
www.allitebooks.com

http://www.allitebooks.org

OAuth 2.0 Identity and Access
Management Patterns

A practical hands-on guide to implementing secure API
authorization flow scenarios with OAuth 2.0

Martin Spasovski

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OAuth 2.0 Identity and Access Management Patterns

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78328-559-4

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Martin Spasovski

Reviewers
Charles Bihis

Max Countryman

Acquisition Editor
Vinay Argekar

Commissioning Editor
Mohammed Fahad

Technical Editors
Rosmy George

Arwa Manasawala

Project Coordinator
Amigya Khurana

Akash Poojary

Proofreader
Lawrence A. Herman

Indexer
Mehreen Deshmukh

Graphics
Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Martin Spasovski is a software development professional involved in developing
JVM-based enterprise solutions. He has been working with various back-end
technologies and architectures, and with various front-end technologies (from RCP
to modern JavaScript web applications), and knows how to integrate both sides well.
He mostly likes to work in the domain of data processing, software optimization,
and providing custom solutions.

He is a vocal open source and open standards supporter, and a member of the local
Java User Group named JUGMK, and likes to research on emerging technologies and
give internal presentations at Seavus, the company that he works for.

He can be found at http://thisismartin.com, where his blog, contact info,
and links to public project repositories can be found.

I'd like to thank the team at Packt Publishing for giving me the
opportunity to write this book and for their guidance. I'd also like to
thank my close ones (Biljana, Stefan, and my parents) for the support
given and enthusiasm shared.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Charles Bihis is a technologist and entrepreneur. He earned his degree in
computer science from The University of British Columbia, where he specialized
in software engineering. He is known for his open source contributions as well
as his work in the identity space. His areas of interest include algorithms and
data structures, graph theory, and distributed systems. He is currently working
as a Computer Scientist at Adobe Systems where he focuses on solving the latest
problems in the identity and security space. You can reach him through his website
at www.whoischarles.com.

Max Countryman is a polyglot, full-stack programmer with extensive experience
in building highly-available web server applications. He is an active member of
the Python and Clojure communities and spends his free time working on open
source projects.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Need for OAuth 2.0 7

Why OAuth 2.0? 8
Benefits of OAuth 2.0 9

API security 9
Internal enterprise applications 10
Service integration and authorization delegation 10
Federated identity 11
Easier service monitoring 11

Summary 11
Chapter 2: Terms You Need To Know 13

Roles 13
Resource owner 13
Authorization server 14
Resource server 14
Client 15

Authorization flow 15
Abstract example 15
OAuth 2.0 grant flows 16

Tokens 17
Access token 17
Refresh token 18

Clients and endpoints 19
Client types and profiles 19
Endpoints 20

Access scope 20
Summary 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: First Step for Your Application 23
Client registration 23
Summary 28

Chapter 4: OAuth for Web Server Applications 29
Authorization code grant 29

Requesting the authorization code 31
Making the request 31
Successful authorization 33
Authorization error 33

Requesting the access token 34
Making the request 35
Successful response 35

Practical example 36
Summary 43

Chapter 5: OAuth for Client-side Applications 45
Implicit grant 45
Requesting authorization 47

Successful authorization 48
Authorization error 49

Practical example 50
Summary 54

Chapter 6: OAuth for Mobile Applications 55
Custom URL scheme 55

Android 56
iOS 57

Implicit grant example 57
Requesting authorization 58
Successful authorization 58
Authorization error 58

Summary 59
Chapter 7: OAuth for Trusted Applications 61

Resource owner password credentials grant 62
Requesting authorization 63
Successful authorization 64
Authorization error 65

Client credentials grant 66
Requesting authorization 67
Successful authorization 68
Authorization error 68

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Practical example 68
Resource owner password credentials grant 72
Client credentials grant 74

Summary 76
Chapter 8: Security Considerations 77

What is there to be protected 77
OAuth 2.0 security features 78

Scope 78
Token lifetime 79
The refresh token 79
Authorization code 80
Redirect URI 80
State 81
Client identifier 82

Security considerations 82
Use TLS 82
Ensure web server application protection 84
Ensure mobile and desktop application protection 85
Utilize the state parameter 86
Use refresh tokens when available 86
Request the needed scope only 87

Summary 87
Chapter 9: Additional Security with SAML 89

SAML (2.0) 89
OAuth 2.0 assertions 90

Other assertion based specifications 91
OAuth 2.0 SAML bearer assertion grant flow 91

Preparing assertion 92
Requesting authorization 94
Successful authorization 94
Authorization error 95

OAuth 2.0 SAML assertions for client authentication 95
Requesting the access token 96
Authentication error 96

Summary 97
Chapter 10: Common Tools and Libraries 99

Tools 99
OAuth 2.0 Playground 99
RESTClient 100
Postman 100

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Libraries 100
C# 100
Clojure 101
Go 101
Java 101
JavaScript 101
Objective-C 102
Perl 102
PHP 102
Python 103
Ruby 103
Scala 103

Summary 103
Appendix: OAuth 2.0 Resources 105

OAuth 2.0 specification 105
OAuth WG mailing list 105
OAuth 2.0 Threat Model and Security Considerations 106
The OAuth 2.0 Authorization
Framework - Bearer Token Usage 106
Assertion Framework for OAuth 2.0 Client Authentication
and Authorization Grants 106
SAML 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants 107
OAuth website 107

Index 109

Preface
OAuth 2.0 has become the most widely used authorization framework. From
securing service APIs to providing an easy to use sign-in mechanism, it provides
a protection layer for the assets of the users so that various third party applications
cannot have direct access to them. From service providers such as Amazon and
social media platforms such as Facebook and Twitter to various internal enterprise
solutions, OAuth 2.0 is often the authorization standard of choice.

OAuth 2.0 Identity and Access Management Patterns is a practical and informative book
that will help you learn what OAuth 2.0 is, how to handle and implement various
authorization flows for the chosen type of application, which security precautions
to take into consideration, and so on.

You will explore each type of application such as web, client side, desktop, and so
called trusted applications, and will see how to implement various authorization
grant flows for each type of application. You will explore practical code examples
that are executable as standalone applications running on top of Spring MVC. You
will learn about the security features that are part of OAuth 2.0, what information
that is transmitted during the execution of a flow is to be protected, and which
precautions can be made. You will also learn how to use SAML 2.0 assertions in
order to provide additional security. In the end, you will also learn which tools and
libraries are there for the popular programming languages that provide support for
integration with OAuth 2.0.

What this book covers
Chapter 1, Need for OAuth 2.0, introduces OAuth 2.0, what purpose it has, why was it
created, and what the benefits of its use are.

Chapter 2, Terms You Need to Know, explains key terminology used and defined in the
OAuth 2.0 specification.

Preface

[2]

Chapter 3, First Step for Your Application, covers client registration, a mandatory step
that has to be done when developing an OAuth client application.

Chapter 4, OAuth for Web Server Applications, explains what web server applications
are and how OAuth 2.0 is used in them by applying the authorization code grant. The
grant is covered in detail and a practical code example of a client application is made.

Chapter 5, OAuth for Client-side Applications, explains what client-side applications
are and how OAuth 2.0 is used in them by applying the implicit grant. The grant is
covered in detail and a practical code example of a client application is made.

Chapter 6, OAuth for Mobile Applications, explains how OAuth 2.0 is used in mobile
applications, which OAuth grants can be used and in which way, and gives out
instructions for Android and iOS.

Chapter 7, OAuth for Trusted Applications, explains what trusted applications are and
covers the Resource Owner Password Credentials grant and the client credentials
grant in detail. Additionally, it explains how to perform authorization requests
for these grants together with practical code examples.

Chapter 8, Security Considerations, explains what data is to be protected during an
execution of a grant flow, what features OAuth 2.0 contains regarding information
security, and which precautions should be taken into consideration.

Chapter 9, Additional Security with SAML, explains how to use SAML 2.0 assertions as
a means of providing additional security when doing client authentication or when
requesting an access token with OAuth 2.0.

Chapter 10, Common Tools and Libraries, covers the tools and libraries available for
application developers.

Appendix, OAuth 2.0 Resources, provides resources useful for those interested in
further expanding their knowledge in OAuth 2.0 or getting involved in future
specification development.

What you need for this book
The latest Java JDK 7 and Apache Maven 3.0 or above are required for executing
the code examples. The latest Java JDK 6 will execute the examples just fine, but
an update to the newest one is recommended because updates for this version are
no longer provided. Another important thing to mention is that, when installing
the JDK, the Java browser plugin is not required and doesn't have to be installed.
Additionally, a source code editor (for example, Notepad++, Geany, jEdit, or any
other) for editing and browsing the examples is needed.

Preface

[3]

Who this book is for
This book is for software application developers, software architects, and enthusiasts
in the OAuth 2.0 framework. It is for those that want to understand the inner workings
of OAuth 2.0 and/or need to implement an authorization flow for an application.
Additionally, it is for those that want to know how to make OAuth 2.0 client
applications more secure.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
path names, dummy URLs, user input, and Twitter handles are shown as follows:
"Some may return a userId parameter, representing some internal identifier for the
user that has authorized the request."

A block of code is set as follows:

{
 "access_token":"exampleAccessTokenValue",
 "expires_in":3600,
 "scope":"exampleScopeValue",
 "state":"exampleStateValue",
 "refresh_token":"exampleRefreshTokenValue"
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "What we
see in the previous screenshot are the client ID and client secret, named as App ID
and App Secret."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Need for OAuth 2.0
OAuth 2.0 can be perceived as a protective layer for a given service, so that the
client applications that are built for the service can have a standardized method
of requesting the protected resources that belong to a user who uses the system,
or resources that belong to the service in general. These resources may vary from
various data that the user has stored, to various application programming interface
(API) methods for system maintenance and more. The client applications, in order
to obtain these protected resources, make HTTP requests to the predefined service
endpoints and supply an access token— a token that says which user has approved
the client application to access its data. OAuth 2.0 is a protocol that has found its
place as an authorization framework in various services that are provided to clients,
most commonly securing RESTful APIs and web-based applications. Additionally,
when businesses want to communicate to other businesses purely by exchanging
resources via services in a B2B manner, OAuth 2.0 can be used.

The OAuth 2.0 specification is fully named "The OAuth 2.0 Authorization
Framework". It outlines the OAuth 2.0 protocol and leaves some points to
be flexible and implemented in various ways; that's why it is important
not to confuse it with a framework as in a technology stack; the term
framework here means that the protocol can be implemented in
various ways.

There are more cases, but what is evident is that OAuth 2.0 is able to handle the
authorization layer in systems, providing access to protected resources in various
scenarios, environments, and devices. Additionally, when it provides access, it does
that on behalf of someone (most commonly the resource owner)—who is identified
by the access token. But more details later.

Need for OAuth 2.0

[8]

More and more enterprises started using OAuth 1.0 and migrated to OAuth 2.0,
from payment services such as PayPal and service providers such as Amazon
to social media platforms, such as Facebook and Twitter, and various internal
enterprise solutions. It's used in various scenarios, from securing service APIs to
providing an easy-to-use sign-in mechanism and more. What we can notice is that
OAuth 2.0 is found in enterprises in two ways: they use it and/or they support it.
When enterprises consume protected resources from other service providers that are
secured with OAuth 2.0, we say they use it (they may do the same internally between
their own systems). Additionally, when enterprises secure their own services with
OAuth 2.0 or provide OAuth-based solutions so that other enterprises can secure
their services, we say they support it.

Why OAuth 2.0?
As the usage increased, developers ran into some common problems during the
implementation phase, for both service providers and client applications. In OAuth
1.0, the use of cryptographic functions are a part of the protocol, which adds to the
difficulty of the developers implementing it. Later on a security flaw was discovered,
which had to be resolved, and resulted in a revised specification named OAuth 1.0a.
Previous specifications also had a bad design decision. The use of Secure Sockets
Layer (SSL) in order to secure data transfer between the parties that are part of the
authorization flow was not mandatory, which meant sensitive information could
be exposed.

Additionally, there were use cases that were not defined and could have been
like the various authorization flows that are part of OAuth 2.0. It was evident that
improvements could be made to the original OAuth 1.0 specification.

Development took off to define a new revised specification, versioned 2.0, authored
by a bigger team and based on their experience in OAuth 1.0 implementations
and deployments, on comments from the wider community, and on the additional
OAuth 1.0 based specifications that were created meanwhile (and had the common
goal of adding additional capabilities that were needed but not available in
OAuth 1.0).

This resulted in the OAuth 2.0 authorization framework, delivering key
improvements especially by simplifying and defining more clearly the way client
developers should implement authorization against providers, in order to access
protected resources.

Chapter 1

[9]

OAuth 2.0 is not backwards compatible with 1.0, as they don't share
a lot of similarities in implementation details, and they differ in the
structure of exchanged information.

Therefore, developers that have worked with OAuth 1.0 should not make
assumptions about OAuth 2.0 without getting familiar with it in the first place.
Implementations for both 1.0 and 2.0 can co-exist for a given provider if it is chosen
to support both, due to legacy clients, for example.

Support from service providers is leaning towards OAuth 2.0. A rough estimate of
the percentage between providers that support OAuth 2.0 compared to OAuth 1.0
shows that at least 60 percent are in favor of OAuth 2.0. Some exclusively support
OAuth 2.0 (a notable example of this is Facebook with its Graph API), some support
OAuth 2.0 and announced deprecation of OAuth 1.0 (for example, Google), and
some service providers support both versions.

Benefits of OAuth 2.0
To have a glimpse into the benefits, without going technical (which is the point
in the next chapters), several scenarios follow.

API security
Imagine an enterprise providing an API for some customers (be it RESTful,
SOAP-based, and so on). In order to make it secure and to have regulated access
to it, one way is to use the so called basic authentication, where the username
and password are sent using Base64 encoding—but not encoded or hashed—and
SSL is used to secure the data transfer. The drawback here is that, in this type of
authentication, the user, alongside his username, enters and sends his password
over the wire as well.

What can be improved? In order to secure the API with OAuth 2.0, every time a
request is made to the API, instead of username and password, an access token is
sent. This token is obtained by the client application before making the requests,
and represents the user on whose behalf the client application is using the API.

Related scenario—a client application, which is using the API, starts misbehaving
and uses it improperly. All that has to be done is to revoke the access token, making
all future requests invalid (if they are made with the same token).

www.allitebooks.com

http://www.allitebooks.org

Need for OAuth 2.0

[10]

Another important thing to note is that the access token can be set on how much
access to have, which is called scope. So a client application may not have full API
access when using access tokens. In contrast, if the client application was using
username and password instead of access tokens, and these credentials were stolen,
the whole API could be misused until the hijacked account is blocked.

Internal enterprise applications
Next, imagine a company utilizing a set of enterprise applications that are used
internally. Company employees have to enter username and password manually
in every separate application. This poses a security risk in several areas; there are
several databases storing passwords, passwords are more often sent over, and so on.

With OAuth 2.0 what can be done is to have one application where the user logs in
with his username and password (the OAuth 2.0 based service provider), and in all
the other applications he is simply redirected to the provider where he logged in
and confirms that he wants to be authorized. This way, instead of storing passwords
these applications are storing the tokens for the users. The benefit is that when a
password is stolen, the user has to reset his password, compared to when a token is
stolen and it is revoked (invalidated).

Another related scenario is security in BYOD (bring your own device) companies.
If a user brings his smartphone and uses an internal company application on it, and
this smartphone gets stolen or compromised, the password of the user won't be
exposed and only the tokens that were in use will have to be invalidated. The user
can get a new device, and when he authorizes it he will get a new token.

Service integration and authorization
delegation
Imagine that a user has an account on a photo sharing service, and also on a print
ordering service.

If these two services have OAuth 2.0 integration between them, the user can authorize
the printing service to access resources from the photo sharing service on his behalf.
For example, the user would log in to the photo sharing service, then would log in to
the printing service and request the integration, after which the user is redirected back
to the photo sharing service, where he approves the authorization request.

From this point on, the printing service has an access token on behalf of this user,
and can be aware which photos the user has uploaded. And the user can access the
photos on the printing service without re-uploading them again there, but retrieved
via the photo sharing service.

Chapter 1

[11]

The best part of it is that the user hasn't given the username and password
combination to the printing service, but instead the printing service has received
an access token when it was authorized by the user.

This shows one of the key strengths of using OAuth 2.0—authorization delegation.
With OAuth 2.0 you can give access to your data/resources on some service to
another one, and easily revoke this access when you change your mind. This applies
everywhere, from internal enterprise applications to various services such as social
media applications.

Federated identity
Another key strength of OAuth 2.0 is federated identity.

With federated identity, a person's digital identity and details (such as e-mail, name
and surname, and gender) can be linked between several distinct services.

The previous two examples show this, but let's see another example; users can log
in to one OAuth 2.0 provider (for example, Facebook or LinkedIn) and then log into
other web services via this provider, without entering new username and password.
For example, a user wants to leave a comment on some blog post and needs to be
identified in order for the comment to be accepted.

This case is also known as using OAuth 2.0 for authentication. The client application
(for example, the blogging platform) is requesting only the user's information after it
got authorized and nothing more.

Easier service monitoring
Last but not least, enterprises can track and monitor more easily which access
token is making which request; based on this they can make calculations
and gain better insight about which services are used more often by its clients,
and make optimizations.

Summary
In this chapter, we have learned what OAuth 2.0 is, what purpose it has, why it was
created, and what the benefits of using it are.

In the next chapter, we will define and explain all key terms that are part of the
OAuth 2.0 protocol.

Terms You Need To Know
In this chapter, we will define and explain all key terms, which will help us
go through OAuth better. This chapter is important go to through before proceeding
to later chapters.

Here, first we will learn which roles are defined in OAuth 2.0 and what is their
purpose. After that are tokens, which types there are, and what they do. We'll
also learn everything about the ones who are making the requests to the protected
resources, the clients, and at the end of this chapter we'll learn about endpoints and
access scope.

Roles
Let's take a look at the following sentence: OAuth 2.0 provides authorization so
that a client (for example, a mobile photo viewer application) can make authorized
requests to protected resources on a service (for example, user's photographs on an
online storage service) on behalf of the resource owner (for example, the user who
uploaded the photos). We'll keep this in mind as an example while learning which
roles there are in this chapter.

Resource owner
A resource owner is an entity who is capable of granting access to a protected
resource. When this entity is a person the term end user or user can be used as well.

Terms You Need To Know

[14]

Authorization server
In order for a client to access protected resources, this must first be authorized by the
resource owner.

This is what the authorization server does—it asks the user (resource owner) for
confirmation that the client should be authorized to have access. For every successful
authorization request, the server issues the client a so called 'access token.' It is
a token that the client uses to specify for which user it is making the requests.
Additionally, the issued token is specific to the authorized client application, so it can
be said that the access token represents the relation between the authorization server,
the client application, and the resource owner. Moreover, some other parameters are
sent along with the access token, and we will check them out later in this chapter.

Resource server
A resource server is the one who serves the protected resources, which are to be
accessed by making authorized requests from a client application.

Client

Resource
owner

(1) Authorization request

(2) Authorization grant

(3) Authorization grant

(4) Access token

(5) Access token

(6) Protected resource

Authorization
server

Resource
server

How the authorization and resource servers communicate is outside the scope of
the OAuth 2.0 specification and therefore there are different implementations in
the real world. They can be on separate servers, they can be on the same server,
one authorization server can be used for several resource servers, and so on.

Chapter 2

[15]

Client
A client is an application that makes requests to protected resources on the resource
server, on behalf of the resource owner (the user).

A client application can be a web application, desktop application, mobile
application, and so on. The OAuth 2.0 specification does not impose limitations
regarding the environment on which the client application should run.

From OAuth 2.0 's point of view it's important to associate the term
client with the client application, and the term user with the resource
owner, and not to mix them (here they are not interchangeable).

Authorization flow
Next we'll cover an abstract example of the authorization flow and describe in brief
the actual ones that are defined in OAuth 2.0.

Abstract example
Now that we know the roles, we can recall the previous diagram, which shows
an abstract example of the way a client gets authorized, gets the token, and makes
requests to the protected resources on behalf of the user.

The first and the second step specify the interaction between the client and the
resource owner:

• The client makes a request to the owner for authorization to his
protected resources

• The owner approves the request (access granted) and the client receives an
Authorization grant—credentialed data containing information about the
owner's authorization

Generally the client does not ask the owner directly, and this is done with the
assistance of the authorization server.

Terms You Need To Know

[16]

The third and the fourth step specifies the interaction between the client and the
authorization server:

• The client supplies the authorization grant he got previously to the
authorization server, so that he'll get an access token in response

• The authorization server checks the authorization grant and if it is valid
the authorization server gives the client an access token

It is worth mentioning that the client also has to successfully authenticate with the
server. So, in order to get an access token, the server not only checks the validity of
the authorization grant but he first identifies who the client is.

This process of getting an authorization grant is discussed in detail later in this
book. In this chapter we will just have a brief look at the four 'grant types' defined
in the OAuth 2.0 specification—grant flow scenarios that cover various scenarios for
desktop clients, web clients, mobile clients, and so on.

The last two steps, five and six, specify the interaction between the client and the
resource server:

• The client makes a request specifying which protected resource he wants to
access, and supplies the access token in order to pass security authentication

• The server checks if the access token is valid and fulfills the request if
it is

OAuth 2.0 grant flows
One of the major improvements in OAuth 2.0 compared to OAuth 1.0 is the
definition of various grant flows. Each flow has its use case and is recommended
in some type of scenario, so let's go through a brief overview of them:

• Authorization code grant flow: This is used for web server applications
in general and it's the most frequently used grant

• Implicit grant flow: This is used for client applications that are not capable of
keeping the credentials secure and it is frequently used for applications that
need read-only access to some data

• Resource owner password credentials grant flow: This is the only grant flow
where the actual username and password from the resource owner (the user)
are sent in exchange for an access token and it is frequently used in scenarios
where an already existing solution is migrating over to OAuth 2.0

Chapter 2

[17]

• Client credentials grant flow: This is used for client applications that want to
request access to some service provider on behalf of themselves and not on
behalf of some end user, and it is useful when in need to access some service
APIs that are 'userless' (for example, for maintenance, statistics, and so on)

Tokens
There are two types of tokens in OAuth 2.0, the access token and the refresh token.
The access token is the one that is used by the client application when making the
requests to protected resources, and the refresh token is the one that is used to renew
the access token when it is expired.

Access token
The first thing a client must do in order to access protected resources is to obtain an
access token. Or in other words, a client application first has to be authorized by
the user.

When the user authorizes an application, in the end the authorization server gives
the client an access token. This token is associated with the user and is used as
authorization credentials when accessing the protected resources on a server, and
that's why we're saying that a request is made on behalf of the user.

Let's see an example of an access token response in JSON format that a client may get
from a successful authorization request:

{
 "access_token":"exampleAccessTokenValue",
 "expires_in":3600,
 "scope":"exampleScopeValue",
 "state":"exampleStateValue",
 "refresh_token":"exampleRefreshTokenValue"
}

The access token response contains the following fields/parameters:

• access_token: This is a mandatory parameter, defined by a string of
characters, representing an authorization on behalf of the user who
authorized the request, issued to the client application.

• expires_in: This is a mandatory parameter that tells the client application
for how much time the issued token is valid. This numeric value is in
seconds, so in our example this token is valid for one hour.

Terms You Need To Know

[18]

• scope: This is an optional parameter defining which parts (or types) of
protected resources can be accessed on behalf of the user. More information
on access scope is provided later in this chapter.

• state: This is an optional parameter, used by the client for its own purposes,
most commonly for security checks. The state value that the client application
sends during the request will be the same as the one it will receive as part
of the access token response, so this parameter can be used for defending
against man in the middle attacks.

• refresh_token: This parameter contains a string of characters that are to be
used as a parameter when requesting a new token before its expiry. It is an
optional parameter and some service providers don't use it.

Various other parameters may be included, too, and they are specific to the service
providers that included them and serve some specific business logic. For example,
some may return a userId parameter, representing some internal identifier for the
user that has authorized the request.

One of the most important fields for a client application is access_token. This
information is used when making the requests to protected resources. After that
comes expires_in and refresh_token. Before the token expires, instead of going
through the whole authorization flow, the client can get a new access token in a more
transparent and simpler way by using the data from these fields. This way the user
won't be bothered with authorization request dialogs again and again every time the
access token expires.

It is important to store the access_token and the refresh_token in a secure way in
the client application database, and it is a good practice to store and utilize properly
all the fields that come with the access token response.

The token response and other data that is exchanged in the OAuth 2.0
flow can be transferred in various data formats; the most commonly
used formats are JSON and XML.

Refresh token
Access tokens should always expire; it's a rare case to have an access token that has
an infinite lifetime, which is also considered a bad security practice. When a given
access token used by the client has expired, the next time the client tries to use it to
access some protected resources, it will get an error from the server.

The client uses the refresh token to get a new access token, by contacting the
authorization server and supplying the data from the refresh_token field. If this
data is valid, the authorization server returns a new access token response to the client.

Chapter 2

[19]

Clients and endpoints
Let's recall the abstract flow diagram, step three: the client supplies the authorization
grant to the authorization server in order to get an access token, but in order to do
that the client also has to authenticate successfully.

For this to work, the client has to register with the authorization server. This
registration is outside of the flow and is done separately. Also this registration is not
defined in OAuth 2.0 and can be done in various ways. Most commonly the client
developer registers the client on some web form and uses the data retrieved from there
in order to do the authentication between the client and the authorization server, but
more details on this is provided in the next chapter.

Client types and profiles
When registering the client, the authorization server has to know which type of client
is being registered. There are two types:

• Confidential client: These type of client applications are capable of keeping
the confidentiality of the credentials secure, for example, applications
running on servers in secure/restricted environments

• Public client: These type of client applications are not capable of keeping the
credentials secure, for example, pure JavaScript applications that run directly
in the browser or mobile applications where the application logic is in
a WebView

Additionally, clients are separated in three general profiles:

• Web application: This is considered to be a confidential client application, and
it's meant to be a web application where data is stored securely on the server
side of the application and cannot be accessed on the public/client side.

• User-agent-based application: This is an application that is first downloaded
and then executed in a user-agent environment (for example, in a web
browser). Since all data is downloaded, including credentials, this is a
public application.

• Native application: This is also a public client. Applications that are installed
on a device, which is used by the resource owner belong to this profile.

www.allitebooks.com

http://www.allitebooks.org

Terms You Need To Know

[20]

Endpoints
An endpoint is an HTTP URL string that defines the address which should be used
in a certain request by an entity capable of making requests.

In OAuth 2.0 there are three important endpoints.

Two of them are server endpoints:

• Authorization endpoint: The client uses this endpoint in order to be
authorized from the resource owner. If successful, the client obtains an
authorization grant. There are exceptions to this behavior, like in the implicit
grant flow, where the client obtains an access token from this endpoint.

• Token endpoint: The client uses this endpoint in order to supply the
authorization grant and get an access token in return.

And one is a client endpoint:

• Redirection (callback) endpoint: The authorization server uses this endpoint
in order to return data with authorization credentials to the client

The server endpoints are usually specified in the code of the client application, and the
client endpoint is specified when registering the client with the authorization server.

In the next chapter we'll see practical examples of client registration.

Access scope
Scope is a parameter that can be used when a client makes a request to the
authorization or token endpoints.

With this parameter the client can specify which parts (or types) of protected
resources it wants to access on behalf of the owner. With scopes the client limits
itself from all the resources that are available and this is a good security practice.
When the request is processed, the authorization server validates the scope that is
requested, and if it's invalid the client application won't get an access token. It is also
very common for service providers to allow end users to review which scopes will be
allowed upon granting the request.

Scope is an optional parameter and it's up to the implementation scenario what values
it will have. There are some services such as the ones from Google that demand that
scope is a mandatory parameter when making requests to their endpoints. Here, scope
is used as a way to tell Google two things: which API services are requested and what
is the degree of access requested for each one of them.

Chapter 2

[21]

When developing a client application against a third party service
to check which scopes are available, always search for developer
documentation and guides supplied.

In services where scope is optional, if the client doesn't specify one, the OAuth 2.0
specification mandates that a default scope should be used. For every token there is
always a scope in which it is set to operate, whether or not it was specified.

Summary
In this chapter, we have learned about key terms that are defined and used in OAuth
2.0, preparing ourselves to be able to understand with greater ease the following
chapters, where the authorization flows are explained in detail.

In the next chapter, we will go through all the necessary steps that are common
when developing a client application and we will go through the so called 'client
registration' process.

First Step for Your
Application

This chapter will help us to take the necessary steps that are common when
developing a client application.

As mentioned, client applications can be web, mobile, desktop, or any other type,
and use OAuth 2.0 for making requests to protected resources (files, data, or other
services that an API may provide) on a given service provider, on behalf of the
resource owner, most commonly the user.

OAuth 2.0 has significantly improved from OAuth 1.0 regarding this area—the focus
of all the different types of applications and defining authorization flows for them.

Client registration
When developing an application that makes requests to protected resources on
some service provider, and if this service uses OAuth 2.0 for authorization, then
the first thing the client developer must do is to register the application at the given
service provider.

Usually this happens on some web interface where the developer inserts the
requested data, as name and website of the client application, uploads an image
to serve as the application logo, and specifies the redirection (also called
callback) endpoint.

To make it clearer, we'll go through several examples of client registration.
First, let's see how it is done on Facebook. Let's go to the following URL after
we log in to Facebook: https://developers.facebook.com/apps.

https://developers.facebook.com/apps

First Step for Your Application

[24]

Select Create New App, as shown in the following screenshot:

We fill out the initial form and next we are greeted with more details and settings,
as shown in the following screenshot:

What we see in the previous screenshot are the client ID and client secret,
named App ID and App Secret.

Chapter 3

[25]

Next, Facebook offers several accessible settings for different types of applications.
For example, on the same page various options are given, as shown in the
following screenshot:

In the case of choosing Mobile Web, the parameter named Mobile Site URL is
actually the callback URL.

The callback URL is optional, and if the client doesn't override this endpoint with the
redirect_uri parameter when making the authorization request, the one specified
in the registration is used as default. This is the same for all service providers when
registering and using OAuth 2.0. We'll cover this parameter in later chapters; for now
it's good enough to be aware of the callback URL.

When registering applications, after successfully filling out the data,
every registration interface should provide the developer with the
information that is needed to him or her, that is, the URL endpoints,
unique client ID, and client secret for his/her application.

First Step for Your Application

[26]

The client ID is used by the client application to identify itself when attempting
to retrieve an access token. This information is public and anyone can find out a
client ID for a given application, mostly because it's used as a parameter in the
URL endpoints when making requests to the server.

On the other hand, the client secret is private information and it must remain
confidential to the client application. If an application cannot keep this confidentiality
(for example, pure JavaScript applications that run in the browser), then it is
considered that it is a public client application and should omit this parameter
when making requests to the server.

We can notice that the endpoints provided by Facebook are to be used over
HTTPS. It is a must that the callback endpoint use HTTPS as well; the OAuth 2.0
specification requires the use of transport layer security. This means that Transport
Layer Security (TLS) is used as a security mechanism and this way the tokens that
are exchanged between the client application and the server are protected
from interception.

Next, we'll explore one more example of client registration to realize that some
services may require more information from the client developer and may offer
some configuration parameters. This example in particular is LinkedIn, as shown
in the following screenshot:

Chapter 3

[27]

In the previous screenshot, the first two sections of the registration are shown, which
require the client developer to enter roughly the same data as in the previous example
with Facebook. Additionally, it's required that the developer enters a company name
and names the purpose of the application. These fields have nothing to do with the
OAuth 2.0 specification, but the service provider (in this case LinkedIn) decided that
they are important and required.

The most interesting part of the registration is the following section:

As shown in the following screenshot, the client developer can define the default
scope of the client application. With this the developer explicitly says which type
of information and access the client application can be given by the service
(in this case the LinkedIn API).

For example, if the application that the developer is making only needs to access
the user's basic profile (to check out name, surname, and so on), then the developer
would require only the r_basicprofile scope. If the application additionally needs
to be able to access and send messages on behalf of the user, then the developer
would tick the checkbox (in this case w_messages) for that scope too.

Defining the really needed scope is always recommended, instead of ticking all
the boxes and marking all the scopes available as required.

LinkedIn supports both OAuth 2.0 and OAuth 1.0; that's why
there are some optional parameters that we are not filling in when
registering. These are for legacy applications.

First Step for Your Application

[28]

Now that we have set up an application on the service provider, and with that
successfully registered the client, we can move on to the next step—implementing
OAuth 2.0 in a particular type of application.

Summary
In this chapter, we went through the necessary steps that a client developer must go
through before implementing one of the authorization flows, that is, registering the
application on an authorization server. We went through two examples and learned
which information authorization servers require, and which data is useful and
needed by us, the client developers.

In the next chapter, we will see how OAuth 2.0 is used in web server applications,
learn of the authorization code grant, which is used in that scenario, and go through
a practical example.

OAuth for Web Server
Applications

Have you ever signed into a website via Facebook, LinkedIn, or Google? For
example, you're visiting a news website and you wanted to leave a comment on an
article, and instead of creating an account there you just signed in by clicking on a
button and choosing "Approve" in Facebook?

This is just one of the many examples where OAuth 2.0 is successfully and massively
used, and this kind of flow—the redirecting between the website and Facebook and
back—is based on the authorization code grant, probably the most frequently used
OAuth 2.0 grant.

In the OAuth 2.0 authorization framework specification (RFC
6749), this grant is defined in Section 4.1.

Authorization code grant
We can notice the following characteristics in the authorization code grant:

• The authorization code grant is used for confidential clients
• It uses redirection, so it is a redirection-based flow, between the client

and the authorization service
• It requires the end user's approval for authorization, for example,

by displaying a message in a web browser

What is a confidential client? Refer to Chapter 2, Terms You Need
To Know, where we covered the OAuth 2.0 terminology.

www.allitebooks.com

http://www.allitebooks.org

OAuth for Web Server Applications

[30]

The authorization code grant is used to obtain access tokens and optionally refresh
tokens. Access tokens are used to perform API requests on behalf of the user; refresh
tokens are used to request new access tokens when needed and without the trouble
to redo the whole grant flow and end user approval.

The following diagram shows a graphical representation of this flow, taken from the
OAuth 2.0 specification:

User agent

Resource
owner

(2
)

(1
)

Client
application

Authorization
server

(4) Authorization code and redirection URI

(5) Access token with optional refresh token

(3
)

(1) Client identifier and redirection URI

(2) User authenticates

(3) Authorization code

Let's go step-by-step and see how a client gets the authorization and retrieves an
access token on behalf of the user:

1. First task is the initiation of the flow where the Client application is
redirecting the User agent (for example, the browser) to the authorization
endpoint.

2. Then the Authorization server authenticates the Resource owner (for
example, you have to be logged into Facebook before you approve an
authorization) and the owner chooses whether to authorize the request or
not. Most commonly this happens in a browser window and this is the only
step of the flow that is visible to the end user.

3. If the user authorizes the request, then he is redirected using the previously
supplied redirection endpoint, from which the Client application gets the
authorization code for that user.

4. Using this authorization code, the client makes a request for an access token
on the specified server endpoint. Additionally, the client authenticates
during the request and includes the redirection endpoint.

Chapter 4

[31]

5. The Authorization server authenticates the client, validates the authorization
code, and ensures that the redirection endpoints supplied in step 4 and 2
match each other. If valid, the Authorization server responds back with
an access token (and optionally a refresh token). And when the Client
application gets the access token, it can start making requests with it to
some API on behalf of the user.

Basically, this flow can be divided into two parts, requesting authorization from the
user and obtaining an authorization code, and once authorized requesting an access
token with the authorization code. Next we'll see the authorization code grant in
detail and see which parameters are used and which data is exchanged.

It is common for the service providers that support OAuth 2.0 (the
ones that host the resource servers) to have an internal page, similar
to the application registration page that we discussed in the previous
chapter, where end users, when logged in, can review which client
applications they have given the authorization approval and revoke
access if desired.

Requesting the authorization code
Requesting authorization is all about getting the user to authorize the client
application and the authorization server to return an authorization code.

For this, first the client must be registered with the authorization server, and the
client application will use the authorization endpoint specified in the registration
details. This is covered in detail in Chapter 3, First Step for Your Application.

Making the request
The client application constructs the request address (that is, the request URL) from
the endpoint and the parameters. For example, it may have the following form:

https://api.example-service.com/oauth/authorize?response_
type=code&client_id=CLIENT_ID_EXAMPLE&redirect_uri=REDIRECT_ENDPOINT_
EXAMPLE

OAuth for Web Server Applications

[32]

There are several parameters that are part of the request URL, among which some
are mandatory and some are optional. These parameters are explained as follows:

• response_type: This is a mandatory parameter and its value must be set
to code.

• client_id: This is a mandatory parameter that is used for identification of
the client application to the authorization server. The value is set with the
data from the client registration with the authorization server.

• redirect_uri: This is an optional parameter, representing the endpoint
to which the authorization server supplies the authorization code, if the
authorization was approved by the end user.

• scope: This is an optional parameter that is used for specifying which parts
(or types) of the protected resources are to be accessed on behalf of the owner.

• state: This is an optional parameter that can be used by the client for its own
purposes, most commonly for security checks. When the authorization server
redirects back to the redirect_uri parameter with the authorization code, it
can additionally supply back the state parameter with the same value that
was used in the request. This security precaution is strongly recommended
for client developers.

The client redirects the end user to this endpoint, and the authorization server is
validating the request and the user is asked for a decision, whether to allow the
authorization request or not.

As shown in the following illustration, the user decision is displayed and conducted
in a dialog message in the browser window, where it is specified which client
application wants to be authorized and which privileges it requires (which are
defined in the request parameter scope):

Chapter 4

[33]

Lately, even some mobile applications use this flow (due to the fact that mobile
operating systems provide mechanisms for secure storage), and display an embedded
browser window in which the user logs in to the service provider and approves the
authorization request.

After the user makes a decision, the authorization server redirects using the
redirect_uri parameter. If this parameter was not supplied, the default redirect
endpoint specified in the registration of the client application is used.

Successful authorization
If the user has approved the authorization, the server will do a redirect to the
specified endpoint by the client, for example:

https://client.example.com/oauth/cb?code=AUTHORIZATION_
CODE&state=APP_STATE

From here the client application retrieves the authorization code from the code
parameter. The second supplied parameter is state and it contains the same value
that was specified in the request.

It is a security practice among authorization servers to expire authorization
codes and not keep them for more than 10 minutes. So if the client application
has retrieved the authorization code, it's advised to continue with the flow
immediately and request an access token. If the code is expired the client
application will have to go from the start of the flow again. Additionally, an
authorization code can be used only once; we cannot get multiple different
access tokens with the same authorization code.

Authorization error
If the user has denied the request or some other error has happened, such as missing
parameter, invalid client_id, or a similar error, the client application will get an
error response.

The client is redirected to the same redirect endpoint (or if this endpoint is invalid,
then to the one specified in the client registration), for example:

https://client.example.com/oauth/cb?error=access_denied&state=APP_
STATE

OAuth for Web Server Applications

[34]

The error parameter can contain one of the following values that can be helpful to
the client developer to diagnose the problem:

• invalid_request: This value appears when there's a problem with the
request, such as a missing parameter or value, a parameter included more
than once, or a parameter with a malformed name.

• unauthorized_client: This value appears when the client application was
not authorized.

• access_denied: This value appears when the end user (the resource owner)
has denied the request.

• unsupported_response_type: This value appears when the authorization
server cannot support the requested response. If in the request the
response_type parameter is set to code, this error won't happen.

• invalid_scope: This value appears when the scope specified does not exist
or is invalid.

• server_error: This value appears when an unknown error happens and the
server cannot process the response. Very similar to HTTP 500 errors in web
pages.

• temporarily_unavailable: This value appears when the authorization
server cannot process the request at the given moment.

Besides the error parameter, few other parameters can be part of the response as
well, such as:

• error_description: This is an optional parameter that may contain
a message describing what the cause of the error was

• error_uri: This is an optional parameter containing a URI to a web
document that should contain an additional description of the error

• state: This is a mandatory parameter that returns the exact value that
was specified in the request with the same-named state parameter

Proper handling of errors by the client application and friendly
notifications to the end user are good development. The user will
appreciate knowing what precisely is going on.

Requesting the access token
Once the client gets the authorization code, it can go on and request the access token.
This is done between the client application and the server and requires no interaction
from the end user.

Chapter 4

[35]

Making the request
As with the authorization request, first the client constructs the request address from
the specified endpoint and the parameters, resulting in the following example:

https://api.example-service.com/oauth/access_token?grant_
type=authorization_code&code=AUTHORIZATION_CODE&redirect_
uri=REDIRECT_EXAMPLE&client_id=ID_EXAMPLE

The request consists of the following parameters that are mandatory:

• grant_type: This parameter's value must be set to authorization_code.
• code: This is the authorization code previously retrieved from the

authorization server.
• redirect_uri: This is the parameter where the authorization server should

redirect the client and supply the access token. Additionally, if this parameter
was used in the step where the authorization code was requested from the
client, the values of redirect_uri in the authorization code request and this
one must be the same.

• client_id: This parameter's value is set as per the data from the client
registration with the authorization server, the same as in previous cases.

With the URL address prepared, the client application executes it by making
an HTTP POST request, and the authorization server makes the following
important checks:

• That the client is valid and already registered
• That the supplied authorization code is valid and not expired and belongs to

the specified client_id parameter
• That the redirect_uri callback is the same as the one specified when the

client requested the authorization code

Successful response
If all the checks are valid on the side of the authorization server, an access token
and optionally a refresh token are created and sent as a response to the HTTP
POST request.

OAuth for Web Server Applications

[36]

The response body would contain a JSON (or XML) object and it may have the
following form:

{
 "access_token":"exampleAccessTokenValue123",
 "expires_in":3600,
 "refresh_token":"exampleRefreshTokenValue123",
 "token_type":"Bearer"
}

The client application will have to process this response and store the values of
the fields in a secure environment, especially access_token and refresh_token.
After storing the data, the client can use it, for example by using access_token to
authorize calls to some API methods in the service on behalf of the user.

Practical example
Now that we have covered the authorization code grant in detail it's time to do a
practical example.

We will make an example web application that will use Dropbox as its authorization
server and will implement the authorization code grant.

The web example application is based on Java technologies, namely, Spring MVC
and JSP, and uses the Google GSON library for JSON parsing and Apache HTTP
Client for making HTTP requests. The example is concise, elegant, and explained in
detail so that developers familiar with other technologies should have no problem
understanding it. When we open the root folder of the Example Application,
important files that are part of it are as follows:

• src\main\webapp\WEB-INF\pages\home.jsp: This is the main page
displayed when the Example Application is opened

• src\main\webapp\WEB-INF\pages\error.jsp: This is the page that we
show when an error occurs

• src\main\java\example\authorization\MainController.java: This
contains the Java logic of the Example Application.

Additionally, for added clarity we will check out cURL statements of the same HTTP
requests that are performed in Java. cURL is a popular command line tool that is used
for transferring data over various protocols, and it is often used as an HTTP client.

Chapter 4

[37]

We will make an authorization request with Dropbox and, once the user has
authorized the request, we will get the access token and then make a request to the
Dropbox API in order to get the name of the user who authorized the request and
display it.

First thing we have to do is to register the client application at Dropbox. Client
registration is covered in Chapter 3, First Step for Your Application. In the case of
Dropbox, registration is done on the following URL:

https://www.dropbox.com/developers/apps

The main entry point to the application for the user is the main.jsp page, consisting
of HTML markup, where the important code is in the body tag:

<body>
 <p>Authorize</p>

 <p>Authentication code is: ${code}</p>

 <p>Access token is: ${accessToken}</p>

 <p>Your Dropbox username is: ${userName}.</p>
</body>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The values for the authEndpoint, code, accessToken, and userName variables are
separated, each in its own paragraph, and their values are supplied from the Spring
Controller, which we'll analyze next. At this moment, let's see what these variables
represent. These variables are explained as follows:

• The first paragraph contains the link for initiating authorization, where
the href attribute specifies the endpoint to which the end user is redirected.
The href attribute value is specified in the authEndpoint variable.

• In the second paragraph, the value of the authorization code is shown
with the help of the code variable. This field will be empty when the client
application is not authorized.

OAuth for Web Server Applications

[38]

• The third paragraph contains the accessToken variable that shows the value
of the access token. This field will be empty when the client application is not
authorized.

• The last paragraph contains the userName variable that will show the name
of the user of the authorized Dropbox account. This field will be empty when
the client application is not authorized. When the client application has the
access token, then it can make API requests to the server in order to retrieve
the information.

Now let's switch to the MainController controller, in which the rest of the code
is stored.

In it, first we define variables and their values for the endpoints and the client
identifier and secret:

String authEndpoint =
 "https://www.dropbox.com/1/oauth2/authorize";
String tokenEndpoint = "https://api.dropbox.com/1/oauth2/token";
String accountInfoEndpoint =
 "https://api.dropbox.com/1/account/info";

String clientId = "insertValue";
String clientSecret = "insertValue";
String redirectURI = "http://localhost:8090/cb";

When the application is opened in the browser, the following controller handles
the request:

@RequestMapping(value = "/", method = RequestMethod.GET)
public String mainPage(ModelMap model) {

 String authRequest = authEndpoint.concat("?response_type=code")
 .concat("&client_id=").concat(clientId)
 .concat("&redirect_uri=").concat(redirectURI)
 .concat("&state=1234");

 model.addAttribute("authEndpoint", authRequest);
 return "main";
}

We can see that it performs concatenations and builds the requested endpoint with the
appropriate parameters. This value is put in the model parameter and, by doing this, it
is accessible to be used as the href field in the HTML rendered in the browser. When
the user clicks on the authenticate link, the end user will be redirected to the location.

Chapter 4

[39]

The assigned state in the request is set to 1234. This serves just
as an example and in real world scenarios a securely random value
should be generated and used.

The URL endpoint that is requested when the user clicks on authenticate, when
represented as a CURL statement, has the following form:

curl -d response_type=code \
 -d client_id=insertValue \
 -d redirect_uri=http://localhost:8090/cb \
 -d state=1234
 https://www.dropbox.com/1/oauth2/authorize

Next, the user approves the authorization in Dropbox, and when redirected back
the callback controller handles the request. Because we're running the Example
Application on a local environment, we have set the callback/redirection endpoint
to http://localhost:8090/cb in the redirectURI variable. The localhost
parameter tells the browser that it should search for a locally hosted address; 8090 is
the port on which the Example Application is running, and /cb is the handle we use
for the redirection.

When the callback handler is requested by Dropbox's authorization server, the
following code handles that:

@RequestMapping(value = "/cb", method = RequestMethod.GET)
public String callbackHandler(@RequestParam(value = "code", required =
true) String code,
 ModelMap model)
 throws IOException {
 //..
}

Note the use of the @RequestParam annotation, by which we instruct Spring
Framework automatically to extract the value of the code parameter from the URL
into a String. By doing the extraction we have the value of the authorization code
available to us and we can use it in the method body.

Let's see what's going inside the method. First we add the value of the authorization
code to the model parameter, in order to display it to the user.

model.addAttribute("code", code);

www.allitebooks.com

http://www.allitebooks.org

OAuth for Web Server Applications

[40]

Next, we define the request URL in a series of concatenations of the endpoint
variable and required parameters, resulting in the tokenRequest variable. We use
this variable to perform a request for the access token, by defining a HTTP POST
request with it and executing it with the help of the HTTP client.

String tokenRequest =
 tokenEndpoint
 .concat("?grant_type=authorization_code")
 .concat("&client_id=").concat(clientId)
 .concat("&client_secret=").concat(clientSecret)
 .concat("&redirect_uri=")
 .concat(URLEncoder.encode(redirectURI, "UTF-8"))
 .concat("&code=").concat(code);

HttpPost getAccessTokenRequest = new HttpPost(tokenRequest);
getAccessTokenRequest.addHeader("Accept", "application/json");

DefaultHttpClient httpClient = new DefaultHttpClient();
HttpResponse response = httpClient.execute(getAccessTokenRequest);

We also specify a request header named accept, telling Dropbox that we
expect a JSON as a response. Note that this is Dropbox specific, showing
the nature of OAuth 2.0 where the implementation of the protocol may
have additional customizations by the services that support it.

Next we create an HTTP client and execute this request, which when finished stores
the result into the HttpResponse object.

This request, when represented as a CURL statement, has the following form:

curl –X POST \
 -d grant_type=authorization_code \
 -d client_id=insertValue \
 -d client_id=insertValue \
 -d redirect_uri=http://localhost:8090/cb \
 -d code=code
 https://www.dropbox.com/1/oauth2/token

If the response has a status code different from HTTP 200, it means that some error
has occurred, so we display an error message to the user. The check is done using the
following code:

if (response.getStatusLine().getStatusCode() != 200) {
 return handleError(response, model);
}

Chapter 4

[41]

If it's an error we stop the flow and execute handleError, a custom method by
which we show an error page to the user with a description.

private String handleError(HttpResponse response, ModelMap model) {
 model.addAttribute("errorMessage",
 "Error. HTTP status code: " +
 response.getStatusLine().getStatusCode()
 + "\nReason: " +
 response.getStatusLine().getReasonPhrase());

 return "error";
}

If it's an error, Spring Framework will return the error.jsp page; if it's not an
error we continue. The content of the response is converted into an object called
AccessTokenResponse, with the help of the GSON library, as shown in the
following code:

final Gson gson = new Gson();
Reader streamReader = new
 InputStreamReader(response.getEntity().getContent());
AccessTokenResponse atResponse = gson.fromJson(streamReader,
 AccessTokenResponse.class);

model.addAttribute("accessToken", atResponse.access_token);

We define AccessTokenResponse inside MainController, as shown in the
following code:

private static class AccessTokenResponse {
 String access_token;
 String token_type;
 String expires_in;
 String uid;
 // ..
}

And GSON will convert the data from the HTTP response we have provided into
an instance of this custom class, by using the fromJson method.

OAuth for Web Server Applications

[42]

Now that we have the access token, we can make requests to the Dropbox API with
it on behalf of the user.

HttpGet getAccountInfoRequest = new HttpGet(accountInfoEndpoint);
getAccountInfoRequest.addHeader("Accept", "application/json");
getAccountInfoRequest.addHeader("Authorization", "Bearer " +
 atResponse.access_token);
response = httpClient.execute(getAccountInfoRequest);

With the "Accept" header we specify that JSON is expected as a response data format,
and we add one more header named "Authorization". As a value of the authorization
header we specify the access token and this way Dropbox will authorize the request
and will know on behalf of which user it is made.

Again we make the check that the HTTP status of the response is not different
from 200, and convert the response with GSON into a new object named
AccountInfoResponse, as shown in the following code:

streamReader =
 new InputStreamReader(response.getEntity().getContent());
AccountInfoResponse aiResponse =
 gson.fromJson(streamReader, AccountInfoResponse.class);

model.addAttribute("userName", aiResponse.display_name);

We define AccountInfoResponse as well by using the following code:

private static class AccountInfoResponse {
 String display_name;
 String uid;
 // ..
}

To check the Dropbox's API, go to

https://www.dropbox.com/developers/core/docs#account-info

and see that there are more fields in the JSON response besides display_name,
but we don't have to define them if we don't plan to use them.

By adding the value for userName to the model parameter everything planned for
this example was done, so we finish it with the line

return "main";

where Spring Framework returns the main.jsp page to the user, with all the data we
supplied in the model parameter.

Chapter 4

[43]

In the end, after the user approves the authorization, the callback handler processes
the response, gets the access token, and gets the account information from Dropbox.
The client application may look like the following screenshot:

Summary
In this chapter, we have learned what web server applications are and how to use
OAuth 2.0 in them by applying the authorization code grant. We have learned the
authorization code grant in detail and did a practical code example by making a
client application that uses Dropbox as an authorization and API server.

In the next chapter, we will learn what client side applications are, what implicit
grants are, and how to use them in this type of applications. We will also create a
practical code example, again using Dropbox as an authorization and API server.

OAuth for Client-side
Applications

In the previous chapter, we learned how to use OAuth 2.0 in client web applications;
applications that store their credentials and the access tokens on secure storage and
keep them confidential.

As JavaScript grew more and more popular over the years, client-side applications
rose as well. Applications that are mainly written in JavaScript and the code they
contain is downloaded in the browser before its execution.

These applications may look and behave the same as traditional web server
applications, but the fact that everything they need is first downloaded to the
client (for example, the browser) makes them unable to keep some data
confidential, if required.

Moreover, these types of applications are mostly created for the read-only scenarios
and use cases. The reason is that the access token is public, and someone can obtain
it and takes damaging actions on behalf of the user, such as modifying or deleting
some of his data.

Implicit grant
OAuth 2.0 provides a grant flow specifically for client applications that are
considered to be public clients (meaning unable to keep their credentials such as the
client identifier and client secret in confidentiality) and it's called the implicit grant.

The main difference between the authorization code grant and implicit grant is that
instead of using two requests—one for an authorization code and then another one
for obtaining the access token with it—it makes one request and the client gets an
access token as a result of the authorization request.

OAuth for Client-side Applications

[46]

The characteristics of the implicit grant type are stated as follows:

• Used in public clients
• It's is a redirection-based flow (similar to the one in the authorization

code grant)
• The access token is received as a parameter of the redirection endpoint

upon successful completion of the request, similar to the authorization
code parameter in the authorization request response in the authorization
code grant

The following diagram shows a graphical representation of the flow, taken from the
OAuth 2.0 specification:

Access
Token

Resource
owner

(1) Client identifier and redirection URI

(2) User authenticates

(3) Redirection URI

with access token in fragment

User agent

(2
)

Client
application

(1
)

(4
)

Authorization
server

The flow consists of the following steps:

1. The first step is initiation of the flow. The client redirects the User agent to
the Authorization server by using the authorization endpoint, the client
identifier, and the redirection endpoint that will be used for the response.

2. The Authorization server authenticates the Resource owner and requests
his decision whether to authorize or deny the request.

3. If the Resource owner authorizes the request (which is assumed), he is
redirected back with response information, using the supplied redirection
endpoint that was provided with the initial request. The response
information is contained in the URL fragment that contains the access
token and other parameters (we'll see the difference between a regular URL
parameter and one found in a URL fragment in the detailed overview).

Chapter 5

[47]

4. Now that the User agent (the browser) is redirected back, the access token
included in the response is passed to the Client application.

Regarding revoking tokens, the resource owner (the end user) usually will be provided
with some web interface by the service provider where, when logged in, he can list and
review which client applications he has authorized and optionally revoke access
if required. This is the same as in the case with the authorization code grant.

Requesting authorization
We'll assume that the client application is already registered with the authorization
server, and the client developer gets the required data from the server, such as
authorization endpoint and client identification.

The client application constructs the request, using the specified endpoint and the
needed parameters and, for example, we may have the following form:

https://api.example-service.com/oauth/authorize?response_
type=token&client_id=CLIENT_ID_EXAMPLE&redirect_uri=REDIRECT_
ENDPOINT_EXAMPLE

The parameters that are used when constructing the request are as follows:

• response_type: This is a mandatory parameter, and its value must be set
to token

• client_id: This is a mandatory parameter used for client identification
• redirect_uri: This is an optional parameter that represents the redirection

endpoint used by the authorization server to return the access token if the
authorization was approved by the user

• scope: This is an optional parameter
• state: This is an optional parameter

The scope and state parameters were discussed in Chapter 04, OAuth for Web Server
Applications, so you can refer to that chapter if they aren't clear already.

With the request constructed, the client application redirects the end user to it.
The authorization server checks whether all the parameters are valid. The end user
is authenticated and is asked for a decision whether to allow the authorization
request or not.

As in the authorization code grant, the user is asked for a decision whether to allow
or deny the request.

OAuth for Client-side Applications

[48]

Successful authorization
When the user approves the request, the server will do a redirect to the specified
redirection endpoint and in response the access token will be contained as well.

For example, the response may have the following form:

https://client.example.com/oauth/cb#access_token=ACCESS_TOKEN_
VALUE&expires_in=3600

The first thing we notice is that the OAuth 2.0 related parameters are part of the
fragment of the URL as they are after the hash (#) symbol. This is important to know
because in the client application's code the developer may have to implement a
different way of getting the values for the parameters.

URL fragments mean that all the parameters after the hash symbol are used only by
the browser (that is used by the client-side (JavaScript) code that we have written
and is executed in the browser) and these parameters are not sent to a server.

The parameters that can be included in the fragment are as follows:

• access_token: This is a mandatory parameter. Its value is the actual access
token that the client application requires.

• expires_in: This is an optional and recommended parameter. It specifies the
lifetime of the access token in seconds.

• token_type: This is a mandatory parameter as defined in the specifications,
but in real life scenarios it can be found omitted from the response. Token
type specifies what kind of a token is returned in the response and it may
be utilized when implementing a client application against an authorization
server with some additional security.

• scope: This is an optional parameter.
• state: This is a mandatory parameter in the response. If it was used when

making the request, it will return the same value that was supplied then.

Another key difference compared to the authorization code grant is that, in an
implicit grant, refresh tokens are not issued to the client application. When the access
token expires the client has to initiate the whole implicit grant flow again.

The OAuth 2.0 specification does not define how
many characters long the access tokens should be.

Chapter 5

[49]

Authorization error
If the request was denied by the user, or redirect_uri is missing or invalid, or
client_id is missing or invalid, the client applications will get an error response
from the server.

For example, the error response can be in the following form:

https://client.example.com/oauth/cb?error=access_denied&state=APP_
STATE

The parameters are the same as in the error response in the authorization code grant,
but let's take a look at them again.

The most important is the error parameter, which can contain one of the following
values, depending on what the cause of the error was:

• invalid_request: This error occurs when there's a problem with the request
such as a missing parameter or value, a parameter included more than once,
or a parameter with a malformed name.

• unauthorized_client: This error occurs when the client application was not
authorized, or most probably the client_id parameter is invalid.

• access_denied: This error occurs when the end user (the resource owner)
has denied the request.

• unsupported_response_type: This error occurs when the authorization
server cannot support the requested response. If in the request the
response_type parameter is set to code, this won't happen.

• invalid_scope: This error occurs when the scope specified does not exist
or is invalid.

• server_error: This error occurs when an unknown error happened and
the server cannot process the response. It is very similar to HTTP 500 errors
in web pages.

• temporarily_unavailable: This error occurs when the authorization server
cannot process the request at the given moment.

Additional parameters that the response may include are as follows:

• error_description: This is an optional parameter; it may contain a message
describing what was the error cause

• error_uri: This is an optional parameter, containing a URI to a web
document that should contain an additional description of the error

• state: This is a mandatory parameter that returns the exact value that was
specified in the request with the same-named state parameter

www.allitebooks.com

http://www.allitebooks.org

OAuth for Client-side Applications

[50]

Practical example
Now that we covered the implicit grant in detail we can create a practical example.

We will make an example web application that will use Dropbox as its authorization
server and will implement the implicit grant.

The example application consists of an HTML page with JavaScript and jQuery
where all the logic is coded. When this page is served from the server to the browser,
everything including the client_id parameter is exposed to the public.

When we open the root folder of the example application, the important file is
the following:

• src\main\webapp\WEB-INF\pages\hello.jsp: This contains the HTML
template and the JavaScript logic

Additionally, for added clarity we will check out the cURL statements of the same
HTTP requests that are performed in Java. cURL is a popular command line tool
that is used for transferring data over various protocols, and it is often used as an
HTTP client.

We will make an authorization request against Dropbox, and once the user has
authorized the request with the access token we will make one more request to the
Dropbox API and get the name of the user and display it.

First thing we have to do is to register the client application on Dropbox. These steps
are covered in Chapter 3, First Step for Your Application. In the case of Dropbox, that
can be done using the following URL:

https://www.dropbox.com/developers/apps.

The body of the HTML page is as follows:

<body>
 <p>Authorize</p>
 <p id="auth-token-message">Client is not authorized!</p>
 <p id="auth-user-p">
 Your Dropbox username is: ..</
span>.
 </p>
</body>

Chapter 5

[51]

Here it's simple; we have three paragraph elements, as follows:

• The first paragraph element has an anchor element with the init-auth
id. This will be the button the end user presses to authorize a request to
Dropbox. The href attribute will contain the URI with the appropriate
parameters to make the request valid and this is assigned from the JavaScript
code we'll see next.

• In the second paragraph element, a message is shown that the user is not
authenticated. When authorized, it will show the value of the access token.

• And in the third paragraph element, when the user has authorized the
request, it will show his name.

Now let's take a look at the JavaScript code, which is embedded as part of the
head tag.

The whole code is part of a function block:

$(function () {
 $("#auth-user-p").hide();

And the paragraph that will show the authorized user is hidden with the jQuery
hide function.

Next we define three variables:

• clientId: This variable will contain the client ID acquired from the Dropbox
registration

• AuthEndpoint: This variable will be used as an authorization endpoint
• APIEndpoint: This variable will be used to call methods from the Dropbox

API after getting an access token

 var clientId = "CLIENT_ID";
 var AuthEndpoint = "https://www.dropbox.com/1/oauth2/
authorize";
 var APIEndpoint = "https://api.dropbox.com";

Next in the AuthenticationURL variable the parameters are added to the
authorization endpoint with the appropriate values, and with this we have constructed
the URL for the request and added the jQuery's attr function to the init-auth link.

OAuth for Client-side Applications

[52]

With this, when the user clicks on the Authorize button, the flow will start.

 var AuthenticationURL = AuthEndpoint +
 "?response_type=token" +
 "&client_id=" + clientId +
 "&redirect_uri=" + window.location +
 "&state=XXXYYYY";
 $("#init-auth").attr("href", AuthenticationURL);

The assigned state parameter in the request is set to "XXXYYYY".
This serves just as an example; in real world scenarios a securely
random value should be generated and used.

This URL endpoint that is requested when the user clicks on Authorize has the
following form, when represented as a CURL statement:

curl -d response_type=token \
 -d client_id=insertValue \
 -d redirect_uri=http://localhost:8090/ \
 -d state=XXXYYYY \
 https://www.dropbox.com/1/oauth2/authorize

The next of the code checks whether the user has chosen whether to authorize the
request or not (after Dropbox has redirected back to our client application), and uses
the information from the response.

If the value in document.location.hash is not empty, that means that there is
a response in the fragment section (the data after the hash character in the URL)
and by making this check we know whether the page is loaded by a redirection.

 if (document.location.hash !== "") {

If the check returns a true value, then this is a redirection with some data in the URL
fragment. This means that we can proceed. We can extract the access token with a
regular expression using the following code:

 var token = decodeURI(
 (RegExp('access_token=' + '(.+?)(&|$)').exec(document.
location.hash)||[,null])[1]
);

For the sake of not going off-topic, we will not dwell into the details of how the
regular expression works.

Chapter 5

[53]

Next we change the text in the paragraphs, letting the user know that the client
application has returned from the authorization request.

 $('#init-auth').text("Authorize again");
 $('#auth-token-message').text("Your token is: " + token);

And finally, with the use of the access token, we make an AJAX request with the help
of jQuery and ask Dropbox's API to give us the user information on behalf of the
user, whose access token we have obtained.

Notice how we use xhr.setRequestHeader to put in an authorization header and
use the token as its value. Without this, the Dropbox server will not know who is
making the request and we will not be able to get the data from the API.

When the request is finished, we get a response showing who the user is on the page.

 $.ajax({
 url: APIEndpoint + '/1/account/info',
 beforeSend: function (xhr) {
 xhr.setRequestHeader('Authorization',
 "Bearer " + token);
 xhr.setRequestHeader('Accept',
 "application/json");
 },
 success: function (response) {
 $('#auth-user-p').show();
 if (response) {
 $("#auth-user-message")
 .text(response.display_name);
 } else {
 $('#auth-user-p').text("An error occurred!");
 }
 }
 });
 }
});

OAuth for Client-side Applications

[54]

In the end, after a successful authorization and redirection back to the client
application, the client application may look like the following screenshot:

Summary
In this chapter, we have learned what client-side applications are and how to
use OAuth 2.0 in them by applying the implicit grant flow. We have learned the
implicit grant in detail, and after that we did a practical example by making a client
application that uses Dropbox as an authorization and API server.

In the next chapter, we will learn how to use OAuth 2.0 in mobile applications,
check out which OAuth grants can be used and how, and look at some examples.

OAuth for Mobile Applications
In the previous chapters, we learned how to use OAuth 2.0 in the client-side
applications, such as public clients that are unable to keep the client identifier and
client secret confidential, and in web applications that are considered confidential
clients. In the first case we used the authorization code grant flow and in the second
case the implicit grant flow is used.

Now, as we move on to the mobile client applications, we may ask ourselves which
OAuth 2.0 grant flow should be used. The answer is that both authorization code
grant and implicit grant are suitable, and depending on the security environment
the proper one is to be chosen. If the mobile operating system provides methods
for secure storage, then the authorization code grant can be used; if not, the implicit
grant can be used.

In this chapter we'll see how client applications for Android and iOS can use these
grants. If the target/favorite mobile platform is not one of these two, you need not
worry as the principles and advice mentioned in this chapter are applicable to every
modern mobile operating system.

Custom URL scheme
Let's suppose that we are registering the application on the authorization server to
get the needed details such as client_id in order to implement a successful flow.
Registration is covered in detail in Chapter 3, First Step for Your Application with one
difference: the callback endpoint (also known as the redirect_uri parameter) is not
the same.

In both authorization code and implicit grants, the callback endpoint is the URL
to which the authorization server redirects back and returns the information to the
client application.

OAuth for Mobile Applications

[56]

Here, first we have to register a custom URL scheme with the client application,
a scheme that will be applicable on an operating system level, enabling us to forward
all redirects to our client application.

For example, we may specify that the redirect_uri parameter will have the
following form:

app123://cb

This will replace, for example, the following one: https://client.example.com/
cb. This also means that the app123 scheme is in use, the scheme is the first part of
the URL.

Every time a URL that uses this scheme is opened, our client application will be
launched to handle it and, when the authorization server redirects back to the client
with the authorization response, the client application will handle that as well.

If the mobile operating system provides no support for the custom
URL schemes, or we don't want to use them for some reason, a
conventional redirect URI can be used, as long as the application has
access to the addresses being requested in the user agent.

Android
To register a custom URL scheme in Android, all we have to do is edit the
AndroidManifest.xml file and include the following code in the appropriate
activity block:

<intent-filter>
 <data android:scheme="app123" />
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
</intent-filter>

And when handling the event, use the following code:

Uri data = getIntent().getData();
if (data != null) {
 // handler logic
}

Chapter 6

[57]

iOS
Registration of a custom URL scheme in iOS is somewhat similar to Android but
instead of a textual editor we use a graphical editor. We open the application's-
info.plist file from the XCode project navigator, and it will show a table with the
following columns: Key, Type, and Value.

Next, we expand the row with the URL Types key; it will show an Item 0 field,
and we add two new rows inside it with the following keys:

• URL identifier: This will have some values that will be a unique string,
for example com.packtpublishing.oauth.mobile

• URL schemes: This will be an array and will have one string item, which will
have the app123 value

Or if we open this file with a textual editor, the content of this configuration will look
like the following code:

<key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>com.packtpublishing.oauth.mobile</string>
 </dict>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>app123</string>
 </array>
 </dict>
 </array>

And that's it! To handle this event in iOS we implement the following method:

- (BOOL)application:(UIApplication *)application
handleOpenURL:(NSURL *)url {
 // handler logic
}

Implicit grant example
For illustration, we will look at an example with the implicit grant. We are not going
to cover it in detail as we can refer to the previous chapter. We'll just go through the
important information that we will require while using it in mobile applications.

OAuth for Mobile Applications

[58]

The implementation will be very similar to the one in the client-side applications,
with two differences: the first difference will be that instead of clicking on a link in
the client-side web, that will be done inside the mobile application; and the second
difference is that if we are using a custom URL scheme, it is a different redirect_uri.

Requesting authorization
The client application constructs the request, using the specified endpoint and the
needed parameters, and for example we may have the following form:

https://api.example-service.com/oauth/authorize?response_
type=token&client_id=CLIENT_ID_EXAMPLE&redirect_uri=app123%3A%2F%2Fcb

When constructing HTTP requests (not only in OAuth 2.0) we need to
encode the strings before assigning them as values for the parameters
so that the request will be valid and not misinterpreted. That's why
when encoding the app123://cb character string as a value for the
redirect_uri parameter, it becomes app123%3A%2F%2Fcb. URL
encoding and decoding is pretty simple and there are numerous online
tools as well as support in programming language libraries for that.

Successful authorization
If the authorization was successful, meaning there were no errors, the client_id
parameter was valid, and in the end the user has approved the authorization, the
authorization server will redirect the client to the redirect_uri parameter and the
response may have the following form:

app123://cb#access_token=ACCESS_TOKEN_VALUE&expires_in=3600

Authorization error
And if any error occurred, or the user denied the authorization request, the response
may have the following form:

app123://cb#error=ERROR_VALUE&state=APP_STATE

If the client gets an error, it's a good practice to show the user a
friendly message that there was an error and to ask him whether he
would like to try authorizing the client again.

Chapter 6

[59]

Summary
In this chapter, we have learned how to use OAuth 2.0 in mobile applications by
applying the authorization code grant and the implicit grant. We learned about
custom URL schemes and how to use them in Android and iOS, and we learned
how to make the authorization request with this custom scheme.

In the next chapter, we will learn what trusted applications are, will learn about
the Resource Owner Password Credentials grant and the client credentials grant,
and will make a practical example of these two new grant types for this type
of application.

www.allitebooks.com

http://www.allitebooks.org

OAuth for Trusted
Applications

In the previous chapter, we learned how to use OAuth 2.0 in mobile applications.
We also learned about custom URL schemes, how to define them and how to
use them. Up to this point in this book, we have covered the authorization
code grant and the implicit grant, two out of the four grants defined in the
OAuth 2.0 specification.

In this chapter, we will cover the remaining two grants defined in the OAuth 2.0
specification—the Resource Owner Password Credentials grant (which we can call
the password grant for short) and the client credentials grant.

These two grants are most suitable in environments where trust and information
confidentiality are assured. For example, the password grant can be used in internal
environments and in scenarios where the authorization server and the client
application(s) are by the same creator; and the client credentials grant is mostly
used in cases when the client application wants to access some service API on behalf
of itself and not on behalf of the user. Because of the fact that these two grants are
suitable for less use cases and scenarios compared to the authorization code grant
and the client credentials grant, they are supported by fewer service providers.

Note that the authorization code grant is used in trusted client applications as well,
but used for those client applications that want to request a token on behalf of a
resource owner (a user), or are able to utilize the web redirection flow instead of
explicitly requiring the username and password to be entered.

OAuth for Trusted Applications

[62]

Resource owner password credentials
grant
The password grant is a grant flow where the client application, together with its
client identifier and secret, sends the user's username and password in exchange for
an access token. Instead of the user having to log in and approve the authorization
request in some web interface—as in the authorization code grant—here the user may
enter his username and password in the client application UI directly.

Additionally, this flow is good for client applications that are migrating to OAuth
2.0 and previously used some other form of API authentication, most commonly
HTTP Basic or Digest. From the user's perspective, the client application may look
and behave the same, but instead of transmitting the username and password to
authenticate every request made to the API, it will do that only once in the beginning
in order to obtain the access token.

Key characteristics of the password grant type are as follows:

• Used in confidential clients
• Uses the username and password of the resource owner
• The flow is not redirection-based; it takes only a request from the client

application to the authorization server, and the user is not being redirected
between interfaces to authorize the request

In the OAuth 2.0 Authorization Framework specifications
(RFC 6749), the Resource Owner Password Credentials
grant is defined in section 4.3.

Let's take a look at a graphical representation of the flow, shown in the following
diagram, taken from the OAuth 2.0 specification:

Resource
owner

(2) Resource owner password credentialsClient
application

Authorization
server(3) Access token

with optional refresh token

(1
) Resource owner

password credentials

Chapter 7

[63]

The flow consists of the following steps:

1. The resource owner (for example, the user) supplies the Client application
with his username and password.

2. The client application makes a request to the Authorization server, including
the user's credentials and also his own identifier and secret.

3. The Authorization server authenticates the client based on his identifier and
secret, checks whether it is authorized for making this request, and checks the
resource owner credentials and other parameters supplied. If all checks pass
successfully, the Authorization server returns an access token in response.

As a security precaution, it is highly advised that the client application,
once it gets the access token, discards and does not store the username
and password that the user has entered.

Requesting authorization
We'll assume that the client application is already registered with the authorization
server, a step described in Chapter 3, First Step for Your Application.

The client application constructs the request address using the specified endpoint
and the parameters, for example, https://api.example-service.com/oauth/
authorize?grant_type=password&client_id=CLIENT_ID_EXAMPLE&client_
secret=CLIENT_SECRET&username=USERNAME&password=PASSWORD.

When constructed, the address is being executed as an HTTP POST request, and
if successful the client application will get an access token in return as part of the
response body.

The parameters that are used when constructing the request are the following:

• grant_type: This is a mandatory parameter, always set to password
• username: This is a mandatory parameter supplied by the resource owner

(the user)
• password: This is a mandatory parameter supplied by the resource owner

(the user)
• client_id: This is an optional parameter used for client identification
• client_secret: This is an optional parameter used for client identification
• scope: This is an optional parameter, as in all previous cases, used for

specifying which parts (or types) of protected resources can be accessed
on behalf of the owner

OAuth for Trusted Applications

[64]

Note that the authentication method between the client application and the
authorization server may vary, and this is why the client identifier and secret are
specified as optional. But in most of the cases they are part of the request URL.
Sometimes, some custom additional parameters may have to be included as well, so
always refer to the developer documentation supplied for the given service for which
the client application is developed.

How the client application asks for the user credentials and obtains
them is out of the scope of the OAuth 2.0 specification. A common
practice is for the client application to display a dialog box to the
user asking him to enter this information.

Successful authorization
When the authorization server handles the request from the client, several
validations are in place, such as follows:

• Validation of the client identification and secret, additionally assuring that
the client is authorized to make the request

• Validation of the credentials of the resource owner

If the validations pass successfully, the authorization server will make a response
with an access token and optionally with a refresh token.

In the body of the response, a JSON (or XML or other) object will be included
representing the response. An example is shown as follows:

{
 "access_token":"exampleAccessTokenValue123",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"exampleRefreshTokenValue123"
}

The fields that are part of the response are:

• access_token: This is a mandatory parameter and its value is the actual
access token the client application may store and use later

• token_type: This is a mandatory parameter, a string representing what kind
of a token is the one returned in the response

• expires_in: This is an optional and recommended parameter that specifies
the lifetime of the access token in seconds

Chapter 7

[65]

• refresh_token: This is an optional parameter used by the client to renew an
access token whose lifetime has expired

In some OAuth implementations of the authorization server, some
other additional parameters may be included in the response as well.
This is usually done to provide some additional business logic.

Authorization error
If the authorization request failed for any reason, the authorization server may return
a response containing information regarding the error. Again, this may be in JSON
format (or XML or other) and may have the following format:

{
 "error":"invalid_request",
 "error_description":"Username parameter missing",
 "error_uri": https://example-service.com/docs/oauth/
}

The error parameter can contain one of the several values listed as follows,
describing the nature of the problem that has occurred:

• invalid_request: The error parameter contains this value when there's a
problem with the request, either a missing parameter or value, a parameter
included multiple times or missing, or a parameter with a malformed name.

• invalid_client: The error parameter contains this value when the
authentication of the client fails. This can happen if authentication
parameters are missing (the client identifier and secret) or if the client tries to
authenticate with an unsupported method.

• invalid_grant: The error parameter contains this value when the grant
specified is invalid, expired, or revoked, or it was issued to another client.
For example, some services don't allow requesting a new access token until
the one already issued is not expired.

• unauthorized_client: The error parameter contains this value when the
client was authenticated by the authorization server, but has no authorization
to use the grant requested.

• unsupported_grant_type: The error parameter contains this value when
the grant that was requested is not supported by the authorization server.

OAuth for Trusted Applications

[66]

• invalid_scope: The error parameter contains this value when the scope
specified in the request was not valid, unknown, or malformed. In these
situations check the developer documentation by the service provider to see
which scopes are available and which ones can be used.

Additionally, the optional parameter error_description may contain a short
message explaining the error, and the optional parameter error_uri may contain
a link to a web document containing a more detailed explanation. Only the error
parameter is mandatory.

Client credentials grant
The client credentials grant provides a specific grant flow in which the resource
owner (that is, the user) is not involved.

In this grant, the client application requests an access token only with his own
credentials (the identifier and secret) and uses the access token on behalf of the client
application itself. In contrast, previously we used the access token on behalf of the
user who authorized the request.

This grant flow is good when a service provider wants to provide some API methods
that are to be used by the client application in general, instead of methods that apply
to a certain resource owner, for example, API methods for statistics, maintenance, or
something similar. This way of using an API is also referred to as Userless access.

Key characteristics of the client credentials grant type:

• Used by confidential clients
• The flow is not redirection-based
• Useful in scenarios where the client application communicates directly

with the service provider and not on behalf of a resource owner
• The resource owner is not part of the flow

In the OAuth 2.0 Authorization Framework specification (RFC 6749),
the client credentials grant is defined in section 4.4.

Let's take a look at a graphical representation of the flow, shown in the following
diagram, taken from the OAuth 2.0 specification:

Chapter 7

[67]

Client
application

(1) Client authentication

(2) Access token
Authorization

server

The flow consists of the following steps:

1. The Client application makes a request to the Authorization server and
performs authentication.

2. The Authorization server authenticates the client based on his identifier and
secret and makes a response. If the client is authenticated and the parameters
supplied are valid, the client gets an access token as a response.

Requesting authorization
As before, we assume that the client application is already registered with the
authorization server.

The client application constructs the request address, using the specified endpoint
and the parameters, for example, https://api.example-service.com/oauth/
authorize?grant_type=client_credentials&client_id=CLIENT_ID_
EXAMPLE&client_secret=CLIENT_SECRET.

When constructed, the address is being executed as an HTTP POST request
and if successful, the client application will get an access token in return as part
of the response body. It's pretty much the same as in the password grant, but with
fewer parameters.

The parameters that are used when constructing the request are the following:

• grant_type: This is a mandatory parameter, always set to client_
credentials

• scope: This is an optional parameter, as in all previous cases used for
specifying which parts (or types) of protected resources are to be accessed
on behalf of the owner

• client_id: This is an optional parameter used for client identification
• client_secret: This is an optional parameter used for client identification

Client identifier and secret are specified as optional, due to the fact that the
authentication method between the client application and the authorization server
may vary, but in most of the cases they are a part of the request URL.

OAuth for Trusted Applications

[68]

Successful authorization
If the client is authenticated and the supplied fields are successfully validated, the
authorization server will respond with an access token.

The body of the response may have the following format:

{
 "access_token":"exampleAccessTokenValue123",
 "token_type":"example",
 "expires_in":3600
}

Very important to note is that the client credentials grant is not issuing a refresh
token. All other fields in the response are the same as in password grant and
authorization code grant:

• access_token: This is a mandatory parameter; its value is the actual access
token the client application may store and use later

• token_type: This is a mandatory parameter, a string representing what kind
of a token the one returned in the response is

• expires_in: This is an optional and recommended parameter that specifies
the lifetime of the access token in seconds

Authorization error
The error response is the same as the one in the password grant discussed previously
in this chapter; we can look there for additional information when an error occurs.

Practical example
Now we will work out a practical example for both grants covered in this chapter.

Due to the fact that these two grants are less popular and are suitable for less
use cases and scenarios, compared to the authorization code grant and the client
credentials grant, they can be found in fewer cases.

One of the service providers that uses OAuth 2.0 for authorization of its API and
supports these two grants is Zendesk, a cloud-based customer service software
solution. Among other services, they also offer an API on which client applications can
be made and have implemented all four grants defined in the OAuth 2.0 specification.

Chapter 7

[69]

We will create an example web application that will use Zendesk as its authorization
server. It will contain implementations of both password grant flow and client
credentials grant flow, and when executed it will request two tokens, one by
using each grant. When opened in the browser, it will display the values of both
access tokens.

It will be based on the same Java technologies as the example application for the
authorization code grant: Spring MVC and JSP as the main components, Google
GSON library for JSON parsing, and Apache HTTP client for making HTTP requests.
As with the previous examples, this one is also concise, elegant, and explained in
detail so that developers familiar with other technologies should have no problem
understanding it.

When we open the root folder of the example application, the important files that are
a part of it are the following:

• src\main\webapp\WEB-INF\pages\home.jsp: This is the main page
displayed when the example application is opened

• src\main\webapp\WEB-INF\pages\error.jsp: This is the page that we
show when an error occurs

• src\main\java\example\password\MainController.java: This file
contains the Java logic of this example application, for both grants

The example application can be downloaded from
http://www.packtpub.com, containing all the files
and instructions on how to compile and start them.

Additionally, for added clarity we will check out cURL statements of the same HTTP
requests that are performed in Java. cURL is a popular command line tool that is used
for transferring data over various protocols, and it is often used as an HTTP client.

Moving on, first thing we have to do is register a client application at Zendesk.
For this purpose we will create a trial account, and register the client application at
the following URL (where user_id is replaced with the one that was chosen when
creating the account, also referred to as subdomain):

https://USER_ID.zendesk.com/settings/api#oauth_clients

For more information on this process, client registration is covered in Chapter 3, First
Step for Your Application.

OAuth for Trusted Applications

[70]

Let's start with the code. The main entry point of the application for the user is the
main.jsp page, consisting of HTML markup, where the important code is in the
body tag:

<body>
 <p>Access token from Password Grant flow is:
 ${accessTokenPWGrant}
 </p>
 <p>Access token from Client Credentials Grant flow is:
 ${accessTokenCCGrant}
 </p>
</body>

The values for the variables accessTokenPWGrant and accessTokenCCGrant are
separated in their respective paragraphs, and their values are supplied from the spring
controller that we'll analyze next. At this moment, let's see what they represent:

• The variable accessTokenPWGrant will show the value of the retrieved
access token by using the password grant flow

• The variable accessTokenCCGrant will show the value of the retrieved
access token by using the client credentials grant flow

The rest of the code resides in the MainController Java class. First, we define the
needed variables and their values in it:

String clientId = "insertValue"; // client identifier
String clientSecret = "insertValue"; // client secret
String user_id = "insertValue"; // user/organization id
String username = "insertValue"; // account log-in email
String password = "insertValue"; // account log-in password

We update the values of these variables with real ones in order that the
example works properly. The same goes for the cURL statement examples.

The only endpoint defined is the one used for requesting the token:

String tokenEndpoint =
 "https://" + user_id +".zendesk.com/oauth/tokens";

Notice that we don't need to specify authorization and redirect/callback endpoints;
these two flows don't need them.

Chapter 7

[71]

Next, we define a class named AccessTokenResponse that will be used by GSON to
convert the response from the request for access token into an instance of this class,
providing a far easier way to use the response data:

private static class AccessTokenResponse {
 String access_token;
 String token_type;
 String expires_in;
 String scope;
 String refresh_token;
 // ..
}

All the fields that may be part of the response are specified. If they don't exist in
the actual response from the server they will be null when the object is created by
GSON. We can also add additional custom fields, if there are any.

When the application is opened in the browser, the following code handles the request:

@RequestMapping(value = "/", method = RequestMethod.GET)
public String mainPage(ModelMap model)
 throws IOException {

 model.addAttribute("accessTokenPWGrant",
 getATWithPasswordGrantFlow().access_token);
 model.addAttribute("accessTokenCCGrant",
 getATWithClientCredentialsGrantFlow().access_token);
 return "main";
}

We're using Spring's @RequestMapping annotation to map the main URL / to the
mainPage handler method. Because this page is opened in a browser, it's mapped to
the HTTP GET request method.

Inside the mainPage handler method, we get an instance of the
AccessTokenResponse two times, for both flows, the first time by executing the
getATWithPasswordGrantFlow method and the second time by executing the
getATWithClientCredentialsGrantFlow method.

For both methods, once we get the AccessTokenResponse we get the value of
the access_token field and put it in model. The first time it is put in as a value
for the variable named accessTokenPWGrant and the second for the one named
accessTokenCCGrant. By putting them in model, they are accessible to be used
and displayed in HTML, which is rendered and served to the browser.

OAuth for Trusted Applications

[72]

The next step is to define the code in these two methods by implementing the flows
so that in the end they will return an access token response.

Resource owner password credentials grant
When we call the getATWithPasswordGrantFlow method in mainPage, we execute
the whole password grant flow inside it and as a response of that method we get an
instance of AccessTokenResponse:

model.addAttribute("accessTokenPWGrant",
 getATWithPasswordGrantFlow().access_token);

Let's see this method in detail:

private AccessTokenResponse getATWithPasswordGrantFlow()
 throws IOException {

 String tokenRequest =
 tokenEndpoint.concat("?grant_type=password")
 .concat("&client_id=").concat(clientId)
 .concat("&client_secret=").concat(clientSecret)
 .concat("&username=")
 .concat(URLEncoder.encode(username, "UTF-8"))
 .concat("&password=")
 .concat(URLEncoder.encode(password, "UTF-8"));

 HttpPost getAccessTokenRequest =
 new HttpPost(tokenRequest);
 getAccessTokenRequest.addHeader(
 "Accept",
 "application/json");

 DefaultHttpClient httpClient =
 new DefaultHttpClient();
 HttpResponse response =
 httpClient.execute(getAccessTokenRequest);

 if (response.getStatusLine().getStatusCode() != 200) {
 printError(response);
 return null;
 }

 final Gson gson = new Gson();
 Reader streamReader =
 new InputStreamReader(

Chapter 7

[73]

 response.getEntity().getContent());
 AccessTokenResponse atResponse =
 gson.fromJson(
 streamReader,
 AccessTokenResponse.class);

 return atResponse;
}

We can see that it consists of several parts:

1. First, we define the request URL in a series of concatenations of the token
endpoint variable and the required parameters and their values, resulting in
tokenRequest. During that process for some values that are concatenated,
we use URLEncoder.encode in order to make sure that all characters are
encoded properly (such as special characters in a password).

2. Next, with this token request URL, we create an HTTP POST request object
and add a request header to it named Accept with value application/json,
telling Zendesk that we expect a JSON format as a response.

3. Now that the HttpPost request object is created, we create an HTTP client
and execute it. We store the result of the execution in an HttpResponse
object, named response.

4. Next, we check the response. If the response has an HTTP status code
different than 200, then it means that an error occurred, so we print the
reason in console and exit the method by returning null. If there's no error,
then we move on.

5. We create a GSON object so that we are able to use it, then we read the body
of the response into a streamReader, and finally call gson.fromJson to
deserialize the data into an instance of AccessTokenResponse.

6. In the end, we make a return statement, supplying the access token response.

The HTTP request that is constructed and executed in the previous steps, when
represented as a cURL statement has the following form:

curl –X POST \
 -H "Accept: application/json" \
 -d "grant_type=password" \
 -d "client_id=insertValue" \
 -d "client_secret=insertValue" \
 -d "username=insertValue" \
 -d "password=insertValue" \
 https://USER_ID.zendesk.com/oauth/tokens

OAuth for Trusted Applications

[74]

If we run the client application, it may look like the following screenshot:

Here, the access token was successfully obtained with the use of the password grant,
and its value is displayed on the page.

Next, we'll get the second access token, utilizing the client credentials grant flow,
as shown in the screenshot in the following section.

Client credentials grant
As with the previous grant, here we proceed in the same fashion: we call the
getATWithClientCredentialsGrantFlow method in mainPage, we execute
the whole client credentials grant flow inside it, and we get an instance of
AccessTokenResponse as a response.

model.addAttribute("accessTokenCCGrant",
 getATWithClientCredentialsGrantFlow().access_token);

Let's see this method in detail:

private AccessTokenResponse getATWithClientCredentialsGrantFlow()
 throws IOException {

 String tokenRequest =
 tokenEndpoint
 .concat("?grant_type=client_credentials")
 .concat("&client_id=").concat(clientId)
 .concat("&client_secret=").concat(clientSecret)
 .concat("&user_id=").concat(user_id);

Chapter 7

[75]

 HttpPost getAccessTokenRequest =
 new HttpPost(tokenRequest);
 getAccessTokenRequest.addHeader(
 "Accept",
 "application/json");

 DefaultHttpClient httpClient =
 new DefaultHttpClient();
 HttpResponse response =
 httpClient.execute(getAccessTokenRequest);

 if (response.getStatusLine().getStatusCode() != 200) {
 printError(response);
 return null;
 }

 final Gson gson = new Gson();
 Reader streamReader =
 new InputStreamReader(
 response.getEntity().getContent());
 AccessTokenResponse atResponse =
 gson.fromJson(
 streamReader,
 AccessTokenResponse.class);

 return atResponse;
}

There are two differences in the code compared to the previous grant. The first
difference is in the parameters that are a part of the request URL. In the password
grant flow we had the following parameters: client_id, client_secret, username,
and password. In this flow, for client credentials, we have the following parameters:
client_id, client_secret, and user_id. The second difference is also in the
parameters: in the password grant flow we set the value of the grant_type parameter
to password, and in the client credentials grant flow we set it to client_credentials.

The parameter user_id is a custom one from Zendesk, and it is not
part of the OAuth 2.0 specification. This is just another example showing
us that implementations of various OAuth 2.0 flows may vary and they
are not identical between service providers. And this is why we are
always encouraged to read the developer documentation provided by
the service for which we're developing a client application.

OAuth for Trusted Applications

[76]

The HTTP request that is constructed and executed in the previous steps,
when represented as a cURL statement, has the following form:

curl –X POST \
 -H "Accept: application/json" \
 -d "grant_type=password" \
 -d "client_id=insertValue" \
 -d "client_secret=insertValue" \
 -d "user_id=USER_ID " \
 https://USER_ID.zendesk.com/oauth/tokens

In the end, if we run the client application, it may look like the following screenshot:

The client application successfully shows the values of the obtained access tokens
for both grant flows that we have learned about.

Summary
In this chapter, we have learned which are trusted and first-party applications
and learned about the Resource Owner Password Credentials grant and the client
credentials grant. We learned how to perform authorization requests for these grants
and saw code examples for them as well.

In the next chapter, we will dive into security considerations. We'll learn about the
most common threats and their countermeasures, for all grant flows that we have
learned so far and that are a part of the OAuth 2.0 specification.

Security Considerations
In the previous chapter we learned about the Resource Owner Password Credentials
grant and the client credentials grant, and with that we covered all OAuth 2.0 grants
that are defined in the OAuth 2.0 specification.

Given that information security is of paramount importance, it is important to
know what data we transmit over the network that should be protected and which
measures can be taken against attackers.

With the popularity of OAuth 2.0 and the flexibility it offers, which resulted in
various implementations of authorization servers and client applications and
increased knowledge, a new RFC document was published by the IETF named
OAuth 2.0 Threat Model and Security Considerations, with its sole purpose being to
inform and educate users about the additional security considerations they should
have in mind.

This chapter is based on information related to security outlined in the OAuth 2.0
specification, and additionally on the information provided from this threat model
RFC (RFC 6819 to be precise).

First, we'll learn what data is to be protected and what can happen if it's not,
then about the security features OAuth 2.0 provides, and in the end we'll learn
which security considerations we can take into account in order to build more
secure applications.

What is there to be protected
The amount of data that is transmitted during the execution of an OAuth2.0 grant
flow is not to be undervalued. Various parameters are in use when performing
requests and responses, and some of them contain information that can be used
maliciously if obtained by attackers.

Security Considerations

[78]

Different parameters can be used by attackers for different goals:

• The client identifier and secret can be used to impersonate the original
client application

• The access token can be used to access protected resources on behalf of
the user and perform harmful operations on them (such as modification
or deletion)

• The refresh token, together with the client credentials, can be used to issue
a new access token

• And last but not least, the resource owner's username and password can be
used by the attacker in various malicious ways

If not properly secured, the protected resources can be compromised and various
security risks can be introduced.

OAuth 2.0 security features
OAuth 2.0 provides several features that are a part of the protocol and are related
to improving security and dealing with attacks. We'll explore them one by one,
by briefly explaining what each feature does, and what purpose it serves
regarding security.

Scope
In the various authorization grant flows we encountered the parameter scope, which
is used by the clients to specify in the request which type of access is to be granted
to them on behalf of the resource owner, and is used by authorization servers in the
response to confirm the same.

When an access token is issued to a client application, the scope specified in it
defines the access authorization associated for that particular token. It defines which
resources and API methods on these resources the client application can access and
execute with the given access token.

Security wise, with scope in OAuth2.0 we can:

• Reduce the type of access from the client application to the resource server to
the level that is really needed

• Minimize the damage an attacker can perform if an access token is stolen
• Have an overview of the API methods that are accessible by a client with

a given token

Chapter 8

[79]

Additionally, also for damage minimization, the client application can request
a lesser scope than the one already granted for its access token.

Token lifetime
Another protocol parameter is expires_in, which we receive as a part of the
response from the authorization server when the client application requests an access
token. This parameter states the lifetime of the issued access token in seconds, and if
the value of this lifetime is small they are called short-lived access tokens.

Security wise, this parameter is used to limit the duration of the lifetime so that
stolen tokens will have less time to be abused in doing damaging actions. The less
secure the client application is, the more short-lived the access token received by
the authorization server should be. The same applies for tokens sent over
non-secure channels.

The refresh token
The refresh token is a parameter, named refresh_token, that is also received as
a part of the response from the authorization server when the client application
requests an access token. Except for the client credentials grant, where it is explicitly
excluded, in all grant flows defined in OAuth 2.0 it is an optional parameter that can
be included in the response from the authorization server.

The purpose of the refresh token is to give the client application the possibility of
renewing (or in other words, to refresh) the expired access token without redoing the
whole grant flow from the start. It can ask the authorization server directly to issue a
new access token.

The refresh token is mapped to the particular client application for which it was
granted together with the access token. This means an access token can be renewed
only with the same client credentials that were used when it was retrieved.

From a security standpoint, the use of refresh tokens:

• Helps in minimizing the involvement of end-user input by direct
communication between the client and authorization server. This results in
fewer spots that can be vulnerable or attacked and also results in less data
being transmitted over the network.

• Combines well with the use of short-lived access tokens, resulting in a good
security practice where the client again can have lengthy access to protected
resources, but by refreshing several access tokens.

Security Considerations

[80]

Related to refresh tokens, the OAuth 2.0 specification also mandates:

• That the confidentiality of refresh tokens must be maintained by the client
application

• That the refresh tokens are transmitted from/to the authorization server only
by using TLS

• That the authorization server will implement techniques against attackers
such as guessing refresh tokens

Authorization code
When using the authorization code grant, we learned that first the end user has
to approve the authorization request, usually in some web interface; after that the
authorization server sends an authorization code to the client application, and after
that this code is used by the client to request an access token (and optionally
a refresh token).

After a successful end user authorization process, the authorization code is sent to
the client's redirect URI (also called callback URI).

The authorization code grant is a browser-based redirection flow, meaning a
web interface is opened in the browser or as a component in a desktop or mobile
application, in which the end user has to approve or deny the authorization request.
Attackers can try to access the URI parameters, the browser cache, and so on.

Due to this fact, we have the following security precautions:

• Instead of sending the access token, the authorization code is sent first,
as an intermediary.

• The authorization code has a very short lifetime.
• After the client application has retrieved the authorization code, when

requesting the access token with it, it is authenticated by the authorization
server. This authentication is more secure and simple because it is
performed directly.

Redirect URI
The redirect URI parameter, also called callback, and named redirect_uri in the
protocol, is used by the client application to specify to the authorization server which
address to return any information to when processing its request.

Chapter 8

[81]

It is used in the authorization code grant, to hand over the authorization code on this
URI back to the client, and in the implicit grant to hand over an access token in the
same manner.

The main purpose of the redirect URI is preventing phishing attacks (for example, a
compromised client application changes the URI to point in some other direction in
order that the attacker gets the authorization code). In order to prevent this:

• It is a common practice for application developers to have to specify the
redirect URIs when performing application registration. This way, when the
client application specifies a URI that is not one of those pre-registered, the
request will fail. This is especially important when using the implicit grant.

• When using the authorization code grant, the client specifies the redirect URI
in the request for the authorization code and it has to specify the same URI
again when requesting the access token. If these two URIs are not the same,
the request will fail.

State
The protocol parameter named state is used in the authorization code and implicit
grant types. It's an optional parameter that can be specified in the request for the
authorization server, and closely related to the redirect URI parameter, which is
specified in the request as well.

The behavior of this parameter is simple: when creating the request we add this
parameter and specify some predefined value for it, for example, some random
hexadecimal string or some session value, and when the server returns a response to
the redirect URI, the value in the state parameter should be the same. In short, with
this parameter the state between the request and the callback is maintained.

The main purpose of this parameter is to protect against cross-site request forgery
(CSRF). If the returned value for this parameter is not the same as the one in the
request, and it's not due to a server error, it means that:

• The attacker has intercepted and modified the flow
• The authorization code and/or the access token can have been stolen
• The attacker has maliciously accessed protected resources and methods on

behalf of the user

If any of this scenario occurs, we should check for suspicious access tokens that have
been issued and revoke them immediately.

Security Considerations

[82]

Client identifier
In all OAuth2.0 grants, when performing the grant flow, for the request from the
client application to be processed, among other checks and validations the identity of
the client has to be verified. For this to happen, the client application specifies in the
request parameters its identifier and secret, named in the protocol as client_id and
client_secret.

Securitywise, the use of client identifiers

• Provides the resource owner (the end user) with information about the
identity of the client application that is requesting approval.

• Provides the authorization server means to determine whether the client
application is already registered and if it has the rights to initiate a given
OAuth2.0 grant flow. For example, if the client application is of type public
(cannot keep the credentials confidential), the authorization server can deny
initiation of all OAuth2.0 grant flows except for the implicit grant.

• Allows the authorization server to make several securitywise associations in
order to use them for security checks, such as which access tokens and which
access codes are issued to which clients. After that the authorization server
also associates authorization codes with redirect URIs and so on.

Security considerations
One general piece of advice that applies to every type of application development is
to develop the software with security in mind, meaning it is more expensive for an
error-prone application to first implement the needed features and after that to make
modifications in them to enforce security. Instead, this should be done simultaneously.

In this chapter we are raising security awareness, and next we will learn about which
measures we can apply and what we can do in order to have more secure applications.

Use TLS
TLS (the cryptographic protocol named Transport Layer Security) is the result of the
standardization of the SSL protocol (Version 3.0), which was developed by Netscape
and was proprietary. Thus, in various documents and specifications, we can find the
use of TLS and SSL interchangeably, even though there are actually differences in
the protocol.

Chapter 8

[83]

From a security standpoint, it is recommended that all requests sent from the client
during the execution of a grant flow are done over TLS. In fact, it is recommended
TLS be used on both sides of the connection.

OAuth 2.0 relies heavily on TLS; this is done in order to maintain confidentiality
of the exchanged data over the network by providing encryption and integrity on
top of the connection between the client and server. In retrospect, in OAuth 1.0 the
use of TLS was not mandatory, and parts of the authorization flow (on both server
side and client side) had to deal with cryptography, which resulted in various
implementations, some good and some sloppy.

When we make an HTTP request (for example, in order to execute some OAuth 2.0
grant flow), in order to make the connection secure the HTTP client library that is
used to execute the request has to be configured to use TLS.

TLS is to be used by the client application when sending requests to both
authorization and resource servers, and is to be used by the servers themselves as
well. The result is an end-to-end TLS protected connection. If end-to-end protection
cannot be established, it is advised to reduce the scope and lifetime of the access
tokens that are issued by the authorization server.

The OAuth2.0 specification states that the use of TLS is mandatory
when sending requests to the authorization and token endpoints and
when sending requests using password authentication. Access tokens,
refresh tokens, username and password combinations, and client
credentials must be transmitted with the use of TLS.

By using TLS, the attackers that are trying to intercept/eavesdrop the exchanged
information during the execution of the grant flow will not be able to do so. If TLS
is not used, attackers can eavesdrop on an access token, an authorization code, a
username and password combination, or other critical information.

This means that the use of TLS prevents man-in-the-middle attacks and replaying of
already fulfilled requests (also called replay attacks). By performing replay attempts,
the attackers can issue themselves new access tokens or can perform replays on
a request towards resource servers and modify or delete data belonging to the
resource owner.

Last but not least, the authorization server can enforce the use of TLS on every
endpoint in order to reduce the risk of phishing attacks.

Security Considerations

[84]

Ensure web server application protection
For client applications that are actually web applications deployed on a server, there
are numerous protection measures that can be taken into account so that the server,
the database, and the configuration files are kept safe.

The list is not limited and can vary between scenarios and environments; some of the
key measures are as follows:

• Install recommended security additions and tools for the given web and
database servers that are in use.

• Restrict remote administrator access only to the people that require it
(for example, for server maintenance and application monitoring).

• Regulate which server user can have which roles, and regulate permissions
for the resources available to them.

• Disable or remove unnecessary services on the server.
• Regulate the database connections so that they are only available to the

client application.
• Close unnecessary open ports on the server; leaving them open can give an

advantage to the attacker.
• Configure protection against SQL injection.
• Configure database and file encryption for vital information stored

(credentials and so on). Avoid storing credentials in plain text format.
• Keep the software components that are in use updated in order to avoid

security exploitation.
• Avoid security misconfiguration.

It is important to have in mind what kind of web server it is, which database is
used, which modules the client application uses, and on which services the client
application depends, so that we can research how to apply the security
measures appropriately.

OWASP (Open Web Application Security Project) provides additional
documentation on security measures and describes the industry's best practices
regarding software security. It is an additional resource recommended for reference
and research on this topic, and can be found at https://www.owasp.org.

Chapter 8

[85]

Ensure mobile and desktop application
protection
Mobile and desktop applications can be installed on devices and machines that can
be part of internal/enterprise or external environments. They are more vulnerable
compared to the applications deployed on regulated server environments. Attackers
have a better chance to try to extract the source code from the applications and other
data that comes with them.

In order to provide the best possible security, some of the key measures are
as follows:

• Use secure storage mechanisms provided by additional programming
libraries and by features offered by the operating system for which the
application is developed.

• In multiuser operating systems, store user specific data such as credentials or
access and refresh tokens in locations that are not available to other users on
the same system.

• As mentioned previously, credentials should not be stored in plain text
format and should be encrypted.

• If using an embedded database (such as SQLite in most cases), try to enforce
security measures against SQL injection and encrypt the vital information (or
encrypt the whole embedded database).

• For mobile devices, advise the end user to utilize device lock (usually with a
PIN, password, or face unlock).

• Implement an optional PIN or password lock on the application level that the
end user can activate if desired (which can also serve as an alternative to the
previous locking measure).

• Sanitize and validate the value from any input fields that are used in the
applications, in order to avoid code injection, which can lead to changing the
behavior or exposeing data stored by the client application.

• When the application is ready to be packaged for production use (to be used
by end users), perform code analysis for obfuscating code and removing the
unused code. This will produce a smaller client application in file size, which
will perform the same but it will be harder to reverse engineer.

As usual, for additional reference and research we can refer to the OAuth2.0
threat model RFC document, to OWASP, and to security documentation specific
to the programming language, tools, libraries, and operating system that the client
application is built for.

Security Considerations

[86]

Utilize the state parameter
As mentioned, with this parameter the state between the request and the callback
is maintained. Even if it is an optional parameter it is highly advisable to use,
and the value from the callback response will be validated if it is equal to the one that
was sent.

When setting the value for the state parameter in the request

• Don't use predictable values that can be guessed by attackers.
• Don't repeat the same value often between requests.
• Don't use values that can contain and expose some internal business logic of

the system and can be used maliciously if discovered.
• Use session values: If the user agent—with which the user has authenticated

and approved the authorization request—has its session cookie available,
calculate a hash from it and use that one as the state value.

• Or use some string generator: If a session variable is not available as an
alternative, we can use some generated programmable value. Some real
world implementations do this by generating unique identifiers and using
them as state values, commonly achieved by generating a random UUID
(universally unique identifier) and converting it to a hexadecimal value.

• Keep track of which state value was set for which request (user session
in most cases) and redirect URI, in order to validate that the returned one
contains an equal value.

Use refresh tokens when available
For client applications that have obtained an access token and a refresh token along
with it, upon access token expiry it is a good practice to request a new one by using
the refresh token instead of going through the whole grant flow again.

With this measure we are transmitting less data over the network and are providing
less exposure that the attacker can monitor.

Chapter 8

[87]

Request the needed scope only
As briefly mentioned previously in this chapter, it is highly advisable to specify
only the required scope when requesting an access token instead of specifying the
maximum one that is available.

With this measure, if an attacker gets hold of the access token, he can take damaging
actions only to the level specified by the scope, and not more. This is done for
damage minimization until the token is revoked and invalidated.

Summary
In this chapter we learned what data is to be protected, what features OAuth 2.0
contains regarding information security, and which precautions we should take
into consideration.

In the next chapter we will go a step further, and learn about SAML 2.0 bearer
assertion in OAuth 2.0, as a means of providing additional security when doing
client authentication or requesting an access token.

Additional Security
with SAML

In the previous chapter we started dealing with security. We learned that the data that
is transmitted during the execution of a grant flow should be treated with security
in mind. We learned about the features that are part of the OAuth 2.0 specification
which are related to information security, and most importantly we learned which
precautions should be taken into consideration.

OAuth 2.0 offers a wide array of available authorization grant types, and also
allows defining new ones, which is useful when you need to integrate with some
existing security protocol. Furthermore, OAuth 2.0 also allows defining additional
authentication mechanisms.

In this chapter we will learn how to use SAML 2.0 assertions for adding additional
security, either as a way of doing client authentication or as an authorization grant.
More specifically, we will learn what an OAuth 2.0 assertion is, what SAML is all
about, and how the access token grant and authentication are done with SAML 2.0
bearer assertion.

SAML (2.0)
SAML (Security Assertion Markup Language), is an XML-based protocol that is
used for exchanging authentication and authorization data for a given principal
(usually an end user) between SAML identity providers and service providers.

SAML 2.0 mainly solves two requirements that are common in large enterprises:

• Web-based single sign-on across multiple domains
• Federated identity

Additional Security with SAML

[90]

The combination of using SAML and OAuth 2.0 together means leveraging SAML
identity providers and providing easier integration in environments where SAML
is already in use.

OAuth 2.0 assertions
To have a general framework for using assertions in OAuth 2.0, a separate RFC
specification referred to as OAuth Assertion Framework is being developed,
which outlines the following:

• A framework for the use of assertions as authorization grants
• A framework for the use of assertions as client credentials

Assertions can be used for both scenarios in combination
or separately.

The latest draft can be found at https://tools.ietf.org/html/draft-ietf-
oauth-assertions-12.

Based on this specification, which defines message flows and the processing rules in
an abstract way, another specification is being developed specifically for the use of
SAML 2.0 assertions. The latest draft of this specification can be found at https://
tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-17.

These two specifications are still not final, it's safe to say they are stable, and there are
already companies such as Salesforce.com and Ping Identity that have done practical
implementations of them and are part of the specification development. These
implementations are available and can be utilized by client application developers.

So, what are assertions? The Assertion Framework specification puts it this way:

An assertion is a package of information that facilitates the sharing of identity and
security information across security domains.

This package of information is actually an XML security token. The assertion, in
the form of statement, asserts security information about a subject and additionally
defines conditions to these statements or to (the assertion) itself.

Main components of an assertion are statements, conditions, and the subject.
For example, a SAML assertion can state that a user with the e-mail address
user@example.com is part of the bloggers company group, and that the assertion
itself is valid for a fixed period of time (defined with a starting and ending point).

Chapter 9

[91]

There are three kinds of statements that can be defined in an assertion:

• Authentication statements
• Attribute statements
• Authorization decision statements

Other assertion based specifications
It is worth mentioning that, besides the OAuth SAML Assertion Profiles
specification, another one is developed as well, referred to as OAuth JWT Assertion
Profiles, which outlines the use of JSON Web Tokens for requesting access tokens
and client authentication.

It is based on the same Assertion Framework specification and it's pretty similar in
style; the latest draft can be found at http://tools.ietf.org/html/draft-ietf-
oauth-jwt-bearer-06.

OAuth 2.0 SAML bearer assertion
grant flow
Here we'll explore how SAML 2.0 bearer assertions can be used as
authorization grants.

Regarding bearer assertions: a bearer is an entity (for example, a client application)
in possession of an assertion, where the entity doesn't have to demonstrate proof of
possession of the given assertion with some cryptographic key. Because of this, when
the client application is supplying the assertion in the request to the server, the use of
secure communication (TLS) is required so that the assertion is not compromised.

Key characteristic of this new grant type is that the client application is exchanging
the SAML assertion for an access token.

The flow consists of the following steps:

1. The grant flow is initiated (on behalf of the end user or by some task) by the
client application.

2. The client application either generates a SAML assertion or obtains it from
a SAML identity provider.

3. The client application makes an HTTP POST request to the authorization
server in order to exchange the assertion.

Additional Security with SAML

[92]

4. The authorization server performs client authorization and validation of
the supplied data from the request. If the application is authorized and the
assertion is validated the server returns an access token; if any error occurred
during the process, an error response is returned.

If we illustrate the flow we get the following diagram:

Assertion

Access token

SAML
identity
provider

Client
application

Authorization
server

Bear in mind that before the flow is initiated, the application has to be registered.
Registration is a process that is described in Chapter 3, First Step for Your Application.
In this scenario the user additionally has to register an X.509 Certificate. If certificate
registration is required it should be specified in the registration interface provided by
the authorization server.

Preparing assertion
In order to prepare the SAML 2.0 assertion XML we need to have the values of the
following XML attributes and elements:

• Issuer: This is the location of the SAML identity provider (for example,
https://saml-idp.example-service.com), or the OAuth 2.0 client's
client_id field.

• NameID: This is a field inside the parent element named Subject.
It contains an e-mail address of the user on whose behalf the flow is
initiated (for example, test-user@example.com).

• Audience: This is used for specifying a URI reference for where the assertion
is intended for (for example, https://saml-sp.example-service.net).

• Recipient: This is an attribute for the SubjectConfirmationData element,
specifying the authorization server's token endpoint URI on which the POST
request will be executed (for example, https://example-service.com/
oauth/token).

Chapter 9

[93]

• NotOnOrAfter: This is an attribute for the Conditions element, specifying
the expiration date until which the assertion can be used. This field can be
used for the SubjectConfirmationData element as well; it must be specified
in at least one of these elements.

• NotBefore: This is an optional attribute that can be used in the same places
as the NotOnOrAfter attribute, specifying from which point in time the
assertion can be used.

When these fields are prepared, additionally the assertion must be digitally signed
using the standardized XML Signature W3C specification, and this data goes into the
Signature element of the assertion. The signature can be signed with RSA, SHA-1,
or SHA-256, all supported in popular programming languages.

Following is an example, taken and adjusted from the specification, of a
prepared assertion:

<Assertion IssueInstant="2010-10-01T20:07:34.619Z"
 ID="ef1xsbZxPV2oqjd7HTLRLIBlBb7"
 Version="2.0"
 xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
<Issuer>https://saml-idp.example-service.com</Issuer>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 [...omitted for brevity...]
</ds:Signature>
<Subject>
 <NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 test-user@example.com
 </NameID>
 <SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData
 NotOnOrAfter="2010-10-01T20:12:34.619Z"
 Recipient="https://example-service.com/oauth/token"/>
 </SubjectConfirmation>
 </Subject>
 <Conditions>
 <AudienceRestriction>
 <Audience>https://saml-sp.example-service.net</Audience>
 </AudienceRestriction>
 </Conditions>
 <AuthnStatement AuthnInstant="2010-10-01T20:07:34.371Z">
 <AuthnContext>
 <AuthnContextClassRef>

Additional Security with SAML

[94]

 urn:oasis:names:tc:SAML:2.0:ac:classes:X509
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>
</Assertion>

One last thing to do is to encode the whole assertion by using base64url encoding
before adding it as part of the POST request.

Requesting authorization
Now that we have the assertion prepared, it's time to prepare the POST request in
order to execute it.

The endpoint with the required parameters may have the following form:

https://example-service.com/oauth/token?grant_
type=urn:ietf:params:oauth:grant-type:saml2-bearer&assertion=Assertio
nToBase64Url

The parameters that are used when constructing the request are the following:

• grant_type: This is a mandatory parameter, always set to
urn:ietf:params:oauth:grant-type:saml2-bearer

• assertion: This is a mandatory parameter, contains a single SAML 2.0
assertion encoded with the base64url method

• scope: This is an optional parameter, used for specifying which parts
(or types) of protected resources can be accessed on behalf of the owner

• client_id: This is an optional parameter, used for client identification
• client_secret: This is an optional parameter, used for client identification

Successful authorization
If the client is authenticated and the supplied fields and assertions are validated,
the authorization server will respond with an access token.

The body of the response may have the following form:

{
 "access_token":"exampleAccessTokenValue123",
 "expires_in":3600
}

Chapter 9

[95]

Note that refresh tokens usually are not issued when using this grant type. Client
applications can try to refresh the expired access token by requesting a new one
with the same assertion. If the assertion has expired then a new access token can be
requested by executing the whole grant flow from the start.

Authorization error
If the assertion is not valid or has expired, the authorization server returns
a response containing information regarding the error.

{
 "error":"invalid_grant",
 "error_description":"Audience validation failed",
 "error_uri":https://example-service.com/docs/oauth/saml
}

The value of the error parameter will always be invalid_grant. The value in the
error_description may contain a short message relating to why the assertion
failed, and optionally the parameter error_uri may be included, which contains
a link to a web document containing more detailed explanation.

To know in detail which validation steps the authorization server
takes when it receives an assertion, check the Assertion Format and
Processing Requirements section of the OAuth SAML Assertion
Profiles draft specification.

OAuth 2.0 SAML assertions for client
authentication
When using one of the grants defined in OAuth 2.0, SAML assertions can be used for
providing client authentication. When the authorization server processes the access
token request in a given grant flow, it will check whether the client's credentials are
valid based on the assertion, and then the client will be authorized to make the request.

The structure of the assertion XML is the same as in the previous case, with the
difference that it's not used in exchange for an access token; it's purpose is to provide
client identification information.

When using assertions for client authentication, the way the assertion
is obtained from the SAML identity provider is not part of the
specification and may differ between implementations, so always check
the developer documentation provided for the given provider.

Additional Security with SAML

[96]

Requesting the access token
We will make a request for the access token using the authorization code grant
from the point where the client application has already requested and obtained the
authorization code and will request the access token next.

The endpoint with the required parameters may have the following form:

https://example-service.com/oauth/token?grant_type=authorization_
code&code=AUTHORIZATION_CODE_VALUE&client_assertion_type=urn%3Aietf%3
Aparams%3Aoauth%3Aclient-assertion-type%3Asaml2-bearer&assertion=Asse
rtionToBase64Url

The parameters that are used when constructing the request are the following:

• grant_type: This is a mandatory parameter, in our example
authorization_code

• client_assertion: This is a mandatory parameter containing a single
SAML 2.0 assertion encoded with the base64url method

• client_assertion_type: This is a mandatory parameter, always set to
urn:ietf:params:oauth:client-assertion-type:saml2-bearer

Next, we check the parameters from the chosen grant, so in our case additional
parameters in the request are:

• code: This is the authorization code previously retrieved from the
authorization server

• redirect_uri: This is where the authorization server should redirect the
client and supply the access token

• client_id: This is an optional parameter, used for client identification
• client_secret: This is an optional parameter, used for client identification

Authentication error
If the assertion is not valid, for any reason, the authorization server returns a
response containing information regarding the error:

{
 "error":"invalid_client"
}

Chapter 9

[97]

The value of the error parameter in this case will always be invalid_client.
Optionally, the parameters error_message and error_uri may be included.

Note that the validation of the assertion is the same as in the previous case.

Summary
In this chapter we learned about SAML 2.0 bearer assertions in OAuth 2.0, as a
means of providing additional security when doing client authentication or when
requesting an access token.

In the next chapter, we will cover the tools and libraries available for client
developers, so that we have an overview of which of the popular programming
languages have which libraries to ease the development process.

Common Tools and Libraries
In the previous chapter, we learned about SAML 2.0 bearer assertion in OAuth 2.0,
as a means of providing additional security when doing client authentication or
when requesting an access token.

In this chapter, the last one of this book, we will cover the tools and libraries
available for client developers. It is divided into two parts. First, we'll cover the tools,
given their platform-neutral nature, and after that we'll cover the libraries that the
developers can use for their chosen programming language and environment.

The idea is that client developers, having knowledge of various OAuth 2.0 grant flows
and of the security considerations, choose the appropriate grant for a given scenario
and then either implement the grant flow on their own, or choose a library for the
programming language in which the application is (to be) written. By choosing a
library for handling OAuth 2.0, the client developer may save some time during the
development process, but may lack the possibility to do some customizations.

Tools
Various tools are made available to the client developers by OAuth2.0. We will have
a brief overview of each of these tools in the following sections.

OAuth 2.0 Playground
The OAuth 2.0 Playground is a web tool made by Google, providing developers with
means to test various OAuth 2.0 grants together with the various Google APIs that
support OAuth 2.0.

This tool can be found at https://developers.google.com/oauthplayground/.

Common Tools and Libraries

[100]

RESTClient
RESTClient is a browser extension (for Firefox) for testing RESTful web services that
use OAuth 2.0.

This tool can be found at http://restclient.net/.

Postman
Postman is another browser extension (for Chrome) for testing RESTful web services
that use OAuth 2.0.

This tool can be found at http://www.getpostman.com/.

Libraries
In this book, in the various code examples, we didn't use a library specifically
for OAuth 2.0, but instead used the Spring framework MVC controllers to map
endpoints and extract the parameters, the Apache HTTP client to make requests to the
authorization servers, and the GSON library to parse the JSON files retuned by them.

This way, we implemented the various OAuth 2.0 grant flows by ourselves, and
by doing that we showed what is going on under the hood. By implementing the
various OAuth 2.0 grant flows by ourselves, we are able to modify the code in the
client application faster and more easily, if the flow is not 100 percent by specification
but has some customization to it.

Nevertheless, there are numerous libraries for various popular programming
languages, which can be used to ease the use of OAuth 2.0 in either client
applications or server-side applications to provide OAuth 2.0 compliant services.

We'll list the libraries sorted by programming language, in alphabetical order,
and name one or a few of the most popular ones for each language.

These are the most popular libraries at the given moment. As technology and
time moves forward sometimes new libraries emerge, providing more optimal
or fully-featured implementations.

C#
The most popular library that supports OAuth 2.0 and can be used when building
client applications is DotNetOpenAuth.

This library can be found at http://dotnetopenauth.net/.

Chapter 10

[101]

Clojure
For Clojure, there is friend-oauth2, which is used together with Friend, a library
for authentication and authorization used in Clojure ring-based web applications and
services. It is used for adding authentication and authorization for web applications
and services with OAuth 2.0.

This library can be found at https://github.com/cemerick/friend/.

Another common choice is oauth-clj, which is used for building client applications
and can be found at https://github.com/r0man/oauth-clj/.

Go
For Google's new programming language named Go, there is a library available
called goauth2 and it's used for building client applications.

This library can be found at https://code.google.com/p/goauth2/.

Java
For Java there are several libraries; among them are Spring Security and Spring
Social, Apache Oltu, and of course Scribe. Spring Security and Oltu are used on the
server side to implement authorization and resource servers, and Spring Social and
Scribe are used on the client side for building client applications.

These libraries can be found at the following URLs:

• http://projects.spring.io/spring-social/

• http://projects.spring.io/spring-security/

• https://oltu.apache.org/

• https://github.com/fernandezpablo85/scribe-java/

JavaScript
The usual way is to use jQuery's AJAX support, as we have done in the example in
Chapter 5, OAuth for Client-side Applications.

When OAuth 1.0 was finalized, there were some JavaScript libraries specifically
targeting OAuth, but with the deprecation of OAuth 1.0 and the emergence of
OAuth 2.0, these libraries didn't upgrade or did but are not stable. Therefore,
there are none to recommend.

Common Tools and Libraries

[102]

Facebook, Google, and others provide their own JavaScript libraries. They can be
found at the following URLs:

• https://developers.facebook.com/docs/reference/javascript/

• https://developers.google.com/api-client-library/javascript/
features/authentication/

Objective-C
One option is to use Google Toolbox for Mac OAuth 2.0 controllers, simply
called GTM; and another one is AFOAuth2Client, which is an extension for the
AFNetworking networking library. Both are used for building client applications.

They can be found at the following URLs:

• https://code.google.com/p/gtm-oauth2/

• https://github.com/AFNetworking/AFOAuth2Client/

Perl
Perl offers several libraries as well, among them are Net-OAuth2 and p5-oauth-
lite2. They are both used for building client applications, and the second one is used
additionally for building authorization and resource servers.

They can be found at the following URLs:

• https://github.com/keeth/Net-OAuth2/

• https://github.com/lyokato/p5-oauth-lite2/

PHP
PHP is rich in choice as the other languages, where PHP-OAuth2 and oauth2-
client appear to be commonly used, both offering simplicity. For those using the
CodeIgniter PHP framework, a separate library is available as well. All of them are
used for building client applicaions.

They can be found on the following URLs:

• https://github.com/adoy/PHP-OAuth2/

• https://github.com/php-loep/oauth2-client/

• https://github.com/philsturgeon/codeigniter-oauth2/

Chapter 10

[103]

Python
For Python, rauth seems to be one of the most popular libraries, and for those using
the Django framework django-socialregistration is available as well. Both are
used for building client applications.

They can be found at the following URLs:

• https://github.com/litl/rauth/

• https://github.com/flashingpumpkin/django-socialregistration/

Ruby
For Ruby (and JRuby and Rubinius) the most popular choice is the generically
named library oauth2 used for building client applications.

This library can be found at https://github.com/intridea/oauth2/

Scala
For Scala, for the users of the popular Play framework, there is a library called
securesocial, and additionally there is a framework-independent Scala library
called joauth. Both are used for building client applications.

They can be found at the following URLs:

• https://github.com/jaliss/securesocial/

• https://github.com/twitter/joauth/

Summary
In this chapter, we have covered the tools and libraries related to OAuth 2.0,
available for client developers.

This is also the last chapter of the book, and next is the Appendix, OAuth 2.0
Resources, containing pointers to resources handy for everyone interested in
further expanding their knowledge of OAuth 2.0 or getting involved in future
specification development.

OAuth 2.0 Resources
In the last chapter we reviewed which tools and libraries are available for application
developers to utilize when building an OAuth client application.

This appendix is a compilation of resources ranging from RFC documents to websites
and mailing lists, handy for everyone interested in further expanding their knowledge
or getting involved in future specification development.

OAuth 2.0 specification
The OAuth 2.0 specification, fully named The OAuth 2.0 Authorization Framework,
is an RFC publication, developed by the Internet Engineering Task Force (IETF).
It is a proposed standard (an Internet Standards Track document) and it deprecates
the previous OAuth 1.0 specification.

It is published as RFC 6749 and is available at http://tools.ietf.org/html/
rfc6749.

OAuth WG mailing list
The official OAuth working group mailing list is maintained by the IETF.

The list archive (for browsing and reading) is available at http://www.ietf.org/
mail-archive/web/oauth/current/maillist.html.

To subscribe to the mailing list refer to https://www.ietf.org/mailman/
listinfo/oauth.

OAuth 2.0 Resources

[106]

OAuth 2.0 Threat Model and Security
Considerations
This document is also an RFC publication, outlining additional security
considerations regarding OAuth 2.0. It also outlines assumptions, threats, and
considerations to be taken against them.

It is not an Internet Standards Track specification, as is the OAuth 2.0 specification
itself, but it is also published for informational purposes.

It is published as RFC 6819 and is available at http://tools.ietf.org/html/
rfc6819.

The OAuth 2.0 Authorization
Framework - Bearer Token Usage
This is also an RFC publication, an Internet Standards Track document, outlining
how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources.

It is published as RFC 6750 and is available at https://tools.ietf.org/html/
rfc6750.

Assertion Framework for OAuth 2.0
Client Authentication and Authorization
Grants
This is an RFC draft, not finalized and still under active development, outlining
a framework for how assertions can be used as authorization grants and as
client credentials.

It is currently at Version 12 and can be found at https://tools.ietf.org/html/
draft-ietf-oauth-assertions-12.

Appendix

[107]

SAML 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants
This is an RFC draft (just like the previous one), outlining the use of SAML 2.0 bearer
assertion in OAuth 2.0 for both client authentication and access token request.

It is currently at version 17 and can be found at http://tools.ietf.org/html/
draft-ietf-oauth-saml2-bearer-17.

OAuth website
Last but not least, the OAuth website, with its section on OAuth 2.0 can be found
at http://oauth.net/2/.

Index
Symbols
@RequestMapping annotation 71

A
abstract example

about 15
diagram 15
working 15, 16

access_denied parameter 49
access scope 20
access token

about 17
example 17
parameters 17, 18
request, creating 35
requesting 34
request, parameters 35
successful response 35

accessTokenCCGrant variable 70
access_token parameter 17, 18, 48, 64, 68
accessTokenPWGrant variable 70
AccessTokenResponse class 71
AccessTokenResponse object 41
accessToken variable 38
access_type parameter 68
AFOAuth2Client library

about 102
URL 102

Android
custom URL scheme, registering 56

API
about 7
securing 9

APIEndpoint variable 51
application programming interface. See API
assertion parameter 94
assertions

about 90
authorization error 95
authorization, requesting 94
preparing 92-94
statements, defining in 91
successful authorization 94
using, in OAuth 2.0 90

attr function 51
Audience attribute 92
authEndpoint variable 37, 51
AuthenticationURL variable 51
authorization

delegating 10
authorization code

about 80
authorization error 33, 34
request, creating 31-33
requesting 31
request, parameters 32
successful authorization 33
using, for security purposes 80

authorization code grant
about 30
access token, requesting 34-36
authorization code, requesting 31-34
authorization, obtaining steps 30, 31
characteristics 29
implementing, practical example 36-43

authorization endpoint 20
authorization flow

about 15
abstract example 15, 16

[110]

OAuth 2.0 grant flows 16
Authorization Grant 15
Authorization server 30, 31
Authorize button 52

B
body tag 37
BYOD (bring your own device) 10

C
client

registering 19-27
types 19

client application 15, 30, 31
client_assertion parameter 96
client_assertion_type parameter 96
client credentials grant

about 66, 67
authorization error 68
authorization, requesting 67
characteristics 66
implementing, practical example 6876
successful authorization 68

client credentials grant, implementing
practical example 76

client identifiers
about 82
using, for security purposes 82

client_id parameter 32, 47, 58, 67, 94
clientId variable 51
client profiles

native application 19
user-agent-based application 19
web application 19

client registration
about 23-27
example, Facebook 23, 25
example, LinkedIn 26, 27
Facebook, screenshot 24
LinkedIn, screenshot 26

client_secret parameter 63, 67, 94, 96
client types

confidential client 19
public client 19

code parameter 35, 39, 96

code variable 37
Conditions element 93
cross-site request forgery (CSRF) 81
custom URL scheme

about 55, 56
registering, in Android 56
registering, in iOS 57

D
desktop application

protection, ensuring 85
django-socialregistration library

about 103
URL 103

DotNetOpenAuth library
URL 100

E
endpoint

about 20
authorization endpoint 20
redirection (callback) endpoint 20
token endpoint 20
types 20

enterprise applications
internally using 10

error_description parameter 34, 49
error parameter values

access_denied 34
invalid_client 65
invalid_grant 65
invalid_request 34, 65
invalid_scope 34, 66
server_error 34
temporarily_unavailable 34
unauthorized_client 34, 65
unsupported_grant_type 65
unsupported_response_type 34

error_uri parameter 34, 49
expires_in parameter 17, 18, 48, 64, 68

F
federated identity 11
friend-oauth2 library

about 101

[111]

URL 101
fromJson method 41

G
getATWithClientCredentialsGrantFlow

method 71, 74
getATWithPasswordGrantFlow method

71, 72
goauth2 library

about 101
URL 101

Google Toolbox for Mac OAuth 2.0
controllers. See GTM

grant_type parameter 35, 63, 75, 94
GTM

about 102
URL 102

H
href attribute 37, 51
HttpPost object 73
HttpResponse object 40, 73

I
IETF 105
implicit grant

about 45, 46
authorization error 49
authorization, requesting 47
characteristics 46
error parameters 49
example 57, 58
flow, steps 46, 47
implementing, practical example 50-54
request, constructing parameters 47
successful authorization 48

Implicit grant example
authorization error 58
authorization, requesting 58
successful authorization 58

Internet Engineering Task Force. See IETF
invalid_request parameter 49
iOS

custom URL scheme, registering 57
Issuer attribute 92

J
joauth library

about 103
URL 103

M
MainController class 70
MainController controller 38
mainPage handler method 71
mobile application

protection, ensuring 85
Mobile Site URL parameter 25
Mobile Web 25
model parameter 38, 39, 42

N
NameID attribute 92
Net-OAuth2 library

about 102
URL 102

NotBefore attribute 93
NotOnOrAfter attribute 93

O
OAuth 2.0

about 8, 9
assertions, using in 90, 91
benefits 9-11
parameters, used by attackers 78
roles 13-15
SAML 2.0 profile, URL 107
SAML bearer assertion grant flow 91-95
SAML bearer assertions, for client

authentication using 95-97
tokens 17, 18

OAuth 2.0 assertion framework
URL 106

OAuth 2.0 Authorization Framework. See
OAuth 2.0 specification

OAuth 2.0 bearer token usage
URL 106

OAuth 2.0 benefits
API security 9

[112]

authorization, delegating 10
easier service monitoring 11
federated identity 11
internal enterprise applications 10
service, integrating 10

OAuth 2.0 grant flows
about 16
authorization code grant flow 16
client credentials grant flow 17
implicit grant flow 16
Resource Owner Password Credentials

grant flow 16
OAuth 2.0 Playground tool

about 99
URL 99

OAuth 2.0 roles
authorization server 14
client 15
resource owner 13
resource server 14

OAuth 2.0 security features
about 78
authorization code 80
client identifier, using 82
redirect URI parameter 80, 81
refresh token 79
refresh token, using 79, 80
scope 78
state parameter 81
token lifetime 79

OAuth 2.0 specification
about 105
URL 105

OAuth 2.0 supported libraries
about 100
C# library, DotNetOpenAuth 100
Clojure libraries, friend-oauth2 101
Clojure libraries, oauth-clj 101
Go library, goauth2 101
Java libraries 101
JavaScript libraries 101, 102
objective C libraries, AFOAuth2Client 102
objective C libraries, GTM 102
Perl libraries, Net-OAuth2 102
Perl libraries, p5-oauth-lite2 102
PHP libraries, oauth2-client 102

PHP libraries, PHP-OAuth2 102
Python libraries, django-socialregistration

103
Python libraries, rauth 103
Ruby library, oauth2 103
Scala libraries, joauth 103
Scala libraries, securesocial 103

OAuth 2.0 threat model and security
considerations document 106

OAuth 2.0 tokens
about 17
access token 17, 18
refresh token 18

OAuth2.0 tools
OAuth 2.0 Playground 99
Postman 100
RESTClient 100

oauth2-client library
about 102
URL 102

oauth2 library
about 103
URL 103

oauth-clj library
about 101
URL 101

OAuth website
URL 107

OAuth WG mailing list
about 105
archive, URL 105
subscribing, URL 105

OAuth working group mailing list. See
OAuth WG mailing list

Open Web Application Security Project. See
OWASP

OWASP
about 84
URL 84

P
p5-oauth-lite2 library

about 102
URL 102

password parameter 63

[113]

PHP-OAuth2 library
about 102
URL 102

Postman tool
about 100
URL 100

practical example
authorization code grant, implementing

36-43
client credentials grant, implementing

74-76
Resource owner password credentials

grant, implementing 68-74

R
rauth library

about 103
URL 103

r_basicprofile scope 27
Recipient attribute 92
redirection (callback) endpoint

about 20
redirect URI

about 80
using, for security purposes 81

redirect_uri parameter 25, 32, 47, 55, 80, 96
redirectURI variable 39
refresh token

about 18, 79
using, for security purposes 79, 80
using, when available 86

refresh_token field 18
refresh_token parameter 18, 65, 79
Resource owner 30
Resource owner password credentials grant

about 62, 63
authorization error 65, 66
authorization, requesting 63, 64
characteristics 62
implementing, practical example 68-74
successful authorization 64, 65

response_type parameter 32, 34, 47
RESTClient tool

about 100
URL 100

S
SAML

about 89
SAML 2.0 89

SAML 2.0 89
SAML 2.0 bearer assertion

access token, requesting 96
authentication error 96, 97

SAML 2.0 bearer assertion grant flow
assertion, preparing 92-94
authorization error 95
authorization, requesting 94
steps 91, 92
successful authorization 94
using 91

scope
using 78
using, for security purposes 78

scope, needed
requesting 87

scope parameter 18, 32, 47, 63, 67, 94
securesocial library

about 103
URL 103

Secure Sockets Layer (SSL) 8
Security Assertion Markup Language. See

SAML
security considerations

mobile application protection, ensuring 85
refresh tokens, using 86
required scope, requesting 87
state parameter, utilizing 86
TLS, using 82, 83
web server application protection,

ensuring 84
service

integrating 10
monitoring 11

Signature element 93
state parameter

about 18, 32, 34, 47, 49, 81
using, for security purposes 81
utilizing 86

SubjectConfirmationData element 93
Subject element 92

[114]

T
temporarily_unavailable parameter 49
TLS

about 26, 82
using 83

token endpoint 20
token lifetime

reducing, for security purposes 79
tokenRequest variable 40
token_type parameter 48, 64
Transport Layer Security. See TLS

U
unauthorized_client parameter 49
unsupported_response_type parameter 49
URL identifier key 57
URL schemes key 57

URL Types key 57
User agent 30
user_id parameter 18, 75
username parameter 63
userName variable 38
UUID (universally unique identifier) 86

W
web server application

protection, ensuring 84

Z
Zendesk 68, 69

Thank you for buying
OAuth 2.0 Identity and Access

Management Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

HTML5 iPhone Web Application
Development
ISBN: 978-1-84969-102-4 Paperback: 338 pages

An introduction to web-application development for
mobile within the iOS Safari browser

1. Simple and complex problems will be covered
with examples and resources that backup the
approach and technique.

2. Real world solutions that are broken down
for multiple target audiences; from beginner
developers to technical architects.

3. Learn to build true web applications using the
latest industry standards for iOS Safari.

Symfony 1.3 Web Application
Development
ISBN: 978-1-847194-56-5 Paperback: 228 pages

Design, develop, and deploy feature-rich,
high-performance PHP web applications using
the Symfony framework

1. Create powerful web applications by
leveraging the power of this Model-View-
Controller-based framework

2. Covers all the new features of version 1.3 –
many exciting plug-ins for you

3. Learn by doing without getting into too much
theoretical detail – create a "real-life" milkshake
store application

4. Includes best practices to shorten your
development time and improve performance

Please check www.PacktPub.com for information on our titles

Real-time Web Application
Development using Vert.x 2.0
ISBN: 978-1-78216-795-2 Paperback: 122 pages

An intuitive guide to building applications for the
real-time web with the Vert.x platform

1. Get started with developing applications for the
real-time web

2. From concept to deployment, learn the full
development workflow of a real-time web
application

3. Utilize the Java skills you already have while
stepping up to the next level

4. Learn all the major building blocks of the Vert.x
platform

SproutCore Web Application
Development
ISBN: 978-1-84951-770-6 Paperback: 194 pages

Creating fast, powerful, and feature-rich web
applications using the SproutCore HTML5
framework

1. Write next-gen HTML5 apps using the
SproutCore framework and tools

2. Get started right away by creating a powerful
application in the very first chapter

3. Build your understanding of SproutCore as you
follow through the most complete reference to
the framework anywhere in existence

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Need for OAuth 2.0
	Why OAuth 2.0?
	Benefits of OAuth 2.0
	API security
	Internal enterprise applications
	Service integration and authorization delegation
	Federated identity
	Easier service monitoring

	Summary

	Chapter 2: Terms You Need To Know
	Roles
	Resource owner
	Authorization server
	Resource server
	Client

	Authorization flow
	Abstract example
	OAuth 2.0 grant flows

	Tokens
	Access token
	Refresh token

	Clients and endpoints
	Client types and profiles
	Endpoints

	Access scope
	Summary

	Chapter 3: First Step for Your Application
	Client registration
	Summary

	Chapter 4: OAuth for Web Server Applications
	Authorization code grant
	Requesting the authorization code
	Making the request
	Successful authorization
	Authorization error

	Requesting the access token
	Making the request
	Successful response

	Practical example
	Summary

	Chapter 5: OAuth for Client-side Applications
	Implicit grant
	Requesting authorization
	Successful authorization
	Authorization error

	Practical example
	Summary

	Chapter 6: OAuth for Mobile Applications
	Custom URL scheme
	Android
	iOS

	Implicit grant example
	Requesting authorization
	Successful authorization
	Authorization error

	Summary

	Chapter 7: OAuth for Trusted Applications
	Resource owner password credentials grant
	Requesting authorization
	Successful authorization
	Authorization error

	Client credentials grant
	Requesting authorization
	Successful authorization
	Authorization error

	Practical example
	Resource owner password credentials grant
	Client credentials grant

	Summary

	Chapter 8: Security Considerations
	What is there to be protected
	OAuth 2.0 security features
	Scope
	Token lifetime
	The refresh token
	Authorization code
	Redirect URI
	State
	Client identifier

	Security considerations
	Use TLS
	Ensure web server application protection
	Ensure mobile and desktop application protection
	Utilize the state parameter
	Use refresh tokens when available
	Request only the needed scope

	Summary

	Chapter 9: Additional Security with SAML
	SAML (2.0)
	OAuth 2.0 assertions
	Other assertion based specifications

	OAuth 2.0 SAML bearer assertion grant flow
	Preparing assertion
	Requesting authorization
	Successful authorization
	Authorization error

	OAuth 2.0 SAML assertions for client authentication
	Requesting the access token
	Authentication error

	Summary

	Chapter 10: Common Tools and Libraries
	Tools
	OAuth 2.0 Playground
	RESTClient
	Postman

	Libraries
	C#
	Clojure
	Go
	Java
	JavaScript
	Objective-C
	Perl
	PHP
	Python
	Ruby
	Scala

	Summary

	Appendix: OAuth 2.0 Resources
	OAuth 2.0 specification
	OAuth WG mailing list
	OAuth 2.0 Threat Model and Security Considerations
	The OAuth 2.0 Authorization
Framework - Bearer Token Usage
	Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
	SAML 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants
	OAuth website

	Index

