
www.allitebooks.com

http://www.allitebooks.org

Mongoose for Application
Development

Learn to speed up your application development by
using Mongoose to harness the power of Node.js
and MongoDB

Simon Holmes

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mongoose for Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-819-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Simon Holmes

Reviewers
Alexandru Vlăduțu

Robert Klep

David Harvey

Acquisition Editor
Grant Mizen

Commisioning Editor
Llewellyn Rozario

Technical Editor
Akashdeep Kundu

Project Coordinator
Joel Goveya

Proofreader
Mario Cecere

Indexer
Hemangini Bari

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Simon Holmes started his journey as a web developer in late 1990s. He built his
first website for a project at university and soon saw what the industry had to offer
when he promptly sold it! Following university, Simon worked his way through
the ranks of design agency life, learning the skills of becoming a full-stack web
developer. From server management and database design to building dynamic, UIs
from Photoshop files, it all fell under Simon's remit. Having witnessed first-hand the
terrible JavaScript code so prevalent in the early 2000s Simon is very much enjoying
its resurgence as a powerful, structured language. Simon now works in SaaS, which
is very heavy on the JavaScript.

Firstly I would like to thank my wife Sally for taking increased
duties with our two lovely young daughters Eri and Bel, affording
me some peace and quiet in which to code and write. Thanks also to
Andreas Soellner for his feedback and encouragement throughout
the process, and technical reviewers David Harvey of Vyclone Inc.,
Robert Klep, and Alexandru Vlăduțu. I also wish to express my
thanks to the team at Packt Publishing who have been open and
helpful from start to finish. Not forgetting of course Aaron Heckman
who created Mongoose and continues to maintain, support, and
push it forward.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

David Harvey has built tools for more than twenty five years for developers,
architectural infrastructure for investment banks, and high-end music software. He
has formed and led teams in organizations of all sizes, and has taught, consulted,
and presented on object technology, patterns and agile software development. He
is currently the CTO at Vyclone Inc., delivering ground-breaking multi-angle video
technology on mobile and cloud platforms.

Robert Klep is a freelance frontend and backend web developer from
's-Hertogenbosch, the Netherlands, with more than 17 years experience. Lately,
Robert has been focusing more on JavaScript and Node.js development. He has
used Mongoose extensively in several projects. He was the winner of the 0th Annual
Obfuscated Perl Contest in 1996.

Alexandru Vlăduțu is a JavaScript developer at a company in Bucharest,
Romania. He started creating applications with PHP five years ago, but after finding
out about server-side JavaScript with Node.js he never had to switch technologies
again. You may have seen him answering questions on stackoverflow.com under
the nickname alessioalex, where he is in the top three overall answerers for tags
like Node.js, Express, Mongoose, or Socket.IO. By day he battles cross browser
compatibility issues, but by night he brings together embedded databases, servers,
and caching layers into single applications using the good parts of JavaScript. Aside
from the geeky stuff, he enjoys spending time with his wife.

I would like to thank the Node.js community for being so friendly
and helpful.

Most importantly, I would like to thank my wife Diana for her
support, encouragement, and patience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introducing Mongoose to the Technology Stack	 7

The technology stack – Node.js, npm, MongoDB, and Express	 7
The language and the server – JavaScript and Node	 7
Single-threaded versus multithreaded	 8

Blocking versus non-blocking code	 9
The database – MongoDB	 11
The framework – Express	 12

What Mongoose is all about	 12
What is Mongoose good for?	 13
What Mongoose is not ideally suited for	 13
The cornerstones of Mongoose	 14

Mongoose schemas	 14
Mongoose models	 14

Installing the full stack	 15
Installing the prerequisites	 15
Installing Node.js	 15
Installing npm	 15
Installing MongoDB	 16
Installing Express.js	 17
Installing Mongoose	 17

Direct installation into project	 17
Using project dependencies – package.json	 17

Creating a project	 18
Summary	 21

Chapter 2: Establishing a Database Connection	 23
Mongoose default connection	 23

Using multiple connections	 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

About the connection string	 24
Setting the port	 24
Specifying a database user	 24

Connection options	 24
Closing the connection	 25

Calling the close command	 25
Closing when the Node process ends	 26

Connection events	 26
Connecting our project	 26

Creating the connection	 26
Catching the events	 27
Opening the connection at application start	 28
Creating the database	 28

Summary	 29
Chapter 3: Schemas and Models	 31

Introducing schemas	 31
Field sizes	 32

Data types allowed in schemas	 32
String	 32
Number	 33
Date	 33
Boolean	 33
Buffer	 33
ObjectId	 33
Mixed	 33

Tracking changes to Mixed type	 34
Array	 34

Warning – array defined as mixed type	 34
Custom SchemaTypes	 35

Where to write the schemas	 35
Writing a schema	 35

Modifying an existing schema	 36
Setting a default value	 36
Only allowing unique entries	 37
Our final User schema	 38
What's that "__v" thing?	 38

Why is this needed?	 38
Defining the Project schema	 39

Improving the Project schema	 40
Building models	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Instances	 40
Interacting with instances	 41
Finding a single instance	 41
Finding many instances	 41

Considerations when choosing your model name	 42
Setting the collection name	 42

Overriding the collection name in the schema	 42
Overriding the collection name in the model	 43
Building models from our schemas	 43

Our complete code	 44
Summary	 45

Chapter 4: Interacting with Data – an Introduction	 47
Model methods and instance methods	 47
Setting up the project	 48

Code structure	 48
Adding the routes files	 49
Tying the routes to Mongoose models	 49

URLs and routes	 49
Routes for user management	 50
Routes for project management	 50

Summary	 51
Chapter 5: Interacting with Data – Creation	 53

Creating an instance	 53
Adding data to the instance	 54

Saving an instance	 54
Using the saved data	 55

Creating and saving database entry in one step	 56
Chaining methods	 56
The Model.create() method	 56

CRUD – create data	 57
Adding a new user form	 58

Adding the Jade template	 58
Linking the view to the URL	 59

Adding the create user function	 60
Error trapping	 62
Creating a user session	 62

Displaying the confirmation page	 63
Try it out!	 64
Adding create project functionality	 64

Routes	 64
New files and functions	 65

Summary	 65

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 6: Interacting with Data – Reading,
Querying, and Finding	 67

Approaches to find and read data	 67
Using the QueryBuilder	 68
Single query operation	 69
Static helper methods – finding data	 70

CRUD – reading user and project data	 71
findOne() – finding a single user	 71

Login form	 71
Login action	 72
Housekeeping – adding homepage links	 73
Try it out!	 73

find() – finding a list of projects and returning JSON to AJAX	 74
Creating a new static find method	 74
Setting up the route	 75
Updating the view	 76
Building the AJAX call	 77
Try it out!	 78

findByld() – finding a single project	 78
Route setup	 78
Creating the view	 80

Summary	 80
Chapter 7: Interacting with Data – Updating	 81

Model helper methods	 81
Building the commands	 82
Which method to choose	 83
The catch	 83

The three-step find-edit-save approach	 83
CRUD – editing users and projects	 84

Tracking user login	 84
Editing the current user	 85

Routes in use	 85
Setting up the form	 85
Setting up the controllers	 85
Committing the edit	 86

Editing projects	 88
Routes	 88
New files and functions	 89

Summary	 89
Chapter 8: Interacting with Data – Deleting	 91

Deleting data	 91
CRUD – deleting user and projects	 93

The "Are you sure" page	 93

Table of Contents

[v]

Deleting the user	 94
Improving on this	 95

Deleting individual projects	 95
Routes	 95
New files and functions	 95

Summary	 95
Chapter 9: Validating Data	 97

Mongoose validation – the basics	 97
Default validators	 97

All SchemaTypes	 98
Number SchemaType	 98
String SchemaType	 98

Understanding validation errors	 99
Doing it your way – create custom validation	 100

Single function – no custom error message	 100
Returning a custom error message	 100

Validating a regular expression	 101
Taking the messages out of the schema	 101

Using multiple re-usable validators	 101
Non-blocking, asynchronous validation	 102
Extending Mongoose validation	 103

Adding validation to our project	 103
Summary	 104

Chapter 10: Complex Schemas	 105
Population – references to other collections	 105

Defining data for population	 106
Saving population references	 107
Retrieving populated data	 107

Querying to return a subset of results	 109
Populating into multiple parent items	 110

Subdocuments	 110
Creating subdocuments	 112

Saving and validation	 112
Retrieving subdocuments	 113

Accessing a specific subdocument	 113
Deleting subdocuments	 114

Data management when modifying existing schemas	 114
Summary	 115

Chapter 11: Plugins – Re-using Code	 117
Reusable schema plugins	 117

Creating a schema plugin	 117
Applying the plugin to an existing schema	 118

Table of Contents

[vi]

Using an external file	 118
Using schema middleware	 119

Sharing with the community	 120
Summary	 120

Index	 121

Preface
Mongoose for Application Development will show you how to leverage the power of
Mongoose to dramatically speed up your development process with Node.js and
MongoDB. At the highest level, Mongoose is all about having a data model, and
bringing control and management of that model into your application. Mongoose
enables you to create a robust yet rich data structure, providing you with a level
of database management that you don't normally get with MongoDB. With its
built-in helper methods, Mongoose provides a lot of the common functionality you
will need, while also providing a framework for extending it in ways to meet your
application needs.

What this book covers
Chapter 1, Introducing Mongoose to the Technology Stack, takes a look at the Node.
js, MongoDB, and Express technology stack and introduces Mongoose and shows
where it fits in.

Chapter 2, Establishing a Database Connection, covers the different methods of creating
database connections with Mongoose, including how and when to use them.

Chapter 3, Schemas and Models, introduces the two cornerstones of Mongoose,
covering how to create them and how they relate to the data.

Chapter 4, Interacting with Data – An Introduction, explains how Mongoose
provides methods for easily interacting with data, setting the scene for the
following four chapters.

Chapter 5, Interacting with Data – Creation, covers the ways we can use Mongoose
to create data and save it to the database.

Preface

[2]

Chapter 6, Interacting with Data – Reading, Querying, and Finding, covers the ways we
can use Mongoose to find the data we want by querying the database and reading
the data back into Model instances. It shows how to use the built-in methods, and
also how to extend Mongoose to run the specific queries that you may want.

Chapter 7, Interacting with Data – Updating, covers the ways we can use Mongoose
to change existing data, including the built-in helper methods, and a more robust
approach for data integrity.

Chapter 8, Interacting with Data – Deleting, covers the ways we can use Mongoose to
delete documents from the database.

Chapter 9, Validating Data, looks at maintaining data integrity, covering the validators
built in to Mongoose and explaining how to add custom validation.

Chapter 10, Complex Schemas, introduces the concepts of population and sub-
documents to allow richer data models, mimicking some of the functionality found
with traditional SQL JOIN statements.

Chapter 11, Plugins – Reusing Code, introduces the Mongoose plugin architecture,
covering how to create your own re-usable plugins to remove repetition in
your schemas.

What you need for this book
All you need for this book is a computer capable of running Node.js, administrator/
installation permissions, and a text editor.

Who this book is for
This book is for people who are interested in building applications in Node.js.
If you want to build applications quickly with a robust and manageable data
structure then this book is for you! No experience with Node is necessary, but
some basic knowledge of HTML and JavaScript would be useful. The focus of the
book is on the power of Mongoose, so experienced Node.js developers will also
find it useful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You may find that your installation of Express has already created the file routes/
user.js—this is fine, you can just open it and delete the contents."

A block of code is set as follows:

var userSchema = new mongoose.Schema({
 name: String,
 email: {type: String, unique:true},
 createdOn: Date,
 modifiedOn: { type: Date, default: Date.now },
 lastLogin: Date

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var express = require('express')
 , db = require('./model/db')
 , routes = require('./routes')
 , user = require('./routes/user')
 , project = require('./routes/project')

Any command-line input or output is written as follows:

$ sudo apt-get install npm

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If it
finds it, MongoDB (not Mongoose) will return an E11000 error.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Introducing Mongoose to the
Technology Stack

We are going to take a look at the technology stack we'll be using throughout
the book. After a brief discussion of Node, npm, MongoDB, and Express we will
introduce Mongoose as an ODM (Object-Document Modeler), cover good and
bad use cases, and introduce the two cornerstones of Mongoose.

By the end of this chapter you will have an understanding of the technology stack
and where Mongoose fits in. We will also have set up the sample project that we
will build throughout the book.

The technology stack – Node.js, npm,
MongoDB, and Express
The benefits of Node are making it ever more popular, and a set of compatible
technologies are fast becoming the basis of a new standard development stack.

The language and the server – JavaScript
and Node
For quite some time JavaScript was mainly thought of as a lightweight browser-
based scripting language. Microsoft did support a JavaScript version of Classic ASP,
but it was largely side-lined in favor of the VBScript version.

Fast-forward 10 years and there were some pretty impressive JavaScript-based apps
on the Web, for example Gmail. The general view of JavaScript as a programming
language was starting to change back then.

www.allitebooks.com

http://www.allitebooks.org

Introducing Mongoose to the Technology Stack

[8]

In 2010 a new server-side system called Node.js was starting to make waves in the
Internet developer community. Node.js was a new way for using JavaScript on
the server side again. And it was quick and efficient. It could make scaling a web
application much more cost-effective by reducing the amount of hardware required
per-site visitor or request.

By 2012 Node was one of the buzzwords of the start-up scene, and you can see why.
Firstly, most Web developers have some JavaScript experience so it doesn't require
you to learn a new language from scratch. This also means you can share some code
between front-end and back-end, so you don't have to code the same thing twice in
two different languages. An excellent example of this is form validation; you want
real-time validation in the browser for a better user experience, but you also need
to validate on the server side to protect your system. So you code the same thing
twice. Using Node you can use the same validation script on the server side and
the browser, so you only have to code it once, in JavaScript.

Second, there is the reduced cost of scaling, especially when dealing with large
numbers of concurrent users. On the same hardware Node's efficiencies allow it
to handle many more requests than classic stacks on Apache or IIS. That being said,
adding scalability to Node is more complicated than other stacks. Unlike the others
you can't just put it on a more powerful machine and set it running. By default
Node will currently only run one process, using only one core of a machine. There
are methods to address this issue, using a load balancer in front of several processes
running alongside each other for example, and there are plans to enable future
versions of Node to be able to manage this natively, directly addressing this issue.

The benefits of scalability do have a cost. The single process is a more complicated
approach to server-side programming and requires a change in mindset.

Single-threaded versus multithreaded
Traditional stacks are generally multithreaded. This means that every new visitor
or session is given a new thread, and these are never shared. One session's activity
generally doesn't impact another, until the server resources are exhausted. For
example, if Session 1 is doing a complex database write operation it may take
a couple of seconds, but Session 2 continues running oblivious to this.

Node is single-threaded. This means that every visitor or session is added to that
one thread. So it is possible for a two-second database write operation to hold up
every other user for two seconds. Multiply this by just 10 users and you've got a
big problem on your hands.

Addressing this requires a different way of coding.

Chapter 1

[9]

Blocking versus non-blocking code
In the traditional stack, the approach to coding would be one step after the other, as
in the following steps:

1.	 First, take the data.
2.	 Then write this data to the database.
3.	 Send a confirmation message.
4.	 Wait for the next request.

This is blocking code, as you can only do one thing at a time. This is fine in the
multithreaded stack, as you're only ever responding to one person's requests.

In the single-threaded stack, you may have to respond to several people's requests
at the same time, so you can't afford to be stuck doing time-consuming operations
or waiting for someone else to do something. To do this, the approach to coding
becomes more like the following:

1.	 You give this data to someone.
2.	 They write this data to the database.
3.	 When they are done, they send a confirmation message; if this isn't

something they can do, then they add it to your request list.
4.	 You're going to take the next request.

This is non-blocking code. You can only do one at a time. So you're getting someone
else to do something for you, and telling them what to do when they have finished.
You can then deal with the next request coming in without any delay.

JavaScript callbacks
The way to code this in JavaScript is to use callbacks. Most JavaScript coders start
using them before they even know it, particularly anybody who uses libraries such
as jQuery.

Take the basic jQuery document.ready method as shown in the following:

$(document).ready(function() {
 console.log("document ready");
});

Introducing Mongoose to the Technology Stack

[10]

This is an event driven callback. The $(document).ready() part is a method
function of jQuery, and we are sending it a function function() that it can run
at the appropriate time. So we are saying "Hi ready, here is what I want you to
do once the document is ready, I'll leave it up to you to decide when that is". The
callback function we are using in this example is the following code snippet:

function() {
 console.log("document ready");
}

Running the callback
The jQuery .ready() function is pretty complicated, so we're not going to look at
that here. However, the construct is very useful to understand. Look at the following
code snippet:

ready = function (callback) {
 // do something
 // do something else
 //
 // and so on
 callback();
};

So ready itself is a function, and this function accepts one parameter callback. The
callback parameter is generally an anonymous function, like the one we looked at
earlier. A very important point to note is that callback now exists in the scope of the
ready function. This means that your callback function has access to any variables
or objects created in the ready function.

A Node.js example
Now consider the following standard Node "hello world" example:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 res.write('Hello world');
res.end();
})
listen(8888, '127.0.0.1');

Chapter 1

[11]

Look familiar? This is sending a callback to the http.createServer method
function. See how the parameters—req and res—are being sent to the callback
function even though they haven't been defined or created anywhere. This works
because the http.createServer function will create these objects before calling
this callback function that will use them.

The database – MongoDB
MongoDB has become the main database of choice for working with Node. Note that
there are Node drivers for many other databases, including MySQL, Microsoft SQL
Server, Reddis, PostgreSQL, CouchDB, and more.

MongoDB is popular as it is fast and flexible with excellent community support. It
is a document-oriented database, fitting in somewhere between Key-Value stores
and traditional relational databases. Despite being a document store, MongoDB also
enables rich querying and secondary indexing of documents, setting it apart from
other databases and making it a very powerful option.

MongoDB stores documents as BSON, which is effectively binary-encoded JSON.
When you run a query you get a JSON object returned (or a string in JSON format,
depending on the driver). Look at the following code snippet for example:

{ "_id" : ObjectId("4ffbc45c35097b5a1583ad71"),
 "firstname" : "Simon", "lastname" : "Holmes }

So, a document is a set of keys (for example, firstname) and values (for example,
Simon). The _id entry is a unique identifier that the underlying MongoDB driver
will—by default—create for each new document.

If you are more experienced with relational databases, it may help you to think of a
document as a bit like a row in a table. In this analogy, the key can be thought of as
a column. An important difference is that each document doesn't have to contain the
exact same set of keys, and there is no direct need to have keys with empty values
taking up space.

A collection of documents is called a collection. The closest analogy is a table. So in
your database you could well have multiple collections, such as a users collection,
posts collection, and stats collection.

Introducing Mongoose to the Technology Stack

[12]

MongoDB is also extremely scalable, with many built-in capabilities for distributing
across multiple servers, without compromising speed or data integrity.

With everything combined, it makes MongoDB a great playmate for Node.

The framework – Express
Express is a web application framework for Node.

When you create a Node project, you have to do a lot more groundwork than
you might be used to. Until you create it, there isn't even a web server. Then you
have to deal with serving static files in a non-blocking way, figure out the routing
mechanism, view engine, session management, and so on.

Or you can create an Express project and let it do all of this for you, in a tried-and-
tested way. At the end of this chapter, we'll see how easy it is to set up an
Express project.

Note that Express is not required to build a Node application, but it is a great starting
point for building web applications.

What Mongoose is all about
Mongoose is an object modeling tool for MongoDB and Node.js. What this means in
practical terms is that you can define your data model in just one place, in your code.

Yes, that's right. You don't have to create a schema in the database, link that to an
ORM or map it into your project objects and classes. You can just define your data
structure in JSON inside your project.

The first time I created a project like this I was amazed at how much time and
frustration it saves. Even now I still get that warm glow when I start a new project or
prototype using Mongoose. It's like taking a shortcut to work down deserted country
lanes while everybody else is gridlocked on the highway.

A schema definition can be as simple as the following code snippet:

var userSchema = new mongoose.Schema({
 firstname: String,
 lastname: String,
 createdOn: Date
});

Chapter 1

[13]

A document in MongoDB created from this schema would be like the following
code snippet:

{ "__v" : 0, "_id" : ObjectId("51412597e8e6d3e35c000001"),
 "createdOn" : ISODate("2013-03-14T01:19:19.866Z"),
 "firstname" : "Simon", " lastname " : "Holmes" }

If you want to refactor, then you can just do it from within your code, saving a huge
amount of development time.

What is Mongoose good for?
Mongoose is primarily useful when you want to interact with structured data in
MongoDB. It allows you to define a schema for your data, so that you can interact
with your MongoDB data in a structured and repeatable way.

Mongoose helps with many common MongoDB tasks, and removes some of levels of
complexity from the nested callbacks you find yourself getting lost in with the native
MongoDB driver.

Mongoose also returns the data to you as a JSON object that you can use directly,
rather than the JSON string returned by MongoDB.

Mongoose also has a whole suite of helper functions and methods that we'll explore
throughout the subsequent chapters of this book.

What Mongoose is not ideally suited for
Mongoose is probably not the answer for you if you are primarily working with
the following:

•	 Schema-less data
•	 Random documents
•	 Pure Key-Value pairs

Introducing Mongoose to the Technology Stack

[14]

The cornerstones of Mongoose
There are two aspects of Mongoose that we need to introduce you to before going
much further:

•	 Schemas
•	 Models

This is a very high-level view; so don't worry if you're not 100 percent confident with
this just yet, as we'll be covering it in a lot more detail later in this book.

Mongoose schemas
As we saw earlier, a schema is fundamentally describing the data construct of a
document. This schema defines the name of each item of data, and the type of data,
whether it is a string, number, date, Boolean, and so on.

var userSchema = new mongoose.Schema({
 name: String,
 email: String,
 createdOn: Date,
 verified: Boolean
});

In most scenarios you would have one schema for each collection within the database.

Schemas are a powerful aspect of Mongoose, which can also be extended with
helper functions and additional methods. But we'll describe more about that in
a later chapter.

Mongoose models
A model is a compiled version of the schema. One instance of the model will
map to one document in the database.

Creating a User instance based on the schema userSchema is a one line task:

var User = mongoose.model('User', userSchema);

It is the model that handles the reading, creating, updating, and deleting
of documents.

Chapter 1

[15]

Installing the full stack
Now that we know a little bit about the technology, it's time to get everything
installed. What follows is not an in-depth installation tutorial, but covers the
necessary steps to get everything installed on Ubuntu. The installation process is
very similar on other Linux distributions and Mac OS X. For Windows users, Node
and MongoDB have installation packages you can run, and after that everything else
is pretty much the same.

Installing the prerequisites
Node needs a couple of things installed to run properly, Python and a C compiler.
So let's make sure those are installed and up-to-date with a terminal command. I
use the Ubuntu Advanced Packaging Tool (APT) to install most software, as it
makes it this easy:

$ sudo apt-get install python-software-properties python g++ make

Installing Node.js
Again we'll use APT to install Node.js. As Node is actively developed and frequently
updated, APT doesn't always have the latest build. The latest version on APT is
currently several versions behind, so we will add the repository of one of the Node.js
developers. This is also the approach recommended on the Node website nodejs.org.

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt-get update

$ sudo apt-get install nodejs

If everything has gone smoothly then you should be able to check the installed
version displayed in terminal using the following command:

$ node --version

You should be greeted with a message back in the terminal along the lines of v0.10.0.

Installing npm
npm is a package manager for Node, although npm does not actually stand for Node
Package Manager. As of Node Version 0.6.3, npm is actually automatically installed
when you install Node.

Introducing Mongoose to the Technology Stack

[16]

You can quickly check that this has been done by checking the version number
on the terminal.

$ npm --version

1.1.23

If it is not there for some reason, simply install it with APT with the
following command:

$ sudo apt-get install npm

Installing MongoDB
Again we're using APT here.

$ sudo apt-get install mongodb

In order to test MongoDB, we need to run it. You can do this by just typing mongodb
into terminal, but I prefer to run it as a persistent service so that you don't have to
restart it.

$ sudo service mongodb start

This should give you a confirmation message in terminal that the mongodb process
is running.

Now to finally test that it has installed correctly we'll drop into the built-in MongoDB
shell. In terminal, enter the following:

$ mongo

This should do three things:

•	 Enter you into the MongoDB shell
•	 Show you the version of the shell being used
•	 Connect to the test database that comes with MongoDB

You should see something like the following screenshot:

Chapter 1

[17]

Installing Express.js
Now we're starting to get into the Node-based applications. So those of you who are
working on different operating systems can start paying attention again now. We are
going to install Express using npm.

$ sudo npm install -g express

See the -g flag there in the command line? This installs express
globally, meaning that we can use it wherever we want.

Once again you can test the installation by checking the version number.

$ express --version

Installing Mongoose
Finally we get round to installing Mongoose!

There are two ways of installing Mongoose, both using npm. I recommend using the
latter one.

Direct installation into project
If you're creating a quick test app, or will never have to move or publish the project
elsewhere, you can use npm to install Mongoose directly into your project. Navigate
to the root folder of your site or project in terminal and run the following command:

$ sudo npm install mongoose

Using project dependencies – package.json
Any Node project can have a package.json file, and any packages you install via
npm will have one. This file is normally in the root of your project, and can contain
various metadata, such as project name, description, version number, and
authors. It also helps manage the project's dependencies.

If you ever need to move, copy, or distribute your project you will find this
invaluable. The dependency management means that you are not forced to
remember which versions of which modules you added to each particular project.
It becomes even more necessary if you distribute it widely, as it removes any doubt
from the end-user's mind as to what the project needed.

www.allitebooks.com

http://www.allitebooks.org

Introducing Mongoose to the Technology Stack

[18]

Before we get into creating one, the following code snippet is an example of a
package.json file following code snippet that you might expect to see when you
create a new project using Express.

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.0.0rc5",
 "jade": "*"
 }
}

The list of dependencies are: a specific version of express and the latest
version of jade.

To install a specific version of Mongoose—which is the recommended approach,
especially if you are going to distribute your project—you would update the
dependencies section to look like the following code snippet:

"dependencies": {
 "express": "3.0.0rc5",
 "jade": "*",
 "mongoose": "3.6"
}

To install or update all of the dependencies listed in a package.json file,
using terminal, you simply navigate to the folder containing the file and run
the following command:

$ npm install

Creating a project
Now that we have the entire building blocks ready, let's set the foundations.
Throughout this book, we are going to build a simple project management web
app, called MongoosePM.

Chapter 1

[19]

Let's start off by creating an Express project.

1.	 In terminal, navigate to a relevant folder, for example, /MyWebsites in Linux,
or C:\Users\Your Username\Documents\My Web Sites\ in Windows.

2.	 Enter the following command:
$ express --sessions mongoosepm

This will create a new folder called mongoosepm. Inside this folder it will create a
new Express project. By default an Express project doesn't support user sessions;
an Express project is essentially stateless. By adding the --sessions parameter in
the command line we add session support to our project, so that we can follow a
user from page to page without having to constantly re-authenticate.

After Express has finished doing its thing you'll be able to see a whole load of new
files and folders within your mongoosepm folder. The intricacies of Express are
beyond the scope of this book, which is one of the reasons we have mainly stuck
with the default settings.

The next step is normally to install the dependencies, but first let's add Mongoose
and Connect to the dependency list. So open up the package.json file in the root
of the project and add a couple of lines to the dependencies hash.

For example, if your dependencies section looks like the following code snippet:

"dependencies": {
 "express": "3.0.0rc5",
 "jade": "*"
}

Then you change it with this (see the following code):

"dependencies": {
 "express": "3.0.0rc5",
 "jade": "*",
 "connect": "2.7.x",
 "mongoose": "3.6.x"
}

It is recommended that you don't "wildcard" the version for most modules, as there
is no guarantee that code based on older versions will work on newer versions.
Putting a wildcard in for the patch version like we have for Connect and Mongoose,
is recommended as they should only be patch updates and be backwards compatible.

Introducing Mongoose to the Technology Stack

[20]

To install these dependencies, go to the mongoosepm folder in terminal and run the
following command:

$ npm install

Once this has finished working, we should have a fully functional Express website to
play with. Let's test it to make sure!

Run the following command from terminal:

$ node app

You should see the following confirmation message directly in terminal:

Express server listening on port 3000

So open up a web browser, and point it to http://localhost:3000. All being well,
you should be presented with the default Express project landing page, as shown in
the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[21]

Summary
In this chapter we have taken a whirlwind tour of the technology stack, and installed
the required programs, which are as follows:

•	 Node.js
•	 npm
•	 MongoDB
•	 Express
•	 Mongoose

You should have at least a basic understanding of the majority of the stack. We're not
going to be discussing in depth the workings of Node, MongoDB, and Express, but I
will make sure to briefly describe any new concepts as we go.

In this first chapter, we have also created the framework for the project that we are
going to build in later chapters. This is a website built on Node.js, using the Express
framework. We have tested and seen this working in a browser.

In the next chapter, we will take a look at how to create Mongoose connections to
database, and the best way to add a connection to our new project.

Establishing a
Database Connection

We are going to look at the two methods Mongoose uses to connect to databases,
mongoose.connect and createConnection. We will also go through various
configuration options.

By the end of this chapter, you will understand how to best use the different
Mongoose connection methods to meet your needs. We will also have added
a connection to the MongoosePM example project.

Mongoose default connection
The way to set the default connection to a MongoDB database via Mongoose is
nice and easy, using the mongoose.connect method.

var dbURI = 'mongodb://localhost/mydatabase';
mongoose.connect(dbURI);

This will open a Mongoose connection to the Mongo database mydatabase, running
on the server localhost. If established at the correct place in your code, this
connection will now be available at any point in your app, if you require Mongoose.

Best practice
The best practice for a default Mongoose database connection is to
open it when the application starts, and keep it open to be re-used.
The connection should only need to be closed if your app is being shut
down or restarted.

Establishing a Database Connection

[24]

Using multiple connections
The default connection is great if your app only needs to connect to one database.
But what happens if you need to connect to a second database at the same time?
Or connect to the same database as a different user with different permissions.

For this we can use the mongoose.createConnection method, which is as follows
in the code snippet:

var dbURI = 'mongodb://localhost/myadmindatabase';
var adminConnection = mongoose.createConnection(dbURI);

About the connection string
The connection string—dbURI in our examples—can use any of the options from the
MongoDB connection string. We're not going to cover them all here, but here are a
couple of common options.

Setting the port
The default port is 27017. If you wanted to specify a different port, say 27018, you
would do so using the following code snippet:

var dbURI = 'mongodb://localhost:27018/mydatabase';

Specifying a database user
If you want to access the database as a particular user, you can add the username
and password in front of the hostname.

var dbURI = 'mongodb://username:password@localhost/mydatabase';

Connection options
Mongoose allows you to pass certain options through to both connection methods.
If specified, these options will override those set in the connection string.

The options are sent as a JSON object as an optional second parameter to the
connection call. For example:

var dbURI = 'mongodb://localhost/mydatabase';
var dbOptions = {'user':'db_username','pass':'db_password'};
mongoose.connect(dbURI, dbOptions);

Chapter 2

[25]

The options you can use this way are:

•	 user and pass: Username and password for the database, if required and
not specified in the connection string.

•	 db: This relates to the DB options available in the Node MongoDB
Native driver.

•	 server: This relates to the server options available in the Node MongoDB
Native driver.

•	 replset: This option allows you to specify a ReplicaSet. The details of
ReplicaSet methods are beyond the scope of this book, but the principle is
that you can have one primary database where all the writes are made to,
and multiple secondary databases. If the primary database fails, one of the
secondary databases is automatically made the new primary.

Closing the connection
As we have already seen, the general best practice is to open your connection at
application start up, and keep it open. However, there are times when you will
want to close the connection. For example, if your application is shutting down,
or restarting, the database connection needs to be manually closed, or if you are
running a single-hit script rather than a persistent application.

Calling the close command
Each Mongoose connection has a close() method that takes an optional callback
function.

If you are using the default connection you call it like the following code
snippet does:

mongoose.connection.close(function () {
 console.log('Mongoose default connection closed');
});

Calling the close() method on a named connection is just as easy, using our
example from earlier:

adminConnection.close(function () {
 console.log('Mongoose connection adminConnection closed');
});

Establishing a Database Connection

[26]

Closing when the Node process ends
As a rule you should tidy up the connections when your Node application stops,
whether this is an intentional process termination or not. To do this, you can send
your disconnections as a callback to Node's process.on('SIGINT') event as shown
in the following:

process.on('SIGINT', function() {
 mongoose.connection.close(function () {
 console.log('Mongoose disconnected through app termination');
 process.exit(0);
 });
});

Connection events
The connection process in Mongoose inherits the Node EventEmitter class,
meaning that we can set certain code to run following specific events. We can—and
will—work with some of the connection events, such as connected, disconnected,
and error.

The connection events are all used in the same way, sending a callback to the
connection.on event listener. For example, if we wanted to log to the console
when a connection error occurs we could do this in the following code:

mongoose.connection.on('error',function (err) {
 console.log('Mongoose connection error: ' + err);
});

Connecting our project
Now we know what we're doing, let's connect our project to a database using the
default Mongoose connection.

Creating the connection
For the sake of well organized code, let's create a folder called model, and in that,
an empty JavaScript file called db.js. We'll use this for managing the Mongoose
connection, and will add to it in later chapters.

At this stage the file needs to do three things:

1.	 Bring in the Mongoose module

Chapter 2

[27]

2.	 Build the connection string for the database
3.	 Open the Mongoose connection to the database

So in your /model/db.js file, enter the following:

// Bring Mongoose into the project
var mongoose = require('mongoose');

// Build the connection string
var dbURI = 'mongodb://localhost/MongoosePM';

// Create the database connection
mongoose.connect(dbURI);

Each of the three objectives is achieved with just one line of code—pretty simple
don't you think!

Catching the events
Next up we want to set up our event handlers. At this stage, we are just going
to log messages to the console, but they are useful containers, and important to
understand. We will also catch when the Node process is ending and close the
Mongoose connection.

So, still in db.js, after the connection code add the following snippets:

mongoose.connection.on('connected', function () {
 console.log('Mongoose connected to ' + dbURI);
});

mongoose.connection.on('error',function (err) {
 console.log('Mongoose connection error: ' + err);
});

mongoose.connection.on('disconnected', function () {
 console.log('Mongoose disconnected');
});

process.on('SIGINT', function() {
 mongoose.connection.close(function () {
 console.log('Mongoose disconnected through app termination');
 process.exit(0);
 });
});

www.allitebooks.com

http://www.allitebooks.org

Establishing a Database Connection

[28]

Opening the connection at application start
Now we need to tell the project to use this file, so that we can connect to the database
when the application starts. This is as simple as requiring our new file in app.js—
you may remember that this is the file we run to start the application.

At the top of your app.js file you should see some of the default modules being
required like in the following:

var express = require('express')
 , routes = require('./routes')

We are simply going to add one line in here, to require our model/db.js file
immediately after express is required. You should end up with something
resembling this following code:

var express = require('express')
 , db = require('./model/db')
 , routes = require('./routes')

Creating the database
You will notice that we haven't actually created a MongoDB database yet. The
good—and perhaps surprizing—news is that we don't have to. Nor do we have to
explicitly create any collections.

MongoDB will create a database the first time anything is saved to it, and the same
for collections.

I love this approach. This is one of the aspects that I find really speeds up application
development and prototyping.

You can of course connect to an existing database, if you already have one.

Chapter 2

[29]

Summary
In this chapter, we have looked at the two methods of creating a Mongoose
connection to a MongoDB database, and when you would use each method.

We have learned that the best practice is to create a connection when your
application starts and keep it open to be re-used. Tied to this we have seen
how and when to close the connection, and how to act upon events emitted
by the connection process.

We have also taken a brief look at how to specify different options if you have
a more complex database setup, or want to override some defaults.

You should now have connected your MongoosePM project to the MongoosePM
database, even though the database doesn't exist yet!

In the next chapter, we're going to start getting stuck into the real meat of
Mongoose, by defining schemas and models.

Schemas and Models
We are going to look at the two building blocks of Mongoose, schemas, and models.
We will look at their relationship to the data and how they can be used to maximize
the effectiveness of Mongoose. This chapter covers fairly simple schemas; more
complex schemas will be explored in Chapter 10, Complex Schemas.

By the end of this chapter, you will understand the roles of schemas and models
and their relationship to the data. We will also add schemas and models to the
MongoosePM example project.

Introducing schemas
So what is a schema? At its simplest, a schema is a way to describe the structure of
data. Typically this involves giving each piece of data a label, and stating what type
of data it is, for example, a number, date, string, and so on.

As we have already seen in Chapter 1, Introducing Mongoose to the Technology Stack, a
schema definition in Mongoose is a JSON object. In the following example, we are
creating a new Mongoose schema called userSchema. We are stating that a database
document using this schema will have three pieces of data, which are as follows:

•	 name: This data will contain a string
•	 email: This will also contain a string value
•	 createdOn: This data will contain a date

The following is the schema definition:

var userSchema = new mongoose.Schema({
 name: String,
 email: String,
 createdOn: Date
});

Schemas and Models

[32]

Field sizes
Note that, unlike some other systems there is no need to set the field size. This can
be useful if you need to change the amount of data stored in a particular object.
For example, your system might impose a 16-character limit on usernames, so you
set the size of the field to 16 characters. Later, you realize that you want to encrypt
the usernames, but this will double the length of the data stored. If your database
schema uses fixed field sizes, you will need to refactor it, which can take a long time
on a large database. With Mongoose, you can just start encrypting that data object
without worrying about it.

If you're storing large documents, you should bear in mind that MongoDB imposes a
maximum document size of 16 MB. There are ways around even this limit, using the
MongoDB GridFS API.

Data types allowed in schemas
There are eight types of data that can—by default—be set in a Mongoose schema.
These are also referred to as SchemaTypes; they are:

•	 String
•	 Number
•	 Date
•	 Boolean
•	 Buffer
•	 ObjectId
•	 Mixed
•	 Array

The first four SchemaTypes are self-explanatory, but let's take a quick look at
them all.

String
This SchemaType stores a string value, UTF-8 encoded.

Chapter 3

[33]

Number
This SchemaType stores a number value, with restrictions. Mongoose does not
natively support long and double datatypes for example, although MongoDB
does. However, Mongoose can be extended using plugins to support these other
types. See Chapter 11, Plugins – Re-using Code for more on plugins.

Date
This SchemaType holds a date and time object, typically returned from MongoDB
as an ISODate object, for example, ISODate("2013-04-03T12:56:26.009Z").

Boolean
This SchemaType has only two values: true or false.

Buffer
This SchemaType is primarily used for storing binary information, for example,
images stored in MongoDB.

ObjectId
This SchemaType is used to assign a unique identifier to a key other than _id, for
example, a foreign key for referencing another document (see Chapter 10, Complex
Schemas for more about this). Rather than just specifying the type of ObjectId you
need to specify the fully qualified version Schema.Types.ObjectId. For example:

projectSchema.add({
 owner: mongoose.Schema.Types.ObjectId
});

Mixed
A mixed data object can contain any type of data. It can be declared either by
setting an empty object, or by using the fully qualified Schema.Types.Mixed.
These following two commands will do the same thing:

vardjSchema= new mongoose.Schema({
 mixedUp: {}
});
vardjSchema= new mongoose.Schema({
 mixedUp: Schema.Types.Mixed
});

Schemas and Models

[34]

While this sounds like it might be great, there is a big caveat. Changes to data of
mixed type cannot be automatically detected by Mongoose, so it doesn't know that it
needs to save them.

Tracking changes to Mixed type
As Mongoose can't automatically see changes made to mixed type of data, you have
to manually declare when the data has changed. Fortunately, Mongoose exposes a
method called markModified to do just this, passing it the path of the data object that
has changed.

dj.mixedUp = { valueone: "a new value" };
dj.markModified('mixedUp');
dj.save();

Array
The array datatype can be used in two ways. First, a simple array of values of the
same data type, as shown in the following code snippet:

var userSchema = new mongoose.Schema({
 name: String,
 emailAddresses: [String]
});

Second, the array datatype can be used to store a collection of subdocuments using
nested schemas. We'll explore this concept further in Chapter 10, Complex Schemas, but
for now here's an example in the following of how this can work:

var emailSchema = new mongoose.Schema({
 email: String,
 verified: Boolean
});
var userSchema = new mongoose.Schema({
 name: String,
 emailAddresses: [emailSchema]
});

Warning – array defined as mixed type
A word of caution. If you declare an empty array it will be treated as mixed type,
meaning that Mongoose will not be able to automatically detect any changes made to
the data. So avoid these two types of array declaration, unless you intentionally want
a mixed type.

Chapter 3

[35]

var emailSchema = new mongoose.Schema({
 addresses: []
});
var emailSchema = new mongoose.Schema({
 addresses: Array
});

Custom SchemaTypes
If your data requires a different datatype which is not covered earlier in this chapter,
Mongoose offers the option of extending it with custom SchemaTypes. The extension
method is managed using Mongoose plugins, which we'll look at in detail in Chapter
11, Plugins – Re-using Code. Some examples of SchemaType extensions that have
already been created are: long, double, RegEx, and even email.

Where to write the schemas
As your schemas sit on top of Mongoose, the only absolute is that they need to be
defined after Mongoose is required. You don't need an active or open connection to
define your schemas.

That being said it is advisable to make your connection early on, so that it is available
as soon as possible, bearing in mind that remote database or replica sets may take
longer to connect than your localhost development server.

While no action can be taken on the database through the schemas and models
until the connection is open, Mongoose can buffer requests made from when the
connection is defined. Mongoose models also rely on the connection being defined,
so there's another reason to get the connection set up early in the code and then
define the schemas and models.

Writing a schema
Let's write the schema for a User in our MongoosePM application.

The first thing we have to do is declare a variable to hold the schema. I recommend
taking the object name (for example, user or project) and adding Schema to the end
of it. This makes following the code later on super easy.

The second thing we need to do is create a new Mongoose schema object to assign to
this variable. The skeleton of this is as follows:

var userSchema = new mongoose.Schema({ });

Schemas and Models

[36]

We can add in the basic values of name, email, and createdOn that we looked at
earlier, giving us our first user schema definition.

var userSchema = new mongoose.Schema({
 name: String,
 email: String,
 createdOn: Date
});

Modifying an existing schema
Suppose we run the application with this for a while, and then decide that we
want to record the last time each user logged on, and the last time their record
was modified. No problem!

We don't have to refactor the database or take it offline while we upgrade the
schema, we simply add a couple of entries to the Mongoose schema. If a key
requested in the schema doesn't exist, neither Mongoose nor MongoDB will
throw errors, Mongoose will just return null values. When saving the MongoDB
documents, the new keys and values will be added and stored as required. If the
value is null, then the key is not added.

So let's add modifiedOn and lastLogin to our userSchema:

var userSchema = new mongoose.Schema({
 name: String,
 email: String,
 createdOn: Date,
 modifiedOn: Date,
 lastLogin: Date
});

Setting a default value
Mongoose allows us to set a default value for a data key when the document is
first created. Looking at our schema created earlier, a possible candidate for this is
createdOn. When a user first signs up, we want the date and time to be set.

We could do this by adding a timestamp to the controller function when we create a
user, or to make a point we can modify the schema to set a default value.

To do this, we need to change the information we are sending about the createdOn
data object.

Chapter 3

[37]

What we have currently is:

createdOn: Date

This is short for:

createdOn: { type: Date }

We can add another entry to this object to set a default value here, using the
JavaScript Date object:

createdOn: { type: Date, default: Date.now }

Now every time a new user is created its createdOn value will be set to the current
date and time.

Note that in JavaScript default is a reserved word. While the language allows
reserved words to be used as keys, some IDEs and linters regard it as an error. If
this causes issues for you or your environment, you can wrap it in quotes, like in
the following code snippet:

createdOn: { type: Date, 'default': Date.now }

Only allowing unique entries
In Chapter 9, Validating Data, we will be looking at how we can use Mongoose to
validate data, but here is a quick way to ensure that there are no duplicates for a
specific data item.

For example, if we want to ensure that there is only ever one user per e-mail address,
we can specify that the email field should be unique.

email: {type: String, unique:true}

With this in place, when saving to the database, MongoDB will check to see if
the e-mail value already exists in another document. If it finds it, MongoDB (not
Mongoose) will return an E11000 error. Note that this approach also defines a
MongoDB index on the email field.

We'll look at more validation techniques in Chapter 9, Validating Data.

www.allitebooks.com

http://www.allitebooks.org

Schemas and Models

[38]

Our final User schema
Your userSchema should now look like the following:

var userSchema = new mongoose.Schema({
 name: String,
 email: {type: String, unique:true},
 createdOn: { type: Date, default: Date.now },
 modifiedOn: Date,
 lastLogin: Date
});

A corresponding document from the database would look like the following (line
breaks are added for readability):

{ "__v" : 0,
"_id" : ObjectId("5126b7a1f8a44d1e32000001"),
"createdOn" : ISODate("2013-02-22T00:11:13.436Z"),
"email" : "simon@theholmesoffice.com",
"lastLogin" : ISODate("2013-04-03T12:54:42.734Z"),
"modifiedOn" : ISODate("2013-04-03T12:56:26.009Z"),
"name" : "Simon Holmes" }

What's that "__v" thing?
You may have noticed a data entity in the document that we didn't set: __v. This is
an internal versioning number automatically set by Mongoose when a document is
created. It doesn't increment when a document is changed, but instead is automatically
incremented whenever an array within the document is updated in such a way that
might cause the indexed position of some of the entries to have changed.

Why is this needed?
When working with an array you will typically access the individual elements
through their positional index, for example, myArray[3]. But what happens if
somebody else deletes the element in myArray[2] while you are editing the data
in myArray[3]? Your original data is now contained in myArray[2] but you
don't know this, so you quite happily overwrite whatever data is now stored in
myArray[3].The __v gives you a method to be able to sanity check this, and prevent
this scenario from happening.

Chapter 3

[39]

Defining the Project schema
As part of our MongoosePM application we also need to think about Projects. After
all, PM here does stand for Project Manager.

Let's take what we've learned and create the Project schema. We are going to want a
few types of data to start with:

•	 projectName: A string containing the name of the project.
•	 createdOn: The date when the document was first created and saved. This

option is set to automatically save the current date and time..
•	 modifiedOn: The date and time when the document was last changed.
•	 createdBy: A string that will for now contain the unique ID of the user who

created the project.
•	 tasks: A string to hold task information.

Transforming these requirements into a Mongoose schema definition, we create this
in the following:

varprojectSchema = new mongoose.Schema({
 projectName: String,
 createdOn: Date,
 modifiedOn: { type: Date, default: Date.now },
 createdBy: String,
 tasks: String
});

This is our starting point, and we will build upon it when we look at more complex
schemas in Chapter 10, Complex Schemas. For now we have these basic data objects as
mentioned previously in this chapter.

Here's an example of a corresponding document from the database (line breaks
added for readability):

{ "projectName" : "Another test",
"createdBy" : "5126b7a1f8a44d1e32000001",
"createdOn" : ISODate("2013-04-03T17:47:51.031Z"),
"tasks" : "Just a simple task",
"_id" : ObjectId("515c6b47596acf8e35000001"),
"modifiedOn" : ISODate("2013-04-03T17:47:51.032Z"),
"__v" : 0 }

Schemas and Models

[40]

Improving the Project schema
Throughout the rest of the book we will be improving this schema, but the beauty
of using Mongoose is that we can do this relatively easily. Putting together a basic
schema like this to build upon is a great approach for prototyping—you have the
data you need there, and can add complexity where you need, when you need it.

Building models
If you remember from Chapter 1, Introducing Mongoose to the Technology Stack, a model
is a compiled version of the schema.

A single instance of a model maps directly to a single document in the database.
With this 1:1 relationship, it is the model that handles all document interaction—
creating, reading, saving, and deleting.

This makes the model a very powerful tool.

Building the model, as we have seen, is pretty straightforward. When using the
default Mongoose connection we can call the mongoose.model command, passing
it two arguments:

•	 The name of the model
•	 The name of the schema to compile

So if we were to build a model from our user schema we would use this line:

mongoose.model('User', userSchema);

If using a named Mongoose connection, the approach is very similar. Using the
adminConnection example from Chapter 2, Establishing a Database Connection:

adminConnection.model('User', userSchema);

Instances
We'll be looking at how we interact with the data in the next chapter, but it is useful
to have a good understanding of how a model works.

After building the User model, using the previous line we could create two instances.

var userOne = new User({ name: 'Simon' });
var userTwo = new User({ name: 'Sally' });

Chapter 3

[41]

Interacting with instances
Each instance is a JavaScript object that we can interact with.

console.log(userOne.name); // 'Simon'
userOne.name = 'Simon Holmes';
console.log(userOne.name); // 'Simon Holmes'

As each new User is an instance of the model, we are able to use the power of the
model to save it to the database as shown in the following code:

userTwo.save(function (err) {
 if (err) return handleError(err);
 // userTwo (Sally) is saved!
});
userOne.save(function (err) {
 if (err) return handleError(err);
 // userOne (Simon Holmes) is saved!
});

Finding a single instance
If we ask Mongoose to "find one", we expect a single instance to be returned. This
looks like the following code snippet:

User.findOne({'name' : 'Sally', function(err,user) {
if(!err){
 console.log(user);
 }
});

The output of this console.log is a single instance:

{
 name: 'Sally',
 _id: 515c6b47596acf8e35000001,
 __v: 0
}

Finding many instances
If we use a "find many" command, we expect to get an array of instances:

User.find({}, function(err, users) {
 if(!err){
 console.log(users);
 }
});

Schemas and Models

[42]

The output of this console.log is an array of instances:

[{
 name: 'Sally',
 _id: 515c6b47596acf8e35000001,
 __v: 0 },
{
 name: 'Simon Holmes',
 _id: 515c6b47596acf8e35000002,
 __v: 0
}]

Considerations when choosing
your model name
Unless specified, the MongoDB collection will be a pluralized (lowercase) version of
the model name. See the following for example:

mongoose.model('User', userSchema);

The previous line will reference a collection called users. If the collection doesn't
exist it will create it the first time a document is saved using the model.

The collection name defaults to a pluralization of the Mongoose
model name.

Setting the collection name
Having a default collection name is great when you're creating an application from
scratch, but what if you're using an existing database with collection names that
don't match this approach?

There are two ways of specifying a different collection name

•	 Using either the schema declaration, or
•	 The model command

Overriding the collection name in the schema
To specify a collection name when defining a schema you need to send a second
argument to the new mongoose.Schema call.

Chapter 3

[43]

Say we have an existing collection called myuserlist that we want to use with our
userSchema, the following snippet is how we would do it:

var userSchema = new mongoose.Schema({
 name: String,
 email: {
 type: String, unique:true
 }
},
{
 collection: 'myuserlist'
});

Overriding the collection name in the model
To specify the collection name when building a model you send a third argument to
the mongoose.model command.

Using the same example as before, here's how it looks when setting the collection
name through the model command:

mongoose.model('User', userSchema, 'myuserlist');

Building models from our schemas
Now let's put the theory into action, and build the models from our User and Project
schemas.

In the /model/db.js file, add the following after the userSchema is defined:

// Build the User model
mongoose.model('User', userSchema);

And add the following after the projectSchema is defined:

// Build the Project model
mongoose.model('Project', projectSchema);

This will give us everything we need to start interacting with data in our application,
which we will start doing very soon, in the next chapter.

Schemas and Models

[44]

Our complete code
Now that we have defined our schemas and compiled the models, let's take a look at
our /model/db.js file.

var mongoose = require('mongoose'),
dbURI = 'mongodb://localhost/MongoosePM';
mongoose.connect(dbURI);
// Connection events snipped out for brevity

/* **
 USER SCHEMA
 ** */
var userSchema = new mongoose.Schema({
 name: String,
 email: {type: String, unique:true},
 createdOn: { type: Date, default: Date.now },
 modifiedOn: Date,
 lastLogin: Date
});

// Build the User model
mongoose.model('User', userSchema);

/* **
 PROJECT SCHEMA
 ** */
var projectSchema = new mongoose.Schema({
 projectName: String,
 createdOn: { type: Date, default: Date.now },
 modifiedOn: Date,
 createdBy: String,
 contributors: String,
 tasks: String
});

// Build the Project model
mongoose.model('Project', projectSchema);

In this code we have done everything we need to before moving on. These are
as follows:

•	 We required Mongoose
•	 We set the connection string for the MongoDB database

Chapter 3

[45]

•	 We defined the User schema
•	 We built the User model
•	 We defined the Project schema
•	 We built the Project model
•	 We opened the Mongoose connection to the database

Note that if you have large complex schemas and models, you may want to have
separate files for each, and just export the models.

Summary
In this chapter, we have looked at how schemas and models relate to your data.
You should now understand the roles of both schemas and models.

We have looked at how to create simple schemas and the types of data they can
contain. We have also seen that it is possible to extend this if the native types are not
enough. On top of this we have learned about compiling the schemas into models
and had a glimpse at how powerful this set of tools can be.

In the MongoosePM project, you should now have added a User schema and a
Project schema, and built models of both of these.

In the next chapter, we're going to see how we use these schemas and models to
create, read, update, and delete data.

Interacting with
Data – an Introduction

We have seen how to define our data structure, but now we want to interact with it.
We want to be able to create database entries, read them, update them, and delete
them. To handle these interactions, Mongoose uses methods added to models. This
chapter introduces the concept and will look at how to organize our code to best
work with this approach.

By the end of this chapter, you will have had a glimpse of how Mongoose helps you
to easily interact with your data. You will also have prepared the sample project so
that we can dive into practical examples in later chapters.

Model methods and instance methods
As we have seen in Chapter 3, Schemas and Models, a document in a Mongoose
collection is a single instance of a model. So it makes sense that if we're going to
work with our data then it will be through the model.

So what do we mean by model methods? Well, if we have a model called User, some
of the methods provided by Mongoose are User.create, User.find, User.update,
and User.remove. The method names may be slightly different, but out of the box
we've got methods for all four CRUD (Create, Read, Update, and Delete) operations
right there.

Instance methods are the same concept, except that they are applied to specific
instances instead. We will look at a good example of this soon, with the instance.
save method.

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data – an Introduction

[48]

Mongoose also allows you to define your own model methods, giving you the
flexibility to create the functionality you want. We'll see more about these static
methods and create one ourselves in Chapter 6, Interacting with Data – Reading,
Querying, and Finding.

Before we look at some examples, first let's remind ourselves of our User schema
and model so that we can use this as the basis.

var userSchema = new mongoose.Schema({
 name: String,
 email: {type: String, unique:true},
 createdOn: Date,
 modifiedOn: { type: Date, default: Date.now },
 lastLogin: Date
});

// Build the User model
mongoose.model('User', userSchema);

So we have our model called User, compiled from the schema userSchema. Got it?
Good. Now let's get our project ready so that we can use the examples as we go!

Setting up the project
Before we get going on the Mongoose code, we need to get a couple of things in
order in our project:

•	 Our approach to code structure
•	 The URLs/routes we'll need

Code structure
If we think in an MVC way, our Express project already has a model folder and a
views folder. The model folder holds our schema definitions, Mongoose models and
Mongoose connection. The views folder contains Jade templates for page layout. The
controller aspect sits in the routes folder of a standard express installation. We could
separate it out or move it around, but as the focus of this book is on using Mongoose,
but not on MVC best practices, let's work with the default setup.

Chapter 4

[49]

Adding the routes files
A good starting point when thinking about setting up your routes is to have one
routes file for each Mongoose model. Given the non-normalized data structure
of MongoDB there aren't generally too many of these—we're not talking about
individual tables in a relational database here! Also, as we saw earlier in this chapter,
we are generally working with model methods, and instances of that model. So it
seems like a sensible way to separate out our code in the first instance.

So with that in mind, create two empty text files in the routes folder, user.js and
project.js. You may find that your installation of Express has already created the
file routes/user.js—this is fine, you can just open it and delete the contents.

Bear in mind that as your applications grow in complexity, these files can get very
large, in this case you may want to divide them in a logical way for your application.

Tying the routes to Mongoose models
In each of these files, we need to require Mongoose and the relevant model. So at the
top of the user.js file add the following:

var mongoose = require('mongoose');
var User = mongoose.model('User');

And add the following to project.js:

var mongoose = require('mongoose');
var Project = mongoose.model('Project');

We need to get these files into the application, so we'll require them in app.js.
You'll see that routes is already required, and we'll keep that to hold our index
page. Let's add our two new files user and project directly after it.

var express = require('express')
 , db = require('./model/db')
 , routes = require('./routes')
 , user = require('./routes/user')
 , project = require('./routes/project')

URLs and routes
Next up we need to think about how we're going to interact with the data and the
URLs we're going to use to do it. These will all go into app.js immediately after the
homepage route.

Interacting with Data – an Introduction

[50]

Routes for user management
We will concentrate on the user management first, so we will want to have
the following:

•	 User homepage or profile page at /user
•	 Login page at /login
•	 New user form at /user/new
•	 Edit current user details form at /user/edit
•	 Delete user confirmation form at /user/delete
•	 Logout user action at /logout

In most of these options, we want a form and an action to do something, so we will
use both app.get for displaying forms and app.post for form handling. So let's add
these routes in to app.js below the following app.get('/', routes.index) in
app.js, defining our route function names as we go. See the following code snippet:

app.get('/', routes.index);
// USER ROUTES
app.get('/user', user.index); // Current user profile
app.get('/user/new', user.create); // Create new user form
app.post('/user/new', user.doCreate); // Create new user action
app.get('/user/edit', user.edit); // Edit current user form
app.post('/user/edit', user.doEdit); // Edit current user action
app.get('/user/delete', user.confirmDelete); // delete current
 //user form
app.post('/user/delete', user.doDelete); // Delete current
 //user action
app.get('/login', user.login); // Login form
app.post('/login', user.doLogin); // Login action
app.get('/logout', user.doLogout); // Logout current user

Routes for project management
We are going to take a similar approach for dealing with projects, except that project
information won't be stored in a session. So to tell a page which project we are
working with, we will include the unique ID in the URL. Add the following code to
app.js below the user routes that we have just added:

// PROJECT ROUTES
app.get('/project/new', project.create); // Create new
 //project form
app.post('/project/new', project.doCreate); // Create new
 //project action

Chapter 4

[51]

app.get('/project/:id', project.displayInfo); // Display project
 //info
app.get('/project/edit/:id', project.edit); // Edit selected
 //project form
app.post('/project/edit/:id', project.doEdit);// Edit selected
 //project action
app.get('/project/delete/:id', project.confirmDelete);// Delete
 // selected product form
app.post('/project/delete/:id', project.doDelete); // Delete
 //selected project action

Summary
In this chapter, we have had a very quick glance at how Mongoose provides
methods for us to interact with our data. We have also seen how to set up our
project to work with Mongoose, attaching our schemas and models to the actual
back end of the application.

In the next four chapters, we will be exploring the Mongoose data methods in much
greater detail, focusing around the cornerstones of CRUD operations. First up,
Chapter 5, Interacting with Data – Creation, for creating data.

Interacting with
Data – Creation

As we are building an application from the ground up, our first work with data will
be creating some and saving it to the database. In this chapter we will:

•	 Learn about creating an instance
•	 Learn about saving an instance
•	 Learn when to use different approaches
•	 Add the ability for users to sign up to our MongoosePM application by:

°° Adding new routes
°° Adding new views
°° Adding new controller code
°° Saving the user details in a session so that they stay logged in

•	 Outline the steps required to add the ability to create new projects, but let
you go for it alone! If you get stuck, you can always download the complete
source code to take a look.

Creating an instance
Now that Chapter 4, Interacting with Data – An Introduction has taken care of the
housekeeping, it's time to get going and do stuff with data. Theory first, then action!

Interacting with Data – Creation

[54]

To do anything meaningful at all, we will have to create an instance. This could be
done by retrieving an object from a database, but let's start by creating a new empty
instance. We do this by using the new ModelName expression. As our model is called
User, to create a new instance we invoke the new User expression.

var newUser = new User();

Adding data to the instance
When creating an instance, you will generally want to add some data to it. The
default way of adding data is to pass it to the model constructor as a JavaScript
object. For example:

var newUser = new User({
 name: 'Simon Holmes',
 email: 'simon@theholmesoffice.com',
 lastLogin : Date.now()
});

Although you can also add data to the instance after it has been created, as shown in
the following:

var newUser = new User();
newUser.name = 'Simon Holmes';

Or you can use a combination, setting some data when the object is created, and
adding additional data afterwards:

var newUser = new User({
 email: 'simon@theholmesoffice.com',
 lastLogin : Date.now()
});
newUser.name = 'Simon Holmes';

Saving an instance
So far we have created an instance, and put some data to it, but it only exists in the
application. Saving it to the database is a really simple operation.

Your Mongoose connection must be open for this to work.

Chapter 5

[55]

After we have created our newUser and given it some data, we save it in the
following way:

newUser.save(function(err){
 if(!err){
 console.log('User saved!');
 }
});

This .save method is an example of an instance method, because it operates directly
on the instance, rather than the model. Note that the parameter it takes is a callback
function to run when the save operation has been made to the database. As we saw
back in Chapter 1, Introducing Mongoose to the Technology Stack, writing to a database is
a blocking operation, but the .save method provides a non-blocking asynchronous
way of doing this, allowing the Node process to carry on and deal with other requests.

This is a good thing for our application, but it means that any operations that you
want to do after the instance is saved must come inside the callback function.

Any default values set in the schema are automatically applied when
.save is called, before the data is saved to the database.

Using the saved data
The .save method allows you to specify a second parameter to the callback, which
will contain the saved object. Your callback function can then use this object. This
can be useful in many ways, for example, if you want to find out the unique ID of
the database entry you have just created. The code to do that looks like this:

newUser.save(function(err, user){
 if(!err){
 console.log('Saved user name: ' + user.name);
 console.log('_id of saved user: ' + user._id);
 }
});

Here we are returning the saved user information in the user object, which would
look like the following lines (line breaks added for readability):

{ "__v" : 0,
"_id" : ObjectId("5126b7a1f8a44d1e32000001"),
"createdOn" : ISODate("2013-02-22T00:11:13.436Z"),

Interacting with Data – Creation

[56]

"email" : "simon@theholmesoffice.com",
"lastLogin" : ISODate("2013-04-03T12:54:42.734Z"),
"modifiedOn" : ISODate("2013-04-03T12:56:26.009Z"),
"name" : "Simon Holmes" }

In our callback function, we can use any of this data using standard dot syntax. In
the case of this example code we've gone for user.name and user._id.

_id is an ObjectId SchemaType (see Chapter 3, Schemas and Models) that is unique
and automatically added by Mongoose. You can also access a string representation
of it by removing the underscore. This means we could also have the following:

console.log('id of saved user: ' + user.id);

This can cause confusion when comparing the two, as while these may look the same
when sent to the console, one is an ObjectId and the other is a string.

Creating and saving database entry in
one step
We don't always need to run all the commands separately and can simplify do
things by creating and saving the database entry in one step. There are two ways
of doing this.

Chaining methods
The first way is to chain the newUser and .save commands into one line, for example:

var newUser = new User({
 name: 'Simon Holmes',
 email: 'simon@theholmesoffice.com',
 lastLogin : Date.now()
}).save(function(err){
 if(!err){
 console.log('User saved!');
 }
});

The Model.create() method
The second way is to use a single-model method, which combines the new and the
save operations into one command. This method takes two parameters. First is the
data object, and the second is the callback function that is to be executed after the
instance has been saved to the database.

Chapter 5

[57]

So the blueprint for this method is:

ModelName.create(dataObject,callback)

Let's see this in operation, using our trusty User model:

User.create({
 name: 'Simon Holmes',
 email: 'simon@theholmesoffice.com',
 lastLogin : Date.now()
}, function(err, user){
 if(!err){
 console.log('User saved!');
 console.log('Saved user name: ' + user.name);
 console.log('_id of saved user: ' + user._id);
 }
});

This is arguably the neater way of doing a brand new create and save operation, and
is the approach we'll be using in our MongoosePM application later. The cost of the
compact nature of this approach is that it is less flexible, as we can't do anything with
the newUser instance between creating it and saving it. If you need this flexibility,
then go for the new and save approach, like in the following:

var newUser = new User({name: 'Simon Holmes'})
newUser.email = 'simon@theholmesoffice.com';
var rightNow = Date.now();
newUser.createdOn = rightNow;
newUser.lastLogin = rightNow;
 // some more operations on newUser
newUser.save(function(err, user){
 if(!err){
 console.log('_id of saved user: ' + user._id);
 }
});

CRUD – create data
Now we're going to take what we've just learned, and use it to add the ability to create
users in our application. If we look back to the routes we set up in app.js, we can see
that we have two routes for creating a user, the form itself and the form action.

app.get('/user/new', user.create); // Create new user form
app.post('/user/new', user.doCreate); // Create new user action

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data – Creation

[58]

Adding a new user form
To display the form in an HTML page, we need to do two things:

•	 Create the Jade template
•	 Link the template to the route

Adding the Jade template
By default Express will install with two Jade template files, layout.jade and index.
jade. The layout template contains the HTML skeleton, including the DTD, <head>, and
<body> tags. The index template extends the layout template inside the <body> tag.

For our MongoosePM application, we will keep this simple approach, and create a new
extension template for each new page template we need. This is a great approach for
rapid prototyping and development of a proof of concept. But before releasing an app,
you'll probably want to spend more time on the templates and layout.

Let's get started and create the template file for our user sign-up form. In the views
folder either copy index.jade or create a blank text file and call it user-form.jade.
In that file, enter the following lines and save it:

extends layout

block content
 h1= title
 form(id="frmUserProfile", method="post", action="")
 label(for="FullName") Full name
 input(type="text", name="FullName", id="FullName")
 label(for="Email") Email
 input(type="email", name="Email", id="Email")
 input(type="submit", value="#{buttonText}")

Here you can see that we are extending the template layout, and defining a block
of code for the content section of the layout template.

Chapter 5

[59]

For the rest of the templates in this book, we will omit the extends
layout and block content lines for brevity, unless they are required
to set context.

This page is going to be pretty minimal, having a <h1> tag containing the page title
that we'll pass through as the variable title, and a blank form. The form only asks for
the full name and e-mail address; the submit button expects a variable buttonText
to be passed to the template and will use it for the value. We have set the form
method to POST and left action blank. This means that the form will post to the same
URL that is displaying the form. If we look back at our routes this is the behavior we
are looking for:

app.get('/user/new', user.create); // Create new user form
app.post('/user/new', user.doCreate); // Create new user action

This is a technique we'll be using a few more times in this application.

Linking the view to the URL
Now that we have our display template ready, we need to link it to the routing. Our
routing maps a GET request of the URL /user/new to the route user.create. So in
our /routes/user.js file we need to create an export function called create. As
part of this, we need to send the variables that the Jade template is expecting: title
and buttonText. Your function should look something like the following:

// GET user creation form
exports.create = function(req, res){
 res.render('user-form', {
 title: 'Create user',
 buttonText: "Join!"
 });
};

That's pretty straightforward right? We can easily see this in action by running
our application.

Interacting with Data – Creation

[60]

Restarting the application
If your application is still running, then refreshing the page in the browser
will not reflect changes made to Node.js code, although you will generally
see changes made to Jade and CSS files. To restart the application, go
to the terminal window running the process and hit Ctrl + C to kill the
process. Then run the following command ensuring that you are in the
root folder of the application:
$ node app

Alternatively there are a few tools available to monitor and restart your
Node server automatically, such as Nodemon and Supervisor, which are
available at the following links:
https://github.com/remy/nodemon

and
https://github.com/isaacs/node-supervisor

Head back over to your browser and point it to http://localhost:3000/user/
new—you should see something like the following screenshot:

Now, we're not going to win any design awards with this, but still, our form is up
there with very little effort. Unfortunately, it doesn't do anything yet, so let's fix that
right now!

Adding the create user function
The route we've declared to use—to handle the new user form—is user.doCreate,
so we will create the doCreate export function in routes/user.js.

Chapter 5

[61]

The bare bones of what we want to do are:

1.	 Take the name and e-mail address from the new user form.
2.	 Add the current date and time for modifiedOn and lastLogin.
3.	 Create the new user.
4.	 Save the new user to the database.
5.	 Confirm the save operation to the console.

We will flesh this out soon, but that's the minimum functionality we're after.
We'll use the Model.create() method we looked at before, to create and save
the document in one go, so add the following lines to your routes/user.js file:

// POST new user creation form
exports.doCreate = function(req, res){
 User.create({
 name: req.body.FullName,
 email: req.body.Email,
 modifiedOn : Date.now(),
 lastLogin : Date.now()
 }, function(err, user){
 if(!err){
 console.log("User created and saved: " + user);
 }
 });
};

Remember that if the operation is successful, then the saved object is returned to
the callback function. So if you were to run this successfully you could expect to
see something like the following returned to the console:

User created and saved: { __v: 0,
 name: 'Simon Holmes',
 email: 'simon@theholmesoffice.com',
 createdOn: Sun Apr 21 2013 15:53:07 GMT+0100 (BST),
 lastLogin: Sun Apr 21 2013 15:53:07 GMT+0100 (BST),
 _id: 5173fd53aef1909b49000001,
 modifiedOn: Sun Apr 21 2013 15:53:07 GMT+0100 (BST) }

Note how the createdOn value has been set using the default specified in the
schema, and the unique key _id has been added, created, and returned to us.

Interacting with Data – Creation

[62]

Error trapping
This is all very well and good, but what if the save operation isn't successful? Well,
we'll get an error object returned that we can look out for. We will first check if that
error exists, and log it to the console for now. We will then check for the error code
11000. You may recall from Chapter 3, Schemas and Models that this is the error which
MongoDB will return if the e-mail address already exists in the database.

Our callback function now looks like the following:

function(err, user){
 if(err){
 console.log(err);
 if(err.code===11000){
 res.redirect('/user/new?exists=true');
 }else{
 res.redirect('/?error=true');
 }
 }else{
 // Success
 console.log("User created and saved: " + user);
 }
}

So if an error is thrown while creating and saving the user we'll output it to the
console, and redirect the visitor to /?error=true, except if the error code is 11000
when we redirect the user to /user/new?exists=true. We could use both of these
techniques to let the visitor know what has happened.

There are several other MongoDB error codes that you can check for,
allowing you to be as specific and granular as you want. You can
find them in the following link:
http://www.mongodb.org/about/contributors/error-
codes/

Creating a user session
Now that we've error trapped, we need to do something more useful with the
new user information than just log it to the console. In order to keep using the site
we will need to store some of the user information in a session cookie, so that the
application can tell who each visitor is. We will also set a Boolean session variable
named loggedIn.

Chapter 5

[63]

By updating the success section of our callback, we now have the following:

// Success
console.log("User created and saved: " + user);
req.session.user = { "name" : user.name, "email": user.email, "_id":
user._id };
req.session.loggedIn = true;
res.redirect('/user');

We have used the session capabilities of Express to store some useful information
about the current user that we will use soon. You'll see that the final thing we do is
to redirect the visitor to the user profile page /user.

You will notice that at the time of restarting the application, all existing
sessions are lost as the default Express memory store does not persist
outside of the running process. This can present a problem in live
environments, but can be solved quite easily by using an external
memory store to hold the session data.

Displaying the confirmation page
To keep things simple, we are going to use the user profile page as the
confirmation page.

For now we will have a super-simple Jade template. For this create a template /
views/user-page.jade and add the following under the block content section:

h1 Mongoose Project Management
h2= name
p Email: #{email}
 h3 Actions
 ul
 li
 a(href="/project/new") Create a new project
 li
 a(href="/user/edit") Edit user info
 li
 a(href="/user/delete") Delete #{name}
 li
 a(href="/logout") Logout #{name}

We have also added a section for page specific navigation, allowing the user to take
specific actions. We will tie these up to code as we go along.

Interacting with Data – Creation

[64]

Next add the new export function to routes/user.js:

// GET logged in user page
exports.index = function (req, res) {
 if(req.session.loggedIn === true){
 res.render('user-page', {
 title: req.session.user.name,
 name: req.session.user.name,
 email: req.session.user.email,
 userID: req.session.user._id
 })
 }else{
 res.redirect('/login');
 }
}

Note that we are checking to see if a user is logged in before rendering the user
page template, sending it some user data from the session object. If there is no
active session then the visitor will be redirected to the login page. We will create
the login page when we have looked at how to use Mongoose to read data.

Try it out!
You can now save the files, restart the application, and head to
http://localhost:3000/user/new. Try creating a few new users, and
try registering a few with the same e-mail address to see the error trapping
in progress. See how it works without having to do anything so mundane as
creating a database? Refreshing isn't it!

Adding create project functionality
Managing projects in our application is similar to how we manage the users, so we
won't go through it in great detail here. I will just point out the highlights and any
differences. You can get the full code from the download that accompanies this book.

Routes
The following are the two main routes, to be added to app.js:

// PROJECT ROUTES
app.get('/project/new', project.create); // Create new
 //project form
app.post('/project/new', project.doCreate); // Create new
 //project action

Chapter 5

[65]

New files and functions
You will need to create some new files and functions to build the functionality,
and to display it in the browser. As a starting point you'll be looking at the
following files:

•	 Routing: You will need to create a new controller file
/routes/project.js and two new functions exports.create()
and exports.doCreate()

•	 Display: You will need to create a new template file
views/project-form.jade

At this point we will not be displaying the new project information on a webpage,
just outputting to a console.log. Before we can view it on a page we need to learn
how to query the database to find the correct information, as project data is not
stored in a session in the same way as the user information.

Summary
In this chapter, we have learned how to use the default methods provided by
Mongoose to create and save new database entries, based on our schemas and
models. We have seen that you can run a quick single command, or have greater
control and flexibility through issuing a series of separate commands.

In our project, we have now added the ability to create users and projects.

Coming up in the next chapter, we're going to look at how to use Mongoose to
query the database, to find the data we want and use it to populate a web page.

Interacting with
Data – Reading,

Querying, and Finding
So we've seen how Mongoose provides simple static methods for adding data
to the database. Now let's see what Mongoose offers to help us find the data we
want by querying the database and reading the data back into model instances in
our application.

In this chapter we will:

•	 Learn about the built-in options for querying MongoDB through Mongoose
•	 Get practical by updating our application, letting us find individual users,

individual projects and lists of projects
•	 Extend on the default functionality by creating our own static method

Approaches to find and read data
Mongoose offers many ways of querying data, but much like what we saw in
Chapter 5, Interacting with Data – Creation, there is more than one way to execute
your command.

•	 Using the QueryBuilder interface to build a query step by step before
executing it at a specific point in your code

•	 Immediately with a single command

Interacting with Data – Reading, Querying, and Finding

[68]

Here we have the best of both worlds. Using the QueryBuilder interface offers a
greater level of flexibility and complexity, whereas the immediate execution option
gives us a nice and easy way to quickly run simple queries.

There are a number of static model methods provided by Mongoose to assist in
the bulk of find operations, including Model.find, Model.findOne, and Model.
findById. We will look at these static model methods in more detail very soon,
and we'll also see how we can create our own.

Using the QueryBuilder
Mongoose provides a simple QueryBuilder interface for when you want to build up
the query over multiple steps before executing it at a certain point in your code. Look
at the example in the following snippet:

var myQuery = User.find({'name' : 'Simon Holmes'});
myQuery.where('age').gt(18);
myQuery.sort('-lastLogin');
myQuery.select('_id name email');
myQuery.exec(function (err, users){
 if (!err){
 console.log(users); // output array of users found
 }
});

You can probably figure out what this code is doing. Assuming we already have
a compiled model called User, we are looking for all users whose name is "Simon
Holmes" and who are older than 18 years. We want to order them by lastLogin in
a descending order (that is, most recent first), and only return the three document
fields _id, name, and email. When the query result is returned, we do something
with it in a callback function passed to the .exec call.

If you prefer you can chain the commands using dot syntax. The earlier code could
be rewritten using the dot syntax method as in the following:

User.find({'name' : 'Simon Holmes'})
.where('age').gt(18)
.sort('-lastLogin')
.select('_id name email')
.exec(function (err, users){
 if (!err){
 console.log(users); // output array of users found
 }
});

Chapter 6

[69]

Or we can create a combination of the previous two:

var myQuery = User.find({'name' : 'Simon Holmes'})
.where('age').gt(18)
.sort('-lastLogin')
.select('_id name email');
// do some other operations
// and then…
myQuery.exec(function (err, users){
 if (!err){
 console.log(users); // output array of users found
 }
});

There are far too many options for the QueryBuilder interface for us to cover in
this book. Many of the query capabilities of MongoDB have been given helper
methods in Mongoose. So there are all types of queries you can put together, such
as geospatial distance queries for map data, and skipping and limiting records to
perform the pagination of results.

Single query operation
The QueryBuilder interface is great for putting together complex queries and
requests. It helps the code maintain better readability and is easy to understand
when you come back to the code after a few months. Sometimes however, all you
need is a pretty simple query that will be perfectly readable if you just format your
code nicely.

This is where we use a single-query operation. The construct for a single find
operation is the following:

Model.find(conditions, [fields], [options], [callback])

Tips and gotchas
In this construct, fields and options are both optional, but if you
want to specify options then you must specify fields, even if you
send it as null.
Mongoose will run the callback function when the operation has been
completed. If no callback function is defined then the query will not
be executed. It can however be called explicitly by using the .exec()
method we saw earlier.

Interacting with Data – Reading, Querying, and Finding

[70]

Let's look at some examples. The most basic approach, supplying just the conditions
and the callback function, is as follows:

User.find(
 {'name' : 'Simon Holmes'}, // users called Simon Holmes
 function (err, users){
 if (!err){console.log(users);}
});

Also specifying which fields we want to be returned as in the following:

User.find(
 {'name' : 'Simon Holmes'}, // users called Simon Holmes
 'name email', // returning just the name and email fields
 function (err, users){
 if (!err){console.log(users);}
});

Or using the options to specify a sort order as in the following code snippet:

User.find(
 {'name' : 'Simon Holmes'}, // users called Simon Holmes
 null, // returning all fields in model
 {sort : {lastLogin : -1}}, // sorted by lastLogin descending
 function (err, users){
 if (!err){console.log(users);}
});

Static helper methods – finding data
Each of the two approaches makes use of a number of static helper methods that
Mongoose provides. Some of the static methods that can use both approaches are
as follows:

•	 Model.find(query) to return an array of instances matching the query
•	 Model.findOne(query) to return the first instance found that matches

the query
•	 Model.findById(ObjectID) to return a single instance matching the given

ObjectID

As we have already seen, there are various parameters that can be added to the
Model.find method. The same applies for each of these static methods.

We need to use each of them in our project, as well as creating our own static
method. So let's learn by doing.

Chapter 6

[71]

CRUD – reading user and project data
Now we're going to go through the main three static methods for a specific use case
in our application. We'll also wrap one of these inside a custom static method that we
are going to create.

findOne() – finding a single user
First up, let's add the ability for a returning user to log in. At this moment we are not
using any type of authentication. This is intentional as there is a plethora of options
out there for password hashing and encryption, using OAuth or social network
accounts. While there are several node modules available to help with this, it will just
prove a distraction while we're building the bare bones of our app. For now, while
we're putting it together we'll stick to just entering an e-mail address to enable us to
switch between users.

The routes we're going to use are in the following code snippet:

app.get('/login', user.login); // Login form
app.post('/login', user.doLogin); // Login action

Login form
The first step is to create the login form—which we'll keep simple for now. So we
need to create a new file view/login-form.jade with the following content:

h1= title
form(id="formUserLogin", method="post", action="")
 label(for="Email") Email
 input(type="email", name="Email", id="Email")
 input(type="submit", value="Login")
p Or new users can
 a(href="/user/new") sign up

And we need to create the corresponding controller in routes/user.js.

// GET login page
exports.login = function (req, res) {
 res.render('login-form', {title: 'Log in'})
}

Interacting with Data – Reading, Querying, and Finding

[72]

Login action
The second step is to create the action itself. What we are aiming to achieve with this
action is as follows

1.	 Check that the Email field from the form exists and contains a value.
2.	 Try to find a database entry with that e-mail address.
3.	 If the user doesn't exist, then:

1.	 Send visitor back to the login screen.

4.	 If the user does exist, then:

1.	 Return their name, e-mail address, and unique ID.
2.	 Save the details to the session.
3.	 Output the user object to the console so that we can see what's

going on.
4.	 Redirect to the user profile page /user.

Translating this to JavaScript will result in the following code that we need to add to
routes/user.js. We are going to use the findOne() method as there should only be
one entry in the database with this e-mail address, as Mongoose has told MongoDB
that it should be a unique field. This will speed up the query operation as it returns
back with the first match, rather than continuing the search to look for others.

// POST login page
exports.doLogin = function (req, res) {
 if (req.body.Email) {
 User.findOne(
 {'email' : req.body.Email},
 '_id name email',
 function(err, user) {
 if (!err) {
 if (!user){
 res.redirect('/login?404=user');
 }else{
 req.session.user = {
 "name" : user.name,
 "email": user.email,
 "_id": user._id
 };
 req.session.loggedin = "true";
 console.log('Logged in user: ' + user);
 res.redirect('/user');

Chapter 6

[73]

 }
 };
 } else {
 res.redirect('/login?404=error');
 }
 });
 };
 } else {
 res.redirect('/login?404=error');
 }
};

See how in the User.findOne function we are sending through three parameters:

•	 The data object to query the database
•	 The data keys we want to be returned
•	 The callback function for when the database has finished looking

The rest should be fairly easy to follow. Even if you're not familiar with using
sessions in Express, the syntax makes the code nice and easy to understand.

We already created the /user page in the previous section, so we're good to go!

Housekeeping – adding homepage links
Let's take a quick moment to make our lives easier and add the sign up and login
links to the homepage of our app. In views/index.jade add the following links:

ul
 li
 a(href="/login") Login
 li
 a(href="/user/new") Sign up

Try it out!
Restart your app and head over to http://localhost:3000 in your browser once
again. From here you can test out the new links and add new users and log in as a
different user.

Interacting with Data – Reading, Querying, and Finding

[74]

find() – finding a list of projects and returning
JSON to AJAX
If you are creating an API or just want an endpoint for an AJAX call, then you really
want to respond to a request with JSON, not HTML.

Mongoose and Express work together nicely to make this really simple for us. In a
nutshell, once we have retrieved the Mongoose data object from a query, we can use
the res.json() method of Express to return this response as JSON, instead of being
rendered as an HTML file through a templating engine.

Let's put together a useful example for this. On the user profile page we really want
to have a list of projects that the logged in user has created. We are going to make
this happen with an AJAX call.

Creating a new static find method
A neat feature of Mongoose is the ability to define your own static methods to suit
your needs. You do this after the schema is declared, but before the model is compiled.
After the model is compiled, you will be able to use your new static method in the
same way that you use the pre-built methods.

Let's use a real example that we need for our code to see how this works. In our
projectSchema we store the _id of the user who created it as createdBy. We want
to do a find() operation on this to return an array of instances.

So, here's how we define a static method by adding it to the statics collection of the
schema. Add this static method to model/db.js, again after the schema is declared,
but before the model is compiled.

projectSchema.statics.findByUserID = function (userid, callback) {
 this.find(
 { createdBy: userid },
 '_id projectName',
 {sort: 'modifiedOn'}
 callback);
}

This creates a new model method for us, so that we will now be able to call Model.
findByUserID(userid,callback) in the same way that we called Model.findOne
when creating the login functionality earlier.

Chapter 6

[75]

Inside our method we are calling the Model.find method, passing it four
parameters:

•	 Query object
•	 Items to select and return
•	 Options (in this case a sort order)
•	 A callback function

All being well, this will return an array of Project instances that were created by a
single user. This will look something like the following:

[{ _id: 51412597e8e6d3e35c000001, projectName: 'First project' },
 { projectName: 'Another test', _id: 515c6b47596acf8e35000001 },
 { projectName: 'Project 3', _id: 517d2592ebc5782c6a000001 }]

Setting up the route
Now that we have the needed method in place, we need to set up the routing and
controller, so that we can use a URL to call it. First off, let's add the route to app.js
to define the URL.

app.get('/project/byuser/:userid', project.byUser); // Projects
 //created by a user

Now we can set the controller up in routes/project.js. We want this new
controller to do the following:

1.	 Check that a userid has been sent.
2.	 Call our findByUserID method, passing it the userid.
3.	 Pass a callback to output the returned data set as JSON.

We will also error trap and console log along the way, so that we can keep track of
what is going on. So, add the following to routes/projects.js and we'll take a
look at what's going on:

// GET Projects by UserID
exports.byUser = function (req, res) {
 console.log("Getting user projects");
 if (req.params.userid){
 Project.findByUserID(
 req.params.userid,
 function (err, projects) {
 if(!err){
 console.log(projects);

Interacting with Data – Reading, Querying, and Finding

[76]

 res.json(projects);
 }else{
 console.log(err);
 res.json({"status":"error", "error":"Error finding
projects"});
 }
 })
 }else{
 console.log("No user id supplied");
 res.json({"status":"error", "error":"No user id supplied"});
 }
};

The error trapping and logging to the console makes this piece of code look longer
than it is. The real trick on this one is using res.json to return the output as JSON,
instead of rendering HTML.

Updating the view
We're going to be lazy now and use jQuery to manage our AJAX call and HTML
injection. In the head section of views/layout.jade, add jQuery and support for
an inline JavaScript block that we'll call headjs:

script(src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.
js")
block headjs

Next update views/user-page.jade to use this new headjs section. We need to
take the user ID passed to the page and turn it into a JavaScript variable. We'll put
the rest of our JavaScript in an external file so that it can be cached. Here's how to
do it:

block headjs
 script()
 var userID = "#{userID}";
 script(src="/javascripts/user.js")

Finally, we'll add an additional piece of HTML into which we will inject the list
of projects:

h3 My projects
ul#myprojects
 li loading...

Chapter 6

[77]

Building the AJAX call
Okay, we're nearly there. We just need to create the jQuery AJAX call to tie it
all together.

Create a new text file user.js in public/javascripts/ with the following content:

$(document).ready(function(){
 var strHTMLOutput = '';
 $.ajax('/project/byuser/' + userID, {
 dataType: 'json',
 error: function(){
 console.log("ajax error :(");
 },
 success: function (data) {
 if (data.length > 0) {
 if (data.status && data.status === 'error'){
 strHTMLOutput = "Error: " + data.error + "";
 } else {
 var intItem,
 totalItems = data.length,
 arrLI = [];
 for (intItem = totalItems - 1; intItem >= 0; intItem--) {
 arrLI.push(''
+ data[intItem].projectName + "");
 }
 strHTMLOutput = "" + arrLI.join('') + "";
 }
 }else{
 strHTMLOutput = "You haven't created any projects yet</
li>";
 }
 $('#myprojects').html(strHTMLOutput);
 }
 });
});

I won't break down the finer points of a jQuery AJAX call, but what we've just
done is:

•	 Waited until the DOM has loaded
•	 Made an AJAX call to the route /project/byuser/ adding userID to the

end for our export function to use

Interacting with Data – Reading, Querying, and Finding

[78]

•	 If we get a successful response

°° Loop through the array of instances making each one an
°° Inject the resulting HTML into the page

Try it out!
Restart your app and head over to http://localhost:3000 in your browser. Either
log in as an existing user, or create a new user and a few projects. On the user profile
page—http://localhost:3000/user—you should now see a list of projects as
shown in the following screenshot:

findByld() – finding a single project
Something is missing so far, we don't have a page displaying the data for a single
project. Let's add that and take a look at the model.findById method as we go.

Route setup
To work with a URL like the following:

http://localhost:3000/project/5182067c9756e3036c000003

Chapter 6

[79]

This is the route we need to use:

app.get('/project/:id', project.displayInfo); // Display
 //project info

So we need to add some code to routes/project.js. We're doing a quick
authentication check here, but only at a development environment level. We are
only checking to see if a user is logged in, not that they have specific permissions
to access this project. After that, assuming the id field has been passed as a URL
parameter, we will use the Project.findById method to—well—find the project
by ID!

// GET project info
exports.displayInfo = function(req, res) {
 console.log("Finding project _id: " + req.params.id);
 if (req.session.loggedin !== "true"){
 res.redirect('/login');
 }
 else {
 if (req.params.id) {
 Project.findById(req.params.id, function(err,project) {
 if(err){
 console.log(err);
 res.redirect('/user?404=project');
 }else{
 console.log(project);
 res.render('project-page', {
 title: project.projectName,
 projectName: project.projectName,
 tasks: project.tasks,
 createdBy: project.createdBy,
 projectID: req.params.id
 });
 }
 });
 }else{
 res.redirect('/user');
 }
 }
};

As you can see, ignoring the console logs and error traps, we are sending two
parameters to our new static Project.findById method. We're passing it the _id
of the project that we have parsed from the URL parameters, and a callback function
whose main purpose is to send the project details to the view.

Interacting with Data – Reading, Querying, and Finding

[80]

Creating the view
The view itself will be quite simple for now. We just need the following content in
the block content section of a new view views/project-page.jade.

 h1 Mongoose Project Management
 h2= projectName
 p Created by: #{createdBy}
 p Tasks: !{escape(tasks).replace(/\n/g, '
')}

The last line in the code is just a way of substituting line breaks in the list of tasks
with
 tags.

Summary
In this chapter, we have learned how to query MongoDB through Mongoose by
returning single instances and arrays of instances. We have seen how to run quick
single command operations and also how to build more complex queries.

We have added a number of different approaches to our MongoosePM project,
which includes returning JSON directly to an AJAX request. On top of all of this we
have used the ability of Mongoose to create custom static methods to make it easy to
get exactly what we want.

In the next chapter, we are going to take a look at updating data, so that we can
allow users to change their profiles and projects.

Interacting with
Data – Updating

In the previous chapter, we've seen how to put data in and read it back out. It's
time to see how to change the existing data. In this chapter, we will look at the three
built-in static model methods that help us update in one command, and the instance
method we can use to save a document following a find operation.

By the end of this chapter, you will have a good understanding of how to use the
different approaches, and which one is appropriate to different scenarios. You will
also have added the ability to make edits to the logged in user, update a project's
information, and log the last time a user logged in.

Model helper methods
There are three static methods for updating data in a single go:

•	 update(): This method updates matching documents in the database
without returning them

•	 findOneAndUpdate(): This method has the same approach as findOne that
we looked at earlier, but writes the updates to the database before returning
the found instance to the callback

•	 findByIdAndUpdate(): This method is the same as findOneAndUpdate, but
expects a unique ID instead of query object

Interacting with Data – Updating

[82]

Building the commands
Each of these methods can take the following four arguments:

•	 conditions: These are the query conditions (or _id for findByIdAndUpdate)
used to find documents to update

•	 update: This is an object containing the fields and values to set
•	 options: This is an object specifying options for this operation (see more

details about this in just a moment)
•	 callback: This is the function to run after a successful operation

The options differ depending on the call made. The update() method has one set of
options you can set, and the find methods share another set of options.

The update() options are as follows:

•	 safe: Specifies whether errors should be returned to the callbacks. Can be
true or false, the default value is the value set in the schema, if this was not
explicitly set in the schema it defaults to true.

•	 upsert: Specifies whether to create the document if no matching document
exists. Can be true or false, the default value is false.

•	 multi: Specifies whether multiple documents should be updated. Can be
true or false, the default value is false.

•	 strict: Specifies whether only data defined in the schema will be saved,
regardless of whether anything additional was passed to the model
constructor. Can be true or false, the default value is true.

The options for the findByIdAndUpdate() and findOneAndUpdate() methods are
as follows:

•	 new: Specifies whether to return the modified document rather than the
original. Can be true or false, the default value is true.

•	 upsert: Specifies whether to create the document if it doesn't exist. Can be
true or false, the default value is false.

•	 sort: If some documents are found, sets the sort order to choose which one
to update. This should be a JavaScript object.

•	 select: This sets the document fields to return. This is specified as a string.

Chapter 7

[83]

Which method to choose
My main rule of thumb is to only use update() when intentionally updating
multiple documents. Remember to set multi to true in the options if you want
to update multiple documents in one operation. Although in some cases you may
decide to use it for updating a single document when you don't need to use a
return object.

If you are going to use the data after updating, I recommend using one of the find
methods. This will ensure that what you're using in your application is exactly what
is in the database, so any problems can be quickly identified.

The catch
All three of these methods offer a fantastically quick way of doing things. But there
is a catch. Any default values, validation, middleware, or setters applied to your
schema will not be applied.

So, whenever you want to use any of these things, you'll have to go back to a
standard practice of find document, modify the data, and then save it.

The three-step find-edit-save approach
This approach requires a few more steps and a bit more code than the helper
methods but is more fully featured. The save() command accepts only one
parameter, a callback function to run once the save has completed. This callback
function can pass an error or return the saved object. Look at the following example:

// 1: FIND the record
User.findOne(
 {email : 'simon@theholmesoffice.com'},
 function(err, user) {
 if(!err){
 // 2: EDIT the record
 user.name = "Simon";
 // 3: SAVE the record
 user.save(function(err,user){
 console.log('User saved:', user);
 });
 }
 };
);

Interacting with Data – Updating

[84]

As you can see there is a bit more code required, and there's also an extra callback
level. However, the code remains pretty simple to follow. To make it even easier, you
can also define the callbacks as separate functions. We'll see this later.

CRUD – editing users and projects
While we haven't looked at validation yet, knowing the earlier "catch" will be very
helpful while handling data interactions. We should bear it in mind when building
our form handling actions, and use the correct methods wherever possible so that
we don't have to rewrite them later.

Tracking user login
When a user logs in, we want to update the lastLogin date. We don't need any
validation as we are setting the single field ourselves on the server, and we don't
need the object returned from the database. We also know we are going to get the
correct instance as our query object will be for the unique _id field, so we can use
the update() method.

User login is currently handled by the doLogin function in routes/user.js. The
section of the function that handles a successful login looks like the following:

req.session.user = { "name" : user.name, "email": user.email,
"_id": user._id };
req.session.loggedIn = true;
console.log('Logged in user: ' + user);
res.redirect('/user');

So let's update that chunk of code with a new update() function to set the
lastLogin in the database:

req.session.user = { "name" : user.name, "email": user.email, "_id":
user._id };
req.session.loggedIn = true;
console.log('Logged in user: ' + user);
User.update(
 {_id:user._id},
 { $set: {lastLogin: Date.now()} },
 function(){
 res.redirect('/user');
});

Simple, hey? Now when a user logs in we set the lastLogin date, but leave
everything else unchanged.

Chapter 7

[85]

Editing the current user
Now we're at the point where it will be useful if a user can edit their profile once
they have logged in. So let's set that up.

Routes in use
These are the two routes we'll be using, one to display the form, and the other to
handle the submission of the form:

app.get('/user/edit', user.edit); // Edit current user form
app.post('/user/edit', user.doEdit); // Edit current user action

Setting up the form
We already have a user form that is used for signing up. As we're not adding anything
else to a user profile at the moment, it makes sense to re-use. The first thing to do is
modify views/user-form.jade to display the name and email values sent to it from
the controllers.

h1= title
label(for="FullName") Full name
input(type="text", name="FullName", id="FullName", value="#{name}")
label(for="Email") Email
input(type="email", name="Email", id="Email", value="#{email}")
input(type="submit", value="#{buttonText}")

Setting up the controllers
With the change to the jade template earlier, we will have stopped our user signup
form from working, as it is expecting variables that we are not sending. So in the
routes/user.js file, update exports.create to send the empty variables:

exports.create = function(req, res){
 res.render('user-form', {
 title: 'Create user',
 name: "",
 email: "",
 buttonText: "Join!"
 });
};

Interacting with Data – Updating

[86]

We can use this function as the basis for our user edit form, by adding the following
controller into routes/user.js:

// GET user edit form
exports.edit = function(req, res){
 if (req.session.loggedIn !== true){
 res.redirect('/login');
 }else{
 res.render('user-form', {
 title: 'Edit profile',
 _id: req.session.user._id,
 name: req.session.user.name,
 email: req.session.user.email,
 buttonText: "Save"
 });
 }
};

As you can see, here we are passing the current user's name and e-mail address
from the session object to the view.

Committing the edit
Further down the line we will want to add validation to this submission. So we
can't use any of the shorthand helper methods for updating. We need to use the
three-step approach:

1.	 Find our user by the unique ID held in the session.
2.	 Change the name and e-mail to the values sent in the form.
3.	 Save the changes.

In routes/user.js, we need to add the following controller:

// POST user edit form
exports.doEdit = function(req, res) {
 if (req.session.user._id) {
 User.findById(req.session.user._id,
 function (err, user) {
 if(err){
 console.log(err);
 res.redirect('/user?error=finding');
 } else {
 user.name = req.body.FullName;
 user.email = req.body.Email;

Chapter 7

[87]

 user.modifiedOn = Date.now();
 user.save(function (err) {
 if(!err){
 console.log('User updated: ' + req.body.FullName);
 req.session.user.name = req.body.FullName;
 req.session.user.email = req.body.Email;
 res.redirect('/user');
 }
 });
 }
 }
);
 };
};

Note that the save option does not return the updated document from the
database, but you could use the user variable if you needed to, as it should
contain the same data.

There are a few if conditions and callbacks in this code, but hopefully you can
follow through the separate steps and see how it all ties together. Another option
that you may find makes your code easier to read and follow is to make each section
a separate function that is invoked from the relevant callback. For example see the
following code:

exports.doEdit = function(req, res) {
 if (req.session.user._id) {
 User.findById(req.session.user._id,
 function (err, user) {
 doEditSave (req, res, err, user);
 }
);
 }
};

var doEditSave = function(req, res, err, user) {
 if(err){
 console.log(err);
 res.redirect('/user?error=finding');
 } else {
 user.name = req.body.FullName;
 user.email = req.body.Email;
 user.modifiedOn = Date.now();
 user.save(

Interacting with Data – Updating

[88]

 function (err, user) {
 onEditSave (req, res, err, user);
 }
);
 }
};

var onEditSave = function (req, res, err, user) {
 if(err){
 console.log(err);
 res.redirect('/user?error=saving');
 } else {
 console.log('User updated: ' + req.body.FullName);
 req.session.user.name = req.body.FullName;
 req.session.user.email = req.body.Email;
 res.redirect('/user');
 }
};

Editing projects
The approach to take for editing projects is very similar to what we have done for
users. We won't cover it here in detail, but you can either download the source code
available with this book, or have a go at setting it up yourself.

Remember that we pass the _id through URL parameters for
projects, not in the session like we do for users.
This is because we need the user information on all pages to check
that they are logged in and have access to view whatever they have
requested. Project specific data is only accessed on a few pages, and a
user might skip from project to project, so passing the value through
the URL makes most sense.

Here are the highlights of what is required in the following sections:

Routes
These are the two main routes to be added to the app.js file:

app.get('/project/edit/:id', project.edit); // Edit selected
 //project form
app.post('/project/edit/:id', project.doEdit); // Edit selected
 //project action

Chapter 7

[89]

New files and functions
You will need to create some new files and functions to build the functionality,
and to display it in the browser. As a starting point you'll be looking at the
following files:

•	 Routing: Inside the controller file /routes/project.js you will need to
modify exports.create() and create two new functions exports.edit()
and exports.doEdit().

•	 Display: You will need to update the template file views/project-form.
jade to accept and display values from variables.

Summary
In this chapter, we have learned how to modify existing data using Mongoose.
We have seen that there are some very simple methods we can use, but that this
simplicity comes at a price. The price in this case is that defaults, validation, and
middleware are not applied. We have also seen that we can use a more traditional
three-step find-edit-save approach within Mongoose.

Following this theory we moved onto the practice and added to our MongoosePM
project, making user and project information updatable, and updated the login
script to record a timestamp of when the user logged in.

Coming up in the next chapter we will be learning about the last of the four CRUD
cornerstones, deletion.

Interacting with
Data – Deleting

We have learned about Creating, Reading, and Updating data using Mongoose.
Now it is time to look at the final CRUD operation: deleting.

In this chapter we will:

•	 Learn how to delete multiple documents in one operation
•	 Learn how to delete a single document
•	 Put this knowledge into action by adding the functionality to delete a

user account

By the end of this chapter, you will be familiar with the different approaches you
can take to delete data, and when it is best to use each one. You will also have
added the ability to delete users and projects from your MongoosePM application.

Deleting data
By now it will probably come as no surprise that there are a few different methods
for deleting data. The methods are:

•	 remove(): This method deletes one or more documents from the collection
•	 findOneAndRemove(): This method finds a single document based on

a query object and removes it, passing it to the callback function on
successful completion

•	 findByIdAndRemove(): This method is the same as the findOneAndRemove
method, except that it finds a document based on a provided document ID

Interacting with Data – Deleting

[92]

The remove() method can be used in two ways: as a model method, or as an
instance method. When using it as a model method, you pass it a query object and it
will remove the matching documents. For example:

User.remove({ name : /Simon/ } , function (err){
 if (!err){
 // all users with 'Simon' in their name were deleted
 }
});

To use the remove() method as an instance method you operate it after a find
operation once you have results returned. For example:

User.findOne({ email : 'simon@theholmesoffice.com'} ,
 function (err,user){
 if (!err){
 user.remove(function(err){
 // First user with matching email address was removed
 });
 }
});

Be careful when using <Model>.remove() (where <model> is the
model name). If you specify an empty query or just a callback—like
you would when using the instance method—then all the documents
in the collection will be removed.

Both the findByIdAndRemove() and findOneAndRemove() methods accept
options and can return the deleted document to the callback. We're going to use
the findByIdAndRemove method shortly. So let's have a look at findOneAndRemove
instead. The accepted parameters are as follows:

•	 Query object: This is for a document to find and remove.
•	 Options: This optional parameter is an object with two possibilities:

°° sort: set the sort order in case multiple docs are found
°° select: set the document fields to return in the object to the callback

•	 Callback: This optional parameter This returns either an error or the
deleted document.

Here's a quick example:

User.findOneAndRemove(
 {name : /Simon/},

Chapter 8

[93]

 {sort : 'lastLogin', select : 'name email'},
 function (err, user){
 if (!err) {
 console.log(user.name + " removed");
 // Simon Holmes removed
 };
 }
);

Here we search for users whose name contain Simon, and order them by the date
they last logged in, before removing the user who hasn't logged in for the longest
time. Once removed, we send their name and e-mail address to the callback to
output confirmation of the deletion.

CRUD – deleting user and projects
That's the theory, so let's see it in action and let a user delete their account. To
follow the approach we've been taking through this application, we'll have a page
displaying a form and a form handler.

The routes in app.js that we'll use for this are:

app.get('/user/delete', user.confirmDelete);
 // delete current user form
app.post('/user/delete', user.doDelete);
 // Delete current user action

The "Are you sure" page
Before a user deletes the account we want to ask them to confirm this, in case they
clicked on the link by accident. So we create a new view as views/user-delete-
form.jade:

h1= title
p #{name}, are you sure you want to permanently delete your
account? The email address on this account is #{email}
form(id="formUserDelete", method="post", action="")
 input(type="hidden", name="_id", id="_id", value="#{_id}")
 input(type="submit", value="Yes, please delete it!")

And create a controller to map it to the route in routes/user.js:

// GET user delete confirmation form
exports.confirmDelete = function(req, res){
 res.render('user-delete-form', {

Interacting with Data – Deleting

[94]

 title: 'Delete account',
 _id: req.session.user._id,
 name: req.session.user.name,
 email: req.session.user.email
 });
};

Deleting the user
Now we get to the business end and delete the user, using Model.
findByIdAndRemove(). In routes/user.js, add the following doDelete
exports function.

// POST user delete form
exports.doDelete = function(req, res) {
 if (req.body._id) {
 User.findByIdAndRemove(
 req.body._id,
 function (err, user) {
 if(err){
 console.log(err);
 return res.redirect('/user?error=deleting');
 }
 console.log("User deleted:", user);
 clearSession(req.session, function () {
 res.redirect('/');
 });
 }
);
 }
};

Here we are simply taking the unique ID of the user as passed through the form,
finding it in the database, and deleting the entry. Once deleted, we log the user
record to the console so that we can verify it, and then we need to make sure that
the user is logged out of the system and sent to the homepage.

We need to add an extra function called clearSession to do this, as this isn't the
only place we'll need to log out a user. Add the following to routes/user.js:

var clearSession = function(session, callback){
 session.destroy();
 callback();
};

Chapter 8

[95]

Improving on this
If you want to try something else, you could add to this function by deleting all
projects created by the deleted user.

Deleting individual projects
The approach to take for deleting projects is very similar to what we have done for
users. We won't cover it here in detail, but you can either download the source code
available with this book, or have a go at setting it up yourself.

Following are the highlights of what is required:

Routes
These are the two main routes, to be added to app.js:

app.get('/project/delete/:id', project.confirmDelete);
 //Delete selected project form
app.post('/project/delete/:id', project.doDelete); // Delete
 //selected project action

New files and functions
You will need to create some new files and functions to build the functionality,
and to display it in the browser. As a starting point you'll be looking at the
following files:

•	 Routing: Inside the controller file /routes/project.js you will need to
create two new functions exports.delete() and exports.doDelete().

•	 Display: You will need to create a new template file views/project-
delete-form.jade to ask the user for confirmation.

Summary
In this chapter, we have learned how to delete database records using Mongoose
methods. We then applied this knowledge to our project and added the ability for a
user to delete their profile.

This brings us to the end of the data interaction CRUD section, so you should now
have a good idea of how to do most things you want to with data in your applications.

Coming up in the next chapter, we're going to look at validation and see how
Mongoose can help us maintain data integrity.

Validating Data
An important part of any application that takes data entered by a user is data
integrity. In this chapter, we are going to look at different ways of validating data
before it is saved to the database. We will look at the built-in Mongoose validators,
and also how to add custom validation.

By the end of this chapter, you will understand the different approaches to data
validation with Mongoose, and will have added validation to create and update
sections of our MongoosePM application.

Mongoose validation – the basics
In Mongoose, validation is set at the schema level. Remember how in our
userSchema we have this for the email field:

 email: { type: String, unique: true }

The unique: true part is a type of validation that Mongoose passes directly
through to MongoDB. The other types of validation we are about to look at are set
in the same place, but are handled by Mongoose before it goes anywhere near the
database; unless of course, you have a type of validation where you specifically
choose to check against something in the database.

Default validators
Mongoose provides some common validators to get us started. We'll look at them in
this chapter. Some of these are for specific SchemaTypes, which we'll get to know in
a moment, but there is one that can be used on all SchemaTypes.

Validating Data

[98]

All SchemaTypes
There is one validator that can be used by any SchemaType, named required. This
will return a validation error if no data is given to a data object with this property.
It is super-easy to use. If we want to add it to email in our userSchema we simply
need to update the line as follows:

email: { type: String, unique: true, required: true }

Number SchemaType
Number items in your schema have built-in min and max validators, for
declaring lower and upper boundaries. They are also simple to apply. See
the following for example:

var teenSchema = new Schema({
 age : {type: Number, min: 13, max:19}
});

This will return a validation error if you try to save an instance of teenSchema
with an age value of less than 13, or higher than 19.

String SchemaType
String items in your schema have two other built-in validators:

•	 match: This validator is for matching against a regular expression
•	 enum: This validator is for checking against a provided list of possible values

Here the match validator will check that the string matches the regular expression:

var weekdaySchema = new Schema({
 day : {type: String, match: /^(mon|tues|wednes|thurs|fri)day$/i}
});

Here the enum validator will check that the string is one of the values in the
weekdays array:

var weekdays = ['monday', 'tuesday', 'wednesday', 'thursday',
'friday'];
var weekdaySchema = new Schema({
 day : {type: String, enum: weekdays}
});

Chapter 9

[99]

Understanding validation errors
When we have been creating, editing, and saving data in our project, we have been
using a callback function containing two parameters: an error object and the returned
data object. So far we have generally been ignoring the error object and just been
saving the data, for example:

user.save(function (err, user) {
 if(err){
 console.log(err)
 } else { ...

It is in the err object that we receive the Mongoose validation errors. The error object
will contain a top-level message and name, and a collection of specific errors. Each
of these errors give an individual message, name, path, and type object. A typical
validation failure looks like the following when sent to the console:

{ message: 'Validation failed',
 name: 'ValidationError',
 errors:
 { email:
 { message: 'Validator "required" failed for path email',
 name: 'ValidatorError',
 path: 'email',
 type: 'required' },
 name:
 { message: 'Validator "required" failed for path name',
 name: 'ValidatorError',
 path: 'name',
 type: 'required' } } }

Knowing the structure of the returned error object helps us to identify the exact
reason for the validation failure and send a relevant error message to the user.

To output just a summary to the console, you could loop through the error objects
with the following code snippet:

if(err){
 Object.keys(err.errors).forEach(function(key) {
 var message = err.errors[key].message;
 console.log('Validation error for "%s": %s', key, message);
 });
}

Validating Data

[100]

This would result in a much more manageable output, which is as follows:

Validation error for "email": Validator "required" failed for path
email
Validation error for "name": Validator "required" failed for path
name

Doing it your way – create custom
validation
Mongoose offers a number of different ways to create custom validators.

Single function – no custom error message
If you only need one piece of validation for a given data item, you can simply specify
a function and return true if the validation is passed, and false if it fails.

For example, if we want our usernames to be at least five characters long, we can
create a function like the following:

var lengthValidator = function(val) {
 if (val && val.length >= 5){
 return true;
 }
 return false;
};

The function is then referenced in our schema using the validate key:
name: {type: String, required: true, validate: lengthValidator }

This is a very quick and easy way of adding custom validation. It is fine if you just
want to check if its okay or not okay as it is reported as an error, but in the error
collection the error type comes through as undefined.

Returning a custom error message
If you want a bit more feedback and granularity to your error trapping then it's useful
to add a custom error message. Fortunately, Mongoose makes this pretty easy too!

Using the previous schema entry as a start point you can change the value of the
validate entity, setting an object instead. This object has two entries:

•	 validator: This is your custom function
•	 msg: This is your custom error message

Chapter 9

[101]

For example:

validate: { validator: lengthValidator, msg: 'Too short' }

Validating a regular expression
If you just want to validate against a regular expression, you don't have to create a
function to house it. Mongoose lets you put it directly into the schema.

var weekdaySchema = new Schema({
 day : {type: String, validate: {validator:
/^(mon|tues|wednes|thurs|fri)day$/i, msg: 'Not a day' }
});

Taking the messages out of the schema
You can take the pairing of the validation function and custom message outside of
the schema so that both are re-usable. This is done by defining an array that contains
your validator and your message.

var validateLength = [lengthValidator, 'Too short'];
var validateDay = [/^(mon|tues|wednes|thurs|fri)day$/i, 'Not a
day'];

You simply reference these in your schema definitions like in the following:

name: {type: String, required: true, validate: validateLength }

Or:

day : {type: String, validate: validateDay }

An array might seem like an odd choice at the moment, but everything will become
clear soon!

Using multiple re-usable validators
If you aim to make your code as re-usable as possible, then you'll want to create a
few validation functions, each of which does just one thing. You can then mix and
match, sharing across schemas and even different applications when you create
them. Here's where that array comes in:

The code we saw beforehand is as follows:

var validateLength = [lengthValidator, 'Too short'];

Validating Data

[102]

This is syntactic shorthand for the following:

var validateLength = [
 {validator: lengthValidator, msg: 'Too short'}
];

Now the array starts to make a bit more sense doesn't it? We can add further
validation objects to it like in the following:

var validateUsername = [
 {validator: lengthValidator, msg: 'Too short'} ,
 {validator: /^[a-z]+$/i, msg: 'Letters only'}
];

The best practice is to use the longer form, explicitly defining the object
and not the syntactic shorthand. This makes your code easier to
understand at a glance, and also easier to extend.

As you can see, it's pretty easy to build up a set of re-usable validators and
apply them to your schemas. There is one more way of doing this, by using the
SchemaType methods:

userSchema.path('name').validate(lengthValidator, 'Too short');
userSchema.path('name').validate(/^[a-z]+$/i, 'Letters only');

Non-blocking, asynchronous validation
So far we've been looking at validation methods that run pretty much instantly,
but what if we want to run an asynchronous operation such as checking against a
database? Mongoose provides the ability to run an asynchronous validator to do
just this. To use this you specify a validator function with a second parameter—this
second parameter is a callback function that expects either true or false.

In the following example, we are using respond as our callback function, and
checking to see whether a user record with the supplied username already exists.

userSchema.path('username').validate(function (value, respond) {
 User.find({username: value}, function(err, users){
 if (err){
 console.log(err);
 return respond(false);
 }
 console.log('Number found: ' + users.length);
 if (users.length) {
 respond(false); // validation failed

Chapter 9

[103]

 } else {
 respond(true); // validation passed
 }
 })
}, 'Duplicate username');

Extending Mongoose validation
While the validation functions you get with Mongoose are already pretty good,
you won't find everything there out-of-the-box. If you want validators for e-mail
addresses, IP addresses, alphanumeric values, URLs—the list goes on—there are
modules that can be installed and easily plugged in to your application. These all
take advantage of Mongoose's plugin architecture, which we'll see in detail in Chapter
11, Plugins – Reusing Code.

Adding validation to our project
Now that we've done the theory, why not see if you can add some validation to
our MongoosePM application? We're not going to walk through this here, but do
try it out yourself. If you're impatient you can of course just download the source
code from Packt's website. The code contains various ways of achieving the same
validation, commented out for reference.

For users, try adding the following validations:

•	 Name: Make this required, and with a minimum length of five characters
•	 Email: Make this required, unique, and only allow a valid

e-mail address

Use a regular expression.

For projects, have a go at this:

•	 projectName: Make this required, with a minimum length of five
characters, and only accept unique values for each user

Use an asynchronous validator.

Validating Data

[104]

To get the validation working for both users and projects, you will need to:

•	 Update the schemas to include validators
•	 Update the create/edit controllers to interpret the error messages
•	 Save the submitted data into a temporary session object
•	 Update the form views to display the previously entered data

If all else fails, download the source code for a few ideas!

Summary
In this chapter, we've seen how to use Mongoose to maintain the data integrity of
our application. We have learned about the default validators that are available,
and also learned how to use them and how to create custom validators. Within the
custom validators, we've covered how to send custom error messages, add multiple
validators, and run asynchronous validation. We also took a look at the error object
returned when your validators find a problem with the data.

Coming up in the next chapter, we're going to take a look at complex schemas,
including nested documents and referencing other schemas.

Complex Schemas
In this chapter, we will explore the ways in which Mongoose can help you manage
more complex data models. MongoDB is not a relational database, so there are no
SQL-style JOIN commands. Instead, we will introduce the concepts of population
and subdocuments, exploring how they are used.

By the end of this chapter, you will understand the differences between the two,
and when each type is appropriate. We will also have added examples to our
MongoosePM application.

Population – references to other
collections
MongoDB and Mongoose do not support JOIN commands as MongoDB is not
a relational database. Mongoose gives you an elegant way to achieve similar
functionality by using population.

The concept of Population was dramatically expanded upon in Version
3.6 of Mongoose. Older versions won't support everything referenced
in this chapter.

Population works by pulling information into the model you're currently using from
a second model. Unlike JOIN statements, these are actually separate queries. First
you retrieve your primary set of data from a collection, and once that is returned,
you "populate" the required data from a secondary collection. We'll see this in some
code very soon.

Complex Schemas

[106]

Defining data for population
The first step to setting up population is in the schema. Your primary schema links
to the referenced model by passing an object containing the name of the model to be
used and the SchemaType of the linked schema object.

In our application, there are various times when it will be useful to get the
information about the person who created a specific project. Currently we store the
_id of the user as a string, which we could use to manually query the users collection
once we have the data back from the projects collection. Or, we could store that _id
as a reference and let Mongoose do the hard work for us. Sounds preferable to me!

Remember from the first paragraph of this section: Your primary schema links to the
referenced model by passing an object containing the name of the model to be used
and the SchemaType of the linked schema object. So, by breaking this down, in our
projectSchema we want to set the createdBy path to be:

•	 An object {}
•	 To contain the name of the model to be used—ref: 'User'

•	 and the SchemaType of the linked schema object—type: mongoose.
Schema.Types.ObjectId

So, by putting this back together, we can change the createdBy declaration in our
projectSchema like this:

var projectSchema = new mongoose.Schema({
 ...
 createdBy: {type: mongoose.Schema.Types.ObjectId, ref: 'User'},
 ...
});

ObjectId, Number, String, and Buffer are valid SchemaTypes
for using as references. You only need to declare the full Schema.
Type path for ObjectId.

Here we are saying that there is a one-to-one relationship between the User model
and the Project model, but populate can also work with a one-to-many relationship
by specifying an array of objects. If we want to record a number of contributors to
a project, we simply take what we have for the createdBy definition and put it in
inside an array, like this:

var projectSchema = new mongoose.Schema({
 ...
 createdBy: {type: mongoose.Schema.Types.ObjectId, ref: 'User'},

Chapter 10

[107]

 contributors: [{type: mongoose.Schema.Types.ObjectId, ref: 'User'}]
,
 ...
});

In MongoDB a document for this schema would look something like this:

{ "projectName" : "Population test",
 "createdBy" : ObjectId("5126b7a1f8a44d1e32000001"),
 "_id" : ObjectId("51ac2fc4c746ba1645000002"),
 "contributors" : [
 ObjectId("5126b7a1f8a44d1e32000001"),
 ObjectId("5126b7a1f8a44d1e32000002")] }

Changing an existing schema like this can have serious impacts
on the existing data and database. See the Data management when
modifying existing schemas section towards the end of this chapter.

Saving population references
You don't have to do anything different to save a population reference, you just need
to set the data and save a document the normal way. So we don't need to change our
Project.create function at all:

Project.create({
 projectName: req.body.projectName,
 createdBy: req.body.userid,
 createdOn : Date.now()
}, function(err, project){ …

Retrieving populated data
Just like the JOIN command you only use population when you need it. If you just
want to return the project information with no mention of the creator's details then
you can stick with the following:

Project.findById(req.params.id, function(err,project) { ...

In our application, however, when we display the project information page—using
the displayInfo function in routes/project.js—we show the ID of the user who
created the project. It would be much nicer if we could display the name and e-mail
address instead.

Complex Schemas

[108]

To do this, you build a query, use the populate command, and then exec() when
ready. For example:

Project
.findById(req.params.id)
.populate('createdBy')
.exec(function(err,project) { ...

This will populate with the entire user object, returning an object something like
the following:

{ __v: 0,
 _id: 51b495e01e686ea360000002,
 createdBy:
 { __v: 0,
 _id: 5126b7a1f8a44d1e32000001,
 email: 'simon@theholmesoffice.com',
 lastLogin: Sun Aug 04 2013 07:34:21 GMT+0100 (BST),
 modifiedOn: Sun Jul 28 2013 16:32:15 GMT+0100 (BST),
 name: 'Simon Holmes',
 createdOn: Fri Feb 22 2013 00:11:13 GMT+0000 (GMT) },
 modifiedOn: Sun Jul 07 2013 16:21:50 GMT+0100 (BST),
 projectName: 'Updated project schemas',
 createdOn: Sun Jun 09 2013 15:49:04 GMT+0100 (BST) }

All of this information about the user is unnecessary for us here, so we can specify
the individual paths that we require. As we just want the name and e-mail of the
creator, we can specify the following:

.populate('createdBy', 'name email')

You can also populate multiple paths in the parent schema at once. Although,
remember that each path is populated by a separate database query. If we wanted to
return an array of all contributors in a project, we could add the following path to the
populate call:

.populate('createdBy contributors')

But if you want to return specific paths for each of the populated items—even if they
are the same—you have to chain the populate calls as shown in the following:

.populate('createdBy', 'name email')

.populate('contributors', 'name email')

Chapter 10

[109]

This will give us back more manageable data like this object:

{ __v: 0,
 _id: 51b495e01e686ea360000002,
 createdBy:
 { _id: 5126b7a1f8a44d1e32000001,
 email: 'simon@theholmesoffice.com',
 name: 'Simon Holmes' },
 modifiedOn: Sun Jul 07 2013 16:21:50 GMT+0100 (BST),
 projectName: 'Updated project schemas',
 createdOn: Sun Jun 09 2013 15:49:04 GMT+0100 (BST),
 contributors: [
 { _id: 5126b7a1f8a44d1e32000001,
 email: 'simon@theholmesoffice.com',
 name: 'Simon Holmes' },
 { _id: 5126b7a1f8a44d1e32000002,
 email: 'someone@theholmesoffice.com',
 name: 'Someone Else' }
]
}

Querying to return a subset of results
When populating data with a one-to-many relationship, you may well want to return
a subset just like you might with a standard find operation. So far we've been using
syntactic shortcuts for the populate method, but Mongoose does give you the option
of sending a query object for population, with the following parameters:

•	 path: This is the path to populate and is required.
•	 select: This is a string or object specifying which paths to return.
•	 model: This is the name of the model you want to populate from. It defaults

to the reference specified in the schema if not declared here.
•	 match: This can specify query conditions.
•	 options: This can specify query options.

So if we wanted to populate a maximum of five contributors who have an e-mail
address at theholmesoffice.com, to sort them by name and return name and
lastLogin information we could do the following:

.populate({
 path: 'contributors',
 match: { email: /@theholmesoffice\.com/i },
 select: 'name lastLogin',

Complex Schemas

[110]

 options: { limit: 5, sort: 'name' }
})
.exec()

We don't want to do this right now, but it's nice to know that we could!

Populating into multiple parent items
Up to now all of our examples have been related to populating into a single-parent
project. But this isn't a limitation of Mongoose. If your query on the primary
collection returns multiple documents, you can easily populate into them See
the following example:

Project
.find({ createdBy: userid }, 'projectName')
.populate('createdBy', 'name')
.exec(function(err,projects) {
 projects.forEach(function (project) {
 console.log(project.projectName + ' created by' + project.
createdBy.name);
 });
});

Subdocuments
Subdocuments are very similar to the ordinary documents we have been using so
far. They are individual documents with their own schema. The big difference is that
subdocuments are documents that are stored within a parent document, instead of a
MongoDB collection of their own.

Perhaps an example will demonstrate this best. In our MongoosePM application,
tasks are currently lacking in functionality as tasks for a given project is just a string.
It would be better if a task had a distinct schema like the following:

var taskSchema = new mongoose.Schema({
 taskName: { type: String, required: true, validate: validateLength
},
 taskDesc: String,
 createdOn: { type: Date, default: Date.now },
 createdBy: { type: mongoose.Schema.Types.ObjectId, ref: 'User',
required: true},
 modifiedOn: Date,
 assignedTo: { type: mongoose.Schema.Types.ObjectId, ref: 'User' }
});

Chapter 10

[111]

This schema looks a bit more useful right? In a relational database this would be
a standalone table, and you would run joins between the project table, task table,
and user table. But in a non-relational datastore, the better approach is to contain
documents solely owned by a parent document, within the parent document. To do
this, we reference the new taskSchema within the projectSchema as an array like
the following:

var projectSchema = new mongoose.Schema({
 projectName: String,
 …
 tasks: [taskSchema]
});

Hey presto, a nested schema! So what does our data look like if we use this?
Each task subdocument created goes into the array of tasks as defined in the
projectSchema.

{
 "projectName" : "Project 2",
 "tasks" : [
 "taskName" : "A task please",
 "taskDesc" : "A short description of the task",
 "createdBy" : ObjectId("5126b7a1f8a44d1e32000001"),
 "_id" : ObjectId("51ad7d6cfa492a174a000005"),
 "createdOn" : ISODate("2013-06-04T05:38:52.847Z")
 },
 {
 "createdBy" : ObjectId("5126b7a1f8a44d1e32000002"),
 "_id" : ObjectId("51ad7d80fa492a174a000006"),
 "createdOn" : ISODate("2013-06-04T05:39:12.728Z"),
 "modifiedOn" : ISODate("2013-06-04T05:39:48.553Z"),
 "taskDesc" : "A quick description of this one too",
 "taskName" : "A secondary task"
 }
]
}

Mongoose will automatically give each subdocument a
unique _id unless overridden in the schema.

Complex Schemas

[112]

Creating subdocuments
Creating subdocuments is super easy. When working with subdocuments we always
have to go through the parent document. We also need to remember that each
individual subdocument is a document in its own right, stored inside an array.

So if we want to add a new task to an existing project, we would need to:

1.	 Find the project in the database
2.	 Push a task object to the tasks path
3.	 Save the parent document.

The code to do this looks like the following:

Project.findById(req.body.projectID, 'tasks modifiedOn',
 function (err, project) {
 if(!err){
 project.tasks.push({
 taskName: req.body.taskName,
 taskDesc: req.body.taskDesc,
 createdBy: req.session.user._id
 });
 project.modifiedOn = Date.now();
 project.save(function (err, project){
 if(err){
 console.log('Oh dear', err);
 } else {
 console.log('Task saved: ' + req.body.taskName);
 res.redirect('/project/' + req.body.projectID);
 }
 });
 }
 }
);

Saving and validation
You may have noticed in the code earlier that we don't explicitly save the new
subdocument. Subdocuments are saved when their parent document is saved.

Any validator errors set in the subdocument schema are bubbled back up to the
parent document, so the existing if(err) catches in the code are all that we need.

Chapter 10

[113]

Retrieving subdocuments
As we have already learned, to get access to the subdocuments, you have to go
through the parent document, and that subdocuments are stored as an array.

So if we want to display a list of tasks on our project page, we don't need to change
any JavaScript, as our displayInfo function is already passing the tasks data to
the Jade template. We simply need to change how tasks are interpreted in views/
project-page.jade.

if tasks.length > 0
 ul
 for task in tasks
 li
 a(href="/project/#{projectID}/task/edit/#{task._id}",
title="#{task.taskDesc}") #{task.taskName}

Accessing a specific subdocument
As we saw earlier, each subdocument has a unique _id field. When you pass
this to the subdocument method .id() that Mongoose provides, you will get the
subdocument returned to you.

Project.findById(req.body.projectID, 'tasks modifiedOn',
 function (err, project) {
 if(!err){
 console.log(project.tasks); // array of tasks
 var thisTask = project.tasks.id(req.params.taskID);
 console.log(thisTask); // individual task document
 }});

This means that when you want to edit or delete a specific subdocument, you need to
know the _id of the parent document and the _id of the subdocument. To this end,
in our project there are some new routes where we will need to pass both _id values
as URL parameters.

app.get('/project/:id/task/edit/:taskID', project.editTask);
app.post('/project/:id/task/edit/:taskID', project.doEditTask);
app.get('/project/:id/task/delete/:taskID',
project.confirmDeleteTask);
app.post('/project/:id/task/delete/:taskID',
project.doDeleteTask);

Complex Schemas

[114]

Deleting subdocuments
Mongoose couldn't make deleting subdocuments much easier for you. By chaining to
the .id() method in the earlier code, you can add the .remove() method.

project.tasks.id(req.body.taskID).remove();

As with all changes to subdocuments, a removed subdocument
won't actually be deleted until the parent document is saved.

Data management when modifying
existing schemas
If you have taken all of the changes outlined in this chapter and added them to your
application, you'll probably notice quite early that the list of projects on the user page
doesn't display. This is because we have changed the schemaType of createdBy in
projectSchema from String to ObjectId. If you create new projects now, they will
show up in the list.

In a development environment and a prototyping scenario, like we have here, this
isn't a major issue as we can just add in some more temporary test data. If you're
dealing with a live environment or pre-existing data that you want to use then you
have to be a bit more careful when changing a schema in this way.

There are various ways you can handle this, both on the schema side and the data
management side. A possible approach is to duplicate the existing schema in its
entirety and changing the SchemaTypes that you need to.

To manage the data migration you could then either create a script to update all at
once, or update on an ongoing "as needed" basis. If you have a large dataset, you'll
probably want to favor the latter for performance reasons. However you choose
to manage it, comes down to a judgment call each time based on latency, potential
downtime, code complexity, and any other application specific consideration.

Chapter 10

[115]

Summary
In this chapter, we've seen how Mongoose helps us to create and use more complex
database structures. We can use nested schemas and subdocuments and also pull
data from other collections. Our code examples can be used as the basis for updating
our MongoosePM application with better task information and returning user details
with projects. Download the code for this chapter from Packt Publishing's website to
see it in greater detail.

Coming up next in the final chapter, we're going to look at how to re-use code using
Mongoose plugins.

Plugins – Re-using Code
In this chapter, we will introduce the Mongoose plugin architecture and see how we
can use it to create modular re-usable code. We will look at the syntax and how to
write them and include them in our code.

By the end of this chapter, you will understand how to create and use Mongoose
plugins. You will also know where to go to find existing plugins that others have
written, and contribute to the community by submitting your own. You will have
created some plugins in the MongoosePM application.

Reusable schema plugins
If we look at our schemas, we can see some common elements that we are repeating.
For example, each of our schemas has an identical modifiedOn path, and our project
and task schemas each have identical createdBy and createdOn paths.

If you're at all familiar with the DRY (Don't Repeat Yourself) principle of coding,
you'll probably want to tidy these bits up and just declare them once. This is where
the Mongoose plugin architecture comes in.

Creating a schema plugin
Let's start by creating a schema extension for adding createdOn and createdBy.
Inside our model/db.js file, we can add the following code, preferably above the
definitions for our two schemas:

var creationInfo = function creationInfo (schema, options) {
 schema.add({createdOn: { type: Date, default: Date.now }});
 schema.add({createdBy: { type: mongoose.Schema.Types.ObjectId, ref:
'User', required: true}});
};

Plugins – Re-using Code

[118]

This exposes a function that will allow us to plug in the paths createdOn and
createdBy, to some of our schemas. The construct might look a little strange, but is
done in this way to allow us to easily take it into a separate file as a plugin. But more
on that later.

Applying the plugin to an existing schema
The next step is to pull these paths into our existing schemas. We can update
our projectSchema and taskSchema definitions to remove the createdOn and
createdBy paths. Instead, after each of the schemas are defined, we can link the
creationInfo plugin to them as shown here:

projectSchema.plugin(creationInfo);
taskSchema.plugin(creationInfo);

That's all we need to do. If you run your application again, everything will still work
as before, including any defaults and validators set, but your code has less repetition.
The flipside of this is that your schemas are no longer self-contained and may be
harder to read.

Using an external file
In order to make the code really re-usable and portable, we need to have it in an
external file, not embedded in our db.js file. If we do this we can reference it
from multiple files, and easily copy it to other projects. Create a new file called
creationInfo.js in the model folder, with the following content:

var mongoose = require('mongoose');
module.exports = exports = function creationInfo (schema, options) {
 schema.add({createdOn: { type: Date, default: Date.now }});
 schema.add({createdBy: { type: mongoose.Schema.Types.ObjectId, ref:
'User', required: true}});
};

Here we have required mongoose and just slightly modified our creationInfo
function to become a module export function. In our db.js file, we can remove the
creationInfo function and require our new file instead.

var creationInfo = require('./creationInfo');

And we're good to go! We've created a re-usable schema plugin—nice and easy. You
can see how by doing this you can quickly build up a re-usable library of your own
schema plugins.

Chapter 11

[119]

Using schema middleware
Plugins also have access to all of the middleware available to schemas. There are two
types of middleware hooks:

•	 pre: This middleware is for before the method has completed
•	 post: This is for after the method has completed

You can use these to hook into the methods save (which we'll look at in just a
moment), init, validate, and remove.

Let's take a look at creating a schema plugin for the modifiedOn path that we have
used in all of our schemas. What would be really great is if we can not only define
the path in the plugin, but also set the value—this is where plugins and middleware
meet perfectly.

Let's create a new file model/modifiedOn.js and require it in model/db.js, as
shown in the following:

var modifiedOn = require('./modifiedOn');

In the new model/modifiedOn.js file, add the following code:

var mongoose = require('mongoose');
module.exports = exports = function modifiedOn (schema, options) {
 schema.add({ modifiedOn: Date });

 schema.pre('save', function (next) {
 this.modifiedOn = Date.now();
 next();
 });
};

This will do two things, which are:

•	 Add the modifiedOn path with a SchemaType of Date
•	 Set the value to be the current date and time just before the document

is saved

This removes the need to manually set the value each time we run an update
operation on any of the schemas. So we can go through our code and remove the
other instances of user.modifiedOn = Date.now(), project.modifiedOn =
Date.now() and thisTask.modifiedOn = Date.now() as they are all handled in
one place, every time any document (or subdocument) is saved. How's that for not
repeating yourself?

Plugins – Re-using Code

[120]

The final step is to remove the modifiedOn definitions from each schema, and
reference the plugin instead:

userSchema.plugin(modifiedOn);
projectSchema.plugin(modifiedOn);
taskSchema.plugin(modifiedOn);

Not just for plugins
This schema.pre middleware can also be used directly on the parent schema itself.
We could quite easily have had this for example on an individual schema:

projectSchema.pre('save', function (next) {
 this.modifiedOn = Date.now();
 next();
});

Sharing with the community
Mongoose plugins are not just re-usable for you, you can share them with the rest
of the community. By packaging them up as npm modules, and tagging them with
"mongoose", they will become available in the Mongoose plugins directory.

There are already a large number of community-submitted plugins available that
include adding support for a long number SchemaType, validation helpers, and
authentication and user management plugins.

You can find the directory, and submission guidelines at the following link:

http://plugins.mongoosejs.com

Summary
In this chapter, we've seen how we can take repeated paths from our schemas and turn
them into a single Mongoose plugin. We've learned how to create them as separate
files, include them in our application, and also use schema middleware to set data on a
save operation. We have used all of this knowledge to create plugins and add them to
our MongoosePM application, tidying up our code and removing repetition.

This is the final chapter of Mongoose for Application Development. By now you should
have the tools and understanding to enable you to build a web application based
on everything Mongoose has to offer. I'm sure that by now you will agree that
Mongoose is a very useful addition to the Node.js and MongoDB technology stack.

Index
Symbols
.save method 55

A
Advanced Packaging Tool (APT) 15
Are you sure page 93
array data type, Mongoose schema

about 34
word of caution 34

asynchronous validator 102

B
blocking code 9
boolean datatype, Mongoose schema 33
buffer datatype, Mongoose schema 33

C
callback() function

running 10
close() method 25
code structure

about 48
routes files, adding 49
routes, tying to Mongoose models 49

collection 11
connection events 26
connection options

about 24
db 25
replset 25
server 25
user and pass 25

connection string
about 24
database user, specifying 24
port, setting 24

custom SchemaTypes 35
custom validation 100
custom validators

asynchronous validator 102
creating 100
creating, with custom error message 100
creating, with single function 100
custom message, pairing out of schema 101
multiple validators 101, 102
regular expression, validating 101

D
data

deleting 91, 92
querying 67

database connection
closing 25
establishing 23

database connection, closing
close command, calling 25
with Node process 26

data interaction
about 53
database entry, creating 56
database entry, saving 56
instance, creating 53
instance, saving 54
methods, chaining 56
Model.create() method 56, 57

data management
existing schema, modifying 114

[122]

datatypes, Mongoose schema
about 32
array 34
boolean 33
buffer 33
custom SchemaTypes 35
date 33
mixed 33
number 33
ObjectId 33
string 32

data validation
about 97
adding, to project 103
basics 97
custom validation 100
error object 99
extending 103

date datatype, Mongoose schema 33
doLogin function 84

E
enum validator 98
exports.create() function 65
exports.doCreate() function 65
Express

about 12
installing 17

F
findByIdAndRemove() method 92
findByIdAndUpdate() method 81
find-edit-save approach 83
findOneAndRemove() method 92
findOneAndUpdate() method 81

H
http.createServer method function 11

I
instance, data interaction

creating 54
data, adding to 54

saved data, using 55
saving 54, 55

J
Jade template files

index.jade 58
layout.jade 58

JavaScript
about 7
blocking code 9
callback, running 10
callbacks 9
non-blocking code 9

jQuery document.ready method 9

K
key 11

M
match validator 98
mixed data type, Mongoose schema

about 33
changes, tracking 34

Model.create() method
about 56

model.findById method 78
Model.findById(ObjectID) method 70
Model.findOne() method

used, for searching single user 71
Model.findOne(query) method 70
Model.find(query) method 70
model helper methods, Mongoose

catch 83
commands, building 82
findByIdAndUpdate() 81
findOneAndUpdate() 81
selecting 83
update() 81

model, Mongoose 14
MongoDB

about 11
installing 16

Mongoose
about 12
benefits 13

[123]

connection options 24, 25
connection string 24
cornerstones 14
database connection, establishing 23
data, deleting 91
data validation 97
find-edit-save approach 83
installing 17
instance methods 47
limitations 13
methods, for data interaction 47
model helper methods 81
model methods 47, 48
models 14
population 105
project, setting up 48
QueryBuilder 68
re-usable schema plugins 117
static model methods 68
subdocuments 110
validators 97

Mongoose database connection
events 26

Mongoose default connection
about 23
multiple connections, using 24

Mongoose installation
direct installation, into project 17
project dependencies, using 17

MongoosePM
connection, creating 26, 27
connection, opening at app start 28
creating 18, 20
database, creating 28
events, catching 27
single user, finding 71

Mongoose schema. See schema, Mongoose
multithreaded 8

N
Node

about 8
multithreaded 8
single-threaded 8

Node.js
about 8
installing 15

Nodemon
URL 60

non-blocking code 9
npm

installing 15
number data type, Mongoose schema 33

O
ObjectId data type, Mongoose schema 33
ODM (Object-Document Modeler) 7

P
package.json file 18
population

about 105
data, defining 106
data, retrieving 107, 108
multiple parent items, populating 110
references, saving 107
results subset, querying 109

projects
deleting 95

Project schema
createdBy data type 39
createdOn data type 39
creating 39
improving 40
modifiedOn data type 39
projectName data type 39
tasks data type 39

projects, editing
performing 88
routes 88

project, setting up
code structure 48
routes 49
URLs 49

projects list, finding
AJAX call, building 77
res.json() method, used 74
route, setting up 75
view, updating 76

[124]

Q
QueryBuilder interface

about 68
single-query operation, using 69, 70

R
remove() method 92
res.json() method 74
re-usable schema plugins

about 117
adding, to existing schema 118
creating 117
external file, using 118
schema middleware, using 119
sharing, with community 120

routes
for project management 50
for user management 50

S
schema, Mongoose

__v 38
about 14, 31
code 44
collection name, setting 42
datatypes 32
data, validating 37
default value, setting 36, 37
field sizes 32
location, for writing 35
models, building 40
modifying 36
Project schema, creating 39
Project schema, improving 40
userSchema 38
writing 35

single project, finding
findById, used 78
route setup 78, 79
view, creating 80

single-query operation
using 69

single-threaded 8

single user, searching
findOnes used 71
homepage links, adding 73
login action, creating 72, 73
login form, creating 71

static helper methods
about 70
Model.findById(ObjectID) 70
Model.findOne(query) 70
Model.find(query) 70

string datatype, Mongoose schema 32
subdocuments

about 110, 111
creating 112
deleting 114
retrieving 113
saving 112
specific subdocument, accessing 113
validating 112

Supervisor
URL 60

T
technology stack

Express 12
MongoDB 11
Node.js 8

technology stack, installation
about 15
Express.js, installing 17
MongoDB, installing 16
Mongoose, installing 17
Node.js, installing 15
npm, installing 15
prerequisites 15

U
update() method 81, 84
user

deleting 94
editing 85

user creating
confirmation page, displaying 63
create project functionality, adding 64

[125]

three-step approach, using 86, 87
user login, troubleshooting 84

userSchema
creating 31

V
validators, Mongoose

about 97
All SchemaTypes 98
Number SchemaType 98
String SchemaType 98

create user function, creating 60, 61
data, creating 57
error trapping 62
Jade template, adding 58
new user form, adding 58
routes 64
user session, creating 62
view, linking to URL 59, 60

user, editing
controllers, setting up 85, 86
form, setting up 85
performing 85
routes, using 85

Thank you for buying
Mongoose for Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1.	 Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2.	 From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3.	 Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

OGRE 3D 1.7 Application
Development Cookbook
ISBN: 978-1-84951-456-9 Paperback: 306 pages

Over 50 recipes to provide world-class 3D
graphicssolutions with OGRE 3D

1.	 Dive into the advanced features of OGRE 3D
such as scene querying and visibility analysis

2.	 Give stunning effects to your application
through suitable use of lights, special effects,
and views

3.	 Surf through the full spectrum of
OGRE 3D animation methods and insert
flashy multimedia

Please check www.PacktPub.com for information on our titles

web2py Application Development
Cookbook
ISBN: 978-1-84951-546-7 Paperback: 364 pages

Over 110 recipes to master this full-stack Python
web framework

1.	 Take your web2py skills to the next level
by dipping into delicious, usable recipes in
this cookbook

2.	 Learn advanced web2py usage from building
advanced forms to creating PDF reports

3.	 Written by developers of the web2py project
with plenty of code examples for interesting
and comprehensive learning

CouchDB and PHP Web
Development Beginner's Guide
ISBN: 978-1-84951-358-6 Paperback: 304 pages

Get your PHP application from conception to
deployment by leveraging CouchDB's robust features

1.	 Build and deploy a flexible Social Networking
application using PHP and leveraging key
features of CouchDB to do the heavy lifting

2.	 Explore the features and functionality
of CouchDB, by taking a deep look into
Documents, Views, Replication, and
much more.

3.	 Conceptualize a lightweight PHP framework
from scratch and write code that can easily port
to other frameworks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Mongoose to the Technology Stack
	The technology stack – Node.js, npm, MongoDB, and Express
	The language and the server – JavaScript
and Node
	Single-threaded versus multithreaded
	Blocking versus non-blocking code

	The database – MongoDB
	The framework – Express

	What Mongoose is all about
	What is Mongoose good for?
	What Mongoose is not ideally suited for
	The cornerstones of Mongoose
	Mongoose schemas
	Mongoose models

	Installing the full stack
	Installing the prerequisites
	Installing Node.js
	Installing npm
	Installing MongoDB
	Installing Express.js
	Installing Mongoose
	Direct installation into project
	Using project dependencies – package.json

	Creating a project

	Summary

	Chapter 2: Establishing a
Database Connection
	Mongoose default connection
	Using multiple connections

	About the connection string
	Setting the port
	Specifying a database user

	Connection options
	Closing the connection
	Calling the close command
	Closing when the Node process ends

	Connection events
	Connecting our project
	Creating the connection
	Catching the events
	Opening the connection at application start
	Creating the database

	Summary

	Chapter 3: Schemas and Models
	Introducing schemas
	Field sizes

	Data types allowed in schemas
	String
	Number
	Date
	Boolean
	Buffer
	ObjectId
	Mixed
	Tracking changes to Mixed type

	Array
	Warning – array defined as mixed type

	Custom SchemaTypes

	Where to write the schemas
	Writing a schema
	Modifying an existing schema
	Setting a default value
	Only allowing unique entries
	Our final User schema
	What's that "__v" thing?
	Why is this needed?

	Defining the Project schema
	Improving the Project schema

	Building models
	Instances
	Interacting with instances
	Finding a single instance
	Finding many instances

	Considerations when choosing
your model name

	Setting the collection name
	Overriding the collection name in the schema
	Overriding the collection name in the model
	Building models from our schemas

	Our complete code
	Summary

	Chapter 4: Interacting with
Data – an Introduction
	Model methods and instance methods
	Setting up the project
	Code structure
	Adding the routes files
	Tying the routes to Mongoose models

	URLs and routes
	Routes for user management
	Routes for project management

	Summary

	Chapter 5: Interacting with
Data – Creation
	Creating an instance
	Adding data to the instance

	Saving an instance
	Using the saved data

	Creating and saving database entry in one step
	Chaining methods
	The Model.create() method

	CRUD – create data
	Adding a new user form
	Adding the Jade template
	Linking the view to the URL

	Adding the create user function
	Error trapping
	Creating a user session

	Displaying the confirmation page
	Try it out!
	Adding create project functionality
	Routes
	New files and functions

	Summary

	Chapter 6: Interacting with
Data – Reading,
Querying, and Finding
	Approaches to find and read data
	Using the QueryBuilder
	Single query operation
	Static helper methods – finding data

	CRUD – reading user and project data
	findOne() – finding a single user
	Login form
	Login action
	Housekeeping – adding homepage links
	Try it out!

	find() – finding a list of projects and returning JSON to AJAX
	Creating a new static find method
	Setting up the route
	Updating the view
	Building the AJAX call
	Try it out!

	findByld() – finding a single project
	Route setup
	Creating the view

	Summary

	Chapter 7: Interacting with
Data – Updating
	Model helper methods
	Building the commands
	Which method to choose
	The catch

	The three-step find-edit-save approach
	CRUD – editing users and projects
	Tracking user login
	Editing the current user
	Routes in use
	Setting up the form
	Setting up the controllers
	Committing the edit

	Editing projects
	Routes
	New files and functions

	Summary

	Chapter 8: Interacting with
Data – Deleting
	Deleting data
	CRUD – deleting user and projects
	The "Are you sure" page
	Deleting the user
	Improving on this

	Deleting individual projects
	Routes
	New files and functions

	Summary

	Chapter 9: Validating Data
	Mongoose validation – the basics
	Default validators
	All SchemaTypes
	Number SchemaType
	String SchemaType

	Understanding validation errors
	Doing it your way – create custom validation
	Single function – no custom error message
	Returning a custom error message
	Validating a regular expression
	Taking the messages out of the schema

	Using multiple re-usable validators
	Non-blocking, asynchronous validation
	Extending Mongoose validation

	Adding validation to our project
	Summary

	Chapter 10: Complex Schemas
	Population – references to other collections
	Defining data for population
	Saving population references
	Retrieving populated data
	Querying to return a subset of results
	Populating into multiple parent items

	Subdocuments
	Creating subdocuments
	Saving and validation

	Retrieving subdocuments
	Accessing a specific subdocument

	Deleting subdocuments

	Data management when modifying existing schemas
	Summary

	Chapter 11: Plugins – Re-using Code
	Reusable schema plugins
	Creating a schema plugin
	Applying the plugin to an existing schema
	Using an external file
	Using schema middleware

	Sharing with the community
	Summary

	Index

