
www.allitebooks.com

http://www.allitebooks.org

Mule ESB Cookbook

Over 40 recipes to effectively build your enterprise
solutions from the ground up using Mule ESB

Dr. Zakir Laliwala

Abdul Samad

Azaz Desai

Uchit Vyas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mule ESB Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1160813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-440-1

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Dr. Zakir Laliwala

Abdul Samad

Azaz Desai

Uchit Vyas

Reviewers
Lieven Heuninck

Maurizio Turatti

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Dayan Hyames

Technical Editors
Jalasha D'costa

Amit Ramadas

Copy Editors
Gladson Monteiro

Sayanee Mukherjee

Aditya Nair

Adithi Shetty

Laxmi Subramanian

Project Coordinator
Kranti Berde

Proofreader
Linda Morris

Indexers
Hemangini Bari

Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Dr. Zakir Laliwala is an entrepreneur, open source specialist, and hands-on CTO of
Attune Infocom. Attune Infocom provides enterprise-level open source solutions, and
services for SOA, BPM, ESB, Portal, Cloud computing, and ECM. At Attune Infocom, he is
responsible for solutions and services delivery and product development. He is exploring
new enterprise-level open source solutions, and defining architecture, roadmap, and best
practices. He has provided consulting and training on various open source technologies to
corporates around the world on Mule ESB, Activiti BPM, JBoss' jBPM and Drools, Liferay
Portal, Alfresco ECM, Jboss SOA, and Cloud computing.

Dr. Zakir pursued Ph.D. in Information and Communication Technology from Dhirubhai
Ambani Institute of Information and Communication Technology. He was the Adjunct Faculty
at Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) and
CEPT University, where he now teaches students pursuing Master's.

He has published many research papers in IEEE and ACM international conferences on
web services, SOA, Grid computing, and Semantic Web. He also serves as a reviewer at
various international conferences and journals. He has contributed chapters on open
source technologies and writes books on open source technologies.

Abdul Samad has more than seven years' hands-on experience in leading and
implementing Java, J2EE, Portal, and ECM open source solutions. He has successfully
migrated IBM WebSphere portal to Liferay Portal for a client based in the U.K. He has
delivered successful training with his experience and expertise on Liferay Portal and jBPM to
Sambaash, AT&T, Cognizant, Urja Technologies, and Protea Technologies. He was part of an
enterprise-level, open source portal application implementation for media and publication
houses, portal customization projects, and led a team of developers to achieve the client's
requirements on time.

He has expertise in implementing J2EE technologies (JSP, Servlet, MVC Frameworks, BPM,
ESB, and Portlet frameworks) to develop enterprise web applications. He has worked with
various frameworks such as Mule ESB, jBPM, Liferay, Alfresco, and Oracle WebLogic portal
on his journey.

www.allitebooks.com

http://www.allitebooks.org

Azaz Desai has more than three years' experience in Mule ESB, JBPM, and Liferay
technologies. He is an Oracle Certified Java Programmer (OCJP). He is responsible for
implementing, deploying, integrating, and optimizing services and business processes
using ESB and BPM tools. He is a lead writer of Mule ESB Cookbook, Packt Publishing,
as well playing a vital role of trainer on ESB to global clients at Attune Infocom.

He is very enthusiastic and active in understanding client-specific requirements on web
service integration. He has done various integration of web services, such as Mule ESB with
Liferay, Alfresco, jBPM, and Drools. He was a part of a key project on Mule ESB integration as
a messaging system. He has worked on various web service standards and frameworks, such
as CXF, AXIS, SOAP, and REST.

Uchit Vyas a B.Tech. graduate in Computer Science with a research interest in ESB and
Cloud, is a certified Cloud Architect (AWS), Cisco (CCNA), VMware (VSP), and Red Hat Linux
(RHCE) professional. He has an energetic strength to work on multiple platforms at a time
and the ability to integrate open source technologies. He works as a Sr. Consultant and looks
after AWS – Cloud, Mule ESB, Alfresco, Liferay and deploying Portal, and ECM system. He was
previously working with TCS as an Assistant System Engineer.

With over three years' hands-on experience on open source technologies, he manages
to guide the team and deliver projects and training sessions meeting client expectations.
He has provided more than 13 training sessions on Cloud computing, Alfresco, and Liferay
in a couple of months. In the last few years, he has moved over 80 percent of Attune Infocom
business processes to the Cloud by implementing agile SDLC methodology on Amazon,
Rackspace, and private Clouds such as Eucalyptus and OpenStack. His skills are not limited
to designing and managing Cloud environment/infrastructure, server architecture. He is also
active in Shell scripting, autodeployment, supporting hundreds of Linux and Windows physical
and virtual servers hosting databases, and applications with continuous delivery using
Jenkins/CruiseControl with Puppet/Chef scripting.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Lieven Heuninck holds an MSc. degree. He has an up-to-date knowledge on technology
and is very capable in designing technical solutions using state of the art technological
components. He knows how to combine his technical skills with a good practical knowledge
of the various functional processes present in today's organizations. He is passionate
about Enterprise Architecture, Service-Oriented Architecture, and all the tools that can
bring these concepts into reality. He is so passionate about it that he co-started a company
called Apogado (http://www.apogado.com) to provide dedicated services in his areas of
expertise. Apogado currently conducts various missions for large organizations in private and
public sectors. When Lieven is not working, he enjoys sailing.

Maurizio Turatti is a software integration architect with more than 15 years' professional
experience in many SOA and enterprise integration projects in Europe and the Middle East.
He is now working as an Open Source Team Leader. He has worked formerly at SeeBeyond,
Sun Microsystems, and Alfresco. He loves to research and experiment with leading
edge open source technologies. You can contact him through his CamelCase blog:
http://blog.maurizioturatti.com/.

He is also the author of the book Instant Apache Maven Starter, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Mule ESB 7

Introduction 7
Understanding Mule concepts and terminologies 8
Setting up the Mule IDE 13
Installing Mule Studio 20
Configuring Mule components 23
Deploying your first Hello World application on the Mule server 31

Chapter 2: Working with Components and Patterns 43
Introduction 43
Configuring the component 44
Using the Echo component to display the message payload 48
Using a Flow Reference component to synchronously execute another flow 57
Publishing a RESTful web service using the REST component 72
Publishing a SOAP-based web service using the SOAP component 84

Chapter 3: Using Message Property, Processors, and Sources 99
Introduction 99
Understanding components 100
Understanding message sources 112
Using message processors to control the message flow 114
Understanding message property scopes 122

Chapter 4: Endpoints 133
Introduction 133
Configuring the Generic Endpoint 133
Configuring the HTTP Endpoint 135
Configuring the IMAP Endpoint to retrieve e-mails 145
Using the JDBC Endpoint to connect to the database 147

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Implementing the File Transport channel using the File Endpoint 164
Sending messages asynchronously using the AJAX Endpoint 181
Using the Servlet Endpoint to listen to events or messages from
servlet requests 197

Chapter 5: Transformers 201
Introduction 201
Configuring the JSON-to-Object transformer 202
Configuring the Object-to-XML transformer 214
Configuring the Message and Variable transformers 223
Creating the custom transformer 226
Understanding the DataMapper transformer 235

Chapter 6: Configuring Filters 249
Introduction 249
Configuring the Logic filters – And/Or/Not 249
Performing filtering according to the exception type 258
Filtering messages by evaluating expressions 260
Handling incoming events or messages using the Message filter 261
Configuring the Wildcard filter 264
Creating a Custom filter 273

Chapter 7: Handling Exceptions and Testing 281
Introduction 281
Understanding Messaging Exception strategies 282
Configuring the Choice Exception Strategy 284
Configuring the Reference Exception Strategy 286
Configuring the Rollback Exception Strategy 288
Testing with JUnit in Mule ESB 289

Chapter 8: Introducing Web Services 311
Introduction 311
Proxying web services 312
Creating JAX-WS services 313
Creating web services using the REST component 322
Calling external web services using the SOAP component 329

Chapter 9: Understanding Flows, Routers, and Services 339
Introduction 339
Configuring the All Router/Flow Control 339
Configuring the Choice Router/Flow Control 350
Configuring the Splitter Flow Control 361

iii

Table of Contents

Chapter 10: Configuring Cloud Connectors 371
Introduction 371
Configuring the Twitter Cloud Connector 371
Configuring the DropBoxIntegration folder 384

Index 405

Preface
Mule ESB is a lightweight Java-based enterprise service bus (ESB) and integration platform
that allows developers to connect applications together quickly and easily, enabling them
to efficiently exchange data. You can therefore use Mule ESB to allow different applications
to communicate with each other via a transit system to carry data between applications
within your enterprise or across the Internet. It is also useful if you use more than one type
of communication protocol while integrating three or more applications/services.

Mule ESB Cookbook takes readers through the practical approach of using Mule ESB 3.3.
This book solves numerous issues faced by developers working on Mule ESB in real time
and provides use cases on how to integrate Mule with other technologies. It also focuses
on development and delivery using Mule ESB through integrating, migrating, and upgrading
advanced technological tools.

This book gives the reader a strong overview of the Mule framework using practical and
easy-to-follow examples. It has three sections: problems, approaches, and solutions. The
key aim of this book is to show you how to allow different applications to communicate
with each other by creating a transit system to carry data between applications within your
enterprise or across the Internet. Mule ESB enables easy integration of existing systems,
regardless of the different technologies that the applications use, including JMS, web
services, JDBC, HTTP, and more.

Mule ESB Cookbook will teach you everything to communicate between applications that
are built on different platforms, as well as how to migrate them into your application across
multiple platforms or on the Cloud.

Preface

2

What this book covers
This book contains recipes related to deployment, scripting, and the API discussing core
concepts of standard components, performance tuning, and Cloud integration through
practical task-oriented recipes. This book will provide you practical knowledge of the
Mule ESB architecture and its configuration. Core concepts and components required
to understand how Mule ESB works are also explained.

Chapter 1, Getting Started with Mule ESB, discusses Mule core concepts and terminology. It
also provides an environment setup for Mule ESB and Mule Studio. By the end of this chapter,
you will be familiar with Mule IDE integration with Eclipse, and how to create a Hello World
project and flow in Mule Studio. At the end of this chapter, you will learn how to configure Mule
elements and deploy applications on the Mule server.

Chapter 2, Working with Components and Patterns, describes what a component is and its
types, such as Echo, Logger, REST, SOAP, HTTP, and Java. You will also know how to configure
a component, how to use it in a workflow, and what patterns are in Mule ESB.

Chapter 3, Using Message Property, Processors, and Sources, helps you understand what
message sources, processors, and properties are. By the end of this chapter, you will be able
to use processors in a workflow, and use message processors to control the message flow,
and message property scopes.

Chapter 4, Endpoints, explains what an Endpoint is. Endpoints send and receive data and are
responsible for connecting to external resources and delivering messages.The two types of
Endpoints available in Mule Studio are: Inbound Endpoint and Outbound Endpoint. Inbound
Endpoint is used for receive messages and Outbound Endpoint is used for sending messages.

Chapter 5, Transformers, explains what a transformer is. By the end of this chapter, you will be
able to configure the JSON-to-Object and Object-to-XML transformers and DataMapper.

Chapter 6, Configuring Filters, explains what a filter is and how to configure the Logic
filter. By the end of this chapter, you will be able to create a custom filter and configure
the Message filter.

Chapter 7, Handling Exceptions and Testing, explains what an exception is. By the end of
this chapter, you will be able to configure the Catch Exception Strategies, Rollback Exception
Strategies, and JUnit testing.

Chapter 8, Introducing Web Services, explains what a web service is. By the end of this
chapter, you will be able to create a JAX-WS web service and integrate external web services.

Chapter 9, Understanding Flows, Routers, and Services, explains what a Router is, and how to
configure the Router and the Splitter Flow Control.

Chapter 10, Configuring Cloud Connectors, explains what a cloud connector is and how to
integrate Twitter and Dropbox connectors.

Preface

3

What you need for this book
You will need the following software to be installed before running the code examples:

 f Mule ESB requires JDK 6 or a later version. JDK 6 can be downloaded from the
following site: http://www.oracle.com/technetwork/java/javase/
downloads/jdk6downloads-1902814.html.

 f Mule Studio is a powerful, user-friendly Eclipse-based tool. Mule Studio is an
Eclipse-based tool that has three main components: a package tree, a palette, and a
canvas. Mule ESB easily creates flows and edits and tests them in a few minutes. It
is based on drag-and-drop elements and supports two-way editing. Mule Studio can
be downloaded from the following site: http://www.mulesoft.org/all-mule-
studio-downloads.

 f You will also require PostgreSQL 9.2. PostgreSQL is a web hosting database that is
used to store website information such as user information. PostgreSQL is a powerful,
open source object-relational database system. It runs on all major operating systems,
including Linux, Unix, and Windows. It is fully ACID compliant, and has full support
for foreign keys, joins, views, triggers, and stored procedures. PostgreSQL can be
downloaded from the following site: http://www.piostgresql.org/download.

 f You will need Selenium IDE. It is an integrated development environment for
Selenium scripts. It is implemented as a Firefox extension and allows you to record,
edit, and debug tests. Selenium IDE includes the entire Selenium Core, allowing
you to easily and quickly record and play back tests in the actual environment that
they will run on. Selenium IDE is not only a recording tool, but it is also a complete
IDE. You can choose to use its recording capability, or you may edit your scripts by
hand. Selenium IDE can be downloaded from the following site: http://docs.
seleniumhq.org/download/.

Who this book is for
This book provides solutions for developers who are working on Mule ESB and for integrators
or migrators who are integrating and migrating Mule with other technologies. It focuses on
development and delivery using Mule ESB through integrating, migrating, and upgrading
advanced technological tools.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Enter the project name, Logic Filter."

Preface

4

A block of code is set as follows:

package com.org;

public class User {

 private String name;
 private String lname;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getLname() {
 return lname;
 }
 public void setLname(String lname) {
 this.lname = lname;
 }

}

Any command-line input or output is written as follows:

java -jar selenium-server-standalone-2.31.0.jar

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on Next and
then on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

Mule ESB

In this chapter, we will cover the following topics:

 f Understanding Mule concepts and terminologies

 f Setting up the Mule IDE

 f Installing Mule Studio

 f Configuring Mule components

 f Deploying your first Hello World application on the Mule server

Introduction
Mule ESB is a lightweight Java programming language. Through ESB, you can integrate
or communicate with multiple applications. Mule ESB enables easy integration of existing
systems, regardless of the different technologies that the applications use, including JMS,
web services, JDBC, and HTTP.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Mule ESB

8

Understanding Mule concepts and
terminologies

Enterprise Service Bus (ESB) is an application that gives access to other applications and
services. Its main task is to be the messaging and integration backbone of an enterprise.

An ESB is a distributed middleware system to integrate different applications. All these
applications communicate through the ESB. It consists of a set of service containers that
integrate various types of applications. The containers are interconnected with a reliable
messaging bus.

Getting ready
An ESB is used for integration using a service-oriented approach. Its main features are
as follows:

 f Polling JMS

 f Message transformation and routing services

 f Tomcat hot deployment

 f Web service security

We often use the abbreviation, VETRO, to summarize the ESB functionality:

 f V – validate the schema validation

 f E – enrich

 f T – transform

 f R – route (either itinerary or content based)

 f O – operate (perform operations; they run at the backend)

Chapter 1

9

Before introducing any ESB, developers and integrators must connect different applications in
a point-to-point fashion.

Liferay
Application

JBPM
System

BPO/KPO
Application

Alfresco
Application

Other
Application

How to do it...
After the introduction of an ESB, you just need to connect each application to the ESB so that
every application can communicate with each other through the ESB. You can easily connect
multiple applications through the ESB, as shown in the following diagram:

Liferay
Application

JBPM
System

BPO/KPO
Application

Alfresco
Application

Other
Application

Enterprise Services Bus
Routing Transformation Security Connectivity

Getting Started with Mule ESB

10

Need for the ESB
You can integrate different applications using ESB. Each application can
communicate through ESB:

 f To integrate more than two or three services and/or applications
 f To integrate more applications, services, or technologies in the future
 f To use different communication protocols
 f To publish services for composition and consumption
 f For message transformation and routing

What is Mule ESB?
Mule ESB is a lightweight Java-based enterprise service bus and integration platform that
allows developers and integrators to connect applications together quickly and easily,
enabling them to exchange data. There are two editions of Mule ESB: Community and
Enterprise. Mule ESB Enterprise is the enterprise-class version of Mule ESB, with additional
features and capabilities that are ideal for clustering and performance tuning, DataMapper,
and the SAP connector. Mule ESB Community and Enterprise editions are built on a common
code base, so it is easy to upgrade from Mule ESB Community to Mule ESB Enterprise.

Mule ESB enables easy integration of existing systems, regardless of the different
technologies that the applications use, including JMS, web services, JDBC, and HTTP. The key
advantage of an ESB is that it allows different applications to communicate with each other
by acting as a transit system for carrying data between applications within your enterprise or
across the Internet. Mule ESB includes powerful capabilities that include the following:

 f Service creation and hosting: It exposes and hosts reusable services using Mule
ESB as a lightweight service container

 f Service mediation: It shields services from message formats and protocols, separate
business logic from messaging, and enables location-independent service calls

 f Message routing: It routes, filters, aggregates, and re-sequences messages based on
content and rules

 f Data transformation: It exchanges data across varying formats and transport protocols

Mule ESB is lightweight but highly scalable, allowing you to start
small and connect more applications over time. Mule provides
a Java-based messaging framework. Mule manages all the
interactions between applications and components transparently.
Mule provides transformation, routing, filtering, Endpoint, and so on.

Chapter 1

11

How it works...
When you examine how a message flows through Mule ESB, you can see that there are three
layers in the architecture, which are listed as follows:

 f Application Layer

 f Integration Layer

 f Transport Layer

Likewise, there are three general types of tasks you can perform to configure and customize
your Mule deployment. Refer to the following diagram:

Customer Data Component Application Layer

Object-to-Xml Transformer Integration Layer

Transport Layer

Message Patload HTTP Endpoint JMS Transport Message Patload

http JMS

The following list talks about Mule and its configuration:

 f Service component development: This involves developing or re-using the existing
POJOs, which is a class with attributes and it generates the get and set methods,
Cloud connectors, or Spring Beans that contain the business logic and will consume,
process, or enrich messages.

 f Service orchestration: This involves configuring message processors, routers,
transformers, and filters that provide the service mediation and orchestration
capabilities required to allow composition of loosely coupled services using a
Mule flow. New orchestration elements can be created also and dropped into
your deployment.

Getting Started with Mule ESB

12

 f Integration: A key requirement of service mediation is decoupling services from
the underlying protocols. Mule provides transport methods to allow dispatching and
receiving messages on different protocol connectors. These connectors are configured
in the Mule configuration file and can be referenced from the orchestration layer.
Mule supports many existing transport methods and all the popular communication
protocols, but you may also develop a custom transport method if you need to extend
Mule to support a particular legacy or proprietary system.

Spring beans

Agents

Connector

Global configuration

Mule configuration

Global Endpoints Global transformer

Global message
processor Global filter

Models

Source
Flows

Target

Services

Inbound

Outbund

Component

 f Spring beans: You can construct service components from Spring beans and define
these Spring components through a configuration file. If you don't have this file, you
will need to define it manually in the Mule configuration file.

 f Agents: An agent is a service that is created in Mule Studio. When you start the
server, an agent is created. When you stop the server, this agent will be destroyed.

 f Connectors: The Connector is a software component.

 f Global configuration: Global configuration is used to set the global properties
and settings.

 f Global Endpoints: Global Endpoints can be used in the Global Elements tab. We can
use the global properties' element as many times in a flow as we want. For that, we
must pass the global properties' reference name.

 f Global message processor: A global message processor observes a message or
modifies either a message or the message flow; examples include transformers
and filters.

Chapter 1

13

 f Transformers: A transformer converts data from one format to another. You can
define them globally and use them in multiple flows.

 f Filters: Filters decide which Mule messages should be processed. Filters specify
the conditions that must be met for a message to be routed to a service or continue
progressing through a flow. There are several standard filters that come with Mule
ESB, which you can use, or you can create your own filters.

 f Models: It is a logical grouping of services, which are created in Mule Studio. You can
start and stop all the services inside a particular model.

 f Services: You can define one or more services that wrap your components (business
logic) and configure Routers, Endpoints, transformers, and filters specifically for that
service. Services are connected using Endpoints.

 f Endpoints: Services are connected using Endpoints. It is an object on which the
services will receive (inbound) and send (outbound) messages.

 f Flow: Flow is used for a message processor to define a message flow between a
source and a target.

Setting up the Mule IDE
The developers who were using Mule ESB over other technologies such as Liferay Portal,
Alfresco ECM, or Activiti BPM can use Mule IDE in Eclipse without configuring the standalone
Mule Studio in the existing environment. In recent times, MuleSoft (http://www.mulesoft.
org/) only provides Mule Studio from Version 3.3 onwards, but not Mule IDE. If you are
using the older version of Mule ESB, you can get Mule IDE separately from http://dist.
muleforge.org/mule-ide/releases/.

Getting ready
To set Mule IDE, we need Java to be installed on the machine and its execution path should
be set in an environment variable. We will now see how to set up Java on our machine.

1. Firstly, download JDK 1.6 or a higher version from the following URL:
http://www.oracle.com/technetwork/java/javase/downloads/
jdk6downloads-1902814.html.

2. In your Windows system, go to Start | Control Panel | System | Advanced.

Getting Started with Mule ESB

14

3. Click on Environment Variables under System Variables, find Path, and click on it.

Chapter 1

15

4. In the Edit window, modify the path by adding the location of the class to its value.
If you do not have the item Path, you may select the option of adding a new variable
and adding Path as the name and the location of the class as its value.

5. Close the window, reopen the command prompt window, and run your Java code.

How to do it...
If you go with Eclipse, you have to download Mule IDE Standalone 3.3.

1. Download Mule ESB 3.3 Community edition from the following URL: http://www.
mulesoft.org/extensions/mule-ide. Unzip the downloaded file and set
MULE_HOME as the environment variable.

Getting Started with Mule ESB

16

2. Download the latest version of Eclipse from http://www.eclipse.org/
downloads/.

After installing Eclipse, you now have to integrate Mule IDE in the Eclipse. If you are using
Eclipse Version 3.4 (Galileo), perform the following steps to install Mule IDE. If you are not
using Version 3.4 (Galileo), the URL for downloading will be different.

1. Open Eclipse IDE.

Chapter 1

17

2. Go to Help | Install New Software….

3. Write the URL in the Work with: textbox: http://dist.muleforge.org/mule-
ide/updates/3.4/ and press Enter.

4. Select the Mule IDE checkbox.

5. Click on the Next button.

6. Read and accept the license agreement terms.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Mule ESB

18

7. Click on the Finish button.

This will take some time. When it prompts for a restart, shut it down and restart Eclipse.

Chapter 1

19

Mule configuration
After installing Mule IDE, you will now have to configure Mule in Eclipse. Perform the
following steps:

1. Open Eclipse IDE.

2. Go to Window | Preferences.

Getting Started with Mule ESB

20

3. Select Mule, add the distribution folder mule as standalone 3.3; click on the Apply
button and then on the OK button. This way you can configure Mule with Eclipse.

Installing Mule Studio
Mule Studio is a powerful, user-friendly Eclipse-based tool. Mule Studio has three main
components: a package tree, a palette, and a canvas. Mule ESB easily creates flows as well
as edits and tests them in a few minutes. Mule Studio is currently in public beta. It is based
on drag-and-drop elements and supports two-way editing.

Getting ready
To install Mule Studio, download Mule Studio from http://www.mulesoft.org/
download-mule-esb-community-edition.

Chapter 1

21

How to do it...
Unzip the Mule Studio folder. Set the environment variable for Mule Studio. While starting
with Mule Studio, the config.xml file will be created automatically by Mule Studio.

The three main components of Mule Studio are as follows:

 f A package tree

 f A palette

 f A canvas

A package tree
A package tree contains the entire structure of your project. In the following screenshot, you can
see the package explorer tree. In this package explorer tree, under src/main/java, you can
store the custom Java class. You can create a graphical flow from src/main/resources.

In the app folder you can store the mule-deploy.properties file. The folders src, main,
and app contain the flow of XML files. The folders src, main, and test contain flow-related
test files. The Mule-project.xml file contains the project's metadata. You can edit the
name, description, and server runtime version used for a specific project. JRE System Library
contains the Java runtime libraries. Mule Runtime contains the Mule runtime libraries.

Getting Started with Mule ESB

22

A palette
The second component is palette. The palette is the source for accessing Endpoints,
components, transformers, and Cloud connectors. You can drag them from the palette and drop
them onto the canvas in order to create flows. The palette typically displays buttons indicating
the different types of Mule elements. You can view the content of each button by clicking on
them. If you do not want to expand elements, click on the button again to hide the content.

Chapter 1

23

A canvas
The third component is canvas; canvas is a graphical editor. In canvas you can create flows. The
canvas provides a space that facilitates the arrangement of Studio components into Mule flows.
In the canvas area you can configure each and every component, and you can add or remove
components on the canvas.

Configuring Mule components
A simple POJO component will be invoked by Mule when a message is received. You can
create your own custom component.

Getting ready
There are three types of components in Mule Studio:

 f Simple component

 f Java component

 f Other components

Getting Started with Mule ESB

24

How to do it...
Service components contain the business logic. Drag-and-drop a Component from the palette
onto the canvas and configure the component. Double-click on the component.

How it works...
The following are the palette components present in Mule.

Palette components
There are different palette components available in Mule Studio, where each palette
component has different uses. We will see that in detail here:

 f Endpoints

 f Components

 f Transformers

 f Filters

 f Flow control

Chapter 1

25

 f Routers

 f Scopes

 f Cloud connectors

Endpoints
Generally, Endpoints send and receive data, and are responsible for connecting to external
resources and delivering messages. Endpoints can be Inbound or Outbound. An Inbound
Endpoint receives messages via its associated transport. Each transport implements its
own Inbound Endpoint element. An Outbound Endpoint sends messages via its associated
transport. Each transport implements its own Outbound Endpoint element.

 f FTP Endpoint: This Endpoint reads files from the FTP server. This Endpoint carries
all the information for an FTP connection. The host and port values are required.
The FTP Endpoint implements a file transport channel so that your Mule application
can exchange files with an external FTP server. You can configure FTP as an Inbound
Endpoint (which receives files) or Outbound Endpoint (which writes files to the FTP
server). This is only used in the Enterprise edition.

 f File Endpoint: This Endpoint reads a file from the filesystem. The File Endpoint
implements a transport channel so that your Mule application can exchange files
with a filesystem. You can implement the File Endpoint as an Inbound Endpoint
(a message source), or as an Outbound Endpoint. This Endpoint implements only
a one-way exchange pattern. The File Endpoint is used for transferring the file from
one directory to another.

Getting Started with Mule ESB

26

 f Generic Endpoint: This Endpoint is used as a dynamic way to configure an Endpoint
using Mule expressions and specifying paths. The Generic Endpoint allows for a
wide array of configuration options by defining a particular transport to be used
as the Endpoint.

 f HTTP Endpoint: This Endpoint is used to process HTTP requests or responses.
Mule uses HTTP Endpoints to send and receive requests over the HTTP transport
protocol, or HTTPS over the SSL protocol. Configured as either Inbound (also known
as message sources) or Outbound, HTTP Endpoints use one of the two patterns:
request-response and/or one-way.

 f JMS Endpoint: This Endpoint is used to send or receive messages from a JMS queue.
The JMS Endpoint's two-way exchange patterns use: request-response and/or one-way.

 f VM Endpoint: This Endpoint is used for an in-memory queue that allows you
to integrate different flows or services in the same Mule configuration. The VM
Endpoint's two-way exchange patterns use request-response and/or one-way.

Components
The Studio building blocks are known as components and fall into three categories: general,
script, and web service.

General components execute whenever a message is received. The logic embedded into
general components cannot be modified. Components such as Logger, Flow Reference, and
Echo fall into this category.

Script components do not contain prepackaged logic; instead they allow the developer to
specify the logic (in the form of a custom script or a Java class) to add into the component.
Script components also allow you to:

 f Configure interceptors

 f Add Spring beans

 f Change the value or reference of a specific property within the associated class

The Java component allows you to reference a Java class. The other script components
support the Groovy, JavaScript, Python, and Ruby scripting engines.

Web service components, as the name implies, enable Mule to use SOAP and RESTful
protocols to communicate with external web services. The SOAP and RESTful components use
CXF and Jersey services to convert messages from Java to XML. Web service components also
allow the developer to select or define the logic to be invoked by the component. If using the
RESTful component, you only need to select a Java class and add a script to the component.
On the other hand, SOAP configuration requires you to define attributes and select the
operation method used to publish a SOAP web service.

Chapter 1

27

As an example of how the SOAP component can be used, a SOAP message could be sent to a
web-service-enabled website, such as a used car price database, with the parameters needed
for a search. The site would then return an XML-formatted document with the resulting data;
for example, prices, models, and features. The data returned is then integrated directly into a
third-party website or application.

The following components are present in Mule:

 f Echo: This component is used to echo a message payload to the console.

 f Logger: This component is used to perform logging using an expression that
determines what should be logged depending on the logging level. Use Logger
to log messages, such as error messages or exceptions.

 f REST: This component is used to make a REST service available via Jersey. REST is
the formalized architecture of HTTP based on the concepts of resources, links, and a
uniform interface. It uses the HTTP protocol. We can create a web service using the
REST component.

 f SOAP: This component is used to make a web service available via CXF. You can
create a CXF web service in Studio by configuring a SOAP component in your Mule
flow to perform any of the following CXF web service operations:

 � Publish a simple service
 � Publish a JAX-WS service
 � Proxy a published service
 � Consume a service using a simple client
 � Consume a service using JAX-WS client
 � Proxy to a service

Using Mule's SOAP component, you can also enable WS-security, specify data
bindings, and add interceptors to your CXF web service.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Mule ESB

28

Transformers
Transformers convert message payloads to formats expected by their destinations. Mule ESB
provides many standard transformers, which you configure using predefined elements and
attributes in your Mule XML configuration file. You can also configure custom transformers using
the <custom-transformer> element. You can configure a transformer locally or globally.

The following transformers are present in Mule:

 f Custom Transformer: Transformers in Mule are used to convert messages from
one format to another or to manipulate the message information such as headers
and attachments. Mule ESB also provides several standard transformers, including
XML transformers. You can create your own custom Java class using the extended
AbstractTransformer interface. Two ways to create a Custom Transformer are:

 � Use a transformer annotation on a method

 � Create a custom Java class

 f Object-to-Xml transformer: This transformer is used to convert a Java object to
an XML representation using XStream. You configure this transformer using the
<object-to-xml-transformer> element.

 f Script Transformer: This transformer is used to transform the payload using a script.
This defines script components to be used as transformers. The Script transformer
lets you select the particular scripting engine from a pull-down list. The predefined
script transformers, namely, Groovy, JavaScript, Python, and Ruby, have the scripting
engines already set.

 f Transformer Ref: This transformer is used to reference a global transformer.

Chapter 1

29

 f XSLT Transformer: This transformer is used to transform XML using XSLT.

 f Xml-to-Object Transformer: This transformer is used to convert XML to Java bean
graphs using XStream. You configure this transformer using the <xml-to-object-
transformer> element.

Filters
Filters specify conditions that must be met for a message to be routed to a service or
continued progressing through a flow. There are several standard filters that come with Mule
ESB, which you can use, or you can create your own filters. You can create a global filter and
then reference it from your services and flows. You can define a filter locally or globally.

The following filters are present in Mule:

 f Custom Filter: This filter is used as a user-implemented filter. The standard filters
handle most filtering requirements, but you can create your own custom filter. To
create a custom filter, you have to implement the Filter interface.

 f Exception Filter: This is a filter that matches an exception type.

 f Expression Filter: This filter evaluates a range of expressions providing different
types of evaluators such as XPath, JXPath, and OGNL and also a custom evaluator.

 f Message Property Filter: This filter allows you to add logic to your routers based on
the value of one or more properties of a message. This filter can be very powerful
because the message properties are exposed, allowing you to reference any
transport-specific or user-defined properties.

Getting Started with Mule ESB

30

 f Filter Reference: This filter is used to reference to a globally defined filter.

 f Regular Expression Filter: This filter is used on a filter that applies a regular
expression pattern to the message payload.

 f Wildcard Filter: This is a filter that matches string messages against wildcards.

 f Payload Filter: This is a filter that checks the class type of the payload object
inside a message.

Routers
Flow Controls/Routers route messages to various destinations in a Mule flow. Some
Flow Controls incorporate logic to analyze and possibly transform messages before
routing takes place.

The following Routers are present in Mule:

 f All: This Router can be used to send the same message to multiple targets. It sends
messages to all routes.

 f Choice: The Router sends a message to the first message processor that matches. It
routes messages based on expressions.

Cloud Connectors
A Cloud Connector easily integrates your Mule application with third-party web APIs. A Cloud
Connector is built using the Cloud connect toolset, which resides in Mule Studio by default.

Chapter 1

31

The following Cloud Connectors are present in Mule:

 f Salesforce: This connector provides an easy way to integrate with the Salesforce API.
This allows users to create flows which can query, create, and update information
in Salesforce.

 f Twitter: This connector provides an easy way to integrate with the Twitter API using
Mule flows.

Deploying your first Hello World application
on the Mule server

By creating a simple Hello World application, you will know how to create a flow and deploy the
flow using the Mule server.

Getting ready
Using the steps for application deployment, given in this recipe, you will learn the execution of
the flow, how that flow execution will occur, and what will be the output of the application code.

How to do it...
In this example you will see how to create and deploy the first "hello world" using Mule Studio.

1. Open Mule Studio and enter the name for the workspace name, as shown in the
following screenshot:

Getting Started with Mule ESB

32

2. Create a project in Mule Studio. You will see the Mule Studio Welcome Page window.
If you click on New Mule Project Based on a template, you will see an existing
example. By clicking on Go to Mule Studio, it will start redirecting away from the
Mule Studio Welcome Page window. You can even create a project from a menu bar
by going to File | New | Mule Project.

Chapter 1

33

3. Enter the project name called HelloWorld, click on Next, and enter the .mflow
name as the filename. Then, click on the Finish button.

Getting Started with Mule ESB

34

4. Go to src/main/java, right-click on it, and go to New | Class. Create a class called
Greeting under the package com.org; here we have created the sayHi method
and its return type is set to String.
public String sayHi(String str)
 {
 return "Hello "+str;
 }

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

35

5. Go to the Greeting.Mflow file. In the following screenshot, the central part is
called the canvas where we can put graphical elements and on the right-hand
side you can see the group of elements; this area is called a palette. You have to
drag-and-drop the HTTP Endpoint from the palette onto the canvas area.

Getting Started with Mule ESB

36

6. Double-click on the HTTP Endpoint to configure it. You will see the hostname. If
you want to change the hostname, you can change it. In this example, we use
localhost. If you want to change the port number, you can change that as well.
By default, port number 8081 will be taken by the Mule server.

Chapter 1

37

7. Drag-and-drop the Java component from the palette onto the canvas area. In the Java
component, we will store the custom Java class. Configure the Java component. In
this example, we configure the Greeting class that we created before.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Mule ESB

38

8. Double-click on the Java component and configure it. Click on the Java icon and
configure the Greeting class.

Chapter 1

39

How it works...
In this section, you will see how to deploy the application and how it will run on the browser.

1. If you haven't saved your application code, do save it. To deploy the application
code in the Mule server, go to Run As | Mule Application; the Mule server will
deploy your application.

Getting Started with Mule ESB

40

2. If your application code is successfully deployed, you will see the following
output screen:

Chapter 1

41

3. Copy the URL http://localhost:8081 and paste it on your browser.

4. Paste the URL on your browser, and you will see the following output:

2
Working with

Components and
Patterns

In this chapter, we will cover:

 f Configuring the component

 f Using the Echo component to display the message payload

 f Using a Flow Reference component to synchronously execute another flow

 f Publishing a RESTful web service using the REST component

 f Publishing a SOAP-based web service using the SOAP component

Introduction
Mule has the ability of routing, filtering, transforming, and processing with components. Each
of those abilities are assigned a good number of fine-grained processors. The configuration
file of a Mule application that combines those elements can end up being large. The different
types of configuration patterns provided by Mule are simple service pattern, bridge, validator,
HTTP proxy, and WS proxy.

Working with Components and Patterns

44

Configuring the component
In this recipe, you will see how to configure a component in Mule Studio. We will have a look at
how to use different components throughout this chapter.

Getting ready
Mule uses HTTP Endpoints to send and receive requests over the HTTP protocol. Configured
as either Inbound (also known as message sources) or Outbound, HTTP Endpoints use one of
these two message exchange patterns: request-response or one-way.

The arrows in the preceding screenshot indicate the request-response type of message exchange.

The arrow in this screenshot indicates the one-way type of message exchange.

Chapter 2

45

How to do it...
Double-click on the HTTP Endpoint to configure it. You will see a screen similar to the following
screenshot on your window. You have to enter the Host and Port values. By default, the port
number is 8081; you can change the values of the Host and Port fields. However, these two
fields are mandatory.

Working with Components and Patterns

46

The Java component
Double-click on the Java component to configure it. You can import the class you had created.

Chapter 2

47

Custom filters
Filters specify conditions that must be met for a message to be routed to a service. If the
condition is met, the message will go to another component. You can also create your own
filter. To create a filter, implement the Filter interface, which has a single method. You can
import a custom filter class using the extended Filter interface.

www.allitebooks.com

http://www.allitebooks.org

Working with Components and Patterns

48

How it works...
Components generally execute whenever a message is received; the logic embedded into
components cannot be modified. Components such as Logger, Echo, Java, Flow Ref, and
Expression all come under this category.

In the process of scripting a component, you have to develop your own business logic by
writing a script, or you can import a script file written in scripting languages such as Ruby,
Python, and Groovy. The Java component allows you to reference a Java class.

Using the Echo component to display the
message payload

The Echo component is used to display the message payload. The Echo component is used
for displaying message payloads, which receives the end user HTTP request and returns the
payload message to the HTTP response, which is then sent to the end user. In this recipe, you
will see how to use and configure the Echo component in Mule Studio.

Getting ready
In this example, we'll use the following components: HTTP, Logger, and Echo.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Chapter 2

49

2. To create a new project, go to File | New | Mule Project. Enter the project name,
Echo, and click on Next and then on Finish. Your new project is created. You can
now start the implementation.

Working with Components and Patterns

50

3. To create a flow, go to the Echo.mflow file, drag the HTTP Endpoint onto the canvas,
and configure it by double-clicking on it.

Chapter 2

51

How to do it...
In this section, we will see how we can use the Logger and Echo components in a flow.

1. Double-click on the HTTP Endpoint to configure it. You can change the hostname and
port number. Here, we have used port number 8585.

Working with Components and Patterns

52

2. To display messages on the console, drag the Logger component onto the canvas
and configure it. The Logger component uses an expression to determine what
information in the message should be displayed on the console. Mule Expression
Language (MEL) is the primary language used for formulating such expressions
throughout the Mule ESB.

Chapter 2

53

3. Double-click on the Logger component to configure it. You can see different types
of levels. The Logger component level is used for displaying error messages or
exceptions. We have selected the INFO level here. In the message box, you should
use the expression #[message:payload]. This expression is used for displaying
messages on the console.

Working with Components and Patterns

54

4. Drag the Echo component onto the canvas; there is no need to configure it.
Messages sent to an Echo component simply return the message payload
as the response to an end user.

Chapter 2

55

How it works...
In this section, you will see how to deploy the application and how to run the application on
the browser.

1. Now we are ready for the deployment. If you haven't saved your application code, do
save it. After saving your project, right-click on the Echo.mflow file and go to Run As
| Mule Application.

Working with Components and Patterns

56

2. If your application code is successfully deployed, you will see the following message
on the console: Started app 'helloworld'.

3. Copy the URL http://localhost:8585 and paste it in your browser.

Chapter 2

57

4. To see the output on the console, paste the URL in your browser and type in
/EchoExample. When a user types http://localhost:8585/EchoExample
in the browser, Mule returns a message in the browser that reads /EchoExample,
as shown in the following screenshot:

Using the command prompt
To run a Mule application, enter the following command on the command prompt:

mule [-config <your-config.xml>]

Here, <your-config.xml> is the Mule configuration file you want to use. If you don't specify
the configuration file, Mule looks for mule-config.xml, which is a generic name that does
not exist in the default configuration file. If you have only one configuration file, you can name
it mule-config.xml so that you can run Mule with it just by typing in mule. To stop Mule,
press Ctrl + C.

Using a Flow Reference component to
synchronously execute another flow

Flow Reference is used to synchronously execute another flow that is external to the current
flow. If a message reaches the Flow Reference component, Mule invokes the external flow
referenced by it. Once the referenced flow completes, the control passes back to the initiating
flow only after the external process is completed.

www.allitebooks.com

http://www.allitebooks.org

Working with Components and Patterns

58

Getting ready
To demonstrate this example, we'll use the following four components: HTTP, Logger, Java, and
Flow Ref.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
FlowRef, and click on Next and then on Finish. Your new project has been created
now; so we are ready to start the implementation.

Chapter 2

59

How to do it...
In this section, you will see how to configure the Java component and the Flow Ref
component. Here you are creating a class, and the output will be displayed on the browser
through this class.

1. To create a class, go to src/main/java, right-click on it, and go to New | Class.
Create a class named Greeting under the package com.org; here, we create the
muleCookBook method and its return type is set to String:
public String muleCookBook(String str)

 {
 return "HelloMule"+str;
 }

You can see the creation of this method in the following screenshot:

Working with Components and Patterns

60

2. To create a class, right-click on the package. Create one more class, World, under
the same package. Here, we create the method cookbook and its return type is set
to String:
public String cookBook(String str)
 {
 return "CookBook";
 }

You can see the creation of this method in the following screenshot:

Chapter 2

61

3. To create a flow, go to the FlowRef.Mflow file. Drag the HTTP Endpoint onto the
canvas and configure it.

Working with Components and Patterns

62

4. Double-click on the HTTP Endpoint to configure it. You can change the hostname
and port number. We have used the port number 8989 here. Click on the OK
button. By default, the request-response method is selected, as shown in the
following screenshot:

Chapter 2

63

5. To import a class, drag the Java component and configure it.

Working with Components and Patterns

64

6. Double-click on the Java component to configure it. Just click on the Browse button
and a new window, Class name browser, will open. Here you can import the World.
java class, which was created before, and click on the OK button.

Chapter 2

65

7. To reference another flow name, drag the Flow Reference component onto the canvas.

Working with Components and Patterns

66

8. Before configuring the Flow Reference component, you have to drag the Java
component onto another flow (you can see this in the following screenshot). Configure
that Java component. If you create another flow, just drag the component onto the
canvas outside the first flow; this will create another flow.

Chapter 2

67

9. Double-click on the Java component to configure it; change the display name so you
can identify the class name. Import the Greeting.java class that was created
before and click on the OK button.

Working with Components and Patterns

68

10. Now double-click on the Flow Ref component to configure it. Assign another Flow
Reference name. Now we are ready to deploy our application.

Chapter 2

69

How it works...
In this section, you will see how to deploy the application and how to run the application in
the browser.

1. Now we are ready for the deployment. If you haven't saved your application code, do
save it. After saving your project, right-click on the Echo.mflow file and go to Run As
| Mule Application.

Working with Components and Patterns

70

2. If your application code is successfully deployed, you will see the message Started
app 'helloworld' on the console.

Chapter 2

71

3. Copy the URL http://localhost:8989 and paste it in your browser.

4. To see the output, paste the URL onto your browser. You will see the output as
shown in the following screenshot. Here, Hello Mule is called from the Greeting
class through the Flow Reference component, and CookBook is called from the
World class:

Working with Components and Patterns

72

Publishing a RESTful web service using the
REST component

REST stands for Representational State Transfer. REST exposes a much simpler interface
than SOAP. REST components are bound with HTTP. So, if you are designing an application to
be used exclusively on the Web, REST is a very good option. RESTful applications simply rely
on the built-in HTTP security. A REST design is good for database-driven applications and also
when a client wants quick integration.

Getting ready
In this example, we'll use three components: HTTP, Logger, and REST.

1. Open Mule Studio and enter the workspace name as shown in following screenshot:

Chapter 2

73

2. To create a new project, go to File | New | Mule Project. Enter the project name,
REST, and click on Next and then on Finish. Your new project has been created;
now you can start the implementation.

How to do it...
Here we will create a RESTful web service using the annotation. We will create a method
named getwelcomeMsg().

1. To create a class, go to src/main/java and right-click on it. Create a class named
HelloWorldResource to print a message. Enter the package name and click on
Next and then on Finish. Here we have used the JAX-WS annotation. For details
on the JAX-WS annotation, you can refer to this URL: http://publib.boulder.
ibm.com/infocenter/radhelp/v7r0m0/index.jsp?topic=/com.ibm.
ws.jaxws.emitter.doc/topics/rwsandoc002.html.
package com.org;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
@Path("/myrest")

Working with Components and Patterns

74

public class HelloWorldResource {
 @GET
 public String getWelcomeMsg () throws Exception {
 return "Hi MuleCookBook!!!!";
 }
}

The @Get annotation indicates that the annotated method responds
to an HTTP GET request.
The @Path annotation is used to map a given URL.

You can see the creation of this method in the following screenshot:

Chapter 2

75

2. To create a flow, go to the Rest.mflow file. First of all, you have to drag the HTTP
Endpoint from the palette and drop it on the canvas area.

Working with Components and Patterns

76

3. Double-click on the HTTP Endpoint to configure it. You will see the hostname and
port number. You can change the Host and Port field values. These two fields are
mandatory. By default, port number 8081 will be taken by the Mule server. We have
used port number 4343 here.

Chapter 2

77

4. To create a RESTful web service, drag the REST component from the palette and drop
it on the canvas area. This REST component is used to make a REST service available
via Jersey. Jersey is an open source, production-quality, JAX-RS (JSR 311) reference
implementation for building RESTful web services.

REST is the formalized architecture of HTTP and is based on concepts of resources,
links, and a uniform interface. It uses the HTTP protocol. We can create a web service
using the REST component.

Working with Components and Patterns

78

5. Double-click on the REST component to configure it. Here you can add a Java
component that was created before.

Chapter 2

79

6. To display messages on the console, drag-and-drop the Logger component from the
palette onto the canvas area and configure it.

Working with Components and Patterns

80

7. To configure the Logger component, double-click on it. You will see the Message:
textbox; just enter the payload expression, #[payload].

Chapter 2

81

How it works...
To deploy your application go through the following steps:

1. If you haven't saved your application code, do save it. After saving your project,
right-click on the Echo.mflow file and go to Run As | Mule Application.

Working with Components and Patterns

82

2. If your application code is successfully deployed, you will see the message Started
app 'helloworld' on the console.

Chapter 2

83

3. Copy the URL http://localhost:4343/myrest and paste it in your browser.

4. To see the output, paste the URL on your browser and type /myrest; this is required
because we have used the @Path annotation in the custom Java class.

Working with Components and Patterns

84

Publishing a SOAP-based web service using
the SOAP component

The Mule SOAP component is used for publishing, consuming, and proxying of SOAP web
services within a Mule flow. Using the SOAP component, you can also enable Web Service
Security. Apache CXF is an open source services framework. CXF helps you build services
using frontend programming APIs such as JAX-WS and JAX-RS.

You can create a CXF web service by configuring a SOAP component in your Mule flow to
perform any of the following CXF web service operations:

 f Publish a simple service

 f Publish a JAX-WS service

 f Proxy a published service

 f Consume a service using a simple client

 f Consume a service using the JAX-WS client

 f Proxy to a service

Getting ready
In this example, we will see how to create a SOAP-based web service using the SOAP
component. To create a SOAP web service, we'll use three components: HTTP, Java, and SOAP.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Chapter 2

85

2. To create a new project, go to File | New | Mule Project. Enter the project name,
SOAP, and click on Next and then on Finish. Your new project is created and you
are now ready to start the implementation.

3. To create a class, go to src/main/java, right-click on it, and go to New | Interface.
Create an interface named HelloService under the package com.org. Here, we
create the hiMule method and set its return type to String.
package com.org;
import javax.jws.WebService;
@WebService
public interface HelloService {
 public String hiMule(String str) throws Exception;
}

Working with Components and Patterns

86

You can see the creation of this class in the following screenshot:

How to do it...
In this section, you will refer to the JAX-WS annotation and create the method hiMule(). We
will use this method to generate the output using a browser.

1. Create a class called HelloServiceImpl under the same package directory (com.
org) and implement it with the interface. Here, we have used the @WebService
annotation to create a SOAP-based web service and override the hiMule method.
You can refer to this URL for more information on the JAX-WS annotation: http://
publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/index.
jsp?topic=/com.ibm.ws.jaxws.emitter.doc/topics/rwsandoc002.html.
package com.org;
import javax.jws.WebService;
@WebService(EndpointInterface="com.org.HelloService",
serviceName="HelloService")
public class HelloServiceImpl implements HelloService {
 @Override

Chapter 2

87

 public String hiMule(String str) throws Exception {
 // TODO Auto-generated method stub
 return "Hello "+str;
 }
}

Through the @WebService annotation, we call the HelloService interface and
also provide a service name.

Working with Components and Patterns

88

2. To create a flow, go to the Soap.mflow file. Drag the HTTP Endpoint from the palette
and drop it onto the canvas. You have to configure the HTTP Endpoint.

Chapter 2

89

3. Double-click on the HTTP Endpoint to configure it. You will see the Host and Port
fields. These two fields are mandatory. In this example, we used localhost as the
hostname. By default, port number 8081 will be taken by the Mule server. We have
used port number 2121 here.

Working with Components and Patterns

90

4. To create a SOAP-based web service, drag the SOAP component from the palette,
drop it onto the canvas, and configure it. Here, we create web services using the
SOAP component.

Chapter 2

91

5. Double-click on the SOAP component to configure it. We select the JAX-WS services
for the operation and then we will import the HelloService interface that was
created before.

Working with Components and Patterns

92

6. To import a class, drag the Java component from the palette, drop it on the canvas
area, and configure it. If you want to change its name, you can do so.

Chapter 2

93

7. Double-click on the Java component to configure it. Here, we import the
HelloServiceImpl class that was created before.

Working with Components and Patterns

94

How it works...
To deploy your application, right-click on your .mflow file and deploy your Mule application by
performing the following steps:

1. If you haven't saved your application code, do save it. After saving your project,
right-click on the Echo.mflow file and go to Run As | Mule Application.

Chapter 2

95

2. If your application code is successfully deployed, you will see the message
Started app 'helloworld' on the console.

Working with Components and Patterns

96

3. Copy the URL http://localhost:2121/ and paste it on your browser.

Chapter 2

97

4. To see the output, paste the URL on your browser and type in /hi?wsdl; here, wsdl
stands for Web Services Description Language.

3
Using Message

Property, Processors,
and Sources

In this chapter, we will cover the following topics:

 f Understanding components

 f Understanding message sources

 f Using message processors to control the message flow

 f Understanding message property scopes

Introduction
A message source is the Endpoint where the Mule inbound elements receive messages.
Message sources can be Inbound Endpoints, polls, or the custom message receiver. All of
these Endpoints receive messages and depend on their corresponding message processors
for further execution. Mule has transformers, filters, components, Routers, and other
message-processing elements to be used and nested freely as required. They all implement a
common message processor interface and can be used interchangeably.

Using Message Property, Processors, and Sources

100

Understanding components
The Script component is used for executing different types of scripts such as Ruby, Java,
JavaScript, Python, and Groovy. We execute a script that receives a response from the client
before the payload is processed. The Script component also provides the option of integrating
custom script into a flow.

Getting ready
When using a Script component, the developer must select a script engine that is compatible
with the language used to create the custom script.

The Java component is used to create custom Java code that is executed when the
component receives a message. The Java component (whose icon is shown in the following
screenshot) can be used to enhance the functionality. To configure the Java component,
import a custom Java class; additionally, you have to configure the Spring and Singleton
objects. The Singleton object's purpose is to control object creation and limiting the number
to one, while allowing the flexibility to create more objects if the situation demands it.

The Python component (whose icon is shown in the following screenshot) can be used to
configure the Python scripting language. You can write a custom script in Python for an
application. You can also add a scripting file inside the src/main/resources folder. The
Python script is executed at runtime only.

In the Ruby component (whose icon is shown in the following screenshot), you have to
integrate the custom script language or you can add a script file inside the src/main/
resources folder.

Chapter 3

101

In the Groovy component (whose icon is shown in the following screenshot), you have to
integrate the custom script language or you can add a script file inside the src/main/
resources folder.

In the Javascript component (whose icon is shown in the following screenshot), you have to
integrate a custom script language in that component or you can add a script file inside the
src/main/resources folder. It also allows the developer to configure interceptors and alter
the values or references of particular properties in a script. All the scripting components are
configured in a similar way.

How to do it...
We will now use the Groovy component to demonstrate how to change the filename of
an image.

1. Open Mule Studio and enter the name for the workspace. We have to use the Groovy
component, the Logger component, and the HTTP Endpoint.

Using Message Property, Processors, and Sources

102

2. To create a new project, go to File | New | Mule Project. Enter the project name as
Script and click on Next and then on Finish. Your new project has been created.
You can now start implementing it.

Chapter 3

103

3. Go to the file Script.mflow. Drag the HTTP Endpoint from the palette and drop it
on the canvas. You will now have to configure the HTTP Endpoint.

Using Message Property, Processors, and Sources

104

4. Double-click on the HTTP Endpoint to configure it. You will see the Host: and Port:
fields. You can change the hostname if you want to. In this example, we have used
localhost. If you want to change the port number, you can do that as well. By default,
the Mule server takes up the port number 8081. Here we have used port number
2121. We have used only the one-way exchange pattern, so we send requests from the
HTTP component and responses will come from the Script component.

Chapter 3

105

5. Drag the Logger component from the palette and drop it on the canvas. Configure the
Logger component.

Using Message Property, Processors, and Sources

106

6. Double-click on the Logger component to configure it. You will see the Message:
textbox. Enter the payload expression in it. After configuring this, click on the OK
button and you will see a screen similar to the following screenshot:

Chapter 3

107

7. Drag the Groovy component from the palette and drop it on the canvas. Configure the
Groovy component.

Using Message Property, Processors, and Sources

108

8. Double-click on the Groovy component to configure it. Here we have written a simple
Groovy script. With that script, we can change the image filename that is located in
the location C:/MyPicture. You can also add a script file inside the src/main/
resources folder.
dirName = "C:/MyPicture"
new File(dirName).eachFile() { file ->
defnewName = (file.getName() =~ /.jpg/).replaceFirst("infocom.
jpg")
 File f = new File(dirName + "/" + newName)
file.renameTo(f)
printlnfile.getName() + " -> " + f.getName() }

Chapter 3

109

How it works...
In this section, you will learn how you can deploy your application using Mule Studio. After
deploying this application, you will see how it works.

1. If you haven't saved your application code, do save it. To deploy the application
code in the Mule server, go to Run As | Mule Application; the Mule server will
deploy your application.

Using Message Property, Processors, and Sources

110

2. If your application code is successfully deployed, you will see the following screenshot
as the output on your console:

Chapter 3

111

3. Copy the URL http://localhost:2121/ and paste it on your browser.

Using Message Property, Processors, and Sources

112

4. Here you can see the output on the console, and you can see that we have changed
the filename using the Script component.

Understanding message sources
A message source generally receives or generates new messages to be processed by Mule.
Once a message has been received from a message source, it is processed by Mule using one
or more message processors.

Getting ready
We can use message processors in the flow in two ways: the one-way exchange pattern and
the request-response pattern. Setting the exchange pattern of a message source to one-way
enables asynchronous processing of a flow, while setting the exchange pattern of a message
source to request-response enables synchronous processing of a flow.

Chapter 3

113

How to do it...
As mentioned in the introduction to this chapter, a message source is the Endpoint where
Mule inbound elements receive messages. Message sources can be Inbound Endpoints,
polls, or the custom message receiver. All of these Endpoints receive messages and depend
on their corresponding message processors for further execution. Mule supports the following
types of message sources:

 f Inbound Endpoints

 f Polls

 f Custom message sources

Inbound Endpoints
Inbound Endpoints receive new messages from channels. The following is an example of a
code snippet that configures an Inbound Endpoint for a flow:

<flow name="MessageSources">
<http:inbound-endpoint address="http://localhost:8080/endpoint"
exchange-pattern="one-way"/>
<jms:outbound-endpoint queue="messages"/>
</flow>

This flow indicates how to asynchronously bridge an HTTP request to the JMS.

Polls
Instead of using an Inbound Endpoint, you can poll any message processor and use the result
as the source of your flow. Regularity can be configured with milliseconds as the unit or else
the default of one second can be used. To arrange polling, use the <poll> section. The
following is an example of a code snippet that configures a poll for a flow:

<flow name="PollExample">
<poll frequency="500">
<http:outbound-endpoint host="localhost"port="4343"/>
</poll>
<processor ref=""/>
<processor ref=""/>
</flow>

Using Message Property, Processors, and Sources

114

Custom message sources
Custom message sources are used to restore any Inbound Endpoint in a flow. You organize the
custom message source using the <custom-source> element. You can further organize the
routine message source using Spring bean properties. The following is an example of a code
snippet that configures a custom message source for a flow:

<flow name="MyCustomMessage">
<custom-source class="com.org.cookbook.Message">
<spring:property name="threads" value="100"/>
</custom-source>
<vm:outbound-endpoint path="output" exchange-pattern="one-way"/>
</flow>

How it works...
You can use message processors in a flow. A message source receives or generates new
messages to be processed by Mule.

Using message processors to control the
message flow

A message processor is the basic building block of all elements in Mule. These blocks can be
glued together to create Mule flows. The message processor is a necessary building block for
any project in Mule. You will often need to perform some business logic as part of your flow.

Getting ready
Let's see an example of message processors. In this example, we will see how we can send
and receive messages within a flow.

1. We use two components: STDIO and Java. Open Mule Studio and enter the name of
the workspace as shown in the following screenshot:

Chapter 3

115

2. To create a new project, go to File | New | Mule Project. Enter the project name as
StudioConnector and click on Next and then on Finish. Your new project has been
created now. You are now ready to start the implementation.

How to do it...
Mule supports components implemented in Java using scripting languages. Message
processors are used within flows to control how messages are sent and received within
that flow. In this section, we will learn how to use the STDIO connector and how the
message processer works.

1. To create a class, go to the folder src/main/java and right-click on it.
Go to New | Class. Create a class named MuleCookBook under the
package com.org.cookbook. Here, we have created the Welcome
method and its return type is set to String.
public String Welcome(String name)
 {
 return "Hello "+name;
 }

Using Message Property, Processors, and Sources

116

The STDIO connector allows reading and writing of streaming data to Java's System.
out and System.in objects for debugging:

2. Go to the StudioConnector.mflow file and click on the Configuration XML tab.
Here you create the custom stdio connector tag. First, insert the namespace and
the schemaLocation attribute for the STDIO connector; schemaLocation is used
in the configuration file.
xmlns:stdio=http://www.mulesoft.org/schema/mule/stdio
xsi:schemaLocation="
 http://www.mulesoft.org/schema/mule/stdiohttp://www.mulesoft.
org/schema/mule/stdio/current/mule-stdio.xsd

Chapter 3

117

You have to create the <stdio:connector> tag; inside the configuration file, you
have to use three parameters, name, messageDelayTime, and promptMessage.
This connector is configured globally, which means you can use this connector in
the flow.
<stdio:connector name="stdio" messageDelayTime="1000"
promptMessage="Enter Name :" doc:name="STDIO"/>

Using Message Property, Processors, and Sources

118

3. Click on the Global Elements tab; you can see that the STDIO connector has been
created. This will be used in the flow.

4. Here, we have used two STDIO connectors <stdio:inbound-endpoint> and
<stdio:outbound-endpoint>, one is for input and the other is for output.
We used the connector-ref parameter. Assign the name of the global STDIO
connector. Between the two STDIO connectors, we used the Java component tag to
import the Java class:
<flow name="stdio_component" doc:name="stdio_component">
<stdio:inbound-endpoint system="IN" connector-ref="stdio"
doc:name="STDIO"/>
<component class="com.org.cookbook.MuleCookBook" doc:name="Java"/>
<stdio:outbound-endpoint system="OUT" connector-ref="stdio"
doc:name="STDIO"/>
</flow>

Chapter 3

119

The following screenshot shows the entire config.xml file. In this XML file, we can
configure the global STDIO connector.

The full configuration file will look like the following code:
<?xml version="1.0" encoding="UTF-8"?>

<mulexmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:stdio="http://www.mulesoft.org/schema/mule/stdio"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="CE-3.3.0"
xsi:schemaLocation="
http://www.mulesoft.org/schema/mule/stdio http://www.mulesoft.org/
schema/mule/stdio/current/mule-stdio.xsd
 http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans-current.xsd

Using Message Property, Processors, and Sources

120

 http://www.mulesoft.org/schema/mule/core http://www.mulesoft.
org/schema/mule/core/current/mule.xsd ">

<stdio:connector name="stdio" messageDelayTime="1000"
promptMessage="Enter Name :" doc:name="STDIO"/>
<flow name="stdio_component" doc:name="stdio_component">
<stdio:inbound-endpoint system="IN" connector-ref="stdio"
doc:name="STDIO"/>
<component class="com.org.cookbook.MuleCookBook" doc:name="Java"/>
<stdio:outbound-endpoint system="OUT" connector-ref="stdio"
doc:name="STDIO"/>
</flow>
</mule>

Your graphical flow will look like the following screenshot:

Chapter 3

121

How it works...
To deploy the application, right-click on the .mflow file and deploy your Mule application.
After deploying the application, you will see how to run that application on the console.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy the application.

Using Message Property, Processors, and Sources

122

2. Enter MuleCookBook on the console; you will see the output on the console. So, in this
way, we can send and receive messages with the flow through the STDIO connector.

Understanding message property scopes
The Mule Studio message property transformer has been deprecated and replaced by four
new transformers grouped under the title Message and Variable transformers. There are four
types of scopes in the message properties, as follows:

 f Inbound: Inbound properties are those that are received in an Inbound Endpoint
or as the response of a call to an Outbound Endpoint. For instance, when an
HTTP message is received, each HTTP header will be placed as a Mule
message inbound property.

Chapter 3

123

 f Outbound: Outbound properties are the ones that will be part of the outgoing
messages. For instance, if a message with an outbound property content type is sent
through HTTP, the content-type property will be placed as an HTTP header in the
outbound message.

 f Invocation: Invocation is used mostly internally by Mule for the duration of this
service's call, not typically utilized, nor meant for the end user.

 f Session: Session values are passed from invocation to invocation.

 f Application: This scope is used when you create two different applications.

Use invocation properties if you need to set a property that you want to then use in the same
flow. A typical example of where you will use an invocation property is when you wish to make
a variable available for use during a flow. Typically, the invocation property is created for a
value that is to be re-used in multiple places in a flow.

Getting ready
In this section, we will see how to create a custom component. We have to use one HTTP
Endpoint and one Java component.

1. Open Mule Studio. Enter a name for the workspace.

Using Message Property, Processors, and Sources

124

2. To create a new project, go to File | New | Mule Project. Enter the project name
as HelloWorld and click on Next and then on Finish. Your new project has been
created now. We are ready to start the implementation.

How to do it...
In this section, you will see how to create a custom component using business logic.

1. To create a class, go to src/main/java and right-click on it. Go to New | Class.
Create a class under the package com.org and name it Greeting; here, we have
created the sayHi() method and its return type is set to String.
public String sayHi(String str)
 {
 return "Hello "+str;
 }

Chapter 3

125

You can see the creation of this method in the following screenshot:

Using Message Property, Processors, and Sources

126

2. To create a flow, go to the Greeting.mflow file. In the following screenshot, the
central part is called a canvas, which has been explained in previous chapters,
where we insert graphical elements. On the right-hand side, you can see a group of
elements, which is called palette. First of all, you have to drag the HTTP Endpoint
from the palette and drop it on the canvas area.

Chapter 3

127

3. Double-click on the HTTP Endpoint to configure it. You will see the hostname. Here,
the Host: and Port: fields are mandatory. You have to configure both the attributes.

Using Message Property, Processors, and Sources

128

4. Drag the Java component from the palette and drop it on the canvas area. We will
store the custom Java class in the Java component. Configure the Java component. In
this example, we have configured the Greeting class that we had created earlier.

Chapter 3

129

5. Double-click on the Java component to configure it and then configure the
Greeting class.

Using Message Property, Processors, and Sources

130

How it works...
To deploy the application, right-click on the .mflow file and deploy the Mule application.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 3

131

2. If your application code is successfully deployed, you will see the output screen as
shown in the following screenshot:

Using Message Property, Processors, and Sources

132

3. Copy the URL http://localhost:8081 and paste it on your browser.

4. After pasting the URL in your browser, type in /Mule (it is the string type in
your browser) and you will see the output. In this example, the message hits
the component as it passes through the Inbound Endpoint. Mule properties
are handled by Mule and move between scopes either implicitly or explicitly.

4
Endpoints

In this chapter, we will cover the different types of endpoints. You will learn the following:

 f Configuring the Generic Endpoint

 f Configuring the HTTP Endpoint

 f Configuring the IMAP Endpoint to retrieve e-mails

 f Using the JDBC Endpoint to connect to the database

 f Implementing the File Transport channel using the File Endpoint

 f Sending messages asynchronously using the AJAX Endpoint

 f Using the Servlet Endpoint to listen to events or messages from servlet requests

Introduction
An Endpoint is used for sending and receiving messages through a service. Endpoints can be
Inbound or Outbound. An Inbound Endpoint receives messages via its associated transport.
Each transport implements its own Inbound Endpoint element. An Outbound Endpoint sends
messages via its associated transport. Each transport implements its own Outbound Endpoint
element. Different types of Endpoints are available in Mule, such as HTTP, JMS, IMAP, SMTP,
and AJAX. We will see how to configure the Endpoint.

Configuring the Generic Endpoint
The Generic Endpoint is a string representation of the information you use to configure your
Endpoint. This Endpoint is configured by the path specified in the Address: field.

Endpoints

134

Getting ready
The Generic Endpoint employs two types of exchange pattern, one-way and request-response.
The Generic Endpoint uses the one-way pattern by default. The VM Endpoint can be created
from a Generic Endpoint by specifying the VM transport in this field, for example, vm://
foo. Similarly, an FTP Endpoint can be created with the Generic Endpoint component by
specifying the FTP transport string in the component's Address: field under Transport
Settings; for example: ftp://user:password@host/directory?connector-
ref=myFtpConnector&binary=true.

How to do it...
After dragging the Generic Endpoint from the palette and dropping it onto the canvas,
double-click on the Endpoint icon. This invokes the Endpoint Properties window for
configuration of this Endpoint. The Address: field in this window is where you set up
the path for the Generic Endpoint, as shown in the following screenshot:

Chapter 4

135

How it works...
The Endpoint will be defined based on Mule expressions or a specific address. For instance,
if the address includes HTTP at the beginning, you are configuring an HTTP Endpoint. If the
address includes File, you are configuring a File Endpoint.

Configuring the HTTP Endpoint
Mule uses HTTP Endpoints to send and receive requests over the HTTP transport protocol.
Configured as either Inbound (also known as message sources) or Outbound, HTTP Endpoints
use one of the two message exchange patterns: request-response or one-way. We will see an
example of how it works.

The arrows indicate the request-response type of exchange pattern.

The arrow indicates the one-way type of exchange pattern.

Getting ready
We have to use two components: the HTTP Endpoint and the Java component.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Endpoints

136

2. For creating a new project, go to File | New | Mule Project. Enter the project name
called Echo and click on Next and then on Finish. Your new project is created now,
so you can start the implementation.

Chapter 4

137

How to do it...
In this section you will see the Hello World example, which is created in Mule Studio.
In this example two components are used: one is the HTTP Endpoint and the other is
the Java component.

1. To create a class, go to src/main/java, right-click on it, and go to New | Class.
Create a class called Greeting under the package com.org; here, we have created
the sayHi method and its return type is set to String.
public String sayHi(String str)
 {
 return "Hello"+str;
 }

Endpoints

138

2. Go to the HelloWorld.mflow file. Firstly, you have to drag the HTTP Endpoint onto
the canvas; to configure it, double-click on the HTTP Endpoint.

Chapter 4

139

3. You will see a similar screen on your system. You have to enter the Host and Port
field values. By default, the port number is 8081. You can change the hostname
and port number, but note that these two fields are mandatory.

Endpoints

140

4. To import a class, drag the Java component and configure it. Here we have imported
the Greeting.java class that was created before.

Chapter 4

141

5. To configure the Java component, double-click and configure it as we have seen
earlier. Just click on the Browse button (beside the Class Name: field), and a new
window will open. Here, you can import the Greeting.java class that was created
before and click on the OK button.

Endpoints

142

6. To deploy the application code in the Mule Server, go to Run As | Mule Application,
and the Mule Server will deploy your application.

Chapter 4

143

7. If your application code is successfully deployed, you will see the message Started
app 'helloworld' on the console.

Endpoints

144

8. Copy http://localhost:2121 and paste it in your browser to see the output.

How it works...
By putting the URL in the browser, you can see the following output. The word, Hello,
is called from the Greeting class through the HTTP request-response exchange pattern.
When a request is received, the Java component simply returns whatever was sent as
part of the request.

Chapter 4

145

Configuring the IMAP Endpoint to retrieve
e-mails

IMAP stands for Internet Message Access Protocol. The IMAP/POP3 connector allows
you to receive e-mail messages from a mail server using IMAP/POP3. The IMAP Endpoint
is configured as Inbound with a one-way exchange pattern. POP3 is similar to IMAP by
functionality. POP3 stands for Post Office Protocol Version 3. The POP3 Endpoint can be
configured as a one-way exchange pattern.

Getting ready
In this section, you will learn how to configure the namespace and schema location in the
Mule configuration XML file. When you are dealing with XML documents in Mule, you need
to declare any namespaces used by the document. You can specify a namespace globally so
that it can be used by XPath expressions across Mule. You can declare a namespace locally
also in filters and routers using the <namespace> element.

The namespace for the IMAP XML namespace is:

xmlns:imap "http://www.mulesoft.org/schema/mule/imap"

The syntax for the IMAP XML namespace is:

xmlns:imaps "http://www.mulesoft.org/schema/mule/imaps"

The IMAP transport can be used for receiving messages from IMAP inboxes using the javax.
mail API. When we use IMAP, we will have to use the following schema location:

http://www.mulesoft.org/schema/mule/imap/3.1/mule-imap.xsd

The IMAPS transport uses secure connections over SSL/TLS. When we use IMAPS, we will
have to use the following schema location:

http://www.mulesoft.org/schema/mule/imaps/3.1/mule-imaps.xsd

The namespace for the POP3 XML namespace is:

xmlns:pop3 "http://www.mulesoft.org/schema/mule/pop3"

The syntax for the POP3 XML namespace is:

xmlns:pop3s http://www.mulesoft.org/schema/mule/pop3s

The POP3 transport can be used for receiving messages from POP3 inboxes using the
following XML schema location:

http://www.mulesoft.org/schema/mule/pop3/3.1/mule-pop3.xsd

Endpoints

146

The POP3S transport connects to POP3 mailboxes using the javax.mail API using the
following XML schema location:

http://www.mulesoft.org/schema/mule/pop3s/3.1/mule-pop3s.xsd

How to do it...
Drag the IMAP Endpoint from the palette and drop it on the canvas. Double-click on it and
fill the User:, Host:, Port:, and Password: fields, which are mandatory. For IMAP, the default
port number is 143. For IMAPS, the default port number is 993. If you are using IMAP, your
hostname will be imap.gmail.com, and if you are going with POP, your hostname will be
pop.gmail.com. The default port number is 110 for POP3S, and for POP3 the default port
number is 995.

 <imap:inbound-endpoint user="azazdesai@gmail.com" password="XXXXXX"
 host="imap.gmail.com" doc:name="IMAP" port="993"/>

In the following screenshot, you will see how to configure the IMAP Endpoint:

Chapter 4

147

How it works...
Internet Message Access Protocol (IMAP) is used for retrieving e-mails on a mail server from
multiple computers and devices. For this, you must have configured the IMAP Endpoint.

Using the JDBC Endpoint to connect to the
database

The JDBC Endpoint is used to communicate with the database. It's used for retrieving, updating,
deleting, and inserting database records. We will see an example on how it works. In this
example, we will retrieve data from the database and store it in a file on our local hard drive.

Getting ready
In this section, we will see how to use and configure the JDBC component in Mule Studio.
In this example you will use three components: the JDBC Endpoint, the Object-to-String
transformer, and the File Outbound Endpoint.

1. We will use one JDBC Endpoint, a data source, and the File Outbound Endpoint.
Retrieve the record from the MySQL database and store it on the local hard drive.

Endpoints

148

2. To create a new project, go to File | New | Mule Project. Enter the project name
called Database and click on Next and then on Finish. Your new project is created.
Now you can start the implementation.

Chapter 4

149

3. Download the postgresql-9.2-1002.jdbc4.jar file from the source code on
the Packt Publishing website. First, you have to add the postgresql JAR file in your
class path. Right-click on your project, select Properties, go to the Java build path,
and click on the Add External JARs.. button.

Endpoints

150

4. Select the JAR file, postgresql-9.2-1002.jdbc4, and click on the OK button.

Chapter 4

151

How to do it...
In this section we will configure the PostgreSQL database in Mule Studio and learn how to use
this JDBC Endpoint in a flow.

1. To create a flow, click on Database.mflow and go to Global Elements | Create |
Data Sources | PostgreSQL Data Sources.

Endpoints

152

2. You have to configure PostgreSQL Data Sources. In the URL textbox, enter
jdbc:postgresql://localhost:5432/Test as the value. Test is our
database, which is created in PostgreSQL. In the end, enter the PostgreSQL
user credentials.

Chapter 4

153

3. Go to Connectors | Database.

Endpoints

154

4. To configure the Database connector, select the Database Specific: name,
PostgreSQL_Data_Sources, that was created before and click on OK.

Chapter 4

155

5. To create a flow, click on the Message Flow tab, drag the JDBC Endpoint from the
palette, and drop it on the canvas.

Endpoints

156

6. To configure the JDBC Endpoint, double-click on it. Click on the Queries tab and click
on the plus icon, as shown in the following screenshot. Now enter the query key,
login, and enter the query in the query box; for example, select * from mule.
Here, mule is our table name, which is created in PostgreSQL.

Chapter 4

157

7. Click on the General tab, select the query key, login, and click on OK.

Endpoints

158

8. Drag the Object to String transformer from the palette and drop it on the canvas. No
need to configure this transformer because it converts the data object to string.

Chapter 4

159

9. Drag the File Outbound Endpoint from the palette and drop it on the canvas.

Endpoints

160

10. To configure the File Outbound Endpoint, double-click on it. Select a system path and
output pattern, which is myfile#[function:datestamp].txt. Now, enter the
filename and the expression. Through the expression you can display the current date
and time, and here the file format is .txt. Now click on the OK button.

Chapter 4

161

11. Now we are ready for the deployment. If you haven't saved your application code, first
save it. After saving your project, right-click on the Database.mflow file and go to
Run As | Mule Application.

Endpoints

162

12. If your application code is successfully deployed, you will see the message Started
app 'database' on the console.

How it works...
Once your deployment is done successfully, you can see the log on the console. It will show
that the files are stored in the particular drive. When you see the log on the console, you will
see that the files are transferred to the destination path.

1. You can see that the database records are stored in a particular file. Here, the files
are stored into the D:/.

Chapter 4

163

2. The file in Notepad++ looks like the following screenshot. This data is retrieved from
the database in the mule table, which was created in the PostgreSQL database.

Endpoints

164

Implementing the File Transport channel
using the File Endpoint

The File Endpoint is a transport channel. We can transfer files from one directory to another
through the File Endpoint. The File Inbound Endpoint is used for setting the source path,
and the File Outbound Endpoint is used to set the destination path. You can define the File
Endpoint globally as well. If you declare the File Endpoint globally, you can set the reference
tab to assign the name of the File Endpoint.

Getting ready
In this section, you will see how to use the File Endpoint and how to transfer files from one
location to another using it.

1. Use the File Endpoint, a Choice Router, and the Echo component for transferring files
from one location to another. Open Mule Studio and enter the workspace name as
shown in the following screenshot:

Chapter 4

165

2. To create a new project, go to File | New | Mule Project. Enter the project name,
File Transfer, and click on Next and then on Finish. Your new project is created.
Now you can start the implementation.

Endpoints

166

How to do it...
In this section you will see how to create a flow in Mule Studio and how it works using the
File Endpoint. In this example, you will use four components: the File Inbound Endpoint, the
Choice Router, the Echo component, and the File Outbound Endpoint.

1. To create a flow, go to the file Transfer.mflow file. Firstly, you have to drag the File
Endpoint from the palette and drop it on the canvas.

Chapter 4

167

2. To configure the File Endpoint, double-click on it and set the source path shown in
the following screenshot. In the D:\, create a folder called Order data. In this
folder, create two folders: an Input folder and an Output folder. In the Input
folder, place three XML files and these three XML files will be transferred to a
specific folder (the Output folder).

Endpoints

168

Here, you can configure the File Inbound Endpoint. Once you configure it, click on the
OK button.

Chapter 4

169

3. For identification or display purposes, we drag the Echo component from the palette
and drop it on the canvas. Change the Echo component name to File Transfer to
Specific Folder.

Endpoints

170

4. To transfer a file to a specific folder, drag the Choice Router or Flow Control. In
the Choice Router, you can define the condition. If the condition matches with the
expression, the flow will be executed.

Chapter 4

171

5. To set the destination target, drag three File Endpoints from the palette and drop
them on the canvas, as shown in the following screenshot:

Endpoints

172

6. To configure the Choice Router or Flow Control, double-click on it. Here, you can
see the When partition; this is our condition area. If the condition is true, it will
execute; for example, in the condition /shiporder/shipto/city='Ahmedabad',
shiporder is a tag which is used in the XML file shown in the following screenshot:

Chapter 4

173

7. This is an XML file, which is used in the Input folder.

Endpoints

174

8. Double-click on the first File Endpoint to configure it. In the same way, you can
configure the other two File Outbound Endpoints, one for the BANG folder and the
other for the Other folder.

Chapter 4

175

9. In the Choice Router, you need to add an attribute evaluator="xpath" after the
expression attribute to read the XML tag, as shown in the following screenshot:

Endpoints

176

10. To deploy the application code in the Mule server, go to Run As | Mule Application,
and the Mule Server will deploy your application.

Chapter 4

177

How it works...
Once your application is successfully deployed, you can see the log on the console. All files are
transferred to that particular directory.

If your application code is successfully deployed, you will see the message Started app
'file transfer' on the console.

Endpoints

178

You can see that each file is transferred to a specific folder in the following screenshot:

Chapter 4

179

You can see that the first XML file is transferred to the first destination folder:

Endpoints

180

The second XML file is transferred to the second destination folder:

Chapter 4

181

And, the third XML file is transferred to the third destination folder:

Sending messages asynchronously using the
AJAX Endpoint

AJAX stands for Asynchronous Java and XML. The AJAX connector allows Mule actions to be
sent and received asynchronously to and from the web browser. We will see how to use AJAX
Endpoint in this recipe.

Endpoints

182

Getting ready
In this section, you will see a Google spell check example and how it works. Here, we use the
HTTP Endpoint, the AJAX Endpoint, the Echo component, an Object to XML transformer, and
the XSLT transformer. In this example you will see how to configure the AJAX component.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name
called AJAX and click on Next and then on Finish. Your new project is created. Now
you can start the implementation.

Chapter 4

183

How to do it...
In the following section, you'll see how the spell check example works, and you will also see
how to configure each component in flow.

1. Create a folder inside src/main/app called docroot as shown in the following
screenshot. Inside that folder, create an XML file called SpellCheck.html. In this
file you have to create an HTML page, which will be displayed on the browser. We call
the JavaScript function, callEcho, through the onkeyup function.

This is a SpellCheck.html file; we have to put this file inside the src/main/app/
docroot location:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Ajax Spell Checker</title>
<script type="text/javascript" src="mule-resource/js/mule.js"></
script>

Endpoints

184

<script type="text/javascript">
 function callEcho()
 {
 var data = new Object();
 data.phrase = document.getElementById('txt1').value;
 mule.rpc("/services/echo", data, callEchoResponse);
 }
function callEchoResponse(message)
{
 document.getElementById("response").innerHTML =
"Response: " + message.data + "\n";
}
</script>

</head>
<body>
<input type="text" id="txt1" onkeyup="callEcho()" />
 <div id="response"></div>
 </body>
</html>

2. Create a transform.xsl file inside src/main/app; this is how it will look:

Chapter 4

185

The transform.xsl file provides instructions for extracting data from incoming
messages and translating that data into a form that applications can digest.
<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <spellrequest textalreadyclipped="0" ignoredups="0"
ignoredigits="1" ignoreallcaps="1">
 <text>
 <xsl:value-of select="map/entry/string[2]" />
 </text>
 </spellrequest>
</xsl:template>
</xsl:stylesheet>

3. To create a flow, go to the AJAX.mflow file. Then, go to the Global Elements tab;
click on Create and go to Connectors | Ajax, and then click on OK.

Endpoints

186

4. To configure the AJAX connector, enter the server URL http://127.0.0.1:8090/
Ajax in the Server URL: field. In Resource Base, enter the .html file path, which is
located at src/main/pp/docroot.

Chapter 4

187

5. Go to the message flow, drag the AJAX Endpoint from the palette, and drop it on
the canvas.

Endpoints

188

6. Double-click on the Ajax Endpoint to configure it. You have to enter a channel path,
/services/echo, the same path which you have assigned in the SpellCheck.
html file. Go to the Reference tab, select the connector reference name and click on
the OK button.

Chapter 4

189

7. Drag the Object to XML transformer from the palette and drop it on the canvas. It is
used to convert a JavaScript object to XML.

Endpoints

190

8. Drag the XSLT transformer from the palette and drop it on the canvas.

Chapter 4

191

9. Double-click on the XSLT transformer to configure it. In XSL File:, enter the path of
the .xsl file, which is located in src/main/app and click on the OK button.

Endpoints

192

10. Drag the HTTP Endpoint from the palette and drop it on the canvas.

Chapter 4

193

11. Double-click on the HTTP Endpoint to configure it, and in the Host: field enter the
spell check API link. Select the POST method.

Endpoints

194

12. For display purposes, drag the Echo component from the palette and drop it on
the canvas.

Chapter 4

195

13. Now we are ready for the deployment. If you haven't saved your application code, first
save it. After saving your project, right-click on the AJAX.mflow file and go to Run
As | Mule Application.

Endpoints

196

14. If your application code is successfully deployed, you will see the message Started
app 'ajax ' on the console.

Chapter 4

197

How it works...
Paste this URL in your browser: http://127.0.0.1:8090/Ajax/SpellChecker.html,
and type any word into the textbox. You can see the related search results through the HTTP
response by the Google spell check API.

Using the Servlet Endpoint to listen to
events or messages from servlet requests

Identify the path to the servlet through which the event or message is received. The Path
property can be set from the General tab. We will see each tab that is used in the Servlet
Endpoint. The Servlet Endpoint contains four tabs:

 f General

 f Advanced

 f References

 f Documentation

Endpoints

198

Getting ready
The General tab contains two fields: one is Display Name: and the other is Path:. The display
name is used for identity purposes, that is, to identify the channel over which your Servlet
Endpoint is going to communicate with the client web page. Here you have to assign the path,
and use the same path for the browser.

Chapter 4

199

How to do it...
In this section, you will see how to configure the Servlet Endpoint and how to use it.

In the Advanced tab, enter the address for the Endpoint; for example, localhost:8080.
Response timeout identifies how long the Endpoint must wait for a response. The default
is 10000 ms.

Endpoints

200

How it works...
The References tab is used when you are creating a global element. If you use a global
element to configure the Server Endpoint, you have to configure the References tab.

5
Transformers

In this chapter, we will cover the different types of transformers. You will learn about the
following topics:

 f Configuring the JSON-to-Object transformer

 f Configuring the Object-to-XML transformer

 f Configuring the Message and Variable transformers

 f Creating the custom transformer

 f Understanding the DataMapper transformer

Introduction
A transformer is used for converting a message from one format to another. You can create a
custom transformer as well, which we will see later. There are different types of transformers,
such as the Java transformer, the DataMapper transformer, the XSLT transformer, and the
Append String transformer. Standard transformers are easy to use compared to custom
transformers. For example, we use the Append String transformer to append a string text to
the original message payload with a single line of code, as follows:

<append-string-transformer name="Greeting" message=", How are you?"/>

If the original string message is Hello, it will convert it to Hello, How are you?.

Transformers

202

Configuring the JSON-to-Object transformer
The JSON-to-Object transformer is used to transform a JSON string to object data and vice
versa. Using this transformer, we convert JSON data into an object type.

Getting ready
In this example, you will see how to store data in the database using the JSON-to-Object
transformer. We need four components for this: the File Endpoint, the JSON-to-Object
transformer, the Collection Splitter, and the Database Endpoint. You have to install
PostgreSQL on your system.

How to do it...
In this section, you will see how to use the JSON-to-Object transformer in Mule Studio.

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

Chapter 5

203

2. To create a new project, go to File | New | Mule Project. Enter the project name as
JSON and click on Next and then on Finish. Your new project is created and now you
have to start the implementation.

Transformers

204

3. Go to the Json.mflow file, navigate to the Global Elements tab, and click on the
Create button. Go to Data Sources | PostgreSQL Data Sources. In the URL: textbox,
enter the database name that was created in PostgreSQL. Here, we entered Test.
Enter the PostgreSQL username and password and click on the OK button.

Chapter 5

205

4. Click on the Create button again and go to Connectors | Database. Go
to the Queries tab and enter the query key InsertRecord and the query
INSERT INTO tblemployee(empid,empname,empage,empdesigna
tion) VALUES(#[message.payload.empid],#[message.payload.
empname],#[message.payload.empage],#[message.payload.
empdesignation]). After that, go to the General tab, change the database name,
and select the data-specific name in that box. Click on the OK button.

Transformers

206

5. Go to Message Flow. Drag the File Endpoint onto the canvas and then double-click
on it. Here, you will have to enter the path of the JSON file.

Chapter 5

207

6. To convert the JSON format to object format, drag the JSON to Object transformer.

Transformers

208

7. Drag the Collection Splitter onto the canvas, which will transform the JSON data into
Java.Util.List, and then divide it into several Java.Util.Maps items. Finally,
we will write it to the database.

Chapter 5

209

8. To configure the database, drag the Database Endpoint onto the canvas. We can now
configure the Database Endpoint.

Transformers

210

9. For configuring the Database Endpoint, click on the References tab and select the
connector reference name. Select JSON-file1 and then click on the General tab
and select the query key that was created in the database connector.

Chapter 5

211

10. To import a JAR file for the PostgreSQL database, right-click on your project and click
on Properties. Here, you can import the jdbc connector JAR file to PostgreSQL.

Transformers

212

How it works...
In this section, you will learn how to deploy your application using Mule Studio. After deploying
the application, here's how to run this example:

1. To deploy the application code in the Mule server, go to Run As | Mule Application.
The Mule server will deploy your application.

Chapter 5

213

2. In the console output window, you can see that four rows are updated in the
database, as seen in the following screenshot:

3. Open the PostgreSQL database and have a look at the tblemployee table. You will
see that all the data has been inserted into this table:

Transformers

214

Configuring the Object-to-XML transformer
The Object-to-XML transformer is used to transform a Java object to XML data. In this
example, you will see how to retrieve data from the database and how to store data in a
particular XML file through the Object-to-XML transformer. Here, you will use the table from
the previous example. We will use three components: the Database Endpoint, the Object-to-
XML transformer, and the File Outbound Endpoint.

Getting ready
In this section, you will see how to configure the Database Endpoint in Mule Studio.

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

Chapter 5

215

2. To create a new project, go to File | New | Mule Project. Enter the project name as
Object-to-xml and click on Next and then on Finish. Your new project is created.
You can now start implementing it.

Transformers

216

How to do it...
In this section, you will learn how to configure the Object-to-XML transformer and the File
Outbound Endpoint.

1. Navigate to the Object-to-xml.mflow file. To configure the database, go to
the Global Elements tab, click on the Create button, and go to Data Sources |
PostgreSQL Data Sources. In the URL: textbox, enter the name of the database that
was created in PostgreSQL. Here we enter Test. Enter the username and password
for PostgreSQL and click on the OK button.

Chapter 5

217

2. Click on the Create button and go to Connectors | Database. Go to the Queries
tab, enter the query key name Update List and the query SELECT * FROM
tblemployee. After this, go to the General tab, change the database name, and
select a data-specific name in the box. Click on the OK button.

Transformers

218

3. Go to the Message Flow tab, drag the Database Endpoint onto the canvas, and
configure it. Click on the References tab and select the connector-ref name.
Here, select the JDBC connector. Click on the General tab and select the query key
that was created in the Database connector.

Chapter 5

219

4. To import a JAR file for the PostgreSQL database, right-click on your project and go to
Properties. Here, you have to import the PostgreSQL jdbc connector JAR file.

Transformers

220

5. To convert an object to XML format, drag the Object to XML transformer onto the
canvas. The transformer will create a map with the result of the query and send the
map in a message. You can now use this map and convert it to XML.

Chapter 5

221

6. To store data in a file, drag the File Endpoint onto the canvas and configure it.
Double-click on the File Endpoint. Firstly, select the storage file path in the following
output pattern: Database#[function:datestamp].xml (Database represents
a filename and datestamp represents the current date and time).

Transformers

222

How it works...
In this section, you will learn how to deploy the application in Mule Studio and how to run the
application in the browser after deploying it.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 5

223

2. You can see in the console output that the file has been created in the mentioned
path with the name and current date/time, as seen in the following screenshot:

Configuring the Message and Variable
transformers

Message properties and variables are the most frequently used features in Mule. Message
properties have mainly four scopes: invocation, outbound, session, and application. A Mule
message consists of three parts: header, payload, and attachments.

Transformers

224

Getting ready
You can configure the Message Properties transformer as shown in the following screenshot. A
Mule message supports two types of properties: inbound properties and outbound properties.

Chapter 5

225

How to do it...
In this section you will learn how to add session properties into the Mule config.xml file and
how to use the session scope in the Mule configuration file.

How to add session properties
Drag the properties of the transformer onto the canvas. To configure, double-click on the
Message Properties transformer.

<message-properties-transformer scope="session">
 <add-message-property key="property-key" value="property-value"/>
</message-properties-transformer>

You can also trigger a Mule session using MuleEventContext.

public class MyClass implements Callable
{
 public Object onCall (MuleEventContext eventContext) throws
Exception
 {
 eventContext.getSession().setProperty("property-key","some
value");
 return eventContext.getMessage();
 }
}

A Mule session is maintained while the message goes through Mule instances, so don't store
things you don't need, to avoid wasting memory.

How it works...
In this section, you will learn what a Variable transformer is and how to use it in Mule Studio.
You will see how to set variables in Mule Studio.

Transformers

226

The Variable transformer
The Variable transformer allows activation of variables. To activate the variable, first drag
the Variable transformer onto the canvas. Double-click on the Variable transformer. You can
declare a variable as an expression or as a literal. If you declare the variable as an expression,
Mule evaluates the variable against the content of the current message.

In the Name: textbox, specify the variable name as a string. In the Value: textbox, type a string
that specifies the variable value, either in expression or literal, depending on your choice.

Creating the custom transformer
A custom transformer is a user-defined transformer class that implements the org.
mule.api.transformer transformer. Your class can extend AbstractTransformer or
AbstractMessageAwareTransformer, depending on your requirements.

Chapter 5

227

Getting ready
In this section, you will learn what a custom transformer is and how to configure it.

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name as
NameTransfer and click on Next and then on Finish. Your new project is created.
You can now start the implementation.

Transformers

228

How to do it...
In this section, you will use four components: the HTTP Endpoint, the custom transformer,
the Java component, and the Append String transformer. Also, you will learn how to create a
custom transformer and a custom Java component in Mule Studio.

1. Right-click on src/main/java and go to New | Class. Enter the package name as
com.org and the class name as Greeting; click on the Finish button.

Chapter 5

229

2. Here, you can create a simple sayHi method; the return type is set to String.
package com.org;
public class Greeting {
public String sayHi(String str)
 {
 return "Hello "+str;
 }
}

3. In the same package, you had created another class called NameTransfer. This
class is called custom transfer, and through this class you will remove the extra
forward slash. Here you can extend AbstractTransformer.
package com.org;
import org.mule.api.transformer.TransformerException;
import org.mule.transformer.AbstractTransformer;
public class NameTransfer extends AbstractTransformer{

@Override
 protected Object doTransform(Object src, String enc)
 throws TransformerException {
 if(src instanceof String)
 {
 String name=((String)src);
 {
 if(name.charAt(0)=='/')
 {
 name.substring(1);
 }
 }
 }
 return src;
 }
}

Transformers

230

4. Go to the NameTransfer.mflow file. To configure the localhost URL, drag the HTTP
Endpoint onto the canvas. Double-click on the HTTP Endpoint. Enter the port number
and hostname and click on the OK button.

Chapter 5

231

5. To configure the custom class, drag the Java transformer onto the canvas. Double-
click on the Java transformer. Here, you need to import the NameTransformer class
that was created earlier.

Transformers

232

6. Drag the Java component onto the canvas. To configure it, double-click on the Java
component. Here, you import the Greeting class that was created earlier.

Chapter 5

233

7. Drag the Append String transformer onto the canvas. To configure, double-click on it.
In the Message textbox, enter the value ESB and click on the OK button.

Transformers

234

How it works...
In this section, you will learn how to deploy the application in Mule Studio and how to run this
application in the browser after deployment.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 5

235

2. Copy the localhost URL http://localhost:5454. Open the browser, paste the
URL, and type in Mule. You can see that the forward slash has been removed. The
custom transformer removed the forward slash.

Understanding the DataMapper transformer
The DataMapper transformer is more powerful and flexible as compared to the rest of
the transformers that are provided with Studio. Like other transformers, DataMapper can
transform data across formats and manipulate the payload values as well. DataMapper can
map an input field to a different output field.

Getting ready
The DataMapper transformer works only in the Mule Studio Enterprise edition. DataMapper
supports only six formats: CSV, XML, Java, Map, JSON, and Excel.

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

Transformers

236

2. To create a new project, go to File | New | Mule Project. Enter the project name as
Mapper and click on Next and then on Finish. Your new project is created. You will
now have to start the implementation.

Chapter 5

237

How to do it...
In this section, you will learn what is DataMapper, how to configure the DataMapper in Mule
Studio, and when to use DataMapper in Mule Studio.

In this example, you will use three components: the File Inbound Endpoint, DataMapper,
and Database.

1. Go to the Mapper.mflow file and drag the File Inbound Endpoint onto the canvas.
To configure, double-click on the File Endpoint. Here, you import the CSV file.

Transformers

238

This is how the sample-output.csv file looks:

2. To configure mapping, drag the DataMapper transformer onto the canvas and
double-click on it.

Chapter 5

239

3. Here, you configure the DataMapper transformer and enter the name CSV 2 Map
in the Name textbox. The filename .grf automatically appears in the File name
textbox. The .grf extension file is used for the attributes that you map. Click on the
Next button.

Transformers

240

4. The DataMapper feature requires three files to hold the configuration information: the
.grf file, the input type, and the output type. For the input type, you have to select the
CSV type from the drop-down list. Click on the ellipsis (...) button to the right and choose
the .csv file. In the output pane, use the drop-down list in the Type: field and select
Maps/List of Maps. Note that you cannot specify a sample file for the Maps format.
Click on the Edit Fields button to the right of the Name: field in the Output pane.

Chapter 5

241

5. In the Edit Map Fields window, click on the plus button. Here, you enter the
same column name that was entered in the database. Click on OK to finish the
DataMapper wizard.

Transformers

242

6. After you click on the Finish button, you will see a screen similar to the one shown
in the following screenshot. The area on the left-hand side of the screen is for the
sample.csv file attribute and the right-hand side of the screen area is for the
DataMapper attribute.

Chapter 5

243

7. Click on id: string and drag it on top of empid: string. The solid black line
indicates mapping.

8. Drag all the attributes to be mapped onto the right-hand side. The final output looks
like the following screenshot:

9. Click on Preview, and then click on Run Mapping on the right-hand side of your screen.

Transformers

244

You will see the result being displayed on the screen. One really attractive feature is the
possibility to test your mappings without the need to launch your Mule application.

10. Click on the Global Elements tab. Here, you have to configure the database that we
have already seen in the previous example.

Chapter 5

245

Your final flow should look like the following screenshot:

Transformers

246

How it works...
In this section, you will learn how to deploy the application in Mule Studio and how it works.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 5

247

2. Open the PostgreSQL database and check the table entries. You will observe that the
CSV data is transferred to the external database.

6
Configuring Filters

In this chapter, we will cover the different types of filters. You will also learn the following:

 f Configuring the Logic filters – And/Or/Not

 f Performing filtering according to the exception type

 f Filtering messages by evaluating expressions

 f Handling incoming events or messages using the Message filter

 f Configuring the Wildcard filter

 f Creating a Custom filter

Introduction
Filters specify conditions that must be met for a message to be routed to a service. Several
standard filters come with Mule where you can create your own filters. You will learn about
some filters in this chapter.

Configuring the Logic filters – And/Or/Not
Use the And filter to join two or more filters. The And filter accepts a message and returns true
only if all of its enclosed filters return true. The Or filter accepts the message if the message
matches the criteria of any of its filters. The Wildcard filter applies a wildcard pattern to the
message payload. This filter applies a string to the payload, so you might also want to apply a
Payload Type filter to the message using an And filter to make sure the payload is a string.

Configuring Filters

250

Getting ready
In this section, you will use three components: the HTTP Endpoint, the Or filter, and the Java
component. You will also learn how to configure the Or filter. Perform the following steps to
create a new project in Mule Studio:

1. Open Mule Studio and enter the workspace name as shown in following screenshot:

2. To create a new project, Go to File | New | Mule Project. Enter the project name
Logic Filter, click on Next and then on Finish. Your new project is created now,
so you can start with the implementation.

Chapter 6

251

How to do it...
In this section, you will see how to use a Logic filter and how to configure the Java component.

1. Go to the LogicFilter.mflow file and drag the HTTP Endpoint onto the canvas.
Double-click and configure it. Change the port number, and click on the OK button.

Configuring Filters

252

2. To create a class, go to src/main/java, right-click on it, and go to New | Class.
Create a class called Greeting under the package com.org; here, we have created
the sayHi method and its return type is set to String.

Chapter 6

253

3. To configure a Logic filter, go to the LogicFilter.mflow file and drag the Or filter
onto the canvas. Double-click and configure it. Here, you have to select the Add
Wildcard filter twice.

Configuring Filters

254

4. In the Add Wildcard filter, you have added a pattern /Hello*. Add another pattern
in the second Add Wildcard filter, /Hi*, and click on the Finish button. This pattern
means that the string starts with Hi or Hello; if not, the output will not be displayed
on the console.

Chapter 6

255

5. To configure a custom class, you have to drag the Java component onto the canvas
and import the custom Java class that you created before.

Configuring Filters

256

How it works...
In this section, you will see how to deploy the application using Mule Studio, and after
deploying the application, you will see how it will run.

1. Now you are ready for the deployment. If you haven't saved your application code,
please do it. After saving your project, right-click on the LogicFilter.mflow file
and go to Run As | Mule Application.

Chapter 6

257

2. If your application code is successfully deployed, you will see the message Started
app 'LogicFilter' on the console.

3. To see the output in your browser, copy the URL http://localhost:7676/
HiAzaz and paste it in your browser. If the string doesn't match the filter, the
output will not be displayed on the console.

Configuring Filters

258

Performing filtering according to the
exception type

An exception is a problem that arises during the execution of a program. An exception can
occur for many different reasons, including the following: user errors, programmer errors, and
physical resources that have failed in some manner.

Getting ready
You can supply the class indicating the exception type to the Expected Type: property. For
example, for a null pointer exception type, you might set Expected Type: to java.lang.
NullPointerException.

How to do it...
From the palette, drag the Exception filter onto the canvas. The Exception filter handles errors.

Chapter 6

259

How it works...
Double-click on the Exception filter to configure it. Here, you can define the exception
depending upon the requirement.

Configuring Filters

260

Filtering messages by evaluating
expressions

Mule ESB provides several default expression evaluators allowing you to embed expression
logic in a variety of expression languages; alternatively, you can create your own evaluators to
support additional languages. This filter lets you evaluate a range of expressions. It supports
expression types such as header, payload, regex, and wildcard. Set the evaluator to specify
the expression evaluator type to be used. The RegEx filter applies a regular expression
pattern, such as a pattern that includes wildcards or other character substitution symbols in
the message payload. The filter applies the toString() method to the payload to convert
the payload into a string.

Getting ready
In Mule, there are different types of evaluator expressions, such as the header payload
type, the exception type, wildcard, regex, bean, and groovy. Each expression depends on the
evaluator type. For example, if the expression type is XPath, bean, or OGNL, the expression
should be a Boolean. Expressions allow you to extract information from the current message
or determine how to handle the message. Expressions are very useful with routers.

How to do it...
In this section, you will see how to create a custom evaluator and how to use it in a Mule
configuration file.

1. To create a custom evaluator, the first step is to implement the
ExpressionEvaluator interface. Note that this interface implements
NamedObject, which allows the evaluator to be named. This is the name you use
for the evaluator attribute when using this evaluator in the configuration. After
that, create another class named MessageHeaderExpressionEvaluator that
implements with the interface, which we have created before.

2. After creating your custom expression evaluator, you must register it with Mule. If you
are using an XML configuration, you can just configure your expression evaluator as a
bean, and Mule will discover it.

Chapter 6

261

How it works...
In this section, you will see different types of expressions.

XPath expressions
XPath expressions use the standard XPath query language based on JAXP—the Java API for
XML processing. Refer to Using Filters (http://www.mulesoft.org/documentation/
display/current/Using+Filters) for more information about XPath expressions.

<expression-filter evaluator="xpath" expression="(msg/header/
resultcode)='success'"/>

JXPath expressions
JXPath is an XPath interpreter that can apply XPath expressions to graphs of objects of all
kinds, including JavaBeans, Maps, Servlet contexts, DOM objects, and mixtures of these
objects. For more information about JXPath, refer to Using Filters (http://www.mulesoft.
org/documentation/display/current/Using+Filters).

<expression-filter evaluator="jxpath" expression="(msg/header/
resultcode)='success'"/>

OGNL expressions
OGNL is a simple, but a very powerful, expression language for plain Java objects. Similar
to JXPath, OGNL works on object graphs. Filters using OGNL expressions enable simple and
efficient content routing for payloads. Refer to Using Filters (http://www.mulesoft.org/
documentation/display/current/Using+Filters) for more information.

<expression-filter evaluator="ognl" expression="[MULE:0].equals(44)"/>

Handling incoming events or messages
using the Message filter

The Message filter is used for deciding whether to handle incoming events or messages. You
can use the On Unaccepted property to optionally specify the name of the message processor
that should handle any unaccepted events.

Configuring Filters

262

Getting ready
Drag-and-drop the Message filter from the palette on the canvas and configure it.
Double-click on the Message filter. Here you can see the Throw on Unaccepted
checkbox. Select this checkbox to throw an exception if a message or event is not
handled. The default—when not checked—is to not throw an exception. You can use
the On Unaccepted: property to optionally specify the name of the message processor.

How to do it...
The Message filter is used to route messages using logic based on the values of message
properties. You can define one or more message properties. Using this filter, you can access
the message metadata, including transport-specific and user-defined properties. These
message properties represent all the meta information about the message that is available
from the underlying transport. For example, if you receive a message via an HTTP Endpoint,
you can use this filter to check HTTP header values. The pattern is expressed as a key/
value pair, where key is the name of the property. By default, the Case Sensitive checkbox is
selected representing that the comparison is case sensitive. Deselect this box if you want the
association to be case insensitive.

Chapter 6

263

How it works...
This filter can be very powerful because the message properties are exposed allowing you to
reference any transport-specific or user-defined properties. For example, you can match one
or more HTTP headers for an HTTP event, match properties in JMS and e-mail messages,
and much more. You can define Scope in the message filter properties. There can be
different types of scopes available in the message properties. You will see different types
of scopes in the following screenshot. The expression syntax has been improved to support
scopes. The Scope part is optional and is case insensitive. The default scope is outbound.
The general syntax pattern is <evaluator>:<scope>:<expression>; for example,
header:OUTBOUND:CookBook.

You will see the following different types of scopes being used in the Message Property window:

 f inbound: This specifies the properties/headers that come from a client's request.

 f invocation: This is used mostly internally by Mule for the duration of this flow's call.

 f outbound: This specifies the values deemed to be sent out from this flow. They
become either request properties or response properties for the next flow in the
case of a synchronous invocation.

Configuring Filters

264

 f session: This specifies the values that are passed from invocation to invocation.

 f application: This scope is used when you create two different applications.

Configuring the Wildcard filter
The Wildcard filter applies a wildcard pattern to the message payload. This filter applies
toString() to the payload, so you might also want to apply a payload type filter to the
message using an And filter to make sure the payload is a string.

Getting ready
After dragging the Wildcard filter from the palette and dropping it on the canvas,
double-click on the filter icon. A Pattern Property window shows up. There is only one
attribute to configure for this filter and it is the pattern. You will see the example of using
the Wildcard filter in this section.

How to do it...
In this section, you will use three components: the HTTP Endpoint, the Wildcard filter, and the
Custom transformer.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Chapter 6

265

2. To create a new project, go to File | New | Mule Project. Enter the project name
Wildcard Filter, click on Next and then on Finish. Your new project is created
now, so you can start the implementation.

Configuring Filters

266

3. Go to src/main/java, right-click on it, enter the package name com.org and the
class name User, and click on the Finish button. In this class, you have to use two
private String variables, and then you can generate the get or set method.

You create a class called User and generate the get and set methods:
package com.org;

public class User {

 private String name;
 private String lname;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getLname() {
 return lname;

Chapter 6

267

 }
 public void setLname(String lname) {
 this.lname = lname;
 }

}

4. Go to src/main/java, right-click on it and go to New | Class, enter the
package name com.org and the class name HTTPReqToUser, and click
on the Finish button. Here, you create a custom transformer class and
extend it with AbstractMessageTransformer. This way you override
the transformMessage method.

You create a class and extend it with the AbstractMessageTransformer interface:

 import org.mule.api.MuleMessage;
import org.mule.api.transformer.TransformerException;
import org.mule.transformer.AbstractMessageTransformer;

public class HTTPReqToUser extends AbstractMessageTransformer

Configuring Filters

268

{

 @Override
 public Object transformMessage(MuleMessage message, String
outputEncoding)
 throws TransformerException {
 User user = new User();

 String name = message.getInboundProperty("name");
 String lastName = message.getInboundProperty("lname");
 user.setLname(lastName);
 user.setName(name);
 return user;
 }

}

5. Go to src/main/java, right-click on it and go to New | Class, enter the package
name com.org and the class name HTTPReqToName, and click on the Finish button.

Chapter 6

269

Here, you will create a class called HTTPReqToName and extend it with the
AbstractMessageTransformer interface.
package com.org;

import org.mule.api.MuleMessage;
import org.mule.api.transformer.TransformerException;
import org.mule.transformer.AbstractMessageTransformer;

public class HTTPReqToName extends AbstractMessageTransformer
{

 @Override
 public Object transformMessage(MuleMessage message, String
outputEncoding)
 throws TransformerException {
 String name = message.getInboundProperty("name");
 String lastName = message.getInboundProperty("lname");

 return name+" "+lastName;
 }

}

6. Go to the Filter.mflow file and drag the HTTP Endpoint onto the canvas. Double-click
and configure it. Enter the port number and the hostname, and click on the OK button.

Configuring Filters

270

7. Drag the Wildcard filter onto the canvas. Double-click and configure it. In the
Wildcard filter, you have to add a pattern, /Mule*; this means that a pattern
should start with the text Mule.

Chapter 6

271

8. Drag the Java transformer onto the canvas, and double-click on it to configure it.

Configuring Filters

272

How it works...
In this section, you will see how to deploy the application on Mule Studio, and also how it
works after deployment.

1. To deploy the application code in the Mule server, go to Run As | Mule Application,
and the Mule server will deploy your application.

2. Then, open the browser and paste the URL http://localhost:9999/
Mule?name=azaz&lname=desai to see the output.

Chapter 6

273

Creating a Custom filter
Use a Custom filter to reference a user-implemented filter. Note that the reference is to a class
implementing the Filter interface.

Getting ready
The Filter class is required if this is a global filter. After dragging the Custom filter from the
palette and dropping it onto the canvas, double-click on the filter icon. A Pattern Property window
shows up. There is only one attribute to configure for this filter and it is the Filter class.

How to do it...
In this section, you will use three components: the HTTP Endpoint, the Echo component, and
the Custom filter.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Configuring Filters

274

2. To create a new project, go to File | New | Mule Project. Enter the project name
Custom Filter, and click on Next and then on Finish. Your new project is created
now, so you have to start the implementation.

Chapter 6

275

3. Go to src/main/java, right-click on it and go to New | Class, enter the package
name com.mule.filter and the class name CustomMuleFilter, and click on
the Finish button. In this class, we implement the Filter interface, and in this filter
interface class, we override the accept method.

Configuring Filters

276

4. Go to the CustomFilter.mflow file and drag the HTTP Endpoint onto the canvas.
Double-click on it to configure it. Enter the port number and the hostname, and click
on the OK button. By doing this, you enter the pathname called customFilter.

Chapter 6

277

5. To display the log on the console, drag the Echo component, drop it on the canvas,
and configure it.

Configuring Filters

278

6. Drag the Custom filter from the palette and drop it on the canvas. Double-click
and configure it. Import the class that was created before, as shown in the
following screenshot:

Chapter 6

279

How it works...
In this section, you will see how to deploy the application.

1. To deploy the application code in the Mule server, go to Run As | Mule Application,
and the Mule server will deploy your application.

2. Open the browser and paste the URL http://localhost:4343/customFilter—
the URL that starts with http://localhost:4343/customFilter?name=azaz&
lname=desai.

7
Handling Exceptions

and Testing

In this chapter, we will cover different ways of handling exceptions and testing. You will learn
how to do the following:

 f Understanding Messaging Exception strategies

 f Configuring the Choice Exception Strategy

 f Configuring the Reference Exception Strategy

 f Configuring the Rollback Exception Strategy

 f Testing with JUnit in Mule ESB

Introduction
Mule errors are represented by exceptions; so when your Endpoint, Router, component, or
any other processor fails, it throws an exception. When an exception is thrown, you need a
way to handle it. In Mule there are different types of exception strategies. You will have a look
at them in this chapter. There are two places where you could configure exception handling
strategies: on the service and on the connector. The src/test/ directory in every Mule ESB
Maven project incorporates both unit and functional tests.

Handling Exceptions and Testing

282

Understanding Messaging Exception
strategies

Mule calls for the Messaging Exception Strategy whenever an exception is thrown in a flow.
All exceptions are handled through the Messaging Exception Strategy. There are five types of
Messaging Exception Strategies:

 f Default Exception Strategy
 f Catch Exception Strategy
 f Rollback Exception Strategy
 f Reference Exception Strategy
 f Choice Exception Strategy

The Catch Exception Strategy
You can define a Catch Exception Strategy to customize the way Mule handles messages with
errors. A Catch Exception Strategy catches all the exceptions thrown within flow and processes
them. From the Error Handling palette group, drag Catch Exception Strategy and drop it onto
the canvas.

Getting ready
In this section, you will see how to use the Catch Exception Strategy in Mule Studio.

Chapter 7

283

Double-click on Catch Exception Strategy and configure it.

How to do it...
In this section, you will see how to configure the catch exception properties in Mule:

1. In the Catch Exception Strategy properties panel that appears on the screen, enter a
name for your Catch Exception Strategy in the Name: field under the General tab.

2. Check the Enable Notifications checkbox to instruct Mule to send an exception
notification to a registered listener, say, the Mule management console, whenever the
Catch Exception Strategy accepts and handles an exception.

3. To enter an exception, enter information in the Execute When: field to indicate
the kind of exception the catch exception handles when it resides within a Choice
Exception Strategy.

Use case
HTTP Inbound Endpoint receives a message through the custom Java component and
processes it through the flow. If the execution is successful, return a Java component
message. If the execution fails then log the current message and return a Java component
error response. You can define only one exception at a time.

Handling Exceptions and Testing

284

Configuring the Choice Exception Strategy
A Choice Exception Strategy catches all the exceptions thrown within its parent flow, examines
the message content and exception type, and routes messages to the appropriate exception
strategy for processing.

Getting ready
You can define a Choice Exception Strategy to customize the way Mule handles a message
with an error based on the message's content the moment it throws an exception. Usually,
you can define more than one exception strategy within a Choice Exception Strategy.

How to do it...
1. From the Error Handling palette group, drag Choice Exception Strategy and drop it

onto the canvas. In the Choice_Exception_Strategy box that appears, double-click
on the configuration icon in the header.

Chapter 7

285

2. From the Error Handling palette group, drop another Catch Exception Strategy or
Rollback Exception Strategy icon on the Choice_Exception_Strategy box. In Choice
Exception Strategy you can define one or more exception strategies, but in Catch
Exception Strategy you can define only one.

Use case
Use a Choice Exception Strategy to enable Mule to make decisions about how to handle
each error that occurs in a flow. A Choice Exception Strategy can evaluate the exception
type of each message that throws an exception in this flow and route them to one of three
exception strategies:

 f A Catch Exception Strategy to process and discard all the "already processed"
exceptions

 f A second Catch Exception Strategy to process all the "validation exceptions" and send
them to an invalid orders queue

 f A Rollback Exception Strategy to roll back the order transaction in order to retry
processing in the parent flow

Handling Exceptions and Testing

286

Configuring the Reference Exception
Strategy

Use a Reference Exception Strategy to teach a flow to employ the error handling performance
defined by a global Rollback Exception Strategy. In other words, you must ask your flow to refer
to a global exception strategy for instructions on how to handle errors.

Getting ready
Reference Exception Strategies are created as global elements. You can create one or more
strategies or re-use the one(s) in the flow throughout your Mule application. Create global
exception strategies such as Catch and Rollback; choose the one which your exception
strategies refers to. In the following screenshot you will see how to configure the global element:

Chapter 7

287

How to do it...
Perform the following steps:

1. From the Error Handling palette group, drag-and-drop the Reference Exception
Strategy icon onto the canvas.

Handling Exceptions and Testing

288

2. To configure the Reference Exception Strategy, double-click on Components and
select a reference name that was created as a global element.

Configuring the Rollback Exception Strategy
You can define a Rollback Exception Strategy. This makes sure that a message that throws an
exception in a flow is rolled back for reprocessing. Use a Rollback Exception Strategy when you
cannot correct an error when it occurs in a flow.

Chapter 7

289

Getting ready
The Rollback Exception Strategy is used to loop the executions infinitely until the conditional
exceptional strategy becomes true. Let's say for example, we have a server with a count value
= 0. Now if 50 requests come simultaneously and you want the server to handle not more
than 50 instances, you will set a rollback exception that sets the count variable to 0 each time
it reaches 50. This process is looped infinitely.

How to do it...
Usually, you can use this rollback exception in a transaction. If the transaction fails or if a
message throws an exception while being processed, the Rollback Exception Strategy rolls the
transactions back to where they exist in the flow. If the Inbound Endpoint is transactional, Mule
delivers the message to the Inbound Endpoint of the parent flow again to reattempt processing.

How it works...
A Rollback Exception Strategy gives a message a few attempts to move through the flow
successfully before the transaction is declared as "failed" and the message is consumed.

For example, suppose you have a flow that involves a bank transaction to deposit funds into
an account. You configure a Rollback Exception Strategy to handle the errors that occur in
this flow; when an error occurs during processing, a flow external bank account database
is temporarily unavailable and the message throws an exception. The Rollback Exception
Strategy catches the exception, and rolls the message back to the beginning of the flow to
reattempt processing. During the second attempt at processing, the database is online again
and the message successfully reaches the end of the flow.

Mule attempts to deliver the message again when your flow uses one of the following two
types of transports: transactional or reliable.

Testing with JUnit in Mule ESB
JUnit is a framework for implementing unit testing in Java. An open source Java testing
framework is used to write and run repeatable automated tests. In JUnit 4.0, we do not need
to extend from the JUnit framework to TestCase. Also, there is no need to use the prefix
Test with the test method. You can run the test using JUnit4TestAdapter and the @NAME
syntax, which already has been introduced. In the Dropbox integration example, you will learn
about JUnit 4 and Selenium testing.

Handling Exceptions and Testing

290

Getting ready
Create a new project on Mule to test with JUnit using the following steps:

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the name of the
project, DropBox_Integration, and click on Next and then on Finish. Your new
project is created and you can now start the implementation.

Chapter 7

291

How to do it...
In this section, you will see how to configure the Dropbox connector in Mule Studio.

1. Navigate to the dropbox_Integration.mflow file in the Global Elements tab and
click on the Create button. Go to Cloud Connector | Dropbox. Here you need to enter
the API key or the secret key. You also have to generate this key on the Dropbox site.

Handling Exceptions and Testing

292

2. Click on the Message Flow tab and drag the HTTP Endpoint and the Dropbox Cloud
Connector onto the canvas. Here you need to select the reference name, which was
created earlier, and select the authorized operation.

Chapter 7

293

3. Now drag the HTTP Endpoint on the canvas and configure it.

Handling Exceptions and Testing

294

4. Drag the Choice Router and two Dropbox connectors onto the canvas. You are
creating two operations now: one is for creating a folder and another is for deleting it.

Chapter 7

295

5. Double-click on the Choice Router to configure it. Here you can assign the following
condition: if operation equals to "createF", it will create a folder otherwise it will
be deleted.

Handling Exceptions and Testing

296

6. To configure the Cloud Connector, double-click on the Create Folder
connector. Here you can select operation create folder and write an expression
#[payload['dropboxPath']]. In the same way, you can create or delete
operations on your own.

Chapter 7

297

7. To create a third flow, drag the HTTP Endpoint onto the canvas and configure it. After
this, you have to add static resources handler manually as follows: <http:static-
resource-handler resourceBase="${app.home}/docroot"
defaultFile="home.html"></http:static-resource-handler>.

8. Create a docroot folder inside src/main/app. Create a Home.html file inside the
docroot folder, where index.css is stored.

The home.html file looks like the following:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<link rel="stylesheet" type="text/css" href="index.css" />
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

Handling Exceptions and Testing

298

<title>Insert title here</title>
</head>
<body>

 <script type="text/javascript">
 function processElements (elements, style){

 for (var i = 0; i < elements.length; i++){
 elements[i].style.display=style;
 }
 }

 function updateOptions(value){

 var hideElements = document.getElementsByClassName('hidden');
 var showElements = document.getElementsByClassName(value);

 processElements(hideElements, 'none');
 processElements(showElements, 'block')

 }
 </script>
 <!--onsubmit="this.action=document.getElementById('op').
options[document.getElementById('op').selectedIndex].value;"-->
 <form action=/in method="post">
 Welcome to AttuneInfocom!!!

 Operation: <select id="op" name="op"
onchange="updateOptions(this.options[this.selectedIndex].value);">
 <option value="selectoption">--Select Option--</option>
 <option value="createF">Create Folder</option>
 <option value="delete">Delete</option>
 </select>

 <div class="hidden upFile createF delete downFile
list getLink" id="dropboxPath">Path:<input type="text"
name="dropboxPath" /></div>
 <input type="submit" value="Submit"/>
 </form>
</body>
</html>

Chapter 7

299

The index.css file has the following code snippet in it:
form {
background: -webkit-gradient(linear, bottom, left 175px,
from(#CCCCCC), to(#EEEEEE));
background: -moz-linear-gradient(bottom, #CCCCCC, #EEEEEE 175px);
margin:auto;
position:relative;
width:350px;
height:350px;
font-family: Tahoma, Geneva, sans-serif;
font-size: 14px;
font-style: italic;
line-height: 24px;
font-weight: bold;
color: #09C;
text-decoration: none;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
padding:10px;
border: 1px solid #999;
border: inset 1px solid #333;
-webkit-box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
-moz-box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
}

textarea#feedback {
width:375px;
height:150px;
}
textarea.message {
display:block;
}
input.button {
width:100px;
position:absolute;
right:20px;
bottom:20px;

Handling Exceptions and Testing

300

background:#09C;
color:#fff;
font-family: Tahoma, Geneva, sans-serif;
height:30px;
-webkit-border-radius: 15px;
-moz-border-radius: 15px;
border-radius: 15px;
border: 1p solid #999;
}
input.button:hover {
background:#fff;
color:#09C;
}
textarea:focus, input:focus {
border: 1px solid #09C;
}

img,a {
display:none;
}

#obj {
display:none;
}

.hidden {
display:none;
}

9. Here you have worked with three different flows. First, you deploy localhost:8081/
auth, and authorize the Dropbox application. Then you can call localhost:8081/
home.

Chapter 7

301

10. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Handling Exceptions and Testing

302

11. Open the browser and enter localhost:8081/auth. Once you enter the URL in the
browser, it will redirect you to the Dropbox site and open a screen that looks like the
following screenshot. Now click on the Allow button.

Chapter 7

303

12. Enter the URL http://localhost:8081/home. Here, you can create a folder using
the selected operation shown in the following screenshot:

13. Once you click on the Submit button, you will see an output similar to the
following screenshot:

Handling Exceptions and Testing

304

14. Open your Dropbox account. You will see that a folder is created with the
name TestDropBox.

15. Similarly, you can run the deployment for JUnit 4. For that, you will have to download
the Selenium IDE testing plugin on Firefox.

16. Once you download the testing plugin, a part of the IDE is completed. Restart Firefox.
After restarting, go to Tools and select Selenium IDE.

17. Enter localhost:8081/home, select the operation, and click on the Submit button.
Then stop recording in Selenium IDE.

Chapter 7

305

18. Now you have to convert the JUnit test case into an appropriate format. Go to Options
| Format | Java / JUnit 4 / Remote Control.

Handling Exceptions and Testing

306

19. You will see that the JUnit test case is created. Copy this test case and paste it in
your application.

Chapter 7

307

You can create such a test case in your application as well:

Handling Exceptions and Testing

308

How it works...
In this section, you will see how to deploy the JUnit test case in Mule Studio.

1. First, you have to import three Selenium JAR files: serializer-2.7.1, selenium-
java-2.31.0, and selenium-server-standalone-2.31.0.

2. Go to the command prompt. Run the selenium-server-standalone-
2.31.0.jar file using the following command:
java -jar selenium-server-standalone-2.31.0.jar

Chapter 7

309

On execution, you will see a screen similar to the following screenshot:

3. Go to your application and right-click on the TestCase class. Go to Run As | JUnit.

Handling Exceptions and Testing

310

4. If your JUnit test case runs successfully, you can see in your Dropbox account. A folder
is created automatically in Dropbox.

8
Introducing Web

Services

In this chapter, you will learn about web services, integration of web services, and much more.
The following topics will be covered in this chapter:

 f Proxying web services

 f Creating JAX-WS services

 f Creating web services using the REST component

 f Calling external web services using the SOAP component

Introduction
A web service is an application that is written to meet Internet and Extensible Markup
Language (XML) technology standards. It performs a specific task and is made available to
other users through a network. In this section, we will learn about the two main types of web
services in use: SOAP-based and REST-based. The key characteristics of web services are
flexibility, interoperability, and transportability. Today, they are used in a variety of ways, including
various web APIs, integration frameworks, and architecture models such as service-oriented
architecture. Web services allows different applications to talk to each other and share data and
services among themselves. Other applications can also use the services of web services. For
example, a VB or .NET application can talk to Java web services and vice versa. So, web services
are used to make the application platform and technology independent.

Introducing Web Services

312

Proxying web services
A proxying web service is a very common application used for different purposes, such as
decoupling clients and producers. CXF proxies support working with the SOAP body or the
entire SOAP envelope. By default, only the SOAP body is sent as payload, but the payload
mode can be set only via the payload attribute to the envelope needed. You can define two
types of proxying web services: server-side and client-side.

Getting ready
Mule can perform as a web service proxy. A proxy can perform several useful functions:

 f Security enforcement

 f WS-Policy enforcement

 f Routing to the proper backend service, whether a remote service or a local service

 f Protocol bridging, such as HTTP to JMS

 f Message transformations, such as converting from old versions of the message
format to new versions

 f Validation

Mule provides several utilities that help you do these.

In Mule Studio, you can create different types of web services: WS-Security, WS-Proxy, and
protocol binding.

 f WS-Security web service: WS-Security provides means to secure your services above
and beyond transport level protocols such as HTTPS through a number of standards
such as XML-Encryption, and headers defined in the WS-Security standard.

 f Protocol binding: This allows you to forward requests from one Endpoint to another.
This is generally the best option for proxying web services.

 f WS-Proxy web service: This allows you to service WSDL files locally while proxying
remote web services.

How to do it...
First we will see proxying web services.

Chapter 8

313

Web service proxying
In web service proxying, you have to use CXF proxying for the following:

 f To implement WS-Policy assertions

 f To easily service a WSDL associated with your service

 f To work directly with the SOAP body; for example, adding XML directly to it

A CXF web service standard supports the use of WS-Security and WS-Addressing.

Protocol binding
Protocol binding is used for forwarding a request from one Endpoint to another via service
bridging. You can forward the data streams directly or process and transform the XML.

How it works...
The following code snippet is a simple configuration example that forwards a request from one
HTTP Endpoint to another:

<flow name="HttpProxyService">
 <http:inbound-endpoint address="http://localhost:8888" exchange-
pattern="request-response"/>
<http:outbound-endpoint address="http://www.webservicex.
net#[header:INBOUND:http.request]" exchange-pattern="request-
response"/>
 </flow>

Creating JAX-WS services
In this recipe, you will learn how to create a JAX-WS service, The JAX-WS specification defines
a series of APIs and annotations that help you build web services.

Introducing Web Services

314

Getting ready
Before creating a JAX-WS service, perform the following steps:

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
soap-jax-ws, and click on Next and then on Finish. Your new project is created.
We can start the implementation now.

Chapter 8

315

How to do it...
After you're done with the steps mentioned in the Getting ready section, perform the following
steps to create a JAX-WS service:

1. You begin by writing the service interface. Firstly, go to src/main/java, right-click
on it, and create an interface called HelloWorld. You can write an operation called
sayHello to greet anyone who submits his or her name through a web browser.
import javax.jws.WebService;
public interface HelloWorld {

 @WebService
 String sayHi(String text);
}

The following screenshot shows this process:

Introducing Web Services

316

2. To create a class, right-click on src/main/java and create a class called
HelloWorldImpl; implement it with the interface HelloWorld.
import javax.jws.WebService;

@WebService(endpointInterface = "com.org.HelloWorld",
 serviceName = "HelloWorld")
public class HelloWorldImpl implements HelloWorld
{

 @Override
 public String sayHi(String text) {
 // TODO Auto-generated method stub
 return "Hello"+text;
 }

}

The following screenshot shows the implementation of HelloWorldImpl
with HelloWorld:

Chapter 8

317

3. Go to the SOAP-JAX-WS.mflow file. Drag the HTTP Endpoint onto the canvas.
Double-click on the HTTP Endpoint to configure it. Enter the port number and path.

Introducing Web Services

318

4. To configure the interface, drag the SOAP component onto the canvas. Double-click
on the SOAP component and configure the service class, and choose the operation
JAX-WS service.

Chapter 8

319

5. Drag the Java component onto the canvas. Your flow will look like this:

Introducing Web Services

320

6. Double-click on the Java component to configure it. Here, you import the
HelloWorldImpl class that was created before.

Chapter 8

321

How it works...
In this section, you will see how to deploy your application using Mule Studio.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Introducing Web Services

322

2. Open a browser and paste this URL: http://localhost:4234/hello?wsdl. This
will display the WSDL generated by CXF.

Creating web services using the REST
component

Using REST, which stands for Representational State Transfer, applications can transmit
the information needed to function as web services using only the native functions of a given
protocol. In the context of web services, this generally means that RESTful web services
communicate via pure HTTP using XML or JSON to encapsulate the data and metadata.

Getting ready
In this section, you will use three components: the HTTP Endpoint, the Logger component, and
the REST component. The REST component is used for creating a REST-based web service.

1. Open Mule Studio and enter a name for the workspace as shown in the
following screenshot:

Chapter 8

323

2. To create a new project, go to File | New | Mule Project. Enter the project name,
restbasedwebservice, and click on Next and then on Finish. Your new project
is created. We can start the implementation now.

How to do it...
In this section, you will see how to create a REST-based web service using Java annotations.
Java annotations are one of the main development features that was introduced in
JDK 5. Annotations are like meta tags that you can add to your code and apply to
package declarations. Annotations carry data over a runtime.

1. Go to src/main/java, right-click on it, and create a class called
HelloWebService.
import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/myrest")
public class HelloWebServices {

 @GET

Introducing Web Services

324

 public String getWelcomemsg() throws Exception
 {
 return "Hello RestBased Webservice";

 }
}

The following screenshot shows the creation of this class:

Chapter 8

325

2. Drag the HTTP Endpoint onto the canvas. Double-click on the HTTP Endpoint to
configure it. Enter the port number as 3232.

Introducing Web Services

326

3. Drag the Logger component onto the canvas. The Logger component is used for
displaying logs on the console. Double-click on the Logger component to configure it.

Chapter 8

327

4. Drag the REST component onto the canvas. Double-click on it and configure it.

Introducing Web Services

328

How it works...
In this section, you will see how to deploy applications in Mule Studio.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

2. Open a browser and paste the URL http://localhost:3232/myrest in
the browser.

Chapter 8

329

Calling external web services using the
SOAP component

In this recipe, you will see how to create a simple web service using Eclipse in Java; this
web service will be called in Mule Studio using the SOAP component. You will see how to
call external web services in Mule. You will then create a simple web service that will
display the current date and time and the reverse string.

Getting ready
In this section, we will create a web service in Eclipse.

1. Open Eclipse and enter a name for the workspace. Create a class called
RequestHandler. In this class, we create two methods: one to display the
current time and date and the other to generate the reverse string.
 import java.text.SimpleDateFormat;
 import java.util.Date;

public class RequestHandler {

 public String reverseYourName(String name)
 {
 return new StringBuffer(name).reverse().toString();
 }

 public String getCurrentDate()
 {
 Date date= new Date();
 SimpleDateFormat dateFormat=new SimpleDateFormat("dd-MMMMM-
yyyy h:mm a");
 return dateFormat.format(date);
 }
}

Introducing Web Services

330

The following screenshot shows the creation of this class:

Chapter 8

331

2. The following screenshot shows the class you created as a web service. We will
generate the WSDL file as well.

Introducing Web Services

332

How to do it...
In this section, you will see how to run the WSDL file and see the output on the WSDL page.

1. Right-click on the RequestHandler.wsdl file and publish the WSDL file. Once
the file is successfully published, you will see something similar to the following
screenshot on your system. You can run the .wsdl file in two ways: right-click on the
.wsdl file or right-click on the project and run the .wsdl file. You will see the output
on the Status tab.

Chapter 8

333

2. Open Mule Studio and enter the workspace name as shown in the following screenshot:

3. To create a new project, go to File | New | Mule Project. Enter the project name,
external_webservice, and click on Next and then on Finish. Your new project
is created. We can start the implementation now.

Introducing Web Services

334

4. Go to the External WebService.mflow file. Drag the HTTP Endpoint onto the
canvas and double-click on it to configure it.

Chapter 8

335

5. Drag the SOAP component onto the canvas. Double-click on the SOAP component
to configure it. First click on the Generate from WSDL button; you will have to
enter the WSDL URL, http://localhost:8080/WebService/services/
RequestHandler?wsdl; this URL was created in the external web service in
Eclipse. Enter the package name as com.org. This package name comes from
the external web service. Click on the OK button.

Introducing Web Services

336

6. You will see that, under src/main/java, classes are created automatically, as
shown in the following screenshot:

Chapter 8

337

How it works...
In this section, you will see how to deploy the application.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application. At the same time, you should run the
Tomcat server in Eclipse.

Introducing Web Services

338

2. Once you have successfully deployed the application, you will see the following output
on your console:

3. Open a browser and paste the URL http://localhost:2121/?wsdl in your
browser bar.

9
Understanding Flows,
Routers, and Services

In this chapter you will learn different types of Routers/Flow Controls, and also the following:

 f Configuring the All Router/Flow Control

 f Configuring the Choice Router/Flow Control

 f Configuring the Splitter Flow Control

Introduction
Flow Controls route messages to various destinations in a Mule flow. Some Flow Controls
in business logic are implemented to study and possibly transform messages before routing
takes place. Through Flow Controls, you will see how messages are sent and received within
a Mule flow. In this chapter, you will see all types of Routers/Flow Controls. There are different
types of Routers in Mule Studio: the Choice Router, the All Router, and the Splitter.

Configuring the All Router/Flow Control
The All Router/Flow Control is used for sending a message to multiple targets. It is also used
to route the same message to more than one processor component.

Understanding Flows, Routers, and Services

340

Getting ready
In this example, you will use four components: the File Inbound Endpoint, the File Outbound
Endpoint, the All Router, and the Echo component.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
allrouter, and click on Next and then on Finish. Your new project is created,
now you have to start the implementation.

Chapter 9

341

How to do it...
In this section, you will see how to use components in a graphical flow and how it works.

1. Go to the allrouter.mflow file and drag the File Inbound Endpoint. Double-click
on the File Endpoint and configure it. Provide a full path name.

Understanding Flows, Routers, and Services

342

2. Drag the Echo component onto the canvas; it's used for display purposes.

Chapter 9

343

3. Drag the Choice Router/Flow Control onto the canvas; it's used for sending messages
to multiple targets.

Understanding Flows, Routers, and Services

344

4. Drag the File Outbound Endpoint onto the canvas; the File Endpoint is chosen as the
destination path.

Chapter 9

345

5. Double-click on the File Endpoint to configure it. Click on the ... button and configure
the destination path.

Understanding Flows, Routers, and Services

346

6. Drag the second File Outbound Endpoint onto the canvas. Double-click to configure
it. Configure it in the same way as the previous one.

Chapter 9

347

7. Drag the third File Endpoint. As you send the file to multiple targets, you use three
File Outbound Endpoints. The file is sent to three different locations.

Understanding Flows, Routers, and Services

348

8. Drag the Logger component onto the canvas. Double-click on the Logger component
to configure it. It's used for displaying a log on the console.

Chapter 9

349

How it works...
In this section you will learn how to deploy the application.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Understanding Flows, Routers, and Services

350

2. Once you have successfully deployed the application, you will see the following output
on your console. You will also see a log on the console, which states that all the files
are transferred to four different locations.

Configuring the Choice Router/Flow Control
Choice Router allows us to route a request to a specific path based on an expression. If the
expression matches, it will move forward to the next Endpoint. In this recipe, you will see an
example of how the Choice Router/Flow Control works.

Chapter 9

351

Getting ready
In this example, you will use the File Inbound Endpoint, Choice Router, and the File
Outbound Endpoint.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
choice_router, and click on Next and then on Finish. Your new project is created;
you now have to start the implementation.

Understanding Flows, Routers, and Services

352

How to do it...
In this section, you will see how to configure the File Inbound Endpoint, Choice Router, and the
File Outbound Endpoint.

1. Go to the Choice Router.mflow file and drag the File Inbound Endpoint onto the
canvas. Double-click and configure it, and provide the path.

Chapter 9

353

2. Drag the Choice Router onto the canvas. This Flow Control will be configured later.

Understanding Flows, Routers, and Services

354

3. Drag the File Outbound Endpoint onto the canvas; double-click and configure it,
and provide the path. You have to create a folder called Output. Inside the Output
folder, you need to create three different folders: Text, PPT, and ZIP. Firstly, you
have to provide the path for the ZIP folder.

Chapter 9

355

4. Drag the second File Outbound Endpoint onto the canvas. Configure it just like the
previous one, but this time you have to provide the path for the Text folder.

Understanding Flows, Routers, and Services

356

5. Drag the third File Output Endpoint onto the canvas. Configure it just as the first one
and provide the path for the PPT folder.

Chapter 9

357

6. Drag the Logger component onto the canvas. Double-click and configure it. If an
expression doesn't match, that file will be sent to the Logger component.

Understanding Flows, Routers, and Services

358

7. Double-click on the Choice Router to configure it. You will write an expression for
all the files. The #[message.inboundProperties['originalFilename'].
endsWith('.zip')] expression is for ZIP files. Through this expression, only ZIP
files are transferred to the destination folder.

Chapter 9

359

Your final flow will look like the following screenshot:

Understanding Flows, Routers, and Services

360

How it works...
In this section, you will get an idea of deploying an application in Mule Studio.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application. At the same time you should run the
Tomcat server in Eclipse.

Chapter 9

361

2. From the log on the console, you will see that all files are transferred to the specific
folder. Only XML files are not transferred because we didn't use the XML file
expression. That's why it shows Invalid File Type as the error description.

Configuring the Splitter Flow Control
A Splitter splits incoming messages into parts using the configured expression, which
in turn is fed into the next message processor. In this recipe, you will see how to use the
Splitter Flow Control.

Understanding Flows, Routers, and Services

362

Getting ready
In this section, you will use the File Inbound Endpoint, the Splitter, and the File
Outbound Endpoint.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
splitter, and click on Next and then on Finish. Your new project is created,
so you can now start the implementation.

Chapter 9

363

How to do it...
In this section, you will see how to configure Splitter, File Inbound Endpoint, and File
Outbound Endpoint.

1. Go to the splitter.mflow file and drag the File Endpoint onto the canvas.
Double-click and configure it, and then provide an XML file path. You split a
city name in that XML file.

The following code snippet is the Shipping.xml file:
<shiporder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
orderid="555-66-7777">
 <orderperson>Derek Adams</orderperson>
 <shipto>
 <name>Azaz Desai</name>
 <address>123 Test Drive</address>
 <city>Ahmedabad</city>
 <country>India</country>
 </shipto>
 <item>
 <title>Laptop</title>
 <note>Some piece of Mac crap!</note>
 <quantity>1</quantity>
 <price>99.97</price>
 </item>
 <item>
 <title>Memory Chips</title>
 <note>1 GB</note>
 <quantity>4</quantity>
 <price>49.99</price>
 </item>
</shiporder>

Understanding Flows, Routers, and Services

364

Here you configure the input folder path.

Chapter 9

365

2. Drag the Splitter Flow Control onto the canvas. Double-click and configure it. To split
the city name, you write an expression #[xpath:shiporder/shipto/city].

Understanding Flows, Routers, and Services

366

3. Drag the File Outbound Endpoint on the canvas. Double-click and configure it, and
provide a destination path.

Chapter 9

367

Your final flow will look similar to the one shown in the following screenshot:

Understanding Flows, Routers, and Services

368

How it works...
In this section, you will see how to deploy the application using Mule Studio.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 9

369

2. Once you have successfully deployed the application, you will see the following output
on your console. Use the path highlighted in the following screenshot to see that only
the city name will be written into the file.

10
Configuring Cloud

Connectors

In this chapter, you will learn what a Cloud Connector is. We will also look at the
following recipes:

 f Configuring the Twitter Cloud Connector

 f Configuring the DropBoxIntegration folder

Introduction
Through Cloud Connectors, easy integration of your third-party web APIs is possible. Cloud
Connectors are mainly used for integration purposes. In this chapter, you will see how to
integrate third-party APIs through different connectors.

Configuring the Twitter Cloud Connector
The Twitter Cloud Connector is used for integrating the Twitter API. Through this API, you will
perform different operations such as updating the status on your Twitter account, and you
can retweet the message, search and show statuses. In this recipe, you will see how to send a
tweet using Mule Studio.

Configuring Cloud Connectors

372

Getting ready
In this example, you will use the HTTP Endpoint and the Twitter Cloud Connector.

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

2. To create a new project, go to File | New | Mule Project. Enter the project name,
Twitter, click on Next and then on Finish. Your new project is created, and you
now have to start the implementation.

Chapter 10

373

How to do it...
In this section, you will see how to configure the Twitter Cloud Connector and how to use it
in a flow.

1. Go to the twitter.mflow file and click on the Global Elements tab. Go to Cloud
Connectors | Twitter.

Configuring Cloud Connectors

374

2. Once you click on the Twitter Cloud Connector, you will see a similar screen on
your system. Here, you generate the values for the Access Key:, Access Secret:,
Consumer Key:, and Consumer Secret: fields.

Chapter 10

375

3. Go to https://dev.twitter.com/apps. Here you can click on Create
application. Then you have to fill up the application form. Once you create the
application, you will find a key in that application. Paste that key into your Twitter
Cloud Connector.

Configuring Cloud Connectors

376

4. Click on the Message Flow tab and drag the HTTP Endpoint onto the canvas. To
configure the Endpoint, double-click on it. Enter the port number.

Chapter 10

377

5. Drag the Twitter Cloud Connector onto the canvas. To configure it, double-click on it.

Configuring Cloud Connectors

378

6. Once you click on the Connector, you will see a similar screen, as shown in the
following screenshot, on your system. You will select the configuration reference
name that was created before in the Global Elements tab—Twitter. Then, you
select operation Update Status. In the Status: textbox, write an expression to
send a tweet to your account, #[header:INBOUND:mymessage].

Chapter 10

379

7. Drag the Expression transformer; it will convert a payload into a string.

Configuring Cloud Connectors

380

8. Double-click on the Expression transformer to configure it. Write an expression to
convert it into a string, payload.toString().

Chapter 10

381

How it works...
In this section, you will have a look at how to deploy the application in Mule Studio.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Configuring Cloud Connectors

382

2. Once you have successfully deployed the application, you will see the following output
on your console. You will see a log on the console, which states that all files are
transferred to different locations.

Chapter 10

383

3. Open your browser and paste the URL in it http://localhost:8088/?mymessage
=HelloMule. You will receive a JSON output. When you receive a similar output on
your browser (as shown in the following screenshot), your message will be successfully
sent to your Twitter account:

4. You can now see the message displayed on your Twitter account:

Configuring Cloud Connectors

384

Configuring the DropBoxIntegration folder
Dropbox is a file hosting service operated by Dropbox Inc. It is a free service that lets you
bring your photos, documents, and videos anywhere and share them easily. Through Dropbox
Connectors, you can access the Dropbox API and you can also insert, upload, download, and
delete files and folders.

Getting ready
In this example, we will use the HTTP Endpoint, the Dropbox Connector, and the Choice
Router. Create a new project by performing the following steps:

1. Open Mule Studio and enter the workspace name as shown in the following screenshot:

Chapter 10

385

2. To create a new project, go to File | New | Mule Project. Enter the project name,
Dropbox_Integration, click on Next and then on Finish. Your new project is
created, and you now have to start the implementation.

Configuring Cloud Connectors

386

How to do it...
In this section, you will see how to configure the Dropbox Connector and how to use it
in a flow.

1. Go to the Dropbox_Integration.mflow file. Click on the Global Elements tab
and go to Cloud Connectors | Dropbox.

Chapter 10

387

2. Configure the Dropbox Connector; here, you add the values for Port:, App Key:, and
App Secret: fields.

Configuring Cloud Connectors

388

3. Click on the Oauth tab. Here, you can fill in the Domain:, Local Port:, and Remote
Port: fields.

Chapter 10

389

4. To generate the values of the App Key: and App Secret: fields, go to the URL
https://www.dropbox.com/developers. Click on Create new app. Once
you have created an app, you will see the app key and the app secret.

Configuring Cloud Connectors

390

5. Go to src/main/app and create a docroot folder. Inside this folder create two
files: home.html and index.css.

6. In the docroot folder, click on the home.html file. The following code snippet is
present inside the home.html file:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<link rel="stylesheet" type="text/css" href="index.css" />
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>Insert title here</title>
</head>
<body>

 <script type="text/javascript">

 function processElements (elements, style){

Chapter 10

391

 for (var i = 0; i < elements.length; i++){
 elements[i].style.display=style;
 }
 }

 function updateOptions(value){

 var hideElements = document.getElementsByClassName('hidden');
 var showElements = document.getElementsByClassName(value);

 processElements(hideElements, 'none');
 processElements(showElements, 'block');

 }
 </script>
 <!--onsubmit="this.action=document.getElementById('op').
options[document.getElementById('op').selectedIndex].value;"-->
 <form action=/in method="post">
 Welcome to AttuneInfocom!!!

 Operation: <select id="op" name="op"
onchange="updateOptions(this.options[this.selectedIndex].value);">
 <option value="selectoption">--Select Option--</
option>
 <option value="createF">Create Folder</option>
 <option value="delete">Delete</option>
 </select>

 <div class="hidden upFile createF delete downFile
list getLink" id="dropboxPath">Path:<input type="text"
name="dropboxPath" /></div>

 <input type="submit" value="Submit"/>
 </form>

</body>
</html>

Configuring Cloud Connectors

392

7. Click on the index.css file. The following is the code snippet in the index.css file:
form {
background: -webkit-gradient(linear, bottom, left 175px,
from(#CCCCCC), to(#EEEEEE));
background: -moz-linear-gradient(bottom, #CCCCCC, #EEEEEE 175px);
margin:auto;
position:relative;
width:350px;
height:350px;
font-family: Tahoma, Geneva, sans-serif;
font-size: 14px;
font-style: italic;
line-height: 24px;
font-weight: bold;
color: #09C;
text-decoration: none;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
padding:10px;
border: 1px solid #999;
border: inset 1px solid #333;
-webkit-box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
-moz-box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
}

textarea#feedback {
width:375px;
height:150px;
}
textarea.message {
display:block;
}

Chapter 10

393

input.button {
width:100px;
position:absolute;
right:20px;
bottom:20px;
background:#09C;
color:#fff;
font-family: Tahoma, Geneva, sans-serif;
height:30px;
-webkit-border-radius: 15px;
-moz-border-radius: 15px;
border-radius: 15px;
border: 1p solid #999;
}
input.button:hover {
background:#fff;
color:#09C;
}
textarea:focus, input:focus {
border: 1px solid #09C;
}

img,a {
display:none;
}

#obj {
display:none;
}

.hidden {
display:none;
}

Configuring Cloud Connectors

394

8. Go to the dropboxIntegration.mflow file and drag the HTTP Endpoint onto
the canvas. First, you have to authorize that application. To configure the Endpoint,
double-click on it. Enter the port number and the pathname.

Chapter 10

395

9. Drag the Dropbox Cloud Connector onto the canvas. To configure the Connector,
double-click on it, select the configuration reference Dropbox, and select the
operation Authorize.

Configuring Cloud Connectors

396

10. To create the second flow, drag the HTTP Endpoint onto the canvas. To configure the
Endpoint, double-click on it. Enter the port number and the pathname.

11. After the HTTP Endpoint configuration, you have to add the following line of code:
<http:static-resource-handler resourceBase="${app.home}/docroot"
defaultFile="home.html"></http:static-resource-handler>

Through this handler, you call the home.html page in the docroot folder.

Chapter 10

397

12. To create the third flow, drag the HTTP Endpoint onto the canvas. To configure it,
double-click on the Endpoint. Enter the port number and the pathname.

Configuring Cloud Connectors

398

13. Drag the Body to Parameter Map transformer onto the canvas. There is no need to
configure this Endpoint.

14. Drag the Logger component onto the canvas. It is used for displaying the log on
the console.

15. Drag the Choice Router onto the canvas; you can configure it later.

Chapter 10

399

16. Drag the Dropbox Connector onto the canvas. To configure the Connector,
double-click on it. Select the configuration reference name, select the
operation Create folder, and enter the path #[payload['dropboxPath']].

17. Drag the Object to JSON transformer onto the canvas; there is no need to configure
it. This transformer is used to convert an object to the JSON format.

Configuring Cloud Connectors

400

18. Drag the Dropbox Connector onto the canvas. To configure the Connector,
double-click on it. Select the configuration reference name, select the
operation Delete, and enter the path #[payload['dropboxPath']].

19. Drag another Object to JSON transformer onto the canvas; there is no need to
configure it. This transformer is used to convert an object to the JSON format.

Chapter 10

401

Your third flow will look like this:

20. This is your authorized flow. You have to first run this flow:

Configuring Cloud Connectors

402

21. The following flow is your second flow. Once you have authorized an app, you need to
run this flow. This flow will call the home.html page.

How it works...
In this section, you will see how to deploy the application.

1. To deploy the application code in the Mule server, go to Run As | Mule Application;
the Mule server will deploy your application.

Chapter 10

403

2. Open a browser and paste the following URL in it: http://localhost:8081/auth.
Once you enter the URL, the page will redirect you to the Dropbox site, and here you
have to click on Allow to provide access to the app.

3. Now you can run the second flow, http://localhost:8081/home/. Here
you need to select the operation. Suppose you have selected the Create Folder
operation. You then have to enter the folder name, DropBoxIntegration, in the
Path: textbox.

Configuring Cloud Connectors

404

4. Once you click on the Submit button, you will see an output, similar to the following
screenshot, in your browser:

5. Check your Dropbox account. You will see that a folder has been created on your
account named DropBoxIntegration.

Index
A
Advanced tab, Servlet Endpoint 199
agent 12
AJAX 181
AJAX Endpoint

about 133, 182
used, for sending messages asynchronously

182-197
All Router 30, 339
All Router/Flow Control

about 339
configuring 340-350

allrouter.mflow file 341
And filter 249
Append String transformer 201
architecture, Mule ESB

application layer 11
diagrammatic representation 11
integration layer 11
transport layer 11

Asynchronous Java and XML. See AJAX

B
bean, evaluator expressions 260

C
canvas 23
catch exception properties

configuring 283
Catch Exception Strategy

about 282
catch exception properties, configuring 283
configuring 283

use case 283
using 282

Choice Exception Strategy
about 284
configuring 284, 285
defining 284
use case 285
using 285

Choice Router 30, 339, 350
Choice Router/Flow Control

configuring 351-361
Choice Router.mflow file 352
Cloud Connectors

about 30, 371
Salesforce 31
Twitter 31

command prompt
used, for running Mule application 57

components
configuring 44, 45
custom filters 47
Groovy component 101
Java component 100
Javascript component 101
Python component 100
Ruby component 100
Script component 100

components, Mule
Echo 27
Logger 27
REST 27
SOAP 27

components, Mule Studio
canvas 23
package tree 21

406

palette 22
components, palette components

about 26
general components 26
script components 26
web service components 26

configuration, All Router/Flow
Control 340-350

configuration, Choice Router/Flow
Control 351-361

configuration, Generic Endpoint 134, 135
configuration, HTTP Endpoint 135-144
configuration, IMAP Endpoint

for e-mails retrieval 145-147
configuration, JDBC Endpoint 147-163
configuration, Servlet Endpoint 198-200
configuration, Splitter Flow Control 362-369
connectors 12
content-type property 123
custom expression evaluator

creating 260
Custom filter

about 29
creating 47, 48, 273

Custom filter project
creating 274, 275
deploying 279
Echo component, configuring 277, 278
HTTP Endpoint, configuring 276

custom message sources 114
custom transformer

about 28, 226
creating 227-232
working 234, 235

D
database connection

JDBC Endpoint, using for 147-163
DataMapper transformer

about 201, 235
configuring 237-243
working 246, 247

Documentation tab, Servlet Endpoint 197
Dropbox 384
Dropbox Connector

configuring 386-395

using, in flow 396-401
working 402-404

DropBoxIntegration folder
configuring 384, 385

DropBox_Integration project
application code, deploying in Mule server

301-303
Choice Router, configuring 294, 295
Cloud Connector, configuring 296
creating 290
Dropbox connector, configuring 291
home.html file 297
HTTP Endpoint, configuring 292-297
index.css file 299
JUnit test case, creating 305
static resources handler, adding 297

E
Echo component

about 27, 48
used, for displaying message payload 48
using 54

Echo project
creating 49
deploying 55, 56
Echo component, using 51
executing, command prompt used 57
flow, creating 50
HTTP Endpoint, configuring 50
Logger component, configuring 52, 53
Logger component, using 51

Eclipse
download link 16
Mule IDE, setting up 15

Endpoint 13, 133
Endpoints, palette components

about 25
File Endpoint 25
FTP Endpoint 25
Generic Endpoint 26
HTTP Endpoint 26
Inbound Endpoint 25
JMS Endpoint 26
Outbound Endpoint 25
VM Endpoint 26

407

Enterprise Service Bus. See ESB
ESB

about 8
applications, connecting to 9
features 8
functionality 8

evaluator expressions
bean 260
exception type 260
groovy 260
header payload type 260
regex 260
types 260
wildcard 260

exception 258, 281
Exception filter

about 29, 258
using 258
working 259

expression filter 29
expressions

about 260
JXPath expressions 261
OGNL expressions 261
XPath expressions 261

Extensible Markup Language (XML)
technology 311

external_webservice project
creating 333
deploying 337, 338
HTTP Endpoint, configuring 334
SOAP component, configuring 335

external web services
calling, SOAP component used 329-336

F
File Endpoint

about 25, 164
used, for implementing File Transport channel

164-181
File Transport channel

implementing, File Endpoint used 164-181
filtering

performing 258
filter reference 30

filters
about 13, 29
custom filter 29
exception filter 29
expression filter 29
filter reference 30
message property filter 29
payload filter 30
regular expression filter 30
wildcard filter 30

flow 13
Flow Controls 339
Flow Reference

about 57
used, for executing another flow 57-68

FlowRef project
creating 58
deploying 69, 71
Flow Reference component, configuring 66
HTTP Endpoint, configuring 61, 62
Java component, configuring 63, 67

FTP Endpoint 25, 134

G
general components 26
General tab, Servlet Endpoint 198
Generic Endpoint

about 26, 133
configuring 134, 135

getwelcomeMsg() 73
global configuration 12
Global Endpoints 12
global message processor 12
Groovy component

about 101
using 101

H
Hello World application

deploying, on Mule 31-41
HelloWorld project

creating 124
custom component, creating 124, 126
deploying 130, 132

408

HTTP Endpoint, configuring 127
Java component, configuring 128, 129

hiMule() method 86
HTTP Endpoint

about 26, 133, 135
configuring 135-144

I
IMAP 145
IMAP Endpoint

about 133, 145
configuring, for e-mails retrieval 145-147

IMAP/POP3 connector 145
Inbound Endpoints 25, 113, 133
inbound properties 122, 224
incoming events or messages

handling, Message filter used 261
integration 12
Internet Message Access Protocol. See IMAP
invocation properties, message property

scopes 123

J
Java component

about 46, 100
configuring 100

Javascript component 101
Java transformer 201
JAX-WS services

creating 313-320
JDBC Endpoint

about 147
configuring 147-163
using, for database connection 147-163

JMS Endpoint 26, 133
JSON-to-Object transformer

about 202
configuring 202
database, configuring 209
Database Endpoint, configuring 210
using 202-208
working 212, 213

JUnit
about 289
used, for testing in Mule ESB 289

JUnit4TestAdapter 289
JUnit test case

deploying, in Mule 308, 310
JXPath expressions 261

L
Logger component 27
Logic Filter project

creating 250
deploying 256, 257
HTTP Endpoint, configuring 251
Java component, configuring 255
Logic filter, configuring 253

logic filters
And filter 249
configuring 249
Or filter 249
Payload Type filter 249
Wildcard filter 249

M
Message filter

about 261
configuring 262
Message Property window 263
used, for handling incoming events or

messages 261
working 263

message processor
about 114
example 114
one-way exchange pattern 112
request-response pattern 112

Message Properties transformer
about 223
configuring 224, 225
inbound properties 224
outbound properties 224
session properties, adding 225

message property filter 29
message property scopes

about 122
inbound properties 122
invocation properties 123
outbound properties 123
session properties 123

409

Message Property window
inbound 263
invocation 263
outbound 263
session 263

messages
filtering 260
sending, AJAX Endpoint used 182-197

message sources
about 112
custom message sources 114
Inbound Endpoints 113
polls 113
using 112

Messaging Exception Strategies
about 282
Catch Exception Strategy 282
Choice Exception Strategy 284
Default Exception Strategy 282
Reference Exception Strategy 286
Rollback Exception Strategy 288
types 282

models 13
Mule

logic filters, configuring 249
web services, proxying 312

Mule components
about 23
configuring 24
Java component 23
palette components 24
simple component 23
types 23

Mule configuration
about 11
agent 12
connectors 12
Endpoints 13
filters 13
flow 13
global configuration 12
Global Endpoints 12
global message processor 12
integration 12
model 13
service component development 11
service orchestration 11

services 13
Spring beans 12
transformer 13

Mule configuration, in Eclipse
performing 19, 20

muleCookBook method 59
Mule ESB

about 7, 10
advantages 10
architecture 11
capabilities 10
testing, with JUnit 289
working 11

Mule Expression Language (MEL) 52
Mule IDE

setting up 13-17
Mule IDE Standalone 3.3

downloading 15
Mule server

Hello World application, deploying 31-38
MuleSoft

URL 13
Mule Studio

about 20
components 21
downloading 20
environment variable, setting 21
installing 20

O
Object-to-Xml transformer 28
Object-to-XML transformer

about 214
configuring 214-221
working 222

OGNL expressions 261
Or filter 249
Outbound Endpoint 25, 133
outbound properties 123, 224

P
package tree

about 21
graphical flow, creating 21

palette 22

410

palette components
about 24
Cloud Connectors 30
components 26
Endpoints 25
filters 29
routers 30
transformers 28

payload filter 30
polls 113
POP3 145
POP3 Endpoint 145
Post Office Protocol Version 3. See POP3
protocol binding 312, 313
Python component

about 100
using 100

R
Reference Exception Strategy

about 286
configuring 286, 287

References tab, Servlet Endpoint 200
RegEx filter 260
regular expression filter 30
Representational State Transfer. See REST
REST

about 322
used, for publishing RESTful web service 72

restbasedwebservice project
about 323
deploying 328
HTTP Endpoint, configuring 325
Logger component, configuring 326
REST component, configuring 327

REST component
about 27
used, for creating web service 322-325

RESTful web service
about 72
creating 73
publishing, REST used 72

REST project
creating 73
deploying 81-83
flow, creating 75, 76

Logger component, configuring 80
RESTful web service, creating 77, 78

Rollback Exception Strategy
configuring 288
working 289

routers
about 30
all router 30
choice router 30

Ruby component 100

S
Salesforce Cloud Connector 31
sayHi() method 124
Script component

about 26, 100
using 100

Script project
creating 102
deploying 109-112
Groovy component, configuring 107, 108
HTTP Endpoint, configuring 104
Logger component, configuring 105, 106

Script Transformer 28
service component development 11
service orchestration 11
services 13
Servlet Endpoint

Advanced tab 199
configuring 198, 200
Documentation tab 197
General tab 198
References tab 200
used, for listening to events from servlet

requests 197, 199
session properties, message property

scopes 123
Singleton object 100
SMTP Endpoint 133
SOAP

used, for publishing SOAP web service 84
SOAP-based web service

creating 84
SOAP component 27
soap-jax-ws project

creating 314

411

deploying 321, 322
HTTP Endpoint, configuring 317
Java component, configuring 319
SOAP component, configuring 318

SOAP project
creating 85
deploying 94-97
flow, creating 88-91
HTTP Endpoint, configuring 89
Java component, configuring 92, 93
SOAP component, configuring 90

SOAP web service
publishing, SOAP used 84

Splitter 339, 361
Splitter Flow Control

configuring 362-369
splitter.mflow file 363
Spring beans 12
Spring object 100
STDIO component 114
StudioConnector project

creating 115, 118
deploying 121, 122

T
Transformer Ref 28
transformers

about 13, 28, 201
custom transformer 28
Object-to-Xml transformer 28
Script transformer 28
Transformer Ref 28
Xml-to-Object Transformer 29
XSLT Transformer 29

transformers, types
Append String 201
DataMapper 201

Java 201
XSLT 201

Twitter Cloud Connector
about 31, 371
configuring 372-378
Expression transformer, configuring 379, 380
working 381-383

V
Variable transformer 223, 226
VM Endpoint 26, 134

W
web service

about 311
creating, REST component used 322-327
proxying 312
types 312

web service components 26
Web Services Description Language 97
Wildcard filter

about 30, 264
configuring 264

Wildcard Filter project
creating 265-267
deploying 272
HTTP Endpoint, configuring 269
Java transformer, configuring 271
Wildcard filter, configuring 270

WS-Proxy web service 312
WS-Security 312

X
Xml-to-Object Transformer 29
XPath expressions 261
XSLT Transformer 29

Thank you for buying

Mule ESB Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source
JBoss Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations

2. Learn how services can communicate with each
other and the benefits to be gained from loose
coupling

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples

SOA Made Simple
ISBN: 978-1-84968-416-3 Paperback: 292 pages

Discover the true meaning behind the buzzword that is
'Service Oriented Architecture'

1. Get to grips with clear definitions of 'Service' and
'Architecture' to understand the full SOA picture

2. Read about SOA in simple terms from Oracle ACE
Directors for SOA and Middleware in this book and
e-book

3. A concise, no-nonsense guide to demystifying
Service Oriented Architecture

Please check www.PacktPub.com for information on our titles

Drools JBoss Rules 5.X
Developer's Guide
ISBN: 978-1-78216-126-4 Paperback: 338 pages

Define and execute your business rules with Drools

1. Learn the power of Drools as a platform for writing
your business rules

2. Integrate Drools into your Java business
application using the Spring framework

3. Through real-world examples and solutions, you
will be taken from novice to expert

JBoss Weld CDI for Java
Platform
ISBN: 978-1-78216-018-2 Paperback: 122 pages

Learn CDI concepts and develop modern web
applications using JBoss Weld

1. Learn about dependency injection with CDI

2. Install JBoss Weld in your favorite container

3. Develop your own extension to CDI

4. Decouple code with CDI events

5. Communicate between CDI beans and AngularJS

Please check www.PacktPub.com for information on our titles

	Cover�
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started with Mule ESB
	Introduction
	Understanding Mule concepts and terminologies
	Setting up the Mule IDE
	Installing Mule Studio
	Configuring Mule components
	Deploying your first Hello World application on the Mule server

	chapter 2:Working with Components and Patterns
	Introduction
	Configuring the component
	Using the Echo component to display the message payload
	Using a Flow Reference component to synchronously execute another flow
	Publishing a RESTful web service using the REST component
	Publishing a SOAP web service using the SOAP component

	Chapter 3:Using Message Property, Processors, and Sources
	Introduction
	Understanding components
	Understanding message sources
	Using message processors to control message flow
	Understanding message property scopes

	Chapter 4:Endpoints
	Introduction
	Configuring the Generic Endpoint
	Configuring the HTTP Endpoint
	Configuring the IMAP Endpoint to retrieve e-mails
	Using the JDBC Endpoint to connect to the database
	Implementing the File Transport channel using the File Endpoint
	Sending messages asynchronously using the AJAX Endpoint
	Using the Servlet Endpoint to listen to events or messages from servlet requests

	Chapter 5:Transformers
	Introduction
	Configuring the JSON-to-Object transformer
	Configuring the Object-to-XML transformer
	Configuring the Message and Variable transformers
	Creating the custom transformer
	Understanding the DataMapper transformer

	Chapter 6:Configuring Filters
	Introduction
	Configuring the Logic filters – And/Or/Not
	Performing filtering according to the exception type
	Filtering messages by evaluating expressions
	Handling incoming events or messages using the Message filter
	Configuring the Wildcard filter
	Creating a Custom filter

	Chapter 7:Handling Exceptions and Testing
	Introduction
	Understanding Messaging Exception Strategies
	Configuring the Choice Exception Strategy
	Configuring the Reference Exception Strategy
	Configuring the Rollback Exception Strategy
	Testing with JUnit in Mule ESB

	Chapter 8:Introducing Web Services
	Introduction
	Proxying web services
	Creating JAX-WS services
	Creating web services using the REST component
	Calling external web services using the SOAP component

	Chapter 9:Understanding Flows, Routers, and Services
	Introduction
	Configuring the All Router/Flow Control
	Configuring the Choice Router/Flow Control
	Configuring the Splitter Flow Control

	Chapter 10:Configuring Cloud Connectors
	Introduction
	Configuring the Twitter Cloud Connector
	Configuring the DropBoxIntegration folder

	Index

