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Preface
Welcome to the OpenCL Parallel Programming Development Cookbook! Whew, that was 
more than a mouthful. This book was written by a developer, that's me, and for a developer, 
hopefully that's you. This book will look familiar to some and distinct to others. It is a result of 
my experience with OpenCL, but more importantly in programming heterogeneous computing 
environments. I wanted to organize the things I've learned and share them with you, the reader, 
and decided upon taking an approach where each problem is categorized into a recipe. These 
recipes are meant to be concise, but admittedly some are longer than others. The reason 
for doing that is because the problems I've chosen, which manifest as chapters in this book 
describe how you can apply those techniques to your current or future work. Hopefully it 
can be a part of the reference, which rests on your desk among others. I certainly hope that 
understanding the solution to these problems can help you as much as they helped me.

This book was written keeping a software developer in mind, who wishes to know not only 
how to program in parallel but also think in parallel. The latter is in my opinion more important 
than the former, but neither of them alone solves anything. This book reinforces each concept 
with code and expands on that as we leverage upon more recipes.

This book is structured to ease you gently into OpenCL by getting you to be familiar with 
the core concepts of OpenCL, and then we'll take deep dives by applying that newly gained 
knowledge into the various recipes and general parallel computing problems you'll encounter 
in your work.

To get the most out of this book, it is highly recommended that you are a software developer 
or an embedded software developer, and is interested in parallel software development but 
don't really know where/how to start. Ideally, you should know some C or C++ (you can pick 
C up since its relatively simple) and comfortable using a cross-platform build system, for 
example, CMake in Linux environments. The nice thing about CMake is that it allows you to 
generate build environments for those of you who are comfortable using Microsoft's Visual 
Studio, Apple's XCode, or some other integrated development environment. I have to admit 
that the examples in this book used neither of these tools.
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What this book covers
Chapter 1, Using OpenCL, sets the stage for the reader by establishing OpenCL in its purpose 
and motivation. The core concepts are outlined in the recipes covering the intrinsics of 
devices and their interactions and also by real working code. The reader will learn about 
contexts and devices and how to create code that runs on those devices.

Chapter 2, Understanding OpenCL Data Transfer and Partitioning, discusses the buffer 
objects in OpenCL and strategies on how to partition data amongst them. Subsequently, 
readers will learn what work items are and how data partitioning can take effect by  
leveraging OpenCL abstractions.

Chapter 3, Understanding OpenCL Data Types, explains the two general data types that 
OpenCL offers, namely scalar and vector data types, how they are used to solve different 
problems, and how OpenCL abstracts native vector architectures in processors. Readers  
will be shown how they can effect programmable vectorization through OpenCL.

Chapter 4, Understanding OpenCL Functions, discusses the various functionalities offered by 
OpenCL in solving day-to-day problems, for example, geometry, permuting, and trigonometry.  
It also explains how to accelerate that by using their vectorized counterparts.

Chapter 5, Developing a Histogram OpenCL program, witnesses the lifecycle of a typical 
OpenCL development. It also discusses about the data partitioning strategies that rely on 
being cognizant of the algorithm in question. The readers will inadvertently realize that not  
all algorithms or problems require the same approach.

Chapter 6, Developing a Sobel Edge Detection Filter, will guide you in how to build an edge 
detection filter using the Sobel's method. They will be introduced into some mathematical 
formality including convolution theory in one-dimension and two-dimensions and its 
accompanying code. And finally, we introduce how profiling works in OpenCL and its 
application in this recipe.

Chapter 7, Developing the Matrix Multiplication with OpenCL, discusses parallelizing the 
matrix multiplication by studying its parallel form and applying the tranformation from 
sequential to parallel. Next, it'll optimize the matrix multiplication by discussing how to 
increase the computation throughput and warming the cache.

Chapter 8, Developing the Sparse Matrix-Vector Multiplication with OpenCL, discusses 
the context of this computation and the conventional method used to solve it, that is, the 
conjugate gradient through enough math. Once that intuition is developed, readers will be 
shown how various storage formats for sparse matrices can affect the parallel computation 
and then the readers can examine the ELLPACK, ELLPACK-R, COO, and CSR.

Chapter 9, Developing Bitonic Sort Using OpenCL, will introduce readers, to the world of 
sorting algorithms, and focus on the parallel sorting network also known as bitonic sort.  
This chapter works through the recipes, as we did in all other chapters by presenting 
the theory and its sequential implementation, and extracting the parallelism from the 
transformation, and then developing the final parallel version.



Preface

3

Chapter 10, Developing the Radix Sort with OpenCL, will introduce a classic example of 
non-comparison based sorting algorithms, for example, QuickSort where it suits a GPU 
architecture better. The reader is also introduced to another core parallel programming 
technique known as reduction, and we developed the intuition of how reduction helps radix 
sort perform better. The radix sort recipe also demonstrates multiple kernel programming  
and highlights the advantages as well as the disadvantages.

What you need for this book
You need to be comfortable working in a Linux environment, as the examples are tested 
against the Ubuntu 12.10 64-bit operating system. The following are the requirements:

 f GNU GCC C/C++ compiler Version 4.6.1 (at least)

 f OpenCL 1.2 SDK by AMD, Intel & NVIDIA

 f AMD APP SDK Version 2.8 with AMD Catalyst Linux Display Driver Version 13.4

 f Intel OpenCL SDK 2012

 f CMake Version 2.8 (at least)

 f Clang Version 3.1 (at least)

 f Microsoft Visual C++ 2010 (if you work on Windows)

 f Boost Library Version 1.53

 f VexCL (by Denis Demidov)

 f CodeXL Profiler by AMD (Optional)

 f At least eight hours of sleep

 f An open and receptive mind

 f A fresh brew of coffee or whatever that works

Who this book is for
This book is intended for software developers who have often wondered what to do with 
that newly bought CPU or GPU they bought other than using it for playing computer games. 
Having said that, this book isn't about toy algorithms that works only on your workstations at 
home. This book is ideally for the developers who have a working knowledge of C/C++ and 
who want to learn how to write parallel programs that execute in heterogeneous computing 
environments in OpenCL.
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Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use  
of the #include directive."

A block of code is set as follows:

[default]
cl_uint sortOrder = 0; // descending order else 1 for ascending order
        cl_uint stages = 0;
        for(unsigned int i = LENGTH; i > 1; i >>= 1)
            ++stages;
        clSetKernelArg(kernel, 0, sizeof(cl_mem),(void*)&device_A_in);
        clSetKernelArg(kernel, 3, sizeof(cl_uint),(void*)&sortOrder);
#ifdef USE_SHARED_MEM
        clSetKernelArg(kernel, 4, (GROUP_SIZE << 1) *sizeof(cl_
uint),NULL);
#elif def USE_SHARED_MEM_2

When we wish to draw your attention to a particular part of a code block, the relevant lines  
or items are set in bold:

[default]
cl_uint sortOrder = 0; // descending order else 1 for ascending order
        cl_uint stages = 0;
        for(unsigned int i = LENGTH; i > 1; i >>= 1)
            ++stages;
        clSetKernelArg(kernel, 0, sizeof(cl_mem),(void*)&device_A_in);
        clSetKernelArg(kernel, 3, sizeof(cl_uint),(void*)&sortOrder);
#ifdef USE_SHARED_MEM
        clSetKernelArg(kernel, 4, (GROUP_SIZE << 1) *sizeof(cl_
uint),NULL);
#elif def USE_SHARED_MEM_2

Any command-line input or output is written as follows:

# gcc –Wall test.c –o test

New terms and important words are shown in bold. Words that you see on the screen,  
in menus or dialog boxes for example, appear in the text like this: "clicking on the Next  
button moves you to the next screen".
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.



1
Using OpenCL

In this chapter, we will cover the following recipes:

 f Querying OpenCL platforms

 f Querying OpenCL devices on your platform

 f Querying for OpenCL device extensions

 f Querying OpenCL contexts

 f Querying an OpenCL program

 f Creating OpenCL kernels

 f Creating command queues and enqueuing OpenCL kernels

Introduction
Let's start the journey by looking back into the history of computing and why OpenCL 
is important from the respect that it aims to unify the software programming model for 
heterogeneous devices. The goal of OpenCL is to develop a royalty-free standard for  
cross-platform, parallel programming of modern processors found in personal computers, 
servers, and handheld/embedded devices. This effort is taken by "The Khronos Group" along 
with the participation of companies such as Intel, ARM, AMD, NVIDIA, QUALCOMM, Apple, and 
many others. OpenCL allows the software to be written once and then executed on the devices 
that support it. In this way it is akin to Java, this has benefits because software development 
on these devices now has a uniform approach, and OpenCL does this by exposing the 
hardware via various data structures, and these structures interact with the hardware via 
Application Programmable Interfaces (APIs). Today, OpenCL supports CPUs that includes 
x86s, ARM and PowerPC and GPUs by AMD, Intel, and NVIDIA.

www.allitebooks.com
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Developers can definitely appreciate the fact that we need to develop software that is  
cross-platform compatible, since it allows the developers to develop an application on 
whatever platform they are comfortable with, without mentioning that it provides a coherent 
model in which we can express our thoughts into a program that can be executed on any 
device that supports this standard. However, what cross-platform compatibility also means 
is the fact that heterogeneous environments exists, and for quite some time, developers 
have to learn and grapple with the issues that arise when writing software for those devices 
ranging from execution model to memory systems. Another task that commonly arose from 
developing software on those heterogeneous devices is that developers were expected to 
express and extract parallelism from them as well. Before OpenCL, we know that various 
programming languages and their philosophies were invented to handle the aspect of 
expressing parallelism (for example, Fortran, OpenMP, MPI, VHDL, Verilog, Cilk, Intel TBB, 
Unified parallel C, Java among others) on the device they executed on. But these tools were 
designed for the homogeneous environments, even though a developer may think that it's to 
his/her advantage, since it adds considerable expertise to their resume. Taking a step back 
and looking at it again reveals that is there is no unified approach to express parallelism in 
heterogeneous environments. We need not mention the amount of time developers need 
to be productive in these technologies, since parallel decomposition is normally an involved 
process as it's largely hardware dependent. To add salt to the wound, many developers only 
have to deal with homogeneous computing environments, but in the past few years the 
demand for heterogeneous computing environments grew.

The demand for heterogeneous devices grew partially due to the need for high performance 
and highly reactive systems, and with the "power wall" at play, one possible way to improve 
more performance was to add specialized processing units in the hope of extracting every 
ounce of parallelism from them, since that's the only way to reach power efficiency. The 
primary motivation for this shift to hybrid computing could be traced to the research headed 
entitled Optimizing power using Transformations by Anantha P. Chandrakasan. It brought out 
a conclusion that basically says that many-core chips (which run at a slightly lower frequency 
than a contemporary CPU) are actually more power-efficient. The problem with heterogeneous 
computing without a unified development methodology, for example, OpenCL, is that 
developers need to grasp several types of ISA and with that the various levels of parallelism 
and their memory systems are possible. CUDA, the GPGPU computing toolkit, developed 
by NVIDIA deserves a mention not only because of the remarkable similarity it has with 
OpenCL, but also because the toolkit has a wide adoption in academia as well as industry. 
Unfortunately CUDA can only drive NVIDIA's GPUs.

The ability to extract parallelism from an environment that's heterogeneous is an important 
one simply because the computation should be parallel, otherwise it would defeat the entire 
purpose of OpenCL. Fortunately, major processor companies are part of the consortium 
led by The Khronos Group and actively realizing the standard through those organizations. 
Unfortunately the story doesn't end there, but the good thing is that we, developers, 
realized that a need to understand parallelism and how it works in both homogeneous and 
heterogeneous environments. OpenCL was designed with the intention to express parallelism 
in a heterogeneous environment.
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For a long time, developers have largely ignored the fact that their software needs to take 
advantage of the multi-core machines available to them and continued to develop their 
software in a single-threaded environment, but that is changing (as discussed previously). 
In the many-core world, developers need to grapple with the concept of concurrency, and 
the advantage of concurrency is that when used effectively, it maximizes the utilization of 
resources by providing progress to others while some are stalled.

When software is executed concurrently with multiple processing elements so that threads 
can run simultaneously, we have parallel computation. The challenge that the developer 
has is to discover that concurrency and realize it. And in OpenCL, we focus on two parallel 
programming models: task parallelism and data parallelism.

Task parallelism means that developers can create and manipulate concurrent tasks. When 
developers are developing a solution for OpenCL, they would need to decompose a problem into 
different tasks and some of those tasks can be run concurrently, and it is these tasks that get 
mapped to processing elements (PEs) of a parallel environment for execution. On the other side 
of the story, there are tasks that cannot be run concurrently and even possibly interdependent. 
An additional complexity is also the fact that data can be shared between tasks.

When attempting to realize data parallelism, the developer needs to readjust the way they 
think about data and how they can be read and updated concurrently. A common problem 
found in parallel computation would be to compute the sum of all the elements given in an 
arbitrary array of values, while storing the intermediary summed value and one possible way 
to do this is illustrated in the following diagram and the operator being applied there, that is, 
+  is any binary associative operator. Conceptually, the developer could use a task to perform 

the addition of two elements of that input to derive the summed value.

input_array

output_array

12 3 7 21 89 11 3 5

12 15 22 43 132 143 146 151

+

+

+

+

+

+

+
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Whether the developer chooses to embody task/data parallelism is dependent on the 
problem, and an example where task parallelism would make sense will be by traversing a 
graph. And regardless of which model the developer is more inclined with, they come with 
their own sets of problems when you start to map the program to the hardware via OpenCL. 
And before the advent of OpenCL, the developer needs to develop a module that will execute 
on the desired device and communication, and I/O with the driver program. An example 
example of this would be a graphics rendering program where the CPU initializes the data and 
sets everything up, before offloading the rendering to the GPU. OpenCL was designed to take 
advantage of all devices detected so that resource utilization is maximized, and hence in this 
respect it differs from the "traditional" way of software development.

Now that we have established a good understanding of OpenCL, we should spend some time 
understanding how a developer can learn it. And not to fret, because every project you embark 
with, OpenCL will need you to understand the following:

 f Discover the makeup of the heterogeneous system you are developing for

 f Understand the properties of those devices by probing it

 f Start the parallel program decomposition using either or all of task parallelism  
or data parallelism, by expressing them into instructions also known as kernels  
that will run on the platform

 f Set up data structures for the computation

 f Manipulate memory objects for the computation

 f Execute the kernels in the order that's desired on the proper device

 f Collate the results and verify for correctness

Next, we need to solidify the preceding points by taking a deeper look into the  
various components of OpenCL. The following components collectively make up  
the OpenCL architecture:

 f Platform Model: A platform is actually a host that is connected to one or more 
OpenCL devices. Each device comprises possibly multiple compute units (CUs)  
which can be decomposed into one or possibly multiple processing elements,  
and it is on the processing elements where computation will run.

 f Execution Model: Execution of an OpenCL program is such that the host program 
would execute on the host, and it is the host program which sends kernels to execute 
on one or more OpenCL devices on that platform.
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When a kernel is submitted for execution, an index space is defined such that a 
work item is instantiated to execute each point in that space. A work item would 
be identified by its global ID and it executes the same code as expressed in the 
kernel. Work items are grouped into work groups and each work group is given an ID 
commonly known as its work group ID, and it is the work group's work items that get 
executed concurrently on the PEs of a single CU.

That index space we mentioned earlier is known as NDRange describing an 
N-dimensional space, where N can range from one to three. Each work item has a 
global ID and a local ID when grouped into work groups, that is distinct from the other 
and is derived from NDRange. The same can be said about work group IDs. Let's use 
a simple example to illustrate how they work.

Given two arrays, A and B, of 1024 elements each, we would like to perform the 
computation of vector multiplication also known as dot product, where each element 
of A would be multiplied by the corresponding element in B. The kernel code would 
look something as follows:
__kernel void vector_multiplication(__global int* a, 
                                    __global int* b,
                                    __global int* c) {
int threadId = get_global_id(0); // OpenCL function
c[i] = a[i] * b[i];
}

In this scenario, let's assume we have 1024 processing elements and we would 
assign one work item to perform exactly one multiplication, and in this case our work 
group ID would be zero (since there's only one group) and work items IDs would range 
from {0 … 1023}. Recall what we discussed earlier, that it is the work group's work 
items that can executed on the PEs. Hence reflecting back, this would not be a good 
way of utilizing the device.

In this same scenario, let's ditch the former assumption and go with this: we still 
have 1024 elements but we group four work items into a group, hence we would 
have 256 work groups with each work group having an ID ranging from {0 … 255}, 
but it is noticed that the work item's global ID still would range from {0 … 1023} 
simply because we have not increased the number of elements to be processed. This 
manner of grouping work items into their work groups is to achieve scalability in these 
devices, since it increases execution efficiency by ensuring all PEs have something to 
work on.
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The NDRange can be conceptually mapped into an N-dimensional grid and the 
following diagram illustrates how a 2DRange works, where WG-X denotes the length 
in rows for a particular work group and WG-Y denotes the length in columns for a 
work group, and how work items are grouped including their respective IDs in a 
work group.
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Before the execution of the kernels on the device(s), the host program plays an 
important role and that is to establish context with the underlying devices and laying 
down the order of execution of the tasks. The host program does the context creation 
by establishing the existence (creating if necessary) of the following:

 � All devices to be used by the host program

 � The OpenCL kernels, that is, functions and their abstractions that will run  
on those devices

 � The memory objects that encapsulated the data to be used / shared by the 
OpenCL kernels.

 � Once that is achieved, the host needs to create a data structure called a 
command queue that will be used by the host to coordinate the execution 
of the kernels on the devices and commands are issued to this queue and 
scheduled onto the devices. A command queue can accept: kernel execution 
commands, memory transfer commands, and synchronization commands. 
Additionally, the command queues can execute the commands in-order, 
that is, in the order they've been given, or out-of-order. If the problem 
is decomposed into independent tasks, it is possible to create multiple 
command queues targeting different devices and scheduling those tasks 
onto them, and then OpenCL will run them concurrently.
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 f Memory Model: So far, we have understood the execution model and it's time to 
introduce the memory model that OpenCL has stipulated. Recall that when the 
kernel executes, it is actually the work item that is executing its instance of the kernel 
code. Hence the work item needs to read and write the data from memory and each 
work item has access to four types of memories: global, constant, local, and private. 
These memories vary from size as well as accessibilities, where global memory 
has the largest size and is most accessible to work items, whereas private memory 
is possibly the most restrictive in the sense that it's private to the work item. The 
constant memory is a read-only memory where immutable objects are stored and can 
be shared with all work items. The local memory is only available to all work items 
executing in the work group and is held by each compute unit, that is, CU-specific.

The application running on the host uses the OpenCL API to create memory objects 
in global memory and will enqueue memory commands to the command queue 
to operate on them. The host's responsibility is to ensure that data is available to 
the device when the kernel starts execution, and it does so by copying data or by 
mapping/unmapping regions of memory objects. During a typical data transfer from 
the host memory to the device memory, OpenCL commands are issued to queues 
which may be blocking or non-blocking. The primary difference between a blocking 
and non-blocking memory transfer is that in the former, the function calls return only 
once (after being queued) it is deemed safe, and in the latter the call returns as soon 
as the command is enqueued.

Memory mapping in OpenCL allows a region of memory space to be available for 
computation and this region can be blocking or non-blocking and the developer  
can treat this space as readable or writeable or both.

Hence forth, we are going to focus on getting the basics of OpenCL by letting our 
hands get dirty in developing small OpenCL programs to understand a bit more, 
programmatically, how to use the platform and execution model of OpenCL.

The OpenCL specification Version 1.2 is an open, royalty-free standard for general purpose 
programming across various devices ranging from mobile to conventional CPUs, and lately 
GPUs through an API and the standard at the time of writing supports:

 f Data and task based parallel programming models

 f Implements a subset of ISO C99 with extensions for parallelism with some 
restrictions such as recursion, variadic functions, and macros which are  
not supported

 f Mathematical operations comply to the IEEE 754 specification

 f Porting to handheld and embedded devices can be accomplished by establishing 
configuration profiles

 f Interoperability with OpenGL, OpenGL ES, and other graphics APIs

Throughout this book, we are going to show you how you can become proficient  
in programming OpenCL.
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As you go through the book, you'll discover not only how to use the API to perform all kinds 
of operations on your OpenCL devices, but you'll also learn how to model a problem and 
transform it from a serial program to a parallel program. More often than not, the techniques 
you'll learn can be transferred to other programming toolsets.

In the toolsets, I have worked with OpenCLTM, CUDATM, OpenMPTM, MPITM, Intel thread building 
blocksTM, CilkTM, CilkPlusTM, which allows the developer to express parallelism in a homogeneous 
environment and find the entire process of learning the tools to application of knowledge to be 
classified into four parts. These four phases are rather common and I find it extremely helpful to 
remember them as I go along. I hope you will be benefited from them as well.

 f Finding concurrency: The programmer works in the problem domain to identify the 
available concurrency and expose it to use in the algorithm design

 f Algorithm structure: The programmer works with high-level structures for organizing  
a parallel algorithm

 f Supporting Structures: This refers to how the parallel program will be organized and the 
techniques used to manage shared data

 f Implementation mechanisms: The final step is to look at specific software constructs for 
implementing a parallel program.

Don't worry about these concepts, they'll be explained as we move through the book.

The next few recipes we are going to examine have to do with understanding the usage of 
OpenCL APIs, by focusing our efforts in understanding the platform model of the architecture.

Querying OpenCL platforms
Before you start coding, ensure that you have installed the appropriate OpenCL development 
toolkit for the platform you are developing for. In this recipe, we are going to demonstrate how 
you can use OpenCL to query its platform to retrieve simple information about the compliant 
devices it has detected and its various properties.

Getting ready
In this first OpenCL application, you'll get to query your computer for the sort of OpenCL 
platform that's installed. In the setup of your computer, you could have a configuration where 
both NVIDIA and AMD graphic cards are installed, and in this case you might have installed 
both the AMD APP SDK and NVIDIA's OpenCL toolkit. And hence you would have both the 
platforms installed.

The following code listing is extracted from Ch1/platform_details/platform_
details.c.
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How to do it…
Pay attention to the included comments, as they would help you to understand each  
individual function:

#include <stdio.h>
#include <stdlib.h>

#ifdef APPLE
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

void displayPlatformInfo(cl_platform_id id,
                         cl_platform_info param_name,
                         const char* paramNameAsStr) {
    cl_int error = 0;
    size_t paramSize = 0;

    error = clGetPlatformInfo( id, param_name, 0, NULL,
                               &paramSize );
    char* moreInfo = (char*)alloca( sizeof(char) * paramSize);
    error = clGetPlatformInfo( id, param_name, paramSize,
                               moreInfo, NULL );
    if (error != CL_SUCCESS ) {
        perror("Unable to find any OpenCL platform
                information");
        return;
    }
    printf("%s: %s\n", paramNameAsStr, moreInfo);
}

int main() {
   /* OpenCL 1.2 data structures */
   cl_platform_id* platforms;
   /* OpenCL 1.1 scalar data types */
   cl_uint numOfPlatforms;
   cl_int  error;

   /* 
      Get the number of platforms 
      Remember that for each vendor's SDK installed on the
      Computer, the number of available platform also
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      increased. 
    */
   error = clGetPlatformIDs(0, NULL, &numOfPlatforms);
   if(error < 0) {      
      perror("Unable to find any OpenCL platforms");
      exit(1);
   }
   // Allocate memory for the number of installed platforms.
   // alloca(...) occupies some stack space but is
   // automatically freed on return
   platforms = (cl_platform_id*) alloca(sizeof(cl_platform_id)
               * numOfPlatforms);
   printf("Number of OpenCL platforms found: %d\n",
           numOfPlatforms);

   // We invoke the API 'clPlatformInfo' twice for each
   // parameter we're trying to extract
   // and we use the return value to create temporary data
   // structures (on the stack) to store
   // the returned information on the second invocation.
   for(cl_uint i = 0; i < numOfPlatforms; ++i) {
        displayPlatformInfo( platforms[i], 
                             CL_PLATFORM_PROFILE,
                             "CL_PLATFORM_PROFILE" );

        displayPlatformInfo( platforms[i], 
                             CL_PLATFORM_VERSION,
                             "CL_PLATFORM_VERSION" );

        displayPlatformInfo( platforms[i], 
                             CL_PLATFORM_NAME,   
                             "CL_PLATFORM_NAME" );

        displayPlatformInfo( platforms[i], 
                             CL_PLATFORM_VENDOR, 
                             "CL_PLATFORM_VENDOR" );

        displayPlatformInfo( platforms[i], 
                             CL_PLATFORM_EXTENSIONS,
                             "CL_PLATFORM_EXTENSIONS" );
   }
   return 0;
}
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To compile it on the UNIX platform, you would run a compile command similar to the following:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o platform_
details platform_details.c –framework OpenCL

When that happens, you would have a binary executable named platform_details.

To run the program, simply execute the platform_details program, and a sample output 
will be an OSX:

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL_PROFILE
CL_PLATFORM_VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL_PLATFORM_NAME: Apple
CL_PLATFORM_VENDOR: Apple
CL_PLATFORM_EXTENSIONS:

How it works…
When you first learn to program OpenCL, it can be a daunting task but it does get better as we 
move along. So, let's decipher the source code that we've just seen. The file is a C source file 
and what you'll notice is that it's arranged such that the system header files are almost always 
placed right near the top:

| #include <stdlib.h>
| #include <stdio.h> 

Next is what the C programmers would call as the platform-dependent code:

| #ifdef APPLE
| #include <OpenCL/cl.h>
| #else
| #include <CL/cl.h>
| #endif

The OpenCL header files are needed for the program to be compiled because they contain 
the method signatures. Now, we will try to understand what the rest of the code is doing. In 
OpenCL, one of the code conventions is to have data types be prefixed by cl_ and you'll find 
data types for each of the platform, device and context as cl_platform_XX, cl_device_
XX, cl_context_XX, and APIs prefixed in a similar fashion by cl and one such API is 
clGetPlatformInfo.

In OpenCL, the APIs do not assume that you know exactly how many resources (for example 
platforms, devices, and contexts) are present or are needed when you write the OpenCL code. 
And in order to write portable code, the developers of the language have figured out a clever 
way to present the API such that you use the same API to pose a general question and based 
on the results of that question, request more information via the same API. Let me illustrate 
with an example.

www.allitebooks.com

http://www.allitebooks.org
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In the code, you will notice that clGetPlatformInfo() was invoked twice. The first 
invocation was to query the number of platforms that were installed on the machine. Based 
on the results of that query, we invoked clGetPlatformInfo again, but this time we passed 
in context-sensitive information, for example, obtaining the name of the vendor. You'll find this 
pattern recurring when programming with OpenCL and the cons, I can think of is that it makes 
the API rather cryptic at times, but the nice thing about it is that it prevents the proliferation of 
APIs in the language.

Admittedly, this is rather trivial when it comes to the entire ecosystem of programming 
OpenCL, but subsequent chapters will show how you can transform sequential code to  
parallel code in OpenCL.

Next, let's build on the code and query OpenCL for the devices that are attached to the platform.

Querying OpenCL devices on your platform
We'll now query OpenCL devices that are installed on your platforms.

Getting ready
The code listing discussed in the How to do it… section presents an abbreviated portion of the 
code in Ch1/device_details/device_details.c. This code demonstrates how you can 
obtain the types of devices installed on your platform via clGetDeviceIDs. You'll use that 
information to retrieve detailed data about the device by passing it to clGetDeviceInfo.

How to do it…
For this recipe, you need to completely reference the appropriate chapter code. Pay attention 
to the included comments, as they would help you understand each individual function.  
We've included the main part of this recipe with highlighted commentary:

/* C-function prototype */
void displayDeviceDetails(cl_device_id id, cl_device_info param_name, 
const char* paramNameAsStr) ; 

…
void displayDeviceInfo(cl_platform_id id, 
                       cl_device_type dev_type) {
    /* OpenCL 1.1 device types */

    cl_int error = 0;
    cl_uint numOfDevices = 0;

    /* Determine how many devices are connected to your
       platform */
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    error = clGetDeviceIDs(id, dev_type, 0, NULL,
                           &numOfDevices);
    if (error != CL_SUCCESS ) { 
        perror("Unable to obtain any OpenCL compliant device
                info");
        exit(1);
    }

    cl_device_id* devices = (cl_device_id*)
                  alloca(sizeof(cl_device_id) * numOfDevices);

    /* Load the information about your devices into the 
       variable 'devices'
    */
    error = clGetDeviceIDs(id, dev_type, numOfDevices, devices,
                           NULL);
    if (error != CL_SUCCESS ) { 
        perror("Unable to obtain any OpenCL compliant device
                info");
        exit(1);
    }

    printf("Number of detected OpenCL devices:
            %d\n",numOfDevices);

    /* 
      We attempt to retrieve some information about the
      devices. 
    */

    for(int i = 0; i < numOfDevices; ++ i ) {
        displayDeviceDetails( devices[i], CL_DEVICE_TYPE, "CL_DEVICE_
TYPE" );
        displayDeviceDetails( devices[i], CL_DEVICE_VENDOR_ID, "CL_
DEVICE_VENDOR_ID" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_COMPUTE_UNITS, 
"CL_DEVICE_MAX_COMPUTE_UNITS" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_ITEM_
SIZES, "CL_DEVICE_MAX_WORK_ITEM_SIZES" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_GROUP_
SIZE, "CL_DEVICE_MAX_WORK_GROUP_SIZE" );
    }
}
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void displayDeviceDetails(cl_device_id id,
                          cl_device_info param_name, 
                          const char* paramNameAsStr) {
  cl_int error = 0;
  size_t paramSize = 0;

  error = clGetDeviceInfo( id, param_name, 0, NULL, &paramSize );
  if (error != CL_SUCCESS ) {
    perror("Unable to obtain device info for param\n");
    return;
  }

  /* 
    The cl_device_info are preprocessor directives defined in cl.h
  */

  switch (param_name) {
    case CL_DEVICE_TYPE: {
            cl_device_type* devType = (cl_device_type*)
                        alloca(sizeof(cl_device_type) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, 
devType, NULL );

            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device info for param\n");
                return;
            }

            switch (*devType) {
              case CL_DEVICE_TYPE_CPU : 
                   printf("CPU detected\n");break;
              case CL_DEVICE_TYPE_GPU : 
                   printf("GPU detected\n");break;
              case CL_DEVICE_TYPE_DEFAULT : 
                   printf("default detected\n");break;
            }
            }break;

     // omitted code – refer to source "device_details.c"
   } //end of switch
}

On UNIX platforms, you can compile device_details.c by running this command  
on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o device_details 
device_details.c   -framework OpenCL
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And a binary executable named device_details should be deposited locally on your 
machine.

When you execute the binary executable depending on your machine's setup, you will see 
varying results. But on my OSX platform here is the output when executed on a machine with 
Intel Core i5 processor with a NVIDIA mobile GPU GT330m (extensions are highlighted):

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL_PROFILE
CL_PLATFORM_VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL_PLATFORM_NAME: Apple
CL_PLATFORM_VENDOR: Apple
CL_PLATFORM_EXTENSIONS: 
Number of detected OpenCL devices: 2
GPU detected
  VENDOR ID: 0x1022600
  Maximum number of parallel compute units: 6
  Maximum dimensions for global/local work-item IDs: 3
  Maximum number of work-items in each dimension: 512
  Maximum number of work-items in a work-group: 512
CPU detected
  VENDOR ID: 0x1020400
  Maximum number of parallel compute units: 4
  Maximum dimensions for global/local work-item IDs: 3
  Maximum number of work-items in each dimension: 1
  Maximum number of work-items in a work-group: 1

Don't worry too much if the information doesn't seem to make sense right now,  
the subsequent chapters will reveal all.

How it works…
Leveraging the work we did in the previous section, now we have made use of the platform  
via clGetPlatformInfo, that was detected to query for the devices attached. This time,  
we used new API functions, clGetDeviceIDs and clGetDeviceInfo. The former attempts 
to uncover all the basic information about the devices attached to the given platform, and 
we use clGetDeviceInfo to iterate through the results to understand more about their 
capabilities. This information is valuable when you are crafting your algorithm and is not very 
sure about what device it's going to be run on. Considering that OpenCL supports various 
processors, it's a good way to write portable code.

There is actually a lot more information you can derive from your device and I'd strongly 
suggest you to refer http://www.khronos.org/registry/cl/sdk/2.0/docs/man/
xhtml/ and look at the main page for clGetDeviceInfo.
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Now that we've understood how to query the platform and the attached devices, we should 
take a look at how to query OpenCL extensions. The extensions allow the vendor to define 
additional capabilities that's delivered with the OpenCL compliant device, which in turn  
allows you, the programmer, to utilize them.

Querying for OpenCL device extensions
The extensions in OpenCL allow the programmer to leverage on additional capabilities 
provided by the vendor of the device, and hence they're optional. However, there are 
extensions that are recognized by OpenCL and purportedly supported by major vendors.

Here's a partial list of the approved and supported extensions in OpenCL 1.2. If you wish to 
discover the entire list of extensions that adopters of OpenCL have made public (some are 
given in the table), please refer to the PDF document via this link: http://www.khronos.
org/registry/cl/specs/opencl-1.2-extensions.pdf.

Extension name Description
cl_khr_fp64 This expression gives a double precision 

floating-point
cl_khr_int64_base_atomics This expression gives 64-bit integer 

base atomic operations, provides atomic 
operations for addition, subtraction, 
exchange, increment/decrement, and 
CAS

cl_khr_int64_extended_atomics This expression gives 64-bit integer 
extended atomic operations, provides 
atomic operations for finding the 
minimum, maximum, and boolean 
operations such as and, or, and xor

cl_khr_3d_image_writes This expression writes to 3D image 
objects

cl_khr_fp16 This expression gives a halfly precised 
floating point 

cl_khr_global_int32_base_atomics This expression gives atomics for 32-bit 
operands

cl_khr_global_int32_extended_atomics This expression gives more atomic 
functionality for 32-bit operands

cl_khr_local_int32_base_atomics This expression gives atomics for 32-bit 
operands in shared memory space

cl_khr_local_int32_extended_atomics This expression gives more atomic 
functionality for 32-bit operands in 
shared memory space
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Extension name Description
cl_khr_byte_addressable_store This expression allows memory writes to 

bytes less than a 32-bit word
cl_APPLE_gl_sharing This expression provides MacOSX 

OpenGL sharing, and also allows 
applications to use the OpenGL buffer, 
texture, and render buffer objects as 
OpenCL memory objects

cl_khr_gl_sharing This expression provides OpenGL sharing
cl_khr_gl_event This expression retrieves CL event 

objects from GL sync objects
cl_khr_d3d10_sharing This expression shares memory objects 

with Direct3D 10

Next, let's find out how we can determine what extensions are supported and available on 
your platform by leveraging the previous code we've worked on.

Getting ready
The listing below only shows the interesting portion of the code found in Ch1/device_
extensions/device_extensions.c. Various devices that are OpenCL compliant will have 
different capabilities, and during your application development you definitely want to make 
sure certain extensions are present prior to making use of them. The code discussed in the 
How to do it… section of this recipe shows you how to retrieve those extensions.

How to do it…
We've included the main querying function, which allows you to implement this  
particular recipe:

void displayDeviceDetails(cl_device_id id,
                          cl_device_info param_name, 
                          const char* paramNameAsStr) {

  cl_int error = 0;
  size_t paramSize = 0;

  error = clGetDeviceInfo( id, param_name, 0, NULL, &paramSize );
  if (error != CL_SUCCESS ) {
    perror("Unable to obtain device info for param\n");
    return;
  }
  /* the cl_device_info are preprocessor directives defined in cl.h
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  */
  switch (param_name) {
    // code omitted – refer to "device_extensions.c"
    case CL_DEVICE_EXTENSIONS : {
  size_t* ret = (size_t*) alloc(sizeof(size_t) * paramSize);
           error = clGetDeviceInfo( id, param_name, paramSize, ret, 
NULL );
           char* extension_info = (char*)malloc(sizeof(char) * 
(*ret));
           error = clGetDeviceInfo( id, CL_DEVICE_EXTENSIONS, 
sizeof(extension_info), extension_info, NULL);
           printf("\tSupported extensions: %s\n",
                  extension_info);
           }break;
  } //end of switch
}

To compile the code, do as you did before by running a similar command on your terminal  
like this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o device_
extensions device_extensions.c   -framework OpenCL

On a UNIX platform, here's what we got when executed on an Intel Core i5 processor with  
an NVIDIA mobile GPU GT330m (extensions are highlighted):

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL_PROFILE
CL_PLATFORM_VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL_PLATFORM_NAME: Apple
CL_PLATFORM_VENDOR: Apple
CL_PLATFORM_EXTENSIONS: 
Number of detected OpenCL devices: 2
GPU detected
  VENDOR ID: 0x1022600
  Maximum number of parallel compute units: 6
  Maximum dimensions for global/local work-item IDs: 3
  Maximum number of work-items in each dimension: ( 512 512 64  )
  Maximum number of work-items in a work-group: 512
  Supported extensions: cl_khr_byte_addressable_store cl_khr_
global_int32_base_atomics cl_khr_global_int32_extended_atomics 
cl_APPLE_gl_sharing cl_APPLE_SetMemObjectDestructor cl_APPLE_
ContextLoggingFunctions cl_khr_local_int32_base_atomics cl_khr_local_
int32_extended_atomics 
CPU detected
  VENDOR ID: 0x1020400
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  Maximum number of parallel compute units: 4
  Maximum dimensions for global/local work-item IDs: 3
  Maximum number of work-items in each dimension: ( 1 1 1  )
  Maximum number of work-items in a work-group: 1
  Supported extensions: cl_khr_fp64 cl_khr_global_int32_base_atomics 
cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics 
cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store 
cl_APPLE_gl_sharing cl_APPLE_SetMemObjectDestructor cl_APPLE_
ContextLoggingFunctions

How it works…
When we examine the work we just did, we simply leveraged on the existing code and added 
the needed functionality where it was required, namely by adding code to handle the case 
where CL_DEVICE_EXTENSIONS was being passed in. We created an array of a fixed size on 
the stack and passed that array to clGetDeviceInfo, where the API will eventually store 
the information into the array. Extracting the information is as simple as printing out the array. 
For advanced usage, you might want to deposit that information into a global table structure 
where the other parts of the application can make use of it.

To understand what those extensions mean and how you can take advantage of them, I'd 
suggest that you refer to the Khronos register for OpenCL: http://www.khronos.org/
registry/cl/.

We won't dwell too much on each extension that we've seen so far. Let's move on to 
understanding the OpenCL contexts.

Querying OpenCL contexts
An OpenCL context is created with one or more devices. Contexts are used by the OpenCL 
runtime for managing objects such as command queues (the object that allows you to send 
commands to the device), memory, program, and kernel objects, and for executing kernels on 
one or more devices specified in the context.

In more detail, OpenCL contexts can be created by associating a collection of devices that are 
available for the platform via clCreateContext or by associating it with a particular type of 
device, for example, CPU, GPUs, and so on, via clCreateContextFromType. However, in 
either way you cannot create contexts that are associated with more than one platform. Let's 
use the example of vector multiplication in the Introduction section to demonstrate these 
concepts. The problem of vector multiplication or dot product can be solved using: pen and 
paper, CPU, GPU, or GPU + CPU. Obviously, the first option doesn't quite scale when we have a 
little more than 20 elements and with OpenCL you have more options. The first thing you need 
to decide is which platform it should be run, and in OpenCL it means deciding whether to use 
the AMD, NVIDIA, Intel, and so on. And what comes next is to decide whether to run the dot 
product on all of the devices listed for that platform or only some of it. 

http://www.khronos.org/registry/cl/
http://www.khronos.org/registry/cl/
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So, let's assume that the platform reports one  Intel Core i7 and 3 AMD GPUs and the 
developer could use the clCreateContextFromType to restrict execution to either 
CPUs or GPUs, but when you use clCreateContext, you can list all the four devices to 
be executed against, theoretically speaking (however, in practice it's hard to use all CPUs 
and GPUs effectively because the GPU can push more threads for execution than the CPU). 
The following diagram illustrates the options available to the developer to create contexts 
assuming the host environment is installed with both Intel and AMD's OpenCL platform 
software. The configuration gets a little more interesting when you consider the Ivy Bridge 
Intel processor, which includes an HD Graphics co-processor that allows a context that's 
both CPU and GPU aware.

Intel OpenCL platform AMD OpenCL platform

context-cpu-gpu context-cpu context-cpu-gpu context-gpu

Intel OCL AMD OCL

Contexts have another interesting property, that is, it retains a reference count so that third-
party libraries can refer to it and hence utilize the devices. For example, if the cl_khr_
d3d10_sharing extension is available on your device, you can actually interoperate between 
OpenCL and Direct3D 10, and treat Direct3D 10 resources similar to memory objects as 
OpenCL memory objects that you can read from or write to. However, we will not demonstrate 
the capability with this extension in this book and will instead leave it to the reader to engage 
themselves in further exploration.

Getting ready
The code listing given in the How to do it… section is extracted from Ch1/context_query/
context_details.c, and it illustrates how to create and release OpenCL contexts.

How to do it…
To query an OpenCL context, you need to include a function similar to the following in your 
code. You should reference the full code listing alongside this recipe:

void createAndReleaseContext(cl_platform_id id, 
                             cl_device_type dev_type) {
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    /* OpenCL 1.1 scalar types */
    cl_int error = 0;
    cl_uint numOfDevices = 0;

    /* Determine how many devices are connected to your platform */
    error = clGetDeviceIDs(id, dev_type, 0, NULL, &numOfDevices);
    if (error != CL_SUCCESS ) { 
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }
    cl_device_id* devices = (cl_device_id*)
                     alloca(sizeof(cl_device_id) * numOfDevices);

    /* 
     Load the information about your devices into the variable
     'devices'
    */

    error = clGetDeviceIDs(id, dev_type, numOfDevices, devices, NULL);
    if (error != CL_SUCCESS ) { 
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }

    printf("Number of detected OpenCL devices: %d\n",
            numOfDevices);

    /* 
       We attempt to create contexts for each device we find,
       report it and release the context. Once a context is
       created, its context is implicitly
       retained and so you don't have to invoke
      'clRetainContext'
     */

    for(int i = 0; i < numOfDevices; ++ i ) {
        cl_context context = clCreateContext(NULL, 1,
                                             &devices[i],
                                             NULL, NULL,
                                             &error); 
        cl_uint ref_cnt = 0;
        if (error != CL_SUCCESS) {
            perror("Can't create a context");
            exit(1);

www.allitebooks.com
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        }

        error = clGetContextInfo(context,
                                 CL_CONTEXT_REFERENCE_COUNT,
                                 sizeof(ref_cnt), &ref_cnt,
                                 NULL);

        if (error != CL_SUCCESS) {
            perror("Can't obtain context information");
            exit(1);
        }
        printf("Reference count of device is %d\n", ref_cnt);
        // Release the context
        clReleaseContext(context);
    }
}

On UNIX platforms, you can compile and build the program by typing the following command 

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o context_
details context_details.c   -framework OpenCL

On the test machine, we have two OpenCL compliant devices. The first is the Intel Core i5 CPU, 
and the second is the NVIDIA mobile GT330m GPU. And the following is the output:

Number of OpenCL platforms found: 1
Number of detected OpenCL devices: 2
Reference count of device is 1
Reference count of device is 1

How it works…
If you have been following the book, you should realize that we didn't do anything special other 
than leverage on the previous exercises where we discover the sort of platforms installed, 
and with that uncover the devices and finally use that information to create the relevant 
contexts. Finally, with those relevant contexts we can query them. What you will notice is 
that the context's reference count is one in both cases, which indicates that a memory 
object is currently referencing it and the fact that we passed in CL_CONTEXT_REFERENCE_
COUNT reflects this. This counter is only good when you want to detect if the application is 
experiencing a context leak, which actually means a memory leak. For OpenCL devices such 
as the CPU or GPU, the problem might not sound as a big deal. But for mobile processors, it 
would pose quite a serious problem since memory leaks, in general, wastes resources and the 
ultimately depleting battery life.
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There are actually more details where you can query the context via clGetContextInfo  
by passing in various cl_context_info types. Here's a list of them:

cl_context_info Return type Information returned in 
param_name

CL_CONTEXT_REFERENCE COUNT cl_uint This variable returns the 
context reference count

CL_CONTEXT_NUM_DEVICES cl_uint This variable returns the 
number of devices in context

CL_CONTEXT_DEVICES cl_device_id[] This variable returns a list of 
devices in context

CL_CONTEXT_PROPERTIES cl_context_
properties

This variable returns the 
properties argument specified 
in clCreateContext or 
clCreateContext 
FromType

Now that we've understood the basics of querying the platform, devices, extensions, and 
contexts I think it's time to take a look at OpenCL kernels and how you can program them.

Querying an OpenCL program
In OpenCL, kernels refer to a function declared in a program. A program in OpenCL consists 
of a set of kernels that are functions declared with the __kernel qualifier in the code. Such 
a program encapsulates a context, a program source or binary, and the number of kernels 
attached. The following sections explain how to build the OpenCL program and finally load the 
kernels for execution on the devices.

Getting ready
In order to run OpenCL kernels, you need to have a program (source or binary). Currently, 
there are two ways to build a program: from source files and other from binary objects via 
clCreateProgramWithSource and clCreateProgramWithBinary respectively  
(clever names). These two APIs return a program object represented by the OpenCL type,  
cl_program when successful. Let's examine the method signatures to understand it better:

cl_program clCreateProgramWithSource(cl_context context,
                                     cl_uint count,
                                     const char** strings,
                                     const size_t* lengths,
                                     cl_int* errcode_ret)
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If you read the signature carefully, you'll notice that the OpenCL context needs to be created 
prior to build our program from source. Next the strings and lengths arguments hold  
the various (kernel) filenames and their respective file lengths, and the last argument,  
errcode_ret reflects the presence of errors while building the program:

cl_program clCreateProgramWithBinary(cl_context context,
                                     cl_uint num_devices,
                                     const cl_device_id* device_list,
                                     const size_t* lengths,
                                     const unsigned char** binaries,
                                     cl_int* binary_status,
                                     cl_int* errcode_ret)

Examine the signature and you can quickly realize that the binaries and lengths 
arguments hold the pointers to the program binaries and their respective lengths. All the 
binaries are loaded into the devices represented by the device_list argument through 
the context. Whether the program was loaded onto the device successfully is reflected in the 
binary_status argument. The developer would find this manner of program creation useful 
when the binary is the only artifact that can be exposed to customers or even during system 
integration tests.

For a developer to be able to create a valid OpenCL program by pulling offline binaries using 
clCreateProgramWithBinary, he needs to generate the offline binaries in the first place 
using the platform's compiler and this process is unfortunately vendor specific. If you are 
using the AMD APP SDK, then you would need to enable the cl_amd_offline_devices 
AMD extension, and when you create the context, you need to pass in the CL_CONTEXT_
OFFLINE_DEVICES_AMD property. If you are developing for the Intel or Apple OpenCL 
platforms, we would recommend you to consult the documentation at their websites.

Next, we need to build the program by invoking clBuildProgram passing it the created 
cl_program object from clCreateProgramFromSource and during program creation, the 
developer can provide additional compiler options to it (just as you perform when compiling 
C/C++ programs). Let's see an example of how you might do this in the code given in the 
How to do it… section, abbreviated from Ch1/build_opencl_program/build_opencl_
program.c and the OpenCL kernel files are listed in Ch1/build_opencl_program/
{simple.cl, simple_2.cl.

How to do it…
To query an OpenCL program, you need to include a function similar to the following in your 
code. You should refer to the complete code listing alongside this recipe:

int main(int argc, char** argv) {
   // code omitted – refer to "build_opencl_program.c"
   ...
   // Search for a CPU/GPU device through the installed
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   // platform. Build a OpenCL program and do not run it.
   for(cl_uint i = 0; i < numOfPlatforms; i++ ) {
       // Get the GPU device
       error = clGetDeviceIDs(platforms[i], 
                              CL_DEVICE_TYPE_GPU, 1,
                              &device, NULL);
       if(error != CL_SUCCESS) {
          // Otherwise, get the CPU
          error = clGetDeviceIDs(platforms[i],
                                 CL_DEVICE_TYPE_CPU,
                                 1, &device, NULL);
       }
        if(error != CL_SUCCESS) {
            perror("Can't locate any OpenCL compliant device");
            exit(1);
        }
        /* Create a context */
        context = clCreateContext(NULL, 1, &device, NULL, NULL,
                                  &error);
        if(error != CL_SUCCESS) {
            perror("Can't create a valid OpenCL context");
            exit(1);
        }

        /* Load the two source files into temporary 
           datastores */
        const char *file_names[] = {"simple.cl",
                                    "simple_2.cl"};
        const int NUMBER_OF_FILES = 2;
        char* buffer[NUMBER_OF_FILES];
        size_t sizes[NUMBER_OF_FILES];
        loadProgramSource(file_names, NUMBER_OF_FILES, buffer,
                          sizes);

        /* Create the OpenCL program object */
        program = clCreateProgramWithSource(context,
                                            NUMBER_OF_FILES,
                                            (const
                                             char**)buffer,
                                            sizes, &error);      
      if(error != CL_SUCCESS) {
        perror("Can't create the OpenCL program object");
        exit(1);   
      }
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        /* 
         Build OpenCL program object and dump the error
         message, if any
        */
        char *program_log;
        const char options[] = "-cl-finite-math-only \
                                -cl-no-signed-zeros";  
        size_t log_size;
        error = clBuildProgram(program, 1, &device, options,
                               NULL,NULL);  
        // Uncomment the line below, comment the line above;
        // build the program to use build options dynamically
        // error = clBuildProgram(program, 1, &device, argv[1],
        // NULL, NULL);    

      if(error != CL_SUCCESS) {
        // If there's an error whilst building the program,
            // dump the log
        clGetProgramBuildInfo(program, device,
                                  CL_PROGRAM_BUILD_LOG, 0,
                                  NULL,
                                  &log_size);
        program_log = (char*) malloc(log_size+1);
        program_log[log_size] = '\0';
        clGetProgramBuildInfo(program, device,
                                  CL_PROGRAM_BUILD_LOG, 
                                  log_size+1, program_log,
                                  NULL);
        printf("\n=== ERROR ===\n\n%s\n=============\n",
                   program_log);
        free(program_log);
        exit(1);
      }

        /* Clean up */
        for(i=0; i< NUMBER_OF_FILES; i++) { free(buffer[i]); }
        clReleaseProgram(program);
        clReleaseContext(context);
   }
}

Similar to what you did previously, the compilation command won't be too far off:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o build_opencl_
program build_opencl_program.c   -framework OpenCL
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You'll find the executable file named build_opencl_program deposited on the filesystem.

There are two ways to run the program, depending on how you compile it. If you reexamine 
the code snippet shown earlier, you would notice that the compiler options is defined in the 
source code and hence it's static, but there's another dynamic way in which the compiler 
options can be passed during compilation and the following are those two simple approaches  
are as follows:

If you chose the option of defining the build options statically, that is, if you have the  
following lines:

const char options[] = "-cl-nosigned-zeros –cl-finite-math-only";
error = clBuildProgram(program, 1, &device, options, NULL, NULL);

OpenCL will simply build the program based on those build options you provided. This is rather 
suitable as the shipped application will have consistent results when running across different 
customer's setups.

To run the program, simply click on the build_opencl_program executable.

However, if you chose the other option of allowing your users to pass in options of their choice 
(largely depending on your algorithm design), that is, if you have something like this:

error = clBuildProgram(program, 1, &device, argv[1], NULL, NULL);

In place of options, we have the array of pointers to strings, traditionally used to pass in 
arguments to the program via the command line (conveniently known to the C programmer  
as argv), then you would have allowed the user to pass in multiple build options.

To run the program, you would enter a command similar to this where you quote the multiple 
options (enclosed with quotes) you wish to pass to the program via –D:

./build_opencl_program -D"-cl-finite-math-only -cl-no-signed-zeros"

How it works…
The code example in this section is a little more involved than what we've been doing so far. 
What we did was to build an OpenCL program with two files: simple.cl and simple_2.cl 
which contains two simple OpenCL kernels via this (earlier) code snippet.

const char *file_names[] = {"simple.cl",
                            "simple_2.cl"};

We demonstrated on to create the necessary data structures to store the contents of both 
files and the length of their program in two variables, buffer and sizes.
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Next, we demonstrated how you built an OpenCL program using the cl_program object 
that's returned by clCreateProgramWithSource with build options that are either pre  
or user defined. We've also learnt how to use the clGetProgramInfo to query the program 
object for the result of the build. Also, the host application has the capability to dump any 
build errors from this process.

Finally, we released the data structures associated with the program and contexts in 
reverse order of their creation. In OpenCL 1.2, there is another new manner in which 
you can build a OpenCL program object but you would need to use both of the new APIs: 
clCompileProgram and clLinkProgram. The rationale behind them is to facilitate 
separation, compilation, and linkage.

The build options deserved a further mention here, as there are in general four groups of 
options available to the OpenCL programmer. Go through the following for more information.

There are, in general, three groups of options available when you wish to build the OpenCL 
program: options to control behavior in math, optimizations, and miscellaneous.

The following table presents the math options available:

-cl-single-
precision-
constant

This option treats double precision floating point as a single 
precision constant.

-cl-denorms-are-
zero

This option controls how single and double precision denormalized 
numbers are handled. The compiler can choose to flush these 
numbers to zero. See http://www.khronos.org/registry/
cl/sdk/1.1/docs/man/xhtml/.

-cl-fp32-
correctly-
rounded-divide-
sqrt

This option can be passed to clBuildProgram or 
clCompileProgram, which allows an application to specify that 
a single precision floating point divide (x / y and 1 / x) and sqrt 
used in the program source are correctly rounded.

The following table highlights the optimization options available:

-cl-opt-disable This option disables all optimizations. 
Optimizations are enabled by default

-cl-mad-enable This option allows a * b + c to be computed with 
reduced accuracy

-cl-unsafe-math-optimizations This option combines the –cl-mad-enable 
and –cl-no-signed-zeros options

-cl-no-signed-zeros This option allows floating point arithmetic to 
ignore the signedness of zero, since according to 
IEEE 754, there's a difference between +0.0 and 
-0.0
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-cl-finite-math-only This option allows optimizations to assume no 
floating point argument to take a NaN or an 
infinite value

-cl-fast-relaxed-math This option combines the –cl-unsafe-math-
optimizations and the –cl-finite-math-
only options

The following table here highlights the miscellaneous options available:

-w This option prevents all warning messages
-Werror This option turns all warning messages into errors
-cl-std=VERSION This option builds the program based on the version 

of the OpenCL compiler (VERSION={CL1.1})

Let's move on to a bigger example where we create and query OpenCL kernels and eventually 
place them on a command queue for a device.

Creating OpenCL kernels
So far, we've managed to create a program from the source files. These source files are 
actually the OpenCL kernel code. Here's an example of how they look like:

__kernel void simpleAdd(__global float *a,
                        __global float *b,
                        __global float *c) {

  int gid = get_global_id(0);
   c[gid] = a[gid] + b[gid];
}

The kernels are identified by __kernel qualified to the C-like function. The __global 
qualifiers refer to the memory space in which the variables reside. We'll have more to say 
about this in later chapters.

But this program cannot execute on the device even though we have created the program 
objects, as described previously. Recall that a program can reference several kernels and we 
need to hold on to those kernels, because it is the kernel that gets scheduled for execution on 
the devices and not the program object. OpenCL gives us the function to extract those kernels 
via clCreateKernel or clCreateKernelsInProgram. Let's take a close look at them:

cl_kernel clCreateKernel(cl_program program,
                         const char* kernel_name,
                         cl_int* errcode_ret) 
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By looking at this code, you'll notice that in order to create the kernel we first need to create 
the program object, the name of the kernel function plus the capture of the return status. 
This API returns a cl_kernel, which represents the kernel object when successful. This 
API provides the programmer with an option of not transforming every kernel function in the 
program into actual OpenCL kernel objects ready for execution.

But if you wish to simply transform all kernel functions in the program into kernel objects,  
then clCreateKernelsInProgram is the API to use:

cl_int clCreateKernelsInProgram(cl_program program,
                                cl_uint num_kernels,
                                cl_kernel* kernels,
                                cl_uint* num_kernels_ret)

You use this API to ask OpenCL to create and load the kernels into the kernels  
argument, and you hint to the OpenCL compiler how many kernels you're expecting  
with the num_kernels argument.

Getting ready
The complete code can be found in ch1/kernel_query/kernel_query.c. An abbreviated 
code is shown in the code snippet discussed in the How to do it... section of this recipe to 
keep us focused on the key APIs. This code requires one or more OpenCL source files, that 
is, *.cl and once you've placed them together you need to change the program's variables, 
file_names and NUMBER_OF_FILES to reflect the files accordingly.

How to do it …
To query an OpenCL kernel, you'll need to include a function similar to the following in your 
code. You should reference the full code listing alongside this recipe:

        /* 
         Query the program as to how many kernels were detected 
         */
        cl_uint numOfKernels;
        error = clCreateKernelsInProgram(program, 0, NULL,
                                         &numOfKernels);
        if (error != CL_SUCCESS) {
            perror("Unable to retrieve kernel count from
                    program");
            exit(1);
        }
        cl_kernel* kernels = (cl_kernel*)
                             alloca(sizeof(cl_kernel) *
                                                 numOfKernels);
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        error = clCreateKernelsInProgram(program, numOfKernels,
                                         kernels, NULL);

        for(cl_uint i = 0; i < numOfKernels; i++) {
            char kernelName[32];
            cl_uint argCnt;
            clGetKernelInfo(kernels[i],
                            CL_KERNEL_FUNCTION_NAME,
                            sizeof(kernelName), 
                            kernelName, NULL);
            clGetKernelInfo(kernels[i], CL_KERNEL_NUM_ARGS,
                            sizeof(argCnt), &argCnt, NULL);
            printf("Kernel name: %s with arity: %d\n",
                    kernelName,
                    argCnt);
        }
        /* Release the kernels */
        for(cl_uint i = 0; I < numOfKernels; i++) 
            clReleaseKernel(kernels[i]);

The compilation is very similar to that of build_opencl_program.c illustrated in the 
previous section, so we're skipping this step. When this application is run with two OpenCL 
source files, the output we will get is:

Number of OpenCL platforms found: 1

Kernel name: simpleAdd with arity: 3

Kernel name: simpleAdd_2 with arity: 3

The two source files, each defined a simple kernel function that adds its two arguments  
and stores the result into the third argument; and hence the arity of the function is 3.

How it works…
The code invokes clCreateKernelsInProgram twice. If you recall, this pattern recurs for 
many of the OpenCL APIs, where the first call would query the platform for certain details, 
which in this case is the number of kernels detected in the program. The subsequent calls 
would ask OpenCL to deposit the kernel objects into the storage referenced by kernels.

Finally, we invoke clGetKernelInfo, passing to it the retrieved kernel objects, and printing 
out some information about the kernel functions, such as the kernel function's name and the 
arity of the function through the CL_KERNEL_FUNCTION_NAME and CL_KERNEL_NUM_ARGS 
variables.
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A complete list of details that can be queried from the kernel objects is reflected in the 
following table:

cl_kernel_info Return Type Information returned in param_
value

CL_KERNEL_FUNCTION_NAME char[] This variable returns the kernel 
function's name

CL_KERNEL_NUM_ARGS cl_uint This variable returns the number of 
arguments to kernel

CL_KERNEL_REFERENCE_COUNT cl_uint This variable returns the kernel 
reference count

CL_KERNEL_CONTEXT cl_context This variable returns the associated 
context for this kernel

CL_KERNEL_PROGRAM cl_program This variable returns the program 
object, that will be bound to the 
kernel object

Now that we've figured out how to create kernel objects, we should take a look at how to 
create command queues and start enqueuing our kernel objects and data for execution.

Creating command queues and enqueuing 
OpenCL kernels

This section will show you how to enqueue OpenCL kernel objects on the device. Before we 
do that, let's recall that we can create kernels without specifying an OpenCL device and the 
kernels can be executed on the device via the command queue.

At this point, we probably should spend some time talking about in-order execution  
and how they can be compared with out-of-order execution, though this subject is complex  
but intriguing as well. When a program is to be executed, the processor has the option  
of processing the instructions in the program in-order or out-of-order; a key difference  
between these two schemes is that in-order results in an execution order that is static,  
while out-of-order allows instructions to be scheduled dynamically. Out-of-order execution 
typically involves reordering the instructions, so that all computation units in the processors 
are utilized and driven by the goal of minimizing the stalling of the computation.

However, kernels are not the only objects that can be queued on the command queue.  
A kernel needs data so that it can perform its operations and data needs to transferred to the 
device for consumption, and these data could be OpenCL buffer / sub-buffer or image objects. 
The memory objects that encapsulate the data need to be transported into the device and you 
have to issue memory commands to the command queue for that to occur; and in many use 
cases, it is common to hydrate the device with data prior to computation. 
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The following diagram highlights this use case where a kernel is scheduled for  
in-order execution, assuming that the kernel needs the data to be copied explicitly  
or memory-mapped, and upon completion of computation, the data is copied from  
the device's memory to host memory.

copy data to host kernel execute copy data to device command queue

Time

Also multiple command queues can be created and enqueued with commands and the 
reason for their existence is because the problem you wish to solve might involve some, if not 
all of the heterogeneous devices in the host. And they could represent independent streams 
of computation where no data is shared, or dependent streams of computation where each 
subsequent task depends on the previous task (often, data is shared). Take care that these 
command queues will execute on the device without synchronization, provided that no data is 
shared. If data is shared, then the programmer needs to ensure synchronization of the data 
through synchronization commands provided by the OpenCL specification.

As an example of independent streams of computation, the following diagram assumes 
that three independent tasks have been identified and they need to execute on a device. 
Three command queues (in-order execution only) with tasks enqueued in each of them and 
a pipeline can be formed, such that the device executes the kernel code while I/O is being 
performed to achieve better utilization by not having the device sit idle waiting for data.

copy data to host kernel execute copy data to device command-queue-0

copy data to host kernel execute copy data to device command-queue-1

copy data to host kernel execute copy data to device command-queue-2

Time
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Be aware that even though by default, commands enqueued in the 
command queue execute in-order, you can enable out-of-order execution 
by passing the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE 
flag when creating the command queue.

An example of out-of-order execution is shown in the following diagram, and let's assume 
that our problem is decomposed into three interdependent kernels, where each kernel will 
consume and process the data and then pass it to the next phase. Let's assume further that 
the execution of the kernels is out-of-order. What would happen next is mayhem and that's 
probably why this option is never the default.

copy data to host kernel-c kernel-b kernel-a copy data to device

command-queue

Any of the Kernels"a","b"and"c"
can be executed in out-of-order

fashion

Time

However, the reader should be aware about CPUs from AMD and Intel.

When you start working on the kernels, you might discover that certain kernels seem to have 
better performance than others. And you can profile the kernel while you are fine-tuning it by 
passing the CL_QUEUE_PROFILING_ENABLE flag when creating the command queue.

Getting ready
Without repeating too much of the previous code, here's the relevant code that is derived 
from ch1/kernel_queue/kernel_queue.c. This code listing would need valid OpenCL 
kernel file(s) with distinct kernel function names (function overloading is disallowed) and valid 
function parameters. In ch1/kernel_queue/hello_world.cl you can see an example of 
such a function or kernel otherwise.

__kernel void hello(__global char* data) {              
} 
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How to do it…
You should reference the full code listing alongside this recipe:

cl_kernel* kernels = (cl_kernel*) alloca(sizeof(cl_kernel) *
                                         numOfKernels);
error = clCreateKernelsInProgram(program, numOfKernels,
                                 kernels, NULL);
for(cl_uint i = 0; i < numOfKernels; i++) {
    char kernelName[32];
    cl_uint argCnt;
    clGetKernelInfo(kernels[i], CL_KERNEL_FUNCTION_NAME,
                    sizeof(kernelName), kernelName, NULL);
    clGetKernelInfo(kernels[i], CL_KERNEL_NUM_ARGS,
                    sizeof(argCnt),
                    &argCnt, NULL);
    printf("Kernel name: %s with arity: %d\n", kernelName,
            argCnt);
    printf("About to create command queue and enqueue this
            kernel...\n");
    
    /* Create a command queue */
    cl_command_queue cQ = clCreateCommandQueue(context, 
                                               device,
                                               0,
                                               &error);
    if (error != CL_SUCCESS) { 
        perror("Unable to create command-queue");
        exit(1);
    }
    /* Create a OpenCL buffer object */
   cl_mem strObj = clCreateBuffer(context,CL_MEM_READ_ONLY |
                                          CL_MEM_COPY_HOST_PTR,
                                          sizeof(char) * 11,
                                          "dummy value", NULL);

   /* 
     Let OpenCL know that the kernel is suppose to receive an
     Argument
   */
   error = clSetKernelArg(kernels[i], 
                          0, 
                          sizeof(cl_mem), 
                          &strObj);
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   if (error != CL_SUCCESS) { 
       perror("Unable to create buffer object");
       exit(1);
   }
   /* Enqueue the kernel to the command queue */
   error = clEnqueueTask(cQ, kernels[i], 0, NULL, NULL);

   if (error != CL_SUCCESS) { 
       perror("Unable to enqueue task to command-queue");
       exit(1);
   }
   printf("Task has been enqueued successfully!\n");
   /* Release the command queue */
   clReleaseCommandQueue(cQ);
}
/* Clean up */
for(cl_uint i = 0; i < numOfKernels; i++) {
    clReleaseKernel(kernels[i]);
}

As before, the compilation steps are similar to that in kernel_query.c with a command 
like:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o kernel_queue 
kernel_queue.c   -framework OpenCL

Here's the sample output when I execute the application on my machine:

Number of OpenCL platforms found: 1

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

From the output, you can tell that the task has been enqueued onto a command  
queue successfully!

How it works…
Following from the previous section where we successfully queried the OpenCL kernel 
objects for information, we leverage on that code to create a command queue via 
clCreateCommandQueue, enqueue the kernel into the queue via clEnqueueTask,  
but not before setting the data needed for the kernel via clSetKernelArg and 
clCreateBuffer. You can ignore these two APIs for now, until we explain them in  
a later chapter.



Understanding OpenCL 
Data Transfer and 

Partitioning

In this chapter, we'll cover the following recipes:

 f Creating OpenCL buffer objects

 f Retrieving information about OpenCL buffer objects

 f Creating OpenCL sub-buffer objects

 f Retrieving information about OpenCL sub-buffer objects

 f Understanding events and event-synchronization

 f Copying data between memory objects

 f Using work items to partition data

Introduction
In this chapter, we're going to explore how to invoke the OpenCL's data transfer APIs,  
query memory objects, and data/work partitioning between the GPUs and CPUs.

Be aware that not all OpenCL SDKs support the compilation and execution 
on both GPUs and CPUs. AMD's OpenCL implementation supports its 
own AMD and Intel CPUs and GPUs; NVIDIA supports its GPUs and Intel 
supports its own Intel Core CPUs and Intel HD Graphics. Check with the 
vendor for supported devices.

2
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In the Open Computing Language (OpenCL) development, you would inevitably need data 
to be processed, and the standard does not permit you to manipulate memory objects 
directly as you would do when you program in C or C++, because the data memory in the 
host is ultimately transferred to the devices in a heterogeneous environment for processing, 
and previously you would use the programming constructs in various libraries or languages 
to access them which is one of the reasons why OpenCL came about; hence to unify these 
approaches, the standard added abstractions to shield the developer from these concerns.

With respect to data types, there are a few you need to be aware of other than the  
one-dimensional data buffer. OpenCL buffer objects can be used to load and store  
two/three-dimensional data. The next data type in OpenCL is the image object; these  
objects are used to store two or three dimensional images (we won't cover much of using  
the image objects in this book).

The OpenCL 1.1 new data transfer capabilities includes the following:

 f Using sub-buffer objects to distribute regions of a buffer across multiple  
OpenCL devices

 f 3-component vector data types

 f Using the global work offset which enables kernels to operate on different portions 
of the NDRange—global work offset refers to the data points in the input data where 
work items can start processing

 f Reading, writing, or copying a 1D, 2D or 3D rectangular region of a buffer object

Creating OpenCL buffer objects
In the previous chapter, we understood the need to create or wrap our host's memory objects 
into an abstraction that OpenCL can operate on, and in this recipe we'll explore how to create 
a particular type of memory object defined in the specification that is commonly used for 
general purpose computation—buffer object. The developer can choose to create a one,  
two or three dimensional memory object that best fits the computational model.

Creating buffer objects is simple in OpenCL and is akin to the way in which you would use C's 
memory allocation routines such as malloc and alloca. But, that's where the similarity 
ends for the reason that OpenCL cannot operate directly on memory structures created by 
those routines. What you can do is to create a memory structure that lives on the devices that 
can be mapped to the memory on the host and the data is transferred to the device by issuing 
memory transfer commands to the command queue (which you recall is the conduit to the 
device). What you need to decide is the sort of objects, and how much of these objects you 
would like the device to compute.
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In this example, we're going to learn how to create buffer objects based on user-defined 
structures also known as structs in the C/C++ language. Before that, let's understand  
the API:

cl_mem clCreateBuffer(cl_context context,
                      cl_mem_flags flags,
                      size_t size,
                      void* host_ptr,
                      cl_int* errcode_ret)

You can create a buffer by specifying which context it should attach to (recall that contexts 
can be created with several devices), specify the size of the data, and where to reference it 
with size and host_ptr respectively, specify how memory is to be allocated and whether 
that memory is to be of type read, read-only, read-write, or write only via flags; lastly capture 
the resultant error code in errcode_ret. Note that clCreateBuffer doesn't queue the 
command to conduct the memory transfer from host to device memory.

Getting ready
Here's a portion of the code from Ch2/user_buffer/user_buffer.c where you will see 
how to use the clCreateBuffer API to allocate memory for a user-defined structure. The 
problem we are trying to solve in this example is to send a million user-defined structures to 
the device for computation. The computation encapsulated by the kernel is a simple one—sum 
of all elements of each user-structure. The astute reader would have noticed we could have 
demonstrated this data structure with a vector data type in OpenCL, int4; the reason why we 
didn't do it that way is a two fold: (a) it's an example of application domain modeling, (b) because 
in a few paragraphs from current we wanted to illustrate how you could use the data type 
alignment construct, and don't fret over the data types now because we'll dive into the various 
data types in the next chapter. Continuing further, the user-defined structure is as follows:

typedef struct UserData {
 int x;
 int y;
 int z;
 int w;
} UserData;

What you will need to do is to create a buffer on the host application using standard C/C++ 
dynamic/static memory allocation techniques such as new, malloc, and alloca. Next, you 
will need to initialize that data buffer, and finally you will have to invoke clCreateBuffer 
and you should make sure it's done prior to the call to clSetKernelArg; recall that we 
mentioned that kernels get scheduled for execution on the device, well before it executes the 
kernel code on the device it would need data and values to work against, and you can achieve 
this by an invocation to clSetKernelArg and you typically do this when the buffer object  
is created.
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The API clSetKernelArg looks like the following code and it'll be important for you to 
understand how it works:

cl_int clSetKernelArg(cl_kernel kernel,
                      cl_uint arg_index,
                      size_T arg_size,
                      const void *arg_value);

The kernel can take no arguments or at least one and probably more arguments, and how you 
configure them is simple. The following code snippet should complete the story:

// in the kernel code
_kernel void somefunction(__global int* arg1, __global int* arg2) {…} 
// in the host code
int main(int argc, char**argv) {
// code omitted
cl_kernel kernel; 
// kernel is initialized to point to "somefunction" in the kernel file
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &memoryobjectA);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*) &memoryobjectB);

Therefore, the kernel arguments are configured programmatically with the understanding that 
if the kernel function has n arguments then the arg_index would range from 0 to (n – 1).

How to do it…
We've included the main part of this recipe from Ch2/user_buffer/user_buffer.c,  
with the highlighted commentary:

/* Defined earlier */
#define DATA_SIZE 1048576
UserData* ud_in = (UserData*) malloc(sizeof(UserData) *
                                     DATA_SIZE); // input to device
/* initialization of 'ud_in' is omitted. See code for details.*/
/* Create a OpenCL buffer object */

cl_mem UDObj = clCreateBuffer(context, 
                              CL_MEM_READ_ONLY |
                              CL_MEM_COPY_HOST_PTR, 
                              sizeof(UserData) * DATA_SIZE,
                              ud_in, &error);
if (error != CL_SUCCESS) {
  perror("Unable to create buffer object");
  exit(1)
}
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On OSX, you would compile the program by running the following command on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o user_buffer 
user_buffer.c   -framework OpenCL

On the Ubuntu Linux 12.04 with Intel OpenCL SDK, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o user_buffer user_buffer.c 
-I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel -lintelocl -ltbb 
-ltbbmalloc -lcl_logger -ltask_executor

On the Ubuntu Linux 12.04 with AMD APP SDK v2.8, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG –m64 -o user_buffer user_buffer.c   
-I. –I/opt/AMDAPP/include –L/opt/AMDAPP/lib/x86_64 –lOpenCL

Regardless of the platform, a binary executable user_buffer would be deposited locally.

Running the application on both platforms, we would get the following result:
Number of OpenCL platforms found: 1
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel...
Task has been enqueued successfully!
Check passed!

How it works…
The application created a million of the UserData objects on the host. Refer to the following 
code snippet:

/*
  Prepare an array of UserData via dynamic memory allocation
*/
UserData* ud_in = (UserData*) malloc( sizeof(UserData) * DATA_SIZE); 
// input to device
UserData* ud_out = (UserData*) malloc( sizeof(UserData) * DATA_SIZE); 
// output from device
  for( int i = 0; i < DATA_SIZE; ++i) {
    (ud_in + i)->x = i;
    (ud_in + i)->y = i;
    (ud_in + i)->z = i;
    (ud_in + i)->w = 3 * i;
  }

www.allitebooks.com
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The application then sends it to the device for computation after the program and kernel 
objects have been initialized, and we assign the recently created UDObj memory object  
to the kernel as its argument. Refer to the following code snippet:

error = clSetKernelArg(kernels[i], 0, sizeof(cl_mem), &UDObj);
  if (error != CL_SUCCESS) {
    perror("Unable to create buffer object");
      exit(1);
  }

Next, we issue a kernel execution command to the command-queue, cQ, and the code will run 
against the device, the following code snippet demonstrates the enqueuing of the kernel:

  /* Enqueue the kernel to the command queue */
  error = clEnqueueTask(cQ, kernels[i], 0, NULL, NULL);
    if (error != CL_SUCCESS) {
      perror("Unable to enqueue task to command-queue");
      exit(1);
    }

After that's done, the data in the device's memory is read back and we indicated that we wish 
to read the data back until the device has completed its execution by passing CL_TRUE to 
indicate blocking read which otherwise could result in partial data read back; finally the data 
is verified, demonstrated by the following code snippet:

/* Enqueue the read-back from device to host */
            error = clEnqueueReadBuffer(cQ, UDObj,
                                         CL_TRUE, // blocking read
                                         0, // write from the start
                                         sizeof(UserData) * DATA_SIZE, 
// how much to copy
                                         ud_out, 0, NULL, NULL);
    if ( valuesOK(ud_in, ud_out) ) {
      printf("Check passed!\n");
    } else printf("Check failed!\n");

Let's explore how we used clCreateBuffer further.

In this scenario, you would want to allocate memory on the device as read-only when it comes 
to providing input to the device and because you want to be sure nothing else is writing to 
the data store. Therefore, the flag CL_MEM_READ_ONLY is passed, but if your input data was 
meant to be readable and writable then you would need to indicate it using CL_MEM_READ_
WRITE. Notice that we actually created a data store on the host via ud_in and, we wanted 
our OpenCL memory object to be the same size as ud_in and the C statement reflects this; 
finally we wanted OpenCL to know that the new memory object is to copy its values from 
ud_in and we provided the flag CL_MEM_COPY_HOST_PTR too, and we use the bitwise OR 
operator that is represented on the standard US keyboard as a pipe symbol, |, to merge these 
two flags.
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Conceptually, you can visualize it to be an 1D-array-of-structs for short or an  
array-of-structures in general.

UserData UserData UserData …………………………………………… UserData

Provide the same declaration of the application data type to the OpenCL 
kernel file (*.cl) as well as the host application files (*.c, *.h, *.cpp, 
*.hpp); else the OpenCL runtime will emit errors to reflect that the struct 
it is looking for does not exist, and the replication is necessary as OpenCL 
prohibits the C header file inclusion mechanism.

Let's spend some time to understand the C struct we just used in this example. The C 
structure we just used, UserData, is an example of an application data type. OpenCL makes 
no requirement about the alignment of OpenCL data types outside of buffers and images; 
hence developers of OpenCL need to make sure the data is properly aligned. Fortunately, 
OpenCL has provided attribute qualifiers so that we can annotate our types, functions and 
variables to suit the algorithm and CPU/GPU architecture with the primary motivation being 
to improve memory bandwidth. The alignment needs to be a power of two and at least a 
perfect multiple of the lowest common multiple of all the alignments of all the members of the 
struct or union.

Refer to Section 6.11.1 Specifiying Attributes of Types in 
the OpenCL 1.2 specification

Let's take a look at what is available to developers when it comes to aligning data types such 
as enum, struct, or union.

Data alignment is a direct result of how various computer systems restrict the allowable 
addresses for the primitive data types, requiring that the address for some type of object must 
be a multiple of some value K (typically 2, 4, or 8), and this actually simplifies the design of 
the hardware between the processor and the memory system. For example, if the processor 
were to always fetch 8 bytes from memory with an address that must be a multiple of 8, then 
the value can be read or written in a single memory operation otherwise, the processor needs 
to perform two or more memory accesses.

Alignment is enforced by making sure that every data type is organized and allocated in such 
a way that every object within the type satisfies its alignment restrictions.

Let's use an example for this illustration. Following is the generic manner in which alignment 
can be defined for application data type such as UserData. While examining the code, you 
will notice that without the aligned attribute, this data structure will be allocated on a 17-byte 
boundary assuming int is 4-bytes and char is 1-byte on a 32-bit / 64-bit system architecture. 
Once this attribute is included, following is the alignment:

| __attribute__((aligned))
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The alignment is now determined by the OpenCL compiler to be aligned to 32-bytes instead of 
17-bytes, that is, summing all the struct member's sizes, and the specification designates the 
alignment size to be the largest power of 2 and therefore it is 25 because, the 24 is 1-byte too 
many; however if you were to change the previous alignment to the following alignment:

| __attribute__((aligned (8)))

Then the alignment will be at least 8-bytes as shown in the following code:

typedef struct __attribute__((aligned)) UserData {
    int x;
    int y;
    int z;
    int w;
    char c;
} UserData;

Equivalently, you can also write in more explicit form as follows:

typedef struct __attribute__((aligned(32)) UserData {…}

In general, the golden rule of designing the data to be memory aligned is still a necessary 
practice; a rule of thumb I keep in mind is 16-byte aligned for 128-bit access and 32-byte 
aligned for 256-bit access.

On the other side of the story, you may find yourself wishing that the alignment wasn't that 
large, and with OpenCL you can indicate that by using the packed attribute as in the following 
code assuming that LargeUserData is an imaginary large data structure:

typedef struct __attribute__((packed)) LargeUserData {…}

When you apply this attribute to a struct or union, you're effectively applying the attribute 
to every member of the data; applying to an enum means that the OpenCL compiler will 
select the smallest integral type found on that architecture. You can refer to the Ch2/user_
buffer_alignment/user_buffer_align.c to review what's done and how to profile the 
performance of the application via AMD APP SDK in the readme.txt file.

Retrieving information about OpenCL  
buffer objects

To retrieve information about a buffer or sub-buffer object, you'll need to use the API 
clGetMemObjectInfo and its signature as in the following code:

cl_int clGetMemObjectInfo(cl_mem memobj,
                          cl_mem_info param_name,
                          size_t param_value_size,
                          void* param_value,
                          size_t* param_value_size_ret)
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To query the memory object, simply pass the object to memobj specifying the type of 
information you want in param_name, inform OpenCL the size of the returned information in 
param_value_size and where to deposit it in param_value; the last parameter, param_
value_size_ret, is largely optional but it returns the size of the value in param_value_
size.

Getting ready
Here's an excerpt from the code in Ch2/buffer_query/buffer_query.c where it  
shows how to extract the information about the memory object, UDObj is encapsulated into  
a user-defined function displayBufferDetails because, the code can be long depending 
on how many attributes you wish to extract about a memory object and you would place 
the invocation to this function after you've created the buffer object or if you have been 
given a handle to the memory object. The following code illustrates how it would display the 
information about a memory object by abstracting the OpenCL memory retrieval APIs into the 
function displayBufferDetails:

cl_mem UDObj = clCreateBuffer(context, … sizeof(UserData) *                
                              DATA_SIZE, ud_in, &error);
/* Extract some info about the buffer object we created */
displayBufferDetails(UDObj);

How to do it…
We've included the main part of this recipe, as shown in the following code:

void displayBufferDetails(cl_mem memobj) {
  cl_mem_object_type objT;
  cl_mem_flags flags;
  size_t memSize;
  clGetMemObjectInfo(memobj, CL_MEM_TYPE,
                     sizeof(cl_mem_object_type), &objT, 0);
  clGetMemObjectInfo(memobj, CL_MEM_FLAGS, sizeof(cl_mem_flags),
                     &flags, 0);
  clGetMemObjectInfo(memobj, CL_MEM_SIZE, sizeof(size_t),
                     &memSize, 0);
  char* str = '\0';
  switch (objT) {
    case CL_MEM_OBJECT_BUFFER: str = "Buffer or Sub
                                      buffer";break;
    case CL_MEM_OBJECT_IMAGE2D: str = "2D Image Object";break;
    case CL_MEM_OBJECT_IMAGE3D: str = "3D Image Object";break;
  }
  char flagStr[128] = {'\0'};
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  if(flags & CL_MEM_READ_WRITE) strcat(flagStr, "Read-Write|");
  if(flags & CL_MEM_WRITE_ONLY) strcat(flagStr, "Write Only|");
  if(flags & CL_MEM_READ_ONLY)  strcat(flagStr, "Read Only|");
  if(flags & CL_MEM_COPY_HOST_PTR) strcat(flagStr, "Copy from
                                                    Host|");
  if(flags & CL_MEM_USE_HOST_PTR)  strcat(flagStr, "Use from
                                                    Host|");
  if(flags & CL_MEM_ALLOC_HOST_PTR) strcat(flagStr, "Alloc from
                                                     Host|");
  printf("\tOpenCL Buffer's details =>\n\t size: %lu MB,\n\t object 
type is: %s,\n\t flags:0x%lx (%s) \n", memSize >> 20, str, flags, 
flagStr);
}

On OSX, you will compile the program by running the following command on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o buffer_query 
buffer_query.c   -framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o buffer_query buffer_query.c 
-I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel -lintelocl -ltbb 
-ltbbmalloc -lcl_logger -ltask_executor

On Ubuntu Linux 12.04 with AMD APP SDK v2.8, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG –m64 -o buffer_query buffer_query.c   
-I. –I/opt/AMDAPP/include –L/opt/AMDAPP/lib/x86_64 –lOpenCL

Regardless of the platform, a binary executable buffer_query would be deposited locally.

Executing the program on an OSX 10.6 and Ubuntu 12.04 with AMD APP SDK v2.7 would 
present the following result:

Number of OpenCL platforms found: 1
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel...
  OpenCL Buffer's details =>
    size: 128 MB,
    object type is: Buffer or Sub-buffer,
    flags:0x21 (Read-Write|Copy from Host)
Task has been enqueued successfully!
Check passed!
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How it works…
The host application proceeds to first create the buffer that it will send to the device, then 
the application queries for information about the buffer. The full list of attributes that can be 
queried is as shown in the following table:

cl_mem_info Return type Info. Returned in param_value
CL_MEM_TYPE cl_mem_object_type It returns CL_MEM_OBJECT_

BUFFER if memobj is created 
with clCreateBuffer or 
clCreateSubBuffer.

Cl_MEM_FLAGS cl_mem_flags It returns the flags argument 
specified when memobj is 
created with clCreateBuffer, 
clCreateSubBuffer, 
clCreateImage2D, or 
clCreateImage3D.

CL_MEM_SIZE size_t It returns the actual size of the 
data associated with memobj in 
bytes.

CL_MEM_HOST_PTR void* If memobj is created 
with clCreateBuffer 
or clCreateImage2d, 
clCreateImage3D, then it 
returns the host_ptr argument 
specified when memobj is 
created.

If memobj is created with 
clCreateSubBuffer, then 
it returns the host_ptr plus 
origin specified when memobj 
was created.

See clCreateBuffer for what 
host_ptr is.

CL_MEM_MAP_COUNT cl_uint Map count.
CL_MEM_REFERENCE_
COUNT

cl_uint It returns memobj's reference 
count.
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cl_mem_info Return type Info. Returned in param_value
CL_MEM_CONTEXT cl_context It returns the context specified 

when the memory is created. 
If memobj is created using 
clCreateSubBuffer, the 
context associated with the 
memory object specified as 
the buffer argument to 
clCreateSubBuffer is 
returned.

CL_MEM_ASSOCIATED_
MEMOBJECT

cl_mem It return memory object from 
which memobj is created.

In clCreateSubBuffer, it 
returns the buffer argument; 
else NULL is returned.

CL_MEM_OFFSET size_t Applicable to memobj created 
via clCreateSubBuffer. It 
returns offset or 0.

Creating OpenCL sub-buffer objects
Sub-buffers are incredibly useful data types and as you continue to explore OpenCL in this 
chapter, you'll notice that this data type can be used to partition the data and distribute them 
across your OpenCL devices on your platform.

At the time of this writing, sub-buffer support is not enabled on OpenCL 
delivered in the OSX 10.6, because the official version is OpenCL 1.0. 
However, if you have OSX 10.7 then you'll be able to run this code 
without any problem.

Let's take a look at the method signature and examine it:

cl_mem clCreateSubBuffer(cl_mem buffer,
                         cl_mem_flags flags,
                         cl_buffer_create_type bufferType,
                         const void* buffer_create_info,
                         cl_int* errcode_ret)

The argument buffer refers to the buffer you created via clCreateBuffer, the flags 
argument refers to the options you wish this offer to have and if it's zero then the default 
option is CL_MEM_READ_WRITE; this flag can adopt any values from the previous table.  
The argument bufferType is of a data structure:
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typedef struct _cl_buffer_region {
  size_t origin;
  size_t size;
} cl_buffer_region;

Therefore, you indicate where to start creating the region via the origin argument and how 
large it is going to be via the size argument.

Getting ready
In the How to do it... section of this recipe there is an excerpt from Ch2/sub_buffers/
sub_buffer.c where we create two sub-buffer objects and each of them holds one-half of 
the data; these two sub-buffers will be sent to each OpenCL device on my setup, and they're 
computed and results are checked. Conceptually, here's what the code is doing:

Data 1 Data 2 Data N-1 Data N

CPU GPU

How to do it…
We've included the main part of this recipe as shown in the following code:

/* Chop up the data evenly between all devices & create sub-
buffers */

  cl_buffer_region region;
  region.size   = (sizeof(UserData)*DATA_SIZE) / numOfDevices; 
  region.origin = offset * region.size;
  cl_mem subUDObj = clCreateSubBuffer(UDObj,
                                CL_MEM_READ_WRITE, // read-write
                                CL_BUFFER_CREATE_TYPE_REGION,
                                &region, &error);
  if (error != CL_SUCCESS) { 
    perror("Unable to create sub-buffer object");
    exit(1);
  }

/* Let OpenCL know that the kernel is suppose to receive an 
argument */

error = clSetKernelArg(kernels[j], 0, sizeof(cl_mem), &subUDObj);
// Error handling code omitted
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As noted earlier, this application doesn't work on OSX 10.6 and hence to compile it using the 
AMD APP SDK, you will enter the following command:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o sub_buffer sub_buffer.c –I. 
–I/opt/AMDAPP/include –L/opt/AMDAPP/lib/x86_64 –lOpenCL

For the Intel OpenCL SDK, you will enter the following command:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o sub_buffer sub_buffer.c –I. 
–I/usr/include 

–L/usr/lib64/OpenCL/vendors/intel

-lintelocl

-ltbb

-ltbbmalloc

-lcl_logger

-ltask_executor

For NVIDIA on Ubuntu Linux 12.04, you will enter the following command:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o sub_buffer sub_buffer.c –I. 
–I/usr/local/cuda/include –lOpenCL

Regardless of the platform, a binary executable sub_buffer would be deposited locally.

In the setup I have with Ubuntu Linux 12.04 with a NVIDIA GTX460 graphics chip with both 
NVIDIA's and Intel's OpenCL toolkit installed, I have the following output:

Number of OpenCL platforms found: 2 
Number of detected OpenCL devices: 1 
Kernel name: hello with arity: 1 
About to create command queue and enqueue this kernel... 
Task has been enqueued successfully! 
Check passed!

In the other setup with Ubuntu Linux 12.04 with an ATI 6870x2 graphics chip and AMD APP 
SDK installed, the difference in the output is only that the number of platforms is one and 
data is split between the CPU and GPU:

Number of OpenCL platforms found: 1 
Number of detected OpenCL devices: 2 
Kernel name: hello with arity: 1 
About to create command queue and enqueue this kernel... 
Task has been enqueued successfully! 
Check passed!
Kernel name: hello with arity: 1 
About to create command queue and enqueue this kernel... 
Task has been enqueued successfully! 
Check passed!
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How it works…
The application basically discovers all the OpenCL compliant devices and keeps tracks of how 
it discovered. Next, the application uses the prior information to divide the data among the 
devices before enqueuing the data for execution and the code snippet demonstrates  
the following:

cl_buffer_region region;
region.size   = (sizeof(UserData)*DATA_SIZE) / numOfDevices;
region.origin = offset * region.size;
cl_mem subUDObj = clCreateSubBuffer(UDObj,
                                    CL_MEM_READ_WRITE, // read-write
                                    CL_BUFFER_CREATE_TYPE_REGION,
                                    &region, &error);

Finally, the data is checked for sanity after reading the data back from the device memory  
to the host memory as the following code snippet shows:

error = clEnqueueReadBuffer(cQ, 
                            subUDObj,
                            CL_TRUE, // blocking read
                            region.origin, // write from the last 
offset
                            region.size, // how much to copy
                            ud_out, 0, NULL, NULL);
                /* Check the returned data */
                if ( valuesOK(ud_in, ud_out, DATA_SIZE/numOfDevices){
                  printf("Check passed!\n");
               } else printf("Check failed!\n");

What you've just seen is a data partitioning technique also known as the distributed array 
pattern on a one-dimensional block of data.

Based on the distributed array pattern, there had been three 
general techniques that were developed, and they are over 
one-dimensional and two-dimensional blocks of data and 
finally the block-cyclic pattern.

www.allitebooks.com

http://www.allitebooks.org
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Depending on whether you've installed one or more OpenCL toolkits from the vendors, the 
OpenCL will report the appropriate platforms and the OpenCL Installable Client Driver (ICD) 
allows multiple OpenCL implementations to co-exist on the same physical machine. Refer to 
the URL http://www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.
txt for more information about ICDs. This explains why your program may display distinct 
numbers for each installed platforms. The ICD actually identifies the vendors who provided the 
OpenCL implementation on the machine you have setup and its main function is to expose the 
platforms to the host code so that the developer may choose to run the algorithm in question 
against. The ICD has two pieces of information—(a) entry points to the vendor's OpenCL 
implementation in the library on the filesystem on which it's been installed, (b) the suffix string 
used to identify the suffix for OpenCL extensions provided by that vendor.

Retrieving information about OpenCL  
sub-buffer objects

The retrieval of information about OpenCL sub-buffers is very similar to that described in the 
previous recipe and involves the invocation of clGetMemObjInfo. Let's take a look at it.

OSX Caveat—you will need a OpenCL 1.1, at least the implementation 
to see this build and run; since OSX 10.6 doesn't support that version, 
you'll have to get a OSX 10.7 to get this code to run.

Getting ready
In the Ch2/sub_buffer_query/subbuffer_query.c, you'll find an excerpt of the 
following code demonstrating how we would pass the sub-buffer memory object to our  
defined function displayBufferDetails:

cl_buffer_region region;
region.size = sizeof(UserData)*DATA_SIZE;
region.origin = 0;
cl_mem subUDObj = clCreateSubBuffer(UDObj,
                                    CL_MEM_READ_WRITE, // read-write
                                    CL_BUFFER_CREATE_TYPE_REGION,
                                    &region, &error);
displayBufferDetails(subUDObj);
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During my experimentation, I found that the NVIDIA CUDA 5 OpenCL toolkit 
was stricter in evaluating the attributes in the argument flags that's passed 
to clCreateSubBuffer as compared to AMD's APP SDK v2.7. Take note 
that the bug may be fixed by the time you read this book. As a concrete 
example, the following code throws an error using NVIDIA as opposed to 
AMD when you write:
clCreateSubBuffer(buffer,CL_MEM_READ_WRITE|CL_MEM_
COPY_HOST_PTR,…) to reflect the fact that CL_MEM_COPY_HOST_PTR 
doesn't make sense.

How to do it…
We've included the main part of this recipe, as shown in the following code:

void displayBufferDetails(cl_mem memobj) {
  cl_mem_object_type objT;
  cl_mem_flags flags;
  size_t memSize;
  size_t memOffset;
  cl_mem mainBuffCtx;
  clGetMemObjectInfo(memobj, CL_MEM_TYPE,
                     sizeof(cl_mem_object_type), &objT, 0);
  clGetMemObjectInfo(memobj, CL_MEM_FLAGS, sizeof(cl_mem_flags),
                     &flags, 0);
  clGetMemObjectInfo(memobj, CL_MEM_SIZE, sizeof(size_t),
                     &memSize, 0);
  clGetMemObjectInfo(memobj, CL_MEM_OFFSET, sizeof(size_t),
                     &memOffset, 0); // 'CL_MEM_OFF_SET' new in OpenCL 
1.2
  clGetMemObjectInfo(memobj, CL_MEM_ASSOCIATED_MEMOBJECT,
                     sizeof(size_t),
                     &memOffset, 0);
  char* str = '\0';
  if (mainBuffCtx) { // implies that 'memobj' is a sub-buffer
    switch (objT) {
      case CL_MEM_OBJECT_BUFFER: str = "Sub-buffer";break;
      case CL_MEM_OBJECT_IMAGE2D: str = "2D Image Object";break;
      case CL_MEM_OBJECT_IMAGE3D: str = "3D Image Object";break;
    }
  } else {
switch (objT) {
  case CL_MEM_OBJECT_BUFFER: str = "Buffer";break;
  case CL_MEM_OBJECT_IMAGE2D: str = "2D Image Object";break;
  case CL_MEM_OBJECT_IMAGE3D: str = "3D Image Object";break;



Understanding OpenCL Data Transfer and Partitioning

60

  } 
}
  char flagStr[128] = {'\0'};
  if(flags & CL_MEM_READ_WRITE) strcat(flagStr, "Read-Write|");
  if(flags & CL_MEM_WRITE_ONLY) strcat(flagStr, "Write Only|");
  if(flags & CL_MEM_READ_ONLY)  strcat(flagStr, "Read Only|");
  if(flags & CL_MEM_COPY_HOST_PTR) strcat(flagStr, "Copy from
                                                    Host|");
  if(flags & CL_MEM_USE_HOST_PTR)  strcat(flagStr, "Use from
                                                    Host|");
  if(flags & CL_MEM_ALLOC_HOST_PTR) strcat(flagStr, "Alloc from
                                                     Host|");
  printf("\tOpenCL Buffer's details =>\n\t size: %lu MB,\n\t object 
type is: %s,\n\t flags:0x%lx (%s) \n", memSize >> 20, str, flags, 
flagStr);
}

On the Ubuntu Linux 12.04 with AMD's APP SDK v2.8, the following command would suffice:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o subbuffer _query subbuffer_
query.c –I. –I/opt/AMDAPP/include –L/opt/AMDAPP/lib/x86_64 –lOpenCL

For the Intel OpenCL SDK, you would enter the following command:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o subbuffer_query subbuffer_
query.c –I. –I/usr/include 

–L/usr/lib64/OpenCL/vendors/intel

-lintelocl

-ltbb

-ltbbmalloc

-lcl_logger

-ltask_executor

For NVIDIA on Ubuntu Linux 12.04, you would enter the following command :

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –m64 –o subbuffer_query subbuffer_
query.c –I. –I/usr/local/cuda/include –lOpenCL

Regardless of the platform, a binary executable subbuffer_query would be  
deposited locally.

When you run the program, you should get something similar to the following output:

Number of OpenCL platforms found: 2 
Kernel name: hello with arity: 1 
About to create command queue and enqueue this kernel... 
    OpenCL Buffer's details => 
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    size: 128 MB, 
   object type is: Buffer, 
    flags:0x21 (Read-Write|Copy from Host|)  
    OpenCL Buffer's details => 
    size: 128 MB, 
    object type is: Sub-buffer, 
    flags:0x1 (Read-Write|)  
Task has been enqueued successfully! 
Check passed!

How it works…
The application could decipher whether it's an OpenCL sub-buffer object because of the two 
flags introduced in OpenCL 1.2. They are CL_MEM_OFFSET and CL_MEM_ASSOCIATED_
MEMOBJECT; using either one of the flags would reveal whether it's a sub-buffer, but the 
catch is that CL_MEM_OFFSET can be zero for a sub-buffer because that indicates to OpenCL 
where to start to extract the data from; a better, recommended option is to use CL_MEM_
ASSOCIATED_MEMOBJECT since the presence implies the argument memobj is a sub-buffer. 
See the earlier recipe, Retrieving information about OpenCL buffer objects.

Understanding events and  
event-synchronization

The previous recipes demonstrated how you can create memory objects that encapsulates 
the data that is to be transferred from the host memory to the device memory, and discusses 
how you can partition the input data among the devices via sub-buffers.

In this recipe, we are going to develop an understanding of how the developer can make use 
of the event system in OpenCL to control execution of kernel commands as well as memory 
commands. This is beneficial to the developer because it offers myriad ways in which you can 
control execution flow in a heterogeneous environment.

Events are, generally, passive mechanisms when the developers wish to be notified of an 
occurrence, and having the choice of conducting processing past that occurrence; contrasting 
to the say, polling where it's a more active mechanism as the application makes an active 
enquiry into the current state and decides what to do when a particular condition is met.

Events in OpenCL fall into two categories as follows:

 f Host monitoring events 

 f Command events
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In both the event types, the developer needs to create the events explicitly and associate 
them with the objects through waitlists; waitlists are nothing more than a container of events 
that the command must wait upon completion, that is, the event's status is CL_COMPLETE 
or CL_SUCCESS before progressing. The difference between these two event types (as we 
shall soon see) is in the manner in which the next subsequent command in the queue gets 
executed, host events are updated by the developer and when this is done it is indicative by 
the program source, command events in the waitlists on the other hand are updated by the 
OpenCL runtime. Considering that the events held up in the waitlists must be of a certain 
state before the next command executes means that waitlists are actually synchronization 
points since no progress can be made without emptying that list.

Let's start by examining the host events. So far, we understood that commands needs 
to be placed onto the command queue so that they can be scheduled for execution, and 
what host monitoring events allow the developer is to monitor the state of enqueued 
command and we can, optionally, attach a callback function to the event so that when it 
returns with a state we desire, the callback function will execute. This is made possible 
via the APIs clCreateUserEvent, clSetUserEventStatus, clReleaseEvent, and 
clSetEventCallback. An example in the How to do it    section would illustrate how this 
can be achieved.

Getting ready
Assume that a kernel wishes to process two 1D memory objects named objA and objB  
and write the result to objC (for this example, we can ignore the output of objC). We wish 
that the copying of input data from objB should only take place when we have indicated to 
the host program.

How to do it…
The full source is demonstrated in Ch2/events/{events.c,sample_kernel.cl} and 
we have to first create the necessary data structures as before; next we will create the event 
object as follows:

event1 = clCreateUserEvent(context, &ret);

In this event object, we can next assign a call back function to the event and indicate that 
upon the event's status changes to CL_COMPLETE, the callback would execute like the 
following code:

void CL_CALLBACK postProcess(cl_event event, cl_int status, void 
*data) {
  printf("%s\n", (char*)data);
}
clSetEventCallback(event1, CL_COMPLETE, &postProcess, "Looks like its 
done.");
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Then the host program would continue to conduct memory transfers for objA and objB, but 
it doesn't proceed to process any more OpenCL commands enqueued on the command queue 
till the status of the event1 is set to CL_COMPLETE.

ret = clEnqueueWriteBuffer(command_queue, objA, CL_TRUE, 0, 
4*4*sizeof(float), A, 0, NULL, NULL );
  printf("A has been written\n");
  /* The next command will wait for event1 according to its status*/
  ret = clEnqueueWriteBuffer(command_queue, objB, CL_TRUE, 0, 
4*4*sizeof(float), B, 1, &event1, NULL);
  printf("B has been written\n");
clSetUserEventStatus(event1, CL_COMPLETE);
//….code omitted
clReleaseEvent(event1);

Another API we will introduce is the clWaitForEvents with it's signature:

Cl_int clWaitForEvents(cl_uint num_events, const cl_event* event_
list);

This is typically used to stall the host thread until all the commands in the event list have 
completed (the next code snippet demonstrates how).

The next topic we look at are the command events, which are typically used when you wish 
to be notified of certain happenings associated with commands. A typical use case would be 
the following where you have a command-queue and you want to be notified of the status of 
an memory transfer command like clEnqueueWriteBuffer and take a particular action 
depending on that status:

cl_event event1;
// create memory objects and other stuff
ret = clEnqueueWriteBuffer(queue, object, CL_TRUE, 0, 1048576, 
hostPtrA, 1, &event1, NULL);
clWaitForEvents(&event1); // stalls the host thread until 'event1' has 
a status of CL_COMPLETE.

You can easily extrapolate the scenario where you have a large heterogeneous computing 
environment with large numbers of CPUs and GPUs and obviously you wish to maximize your 
computational power, and the events mechanism in OpenCL allows the developer to design 
how to sequence those computations and coordinate those computations. However, as a 
best practice you probably want to clean up the event object associated with the commands, 
but you need to discover the state of the event you're watching otherwise you might release 
the event prematurely, and here's how you can do that by polling the API clGetEventInfo 
passing in the event you are watching; the following code demonstrates this idea:

int
waitAndReleaseEvent(cl_event* event) {
  cl_int eventStatus = CL_QUEUED;
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  while(eventStatus != CL_COMPLETE) {
    clGetEventInfo(*event, 
                   CL_EVENT_COMMAND_EXECUTION_STATUS,
                   sizeof(cl_int), 
                   &eventStatus, NULL);
  }
  clReleaseEvent(*event);
  return 0;
}

There's more…
There are two scenarios that deserve mentioning and they address the situation where 
(a) you like to receive notification for a group of events (assuming that they are associated 
to memory objects) and (b) you like to stall the execution of any commands further down 
the pipeline, that is, command-queue, until this group of events you are watching for have 
completed. The API clEnqueueMarkerWithWaitList is for the former situation whereas 
clEnqueueBarrierWithWaitList suits the latter. You are encouraged to explore them in 
the OpenCL 1.2 specification.

If you are still using OpenCL 1.1, you can use 
clEnqueueMarker and clEnqueueBarrier (which are 
the older versions of clEnqueueMarkerWithWaitList and 
clEnqueueBarrierWithWaitList) but be aware that they 
are both deprecated in OpenCL 1.2.

Copying data between memory objects
You will quickly realize how useful the event mechanism in OpenCL is in controlling the 
various parts of your algorithm, and it can be found in the common kernel and memory 
commands. This recipe will continue from creating memory objects and focus on how 
those memory objects can be transferred from the host memory to the device memory 
and vice versa and we'll be fixated on the data transfer APIs clEnqueueReadBuffer 
and clEnqueueWriteBuffer, which is for one-dimensional data blocks, and 
clEnqueueReadBufferRect and clEnqueueWriteBufferRect for two-dimensional  
data blocks; we'll also look at clEnqueueCopyBuffer for data transfers between memory 
objects in the device. First, we look at copying data between memory objects.
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There will come times when you have to copy data between distinct memory objects, and 
OpenCL provides us a convenient way to do this via clEnqueueCopyBuffer. It can only take 
place between two different memory objects (for example, one is a plain buffer and the other 
is a sub-buffer) or between two similar objects (for example, both are sub-buffers or plain 
buffers) and the area of copy cannot overlap. Here's the method signature:

cl_int clEnqueueCopyBuffer(cl_command_queue command_queue,
                           cl_mem src_buffer,
                           cl_mem dst_buffer,
                           size_t src_offset,
                           size_t dst_offset,
                           size_t cb,
                           cl_uint num_events_in_wait_list,
                           const cl_event* event_wait_list,
                           cl_event* event)

The list of functions for copying data between memory objects are as follows:

 f clEnqueueCopyBuffer

 f clEnqueueCopyImage

 f clEnqueueCopyBufferToImage

 f clEnqueueCopyImageToBuffer

 f clEnqueueCopyBufferRect

To copy a buffer, you need to indicate the source and destination cl_mem objects via  
src_buffer and dst_buffer, indicate where to start the copying by indicating the offsets 
of the src_buffer and dst_buffer via src_offset and dst_offset respectively 
together with the size of data to copy via cb. If you wish for the copying of the data to take 
place after some operations, you need to indicate the number of those operations and a valid 
array of cl_event objects that represent each operation via num_events_in_wait_list 
and event_wait_list respectively.

Take note that you can query the device on the status of the copying, 
when your data array is large, by passing an event object to the event 
argument. Another approach is to enqueue a clEnqueueBarrier 
command.
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Getting ready
The following code is an extract from Ch2/copy_buffer/copy_buffer.c, and it illustrates 
how to enqueue a clEnqueueCopyBuffer command to the command queue, and the 
kernel uses this copy of the data for computation. This process is iterated among the detected 
OpenCL devices on the machine. The following diagram illustrates how the original data block 
(previous diagram) is copied to another cl_mem object (next diagram) and passed off to the 
OpenCL devices for computation.

Original

copy

OpenCL
devices

Data 1 Data 2 Data N-1 Data N

Data 1 Data 2 Data N-1 Data N

How to do it…
We've included the main part of this recipe, with the highlighted commentary:

cl_mem UDObj = clCreateBuffer(context,
                              CL_MEM_READ_WRITE |
                              CL_MEM_COPY_HOST_PTR,
                              sizeof(UserData) * DATA_SIZE, 
                              ud_in, &error);
… // code omitted. See the source.
/* Create a buffer from the main buffer 'UDObj' */
cl_mem copyOfUDObj = clCreateBuffer(context, CL_MEM_READ_WRITE,                                                
                                    sizeof(UserData) * DATA_SIZE,
                                    0, &error)
if (error != CL_SUCCESS) { 
  perror("Unable to create sub-buffer object");
  exit(1);
}
/* Let OpenCL know that the kernel is suppose to receive an argument 
*/
error = clSetKernelArg(kernels[j], 
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                       0,
                       sizeof(cl_mem),
                       &copyOfUDObj);
if (error != CL_SUCCESS) { 
  perror("Unable to set buffer object in kernel");
  exit(1);
}
// code omitted. See the source.
/* Enqueue the copy-write from device to device */
error = clEnqueueCopyBuffer(cQ,
                            UDObj,
                            copyOfUDObj,              
                            0,            // copy from which offset
                            0,            // copy to which offset
                            sizeof(UserData)*DATA_SIZE,
                            0, NULL, NULL);
printf("Data will be copied!\n");
// Code for enqueueing kernels is omitted.
/* Enqueue the read-back from device to host */
error = clEnqueueReadBuffer(cQ, 
                            copyOfUDObj, 
                            CL_TRUE,  // blocking read
                            0,        // read from the start
                            sizeof(UserData)*DATA_SIZE,
                            ud_out, 0, NULL, NULL);

On OSX, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g  -DAPPLE -arch i386 -o copy_buffer copy_
buffer.c   -framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o copy_buffer copy_buffer.c 
-I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel -lintelocl -ltbb 
-ltbbmalloc -lcl_logger -ltask_executor

On Ubuntu Linux 12.04 with NVIDIA CUDA 5 installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o copy_buffer copy_buffer.c 
-I. -I/usr/local/cuda/include  -lOpenCL

A binary executable named copy_buffer will be deposited on the directory.
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Depending on how many OpenCL SDKs are installed on your machine, your output may vary 
but on my OSX, the following is the output:

Number of OpenCL platforms found: 1
Number of detected OpenCL devices: 2
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel...
Task has been enqueued successfully!
Data will be copied!
Check passed!
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel...
Task has been enqueued successfully!
Data will be copied!
Check passed!

How it works…
The application needed to compute the copied buffer, and you can tell this because 
clSetKernelArg was defined that way by this statement:

error = clSetKernelArg(kernels[j], 0, sizeof(cl_mem), &copyOfUDObj);

Next, we can perform a copy operation, which takes place in the device's memory, 
via clEnqueueCopyBuffer and finally retrieve the computed values via 
clEnqueueReadBuffer. 

The created command queue will default to in-order execution, instead 
of out-of-order execution so the device will execute the commands in 
the order of the queueing.

Now, we are going to talk about the one-dimensional and two-dimensional data 
transfer APIs such as clEnqueueReadBuffer, clEnqueueWriteBuffer, 
clEnqueueWriteBufferRect, and clEnqueueReadBufferRect and we are doing  
this now because you have seen that most of our examples, so far, we demonstrated the 
creation of memory objects via clCreateBuffer by associating with a memory structure 
in the host and though that might suffice for some situations, you probably want APIs that 
gives you more control when memory objects in the device memory are to be written or read 
from. The control these APIs give you, the developer, is from the fact that they are enqueued 
onto the command-queue with any events the developer might craft; and that provides a good 
permutation of strategies and flexibilities for structuring I/O in heterogeneous environments. 
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Be aware that there are similar APIs for reading and writing two or 
three dimensional images to/from host to the device memory. Their 
names are clEnqueueReadImage, clEnqueueWriteImage, 
clEnqueueReadImageRect, and clEnqueueWriteImageRect. 
Refer to the OpenCL 1.2 Specifications for more details.

These APIs allows us to indicate to the device when we wish the data transfer to occur,  
very much like clEnqueueCopyBuffer. Let's take a look at their method signatures:

cl_int clEnqueueReadBuffer(cl_command_queue command_queue,
                        cl_mem buffer,
                           cl_bool blocking_read, 
                           size_t offset,
                           size_t cb, 
                           void *ptr,
                           cl_uint num_events_in_wait_list,
                           const cl_event *event_wait_list,
                           cl_event *event)
cl_int clEnqueueWriteBuffer(cl_command_queue command_queue,
                        cl_mem buffer,
                           cl_bool blocking_write, 
                           size_t offset,
                           size_t cb, 
                           const void *ptr,
                           cl_uint num_events_in_wait_list,
                           const cl_event *event_wait_list,
                           cl_event *event)

These two functions are very similar to one another, and they basically say if you wish to 
read/write to/from a memory buffer , that is, a cl_mem object, you need to indicate which 
command queue is it via command_queue, what buffer it is via buffer, whether to be a 
blocking-read/write via blocking_read/blocking_write, where to read/write from for 
what size via offset and cb, where to read the data or write the data to via ptr, should 
this read/write command occur after some events via num_events_in_wait_list and 
event_wait-list. The last argument in the function is event, which allows the reading  
or writing operation to be queried which is described in clEnqueueCopyBuffer.

Blocking reads in clEnqueuReadBuffer means that the command does not exit until 
the host pointer has been filled by the device memory buffer; similarly blocking-writes in 
clEnqueueWriteBuffer means that the command doesn't exit until the entire device 
memory buffer has been written to by the host pointer.
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To see how these calls are used, you can refer to the earlier illustrated code in the recipe 
Understanding events and event-synchronization and for your convenience the following  
is the relevant code in Ch2/events/events.c:

ret = clEnqueueWriteBuffer(command_queue, objA, CL_TRUE, 0, 
4*4*sizeof(float), A, 0, NULL, NULL );
ret = clEnqueueWriteBuffer(command_queue, objB, CL_TRUE, 0, 
4*4*sizeof(float), B, 1, &event1, NULL);

Having the capability to model one-dimensional memory objects is fantastic, but OpenCL  
goes a notch further by facilitating two-dimensional memory object memory transfers.

Here is an example of reading a two-dimensional data blocks from the device's memory 
to the output buffer in the host memory; extracted from Ch2/simple_2d_readwrite/
simple_2d_readwrite.c. The code illustrates the usage of the buffer_origin, host_
origin, and region as in the API. The application will read from the UDObj cl_mem object, 
which represents the one-dimensional input data, hostBuffer, as a 2 x 2 matrix and writes 
them into the host memory data block represented by outputPtr. The application reads 
back the data from the device to host memory and checks for sanity.

cl_int hostBuffer[NUM_BUFFER_ELEMENTS] = {0, 1, 2, 3, 4, 5, 6, 7,
                                          8,9,10,11,12,13,14,15};
cl_int outputPtr[16] = {-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1, 
                        -1,-1, -1, -1, -1};
for(int idx = 0; idx < 4; ++ idx) { 
    size_t buffer_origin[3] = {idx*2*sizeof(int), idx, 0}; 
    size_t host_origin[3] = {idx*2*sizeof(int), idx, 0}; 
    size_t region[3] = {2*sizeof(int), 2, 1};
error = clEnqueueReadBufferRect (cQ,
                                 UDObj,
                                 CL_TRUE,
                                 buffer_origin,
                                 host_origin,
                                 region,
                                 0, //buffer_row_pitch,
                                 0, //buffer_slice_pitch,
                                 0, //host_row_pitch,
                                 0, //host_slice_pitch,
                                 outputPtr,
                                 0, NULL, NULL);
}//end of for-loop
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In this example, we used the for loop and standard array indexing techniques in C to model 
how you might iterate through a two-dimensional array and referencing the elements so that 
we progressively copy the input. We won't dwell too much into this because, building and 
running it is very similar to the previous, and you should explore the directory to see how the 
build and program works via the Makefile.

Using work items to partition data
In the previous chapter, we introduced how work can be partitioned in a one-dimensional 
array across several work items (you should flip back now if you cannot remember), and 
also how each work item would obtain an index in which the kernel can use to conduct the 
computation in the kernel code vector_multiplication. In this recipe, we are going to 
build on that by exploring two-dimensional data partitioning in more detail.

By now, you should realize that one of the cornerstones of OpenCL is getting the data into 
the device/s for processing via kernels, and you've seen how data can be partitioned among 
different devices via kernels. In the former, you've seen how we used the distributed array 
pattern to partition the data among the devices; this refers to coarse grain data-parallelism. 
The latter refers to the coarse grained task-parallelism that OpenCL provides and it is coarse 
grained because OpenCL is capable of both data-parallelism and task-parallelism.

Most of the code you've seen so far have been using clEnqueueTask to execute the kernel 
based on the one-dimensional data blocks and to get your kernel to process two or three 
dimensional data we need to understand clEnqueueNDRangeKernel; and how data  
can be laid out conceptually in two or three dimensional space.

It is helpful to visualize the two or three dimensional data layout in the 
device memory to be row-based instead of column-based.

The NDRange in clEnqueueNDRangeKernel refers to a data indexing scheme that is 
supposed to span an N-dimensional range of values and hence, the given name. Currently, 
N in this N-dimensional index space can be one, two, or three. Next, we can split each 
dimensional into chunks of sizes two, three, four, or more till we reached the maximum 
allowable by the parameter CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS. Refer to the Ch1/
device_details/device_details.c on how to obtain the values. This would decide how 
many processing groups we can run in parallel, and in OpenCL they are called work groups. 
The work groups would have a number of available processing elements that are called  
work items though I like to think of them as executable threads. 
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Let's work through an example using a two-dimensional data size of 12 rows by 12 columns, 
that is, a 12 x 12 matrix. Let's look at the following diagram to understand how the work groups 
and work items are related to one another:

(0,0)

(12,12)

Work-group

In this example, I've decided to partition the two-dimensional space to create nine work groups 
where each work group is a 4 x 4 matrix. Next, to decide how many work items there should be 
in each work group, and you have two choices: a) assign one work-item to process each cell in 
your 4 x 4 matrix, b) assign one work item to process n-cells in your 4 x 4 matrix; in the second 
option it would be similar to vector processing where n-values are loaded together for the work 
item to process. Let's assume that we've decided to choose the option a

We'll look at the various data types in the Chapter 3, 
Understanding OpenCL Data Types.

At this time, let's take a detailed look at the API clEnqueueNDRangeKernel with the 
following method signature, and understand how to input those values with our example:

cl_int
clEnqueueNDRangeKernel(cl_command_queue command_queue,
                       cl_kernel kernel,
                       cl_uint work_dim,
                       const size_t *global_work_offset,
                       const size_t *global_work_size,
                       const size_t *local_work_size,
                       cl_uint num_events_in_wait_list,
                       const cl_event *event_wait_list,
                       cl_event *event)
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Let's look at what those variables in clEnqueueNDRangeKernel are for; the command_
queue refers to the particular queue like the kernel, to execute on. Next, you need to 
indicate how many dimensions your input data has via work_dim; the next two variables 
global_work_size and local_work_size would indicate how many work groups there 
are and how many work items / work threads can execute in each work group. Recall that the 
kernel gets scheduled on the device, but it is the work group that gets assign compute units of 
the device and the work items execute on the processing element in the compute unit. Next, 
if you need the launch of the kernel to wait on a couple of events in your algorithm, you can 
indicate them through num_events_in_wait_list and event_wait_list, and finally if 
you wish to associate an event to this kernel's state you can pass in an event type to event in 
this API.

The method signature should not look that intimidating to you by now. Given a 12 x 12 matrix 
partitioned into nine work groups where each work group is a 4 x 4 matrix and each work item 
will process one data cell, we will code it like the following code snippet:

 cl_uint work_dim = 2; // 2-D data

 size_t global_work_offset[2] = {0,0}; // kernel evals from (0,0)

 size_t global_work_size[2] = {12,12};

 size_t local_work_size[2]  = {4,4};

 clEnqueueNDRangeKernel(command_q, kernel, work_dim,

 global_work_offset,global_work_size, local_work_size, 0,

 NULL,NULL);

To ensure you have got your calculations correct, you can use the following simple formula:

Number of work-groups = (global_work_size[0]*…*global_work_size[n-1]) /
                                           (local_work_size[0]*…*local_work_size[n-1])

Next, we are going to take a look at how we can enable this task-parallelism and  
data-parallelism to be processed by the CPU and GPU where each device will copy  
a one-dimensional data array from the input buffer and treat it like a two-dimensional  
matrix for parallel computing, and finally output the results to a one-dimensional matrix.
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Getting ready
In Ch2/work_partition/work_partition.c, we saw an excerpt where we need to copy 
a million elements from an input buffer to an output buffer using a two-dimensional data 
format. We proceed to partition the data into a 1024 x 1024 matrix where each work item 
processes a single cell and we create work groups of the size 64 x 2 matrix.

Caveat—during my experimentation, this program crashed when executing 
on the OSX 10.6 Intel Core i5 with OpenCL 1.0 as the work group can only 
be of size one in each dimension. We'll look in the Chapter 3, Understanding 
OpenCL Data Types on how to make our programs more portable.

The kernel function, copy2Dfloat4 is a typical function which is executed on the device and 
we like to express the idea of transferring a vector of elements from one point to another and 
once that's done, the application will conduct a data sanity check which will pass or fail the 
program; Refer to the Ch2/work_partition/work_partition.cl.

How to do it…
We've included the main part of this recipe, with the highlighted commentary in the  
following code:

// --------- file: work_partition.cl --------------
#define WIDTH 1024
#define DATA_TYPE float4
/*
  The following macros are convenience 'functions'
  for striding across a 2-D array of coordinates (x,y)
  by a factor which happens to be the width of the block
  i.e. WIDTH
*/
#define A(x,y) A[(x)* WIDTH + (y)]
#define C(x,y) C[(x)* WIDTH + (y)]
__kernel void copy2Dfloat4(__global DATA_TYPE *A, __global DATA_TYPE 
*C)
{
    int x = get_global_id(0);
    int y = get_global_id(1);
    // its like a vector load/store of 4 elements
    C(x,y) = A(x,y);
}
// --------- file: work_partition.c ---------
cl_float* h_in = (float*) malloc( sizeof(cl_float4) * DATA_SIZE); // 
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input to device
cl_float* h_out = (float*) malloc( sizeof(cl_float4) * DATA_SIZE); // 
output from device
  for( int i = 0; i < DATA_SIZE; ++i) {
    h_in[i] = (float)i;
  }
// code omitted
cl_mem memInObj = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_
COPY_HOST_PTR, sizeof(cl_float4) * (DATA_SIZE), h_in, &error);
cl_mem memOutObj = clCreateBuffer(context, 
                                  CL_MEM_WRITE_ONLY ,
                                  sizeof(cl_float4) * (DATA_SIZE),
                                  NULL, &error);
if(error != CL_SUCCESS) {
  perror("Can't create an output buffer object");
  exit(1);
}
/* Let OpenCL know that the kernel is suppose to receive two arguments 
*/
error = clSetKernelArg(kernels[j], 0, sizeof(cl_mem), &memInObj);
if (error != CL_SUCCESS) {
  perror("Unable to set buffer object in kernel");
  exit(1);
}
error = clSetKernelArg(kernels[j], 1, sizeof(cl_mem), &memOutObj);
if (error != CL_SUCCESS) {
  perror("Unable to set buffer object in kernel");
  exit(1);
}
/* Enqueue the kernel to the command queue */
size_t globalThreads[2];
globalThreads[0]=1024;
globalThreads[1]=1024;
size_t localThreads[2];
localThreads[0] = 64;
localThreads[1] = 2;
cl_event evt;
error = clEnqueueNDRangeKernel(cQ, 
                               kernels[j],
                               2,
                               0,
                               globalThreads,
                               localThreads,
                               0, 
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                               NULL, &evt);
clWaitForEvents(1, &evt);
if (error != CL_SUCCESS) {
  perror("Unable to enqueue task to command-queue");
  exit(1);
}
clReleaseEvent(evt);

On OSX, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g  -DAPPLE -arch i386 -o work_partition work_
partition.c   -framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o work_partition work_
partition.c -I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel 
-lintelocl -ltbb -ltbbmalloc -lcl_logger -ltask_executor

On Ubuntu Linux 12.04 with NVIDIA CUDA 5 installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o work_partition work_
partition.c -I. -I/usr/local/cuda/include  -lOpenCL

A binary executable named work_partition will be deposited on the directory.

On Ubuntu Linux 12.04 with AMD APP SDK v2.8 and NVIDIA CUDA 5 installed, I have the 
following output. If you ran the program using the Intel® OpenCL SDK, then you will not see 
the output related to the discrete graphics chip. In this example, we have demonstrated both 
coarse-grained and fine-grained data and task parallelism:

Number of OpenCL platforms found: 2 
Number of detected OpenCL devices: 1 
Running GPU  
    => Kernel name: copy2Dfloat4 with arity: 2 
    => About to create command queue and enqueue this kernel... 
    => Task has been enqueued successfully! 
Check passed! 
Number of detected OpenCL devices: 1 
Running on CPU ........ 
    => Kernel name: copy2Dfloat4 with arity: 2 
    => About to create command queue and enqueue this kernel...
    => Task has been enqueued successfully! 
Check passed!
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How it works…
The host application allocates two buffers that are capable of storing a million elements of 
the data type cl_float4, which is a OpenCL vector data type. Next we proceed to build 
the program via clBuildProgramWithSource (refer to Ch2/work_partition/work_
partition.c), and pick up all the kernels in the kernel file (*.cl). Each detected device will 
pick up a one-dimensional input buffer, transform it to a two-dimensional matrix, and partition 
the data among its parallel computing units where each work group will compute the following:

 f Obtain the index for the row via get_global_id(0); which can be thought of as the 
thread's ID in the x-axis

 f Obtain the index for the column via get_global_id(1); which can be thought of as 
the thread's ID in the y-axis

 f Together with the row and column indexes, perform a memory load of 4 elements and 
store the same via C(x,y) = A(x,y)

The OpenCL runtime would have partition the data among the work groups, together with the 
IDs for the work items as well as work groups; hence there would not be a situation where 
the thread IDs being duplicated and hence waging mayhem on the computation (the OpenCL 
vendor has that responsibility of ensuring it doesn't occur). OpenCL knows how to do this 
because the dimensions of the input data, together with the number of work groups and 
number of executing work items are passed via the parameters work_dim, global_work_
size, and local_work_size in the clEnqueueNDRangeKernel API.

An example should clarify this: Assume that the imaginary input data has two-dimensions 
and the global_work_size is 8192 and local_work_size is 16*16, then we will have 
8192/(16*16) = 32 work groups; to be able to reference any element in a two-dimensional 
data block, you will write some code similar to this to generate the global thread ID in  
(this is not the only way to do this, but it is the generally preferred method):

int x = get_local_id(0);//x would range from 0 to 15
int y = get_local_id(1);//y would range from 0 to 15
int blockIdX = get_group_id(0);
int blockIdY = get_group_id(1);
int blockSizeX = get_local_size(0); // would return 16
int blockSizeY = get_local_size(1); // would return 16
uint globalThreadId = (blockIdx * blockSizeX + x) + 
                      (blockIdY * blockSizeY + y);

The OpenCL kernel will complete its computation eventually because of an invocation to 
clWaitForEvents (we'll talk about this in the next chapter), and then the output buffer  
is stored with data from the device memory via clEnqueueReadBuffer and the data is 
sanity checked.





Understanding OpenCL 
Data Types

In this chapter, we are going to cover the following recipes:

 f Initializing the OpenCL scalar data types

 f Initializing the OpenCL vector data types

 f Using OpenCL scalar types

 f Understanding OpenCL vector types

 f Vector and scalar address spaces

 f Configuring your OpenCL projects to enable the double data type

Introduction
OpenCL supports a wide range of data types derived from the C programming language. 
They are widely classified into two groups called scalars and vectors. Scalars are basically 
elemental values, whereas vectors are a collection of elemental values and a good thing 
about vectors is that many OpenCL SDK vendors have provided automated vectorization  
which allows the values to be loaded into wide, that is, 128-bit, 256-bit, or 512-bit registers 
for consumption.

OpenCL scalar integral data types consists of the signed and unsigned types of bool, char, 
short, int, long, uchar, ushort, uint, and ulong respectively; for floating-point values 
there are float, half, and double. To represent those types in your host program, you have 
to just prepend the letters cl_ to each type, which the OpenCL compiler will understand.

3
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OpenCL vector data types consists of a multiple of scalar data integral and floating-point 
data types and they are char<N>, short<N>, int<N>, long<N>, uchar<N>, ushort<N>, 
uint<N>, ulong<N>, and float<N> where <N> represents a value of 2, 3, 4, 8, or 16. 
Similarly, you will represent those types in your host program by prepending the letters  
cl_ to the data types.

In both the cases, if you prefer the explicit form of an unsigned type, then you can replace 
the letter u in the data types with the keyword unsigned.

Initializing the OpenCL scalar data types
In this recipe, we are going to demonstrate various ways to initialize scalar types, and most 
of the techniques will make a lot of sense if you already have programmed using the C 
programming language.

Getting ready
In addition to the regular data types defined in C which works in OpenCL, the standard have 
added a few more data types in addition to the ones we have mentioned in the previous 
section, and the following table illustrates them:

Type Description
half It is a 16-bit floating-point. The half data type must conform to 

the IEEE 754-2008 half precision storage format.
bool It is a conditional data type that evaluates to true or false. The 

value true expands to an integer 1 while false expands to 0.
size_t It is the unsigned integer type of the result of the sizeof operator. 

This can be a 32-bit or 64-bit unsigned integer.
ptrdiff_t It is a 32-bit or 64-bit signed integer and usually it is used to 

represent the result of subtracting two points 
intptr_t It is a 32-bit or 64-bit signed integer with the property that any 

valid point to avoid can be converted to this type, and then 
converted back to point to void and the result will compare equal 
to the original pointer.

uintptr_t It is a 32-bit or 64-bit unsigned integer that has got the same 
property as intptr_t.
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OpenCL allows the following data types to be used interchangeably in your source codes:

Type in OpenCL Type in application
bool n/a

char cl_char

unsigned char, uchar cl_uchar

short cl_short

unsigned short, ushort cl_ushort

int cl_int

unsigned int, uint cl_uint

long cl_long

unsigned long, ulong cl_ulong

float cl_float

double cl_double

half cl_half

size_t n/a

ptrdiff_t n/a

intptr_t n/a

uintptr_t n/a

void void

So following are a few examples on how you can possibly declare and define scalar data types 
in your source code in the kernels and host:

float f = 1.0f;                  // In the OpenCL kernel
char c = 'a';                    // In the OpenCL kernel
const char* cs = "hello world\n";
cl_char c1 = 'b';                // in the host program
cl_float f1 = 1.0f;              // in the host program
const cl_char* css = "hello world\n";

In the previous chapter, Understanding OpenCL Data Transfer and Partitioning, we spent 
some time discussing about data types and how alignment works or in other words, how data 
misalignment can affect the performance. Scalar data types are always aligned to the size of 
the data type in bytes. Built-in data types whose sizes are not a power of two must be aligned 
to the next larger power of two. That is, a char variable will be aligned a 1-byte boundary,  
a float variable will be aligned to a 4-byte boundary.
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How to do it…
If your application needs user-defined data types, then you need to place __attribute__
((aligned)) to those types; refer to the Chapter 2, Understanding OpenCL Data Transfer 
and Partitioning for more details.

In OpenCL, several operators convert operand values from one type to another, and this is 
commonly referred to as implicit conversions; another way is to apply a cast operation on 
operands or on the result of a binary operation. Implicit conversions between scalar built-in 
types are supported with the exception of void and half data types. What it means is shown 
in the following code:

cl_int x = 9;
cl_float y = x; // y will get the value 9.0

Or

int x = 9;
float y = x;  // y will get the value 9.0

You can use both forms in your application code. You can coerce a data type to another  
data type in OpenCL too, just as you can do in the C programming language. Refer to the 
following example:

float f = 1.0f;
int i = (int) f; // i would receive the value of 1

You can also coerce a scalar data type to a vector data type in OpenCL with the following code:

float f = 1.0f;
float4 vf = (float4)f; // vf is a vector with elements (1.0, 1.0, 1.0, 
1.0)
uchar4 vtrue = (uchar4)true; // vtrue is a vector with elements(true, 
true, true, true)
             // which is actually (0xff, 0xff, 0xff, 0xff)

Initializing the OpenCL vector data types
Vectors are extremely powerful to an OpenCL programmer because it allows the hardware 
to bulk load/store data to/from memory; such computations typically take advantage of the 
algorithms spatial and temporal locality properties. In this recipe, we are going to familiarize 
ourselves with creating various types of vectors.
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Getting ready
You can initialize a vector in two primary manners and they are as follows:

 f Vector literal
 f Vector composition

Creating a vector literal simply means that you can construct your vector of whatever type you 
wish as shown in the following code:

float a = 1.0f;
float b = 2.0f;
float c = 3.0f;
float d = 4.0f;
float4 vf = (float4) (a, b, c, d);
//vf will store (1.0f, 2.0f, 3.0f, 4.0f)

Another way to initialize a vector is to do it via a scalar value as shown in the following code:

uint4 ui4 = (uint4)(9); // ui4 will store (9, 9, 9, 9)

You can also create vectors in the following fashion:

float4 f = (float4) ((float2) (1.1f, 2.2f), 
                     (float2) (3.3f, 4.4f));
float4 f2 = (float4) (1.1f, (float2) (2.2f, 3.3f), 4.4f);

The data type on the left-hand-side and right-hand-side must be same or the OpenCL compiler 
will issue a complaint.

How to do it…
Vectors have another remarkable property, and that is, you can access the individual 
components through indexes, that is to say if you wish to access each component of a 
float4 vector, v, then you would do so via v.x, v.y, v.z, v.w respectively, and for larger 
vectors of 8 or 16 elements we would access those individual elements via v.s0, v.s1 
through to v.s7, and v.s0, v.s1, v.sa through to v.sf respectively. Hence, vectors of type 
char2, uchar2, short2, ushort2, int2, uint2, long2, ulong2, and float2 can access 
their .xy elements.

Following is another way of creating vectors and that is through composition:

float4 c;
c.xyzw = (float4) (1.0f, 2.0f, 3.0f, 4.0f);
float4 d;
d.x = c.x;
d.y = c.y;
d.z = c.z;
d.w = c.w; // d stores (1.0f, 2.0f, 3.0f, 4.0f)
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How it works…
On a similar note, you can use numerical indexes to reference the components in your vector 
and create vectors in turn. The following table shows a list of indexes for the various vector 
data types:

Vector components Numeric indexes that can be used
2-component 0, 1

3-component 0, 1, 2

4-component 0, 1, 2, 3

8-component 0, 1, 2, 3, 4, 5, 6, 7

16-component 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, 
A, b, B, c, C, d, D, e, E, f, F

To use these numerical indexes, you have to precede by the letter s or S, and following  
are a few quick examples on how to create vectors:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f); 
float4 swiz= pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f) 
float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)
float4 f, a, b;
f.xyzw = a.s0123 + b.s0123;

There's more…
Lastly, vector data types can use the .lo (or .even) and .hi (or .odd) suffixes to compose 
new vector types, or to combine smaller vector types to a larger vector type. Multiple levels of 
.lo (or .even) and .hi (or .odd) suffixes can be used until they refer to a scalar term. The 
.lo and .hi suffix refers to the lower and upper halves of a vector. The .even and .odd 
suffixes of a vector refer to the even and odd elements of a vector. Following are the examples 
of vector creation via composition:

float4 vf = (float4) (1.0f, 2.0f, 3.0f, 4.0f);
float2 low = vf.lo; // returns vf.xy
float2 high = vf.hi; // returns vf.zw
float4 vf4 = (float4) (low, high);// returns (1.0f, 2.0f, 3.0f, 4.0f)

Vectors are disallowed from implicit conversions so you cannot perform the following operation:

float4 vf4, wf4;
int4 if4;
wf4 = vf4; // illegal
if4 = wf4; // illegal
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Explicit casts between vector types are also disallowed, and in fact the only form of explicit 
cast to a vector type is when you're initializing a vector with a scalar:

float f = 4.4f;
float4 va = (float4) (f); // va stores ( 4.4f, 4.4f, 4.4f, 4.4f)

If you were to extract components of a 3-component vector type via the suffixes .lo 
(or .even), .hi (or .odd), then the 3-component vector type would behave as if it is a 
4-component vector type with the exception that the w component would be undefined.

Using OpenCL scalar types
The scalar data types are quite similar to what you would expect if you were programming in the 
C language. However, two topics deserve more attention and we'll touch on that in this recipe; 
we'll look at the half data type and examine how OpenCL devices might order their data.

Getting ready
Many of the OpenCL compliant devices are actually little-endian architectures, and developers 
need to ensure that their kernels are tested on both big-endian and little-endian devices to 
ensure source compatibility with current and future devices. Let's use a simple example to 
illustrate endian-ness.

How to do it…
Consider a variable x that holds the value 0x01234567 and the address of x starts at 0x100. 
In computer architecture terminology, the value 0x01 is the most significant byte ( MSB) and 
0x67 is the least significant byte ( LSB). Big-endian storage scheme stores the MSB first till it 
meets the LSB and little-endian storage schemes stores the LSB first till it meets the MSB.

Big-endian

Address 0x100 0x101 0x102 0x103
Values 0x01 0x23 0x45 0x67 …

Little-endian

Address 0x100 0x101 0x102 0x103
Values 0x67 0x45 0x23 0x01 …
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Review the full code listed in Ch3/byte_ordering/show_bytes.c, 
compile the code by running the commands cmake and make in that 
order; that will generate a binary named ShowBytes, and then run that 
program to see its output. This code will print out a series of output, and 
depending on the endian-ness of the architecture, you will notice different 
byte orderings.

Refer to the following code:

#include <stdio.h>
typedef unsigned char* byte_pointer;
void show_bytes(byte_pointer start, int len) {
  int i;
  for(i = 0; i < len; i++)
    printf(" %.2x", start[i]);
  printf("\n");
}
void show_int(int x) {
  show_bytes((byte_pointer) &x, sizeof(int));
}
void show_float(float x) {
  show_bytes((byte_pointer) &x, sizeof(float));
}
void show_pointer(void* x) {
  show_bytes((byte_pointer) &x, sizeof(void*));
}
void test_show_bytes(int val ) {
  int ival = val;
  float fval = (float) ival;
  int* pval = &ival;
  show_int(ival);
  show_float(fval);
  show_pointer(pval);
}

Since you've understood how byte ordering affects the way data (scalar) is being read and 
written; let's take a look at how the ordering affects vector data types in OpenCL. With vector 
data types, both, the order of the bytes within each value and the order of the values with 
respect to one another are reversed. Using an example of a uint4 vector which contains 
the values 0x000102030405060708090A0B0C0D0E0F, at address 0x100, following table 
shows how a little-endian storage scheme would look:

0x100 0x104 0x108 0x1b0
0x0F0E0D0C 0x0B0A0908 0x07060504 0x3020100
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Awareness of this fact is important if you are working with data compression and  
computer-imaging algorithms since these two classes of algorithms have a significant  
amount of byte-level operations and you don't want to be bitten by these issues.

How it works…
The half-precision data type, conveniently called half actually has half the storage and 
precision of a regular float type. The half type is IEEE754-2008 compliant and was first 
introduced by NVIDIA, and Industrial Light and Magic. The only thing you can do with this type 
is to declare a pointer to a buffer that contains half values; those values must be finite and 
normal numbers, de-normalized numbers, infinities, and NaN.

You can choose to use the vector load and store functions such as vload_half, vload_
halfn, vstore_half, and so on. However, bear in mind that the load/store operation will 
create an intermediate floating -point value.

The load function read the half values from memory and converts 
it to a regular float value. The store functions take a float as an 
input, convert it to a half value and store that value into memory.

To determine if your device supports this, you can run the program in Ch2/device_
extension/device_extensions, and the output should contain cl_khr_fp16; 
alternatively you can query the device by passing the parameter CL_DEVICE_EXTENSIONS 
to clGetDeviceInfo. Following is the code snippet from Ch2/device_extensions/
device_extensions.c:

/* --- file: device_extensions.c --- */
displayDeviceDetails( devices[i], CL_DEVICE_EXTENSIONS, "CL_DEVICE_
EXTENSIONS");
void displayDeviceDetails(cl_device_id id,
                          cl_device_info param_name,
                          const char* paramNameAsStr) {
  cl_int error = 0;
  size_t paramSize = 0;
  error = clGetDeviceInfo( id, param_name, 0, NULL, &paramSize );
  if (error != CL_SUCCESS ) {
    perror("Unable to obtain device info for param\n");
    return;
  }
  /* the cl_device_info are preprocessor directives defined in cl.h */
  switch (param_name) {
// code omitted
    case CL_DEVICE_EXTENSIONS : {
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// beware of buffer overflow; alternatively use the OpenCL C++ //
bindings
      char* extension_info[4096];
      error = clGetDeviceInfo( id, CL_DEVICE_EXTENSIONS, 
sizeof(extension_info), extension_info, NULL);
      printf("\tSupported extensions: %s\n", extension_info);
    }break;
  } //end of switch

Understanding OpenCL vector types
When you start working through your OpenCL project you are inevitably going to use both the 
scalar and vector data types to model the algorithm. Scalars work like any variable declaration/
definition you may have come across in most of the programming languages, and you should 
think of vectors as a wide container that can deliver all items in that container in parallel, and 
the one thing that differentiates scalars and vectors is the fact that when an operation is applied 
to a scalar, it affects just a single value while the same operation applied to a vector affects all 
items in it in parallel.

In the modern processors, there exist a specialized hardware unit that processes more data 
per cycle and they are often termed as Single Instruction Multiple Data (SIMD) or known as 
Streaming SIMD Extensions (SSE) which is intel's implementation of SIMD. The advantage 
that SIMD instructions provide is that they allow multiple values to be operated upon in a 
large register in a cycle; quite often there are many such units, thus increasing performance 
of the program. We should be clear that SIMD describes a mechanism that allows parallelism 
to occur gleaned from Flynn's taxonomy, while SSE describes how two CPU processor 
manufacturers namely, Intel and AMD implemented SIMD.

The first part of the story is to tell you how OpenCL kernels run on the CPUs before we 
reveal how it would work on the GPU, and for now we place our attention on the Intel CPU 
architecture. On these architectures, OpenCL sees a single device with multiple compute  
units and if you are guessing each core is a compute unit then you're correct and hence,  
your kernels run on all compute units unless you are using the device fission extension,  
which is new in OpenCL 1.2.

Device fission (cl_khr_device_fission) which is new in OpenCL 
1.2 is currently supported by multicore CPUs by Intel, AMD, and IBM Cell 
Broadband. GPUs are currently not supported.

The next part of the story is to describe, how OpenCL kernels would run on GPUs 
manufactured by AMD, and we focus on the AMD GPU we used for this book which is based 
on AMD's Southern Island Architecture which includes their Radeon HD 7900, 7800, and 
7700 GPUs; on a side note, you might wish to consult NVIDIA's website for more product 
details pertaining to their GPUs at www.nvidia.com.
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Kernels basically execute instructions that are either scalar-based or vector-based, and  
work is assigned to a compute unit in blocks of 64 work items, which is termed as wavefront. 
A wavefront has a single program counter, and is considered as a small unit of work and what 
that means is that they execute in lock-step.

When your application passes workloads to the GPU, it must first compile the kernel and load 
it into memory. It must also bind buffers for the source and result data, and finally it would 
decide how to execute the given workload on the GPU. When the workload is to be executed, 
the GPU divides the input domain into blocks of 64 threads aka wavefronts and dispatches 
them to the compute unit (CU). The kernel is next fetched into the instruction cache and the 
compute unit begins dispatching instructions to the execution units; each compute unit can 
work on multiple wavefronts in parallel, simultaneously processing vector and scalar ALU 
computations, as well as memory accesses. The wavefront continues executing until the end 
of the kernel is reached, when the wavefront is terminated and a new one can take its place 
on the GPU.

Taking into account the fact that memory accesses by wavefronts happens in parallel, you 
will expect some sort of latency to occur and the processor is pretty clever in dealing with 
that situation, and what it does is executing many wavefronts in parallel and it works such 
that if one wavefront is waiting for results from the memory, other wavefronts can issue 
memory requests, and they can execute ALU operations in parallel with outstanding memory 
requests if and only if they are independent calculations. Factors that increase the amount 
of parallelism that can be extracted from the program varies, but one of them would be 
the actual number of hardware units available for parallel computation and in OpenCL 
terminology, it is known as the CU and in both CPUs and GPUs they are basically  
the processor.

A compute unit is the basis of parallel computation, and in the Southern Island Architecture 
which hosts other products, the number of compute units varies and each compute unit 
basically contains the following:

 f Scalar ALU and scalar GPRs (General-Purpose Registers) aka SGPRs

 f Four SIMDs, each consisting of a vector ALU and vector GPRs, aka VGPRs

 f Local memory

 f Read/write access to vector memory through a Level-1 cache

 f Instruction cache, which is shared by four CUs, that is, compute units

 f Constant cache, which is shared by four CUs, that is, compute units
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Now we will focus on the vector operations on GPUs, which include ALU and memory 
operations. Each of the four SIMDs contains a vector-ALU that operates on wavefronts over 
four cycles; each SIMD also can host ten wavefronts in flight, that is, one CU can have forty 
wavefronts executing in parallel. In the AMD GPU based on the Southern Island Architecture 
used for this book which is the AMD HD 7870, we have 20 compute units and we know now 
that each CU holds four SIMDs and each SIMD would execute a wavefront means that we can 
have 20 x 4 x 10 x 64 = 51,200 work items at any one time, and if you were to imagine  
that each work item is at the stage of executing vector operations then the parallelism  
offered by GPUs is considerably larger than that of the CPU; the specific CPU we are referring 
to is the Intel Xeon Phi which has 60 cores and each core hosts 4 work items which provides 
60 x 4 = 240 work items; be aware that we're not stating that GPUs are superior to CPUs since 
each device has its niche but we illustrate these numbers to demonstrate a simple fact that 
GPU has a higher throughput than the CPU.

Having said all that, we are going to see an example soon but first recall that vector operations 
are component-wise and that vectors can be accessed via numeric indexes, and each index 
can be combined into larger group of indices to perform a store/load to/from memory. Refer 
to the following code:

float4 v, u;
float f;
v = u + f;
// equivalent to 
// v.x = u.x + f
// v.y = u.y + f
// v.z = u.z + f
// v.w = u.w + f
float4 a, b, c;
c = a + b
// equivalent to 
// c.x = a.x + b.x
// c.y = a.y + b.y
// c.z = a.z + b.z
// c.w = a.w + b.w

The component-wise manner in which vectors can be aggregated to perform an operation 
without code verbosity actually helps the programmer in their daily work and increases 
productivity. Next, we can a dive into how vector types are translated to utilize your hardware.

Getting ready
The demonstration we are going to describe has two parts in it. First, we are going to use the 
Intel OpenCL compiler on Windows to demonstrate the implicit vectorization of the kernel 
code; secondly, we are going to demonstrate how to enable native vector type notation in your 
code to express the desire to generate vectorized code using the AMD APP SDK v2.7 or v2.8 
on Linux.
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We combined these two approaches with the intention to solve the problem of transferring a 
large input array from one part of the device memory to another part of the device memory, 
and finally we extract and compare them for equality. As before, we would prepare the data 
structures for transfers on the host code and write a suitable OpenCL kernel to actually 
transfer the memory contents across. The source can be found in Ch3/vectorization,  
and we build the program using the AMD APP SDK.

Readers who are interested in the OpenCL code generation for AMD CPU 
and GPU platforms should consult the AMD CodeXL product as the 
AMD APP Kernel Analyzer has been retired. You may wish to consult the 
AMD Intermediate Language Manual in conjunction when you study the 
intermediate language output.

Implicit vectorization is a required feature that is supported by all the compliant OpenCL 
compiler implementations, and the reason we chose to demonstrate this feature with the 
Intel OpenCL compiler is the fact that the generated SIMD instructions are more likely to 
be recognized by the reader than would the intermediate code generated by other compiler 
implementations such as AMD or NVIDIA's. The kernel code we have for you can be found in 
Ch3/vectorization/vectorization.cl, and we reveal it as in the following code:

__kernel void copyNPaste(__global float* in, __global float8* out) {
  size_t id = get_global_id(0);
  size_t index = id*sizeof(float8);
  float8 t = vload8(index, in);
  out[index].s0 = t.s0;
  out[index].s1 = t.s1;
  out[index].s2 = t.s2;
  out[index].s3 = t.s3;
  out[index].s4 = t.s4;
  out[index].s5 = t.s5;
  out[index].s6 = t.s6;
  out[index].s7 = t.s7;
}

This kernel's main action is to transfer the contents from one place to another, and it does this 
by transporting it in parallel using two vectors of eight floats each and you will notice that we 
use the vector component notation to state these memory transfers explicitly.

In the next demonstration, we swing from the kernel code back to the host code assuming 
that the developer has a desire to control the code generation in a more explicit manner;  
and this can be done through the native vector type notation. 
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We ask the reader to refer to the section There's more… for details, but the demonstration 
here rests on the assumption that the developer would like to hand tune the procedure that 
handles data validation once the memory transfers have been completed in the device, and 
this function can be found in Ch3/vectorization/vectorization.c named valuesOK 
and the following code is how it is implemented:

#ifdef __CL_FLOAT4__
int valuesOK(cl_float8* to, cl_float8* from, size_t length) {
#ifdef DEBUG
  printf("Checking data of size: %lu\n", length);
#endif
  for(int i = 0; i < length; ++i) {
#ifdef __SSE__
    __cl_float4 __toFirstValue = to->v4[0];
    __cl_float4 __toSecondValue = to->v4[1];
    __cl_float4 __fromFirstValue = from->v4[0];
    __cl_float4 __fromSecondValue = from->v4[1];
    __m128i vcmp = (__m128i) _mm_cmpneq_ps(__toFirstValue, __
fromFirstValue);
    uint16_t test = _mm_movemask_epi8(vcmp);
    __m128i vcmp_2 = (__m128i) _mm_cmpneq_ps(__toSecondValue, __
fromSecondValue);
    uint16_t test_2 = _mm_movemask_epi8(vcmp_2);
    if( (test|test_2) != 0 ) return 0; // indicative that the result 
failed
#else
    #error "SSE not supported, which is required for example code to 
work!"
#endif
  }
return 1;
}
#endif

How to do it…
Implicit vectorization through the Intel OpenCL compiler is relatively easy and the purpose of 
this simple example, we have chosen to install it on the Windows operating system. You can 
download the compiler from http://software.intel.com/en-us/vcsource/tools/
opencl.



Chapter 3

93

To witness how the implicit vectorization can be achieved through this compiler, you would 
copy and paste the kernel code (the previous code) into the editor pane of the GUI and start 
the compilation. Once compiled, you would be able to view the generated code by clicking on 
the ASM or LLVM buttons on the GUI. An example of this is shown in the following screenshot:

The next item is to hand-tune our data validation code, valuesOK, to exhibit vectorization. 
This example is only meant to illustrate how one would go about accomplishing something 
similar to this and you don't have to do anything besides invoking make in the directory  
Ch3/vectorization, and an executable vectorization will be dropped into the filesystem  
to which we'll next dissect it.

If you are running OpenCL 1.1 on Mac OSX 10.7, then passing the flag 
–cl-auto-vectorizer-enable to clBuildProgram as a build 
option will vectorize the kernels that will execute on the CPU. The SIMD 
instructions will be similar to the ones you see in this recipe.
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Hand-tuning your code in such a manner basically turns implicit vectorization off, and you will 
need to judge for your scenario whether the effort justifies with respects to the complexity 
of the issue. To view the generated SIMD code, it would be best to put the program under 
a debugger, and on Linux the best debugger will be the GNU GDB. You basically load the 
program into the debugger and issue the command disassemble /m valuesOK to verify 
that the SIMD instructions were indeed generated. Following is a sample gdb session where 
the disassembly is interleaved with the source code:

$ gdb ./Vectorization 
GNU gdb (GDB) 7.5-ubuntu
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later sa<http://gnu.org/licenses/
gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show 
copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/tayboonl/PACKT_OpenCL_Book/src/Ch3/
vectorization/Vectorization...done.
(gdb) disassemble /m valuesOK 
Dump of assembler code for function valuesOK:
warning: Source file is more recent than executable.
31 int valuesOK(cl_float8* to, cl_float8* from, size_t length) {
  0x000000000040117c <+0>: push  %rbp
  0x000000000040117d <+1>: mov  %rsp,%rbp
  0x0000000000401180 <+4>: sub  $0xf0,%rsp
  0x0000000000401187 <+11>: mov  %rdi,-0xd8(%rbp)
  0x000000000040118e <+18>: mov  %rsi,-0xe0(%rbp)
  0x0000000000401195 <+25>: mov  %rdx,-0xe8(%rbp)
32 #ifdef DEBUGf
33 printf("Checking data of size: %lu\n", length);
  0x000000000040119c <+32>: mov  -0xe8(%rbp),%rax
  0x00000000004011a3 <+39>: mov  %rax,%rsi
  0x00000000004011a6 <+42>: mov  $0x4020a8,%edi
  0x00000000004011ab <+47>: mov  $0x0,%eax
  0x00000000004011b0 <+52>: callq  0x400f20 <printf@plt>
34 #endif
35 for(int i = 0; i < length; ++i) {
  0x00000000004011b5 <+57>: movl  $0x0,-0xc4(%rbp)
  0x00000000004011bf <+67>: jmpq  0x4012a9 <valuesOK+301>
  0x00000000004012a2 <+294>: addl  $0x1,-0xc4(%rbp)
  0x00000000004012a9 <+301>: mov  -0xc4(%rbp),%eax
  0x00000000004012af <+307>: cltq  
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  0x00000000004012b1 <+309>: cmp  -0xe8(%rbp),%rax
  0x00000000004012b8 <+316>: jb  0x4011c4 <valuesOK+72>
36 #ifdef __SSE__
37    __cl_float4 __toFirstValue = to->v4[0];
  0x00000000004011c4 <+72>: mov  -0xd8(%rbp),%rax
  0x00000000004011cb <+79>: movaps (%rax),%xmm0
  0x00000000004011ce <+82>: movaps %xmm0,-0xc0(%rbp)
38    __cl_float4 __toSecondValue = to->v4[1];
  0x00000000004011d5 <+89>: mov  -0xd8(%rbp),%rax
  0x00000000004011dc <+96>: movaps 0x10(%rax),%xmm0
  0x00000000004011e0 <+100>: movaps %xmm0,-0xb0(%rbp)

39    __cl_float4 __fromFirstValue = from->v4[0];
  0x00000000004011e7 <+107>: mov  -0xe0(%rbp),%rax
  0x00000000004011ee <+114>: movaps (%rax),%xmm0
  x00000000004011f1 <+117>: movaps %xmm0,-0xa0(%rbp)
40    __cl_float4 __fromSecondValue = from->v4[1];
  0x00000000004011f8 <+124>: mov  -0xe0(%rbp),%rax
  0x00000000004011ff <+131>: movaps 0x10(%rax),%xmm0
  0x0000000000401203 <+135>: movaps %xmm0,-0x90(%rbp)
  0x000000000040120a <+142>: movaps -0xc0(%rbp),%xmm0
  0x0000000000401211 <+149>: movaps %xmm0,-0x60(%rbp)
---Type <return> to continue, or q <return> to quit---
  0x0000000000401215 <+153>: movaps -0xa0(%rbp),%xmm0
  0x000000000040121c <+160>: movaps %xmm0,-0x50(%rbp)
41    __m128i vcmp = (__m128i) _mm_cmpneq_ps(__toFirstValue, __
fromFirstValue);
  0x0000000000401229 <+173>: movdqa %xmm0,-0x80(%rbp)
  0x000000000040122e <+178>: movdqa -0x80(%rbp),%xmm0
  0x0000000000401233 <+183>: movdqa %xmm0,-0x40(%rbp)
42    uint16_t test = _mm_movemask_epi8(vcmp);
  0x0000000000401241 <+197>: mov  %ax,-0xc8(%rbp)
  0x0000000000401248 <+204>: movaps -0xb0(%rbp),%xmm0
  0x000000000040124f <+211>: movaps %xmm0,-0x30(%rbp)
  0x0000000000401253 <+215>: movaps -0x90(%rbp),%xmm0
  0x000000000040125a <+222>: movaps %xmm0,-0x20(%rbp)
43    __m128i vcmp_2 = (__m128i) _mm_cmpneq_ps(__toSecondValue, __
fromSecondValue);
  0x0000000000401267 <+235>: movdqa %xmm0,-0x70(%rbp)
  0x000000000040126c <+240>: movdqa -0x70(%rbp),%xmm0
  0x0000000000401271 <+245>: movdqa %xmm0,-0x10(%rbp)
44    uint16_t test_2 = _mm_movemask_epi8(vcmp_2);
  0x000000000040127f <+259>: mov  %ax,-0xc6(%rbp)
45    if( (test|test_2) != 0 ) return 0; // indicative that the result 
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failed
  0x0000000000401286 <+266>: movzwl -0xc6(%rbp),%eax
  0x000000000040128d <+273>: movzwl -0xc8(%rbp),%edx
  0x0000000000401294 <+280>: or  %edx,%eax
  0x0000000000401296 <+282>: test  %ax,%ax
  0x0000000000401299 <+285>: je  0x4012a2 <valuesOK+294>
  0x000000000040129b <+287>: mov  $0x0,%eax
  0x00000000004012a0 <+292>: jmp  0x4012c3 <valuesOK+327>
46 #else
47    #error "SSE not supported, which is required for example code to 
work!"  
48 #endif
49  }
50 return 1;
  0x00000000004012be <+322>: mov  $0x1,%eax
51  }
  0x00000000004012c3 <+327>: leaveq
  0x00000000004012c4 <+328>: retq
End of assembler dump
(gdb)

How it works…
Implicit vectorization is a piece of complicated software written into the compiler provided 
by the implementation, and is definitely hardware dependent and often represented by an 
intermediate language (IL) that's proprietary to the processor manufacturer and to our 
disappointment, not very well documented so we like to focus on how native vector type 
notation works in more detail.

The interested reader is however invited to explore the ILs developed by 
AMD and NVIDIA, which are known as AMD IL, and NVIDIA's PTX respectively.

This method of hand-tuning allows the developer to reference the built-in vector data type of 
the platform they're working on instead of relying on the OpenCL compiler to auto-vectorize 
the code, and may bring about performance benefits. The manner in which it is being done 
in OpenCL so far is to abstract these differences into platform dependent macros in the file 
cl_platform.h. Let's work out how this would work in our example.

The example, we saw previously, was tested on the Ubuntu Linux 12.04 operating system 
with an Intel Core i7 CPU and an AMD Radeon HD 7870 GPU, but since our example focuses 
on explicit vectorization on the host code, it implies that we need to know the width of SIMD 
vectors based on the Intel instruction set. We know this to be 128-bits and what this means  
is as follows: 
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float4 a,b;
float4 c = a + b;

The preceding code gets translated to the following C code snippet:

__m128 a, b;
__m128 c = __mm_add_ps(a, b);

The function __mm_add_ps is the SIMD function for adding two vectors by adding their single 
precision floating-point values component-wise in this manner and at first hand, it will look 
like syntax sugar but this is one of the many ways in which OpenCL provides cross platform 
compatibility and removes the pain of delivering customized vectorized code for various 
processor architectures so in this way a façade is actually a good thing.

Coming back to the problem we are trying to solve, which is to vectorize the procedure for 
performing data validation for the input and output arrays. In our example, we chose arrays 
or rather vectors that can contain 8 floats and what we will like to do is to examine them and 
compare them for equality. Using the native vector type notation in OpenCL, we know that 
the vector-of-8 can be decomposed into vector-of-4 elements because, OpenCL stipulates 
that if a platform can support a native vector type then the macro is identified in the cl_
platform.h file by the name __CL_<TYPEN>, where <TYPEN> can be UCHAR16, CHAR16, 
INT4, FLOAT4, that is, the vectorized primitive types and in general, you can access the 
native components using the .v<N> subvector notation where <N> is the number of elements 
in the subvector.

Using this newly found information, we can dissect the program we saw previously with the 
fact that the memory content of the original host memory is represented by the cl_float8 
* to while the copied memory contents from host to device are held by the cl_float8* from:

int valuesOK(cl_float8* to, cl_float8* from, size_t length) {
// code omitted
for(int i = 0; i < length; ++i) {

We need to iterate through the vectors in both input and output arrays and proceed to extract 
the first and second vector-of-4s from the host pointer as follows:

    __cl_float4 __hostFirstValue = to->v4[0];
    __cl_float4 __hostSecondValue = to->v4[1];

Then we extract the first and second vector-of-4s from the device pointer as follows:

    __cl_float4 __deviceFirstValue = from->v4[0];
    __cl_float4 __deviceSecondValue = from->v4[1];
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Now, we compare each of the halves by using the SSE API __mm_cmp_neq_ps, and keep  
the result of each test into the variables test and test2 as shown in the following code:

    __m128i vcmp = (__m128i) _mm_cmpneq_ps(__hostFirstValue, __
deviceFirstValue);
    uint16_t test = _mm_movemask_epi8(vcmp);
    __m128i vcmp_2 = (__m128i) _mm_cmpneq_ps(__hostSecondValue, __
deviceSecondValue);
    uint16_t test_2 = _mm_movemask_epi8(vcmp_2);

Finally, we compare those results as follows:

    if( (test|test_2) != 0 ) return 0; // indicative that the result 
failed
#else

There's more…
Another part of the vectorization story that we wanted to tell you is that you, the developer, 
has the option of controlling the auto-vectorization by providing an explicit compiler hint to  
the kernel code. This can be useful if you want to hand-tune the vectorization of your code.

The compiler hint we are referring to is the vec_type_hint(<type>) where <type> is any 
of the built-in scalar or vector data types we mentioned previously. The attribute vec_type_
hint(<type>) represents the computation width of the kernel and if it's not specified, the 
kernel is assumed to have the vec_type_hint(int) qualifier applied to the kernel, that is, 
4-bytes wide. The following code snippets illustrate how the computation width of the kernel 
changes from 16-bytes to 8-bytes and finally to 4-bytes which happens to be the default:

// autovectoize assuming float4 as computation width
__kernel __attribute__((vec_type_hint(float4)))
void computeThis(__global float4*p ) {…}
// autovectorize assuming double as computation width
__kernel __attribute__((vec_type_hint(double)))
void computeThis(__global float4*p ) {…}
// autovectorize assuming int (default) as computation width
__kernel __attribute__((vec_type_hint(int)))
void computeThis(__global float4*p ) {…}

For you, the developer, to be able to use this, you will need to know the width of the vector 
units in your platform which could be running on a CPU or GPU. In the next diagram, we 
have two scenarios where we assume that both the __kernel functions are declared 
with __attribute_((vec_type_hint(float4))) and __attribute_((vec_type_
hint(char4))) respectively. Furthermore, we assumed that the kernel is running on  
256-bit wide registers and how the auto-vectorizer might choose to run one or more  
work items so that the register's usage is maximized; this is of course dependent on  
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the compiler's implementation. The following figure is a conceptual view of how the OpenCL 
compiler might generate work items to consume the data in the wide registers:

256-bit register

_kernel
_attribute_((vec_type_hint( )))
void computeThis(_global float4*p) {...}

float4

_kernel
_attribute_((vec_type_hint( )))
void computeThis(_global char4*p) {...}

char4

work-item-0work-item-1 work-item-2work-item-3work-item-4 work-item-5 work-item-6 work-item-7

work-item-X work-item-(X+1)

256-bit register

In the native vector type notation method for explicit vectorization, we mentioned that native 
vector types are identified in cl_platform.h by the __CL_<TYPEN>__ preprocessor 
symbols aka C macros but, we haven't told you how we came to use the SSE instructions in 
the code example. Let's now find out why, and we need to reference the cl_platform.h 
defined by the OpenCL 1.2 standard (which you can download from http://www.khronos.
org/registry/cl/api/1.2/cl_platform.h) 

The code example was tested on the Ubuntu Linux 12.04 64-bit operating system with an Intel 
Core i7 CPU and a AMD Radeon HD 7870 GPU, and we should ignore the presence of the GPU 
as it has no relevance other than to inform you the machine setup.

What this setup tells us is that we have a SSE-capable instruction set and as a convention 
adopted by the UNIX and GCC community in general, is to look for the __SSE__ preprocessor 
symbol and we indeed do that as follows:

#if defined(__SSE__)
#if defined(__MINGW64__)
#include <intrin.h>
#else
#include <xmmintrin.h> 
#endif
#if defined(__GNUC__)
typedef float __cl_float4 __attribute__((vector_size(16)));
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#else
typedef __m128 __cl_float4;// statement 1
#endif
#define __CL_FLOAT4__ 1// statement 2
#endif

From the preceding code snippet, we know we should be focusing on the statement 1  
as it has provided us the indicative width of the SIMD vectors, and we also know that by 
convention __m128 indicates that its vector's width is 128-bits; other values includes  
64-bits and 256-bits. We should also be careful to contain the explicit vectorization within 
the preprocessor guard, as a best practice, that is, #ifdef __CL_FLOAT4__.Using this 
understanding, we can proceed to search for the appropriate SSE APIs that allows us to 
manipulate data values of the desired width. The interested reader is invited to check the  
Intel Developer Manuals and AMD Developer Manuals, and explore how these ISAs compare 
and most importantly where they differ.

Vector and scalar address spaces
Now that we have understood how to use scalars and vectors in OpenCL, it's time to examine 
the OpenCL's defined four address spaces: __global, __local, __constant, and __
private in which vectors and scalars can exist in. These spaces are mapped to the memory 
units and hence, limited by the actual resource on the device and define how work items can 
access memory.

Getting ready
Following is a conceptual diagram of the various memory domains:

Compute
Device

Compute Unit 1

Private memory
(Reg Files)

Local Memory 1
Local Memory N

Compute
Device Memory

Global Memory Constant Memory

Compute Unit N

Processing Element
(ALU)

Private memory
(Reg Files)

Processing Element
(ALU)
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The Global Memory and Constant Memory found in the lower-half of the preceding diagram 
corresponds to the __global and __constant domain. The Local Memory associated with 
each compute unit in OpenCL (that executes the kernel code) will have a memory space that's 
shared by all work items in the block which corresponds to the __local memory space while 
each processing element will have its own namespace to store data and, it is represented by 
the __private memory space. Be aware that there is no way in which a work item can access 
the (__private) memory space of another work item regardless of whether they're in the same 
work group or not, the same can be said of shared memory, that is, __local memory where no 
two work groups can inspect the other's memory.

Each compute unit in the device has a certain number of processing elements which executes 
work items and the compute unit as a whole would access the local, constant, or global 
memory space as determined by the computation. Each processing element (work group  
or work item), stores its own private variables in its private memory space.

How to do it…
The __global address space name is used to refer to memory objects allocated from the 
global memory pool. To determine the actual amount of resources available on the device,  
you need to pass the parameter CL_DEVICE_GLOBAL_MEM_SIZE to clGetDeviceInfo. 
The following snippet is drawn from Ch2/device_details/device_details.c:

displayDeviceDetails( devices[i], CL_DEVICE_GLOBAL_MEM_SIZE, "CL_
DEVICE_GLOBAL_MEM_SIZE");
void displayDeviceDetails(cl_device_id id,
                          cl_device_info param_name,
                          const char* paramNameAsStr) {
  cl_int error = 0;
  size_t paramSize = 0;
  error = clGetDeviceInfo( id, param_name, 0, NULL, &paramSize );
  if (error != CL_SUCCESS ) {
    perror("Unable to obtain device info for param\n");
    return;
  }
  /* the cl_device_info are preprocessor directives defined in cl.h */
  switch (param_name) { 
    case CL_DEVICE_GLOBAL_MEM_SIZE:
    case CL_DEVICE_MAX_MEM_ALLOC_SIZE: {
      cl_ulong* size = (cl_ulong*) alloca(sizeof(cl_ulong) * 
paramSize);
      error = clGetDeviceInfo( id, param_name, paramSize, size, NULL 
);
      if (error != CL_SUCCESS ) {
        perror("Unable to obtain device name/vendor info for 
param\n");
        return;
      }
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The __local address space name is used to describe variables that need to be allocated 
in the local memory and shared by all work items of a work group. You can determine the 
maximum size of this space by passing the parameter CL_DEVICE_MAX_LOCAL_MEM_SIZE 
to clGetDeviceInfo.

The __constant address space name is used to describe non-mutable variables that need 
to be allocated as read-only in global memory, and can be read by all work items during 
the kernel's execution. You can determine the maximum size of this space by passing the 
parameter CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE to clGetDeviceInfo. This 
address space is useful if there is a specific value that does not change and is needed by  
the kernel functions.

The __private address space is used to describe objects private-only distinct work items; 
hence work items cannot inspect one another's variables if they were marked by __private. 
By default, variables inside a kernel function not declared with any address space qualifiers 
such as: __global, __local, or __constant are marked __private; this includes all 
variables in the non-kernel functions and function arguments. The following kernel code from 
Ch3/vectorization/vectorization.cl will illustrate the global and private memory 
spaces whereby the variables id, index, and t are in the private memory space and hence 
not visible across other work items, therefore, free from interference, whereas the variables 
in and out exist in the global memory space and are visible by all work items:

__kernel void copyNPaste(__global float* in, __global float8* out) {
    size_t id = get_global_id(0);
    size_t index = id*sizeof(float8);
    float8 t = vload8(index, in);
    out[index].s0 = t.s0;
  //code omitted
  out[index].s7 = t.s7;
}

How it works…
The following diagram illustrates the OpenCL programming model:
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_kernel doCompute(...) {
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Let's use the preceding diagram to understand how your kernel will function in OpenCL. 
Imagine you have a kernel named doCompute that takes several arguments that reference 
the global, constant, local, or private memory spaces. Work and data is divided among the 
kernels across the compute units represented by the W0…4; they would represent either work 
groups (collection of work items) or work items.

Typically, computing in OpenCL often either involves individual work items performing the 
computation independently via the global, private, or constant spaces, or collecting these 
work items to form a work group so that they can load and store data more efficiently via 
utilizing the local memory space since that space allows sharing of data across all work  
items in the work group hence, preventing multiple memory loads from device memory.

Configuring your OpenCL projects to enable 
the double data type

Today's modern processors from Intel, AMD, and ARM have their floating-point units (FPUs) 
IEEE 754 compliant; however, ARM has both hardware and software support for half-precision 
numbers in addition to single-precision and double-precision numbers. Hence this implies that 
your OpenCL programs can actually utilize half-precision on ARM-based processors and this 
raise a question on how can one determine what sort of floating-point support does the  
device have.
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The answer to that question is to query the device via the clGetDeviceInfo API and 
passing in any of the following parameters: CL_DEVICE_SINGLE_FP_CONFIG, CL_DEVICE_
DOUBLE_FP_CONFIG, and CL_DEVICE_HALF_FP_CONFIG which identifies whether the 
device supports single-precision, double-precision, or half-precision number operations.

CL_DEVICE_HALF_FP_CONFIG and CL_DEVICE_DOUBLE_FP_
CONFIG are not supported on Mac OSX 10.6 for OpenCL 1.0.

The result of API invocation returns an object of cl_device_fp_config type.

At the time of this writing, CL_FP_SOFT_FLOAT was not available on Mac 
OSX 10.6, but available on AMD APP SDK v2.7 and Intel OpenCL SDK.

In the case of the double-precision floating-point values, the OpenCL device extension,  
cl_khr_fp64, needs to be present before you can utilize the double data type in the kernel. 
As of OpenCL 1.2, the developer no longer has to query the device's extensions to verify the 
existence of the double-precision floating-point support, and we'll explain what you'll need to 
do in this case in the later part of this recipe.

As of OpenCL 1.1, the working committee does not mandate the support 
of the double data type except through the OpenCL 1.1 device extension 
cl_khr_fp64. If you are using AMD devices, you should know that AMD 
provides an extension that implements a subset of cl_khr_fp64 and is 
known as cl_amd_fp64.

Let's understand this with a simple example.

Getting ready
In the upcoming example, the goal of the example is to illustrate the use of a double data type 
to hold the intermediate result of adding two floats, after which we send this double to be 
stored as a float in a result array. Take note that you cannot use the double type in the kernel 
code if the extension cl_khr_fp64 or cl_amd_fp64 (for AMD devices) is enabled.

The two test machines involved have cl_khr_fp64 supported on the Intel Core i7 processor 
and a NVIDIA GPU but the ATI 6870x2 GPU doesn't support cl_khr_fp64 or cl_amd_fp64.
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How to do it…
Following is the code excerpt from Ch3/double_support/double_support.cl,  
which illustrates the kernel code:

#ifdef fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
__kernel void add3(__global float* a, __global float* b, __global 
float* out) {
  int id = get_global_id(0);
#ifdef fp64
  double d = (double)a[id] + (double)b[id];
  out[id] = d;
#else
  out[id] = a[id] + b[id];
#endif
}

Next, is the code snippet from Ch3/double_support/double_support.c, where it shows 
how to set the kernel arguments to the function add3:

// memobj1 & memobj2 refers to float arrays for consumption
// outObj refers to the output float array
error = clSetKernelArg(kernels[j], 0, sizeof(cl_mem), &memobj1);
error = clSetKernelArg(kernels[j], 1, sizeof(cl_mem), &memobj2);
error = clSetKernelArg(kernels[j], 2, sizeof(cl_mem), &outObj);
if (error != CL_SUCCESS) { 
  perror("Unable to set buffer object in kernel arguments");
  exit(1);
}
/* Enqueue the kernel to the command queue */
size_t local[1] = {1};
size_t global[1] = {64};
error = clEnqueueNDRangeKernel(cQ, kernels[j], 1, NULL, global, local, 
0, NULL, NULL);
if (error != CL_SUCCESS) {
  perror("Unable to enqueue task to command-queue");
  exit(1);}
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To build the program with CMake, navigate to the directory Ch3/double_support, and  
enter make. It should drop a nice binary named DoubleSupport upon which you can  
execute it to observe the results. On both the test machines, the results for a small run,  
that is, 64-floating-point values are good with the runs on CPU and GPU.

Number of OpenCL platforms found: 1

Number of detected OpenCL devices: 2

Kernel name: add3 with arity: 3

About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

Checking data of size: 64

Check passed!

Kernel name: add3 with arity: 3

About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

Checking data of size: 64

Check passed!

The code in this example was constructed in such a manner that even if double wasn't 
supported the program will run. Upon inspecting the code, you will realize that its use case 
was to hold the result of adding two float values (which by intention will not overflow) but 
in other situations, you might want to use doubles, and the conditional-directives, that is, 
#ifdef, #else, and #endif used to check for the presence of double floating-point support 
for the device and it is a standard technique.

How it works...
The type, cl_device_fp_config is actually composed of several values (shown in the 
following table) and you can determine whether a particular feature is supported or not by 
performing a bitwise-AND operation and for example, if we wish to determine which rounding 
modes are supported in double-precision operations then, we will have the following code:

cl_device_fp_config config;
clGetDeviceInfo( deviceId, CL_DEVICE_DOUBLE_FP_CONFIG, sizeof(config), 
&config, NULL);
if (config & CL_FP_ROUND_TO_NEAREST) printf("Round to nearest is 
supported on the device!");



Chapter 3

107

Parameter float double half
CL_FP_DENORM Optional Supported Optional
CL_FP_INF_NAN Supported Supported Supported
CL_FP_ROUND_TO_NEAREST Supported Supported Optional
CL_FP_ROUND_TO_ZERO Optional Supported Supported
CL_FP_ROUND_TO_INF Optional Supported Supported
CL_FP_FMA Optional Supported Optional
CL_FP_SOFT_FLOAT Optional Optional Optional

For those who are inclined to use OpenCL 1.2, the specification has made double-precision 
an optional feature instead of an extension, and this means that instead of checking for the 
existence of the extensions cl_khr_fp64 or cl_amd_fp64 in the device, you will simply 
check that the returned value of the call to clGetDeviceInfo when passed the parameter 
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE and CL_DEVICE_NATIVE_VECTOR_
WIDTH must be equal to 1 if the device were to support double-precision. The following code 
snippet illustrates how to check for the preferred native vector width size for built-in scalar 
types that can be put into vectors:

cl_uint vectorWidth;
size_t returned_size;
clGetDeviceInfo( deviceId, CL_DEVICE_PREFERRED_VECTOR_WIDTH_
DOUBLE,sizeof(cl_uint), &vectorWidth, &returned_size);
if(vectorWidth > 0) printf("Vectors of size %d for 'double' are:", 
vectorWidth);





Using OpenCL 
Functions

In this chapter, we'll cover the following recipes:

 f Storing vectors to an array

 f Loading vectors from an array

 f Using geometric functions

 f Using integer functions

 f Using floating-point functions

 f Using trigonometric functions

 f Arithmetic and rounding in OpenCL

 f Using the shuffle function in OpenCL

 f Using the select function in OpenCL

Introduction
In this chapter, we are going to explore how to utilize the common functions provided  
by OpenCL in your code. The functions we are examining would be mostly mathematical 
operations applied to the elements, and in particular applied to a vector of elements.  
Recall that the vectors are OpenCL's primary way to allow multiple elements to be processed 
on your hardware. As the OpenCL vendor can often produce vectorized hardware instructions 
to efficiently load and store such elements, try to use them as much as possible.

4
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In detail, we are going to take a dive into how the following works:

 f Data load and store functions for vectors

 f Geometric functions

 f Integer functions

 f Floating-point functions

 f Trigonometric functions

Finally, we will present two sections on how the OpenCL's shuffle and select functions 
would work if you choose to use them in your applications.

Storing vectors to an array
In the previous chapters, you caught glimpses of how we use vectors in various ways from a 
tool to transport data in an efficient manner to the device and from the device. We have also 
learned that OpenCL provides a substantial amount of functions that actually work on vectors. 
In this section, we will explore how we can store vectors to an array (when we use arrays in 
this context with a vector, we mean an array that contains scalar values).

The vstore<N> functions, where <N> is 2, 3, 4, 8, and 16, are the primary functions you  
will use to actually signal the OpenCL that you wish to store the elements in your vector that 
has to be transported in a parallel fashion to a destination; this is often a scalar array or 
another vector.

We should be clear that gentypeN is not a C-like type alias for a data type, but rather a 
logical placeholder for the types such as char, uchar, short, ushort, int, uint, long, 
ulong, float, and double. The N stands for whether it is a data structure that aggregates 
2, 3, 4, 8, or 16 elements. Remember that if you wish to store vectors of the type double, 
then you need to ensure that the directive #pragma OPENCL EXTENSION cl_khr_fp64 : 
enable is in your code before any double precision data type is declared in the kernel code.

Hence, the vstoreN API will write sizeof(gentypeN) bytes given by the 
data to the address (p + (offset *N)). The address computed as (p 
+ (offset * N)) must be 8-bit aligned if gentype is char or uchar; 
16-bit aligned if gentype is short or ushort; 32-bit aligned if gentype is 
int or uint; 64-bit aligned if gentype is long, ulong or double.

You should notice that the memory writes can span from the global memory space (__global) 
to local (__local), or even to a work item private memory space (__private) but never to 
a constant memory space (__constant is read-only). Depending on your algorithm, you may 
need to coordinate the writes to another memory space with memory barriers otherwise known 
as fences.
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The reason why you will need memory barriers or fences is that the 
memory reads and writes, in general, can be out of order, and the main 
reason for this is that the compiler optimization of the source code  
re-orders the instructions so that it can take advantage of the hardware.

To expand on that idea a little, you might be aware that C++ has a keyword, volatile, which 
is used to mark a variable so that the compiler optimizations generally do not apply optimized 
load-stores to any use of that variable; and basically any use of such variable typically involves 
a load-use-store cycle at every use-site also known as sequence points.

Loop unrolling is an optimization technique where the compiler attempts to remove branching 
in the code and hence, emitting any branch predication instructions so that the code executes 
efficiently. In the loops that you are accustomed to, you often find an expression as follows:

for(int i = 0; i  < n; ++i ) { ... }

What happens here is that when this code is compiled, you will notice that the ISA will issue 
an instruction to compare the value of i against that of n, and based on the result of that 
comparison, perform certain actions. Branching occurs when the executing thread takes a 
path if the condition is true or another path if the condition is false. Typically, a CPU executes 
both paths concurrently until it knows with a 100 percent certainty that it should take one of 
these paths, and the CPU can either dump the other unused path or it needs to backtrack 
its execution. In either case, you will lose several CPU cycles when this happens. Therefore, 
the developer can help the compiler and in our case, give a hint to the compiler what the 
value of n should be so that the compiler doesn't have to generate code to check for i < n. 
Unfortunately, OpenCL 1.2 doesn't support loop unrolling as an extension, but rather the AMD 
APP SDK and CUDA toolkits provide the following C directives:

#pragma unroll <unroll-factor>
#pragma unroll 10
for(int i = 0; i < n; ++i) { ... }
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Without these functions, the OpenCL kernel would potentially issue a memory load-store for 
each processed element as illustrated by the following diagram:

OpenCL Kernel
OpenCL Global
Memory Space

Multiple
Memory Stores

Let's build a simple example of how we can use these vstoreN functions in a simple example.

Getting ready
This recipe will show you a code snippet from Ch4/simple_vector_store/simple_
vector_store.cl where a vector of 16 elements is loaded in and subsequently copied by 
using vstore16(...). This API isn't exactly sugar syntax for a loop unrolling of 16 elements, 
and the reason is the compiler generates instructions that loads a vector of 16 elements from 
memory; also loop unrolling doesn't exist in OpenCL 1.1 as we know it but, it doesn't hurt to 
think in terms of that if it helps in understanding the concept behind the vstoreN APIs.

How to do it…
The following is the kernel code where we will demonstrate the data transfers:

//
// This kernel loads 64-elements using a single thread/work-item
// into its __private memory space and writes it back out
__kernel void wideDataTransfer(__global float* in, 
  __global float* out) {
    size_t id = get_global_id(0);
    size_t offsetA = id ;
    size_t offsetB = (id+1);
    size_t offsetC = (id+2);
    size_t offsetD = (id+3);

    // each work-item loads 64-elements
    float16 A = vload16(offsetA, in);
    float16 B = vload16(offsetB, in);
    float16 C = vload16(offsetC, in);
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    float16 D = vload16(offsetD, in);

    vstore16(A, offsetA, out);
    vstore16(B, offsetB, out);
    vstore16(C, offsetC, out);
    vstore16(D, offsetD, out);
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  VectorStore vector_store.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_vector_store/. 
When that happens, you will have a binary executable named VectorStore.

To run the program on OS X, simply execute the program VectorStore and you should  
either see the output: Check passed! or Check failed! as follows:

Check passed!

How it works…
This code can be understood from the perspective that a large vector exists in the global 
memory space, and our attempt is to load the vector into a variable in the private memory, 
that is, each work item has a unique variable named t; do nothing to it and store it back out 
to another in-memory array that is present in the global memory space.

In case you are curious about how this works, the memory writes are actually 
coalesced so that the writes are issued in bursts of bytes. The size of this 
burst is dependent on the hardware's internal architecture. As a concrete 
example in AMD's ATI GPUs, these memory writes are issued once every 16 
writes are known to occur and it is related to the implementation of work 
items in the GPU. You see that it's very inefficient for the GPU to issue a read 
or write for every work item. When you combine this with the fact that there 
could be potentially hundreds of thousands of computing threads active in 
a clustered GPU solution, you can imagine the complexity is unfathomable 
if the manufacturers were to implement a logic that allows the developer to 
manage the programs on a work item/per-thread granularity. Hence graphic 
card manufacturers have decided that it is more efficient to implement 
the graphical cards to execute a group of threads in lock-step. ATI calls this 
group of executing threads a wave-front and NVIDIA calls it a warp. This 
understanding is critical when you start to develop nontrivial algorithms on 
your OpenCL device.
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When you build the sample application and run it, it doesn't do anything in particularly special 
from what we have seen but it is useful to see how the underlying code is generated, and in 
this example the Intel OpenCL SDK is illustrative.

The assembly code snippet in particular is that of the resultant translation to SSE2/3/4  
or Intel AVX (Advanced Vector Extensions) code.

Loading vectors from an array
The vloadN functions are typically used to load multiple elements from an in-memory array to a 
destination in-memory data structure and are often a vector. Similar to the vstoreN functions, 
the vloadN functions also load elements from the global (__global), local (__local), work 
item private (__private), and finally constant memory spaces (__constant).

We should be clear that gentypeN is not a C-like type alias for a data type but rather a logical 
placeholder for the types: char, uchar, short, ushort, int, uint, long, ulong, float, 
or double and the N stands for whether it's a data structure that aggregates 2, 3, 4, 8, or 16 
elements. Without this function, the kernel needs to issue potentially multiple memory loads 
as illustrated by the following diagram:
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Multiple
Memory Loads

OpenCL Global
Memory Space

OpenCL Kernel

Getting ready
The following is an excerpt from Ch4/simple_vector_load/simple_vector_load.
cl. We focus our attention to understand how to load vectors of elements from the device 
memory space for computation within the device, that is, CPU/GPU. But this time round, we 
use an optimization technique called prefetching (its warming up the cache when your code 
is going to make use of the data soon and you want it to be near also known as spatial and 
temporal locality), and is typically used to assign to local memory space so that all work items 
can read the data off the cache without flooding requests onto the bus.

How to do it…
The following is the kernel code from which we shall draw our inspiration:

__kernel void wideDataTransfer(__global float* in,  
  __global float* out) {
  size_t id = get_group_id(0) * get_local_size(0) + 
    get_local_id(0);
  size_t STRIDE = 16;
  size_t offsetA = id;
  prefetch(in + (id*64), 64);
  barrier(CLK_LOCAL_MEM_FENCE);

  float16 A = vload16(offsetA, in);
  float a[16]; 
  a[0] = A.s0;
  a[1] = A.s1;
  a[2] = A.s2;
  a[3] = A.s3;
  a[4] = A.s4;
  a[5] = A.s5;
  a[6] = A.s6;
  a[7] = A.s7;
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  a[8] = A.s8;
  a[9] = A.s9;
  a[10] = A.sa;
  a[11] = A.sb;
  a[12] = A.sc;
  a[13] = A.sd;
  a[14] = A.se;
  a[15] = A.sf;
  for( int i = 0; i < 16; ++i ) {
    out[offsetA*STRIDE+i] = a[i];
  }
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  VectorLoad vector_load.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_vector_load/.  
When that happens, you will have a binary executable named VectorLoad.

To run the program on OS X, simply execute the program VectorLoad and you should either 
see the output: Check passed! or Check failed! as follows:

Check passed!

How it works…
The kernel would proceed to prefetch the 16 values of type float from the __global memory 
space to the global cache via the first work item in the work group, which would ultimately arrive 
in the work item's __private memory space via the vload16 API. Once that value is loaded, 
we can assign individual floats to the array and finally output them to the destination via an 
explicit write to the __global memory space of out. This is one method in which you can 
conduct memory load from a scalar array that resides in the global memory space.

prefetch(in +(id*64), 64);

The preceding line is an optimization technique used to improve data reuse by making  
it available before it is required; this prefetch instruction is applied to a work item in a  
work group and we've chosen the first work item in each work group to carry this out. In 
algorithms where there is heavy data reuse, the benefits would be more significant than  
the following example:

Another thing you may have noticed is that we didn't write the following code:

out[offset*STRIDE + i] = A; // 'A' is a vector of 16 floats
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The reason why we did not do this is because OpenCL forbids the implicit/explicit conversion 
of a vector type to a scalar.

One interesting thing that is worth pointing out other than the generated SSE instructions is 
the fact that multiple hardware prefetch instructions are generated, even though the code 
only mentions one prefetch instruction. This is the sort of façade that allows OpenCL vendors 
to implement the functionality based on an open standard, while still allowing the vendors to 
hide the actual implementation details from the developer.

Using geometric functions
The geometric functions are used by the programmers to perform common computation 
on vectors, for example, cross or dot products, normalizing a vector, and length of a 
vector. To recap a little about vector cross and dot products, remember that a vector in the 
mathematical sense represents a quantity that has both direction and magnitude, and these 
vectors are used extensively in computer graphics.

Quite often, we need to compute the distance (in degrees or radians) between two vectors 
and to do this, we need to compute the dot product, which is defined as:

. cosa b a b θ=
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It follows that if a is perpendicular to b then it must be that a . b = 0. The dot product is also 
used to compute the matrix-vector multiplication which solves a class of problems known as 
linear systems. Cross products of two 3D vectors will produce a vector that is perpendicular  
to both of them and can be defined as:

sinu v u v θ× =

The difference between these products is the fact that the dot product produces a scalar 
value while the cross product produces a vector value.

The following is a list of OpenCL's geometric functions:

Function Description
float4 cross(float4 m, float4 n)

float3 cross(float3 m, float3 n)

Returns the cross product of m.xyz and 
n.xyz and the w component in the result 
vector is always zero

float dot(floatn m, floatn n) Returns the dot product of two vectors
float distance(floatn m, floatn 
n)

Returns the distance between m and n.  
This is computed as:length(m – n)

float length(floatn p) Return the length of the vector p

floatn normalize(floatn p) Returns a vector in the same direction as p 
but with a length of 1

float fast_distance(floatn p0, 
floatn p1)

Returns fast_length(p0 – p1)

float fast_length(floatn p) Returns the length of vector p computed 
as:

half_sqrt()

floatn fast_normalize(floatn p) Returns a vector in the same direction as p 
but with a length of 1. fast_normalize 
is computed as:

p * half_sqrt()

You should be aware that these functions are implemented in OpenCL using the round to 
nearest even rounding mode also known as rte-mode.

Next, let's take a look at an example that utilizes some of these functions.
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Getting ready
The code snippet in Ch4/simple_dot_product/matvecmult.cl illustrates how to 
compute the dot product between a 2D vector and a matrix and write back the result of that 
computation to the output array. When you are starting out with OpenCL, there might be two 
probable ways in which you will write this functionality, and I think it is instructive to discover 
what the differences are; however we only show the relevant code snippet that demonstrates 
the dot API.

How to do it…
The following is the simplest implementation of the matrix dot product operation:

__kernel void MatVecMultUsingDotFn(__global float4* matrix, 
  __global float4* vector, __global float* result) {
    int i = get_global_id(0);
    result[i] = dot(matrix[i], vector[0]);
}

To compile this on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  MatVecMult matvecmult.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_dot_product/.  
When that happens, you will have a binary executable named MatVecMult.

To run the program on OS X, simply execute the program MatVecMult and you should  
either see the output: Check passed! or Check failed! as follows:

Check passed!

How it works…
The previous code snippet is probably the simplest you will want to write to implement the 
matrix dot product operation. The kernel actually reads a vector of 4 floats from the __global 
memory spaces of both inputs, computes the dot product between them, and writes it back out 
to __global memory space of the destination. Previously, we mentioned that there might be 
another way to write this. Yes, there is and the relevant code is shown as follows:

__kernel void MatVecMult(const __global float* M, 
  const __global float* V, uint width, uint height, 
    __global float* W) {
    // Row index
    uint y = get_global_id(0);
    if (y < height) {
       // Row pointer
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       const __global float* row = M + y * width;
       // Compute dot product
       float dotProduct = 0;
      for (int x = 0; x < width; ++x)
        dotProduct += row[x] * V[x];
    // Write result to global memory
    W[y] = dotProduct;
    }
}

When you compare this implementation without using the dot API, you will discover that you 
not only need to type more but also you will have increased the number of work item variables 
which happens to be in the __private memory space; often you don't want to do this 
because it hinders the code readability, and also quite importantly scalability because too 
many registers are consumed.

In OpenCL implementations, they would need to manage the available 
resources on the device, which could be available memory or available 
compute units. One such resource is the register file that contains a fixed 
number of general-purpose registers that the device has for executing one 
or many kernels. During the compilation of the OpenCL kernel, it will be 
determined how many registers are needed by each kernel for execution. 
An example would be where we assume that a kernel is developed that 
uses 10 variables in the __private memory space and the register file 
is 65536, and that would imply that we can launch 65536 / 10 = 6553 
work items to run our kernel. If you rewrite your kernel in such a way that 
uses more data sharing through the __local memory spaces, then you 
can free more registers and you can scale your kernel better.

Using integer functions
The integer functions in OpenCL primarily provides useful ways in which you can use them to 
perform the usual mathematical calculations such as obtaining an absolute value, halving 
a value, locating the minimum or maximum of three values, cyclic shift of a number, and 
specialized form of multiplication which is designed to work for a certain class of problems. 
Many of the functions that we have mentioned such as min and max do not perform the 
comparisons in an atomic fashion, but if you do like to ensure that, then a class of atomic 
functions can be used instead and we'll examine them later.

A class of integer functions is the atomic functions, which allows the developer to swap values 
(single-precision floating-point values too) in an atomic fashion, and some of these functions 
implements CAS (Compare-And-Swap) semantics. Typically, you may want to ensure some sort 
of atomicity to certain operations because without that, you will encounter race conditions.
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The atomic functions typically take in two inputs (they have to be of integral types, only  
atomic_xchg supports single-precision floating-point types), where the first argument is a 
pointer to a memory location in the global (__global) and local (__local) memory spaces 
,and they are typically annotated with the volatile keyword, which prevents the compiler from 
optimizing the instructions related to the use of the variable; this is important as the reads and 
writes could be out of order and could affect the correctness of the program. The following is an 
illustration of a mental model of how atomic operations serialize the access to a piece of  
shared data:
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Thread 3
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Thread 2

The following example, atomic_add, has two versions which work on signed  
or unsigned values:

int atomic_add(volatile __global int*p, int val)
unsigned int atomic_add(volatile __global uint*p, uint val)

Another observation you need to be aware of is the fact that just because you can  
apply atomicity to assert the correctness of certain values, it does not necessarily  
imply program correctness.

The reason why this is the case is due to the manner in which work items are implemented 
as we mentioned earlier in this chapter, that NVIDIA and ATI executes work items in groups 
known as work groups and each work group would contain multiple chunks of executing 
threads, otherwise, known as warp (32 threads) and wavefront (64 threads) respectively. 
Hence when a work group executes on a kernel, all the work items in that group are executing 
in lock-step and normally this isn't a problem. The problem arises when the work group is 
large enough to contain more than one warp/wavefront; then you have a situation where  
one warp/wavefront executes slower than another and this can be a big issue.
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The real issue is that the memory ordering cannot be enforced across all compliant OpenCL 
devices; so the only way to tell the kernel that we like the loads and stores to be coordinated is 
by putting a memory barrier at certain points in your program. When such a barrier is present, 
the compiler will generate the instructions that will make sure all the loads-stores to the 
global/local memory space prior to the barrier is done for all the executing work items before 
executing any instructions that come after the barrier, which will guarantee that the updated 
data is seen; or in compiler lingo: memory loads and stores will be committed to the memory 
before any loads and stores follows the barrier/fence.

These APIs provide the developer with a much better level of control when it comes to ordering 
both reads and writes, reads only, or writes only. The argument flags, can take a combination 
of CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE.

Getting ready
The recipe will show you the code snippet in Ch4/par_min/par_min.cl for finding the 
minimum value in a large array in the device, that is, GPU or CPU memory space. This example 
combines a few concepts such as using the OpenCL's atomic directives to enable atomic 
functions and memory barriers to coordinate memory loads and stores.

How to do it…
The following code demonstrates how you might want to find the minimum number in a large 
container of integers:

#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics :  
  enable
#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics :  
  enable
__kernel void par_min(__global uint4* src, 
  __global uint * globalMin, __local  uint * localMin, 
    int numOfItems) {
    uint count = ( numOfItems / 4) / get_global_size(0);
    uint index = get_global_id(0) * count;
    uint stride = 1;
    uint partialMin = (uint) -1;
    for(int i = 0; i < count; ++i,index += stride) {
      partialMin = min(partialMin, src[index].x);
      partialMin = min(partialMin, src[index].y);
      partialMin = min(partialMin, src[index].z);
      partialMin = min(partialMin, src[index].w);
    }
    if(get_local_id(0) == 0) localMin[0] = (uint) -1;
      barrier(CLK_LOCAL_MEM_FENCE);
    atomic_min(localMin, partialMin);
    barrier(CLK_LOCAL_MEM_FENCE);
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    if (get_local_id(0) == 0)
      globalMin[ get_group_id[0] ] = localMin[0];
}
__kernel void reduce(__global uint4* src, 
  __global uint * globalMin) {
    atom_min(globalMin, globalMin[get_global_id(0)]);
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  ParallelMin par_min.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/par_min/. When that happens, 
you will have a binary executable named ParallelMin.

To run the program on OS X, simply execute the program ParallelMin and you should either 
see the output: Check passed! or Check failed! as follows:

Check passed!

How it works…
The way this works is that a work item walks through the source buffer and attempts to locate 
the minimum value in parallel, and when the kernel is running on the CPU or GPU, the source 
buffer is chopped evenly between those threads and each thread would walk through the 
buffer that's assigned to them in __global memory and reduces all values into a minimum 
value in the __private memory.

Subsequently, all threads will reduce the minimum values in their __private memories to 
__local memory via an atomic operation and this reduced value is flushed to the __global 
memory.

Once the work groups have completed the execution, the second kernel, that is, reduce  
will reduce all the work group values into a single value in the __global memory using an 
atomic operation.

Using floating-point functions
So far, you have seen a couple of functions that takes argument as input or output  
single-precision or double-precision floating-point values. Given a floating-point value x, the 
OpenCL floating-point functions provide you with the capability to extract the mantissa and 
exponent from x via frexp(), decompose x via modf(), compute the next largest/smallest 
single-precision floating-point value via nextafter(), and others. Considering that there are so 
many useful floating-point functions, there are two functions which are important to understand 
because it's very common in OpenCL code. They are the mad() and fma() functions which is 
Multiply-Add and Fused Multiply-Add instruction respectively.
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The Multiply-Add (MAD) instruction performs a floating-point multiplication followed by a 
floating-point addition, but whether the product and its intermediary products are rounded is 
undefined. The Fused Multiply-Add (FMA) instruction only rounds the product and none of its 
intermediary products. The implementations typically trade off the precision against the speed 
of the operations.

We probably shouldn't dive into academic studies of this nature; however in times like this, we 
thought it might be helpful to point out how academia in many situations can help us to make 
an informed decision. Having said that, a particular study by Delft University of Technology 
entitled A Comprehensive Performance Comparison of CUDA and OpenCL link http://
www.pds.ewi.tudelft.nl/pubs/papers/icpp2011a.pdf, suggests that FMA has a 
higher instruction count as compared to MAD implementations, which might lead us to the 
conclusion that MAD should run faster than FMA. We can guess approximately how much 
faster by taking a simple ratio between both instruction counts, which we should point out 
is a really simplistic view since we should not dispense away the fact that compiler vendors 
play a big role with their optimizing compilers, and to highlight that NVIDIA conducted a study 
entitled Precision & Performance: Floating Point and IEEE 754 compliance for NVIDIA GPUs, 
which can be read at: http://developer.download.nvidia.com/assets/cuda/
files/NVIDIA-CUDA-Floating-Point.pdf. The study suggests that FMA can offer 
performance in addition to precision, and NVIDIA is at least one company that we are aware  
of who is replacing MAD with FMA in their GPU chips.

Following the subject of multiplication, you should be aware that there are instructions for 
the multiplication of integers instead of floats; examples of those are mad_hi, mad_sat, and 
mad24, and these functions provide the developer with the fine grain control of effecting a 
more efficient computation and how it can be realized using these optimized versions. For 
example, mad24 only operates on the lower 24-bits of a 32-bit integer because the expected 
value is in the range of [-223, 223 -1] when operating signed integers or [0, 224 -1] for 
unsigned integers.

Getting ready
The code snippet in Ch4/simple_fma_vs_mad/fma_mad_cmp.cl demonstrates  
how we can test the performance between the MAD and FMA instructions, if you so wish,  
to accomplish the computation. However, what we are going to demonstrate is to simply  
run each one of the kernels in turn, and we can check that the results are the same in  
both computations.

How to do it…
The following code demonstrates how to use the MAD and FMA functions in OpenCL:

__kernel void mad_test(__global float* a, __global float* b,  
  __global float* c, __global float* result) {
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  float temp = mad(a, b, c);
  result[get_global_id(0)] = temp;
}
__kernel void fma_test(__global float* a, __global float* b, 
  __global float* c, __global float* result) {
  float temp = fma(a, b, c);
  result[get_global_id(0)] = temp;
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  FmaMadCmp fma_mad_cmp.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_fma_vs_mad/.  
When that happens, you will have a binary executable named FmaMadCmp.

To run the program on OS X, simply execute the program FmaMadCmp and you should either 
see the output: Check passed! or Check failed! as follows:

Check passed!

How it works…
The driver code uses single-precision floating-point values to compute the value of the 
equation by running the two kernels in turn on the GPU/CPU. Each kernel would load the 
values from the __global memory space to the work item/thread's __private memory 
space. The difference between both kernels is that one uses the FMA instruction while the 
other uses the MAD instruction. The method that is used to detect whether FMA instruction 
support is available on the device of choice is to detect whether CP_FP_FMA is returned 
after a call to clGetDeviceInfo passing in any of the following parameters: CL_DEVICE_
SINGLE_FP_CONFIG, CL_DEVICE_DOUBLE_FP_CONFIG, and CL_DEVICE_HALF_FP_
CONFIG. We use the flag CP_FP_FMA and FP_FAST_FMA to load the fma functions on our 
platform by including the header file #include <math.h>.

The C-macro FP_FAST_FMA, if defined is set to the constant of 1 to indicate 
that the fma() generally executes about as fast, or faster than, a multiple 
and an addition of double operands. If this macro is undefined, then it 
implies that your hardware doesn't support it.In the GNU GCC compiler suite, 
the macro you want to detect is __FP_FAST_FMA, which links to the FP_
FAST_FMA if defined or passing –mfused-madd to the GCC compiler (on by 
default, autogenerate the FMA instructions if ISA supports).
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Using trigonometric functions
The trigonometric functions are very useful if you were in the computer graphics industry , 
or you are writing a simulation program for weather forecasts, continued fractions, and so on. 
OpenCL provides the usual suspects when it comes to the trigonometry support with cos, 
acos, sin, asin, tan, atan, atanh (hyperbolic arc tangent), sinh (hyperbolic sine),  
and so on.

In this section, we will take a look at the popular trigonometric identity function:

sin2 + cos2 = 1

From the Pythagoras's theorem, we understood that a right-angled triangle with sides a,b,c 
and angle t at the vertex where a and c meet, cos(t) is by definition a/c, sin(t) is by definition 
b/c, and so cos2(t) + sin2(t) = (a/c)2 + (b/c)2 when combined with the fact that a2 + b2 = c2 
hence cos2(t) + sin2(t) = 1.

Having armed ourselves with this knowledge, there are many interesting problems you can 
solve with this identity but for the sake of illustration let's suppose that we want to find the 
number of unit circles.

Unit circles are another way of looking at the identity we just talked about. A contrived 
example of this would be to determine which values would be valid unit circles from the  
given two arrays of supposedly values in degrees.

Getting ready
The code snippet in Ch4/simple_trigonometry/simple_trigo.cl demonstrates the 
OpenCL kernel that is used to compute which values from the two data sources can correctly 
form a unit circle.

If you recall from basic trigonometry lessons you took, when you add the 
result of sin(x) + cos(x) where x is drawn from either positive or negative 
numbers, it will produce two distinct straight line functions y = 1 and y = -1 
and when you square the results of sin(x) and cos(x), the result of cos2(t) + 
sin2(t) = 1 is obvious. See the following diagrams for illustration:
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The preceding diagram and the following diagram reflect the graphs of sin(x)  
and cos(x) respectively:
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The following diagram illustrates how superimposing the previous two graphs would  
give a straight line that is represented by the equation:
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How to do it…
The following code snippet shows you the kernel code that will determine unit circles:

__kernel void find_unit_circles(__global float16* a, 
  __global float16* b, __global float16* result) {
    uint id = get_global_id(0);
    float16 x = a[id];
    float16 y = b[id];
    float16 tresult = sin(x) * sin(x) + cos(y) * cos(y);
    result[id] = tresult;
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  SimpleTrigo simple_trigo.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_trigonometry/. 
When that happens, you will have a binary executable named SimpleTrigo.

To run the program on OS X, simply execute the program SimpleTrigo and you should either 
see the output shown as follows:

Find Unit Circle:

Unit circle with x=1, y=1

How it works…
The driver program conducts its usual operations of loading the two data sources by filling it 
up with values. Then the data sources is registered on the device command queue along with 
the kernel program objects that are ready for execution.

During the execution of the kernel, the data sources are loaded into the device via a  
single-precision floating-point 16-element vector. As highlighted in previous chapters,  
this takes advantage of the device's vectorized hardware. The in-memory vectors are  
passed into the sine and cosine functions which comes in two versions where one takes a 
scalar value and second takes a vector value, and we flush the result out to global memory 
once we are done; and you will notice that the multiplication/addition operator actually does 
component-wise multiplication and addition.
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Arithmetic and rounding in OpenCL
Rounding is an important topic in OpenCL and we have not really dived into it yet but that's 
about to change. OpenCL 1.1 supports four rounding modes: round to nearest (even number), 
round to zero, round to positive infinity, and round to negative infinity. The only round mode 
required by OpenCL 1.1 compliant devices is the round to nearest even.

If the result is intermediate between two representable values, the even 
representation is chosen. Even, here, means that the lowest bit is zero.

You should be aware that these are applicable to single-precision floating-point values 
supported in OpenCL 1.1; we have to check with the vendors who provide functions that 
operate on double-precision floating-point values, though the author suspects that they  
should comply at least to support the round to nearest even mode.

Another point is that, you cannot programmatically configure your kernels to inherit/change 
the rounding mode used by your calling environment, which most likely is where your program 
executes on the CPU. In GCC at least, you can actually use the inline assembly directives, for 
example, asm("assembly code inside quotes") to change the rounding mode in your 
program by inserting appropriate hardware instructions to your program. The next section 
attempts to demonstrate how this can be done by using the regular C programming with a 
little help from GCC.

In the Intel 64 and IA-32 architectures, the rounding mode is controlled by 
a 2-bit rounding control (RC) field, and the implementation is hidden in two 
hardware registers: x87 FPU control register and MXCSR register. These 
two registers have the RC field and the RC in the x87 FPU control register is 
used by the CPU when computations are performed in the x87 FPU, while 
the RC field in the MXCSR is used to control rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

Getting ready
In the code snippet found in Ch4/simple_rounding/simple_rounding.cl,  
we demonstrate how round to nearest even mode is the default mode in the built-in  
functions provided by OpenCL 1.1. The example proceeds to demonstrate how a particular 
built-in function and remainder, will use the default rounding mode to store the result of a 
floating-point computation. The next couple of operations is to demonstrate the usage of the 
following OpenCL built-in functions such as rint, round, ceil, floor, and trunc.
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How to do it…
The following code snippet examines the various rounding modes:

__kernel void rounding_demo(__global float *mod_input,  
  __global float *mod_output, __global float4 *round_input, 
    __global float4 *round_output) {
    mod_output[1] = remainder(mod_input[0], mod_input[1]);
    round_output[0] = rint(*round_input);
    round_output[1] = round(*round_input);
    round_output[2] = ceil(*round_input);
    round_output[3] = floor(*round_input);
    round_output[4] = trunc(*round_input);
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  SimpleRounding simple_rounding.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_rounding/. When that 
happens, you will have a binary executable named SimpleRounding.

To run the program on OS X, simply execute the program SimpleRounding and you should 
either see the output shown as follows:

Input: -4.5f, -1.5f, 1.5f, 4.5f

Rint:

Round:

Ceil:

Floor:

Trunc:

How it works…
As before, the in-memory data structures on the host are initialized with values and they 
are issued to the device once the device's command queue is created; once that's done the 
kernel is sent off to the command queue for execution. The results is subsequently read back 
from the device and displayed on the console.

In order to understand how these functions work, is important that we study their behavior by 
first probing their method signatures, and subsequently analyzing the results of executing the 
program to gain insights into how the results came to be.
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There's more…
OpenCL 1.2 brings a wealth of mathematical functions to arm the developer and four of the 
common ones are computing the floor and ceiling, round-to-integral, truncation, and rounding 
floating-point values. The floor's method signature is:

gentype floor(gentype x);
// gentype can be float,float2,float3,float4,float8,float16

This function rounds to the integral value using the round to negative infinity rounding 
mode. First of all, your OpenCL device needs to support this mode of rounding, and you can 
determine this by checking the existence of the value CL_FP_ROUND_TO_INF when you pass 
in CL_DEVICE_DOUBLE_FP_CONFIG to clGetDeviceInfo(device_id, ...).

The next method, ceil's signature is:

gentype ceil(gentype x);
// gentype can be float,float2,float3,float4,float8,float16

This function rounds to the integral value using the round to positive infinity rounding mode.

Be aware that when a value between -1 and 0 is passed to ceil, then the result is 
automatically -0.

The method for rounding to the integral value has a signature like this:

gentype rint(gentype x);
// gentype can be float,float2,float3,float4,float8,float16

This function rounds to the integral value using the round to nearest even rounding mode.

Be aware that when a value between -0.5 and 0 is passed to rint, then the result is 
automatically -0.

The truncation function is very useful when precision is not high on your priority list and its 
method signature is:

gentype trunc(gentype x);
// gentype can be float,float2,float3,float4,float8,float16

This function rounds to the integral value using the round to zero rounding mode.

The rounding method signature is:

gentype round(gentype x);
// gentype can be float,float2,float3,float4,float8,float16

This function returns the integral value nearest to x rounding halfway cases away from zero, 
regardless of the current rounding direction. The full list of available functions can be found  
in the Section 6.12.2 of the OpenCL 1.2 specification.
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When you run the program, you should get the following result:

Input: -4.5, 1.5, 1.5, 4.5

Rint:  -4.0, -2.0, 2.0, 4.0

Round: -5.0, -2.0, 2.0, 5.0

Ceil:  -4.0, -1.0, 2.0, 5.0

Floor: -5.0, -2.0, 1.0, 4.0

Trunc: -4.0, -1.0, 1.0, 4.0

Using the shuffle function in OpenCL
The shuffle and shuffle2 functions were introduced in OpenCL 1.1 to construct a 
permutation of elements from their inputs (which are either one vector or two vectors),  
and returns a vector of the same type as its input; the number of elements in the returned 
vector is determined by the argument, mask, that is passed to it. Let's take a look at its  
method signature:

gentypeN shuffle(gentypeM x, ugentypeN mask);
gentypeN shuffle(gentypeM x, gentypeM y, ugentypeN mask);

The N and M used in the signatures represents the length of the returned and input vectors 
and can take values from {2,3,4,8,16}. The ugentype represents an unsigned type, gentype 
represents the integral types in OpenCL, and floating-point types (that is, half, single,  
or double-precision) too; and if you choose to use the floating-point types then recall the 
extensions cl_khr_fp16 or cl_khr_fp64.

Here's an example of how it works:

uint4 mask = {0,2,4,6};
uint4 elements = {0,1,2,3,4,5,6};
uint4 result = shuffle(elements, mask);
// result = {0,2,4,6};

Let's take a look at a simple implementation where we draw our inspiration from the popular 
Fisher-Yates Shuffle(FYS) algorithm. This FYS algorithm generates a random permutation 
of a finite set and the basic process is similar to randomly picking a numbered ticket from a 
container, or cards from a deck, one after another until none is left in the container/deck. 
One of the nicest properties of this algorithm is that it is guaranteed to produce an unbiased 
result. Our example would focus on how shuffling would work, since what it essentially does is 
to select a particular element based on a mask that's supposed to be randomly generated.
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Getting ready
The code snippet in Ch4/simple_shuffle/simple_shuffle.cl pretty much captured 
most of the ideas we are trying to illustrate. The idea is simple, we want to generate a mask 
and use the mask to generate permutations of the output array. We are not going to use a 
pseudo random number generator like the Mersenne twister, but rather rely on C's stdlib.h 
function, a random function with a valid seed from which we generate a bunch of random 
numbers where each number cannot exceed the maximum size of the array of the output 
array, that is, 15.

The rand() function in stdlib.h is not really favored because it 
generates a less random sequence than random(), because the lower 
dozen bits generated by rand() go through a cyclic pattern.

How to do it…
Before we begin the shuffling, we need to seed the RNG prior, and we can do that via a simple 
API call to srandom() passing the seed. The next step is to run our kernel a number of times 
and we achieve this by enclosing the kernel execution in a loop. The following code snippet 
from the host code in Ch4/simple_shuffle/simple_shuffle.c shows this:

#define ITERATIONS 6
#define DATA_SIZE 1024
srandom(41L);
  for(int iter = 0; iter < ITERATIONS; ++iter) {
    for(int i = 0; i < DATA_SIZE; ++i) {
      mask[i] = random() % DATA_SIZE;
      // kernel is invoked
    }// end of inner-for-loop
   }//end of out-for-loop

The following kernel code transports the inputs via a and b and their combined element  
size is 16, the mask is being transported on the constant memory space (that is, read-only).

__kernel void simple_shuffle(__global float8* a, 
  __global float8* b, __constant uint16 mask, 
    __global float16* result) {
    uint id = get_global_id(0);
    float8 in1 = a[id];
    float8 in2 = b[id];
    result[id] = shuffle2(in1, in2, mask);
}
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To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  SimpleShuffle simple_shuffle.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_shuffle/.  
When that happens, you will have a binary executable named SimpleShuffle.

To run the program on OS X, simply execute the program SimpleShuffle and you should 
see the output shown as follows:

Shuffle: -4.5f, -1.5f, 1.5f, 4.5f

How it works…
The following diagram suggests that each executing kernel works through a portion of the 
source array, which contains of k elements by fetching the data from the __global memory 
space to the __private memory space. The next operation is to run the shuffling using a 
vector of random numbers, which we have pregenerated on the host and for each partitioned 
data block, the kernel will produce a resultant array; and once that's done the kernel flushes 
out the data to the __global memory space. The following diagram illustrates the idea 
where the resultant array consists of a permutated array made from its individual constituents 
which are themselves permutations:

array of n elements(indices from 0 to n-1)

shuffling
Kernel

shuffling
Kernel

shuffling
Kernel

shuffling
Kernel

Permutated-k Permutated-k Permutated-k Permutated-k

Permuted array of n elements(indices from 0 to n-1)

k k kk
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Using the select function in OpenCL
The select function is first of all similar to the shuffle and shuffle2 functions we 
have seen in the previous section and is also known as the ternary selection, and it is a 
member of the relational functions in OpenCL, which is commonly found in the C++ and Java 
programming languages; but there is a significant difference and that is the select function 
and its variant bitselect works not only with single-precision or double-precision floating 
types, but also vectors of single-precision or double-precision floating-point values. Here's 
what it looks like:

(predicate_is_true? eval_expr_if_true : eval_expr_if_false)

Hence, when the predicate is evaluated to be true the expression on the left-hand side of 
the colon will be evaluated; otherwise the expression on the right-hand side of the colon is 
evaluated and in both evaluations, a result is returned.

Using an example in OpenCL, the conditional statement as follows:

if (x == 1) r = 0.5;
if (x == 2) r = 1.0;

can be rewritten using the select() function as:

r = select(r, 0.5, isequal(x, 1));
r = select(r, 1.0, isequal(x, 2));

And for such a transformation to be correct, the original if statement cannot contain any 
code that calls to I/O.

The main advantage select/bitselect offers is that vendors can choose to eradicate 
branching and branch predication from its implementation, which means that the resultant 
program is likely to be more efficient. What this means is that these two functions act as a 
façade so that vendors such as AMD could implement the actual functionality using the ISA 
of SSE2 __mm_cmpeq_pd, and __mm_cmpneq_pd ; similarly, Intel could choose from the 
ISA of Intel AVX such as __mm_cmp_pd, __mm256_cmp_pd, or from SSE2 to implement the 
functionality of select or bitselect.

Getting ready
The following example demonstrates how we can use the function, select. The function 
demonstrates the convenience that it offers since it operates on the abstraction of applying 
a function to several data values, which happens to be in a vector. The code snippet in Ch4/
simple_select_filter/select_filter.cl attempts to conduct a selection by picking 
the elements from each list in turn to establish the result, which in this example happens to 
be a vector.
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How to do it…
The following snippet demonstrates how to do use the select function in OpenCL:

__kernel void filter_by_selection(__global float8* a, 
  __global float8* b, __global float8* result) {
    uint8 mask = (uint8)(0,-1,0,-1,0,-1,0,-1);
    uint id = get_global_id(0);
    float8 in1 = a[id];
    float8 in2 = b[id];
    result[id] = select(in1, in2, mask);
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o  
  SelectFilter simple_select.c –framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple_select/.  
When that happens, you will have a binary executable named SelectFilter.

To run the program on OS X, simply execute the program SelectFilter and you should 
either see the output shown as follows:

select: -4.5f, -1.5f, 1.5f, 4.5f

How it works…
The program proceeds to establish a context to the OpenCL compliant device through the APIs 
clGetPlatformIDs and clGetDeviceIDs. Once that is established, we go about creating 
our in-memory data structures and prepare it for submission to the device's command queue.

The in-memory data structures on the host are small arrays, which we can submit to the 
device for consumption by sending it across the system bus to hydrate the structures in the 
device memory. They stay in the device memory as local variables represented by variables 
in1 and in2.

Once the data is inflated in the device's memory, the algorithm in select_filter.cl 
will proceed to select each element in turn by conducting a bit comparison where the most 
significant bit is checked; if the MSB is equal to 1 the corresponding value from Buffer B 
is returned; otherwise the corresponding position from Buffer A is returned. Recall from 
computer science that -1, that is, unary minus 1, works out to be 0xffff in 2's complement 
notation and hence the MSB of that value would most definitely be equal to 1.
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The following diagram illustrates this selection process. As before, once the selection process 
is completed, it is flushed out to the results vector, result.

Buffer A

Mask

0 1 2 3 4 5 6 7

0 -1 0 -1 0 -1 0 7

Buffer B

0 1 2 3 4 5 6 7





5
Developing a Histogram 

OpenCL program

In this chapter, we'll cover the following recipes:

 f Implementing a histogram in C/C++

 f OpenCL implementation of the histogram

 f Work-item synchronization

Introduction
Anyone who has taken elementary math in school would know what a histogram is. It's one 
of the myriad of ways by which one can visualize the relationship between two sets of data. 
These two sets of data are arranged on two axes such that one axis would represent the 
distinct values in the dataset and the other axis would represent the frequency at which  
each value occurred.

The histogram is an interesting topic to study because its practical applications are found 
in computational image processing, quantitative/qualitative finance, computational fluid 
dynamics, and so on. It is one of the earliest examples of OpenCL usage when running on 
CPUs or GPUs, where several implementations have been made and each implementation  
has its pros and cons.

Implementing a Histogram in C/C++
Before we look at how we can implement this in OpenCL and run the application on the 
desktop GPU, let's take a look at how we can implement it using a single thread of execution.
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Getting ready
This study of the sequential code is important because we need a way to make sure our 
sequential code and parallel code produce the same result, which is quite often referred  
to as the golden reference implementation.

In your role as an OpenCL engineer, one of the items on your to-do list 
would probably be to translate sequential algorithms to parallel algorithms, 
and it's important for you to be able to understand how to do so. We 
attempt to impart some of these skills which may not be exhaustive in all 
sense. One of the foremost important skills to have is the ability to identify 
parallelizable routines.

Examining the code that follows, we can begin to understand how the histogram  
program works.

How to do it…
Here, we present the sequential code in its entirety, where it uses exactly one executing 
thread to create the memory structures of a histogram. At this point, you can copy the 
following code and paste it in a directory of your choice and call this program Ch5/
histogram_cpu/histogram.c:

#define DATA_SIZE 1024
#define BIN_SIZE 256

int main(int argc, char** argv) {
    unsigned int* data = (unsigned int*) malloc( DATA_SIZE *
                         sizeof(unsigned int));
    unsigned int* bin  = (unsigned int*) malloc( BIN_SIZE *
                         sizeof(unsigned int));
    memset(data, 0x0, DATA_SIZE * sizeof(unsigned int));
    memset(bin, 0x0, BIN_SIZE * sizeof(unsigned int));

    for( int i = 0; i < DATA_SIZE; i++) {
        int indx = rand() % BIN_SIZE;
        data[i] = indx;
    }

    for( int i = 0; i < DATA_SIZE; ++i) {
       bin[data[i]]++;
    }

}
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To build the program, we are assuming that you have a GNU GCC compiler. Type the following 
command to into a terminal:

/usr/bin/gcc –o histogram Ch5/histogram_c/histogram.c

Alternatively, run make at the directory Ch5/histogram_c, and an executable named 
histogram will be deposited in your directory where you issued that command.

To run the program, simply execute the program histogram deposited on the folder  
Ch5/histogram_c, and it should output nothing. However, feel free to inject C's output 
function printf, sprintf into the previous code and convince yourself that the histogram  
is working as it should.

How it works…
To make a histogram, we need to have an initial dataset where it contains values. The values 
in a histogram are computed by scanning through the dataset and recording how many times a 
scanned value has appeared in the dataset. Hence, the concept of data binning. The following 
diagram illustrates this concept:

In-memory data structure with various values

data binning
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44

78

22

255

1

2

3

1

1

1

1

123 44 123 255 44 44 22 78 1

In the following code, we see that the first for loop fills up the array data with values ranging 
from 0 to 255:

for( int i = 0; i < DATA_SIZE; i++) {
        int indx = rand() % BIN_SIZE;
        data[i] = indx;
}



Developing a Histogram OpenCL program

142

The second for loop walks the data array and records the occurrence of each value, and 
the final for loop serves to print out the occurrence of each value. That is the essence of 
data binning.

for( int i = 0; i < DATA_SIZE; ++i) {
       bin[data[i]]++;
}

Finally, you would iterate the binned data and print out what you've found:

for( int i = 0; i < BIN_SIZE; i ++) {
        if (bin[i] == 0) continue; 
        else printf("bin[%d] = %d\n", i, bin[i]);
}

Next, we are going to look at how OpenCL can apply data binning into its implementation.

OpenCL implementation of the Histogram
In this section, we will attempt to develop your intuition to be able to identify possible areas  
of parallelization and how you can use those techniques to parallelize sequential algorithms.

Not wanting to delve into too much theory about parallelization, one of the key insights about 
whether a routine/algorithm can be parallelized is to examine whether the algorithm allows 
work to be split among different processing elements. Processing elements from the OpenCL's 
perspective would be the processors, that is, CPU/GPU.

Recall that OpenCL's work items are execution elements that act on a set of 
data and execute on the processing element. They are often found in a work 
group where all work items can coordinate data reads/writes to a certain 
degree and they share the same kernel and work-group barriers.

Examining the code, you will notice that the first thing that is probably able to fulfill  
the description: 

"...allows work to be split among different processing elements"

 This would be to look for for loops. This is because loops mean that the code is executing 
the same block of instructions to achieve some outcome, and if we play our cards right, we 
should be able to split the work in the loop and assign several threads to execute a portion  
of the code along with the data.
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Getting ready
In many algorithms, you will see that splitting the work sometimes does not necessarily  
imply that the data needs to be cleanly partitioned, and that's because the data is  
read-only; however, when the algorithm needs to conduct both reads and writes to the data, 
then you need to figure out a way to partition them cleanly. That last sentence deserves some 
explanation. Recall in Chapter 2, Understanding OpenCL Data Transfer and Partitioning, 
where we discussed work items and data partitioning, and by now you should have 
understood that OpenCL does not prevent you, the developer, from creating race conditions 
for your data if you miscalculated the data indexing or even introduced data dependencies.

With great power, comes great responsibility.

In building a data parallel algorithm, it's important to be able to understand a couple of things, 
and from the perspective of implementing an OpenCL histogram program, here are some 
suggestions:

 f Understand your data structure: In the previous chapters, we have seen how we can 
allow user-defined structures and regular 1D or 2D arrays to be fed into the kernel for 
execution. You should always search for an appropriate structure to use and make 
sure you watch for the off-by-one errors (in my experience, they are more common 
than anything else).

 f Decide how many work items should execute in a work-group: If the kernel only 
has one work item executing a large dataset, it's often not efficient to do so because 
of the way the hardware works. It makes sense to configure a sizeable number of 
work items to execute in the kernel so that they take advantage of the hardware's 
resources and this often increases the temporal and spatial locality of data, which 
means your algorithm runs faster.

 f Decide how to write the eventual result: In the histogram implementation we've 
chosen, this is important because each kernel will process a portion of the data and 
we need to merge them back. We have not seen examples of that before, so here's 
our chance!

Let's see how those suggestions could apply. The basic idea is to split a large array among 
several work groups. Each work group will process its own data (with proper indexing) and 
store/bin that data in the scratchpad memory provided by the hardware, and when the work 
group has finished its processing, its local memory will be stored back to the global memory.

We have chosen the 1D array to contain the initial set of data and this data can  
potentially be infinite, but the author's machine configuration doesn't have limitless  
memory, so there's a real limit. Next, we will split this 1D array into several chunks,  
and this is where it gets interesting.
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Each chunk of data will be cleanly partitioned and executed by a work group. This work group 
has chosen to house 128 work items and each work item will produce a bin of size 256 
elements or a 256 bin.

Each work group will store these into the local memory also known as scratchpad memory 
because we don't want to keep going back and forth global and device memory. This is a real 
performance hit.

In the code presented in the following section, one of the techniques you will learn is to use 
the scratchpad memory or local memory in aiding your algorithm to execute faster.

Local memory is a software controlled scratchpad memory, and hence its 
name. The scratchpad allows the kernel to explicitly load items into that 
memory space, and they exist in local memory until the kernel replaces 
them, or until the work group ends its execution. To declare a block of 
local memory, the __local keyword is used and you can declare them in 
the parameters to the kernel call or in the body of the kernel. This memory 
allocation is shared by all work items in the work group.

The host code cannot read from or write to local memory. Only the kernel can access  
local memory.

So far you have seen how to obtain memory allocation from the OpenCL device and fire the 
kernel to consume the input data and reading from that processed data subsequently for 
verification. What you are going to experience in the following paragraphs might hurt your 
head a little, but have faith in yourself, and I'm sure we can get this through.

How to do it…
The complete working kernel is presented as follows from Ch5/histogram/histogram.cl, 
and we have littered comments in the code so as to aid you in understanding the motivation 
behind the constructs:

#define MEMORY_BANKS 5U // 32-memory banks.

__kernel

void histogram256(__global const unsigned int4* data,
                               __local uchar* sharedArray,
                               __global uint* binResult) {

// these 4 statements are meant to obtain the ids for the first
// dimension since our data is a 1-d array
size_t localId = get_local_id(0);
size_t globalId = get_global_id(0);
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size_t groupId = get_group_id(0);
size_t groupSize = get_local_size(0);

int offSet1 = localId & 31;
int offSet2 = 4 * offSet1;
int bankNumber = localId >> MEMORY_BANKS;

__local uchar4* input = (__local uchar4*) sharedArray;

// In a work-group, each work-item would have an id ranging from
// [0..127]
// since our localThreads in 'main.c' is defined as 128
// Each work-item in the work-group would execute the following
// sequence:
// work-item id = 0, input[128 * [0..63]] = 0
// Not forgetting that input is a vector of 4 unsigned char type,
// that effectively means
// that each work-group would execute this loop 8192 times and each
// time it would set
// 4 bytes to zero => 8192 * 4 bytes = 32-KB and this completes the
// initialization of the
// local shared memory array.

for(int i = 0; i < 64; ++i )
  input[groupSize * i + locald] = 0;

// OpenCL uses a relaxed consistency memory model which means to say
// that the state of
// memory visible to a work-item is not guaranteed to be consistent
// across the collection
// of work-items at all times.
// Within a work-item memory has load/store consistency. Local memory
// is consistent
// across work-items in a single work-group at a work-group barrier.
// The statement below
// is to perform exactly that function.
// However, there are no guarantees of memory consistency between
// different
// work-groups executing a kernel

// This statement means that all work-items in a single work-group
// would have to reach
// this point in execution before ANY of them are allowed to continue
// beyond this point.
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barrier(CLK_LOCAL_MEM_FENCE);

// The group of statements next fetch the global memory data and
// creates a binned
// content in the local memory.
// Next, the global memory is divided into 4 chunks where the
// row_size = 64 and'
// column_size = 128. The access pattern for all work-items in the
// work-group is
// to sweep across this block by accessing all elements in each
// column 64-bytes at a time.
// Once that data is extracted, we need to fill up the 32-KB local
// shared memory so we
// next extract the vector values from the local variable "value" and
// fill them up. The
// pattern we used to store those values is as follows:
// value.s0 can only range from [0..255] and value.s0 * 128 would
// indicate which row
// and column you like to store the value. Now we land in a
// particular row but we need
// to decide which 4-byte chunk its going to store this value since
// value.s0 is a int and
// sharedArray is a uchar-array so we use offSet2 which produces an
// array [0,4,8...124]
// and now we need which chunk its going to land in. At this point,
// you need to remember
// that value.s0 is a value [0..255] or [0x00..0xFF] so we need to
// decide which element in
// this 4-byte sub-array are we going to store the value.
// Finally, we use the value of bankNumber to decide since its range
// is [0..3]
for(int i = 0; i < 64; ++i) {
  uint4 value = data[groupId * groupSize * BIN_SIZE / 4 + i * 
groupSize + localId];
  sharedArray[value.s0 * 128 + offSet2 + bankNumber]++;
  sharedArray[value.s1 * 128 + offSet2 + bankNumber]++;
  sharedArray[value.s2 * 128 + offSet2 + bankNumber]++;
  sharedArray[value.s3 * 128 + offSet2 + bankNumber]++;
}

// At this point, you should have figured it out that the 128 * 256
// resembles a hashtable
// where the row indices are the keys of the 256-bin i.e. [0..255]



Chapter 5

147

// and the "list" of values
// following each key is what it looks like
// [0]   -> [1,3,5,6 ...]
// [1]   -> [5,6,2,1... ]
// ...
// [255] -> [0,1,5,..]
// Next, we go through this pseudo-hashtable and aggregate the values
// for each key
// and store this result back to the global memory.
// Apply the barrier again to make sure every work-item has completed
// the population of
// values into the local shared memory.

barrier(CLK_LOCAL_MEM_FENCE);

// Now, we merge the histograms
// The merging process is such that it makes a pass over the local
// shared array
// and aggregates the data into 'binCount' where it will make its way
// to the
// global data referenced by 'binResult'

if(localId == 0) { // each work-group only has 1 work-item executing 
this code block
  for(int i = 0; i < BIN_SIZE; ++i) {
    uint result = 0;
    for(int j = 0; j < groupSize; ++j) {
      result += sharedArray[i * groupSize + j];
    }
    binResult[groupId * BIN_SIZE  + i] = result;
  }
}

To compile it on the OSX platform, you would run a compile command similar to the following:

gcc –std=c99 –Wall –DUNIX –g –DDEBUG –DAPPLE –arch i386 –o Histogram 
main.c –framework OpenCL

Alternatively, you can run make at the directory Ch5/histogram, and you would have  
a binary executable named Histogram.

To run the program, simply execute the program, Histogram. A sample output on my 
machine, which is an OS X, is:

Passed!



Developing a Histogram OpenCL program

148

How it works…
In the host code, we first assign the necessary data structures that we need to implement  
the histogram. An excerpt from the source Ch5/histogram/main.c demonstrates the  
code that creates a single device queue, with the kernel and your usual suspects.  
The variables inputBuffer and intermediateBinBuffer refer to the unbinned  
array and intermediate bins:

queue = clCreateCommandQueue(context, device, 0, &error);

cl_kernel kernel = clCreateKernel(program, "histogram256", &error);

inputBuffer = clCreateBuffer(context,
                             CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
                             width * height * sizeof(cl_uint),
                             data,
                             &error);

intermediateBinBuffer = clCreateBuffer(context,
                                       CL_MEM_WRITE_ONLY,
                                       BIN_SIZE * subHistogramCount * 
sizeof(cl_uint),
                                       NULL,
                                       &error);

clSetKernelArg(kernel, 0, sizeof(cl_mem),(void*)& inputBuffer);
        
// the importance of uchar being that its unsigned char i.e. value //
range[0x00..0xff]
clSetKernelArg(kernel, 1, BIN_SIZE * GROUP_SIZE * sizeof(cl_uchar), 
NULL); // bounded by LOCAL MEM SIZE in GPU
clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)& 
intermediateBinBuffer);

So conceptually, the code splits the input data into chunks of 256 elements and each such 
chunk would be loaded into device's local memory, which would be processed by the work 
items in the work group. The following is an illustration of how it looks like:
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inputDataBuffer

OpenCL device
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.....

Now, imagine the kernel is going to execute the code and it needs to know how to fetch the 
data from the global memory, process it, and store it back to some data store. Since we have 
chosen to use the local memory as a temporary data store, let's take a look at how local 
memory can be used to help our algorithm, and finally examine how it's processed.

Local memory resembles a lot to any other memory in C, hence you need to initialize it to a 
proper state before you can use it. After this, you need to make sure that proper array indexing 
rules are obeyed since those one-off errors can crash your program and might hang your 
OpenCL device.

The initialization of the local memory is carried out by the following program statements:

__local uchar* input = (__local uchar4*) sharedArray;

for(int i = 0; i < 64; ++i)
  input[groupSize * i + localId] = 0;

barrier(CLK_LOCAL_MEM_FENCE);

At this point, I should caution you to put on your many-core hat now and imagine that 128 
threads are executing this kernel. With this understanding, you will realize that the entire  
local memory is set to zero by simple arithmetic. The important thing to realize by now,  
if you haven't, is that each work item should not perform any repeated action.
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The initialization could have been written in a sequential fashion and 
it would still work, but it means each work item's initialization would 
overlap with some other work item's execution. This is, in general, bad 
since in our case, it would be harmless, but in other cases it means 
that you could be spending a large amount of time debugging your 
algorithm. This synchronization applies to all work items in a work 
group, but doesn't help in synchronizing between work groups.

Next, we see a statement that we probably have not seen before. This is a form of 
synchronization or memory barrier. The interesting observation about barriers is that all the 
work items must reach this statement before being allowed to proceed any further. It's like a 
starting line for runners in a 100 meter race.

Reason for this is that our algorithm's correctness depends on the fact that each element  
in the local memory must be 0 prior to any work-item wishing to read and write to it.

You should be aware that you cannot set a value for the local memory 
greater than what is available on the OpenCL device. In order to 
determine what is the maximum configured scratchpad memory on your 
device, you need to employ the API clGetDeviceInfo passing in the 
parameter CL_DEVICE_LOCAL_MEM_SIZE.

Conceptually, here's what the previous piece of code is doing—each work item sets all 
elements to zero in a column-wise fashion and sets the elements collectively as a work group 
with 128 work items executing it, sweeping from left to right. As each item is a uchar4 data 
type, you see that the number of rows is 64 instead of 256:

work-item-0

work-item-1

work-item-2

work-item-3

work-item-4

uchar4

work-item-127

local memory

128

64
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Finally, let's attempt to understand how the values are fetched from global memory and stored 
in the scratchpad.

When a work group begins executing, it will reach into global memory and fetch the contents 
of four values and stores them into a local variable and once that's done, the next four 
statements are executed by each work item to process each retrieved value using the 
component selection syntax, that is, value.s0, value.s1, value.s2, value.s3.

The following illustration, provides how a work item can potentially access four rows of data on 
the scratchpad and update four elements in those rows by incrementing them. The important 
point to remember is that all elements in the scratchpad must be written before they can be 
processed, and hence this is the barrier.

This type of programming technique where we build intermediate data structures so that 
we can obtain the eventual data structure is often called thread-based histograms in some 
circles. The technique is often employed when we know what the final data structure looks like 
and we use the same ADT to solve for smaller portions of data so that we can merge them in 
the end.

for(int i = 0; i < 64; i++)
{
       uint4 value =  data[groupId * groupSize * BIN_SIZE/4 + i * 
groupSize + localId];
       sharedArray[value.s0 * 128 + offSet2 + bankNumber]++;
       sharedArray[value.s1 * 128 + offSet2 + bankNumber]++;
       sharedArray[value.s2 * 128 + offSet2 + bankNumber]++;
       sharedArray[value.s3 * 128 + offSet2 + bankNumber]++;
}
barrier(CLK_LOCAL_MEM_FENCE);

local memory

256

128

value to be updated via ‘bankNumber’

work-item-0
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If you analyze the memory access pattern, you will realize that what we have created an 
Abstract Data Type (ADT) known as the hash table where each row of data in the local 
memory represents the list of frequencies of the occurrence of a value between 0 and 255.

With that understanding, we can come to the final part of solving this problem. Again, imagine 
that the work group has executed to this point, you have basically a hash table, and you want 
to merge all those other hash tables held in the local memories of the other work groups.

To achieve this, we need to basically walk through the hash table, aggregate all the values for 
each row, and we would have our answer. However, now we only need one thread to perform 
all this, otherwise all 128 threads executing the walk would mean you're overcounting your 
values by 128 times! Therefore, to achieve this, we make use of the fact that each work item 
has a local ID in the work group, and we execute this code by selecting one particular work 
item only. The following code illustrates this:

if(localId == 0) {
    for(int i = 0; i < BIN_SIZE; ++i) {
        uint result = 0;
        for(int j = 0; j < 128; ++j)  {
            result += sharedArray[i * 128 + j];
        }
        binResult[groupId * BIN_SIZE + i] = result;
    }
}

There is no particular reason why the first work item is chosen, I guess this is done just  
by convention, and there's no harm choosing other work items, but the important thing  
to remember is that there must only be one executing code.

Now we turn our attention back to the host code again, since each intermediate bin has  
been filled conceptually with its respective value from its respective portions of the large  
input array.

The (slightly) interesting part of the host code is simply walking through the returned data held 
in intermediateBins and aggregating them to deviceBin:

for(int i = 0; i < subHistogramCount; ++i)
    for( int j = 0; j < BIN_SIZE; ++j) {
        deviceBin[j] += intermediateBins[i * BIN_SIZE + j];
}

And we are done!
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Work item synchronization
This section is to introduce you to the concepts of synchronization in OpenCL. Synchronization 
in OpenCL can be classified into two groups:

 f Command queue barriers

 f Memory barriers

Getting ready
The command queue barrier ensures that all previously queued commands to a command 
queue have finished execution before any following commands queued in the command 
queue can begin execution.

The work group barrier performs synchronizations between work items in a work group 
executing the kernel. All work items in a work group must execute the barrier construct  
before any are allowed to continue execution beyond the barrier.

How to do it…
There are two APIs for the command queue barriers and they are:

cl_int clEnqueueBarrierWithWaitList 
          (cl_command_queue command_queue,
           cl_uint num_events_in_wait_list, 
           const cl_event *event_wait_list,
           cl_event *event)
 
cl_int clEnqueueMarkerWithWaitList
          (cl_command_queue command_queue,
           cl_uint num_events_in_wait_list, 
           const cl_event *event_wait_list, 
           cl_event *event) 

But as of OpenCL 1.2, the following command queue barriers are deprecated:

cl_int clEnqueueBarrier(cl_command_queue queue);
cl_int clEnqueueMarker(cl_command_queue queue, cl_event* event);

These four/two APIs in OpenCL 1.2/1.1 respectively, allow us to perform synchronization 
across the various OpenCL commands, but they do not synchronize the work items.
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There is no synchronization facility available to synchronize between 
work groups.

We have not seen any example codes on how to use this, but it is still good to know they exist, 
if we ever need them.

Next, you can place barriers to work items in a work group that performs reads and writes  
to/from local memory or global memory. Previously, you read that all work items executing  
the kernel must execute this function before any are allowed to continue execution beyond  
the barrier. This type of barrier must be encountered by all work items in a work group.

How it works…
The OpenCL API is as follows:

void barrier(cl_mem_fence flags);

where flags can be CLK_LOCAL_MEM_FENCE or CLK_GLOBAL_MEM_FENCE. Be careful where 
you place the barrier in the kernel code. If the barrier is needed in a conditional statement 
that is like an if-then-else statement, then you must make sure all execution paths by the 
work items can reach that point in the program.

The CLK_LOCAL_MEM_FENCE barrier will either flush any variables stored 
in local memory or queue a memory fence to ensure correct ordering of 
memory operations to local memory.
The CLK_GLOBAL_MEM_FENCE barrier function will queue a memory fence 
to ensure correct ordering of memory operations to global memory.

Another side effect of placing such barriers is that when they're to be placed in loop construct, 
all work items must execute the barrier for each iteration of the loop before any are allowed 
to continue execution beyond the barrier. This type of barrier also ensures correct ordering of 
memory operations to local or global memory.



6
Developing a Sobel 

Edge Detection Filter

In this chapter, we'll cover the following recipes:

 f Understanding the convolution Theory

 f Understanding convolution in 1D

 f Understanding convolution in 2D

 f OpenCL implementation of the Sobel edge filter

 f Understanding profiling in OpenCL

Introduction
In this chapter, we are going to take a look at how to develop a popular image processing 
algorithm known as edge detection. This problem happens to be a part of solving a more 
general problem in image segmentation.

Image segmentation is the process of partitioning a digital image into 
multiple segments (sets of pixels, also known as super pixels). The goal 
of segmentation is to simplify and/or change the representation of an 
image into something that is more meaningful and easier to analyze. 
Image segmentation is typically used to locate objects and boundaries 
(lines, curves, and so on) in images.

The Sobel operator is a discrete differentiation operator, computing an approximation of the 
gradient of the image density function. The Sobel operator is based on convolving the image 
with a small, separable, and an integer-value filter in both horizontal and vertical directions. 
Thus, it is relatively inexpensive in terms of computations.
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Don't worry if you don't understand these notations right away, we are going to step through 
enough theory and math, and help you realize the application in OpenCL.

Briefly, the Sobel filtering is a three-step process. Two 3 x 3 filters are applied separately 
and independently on every pixel and the idea is to use these two filters to approximate the 
derivatives of x and y, respectively. Using the results of these filters, we can finally approximate 
the magnitude of the gradient.

The gradient computed by running Sobel's edge detector through each pixel (which also  
uses its neighboring eight pixels) will inform us whether there are changes in the vertical  
and horizontal axes (where the neighboring pixels reside).

For those who are already familiar with the convolution theory, in general, may skip to the  
How to do it section of this recipe.

Understanding the convolution theory
In the past, mathematicians developed calculus so that there's a systematic way to reason 
about how things change, and the convolution theory is really about measuring how these 
changes affect one another. At that time, the convolution integral was born.

( ) ( ) ( ). ( ) ( ). ( )f x g x f x g u x g x f u x
∞ ∞

−∞ −∞

⊗ = − = −∫ ∫

And the ⊗ operator is the convolution operator used in conventional math. An astute reader will 
notice immediately that we have replaced one function with the other, and the reason why this 
is done is because of the fact that the convolution operator is commutative, that is, the order of 
computation does not matter. The computation of the integral can be done in discrete form, and 
without loss of generality, we can replace the integral sign ( )∫  with the summation sign ( )∑ , and 
with that, let's see the mathematical definition of convolution in discrete time domain.

Getting ready
Later we will walk through what the following equation tells us over a discrete time domain:

[ ] [ ]* [ ] [ ] [ ]
k

y n x n h n x k h n k∞

=−∞
= = • −∑

where x[n] is an input signal, h[n] is an impulse response, and y[n] is the output.  
The asterisk (*) denotes convolution. Notice that we multiply the terms of x[k] by the terms 
of a time-shifted h[n] and add them up. The key to understanding convolution lies behind 
impulse response and impulse decomposition.
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How to do it…
In order to understand the meaning of convolution, we are going to start from the concept  
of signal decomposition. The input signal can be broken down into additive components, and 
the system response of the input signal results in by adding the output of these components 
passed through the system.

The following section will illustrate on how convolution works in 1D, and once you're proficient 
in that, we will build on that concept and illustrate how in convolution works 2D and we'll see 
the Sobel edge detector in action!

Understanding convolution in 1D
Let's imagine that a burst of energy (signal) have arrived into our system and it looks similar  
to the following diagram with x[n] = {1,3,4,2,1}, for n = 0,1,2,3,4.

And let's assume that our impulse function has a non-zero value whenever n = 0 or 1,  
while it'll have a zero value for all other values of n.

How to do it...
Using the preceding information, let's work out what the output signal would be by quickly 
recalling the following equation:

[ ] [ ]* [ ] [ ] [ ]
k

y n x n h n x k h n k∞

=−∞
= = • −∑
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Following this equation faithfully, we realize that the output signal is amplified initially and 
quickly tapers off, and after solving this manually (yes, I mean evaluating the equation on a 
pencil and paper) we would see the following final output signal:

[0] [ ]* [0] [ ] [0 ] [0]* [0] 1*2

[1] [ ]* [1] [ ] [1 ] [0]* [1 0] [1]* [1 1] [0]* [1] [1]* [1 1] 0*1 3*2 6

[2] [ ]* [2] [ ] [2 ] [0]* [2 0] [1]* [2 1] [2]* [2 2] 1*0

k

k

y x k h x k h k x h

y x k h x k h k x h x h x h x h

y x k h x k h k x h x h x h

∞

=−∞

∞

=−∞

= = • − = =

= = • − = − + − = + − = + =

= = • − = − + − + − =

∑
∑

3*1 4*2 9

[3] [ ]* [3] [ ] [3 ] [0]* [3 0] [1]* [3 1] [2]* [3 2] [3]* [3 3] 1*0 3*0 4*1 2*2 8

[4] [ ]* [4] [ ] [4 ] [0]* [4 0] [1]* [4 1] [2]* [4 2] [3]* [4 3] [4]* [4 4]

k

k
y x k h x k h k x h x h x h x h

y x k h x k h k x h x h x h x h x h

∞

=−∞

∞

=−∞

+ + =

= = • − = − + − + − + − = + + + =

= = • − = − + − + − + − + −

∑
∑

1*0 3*0 4*0 2*1 1*2 4
k

∞

=−∞
= + + + + =∑

How it works…
Looking at the preceding equation again, this time we rearrange them and remove all terms 
that evaluate to zero. Let's try to see whether we can discover a pattern:

And I believe you can see that each output value is computed from its previous two output 
values (taking into account the impulse function)! And now we may conclude, quite comfortably, 
that the general formula for computing the convolution in 1D is in fact the following:

[ ] [ ]* [0] [ 1]* [1] [ 2]* [2] ... [ ( 1)]* [ 1]y i x i h x i h x i h x i k h k= + − + − + + − − −
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Finally, you should be aware that (by convention) any value that is not defined for any x[i-k] 
is automatically given the value zero. This seemingly small, subtle fact will play a role in our 
eventual understanding of the Sobel edge detection filter which we'll describe next.

Finally for this section, let's take a look at how a sequential convolution code in 1D might  
look like:

// dataCount is size of elements in the 1D array
// kernelCount is the pre-defined kernel/filter e.g. h[0]=2,h[1]=1 
// h[x]=0 for x ={…,-1,2,3,…}
for(int i = 0; i < dataCount; ++i) {
  y[i] = 0;
  for(int j = 0; j < kernelCount; ++j) {
    y[i] += x[i – j] * h[j]; // statement 1
  }
}

Examining the code again, you will probably notice that we are iterating over the 1D array and 
the most interesting code would be in statement 1, as this is where the action really lies. 
Let's put that new knowledge aside and move on to extending this to a 2D space.

Understanding convolution in 2D
Convolution in 2D is actually an extension of the previously described Understanding 
convolution in 1D section, and we do so by computing the convolution in two dimensions.

Getting ready
The impulse function also exists in a 2D spatial domain, so let's call this function. b[x,y]  
has the value 1, where x and y are zero, and zero where x,y ¹ 0. The impulse function is  
also referred to as filter or kernel when it's being used in image processing.

How to do it…
Using the previous example as a guide, let's start thinking from the perspective of a signal 
which can be decomposed into the sum of its components and impulse functions, and their 
double summation accounts to the fact that this runs over both vertical and horizontal axes  
in our 2D space.

[ , ] [ , ] [ , ]
j i

y m n x i j m i n jβ
∞ ∞

=−∞ =−∞

= • − −∑ ∑
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Next, I think it's very helpful if we use an example to illustrate how it works when we have two 
convolution kernels to represent the filters we like to apply on the elements in a 2D array. Let's 
give them names, Sx and Sy. The next thing is to try out how the equation would develop itself 
in a 2D setting, where the element we want to convolve is at x[1,1] and we make a note of its 
surrounding eight elements and then see what happens.

If you think about why we are choosing the surrounding eight elements, it's the only way we 
can measure how big a change is with respect to every other element.

(0,0)

(0,1)

(0,2) (1,2)

(1,1)

(0,1) (0,2)

(1,2)

(2,2)

Let's give it a go:

[1,1] [ , ] [1 ,1 ]
j i

y x i j i jβ
∞ ∞

=−∞ =−∞

= • − −∑ ∑

[1,1] [0,0]* [1,1] [1,0]* [0,1] [2,0]* [ 1,0] [0,1]* [1,0] [1,1]* [0,0] [2,1]* [ 1,0] [0,2]* [1, 1]
[1,2]* [0,1] [2,2]* [ 1, 1]

y x x x x x x x
x x

β β β β β β β
β β

= + + − + + + − + −
+ + − −

This results in the summation of nine elements (including the element we're interested in), 
and this process is repeated for all elements in the 2D array. The following diagram illustrates 
how convolution in 2D works in a 2D space.

You may wish to read Irwin Sobel's 1964 original doctoral thesis since he's 
the inventor, and this author had a good fortune of meeting the man himself.
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What happens when you attempt to convolve around the elements that border the 2D 
array or in image processing, are they referred to as edge pixels? If you use this formula for 
computation, you will notice that the results will be inaccurate, because those elements are 
undefined and hence they're in general discounted from the final computation. In general, you 
can imagine a 3 x 3 filtering operation being applied to each element of the 2D array and all 
such computations will result in a new value for that element in the output data array.

Next, you may wonder what is being done to this output array? Remember that this array now 
contains values, which basically shows how big is the change detected in a particular element 
is. And when you obtain a bunch of them in the vicinity, then it usually tells you major color 
changes, that is, edges.

How it works…
With this understanding, you can probably begin to appreciate why we took this effort to 
illustrate the theory behind a concept.

When you want to build non-trivial OpenCL applications for your customers, one of the things 
you have to deal with is learning how to interpret a problem and convert it to a solution. And 
what that means is mostly about formulating an algorithm (or picking existing algorithms to 
suit your case) and verifying that it works. Most of the problems you're likely to encounter are 
going to involve some sort of mathematical understanding and your ability to learn about it. 
You should treat this as an adventure!
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Now that we've armed ourselves with what convolution is in a 2D space, Let's begin by taking 
a look at how convolution in 2D would work in regular C/C++ code with the following snippet:

// find centre position of kernel (assuming a 2D array of equal
// dimensions)
int centerX = kernelCols/2;
int centerY = kernelRows/2;
for(int i = 0; i < numRows2D; ++i) {
  for(int j = 0; j < numCols2D; ++j) {
    for(m = 0; m < kernelRows; ++m) {
          mm = kernelRows - 1 – m;
    for(n = 0; n < kernelCols; ++n) {
              nn = kernelCols - 1 – n;
        ii = i + (m – centerX);
        jj = j + (n – centerY);
        if (ii >= 0 && ii < rows && jj >= 0 && jj < numCols)
       out[i][j] += in[ii][jj] * kernel[mm][nn]; // statement 1
    }
    }
  }
}

This implementation is probably the most direct for the purpose of understanding the concept, 
although it may not be the fastest (since it's not many-core aware). But it works, as there are 
conceptually two major loops where the two outer for loops are for iterating over the entire 
2D array space, while the two inner for loops are for iterating the filter/kernel over the 
element, that is, convoluting and storing the final value into an appropriate output array.

Putting on our parallel algorithm developer hat now, we discover that statement 1 appears 
to be a nice target for work items to execute over. Next, let's take a look at how we can take 
what we've learnt and build the same program in OpenCL.

OpenCL implementation of the Sobel edge 
filter

Now that you've been armed with how convolution actually works, you should be able to 
imagine how our algorithm might look like. Briefly, we will read an input image assuming  
that it's going to be in the Windows BMP format.

Getting ready
Next we'll construct the necessary data structures for transporting this image file in the 
OpenCL device for convolution, and once that's done we'll read and write the data out to 
another image file, so that we can compare the two.
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Optionally, you can choose to implement this using the clCreateImage(...) 
APIs provided by OpenCL, and we'll leave it as an exercise for the reader to make 
the attempt.

In the following sections, you will be shown with an implementation from what is translated, 
what we have learnt so far. It won't be the most efficient algorithm, and that's really not our 
intention here. Rather, we want to show you how you can get this done quickly and we'll let 
you inject those optimizations which include the not withstanding, following data binning, 
data tiling, shared memory optimization, warp / wavefront-level programming, implementing 
2D-convolution using fast fourier transformations, and so many other features.

A possible avenue from where I derived a lot of the latest techniques about 
solving convolution was by reading academic research papers published by 
AMD and NVIDIA, and also by visiting gpgpu.org, developer.amd.
com, developer.nvidia.com, and developer.intel.com. Another 
good resource I can think of are books on image processing and computer 
vision from your favorite local bookstores. Also, books on processor and 
memory structure released by Intel are also good resources if you like.

How to do it…
We only show the code for the kernel found in Ch6/sobelfilter/sobel_detector.cl, 
since this is where our algorithm translation will reach its Xenith. And we've not shown the 
host code in Ch6/sobelfilter/SobelFilter.c, since we believe that you would  
be confident to know what typically resides in there:

__kernel void SobelDetector(__global uchar4* input, 
                            __global uchar4* output) {
      uint x = get_global_id(0);
      uint y = get_global_id(1);

  uint width = get_global_size(0);
  uint height = get_global_size(1);

  float4 Gx = (float4)(0);
  float4 Gy = (float4)(0);

    // Given that we know the (x,y) coordinates of the pixel we're 
    // looking at, its natural to use (x,y) to look at its
    // neighbouring pixels
    // Convince yourself that the indexing operation below is
    // doing exactly that



Developing a Sobel Edge Detection Filter

164

    // the variables i00 through to i22 seek to identify the pixels
    // following the naming convention in graphics programming e.g.   
    // OpenGL where i00 refers
    // to the top-left-hand corner and iterates through to the bottom
    // right-hand corner

  if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1)
  {
    float4 i00 = convert_float4(input[(x - 1) + (y - 1) * width]);
    float4 i10 = convert_float4(input[x + (y - 1) * width]);
    float4 i20 = convert_float4(input[(x + 1) + (y - 1) * width]);
    float4 i01 = convert_float4(input[(x - 1) + y * width]);
    float4 i11 = convert_float4(input[x + y * width]);
    float4 i21 = convert_float4(input[(x + 1) + y * width]);
    float4 i02 = convert_float4(input[(x - 1) + (y + 1) * width]);
    float4 i12 = convert_float4(input[x + (y + 1) * width]);
    float4 i22 = convert_float4(input[(x + 1) + (y + 1) * width]);

        // To understand why the masks are applied this way, look
        // at the mask for Gy and Gx which are respectively equal 
        // to the matrices:
        // { {-1, 0, 1}, { {-1,-2,-1},
        //   {-2, 0, 2},   { 0, 0, 0},
        //   {-1, 0, 1}}   { 1, 2, 1}}

Gx = i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 -i22;
Gy = i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02  -  i22;

        // The math operation here is applied to each element of
        // the unsigned char vector and the final result is applied 
        // back to the output image
  output[x + y *width] = convert_uchar4(hypot(Gx, Gy)/(float4)(2));
  }  
}

An astute reader will probably figure out by reading the code, that the derived values for Gx 
and Gy should have been as follows:

Gx = i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 - i22+ 
0*i01+0*i11+0*i21;
Gy = i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02 - i22+ 
0*i10+0*i11+0*i12;

But since we know their values will be zero, there is no need for us to include the computation 
inside it. Although we did, it's really a minor optimization. It shaved off some GPU processing 
cycles!
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As before, the compilation steps are similar to that in Ch6/sobelfilter/SobelFilter.c 
with the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o SobelFilter 
SobelFilter.c -framework OpenCL

To execute the program, simply execute the executable file (SobelFilter) on the Ch6/
sobelfilter directory, and an output image file named OutputImage.bmp would be 
presented (it's the output of reading in InputImage.bmp and conducting the convolution 
process against it).

The net effect is that the output contains an image that outlines the edges of the original 
input image, and you can even refer to the picture images in the How it works… section  
of this recipe to see how these two images are different from one another.

How it works…
At first, we create a representation of a pixel to represent each of the channels in the  
RGBA fashion. That structure is given a simple name, uchar4, where it consists of four 
unsigned char data types which will correctly represent each color's range from [0..255]  
or [0x00..0xFF], since that's how each color's range is defined by convention.

We omit the description of the mechanism behind pulling the pixel information from the 
input image to how we construct the final in-memory representation of the image. Interested 
readers can search on the Internet regarding the Windows BMP format to understand how we 
parse the image data or read the source code in the bmp.h file via the load function, and we 
write out the image using the write function.

Skipping the OpenCL device memory allocation, since that by now is standard fare we arrived 
quickly at the portion where we look at how the kernel processes each pixel of the input data.

Before we do that, let's quickly recall from the kernel launching code how many global  
work-items have been assigned and whether the work-group composition is like:

clEnqueueNDRangeKernel(command, queue, 2, NULL, globalThreads, 
localThreads, 0, NULL, NULL);

localThreads is configured to have work-groups of sizes {256,1}, work-items processing  
a portion of the input 2D image data array.

When the image is loaded into the device memory, the image is processed in blocks.  
Each block has a number of work-items or threads if you process the image. Each work-item 
proceeds the next to perform the convolution process on the center of the pixel and also on 
its eight neighbors. The resultant value generated by each work-item will be outputed as pixel 
value into the device memory. Pictorially, the following diagram illustrates what a typical  
work-item will perform.
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You need to watch out and that is we actually used the data type conversion 
function, convert_float4 to apply our unsigned char data values 
encapsulated within each pixel, which effectively widens the data type so 
that it doesn't overflow when the Sobel operator is applied on them.

Finally, once we have the masked the values we need to compute the magnitude of this 
gradient and the standard way of computing that is to apply 2 2Gx Gy+  where Gx = 1 2 1

0 0 0
1 2 1

− − −   
and Gy = 

1 0 1
2 0 2
1 0 1

−
−
−
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Whether this algorithm works, the only way is to check it through an image. The following  
is the side-by-side comparison, where the first image is before the Sobel operator is applied 
and the second one is after it's being applied.
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However, there is another nice optimization which we could have done, and it would have 
helped if we understood that a 3 X 3 convolution kernel (for example, the Sobel operator) is 
actually equivalent to the product of two vectors. This realization is behind the optimization 
algorithm also known as separable convolution.
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Technically, a two-dimensional filter is considered to be separable if it can be expressed as 
an outer product of two vectors. Considering the Sobel operator here, we can actually write 

*

1 0 1
2 0 2
1 0 1 [1 2 1] [ 1 0 1]T

−
−

− = −
 and .

The superscript T is the transpose of a row vector, which is equivalent 
to the column-vector and vice versa. Note that convolution is itself 
associative, so it doesn't really matter in which way you multiply the 
vectors against the input image matrix.

Why is this important? The main reason is because we actually save processing cycles 
by using this separable convolution kernel. Let's imagine we have a X-by-Y image and a 
convolution kernel of M-by-N. Using the original method, we would have conducted XYMN 
multiples and adds while using the separable convolution technique, we would have actually 
done XY (M + N) multiples and adds. Theoretically speaking, applying this to our 3-by-3 
convolution kernel we would have increased our performance to 50 percent or 1.5 times  
and when we use a 9-by-9 convolution kernel, we would have increased our performance to  
81 / 18 = 4.5 or 450 percent.

Next, we are going to talk about how you can profile your algorithms and their runtimes so that 
you can make your algorithms not only run faster, but also deepen your understanding of how 
the algorithm works and more often than not, help the developer develop a better intuition on 
how to make better use of the OpenCL device's capabilities.

Understanding profiling in OpenCL
Profiling is a relatively simple operation from the perspective of an OpenCL developer, since  
it basically means that he/she wishes to measure how long a particular operation took.  
This is important because during any software development, users of the system would often 
specify the latencies which are considered acceptable, and as you develop bigger and more 
complex systems, profiling the application becomes important in helping you understand the 
bottlenecks of the application. The profiling we are going to take is a look done programmatically 
by the developer to explicitly measure the pockets of code. Of course, there is another class  
of profilers which profiles your OpenCL operations on a deeper level with various breakdowns  
on the running times measured and displayed, but that is out of the scope of the book.  
But we encourage readers to download the profilers from AMD and Intel to check them out.
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While writing this book, AMD has made its OpenCL profiler and a generally 
available debugger named CodeXL found at http://developer.amd.
com/tools-and-sdks/heterogeneous-computing/codexl/. 
Intel has a similar package offered separately and you can refer to the 
following URL for more details:
http://software.intel.com/en-us/vcsource/tools/
opencl-sdk-2013. As for NVIDIA GPGPUs, you can only use the APIs 
provided by OpenCL.

Getting ready
The two operations that OpenCL allows the developer to have such insight into their  
runtimes are data transfer operations and kernel execution operations; the times are  
all measured in nanoseconds.

Since all devices cannot resolve to a nanosecond, it's important to 
determine what is the level of resolution, and you can know this by 
passing the CL_DEVICE_PROFILING_TIMER_RESOLUTION flag 
to clGetDeviceInfo for the appropriate device ID.

How to do it…
All you have to do is to pass the CL_QUEUE_PROFILING_ENABLE flag as  
part of the properties argument, when you create the command queue  
via clCreateCommandQueue. The API looks like this:

cl_command_queue 
clCreateCommandQueue(cl_context context,
                     cl_device_id device,
                     cl_command_queue_properties properties, cl_int* 
error_ret);

Once the profiling is enabled, the next thing you need to do is to inject OpenCL events into 
areas of the code, where you want to know how the runtimes fare. To achieve this, you need 
to create a cl_event variable for the regions of code you wish to monitor and associate this 
variable with one of the following APIs:

 f Data transfer operations:
 � clEnqueue{Read|Write|Map}Buffer

 � clEnqueue{Read|Write|Map}BufferRect

 � clEnqueue{Read|Write|Map}Image

 � clEnqueueUnmapMemObject
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 � clEnqueuCopyBuffer

 � clEnqueueCopyBufferRect

 � clEnqueueCopyImage

 � clEnqueueCopyImageToBuffer

 � clEnqueueCopyBufferToImage

 f Kernel operations:
 � clEnqueueNDRangeKernel

 � clEnqueueTask

 � clEnqueueNativeTask

How it works…
The way to obtain the runtimes for these operations is to invoke the 
clGetEventProfilingInfo API, passing in one of these flags: CL_PROFILING_
COMMAND_QUEUED, CL_PROFILING_COMMAND_SUBMIT, CL_PROFILING_COMMAND_START, 
or CL_PROFILING_COMMAND_END. The API looks like this:

cl_int
clGetEventProfilingInfo(cl_event event,
                        cl_profiling_info param_name,               
                        size_t param_value_size, 
                        void* param_value,
                        size_t* param_value_size_ret);

To obtain the time spent by the command in the queue, you invoke 
clGetEventProfilingInfo with CL_PROFILING_COMMAND_SUBMIT once, and at 
the end of the code region invoke clGetEventProfilingInfo with CL_PROFILING_
COMMAND_QUEUED again to get the difference in time.

To obtain the duration that the command took to execute, invoke 
clGetEventProfilingInfo once with CL_PROFILING_COMMAND_START and invoke the 
same API with CL_PROFILING_COMMAND_END, from the difference in the runtimes you will 
obtain the value.
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The following is a small code snippet which illustrates the basic mechanism:

cl_event readEvt;
cl_ulong startTime;
cl_ulong endTime;
cl_ulong timeToRead;
cl_command_queue queue = clCreateCommandQueue(context, device, CL_
QUEUE_PROFILING_ENABLE, NULL);
clEnqueueReadBuffer(queue, some_buffer, TRUE, 0, sizeof(data), data,0, 
NULL, &readEvt);
clGetEventProfilingInfo(readEvt, CL_PROFILING_COMMAND_START,sizeof(sta
rtTime),&startTime, NULL);
clGetEventProfilingInfo(readEvt, CL_PROFILING_COMMAND_
END,sizeof(endTime),&endTime, NULL);
timeToRead = endTime – startTim;





Developing the Matrix 
Multiplication with 

OpenCL

In this chapter, we will cover the following recipes:

 f Understanding matrix multiplication

 f OpenCL implementation of the matrix multiplication

 f Faster OpenCL implementation of the matrix multiplication by thread coarsening

 f Faster OpenCL implementation of the matrix multiplication through register tiling

 f Reducing global memory via shared memory data prefetching in matrix multiplication

Introduction
In this chapter, we are going to take a look at the problem of multiplying two matrices to produce 
another matrix. This problem is also known as the matrix multiplication and its applications 
range from mathematics, finance, physics, and it is a popular system for solving linear 
equations. For illustration purposes, we present a typical use case for solving linear equations:

ax by c
dx ey f
+ =
+ =
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These equations can be modeled as *
a b x c
d e y f
     

=     
     , where the L.H.S of the equation consists  

of a 2 x 2 matrix which is multiplied by a 2 x 1 matrix (often called a vector, and they can be  
row vectors or column vectors) which is equal to the vector on the R.H.S. Considering the  
fact that matrices can have any order of rows and columns, mathematicians invented the  
notation, Ax b=  where to solve this, we have to determine 
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.Here, as we can see  
that the inverse of the matrix needs to be known. At this point, that's all we like to say about 
the wonderful world of matrices, lest we fall into the rabbit hole!

You should be aware that only square matrices have inverses, and 
even among such matrices the inverses are not guaranteed to be 
present. We won't be covering computing inverses in this chapter 
or book.

Understanding matrix multiplication
The product C of two matrices A and B is defined as ik ij jkc a b= , where j is the sum of  
all possible values of i and k. There is an implied summation over the indices i, j, and k.  
The dimensions of the matrix C is: ( )( ) ( )n m m p n p× × = × , where ( )a b×  denotes a matrix  
with a rows and b columns and when we write out the product explicitly, it looks as follows:
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Another property of matrix multiplication is that multiplication is associative and distributive 
over addition, but they are however not commutative.

Two matrices A and B are considered commutative if they are diagonal 
matrices and are of the same dimension.

Knowing these properties will help us in formulating our initial algorithm stemming from 
this formula: ik ij jkc a b= . The commutative property basically informs us that the order of 
multiplication between matrices A and B matters, while the associative property allows  
us the flexibility to explore what happens when two matrices A and B are too huge to fit into 
available memory on the OpenCL device and we need to partition the matrix data across 
multiple devices. The following diagram illustrates what happens when a row of matrix A and a 
column of matrix B is read and its aggregated result is written into the appropriate location in 
the output matrix, C:

Getting ready
At this point, we are in pretty good shape to take a stab at matrix multiplication. As before,  
we begin with an implementation in C/C++, which is a direct translation of the formula  
and from there we will develop a better intuition on how to import it to OpenCL and apply 
suitable optimizations.
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For the rest of this chapter, we are going to craft our algorithm so that it runs on the GPU on 
your desktop/laptop. The reason for this is because the GPU has more computation units 
than a CPU, and GPUs are often equipped with other hardware components that allows the 
OpenCL to take advantage of that hardware (including local data stores, out of order execution 
units, shared data store, and so on), which often allows an enormous number of threads to 
execute in. Current CPU processors don't implement OpenCL shared memory, so using GPUs 
is probably the best option!

Get a GPU that supports OpenCL 1.1 and the preceding 
information is good enough for these experiments.

How to do it...
By now, you should be familiar with creating the necessary data structures to represent  
our three matrices in question (let's call them A, B, and C). Coincidentally, they happen  
to be square matrices, but this does not affect our understanding in any way.

When we examine this problem from the previous section, we understand that we want  
to basically iterate through both matrices in the following fashion:

1. Pick a row from matrix A.

2. Pick a column from matrix B.

3. Multiply each element from the picked row with the corresponding element from the 
picked column.

From this description, we can begin to think of various implementation methods and one such 
method could be as follows:

1. Create two in-memory data structures for A and B, say TmpA and TmpB.

2. Loop through A and pick a row for which each element to deposit into its 
corresponding position in TmpA, do the same for a picked column and deposit  
into TmpB:
  loop until i < number_of_rowsA:
    TmpA[i] = A[i]
  endloop
  loop until i < number_of_colsB:
    TmpB[i] = B[i]
  endloop

3. Loop through TmpA and TmpB and perform the matrix multiplication.
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4. In pseudo code, it looks something like this:
loop until (i,j) < (rowA * colB):
  loop through A[i][_] deposit values into TmpA
  loop through B[_][j] deposit values into TmpB
  foreach value in TmpA and TmpB:
    C[a] = TmpA[x] * TmpB[y]
endloop

Another implementation is very similar to this one with the exception that we use standard 
C/C++ array indexing techniques to reference the respective row(s) and column(s) and we 
present an implementation in the following sections.

How it works…
There are various ways of implementing matrix multiplication algorithm in C/C++ as we've 
discussed previously. And it seems that there isn't a best design to adopt. Personally, I've 
always favored a readable design versus a convoluted design. However, it's necessary to  
write high performance code from time to time, so that you can squeeze all the power  
that the programming language or hardware can provide.

At this point, you may or may not have developed the necessary intuition 
to design your algorithms, but one way is to continuously practice using 
different techniques and measure each implementation with some 
benchmarks, and never clump all the optimizations in one algorithm 
unless you're confident.

Now that we have some inkling as to what is meant by matrix multiplication, it is definitely 
time for us to start exploring what the algorithm looks like after being translated into its 
sequential form. The following is an example of the matrix multiplication program in  
sequential form (the code is executed by only one thread):

Void matrixMul(float *C, 
               const float *A, 
               const float *B, 
               unsigned int hA, 
               unsigned int wA, 
               unsigned int wB) {
    for (unsigned int i = 0; i < hA; ++i)
        for (unsigned int j = 0; j < wB; ++j){   
            float sum = 0;
            for (unsigned int k = 0; k < wA; ++k) {   
                double a = A[i * wA + k]; // statement 1
                double b = B[k * wB + j]; // statement 2
                sum += a * b;
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            }   

            C[i * wB + j] = (float)sum; // statement 3
        }   
}

When you examine this code, you will notice that there are three loop structures and we use 
regular C/C++ array indexing techniques to reference each subsequent element from their 
respective rows and columns. Take some time now to convince that we are actually computing 
the matrix multiplication.

As before, we put on our parallel developer hat and try to see how we can provide a parallel 
OpenCL form of the equivalent program. Again, I'm naturally drawn to the loop structures and 
we have three of them!

We noticed that as we iterate through the matrices A and B, the innermost loop is the 
code block that is performing all the heavy lifting for statement 1, statement 2, and 
statement 3. These statements will represent the core of our OpenCL kernel and let's go 
and take a look at how we can map it to OpenCL.

OpenCL implementation of the matrix 
multiplication

We have spent a good amount of time understanding how matrix multiplication works and 
we've looked at how it looks in its sequential form. Now we're going to attempt to map this  
to OpenCL in the most direct way.

The implementation technique here makes use of the fact that we create 2D thread blocks 
where each thread/work item in each dimension will access their respective elements in the 
row/column dimension.

Getting ready
In this recipe, we are going to use two matrices of dimensions 1024 x 1024 (we call A and B), 
and we'll multiply these two matrices together to produce a third matrix of 1024 x 1024,  
we call C.

You may wish to refresh your basic matrix theory at this point to convince 
yourself that this is the case.
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We construct the familiar data structures in our host code and fill them with random values. 
The host code in Ch7/matrix_multiplication_01/MatrixMultiplication.c looks 
as follows:

matrixA = (cl_int*)malloc(widthA * heightA * sizeof(cl_int));
matrixB = (cl_int*)malloc(widthB * heightB * sizeof(cl_int));
matrixC = (cl_int*)malloc(widthB * heightA * sizeof(cl_int));

memset(matrixA, 0, widthA * heightA * sizeof(cl_int));
memset(matrixB, 0, widthB * heightB * sizeof(cl_int));
memset(matrixC, 0, widthB * heightA * sizeof(cl_int));
            
fillRandom(matrixA, widthA, heightA, 643);
fillRandom(matrixB, widthB, heightB, 991);

Next, we set up the OpenCL command queue to enable profiling because we want to  
keep looking at the effects of the subsequent optimizations that we are going to apply.  
It's definitely very important to establish a reference point to which your measurements  
can be compared against.

Recall that OpenCL command queues can be created such that 
commands are executed out-of-order. In this book, all command queues 
are created in-order so that they execute in program order also known as 
program reading order.

How to do it…
We present our first attempt to provide you an OpenCL version of the sequential matrix 
multiplication algorithm. The kernel can be found in Ch7/matrix_multiplication_01/
simple_mm_mult.cl:

__kernel void mmmult(int widthB, 
                     int heightA, 
                      __global int* A, 
                      __global int* B, 
                      __global int* C) {

    int i = get_global_id(0);
    int j = get_global_id(1);
    int tmp = 0;

    if ((i < heightA) && (j < widthB)) {
        tmp = 0;
        for(int k = 0; k < widthB; ++k) {
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            tmp += A[i*heightA + k] * B[k*widthB + j];
        }
        C[i*heightA + j] = tmp;
    }
}

Given the preceding OpenCL kernel code, we need to build an executable so that it can 
execute on your platform. As before, the compilation will look familiar to you. On my setup with 
an Intel Core i7 CPU & AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks 
like this and it'll create an executable called MatrixMultiplication into the directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication 
-framework OpenCL

At this point, you should have an executable deposited in that directory and all you need to 
do now is to run the program, simply execute the MatrixMultiplication program in the 
directory and you should have noticed an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

How it works…
We discussed how the matrices were initialized and the next thing is to realize the execution 
model where each work item in each dimension would work on each element. And to 
accomplish this, we have to ensure that the invocation to execute the OpenCL kernel  
code doesn't dictate the size of the thread block:

size_t globalThreads[] = {widthB, heightA};

cl_event exeEvt; 
cl_ulong executionStart, executionEnd;
error = clEnqueueNDRangeKernel(queue,
                               kernel,
                               2,
                               NULL,
                               globalThreads,
                               NULL, 
                               0,
                               NULL,
                               &exeEvt);
clWaitForEvents(1, &exeEvt);



Chapter 7

181

We achieve this by passing in the NULL value to the placeholder meant for dictating  
work group size in the clEnqueueNDRangeKernel API. Next, we set the values of the global 
work items to be equivalent to that of width of matrix B and height of A represented by the 
widthB and heightA variables respectively.

The following diagram serves to illustrate what the execution would have looked like:
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An astute reader would probably start guessing that this isn't the best way to conduct this 
business and you're right! We are going to take a deeper look at how we can make this work 
better soon.

Faster OpenCL implementation of the matrix 
multiplication by thread coarsening

In this section, let's try to make this beast run faster by applying a technique in parallel 
programming: thread coarsening. This is important because when you have a work item 
accessing an element, and then you have large matrices you could potentially have millions 
of work items running! In general, that's not a good thing because many devices today cannot 
support millions of work items in n dimensions unless it's a supercomputer. But there are 
often clever ways to reduce the amount of work items needed.
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Getting ready
The general technique here is to explore ways in which we can merge threads so that each 
thread now calculates multiple elements. When we reexamine the preceding code, we might 
wonder if we could do with fewer threads and have them compute more elements, and  
indeed we can.

The strategy we have adopted will basically have one work item updating an entire row in the 
matrix C while walking through matrices A and B. At this time, we need not even explore the 
use of atomic functions in OpenCL, since that's an aspect we should try to delay exploring as 
long as possible. The main reason for not exploring the use of atomics is simply because their 
execution time is too long and it isn't mature of utilizing the capabilities of the  
OpenCL devices.

How to do it...
This OpenCL kernel is revised based on the concept of thread coarsening and can be found  
in Ch7/matrix_multiplication_02/mmult.cl:

__kernel void mmmult(int widthB, 
                     int heightA, 
                      __global int* A,  
                      __global int* B,  
                      __global int* C) {

    int i = get_global_id(0); 
    int tmp = 0;

    if (i < heightA) {
        for(int j = 0; j < widthB; ++j) {
            tmp = 0;
            for(int k = 0; k < widthB; ++k) {
                tmp += A[i*heightA + k] * B[k*widthB + j]; 
            }   
            C[i*heightA + j] = tmp;
        }   
    }   
}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable form. 
As before, the compilation will look familiar to you. On my setup with an Intel Core i7 CPU & AMD 
HD6870x2 GPU running Ubuntu 12.04 LTS the compilation looks as follows, and it'll create an 
executable called MatrixMultiplication into the directory:
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gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication 
-framework OpenCL

At this point, an executable should have been deposited in the directory and to execute it, 
simply execute the program MatrixMultiplication in the directory and you should have 
noticed an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one you would notice that it is 
running faster!

How it works…
The hard part of this is being able to recognize when redundant work is being applied. But 
in our case, it won't take too much effort to recognize that we are actually using too many 
threads. How so you may ask? The clue lies in the fact that the original matrix multiplication 
algorithm ran with one executing thread, so the fact that we are using more than one  
work item does imply that there's more we can do to improve it.

Hence when we look back at the algorithm, we discover a way to make them run faster by 
getting more creative in the way we obtain those values using one work item. At this point,  
you should convince yourself that the OpenCL kernel we just looked at is indeed referencing 
the data values from the matrices A and B as expected.

To achieve what we did, we made some changes to the code in Ch7/matrix_
multiplication_02/MatrixMultiplication.c as follows:

size_t globalThreads[] = {heightA};
size_t localThreads[] = {256};
cl_event exeEvt; 
cl_ulong executionStart, executionEnd;
error = clEnqueueNDRangeKernel(queue,                                                                               
                               kernel,
                               1,  
                               NULL,
                               globalThreads,
                               localThreads,
                               0,  
                               NULL,
                               &exeEvt);
clWaitForEvents(1, &exeEvt);
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The problem size is known to us, which is to perform matrix multiplication for matrices 
of dimensions 1024 x 1024 and the reason why I chose the work group size to be 256 is 
because my GPU has four compute units and you can discover this by passing CL_DEVICE_
MAX_COMPUTE_UNITS to clGetDeviceInfo. The following diagram illustrates what it is like 
with thread coarsening:
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When you are able to reduce redundant work through thread coarsening, the kernel would 
now execute faster and scale better because now more processors can execute. It may seem 
counter intuitive because it defies common sense, since more threads executing the kernel 
means that it should execute faster. Well, that's the simple picture.

What happens under the hood is more complicated and it starts from the fact that each GPU 
has a number of processors and each of those processors would execute the kernel. For a 
GPU to be able to execute at full capacity, naturally its processors must be filled with data in 
the data cache and instructions should be ready to be fired and execute the OpenCL kernel.

However due to poor data spatial and temporal locality, the data caches perform suboptimal 
and that causes stalls in the instruction pipeline, which translates to delayed execution. 
Another problem is also related to the fact that memory access patterns could be erratic  
or non-coalesced which translates to cache misses and possibly memory ejection.  
This finally causes more delays.

Coming back to the problem, there is another solution for optimizing the kernel and that's  
by reusing the hardware registers of the work items.
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Faster OpenCL implementation of the matrix 
multiplication through register tiling

Register tiling is another technique we can apply to our matrix multiplication algorithm. What it 
basically means is to explore opportunities to reuse the hardware registers. In our case, what 
it means is that we need to examine the kernel code and find opportunities to reuse registers.

Now we need to put on our hardcore C developer hat (this person needs to think on the  
level of the processor core, how data moves on buses, memory loads and stores, and so on). 
And once your mind is sensitive enough to this level, then things become better.

Recall the kernel code in the previous section and we would notice after careful scrutiny  
that the A[i * heightA + k] statement is always executed in the loop structure, and 
this causes a lot of memory traffic to transpire because data needs to be loaded from device 
memory into the registers of the device.

Getting ready
To reduce the global memory traffic caused by the A[i * heightA + k] statement, we can 
pull that statement out of the loop structure and create a thread local memory structure that 
is visible only to the work item executing thread, and then we can reuse that prefetched data 
in the subsequent computations.

How to do it
This OpenCL kernel code is found in Ch7/matrix_multiplication_03/mmult.cl:

__kernel void mmmult(int, 
                     int widthB heightA, 
                      __global int* A,                      __global 
int* B, 
                      __global int* C) {

    int i = get_global_id(0); 

    int tmp = 0;

    int tmpData[1024];

    if (i < heightA) {
        for(int k = 0; k < widthB; ++k )
            tmpData[k] = A[i*heightA + k];

        for(int j = 0; j < widthB; ++j) {
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            tmp = 0;
            for(int k = 0; k < widthB; ++k) {
                tmp += tmpData[k] * B[k*widthB + j];
            }
            C[i*heightA + j] = tmp;
        }
    }
}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable form, 
where we can execute. As before, the compilation will look familiar to you. On my setup with an 
Intel Core i7 CPU & AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks like 
this and it'll create an executable called MatrixMultiplication into the directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication 
-framework OpenCL

At this point, the executable should be available to you in the directory. To run the program, 
simply execute the program in the MatrixMultiplication directory and you should notice 
an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one you would notice that it is 
running faster.

How it works…
The idea originated from a technique found in high performance computing and some folks 
like to call it scalar replacement. This is the form we have applied in this section. Let's take 
some time to understand this with a simple algorithm.

Let's say we have the following algorithm:

for i1 = 1 to 6
  for i2 = 1 to 6
    A[i1,i2] = A[i1 – 1, i2] + A[i1,i2 -2]

Now we unroll the loop so that it looks like this:

for i1 = 1 to 6 step-by-2
  for i2 = 1 to 6 step-by-2
    A[i1,i2] = A[i1 –1, i2] + A[i1,i2 -2]    //statement 1
    A[i1 +1,i2] = A[i1,i2] + A[i1+1,i2 -1]    //statement 2
    A[i1,i2 +1] = A[i1 –1, i2+1] + A[i1,i2]   //statement 3
    A[i1+1,i2+1] = A[i1, i2 +1] + A[i1+1,i2]
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When we will carefully observe this code, we will notice that the statement 1, statement 
2, and statement 3 have something in common and that is this code, A[i1,i2]. In 
computer science terms, we noticed that there is one store to memory and two loads from 
memory to registers. In scalar replacement, we replace A[i1,i2] with a variable, which we 
call X for now. The code now looks as follows after scalar replacement:

for i1 = 1 to 6 step-by-2
  X = A[i1,0]
  for i2 = 1 to 6 step-by-2
    X          = A[i1 –1, i2] + X
    A[i1 +1,i2] = X + A[i1+1,i2 -1]    
    A[i1,i2 +1] = A[i1 –1, i2+1] + X   
    A[i1+1,i2+1] = A[i1, i2 +1] + A[i1+1,i2]
     A[i1,i2] = X 

When the replacements have been done consistently and the algorithm is still working as it 
should, we are good for now. Have a cup of tea!

Let's have a look at what we did. We have replaced array references (which are in fact memory 
references) with scalars, and how it helps is that we have actually reduced memory traffic by 
processing those items in register memory. Considering that memory speed is significantly 
much slower than register read-write speed, this revised algorithm is in much better form.

Loop unrolling is often used to explode the loop, so that we can identify 
expressions or statements that can possibly be repeating and allowing 
scalar replacement to extract those expressions/statements into 
thread private register memory.

Scalar replacement is actually more complicated in actual practice, but the presentation  
here serves its purpose in illustrating the general concept.

Another thing we like to share with you is to optimize memory usage for the work items  
and we've caught several glimpses of it before in previous chapters.

Reducing global memory via shared memory 
data prefetching in matrix multiplication

Our revised matrix multiplication algorithm appears to be pretty good but it isn't quite there 
yet. The algorithm is still making a lot of references to matrix B over global memory and we 
can actually reduce this traffic by prefetching the data. You may not have noticed, but the 
concept of prefetching, which is to keep the cache "hot" (an idea borrowed from the CPU). 
A CPU typically has a good size of data and instruction caches (which are really hardware 
registers), so that the processor can take advantage of the spatial and temporal localities  
of the data. How does this concept map into other OpenCL devices, for example, the GPU?
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Every GPU that is an OpenCL compliant has a small amount of memory designed for this 
purpose and their sizes typically are 32 KB to 64 KB. If you wish to determine the exact 
amount of available high speed memory, simply pass the CL_DEVICE_LOCAL_MEM_SIZE 
variable to clGetDeviceInfo for a device.

Getting ready
In order for us to be able to reduce references to global memory, we need to make changes in 
our code so that we load the data we need. Sieving through the code again, we see that there 
is indeed one such opportunity and it is the following statement:

for(int j = 0; j < widthB; ++j) {
    tmp = 0;
    for(int k = 0; k < widthB; ++k) {
        tmp += tmpData[k] * B[k*widthB + j];
    }
//more code omitted
}

Concentrating on this loop, we noticed that matrix B always gets loaded and its values are 
always reused by all work items executing this kernel. We could of course preload this data 
into shared memory. That should reduce global memory requests significantly.

How to do it...
The following OpenCL kernel can be found in Ch7/matrix_multiplicatione_04/mmult.
cl:

__kernel void mmmult(int widthB, 
                     int heightA, 
                      __global int* A,  
                      __global int* B,  
                      __global int* C,
                      __local  int* shared) {

    int i = get_global_id(0);
    int id = get_local_id(0);
    int size = get_local_size(0);
    int tmp = 0;

    int tmpData[1024];

    if (i < heightA) {
        /*
         Pre-load the data into the work-item's register memory that 
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is 
         Visible to the work-item only. 
         */
        for(int k = 0; k < widthB; ++k ) {
            tmpData[k] = A[i*heightA + k]; 
        }   

        /*
         Data pre-fetching into shared memory allows all work-items
         To read the data off it instead of loading the data from 
global
         Memory for every work-item
        */
        for(int k = id; k < widthB; k += size) 
            shared[k] = B[k*widthB +k];
        barrier(CLK_LOCAL_MEM_FENCE);

        for(int j = 0; j < widthB; ++j) {
            tmp = 0;
            for(int k = 0; k < widthB; ++k) {
                tmp += tmpData[k] * shared[k];
            }
            C[i*heightA + j] = tmp;
        }
    }
}

Now that you have taken a look at the OpenCL kernel, you would want to compile the code 
and run it. As before the compilation will look familiar to you. On my setup with an Intel Core i7 
CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks like this and 
it'll create an executable called MatrixMultiplication into the directory.

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication 
-framework OpenCL

To run the program, simply execute the MatrixMultiplication program in the directory 
and you should get an output that resembles this:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one, you would notice that it is 
running much faster!
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How it works…
The code that we have introduced might cast some doubts within yourself that because 
it looks sequential, it is actually executed in parallel during runtime. The parallelism is 
introduced by the value indicated in the localThreads variable, which is passed to 
clEnqueueNDRangeKernel. The memory barrier we placed into the code serves  
to stop all work items from executing beyond that point, until all functions before  
that point have been executed and the following diagram serves to illustrate this:

t9 t10 t11 t12 t13 t12 t14 t15

t1 t2 t3 t4 t5 t6 t7 t8

t17 t18 t19 t20 t21 t22 t23 t24

Global memory

memory stores

memory stores

Memory barrier

memory loads

Shared memory

Memory Banks
Cannot execute beyond this point

So far you have seen changes made to the OpenCL kernel code, and now we need to make 
changes to our host code so that we can actually accomplish this. The following code snippet 
is taken from Ch7/matrix_multiplication_04/MatrixMultiplication.c:

clSetKernelArg(kernel, 0, sizeof(cl_int),(void*)&widthB);
clSetKernelArg(kernel, 1, sizeof(cl_int),(void*)&heightA);
clSetKernelArg(kernel, 2, sizeof(cl_mem),(void*)&matrixAMemObj);
clSetKernelArg(kernel, 3, sizeof(cl_mem),(void*)&matrixBMemObj);
clSetKernelArg(kernel, 4, sizeof(cl_mem),(void*)&matrixCMemObj);
clSetKernelArg(kernel, 5, sizeof(cl_int)*heightA,NULL);
         
size_t globalThreads[] = {heightA};
size_t localThreads[] = {256};
cl_event exeEvt; 
cl_ulong executionStart, executionEnd;
error = clEnqueueNDRangeKernel(queue,
                               kernel,
                               1,
                               NULL,
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                               globalThreads,
                               localThreads,
                               0,
                               NULL,
                               &exeEvt);
clWaitForEvents(1, &exeEvt);

The schematics of the final algorithm have seen us tailoring the algorithm, so that it  
achieves an initial reasonable performance and can be conceptually represented by  
the following diagram:

If you want to know how much shared memory you can possibly 
create and pass the CL_DEVICE_LOCAL_MEM_SIZE parameter to 
clGetDeviceInfo for your device and the value returned will be in 
bytes. Typical values are between 32 KB to 64 KB.





Developing the 
Sparse Matrix Vector 

Multiplication in 
OpenCL

In this chapter, we are going to cover the following recipes:

 f Solving the SpMV (Sparse Matrix Vector Multiplication) using the conjugate 
gradient method

 f Understanding the various SpMV data storage formats including ELLPACK, 
ELLPACK-R, COO, and CSR

 f Understanding how to solve SpMV using the ELLPACK-R format

 f Understanding how to solve SpMV using the CSR format

 f Understanding how to solve SpMV using VexCL

Introduction
In the previous chapter on matrix multiplication, we developed an appreciation of the problem 
space as well as its domain of application, but what we didn't tell you earlier was that there 
are dense matrices as well as sparse matrices in addition to their dense and sparse vectors. 
When we say dense or sparse matrix/vector, we mean that there are a lot of non-zero or zero 
values, respectively.

8
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The fact that a matrix is dense or sparse matters from a computational point of view, since 
it doesn't really make sense to multiply any value with zero as the result is evidently zero; if 
you were to apply the naïve method of solving this problem, which is to use the methods you 
developed during the matrix multiplication to solve the problem where the matrix or vector 
is sparse, but you would not be taking advantage of that brand new OpenCL CPU/GPU you 
just bought, you are simply wasting processor cycles and also wasting massive amounts of 
bandwidth. The question lies in solving this problem in an efficient manner and this requires 
understanding how to compute this efficiently, which solves one part of the issue. The other 
part of this issue is to investigate how to store the sparse matrices efficiently, since allocating 
a  matrix to store a matrix that is populated with mostly zeroes is wasteful of  
memory space.

We are going to take a whirlwind tour of this subject, however it will not be exhaustive. 
There is a lot of literature already published on this subject. However, we will spend some 
time to formulate a basic and general idea by recognizing that most of the past and 
current work focuses on a combination of creating data structures that are efficient and 
compact to represent the sparse structures. We will also spend some time devising efficient 
computational methods on those data structures. As far as matrices go, we won't look into the 
possibilities of dynamic matrices (via insertion or deletion), and instead we will focus on static 
sparse matrix formats.

Next, we are going to present the theory behind solving SpMV efficiently through building 
up our knowledge to the conjugate gradient (via steepest descent and Gram-Schmidt), and 
before applying that algorithm we'll look into some of the common data storage schemes. 
We'll present an implementation using the VexCL using the Conjugate Gradient (CG) method 
which is an OpenCL framework build using C++.

The following are some of the examples of sparse matrices:
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Solving SpMV (Sparse Matrix Vector 
Multiplication) using the Conjugate 
Gradient Method

The conjugate gradient method is the most popular iterative method for solving sparse linear 
systems, and I will attempt to make you understand how it works. Along this journey, we will 
look into steepest descent, conjugate gradient convergence, and so on.

I wanted to say a big thank you to Jonathan Richard Shewchuk (AP of 
University of California), without whom I might not have understood 
why conjugate gradients matter You can learn more about him at 
http://www.cs.cmu.edu/~jrs/.

A reason why the CG method is popular in solving sparse systems is that it not only handles 
really large sparse matrices well but it is also very efficient.

In the previous chapter on matrix multiplication, we have seen what it means to multiply two 
matrices, and this time round, we are focusing on the problem of Ax b=  where A is a known 
square and positive definite matrix, x is an unknown vector, and b is a known vector.

Getting ready
The inner product of two vectors is written as xTy, and it represents the scalar sum .  
xTy is equivalent to yTx, and if x and y are orthogonal (at right angles to one another, and this 
will be important to realize when we study steepest descent), then xTy = 0.

A positive-definite matrix A is such that for every  
non-zero vector x, xTAx > 0.

A quadratic form is actually a scalar and quadratic function of a vector of the form as:
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Just like any linear function, we would know its gradient that can be expressed in this derived 
form as  (yep, it's not a typo, and we mean the transpose of matrix 
A), and when we know that matrix A is symmetric, that is, 1/ 2( )TA A+  becomes A because 
AT=A, then this equation reduces to '( )f x Ax b= − . Like any derivate of a linear equation, we 
know that the mathematical solution to '( )f x  can be found when it is equal to 0 and by solving 
Ax b= . The goal is to find a particular value of x which minimizes ( )f x . Diagrammatically, 
it can be imagined as a parabola like the one in the following diagram, which is what ( )f x  
evaluates to be exactly:

zmax

zmin

xmax

xmin

x

z

This forms our foundation to study the steepest descent and its cousin method—the conjugate 
gradient method. In the following sections, let us first explore the concepts behind steepest 
descent and then head over to conjugate gradient.

In the steepest descent method, we start at an arbitrary point x(0) and slide down to the 
bottom of the paraboloid. We keep taking steps x(1), x(2), and so on until we are pretty 
confident in saying that we have come to the solution x. That's basically how it works. 
Generally speaking, we haven't said anything about how to choose the next point to slide  
to though, as always the devil is in the details. Solder on!

When we take a step, we choose the direction in which ( )f x  decreases most quickly, and now 
it's appropriate to introduce two vectors, which we will use to gauge for ourselves whether or 
not we're dropping in the right direction (that is, if we are moving towards the bottom of the 
parabola). The error vector ( ) ( )i ie x x= −  measures how far we are from the solution from the 
current step. The residual vector ( ) ( )i ir b Ax= −  measures how far we are from the correct 
value of b, and this vector can be thought of as the direction of steepest descent. When we 
take the next step so that we can be closer to the actual solution, x, we are actually choosing 
a point ( ) ( 1) ( 1)i i ix x rα− −= + , and you will notice that another variable has been chosen which is 
alpha, α .
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This variable α  of whichever value will tell us whether we have reached the bottom of the 
parabola. To put this another way, imagine yourself falling into a salad bowl (closest thing  
I could think of) and the only way you can stop falling is when you sit at the bottom of the  
bowl. We know from calculus that the derivative of that point ( , )x y  where you land is zero,  
that is, its gradient is also 0. To determine this value, we have to set the derivative of that 
point to be equal to zero and we already have seen the equation '( )f x Ax b= − , and we know 
now that (i)'( )f x r= − .

How to do it...
Let's now calculate the directional derivative of (1)( )d f x

dα  when it is equal to zero  
because α  minimizes f. Using the chain rule, we know that (1) (1) (0)( ) '( ) 0Td f x f x r

dα
= =  

and plugging in what we know of '( )f x , we have the following sequence of  
derivations by which we derive the value of α :
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In summary, the steepest descent comprises the following equations:
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Using the steepest descent means is that I take a step down the rabbit hole and before I take 
the next step I'm going to guess what its going to be and take it; if I'm right, hooray!
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The conjugate gradient method builds on steepest descent, and the two share a lot of 
similarities such that the conjugate gradient makes guesses which will eventually lead to the 
solution in x. Both methods use the residual vector to judge how far the guesses are from the 
correct answer.

The idea is to pick a set of orthogonal search directions, and in each direction we'll take 
exactly one step (pretty much the same as what we have seen before) ( 1) ( ) ( ) ( )i i i ix x dα+ = + .  
It turns out that we need to make the search direction A-orthogonal instead of orthogonal. 
We say that two vectors ( )id  and ( )jd  are A-orthogonal if ( ) ( ) 0T

i jd Ad = . When we use a search 
direction, one of the things that we want to minimize is the amount of space in which we 
search, and for this we would need linear independent vectors 0 1 2, , ,...u u u . From there,  
we can use the Gram-Schmidt process to generate them and we would have the following:

1
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As we did in the steepest descent method, let's use the same trick to determine what ikβ   
is since it looks really familiar like α , and we derive it using the following:
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From the previous equation, we plug in the fact that two vectors are A-orthogonal, that is,  
the left-hand side of the equation is 0, and we solve for the right-hand side which resulted  
in ikβ . When we compare this value with α, we would discover that they are pretty much the 
same except for the fact that the CG method uses linear independent vectors instead of the 
residual vector, as found in steepest descent.

The CG method builds on the Gram-Schimdt process/conjugation and steepest descent, 
whereby it removes the presence of search vectors. It favors the use of residual vectors 
instead, and this is important from a computational point of view, otherwise your program 
would need to store all of the search vectors, and for a large domain space it would probably 
be a very bad idea. There is a fair bit of math that we skipped, but feel free to download the 
original paper from Jonathan Shewchuk from the following link

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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In the method of conjugate gradient, we have the following equations:
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We're going to see how we can translate this into OpenCL. But first, it's time for a cup  
of coffee!

Now that we have established a basic idea of what the CG method is like, its time to take 
a look at how a simple SpMV kernel can be implemented. However, recall that I mentioned 
that we have to understand how the data in the sparse matrix can be stored. That turns out 
to be crucial in the implementation, and it's justifiable to spend the next couple of sections 
illustrating to you the well-known data storage formats.

Understanding the various SpMV data 
storage formats including ELLPACK, 
ELLPACK-R, COO, and CSR

There are a wide variety of sparse matrix representations, each with a different storage 
requirement, even computational characteristics, and with those come the varieties in which 
you can access and manipulate elements of the matrix. I made a remark earlier that we will 
be focusing on static sparse matrix formats, and I present here four storage formats that 
have been proven to be rather popular not only because of the decent performance but also 
because they were also some of the earliest formats which have been popular among scalar 
and vector architectures, and quite recently, in GPGPUs.
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In the following paragraphs, we are going to introduce you to the following sparse matrix 
representations in the following order:

 f ELLPACK format

 f ELLPACK-R format

 f Coordinate format

 f Compressed sparse row format

Let's start with the ELLPACK format. This format is also known as ELL. For an M x N matrix 
with a maximum of K non-zero values per row, the ELLPACK format stores the non-zero values 
into a dense M x K array which we'll name data, where rows with lesser than K non-zero 
values are zero padded. Similarly, the corresponding column indices are stored in another 
array, which we'll name indices. Again, a zero or some sentinel value is used for padding 
this array. The following representation of matrices illustrates what it looks like:

A=

data ,indices= =

6 9 0 0
0 2 8 4
5 0 1 9
0 0 0 1

6 9 *
2 8 4
5 1 9
1 * *

0 1 *
1 2 3
0 2 3
3 * *

A quick analysis on this format means that if the maximum number of non-zero values in each 
row does not differ too much from the average, the ELL format is rather appealing because it 
is intuitive, at least to me.

Next, we examine the ELLPACK-R format. This format is a variant of the ELLPACK format, and 
in addition to the data arrays that you have seen earlier, we have a new array rl, which is 
used to store the actual length of each row. The following representation illustrates what it 
looks like:

A=

data ,indices ,rl= = =

6 9 0 0
0 2 8 4
5 0 1 9
0 0 0 1

6 9 *
2 8 4
5 1 9
1 * *

0 1 *
1 2 3
0 2 3
3 * *

2
3
3
1
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It's not obvious now how this differs from ELLPACK, but the serial and parallel kernel which  
we will see later will make use of this new array to make the code and data transfers tighter.

We proceed with the coordinate format. The coordinate format is a simple storage scheme. The 
arrays row, col, and data store the row indices, column indices, and values, respectively of 
the non-zero matrix entries. COO is a general sparse matrix representation since the required 
storage is always proportional to the number of non-zero values. The following is what the COO 
format looks like:

A=

1 7 0 0 1

0 2 8 0 2

0 0 6 4 0

3 0 3 9 5

row

col

= [0,0,0,1,1,1,2,2,2,2,3,3,4,4,4,4]

= [0,0,0,1,1,1,2,2,2,2,3,3,4,4,4,4]

= [1,7,1,2,8,2,5,3,9,9,5,4,3,3,9,5]data

In this format, there are three one-dimensional arrays—row, col, and data.

Last one on this list is the Compressed Sparse Row (CSR) format. The CSR format is a 
popular, general-purpose sparse matrix representation. Like the COO Format, CSR explicitly 
stores column indices and non-zero values in the arrays indices and data. A third array of 
row pointers, ptr, takes the CSR representation. For an M x N matrix, ptr has length M + 1, 
and stores the offset into the ith row in ptr[i]. The last entry in ptr, which would otherwise 
correspond to the M + 1th row, stores the number of non-zero values in the matrix. The 
following representation illustrates what it looks like:

A=

ptr

indices

= [0,3,6,1,0,1,2,1,6]

= [0,1,4,1,2,4,0,2,3,4,2,3,0,2,3,4]

= [1,7,1,2,8,2,5,3,9,9,6,4,3,3,9,5]data

1 7 0 0 1

0 2 8 0 2

5 0 3 9 9

3 0 3 9 5

At this point, this is all I want to discuss about data representations for sparse matrices.

You should be aware that there are other formats like DIA, also known as, 
diagonal format, Hybrid/HYB for ELL/COO, and packet (for processors 
that resemble vector architectures).
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How to do it...
Now that we have examined three data storage formats, let's go on a little further and check 
out how we would solve the SpMV problem using the ELLPACK format. As before, we would 
like to start this section by kicking off with a code presentation on how the SpMV CPU kernel 
would look:

// num_rows  – number of rows in matrix
// data      – the array that stores the non-zero values
// indices   – the array that stores the column indices for zero, non-
//              zero values in the matrix
// num_cols  – the number of columns.
// vec       - the dense vector
// y         - the output 
void spmv_ell_cpu(const int num_rows,
                  const int num_cols,
                  const int * indices;
                  const float * data,
                  const float * vec, float * out) {
for( int row = 0; row < num_rows, row++) {
    float temp = 0;
      // row-major order
    for(int n = 0; n < num_cols; n++) {
        int col = indices[num_cols * row + n];
        float value = data[num_cols * row + n];
        if (value != 0 && col != 0)
            temp += value * vec[col];
    }
    out[row] += temp;
}
}

Take a few moments to convince yourself that we are indeed using the ELLPACK format to 
solve SpMV, and the data when stored in the low-level memory, is in row-major order. Putting 
on your parallel developer hat again, one strategy is to have one thread / work item process 
one row of the matrix data, and this implies that you can remove the outer loop structure thus 
giving you this possible SpMV ELL kernel.

// num_rows  – number of rows in matrix
// data      – the array that stores the non-zero values
// indices   – the array that stores the column indices for zero, non-
//              zero values in the matrix
// num_cols  – the number of columns.
// vec       - the dense vector
// y         - the output 
__kernel void



Chapter 8

203

spmv_ell_gpu(__global const int num_rows,
             __global const int num_cols,
             __global const int * indices;
             __global const float * data,
             __global const float * vec, float * out) {
     int row = get_global_id(0);
     if (row < num_rows) {
    float temp = 0;
     // row-major order
    for(int n = 0; n < num_cols; n++) {
        int col = indices[num_cols * row + n];
        float value = data[num_cols * row + n];
        if (value != 0 && col != 0)
            temp += value * vec[col];
    }
    out[row] += temp;
}
}

The first thing you would probably notice is that the outer loop structure has been removed, 
and that is intuitive when you consider the fact that that structure was present initially so that 
we can iterate over the inner loop which contains the actual work of the dot product between 
a row of the matrix and vector.

Now, when we examine its memory access patterns using our strategy of fine-grained 
parallelism, we would have something like the following representation and it would  
exhibit similar problems when we look at the SpMV CSR kernel in a later section:

A=

data ,indices= =

6 9 0 0

0 2 8 4

5 0 1 9

0 0 0 1

6 9 *

2 8 4

5 1 9

1 * *

0 1 *

1 2 3

0 2 3

3 * *

Memory access patterns for SpMV ELLPACK Serial

data

cache memory (each line= 16 elements)

thread-0

line-0

thread-1

thread-2

thread-3

line-1

line-2

line-3

6 9 0 2 84 5 1 9 1 0 0

6 9 0 2 84 5 1 9 1 0 0

6 9 0 2 84 5 1 9 1 0 0

6 9 0 2 84 5 1 9 1 0 0

6 9 0 2 84 5 1 9 1 0 0

2 84 5 1 9 1 0 0

5 1 9 1 0 0

1 0 0
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Understanding how to solve SpMV using the 
ELLPACK-R format

ELLPACK-R is a variant of the ELLPACK format, and apparently it is rather popular for 
implementing SpMV on GPUs. ELLPACK-R should be used if no regular substructures such 
as off-diagonals or dense blocks can be exploited. The basic idea is to compress the rows 
by shifting all non-zero entries to the left and storing the resulting M N×  matrix column by 
column consecutively in main host memory, where N is the maximum number of non-zero 
entries per row.

How to do it
The SpMV ELLPACK-R scalar kernel is called scalar because of the fact that we have not 
taken advantage of a particular aspects unique to GPUs when it comes to parallel program 
development in OpenCL. This aspect is known as wavefront-/warp-level programming. We'll 
talk more about this in the SpMV CSR kernel presentation in the next section. Hence, in this 
part we will present our OpenCL kernel, as shown in the following code, that employs the 
strategy of using one thread to process a row of the matrix data, and this time, we have the 
help of another array, rowLengths, which records the actual length of each row in the matrix 
where it contains non-zero values:

// data – the 1-D array containing non-zero values
// vec – our dense vector
// cols – column indices indicating where non-zero values are
// rowLengths – the maximum length of non-zeros in each row
// dim – dimension of our square matrix
// out – the 1-D array which our output array will be 
__kernel void
spmv_ellpackr_kernel(__global const float * restrict data,
                     __global const float * restrict vec
                     __global const int * restrict cols,
                     __global const int * restrict rowLengths,
                     const int dim, 
                     __global float * restrict out) {
    int t = get_global_id(0);

    if (t < dim)
    {
        float result = 0.0;
        int max = rowLengths[t];
        for (int i = 0; i < max; i++) {
            int ind = i * dim + t;
            result += data [ind] * vec[cols[ind]];
        }
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        out[t] = result;
    }
}

Examining the previous code, we noticed that once again we have reduced two for loops into 
one by recognizing the fact that each thread or work item (in OpenCL parlance, if you recall) 
can perform the work in the inner loop independently.

In the following code we present our kernel that has been "vectorized", we recognized that 
our SpMV ELLPACK-R kernel could be improved by taking advantage of the hardware's inbuilt 
feature to run a bunch of threads executing the code and in lock step.

This vectorization will not work if you were to execute it on your 
OpenCL x86 compliant CPU unless it has the vectorization hardware 
available to the GPUs.

This is incredibly useful when the occasions call for it, and this situation calls for it. This 
resulted in our SpMV ELLPACK-R vector kernel shown in the following code. Our strategy is to 
have a warp processed at each row of the matrix, and we break each row so that data can be 
processed by the threads in a warp or wavefront:

// data – the 1-D array containing non-zero values
// vec – our dense vector
// cols – column indices indicating where non-zero values are
// rowLengths – the maximum length of non-zeros in each row
// dim – dimension of our square matrix
// out – the 1-D array which our output array will be 
#define VECTOR_SIZE 32 // NVIDIA = 32, AMD = 64
__kernel void
spmv_ellpackr_vector_kernel(__global const float * restrict val,
                            __global const float * restrict vec,
                            __global const int * restrict cols,
                            __global const int * restrict rowLengths,
                            const int dim,
                            __global float * restrict out) {

    // Thread ID in block
    int t = get_local_id(0);
    // Thread id within warp/wavefront
    int id = t & (VECTOR_SIZE-1);
    // one warp/wavefront per row
    int threadsPerBlock = get_local_size(0) / VECTOR_SIZE;
    int row = (get_group_id(0) * threadsPerBlock) + (t / VECTOR_SIZE);
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    __local float volatile partialSums[128];

    if (row < dim) {
        float result = 0.0;
        int max = ceil(rowLengths[row]/VECTOR_SIZE);
        // the kernel is vectorized here where simultaneous threads
        // access data in an adjacent fashion, improves memory
        // coalescence and increase device bandwidth
        for (int i = 0; i < max; i ++) {
            int ind = i * (dim * VECTOR_SIZE) + row * VECTOR_SIZE + 
id;
            result += val[ind] * vec[cols[ind]];
        }
        partialSums[t] = sum;
        barrier(CLK_LOCAL_MEM_FENCE);

        // Reduce partial sums
        // Needs to be modified if there is a change in vector length
        if (id < 16) partialSums[t] += partialSums[t +16];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  8) partialSums[t] += partialSums[t + 8];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  4) partialSums[t] += partialSums[t + 4];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  2) partialSums[t] += partialSums[t + 2];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  1) partialSums[t] += partialSums[t + 1];
        barrier(CLK_LOCAL_MEM_FENCE);

        // Write result
        if (tid == 0)
        {
            out[row] = partialSums[tid];
        }

    }
}
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How it works
This vector kernel takes advantage of two facts:

 f The kernel is executed by groups of threads and those threads execute in lock step

 f Parallel reduction: Parallel reduction is rightfully a topic by itself and the variant 
technique we are using is known as segmented reduction

To help you understand how parallel reduction works, let's assume and imagine we have a  
one-dimensional array filled with 16 elements and each array element is given a number.  
Now, I like to ask you how you would go about calculating the sum of all elements in this given 
array? There are definitely more than two ways in which you can do this, but let's say you are 
giving the fact that eight work items can execute in lock step. how can you take advantage  
of that?

One way is to have each work item add two array elements and that would give you the partial 
sums, but how would you be able to add all of these partial sums to produce one single sum 
that represents the summation of the array? Without going into too much detail, let's use the 
following diagram and see if you can figure out how it would have worked:
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Understanding how to solve SpMV using the 
CSR format

After viewing all these different data representations for sparse matrices, you will probably 
realize there's more to the picture than we earlier imagined, and this serves to highlight the 
fact that researchers and engineers have spent a lot of time and effort to solve what looks 
like a deceptively simple problem in an efficient manner. Hence in this section, we are going to 
take a look at how to solve the SpMV problem using the CSR format looking at various recipes 
from sequential, scalar, and finally vector kernels in that order.

Getting ready
Now, let us take a look at what SpMV code would look like in its sequential form, that is,  
when executed on a modern CPU, using the CSR format, and then let's take a look at  
a naïve implementation of the SpMV:

// num_rows – number of rows in matrix
// ptr – the array that stores the offset to the i-th row in ptr[i]
// indices – the array that stores the column indices for non-zero
//           values in the matrix
// x       - the dense vector
// y       - the output 
void spmv_csr_cpu(const int num_rows,
                  const int * ptr;
                  const int * indices;
                  const float * data,
                  const float * vec, float * out) {
for( int row = 0; row < num_rows, row++) {
    float temp = 0;
    int start_row = ptr[row];
    int end_row = ptr[row+1];
    for(int jj = start_row; jj < end_row; jj++)
        temp += data[jj] * vec [indices[jj]];
    out[row] += temp;
}
}

Examining the preceding code, you will notice that the array ptr is being used to pick the  
non-zero elements in the array—data—which is desirable, and ptr is also being used to 
index into the indices array to retrieve the correct element in the vector vec so that we 
never conduct operations that multiply a zero value. This point is important to note from a 
computational point of view because it means we are not wasting precious processor cycles 
performing work we will never use; from another perspective, this representation also means 
that the caches are always filled with values we will need and not stored with values that are 
inherently zero valued.
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As promised, let us take a look at another solution that focuses on matrix-vector multiplication 
executing on a modern desktop CPU, and in both these examples, the only difference is the 
fact that the previous code took into account the matrix is sparse while the following code 
assumes the matrix is dense:

// M – the matrix with dimensions 'height' x 'width'
// V – the dense vector of length 'width'
// W – the output
void matvec_cpu(const float* M, const float* V, int width, int height, 
float* W)
{
    for (int i = 0; i < height; ++i) {
        double sum = 0;
        for (int j = 0; j < width; ++j) {
            double a = M[i * width + j];
            double b = V[j];
            sum += a * b;
        }
        W[i] = (float)sum;
    }
}

Take a few moments and examine both code bases, and you will realize the amount of 
computational cycles and memory bandwidth that was saved and wasted needlessly.

It is always recommended to compare the sequential form against 
the parallel form so that you can derive basic metrics about your 
transformed algorithm.

How to do it
Now that we have made done some basic comparisons, we need to figure out what our 
parallelization strategy is going to be. For this, we need to put on our parallel developer 
hat again and scrutinize the code for the SpMV CSR serial kernel shown earlier and look 
for parallelizable portions. One of the things you might have already recognized is the fact 
that the dot product between a row of the matrix and the vector vec, may be computed 
independently of all other rows.
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The following code demonstrates the implementation where we have one work item process 
a row of the matrix, and some literature would call this the scalar kernel. In this kernel, as 
before, our strategy focuses on looking at the two loop structures, and we discover that the 
outer loop structure can be flattened out and replaced by work items / threads, and we know 
how to achieve that; focusing back on the inner loop structure which is essentially what one 
work item /thread is executing on, we find that we can retain all of its execution flow and 
mimic that in the OpenCL kernel.

Next, let's take a look at how the SpMV kernel is written with the CSR format in mind:

__kernel void 
spmv_csr_scalar_kernel( __global const float * restrict val,
                        __global const float * restrict vec,
                        __global const int * restrict cols,
                        __global const int * restrict ptr,
                        const int dim, __global float * restrict out){
    int row = get_global_id(0);

    if (row < dim) {
        float temp=0;
        int start = ptr[row];
        int end = ptr[row+1];
        for (int j = start; j < end; j++) {
            int col = cols[j];
            temp += val[j] * vec[col];
        }
        out[row] = temp;
    }
}

If you can recall, in the previous chapter we noted that such an execution model uses really 
fine-grained parallelism, and such a kernel will probably not perform very well. The issue does 
not lie within the CSR representation, it lies within the fact that the work items / threads are 
not accessing those values in the CSR simultaneously. In fact, each thread that was working on 
each row of the matrix produces a memory access pattern in the following diagram. After tracing 
the execution of this SpMV CSR kernel for four work items / threads, you will notice that each 
thread would refer to a different portion of the array val (which contains all non-zero entries in 
the matrix A), and memory loads will be latched on the caches (which contain memory banks 
and memory lanes/lines) and finally the hardware registers will execute upon them.

From this point onwards, you should be thinking in terms 
of how GPUs work on a low-level basis.
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Let's use the matrix found in the CSR format earlier as an example to illustrate how this SpMV 
CSR is not really working too well. Each cache is actually implemented by lanes/lines such 
that each line can hold a number of bytes, and in our example, it assumes each line can hold 
16 elements (assuming each element is of the size 4 bytes which translates to 64 bytes).

It should be obvious to you by now that there's a lot of wastage of cache bandwidth. Since our 
kernel is parallel, we could conceptually have four different lines holding various parts of the 
input array. What would have been desirable is to allow all the data in at once and keeping the 
cache hot while processing it.

One way of achieving this is to apply the previous techniques you've learned. Kudos for 
thinking about that. However, let's learn another technique and in some literature it is known 
as warp-/wavefront-level programming. We saw it in action in the previous section.

Recall in another chapter, where we introduced the fact that threads of some of the OpenCL 
devices, GPUs notably execute a bunch of threads in lock step in the processor. The following 
figure illustrates the memory access pattern for a SpMV CSR kernel when building and 
executing on a CPU in a serial fashion:

To optimize your algorithm with respect to memory access, have your 
work items in a single wavefront/warp access the memory locations 
from the same cache line.
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Next, you would want to ask yourself the question on how you go about working out a kernel 
that is able to load the elements you need into the same cache line and take advantage of  
the fact that threads in a warp or wavefront execute in the lock step. This fact also implies  
that you need coordination, but don't worry, we won't have to use the atomic functions found 
in OpenCL for this.

When I see the term lock step, I immediately conjure the image of 10 runners, akin to 
executing threads in a warp/wavefront, lined up for a 100 meter dash, and the exception here 
as compared to the warp-/wavefront-level programming is that all these runners need to reach 
the finishing line together. Weird, I know, but that's how it works. Coordinating this batch of 
runners is like strapping leashes on eight horses dragging a wagon and the cowboy driving the 
carriage using his whip to accelerate or decelerate.

At this point, I like to digress a little and point out to you that Intel Math 
Kernel Library (Intel MKL) 11.0 implements sparse solvers using data 
storage formats based on the CSR formats and has good performance 
for running on Intel CPUs as they not only optimize memory management 
but also take advantage of Instruction Level Parallelism (ILP).

Now, you have to recognize and imagine your kernel to be executed by a bunch of threads and 
for starters, let's imagine 32 or 64 of them running at once. Each of these threads have an 
ID and that's the primary method in which you identify and control them, that is, placing the 
control-flow constructs that allows or restrict threads from running. To illustrate the point, let 
us take a look at the following improved SpMV CSR vector kernel.

The SpMV CSR OpenCL kernel is found in Ch8/SpMV/spmv.cl:

#define VECTOR_SIZE 32 
// Nvidia is 32 threads per warp, ATI is 64 per wavefront
__kernel void
spmv_csr_vector_kernel(__global const float * restrict val,
                       __global const float * restrict vec,
                       __global const int * restrict cols,
                       __global const int * restrict ptr,
                       const int dim, __global float * restrict out){
    int tid = get_local_id(0);
    int id = tid & (VECTOR_SIZE-1);
    // One row per warp
    int threadsPerBlock = get_local_size(0) / VECTOR_SIZE;
    int row = (get_group_id(0) * threadsPerBlock) + (tid / VECTOR_
SIZE);

    __local volatile float partialSums[128];
    partialSums[t] = 0;
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    if (row < dim)
    {
        int vecStart = ptr[row];
        int vecEnd   = ptr[row+1];
        float sum = 0;
        for (int j = vecStart + id; j < vecEnd; j += VECTOR_SIZE) {
            int col = cols[j];
            sum += val[j] * vec[col];
        }
        partialSums[tid] = sum;
        barrier(CLK_LOCAL_MEM_FENCE);

        // Reduce partial sums
        // Needs to be modified if there is a change in vector length
        if (id < 16) partialSums[tid] += partialSums[t +16];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  8) partialSums[tid] += partialSums[tid + 8];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  4) partialSums[tid] += partialSums[tid + 4];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  2) partialSums[tid] += partialSums[tid + 2];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (id <  1) partialSums[tid] += partialSums[tid + 1];
        barrier(CLK_LOCAL_MEM_FENCE);

        // Write result
        if (id == 0)
        {
            out[row] = partialSums[tid];
        }
    }
}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable 
form on which to execute. As before, the compilation will look familiar to you. On my setup  
with an Intel Core i7 CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the 
compilation looks like the following and it'll create an executable called SpMV into the  
working directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o SpMV -framework OpenCL
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At this point, the executable should be available to you on the directory. To run the program, 
simply execute the program SpMV in the directory, and you should notice an output that 
resembles the following:

Passed!

How it works
The way this works deserves a significant number of explanations, but first of all is the fact 
that we have adapted our parallel reduction into another form, which is otherwise known as 
segmented reduction. By this time, you should be relatively familiar with the rest of the code, 
so I won't walk you through that as you may doze off.

Parallel reduction, in all its forms, is a very effective way to conduct reduction across 
processors and even architectures. The famous Hadoop framework is an example of parallel 
reduction across architectures, and the form we are seeing now is that confined to the 
processor residing on the OpenCL GPU.

Let me walk you through what happened here in our segmented reduction example for the 
SpMV CSR vector kernel. Initially, we set up a shared memory space in our kernel to hold 128 
elements of the type float:

__local volatile float partialSums[128];

You might be curious as to why we need the keyword volatile when 
defining the array partialSums. The main reason is because on 
the level of warp/wavefront-level programming, OpenCL does not have 
synchronization functions like the memory fences we have encountered 
so far, and when you do not place the volatile keyword when declaring 
shared memory, the compiler is free to replace the store to and load from 
__local memory with register storage, and execution errors will arise.

The intention was for each thread in the warp/wavefront to store its own computation into its 
own slot marked by its thread ID.

Next, we see the following bunch of code:

if (id < 16) partialSums[tid] += partialSums[t +16];
barrier(CLK_LOCAL_MEM_FENCE);
if (id <  8) partialSums[tid] += partialSums[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if (id <  4) partialSums[tid] += partialSums[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if (id <  2) partialSums[tid] += partialSums[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
if (id <  1) partialSums[tid] += partialSums[tid + 1];
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barrier(CLK_LOCAL_MEM_FENCE);

// Write result
if (id == 0) {
    out[row] = partialSums[tid];
}

This code does two things—first is that it only allows threads with certain IDs to execute and 
the second thing it does is to only allow the thread with ID 0, that is, zero to write out the total 
sum into the appropriate element of the output array, out.

Let's get into the details. When an executing thread / work item attempts to execute the 
following piece of code, the kernel will first determine if its ID is allowed, and the threads with 
IDs ranging from 0 to 15 will get to execute, while those in the following code will not execute, 
and we will have thread divergence:

if (id < 16) partialSums[tid] += partialSums[t +16];
barrier(CLK_LOCAL_MEM_FENCE);

Recall that thread divergence occurs at branches, that is, if-then-
else, switches, and so on, which basically partition`s a warp/
wavefront into two, where one part of the group executes code while 
the other part doesn't.

At this point, you should convince yourself that pair-wise reduction takes place for the entire 
shared-memory array, partialSums, and I find it helpful when I trace it on paper or the 
computer (whatever is your preference). When the executing threads have finished the parallel 
reduction, notice that there are no overlapping writes (this is intentional), and we need to 
place a memory fence at that point just to make sure every thread has reached that point 
before proceeding. This memory fence is important, otherwise bad things will happen. Next, 
the parallel reduction occurs again, but this time we only need to process half of the array, 
and we restrict the number of threads to 8:

if (id < 8) partialSums[tid] += partialSums[t +8];
barrier(CLK_LOCAL_MEM_FENCE);

We repeat this cycle by dropping the number of executable threads by the power of two till 
it reaches 1, and at that point, the final aggregated value will be in the zeroth position in the 
array, partialSums.
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Once we have our final aggregated value in the zeroth position of the array partialSums, 
we can write it out to its appropriate position in the array out indexed by the row we've 
processed. This segmented reduction is drawn out in the following diagram:

Understanding how to solve SpMV using 
VexCL

Finally, I would like to present solving the SpMV CSR kernel using the conjugate gradient 
method. We have studied this method in the beginning of this chapter and hopefully, we still 
remember what it is. Let me help you by refreshing your memory of the core equations on the 
CG method:
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So far, we have developed a pretty good idea about how to solve SpMV problems using various 
ways through the SpMV ELLPACK, ELLPACK-R, and CSR formats in both scalar and vector forms, 
but it took us a while to get there for sure. In this section, you will be introduced to an OpenCL 
framework for solving problems, and its called VexCL. It can be downloaded from:

 f VexCL main page: https://github.com/ddemidov/vexcl

 f VexCL Wiki: https://github.com/ddemidov/vexcl/wiki

OpenCL has suffered, in the author's opinion, on the lack of tooling support, and VexCL is 
again, in the author's opinion, one of the better wrappers around OpenCL C++ and I like to 
take this section to briefly introduce you to it and you can go download it.

Getting ready
For VexCL to work with you, you will need a C++11 compliant compiler, and GNU GCC 4.6  
and the Boost Libs fit the bill. On my setup, I've got the GCC 4.7 compiled with Boost List 
Version 1.53 without much trouble. That means I won't list the installation instructions  
as the installation process is relatively straightforward.

How to do it
The following OpenCL kernel is found in Ch8/SpMV_VexCL/SpMV.cpp:

#define VEXCL_SHOW_KERNELS 
// define this macro before VexCL header inclusion to view output   
// kernels

#include <vexcl/vexcl.hpp>
typedef double real;
#include <iostream>
#include <vector>
#include <cstdlib>

void gpuConjugateGradient(const std::vector<size_t> &row,
                          const std::vector<size_t> &col,
                          const std::vector<real> &val,
                          const std::vector<real> &rhs,
                          std::vector<real> &x) {
    /*
     Initialize the OpenCL context
     */
    vex::Context oclCtx(vex::Filter::Type(CL_DEVICE_TYPE_GPU) &&
                        vex::Filter::DoublePrecision);
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    size_t n = x.size();
    vex::SpMat<real> A(oclCtx, n, n, row.data(), col.data(), val.
data());
    vex::vector<real> f(oclCtx, rhs);
    vex::vector<real> u(oclCtx, x);
    vex::vector<real> r(oclCtx, n);
    vex::vector<real> p(oclCtx, n);
    vex::vector<real> q(oclCtx, n);

    vex::Reductor<real,vex::MAX> max(oclCtx);
    vex::Reductor<real,vex::SUM> sum(oclCtx);

    
    /*
     Solve the equation Au = f with the "conjugate gradient" method
     See http://en.wikipedia.org/wiki/Conjugate_gradient_method
     */
    float rho1, rho2;
    r = f - A * u;

    for(uint iter = 0; max(fabs(r)) > 1e-8 && iter < n; iter++) {
        rho1 = sum(r * r);
        if(iter == 0 ) {
          p = r;
        } else {
          float beta = rho1 / rho2;
          p = r + beta * p;
        }

        q = A * p;

        float alpha = rho1 / sum(p * q);
        u += alpha * p;
        r -= alpha * q;
        rho2 = rho1;
    }

    using namespace vex;
    vex::copy(u, x); // copy the result back out to the host vector
}
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How it works
The host code basically fills the one-dimensional arrays with the required values so that 
they can conform to the CSR format. After this, the device vectors are declared with their 
appropriate data types and linked with their appropriate host vectors (the copying will take 
place but it happens behind the scenes), and two reductors are defined (they are basically the 
reduction kernels we have seen before); the reductor will only execute in the OpenCL device 
using a single thread of execution, so it isn't quite the same as the parallel reduction we have 
seen back then; its reduction is alright, but it is carried out in a sequential fashion.

Next, we initialized an ADT known as SpMAT which holds the representation of a sparse 
matrix, and this ADT has the capability to span multiple devices, which is very desirable 
property since the written code is transparent to its actual underlying computing devices.

In the background, the C++ code you have been shown will cause code generation to occur, 
and that is the code that will be used, compiled, and executed again; if you like to see the 
generated kernel code, simply place the C macro VEXCL_SHOW_KERNELS. We finally transfer 
the processed data from the device memory to the host memory using the copy function from 
the vex namespace.





Developing the Bitonic 
Sort with OpenCL

In this chapter, we will cover the following recipes:

 f Understanding sorting networks

 f Understanding bitonic sorting

 f Developing bitonic sorting in OpenCL

Introduction
Sorting is one of the most important problems in computer science and the ability to sort 
large amounts of data efficiently is absolutely critical. Sorting algorithms were traditionally 
been implemented on CPUs and they work very well there, but on the flipside implementing 
them on GPUs can be challenging. In the OpenCL programming model, we have both task 
and data parallelism and getting a sorting algorithm to work on the OpenCL model can be 
challenging, but mostly from the algorithm point of view, that is, how to create an algorithm 
that takes advantage of the massive data and task parallelism that OpenCL offers.

Sorting methods can largely be categorized into two types: data-driven and data-independent. 
Data-driven sorting algorithms execute the next step of the algorithm depending on the value of 
the key under consideration, for example, the QuickSort. Data-independent sorting algorithms is 
rigid from this perspective because they do not change the order of processing according to the 
values of the key, so in that sense it doesn't behave like data-driven sorting algorithms. They can 
be implemented in GPUs to exploit the massive data and task parallelism it offers. Hence we are 
going to explore the bitonic sort, as it's a classic example of data-independent sorting algorithm 
and we'll see how it can be represented by sorting networks, and eventually how they can be 
implemented efficiently in OpenCL to execute on GPUs.

9
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Ken Batcher invented bitonic sort in 1968. And for n items it would 
have a size of 2( log )O n n  and a depth of 2(log )O n .

The bitonic sort works effectively by comparing two elements at any point in time and what 
this means is that it consumes two inputs and decides whether a is equal to b, a is less than 
b, or a is greater than b, that is, the algorithm primarily operates on two elements, given an 
input. The bitonic sort is an example of a non-adaptive sorting algorithm.

A non-adaptive sorting algorithm is the one where the sequence of 
operations performed is independent of the order of the data also 
known as data-independent.

To give you a more concrete idea of what non-adaptive sorting methods are like, let's create 
a fictitious instruction cmpxchg, which has the semantics of comparing two elements and 
exchanging them when necessary. This is how it would look if we were to implement a 
compare-swap operation between two elements. In the following example, we illustrate the 
fact that non-adaptive methods are equivalent to straight line programs for sorting and they 
can be expressed as a list of compare-exchange operations to be performed.

cmpxchg(a[0], a[1]);
cmpxchg(a[1], a[2]);
cmpxchg(a[0], a[1]);

For example, the preceding sequence is a straight line program for sorting three elements; 
and quite often the goal of developing such an algorithm is to define for each n, a fixed 
sequence of the cmpxchg operations that can sort any set of n keys. To put it in another  
way, the algorithm doesn't take into account whether the data to be sorted is sorted prior  
or partially sorted.

Understanding sorting networks
In the previous section, we looked at a non-adaptive sorting algorithm and what it's nature is in 
its fundamental form. In this section, let's look at a model frequently used to study non-adaptive 
sorting algorithms. Technical literature has called this model, the sorting network. This form of 
sorting is also known as comparator networks, and is the idea behind the bitonic sort.

Sorting networks are the simplest model for this study, as they represent an abstract machine 
which accesses the data only through compare-exchange operations, and it comprises of atomic 
compare-exchanges also known as comparators which are wired together to implement the 
capability of general sorting.
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How to do it...
The following is an illustration for sorting four keys. By convention, we draw a sorting network 
for n items as a sequence of n horizontal lines, with comparators connecting a pair of lines. 
We also imagine that the keys to be sorted pass from right to left through the network, 
with a pair of numbers exchanged if necessary to put the smaller on the top whenever the 
comparator is encountered:
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From the preceding diagram, you will notice that the keys move from left to right on the lines 
in the network. The comparators that they encounter would exchange the keys if necessary 
and continually push the smaller key towards the top of this network. An astute reader will 
notice that no exchanges were done on the fourth comparator. This sorting network will sort 
any permutation of four keys.

There are other sorting networks other than this and the following network also sorts the 
same input as before, but it takes two more compare-exchange operations as compared to 
the previous sorting network. It is interesting to study and that's why this is left as an exercise 
for you to research on your own.

B

C

D

A

B

C

A

D

B

C

A

D

A

B

C

D

C

B

D

A

B

C

D

A

B

A

D

D

B

A

C

D



Developing the Bitonic Sort with OpenCL

224

How it works...
This sorting network exhibits a particular property and that is as long as the comparators do 
not overlap, then we can actually conduct the compare-exchange operations in parallel. Next, 
we need to understand how we can exact parallelism from this by grouping what can be done 
in parallel and needs to be performed in the next stage. Here's the sorting network that is 
optimal for sorting any four keys and we show the operations that can be conducted in parallel 
which are broken into three stages of sorting:

parallel sorting network

Stage-0 Stage-I Stage-2

thread-I thread-I thread-I

thread-0

thread-0

Although it is not the most efficient, the earlier diagram illustrates a possible parallel sorting 
network for any four keys. In this parallel sorting network, we could potentially launch threads 
where it will conduct the compare-exchange operations in three stages, and the result is that 
the input is sorted.

Notice that this sorting network for sorting four keys is optimal 
from a computational point of view, as it has only to perform five 
compare-exchange operations in three stages.

Understanding bitonic sorting
Previously we have discussed sorting networks and it closely relates to bitonic sorting, 
because sorting networks are employed to implement non-adaptive sorting algorithms,  
for example, bitonic sort. In bitonic sorting, we basically have an input (defined elsewhere) 
that's a bitonic sequence. A bitonic sequence is one that monotonically increases (decreases), 
reaches a single maximum (minimum), and then monotonically decreases (increases).  
A sequence is considered bitonic if it can be made so by cyclically shifting the sequence.
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In general, we consider a few scenarios for determining whether the input is suitable for sorting 
(after all processor cycles are precious and it is a good idea not to waste them doing needless 
work). In fact, when we wish to sort some input based on a particular sorting algorithm, we 
would always consider whether the input is already sorted based on our criteria. In the context 
of bitonic sorting, we could possibly receive a bitonic sequence, and what we do for that is apply 
what is known as a bitonic split sequence or an arbitrary sequence, in the case of an operation 
on the input sequence and keep doing this until we reach the final sorted state.

A bitonic split is an operation on a bitonic sequence, such that if /2i i na a +>  
the two elements are exchanged, 1 i n≤ <  and the operation produces two 
bitonic sequences A and B, such that the elements in A are less than the 
elements in B.

How to do it...
The diagram shows how two bitonic sequences (at the top of the diagram) can be conceptually 
combined to a larger sequence (at the bottom of the diagram) by repeated application of this 
sorting algorithm:

sequence A sequence B

sequence C
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In the situation where we receive an arbitrary sequence, that is, unsorted and not in bitonic 
order, we have to basically produce a bitonic sequence from this unsorted input and then 
apply the same trick as before using the bitonic splits until we reach the final sorted state. 
The following diagram illustrates how a bitonic split or merge (as it's often called) operates 
on separate sequences and produces the final sorted sequence either in ascending or 
descending order:

bitonic split/merge bitonic split/merge

bitonic sequence A bitonic sequence B

bitonic split/merge

bitonic sequence A bitonic sequence B

sorted sequence

In either case, we will know when to terminate if the split sizes have reached two, because 
at this point, it's a comparison operation between a and b, where either a is greater than or 
equal to b or b is greater than or equal to a. And it holds and depending on the sorting order, 
we will place them into their appropriate position in the output.

Bitonic Sorting uses a principle created by Donald Knuth and it's known as the Knuth's  
0/1 principle, which is: If a sorting algorithm that performs only element comparisons  
and exchanges on all sequences of zeros and ones, and then it sorts all sequences of  
arbitrary numbers.

Before we proceed to develop the bitonic sort algorithm using OpenCL, it's proper that  
we only introduce it through its sequential form from which we can begin to look for 
opportunities for parallelism.
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The following code snippet is from src/Ch9/BitonicSort_CPU_02/BitonicSort.c and 
the relevant portions of the code are shown. This implementation is a translation of Batcher's 
algorithm, that for illustration purpose is a recursive one and looks like this:

void merge(int a[], int l, int r) {
  int i, m = (l+r)/2;
  if (r == (l+1)) compareXchg(a, l, r);
  if (r < (l+2)) return;

  unshuffle(a, l, r);
  merge(a, l, m);
  merge(a,  m+1, r);
  shuffle(a, l, r);
  // In the original algorithm the statement was the following:
  // for(i = l+1; i < r; i+= 2) compareXchg(a, i, i+1);
  for(i = l; i < r; i+= 2) compareXchg(a, i, i+1);
}

This recursive program works is by repeatedly splitting its original input by half and it proceeds 
to sort each of the halves and merges those halves into bigger segments. This process is 
continued until the segment reaches the original size. Notice that it uses two other supporting 
functions to accomplish this and they're called shuffle and unshuffle. They work similarly 
to the same functions in OpenCL (which isn't a wonder because the same functions in OpenCL 
drew inspiration from them). Here are those functions:

void shuffle(int a[], int l, int r) {
  int* aux = (int*)malloc(sizeof(int) * r);
  int i, j, m = (l+r)/2;
  for(i = l, j = 0; i <= r; i += 2, j++ ) {
    aux[i] = a[l+j];
    aux[i+1] = a[m+1+j];
  }
  for(i = l; i <= r; i++) a[i] = aux[i];
}

void unshuffle(int a[], int l, int r) {
  int* aux = (int*)malloc(sizeof(int) * r);
  int i, j, m = (l+r)/2;
  for(i = l, j = 0; i <= r; i += 2, j++ ) {
    aux[l+j] = a[i];
    aux[m+1+j] = a[i+1];
  }
  for(i = l; i <= r; i++) a[i] = aux[i];
}
void compareXchg(int* arr, int offset1, int offset2) {
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  if (arr[offset1] >= arr[offset2]) {
    int t = arr[offset1];
    arr[offset1] = arr[offset2];
    arr[offset2] = t;
  }
}

And what they do is this: shuffling actually splits the input into halves again and picks each 
element from each half and place them side-by-side until it reaches the end of both halves. 
Unshuffling does exactly the opposite by removing those elements and placing them into their 
original positions and for those algorithm geeks in you, you would recognize that this is the 
program implementation of the top-down mergesort algorithm and belongs to the class of 
algorithms that uses the divide-and-conquer approach. As a refresher, an illustration is shown 
in the How it works… section of this recipe, which depicts how both shuffling and un-shuffling 
works in this algorithm.

How it works...
The concept of shuffling and unshuffling was explored in Chapter 4, Using OpenCL Functions 
and we invite you to head back there and refresh yourself with the concepts. The following 
diagram illustrates how shuffle and unshuffle (as defined before) would work given an 
imaginary input: 8, 12, 4, 15, 2, 11, 6, 3, 5, 14, 16, 10, 1, 9, 13, 7:

8 4 2 6 5 16 1 13 12 15 11 3 14 10 9 7

8 12 4 15 2 11 6 3 5 14 16 10 1 9 13 7

How shuffling/unshuffling works in Bitonic Sort

unshuffing

shuffing
*elements are sorted in memory in-place

8 12 4 15 2 11 6 3 5 14 16 10 1 9 13 7

8 4 2 6 5 16 1 13 12 15 11 3 14 10 9 7
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Recursive algorithms similar to the one we have just presented are good for understanding 
the general flow of the algorithm, but it doesn't work well when you wish to run this algorithm 
on OpenCL GPUs because recursion isn't fully supported on GPUs. Even though you were to 
choose an implementation that runs on the CPU via OpenCL, it'll work but it won't be portable.

We need an iterative version of this algorithm we just discussed, and fortunately for us we can 
convert this recursive algorithm to an iterative one. We will look at the following solution from 
src/Ch9/BitonicSort_CPU_02/BitonicSort.c:

void merge_iterative(int a[], int l, int r) {
  int i, j , k, p, N = r -l+1;
  for(p = 1; p < N; p += p)
    for(k = p; k > 0; k /= 2)
     for(j = k%p; j+k < N; j += (k+k))
      for(i = 0; i < k; i++)
        if(j+i+k < N)
          if((j+i)/(p+p) == (j+i+k)/(p+p))
            compareXchg(a, l+j+i, l+j+i+k);
}

This algorithm is divided into phases indexed by the p variable. The last phase, which is when 
p is N, and each phase applies the sorting and merging to segments of sizes N / 2, N / 4, 
N / 8 to 

2k
N . When examining this code deeper by tracing the execution flow, you would notice 

that it is actually computing the sorting network that accepts 32 inputs (corresponding to the 
number of inputs in our input buffer), and when you read the diagram from left to right, you 
will notice that it approaches solving this problem in a bottom-up manner:
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What I meant by bottom-up approach is that figure should be read from left to right (that's 
also the flow of the data through this sorting network). When you draw columns around 
the first column, you'll notice that the algorithm creates segments of sizes two. Then the 
second and third columns form segments of sizes 4, then the fourth, fifth, and sixth columns 
form segments of size eight. They continue to form to sort/merge segments of sizes that 
are a power of two up to the point where it sorts and merges all the N elements in the 
input array. You will probably have realized that the algorithm doesn't create any temporary 
data structures to hold temporary values and it's actually sorting in-place. The immediate 
consequence of a sorting algorithm that sorts in-place is that it is memory efficient, since the 
output is written into the input and doesn't create any memory storage at all. The following is 
an illustration of the partition sizes that the algorithm works on while at every stage:

Bitonic Sort in stages

2 4 8 16 32

To develop our understanding of the bitonic sort and sorting networks, it is important  
to understand how parallelism can be subsequently extracted from.

Developing bitonic sorting in OpenCL
In this section, we will walk through an implementation of sorting an arbitrary input by using 
the bitonic sort in OpenCL which runs better on a GPU.

We recall that bitonic sorting recursively sorts elements in the input by building up sequences 
and merging those into bigger sized sequences and then repeats the cycle, and the two 
key operations performs it really does is to conduct: a pairwise comparison to determine 
the greater/smaller of the two elements in a sequence, and merging the two sequences by 
applying the bitonic sort between them.
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Getting ready
So far we have seen how we can apply the bitonic sort to bitonic sequences. The question we 
need to address next is what do we do with an input that is entirely arbitrary? The answer to 
that question is to make it into a bitonic sequence and then apply a series of bitonic splits/
merge. At the beginning, pairwise compare-exchange operations are conducted for elements 
in the input, and at the end of this stage we have sorted segments of size two. The next stage 
is to group two segments of size two and perform compare-exchange producing segments of 
size four. The cycle repeats itself and the algorithm keeps creating bigger segments of size 2k.

Recall from the previous section, where we saw the iterative version of the bitonic sort (the 
algorithm is repeated here) which uses an array index, p, to denote the phases in which the 
sort will take place and with each phase of the algorithm, the algorithm sorts and merges 
segments of sizes two, four, eight, and so on. And building up on that idea, each phase of the 
sort is going to be parallel. Also remember that we need to do two things:

 f Build a comparator network (bitonic split/sort) that sorts two smaller bitonic 
sequences into a large one, remembering the fact that sizes are powers of two.  
This pairwise comparison between two elements will be conducted by a single 
executing thread/work item.

 f Build bitonic sequences on each half, such that one half is monotonically increasing 
and the other half is monotonically decreasing.

How to do it...
Our strategy focuses on using a single executable thread performing the compare-exchange 
operation, and following is the Bitonic Sort OpenCL kernel which uses this simple strategy.

The following code excerpt is taken from Ch9/BitonicSort_GPU/BitonicSort.cl:

__kernel
void bitonicSort(__global uint * data,
                 const uint stage,
                 const uint subStage,
                 const uint direction) {

    uint sortIncreasing = direction;
    uint threadId = get_global_id(0);

    // Determine where to conduct the bitonic split
    // by locating the middle-point of this 1D array
    uint distanceBetweenPairs = 1 << (stage - subStage);
    uint blockWidth   = 2 * distanceBetweenPairs;

    // Determine the left and right indexes to data referencing
    uint leftId = (threadId % distanceBetweenPairs) + 
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                  (threadId / distanceBetweenPairs) * blockWidth;

    uint rightId = leftId + distanceBetweenPairs;

    uint leftElement = data[leftId];
    uint rightElement = data[rightId];

    // Threads are divided into blocks of size
    // 2^sameDirectionBlockWidth
    // and its used to build bitonic subsequences s.t the sorting is 
    // monotically increasing on the left and decreasing on the right
    uint sameDirectionBlockWidth = 1 << stage;

    if((threadId/sameDirectionBlockWidth) % 2 == 1)
        sortIncreasing = 1 - sortIncreasing;

    uint greater;
    uint lesser;
    // perform pairwise comparison between two elements and depending 
    // whether its to build the bitonic that is monotically increasing
    // and decreasing.
    if(leftElement > rightElement) {
        greater = leftElement;
        lesser  = rightElement;
    } else {
        greater = rightElement;
        lesser  = leftElement;
    }

    if(sortIncreasing) {
        input[leftId]  = lesser;
        input[rightId] = greater;
    } else {
        input[leftId]  = greater;
        input[rightId] = lesser;
    }
}

Using the preceding OpenCL kernel code we need to build an executable, so that it can execute 
on our platform. As before, the compilation will look familiar to you. On my setup with an Intel 
Core i7 CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks as 
follows, and it'll create an executable called BitonicSort into the working directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o BitonicSort -framework 
OpenCL
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At this point, you should have an executable deposited in that directory. All you need to do  
now is to run the program, simply execute the BitonicSort program in the directory and  
you should have noticed an output that resembles this:

Passed!

Execution of the Bitonic Sort took X.Xs

How it works...
The algorithm starts from the basic strategy of using a thread to conduct the pairwise 
comparison-exchange operation. The details is that the host code will break down the original 
input into its respective phases, and for our testing purposes we have an input of 16 million 
elements which works out to 24 phases. In the host code, we use the stage variable to 
indicate that. Next at each phase, the algorithm will apply the bitonic split/sort and merge 
segments of sizes progressively from the least power of two to the greatest power of two, 
smaller or equal to the phases, for example if we are sorting for elements of size eight, then 
we would sort to produce segments of size two, then four, and finally we will sort and merge 
4-by-4 sequences to get eight.

In detail when the kernel starts executing, it has to start building the bitonic subsequences by 
using the bitonic split. And to do that the kernel needs to know where to split the array, taking 
into account the current stage of the sort and it does this with the following code:

    uint distanceBetweenPairs = 1 << (stage - subStage);
    uint blockWidth   = 2 * distanceBetweenPairs;

    // Determine the left and right indexes to data referencing
    uint leftId = (threadId % distanceBetweenPairs) + 
                  (threadId / distanceBetweenPairs) * blockWidth;

    uint rightId = leftId + distanceBetweenPairs;

Next, the kernel loads the data values from the array by using the leftId and rightId 
indices and stores them in the thread's local register memory. The next part of the algorithm 
is to build bitonic sequences, such that one half is monotonically increasing and the other half 
is monotonically decreasing. And we use the variable, sameDirectionBlockWidth, as a 
heuristic to guide whether we are going to sort increasingly or decreasingly. The following code 
does that:

    uint sameDirectionBlockWidth = 1 << stage;

    if((threadId/sameDirectionBlockWidth) % 2 == 1)
        sortIncreasing = 1 - sortIncreasing;
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As an example, let's assume that stage is three which implies that 
sameDirectionBlockWidth is eight. The following figure demonstrates what will eventually 
happen when the sortIncreasing variable flips based on the (above) computation, and 
hence creates the desired effect of bitonic sequencing:

same DirectionBlockWidth = 8

threads threads threads

t0 t1 t2 t3 t4 t5 t6 t7

increasing

sequence 2

t8 t9 t10 t11 t12 t13 t14 t15

decreasing

sequence 1

t16 t17 t18 t19 t20 t21 t22 t23

decreasing

sequence 3

The rest of the kernel code is concerned with the pairwise comparison-exchange operation, 
which we are familiar with by now.

Another aspect of this implementation is that the algorithm is compute bound and it's 
executed iteratively on the OpenCL GPU via the CPU, and the kernel is notified of which  
stage it's at including its substages. This can be accomplished in the host code like this:

for(cl_uint stage = 0; stage < stages; ++stage) {
  clSetKernelArg(kernel, 1, sizeof(cl_uint),(void*)&stage);

  for(cl_uint subStage = 0; subStage < stage +1; subStage++) {
    clSetKernelArg(kernel, 2, sizeof(cl_uint),(void*)&subStage);
                cl_event exeEvt;
                cl_ulong executionStart, executionEnd;
                error = clEnqueueNDRangeKernel(queue,
                                               kernel,
                                               1,
                                               NULL,
                                               globalThreads,
                                               threadsPerGroup,
                                               0,
                                               NULL,
                                               &exeEvt);
                clWaitForEvents(1, &exeEvt);
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The code basically iterates over all the stages and its substages, and invokes the GPU to 
work on the same input buffer notifying the kernel which stage and substage the kernel is 
executing by invoking clSetKernelArg for the appropriate parameter. And then waits until 
the sorting is done in that phase before starting work on another (this is critical, otherwise 
the input buffer would be corrupted). In order to make the input buffer be both readable and 
writeable by the algorithm, it was created like this:

device_A_in = clCreateBuffer(context,
                             CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
                             LENGTH * sizeof(cl_int),
                             host_A_in,
                             &error);

The execution of this algorithm will see the execution flow entering the host, and then leaving 
for the GPU and continuing to do this until the stages run out. This process is illustrated in the 
following diagram, though it cannot be scaled:

Time

wall clock

CPU vs GPU execution time graph

key:

CPU idle

GPU

GPU

T0

T1

T2

T3

T4

T5
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We can actually apply an optimization on this kernel by employing a technique we have 
understood quite well so far, and that is using the shared memory. Shared memory, as you 
probably know by now, allows the developer to reduce global memory traffic since the program 
does not have to repeatedly request elements from the global memory space, but instead use 
what has been stored in its internal memory. Here's a refresher on how the memory model in 
OpenCL looks like:

Memory Model in OpenCL

local memory local memory

compute device l

Private memory Private memory

work-item l work-item 2

compute device l

Private memory Private memory

work-item l work-item 2

Global / Constant Memory Data Cache

Applying the techniques we have learnt so far, we actually have one possible point in which 
we can apply shared memory techniques by looking out for code that is fetching data from the 
global memory. We will develop a solution using shared memory and expanding it slightly to 
have our program load it in strides. We'll get into that in a short while. Let's start at a plausible 
point for reworking our bitonicSort program taking into account the presence of  
shared memory:

uint leftElement = data[leftId];
uint rightElement = data[rightId];

We present the following kernel that uses shared memory, we'll explain how it works,  
found in Ch9/BitonicSort_GPU/BitonicSort.cl:

__kernel
void bitonicSort_sharedmem(__global uint * data,
                           const uint stage,
                           const uint subStage,
                           const uint direction,
                           __local uint* sharedMem) {
    // more code omitted here
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    // Copy data to shared memory on device
    if (threadId == 0) {
        sharedMem[threadId] = data[leftId];
        sharedMem[threadId+1] = data[rightId];
    } else {
        sharedMem[threadId+1] = data[leftId];
        sharedMem[threadId+2] = data[rightId];
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    
    // more code omitted
    uint greater;
    uint lesser;

    if (threadId == 0) {
        if(sharedMem[threadId] > sharedMem[threadId+1]) {
            greater = sharedMem[threadId];
            lesser  = sharedMem[threadId+1];
        } else {
            greater = sharedMem[threadId+1];
            lesser  = sharedMem[threadId];
        }
    } else {
        if(sharedMem[threadId+1] > sharedMem[threadId+2]) {
            greater = sharedMem[threadId+1];
            lesser  = sharedMem[threadId+2];
        } else {
            greater = sharedMem[threadId+2];
            lesser  = sharedMem[threadId+1];
        }
    }

What we did basically was to introduce a variable called sharedMem and the strategy for 
loading those values is simple: each thread will store two values (adjacent) in the shared 
memory data store, where it will be read out in the subsequent section and all reads which 
used to refer to the global memory is now conducted in the local/shared memory.
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The host code that is responsible for allocating this memory space is the following code 
snippet from Ch9/BitonicSort_GPU/BitonicSort.c taking into account that each 
thread writes two adjacent values. And hence it requires twice the amount of memory  
for a work group of 256 threads:

#ifdef USE_SHARED_MEM
clSetKernelArg(kernel, 4, (GROUP_SIZE << 1) *sizeof(cl_uint),NULL);
#endif

And to see it in action you can compile the program like this (invoking gcc directly):

gcc -DUSE_SHARED_MEM -Wall -std=c99 -lOpenCL ./BitonicSort.c -o 
BitonicSort_GPU

This deposits the BitonicSort_GPU program into that directory; another way is to invoke 
cmake at the root of this code base like this:

cmake –DUSE_SHARED_MEM=1 –DDEBUG .

And navigate to Ch9/BitonicSort_GPU/ and invoke make like this:

make clean;make

The following is a diagram of how the writes to the shared memory are done with respect to the 
scheme we just described. Remember that all subsequent reads is through sharedMem instead 
of the global memory traffic, which means that a significant amount of bandwidth is saved:

How shared memory is written

sharedMem k0 v0 k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 k7

thread-0 thread-1 thread-2 thread-3 thread-4 thread-5 thread-6 thread-7

We can explore the algorithm a little further by examining the original kernel, bitonicSort, 
where the last part of the algorithm involves essentially a comparison-exchange operation 
before writing that result back out to global memory. In this situation, we can extrapolate the 
shared memory concept further by applying it again and our strategy is rather simple here: we 
have each executing thread writing two pairs, where each pair is this [ ( )| : |left rightId lesser greaterkey value ], 
and referenced by a key and a value. And in our algorithm the key refers to the output index  
(that is, leftId, rightId) and the value refers to the sorted value (that is, lesser, greater) 
that will reside at that key. The following diagram illustrates how each thread would have written 
the two pairs into the aux shared memory, and how they could be laid out in memory:
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How shared memory is written with a striding factor of 4

aux k0 v0 k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 k7

thread-0 thread-1 thread-2 thread-3

The following kernel modifications are found at Ch9/BitonicSort_GPU/BitonicSort.cl 
in the kernel named bitonicSort_sharedmem_2. We will look at the portions where  
the changes were different relative to the bitonicSort_sharedmem kernel:

    // Each thread will write the data elements to its own
    // partition of the shared storage without conflicts.
    const uint stride = 4;
    if(sortIncreasing) {
        aux[threadId*stride] = leftId;
        aux[threadId*stride+1] = lesser;
        aux[threadId*stride+2] = rightId;
        aux[threadId*stride+3] = greater;
    } else {
        aux[threadId*stride] = leftId;
        aux[threadId*stride+1] = greater;
        aux[threadId*stride+2] = rightId;
        aux[threadId*stride+3] = lesser;
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    if(threadId == 0) {
        for(int i = 0; i < GROUP_SIZE * stride; ++i) {
           data[aux[i*stride]] = aux[i*stride+1];
           data[aux[i*stride+2]] = aux[i*stride+3];
        }
    }

The final section of the kernel illustrates how we allow only one executing thread, that is, 
the thread with ID zero, from each work group to conduct the actual write back to global 
memory from the shared memory, aux. Do note that the memory fence is necessary, since 
the memory in aux may not have been filled by the time the thread with ID zero has begun 
execution. Therefore, it's placed there to ensure memory coherency.





Developing the Radix 
Sort with OpenCL

In this chapter, we are going to explore the following recipes:

 f Understanding the Radix sort

 f Understanding the MSD and LSD Radix sorts

 f Understanding reduction

 f Developing the Radix sort in OpenCL

Introduction
In the previous chapter, we learned about developing the Bitonic sort using OpenCL.  
In this chapter, we are going to explore how to develop the Radix sort with OpenCL.  
Radix sorting is also known as bucket sorting, and we'll see why later on.

The first Radix sort algorithms came from a machine called the Hollerith 
machine that was used in 1890 to tabulate the United States census, 
and though it may not be quite as famous as the machine created by 
Charles Babbage, it does have its place in computing history.

10



Developing the Radix Sort with OpenCL

242

Understanding the Radix sort
The Radix sort is not a comparison-based sorting algorithm, and it has a few qualities that 
make it more suitable to parallel computation, especially on vector processors such as GPU 
and modern CPUs.

I am somewhat reluctant to use the term modern since processor 
technology has evolved so quickly over time that the use of this word 
somehow seems dated.

The way the Radix sort works is rather interesting when you compare it with the comparison-
based sorting algorithms such as quicksort; the main difference between them is how they 
process the keys of the input data. The Radix sort does this by breaking down a key into  
smaller sequences of sub-keys, if you will, and sorts these sub-keys one by one.

Numbers can be translated in binary and can be viewed as a sequence of bits; the same 
analogy can be drawn from strings where they are sequences of characters. The Radix sort, 
when applied to such keys, does not compare the individual keys, but rather it works on 
processing and comparing pieces of those keys.

Radix sort algorithms treat the keys like numbers in a base-R number system. R is known  
as the radix, hence the given name of this algorithm. Different values of R can be applied  
to different types of sorting. Examples could be:

 f R = 256 would be sorting strings where each character is an 8-bit ASCII value

 f R = 65536 would be sorting Unicode strings where each character is a 16-bit 
Unicode value

 f R = 2 would be sorting binary numbers

How to do it…
At this point, let's examine an example to see how the Radix sort would sort the numbers 
44565, 23441, 16482, 98789, and 56732, assuming that each number is a five-digit 
number laid out in memory in contiguous locations

44565 23441 16482 98789 56732

We are going to extract each digit in a right-to-left fashion examining the least significant digit 
first. Therefore, we have the following:

5 1 2 9 2
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Let's assume we apply counting sort to this array of numbers and it becomes the following:

1 2 2 5 9

This translates to the following order. Take note that the sorting is stable:

23441 16482 56732 44565 98789

Next, we shift to the left by one digit. Notice that now the array of numbers is:

4 8 3 6 8

Applying the counting sort again and translating it back to the order of the numbers,  
we have:

56732 23441 16482 98789 44565

For the 1000th digit we have:

23441 16482 56732 98789 44565

For the 10,000th digit we have:

23441 44565 16482 56732 98789

For the 100,000th digit we have:

16482 23441 44565 56732 98789

Voila! Radix sorting sorted the array of five-digit numbers. We should note that the sort  
is stable.
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Stable sorting refers to the capability of the algorithm to be able to 
maintain the relative order between any two elements with equal keys. 
Let us assume that an array, int a[5], of the values 1, 2, 3, 4, 9, and 
2, through some sorting algorithm, X, will sort the elements to 1, 2, 2, 3, 
4, and 9. The point here is that the two equal values we saw, which are 
both the number 2, occur at positions 1 and 5 (assuming arrays are zero 
indexed). Then, through X, the sorted list will be such that a[1] is always 
before a[5].

There are actually two basic approaches to Radix sorting. We have seen one approach in 
which we examine the least-significant digit and sort it. This is commonly referred to as LSD 
Radix sorting since we work our way from right to left. The other approach would be to work 
from left to right.

The key consideration in Radix sorting is the concept of the key. Depending on the context,  
a key may be a word or a string, and each of them would be of fixed length or variable length.

Understanding the MSD and LSD Radix sorts
Let us take some time to understand how the MSD Radix sort and the LSD Radix sort work 
before we start working on developing the equivalent on OpenCL.

How to do it…
The Radix sort assumes that we wish to sort Radix-R numbers by considering the most 
significant digit first. For this to happen, we can partition the input into R rather than just 
two, and we have actually seen this done before. This is data binning, but it extends that with 
the counting sort. A Radix sort can be run on ASCII characters, Unicode characters, integer 
numbers (32-bit / 64-bit), or floating-point numbers (sorting floating-point numbers is tricky). 
You need to figure out what constitutes a key. Keys can be thought of as 8-bit keys, 16-bit 
keys, and so on, and we know by now that Radix sorts require repeated iterations to extract 
the keys and sort and bin them based on base R.

In the following code snippet, we have an MSD Radix sort that sorts the characters in a given 
string in the programming language C, and the radix we use is 256 (the maximum value of an 
unsigned 8-bit number, otherwise a signed 8-bit would be -128 to 127):

#define N // integers to be sorted with values from 0 – 256
void MSD(char[] s) {
  msd_sort(s, 0, len(s), 0);
}
void msd_sort(char[][] s, int lhs, int rhs, int d) {
  if (rhs <= lhs + 1) return;
  int* count = (int*)malloc(257 *sizeof(int));
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  for(int i = 0; i < N; ++i)
    count[s[i][d]+1]++;
  for(int k = 1; k < 256; ++k) 
    count[k] += count[k-1];
  for(int j = 0; j < N; ++j) 
    temp[count[s[i][d]]++] = a[i];
  for(int i = 0; i < N; ++i) 
    s[i] = temp[i];
  for(int i = 0; i<255;++i)
    msd_sort(s, 1 + count[i], 1 + count[i+1], d+1);
}

The second approach in Radix sorting scans the input from right to left and examines each 
element by applying a similar operation as in an MSD Radix sort. This is known as the Least 
Significant Digit (LSD) Radix sort. LSD Radix sorting works because when any two elements 
differ, the sorting will place them in the proper relative order, and even when these two elements 
differ, the fact that LSD exhibits stable sorting means that their relative order is still maintained. 
Let's take a look at how it would work for sorting three character strings:

d a b
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f e e
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f e d
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e b b
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LSD radix sort on 3-character strings

sort keysort keysort keysort key

A typical LSD Radix sort for sorting characters in a given string might look like the following 
code (assuming all keys have a fixed width; let's call it W):

void lsd_sort(char[][] a) {
  int N = len(a);
  int W = len(a[0]);
  for(int d = W – 1; d >= 0; d--) {
    int[] count = (int*) malloc(sizeof(int) * 256);
    for(int i = 0; i< N; ++i) 
      count[a[i][d]+1]++;
    for(int k = 1; k < 256; k++)
      count[k] += count[k-1];
    for(int i = 0; i< N; ++i) 
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      temp[count[a[i][d]]++] = a[i];
    for(int i= 0; i< N; ++i)
      a[i] = temp[i];
  }
}

How it works…
Both approaches are similar as they both bin the characters into R bins, that is, 256 bins, and 
they also use the idea of the counting sort to work out where the final sorting arrangement is 
going to be using a temporary storage, temp, and then use that temporary storage and move 
the data to their sorted places. The nice thing about MSD over LSD Radix sorts is that MSD may 
not examine all of the keys and works for variable-length keys; although, in that lies another 
problem—MSD can experience sub-linear sorts; in practice LSD is generally preferred when the 
size of the key is fixed.

The runtime of an LSD Radix sort is ( )O n  when compared to the runtimes of other sorting 
algorithms that are based on the divide-conquer approach, which generally have a runtime 
of ( )2logO n n  you might be tempted to conclude that Radix sorting would be faster than 
comparison-based sorts like quicksort, and you could be right. But, in practice, a well-tuned 
quicksort can outperform a Radix sort by 24 percent by applying more advanced techniques 
to improve cache friendliness during the execution. However, technology is constantly 
evolving, and researchers and engineers will find opportunities to maximize the performance.

You may wish to read the papers The influence of cache on sorting by 
LaMarca and Adapting Radix Sort to the memory hierarchy by Rahman 
and Raman for more algorithmic improvements that they have worked on.



Chapter 10

247

Understanding reduction
Radix sorting employs two techniques: reduction and scan. These are classified as data 
collection patterns as they occur frequently in parallel computing. This recipe will focus on 
reduction, which allows data to be condensed to a single element using associative binary 
operators. The scan pattern can be easily mistaken for the reduction pattern and the key 
difference is that this pattern reduces every subsequence of a collection up to every position 
in the input. We'll defer the discussion of scans until we get to the next section.

In the reduction pattern, we typically have an associative binary operator, ( ) ( ),f a b a b= ⊗
that we use to collate all elements in a container in a pair-wise fashion. The fact that we need 
an associative binary operator is an important one, because it implies that the developer can 
reorganize the combination function to check if it performs efficiently; we'll go into that a  
little later. Let's take a look at a serial algorithm for conducting reduction in the following  
code snippet:

template<typename T>
T reduce(T (*f)(T, T),
         size_t n,
         T a[],
         T identity) {
  T accumulator = identity;
  for(size_t i = 0; i < n ; ++i)
        accumulator = f(accumulator, a[i]);
  return accumulator;
}

The algorithm basically takes an associative binary operator, f (that is, a pointer to a 
function), and an array a, of length n and computes the operation 
over the array with an initial value identified by identity.

An associative binary operator can allow the developer to extract parallelism from it because 
associativity means that the operator would produce the same result regardless of the order 
in which it is applied to the elements. That is to say:

( )( )( )( )0 1 2 1.... nidentify a a a a −⊗ ⊗ ⊗ ⊗

The previous expression is equivalent to:

( ) ( )( ) ( ) ( )( )( )0 1 2 3 4 3 2 1.... n n n na a a a a a a a− − − −⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
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Putting on the many core hat, we can actually imagine a tree of computations in which the 
sub-trees represent the computation of the form ( ) ( )( )0 1 2 3a a a a⊗ ⊗ ⊗ . The first sweep would 
compute the result of this sub-tree while the second sweep would collate the results of the 
other sub-trees. This will be evident once you have had a chance to examine them visually  
in the next two diagrams:

identity

It will be very useful for you to contrast the manner in which these diagrams differ. One of the 
ways is that the former implies a sequence of operations in traversal order, and this is very 
different from the latter (as shown in the following diagram):

identity
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It's great news to know that associative operators allow the reduction to be parallelized, but 
it's not the entire story, because associativity only allows us to group the operations and 
does not reveal to us whether these groups of binary operations need to occur in a specific 
order. If you are wondering whether we are talking about commutativity, you are spot on! 
Commutativity gives us the important property of changing the order of application. We know 
that some operations exhibit one of these while others exhibit both; for example, we know that 
addition and multiplication of numbers is both associative and commutative. The following is 
what a commutative parallel reduction might look like:

identity

stride=4

stride=2

stride=1

commutative parallel reduction

Now, seeing this information, you might wonder how this can be translated into OpenCL.  
We are going to demonstrate a few reductions kernels in this recipe where each one will 
provide you with an improvement over the previous one.

How to do it…
For this recipe, we are going to assume that we have a large array of a few million elements 
and that we like to apply the reduction algorithm to compute the sum of all elements. The first 
thing to do is produce a parallel algorithm for the serial version we saw earlier. All the kernels 
we are demonstrating are in Ch10/Reduction/reduction.cl.

In the serial version of the algorithm, you would have noticed that we simply pass the 
accumulator into the binary function to perform the operation. However, we cannot use this 
method in the GPU since it cannot support tens of thousands of executing threads and also 
the device can contain many more processors than an x86 CPU has. The only solution is to 
partition the data across the processors so that each block processes a portion of the input, 
and when all of the processors are executing in parallel, we should expect the work to be 
completed in a short span of time.
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Assuming that a block has computed its summed value, we still need a way to collate all 
those partial sums from all blocks, and considering that OpenCL does not have a global 
synchronization primitive or API, we have two options: have OpenCL collate the partial sums  
or have the host code collate the partial sums; for our examples, the second option is chosen.

The first kernel, reduce0, is a direct translation of the serial algorithm:

__kernel void reduce0(__global uint* input, 
                      __global uint* output, 
                      __local uint* sdata) {
    unsigned int tid = get_local_id(0);
    unsigned int bid = get_group_id(0);
    unsigned int gid = get_global_id(0);
    unsigned int blockSize = get_local_size(0);

    sdata[tid] = input[gid];

    barrier(CLK_LOCAL_MEM_FENCE);
    for(unsigned int s = 1; s < BLOCK_SIZE; s <<= 1) {
        // This has a slight problem, the %-operator is rather slow
        // and causes divergence within the wavefront as not all 
threads
        // within the wavefront is executing.
        if(tid % (2*s) == 0)
        {
            sdata[tid] += sdata[tid + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    // write result for this block to global mem
    if(tid == 0) output[bid] = sdata[0];
}

How it works…
This kernel block would load the elements to its shared memory, sdata, and we conduct the 
reduction in sdata in various stages governed by the for loop, allowing work items with IDs 
that are multiples of two to perform the pair-wise reduction. Therefore, in the first iteration of 
the loop, work items with IDs {0, 2, 4, 6, 8, 10, 12, 14, ..., 254} would execute, in the second 
iteration, only work items with IDs {0, 4, 8, 12, 252} would execute, and so on. Following the 
reduction algorithm, the partial sum would be deposited into sdata[0], and finally this value 
would be copied out by one thread which happens to have an ID value equal to 0. Admittedly, 
this kernel is pretty good but it suffers from two problems: the modulus operator takes a 
longer time to execute and wavefronts are diverged. The larger issue here is the problem of 
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wavefront divergence since it means that some work items in the wavefronts are executing 
while some are not, and in this case, the work items with odd IDs are not executing while 
those with even IDs are, GPUs deal with this problem by implementing predication, and this 
means that all work items in the following code snippet actually get executed. However, 
the predication unit on the GPU will apply a mask so that only those work items whose IDs 
matched the condition, if(tid % (2*s) == 0), will execute the statement in the if 
statement, while those work items who fail the condition, false, would invalidate their 
results. Obviously, this is a waste of computing resources:

if(tid % (2*s) == 0)
{
    sdata[tid] += sdata[tid + s];
}

Fortunately, this can be solved with little effort, and the next kernel code demonstrates this:

__kernel void reduce1(__global uint* input, 
                      __global uint* output, 
                      __local uint* sdata) {
    unsigned int tid = get_local_id(0);
    unsigned int bid = get_group_id(0);
    unsigned int gid = get_global_id(0);
    unsigned int blockSize = get_local_size(0);

    sdata[tid] = input[gid];

    barrier(CLK_LOCAL_MEM_FENCE);
    for(unsigned int s = 1; s < BLOCK_SIZE; s <<= 1) {
        int index = 2 * s * tid;
        if(index < BLOCK_SIZE)
        {
            sdata[index] += sdata[index + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    // write result for this block to global mem
    if(tid == 0) output[bid] = sdata[0];
}

We replaced the conditional evaluation after the modulus operator has been applied to 
something more palatable. The appetizing portion is the fact that we no longer have diverging 
wavefronts, and we have also made strided accesses to the shared memory.
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There's more…
So far, we have seen how we can apply our understanding of associativity to build the 
reduction kernel and also how to make use of our new understanding of commutativity in 
the reduction process. The commutative reduction tree is actually better than the associative 
reduction tree because it makes better use of the shared memory by compacting the reduced 
values and hence raising efficiency; the following kernel, reduce2, reflects this:

__kernel void reduce2(__global uint* input, 
                      __global uint* output, 
                      __local uint* sdata) {
    unsigned int tid = get_local_id(0);
    unsigned int bid = get_group_id(0);
    unsigned int gid = get_global_id(0);
    unsigned int blockSize = get_local_size(0);

    sdata[tid] = input[gid];

    barrier(CLK_LOCAL_MEM_FENCE);
    for(unsigned int s = BLOCK_SIZE/2; s > 0 ; s >>= 1) {
        // Notice that half of threads are already idle on first 
iteration
        // and with each iteration, its halved again. Work efficiency 
isn't very good
        // now
        if(tid < s)
        {
            sdata[tid] += sdata[tid + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    // write result for this block to global mem
    if(tid == 0) output[bid] = sdata[0];
}

However, this isn't very good because now during the first iteration, we have already made 
half of those work items idle and efficiency is definitely affected. Fortunately, however, the 
remedy is simple. We reduce half the number of blocks and during the hydration of the 
shared memory, we load two elements and store the sum of these two elements instead of 
just loading values from global memory and storing them into shared memory. The kernel, 
reduce3, reflects this:

__kernel void reduce3(__global uint* input, 
                      __global uint* output, 
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                      __local uint* sdata) {
    unsigned int tid = get_local_id(0);
    unsigned int bid = get_group_id(0);
    unsigned int gid = get_global_id(0);

    // To mitigate the problem of idling threads in 'reduce2' kernel,
    // we can halve the number of blocks while each work-item loads
    // two elements instead of one into shared memory
    unsigned int index = bid*(BLOCK_SIZE*2) + tid;
    sdata[tid] = input[index] + input[index+BLOCK_SIZE];

    barrier(CLK_LOCAL_MEM_FENCE);
    for(unsigned int s = BLOCK_SIZE/2; s > 0 ; s >>= 1) {
        // Notice that half of threads are already idle on first 
iteration
        // and with each iteration, its halved again. Work efficiency 
isn't very good
        // now
        if(tid < s)
        {
            sdata[tid] += sdata[tid + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    // write result for this block to global mem
    if(tid == 0) output[bid] = sdata[0];
}

Now, things are starting to look much better and we've used what we call reversed loop  
(which is basically counting backwards) to get rid of the problem of divergent wavefronts;  
in the meantime, we have also not reduced our capacity to reduce elements because we've 
performed that while hydrating the shared memory. The question is whether there's more we 
can do? Actually, there is another idea we can qualify and that is to take advantage of atomicity 
of wavefronts or warps executing on GPUs. The next kernel, reduce4, demonstrates how we 
utilized wavefront programming to reduce blocks atomically:

__kernel void reduce4(__global uint* input, 
                      __global uint* output, 
                      __local uint* sdata) {
    unsigned int tid = get_local_id(0);
    unsigned int bid = get_group_id(0);
    unsigned int gid = get_global_id(0);
    unsigned int blockSize = get_local_size(0);
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    unsigned int index = bid*(BLOCK_SIZE*2) + tid;
    sdata[tid] = input[index] + input[index+BLOCK_SIZE];

    barrier(CLK_LOCAL_MEM_FENCE);
    for(unsigned int s = BLOCK_SIZE/2; s > 64 ; s >>= 1) {
        // Unrolling the last wavefront and we cut 7 iterations of 
this
        // for-loop while we practice wavefront-programming
        if(tid < s)
        {
            sdata[tid] += sdata[tid + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    if (tid < 64) {
        if (blockSize >= 128) sdata[tid] += sdata[tid + 64];
        if (blockSize >=  64) sdata[tid] += sdata[tid + 32];
        if (blockSize >=  32) sdata[tid] += sdata[tid + 16];
        if (blockSize >=  16) sdata[tid] += sdata[tid +  8];
        if (blockSize >=   8) sdata[tid] += sdata[tid +  4];
        if (blockSize >=   4) sdata[tid] += sdata[tid +  2];
        if (blockSize >=   2) sdata[tid] += sdata[tid +  1];
    }
    // write result for this block to global mem
    if(tid == 0) output[bid] = sdata[0];
}

In the code block demarcated by the statement if (tid < 64), we no longer need to 
place the memory barriers because the code block only hosts one wavefront which executes 
atomically in the lock step.

Developing the Radix sort in OpenCL
From this section onwards, we are going to develop this sorting method for OpenCL. We are 
going to do two things: implement the parallel Radix sort described in the paper that Marco 
Zagha and Guy E. Blelloch wrote in 1991 titled Radix Sort for Vector Multiprocessors. The 
former algorithm was crafted for the CRAY Y-MP computer (which, in turn, was adapted from 
the parallel Radix sort algorithm that worked on the Connection Machine (CM-2)).
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Getting ready
Radix sorting attempts to treat keys as multi-digit numbers, where each digit is an integer 
depending on the size of the Radix, R. An example would be sorting a large array of 32-bit 
numbers. We can see that each such number is made up of four bytes (each byte is 8-bits 
on today's CPU and GPU processors), and if we decide to assume that each digit would be 
8-bits, we naturally would treat a 32-bit number as comprised of four digits. This notion is 
most natural when you apply the concept back to a string of words, treating each word as 
comprising of more than one character.

The original algorithm worded in the 1999 paper basically uses the counting sort algorithm 
and it has three main components which will in turn sort the input by iterating all three 
components until the job is done. The pseudo code, which is a serial algorithm, is presented 
as follows:

COUNTING-SORT
  HISTOGRAM-KEYS
    do i = 0 to 2r -1
      Bucket[i] = 0
    do i = 0 to N – 1
      Bucket[D[j]] = Bucket[D[j]] + 1
  SCAN-BUCKETS
    Sum = 0
    do i = 0 to 2r – 1
      Val = Bucket[i]
      Bucket[i] = Sum
      Sum = Sum + Val
  RANK-AND-PERMUTE
    do j = 0 to N – 1
      A = Bucket[D[j]]
      R[A] = K[j]
      Bucket[D[j]] = A + 1

The algorithm HISTOGRAM-KEYS is something that we have already encountered a few 
chapters ago, and it is really the histogram. This algorithm computes the distribution of the 
keys that it encounters during the sort. This algorithm is expressed in a serial fashion, that is, 
it is supposed to run on a single executing thread; we have already learned how to parallelize 
that and you can apply those techniques here. However, what we are going to do now deviates 
from what you have seen in that previous chapter, and we'll reveal that soon enough.

The next algorithm is SCAN-BUCKETS, and it is named as such because it actually scans the 
entire histogram to compute the prefix sums (we'll examine prefix sums in fair detail later). In 
this scan operation, Bucket[i] contains the number of digits with a value, j, such that j is 
greater than i, and this value is also the position, that is, the array index in the output.
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The final algorithm is RANK-AND-PERMUTE, and each key with a digit of value of i is placed 
in its final location by getting the offset from Bucket[i] and incrementing the bucket so that 
the next key with the same value i gets placed in the next location. You should also notice 
that COUNTING SORT is stable.

Before we dive into parallelization of the algorithms and how they work in a cohesive manner, 
it's important to take the next few paragraphs to understand what prefix sums are; the next 
paragraph highlights why they matter in Radix sorts.

In the previous sections, we introduced MSD and LSD Radix sorts and the prefix sums 
computation is embedded in the code. However, we didn't flag it out for you then. So, now's the 
time and the following is the code (taken from the previous lsd_sort and msd_sort sections):

for(int k = 1; k < 256; k++)
      count[k] += count[k-1];

If you recall how MSD/LSD works, we basically create a histogram of the values we have 
encountered and, at each stage of the sorting, we compute the prefix sums so that the 
algorithm can know where to place the output in a sorted order. If you are still doubtful,  
you should stop now and flip back to that section and work through the LSD sorting for  
strings of three characters.

The prefix sums is actually a generalization of the global sum, and its 
original formulation goes something like the following:
The prefix sum operation takes a binary associative operator , and 
an ordered set of n elements, [ ]0 1 1, ,..., na a a − , and returns the ordered set 

.

We use a concrete example like taking a summation over an arbitrary array like [39, 23, 
44, 15, 86]. Using the addition operator, the output would be [39, 62, 108, 125, 
211], and it is not obvious why this sort of computation is important or is even needed.  
In fact it is not even clear whether there is a direct way to parallelize this algorithm because  
of dependencies that each subsequent computation relies on the previous.

A sequential version of the prefix sums which has a runtime of ( )O n  can be expressed as 
follows, assuming there are two arrays in_arr and out_arr, and out_arr is designed  
to contain the prefix sums for in_arr:

sum = 0
out_arr[0] = 0
do i = 0 to lengthOf(in_arr)
  t = in_arr[i+1]
  sum = sum + t
  out_arr[i] = sum
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To extract parallelism from this, we need to adjust the way we view the arbitrary array of 
input values, and the adjustment we are talking about is actually imagining the array to be 
consumed by a tree of computations. Let's go on a little further to see why.

At this point, we think it's important to step back into history and see who came up with the 
original prefix sum computation. As far as I am aware, two researchers in 1986, Daniel Hillis 
and Guy L. Steele, presented a version of the prefix sum as part of an article titled Data 
Parallel Algorithms in the ACM (Association for Computing Machinery) magazine, and the 
algorithm they presented worked as follows (cited as such in that article):

for j = 1 to log
2
n do

  for all k in parallel do
    if (k >= 2j) then
      x[k] = x[k – 2j-1] + x[k]
    fi
  endfor
endfor

The following diagram (courtesy of Mark Harris from the NVIDIA Corporation), pictorially 
illustrates what the Hillis and Steele algorithm does. It starts at the level where all eight 
elements are looked upon as leaves of the binary tree and proceeds to work its way through 
computing the partial sums. Each level of the computation, d, will compute partial sums 
based on the previous level's computation. An assumption found in the algorithm is that it 
assumes that there are as many processors as there are elements and this is demonstrated 
by the conditional statement in the algorithm, if (k >= 2j). Another problem it has got is 
that it's not very efficient; it has a runtime complexity of ( )2logO n n , and you will recall that our 
sequential scan runs at ( )O n , so it is definitely slower.

d=1d=1d=1

d=2

d=3
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However, Guy Blelloch found ways to improve this, and they are based on the idea of building 
a balanced binary tree and building out that tree by performing addition on each node 
(conceptually speaking). Because such a tree with n leaves (which is corresponding to the 
number of elements in the array) would have 2logd n=  levels and each level has 2d nodes, 
the runtime complexity is ( )O n . The following diagram is an illustration of how a balanced 
binary tree can compute the array of arbitrary values:

Array 12 3 41 31 8 16 7 6

124

671683141

3787

15 72 1324

312

The previous diagram created juxtaposition, and it alters the way the same piece of data 
you saw, that is, one dimensional flat array containing arbitrary values. Imagine a tree of 
computations that scans and operates on two values. One way of storing those partial  
sums is to write the value in place to the array and another way is to use shared memory  
on the device.

The astute reader in you would notice that we can probably parallelize the computation at 
each level of the tree by allowing one thread to read two elements, sum them up, and write 
them back into the array, and then you just read off the last element of that array for the final 
sum. This algorithm that we just described is known as a reduction kernel or an up-sweep 
kernel (since we are sweeping values up to the root of the tree), and we have seen how it 
works in the chapter where we discussed about sparse matrix computations in OpenCL.  
The following is the more formal definition of the reduction phase by Guy Blelloch when  
it's applied to a balanced binary tree with depth lg n :

for d from 0 to (log
2
 n) – 1

  in parallel for i from 0 to n – 1 by 2d+1

    array[i + 2d+1 – 1] = array[i + 2d – 1] + array[i + 2d+1 – 1]
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You might think that this up-sweep kernel still doesn't compute the prefix sums, but we do 
appear to have found a solution to solving summation in parallel; at this point, the following 
diagram will help us learn what actually goes on during a run of the up-sweep, and we find it 
helpful to flatten the loop a little to examine its memory access pattern.

Assuming we have eight elements in our array (that is, n = 8), our tree would have a depth of 
3 and d would range from 0 to 2. Imagining that we are at d = 0, through to 2 we would have 
the following expressions:

d = 0 => i = [0..7,2] array[i + 1] = array[i] + array[i + 1]
d = 1 => i = [0..7,4] array[i + 3] = array[i + 1] + array[i + 3]
d = 2 => i = [0..7,8] array[i + 7] = array[i + 3] + array[i + 7]

The next diagram best explains the evaluation of the preceding expressions, and a picture 
does reveal more about the story than plain equations:

d=2

d=1

d=0

From this diagram, we can observe that partial sums are built up at each level of the tree and 
one of the efficiencies introduced here is not repeating any addition, that is, no redundancies. 
Let's demonstrate how this would work for an array of eight elements, and we will also employ 
the up-sweep algorithm. 
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The following diagram illustrates the writes that occurred at each level of the tree we're 
scanning; in that diagram, the boxes colored blue represent the partial sums that were  
built up at each level of the tree, and the red box represents the final summed value:

Array

Array

stage-0

stage-1

stage-2

12

12

12

3

15

15

41

41

41

31

72

87

8

8

8

16

24

24

7

7

7

6

13

37

12 12 41 87 8 24 7 124

12 3 41 31 8 16 7 6

124

37

13

6716831413

15

87

72 24

12

To be able to compute the prefix sums from the up-sweep phase we need to proceed from  
the root of this tree and perform a down-sweep using this algorithm by Guy Blelloch:

x[n-1]=0
for d = log

2
 n – 1 to 0 do

  for all k = 0 to n – 1 by 2d+1 in parallel do
    temp = x[k + 2d – 1]
    x[k + 2d – 1] = x[k + 2d+1 – 1]
    x[k + 2d+1 – 1] = temp + x[k + 2d+1 – 1]
  endfor
endfor
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This down-sweep works its way down from the top (or root) of the tree after the reduce phase 
and builds the prefix sums. Let's flatten the loop to examine its memory access pattern.

As before with the up-sweep, let's assume that we have eight elements (that is, n = 8);  
we would have a depth of 3, and that implies d would range from 0 to 2. The following are  
the flattened expressions:

d = 2 => k = [0..7,8] 
    temp = x[k + 3]
    x[k + 3] = x[k + 7]
    x[k + 7] = temp + x[k + 7]
d = 1 => k = [0..7,4]
    temp = x[k + 1]
    x[k + 1] = x[k + 3]
    x[k + 3] = temp + k[x + 3]
d = 0 => k = [0..7,2]
    temp = x[k]
    x[k] = x[k + 1]
    x[k + 1] = temp + x[k + 1]

The following diagram best expresses how the prefix sums are computed from the  
reduce/up-sweep phase:

d=0

d=1

d=2

0

0

0

0

Zero
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Let us concretize these ideas by looking at how the down-sweep phase would proceed after 
the reduce/up-sweep phase using the following diagram; the input array is the original 
array, and we have kept it there for you to verify that the prefix sum computation according to 
the previous algorithm is correct. The lower portion of the diagram illustrates how memory is 
accessed. Keep in mind that updates are done in place, and when you combine the diagrams 
of the up-sweep and down-sweep phases, you'll notice that we make two passes over the 
original input array to arrive at the solution of prefix sums, which is what we wanted:

input

clear x[n-1]

d = 2

d = 1

d = 0

12

12

12

15

15

0

41

41

41

87

0

15

8

8

8

24

24

87

7

7

7

0

87

111

0 12 15 56 87 85 111 118

0 12 15 56 87 85 111 118

0

87

111

1181119587561512

0

0

15 87

0

How to do it …
The kernel we present here is found in Ch10/RadixSort_GPU/RadixSort.cl, and the 
implementation drew inspiration from the academic paper entitled Radix Sort for Vector 
Multiprocessors by Mark Zagha and Guy E. Blelloch for 32-bit integers. The algorithm is based 
on the LSD Radix sort, and it iterates all the keys while shifting the keys based on the chosen 
Radix and executing OpenCL kernels in sequence; this is best described in the previous diagram.

As before, we present the sequential version of the Radix sort that was translated based on 
Zagha and Blelloch, and like what we have done previously, this is the golden reference which 
we will use to determine the correctness of the data calculated by the OpenCL equivalent.  
We won't spend too much time discussing about this implementation here, but rather it serves 
as a reference point where you can draw the similarities and contrasts when we demonstrate 
how the parallel and sequential code differs:
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int radixSortCPU(cl_uint* unsortedData, cl_uint* hSortedData) {

    cl_uint *histogram = (cl_uint*) malloc(R * sizeof(cl_uint));
    cl_uint *scratch = (cl_uint*) malloc(DATA_SIZE * sizeof(cl_uint));

    if(histogram != NULL && scratch != NULL) {

        memcpy(scratch, unsortedData, DATA_SIZE * sizeof(cl_uint));
        for(int bits = 0; bits < sizeof(cl_uint) * bitsbyte ; bits += 
bitsbyte) {

            // Initialize histogram bucket to zeros
            memset(histogram, 0, R * sizeof(cl_uint));

            // Calculate 256 histogram for all element
            for(int i = 0; i < DATA_SIZE; ++i)
            {
                cl_uint element = scratch[i];
                cl_uint value = (element >> bits) & R_MASK;
                histogram[value]++;
            }

            // Apply the prefix-sum algorithm to the histogram
            cl_uint sum = 0;
            for(int i = 0; i < R; ++i)
            {
                cl_uint val = histogram[i];
                histogram[i] = sum;
                sum += val;
            }

            // Rearrange the elements based on prescanned histogram
            // Thus far, the preceding code is basically adopted from
            // the "counting sort" algorithm.
            for(int i = 0; i < DATA_SIZE; ++i)
            {
                cl_uint element = scratch[i];
                cl_uint value = (element >> bits) & R_MASK;
                cl_uint index = histogram[value];
                hSortedData[index] = scratch[i];
                histogram[value] = index + 1;
            }

            // Copy to 'scratch' for further use since we are not done 
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yet
            if(bits != bitsbyte * 3)
                memcpy(scratch, hSortedData, DATA_SIZE * sizeof(cl_
uint));
        }
    }

    free(scratch);
    free(histogram);
    return 1;
}

This sequential code is akin to the lsd_sort code we showed earlier, and it essentially builds 
a histogram of the examined keys that uses the counting sort to sort them, and it keeps doing 
this until all data is acted upon.

The following kernels are taken from Ch10/RadixSort_GPU/RadixSort.cl, and we'll refer 
to the appropriate code when we explain the internal workings of the algorithm:

#define bitsbyte 8
#define R (1 << bitsbyte)

__kernel void computeHistogram(__global const uint* data,
                               __global uint* buckets,
                               uint shiftBy,
                               __local uint* sharedArray) {

    size_t localId = get_local_id(0);
    size_t globalId = get_global_id(0);
    size_t groupId = get_group_id(0);
    size_t groupSize = get_local_size(0);

    /* Initialize shared array to zero i.e. sharedArray[0..63] = {0}*/
    sharedArray[localId] = 0;
    barrier(CLK_LOCAL_MEM_FENCE);

    /* Calculate thread-histograms local/shared memory range from 32KB 
to 64KB */

    uint result= (data[globalId] >> shiftBy) & 0xFFU;
    atomic_inc(sharedArray+result);

    barrier(CLK_LOCAL_MEM_FENCE);

    /* Copy calculated histogram bin to global memory */
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    uint bucketPos = groupId * groupSize + localId ;
    buckets[bucketPos] = sharedArray[localId];
} 
__kernel void rankNPermute(__global const uint* unsortedData,
                           __global const uint* scannedHistogram,
                           uint shiftCount,
                           __local ushort* sharedBuckets,
                           __global uint* sortedData) {

    size_t groupId = get_group_id(0);
    size_t idx = get_local_id(0);
    size_t gidx = get_global_id(0);
    size_t groupSize = get_local_size(0);

    /* There are now GROUP_SIZE * RADIX buckets and we fill
       the shared memory with those prefix-sums computed previously
     */
    for(int i = 0; i < R; ++i)
    {
        uint bucketPos = groupId * R * groupSize + idx * R + i;
        sharedBuckets[idx * R + i] = scannedHistogram[bucketPos];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    /* Using the idea behind COUNTING-SORT to place the data values in 
its sorted
       order based on the current examined key
     */
    for(int i = 0; i < R; ++i)
    {
        uint value = unsortedData[gidx * R + i];
        value = (value >> shiftCount) & 0xFFU;
        uint index = sharedBuckets[idx * R + value];
        sortedData[index] = unsortedData[gidx * R + i];
        sharedBuckets[idx * R + value] = index + 1;
        barrier(CLK_LOCAL_MEM_FENCE);
    }
}
__kernel void blockScan(__global uint *output,
                        __global uint *histogram,
                        __local uint* sharedMem,
                        const uint block_size,
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                        __global uint* sumBuffer) {
      int idx = get_local_id(0);
      int gidx = get_global_id(0);
      int gidy = get_global_id(1);
      int bidx = get_group_id(0);
      int bidy = get_group_id(1);

      int gpos = (gidx << bitsbyte) + gidy;
      int groupIndex = bidy * (get_global_size(0)/block_size) + bidx;

      /* Cache the histogram buckets into shared memory
         and memory reads into shared memory is coalesced
      */
      sharedMem[idx] = histogram[gpos];
      barrier(CLK_LOCAL_MEM_FENCE);

    /*
       Build the partial sums sweeping up the tree using
       the idea of Hillis and Steele in 1986
     */
    uint cache = sharedMem[0];
    for(int stride = 1; stride < block_size; stride <<= 1)
    {
        if(idx>=stride)
        {
            cache = sharedMem[idx-stride]+block[idx];
        }
        barrier(CLK_LOCAL_MEM_FENCE); // all threads are blocked here

        sharedMem[idx] = cache;
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    /* write the array of computed prefix-sums back to global memory 
*/
    if(idx == 0)
    {
        /* store the value in sum buffer before making it to 0 */
        sumBuffer[groupIndex] = sharedMem[block_size-1];
        output[gpos] = 0;
    }
    else
    {
        output[gpos] = sharedMem[idx-1];
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    }
}
__kernel void unifiedBlockScan(__global uint *output,
                               __global uint *input,
                               __local uint* sharedMem,
                               const uint block_size) {

    int id = get_local_id(0);
    int gid = get_global_id(0);
    int bid = get_group_id(0);

    /* Cache the computational window in shared memory */
    sharedMem[id] = input[gid];

    uint cache = sharedMem[0];

    /* build the sum in place up the tree */
    for(int stride = 1; stride < block_size; stride <<= 1)
    {
        if(id>=stride)
        {
            cache = sharedMem[id-stride]+sharedMem[id];
        }
        barrier(CLK_LOCAL_MEM_FENCE);

        sharedMem[id] = cache;
        barrier(CLK_LOCAL_MEM_FENCE);

    }
    /*write the results back to global memory */
    if(tid == 0) {
        output[gid] = 0;
    } else {
        output[gid] = sharedMem[id-1];
    }
}
__kernel void blockPrefixSum(__global uint* output,
                             __global uint* input,
                             __global uint* summary,
                             int stride) {

     int gidx = get_global_id(0);
     int gidy = get_global_id(1);
     int Index = gidy * stride +gidx;
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     output[Index] = 0;

      // Notice that you don't need memory fences in this kernel
      // because there is no race conditions and the assumption
      // here is that the hardware schedules the blocks with lower
      // indices first before blocks with higher indices
     if(gidx > 0)
     {
         for(int i =0;i<gidx;i++)
             output[Index] += input[gidy * stride +i];
     }
     // Write out all the prefix sums computed by this block
     if(gidx == (stride - 1))
         summary[gidy] = output[Index] + input[gidy * stride + (stride 
-1)];
}

__kernel void blockAdd(__global uint* input,
                       __global uint* output,
                       uint stride) {

      int gidx = get_global_id(0);
      int gidy = get_global_id(1);
      int bidx = get_group_id(0);
      int bidy = get_group_id(1);

      int gpos = gidy + (gidx << bitsbyte);

      int groupIndex = bidy * stride + bidx;

      uint temp;
      temp = input[groupIndex];

      output[gpos] += temp;
}
__kernel void mergePrefixSums(__global uint* input,
                        __global uint* output) {

   int gidx = get_global_id(0);
   int gidy = get_global_id(1);
   int gpos = gidy + (gidx << bitsbyte );
   output[gpos] += input[gidy];
}



Chapter 10

269

How it works…
The strategy we present here is to break keys, that is, break 32-bit integers into 8-bit digits, 
and then sort them one at a time starting from the least significant digit. Based on this idea, 
we are going to loop four times and at each loop number i, we are going to examine the i 
numbered 8-bit digit.

The general looping structure based on the previous description is given in the following code:

void runKernels(cl_uint* dSortedData, size_t numOfGroups, size_t 
groupSize) {
   for(int currByte = 0; currByte < sizeof(cl_uint) * bitsbyte; 
currByte += bitsbyte) {
    computeHistogram(currByte);
    computeBlockScans();
    computeRankingNPermutations(currByte,groupSize);
  }
}

The three invocations in the loop are the work horses of this implementation and they invoke 
the kernels to compute the histogram from the input based on the current byte we are looking 
at. The algorithm will basically compute the histogram of the keys that it has examined; the 
next phase is to compute the prefix sums (we'll be using the Hillis and Steele algorithm for 
this), and finally we will update the data structures and write out the values in a sorted order. 
Let's go into detail about how this works.

In the host code, you will need to prepare the data structures slightly differently than what we 
have shown you so far, because these structures need to be shared across various kernels while 
we swing between host code and kernel code. The following diagram illustrates this general idea 
for runKernels(), and this situation is because we created a single command queue which all 
kernels will latch on to in program order; this applies to their execution as well:

shared data structures cached on device

Time

runKernels() execution time graph

wall clock

key:

GPU - kernel code running on the GPU

CPU - Host code, in C, running on the CPU

CPU idle

T0

T1

T2

T3

T4

T5
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For this implementation, the data structure that holds the unsorted data (that is, 
unsortedData_d) needs to be read and shared across the kernels. Therefore, you need to 
create the device buffer with the flag CL_MEM_USE_HOST_PTR since the OpenCL specification 
guarantees that the implementations cached it across multiple kernel invocations. Next, we 
will look at how the histogram is computed on the GPU.

The computation of the histogram is based on the threaded histogram we introduced in a 
previous chapter, but this time around, we decided to show you another implementation which 
is based on using atomic functions in OpenCL, and in particular using atomic_inc(). The 
atomic_inc function will update the value pointed by the location by one. The histogram 
works on the OpenCL-supported GPU because we have chosen to use the shared memory 
and CPU doesn't support that yet. The strategy is to divide our input array into blocks of N x R 
elements where R is the radix (in our case R = 8 since each digit is 8-bits wide and 28=256) 
and N is the number of threads executing the block. This strategy is based on the assumption 
that our problem sizes are always going to be much larger than the amount of threads 
available, and we configure it programmatically on the host code prior to launching the kernel 
as shown in the following code:

void computeHistogram(int currByte) {
    cl_event execEvt;
    cl_int status;
    size_t globalThreads = DATA_SIZE;
    size_t localThreads  = BIN_SIZE;
    status = clSetKernelArg(histogramKernel, 0, sizeof(cl_mem),
             (void*)&unsortedData_d);
    status = clSetKernelArg(histogramKernel, 1, sizeof(cl_mem),
             (void*)&histogram_d);
    status = clSetKernelArg(histogramKernel, 2, sizeof(cl_int),
             (void*)&currByte);
    status = clSetKernelArg(histogramKernel, 3, sizeof(cl_int) *
             BIN_SIZE, NULL);
    status = clEnqueueNDRangeKernel(
        commandQueue,
        histogramKernel,
        1,
        NULL,
        &globalThreads,
        &localThreads,
        0,
        NULL,
        &execEvt);
    clFlush(commandQueue);
    waitAndReleaseDevice(&execEvt);
}
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By setting up the OpenCL thread block to be equal to BIN_SIZE, that is, 256, the kernel waits 
for the computation to complete by polling the OpenCL device for its execution status; this 
poll-release mechanism is encapsulated by waitAndReleaseDevice().

When you have multiple kernel invocations and one kernel waits on 
the other, you need synchronization, and OpenCL provides this via 
clGetEventInfo and clReleaseEvent.

In the histogram kernel, we built up the histogram by reading the inputs into shared memory 
(after initializing it to zero), and to prevent any threads from executing kernel code that reads 
from shared memory before all data is loaded into it, we placed a memory barrier as follows:

    /* Initialize shared array to zero i.e. sharedArray[0..63] = {0}*/
    sharedArray[localId] = 0;       
    barrier(CLK_LOCAL_MEM_FENCE);   

It's debatable whether we should initialize the shared memory, but 
it's best practice to initialize data structures, just like you would do in 
other programming languages. The trade off, in this case, is program 
correctness versus wasting processor cycles.

Next, we shift the data value (residing in shared memory) by a number, shiftBy, which is 
the key we are sorting, extract the byte, and then update the local histogram atomically. We 
placed a memory barrier thereafter. Finally, we write out the binned values to their appropriate 
location in the global histogram, and you will notice that this implementation performs what 
we call scattered writes:

    uint result= (data[globalId] >> shiftBy) & 0xFFU; //5
    atomic_inc(sharedArray+result);                         //6

    barrier(CLK_LOCAL_MEM_FENCE);                           //7

    /* Copy calculated histogram bin to global memory */

    uint bucketPos = groupId  * groupSize + localId ; //8
    buckets[bucketPos] = sharedArray[localId];        //9

Once the histogram is established, the next task that runKernels() performs is to execute 
the computations of prefix sums in the kernels blockScan, blockPrefixSum, blockAdd, 
unifiedBlockScan, and mergePrefixSums in turn. We'll explain what each kernel does  
in the following sections.
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The general strategy for this phase (encapsulated in computeBlockScans()) is to pre-
scan the histogram bins so that we generate the prefix sums for each bin. We then write out 
that value to an auxiliary data structure, sum_in_d, and write out all intermediary sums into 
another auxiliary data structure, scannedHistogram_d. The following is the configuration 
we sent to the blockScan kernel:

    size_t numOfGroups = DATA_SIZE / BIN_SIZE;
    size_t globalThreads[2] = {numOfGroups, R};
    size_t localThreads[2] = {GROUP_SIZE, 1};
    cl_uint groupSize = GROUP_SIZE;

status = clSetKernelArg(blockScanKernel, 0, sizeof(cl_mem), 
(void*)&scannedHistogram_d);
    status = clSetKernelArg(blockScanKernel, 1, sizeof(cl_mem), 
(void*)&histogram_d);
    status = clSetKernelArg(blockScanKernel, 2, GROUP_SIZE * 
sizeof(cl_uint), NULL);
    status = clSetKernelArg(blockScanKernel, 3, sizeof(cl_uint), 
&groupSize);
    status = clSetKernelArg(blockScanKernel, 4, sizeof(cl_mem), &sum_
in_d);
    cl_event execEvt;
    status = clEnqueueNDRangeKernel(
                commandQueue,
                blockScanKernel,
                2,
                NULL,
                globalThreads,
                localThreads,
                0,
                NULL,
                &execEvt);
    clFlush(commandQueue);
    waitAndReleaseDevice(&execEvt);

The general strategy behind scanning is illustrated in the following diagram, where the input is 
divided into separate blocks and each block will be submitted for a block scan. The generated 
results are prefix sums, but we need to collate these results across all blocks to obtain a 
cohesive view. After which, the histogram bins are updated with these prefix sum values,  
and then finally we can use the updated histogram bins to sort the input array.
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initial array of arbitrary values

scan block-0 scan block-1 scan block-2 scan block-3

scan block sums

add block sums to histogram bins

?nal array of sorted values

Store the block sums to auxiliary array

Let's look at how the block scan is done by examining blockScan. First, we load the  
values from the previously computed histogram bin into its shared memory as shown  
in the following code:

__kernel void blockScan(__global uint *output,
                        __global uint *histogram,
                        __local uint* sharedMem,
                        const uint block_size,
                        __global uint* sumBuffer) {
      int idx = get_local_id(0);
      int gidx = get_global_id(0);
      int gidy = get_global_id(1);
      int bidx = get_group_id(0);
      int bidy = get_group_id(1);

      int gpos = (gidx << bitsbyte) + gidy;
      int groupIndex = bidy * (get_global_size(0)/block_size) + bidx;

      /* Cache the histogram buckets into shared memory
         and memory reads into shared memory is coalesced
      */
      sharedMem[idx] = histogram[gpos];
      barrier(CLK_LOCAL_MEM_FENCE);
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Next, we perform the Hillis and Steele prefix sum algorithm locally, and build the summed 
values for the current block:

    /*
       Build the partial sums sweeping up the tree using
       the idea of Hillis and Steele in 1986
     */
    uint cache = sharedMem[0];
    for(int dis = 1; dis < block_size; dis <<= 1)
    {
        if(idx>=dis)
        {
            cache = sharedMem[idx-dis]+block[idx];
        }
        barrier(CLK_LOCAL_MEM_FENCE); // all threads are blocked here

        sharedMem[idx] = cache;
        barrier(CLK_LOCAL_MEM_FENCE);
    }

Finally, we write out a prefix sum for this block to sum_in_d, represented in the following 
code by sumBuffer, and the intermediary prefix sums to the scannedHistogram_d object, 
represented here by output:

    /* write the array of computed prefix-sums back to global memory 
*/
    if(idx == 0)
    {
        /* store the value in sum buffer before making it to 0 */
        sumBuffer[groupIndex] = sharedMem[block_size-1];
        output[gpos] = 0;
    } else {        
        output[gpos] = sharedMem[idx-1];
    }
}
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The following diagram illustrates this concept for two parallel block scans (assuming we  
have a shared memory that holds eight elements) and shows how it's stored into the output:

++sharedMem + + ++ + + + +

++output + + ++ + + +

block-scan-0

++sharedMem + + ++ + + + +

++output + + ++ + + +

block-scan-1

+

+sumBuffer[block-1]

sumBuffer[block-0]

At this phase of the computation, we have managed to compute the prefix sums for all the 
individual blocks. We need to collate them through the next phase, which is in the kernel 
blockPrefixSum where the individual block's summed value is accumulated by each work 
item. The work done by each thread will compute the sum across different blocks. Depending 
on the thread with ID, i, will gather all sums from block number 0 to (i – 1). The following 
code in blockPrefixSum illustrates this process:

__kernel void blockPrefixSum(__global uint* output,
                             __global uint* input,
                             __global uint* summary,
                             int stride) {

     int gidx = get_global_id(0);
     int gidy = get_global_id(1);
     int Index = gidy * stride +gidx;
     output[Index] = 0;

     if(gidx > 0) {
         for(int i =0;i<gidx;i++)
             output[Index] += input[gidy * stride +i];
     }
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The astute reader will notice that we have left out the prefix sum for one block, and the following 
remedies are obtained by computing the final accumulated prefix sums for this block:

     // Write out all the prefix sums computed by this block
     if(gidx == (stride - 1))
         summary[gidy] = output[Index] + input[gidy * stride + (stride 
-1)];

The following diagram best represents what computation goes on in the previous kernel 
code. It assumes that we have a block scan for 16 elements that has been completed in 
blockScanKernel, and each element contains the prefixed sum. To collate these sums,  
we configure our kernel to run eight threads with a striding factor of 8 (assuming a block size 
of eight), and the diagram expresses what each of the eight threads are working on.  
The threads collate the sums by working out the summation of the entire input, progressively 
computing ( ) ( ) ( ) ( ) ( ) ( ) ( )0 7 0 14 0 21 0 28 0 49 0 56 0 63... ...x ... ... ... ... ...x x x x x x x x x x x x x⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕   
and writing them out to sum_out_d and summary_in_d.

The following is a diagram that illustrates the process where given an input, all elements  
of that input are the summed values of the block scan for all blocks; the algorithm basically 
sums everything and writes to the output array:

input

thread-1

thread-2

thread-3

thread-4

thread-8

some threads
are omitted

here

88

8 8

99

3 3
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At this point, we have to collate the intermediary prefix sums computed, that is, 
( ) ( ) ( ) ( ) ( ) ( ) ( )0 7 0 14 0 21 0 28 0 28 0 49 0 56... ... ... ... ... ... ...x x x x x x x x x x x x x x⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕   

inside sum_out_d, and with that from scannedHistogram_d. We basically add the  
two intermediary sums together using blockAddKernel. The following is how we prepare  
the kernel prior to launch:

        cl_event execEvt2;
        size_t globalThreadsAdd[2] = {numOfGroups, R};
        size_t localThreadsAdd[2] = {GROUP_SIZE, 1};
        status = clSetKernelArg(blockAddKernel, 0, sizeof(cl_mem), 
(void*)&sum_out_d);
        status = clSetKernelArg(blockAddKernel, 1, sizeof(cl_mem), 
(void*)&scannedHistogram_d);
        status = clSetKernelArg(blockAddKernel, 2, sizeof(cl_uint), 
(void*)&stride);
        status = clEnqueueNDRangeKernel(
                    commandQueue,
                    blockAddKernel,
                    2,
                    NULL,
                    globalThreadsAdd,
                    localThreadsAdd,
                    0,
                    NULL,
                    &execEvt2);
        clFlush(commandQueue);
        waitAndReleaseDevice(&execEvt2);

We then basically collate them back to scannedHistogram_d with blockAddKernel 
whose code is shown as follows:

__kernel void blockAdd(__global uint* input,
                       __global uint* output,
                       uint stride) {

      int gidx = get_global_id(0);
      int gidy = get_global_id(1);
      int bidx = get_group_id(0);
      int bidy = get_group_id(1);

      int gpos = gidy + (gidx << bitsbyte);

      int groupIndex = bidy * stride + bidx;

      uint temp;
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      temp = input[groupIndex];

      output[gpos] += temp;
}

Finally, we perform another prefix sum to collate the values in summary_in_d, as all 
elements inside that array contains each individual block's prefix sum. Because our chosen 
Radix value is 256, we need to work out the prefix sums computation for blocks 0 to y using 
( )0 1 0
... n block

x x − −
⊕ through to ( )0 1... n block y

x x − −
⊕ . This is illustrated in the following diagram, and 

it is encapsulated in the unifiedBlockScan kernel. We won't show the kernel code as it's 
similar to the blockPrefixSum kernel.

summery_in_d

summery_out_d

summery_out_d

At this point in time, we are left with writing the collated prefix sums we have just performed 
previously into scannedHistogram_d. This collation exercise is different from the previous 
one where we gather the intermediary prefix sums across the blocks, but nonetheless,  
it's still a collation exercise, and we need to push in the values from summary_in_d.  
We accomplished this with mergePrefixSumsKernel with the inputs reflected in the 
following host code:

        cl_event execEvt4;
        size_t globalThreadsOffset[2] = {numOfGroups, R};
        status = clSetKernelArg(mergePrefixSumsKernel, 0, sizeof(cl_
mem), (void*)&summary_out_d);
        status = clSetKernelArg(mergePrefixSumsKernel, 1, sizeof(cl_
mem), (void*)&scannedHistogram_d);
        status = clEnqueueNDRangeKernel(commandQueue, 
mergePrefixSumsKernel, 2, NULL, globalThreadsOffset, NULL, 0, NULL, 
&execEvt4);
        clFlush(commandQueue);
        waitAndReleaseDevice(&execEvt4);
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The mergePrefixSumsKernel exercise is a relatively simple exercise to shift the values to 
their proper positions with the following kernel code:

__kernel void mergePrefixSums(__global uint* input,
                              __global uint* output) {

   int gidx = get_global_id(0);
   int gidy = get_global_id(1);
   int gpos = gidy + (gidx << bitsbyte );
   output[gpos] += input[gidy];
}

With this, the prefix sums are properly computed. The next phase of the algorithm will be to 
rank and permute the keys using each work item / thread to permute its 256 elements via  
the prescanned histogram bins, encapsulated in computeRankNPermutations().  
The following is the host code for the kernel launch:

void computeRankingNPermutations(int currByte, size_t groupSize) {
    cl_int status;
    cl_event execEvt;

    size_t globalThreads = DATA_SIZE/R;
    size_t localThreads = groupSize;

    status = clSetKernelArg(permuteKernel, 0, sizeof(cl_mem), 
(void*)&unsortedData_d);
    status = clSetKernelArg(permuteKernel, 1, sizeof(cl_mem), 
(void*)&scannedHistogram_d);
    status = clSetKernelArg(permuteKernel, 2, sizeof(cl_int), 
(void*)&currByte);
    status = clSetKernelArg(permuteKernel, 3, groupSize * R * 
sizeof(cl_ushort), NULL); // shared memory
    status = clSetKernelArg(permuteKernel, 4, sizeof(cl_mem), 
(void*)&sortedData_d);

    status = clEnqueueNDRangeKernel(commandQueue, permuteKernel, 1, 
NULL, &globalThreads, &localThreads, 0, NULL, &execEvt);
    clFlush(commandQueue);
    waitAndReleaseDevice(&execEvt);

Once the kernel has completed successfully, the data values will be in a sorted order and 
will be held in the device memory by sortedData_d. We need to copy those data into 
unsortedData_d again, and we will continue to do this until we have not completed the 
iteration of the keys.
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In the rankNPermute kernel, we will again make use of shared memory. The data into 
shared memory, and the data is organized as GROUP_SIZE * RADIX where the GROUP_SIZE 
= 64 and RADIX = 256 expressions hold true, and because each work group is configured 
to execute with 64 threads, we basically have one thread hydrating 256 elements of its 
shared memory (which the following code snippet demonstrates):

__kernel void rankNPermute(__global const uint* unsortedData,
                           __global const uint* scannedHistogram,
                           uint shiftCount,
                           __local ushort* sharedBuckets,
                           __global uint* sortedData) {
    size_t groupId = get_group_id(0);
    size_t idx = get_local_id(0);
    size_t gidx = get_global_id(0);
    size_t groupSize = get_local_size(0);
    for(int i = 0; i < R; ++i) {
        uint bucketPos = groupId * R * groupSize + idx * R + i;
        sharedBuckets[idx * R + i] = scannedHistogram[bucketPos];
    }
    barrier(CLK_LOCAL_MEM_FENCE);

Next, it ranks the elements based on the same idea as in the sequential algorithm, and 
you should refer back to that now. The difference is that we are pulling data values from 
unsortedData in global device memory, processing them in device memory, figuring out 
where the values should be, and writing them out to sortedData:

    for(int i = 0; i < R; ++i) {
        uint value = unsortedData[gidx * R + i];
        value = (value >> shiftCount) & 0xFFU;
        uint index = sharedBuckets[idx * R + value];
        sortedData[index] = unsortedData[gidx * R + i];
        sharedBuckets[idx * R + value] = index + 1;
        barrier(CLK_LOCAL_MEM_FENCE);
    }

After the ranking and permutation is done, the data values in the sortedData_d object are 
sorted based on the current examined key. The algorithm will copy the data in sortedData_d 
into unsortedData_d so that the entire process can be repeated for a total of four times.
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