jump with super jump mod

Super Jump | 59

We can tell that the player is very high up because the detail on the blocks on the
ground is very hard to see.

In a variation to the mod, you don’t allow the player to jump at all. This can be done
by changing the setting of the Y motion value to 0, or changing the value 5 to 0. This
way, you are restricting the Y motion of the player to 0, so that jumping is impossible.

This updated mod can be used by making a maze that’s constantly going down one
block. Players will not be able to backtrack because they cannot jump.

Bouncy Sponges
If you don’t like being able to jump high all the time, you can add some code that lets
you do it only when you are standing on a sponge. Add the code shown here after the
last bracket of the if statement in the regular version:

if (event.entity.worldObj.getBlock(
 ((int) Math.floor(event.entity.posX)),
 ((int) Math.floor(event.entity.posY)) - 2,
 ((int) Math.floor(event.entity.posZ))) != Blocks.sponge) {
 return;
}

The code checks that the block under you is a sponge. This is done by using the
Math.floor() method. Math.floor is a Java function that rounds a decimal down to
the nearest integer value. You can get entity coordinates as a decimal, but a block uses
integer coordinates. For example, if a player was standing over a sponge, and the
player was at X 526.1, Y 10, and Z 102.42, the sponge would be at X 526, Y 9, and Z
102. However, Math.floor() expresses the integer value as a float, so the code casts
the floored coordinates to int.

Notice that the code is checking for the block that is two blocks below the player; this
is because when the player jumps, the sponge will be that distance from the player.

The final code should now look like Example 5-3.

Example 5-3. Bouncy sponges final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.Entity;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraft.init.Blocks;
import net.minecraft.util.ChatComponentText;
import net.minecraftforge.event.entity.living.LivingEvent.LivingJumpEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class BouncySponges {

60 | Chapter 5: Movement

 @SubscribeEvent
 public void bounce(LivingJumpEvent event) {
 if (!(event.entity instanceof EntityPlayer)) {
 return;
 }

 if (event.entity.worldObj.getBlock(
 ((int) Math.floor(event.entity.posX)),
 ((int) Math.floor(event.entity.posY)) - 2,
 ((int) Math.floor(event.entity.posZ))) != Blocks.sponge) {
 return;
 }

 event.entity.motionY *= 5;
 }
}

Run your Minecraft by clicking the green arrow. Log into your world and place a
sponge from your inventory. Try to jump on a nonsponge surface and make sure that
you are not able to jump. And now try to jump on a sponge, and check whether you
can jump.

As earlier, Figure 5-1 shows how many blocks you will jump based upon the Y
motion multiplication.

Parachute
In Minecraft, if you fall more than three blocks higher, then you hurt yourself. Each
block over the three-block limit causes more damage with the fall. If you have the
super jump mod enabled, you can jump much higher, but that means you’ll be at risk
of hurting yourself more as well.

This mod will complement the previous mod by adding a parachute that you can use
to avoid fall damage from higher jumps. The parachute will be activated by pressing
the Shift key, but there will not be any visible changes when you activate a parachute.

First, make a new class and call it Parachutes. Add the event handler method code
shown in Example 5-4.

Example 5-4. Parachute method code

@SubscribeEvent
public void deployParachute(PlayerTickEvent event) {
 EntityPlayer player = event.player;
 if (!player.isAirBorne || !player.isSneaking()) {
 return;
 }

 event.entity.motionY = -0.05;

Parachute | 61

}

@SubscribeEvent
public void negateFallDamage(LivingFallEvent event) {
 if (!(event.entity instanceof EntityPlayer)) {
 return;
 }

 EntityPlayer player = (EntityPlayer) event.entity;

 if (!player.isSneaking()) {
 return;
 }

 event.setCanceled(true);
}

This method runs on PlayerTickEvent, which happens for every player on every
tick.

A new variable is made to store the player of the event.

If the player is not airborne, or if the player is not sneaking, the method returns.
This is because the parachute needs to be active only when the player is airborne
or sneaking.

! is a Java operator that negates the statement between (and). In other words, it
tells the if statement to run if the statements are not true. The || operator is a
Java or operator, so the if statement will run if either of the statements are true.

The Y motion of the player is set to -0.05, which is the same as a slow descent.
This number can be from -0.01 for a really slow descent to -0.1 for a slightly
slower descent.

This method runs on a LivingFallEvent, which happens when any entity falls
from a height. It will be used to negate fall damage while a player has a parachute
on.

If the entity is not a player, the method returns.

A new variable called player is made to store the player that fell.

If the player was not sneaking, then the method returns.

The event is canceled, so the player doesn’t take fall damage.

Make sure to import everything. The final code should look like Example 5-5.

62 | Chapter 5: Movement

Example 5-5. Parachute final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.player.EntityPlayer;
import net.minecraftforge.event.entity.living.LivingFallEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;
import net.minecraftforge.fml.common.gameevent.TickEvent.PlayerTickEvent;

public class Parachute {

 @SubscribeEvent
 public void deployParachute(PlayerTickEvent event){
 EntityPlayer player = event.player;
 if (!player.isAirBorne || !player.isSneaking()) {
 return;
 }

 event.entity.motionY = -0.05;
 }

 @SubscribeEvent
 public void negateFallDamage(LivingFallEvent event) {
 if (!(event.entity instanceof EntityPlayer)) {
 return;
 }

 EntityPlayer player = (EntityPlayer) event.entity;

 if (!player.isSneaking()) {
 return;
 }

 event.setCanceled(true);
 }
}

Registering this mod is a bit different than the other mods, as the two events here are
part of two different buses. PlayerTickEvent is part of FMLCommonHan

dler.instance().bus(), while LivingFallEvent is part of Minecraft

Forge.EVENT_BUS. To register this mod, use the code shown in Example 5-6.

Example 5-6. Registering the parachute mod

FMLCommonHandler.instance().bus().register(new Parachute());
MinecraftForge.EVENT_BUS.register(new Parachute());

Now you can test out your mod in Minecraft. Log in to your world and jump using
the super jump mod. When you are in the air, press Shift to sneak, and your para‐
chute should activate. This is illustrated in Figure 5-3.

Parachute | 63

Figure 5-3. The parachute in action

Wall-Climbing Golems
Spiders are the only entities in Minecraft that can climb, and they are limited to walls
that are three blocks high. This last mod enables snow golems and iron golems to
climb walls of any height.

To start, make a new class called GolemWallClimb and add an event handler. Register
it in the main file and add the code shown here:

@SubscribeEvent
public void climbWall(LivingUpdateEvent event) {
 if (!(event.entity instanceof EntitySnowman) &&
 !(event.entity instanceof EntityIronGolem)) {
 return;
 }

 if (!event.entity.isCollidedHorizontally) {
 return;
 }

 event.entity.motionY = 0.5;
}

This method runs on a LivingUpdateEvent, which happens every tick for every
entity.

If the entity is not a snow golem or an iron golem, the method returns.

If the entity is not collided horizontally, the method returns. An entity would be
collided horizontally if it is pushing against a block or another entity.

64 | Chapter 5: Movement

Normally, if an entity is colliding against a block, nothing happens. In this case,
the golem’s Y motion is set to 0.5, making it move upward. So every time the
golem collides, the Y motion is increased by 0.5.

The completed class should now look like Example 5-7.

Example 5-7. Wall-climbing golems final code

package org.devoxx4kids.forge.mods;

import net.minecraft.entity.monster.EntityIronGolem;
import net.minecraft.entity.monster.EntitySnowman;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraftforge.event.entity.living.LivingEvent.LivingUpdateEvent;
import net.minecraftforge.fml.common.eventhandler.SubscribeEvent;

public class GolemWallClimb {

 @SubscribeEvent
 public void climbWall(LivingUpdateEvent event) {
 if (!(event.entity instanceof EntitySnowman) &&
 !(event.entity instanceof EntityIronGolem)) {
 return;
 }

 if (!event.entity.isCollidedHorizontally) {
 return;
 }

 event.entity.motionY = 0.5;
 }

}

Now, you are ready to try your mod. Import everything and run Minecraft by click‐
ing the green arrow in Eclipse.

Create a golem, make a wall that is wide enough so that the golem doesn’t go around
it, and push the golem against the wall. Figure 5-4 shows an example of a wall-
climbing golem.

Figure 5-4. Wall-climbing iron golem

Wall-Climbing Golems | 65

The golem will climb a wall for only a few blocks if there isn’t a mob on the top of it.
If you spawn a mob like a zombie or a skeleton on the wall, and the golem notices it,
then the golem will try to climb the entire wall to get to the mob.

This mod can be updated to allow any entity to climb up the wall by changing the
first if statement in the event handler. Try to make a villager or a cow climb up the
wall.

Summary
In this chapter, we created a few mods that involved movement of entities. The first
allowed players to jump higher, and the second added a parachute in order to negate
fall damage from the higher jump. The final mod changed the movement of golems
instead of players, and allowed golems to climb walls. If you want to continue work‐
ing on movement mods, you could try making entities move faster, making certain
blocks stop movement, or increasing entities’ swimming speed.

You also learned arithmetic operators for multiplication, and even combined opera‐
tors so you can multiply and assign using *=. The logical or operator, ||, was also
used in one of the mods.

The next chapter will teach you how to create new commands with Forge.

66 | Chapter 5: Movement

CHAPTER 6

New Commands

In this chapter, you’ll learn how to add new commands to the game and customize
them to your liking. Minecraft already has many commands—for example,
the /summon command lets you spawn an entity wherever you want to, and /setblock
lets you place a block anywhere you wish. Each new command you create using Forge
requires two things: first, a new file containing the command’s details, and second, a
line in a new method that registers the command in the main file. This chapter has a
lot more Java code than the previous ones, so pay attention carefully.

The first command you will create will spawn a specified number of flaming pigs at
the sender’s location. This can be used for fun things like a cloud of particles or tons
of porkchops. Then, you will make a command that lets you choose two locations,
and when you use the command, the area between the two locations gets filled with
the block of your choice.

Flaming Pigs
In Minecraft, pigs aren’t normally on fire. The only way to ignite them is to push
them into a fire block or into lava. This mod will add a command that lets you spawn
whatever number of pigs you want and also sets them on fire. It isn’t really very useful
—it’s just funny to see a bunch of pigs on fire. And isn’t that what the entire game of
Minecraft is about?

First, create a new class and call it FlamingPigs. This will be the file that stores all of
the command’s details. We will fill in all the details of this class later. Server com‐
mands are registered by handling the FMLServerStartingEvent. Open your main
file, find the init() method, and add the code from Example 6-1 directly after it.

67

Example 6-1. Register the flaming pigs command

@EventHandler
public void registerCommands(FMLServerStartingEvent event) {
 event.registerServerCommand(new FlamingPigs());
}

The method in this code goes underneath the method where FMLInitializationE
vent is handled, specifically after the closing } of the init method. Note the
@EventHandler annotation above the method registers it as an event handler.

You will get an error because the class FlamingPigs does not implement the interface
ICommand.

Classes define methods that perform various actions, such as registering a command,
initializing the mod, and so on. The code that gets executed as part of this action is
defined within the method scope and between { and }. The methods together are
called class behavior.

An interface is a Java concept that allows you to define common behavior across dif‐
ferent classes using methods. Other Java classes can then implement a Java interface
and provide the actual code for that method.

For example, you might have an interface called Shape with a method named area,
and two classes, Circle and Square, that want to have the common behavior. This is
done by implementing the Shape interface.

For example, consider an interface called Shape that can be used to define any shape,
with a method named area that can be used to find the area of any given shape. It
also has two classes, Circle and Square (representing circle and square shapes,
respectively), that implement the Shape interface. The area of these two shapes is cal‐
culated differently, so implementation of the area method would be done accord‐
ingly. This is shown in Example 6-2.

Example 6-2. Interface sample code

interface Shape {
 public float area();
}

class Circle implements Shape {
 public float area() {
 return Math.PI * radius * radius;
 }
}

class Square implements Shape {
 public float area() {

68 | Chapter 6: New Commands

 return side * side;
 }
}

The area of a circle can be calculated by multiplying the mathematical constant pi by
the square of the radius of the circle, whereas the area of a square shape is the length
squared. These different implementations are shown in the area() method of the Cir
cle and Square classes in the preceding code block.

In order to make FlamingPigs implement ICommand, you need to add two words—
implements ICommand—right after the class name, public class FlamingPigs, but
before the bracket on the same line.

Your class should now look like Example 6-3.

Example 6-3. Flaming pigs command class after implementation

package org.devoxx4kids.forge.mods;

import net.minecraft.command.ICommand;

public class FlamingPigs implements ICommand {

}

You will get an error telling you that you need to add in some methods. This is
because whenever you implement a class, you also need to implement its methods or
common behavior, as we explained earlier. Add the methods shown in Example 6-4.
The complete list of methods is broken into two parts, and the relevant methods are
all explained. The methods that are not explained will not be used but are added
because they have to be, as they are part of the ICommand interface.

Example 6-4. Flaming pigs method code part 1

private List aliases = new ArrayList();
private int numberOfPigs = 0;

public FlamingPigs() {
 aliases.add("flamingpigs");
 aliases.add("fp");
}

@Override
public int compareTo(Object o) {
 return 0;
}

@Override

Flaming Pigs | 69

public String getCommandUsage(ICommandSender sender) {
 return "/flamingpigs <number of pigs>";
}

@Override
public List getAliases() {
 return aliases;
}

List is a Java utility class that is a collection of values that can be written to and
read from. ArrayList is a type of List where values are arranged in a sequence
and can be added or accessed in any order. This line creates a new ArrayList
called aliases. This ArrayList stores all of the names that can be typed to run
the command.

This line creates a variable that will contain the number of pigs to be spawned
when the command is sent.

This line is the constructor, which is a special method in the class that runs when
the class is initialized. The constructor methods have the same name as the class,
and that’s what makes them special. In this case, it will run when it is registered in
the main file.

This line and the one after it add the string values flamingpigs and fp into the
ArrayList aliases.

This @Override annotation tells the class to use this method instead of the default
one from the implemented class, ICommand. Any method in this class with this
annotation tells the Java compiler that this method is implementing a method
from an interface, or overriding a method.

This method gets the usage of the command. In this case, the command should
be used as /flamingpigs or /fp, and then a number value should be given indi‐
cating the number of pigs to be spawned.

ICommandSender is a Forge class that lets the command get more information
about the player, send chat messages to the player, and has other methods too.

This method returns a list of all the aliases for the command. Because an Array
List is a type of List, the ArrayList aliases works here. Now, instead of only
being able to use /flamingpigs as the command, you can also use /fp.

Now, you can add the method code in Example 6-5 directly underneath the code
from Example 6-4.

70 | Chapter 6: New Commands

Example 6-5. Flaming pigs method code part 2

@Override
public void execute(ICommandSender sender, String[] args) {
 if (args.length != 1) {
 sendErrorMessage(sender, "Invalid number of arguments!");
 return;
 }

 try {
 numberOfPigs = Integer.parseInt(args[0]);
 } catch(NumberFormatException e) {
 sendErrorMessage(sender, "The argument \"" + args[0] +
 "\" is not a valid number!");
 return;
 }

 EntityPlayer player = (EntityPlayer) sender;

 for (int i = 0 ; i < numberOfPigs ; i++) {
 EntityPig pig = new EntityPig(player.worldObj);
 pig.setLocationAndAngles(player.posX, player.posY, player.posZ, 0, 0);
 pig.setFire(10000);
 player.worldObj.spawnEntityInWorld(pig);
 }
}

private void sendErrorMessage(ICommandSender sender, String message) {
 sender.addChatMessage(new ChatComponentText(
 EnumChatFormatting.DARK_RED + message));
}

@Override
public boolean canCommandSenderUse(ICommandSender sender) {
 return sender instanceof EntityPlayer;
}

@Override
public List addTabCompletionOptions(ICommandSender sender,
 String[] args, BlockPos pos) {
 return null;
}

@Override
public boolean isUsernameIndex(String[] args, int index) {
 return false;
}

Flaming Pigs | 71

This method executes the code when the command is run by a player. The
parameters to this method are important. The first parameter, ICommandSender
sender, provides the player/command block/console that sent the command.
The second parameter, String[] args, is an array of string items, and contains a
list of all the arguments to the command.

An array is a Java concept that allows a fixed number of items of similar types to
be stored together in a list. Each item in an array is called an element, and each
element is indexed by its numerical index. The first element is available at index
0, and each nth element is at n–1 index. For example, the sixth element will be at
index 5. The total length of an array is available using the length property. In our
case, the first element of the array is available at args[0], and length can be read
using args.length.

An argument is anything after the actual command. For example, if a player ran
the command /fp 10, then 10 would be the argument.

Our mod requires only a single argument that provides the number of pigs that
need to be spawned. The if statement checks whether the length of the args
array is not equal to 1.

If the if statement in the previous line is true, the player is sent a dark red chat
message telling them that they did not enter the right number of arguments. This
is done by calling a newly created sendErrorMessage method on .

This line is the start of a try-catch statement. A try-catch statement in Java is
used to find error conditions in the code, or exceptions, and deal with them. The
code that can possibly throw an error is put inside the try block. The errors that
can be thrown are represented by a Java class. Each error is specified on a catch
block. The code that needs to get executed when the exception is caught is put
inside the catch block.

The try block is trying to turn the first argument, identified by args[0], into an
integer, and then set the numberOfPigs variable to the value made. This is accom‐
plished with the method Integer.parseInt().

The catch block is using the Java class java.lang.NumberFormatException to
catch the exception, which is thrown when a string cannot be converted into an
integer. The argument must be an integer, because we want a number of pigs. In
this case, the player who ran the command is notified that the number they put
in is invalid.

72 | Chapter 6: New Commands

Notice that there are three quotation marks in each of the string values, but they
have a backslash behind them. This is called escaping. The backslashes are telling
Java that the quotation marks directly ahead are not defining the boundaries of
the string. That way, you can put quotation marks in a string value. After sending
the message, the method returns.

A variable of the type EntityPlayer is made by casting sender to the Entity
Player class.

A for loop is created, and it will run for the number of times specified in number
OfPigs.

A new variable is created to store an EntityPig. The pig’s location is set to that of
the player who sent the command. The pig is set on fire for 10,000 ticks, or 500
seconds. This is good enough time for a pig to die. The pig is then spawned into
the world that the player who sent the command is in.

All this code is inside the for loop, so it will run as many times as specified by
numberOfPigs.

sendErrorMessage is a new method that sends a chat message to the player in a
dark red color.

This method tells Forge whether or not the player/command block/console who
sent the command can use it. An if statement is used to check whether the
sender is a player. If the sender is indeed a player, then true is returned, indicat‐
ing that the command can run. If the sender is not a player, the method returns
false and the command does not run.

Make sure to import everything. You are now ready to test out your new mod.
Launch Minecraft using the green arrow and try out your new command. Make sure
you put in a valid number after the command, and that you put only one argument.
Start with spawning about 10 pigs by issuing the following command:

/flamingpigs 10

And now you can see 10 pigs are spawned at your current location and they are all set
on fire. Don’t spawn too many pigs, or your game will crash. A good limit is about
100.

Figure 6-1 shows what happens when you use the flaming pigs command with a high
number.

Flaming Pigs | 73

Figure 6-1. Flaming pigs

A fun way to use this mod is by using the contraption shown in Figure 6-2. Stand on
top of the hopper and use the /fp command. When the pigs spawned by the com‐
mand die, their drops will go into the hopper and ultimately into the chest. This way,
if you have the “pigs dropping diamonds” mod installed, you can easily get diamonds.

Figure 6-2. Flaming pigs hopper contraption

Block Filler
Have you ever felt the need to fill an area with a particular block? For example, maybe
you’ve wanted to create a giant mansion or an arena to fight mobs in. This new com‐
mand allows you to select two positions as corners, and then fill in the space between
with any block you want. The positions will be set by right-clicking or left-clicking
blocks with a wooden axe. The positions can be selected in one, two, and three
dimensions.

This mod will utilize both event handlers and commands.

74 | Chapter 6: New Commands

First, create a new event handler class and call it BlockFillerPositionSelector. You
will need to add two variables before you add the method code; these go directly
under the line public class BlockFillerPositionSelector {:

static List<Integer> pos1 = new ArrayList();
static List<Integer> pos2 = new ArrayList();

Make sure you import List, Integer, and ArrayList.

The variables are both ArrayLists, which are lists that you can read from and write
to. They will store the x, y, and z coordinates of the first and second position used in
the mod. The <Integer> part makes sure that the list can store only integers, and the
positions will be only integers. The ArrayLists are called pos1 and pos2, short for
Position 1 and Position 2.

static is a Java keyword that allows pos1 and pos2 variables to be shareable among
different classes. It also means that pos1 and pos2 are not variables that belong to a
class instance, but instead they are shared among all instances of that class.

Then, add the method code shown in Example 6-6.

Example 6-6. Block filler event handler method code

@SubscribeEvent
public void choosePositions(PlayerInteractEvent event) {
 if (event.entityPlayer.getHeldItem() == null ||
 event.entityPlayer.getHeldItem().getItem()
 != Items.wooden_axe ||
 !event.entityPlayer.capabilities.isCreativeMode) {
 return;
 }

 if (event.action == Action.RIGHT_CLICK_BLOCK) {
 pos1.clear();
 pos1.add(event.pos.getX());
 pos1.add(event.pos.getY());
 pos1.add(event.pos.getZ());
 event.entityPlayer.addChatMessage(new ChatComponentText(
 EnumChatFormatting.GREEN
 + "Position 1 set to "
 + event.pos.getX()
 + ", " + event.pos.getY()
 + ", " + event.pos.getZ() + "."));
 event.setCanceled(true);
 } else if (event.action == Action.LEFT_CLICK_BLOCK) {
 pos2.clear();
 pos2.add(event.pos.getX());
 pos2.add(event.pos.getY());
 pos2.add(event.pos.getZ());
 event.entityPlayer.addChatMessage(new ChatComponentText(

Block Filler | 75

 EnumChatFormatting.GREEN
 + "Position 2 set to "
 + event.pos.getX()
 + ", " + event.pos.getY()
 + ", " + event.pos.getZ() + "."));
 event.setCanceled(true);
 }
}

This method runs on a PlayerInteractEvent, which covers many miscellaneous
actions. The ones we need to focus on are right-click and left-click, because right-
clicking or left-clicking with a wooden axe will be the way to determine the first
and second position.

|| is a logical operator in Java that can be used to combine multiple boolean con‐
ditions into one. The first boolean condition is evaluated. If it is true, then the
result of the entire condition is derived to be true. If it is false, the next boolean
condition is evaluated. If the result of that evaluation is true, then the result of the
entire condition is derived to be true, and so on. In short, any boolean condition
needs to evaluate to true for the entire condition to be true.

In this case, three boolean conditions are combined. The first condition checks if
the player is holding an item in his hand. If the player is not holding an item,
then Forge returns null. The second condition checks if the player is holding a
wooden axe. Checking the item type without knowing if the player is holding an
item would throw an error. So the sequence of checks is important. The third
condition checks if the player is not in creative mode. If the command worked in
survival mode, the game wouldn’t be fun because you could get anything you
wanted with a wooden axe. All these conditions need to be true before any fur‐
ther code can run in this method.

event.action provides different actions by the player. This if statement checks
if the action of the event was right-clicking a block. The code inside this block is
run if the condition is true.

clear is a method on ArrayList that clears all the values entered in pos1. This is
required to clear the values from the last run of this command. Now new co-
ordinates can be added to it.

The x, y, and z coordinates of the block that is right-clicked are added to pos1.

A green chat message is sent to the player confirming the position selected. If the
player clicked the block at x position 54, y position 63, and z position 102, the
message would say “Position 1 set to 54, 63, 102.” in green letters.

76 | Chapter 6: New Commands

This line cancels the event. This is useful if the player needs to select a block with
a GUI as a position, because it makes sure that the block’s GUI does not open.
For example, if a player wanted to select a chest as the first position, then it would
be annoying if the GUI is opened instead of being selected.

This line checks for a left-click action. Notice the else if instead of the if; this
statement is still part of the if statement checking for right-click. It will run only
if the right-click part didn’t execute—hence the else.

This line and the four lines after it do the same thing as the first part of the state‐
ment, but with pos2 instead of pos1.

Make sure to import all the classes that will update your source file accordingly.
When importing Action, import net.minecraftforge.event.entity.player.Play
erInteractEvent.Action, not any of the other imports. Also, for the List import,
use java.util.List.

Next, we need a class for the command. Create a new class called BlockFillCommand.
Remember to add implements ICommand after the class name.

Most of the methods from the ICommand interface were explained in the previous sec‐
tion and are shown in Example 6-7. They provide the command name and usage, list
of aliases, and other functionality to Forge. Remember, this code goes between the
two brackets in the class.

Example 6-7. Block filler method code part 1

private List aliases = new ArrayList();
private Block block;

public BlockFillCommand() {
 aliases.add("fillblocks");
 aliases.add("fb");
}

@Override
public int compareTo(Object o) {
 return 0;
}

@Override
public String getCommandUsage(ICommandSender sender) {
 return "fillblocks <block ID>";
}

@Override
public List getAliases() {

Block Filler | 77

 return aliases;
}

@Override
public List addTabCompletionOptions(ICommandSender sender,
 String[] args, BlockPos pos) {
 return null;
}

@Override
public boolean isUsernameIndex(String[] args, int index) {
 return false;
}

The variable here, block, will be used to store the block that the selected area will
be filled with. This will be used from the execute() method, which will be
explained next.

execute() is the method where all the action happens, so let’s take a closer look at
that. The code you need to add is shown in Example 6-8. It goes directly after the
code from Example 6-7.

Example 6-8. Block filler method code part 2

@Override
public void execute(ICommandSender sender, String[] args) {
 if (args.length != 1) {
 sendErrorMessage(sender, "Invalid number of arguments!");
 return;
 }

 try {
 block = Block.getBlockById(Integer.parseInt(args[0]));

 if (block == Blocks.air && Integer.parseInt(args[0]) != 0) {
 sendErrorMessage(sender, "The argument \"" + args[0]
 + "\" is not a valid block ID!");
 return;
 }
 } catch (NumberFormatException e) {
 if (Block.getBlockFromName(args[0]) == null) {
 sendErrorMessage(sender, "The argument \"" + args[0]
 + "\" is not a valid block name!");
 return;
 } else {
 block = Block.getBlockFromName(args[0]);
 }
 }

 if (BlockFillerPositionSelector.pos1.isEmpty()

78 | Chapter 6: New Commands

 || BlockFillerPositionSelector.pos2.isEmpty()) {
 sendErrorMessage(sender, "Make a region selection first!");
 return;
 }

 if (BlockFillerPositionSelector.pos1.get(0) >
 BlockFillerPositionSelector.pos2.get(0)) {
 swapPositions(0);
 }

 if (BlockFillerPositionSelector.pos1.get(1) >
 BlockFillerPositionSelector.pos2.get(1)) {
 swapPositions(1);
 }

 if (BlockFillerPositionSelector.pos1.get(2) >
 BlockFillerPositionSelector.pos2.get(2)) {
 swapPositions(2);
 }

 for (int x = BlockFillerPositionSelector.pos1.get(0);
 x <= BlockFillerPositionSelector.pos2.get(0);
 x++) {
 for (int y = BlockFillerPositionSelector.pos1.get(1);
 y <= BlockFillerPositionSelector.pos2.get(1);
 y++) {
 for (int z = BlockFillerPositionSelector.pos1.get(2);
 z <= BlockFillerPositionSelector.pos2.get(2);
 z++) {
 ((EntityPlayer) sender)
 .worldObj
 .setBlockState(
 new BlockPos(x, y, z),
 block.getBlockState().getBaseState());
 }
 }
 }
}

private void swapPositions(int index){
 int temp = BlockFillerPositionSelector.pos1.get(index);
 BlockFillerPositionSelector.pos1.set(index,
 BlockFillerPositionSelector.pos2.get(index));
 BlockFillerPositionSelector.pos2.set(index, temp);
}

private void sendErrorMessage(ICommandSender sender, String message) {
 sender.addChatMessage(new ChatComponentText(
 EnumChatFormatting.DARK_RED + message));
}

@Override

Block Filler | 79

public boolean canCommandSenderUse(ICommandSender sender) {
 return sender instanceof EntityPlayer;
}

Command requires only one argument (i.e., the ID of the block that will be used
to fill the selected area). If the number of arguments is not 1, the player is notified
of this and the method returns.

This is the start of a try-catch statement that will determine the block that will
be used to fill the selected area. The code inside the try block will try to set the
block variable to the block with the ID given.

Like ||, && is a logical operator in Java that can be used to combine multiple
boolean conditions into one. The first boolean condition is evaluated. If it is false,
then the entire statement is derived to be false. If it is true, then the next boolean
condition is evaluated. If it is false, then the result of the entire condition is
derived to be false, and so on. In short, all boolean conditions need to evaluate to
true for the entire condition to be true.

In the game, 0 is the ID of air. This if statement checks if the block is air and if
the ID of the block is not 0. If this is true, then the ID is invalid, the player is
notified by a an error message, and the method returns.

Converting a string to a number can throw an error (e.g., if a letter or a word is
entered instead of a number). Java will throw an error that can be caught as Num
berFormatException. If one was thrown, then the argument typed in the com‐
mand was not a number. Then, an if statement checks whether a block can be
made from the given name. If not, the method returns after the player is sent a
message indicating that the block name is invalid. If the name is valid, the block
variable is set to whatever block is made from the block name given.

isEmpty() is a method of ArrayList class that returns true if the list is empty
(i.e., contains no elements). This happens for us when the player gives the com‐
mand without doing both left-click and right-click. The if statement checks
whether two positions are selected. If one or both of them are empty, the player is
notified of this and the method returns.

The blocks are placed from lower x, y, and z value to the higher. This if state‐
ment and the next two if statements after it make pos1 have the lower of all
three values. To do this, the if statements use the greater-than operator (>). If
pos1 is greater than pos2, then they are swapped using the swapPositions
method. The blocks are then placed by a for loop that starts with the coordinate

80 | Chapter 6: New Commands

from pos1 and goes up to the coordinate from pos2, so pos1 has to have the
lower value of the two.

These are three nested for loops. Placing one loop inside the body of another
loop is called nesting. For nested loops, the outer loop defines the number of
complete repetitions of the inner loop. The loops can be nested to any level.

In our case, the outermost loop is for the x-axis, the second for the y-axis, and the
third for the z-axis. The for loops start at the value from pos1, and then incre‐
ment by one until the first value is greater than (not <=, or less than or equal to)
the value from pos2.

The blocks are laid on the z-axis first, then on the y-axis, and finally on the x-
axis. In other words, the for loop goes forward by one x coordinate, and then
goes up on the y-axis until it reaches the second y coordinate. Each time the loop
goes up the y-axis, the loop inside the y for loop places blocks on the z-axis.

A block is placed at the x, y, and z variables in the for loops, and the block’s type
is determined by the block variable.

A new method is added to our class that allows us to swap the positions of two
values. This is easily done by storing the original value in a temporary variable,
copying the new value in place of the original value, and then storing the value
from the temporary variable in place of the new value. This method is called
thrice while determining the lower of the pos1 and pos2 values, once each for x,
y, and z coordinates.

If an error occurs (for example, if the command receives a letter as input instead
of a number), then display a message to the user in a dark red color.

To register the command, put the text event.registerServerCommand(new Block
FillCommand()); in your registerCommands method in your main file. Make sure
you do this, because the command will not work otherwise.

Make sure to import everything. You are now ready to try out your mod in Minecraft.
As always, click the green arrow on the top to run the game.

In order to test this mod, get a wooden axe from your inventory, click on two places
far apart, and issue the following command:

/fillblocks 46

This will fill up the selected area between the two clicks with TNT. Why TNT? 46 is
the block ID of TNT. If you want to do it for a different block from vanilla Minecraft,
then you already know how to find the ID for it.

Block Filler | 81

The two selected corners are opposite corners of a rectangular prism. Feel free to be
creative and make some fun structures.

One fun example of a way you can use this mod is making a huge TNT bomb. An
image of this is shown in Figure 6-3.

Figure 6-3. Block filled with a huge TNT bomb

The crater made by lighting the bomb is shown in Figure 6-4.

Figure 6-4. Aftermath of the TNT bomb created using the block filler

You can also use this mod to build cool structures like arenas or mansions.

82 | Chapter 6: New Commands

Summary
In this chapter, you learned how to make new commands with Forge. You added a
simple command that spawned any number of flaming pigs at your location. Then,
you made a more complex command that let you fill areas with blocks. You are
encouraged to create more commands and customize the experience of your game.
For example, with the knowledge you now have, you can spawn a creeper at your cur‐
rent location. The GitHub repo of this book also has some additional commands for
you to try.

In the process of learning these new commands, some Java concepts such as arrays
and the ArrayList class were introduced. We also explained basic error handling
using try-catch, escaping special characters (such as quotes) within a string, and the
logical && operator.

The next chapter will teach you how to do what many modders want to do: add a new
block.

Summary | 83

CHAPTER 7

New Block

Have you ever wanted to add a new block to the game? Most modders want to.
Whether it’s because the regular blocks are too mundane, or you have a great idea for
a new block, making a new block is fun, and there are a lot of features that you can
customize. This chapter will explain how to create a new block and will have an ender
theme. However, you can make tons of other kinds of blocks, such as stairs or tele‐
porters, and variations like those will be explained here.

The new block that we will create will be called an Enderium Block, but you can
change the name if you change the block. For example, if you change the block to be
glass stairs, you would rename the block Glass Stairs.

This mod will be a bit different from all the other ones so far, because it does not use
event handlers. Instead, it uses a new class to store all of the block’s details, and then
registers it to the game registry. Making a new block also allows for a lot of customiza‐
tion, so a few variations of the block will be shown as well.

Creating the Block Class
The first thing you will need is a new class that stores all of the block’s information,
like the hardness, resistance, and creative tab. Make a new class called EnderBlock in
your package. The first thing you need to do is make the class extend from Block.
This means EnderBlock becomes a child class, and Block is the parent class. Block is
a Java class in Minecraft that enables any Java class to look and act like a block.

Replace all of the generated code with the code from Example 7-1. This can be done
by deleting all of the current code, and then copying and pasting this code into your
file.

85

Example 7-1. New block finished class

package org.devoxx4kids.forge.mods;

import net.minecraft.block.Block;
import net.minecraft.block.material.Material;
import net.minecraft.creativetab.CreativeTabs;

public class EnderBlock extends Block {

 public EnderBlock() {
 super(Material.iron);
 this.setUnlocalizedName("enderBlock");
 this.setCreativeTab(CreativeTabs.tabBlock);
 this.setResistance(5.0F);
 this.setHardness(10.0F);
 this.setLightLevel(1.0F);
 }
}

This is the start of the constructor. The public modifier allows this constructor
to be accessed by other classes.

super is a special Java method and calls the super constructor, which is a con‐
structor of the parent class.

If multiple classes are inherited from a parent class and they all need to set some
property value, then it makes more sense to set that property in the parent class
and pass the actual value from the child class. That’s what is being done here.

The super constructor in this case requires a parameter for the material of the
block, and in this case it is set to Material.iron.

A block/item has two names: the unlocalized name and the localized name. The
unlocalized name is what is used in the code that we write, and the localized
name is the one that is shown in the game. These names are mapped to each
other in a .lang file, which you will learn about later.

This line sets the block’s unlocalized name to enderBlock by using the setUnloca
lizedName() method. this is a Java keyword and refers to the current Java
object. The unlocalized name can be anything you want, as long as it is not the
same as another block/item’s unlocalized name. This means that the unlocalized
name must be unique in a .lang file.

This line adds the block to the Blocks creative tab. Without adding the block to a
creative tab, the only way to get the block would be to give it to yourself with
the /give command, which is a standard Minecraft command.

86 | Chapter 7: New Block

tabBlock is the most logical place to add this block. However, you can also add
this block to a different tab. You can see a complete list of tabs where this block
can be added by placing the cursor right after CreativeTabs. and pressing the
Ctrl-Enter keys. The tabBlock can be replaced with any of the values shown in
this list. So if this block was to be shown in the Miscellaneous tab, then tabBlock
would need to be replaced with tabMisc.

This line sets the block’s resistance to 5.0F. The resistance of a block is its resist‐
ance to explosions. For example, obsidian has a resistance of 2000.0F, so it can‐
not be destroyed by explosions. Diamond ore has a resistance of 5.0F, and iron
block has a resistance of 10.0F. This block has a low resistance, so it can be easily
destroyed by an explosion.

Feel free to change this value to any number, but don’t go below 0.0. Lower
resistance means that its easier to destroy a block by an explosion. Higher resist‐
ance means its harder to destroy it by an explosion.

The hardness of a block dictates how fast the block will be broken. The higher the
hardness, the slower the block is broken. This line sets the hardness of this block
to 10.0F. For example, end stone block has a hardness of 3.0F, and glass has a
hardness of 0.3F.

This sets the block’s light level to 1.0 so that it will glow brightly and look awe‐
some.

Now your block class is ready, but we still need to register the block in the main file.

Registering Your Block
Now, you need to register your block in the main file. First, create a variable in the
main file as shown here (this variable will store the block in the form of the class you
just made, and it goes directly after the first bracket):

public static Block enderBlock;

Java naming conventions use camelcasing. Camelcasing is where
you make the first letter of the first word lowercase, and the first
letter of all of the other words uppercase. For example, EnderBlock
in camelcasing would be enderBlock. Camelcasing is the preferred
way of naming variables, but it is not the only way. For example, in
this code, the words are separated with underscores.

Now, add the code shown here to your init() method in your main file:

Registering Your Block | 87

enderBlock = new EnderBlock();
GameRegistry.registerBlock(enderBlock, "enderBlock");

Initializes enderBlock variable of the type EnderBlock().

GameRegistry is a Forge class and is a central store where new items, blocks, rec‐
ipes, aliases, and the like can be registered and searched.

In this case, enderBlock is registered in the GameRegistry, with the name ender
Block. Note that the name here is neither the localized or the unlocalized name.
This is a mod-unique name to register it as is, and will get prefixed by your
modid.

Now that you have registered your block, the only thing remaining is to give it a
localized name.

Naming Your Block
For this part, you will need to create a new file in a specific directory. Navigate to your
Forge folder where you ran the gradlew command in Chapter 1. If you followed the
instructions as is, then this would be the forge/ directory on your Desktop. If you used
a different name or location, navigate to the directory that you created instead.

Inside that folder, there should be another folder called src/. Navigate to that folder,
then to main/, then to resources/. This should look like the screenshot shown in
Figure 7-1.

Figure 7-1. src/main/resources folder

Right-click that folder, navigate to New→Folder, and create another folder called
assets. Right-click again on that folder and create a new folder. Give it the same name
as the value of mod’s MODID field. The name can technically be anything, but it is best
to give it the name of your MODID because that is the folder you will be using for tex‐
tures later. The MODID that was suggested in the beginning of this book was myMods. If
you used that MODID, then your folder should be called mymods, which is myMods in
lowercase letters, because Forge always looks for a folder with lowercase letters. In the
folder you just created, make another folder called lang. The updated folder will look
like the screenshot shown in Figure 7-2.

88 | Chapter 7: New Block

Figure 7-2. src/main/resources/assets/mymods/lang folder

At first, you will see three different folders: assets, assets.mymods, and
assets.mymods.lang. Don’t worry, these will merge by themselves later.

This folder stores a bunch of .lang files that give translations of block names in differ‐
ent languages. In this one, we will be using only English. Right-click your lang folder,
and navigate to New→File. Name the file en_US.lang and open it up. Add the text
tile.enderBlock.name=Enderium Block.

Do not change anything here except for the name after the = if you want to. Do not
put spaces directly before or after the = either, or it will not work. Notice that the first
part is tile.enderBlock.name instead of just enderBlock. The tile. and .name parts
are automatically added by Minecraft. This is the complete unlocalized name of your
block. The text after = is the localized name.

Save the file before you continue.

The en in this name refers to the English language, and US refers to the United States.
If you live in Canada, then you’ll create a file called en_CA.lang instead. Similarly,
fr_FR.lang should be used for French readers living in France, and fr_BE.lang should
be used for French readers in Belgium. The exact filename is decided by the language
and the country you are living in and is defined in “JDK 8 and JRE 8 Supported
Locales”.

This mapping of the unlocalized name to the localized name is an important pro‐
gramming fundamental called localization. This allows a standard name to be used in
the code and the actual translation to be defined in the appropriate .lang file.

Running Minecraft and Verifying the Mod
Your block is now ready to go!

Start up your game by clicking the green arrow and go to the Building Blocks tab.
Scroll all the way down, and you should see a block that looks like a purple-and-black
checkerboard, as shown in Figure 7-3. It may be in a different place than the picture

Running Minecraft and Verifying the Mod | 89

http://bit.ly/1bt4idl
http://bit.ly/1bt4idl

because Forge automatically assigns IDs to blocks and items, and the IDs can vary.
The blocks in creative tabs are listed by ID, so the block’s place could change.

Figure 7-3. New block in the creative tab

When you place it, it should look like Figure 7-4.

Figure 7-4. New block without a texture

This block is using the default purple-and-black texture, but we’ll fix that in Chap‐
ter 9.

So you created your very own block. Doesn’t that make you feel excited?

This block is like any other regular block except that you have more control over how
it behaves. If you’ve already read Chapter 6, then you know how to write new com‐
mands. In that case, you may consider using this block with the /fillblocks com‐
mand. You’ll need to know the block ID, which can be identified in Minecraft via the
usual means. On Windows, the display of block IDs can be toggled by pressing the F3
and H keys together. On Mac, this can be achieved by pressing the Fn, F3, and H keys
together.

90 | Chapter 7: New Block

Variations of the New Block
Now that you have a regular block working, you can customize it! This section will
show you a bunch of different ways to make your block more interesting.

Block Changer
Sometimes, when you are playing in survival mode, you just don’t have enough mate‐
rials. This variation will aim to change that. Whenever you place an Enderium Block
on another block, the Enderium Block will turn into the block underneath it.

To make this change, you will need to add a new method in the EnderBlock class, as
shown in Example 7-2.

Example 7-2. Block changer method code

@Override
public void onBlockAdded(World world, BlockPos pos, IBlockState state) {
 IBlockState block = world.getBlockState(pos.add(0, -1, 0));
 world.setBlockState(pos, block);
 EntityLightningBolt lightning = new EntityLightningBolt(world,
 pos.getX(), pos.getY(), pos.getZ());
 world.addWeatherEffect(lightning);
}

This annotation shows that this class is overriding the method from the parent
Block class.

The onBlockAdded() method runs whenever the block is placed, and it has three
parameters you can use: the world the block is in defined by world, the position
of the block defined by pos, and the state of the block defined by state.

This line gets the state of the block underneath the Enderium Block and saves it
to a variable called block.

The Enderium Block is set to the block underneath it by using the block variable.

This line makes a new lightning bolt entity at the position of the block.

The lightning bolt is spawned into the world, just for special effects.

Once you import everything, you are ready to test out your mod. Run Minecraft by
clicking the green arrow on the top, log in to your game, and put an Enderium Block
in your inventory. Place it down on whatever block you want, and it should turn into
that block.

Variations of the New Block | 91

Majestic Enderium Block
Some blocks, like chests and furnaces, do something when you right-click them.
Some open up a GUI, some explode, and some make a redstone signal. This variation
of the ender block will make it spawn an ender eye entity when you right-click it. It
will also send you a chat message saying that you have clicked the block.

In the EnderBlock class, add the method shown in Example 7-3.

Example 7-3. The Majestic Enderium Block method code

@Override
public boolean onBlockActivated(World world,
 int x,
 int y,
 int z,
 EntityPlayer player,
 int i1,
 float f1,
 float f2,
 float f3) {
 if (!world.isRemote)
 return false;

 player.addChatMessage(new ChatComponentText(
 EnumChatFormatting.DARK_PURPLE +
 "You have clicked on the majestic ENDERIUM BLOCK!!!!!"));
 EntityEnderEye eye = new EntityEnderEye(world,
 x + 0.5,
 y + 1.5,
 z + 0.5);
 eye.motionY = 0.1;
 world.spawnEntityInWorld(eye);
 return true;
}

This method is defined in the superclass of this class, Block. The @Override
annotation on the method confirms that.

It is called when the block is right-clicked. The return type is boolean, so it has to
return true or false. There are nine parameters, but we will be using only the
first five. The first one is the world in which the block resides, the next three are
the block’s coordinates, and the last one is the player who clicked on the block.

If the world is not remote (i.e., this method is called in a server world), then the
method returns false. This indicates that nothing else needs to happen in this
method.

92 | Chapter 7: New Block

The rest of the method executes if this method is called in a client world. The
player is sent a message indicating that “You have clicked on the majestic
ENDERIUM BLOCK!!!!!” in dark purple letters.

EntityEnderEye is a Java class in Minecraft that allows you to create an ender
eye. A new variable called eye of the type EntityEnderEye is created, one block
above the Enderium Block, and centered.

The ender eye’s Y motion is set to 0.1 so it will slowly rise.

The ender eye is spawned into the world.

Finally, the method returns true, indicating everything is now completed.

Your EnderBlock class should now look like Example 7-4.

Example 7-4. The Majestic Enderium Block final code

package org.devoxx4kids.forge.mods;

import net.minecraft.block.Block;
import net.minecraft.block.material.Material;
import net.minecraft.entity.item.EntityEnderEye;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraft.util.ChatComponentText;
import net.minecraft.util.EnumChatFormatting;
import net.minecraft.world.World;

public class EnderBlock extends Block {

 public EnderBlock() {
 super(Material.iron);
 this.setUnlocalizedName("enderBlock");
 this.setCreativeTab(CreativeTabs.tabBlock);
 this.setResistance(5.0F);
 this.setHardness(10.0F);
 this.setLightLevel(1.0F);
 }

 public boolean onBlockActivated(World world,
 int x,
 int y,
 int z,
 EntityPlayer player,
 int i1,
 float f1,
 float f2,
 float f3) {
 if (!world.isRemote)

Variations of the New Block | 93

 return false;

 player.addChatMessage(new ChatComponentText(
 EnumChatFormatting.DARK_PURPLE +
 "You have clicked on the majestic " +
 "ENDERIUM BLOCK!!!!!"));
 EntityEnderEye eye = new EntityEnderEye(world,
 x + 0.5,
 y + 1.5,
 z + 0.5);
 eye.motionY = 0.1;
 world.spawnEntityInWorld(eye);
 return true;
 }

}

Now you are ready to try out this mod in Minecraft.

As always, run Minecraft by clicking the green arrow. Place an Enderium Block and
right-click it. Figure 7-5 shows what happens.

Figure 7-5. The Majestic Enderium Block

Summary
In this chapter, you learned how to make a new block and change its hardness and
resistance. It was called an Enderium Block and was a simple, solid block. Then, you
saw two variations of it—the first allowed you to change the block that it is placed on,
and the second spawned an ender eye entity when you right-clicked the block.

94 | Chapter 7: New Block

Now that you know how to make a regular block, you can make tons of different
types of blocks. For example, you can make it provide a redstone signal, make it an
ore that spawns in the world, or make it do something when you stand on it. These
examples will not be explained here, but you can search the Internet for tutorials if
you want to learn more.

You also learned Java concepts such as super constructor and how to localize your
Minecraft game to different languages.

In the next chapter, you will make an item to go with the block you just made.

Summary | 95

CHAPTER 8

New Item

Now that you have made a new block, it is time to move on to a new item.

Items can do many things. Most items are used for crafting, smelting, and brewing.
Some items light fire (e.g., flint and steel, or fire charges), while others can be eaten
(e.g., cookies and potatoes). Some items, such as bows or snowballs, do something
when you right-click with them. A lot of items don’t do much, such as magma cream
or iron ingots.

The item created in this chapter will be an ingot. At first, the item will not do any‐
thing, but the later parts of the chapter will offer some variations of this item. The
first one will make it spawn an enderman on right-click. The second one will make it
a food item. The last one will make it drop when you break an Enderium Block.

Creating the Item Class
A new item does not require as much code as a new block, but there are more ways to
customize it. First of all, you will need a new class for the item, just as with the block.
Call it EnderIngot.

Just as with the new block, replace the generated code with the code in Example 8-1.

Example 8-1. New item final code

package org.devoxx4kids.forge.mods;

import net.minecraft.creativetab.CreativeTabs;
import net.minecraft.item.Item;

public class EnderIngot extends Item {

 public EnderIngot() {

97

 super();
 this.setUnlocalizedName("ingotEnder");
 this.setCreativeTab(CreativeTabs.tabMaterials);
 }

}

Just like the block, this constructor initializes the super constructor. However,
this time, the super constructor does not need any parameters.

The unlocalized name is set to ingotEnder.

The item is added to the Materials creative tab.

Now, to finish creating the item, all you need to do is register the item in the main
file. First, as with the block, you need to create a variable to store the item. To do so,
use the following code:

public static Item enderIngot;

The variable is the same as the block one, except that it is of the type Item instead of
Block and its name is enderIngot.

Now, go into your main file, and add the code shown here into the init() method:

enderIngot = new EnderIngot();
GameRegistry.registerItem(enderIngot, "Ender Ingot");

Now you are done registering your item.

To add a name to your item, open up your en_US.lang file. Add the text shown here:

item.ingotEnder.name=Ender Ingot

This file creates a mapping of unlocalized name to localized name. This was
explained in “Naming Your Block” on page 88.

Notice that instead of tile.ingotEnder.name, it is item.ingotEnder.name, because a
tile is a block and an item is an item.

Your item is now finished.

If you launch Minecraft from Eclipse and you put this item in your inventory, it
should look like Figure 8-1. You can find the item in the Materials tab, or you can use
the Search tab to find it.

Notice that it has the same purple-and-black texture. This is the placeholder for a
texture if a valid one cannot be found. This placeholder texture is used because Forge
cannot find a valid texture at the location you told it to look in. We will fix this in
Chapter 9.

98 | Chapter 8: New Item

Figure 8-1. New item in the inventory

Variations of the New Item
Now that you have finished the regular item, you can start modifying it to make it
more interesting. This section will provide you with some variations of the item that
can be made.

Enderman Spawner
The first variation of this item will spawn an enderman whenever you right-click with
it. Just like the block, it will use a method from the Item class to do so.

In your item class, add the code shown here under the code for the constructor, but
before the last bracket:

public ItemStack onItemRightClick(ItemStack stack,
 World world,
 EntityPlayer player) {

 EntityEnderman enderman = new EntityEnderman(world);
 enderman.setLocationAndAngles(player.posX, player.posY, player.posZ, 0, 0);

 world.spawnEntityInWorld(enderman);

 if (!player.capabilities.isCreativeMode) {
 stack.stackSize--;
 }

 return stack;
}

This method runs when an item is right-clicked with. It has parameters contain‐
ing the stack of items defined by ItemStack class, the world in which the item
was used defined by World class, and the player who used the item defined by
EntityPlayer class.

A variable is created to store an enderman in the world that the item was used in.

Variations of the New Item | 99

The enderman is moved to the player’s coordinates by calling the setLocationAn
dAngles method on the newly created variable.

The enderman is spawned into the world.

If the player is not in creative mode, the ItemStack in that player’s hand loses one
item. This allows our item to behave like all other items.

The ItemStack is returned, and the method sets the player’s held item to the
stack returned.

The class should now look like Example 8-2.

Example 8-2. Enderman spawner final code

package org.devoxx4kids.forge.mods;

import net.minecraft.creativetab.CreativeTabs;
import net.minecraft.entity.monster.EntityEnderman;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraft.item.Item;
import net.minecraft.item.ItemStack;
import net.minecraft.world.World;

public class EnderIngot extends Item {

 public EnderIngot() {
 super();
 this.setUnlocalizedName("ingotEnder");
 this.setCreativeTab(CreativeTabs.tabMaterials);
 }

 public ItemStack onItemRightClick(ItemStack stack,
 World world,
 EntityPlayer player) {

 EntityEnderman enderman = new EntityEnderman(world);
 enderman.setLocationAndAngles(player.posX, player.posY, player.posZ,
 0, 0);

 world.spawnEntityInWorld(enderman);

 if (!player.capabilities.isCreativeMode) {
 stack.stackSize--;
 }

 return stack;
 }

100 | Chapter 8: New Item

}

Now, you can test out this variation in Minecraft. Log in to your world and right-click
with an Ender Ingot. An enderman should spawn at your location. If it spawns but
goes away right after, make sure your game difficulty is not set to peaceful.

Edible Ingots
This next modification will make the item edible. Food items have a lot of customiza‐
tion options such as potion effects and wolf feeding.

To begin, change the extends statement in EnderIngot class from Item to ItemFood.
ItemFood is the superclass for all of the food items in the game. Here’s the updated
code:

extends ItemFood

You will get an error because ItemFood has constructors that can only take two or
three parameters. This mod will use the three-parameters constructor. The first
parameter is the number of hunger bars (1 =) healed. The second one is how much
saturation the food gives you. If your saturation is over 0, you do not get hungry. If
your saturation is 0, you can lose hunger. The last parameter, a boolean, determines
whether a wolf can eat this food item. The constructor that will be used here is shown
next. Replace the old constructor with the new one:

super(5, 1.0F, false);

This food item gives you 5 hunger points () when you eat it. It gives you a low
saturation level because if you actually ate metal, it would probably not be very filling.
It also cannot be used as wolf food because there are no wolves we know of that eat
metal.

Next, you can add some customization by adding the lines shown here. You don’t
need to add these, but if you do, they go in the constructor. Don’t put them before the
super constructor, because the super constructor needs to be first:

this.setPotionEffect(1, 60, 2, 0.5F);
this.setAlwaysEdible();

The food is given a potion effect. The method in this line has four parameters.

The first one is the potion ID; in this case, it is 1, which is the ID for speed. The
official Minecraft wiki includes a full list of potion IDs.

The second parameter is the duration of the effect in seconds. This effect will last
for a minute.

Variations of the New Item | 101

http://bit.ly/1xysepT

The third effect is the amplifier. The actual amplifier in the game is always one
more than the one in the code. For example, in this mod, the amplifier in the
code is 2, so in the game, the effect will be Speed III.

The last parameter is the chance of getting the effect. The chance is out of 1.0F,
and so 0.5F means this potion effect will be given to you half the time.

The food is set so that it can always be eaten, because a player might want to eat it
just for saturation or for the speed effect.

You can customize these two parts and the super constructor as much as you like,
which is the nice thing about making a food item.

Your class should now look like Example 8-3.

Example 8-3. Edible ingots final code

package org.devoxx4kids.forge.mods;

import net.minecraft.item.ItemFood;
import net.minecraft.creativetab.CreativeTabs;

public class EnderIngot extends ItemFood {

 public EnderIngot() {
 super(5, 1.0F, true);
 this.setPotionEffect(1, 60, 2, 0.5F);
 this.setAlwaysEdible();
 this.setUnlocalizedName("ingotEnder");
 this.setCreativeTab(CreativeTabs.tabMaterials);
 }
}

After importing everything, you can try out your mod in Minecraft. A picture of a
player eating an Ender Ingot is shown in Figure 8-2.

You might not get an effect the first time you eat it, so eat another one if you don’t.

102 | Chapter 8: New Item

Figure 8-2. A player eating an Ender Ingot

Item from Block
This last modification will make Enderium Blocks drop Ender Ingots when they are
broken. Note that you must have completed Chapter 7 in order for the code in this
section to work properly.

You won’t need to change anything in your item class, only in your block class. In
your block class, add the two methods shown here:

public Item getItemDropped(int i1, Random random, int i2)
{
 return Main.enderIngot;
}

public int quantityDropped(Random random)
{
 return random.nextInt(2) + 3;
}

This method gets the item that will be dropped. The parameters of this method
are not relevant in this case and so can be ignored.

The method returns Main.enderIngot, which is the item you just created. It is
using the variable enderIngot from the main file as the item.

This method returns the number of items to be dropped.

The method returns a random value between 0 and 2, plus 3. Because 3 is added
to the value, the value will range from 3 to 5. The value is recalculated every time.

Your final class should now look like Example 8-4.

Variations of the New Item | 103

Example 8-4. Item from block final code

package org.devoxx4kids.forge.mods;

import java.util.Random;

import net.minecraft.block.Block;
import net.minecraft.block.material.Material;
import net.minecraft.entity.item.EntityEnderEye;
import net.minecraft.entity.player.EntityPlayer;
import net.minecraft.item.Item;
import net.minecraft.util.ChatComponentText;
import net.minecraft.util.EnumChatFormatting;
import net.minecraft.world.World;

public class EnderBlock extends Block {

 public EnderBlock() {
 super(Material.iron);
 this.setBlockName("enderBlock");
 this.setCreativeTab(EnderStuff.ender_tab);
 this.setResistance(5.0F);
 this.setHardness(10.0F);
 this.setLightLevel(1.0F);
 }

 public Item getItemDropped(int i1, Random random, int i2)
 {
 return Main.enderIngot;
 }

 public int quantityDropped(Random random)
 {
 return random.nextInt(2) + 3;
 }
}

You are now ready to try out your mod in Minecraft. Launch the game, place some
Enderium Blocks, switch to survival mode, and break them with a pickaxe. You
should receive Ender Ingots.

Summary
In this chapter, you made an item to go along with your block from Chapter 7. Then
you learned about some variations of the item such as making it spawn an enderman,
making it edible, and making Enderium Blocks drop the item. If you want to experi‐
ment more with your new item, try making it launch an arrow when you right-click
with it, or teleport you to the End. In the next chapter, you will learn how to make
new crafting and smelting recipes, along with textures, to finish off your mod.

104 | Chapter 8: New Item

CHAPTER 9

Recipes and Textures

Minecraft has three types of recipes: crafting, smelting, and brewing. Each recipe
takes an input item and/or block and produces a new item or block. This chapter will
teach you how to make new recipes for existing items and blocks in Minecraft and
the new ones created earlier in this book. You will learn how to create different types
of recipes. You will also learn about ways to customize your recipes by changing the
placement, the experience, the items, and other factors.

If you recall, the new blocks that you created in Chapter 7 and the new items that you
created in Chapter 8 had a somewhat unappealing purple-and-black texture. This
chapter will also teach you how to make textures for them. You will learn about the
directory structure of Forge textures and how you can make cool-looking textures for
your mod.

Recipes
Forge provides support for all three types of recipes. A crafting recipe can be one of
two types: shaped or shapeless. Smelting and brewing recipes have only one type.

Crafting recipes require items and blocks to be placed on a 2 × 2 or 3 × 3 crafting grid
and in turn produce new items and blocks.

A shaped crafting recipe is a recipe that includes items in a certain pattern. For exam‐
ple, a piston has a shaped recipe. It has wood planks in the top row, an iron ingot in
the middle, a redstone dust underneath, and cobblestone in the rest of the spaces. The
recipe will not work unless you put these items in this exact order.

A shapeless crafting recipe is a bunch of items in the crafting table, in no specific
order. For example, the pumpkin pie recipe uses a pumpkin, sugar, and an egg, but

105

these items don’t have to be in a specific order for the recipe to work. That means you
can place them anywhere in the crafting table as long as you have one of each item.

A smelting recipe is made in a furnace. A furnace takes one item/block and turns it
into a different item/block, at the cost of an item to use for fuel. For example, iron
ingots are made by smelting iron ore in a furnace.

Brewing recipes create potions by adding various ingredients to water bottles or other
potions in a brewing stand. For example, adding blaze powder to an awkward potion
will give a potion of strength.

Shaped Crafting Recipe
A crafting table can be a 2 × 2 or 3 × 3 grid, depending on how it’s opened. All of the
recipes require only one line, but this one is the most complicated.

Let’s create a simple recipe that can be created in a 2 × 2 crafting table. For this, we’ll
craft four dirt blocks into a cobblestone. In the game, it will look like Figure 9-1.

Figure 9-1. Sample 2 × 2 crafting recipe picture

The dirt can be put anywhere in the crafting table as long as it’s 2 × 2, as shown in
Figure 9-2.

Figure 9-2. Another 2 × 2 crafting recipe picture

The code for this recipe is shown in Example 9-1 and should be added in the init()
method of your main file.

106 | Chapter 9: Recipes and Textures

Example 9-1. 2 × 2 crafting recipe code

GameRegistry.addRecipe(
 new ItemStack(Blocks.cobblestone),
 "dd",
 "dd",
 'd', Blocks.dirt);

The addRecipe() method of GameRegistry is used to add a shaped recipe.

The result of this recipe will be a stack of items identified by the ItemStack class
and contains a cobblestone block.

This is where the recipe is defined. It contains one to three string values in double
quotes, separated by commas. Each value defines the position of items and blocks
in one or more row(s).

If there is only one value specified, then that defines the placement of items and
blocks in any one row of the crafting table. In this case, the placement of items
and blocks in other rows does not matter.

If there are two values specified, then that defines the placement of items and
blocks in any two consecutive rows of the crafting table. These could be either
the top two or bottom two rows, and the placement of items and blocks in other
rows does not matter.

If there are three values, then the first value is the first row of the crafting table,
the second value is the second row, and the third value is the third row.

Items in each row can be placed in three columns, and each column is repre‐
sented as a letter. So each row can have up to three letters. If one letter is speci‐
fied, then that could be any column within that row. If two letters are specified,
then that defines the placement of items and blocks in any two consecutive col‐
umns of the crafting table for that row. In other words, items and blocks can be
placed in two leftmost or two rightmost columns. If three letters are specified,
then the first value is the first column, the second value is the second column,
and the third value is the third column.

In this case, there are two rows with two ds in each. As only two rows are defined,
they can be placed in any two rows of the crafting table. Two ds indicate only two
columns. So this will be a 2 × 2 crafting recipe.

The letter d will be assigned to an item/block in the next part of the line.

Recipes | 107

This line says that the letter d will represent a Dirt block. Notice that the d is in
single quotes; this means that the d is going to tell what item/block a letter repre‐
sents.

This recipe is using d as the letter, but you are free to choose any letter as long the
representation of the letter is defined within single quotes as well.

Run Minecraft by clicking the green button in Eclipse. Place a crafting table and try
out this recipe. Once you see Cobblestone, try different 2 × 2 positions in the crafting
table and you should see the same result.

Now, let’s expand this recipe to 3 × 3. We will create a recipe using the items we cre‐
ated in Chapter 8, with the result being the new block from Chapter 7. This recipe
will look like Figure 9-3.

Figure 9-3. Enderium Block crafting recipe

To add the recipe, add the line shown in Example 9-2 in the init() method in your
main file.

Example 9-2. Shaped recipe for Enderium Blocks

GameRegistry.addRecipe(
 new ItemStack(enderBlock),
 "iii",
 "iii",
 "iii",
 'i', enderIngot);

The addRecipe() method of GameRegistry is used to add a shaped recipe.

The result of this recipe will be a stack of items identified by the ItemStack class
and contains one of the new blocks you made. The new block you made is
referred to by its variable enderBlock, and the new item you made is referred to
as enderIngot.

There are three string values in double quotes, and so all three rows will be used
in this recipe. Each string value has three characters, and so all three columns will
be used in all the rows. That makes it a 3 × 3 recipe.

108 | Chapter 9: Recipes and Textures

All of the rows are using i, which will represent an Ender Ingot. So this recipe
will require an Ender Ingot in all three rows and all three columns.

This line assigns the letter i to Ender Ingots.

An important thing to remember here is that double quotes indicate rows of a craft‐
ing table and single quotes indicate item/block identification. Also, you should never
put more than three characters in a double-quote value here.

What if you want to make a recipe where you need multiple item(s)/block(s) as
input? What if it’s not required to place items in all the rows and/or columns? For
that, we will show another recipe for Enderium Blocks, but this one will have empty
spaces in it. This is illustrated in Figure 9-4.

Figure 9-4. Another Enderium Block crafting recipe

Note that four slots are empty here.

The code for this recipe is shown in Example 9-3, and like the other recipes, should
go in the init() method of your main file.

Example 9-3. Another shaped recipe for Enderium Blocks

GameRegistry.addRecipe(
 new ItemStack(enderBlock),
 "e e",
 " o ",
 "e e",
 'o', Blocks.obsidian,
 'e', Items.ender_eye);

The addRecipe method of GameRegistry is used to add a shaped recipe.

The result of this recipe will be a stack of items identified by the ItemStack class
and contains an Enderium Block.

This part has two letters: o and e. Each of these letters will represent a different
item. The spaces in between the es and next to the o are the empty slots in the
recipe.

Recipes | 109

The letter e is assigned to ender eyes, and the letter o is assigned to obsidian.

Make sure to import everything before launching the game.

These recipes are only examples, so you can feel free to customize them as necessary.

Shapeless Crafting Recipe
Now that you know how to make a shaped recipe, we can move on to shapeless rec‐
ipes. Shapeless recipes are just like shaped recipes except that they don’t require a cer‐
tain order of blocks/items.

The first shapeless recipe will create nine Ender Ingots from an Enderium Block. To
add a shapeless recipe, add the line shown in Example 9-4 to the init() method in
your main file.

Example 9-4. Shapeless recipe

GameRegistry.addShapelessRecipe(
 new ItemStack(enderIngot, 9),
 new ItemStack(enderBlock));

The addShapelessRecipe() method adds a shapeless recipe, just like the name
says.

The first parameter to this method is the output of the recipe. In this case, nine
Ender Ingots will be created.

The second parameter is the input to the recipe. The only ItemStack in this
recipe will be one Enderium Block.

ItemStack is used instead of a regular Item or Block so that you can specify
things like whether the item/block should be enchanted or whether it should be a
certain type of item/block. For example, you can’t refer to red wool using a regu‐
lar Block; you have to use an ItemStack for it.

In the game, the recipe looks like Figure 9-5.

Figure 9-5. Shapeless recipe picture

110 | Chapter 9: Recipes and Textures

The Enderium Block can be placed anywhere in the crafting table because this is a
shapeless recipe, as shown in Figure 9-6.

Figure 9-6. Shapeless recipe picture with block in different place

To make a shapeless recipe with more than one item in it, use something like
Example 9-5.

Example 9-5. Shapeless recipe with multiple items

GameRegistry.addShapelessRecipe(
 new ItemStack(enderIngot, 12),
 new ItemStack(enderBlock, 1),
 new ItemStack(Items.iron_ingot),
 new ItemStack(Items.gold_ingot));

The first part of this method is the same, except that the recipe gives 12 Ender
Ingots because you added an Iron Ingot and a Gold Ingot. This way, you can con‐
vert Iron Ingots and Gold Ingots into more Ender Ingots.

A shapeless recipe can have up to nine inputs, one for each slot on the crafting
table. Each input can be defined as a method parameter. In this case, three input
blocks are used.

The first one is similar to Example 9-4. After the ItemStack containing the
Enderium Block, another ItemStack containing an Iron Ingot is added.

One final ItemStack containing a Gold Ingot is added to the method.

The recipe should look like Figure 9-7.

Figure 9-7. Shapeless recipe with multiple items picture

Recipes | 111

Of course, you need to make sure these recipes produce what they are supposed to by
running Minecraft from Eclipse and placing the inputs in a crafting table as they are
required.

Again, the items can be put anywhere in the grid.

Smelting Recipe
Smelting recipes produce refined goods.

Smelting is very easy because it requires only one input and one output, plus another
parameter for experience. An example of a smelting recipe is shown in Example 9-6.

Example 9-6. New smelting recipe

GameRegistry.addSmelting(
 Items.ender_pearl,
 new ItemStack(enderIngot, 1),
 1.0F);

The addSmelting() method adds a new smelting recipe.

The first parameter is the input to the recipe and can be either an item or a block.
In this case, it is an Ender Pearl item.

The second parameter is the output of the recipe and has to be an ItemStack, so
you could make it give you more than one item per smelt.

The last parameter is the experience given from doing this smelting recipe.

Run Minecraft from Eclipse and verify that your recipe works by placing a furnace,
putting fuel in the bottom slot, and putting the input, Ender Pearls, in the top slot.
Fuel can be anything that burns, such as coal blocks or wood planks.

A furnace running with this recipe for a while would look like Figure 9-8.

Figure 9-8. New smelting recipe picture

Some examples of other smelting recipes include turning obsidian to bedrock, iron
ingot to gold ingot, and coal block to diamond.

112 | Chapter 9: Recipes and Textures

Brewing Recipe
The final type of recipe that we’ll look at is a brewing recipe. Brewing produces
potions that can be used to gain various helpful and harming effects. Brewing recipes
require only one line, but that one line requires a value that has many parts. The
brewing recipe used here will look like Figure 9-9.

Figure 9-9. New brewing recipe picture

The ingredient in this recipe is cake placed in the top slot, and it is brewing awkward
potions into other potions. This recipe is mostly about customization, such as potion
effect, tier, and duration. There are many effects that you can make, and a lot of them
are explained in the PotionHelper class. PotionHelper is a Minecraft class that con‐
tains string codes for each potion.

The PotionHelper class contains many different string values such as blazePowderEf
fect and gunpowderEffect, which contain string codes with lots of numbers and
operators like + and -.

In your main file’s init() method, add the code shown in Example 9-7.

Example 9-7. New brewing recipe code

Items.cake.setPotionEffect(PotionHelper.blazePowderEffect);

Make sure to import the PotionHelper class.

This line is adding the blaze powder effect to cake. What that means is that cake now
works the same way as blaze powder in a brewing stand. Blaze powder turns awkward
potions into strength potions, and now cake will do that as well. You can also try this
with the other string values, such as ghastTearEffect and speckledMelonEffect.
They all make different types of potions.

The blazePowderEffect string value is set to +0-1-2+3&4-4+13 in PotionHelper.
The numbers and operators are explained more fully later, and a full list is provided
in Table 9-2. If you do not know what a certain value does, such as &, then try experi‐
menting with it.

Recipes | 113

To customize your potion, you can add string values to make the potion a splash
potion, a higher tier, or an extended duration. You can also change the raw string
value, but that will be explained later. Some things you can add are shown in
Table 9-1. To add the values, we’ll use a Java + operator to add two strings together.
This is called concatenating strings in Java. The string values are shown in Table 9-1.

Table 9-1. Customizing your brewing recipe

Name of customization String value to add

Extended duration "+6"

Increased tier "+5"

Splash potion "+14"

For example, the potion effect from Example 9-7 with extended duration and splash
potion would look like Example 9-8.

Example 9-8. Brewing recipe with customizations

Items.cake.setPotionEffect(PotionHelper.blazePowderEffect
 +
 "+6"
 +
 "+14");

The Java + operator is used to add the string produced by PotionHelper.blaze
PowderEffect and the string value after it.

String from extended duration customization

Uses Java operator to concatenate the extended duration customization string
and the splash potion customization string

String for splash potion customization

The values shown in Table 9-1 are the common customizations that people use, but
there are other values, ranging from 0 to 15, that change the potion as well. Each of
these values does something special when you add or subtract it. A list of what each
value does is shown in Table 9-2.

114 | Chapter 9: Recipes and Textures

Table 9-2. Brewing stand customization string values list

Number Description

0 Potion effect

1 Potion effect

2 Potion effect

3 Potion effect

4 Ignored

5 Tier

6 Extended duration

7 Ignored

8 Ignored

9 Ignored

10 Ignored

11 Ignored

12 Ignored

13 Can become splash potion

14 Splash potion

15 Ignored

The first three values work together to form the potion effect. They use + as well as -,
so try experimenting with different combinations. To change the values, go into the
PotionHelper class and take the raw string values. You can change the operators on
those values. Also, the numbers 5, 6, 13, and 14 just need a + sign before them to be
activated. The number 5 will increase the tier by 1 when activated.

If, at any time while making brewing recipes, the brewing stand does not work, undo
what you modified. Some modifications may make the potion value invalid.

Recipes | 115

Textures
Next, you will learn how to make textures for your blocks and items. This is how you
change the default purple-and-black look of newly created blocks and items to a more
pleasant one.

Tools
Creating textures requires you to become familiar with a tool that can create or
manipulate images. For example, Windows comes with the Paint tool. Mac does not
bundle a prebuilt tool to create images, but several can be downloaded from the App
Store. A texture image has a resolution of 16 × 16 (i.e., 16 pixels in block height and
16 in block width). You should make your textures 16 × 16 pixels as well, unless you
want really detailed textures. If you decide to make a higher resolution, it must be a
multiple of 16, such as 32 × 32, 64 × 64, and so on.

There are several books dedicated to teaching image creation, so we will not attempt
to do that. Instead, this section will show you how to take an existing texture and
manipulate it.

A great tool for making Minecraft textures is GIMP, which you can get from its
downloads page. This book will not provide an overview or instructions on how to
use GIMP, as there are extensive tutorials for using the tool on the GIMP tutorials
page. GIMP is a good tool because it contains many ways to color/paint your images
and it also can zoom in enough to make the texture easily visible.

An easy way to make Minecraft textures is to import an existing texture and modify
it. An easy way to modify textures is by using the Colorify tool under the Colors
menu. This tool can tint an image with a certain color. GIMP’s Colorify tutorial pro‐
vides more details about this tool.

The Zoom tool is used to change the zoom level of your working image. You can
learn more about this tool by reviewing GIMP’s Zoom tutorial. This tool is important
because most Minecraft textures are 16 × 16 pixels, which is a very small size. This
tool allows you to zoom the image and work with it comfortably.

Some premade textures are available on Aditya’s GitHub page. To download the tex‐
tures, go to either the blocks/ or the items/ folder, and find enderBlock.png for the
block or enderIngot.png for the item. Click the correct file, and you should see a pic‐
ture of it. Right-click the picture and select Save Image As… to download it onto your
computer. Then, you can move it to the correct folder, which will be explained later in
this chapter. Don’t change the filename while saving it.

These textures are based on a redstone block and an iron ingot. If you are making
your own textures, make sure that for the item part, everything that is not the item is

116 | Chapter 9: Recipes and Textures

http://www.gimp.org/downloads/
http://www.gimp.org/tutorials/
http://www.gimp.org/tutorials/
http://docs.gimp.org/en/plug-in-colorify.html
http://docs.gimp.org/en/gimp-tool-zoom.html
http://bit.ly/1xguLEJ

transparent. If you make it white instead of transparent, the item will look like a
white square with the actual item inside it.

You cannot make transparency with the default imaging tools, but GIMP has a way to
make transparent colors. Select the area you want to color transparent, usually the
white area around the item. To select the area, you can use the Fuzzy Select tool,
which is shown as . Click the white area, and it will select everything that is the
same color as the area you clicked. Then go to the Colors menu and select “Color to
Alpha”. This will make your entire selection transparent.

Images
In order for Forge to pick up your textures and make them visible to Minecraft, they
need to be placed in a specific directory. Let’s create that directory:

1. Using Windows Explorer on Windows or Finder on Mac, navigate to the folder
in which the lang/ directory was created and the en_US.lang file was added. This
was done in “Naming Your Block” on page 88. The directory should be called
mymods/. Make sure it is all lowercase letters, because Forge looks for the direc‐
tory name you give in lowercase letters.
This name is important because it is the first part of the texture names, like
mymods:enderBlock for the block in “Creating the Block Class” on page 85 and
mymods:enderIngot for the item in “Creating the Item Class” on page 97. This
tells Forge that the textures will be located in a folder called textures/ that is inside
this mymods/ folder.

2. In the mymods/ folder, create a folder called textures/. Forge will look here for any
textures that start with mymods:.

3. In the textures/ folder, create two new folders called blocks/ and items/. These will
store block and item textures, respectively.

4. In the blocks/ folder, put your block textures, and in the items/ folder, put your
item textures.

If you downloaded the textures from GitHub, enderBlock.png goes
in the blocks/ folder, and enderIngot.png goes in the items/ folder.

Once you put the textures in the correct folder, rename the textures to the name you
gave to GameRegistry when you registered the block/item. For example, for the
block, the texture name is enderBlock, because that was the second parameter (the
name) you gave of the registerBlock() method of GameRegistry. Rename the block

Textures | 117

texture image to enderBlock and the item texture image to enderIngot. Minecraft uses
only files with the .png extension, so make sure the texture files are .png files and
not .jpeg or .gif or something else.

Once you have made all of these folders and files, your src/main/resources folder
should look like Figure 9-10.

Figure 9-10. Directory structure with textures

Files
Now that you have made the texture image, we will need to make some more files.
There are four of these files:

Blockstate file
Tells Forge which block model to use, depending on which direction the block
was placed in

Block model file
Defines the shape of the block, as well as the texture for each side

ItemBlock model file
Defines how the block looks when it is in the player’s inventory

Item model file
Tells Forge what the item should look like

First, you will need to make some new directories. In the src/main/resources/assets/
mymods directory, make two new directories called blockstates and models. In the
models directory, make two more directories, called block and item. The blockstates
directory will store the blockstate file, the models/block directory will store the block
model, and models/item will store the ItemBlock and item model files. Your src/main/
resources folder should now look like Figure 9-11.

118 | Chapter 9: Recipes and Textures

Figure 9-11. Directory structure with blockstates and models folders

First, we will make the blockstate file. Go to your blockstates directory and make a
new text document without a name. Add the text shown in Example 9-9.

Example 9-9. Blockstate file text

{
 "variants": {
 "normal": { "model": "mymods:enderBlock" }
 }
}

"variants" is used to tell Forge which model to use based on the block direction.
Here, the only model is the enderBlock, which you will make later. This model
will be used regardless of the block direction, but other blocks may have more
than one for different directions. For example, a torch has a straight model if it is
on the ground, but a different model on the wall.

The word normal shows that this texture is for any direction. The words inside
the brackets show that the model used will be in the models/block directory, and
that it will be called enderBlock.

Save this file as enderBlock.json, because Forge uses JSON files for blockstates and
models. The name has to be whatever you gave as the second parameter of GameRegis
try’s registerBlock() when you registered your new block.

JSON files are like text files, and end with the .json extension. They
are a simple and intuitive way to organize data.

Textures | 119

Now that the blockstate file is done, we need to make the model files. Go to your
models/block directory and make a new text document. Just like before, don’t save it
yet. In the new text file, add the code shown in Example 9-10.

Example 9-10. Block model file text

{
 "parent": "block/cube",
 "textures": {
 "down": "mymods:blocks/enderBlock",
 "up": "mymods:blocks/enderBlock",
 "north": "mymods:blocks/enderBlock",
 "south": "mymods:blocks/enderBlock",
 "west": "mymods:blocks/enderBlock",
 "east": "mymods:blocks/enderBlock",
 "particle": "mymods:blocks/enderBlock"
 }
}

This line tells Forge that this block will be cube-shaped and the same size as a
normal block.

The textures given here are for all six faces, one each for down, up, north, south,
west, and east direction. There is one more texture for particles as well. If you
want, you can use other textures for the different faces. You could make more
texture images and use them here to make the block look cooler.

Save this file as enderBlock.json, just like the file before.

The last file you need to make for the block is the ItemBlock model file. This file is
the one that shows how the block will look in the inventory and when it is dropped
on the ground. Go to your models/item directory and make a new text file. In the file,
add the text shown in Example 9-11.

Example 9-11. ItemBlock model file text

{
 "parent": "mymods:block.enderBlock",
 "display": {
 "thirdperson": {
 "rotation": [10, -45, 170],
 "translation": [0, 1.5, -2.75],
 "scale": [0.375, 0.375, 0.375]
 }
 }
}

120 | Chapter 9: Recipes and Textures

This line makes the ItemBlock look exactly like the actual block.

This part of the text, including all the indented text, makes the item the right size
and location.

The item is rotated so that it looks like other ItemBlocks in third-person view.

The item is moved to the player’s hand position.

The item is scaled down in size so that it is smaller than the actual block.

Save this file as—you guessed it—enderBlock.json.

Now we will make the last file, which is the item model file. Go to your models/item
directory and make a new text file. Add in the text shown in Example 9-12.

Example 9-12. Item model file text

{
 "parent": "builtin/generated",
 "textures": {
 "layer0": "mymods:items/enderIngot"
 },
 "display": {
 "thirdperson": {
 "rotation": [-90, 0, 0],
 "translation": [0, 1, -3],
 "scale": [0.55, 0.55, 0.55]
 },
 "firstperson": {
 "rotation": [0, -135, 25],
 "translation": [0, 4, 2],
 "scale": [1.7, 1.7, 1.7]
 }
 }
}

This tells Forge that this item model is like any other normal item model.

The texture used here is in the textures/items directory and is called enderIngot.

These lines tweak the item appearance to make it look better.

Save this file as enderIngot.json, because as with the block, you have to give it the
name that you gave to GameRegistry.

Your src/main/resources/ directory should now look like Figure 9-12.

Textures | 121

Figure 9-12. Directory structure with blockstate, model, texture, and lang file

Register and Verify the Textures
Now you are almost done making your new textures. The only thing left is to add
some code into the init() method of your main file. The code is shown in
Example 9-13, and is used to tell Forge which models are used for rendering the item/
block in the inventory.

Example 9-13. Registering inventory item models

Item enderBlockItem = GameRegistry.findItem("mymods", "enderBlock");
ModelResourceLocation enderBlockModel =
 new ModelResourceLocation("mymods:enderBlock", "inventory");
Minecraft.getMinecraft().getRenderItem().getItemModelMesher()
 .register(enderBlockItem, 0, enderBlockModel);

Item enderIngotItem = GameRegistry.findItem("mymods", "enderIngot");
ModelResourceLocation enderIngotModel =
 new ModelResourceLocation("mymods:enderIngot", "inventory");
Minecraft.getMinecraft().getRenderItem().getItemModelMesher()
 .register(enderIngotItem, 0, enderIngotModel);

This line finds the ItemBlock for the new block by using its name as given to
GameRegistry.

A new ModelResourceLocation is made to store the location of the ItemBlock
model file.

122 | Chapter 9: Recipes and Textures

The ItemBlock model file is added to Minecraft’s item rendering system so that it
is rendered properly.

The same thing is done for the new item.

Make sure to import everything, and once you do, you are done making your tex‐
tures!

The block and item with the texture on the GitHub link look like Figure 9-13. The
item is in an item frame so you can see it easily.

Figure 9-13. Block and item textures in the game

If you want, to make cool-looking textures, you can download textures from the
Internet and scale them down to a good size. That way, if you want to make a mod
similar to an existing one, you can download the textures instead of making them
from scratch.

Summary
In this chapter, you learned about how to make the finishing touches to your mod:
recipes and textures. First, you started with recipes, and you learned there are shaped,
shapeless, smelting, and brewing recipes. You also learned how to make each kind of
recipe. Next, you learned about textures and how Forge has a process to put texture
images in the right place. Feel free to create different recipes or modify existing tex‐
tures to make your mods more appealing.

In the next and final chapter, you will learn about how you can share your mods and
install them on your Minecraft client.

Summary | 123

CHAPTER 10

Sharing Mods

The previous chapters showed how to create a wide variety of mods. Now that you
know how to make mods, it’s time to share them with your friends. This can be easily
done by packaging these mods into one JAR file. This chapter will show how to share
Forge mods. Then, you will learn how to install Minecraft Forge onto your regular
Minecraft client so that you can install your mods there. Making the JAR file requires
only one command, and installing Forge is also easy. Consequently, this chapter will
be short, but useful if you want to share your mods with your friends.

Building the JAR File
Any mods created using Forge need to be properly packaged before they can be
shared. This allows Forge to load the mods correctly. Proper packaging is required no
matter what the mod is like.

Fortunately, Forge comes with a simple command to package your mods. Open up
Command Prompt on Windows or Terminal on Mac, and go to your Forge folder. In
that folder, run the command gradlew build if you are on a Windows computer
or ./gradlew build if you are on a Mac computer. This command will give the out‐
put shown in Example 10-1.

Example 10-1. Gradlew build command output

 Powered By MCP:
 http://mcp.ocean-labs.de/
 Searge, ProfMobius, Fesh0r,
 R4wk, ZeuX, IngisKahn, bspkrs
 MCP Data version : unknown

125

:compileApiJava UP-TO-DATE
:processApiResources UP-TO-DATE
:apiClasses UP-TO-DATE
:sourceMainJava
:compileJava
warning: [options] bootstrap class path not set in conjunction with -source 1.6
Note: Recompile with -Xlint:deprecation for details.
Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
1 warning
:processResources UP-TO-DATE
:classes
:jar
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:extractMcpData UP-TO-DATE
:getVersionJson
:extractUserDev UP-TO-DATE
:genSrgs SKIPPED
:reobf
:assemble
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

The exact output of the command may differ based upon your exact JDK version.

This will package your mod into a JAR file, using every single new file you have
made. If you don’t want to include some of the files in the mod, either delete them or
install a new Eclipse and create only the files you want there.

After that is done, navigate to the build\libs directory in your Forge folder. You
should see a JAR file called modid-1.0.jar. This is the default filename generated by
Forge. Change this name to whatever you want and share it with your friends.

You can share your JAR file in many ways. You can use email, GitHub, Skype, or any
other service that allows you to transfer or store files.

Installing Minecraft Forge on Your Client
Now that you have a mod JAR file, you need a place to install it. This place will be
made by installing Minecraft Forge on your client. Go to the Minecraft Forge down‐
loads page to download the installer.

There will be a box like the one shown in Figure 1-1. Change the value to 1.8. The
page should now look like the one shown in Figure 1-2.

126 | Chapter 10: Sharing Mods

http://files.minecraftforge.net/
http://files.minecraftforge.net/

The latest version of Forge at the time of of writing this book is 1.8.
This version might change by the time this book is published or
you are reading this book. So select the appropriate version accord‐
ingly.

Scroll down on the page until you reach the 1.8 Downloads section. In that section,
find the version of Forge you downloaded at the beginning of the book. Instead of
clicking Src, click Installer-Win if you are on a Windows computer or Installer if you
are on a Mac computer. This will lead you to an AdFly page. Wait for five seconds and
then click Skip Ad in the upper-right corner to download the file.

This file is the one that will be used to install Minecraft Forge on your Minecraft cli‐
ent. It will install Forge libraries that are required to run mods, and will also create a
new profile on your launcher for this modded version.

Once it is downloaded, run the installer by double-clicking the file. Select Install Cli‐
ent, as shown in Figure 10-1.

Figure 10-1. Installing Forge to your client

After a few minutes, the program will finish and you will have successfully installed
Minecraft Forge. When you launch your Minecraft launcher, use the drop-down
menu in the lower-left corner to switch to the Forge profile, as shown in Figure 10-2.
Then, click the Play button to launch Minecraft with whatever mods you have
installed.

Figure 10-2. Switching to the Forge profile

Installing Minecraft Forge on Your Client | 127

To add mods to your game, first download the mod from the Internet. Then, you will
have to navigate to a certain directory depending on whether you are on a Windows
or a Mac computer.

If you are on a Windows computer, put it in the AppData\Roaming\.minecraft\mods
directory.

If you are on a Mac computer, put it in the Library\Application Support\minecraft
\mods directory.

If you cannot find either of these folders, open up your Minecraft launcher. Click the
Edit Profile button in the lower-left corner. A new window will pop up. Click the
Open Game Dir button in the lower-right corner. This will take you to the correct
folder.

Copy and paste your mod into the folder that you navigated to. Then, run Minecraft
using the Forge profile. If your mod doesn’t work, then it is either conflicting with
another mod or you didn’t install other mods required for the mod to work. If that is
the case, refer to the mod’s page for installation instructions.

Cool Mods That You Can Install
Now that you know how to install mods to Minecraft, this section will give you a list
of cool mods that you can install. They are shown in Table 10-1. The mod’s name,
description, and download link are provided. The links might be out of date, so make
sure you always look for a newer link if the one provided does not seem updated.

Table 10-1. Cool mods

Name Description Download link

Thaumcraft Thaumcraft is a mod about magic, where you can draw magic from natural sources
and reshape it to perform miracles. You can research items, blocks, and entities
using a Thaumometer, and then combine the aspects you get to discover new
ways to use magic.

http://bit.ly/1GUbDwk

IndustrialCraft2 This mod is more on the tech side of things, adding machines like Miners and Mass
Fabricators to automate normal Minecraft tasks like mining and gathering
resources.

http://bit.ly/1BmyixA

Buildcraft Buildcraft is another tech mod, but is used more for different things than
IndustrialCraft2. It includes quarries to mine out large areas, automated crafting
tables so you can build huge factories, and pipes for versatile item transport.

http://bit.ly/1GUbNE1

128 | Chapter 10: Sharing Mods

http://bit.ly/1GUbDwk
http://bit.ly/1BmyixA
http://bit.ly/1GUbNE1

Name Description Download link

Forestry for
Minecraft

Forestry for Minecraft is a mod that mixes tech and a bit of other aspects together.
You can make machines powered by engines, and you can also breed trees or bees
at the same time. If you want a mod that is about technology, but with some
other things mixed in, Forestry for Minecraft is a good mod to try out. It also has
some add-ons, downloaded separately, that add more trees, more bees, and other
things.

http://bit.ly/1NfECMV

Pixelmon Pixelmon is basically Pokémon in Minecraft. You can get a starter Pokémon, train it
against other wild Pokémon, and become the best trainer around. You can also go
on adventures to find legendary Pokémon or shrines to other Pokémon.

http://bit.ly/1y6eQUC

Lycanite’s Mobs Lycanite’s Mobs adds a whole bunch of cool mobs that spawn all over the place.
You can kill the mobs to get items or find underwater temples to get magical
scepters. These scepters can do lots of cool stuff, like summoning lightning or
shooting out fireballs.

http://bit.ly/1HDCOvq

Millénaire Millénaire makes villages that are vastly better than regular NPC villages. While
the only thing that regular villagers can do is trade things for emeralds, Millénaire
villagers can build giant structures, trade for a form of currency called deniers, and
follow you around to kill any hostile mobs they see. They even have cultures, such
as Japanese, Hindu, and Mayan.

http://bit.ly/1ESVhUA

As stated before, some of these mods might conflict with other mods. Also, some of
them have add-ons that you can download to increase their value. For example, the
Extra Bees add-on for Forestry for Minecraft adds tons of different bees that can pro‐
duce copper, rubber, and many other items.

Summary
In this chapter, you learned how to package your mod into a JAR file with a simple
command. Then, you learned where your mods folder is. You can put any number of
mods in the folder, but beware of lag. Also, some mods might conflict with each
other.

This chapter ends the modding part of this book. After this will be a few appendixes
with useful information to learn more. Now that you know how to make a mod and
share it, the only limit is your imagination.

Happy modding!

Summary | 129

http://bit.ly/1NfECMV
http://bit.ly/1y6eQUC
http://bit.ly/1HDCOvq
http://bit.ly/1ESVhUA

APPENDIX A

What Is Minecraft?

This appendix is an introduction to the game of Minecraft, and is aimed toward read‐
ers who have not played the game. If you do play the game, you can skip this appen‐
dix, because you most likely know the content of this chapter well. If not, you may
want to read it so you know what the game is all about. All these topics are explained
in greater detail at the official Minecraft wiki, but this is a more concise introduction
to the game. The wiki is typically the biggest source of information for Minecrafters,
players involved in the game of Minecraft.

So, are you ready to be a Minecrafter?

Minecraft is a 3D game about breaking and placing blocks to obtain materials. These
materials can then be used to build or craft new items and tools. These, in turn, can be
used to harvest more types of blocks. The game also contains entities, which are
dynamic moving objects in Minecraft (e.g., cows, pigs, and horses). Entities that are
hostile are called monsters (e.g., zombies and creepers). Bosses are monsters that are
very hard to defeat.

Other activities in the game include exploration, gathering resources, crafting, and
combat.

Players can travel to different worlds, or dimensions in gamespeak. The game contains
three dimensions:

• The Overworld
• The Nether
• The End

The Overworld is like a normal wilderness on Earth. It has grass, trees, villages, and
other normal things you might find out in nature. The Nether is like a big cave sys‐

131

http://minecraft.gamepedia.com/Minecraft_Wiki

tem, and it is covered with lava and fire. Lots of hostile mobs spawn there, which
makes it that much more dangerous. The End is the final dimension, and it is like a
floating island. The island is made of End Stone and has obsidian pillars on top. This
dimension contains one of Minecraft’s bosses, the Ender Dragon.

The game is played on a map, which is a certain arrangement of blocks that defines
how the world looks. When a world is generated, it creates a seed that defines what
the map looks like. The seed can also be specified during world creation. If the same
seed is used for two worlds, they will look exactly the same. You can also download
maps made by other people and play on them.

Each player has his own inventory, which contains his blocks, items, and armor.

An important part to understand about Minecraft is that there is no “finishing” the
game. The player can move between dimensions and build structures however she
wants.

Downloading the Game and Registering an Account
Minecraft was written by Markus “Notch” Persson and is now maintained by Mojang.
In order to download the game, you need to create an account on Mojang. If you
already have an account, you can skip this step. You can use your Mojang account to
log in to Minecraft. To register, go to http://minecraft.net/. Click the orange button on
the right that says Get Minecraft to go to the registration page, as shown in
Figure A-1.

Registering an account requires you to enter your email and a password. Click Create
Account to continue, as shown in Figure A-2.

132 | Appendix A: What Is Minecraft?

http://minecraft.net/

Figure A-1. Registering a Mojang account

Figure A-2. Minecraft registration page

What Is Minecraft? | 133

Follow the prompts that appear until you get to the terms and conditions. Look over
them and agree to them to continue. You will then reach a page that prompts you to
buy the game. The cost is $26.95. You must buy the game to try the samples explained
in this book. The buying page is shown in Figure A-3. Enter all the required informa‐
tion and buy the game to continue.

Figure A-3. Buying a Minecraft account

When you buy an account, you are making your account premium. You can have an
account that is not premium, but you cannot use it to log into the game. Basically,
you cannot do very much with a nonpremium account. After making the account
premium, you will see a download page. This page is for downloading the launcher,
which is the program that launches the game. The download page will look different
for each operating system. A Windows version of the page is shown in Figure A-4.

134 | Appendix A: What Is Minecraft?

Figure A-4. Downloading the launcher

You can click the “Show all platforms” button to see download options for each oper‐
ating system. Download the one you need, and run it by double-clicking its icon. You
should get a screen similar to Figure A-5.

Figure A-5. Launcher login

Enter the account credentials used to purchase the game and click Log In.

Starting the Game
Starting the game takes you to the launcher screen, shown in Figure A-6, which
allows you to launch the game. You can make profiles, which are different ways to
launch the game. For example, you can have one profile for the newest version and
one for the older version. Click New Profile to make a new profile.

What Is Minecraft? | 135

Figure A-6. Launcher screen

Click Play to launch the game. If the launching works, you should see a window pop
up with a MOJANG logo inside it. After a few seconds, a new screen will pop up that
looks like Figure A-7. This is the main game screen.

Figure A-7. Minecraft game screen

136 | Appendix A: What Is Minecraft?

The game has a client and a server component. The server stores the world and its
entities, items, and blocks. This allows the game to be played in singleplayer mode,
where a player connects to a server using a client and plays the game. Alternatively,
multiple players, using different clients across different machines, can connect to a
server and play with each other collaboratively. This is called multiplayer mode. An
internal server is automatically started for singleplayer mode. No other players can
join this server. A server has to be started externally for multiplayer mode.

To start the game in singleplayer mode, click Singleplayer to get to the singleplayer
screen shown in Figure A-8. By default, no worlds exist, so one needs to be created
before you can play.

Figure A-8. Minecraft singleplayer screen

Click Create New World to create a new world from the screen shown in Figure A-9.

What Is Minecraft? | 137

Figure A-9. Create a new world

You can change the world name and game mode here.

The world name can be changed by clicking the New World box. Type the name of
your new world here.

The game can be played in five game modes:

Survival
Requires players to acquire resources and gain experience points, and maintain
their health and hunger. Players die when they run out of health. If a player is in
survival, creative, or spectator mode, the player will respawn.

Creative
Players have an unlimited supply of resources, the ability to fly, and no health or
hunger. This means the player never dies in the game.

Hardcore
Same as survival, respawning is disabled and so the map is deleted upon the play‐
er’s death. The game is also set to a difficulty of hard, so mobs do a lot more dam‐
age and the player loses hunger very fast.

Spectator
Same as creative, but you have a survival inventory and are invisible. You can also
pass through blocks like a ghost. You can also see the world from a mob’s per‐
spective. You cannot start a world in spectator mode; it has to be achieved in the
game.

138 | Appendix A: What Is Minecraft?

Adventure
The same as survival mode, but the player cannot break any blocks besides weak
blocks like glass and glowstone.

To change your world’s game mode, click the Game Mode button, shown in
Figure A-10. Creative mode is the easiest game mode to start with.

Figure A-10. Change Minecraft game mode

The button will change its text to match the game mode that is chosen.

You can also click More World Options… to configure more options about your
world. These include whether there are cheats, a bonus chest (with materials to start
you off), and more.

The game allows modifications (known as mods) that can change certain aspects of
how the game was originally written. These mods can add content to the game to
alter gameplay. For example, new blocks, mobs, and abilities of player can be added.
This entire book is about creating these mods.

It’s very common to have a server run with multiple mods. There are almost an infin‐
ite number of mods someone could do to make Minecraft a more amusing game to
play. There is no official API to create these mods, but there are several third-party
vendors that provide that capability; Minecraft Forge is one such API. The ability to
write mods and alter the gameplay gives players more control over the game and gets
them more excited.

The remainder of this chapter explains key components of the game.

Blocks
Minecraft worlds are made entirely of blocks. Some blocks are realistic, like wood,
dirt, mycelium, and pumpkins. On the other hand, some blocks are fictional, like soul
sand, nether brick, end stone, and block of diamond. If Minecraft was like reality,
each block would be one cubic meter. Because each block is so big, Minecraft worlds
can be bigger than Earth. To place a block, right-click the ground. To destroy a block,
left-click the block you want to destroy. Some blocks have special capabilities like cre‐
ating light, blowing up, and being transparent. Usually, grass is at the top of all Mine‐
craft worlds, with dirt and stone underneath. Some blocks, called ores, can be found
scattered around the stone. These blocks range from coal to diamonds to emeralds.

What Is Minecraft? | 139

Not all blocks are 1 × 1 × 1 meters. Some blocks, called slabs, are half the size of nor‐
mal blocks because they are half as tall. Other blocks, like trapdoors and carpets, are
even shorter. Some small blocks have special capabilities. Some examples include
signs (which can be written on), ladders (which can be climbed on), and fences
(which normally can’t be jumped over).

Figure A-11 shows some different types of blocks.

Figure A-11. Different types of blocks

The blue background is made of lapis lazuli blocks. The blocks in the top row are all
types of wood. The blocks in the bottom are all variants of stone. Note that this exam‐
ple does not show all of the possible Minecraft blocks.

Items
Items in Minecraft are based on real-world items: diamonds, seeds, glass bottles, and
more. Items cannot be placed, but you can interact with them in several ways:

• Some items, like clocks and compasses, change texture depending on the time or
where you are facing, respectively.

• Other items, like apples and pumpkin pie, can be eaten to restore hunger so your
player doesn’t die of starvation.

• Some items, like seeds and potatoes, can be planted on dirt to provide more of its
type.

Figure A-12 shows different items. Again, the blue background is made of lapis lazuli
blocks.

140 | Appendix A: What Is Minecraft?

Figure A-12. Different types of items

The items shown in Figure A-12 include (in order from left to right) diamond, arrow,
compass, wheat, cake, and lava bucket. Again, this is just a small sampling of the
items in Minecraft—there are many more.

Transforming Blocks and Items
In Minecraft, there are many ways to transform items/blocks into other items/blocks.
The main methods to achieve this are crafting, smelting, and brewing.

Crafting
The most common way to transform items into other items is called crafting. To craft
an item or block, you must first craft a crafting table. When you open up your inven‐
tory, you will see a 2 × 2 grid. This is called the minicrafting grid, as shown in
Figure A-13.

Figure A-13. Minicrafting grid

Minecraft has a predefined set of crafting recipes. To craft an item, put the ingredients
defined by the recipe in the grid and a result item will appear on the right. For exam‐
ple, to craft a crafting table, place a wood log in any of the slots, as shown in
Figure A-14. This will give you four wood planks that can then be added to your
inventory.

What Is Minecraft? | 141

Figure A-14. Crafting wooden planks

Fill up the minicrafting grid with planks, as shown in Figure A-15, to receive one
crafting table.

Figure A-15. Crafting a crafting table

If you change the placement of the items, you may not be able to craft the item you
are looking to craft. For this reason, it is important to know how to craft basic items
such as a crafting table. The crafting table can be right-clicked to open a GUI that
contains a grid like the minicrafting grid in your inventory. The only difference is that
the crafting table grid is 3 × 3, as shown in Figure A-16, while the minicrafting grid is
2 × 2. The crafting table unlocks many new recipes such as chests, pistons, and oth‐
ers.

Figure A-16. Crafting table GUI

Another important thing about crafting is that some recipes are shaped, so you have
to put items in a certain way, but some items are shapeless, so you can put certain
items in any way you want. For example, the recipe for a chest is shaped, but the
recipe for wooden planks is shapeless.

All crafting recipes are explained in detail on the Crafting page of the official Mine‐
craft wiki.

142 | Appendix A: What Is Minecraft?

http://minecraft.gamepedia.com/Crafting
http://minecraft.gamepedia.com/Crafting

Smelting
The next way to turn items into other items is called smelting. Smelting an item can
be achieved through crafting a furnace by placing cobblestone, as shown in
Figure A-17. Smelting takes 10 seconds to finish, and the smelted item is then added
to your inventory.

Figure A-17. Crafting a furnace

Placing the furnace in your world and right-clicking it will open the GUI shown in
Figure A-18.

Figure A-18. The furnace GUI

This GUI has four parts:

• The top slot is for the item/block that you want to smelt.
• The bottom slot is for fuel that will power the furnace.
• The slot on the right will contain the smelted product once the smelting is done.
• The arrow shows the smelting progress.

Some examples of items that can be smelted are as follows:

• Sand into glass
• Raw chicken into cooked chicken
• Iron ore into iron ingot

What Is Minecraft? | 143

Some examples of fuel are as follows:

• Coal (8 operations)
• Wooden plank (1.5 operations)
• Sapling (0.5 operations)

Figure A-19 shows how a raw chicken can be smelted into cooked chicken.

Figure A-19. Smelting raw chicken into cooked chicken

All smelting recipes are explained in detail on the Smelting page of the official Mine‐
craft wiki.

Brewing
The last main way to transform items is called brewing, which lets you create potions.
Brewing takes 20 seconds to finish. To brew potions, you must first craft a brewing
stand using cobblestone and a blaze rod, as shown in Figure A-20.

Figure A-20. Crafting a brewing stand

Placing the brewing stand in your world and right-clicking it will open a GUI, as
shown in Figure A-21.

Figure A-21. Brewing stand GUI

144 | Appendix A: What Is Minecraft?

http://minecraft.gamepedia.com/Smelting
http://minecraft.gamepedia.com/Smelting

The top slot is for an ingredient, and the bottom slot is for water bottles or potions
that you are going to modify. As with the furnace, the arrow shows the progress. The
bubbles on the left are just for decoration. The most important potion is called an
awkward potion. You can create this potion by putting water bottles in the bottom
slots and a nether wart in the top slot, as shown in Figure A-22.

Figure A-22. Creating awkward potions

From this potion, you can create many other potions. For example, using a golden
carrot in an awkward potion gives you a potion of night vision. Also, using glowstone
dust in a potion will increase its potency, while using redstone will increase its dura‐
tion. The effects given by glowstone and redstone do not increase when you use
more, and you cannot have increased potency and increased duration at the same
time. Some more examples of potions you can brew are as follows:

• Magma cream on an awkward potion for Fire Resistance
• Blaze powder on an awkward potion for Strength
• A fermented spider eye on a water bottle for Weakness

You can put one, two, or three water bottles/potions in the bottom slots—it doesn’t
matter. All of them will have the same effect.

All brewing recipes are explained in detail on the Brewing page of the official Mine‐
craft wiki.

Mobs
Mobs in Minecraft are like animals in the real world. For example, cows, sheep, pigs,
and chickens exist in the game, just as in real life. There are also fictional characters
like creepers, zombies, and skeletons. Mobs have artificial intelligence (AI), so they
can move around. Different mobs also drop different items when killed. Some mobs
can do special things like jump over gaps or shoot arrows using bows. Some mobs
can even fly and shoot explosives!

Figure A-23 shows some examples of mobs.

What Is Minecraft? | 145

http://minecraft.gamepedia.com/Brewing
http://minecraft.gamepedia.com/Brewing

Figure A-23. Examples of mobs

Mobs can be spawned with spawn eggs. Spawn eggs are items and cannot be legiti‐
mately obtained in any game modes other than creative. Each mob’s spawn egg has
different colors. Otherwise, they all look the same. Also, some mobs are passive,
meaning they do not attack you as the player, but some mobs are hostile, meaning
they will try to attack you. Some mobs are in the middle, because they are neutral.
They will attack you only if you provoke them.

Tools
Tools are items that can break certain blocks or do certain things. There are five main
types of tools: swords, pickaxes, axes, shovels, and hoes. There are also some other
tools: fishing rods, shears, bows, and flint and steel. The main tools can be made of
five materials: gold, wood, stone, iron, and diamond. These are in order from worst
to best. The other tools do not have tiers. Gold is not good because it has very low
durability, even though it mines fast. Gold tools have only 33 uses. Diamond, on the
other hand, mines only a little bit slower, but it has much more durability—about
1,500 uses.

Different tools do different things. For example, swords let you do more damage
against mobs than using your fist; hoes let you till dirt for farming; and flint and steel
can place blocks of fire and ignite TNT. Figure A-24 shows some of the Minecraft
tools.

146 | Appendix A: What Is Minecraft?

Figure A-24. Minecraft tools

The tools are all in the Diamond tier. Their names are written above them on Sign
blocks.

Commands
Another important part of Minecraft is commands. Commands can be typed into the
game to do special things. For example, the /summon command summons any mob
you want it to, wherever you want it to. Another command is /help, which can show
you every command in the game and what it does, as shown in Figure A-25.

Figure A-25. Output from the /help command

By default, to type in a command, you have to press /. This will open up a bar at the
bottom of your screen called the chat bar. You can also open this bar by pressing T.
Type your command into this bar, and then press Enter to execute it. If the command
is not recognized by the game, the following message will be printed:

Unknown command. Try /help for a list of commands

When creating a world, if you click the More World Options… button in the middle
of the screen, you will be taken to a new screen with more options for your world. In
this new screen, there will be a button saying Allow Cheats: OFF if you are in survival
or hardcore mode, or Allow Cheats: ON if you are in creative mode. Click this button
to toggle between cheats and no cheats. If cheats are on, you will have commands

What Is Minecraft? | 147

like /gamemode to change your game mode and /give to give you items. Without
cheats, you will have only some basic commands like /help.

Summary
In this appendix, you learned about the basics of Minecraft. You learned how it has a
client and server component, and how they are different. You learned about blocks,
items, and mobs, and how they are used. You also learned about tools and commands
and what they do. Minecraft includes many other things, like biomes, redstone,
enchanting, and farming. You can read about these at the official Minecraft wiki. This
appendix just provides a basic introduction of the game.

148 | Appendix A: What Is Minecraft?

http://minecraft.gamepedia.com/Minecraft_Wiki

APPENDIX B

Eclipse Shortcuts and Correct Imports

Eclipse Shortcuts
Eclipse is a very powerful tool and includes lots of options for editing Java. These
options can be accessed using different menus. However, sometimes clicking menu
items for repetitive tasks can be cumbersome or boring, so Eclipse enables some help‐
ful shortcuts that allow you to become a better modder. For example, the Import
shortcut can be very useful if you have a lot of classes to import.

Table B-1 provides a handy list of shortcuts (note that there are different shortcuts
depending on your platform).

Table B-1. Eclipse shortcuts

Usage Windows shortcut Mac shortcut

Save the current file Ctrl-S Cmd-S

Import everything Ctrl-Shift-O Cmd-Shift-O

Comment the selected text Ctrl-/ Cmd-/

Uncomment the selected text Ctrl-/ Cmd-/

Show options for code completion Ctrl-Space Control-Space

Quick fix for errors and warnings, depends on the cursor position Ctrl-1 Control-1

Rename the selected element Alt-Shift-R Alt-Cmd-R

Format source code Ctrl-Shift-F Control-Shift-F

149

Usage Windows shortcut Mac shortcut

Maximize Java editor Ctrl-M Cmd-M

Run Minecraft Ctrl-F11 Cmd-Fn-F11

Complete list of shortcuts Ctrl-Shift-L Cmd-Shift-L

Correct Imports
Different Java packages can have classes with the same name. Obviously, only a class
from a particular package will serve the intended purpose for our code. So, when
importing classes during mod creation, it’s important to pick the right package.

This can be easily done using Ctrl-Shift-O or Cmd-Shift-O in Eclipse. However, there
may be multiple classes of the same name but in different packages. There is only one
that you should import in all of those cases. Table B-2 shows which import is correct.

Table B-2. Correct imports

Class Correct import

Entity net.minecraft.entity.Entity

Item net.minecraft.item.Item

Random java.util.Random

Action net.minecraftforge.event.entity.player.PlayerInteractEvent.Action

List java.util.List

Material net.mninecraft.block.material.Material

In all other cases, the class can be imported from one package only.

150 | Appendix B: Eclipse Shortcuts and Correct Imports

APPENDIX C

Downloading the Source Code from GitHub

Source code for the mods created in this book, and for some additional mods, is
available at https://github.com/AdityaGupta1/minecraft-modding-book. We will keep
adding source code for more mods here.

This appendix will teach you how to download the source code for the mods in this
book from GitHub. It is especially useful if you have a print copy of this book, because
it is easier to download the source code and copy/paste than to type it. It is also useful
if you have an error in your code and you don’t know how to fix it.

First, go to https://github.com/AdityaGupta1/minecraft-modding-book. All of the
source code is stored at this link. Then, in the lower-right corner, you should see a
Download ZIP button. You might need to scroll down a bit to see it. It should look
like Figure C-1.

Figure C-1. Download ZIP button

Click this button to download a ZIP folder containing all of the source code. It should
be called minecraft-modding-book. Extract the contents of this folder in a directory on
your Desktop. Inside this folder, you should see another folder called minecraft-
modding-book-master. Go inside this folder, and you should see a folder called src and
a file called README.asciidoc. Ignore the README.asciidoc file. The src folder is the
important one.

The folder structure is shown in Figure C-2.

151

https://github.com/AdityaGupta1/minecraft-modding-book
https://github.com/AdityaGupta1/minecraft-modding-book

Figure C-2. Unzipped folder from GitHub

The src folder contains the Java source code and configuration files for all the mods in
this book, and some additional ones as well. You can use any text editor (e.g., Note‐
pad or Sublime Text) to view and copy/paste the source code.

Alternatively, all source code can be copied into your Minecraft Forge folder and the
mods can be seen in action right away. For that, open up your Minecraft Forge folder,
and delete the src folder inside it. Then, copy the src folder from the minecraft-
modding-book-master folder into your Minecraft Forge folder. When you open up
Eclipse and launch Minecraft, all of the mods should work correctly.

152 | Appendix C: Downloading the Source Code from GitHub

APPENDIX D

Devoxx4Kids

By Stephan Janssen

The best way to predict the future is to create it.
—Alan Kay

Minecraft modding is actually one of the Devoxx4Kids (D4K) workshops we teach
around the world, kickstarted by Arun Gupta’s son. Arun asked me to do a write-up
on D4K to provide readers with additional information about this initiative and its
background.

In addition to providing an overview of D4K overall, this appendix discusses some of
the other exciting D4K workshops we teach and even offer freely on our website.

In “D4K Best Practices” on page 162, I share some practical details that should help if
you decide to start your own local D4K chapter.

How Did D4K Start?
In 2001, after my consultancy company JCS Int. got acquired, I was evaluating what I
would do next. At that time, I was already running the Belgian Java User Group
(BeJUG) for several years. The opportunity and challenge of organizing a European
JavaOne-like conference was something I thought would be exciting to do. From that
idea, JavaPolis was born. Fast-forward 13 years (with a rebrand to Devoxx in 2008)
and the event has grown into the biggest Java community conference around the
world with close to 6,000 developers annually attending Devoxx Belgium, France, and
the United Kingdom.

In July 2011, my son Arthur (11 years at that time) surprised me with the following
question: “Dad, I want to learn how to program!” (Figure D-1). If you’re a developer,

153

http://www.devoxx4kids.org

you can imagine the impact this had on me: alarm bells and fireworks went off at the
same time. I frantically started searching the Web for sites and books that could help
me. I was truly shocked by the limited search results I found. Some English material
was available, but relevant material in Flemish (11-year-olds in Belgium are not yet
fluent in reading English) was almost nonexistent.

Figure D-1. Arthur Janssen

I did find a book called Teaching Kids Programming by Java Champion Yakov Fain,
and for a moment I considered translating his work into Dutch. But then the idea
struck me: I had been organizing events for many years, so why not organize an event
for children? I informed my wife (Kristien) and Arthur that I would start a
Devoxx4Kids just for him and he could also invite friends—he was excited. Bonus
points for the dad. :)

On February 29, 2012, we organized a Programming for Kids BeJUG evening session
where I had invited Tasha Carl (who already had experience with organizing a girls-
only event). She also brought an Aldebaran NAO robot, which welcomed everybody
and created a special feeling of excitement. We had around 20 people attending,
including Daniel De Luca taking pictures, who would eventually lead the worldwide
D4K initiative.

Just imagine, the Aldebaran NAO robot could be the Commodore 64 of this genera‐
tion!

We discussed whether organizing a one-day event would make any difference
(actually two events, because we would have one for Flemish and another for French
children). Some people were skeptical, and thought this initiative would just be a
small water drop on a hot plate, basically only teasing children with a technology cake
and then placing it back in the fridge. But I was determined. I had promised my son
this would happen, whatever it took. We brainstormed about the possible workshops
and soon Scratch, Lego Mindstorms, and a Mars rover were workshops we thought
could both inspire the children and motivate the voluntary instructors.

154 | Appendix D: Devoxx4Kids

http://bit.ly/1NfERHT

Kristien called some schools whose students attend Devoxx on a regular basis and
after a couple of phone calls we had two locations for our very first D4K events—yes!

Two years later, D4K has morphed into a worldwide initiative with chapters all over
the world, reaching 2,000 children. Basically every weekend, one or two D4K events
are taking place somewhere in the world. The Belgian event had created a snowball
effect; of course, showing a really nice D4K video (made by Roy van Rijn) at the
opening Devoxx keynote in front of 3,500 developers did help to spread the word and
infect other IT parents with this very child-friendly virus!

We even received the Duke’s Choice Award at JavaOne San Francisco (Figure D-2).
We were receiving great signs that we were doing something right.

Figure D-2. Duke’s Choice Award at JavaOne 2013

Why Should Every City Have a D4K Chapter?
Every city in the world should have a D4K chapter, as it can help fill the technology
gap among kids.

The Classic Education Is Broken!
More and more teachers are starting to attend the D4K events. Some want to see what
they can reuse, while others just want to experience it firsthand and get a reality
check of what’s available.

Sadly enough, there seems to be a huge discrepancy between what children would like
to see at school and what they actually get. Most of the time, teenagers don’t go
beyond Excel, PowerPoint, and surfing the Web.

The D4K initiative (and many others like this) are leading by example and demon‐
strating that technology can be fun and enjoyable to teach. You don’t need to invest a
lot of money in hardware to educate children about the basics of programming,

Devoxx4Kids | 155

including robotics and even electronics. Just look at the D4K workshops, download
them, and get started!

Gender Equality in IT
Every year at Devoxx Belgium, we welcome 3,500 developers, of which only 5% are
women. It’s really painful to see, and evidenced by the long queues for the men’s rest‐
room.

Amazingly enough, at the first D4K event, we had around 75 children and 35% were
girls! It seems, at least if we look at the Devoxx ecosystem, that over a period of six to
eight years, the ratio of female versus male engineers drops enormously.

I’m convinced that with the D4K movement we can hopefully inspire or at least
expose technology to this young Internet generation and maybe even influence some
(even if it’s only a few) into a technology career. I’m personally looking forward to
meeting the first Devoxxian that will approach me and tell me she attended a D4K
event and is now pursuing an IT career. Wouldn’t that be amazing?!

Demystify Technology
When children see the Aldebaran NAO robot, you see stars in their eyes (the parents
are always equally impressed). But after that workshop, you notice that a small part of
the magic is vaporized. Many children realize that the magical robot does only what it
is told to do—otherwise, nothing happens.

Demystifying technology, electronics, and even robots with children is crucial
because understanding more clearly the wonders but also the pitfalls of what lays
behind this “plastic” facade of both a robot and websites should be common knowl‐
edge. In addition, with the daily exposure to social networks, we need to educate this
young generation that without code, these magical things do (almost) nothing.

The D4K Workshops
Our repertoire of D4K workshops is growing year by year, and different D4K groups
explore new techniques, programs, and robot-like devices for different age groups.
Modding Minecraft is only one of the many popular workshops your child can
explore.

Before we have a closer look, a golden rule for workshops geared toward children is
that you provide instant gratification. Make sure you start with a nice demo, showing
them what they will learn or have them play with the material after a maximum of 10
minutes’ introduction. This way, you get the attention from the children and they
don’t lose focus.

Let’s have a closer look.

156 | Appendix D: Devoxx4Kids

Scratch
Scratch was developed in 2003 at the MIT Media Lab and made available to the pub‐
lic in 2007. This application allows children to visually learn programming concepts
in a fun way (Figure D-3). What I really like about Scratch is that it’s free and avail‐
able in many different languages.

Figure D-3. Kids programming at a workshop

Another super feature of Scratch is that children can publish their “program” online
and share it with friends. Not only can their friends and parents see the result, they
can also download and clone the “source code” and evolve the program where others
have stopped.

The D4K Scratch workshop takes you step by step through the process of exploring
and playing with different features. In less than 10 minutes, you can show how the
Scratch development environment works, point the children to the examples, and
from there, children can explore this fun new world.

You don’t need a powerful computer; it even comes preinstalled on a Raspberry Pi,
which is only $35. Add a keyboard and screen to the Raspberry Pi and you’re ready to
get started.

Recently, we’ve added an extra device to this workshop, named LeapMotion. This
device is smaller than a deck of cards and allows you to interact with your Scratch

Devoxx4Kids | 157

game by moving your hand in the air above the LeapMotion. This is a pretty magical
device (even for us adults), and allows children to explore hand commands and
more.

Download the Scratch workshop from the D4K website.

Raspberry Pi
The Raspberry Pi (shown in Figure D-4) is really important. If you need a cheap
computer for your D4K workshops, then look no further: the Raspberry Pi is the sol‐
ution. We’ve seen initiatives where schools are starting to replace their old Windows
computers with these $35 computer wonders. It even has an HDMI port allowing you
to connect to an existing TV and use that as your screen.

Figure D-4. The Raspberry Pi

Raspberry Pi comes preinstalled with Python and Java, opening the door to other free
educational software like Greenfoot and Alice—even Scratch comes preinstalled.

Lego Mindstorms
Lego Mindstorms, which are a bit more expensive (approximately $350), are really
nice robots (Figure D-5). Children often compare these Lego robots to the Trans‐
formers, because they can eventually morph into different shapes and sizes.

One Lego Mindstorms box enables you to build different kinds of robots, where the
motor block in combination with the camera module (to detect colored objects) and
audio module (to give audio commands, like clapping your hands) provides you
almost endless use-cases for a fun workshop.

158 | Appendix D: Devoxx4Kids

http://bit.ly/1LXoPqW

Figure D-5. Lego Mindstorms robot

We’ve already explored several workshops. In one, the robot had to move when you
placed a blue ball in front of the camera, and when you clapped, the robot arms
would close and take the ball, and the robot would turn around and return to the
original position. In a less difficult one, the robot uses the camera module to follow a
black line that is provided in the box.

Pierre Mistrot has made a really nice Lego Mindstorms workshop.

The Aldebaran NAO Robot
The star of many D4K events is the child-like Aldebaran NAO robot shown in
Figure D-6 (unfortunately, this is an expensive piece of hardware—approximately
$3,900 for certified developers). D4K was fortunate enough to receive such a robot
during the Devoxx opening keynote in Belgium in 2013. We try to share this robot
with as many D4K events as possible, but because this is not a small box, we often
personally deliver it at the event.

Because of the price tag, you don’t see them that often, which explains why the (tech)
parents love to see this robot in action. The NAO robot can play music while dancing,
follow an object, walk, grab objects, talk and listen, and much more.

It has a visual development interface called Choreograph that works on both Win‐
dows and Mac. You basically drag and drop command icons on a panel and then the
robot executes this when you press the Run button.

Devoxx4Kids | 159

http://bit.ly/1bt52iI

Figure D-6. The Aldebaran NAO robot

You do need to stress to the children that this is not a toy (or at least that it’s a very
expensive one). That’s why we often have only one in a workshop, so that we can keep
an eye on it and children can upload their command storyboards one by one when a
robot is available.

Daniel De Luca has made a really nice workshop. In short, you give the robot a ball
and tell the robot where to place it.

Arduino
The D4K chapter in the Netherlands (thanks, Roy) created the first Arduino D4K
workshop. Roy had ordered some Arduino starter kit boxes, which come with differ‐
ent electronic goodies, including an Arduino and breadboard (Figure D-7).

This workshop starts with the basics of understanding electronics, including concepts
like volts, watts, and Ohm’s law, but in a child-friendly way with lots of pictures and a
simple analogy with water pressure to explain the direction of electricity and transis‐
tors.

160 | Appendix D: Devoxx4Kids

http://bit.ly/1BmyMUs

Figure D-7. An Arduino and breadboard

We start with blinking some LEDs and depending on the age, you can allow the chil‐
dren to only place the electronic parts on the breadboard. With a group of older chil‐
dren, you can even have them write the C application that does the actual blinking of
the LED (Example D-1).

The workshop can be downloaded from the D4K website.

Example D-1. Setting an LED in C using an Arduino

long dernierTemps = 0;

long periode = 10000;

int etatLED = LOW;

void setup() {
 pinMode(13, OUTPUT);
}

void loop() {

 unsigned long maintenant = millis();

 if (maintenant - dernierTemps > periode) {
 dernierTemps = maintenant;
 if (etatLED == LOW) {
 etatLED = HIGH;
 } else {
 etatLED = LOW;
 }
 digitalWrite(13, etatLED);
 }
}

Devoxx4Kids | 161

http://bit.ly/19PtDgZ

Greenfoot
Greenfoot is a development environment based on the Java programming language
and is aimed at teenagers around 12–14 years old. Greenfoot introduces children to
object-oriented concepts of classes and objects, inheritance, behavior, and state.

One of the D4K workshops we run involves making a game named Bobby Snake. In
the game, when the snake eats more, its tail will become longer and longer.

When Scratch has been mastered, Greenfoot is a great environment to bring your
programming skills to a higher level. You still have a visual representation of the play‐
ground, but next to it you’ll see a graphical representation of your object tree.

D4K Best Practices
This section defines some of the best practices that we’ve learned over the past couple
years of delivering these workshops.

Location
First, you need to find a location for your event, preferably a school that has some
computer rooms. Just show the D4K promo movies and website to the school’s
administrators and often that will be enough to get them excited. Schools love to be
associated with these initiatives. Make sure to invite the teachers—this way, you can
infect them with your enthusiasm and demonstrate how easy and fun these work‐
shops really are.

Team
You’ll need a team of instructors that can present the different workshops. Contact
your local (Java) User Group, organize a preparation meeting, get your partner
involved, and invite your friends and family. Ask your son or daughter to invite
friends from school and talk to their parents. Devoxx is a community conference, so
reach out and get everybody involved.

Registration
The D4K events are organized with a nonprofit mentality. Thus, the first D4K event
in Belgium was free. However, we soon realized that on sunny weekends, 30% would
not show up, because families prefer to go to the beach instead (and rightly so). But
from an organization point of view, this doesn’t really help. Asking a small fee, like
$10, resulted in a 95% attendance rate. We use EventBrite, which can easily be config‐
ured, and after their commission fee, you still have enough to provide each child with
a nice D4K T-shirt and serve some drinks and fruit during the breaks.

162 | Appendix D: Devoxx4Kids

http://www.eventbrite.com

Bring Your Own
Children should bring their own lunch, which makes it easy for everyone. But as an
organization, do provide enough drinks, fruit, and cookies so these hungry minds
have enough energy to digest the information.

Parents Track
Arun Gupta holds a parallel parent track in San Francisco where he debriefs the
parents on what the children will see during the day. This is a great way to teach all
parties involved, and often results in a parent champion, who can answer their child‐
ren’s follow-up questions once they are back home. You will be the star of the week if
you can help your teenage child!

Some countries also demand that a parent is present during a child-driven workshop,
so the approach with the partners track solves both requirements.

Parent Waiver
Make sure you write down the mobile number of the parent(s), especially if they don’t
stay. In addition, require parents to sign a parental waiver that allows you to take pic‐
tures or even make an atmosphere video of the event. Again, some countries demand
this; check locally if this is required.

Promo Video
Make sure to create your own promo/atmosphere video. Invite a local media com‐
pany or students—they will love to help and can turn it into a special project.

In Belgium, I invited Roy van Rijn, who’s a real magician when it comes to capturing
the moment, and his video was clearly a big help to spread the word and enthusiasm
of the very first D4K event.

We even received a very nice animated intro video from Devoxx4Kids Nantes, which
we now use as our default intro video.

Press
A quote I picked up during Devoxx France at the annual JUG BOF: “I’ve been organ‐
izing a Java User Group for the last 10 years and never saw a journalist. Last month
we did a D4K event for 50 children and we were on national television!”

It shows that this is a hot topic that is receiving lots of attention from the press. There
is this problem and we’re offering a (small) solution. Reach out and be astonished!

For more information, see the press page.

Devoxx4Kids | 163

https://vimeo.com/51393678
http://www.devoxx4kids.org/press-media/

Sponsors
More and more companies are excited to sponsor this initiative. Some will offer their
offices, like universities and schools; others offer merchandising assistance; and some
even provide a financial donation. For example, Oracle Academy and Red Hat have
been huge supporters of D4K and have financially supported this initiative, allowing
us to purchase our own Lego Mindstorms and even T-shirts for the instructors and
children. Thank you!

Create a win-win situation for all parties involved and you’ll see the sky is the limit.
Explore and be amazed.

Agile Teams
Have the children work in pairs and have them switch between workshops. This is a
great way to improve their social skills, but also get them introduced to pair develop‐
ment, which is of course encouraged when doing agile development.

And last but not least: have fun!

It should be a fun day for the children, but also for you and other parents. Try to
move around and even try to follow some workshops—you’ll be amazed how smart
and fast these kids are.

Make sure you get a good night’s rest the day before: you’ll be exhausted after the
workshop, but will have a big smile on your face because these events are both emo‐
tionally and intellectually very rewarding!

The Future of Devoxx4Kids?
D4K has only started scratching the surface of how technology needs to be enabled
for kids around the world. Where do we go from here?

Workshop Translations
Our workshops (freely available on GitHub) are already translated from English to
French, Dutch, Italian, and German. In the near future, more workshops and even
more translations are expected as new D4K chapters are started around the world.

If we can complement the workshops with more in-depth online courses, we can
deliver a powerful learning path for the knowledge-hungry, enthusiastic children!

164 | Appendix D: Devoxx4Kids

More and Bigger
For the D4K chapters that have already organized one or two events, we’re seeing a
clear trend that they’re starting to raise the bar by organizing more frequent and big‐
ger events. For example, D4K San Francisco organizes events on a biweekly basis.
Some are taking it to the next level with sponsors, and holding workshops for hun‐
dreds of children. We can only encourage this—if the system is broken, then let’s lead
by example.

Online Courses
An amazing opportunity in the D4K evolution will be to leverage the Parleys.com
platform (which is used by Devoxx to publish the rich media presentations). I’d love
to introduce online courses on this platform in different languages so that children
can continue their D4K enthusiasm and learn more about a certain topic at their own
pace, wherever, whenever.

It’s very obvious that more and more people will receive an online certificate/diploma
without ever physically entering the school premises. We can live wherever on this
planet and get an online education, but the challenge will be to balance our needed
social contacts, making real friends, and looking beyond the screen—not easy.

Devoxx4Kids | 165

Index

Symbols
! (not) operator, 39, 62
!= (not equal) comparison operator, 32
&& logical operator, 83
() (parentheses), 50
* (multiply) operator, 32, 58
+ (add) operator, 32
- (subtract) operator, 32, 115
/ (forward slash), 12, 147
= (equals sign), 11
= assignment operator, 32
== (equal) comparison operator, 32
@ (at sign), 11
\ (backslash), 73
{ } (curly braces), 11, 68

A
accounts

creating, 132
premium, 134
registering, 132-135

Action class, 150
add (+) operator, 32
adventure game mode, 139
Aldebaran NAO robots, 159
aliases, 70
Allow Cheats button, 147
annotations (Java), 11
anvils

anvil traps, 33
automatic anvil dropper, 33
exploding, 31-35

Arduino (Devoxx4Kids workshop), 160
arenas, building, 82

arguments (commands), 72
arithmetic operators, 32, 58
armor, zombies spawning with, 30, 49-51
ArrayList class

about, 70
aliases and, 70
block filler mod and, 75

ArrayList class/isEmpty() method, 80
arrays, 72
arrows, 141
assignment operators, 32
at sign (@), 11
awkward potion, 106, 113, 145
axes, 49, 146

B
backslash (\), 73
blast resistance, 38, 39, 87
blaze powder, 113
block changer mod, 91
block model file, 118-121
BlockBreakMessage mod

adding event handlers, 21-24
creating main file, 15-21
testing, 25

blocks
about, 131, 139-140
blast resistance, 38, 39, 87
block changer mod, 91
BlockBreakMessage mod, 15-26
bouncy sponges, 60-61
crafting, 105, 141-142
crafting dirt blocks into cobblestones,

106-108

167

creating new, 85-95
destroying, 139
dropping, 49
dropping items, 103-104
filler for, 74-82
jumping up, 57-60
listed in Forge, 48
localized names, 86
making textures for, 116-123
pigs dropping, 48
placing, 139
sizes of, 140
special capabilities, 139
transforming, 141-145
unlocalized names, 86

Blocks class, 11
blockstate file, 118-121
Bobby Snake game, 162
body (methods), 12
bombs, TNT, 37, 82
bosses, 1, 131
bouncing zombie tower, 30
brewing items, 144
brewing recipes, 106, 113-115
brewing stand, 144
Buildcraft mod, 128
buying Minecraft, 134

C
cakes, 113, 141
camelcase convention, 87
carpets, 140
carrots, 45
case sensitivity (Java), 11
casting numbers, 38
casting objects, 50
cd command, 5
chat bar, 147
chat messages, 23, 73
chests, 142
chicken, smelting, 143
child classes, 50
circles, area of, 69
.class file extension, 2, 9
classes (Java)

about, 10
child, 50
creating for event handling, 22
defining methods, 68

defining scope, 11
derived, 50
extended, 50
importing, 10, 20, 150
initializing, 70
main file, 15
name considerations, 11
parent, 50, 86
subclasses, 50
superclasses, 50

client component, 1, 137
cobblestones

crafting a furnace, 143
crafting dirt blocks into, 106-108
pigs dropping, 48

Colorify tool, 116
commands

about, 67, 147
arguments and, 72
creating for block filler, 74-82
creating for flaming pigs mod, 67-74

comments (Java), 12
comparison operators, 32
compilation process, 2, 38
constructor methods, 70
converting strings to numbers, 80
cows, 49
crafting blocks and items

about, 105, 141
brewing stand, 144
crafting table, 106, 141
furnace, 143
wooden planks, 142

crafting recipes
about, 105, 141
Enderium Block, 108-110
ingots, 110-112
shaped, 105-110
shapeless, 105, 110-112

Create Account button, 132
Create New World button, 137
creative game mode, 138, 147
creepers

about, 52, 145
creeper reinforcements, 52-54

curly braces { }, 11, 68

D
decimal data type, 38, 40

168 | Index

DEFAULT_JVM_OPTS variable, 7
derived classes, 50
destroying blocks, 139
Devoxx4Kids

best practices, 162-164
future of, 164
reasons for having a chapter, 155
workshops developed, 156-162

Diamond tier, 147
diamonds

about, 141
diamond ore reistance, 87
diamond ore trap, 35-37
pigs dropping, 45-49, 74
TNT bombs, 37
as tool material, 146
zombies spawning with diamond armor, 30

dimensions, 131
dir command, 5
dirt blocks, crafting into cobblestones, 106-108
double data type, 38
downloading

Eclipse, 4
Forge, 3-4, 126-128
Java, 2-3
Minecraft, 132-135
source code from GitHub, 151-152
textures, 116

duration, potion, 145

E
Eclipse

about, 4
downloading and installing, 4
error symbol, 20, 21
keyboard shortcuts, 20, 149
setting up Forge in, 5-9
window components, 8

elements
in annotations, 11
in arrays, 72

Ender Dragon boss, 132
Enderium Block

about, 85
block changer mod, 91
crafting recipes, 108-110
creating new block class, 85-87
majestic, 92-94
naming block, 88

registering block, 87
running Minecraft, 89
variations of, 91-94
verifying mod, 89

enderman, spawning, 99-101
entities

about, 1, 131
assigning, 50
climbing capabilities, 57, 64
creeper reinforcements, 52-54
exploding anvils falling on, 31-35
exploding minecarts colliding with, 27-30
movement and, 57-66
pigs dropping diamonds, 45-49
spawning, 33
zombie knights, 49-51

Entity class, 32, 50, 150
EntityTNTPrimed class, 39
equal (==) comparison operator, 32
equals sign (=), 11
error symbol, 20, 21
escaping special characters, 73
event buses, 21, 24
event handlers

about, 12, 21
adding, 21-24
adding methods for, 22-24
block filler mod and, 75
creating Java classes for, 22
registering on event buses, 24
required steps, 22

@EventHandler annotation, 12
events, 11, 21, 22
example mod, 9-12
exceptions, 72
explosions

bigger TNT explosions, 38-43
blast resistance, 38, 39, 87
diamond ore trap, 35-37
exploding anvils, 31-35
exploding minecarts, 27-30

extended classes, 50

F
fall damage, limiting with parachutes, 61-63
fences, 140
filler for blocks, 74-82
finishing the game, 132
Fire Resistance potion, 145

Index | 169

flaming pigs mod, 67-74
float data type, 38, 60
for loop, 53, 81
Forestry for Minecraft mod, 129
Forge

about, 3
downloading and installing, 3-4, 126-128
event buses, 21
example mod, 9-12
Java annotations, 11
setting up in Eclipse, 5-9

forward slash (/), 12, 147
fuel, 106, 112, 144
furnaces

crafting, 143
smelting recipes and, 106, 112

fuses
TNT explosions with, 40-43
TNT explosions without, 38-39

Fuzzy Select tool, 117

G
game modes

about, 137
changing, 138, 139
types supported, 138

game registry, 85, 117
/gamemode command, 147
GIMP tool, 116, 117
GitHub, downloading source code from,

151-152
/give command, 86, 148
glowstone dust, 145
gold (tool material), 146
golden carrot, 145
golems

iron, 49
mobs and, 66
wall-climbing, 64-66

gradlew command, 6, 88, 125
Greenfoot development environment, 162

H
hardcore game mode, 138, 147
/help command, 147
hoes, 146

I
ICommand interface, 68, 69
ICommandSender class, 70
IDE (integrated development environment), 4
if statement, 32, 35
image files, 2, 117
import statement, 11
importing Java classes, 10, 20, 150
importing textures, 116
increment (for loop), 53
increment operator, 53
IndustrialCraft2 mod, 128
ingots

crafting recipes, 110-112
creating, 97-98
edible, 101-102

inheritance, 50, 86
init method, 12, 14, 20
initialization (for loop), 53
installing tools, 2-9
instanceof keyword (Java), 39
int data type, 40
Integer class

block filler mod and, 75
parseInt() method, 72

integrated development environment (IDE), 4
interfaces (Java), 68
Internet connections, 6
interpretation process, 2
inventory, 98, 132
iron

blast resistance, 87
pressure plates, 34
as tool material, 146

iron golem, 49
Item class, 150
item model file, 118-121
ItemBlock model file, 118-121
items

about, 1, 97, 140
assigning, 50
brewing, 144
crafting, 105, 141-142
creating new, 97-104
dropping, 45-49, 103-104
interacting with, 140
localized names, 86
making textures for, 116-123
result, 141

170 | Index

setting lifespans, 42
smelting, 143
transforming, 141-145
unlocalized names, 86

J
JAR file, 3, 125
jar tool, 3
Java Development Kit (JDK), 2
.java file extension, 2, 9
Java language

about, 2
annotations, 11
case sensitivity, 11
comments, 12
for loop, 53
if statement, 32, 35
importing classes, 10, 20, 150
interfaces, 68
key concepts, 10-12

Java packages (see packages (Java))
java tool, 2
Java virtual machine (JVM), 2
javac tool, 2
JDK (Java Development Kit), 2
JSON files, 119
jumping up

bouncy sponges, 60-61
super jump, 57-60

JVM (Java virtual machine), 2

K
keyboard shortcuts (Eclipse), 20, 149

L
ladders, 140
.lang file extension, 86, 89
launcher program, 134
lava buckets, 141
LeapMotion device, 157
Lego Mindstorms robots, 158
length property (arrays), 72
lifespans of items, 42
List class, 70, 75, 150
listening for events, 11, 21
localized names, 86
ls command, 5
Lycanite's Mobs mod, 129

M
main file

about, 15
adding code to, 19
choosing name, 18
creating, 15-21, 18

majestic Enderium Block, 92-94
mansions, building, 82
Material class, 150
materials

about, 1, 131
survival game mode and, 91

Math.floor() method, 60
methods

about, 12
adding for event handling, 22-24
class behavior, 68, 69
constructor, 70
main file, 15
overriding, 70

Millénaire mod, 129
minecarts, exploding, 27-30
Minecraft

about, 1, 131
buying, 134
downloading, 132-135
finishing the game, 132
running, 13-14, 25, 89
starting, 135-139

Minecraft Forge (see Forge)
minicrafting grid, 141
mkdir command, 5
mobs

about, 145
creeper reinforcements, 52-54
exploding anvil traps, 34
exploding minecarts mod, 30
golems and, 66
spawning, 146
zombie knights, 49-51

@Mod annotation, 11, 20
Mod class, 11
mods (modifications)

about, 1, 139
adding event handlers, 21-24
BlockBreakMessage, 15-26
creating explosions, 27
example mod, 9-12
extensions supported, 9

Index | 171

installing, 128-129
involving entities, 45-55
involving movement, 57-66
listening for events, 11, 21
loading, 12
preparing directories for modding, 5-9
sharing, 125-129
testing, 25
verifying, 13-14, 25, 89

monsters, 1, 131
More World Options… button, 139, 147
movement

about, 57
bouncy sponges, 60-61
falling with parachutes, 61-63
super jump, 57-60
wall-climbing golems, 64-66

movie files, 2
multiplayer mode, 1, 137
multiply (*) operator, 32, 58

N
name (methods), 12
nested for loops, 81
Nether dimension, 131
nether wart, 145
new blocks

block changer mod, 91
creating new block class, 85-87
naming, 88
registering, 87
running Minecraft, 89
variations of, 91-94
verifying mod, 89

new items
about, 97
creating new item class, 97-98
registering, 98

New Profile button, 135
night vision potion, 145
not (!) operator, 39, 62
not equal (!=) comparison operator, 32
NumberFormatException class, 72, 80
numbers, converting strings to, 80
numerical index, 72

O
Object class, 50
obsidian, 38, 87

online courses, 165
operators

arithmetic, 32, 58
assignment, 32
comparison, 32
increment, 53
not, 39, 62

ores, 35-37, 139
@Override annotation, 70
overriding methods, 70
Overworld dimension, 131

P
Package Explorer (Eclipse panel), 8
packages (Java)

about, 10, 15
choosing name, 16
creating, 15

Paint tool, 116
parachutes limiting fall damage, 61-63
parameters (methods), 12
parent classes, 50, 86
parentheses (), 50
Parleys.com website, 165
pickaxes, 146
pigs

breeding, 45
creepers and, 52
dropping blocks, 48
dropping cobblestones, 48
dropping diamonds, 45-49, 74
dropping porkchops, 45
dropping potatoes, 47
flaming, 67-74

pistons, 142
Pixelmon mod, 129
placing blocks, 139
Play button, 136
potatoes, 47, 140
potency, potion, 145
PotionHelper class, 113-115
potions

awkward, 106, 113, 145
brewing recipes and, 106, 113-115
creating, 144
edible ingots and, 101
increasing duration, 145
increasing potency, 145

premium accounts, 134

172 | Index

pressure plates, 34, 39
primed TNT, 39
profiles, 135
projects, 7
purchasing Minecraft, 134

Q
quotation marks, 73

R
Random class, 46, 150
random number generator, 46
Raspberry Pi computer, 158
recipes

brewing, 106, 113-115
crafting, 105-112, 141
smelting, 106, 112

redstone, 145
registering accounts, 132-135
result items, 141
return keyword (Java), 32
return type (methods), 12
robots

Aldebaran NAO, 159
Lego Mindstorms, 158

running Minecraft, 13-14, 25, 89

S
Save Image As… button, 116
saving files, 25
scope of classes, 11
Scratch (Devoxx4Kids workshop), 157
security system mod, 30
seeds, 132, 140
server component, 1, 137
/setblock command, 67
shaped crafting recipes, 105-110
shapeless crafting recipes, 105, 110-112
sharing mods

about, 125
building JAR file, 125
installing cool mods, 128
installing Forge, 126-128

shortcuts (Eclipse), 20, 149
shovels, 146
Show all platforms button, 135
signs, 140
singleplayer mode, 1, 137

skeletons, 49, 145
slabs, 140
smelting items, 143
smelting recipes, 106, 112
source code, downloading from GitHub,

151-152
source files (Java), 2
spawn eggs, 146
special characters, escaping, 73
spectator game mode, 138
spiders, climbing capabilities, 57, 64
sponges, bouncy, 60-61
squares, area of, 69
src/main/resources folder, 88
starting Minecraft, 135-139
static keyword (Java), 75
Status window (Eclipse), 9
stone (tool material), 146
Strength potion, 145
strings, converting to numbers, 80
subclasses, 50
@SubscribeEvent annotation, 23
subtract (-) operator, 32, 115
/summon command, 30, 67, 147
super constructor, 86
super jump mod, 57-60
super method (Java), 86
superclasses, 50
survival game mode, 91, 138, 147
swords, 47, 146
System.out.println, 12

T
Teaching Kids Programming (Fain), 154
termination (for loop), 53
testing mods, 25
text files, 2
textures

about, 116
downloading, 116
modifying, 116
placeholder for, 98
premade, 116
registering, 122
renaming, 117
required files, 118-121
texture images, 117
tools for making, 116
verifying, 122

Index | 173

Thaumcraft mod, 128
The End dimension, 131
ticks

about, 40
setting item lifespan in, 42

TNT explosions
bigger, 38-43
primed TNT and, 39
TNT bombs, 37, 82
with fuses, 40-43
without fuses, 38-39

tools
about, 1, 146
downloading and installing, 2-9
location of, 147
for making textures, 116
types of, 146

transforming blocks and items
about, 141
brewing, 144
crafting, 141-142
smelting, 143

transparencies, 117
trapdoors, 140
try-catch statement, 72, 80

U
unlocalized names, 86

V
variables

about, 11
adding to main file, 19
storing decimals, 38

verifying mods, 13-14, 25, 89
verifying textures, 122

W
Weakness potion, 145
wheat, 141
wood (tool material), 146
wood logs, 141
wooden planks, 141, 144
workshops (Deevoxx4Kids), 156-162
workspaces, 7
worlds

changing names of, 138
creating new, 137, 147
testing mods in, 25

Z
ZIP files, 5
zombies

about, 49, 145
spawning with armor, 30, 49-51
zombie knights, 49-51

Zoom tool, 116

174 | Index

About the Authors
Arun Gupta is a founding member of Devoxx4Kids USA. As a chair of the board, he
oversees the operation of this nonprofit organization and ensures it stays true to its
mission of promoting technology education among kids. After completing a master’s
in computer science, he moved to the United States many years ago and enjoys the
beautiful California weather with his lovely wife and two boys. During the day, he
works as director of developer advocacy at Red Hat and focuses on JBoss Middleware.
He has spent several years building and coaching middleware applications at Sun
Microsystems and Oracle. Arun has extensive speaking experience in about 40 coun‐
tries on myriad topics and is a JavaOne Rock Star. An author of a best-selling book,
an avid runner, a globe-trotter, a Java champion, and a Silicon Valley JUG leader, he is
easily accessible on Twitter (@arungupta).

Aditya Gupta is a 12-year-old middle schooler at Moreland Middle School, San Jose,
California. He loves to play and modify Minecraft. He also has experience in many
other types of programming, including Scratch, Java, Python, Greenfoot, and iOS. At
age 11, he was one of the youngest speakers ever at the Community Keynote of
JavaOne 2013, showing how pigs fly using Eclipse in front of 1,500+ Java developers.
He builds and delivers workshops for Devoxx4Kids, and is excited to teach program‐
ming skills to young kids like himself. He is also a Boy Scout and enjoys tinkering
with Legos.

Colophon
The animal on the cover of Minecraft Modding with Forge is a Texas horned lizard
(Phrynosoma cornutum), known colloquially as a “horny toad.” Though it has a short
snout and flattened body that looks similar to a frog or toad, it is in fact a reptile. This
is one of 14 horned lizard species, and is the most widespread with a range through‐
out the southwestern United States and northern Mexico (particularly in the Sonoran
desert). It is the state reptile of Texas.

The Texas horned lizard has a distinctive “crown” of horns on its head, the number
and pattern of which varies between species. These horns are extensions of the ani‐
mal’s skull, and are made of true bone. The average length of these lizards is 2.7
inches, though females tend to be larger than males. Their scales are tan with dark
splotches (which serve as camouflage), and there are rows of small spikes on their
back and sides.

While the horned lizard eats various insects, red harvester ants make up nearly 70%
of its diet. Both the ant and the lizard prefer warmer temperatures, so are often active
at the same time of day. However, the horned lizard population has recently declined,
perhaps because their primary food source has become harder to find: the increased

use of pesticides and spread of the aggressive fire ant species have wiped out many
harvester ant colonies.

While the Texas horned lizard does not have many natural predators, it has several
defensive tactics. When threatened, it will puff its body up, making its scales protrude
and becoming harder to swallow. It is a capable digger, and can quickly burrow
underground to escape threats. It is also able to squirt a stream of blood from its eyes,
up to 5 feet away. Not only does this confuse predators, but the blood contains a
chemical that tastes particularly bad to canines (like wolves, coyotes, and domestic
dogs).

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Foreword
	Preface
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Downloading and Installing Tools
	Java
	Minecraft Forge
	Eclipse

	Setting Up Forge in Eclipse
	Understanding the Example Mod
	Running Minecraft and Verifying the Mod
	Summary

	Chapter 2. Block-Break Message
	Creating the Main File
	Adding the Event Handler
	Creating a Java Class for Event Handling
	Adding Methods for Event Handling
	Registering the Event Handler on the Event Bus

	Running Minecraft and Verifying the Mod
	Summary

	Chapter 3. Fun with Explosions
	Exploding Minecarts
	Exploding Anvils
	Diamond Ore Trap
	Bigger TNT Explosions
	Without a Fuse
	With a Fuse

	Summary

	Chapter 4. Entities
	Pigs Dropping Diamonds
	Zombie Knights
	Creeper Reinforcements
	Summary

	Chapter 5. Movement
	Super Jump
	Bouncy Sponges

	Parachute
	Wall-Climbing Golems
	Summary

	Chapter 6. New Commands
	Flaming Pigs
	Block Filler
	Summary

	Chapter 7. New Block
	Creating the Block Class
	Registering Your Block
	Naming Your Block
	Running Minecraft and Verifying the Mod
	Variations of the New Block
	Block Changer
	Majestic Enderium Block

	Summary

	Chapter 8. New Item
	Creating the Item Class
	Variations of the New Item
	Enderman Spawner
	Edible Ingots
	Item from Block

	Summary

	Chapter 9. Recipes and Textures
	Recipes
	Shaped Crafting Recipe
	Shapeless Crafting Recipe
	Smelting Recipe
	Brewing Recipe

	Textures
	Tools
	Images
	Files
	Register and Verify the Textures

	Summary

	Chapter 10. Sharing Mods
	Building the JAR File
	Installing Minecraft Forge on Your Client
	Cool Mods That You Can Install
	Summary

	Appendix A. What Is Minecraft?
	Downloading the Game and Registering an Account
	Starting the Game
	Blocks
	Items
	Transforming Blocks and Items
	Crafting
	Smelting
	Brewing

	Mobs
	Tools
	Commands
	Summary

	Appendix B. Eclipse Shortcuts and Correct Imports
	Eclipse Shortcuts
	Correct Imports

	Appendix C. Downloading the Source Code from GitHub
	Appendix D. Devoxx4Kids
	How Did D4K Start?
	Why Should Every City Have a D4K Chapter?
	The Classic Education Is Broken!
	Gender Equality in IT
	Demystify Technology

	The D4K Workshops
	Scratch
	Raspberry Pi
	Lego Mindstorms
	The Aldebaran NAO Robot
	Arduino
	Greenfoot

	D4K Best Practices
	Location
	Team
	Registration
	Bring Your Own
	Parents Track
	Parent Waiver
	Promo Video
	Press
	Sponsors
	Agile Teams

	The Future of Devoxx4Kids?
	Workshop Translations
	More and Bigger
	Online Courses

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

